]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-ppc.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL, FALSE);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 /* A copy of relocs before they are modified for --emit-relocs. */
2619 Elf_Internal_Rela *opd_relocs;
2620
2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2622 the reloc to be in the range -32768 to 32767. */
2623 unsigned int has_small_toc_reloc : 1;
2624
2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2626 instruction not one we handle. */
2627 unsigned int unexpected_toc_insn : 1;
2628 };
2629
2630 #define ppc64_elf_tdata(bfd) \
2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2632
2633 #define ppc64_tlsld_got(bfd) \
2634 (&ppc64_elf_tdata (bfd)->tlsld_got)
2635
2636 #define is_ppc64_elf(bfd) \
2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2638 && elf_object_id (bfd) == PPC64_ELF_DATA)
2639
2640 /* Override the generic function because we store some extras. */
2641
2642 static bfd_boolean
2643 ppc64_elf_mkobject (bfd *abfd)
2644 {
2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2646 PPC64_ELF_DATA);
2647 }
2648
2649 /* Fix bad default arch selected for a 64 bit input bfd when the
2650 default is 32 bit. */
2651
2652 static bfd_boolean
2653 ppc64_elf_object_p (bfd *abfd)
2654 {
2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2656 {
2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2658
2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2660 {
2661 /* Relies on arch after 32 bit default being 64 bit default. */
2662 abfd->arch_info = abfd->arch_info->next;
2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2664 }
2665 }
2666 return TRUE;
2667 }
2668
2669 /* Support for core dump NOTE sections. */
2670
2671 static bfd_boolean
2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2673 {
2674 size_t offset, size;
2675
2676 if (note->descsz != 504)
2677 return FALSE;
2678
2679 /* pr_cursig */
2680 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2681
2682 /* pr_pid */
2683 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2684
2685 /* pr_reg */
2686 offset = 112;
2687 size = 384;
2688
2689 /* Make a ".reg/999" section. */
2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2691 size, note->descpos + offset);
2692 }
2693
2694 static bfd_boolean
2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2696 {
2697 if (note->descsz != 136)
2698 return FALSE;
2699
2700 elf_tdata (abfd)->core_pid
2701 = bfd_get_32 (abfd, note->descdata + 24);
2702 elf_tdata (abfd)->core_program
2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2704 elf_tdata (abfd)->core_command
2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2706
2707 return TRUE;
2708 }
2709
2710 static char *
2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2712 ...)
2713 {
2714 switch (note_type)
2715 {
2716 default:
2717 return NULL;
2718
2719 case NT_PRPSINFO:
2720 {
2721 char data[136];
2722 va_list ap;
2723
2724 va_start (ap, note_type);
2725 memset (data, 0, sizeof (data));
2726 strncpy (data + 40, va_arg (ap, const char *), 16);
2727 strncpy (data + 56, va_arg (ap, const char *), 80);
2728 va_end (ap);
2729 return elfcore_write_note (abfd, buf, bufsiz,
2730 "CORE", note_type, data, sizeof (data));
2731 }
2732
2733 case NT_PRSTATUS:
2734 {
2735 char data[504];
2736 va_list ap;
2737 long pid;
2738 int cursig;
2739 const void *greg;
2740
2741 va_start (ap, note_type);
2742 memset (data, 0, 112);
2743 pid = va_arg (ap, long);
2744 bfd_put_32 (abfd, pid, data + 32);
2745 cursig = va_arg (ap, int);
2746 bfd_put_16 (abfd, cursig, data + 12);
2747 greg = va_arg (ap, const void *);
2748 memcpy (data + 112, greg, 384);
2749 memset (data + 496, 0, 8);
2750 va_end (ap);
2751 return elfcore_write_note (abfd, buf, bufsiz,
2752 "CORE", note_type, data, sizeof (data));
2753 }
2754 }
2755 }
2756
2757 /* Add extra PPC sections. */
2758
2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2760 {
2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2767 { NULL, 0, 0, 0, 0 }
2768 };
2769
2770 enum _ppc64_sec_type {
2771 sec_normal = 0,
2772 sec_opd = 1,
2773 sec_toc = 2
2774 };
2775
2776 struct _ppc64_elf_section_data
2777 {
2778 struct bfd_elf_section_data elf;
2779
2780 union
2781 {
2782 /* An array with one entry for each opd function descriptor. */
2783 struct _opd_sec_data
2784 {
2785 /* Points to the function code section for local opd entries. */
2786 asection **func_sec;
2787
2788 /* After editing .opd, adjust references to opd local syms. */
2789 long *adjust;
2790 } opd;
2791
2792 /* An array for toc sections, indexed by offset/8. */
2793 struct _toc_sec_data
2794 {
2795 /* Specifies the relocation symbol index used at a given toc offset. */
2796 unsigned *symndx;
2797
2798 /* And the relocation addend. */
2799 bfd_vma *add;
2800 } toc;
2801 } u;
2802
2803 enum _ppc64_sec_type sec_type:2;
2804
2805 /* Flag set when small branches are detected. Used to
2806 select suitable defaults for the stub group size. */
2807 unsigned int has_14bit_branch:1;
2808 };
2809
2810 #define ppc64_elf_section_data(sec) \
2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2812
2813 static bfd_boolean
2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2815 {
2816 if (!sec->used_by_bfd)
2817 {
2818 struct _ppc64_elf_section_data *sdata;
2819 bfd_size_type amt = sizeof (*sdata);
2820
2821 sdata = bfd_zalloc (abfd, amt);
2822 if (sdata == NULL)
2823 return FALSE;
2824 sec->used_by_bfd = sdata;
2825 }
2826
2827 return _bfd_elf_new_section_hook (abfd, sec);
2828 }
2829
2830 static struct _opd_sec_data *
2831 get_opd_info (asection * sec)
2832 {
2833 if (sec != NULL
2834 && ppc64_elf_section_data (sec) != NULL
2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2836 return &ppc64_elf_section_data (sec)->u.opd;
2837 return NULL;
2838 }
2839 \f
2840 /* Parameters for the qsort hook. */
2841 static bfd_boolean synthetic_relocatable;
2842
2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2844
2845 static int
2846 compare_symbols (const void *ap, const void *bp)
2847 {
2848 const asymbol *a = * (const asymbol **) ap;
2849 const asymbol *b = * (const asymbol **) bp;
2850
2851 /* Section symbols first. */
2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2853 return -1;
2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2855 return 1;
2856
2857 /* then .opd symbols. */
2858 if (strcmp (a->section->name, ".opd") == 0
2859 && strcmp (b->section->name, ".opd") != 0)
2860 return -1;
2861 if (strcmp (a->section->name, ".opd") != 0
2862 && strcmp (b->section->name, ".opd") == 0)
2863 return 1;
2864
2865 /* then other code symbols. */
2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2867 == (SEC_CODE | SEC_ALLOC)
2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 return -1;
2871
2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2873 != (SEC_CODE | SEC_ALLOC)
2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2875 == (SEC_CODE | SEC_ALLOC))
2876 return 1;
2877
2878 if (synthetic_relocatable)
2879 {
2880 if (a->section->id < b->section->id)
2881 return -1;
2882
2883 if (a->section->id > b->section->id)
2884 return 1;
2885 }
2886
2887 if (a->value + a->section->vma < b->value + b->section->vma)
2888 return -1;
2889
2890 if (a->value + a->section->vma > b->value + b->section->vma)
2891 return 1;
2892
2893 /* For syms with the same value, prefer strong dynamic global function
2894 syms over other syms. */
2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2896 return -1;
2897
2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2899 return 1;
2900
2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2902 return -1;
2903
2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2905 return 1;
2906
2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2908 return -1;
2909
2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2911 return 1;
2912
2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2914 return -1;
2915
2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Search SYMS for a symbol of the given VALUE. */
2923
2924 static asymbol *
2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2926 {
2927 long mid;
2928
2929 if (id == -1)
2930 {
2931 while (lo < hi)
2932 {
2933 mid = (lo + hi) >> 1;
2934 if (syms[mid]->value + syms[mid]->section->vma < value)
2935 lo = mid + 1;
2936 else if (syms[mid]->value + syms[mid]->section->vma > value)
2937 hi = mid;
2938 else
2939 return syms[mid];
2940 }
2941 }
2942 else
2943 {
2944 while (lo < hi)
2945 {
2946 mid = (lo + hi) >> 1;
2947 if (syms[mid]->section->id < id)
2948 lo = mid + 1;
2949 else if (syms[mid]->section->id > id)
2950 hi = mid;
2951 else if (syms[mid]->value < value)
2952 lo = mid + 1;
2953 else if (syms[mid]->value > value)
2954 hi = mid;
2955 else
2956 return syms[mid];
2957 }
2958 }
2959 return NULL;
2960 }
2961
2962 static bfd_boolean
2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2964 {
2965 bfd_vma vma = *(bfd_vma *) ptr;
2966 return ((section->flags & SEC_ALLOC) != 0
2967 && section->vma <= vma
2968 && vma < section->vma + section->size);
2969 }
2970
2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2972 entry syms. Also generate @plt symbols for the glink branch table. */
2973
2974 static long
2975 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2976 long static_count, asymbol **static_syms,
2977 long dyn_count, asymbol **dyn_syms,
2978 asymbol **ret)
2979 {
2980 asymbol *s;
2981 long i;
2982 long count;
2983 char *names;
2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2985 asection *opd;
2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2987 asymbol **syms;
2988
2989 *ret = NULL;
2990
2991 opd = bfd_get_section_by_name (abfd, ".opd");
2992 if (opd == NULL)
2993 return 0;
2994
2995 symcount = static_count;
2996 if (!relocatable)
2997 symcount += dyn_count;
2998 if (symcount == 0)
2999 return 0;
3000
3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3002 if (syms == NULL)
3003 return -1;
3004
3005 if (!relocatable && static_count != 0 && dyn_count != 0)
3006 {
3007 /* Use both symbol tables. */
3008 memcpy (syms, static_syms, static_count * sizeof (*syms));
3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3010 }
3011 else if (!relocatable && static_count == 0)
3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3013 else
3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3015
3016 synthetic_relocatable = relocatable;
3017 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3018
3019 if (!relocatable && symcount > 1)
3020 {
3021 long j;
3022 /* Trim duplicate syms, since we may have merged the normal and
3023 dynamic symbols. Actually, we only care about syms that have
3024 different values, so trim any with the same value. */
3025 for (i = 1, j = 1; i < symcount; ++i)
3026 if (syms[i - 1]->value + syms[i - 1]->section->vma
3027 != syms[i]->value + syms[i]->section->vma)
3028 syms[j++] = syms[i];
3029 symcount = j;
3030 }
3031
3032 i = 0;
3033 if (strcmp (syms[i]->section->name, ".opd") == 0)
3034 ++i;
3035 codesecsym = i;
3036
3037 for (; i < symcount; ++i)
3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3039 != (SEC_CODE | SEC_ALLOC))
3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3041 break;
3042 codesecsymend = i;
3043
3044 for (; i < symcount; ++i)
3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 secsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if (strcmp (syms[i]->section->name, ".opd") != 0)
3051 break;
3052 opdsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3056 != (SEC_CODE | SEC_ALLOC))
3057 break;
3058 symcount = i;
3059
3060 count = 0;
3061
3062 if (relocatable)
3063 {
3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3065 arelent *r;
3066 size_t size;
3067 long relcount;
3068
3069 if (opdsymend == secsymend)
3070 goto done;
3071
3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3074 if (relcount == 0)
3075 goto done;
3076
3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3078 {
3079 count = -1;
3080 goto done;
3081 }
3082
3083 size = 0;
3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3085 {
3086 asymbol *sym;
3087
3088 while (r < opd->relocation + relcount
3089 && r->address < syms[i]->value + opd->vma)
3090 ++r;
3091
3092 if (r == opd->relocation + relcount)
3093 break;
3094
3095 if (r->address != syms[i]->value + opd->vma)
3096 continue;
3097
3098 if (r->howto->type != R_PPC64_ADDR64)
3099 continue;
3100
3101 sym = *r->sym_ptr_ptr;
3102 if (!sym_exists_at (syms, opdsymend, symcount,
3103 sym->section->id, sym->value + r->addend))
3104 {
3105 ++count;
3106 size += sizeof (asymbol);
3107 size += strlen (syms[i]->name) + 2;
3108 }
3109 }
3110
3111 s = *ret = bfd_malloc (size);
3112 if (s == NULL)
3113 {
3114 count = -1;
3115 goto done;
3116 }
3117
3118 names = (char *) (s + count);
3119
3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3121 {
3122 asymbol *sym;
3123
3124 while (r < opd->relocation + relcount
3125 && r->address < syms[i]->value + opd->vma)
3126 ++r;
3127
3128 if (r == opd->relocation + relcount)
3129 break;
3130
3131 if (r->address != syms[i]->value + opd->vma)
3132 continue;
3133
3134 if (r->howto->type != R_PPC64_ADDR64)
3135 continue;
3136
3137 sym = *r->sym_ptr_ptr;
3138 if (!sym_exists_at (syms, opdsymend, symcount,
3139 sym->section->id, sym->value + r->addend))
3140 {
3141 size_t len;
3142
3143 *s = *syms[i];
3144 s->flags |= BSF_SYNTHETIC;
3145 s->section = sym->section;
3146 s->value = sym->value + r->addend;
3147 s->name = names;
3148 *names++ = '.';
3149 len = strlen (syms[i]->name);
3150 memcpy (names, syms[i]->name, len + 1);
3151 names += len + 1;
3152 /* Have udata.p point back to the original symbol this
3153 synthetic symbol was derived from. */
3154 s->udata.p = syms[i];
3155 s++;
3156 }
3157 }
3158 }
3159 else
3160 {
3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3162 bfd_byte *contents;
3163 size_t size;
3164 long plt_count = 0;
3165 bfd_vma glink_vma = 0, resolv_vma = 0;
3166 asection *dynamic, *glink = NULL, *relplt = NULL;
3167 arelent *p;
3168
3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3170 {
3171 if (contents)
3172 {
3173 free_contents_and_exit:
3174 free (contents);
3175 }
3176 count = -1;
3177 goto done;
3178 }
3179
3180 size = 0;
3181 for (i = secsymend; i < opdsymend; ++i)
3182 {
3183 bfd_vma ent;
3184
3185 /* Ignore bogus symbols. */
3186 if (syms[i]->value > opd->size - 8)
3187 continue;
3188
3189 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3191 {
3192 ++count;
3193 size += sizeof (asymbol);
3194 size += strlen (syms[i]->name) + 2;
3195 }
3196 }
3197
3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3199 if (dyn_count != 0
3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3201 {
3202 bfd_byte *dynbuf, *extdyn, *extdynend;
3203 size_t extdynsize;
3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3205
3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3207 goto free_contents_and_exit;
3208
3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3211
3212 extdyn = dynbuf;
3213 extdynend = extdyn + dynamic->size;
3214 for (; extdyn < extdynend; extdyn += extdynsize)
3215 {
3216 Elf_Internal_Dyn dyn;
3217 (*swap_dyn_in) (abfd, extdyn, &dyn);
3218
3219 if (dyn.d_tag == DT_NULL)
3220 break;
3221
3222 if (dyn.d_tag == DT_PPC64_GLINK)
3223 {
3224 /* The first glink stub starts at offset 32; see comment in
3225 ppc64_elf_finish_dynamic_sections. */
3226 glink_vma = dyn.d_un.d_val + 32;
3227 /* The .glink section usually does not survive the final
3228 link; search for the section (usually .text) where the
3229 glink stubs now reside. */
3230 glink = bfd_sections_find_if (abfd, section_covers_vma,
3231 &glink_vma);
3232 break;
3233 }
3234 }
3235
3236 free (dynbuf);
3237 }
3238
3239 if (glink != NULL)
3240 {
3241 /* Determine __glink trampoline by reading the relative branch
3242 from the first glink stub. */
3243 bfd_byte buf[4];
3244 if (bfd_get_section_contents (abfd, glink, buf,
3245 glink_vma + 4 - glink->vma, 4))
3246 {
3247 unsigned int insn = bfd_get_32 (abfd, buf);
3248 insn ^= B_DOT;
3249 if ((insn & ~0x3fffffc) == 0)
3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3251 }
3252
3253 if (resolv_vma)
3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3255
3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3257 if (relplt != NULL)
3258 {
3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3261 goto free_contents_and_exit;
3262
3263 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3264 size += plt_count * sizeof (asymbol);
3265
3266 p = relplt->relocation;
3267 for (i = 0; i < plt_count; i++, p++)
3268 {
3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3270 if (p->addend != 0)
3271 size += sizeof ("+0x") - 1 + 16;
3272 }
3273 }
3274 }
3275
3276 s = *ret = bfd_malloc (size);
3277 if (s == NULL)
3278 goto free_contents_and_exit;
3279
3280 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3281
3282 for (i = secsymend; i < opdsymend; ++i)
3283 {
3284 bfd_vma ent;
3285
3286 if (syms[i]->value > opd->size - 8)
3287 continue;
3288
3289 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3291 {
3292 long lo, hi;
3293 size_t len;
3294 asection *sec = abfd->sections;
3295
3296 *s = *syms[i];
3297 lo = codesecsym;
3298 hi = codesecsymend;
3299 while (lo < hi)
3300 {
3301 long mid = (lo + hi) >> 1;
3302 if (syms[mid]->section->vma < ent)
3303 lo = mid + 1;
3304 else if (syms[mid]->section->vma > ent)
3305 hi = mid;
3306 else
3307 {
3308 sec = syms[mid]->section;
3309 break;
3310 }
3311 }
3312
3313 if (lo >= hi && lo > codesecsym)
3314 sec = syms[lo - 1]->section;
3315
3316 for (; sec != NULL; sec = sec->next)
3317 {
3318 if (sec->vma > ent)
3319 break;
3320 /* SEC_LOAD may not be set if SEC is from a separate debug
3321 info file. */
3322 if ((sec->flags & SEC_ALLOC) == 0)
3323 break;
3324 if ((sec->flags & SEC_CODE) != 0)
3325 s->section = sec;
3326 }
3327 s->flags |= BSF_SYNTHETIC;
3328 s->value = ent - s->section->vma;
3329 s->name = names;
3330 *names++ = '.';
3331 len = strlen (syms[i]->name);
3332 memcpy (names, syms[i]->name, len + 1);
3333 names += len + 1;
3334 /* Have udata.p point back to the original symbol this
3335 synthetic symbol was derived from. */
3336 s->udata.p = syms[i];
3337 s++;
3338 }
3339 }
3340 free (contents);
3341
3342 if (glink != NULL && relplt != NULL)
3343 {
3344 if (resolv_vma)
3345 {
3346 /* Add a symbol for the main glink trampoline. */
3347 memset (s, 0, sizeof *s);
3348 s->the_bfd = abfd;
3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3350 s->section = glink;
3351 s->value = resolv_vma - glink->vma;
3352 s->name = names;
3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3354 names += sizeof ("__glink_PLTresolve");
3355 s++;
3356 count++;
3357 }
3358
3359 /* FIXME: It would be very much nicer to put sym@plt on the
3360 stub rather than on the glink branch table entry. The
3361 objdump disassembler would then use a sensible symbol
3362 name on plt calls. The difficulty in doing so is
3363 a) finding the stubs, and,
3364 b) matching stubs against plt entries, and,
3365 c) there can be multiple stubs for a given plt entry.
3366
3367 Solving (a) could be done by code scanning, but older
3368 ppc64 binaries used different stubs to current code.
3369 (b) is the tricky one since you need to known the toc
3370 pointer for at least one function that uses a pic stub to
3371 be able to calculate the plt address referenced.
3372 (c) means gdb would need to set multiple breakpoints (or
3373 find the glink branch itself) when setting breakpoints
3374 for pending shared library loads. */
3375 p = relplt->relocation;
3376 for (i = 0; i < plt_count; i++, p++)
3377 {
3378 size_t len;
3379
3380 *s = **p->sym_ptr_ptr;
3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3382 we are defining a symbol, ensure one of them is set. */
3383 if ((s->flags & BSF_LOCAL) == 0)
3384 s->flags |= BSF_GLOBAL;
3385 s->flags |= BSF_SYNTHETIC;
3386 s->section = glink;
3387 s->value = glink_vma - glink->vma;
3388 s->name = names;
3389 s->udata.p = NULL;
3390 len = strlen ((*p->sym_ptr_ptr)->name);
3391 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3392 names += len;
3393 if (p->addend != 0)
3394 {
3395 memcpy (names, "+0x", sizeof ("+0x") - 1);
3396 names += sizeof ("+0x") - 1;
3397 bfd_sprintf_vma (abfd, names, p->addend);
3398 names += strlen (names);
3399 }
3400 memcpy (names, "@plt", sizeof ("@plt"));
3401 names += sizeof ("@plt");
3402 s++;
3403 glink_vma += 8;
3404 if (i >= 0x8000)
3405 glink_vma += 4;
3406 }
3407 count += plt_count;
3408 }
3409 }
3410
3411 done:
3412 free (syms);
3413 return count;
3414 }
3415 \f
3416 /* The following functions are specific to the ELF linker, while
3417 functions above are used generally. Those named ppc64_elf_* are
3418 called by the main ELF linker code. They appear in this file more
3419 or less in the order in which they are called. eg.
3420 ppc64_elf_check_relocs is called early in the link process,
3421 ppc64_elf_finish_dynamic_sections is one of the last functions
3422 called.
3423
3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3425 functions have both a function code symbol and a function descriptor
3426 symbol. A call to foo in a relocatable object file looks like:
3427
3428 . .text
3429 . x:
3430 . bl .foo
3431 . nop
3432
3433 The function definition in another object file might be:
3434
3435 . .section .opd
3436 . foo: .quad .foo
3437 . .quad .TOC.@tocbase
3438 . .quad 0
3439 .
3440 . .text
3441 . .foo: blr
3442
3443 When the linker resolves the call during a static link, the branch
3444 unsurprisingly just goes to .foo and the .opd information is unused.
3445 If the function definition is in a shared library, things are a little
3446 different: The call goes via a plt call stub, the opd information gets
3447 copied to the plt, and the linker patches the nop.
3448
3449 . x:
3450 . bl .foo_stub
3451 . ld 2,40(1)
3452 .
3453 .
3454 . .foo_stub:
3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3457 . std 2,40(1) # this is the general idea
3458 . ld 11,0(12)
3459 . ld 2,8(12)
3460 . mtctr 11
3461 . ld 11,16(12)
3462 . bctr
3463 .
3464 . .section .plt
3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3466
3467 The "reloc ()" notation is supposed to indicate that the linker emits
3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3469 copying.
3470
3471 What are the difficulties here? Well, firstly, the relocations
3472 examined by the linker in check_relocs are against the function code
3473 sym .foo, while the dynamic relocation in the plt is emitted against
3474 the function descriptor symbol, foo. Somewhere along the line, we need
3475 to carefully copy dynamic link information from one symbol to the other.
3476 Secondly, the generic part of the elf linker will make .foo a dynamic
3477 symbol as is normal for most other backends. We need foo dynamic
3478 instead, at least for an application final link. However, when
3479 creating a shared library containing foo, we need to have both symbols
3480 dynamic so that references to .foo are satisfied during the early
3481 stages of linking. Otherwise the linker might decide to pull in a
3482 definition from some other object, eg. a static library.
3483
3484 Update: As of August 2004, we support a new convention. Function
3485 calls may use the function descriptor symbol, ie. "bl foo". This
3486 behaves exactly as "bl .foo". */
3487
3488 /* Of those relocs that might be copied as dynamic relocs, this function
3489 selects those that must be copied when linking a shared library,
3490 even when the symbol is local. */
3491
3492 static int
3493 must_be_dyn_reloc (struct bfd_link_info *info,
3494 enum elf_ppc64_reloc_type r_type)
3495 {
3496 switch (r_type)
3497 {
3498 default:
3499 return 1;
3500
3501 case R_PPC64_REL32:
3502 case R_PPC64_REL64:
3503 case R_PPC64_REL30:
3504 return 0;
3505
3506 case R_PPC64_TPREL16:
3507 case R_PPC64_TPREL16_LO:
3508 case R_PPC64_TPREL16_HI:
3509 case R_PPC64_TPREL16_HA:
3510 case R_PPC64_TPREL16_DS:
3511 case R_PPC64_TPREL16_LO_DS:
3512 case R_PPC64_TPREL16_HIGHER:
3513 case R_PPC64_TPREL16_HIGHERA:
3514 case R_PPC64_TPREL16_HIGHEST:
3515 case R_PPC64_TPREL16_HIGHESTA:
3516 case R_PPC64_TPREL64:
3517 return !info->executable;
3518 }
3519 }
3520
3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3522 copying dynamic variables from a shared lib into an app's dynbss
3523 section, and instead use a dynamic relocation to point into the
3524 shared lib. With code that gcc generates, it's vital that this be
3525 enabled; In the PowerPC64 ABI, the address of a function is actually
3526 the address of a function descriptor, which resides in the .opd
3527 section. gcc uses the descriptor directly rather than going via the
3528 GOT as some other ABI's do, which means that initialized function
3529 pointers must reference the descriptor. Thus, a function pointer
3530 initialized to the address of a function in a shared library will
3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3532 redefines the function descriptor symbol to point to the copy. This
3533 presents a problem as a plt entry for that function is also
3534 initialized from the function descriptor symbol and the copy reloc
3535 may not be initialized first. */
3536 #define ELIMINATE_COPY_RELOCS 1
3537
3538 /* Section name for stubs is the associated section name plus this
3539 string. */
3540 #define STUB_SUFFIX ".stub"
3541
3542 /* Linker stubs.
3543 ppc_stub_long_branch:
3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3545 destination, but a 24 bit branch in a stub section will reach.
3546 . b dest
3547
3548 ppc_stub_plt_branch:
3549 Similar to the above, but a 24 bit branch in the stub section won't
3550 reach its destination.
3551 . addis %r12,%r2,xxx@toc@ha
3552 . ld %r11,xxx@toc@l(%r12)
3553 . mtctr %r11
3554 . bctr
3555
3556 ppc_stub_plt_call:
3557 Used to call a function in a shared library. If it so happens that
3558 the plt entry referenced crosses a 64k boundary, then an extra
3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3560 . addis %r12,%r2,xxx@toc@ha
3561 . std %r2,40(%r1)
3562 . ld %r11,xxx+0@toc@l(%r12)
3563 . mtctr %r11
3564 . ld %r2,xxx+8@toc@l(%r12)
3565 . ld %r11,xxx+16@toc@l(%r12)
3566 . bctr
3567
3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3569 code to adjust the value and save r2 to support multiple toc sections.
3570 A ppc_stub_long_branch with an r2 offset looks like:
3571 . std %r2,40(%r1)
3572 . addis %r2,%r2,off@ha
3573 . addi %r2,%r2,off@l
3574 . b dest
3575
3576 A ppc_stub_plt_branch with an r2 offset looks like:
3577 . std %r2,40(%r1)
3578 . addis %r12,%r2,xxx@toc@ha
3579 . ld %r11,xxx@toc@l(%r12)
3580 . addis %r2,%r2,off@ha
3581 . addi %r2,%r2,off@l
3582 . mtctr %r11
3583 . bctr
3584
3585 In cases where the "addis" instruction would add zero, the "addis" is
3586 omitted and following instructions modified slightly in some cases.
3587 */
3588
3589 enum ppc_stub_type {
3590 ppc_stub_none,
3591 ppc_stub_long_branch,
3592 ppc_stub_long_branch_r2off,
3593 ppc_stub_plt_branch,
3594 ppc_stub_plt_branch_r2off,
3595 ppc_stub_plt_call,
3596 ppc_stub_plt_call_r2save
3597 };
3598
3599 struct ppc_stub_hash_entry {
3600
3601 /* Base hash table entry structure. */
3602 struct bfd_hash_entry root;
3603
3604 enum ppc_stub_type stub_type;
3605
3606 /* The stub section. */
3607 asection *stub_sec;
3608
3609 /* Offset within stub_sec of the beginning of this stub. */
3610 bfd_vma stub_offset;
3611
3612 /* Given the symbol's value and its section we can determine its final
3613 value when building the stubs (so the stub knows where to jump. */
3614 bfd_vma target_value;
3615 asection *target_section;
3616
3617 /* The symbol table entry, if any, that this was derived from. */
3618 struct ppc_link_hash_entry *h;
3619 struct plt_entry *plt_ent;
3620
3621 /* And the reloc addend that this was derived from. */
3622 bfd_vma addend;
3623
3624 /* Where this stub is being called from, or, in the case of combined
3625 stub sections, the first input section in the group. */
3626 asection *id_sec;
3627 };
3628
3629 struct ppc_branch_hash_entry {
3630
3631 /* Base hash table entry structure. */
3632 struct bfd_hash_entry root;
3633
3634 /* Offset within branch lookup table. */
3635 unsigned int offset;
3636
3637 /* Generation marker. */
3638 unsigned int iter;
3639 };
3640
3641 struct ppc_link_hash_entry
3642 {
3643 struct elf_link_hash_entry elf;
3644
3645 union {
3646 /* A pointer to the most recently used stub hash entry against this
3647 symbol. */
3648 struct ppc_stub_hash_entry *stub_cache;
3649
3650 /* A pointer to the next symbol starting with a '.' */
3651 struct ppc_link_hash_entry *next_dot_sym;
3652 } u;
3653
3654 /* Track dynamic relocs copied for this symbol. */
3655 struct elf_dyn_relocs *dyn_relocs;
3656
3657 /* Link between function code and descriptor symbols. */
3658 struct ppc_link_hash_entry *oh;
3659
3660 /* Flag function code and descriptor symbols. */
3661 unsigned int is_func:1;
3662 unsigned int is_func_descriptor:1;
3663 unsigned int fake:1;
3664
3665 /* Whether global opd/toc sym has been adjusted or not.
3666 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3667 should be set for all globals defined in any opd/toc section. */
3668 unsigned int adjust_done:1;
3669
3670 /* Set if we twiddled this symbol to weak at some stage. */
3671 unsigned int was_undefined:1;
3672
3673 /* Contexts in which symbol is used in the GOT (or TOC).
3674 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3675 corresponding relocs are encountered during check_relocs.
3676 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3677 indicate the corresponding GOT entry type is not needed.
3678 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3679 a TPREL one. We use a separate flag rather than setting TPREL
3680 just for convenience in distinguishing the two cases. */
3681 #define TLS_GD 1 /* GD reloc. */
3682 #define TLS_LD 2 /* LD reloc. */
3683 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3684 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3685 #define TLS_TLS 16 /* Any TLS reloc. */
3686 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3687 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3688 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3689 unsigned char tls_mask;
3690 };
3691
3692 /* ppc64 ELF linker hash table. */
3693
3694 struct ppc_link_hash_table
3695 {
3696 struct elf_link_hash_table elf;
3697
3698 /* The stub hash table. */
3699 struct bfd_hash_table stub_hash_table;
3700
3701 /* Another hash table for plt_branch stubs. */
3702 struct bfd_hash_table branch_hash_table;
3703
3704 /* Hash table for function prologue tocsave. */
3705 htab_t tocsave_htab;
3706
3707 /* Linker stub bfd. */
3708 bfd *stub_bfd;
3709
3710 /* Linker call-backs. */
3711 asection * (*add_stub_section) (const char *, asection *);
3712 void (*layout_sections_again) (void);
3713
3714 /* Array to keep track of which stub sections have been created, and
3715 information on stub grouping. */
3716 struct map_stub {
3717 /* This is the section to which stubs in the group will be attached. */
3718 asection *link_sec;
3719 /* The stub section. */
3720 asection *stub_sec;
3721 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3722 bfd_vma toc_off;
3723 } *stub_group;
3724
3725 /* Temp used when calculating TOC pointers. */
3726 bfd_vma toc_curr;
3727 bfd *toc_bfd;
3728 asection *toc_first_sec;
3729
3730 /* Highest input section id. */
3731 int top_id;
3732
3733 /* Highest output section index. */
3734 int top_index;
3735
3736 /* Used when adding symbols. */
3737 struct ppc_link_hash_entry *dot_syms;
3738
3739 /* List of input sections for each output section. */
3740 asection **input_list;
3741
3742 /* Short-cuts to get to dynamic linker sections. */
3743 asection *got;
3744 asection *plt;
3745 asection *relplt;
3746 asection *iplt;
3747 asection *reliplt;
3748 asection *dynbss;
3749 asection *relbss;
3750 asection *glink;
3751 asection *sfpr;
3752 asection *brlt;
3753 asection *relbrlt;
3754 asection *glink_eh_frame;
3755
3756 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3757 struct ppc_link_hash_entry *tls_get_addr;
3758 struct ppc_link_hash_entry *tls_get_addr_fd;
3759
3760 /* The special .TOC. symbol. */
3761 struct ppc_link_hash_entry *dot_toc_dot;
3762
3763 /* The size of reliplt used by got entry relocs. */
3764 bfd_size_type got_reli_size;
3765
3766 /* Statistics. */
3767 unsigned long stub_count[ppc_stub_plt_call_r2save];
3768
3769 /* Number of stubs against global syms. */
3770 unsigned long stub_globals;
3771
3772 /* Alignment of PLT call stubs. */
3773 unsigned int plt_stub_align:4;
3774
3775 /* Set if PLT call stubs should load r11. */
3776 unsigned int plt_static_chain:1;
3777
3778 /* Set if PLT call stubs need a read-read barrier. */
3779 unsigned int plt_thread_safe:1;
3780
3781 /* Set if we should emit symbols for stubs. */
3782 unsigned int emit_stub_syms:1;
3783
3784 /* Set if __tls_get_addr optimization should not be done. */
3785 unsigned int no_tls_get_addr_opt:1;
3786
3787 /* Support for multiple toc sections. */
3788 unsigned int do_multi_toc:1;
3789 unsigned int multi_toc_needed:1;
3790 unsigned int second_toc_pass:1;
3791 unsigned int do_toc_opt:1;
3792
3793 /* Set on error. */
3794 unsigned int stub_error:1;
3795
3796 /* Temp used by ppc64_elf_process_dot_syms. */
3797 unsigned int twiddled_syms:1;
3798
3799 /* Incremented every time we size stubs. */
3800 unsigned int stub_iteration;
3801
3802 /* Small local sym cache. */
3803 struct sym_cache sym_cache;
3804 };
3805
3806 /* Rename some of the generic section flags to better document how they
3807 are used here. */
3808
3809 /* Nonzero if this section has TLS related relocations. */
3810 #define has_tls_reloc sec_flg0
3811
3812 /* Nonzero if this section has a call to __tls_get_addr. */
3813 #define has_tls_get_addr_call sec_flg1
3814
3815 /* Nonzero if this section has any toc or got relocs. */
3816 #define has_toc_reloc sec_flg2
3817
3818 /* Nonzero if this section has a call to another section that uses
3819 the toc or got. */
3820 #define makes_toc_func_call sec_flg3
3821
3822 /* Recursion protection when determining above flag. */
3823 #define call_check_in_progress sec_flg4
3824 #define call_check_done sec_flg5
3825
3826 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3827
3828 #define ppc_hash_table(p) \
3829 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3830 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3831
3832 #define ppc_stub_hash_lookup(table, string, create, copy) \
3833 ((struct ppc_stub_hash_entry *) \
3834 bfd_hash_lookup ((table), (string), (create), (copy)))
3835
3836 #define ppc_branch_hash_lookup(table, string, create, copy) \
3837 ((struct ppc_branch_hash_entry *) \
3838 bfd_hash_lookup ((table), (string), (create), (copy)))
3839
3840 /* Create an entry in the stub hash table. */
3841
3842 static struct bfd_hash_entry *
3843 stub_hash_newfunc (struct bfd_hash_entry *entry,
3844 struct bfd_hash_table *table,
3845 const char *string)
3846 {
3847 /* Allocate the structure if it has not already been allocated by a
3848 subclass. */
3849 if (entry == NULL)
3850 {
3851 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3852 if (entry == NULL)
3853 return entry;
3854 }
3855
3856 /* Call the allocation method of the superclass. */
3857 entry = bfd_hash_newfunc (entry, table, string);
3858 if (entry != NULL)
3859 {
3860 struct ppc_stub_hash_entry *eh;
3861
3862 /* Initialize the local fields. */
3863 eh = (struct ppc_stub_hash_entry *) entry;
3864 eh->stub_type = ppc_stub_none;
3865 eh->stub_sec = NULL;
3866 eh->stub_offset = 0;
3867 eh->target_value = 0;
3868 eh->target_section = NULL;
3869 eh->h = NULL;
3870 eh->id_sec = NULL;
3871 }
3872
3873 return entry;
3874 }
3875
3876 /* Create an entry in the branch hash table. */
3877
3878 static struct bfd_hash_entry *
3879 branch_hash_newfunc (struct bfd_hash_entry *entry,
3880 struct bfd_hash_table *table,
3881 const char *string)
3882 {
3883 /* Allocate the structure if it has not already been allocated by a
3884 subclass. */
3885 if (entry == NULL)
3886 {
3887 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3888 if (entry == NULL)
3889 return entry;
3890 }
3891
3892 /* Call the allocation method of the superclass. */
3893 entry = bfd_hash_newfunc (entry, table, string);
3894 if (entry != NULL)
3895 {
3896 struct ppc_branch_hash_entry *eh;
3897
3898 /* Initialize the local fields. */
3899 eh = (struct ppc_branch_hash_entry *) entry;
3900 eh->offset = 0;
3901 eh->iter = 0;
3902 }
3903
3904 return entry;
3905 }
3906
3907 /* Create an entry in a ppc64 ELF linker hash table. */
3908
3909 static struct bfd_hash_entry *
3910 link_hash_newfunc (struct bfd_hash_entry *entry,
3911 struct bfd_hash_table *table,
3912 const char *string)
3913 {
3914 /* Allocate the structure if it has not already been allocated by a
3915 subclass. */
3916 if (entry == NULL)
3917 {
3918 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3919 if (entry == NULL)
3920 return entry;
3921 }
3922
3923 /* Call the allocation method of the superclass. */
3924 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3925 if (entry != NULL)
3926 {
3927 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3928
3929 memset (&eh->u.stub_cache, 0,
3930 (sizeof (struct ppc_link_hash_entry)
3931 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3932
3933 /* When making function calls, old ABI code references function entry
3934 points (dot symbols), while new ABI code references the function
3935 descriptor symbol. We need to make any combination of reference and
3936 definition work together, without breaking archive linking.
3937
3938 For a defined function "foo" and an undefined call to "bar":
3939 An old object defines "foo" and ".foo", references ".bar" (possibly
3940 "bar" too).
3941 A new object defines "foo" and references "bar".
3942
3943 A new object thus has no problem with its undefined symbols being
3944 satisfied by definitions in an old object. On the other hand, the
3945 old object won't have ".bar" satisfied by a new object.
3946
3947 Keep a list of newly added dot-symbols. */
3948
3949 if (string[0] == '.')
3950 {
3951 struct ppc_link_hash_table *htab;
3952
3953 htab = (struct ppc_link_hash_table *) table;
3954 eh->u.next_dot_sym = htab->dot_syms;
3955 htab->dot_syms = eh;
3956 }
3957 }
3958
3959 return entry;
3960 }
3961
3962 struct tocsave_entry {
3963 asection *sec;
3964 bfd_vma offset;
3965 };
3966
3967 static hashval_t
3968 tocsave_htab_hash (const void *p)
3969 {
3970 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3971 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3972 }
3973
3974 static int
3975 tocsave_htab_eq (const void *p1, const void *p2)
3976 {
3977 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3978 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3979 return e1->sec == e2->sec && e1->offset == e2->offset;
3980 }
3981
3982 /* Create a ppc64 ELF linker hash table. */
3983
3984 static struct bfd_link_hash_table *
3985 ppc64_elf_link_hash_table_create (bfd *abfd)
3986 {
3987 struct ppc_link_hash_table *htab;
3988 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3989
3990 htab = bfd_zmalloc (amt);
3991 if (htab == NULL)
3992 return NULL;
3993
3994 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3995 sizeof (struct ppc_link_hash_entry),
3996 PPC64_ELF_DATA))
3997 {
3998 free (htab);
3999 return NULL;
4000 }
4001
4002 /* Init the stub hash table too. */
4003 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4004 sizeof (struct ppc_stub_hash_entry)))
4005 return NULL;
4006
4007 /* And the branch hash table. */
4008 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4009 sizeof (struct ppc_branch_hash_entry)))
4010 return NULL;
4011
4012 htab->tocsave_htab = htab_try_create (1024,
4013 tocsave_htab_hash,
4014 tocsave_htab_eq,
4015 NULL);
4016 if (htab->tocsave_htab == NULL)
4017 return NULL;
4018
4019 /* Initializing two fields of the union is just cosmetic. We really
4020 only care about glist, but when compiled on a 32-bit host the
4021 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4022 debugger inspection of these fields look nicer. */
4023 htab->elf.init_got_refcount.refcount = 0;
4024 htab->elf.init_got_refcount.glist = NULL;
4025 htab->elf.init_plt_refcount.refcount = 0;
4026 htab->elf.init_plt_refcount.glist = NULL;
4027 htab->elf.init_got_offset.offset = 0;
4028 htab->elf.init_got_offset.glist = NULL;
4029 htab->elf.init_plt_offset.offset = 0;
4030 htab->elf.init_plt_offset.glist = NULL;
4031
4032 return &htab->elf.root;
4033 }
4034
4035 /* Free the derived linker hash table. */
4036
4037 static void
4038 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4039 {
4040 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4041
4042 bfd_hash_table_free (&htab->stub_hash_table);
4043 bfd_hash_table_free (&htab->branch_hash_table);
4044 if (htab->tocsave_htab)
4045 htab_delete (htab->tocsave_htab);
4046 _bfd_generic_link_hash_table_free (hash);
4047 }
4048
4049 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4050
4051 void
4052 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4053 {
4054 struct ppc_link_hash_table *htab;
4055
4056 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4057
4058 /* Always hook our dynamic sections into the first bfd, which is the
4059 linker created stub bfd. This ensures that the GOT header is at
4060 the start of the output TOC section. */
4061 htab = ppc_hash_table (info);
4062 if (htab == NULL)
4063 return;
4064 htab->stub_bfd = abfd;
4065 htab->elf.dynobj = abfd;
4066 }
4067
4068 /* Build a name for an entry in the stub hash table. */
4069
4070 static char *
4071 ppc_stub_name (const asection *input_section,
4072 const asection *sym_sec,
4073 const struct ppc_link_hash_entry *h,
4074 const Elf_Internal_Rela *rel)
4075 {
4076 char *stub_name;
4077 ssize_t len;
4078
4079 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4080 offsets from a sym as a branch target? In fact, we could
4081 probably assume the addend is always zero. */
4082 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4083
4084 if (h)
4085 {
4086 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4087 stub_name = bfd_malloc (len);
4088 if (stub_name == NULL)
4089 return stub_name;
4090
4091 len = sprintf (stub_name, "%08x.%s+%x",
4092 input_section->id & 0xffffffff,
4093 h->elf.root.root.string,
4094 (int) rel->r_addend & 0xffffffff);
4095 }
4096 else
4097 {
4098 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4099 stub_name = bfd_malloc (len);
4100 if (stub_name == NULL)
4101 return stub_name;
4102
4103 len = sprintf (stub_name, "%08x.%x:%x+%x",
4104 input_section->id & 0xffffffff,
4105 sym_sec->id & 0xffffffff,
4106 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4107 (int) rel->r_addend & 0xffffffff);
4108 }
4109 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4110 stub_name[len - 2] = 0;
4111 return stub_name;
4112 }
4113
4114 /* Look up an entry in the stub hash. Stub entries are cached because
4115 creating the stub name takes a bit of time. */
4116
4117 static struct ppc_stub_hash_entry *
4118 ppc_get_stub_entry (const asection *input_section,
4119 const asection *sym_sec,
4120 struct ppc_link_hash_entry *h,
4121 const Elf_Internal_Rela *rel,
4122 struct ppc_link_hash_table *htab)
4123 {
4124 struct ppc_stub_hash_entry *stub_entry;
4125 const asection *id_sec;
4126
4127 /* If this input section is part of a group of sections sharing one
4128 stub section, then use the id of the first section in the group.
4129 Stub names need to include a section id, as there may well be
4130 more than one stub used to reach say, printf, and we need to
4131 distinguish between them. */
4132 id_sec = htab->stub_group[input_section->id].link_sec;
4133
4134 if (h != NULL && h->u.stub_cache != NULL
4135 && h->u.stub_cache->h == h
4136 && h->u.stub_cache->id_sec == id_sec)
4137 {
4138 stub_entry = h->u.stub_cache;
4139 }
4140 else
4141 {
4142 char *stub_name;
4143
4144 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4145 if (stub_name == NULL)
4146 return NULL;
4147
4148 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4149 stub_name, FALSE, FALSE);
4150 if (h != NULL)
4151 h->u.stub_cache = stub_entry;
4152
4153 free (stub_name);
4154 }
4155
4156 return stub_entry;
4157 }
4158
4159 /* Add a new stub entry to the stub hash. Not all fields of the new
4160 stub entry are initialised. */
4161
4162 static struct ppc_stub_hash_entry *
4163 ppc_add_stub (const char *stub_name,
4164 asection *section,
4165 struct bfd_link_info *info)
4166 {
4167 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4168 asection *link_sec;
4169 asection *stub_sec;
4170 struct ppc_stub_hash_entry *stub_entry;
4171
4172 link_sec = htab->stub_group[section->id].link_sec;
4173 stub_sec = htab->stub_group[section->id].stub_sec;
4174 if (stub_sec == NULL)
4175 {
4176 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4177 if (stub_sec == NULL)
4178 {
4179 size_t namelen;
4180 bfd_size_type len;
4181 char *s_name;
4182
4183 namelen = strlen (link_sec->name);
4184 len = namelen + sizeof (STUB_SUFFIX);
4185 s_name = bfd_alloc (htab->stub_bfd, len);
4186 if (s_name == NULL)
4187 return NULL;
4188
4189 memcpy (s_name, link_sec->name, namelen);
4190 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4191 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4192 if (stub_sec == NULL)
4193 return NULL;
4194 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4195 }
4196 htab->stub_group[section->id].stub_sec = stub_sec;
4197 }
4198
4199 /* Enter this entry into the linker stub hash table. */
4200 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4201 TRUE, FALSE);
4202 if (stub_entry == NULL)
4203 {
4204 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4205 section->owner, stub_name);
4206 return NULL;
4207 }
4208
4209 stub_entry->stub_sec = stub_sec;
4210 stub_entry->stub_offset = 0;
4211 stub_entry->id_sec = link_sec;
4212 return stub_entry;
4213 }
4214
4215 /* Create sections for linker generated code. */
4216
4217 static bfd_boolean
4218 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4219 {
4220 struct ppc_link_hash_table *htab;
4221 flagword flags;
4222
4223 htab = ppc_hash_table (info);
4224 if (htab == NULL)
4225 return FALSE;
4226
4227 /* Create .sfpr for code to save and restore fp regs. */
4228 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4229 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4230 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4231 flags);
4232 if (htab->sfpr == NULL
4233 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4234 return FALSE;
4235
4236 /* Create .glink for lazy dynamic linking support. */
4237 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4238 flags);
4239 if (htab->glink == NULL
4240 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4241 return FALSE;
4242
4243 if (!info->no_ld_generated_unwind_info)
4244 {
4245 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4246 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4247 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4248 ".eh_frame",
4249 flags);
4250 if (htab->glink_eh_frame == NULL
4251 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4252 return FALSE;
4253 }
4254
4255 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4256 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4257 if (htab->iplt == NULL
4258 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4259 return FALSE;
4260
4261 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4262 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4263 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4264 ".rela.iplt",
4265 flags);
4266 if (htab->reliplt == NULL
4267 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4268 return FALSE;
4269
4270 /* Create branch lookup table for plt_branch stubs. */
4271 flags = (SEC_ALLOC | SEC_LOAD
4272 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4273 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4274 flags);
4275 if (htab->brlt == NULL
4276 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4277 return FALSE;
4278
4279 if (!info->shared)
4280 return TRUE;
4281
4282 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4283 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4284 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4285 ".rela.branch_lt",
4286 flags);
4287 if (htab->relbrlt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4289 return FALSE;
4290
4291 return TRUE;
4292 }
4293
4294 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4295 not already done. */
4296
4297 static bfd_boolean
4298 create_got_section (bfd *abfd, struct bfd_link_info *info)
4299 {
4300 asection *got, *relgot;
4301 flagword flags;
4302 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4303
4304 if (!is_ppc64_elf (abfd))
4305 return FALSE;
4306 if (htab == NULL)
4307 return FALSE;
4308
4309 if (!htab->got)
4310 {
4311 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4312 return FALSE;
4313
4314 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got");
4315 if (!htab->got)
4316 abort ();
4317 }
4318
4319 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4320 | SEC_LINKER_CREATED);
4321
4322 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4323 if (!got
4324 || !bfd_set_section_alignment (abfd, got, 3))
4325 return FALSE;
4326
4327 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4328 flags | SEC_READONLY);
4329 if (!relgot
4330 || ! bfd_set_section_alignment (abfd, relgot, 3))
4331 return FALSE;
4332
4333 ppc64_elf_tdata (abfd)->got = got;
4334 ppc64_elf_tdata (abfd)->relgot = relgot;
4335 return TRUE;
4336 }
4337
4338 /* Create the dynamic sections, and set up shortcuts. */
4339
4340 static bfd_boolean
4341 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4342 {
4343 struct ppc_link_hash_table *htab;
4344
4345 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4346 return FALSE;
4347
4348 htab = ppc_hash_table (info);
4349 if (htab == NULL)
4350 return FALSE;
4351
4352 if (!htab->got)
4353 htab->got = bfd_get_linker_section (dynobj, ".got");
4354 htab->plt = bfd_get_linker_section (dynobj, ".plt");
4355 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt");
4356 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4357 if (!info->shared)
4358 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4359
4360 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4361 || (!info->shared && !htab->relbss))
4362 abort ();
4363
4364 return TRUE;
4365 }
4366
4367 /* Follow indirect and warning symbol links. */
4368
4369 static inline struct bfd_link_hash_entry *
4370 follow_link (struct bfd_link_hash_entry *h)
4371 {
4372 while (h->type == bfd_link_hash_indirect
4373 || h->type == bfd_link_hash_warning)
4374 h = h->u.i.link;
4375 return h;
4376 }
4377
4378 static inline struct elf_link_hash_entry *
4379 elf_follow_link (struct elf_link_hash_entry *h)
4380 {
4381 return (struct elf_link_hash_entry *) follow_link (&h->root);
4382 }
4383
4384 static inline struct ppc_link_hash_entry *
4385 ppc_follow_link (struct ppc_link_hash_entry *h)
4386 {
4387 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4388 }
4389
4390 /* Merge PLT info on FROM with that on TO. */
4391
4392 static void
4393 move_plt_plist (struct ppc_link_hash_entry *from,
4394 struct ppc_link_hash_entry *to)
4395 {
4396 if (from->elf.plt.plist != NULL)
4397 {
4398 if (to->elf.plt.plist != NULL)
4399 {
4400 struct plt_entry **entp;
4401 struct plt_entry *ent;
4402
4403 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4404 {
4405 struct plt_entry *dent;
4406
4407 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4408 if (dent->addend == ent->addend)
4409 {
4410 dent->plt.refcount += ent->plt.refcount;
4411 *entp = ent->next;
4412 break;
4413 }
4414 if (dent == NULL)
4415 entp = &ent->next;
4416 }
4417 *entp = to->elf.plt.plist;
4418 }
4419
4420 to->elf.plt.plist = from->elf.plt.plist;
4421 from->elf.plt.plist = NULL;
4422 }
4423 }
4424
4425 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4426
4427 static void
4428 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4429 struct elf_link_hash_entry *dir,
4430 struct elf_link_hash_entry *ind)
4431 {
4432 struct ppc_link_hash_entry *edir, *eind;
4433
4434 edir = (struct ppc_link_hash_entry *) dir;
4435 eind = (struct ppc_link_hash_entry *) ind;
4436
4437 edir->is_func |= eind->is_func;
4438 edir->is_func_descriptor |= eind->is_func_descriptor;
4439 edir->tls_mask |= eind->tls_mask;
4440 if (eind->oh != NULL)
4441 edir->oh = ppc_follow_link (eind->oh);
4442
4443 /* If called to transfer flags for a weakdef during processing
4444 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4445 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4446 if (!(ELIMINATE_COPY_RELOCS
4447 && eind->elf.root.type != bfd_link_hash_indirect
4448 && edir->elf.dynamic_adjusted))
4449 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4450
4451 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4452 edir->elf.ref_regular |= eind->elf.ref_regular;
4453 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4454 edir->elf.needs_plt |= eind->elf.needs_plt;
4455
4456 /* Copy over any dynamic relocs we may have on the indirect sym. */
4457 if (eind->dyn_relocs != NULL)
4458 {
4459 if (edir->dyn_relocs != NULL)
4460 {
4461 struct elf_dyn_relocs **pp;
4462 struct elf_dyn_relocs *p;
4463
4464 /* Add reloc counts against the indirect sym to the direct sym
4465 list. Merge any entries against the same section. */
4466 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4467 {
4468 struct elf_dyn_relocs *q;
4469
4470 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4471 if (q->sec == p->sec)
4472 {
4473 q->pc_count += p->pc_count;
4474 q->count += p->count;
4475 *pp = p->next;
4476 break;
4477 }
4478 if (q == NULL)
4479 pp = &p->next;
4480 }
4481 *pp = edir->dyn_relocs;
4482 }
4483
4484 edir->dyn_relocs = eind->dyn_relocs;
4485 eind->dyn_relocs = NULL;
4486 }
4487
4488 /* If we were called to copy over info for a weak sym, that's all.
4489 You might think dyn_relocs need not be copied over; After all,
4490 both syms will be dynamic or both non-dynamic so we're just
4491 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4492 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4493 dyn_relocs in read-only sections, and it does so on what is the
4494 DIR sym here. */
4495 if (eind->elf.root.type != bfd_link_hash_indirect)
4496 return;
4497
4498 /* Copy over got entries that we may have already seen to the
4499 symbol which just became indirect. */
4500 if (eind->elf.got.glist != NULL)
4501 {
4502 if (edir->elf.got.glist != NULL)
4503 {
4504 struct got_entry **entp;
4505 struct got_entry *ent;
4506
4507 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4508 {
4509 struct got_entry *dent;
4510
4511 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4512 if (dent->addend == ent->addend
4513 && dent->owner == ent->owner
4514 && dent->tls_type == ent->tls_type)
4515 {
4516 dent->got.refcount += ent->got.refcount;
4517 *entp = ent->next;
4518 break;
4519 }
4520 if (dent == NULL)
4521 entp = &ent->next;
4522 }
4523 *entp = edir->elf.got.glist;
4524 }
4525
4526 edir->elf.got.glist = eind->elf.got.glist;
4527 eind->elf.got.glist = NULL;
4528 }
4529
4530 /* And plt entries. */
4531 move_plt_plist (eind, edir);
4532
4533 if (eind->elf.dynindx != -1)
4534 {
4535 if (edir->elf.dynindx != -1)
4536 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4537 edir->elf.dynstr_index);
4538 edir->elf.dynindx = eind->elf.dynindx;
4539 edir->elf.dynstr_index = eind->elf.dynstr_index;
4540 eind->elf.dynindx = -1;
4541 eind->elf.dynstr_index = 0;
4542 }
4543 }
4544
4545 /* Find the function descriptor hash entry from the given function code
4546 hash entry FH. Link the entries via their OH fields. */
4547
4548 static struct ppc_link_hash_entry *
4549 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4550 {
4551 struct ppc_link_hash_entry *fdh = fh->oh;
4552
4553 if (fdh == NULL)
4554 {
4555 const char *fd_name = fh->elf.root.root.string + 1;
4556
4557 fdh = (struct ppc_link_hash_entry *)
4558 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4559 if (fdh == NULL)
4560 return fdh;
4561
4562 fdh->is_func_descriptor = 1;
4563 fdh->oh = fh;
4564 fh->is_func = 1;
4565 fh->oh = fdh;
4566 }
4567
4568 return ppc_follow_link (fdh);
4569 }
4570
4571 /* Make a fake function descriptor sym for the code sym FH. */
4572
4573 static struct ppc_link_hash_entry *
4574 make_fdh (struct bfd_link_info *info,
4575 struct ppc_link_hash_entry *fh)
4576 {
4577 bfd *abfd;
4578 asymbol *newsym;
4579 struct bfd_link_hash_entry *bh;
4580 struct ppc_link_hash_entry *fdh;
4581
4582 abfd = fh->elf.root.u.undef.abfd;
4583 newsym = bfd_make_empty_symbol (abfd);
4584 newsym->name = fh->elf.root.root.string + 1;
4585 newsym->section = bfd_und_section_ptr;
4586 newsym->value = 0;
4587 newsym->flags = BSF_WEAK;
4588
4589 bh = NULL;
4590 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4591 newsym->flags, newsym->section,
4592 newsym->value, NULL, FALSE, FALSE,
4593 &bh))
4594 return NULL;
4595
4596 fdh = (struct ppc_link_hash_entry *) bh;
4597 fdh->elf.non_elf = 0;
4598 fdh->fake = 1;
4599 fdh->is_func_descriptor = 1;
4600 fdh->oh = fh;
4601 fh->is_func = 1;
4602 fh->oh = fdh;
4603 return fdh;
4604 }
4605
4606 /* Fix function descriptor symbols defined in .opd sections to be
4607 function type. */
4608
4609 static bfd_boolean
4610 ppc64_elf_add_symbol_hook (bfd *ibfd,
4611 struct bfd_link_info *info,
4612 Elf_Internal_Sym *isym,
4613 const char **name ATTRIBUTE_UNUSED,
4614 flagword *flags ATTRIBUTE_UNUSED,
4615 asection **sec,
4616 bfd_vma *value ATTRIBUTE_UNUSED)
4617 {
4618 if ((ibfd->flags & DYNAMIC) == 0
4619 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4620 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4621
4622 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4623 {
4624 if ((ibfd->flags & DYNAMIC) == 0)
4625 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4626 }
4627 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4628 ;
4629 else if (*sec != NULL
4630 && strcmp ((*sec)->name, ".opd") == 0)
4631 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4632
4633 return TRUE;
4634 }
4635
4636 /* This function makes an old ABI object reference to ".bar" cause the
4637 inclusion of a new ABI object archive that defines "bar".
4638 NAME is a symbol defined in an archive. Return a symbol in the hash
4639 table that might be satisfied by the archive symbols. */
4640
4641 static struct elf_link_hash_entry *
4642 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4643 struct bfd_link_info *info,
4644 const char *name)
4645 {
4646 struct elf_link_hash_entry *h;
4647 char *dot_name;
4648 size_t len;
4649
4650 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4651 if (h != NULL
4652 /* Don't return this sym if it is a fake function descriptor
4653 created by add_symbol_adjust. */
4654 && !(h->root.type == bfd_link_hash_undefweak
4655 && ((struct ppc_link_hash_entry *) h)->fake))
4656 return h;
4657
4658 if (name[0] == '.')
4659 return h;
4660
4661 len = strlen (name);
4662 dot_name = bfd_alloc (abfd, len + 2);
4663 if (dot_name == NULL)
4664 return (struct elf_link_hash_entry *) 0 - 1;
4665 dot_name[0] = '.';
4666 memcpy (dot_name + 1, name, len + 1);
4667 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4668 bfd_release (abfd, dot_name);
4669 return h;
4670 }
4671
4672 /* This function satisfies all old ABI object references to ".bar" if a
4673 new ABI object defines "bar". Well, at least, undefined dot symbols
4674 are made weak. This stops later archive searches from including an
4675 object if we already have a function descriptor definition. It also
4676 prevents the linker complaining about undefined symbols.
4677 We also check and correct mismatched symbol visibility here. The
4678 most restrictive visibility of the function descriptor and the
4679 function entry symbol is used. */
4680
4681 static bfd_boolean
4682 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4683 {
4684 struct ppc_link_hash_table *htab;
4685 struct ppc_link_hash_entry *fdh;
4686
4687 if (eh->elf.root.type == bfd_link_hash_indirect)
4688 return TRUE;
4689
4690 if (eh->elf.root.type == bfd_link_hash_warning)
4691 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4692
4693 if (eh->elf.root.root.string[0] != '.')
4694 abort ();
4695
4696 htab = ppc_hash_table (info);
4697 if (htab == NULL)
4698 return FALSE;
4699
4700 fdh = lookup_fdh (eh, htab);
4701 if (fdh == NULL)
4702 {
4703 if (!info->relocatable
4704 && (eh->elf.root.type == bfd_link_hash_undefined
4705 || eh->elf.root.type == bfd_link_hash_undefweak)
4706 && eh->elf.ref_regular)
4707 {
4708 /* Make an undefweak function descriptor sym, which is enough to
4709 pull in an --as-needed shared lib, but won't cause link
4710 errors. Archives are handled elsewhere. */
4711 fdh = make_fdh (info, eh);
4712 if (fdh == NULL)
4713 return FALSE;
4714 fdh->elf.ref_regular = 1;
4715 }
4716 }
4717 else
4718 {
4719 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4720 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4721 if (entry_vis < descr_vis)
4722 fdh->elf.other += entry_vis - descr_vis;
4723 else if (entry_vis > descr_vis)
4724 eh->elf.other += descr_vis - entry_vis;
4725
4726 if ((fdh->elf.root.type == bfd_link_hash_defined
4727 || fdh->elf.root.type == bfd_link_hash_defweak)
4728 && eh->elf.root.type == bfd_link_hash_undefined)
4729 {
4730 eh->elf.root.type = bfd_link_hash_undefweak;
4731 eh->was_undefined = 1;
4732 htab->twiddled_syms = 1;
4733 }
4734 }
4735
4736 return TRUE;
4737 }
4738
4739 /* Process list of dot-symbols we made in link_hash_newfunc. */
4740
4741 static bfd_boolean
4742 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4743 {
4744 struct ppc_link_hash_table *htab;
4745 struct ppc_link_hash_entry **p, *eh;
4746
4747 if (!is_ppc64_elf (info->output_bfd))
4748 return TRUE;
4749 htab = ppc_hash_table (info);
4750 if (htab == NULL)
4751 return FALSE;
4752
4753 if (is_ppc64_elf (ibfd))
4754 {
4755 p = &htab->dot_syms;
4756 while ((eh = *p) != NULL)
4757 {
4758 *p = NULL;
4759 if (!add_symbol_adjust (eh, info))
4760 return FALSE;
4761 p = &eh->u.next_dot_sym;
4762 }
4763 }
4764
4765 /* Clear the list for non-ppc64 input files. */
4766 p = &htab->dot_syms;
4767 while ((eh = *p) != NULL)
4768 {
4769 *p = NULL;
4770 p = &eh->u.next_dot_sym;
4771 }
4772
4773 /* We need to fix the undefs list for any syms we have twiddled to
4774 undef_weak. */
4775 if (htab->twiddled_syms)
4776 {
4777 bfd_link_repair_undef_list (&htab->elf.root);
4778 htab->twiddled_syms = 0;
4779 }
4780 return TRUE;
4781 }
4782
4783 /* Undo hash table changes when an --as-needed input file is determined
4784 not to be needed. */
4785
4786 static bfd_boolean
4787 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4788 struct bfd_link_info *info)
4789 {
4790 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4791
4792 if (htab == NULL)
4793 return FALSE;
4794
4795 htab->dot_syms = NULL;
4796 return TRUE;
4797 }
4798
4799 /* If --just-symbols against a final linked binary, then assume we need
4800 toc adjusting stubs when calling functions defined there. */
4801
4802 static void
4803 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4804 {
4805 if ((sec->flags & SEC_CODE) != 0
4806 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4807 && is_ppc64_elf (sec->owner))
4808 {
4809 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4810 if (got != NULL
4811 && got->size >= elf_backend_got_header_size
4812 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4813 sec->has_toc_reloc = 1;
4814 }
4815 _bfd_elf_link_just_syms (sec, info);
4816 }
4817
4818 static struct plt_entry **
4819 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4820 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4821 {
4822 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4823 struct plt_entry **local_plt;
4824 unsigned char *local_got_tls_masks;
4825
4826 if (local_got_ents == NULL)
4827 {
4828 bfd_size_type size = symtab_hdr->sh_info;
4829
4830 size *= (sizeof (*local_got_ents)
4831 + sizeof (*local_plt)
4832 + sizeof (*local_got_tls_masks));
4833 local_got_ents = bfd_zalloc (abfd, size);
4834 if (local_got_ents == NULL)
4835 return NULL;
4836 elf_local_got_ents (abfd) = local_got_ents;
4837 }
4838
4839 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4840 {
4841 struct got_entry *ent;
4842
4843 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4844 if (ent->addend == r_addend
4845 && ent->owner == abfd
4846 && ent->tls_type == tls_type)
4847 break;
4848 if (ent == NULL)
4849 {
4850 bfd_size_type amt = sizeof (*ent);
4851 ent = bfd_alloc (abfd, amt);
4852 if (ent == NULL)
4853 return FALSE;
4854 ent->next = local_got_ents[r_symndx];
4855 ent->addend = r_addend;
4856 ent->owner = abfd;
4857 ent->tls_type = tls_type;
4858 ent->is_indirect = FALSE;
4859 ent->got.refcount = 0;
4860 local_got_ents[r_symndx] = ent;
4861 }
4862 ent->got.refcount += 1;
4863 }
4864
4865 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4866 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4867 local_got_tls_masks[r_symndx] |= tls_type;
4868
4869 return local_plt + r_symndx;
4870 }
4871
4872 static bfd_boolean
4873 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4874 {
4875 struct plt_entry *ent;
4876
4877 for (ent = *plist; ent != NULL; ent = ent->next)
4878 if (ent->addend == addend)
4879 break;
4880 if (ent == NULL)
4881 {
4882 bfd_size_type amt = sizeof (*ent);
4883 ent = bfd_alloc (abfd, amt);
4884 if (ent == NULL)
4885 return FALSE;
4886 ent->next = *plist;
4887 ent->addend = addend;
4888 ent->plt.refcount = 0;
4889 *plist = ent;
4890 }
4891 ent->plt.refcount += 1;
4892 return TRUE;
4893 }
4894
4895 static bfd_boolean
4896 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4897 {
4898 return (r_type == R_PPC64_REL24
4899 || r_type == R_PPC64_REL14
4900 || r_type == R_PPC64_REL14_BRTAKEN
4901 || r_type == R_PPC64_REL14_BRNTAKEN
4902 || r_type == R_PPC64_ADDR24
4903 || r_type == R_PPC64_ADDR14
4904 || r_type == R_PPC64_ADDR14_BRTAKEN
4905 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4906 }
4907
4908 /* Look through the relocs for a section during the first phase, and
4909 calculate needed space in the global offset table, procedure
4910 linkage table, and dynamic reloc sections. */
4911
4912 static bfd_boolean
4913 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4914 asection *sec, const Elf_Internal_Rela *relocs)
4915 {
4916 struct ppc_link_hash_table *htab;
4917 Elf_Internal_Shdr *symtab_hdr;
4918 struct elf_link_hash_entry **sym_hashes;
4919 const Elf_Internal_Rela *rel;
4920 const Elf_Internal_Rela *rel_end;
4921 asection *sreloc;
4922 asection **opd_sym_map;
4923 struct elf_link_hash_entry *tga, *dottga;
4924
4925 if (info->relocatable)
4926 return TRUE;
4927
4928 /* Don't do anything special with non-loaded, non-alloced sections.
4929 In particular, any relocs in such sections should not affect GOT
4930 and PLT reference counting (ie. we don't allow them to create GOT
4931 or PLT entries), there's no possibility or desire to optimize TLS
4932 relocs, and there's not much point in propagating relocs to shared
4933 libs that the dynamic linker won't relocate. */
4934 if ((sec->flags & SEC_ALLOC) == 0)
4935 return TRUE;
4936
4937 BFD_ASSERT (is_ppc64_elf (abfd));
4938
4939 htab = ppc_hash_table (info);
4940 if (htab == NULL)
4941 return FALSE;
4942
4943 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4944 FALSE, FALSE, TRUE);
4945 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4946 FALSE, FALSE, TRUE);
4947 symtab_hdr = &elf_symtab_hdr (abfd);
4948 sym_hashes = elf_sym_hashes (abfd);
4949 sreloc = NULL;
4950 opd_sym_map = NULL;
4951 if (strcmp (sec->name, ".opd") == 0)
4952 {
4953 /* Garbage collection needs some extra help with .opd sections.
4954 We don't want to necessarily keep everything referenced by
4955 relocs in .opd, as that would keep all functions. Instead,
4956 if we reference an .opd symbol (a function descriptor), we
4957 want to keep the function code symbol's section. This is
4958 easy for global symbols, but for local syms we need to keep
4959 information about the associated function section. */
4960 bfd_size_type amt;
4961
4962 amt = sec->size * sizeof (*opd_sym_map) / 8;
4963 opd_sym_map = bfd_zalloc (abfd, amt);
4964 if (opd_sym_map == NULL)
4965 return FALSE;
4966 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4967 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4968 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4969 }
4970
4971 if (htab->sfpr == NULL
4972 && !create_linkage_sections (htab->elf.dynobj, info))
4973 return FALSE;
4974
4975 rel_end = relocs + sec->reloc_count;
4976 for (rel = relocs; rel < rel_end; rel++)
4977 {
4978 unsigned long r_symndx;
4979 struct elf_link_hash_entry *h;
4980 enum elf_ppc64_reloc_type r_type;
4981 int tls_type;
4982 struct _ppc64_elf_section_data *ppc64_sec;
4983 struct plt_entry **ifunc;
4984
4985 r_symndx = ELF64_R_SYM (rel->r_info);
4986 if (r_symndx < symtab_hdr->sh_info)
4987 h = NULL;
4988 else
4989 {
4990 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4991 h = elf_follow_link (h);
4992 }
4993
4994 tls_type = 0;
4995 ifunc = NULL;
4996 if (h != NULL)
4997 {
4998 if (h->type == STT_GNU_IFUNC)
4999 {
5000 h->needs_plt = 1;
5001 ifunc = &h->plt.plist;
5002 }
5003 }
5004 else
5005 {
5006 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5007 abfd, r_symndx);
5008 if (isym == NULL)
5009 return FALSE;
5010
5011 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5012 {
5013 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5014 rel->r_addend, PLT_IFUNC);
5015 if (ifunc == NULL)
5016 return FALSE;
5017 }
5018 }
5019 r_type = ELF64_R_TYPE (rel->r_info);
5020 if (is_branch_reloc (r_type))
5021 {
5022 if (h != NULL && (h == tga || h == dottga))
5023 {
5024 if (rel != relocs
5025 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5026 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5027 /* We have a new-style __tls_get_addr call with a marker
5028 reloc. */
5029 ;
5030 else
5031 /* Mark this section as having an old-style call. */
5032 sec->has_tls_get_addr_call = 1;
5033 }
5034
5035 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5036 if (ifunc != NULL
5037 && !update_plt_info (abfd, ifunc, rel->r_addend))
5038 return FALSE;
5039 }
5040
5041 switch (r_type)
5042 {
5043 case R_PPC64_TLSGD:
5044 case R_PPC64_TLSLD:
5045 /* These special tls relocs tie a call to __tls_get_addr with
5046 its parameter symbol. */
5047 break;
5048
5049 case R_PPC64_GOT_TLSLD16:
5050 case R_PPC64_GOT_TLSLD16_LO:
5051 case R_PPC64_GOT_TLSLD16_HI:
5052 case R_PPC64_GOT_TLSLD16_HA:
5053 tls_type = TLS_TLS | TLS_LD;
5054 goto dogottls;
5055
5056 case R_PPC64_GOT_TLSGD16:
5057 case R_PPC64_GOT_TLSGD16_LO:
5058 case R_PPC64_GOT_TLSGD16_HI:
5059 case R_PPC64_GOT_TLSGD16_HA:
5060 tls_type = TLS_TLS | TLS_GD;
5061 goto dogottls;
5062
5063 case R_PPC64_GOT_TPREL16_DS:
5064 case R_PPC64_GOT_TPREL16_LO_DS:
5065 case R_PPC64_GOT_TPREL16_HI:
5066 case R_PPC64_GOT_TPREL16_HA:
5067 if (!info->executable)
5068 info->flags |= DF_STATIC_TLS;
5069 tls_type = TLS_TLS | TLS_TPREL;
5070 goto dogottls;
5071
5072 case R_PPC64_GOT_DTPREL16_DS:
5073 case R_PPC64_GOT_DTPREL16_LO_DS:
5074 case R_PPC64_GOT_DTPREL16_HI:
5075 case R_PPC64_GOT_DTPREL16_HA:
5076 tls_type = TLS_TLS | TLS_DTPREL;
5077 dogottls:
5078 sec->has_tls_reloc = 1;
5079 /* Fall thru */
5080
5081 case R_PPC64_GOT16:
5082 case R_PPC64_GOT16_DS:
5083 case R_PPC64_GOT16_HA:
5084 case R_PPC64_GOT16_HI:
5085 case R_PPC64_GOT16_LO:
5086 case R_PPC64_GOT16_LO_DS:
5087 /* This symbol requires a global offset table entry. */
5088 sec->has_toc_reloc = 1;
5089 if (r_type == R_PPC64_GOT_TLSLD16
5090 || r_type == R_PPC64_GOT_TLSGD16
5091 || r_type == R_PPC64_GOT_TPREL16_DS
5092 || r_type == R_PPC64_GOT_DTPREL16_DS
5093 || r_type == R_PPC64_GOT16
5094 || r_type == R_PPC64_GOT16_DS)
5095 {
5096 htab->do_multi_toc = 1;
5097 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5098 }
5099
5100 if (ppc64_elf_tdata (abfd)->got == NULL
5101 && !create_got_section (abfd, info))
5102 return FALSE;
5103
5104 if (h != NULL)
5105 {
5106 struct ppc_link_hash_entry *eh;
5107 struct got_entry *ent;
5108
5109 eh = (struct ppc_link_hash_entry *) h;
5110 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5111 if (ent->addend == rel->r_addend
5112 && ent->owner == abfd
5113 && ent->tls_type == tls_type)
5114 break;
5115 if (ent == NULL)
5116 {
5117 bfd_size_type amt = sizeof (*ent);
5118 ent = bfd_alloc (abfd, amt);
5119 if (ent == NULL)
5120 return FALSE;
5121 ent->next = eh->elf.got.glist;
5122 ent->addend = rel->r_addend;
5123 ent->owner = abfd;
5124 ent->tls_type = tls_type;
5125 ent->is_indirect = FALSE;
5126 ent->got.refcount = 0;
5127 eh->elf.got.glist = ent;
5128 }
5129 ent->got.refcount += 1;
5130 eh->tls_mask |= tls_type;
5131 }
5132 else
5133 /* This is a global offset table entry for a local symbol. */
5134 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5135 rel->r_addend, tls_type))
5136 return FALSE;
5137 break;
5138
5139 case R_PPC64_PLT16_HA:
5140 case R_PPC64_PLT16_HI:
5141 case R_PPC64_PLT16_LO:
5142 case R_PPC64_PLT32:
5143 case R_PPC64_PLT64:
5144 /* This symbol requires a procedure linkage table entry. We
5145 actually build the entry in adjust_dynamic_symbol,
5146 because this might be a case of linking PIC code without
5147 linking in any dynamic objects, in which case we don't
5148 need to generate a procedure linkage table after all. */
5149 if (h == NULL)
5150 {
5151 /* It does not make sense to have a procedure linkage
5152 table entry for a local symbol. */
5153 bfd_set_error (bfd_error_bad_value);
5154 return FALSE;
5155 }
5156 else
5157 {
5158 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5159 return FALSE;
5160 h->needs_plt = 1;
5161 if (h->root.root.string[0] == '.'
5162 && h->root.root.string[1] != '\0')
5163 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5164 }
5165 break;
5166
5167 /* The following relocations don't need to propagate the
5168 relocation if linking a shared object since they are
5169 section relative. */
5170 case R_PPC64_SECTOFF:
5171 case R_PPC64_SECTOFF_LO:
5172 case R_PPC64_SECTOFF_HI:
5173 case R_PPC64_SECTOFF_HA:
5174 case R_PPC64_SECTOFF_DS:
5175 case R_PPC64_SECTOFF_LO_DS:
5176 case R_PPC64_DTPREL16:
5177 case R_PPC64_DTPREL16_LO:
5178 case R_PPC64_DTPREL16_HI:
5179 case R_PPC64_DTPREL16_HA:
5180 case R_PPC64_DTPREL16_DS:
5181 case R_PPC64_DTPREL16_LO_DS:
5182 case R_PPC64_DTPREL16_HIGHER:
5183 case R_PPC64_DTPREL16_HIGHERA:
5184 case R_PPC64_DTPREL16_HIGHEST:
5185 case R_PPC64_DTPREL16_HIGHESTA:
5186 break;
5187
5188 /* Nor do these. */
5189 case R_PPC64_REL16:
5190 case R_PPC64_REL16_LO:
5191 case R_PPC64_REL16_HI:
5192 case R_PPC64_REL16_HA:
5193 break;
5194
5195 case R_PPC64_TOC16:
5196 case R_PPC64_TOC16_DS:
5197 htab->do_multi_toc = 1;
5198 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5199 case R_PPC64_TOC16_LO:
5200 case R_PPC64_TOC16_HI:
5201 case R_PPC64_TOC16_HA:
5202 case R_PPC64_TOC16_LO_DS:
5203 sec->has_toc_reloc = 1;
5204 break;
5205
5206 /* This relocation describes the C++ object vtable hierarchy.
5207 Reconstruct it for later use during GC. */
5208 case R_PPC64_GNU_VTINHERIT:
5209 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5210 return FALSE;
5211 break;
5212
5213 /* This relocation describes which C++ vtable entries are actually
5214 used. Record for later use during GC. */
5215 case R_PPC64_GNU_VTENTRY:
5216 BFD_ASSERT (h != NULL);
5217 if (h != NULL
5218 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5219 return FALSE;
5220 break;
5221
5222 case R_PPC64_REL14:
5223 case R_PPC64_REL14_BRTAKEN:
5224 case R_PPC64_REL14_BRNTAKEN:
5225 {
5226 asection *dest = NULL;
5227
5228 /* Heuristic: If jumping outside our section, chances are
5229 we are going to need a stub. */
5230 if (h != NULL)
5231 {
5232 /* If the sym is weak it may be overridden later, so
5233 don't assume we know where a weak sym lives. */
5234 if (h->root.type == bfd_link_hash_defined)
5235 dest = h->root.u.def.section;
5236 }
5237 else
5238 {
5239 Elf_Internal_Sym *isym;
5240
5241 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5242 abfd, r_symndx);
5243 if (isym == NULL)
5244 return FALSE;
5245
5246 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5247 }
5248
5249 if (dest != sec)
5250 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5251 }
5252 /* Fall through. */
5253
5254 case R_PPC64_REL24:
5255 if (h != NULL && ifunc == NULL)
5256 {
5257 /* We may need a .plt entry if the function this reloc
5258 refers to is in a shared lib. */
5259 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5260 return FALSE;
5261 h->needs_plt = 1;
5262 if (h->root.root.string[0] == '.'
5263 && h->root.root.string[1] != '\0')
5264 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5265 if (h == tga || h == dottga)
5266 sec->has_tls_reloc = 1;
5267 }
5268 break;
5269
5270 case R_PPC64_TPREL64:
5271 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5272 if (!info->executable)
5273 info->flags |= DF_STATIC_TLS;
5274 goto dotlstoc;
5275
5276 case R_PPC64_DTPMOD64:
5277 if (rel + 1 < rel_end
5278 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5279 && rel[1].r_offset == rel->r_offset + 8)
5280 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5281 else
5282 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5283 goto dotlstoc;
5284
5285 case R_PPC64_DTPREL64:
5286 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5287 if (rel != relocs
5288 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5289 && rel[-1].r_offset == rel->r_offset - 8)
5290 /* This is the second reloc of a dtpmod, dtprel pair.
5291 Don't mark with TLS_DTPREL. */
5292 goto dodyn;
5293
5294 dotlstoc:
5295 sec->has_tls_reloc = 1;
5296 if (h != NULL)
5297 {
5298 struct ppc_link_hash_entry *eh;
5299 eh = (struct ppc_link_hash_entry *) h;
5300 eh->tls_mask |= tls_type;
5301 }
5302 else
5303 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5304 rel->r_addend, tls_type))
5305 return FALSE;
5306
5307 ppc64_sec = ppc64_elf_section_data (sec);
5308 if (ppc64_sec->sec_type != sec_toc)
5309 {
5310 bfd_size_type amt;
5311
5312 /* One extra to simplify get_tls_mask. */
5313 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5314 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5315 if (ppc64_sec->u.toc.symndx == NULL)
5316 return FALSE;
5317 amt = sec->size * sizeof (bfd_vma) / 8;
5318 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5319 if (ppc64_sec->u.toc.add == NULL)
5320 return FALSE;
5321 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5322 ppc64_sec->sec_type = sec_toc;
5323 }
5324 BFD_ASSERT (rel->r_offset % 8 == 0);
5325 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5326 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5327
5328 /* Mark the second slot of a GD or LD entry.
5329 -1 to indicate GD and -2 to indicate LD. */
5330 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5331 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5332 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5333 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5334 goto dodyn;
5335
5336 case R_PPC64_TPREL16:
5337 case R_PPC64_TPREL16_LO:
5338 case R_PPC64_TPREL16_HI:
5339 case R_PPC64_TPREL16_HA:
5340 case R_PPC64_TPREL16_DS:
5341 case R_PPC64_TPREL16_LO_DS:
5342 case R_PPC64_TPREL16_HIGHER:
5343 case R_PPC64_TPREL16_HIGHERA:
5344 case R_PPC64_TPREL16_HIGHEST:
5345 case R_PPC64_TPREL16_HIGHESTA:
5346 if (info->shared)
5347 {
5348 if (!info->executable)
5349 info->flags |= DF_STATIC_TLS;
5350 goto dodyn;
5351 }
5352 break;
5353
5354 case R_PPC64_ADDR64:
5355 if (opd_sym_map != NULL
5356 && rel + 1 < rel_end
5357 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5358 {
5359 if (h != NULL)
5360 {
5361 if (h->root.root.string[0] == '.'
5362 && h->root.root.string[1] != 0
5363 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5364 ;
5365 else
5366 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5367 }
5368 else
5369 {
5370 asection *s;
5371 Elf_Internal_Sym *isym;
5372
5373 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5374 abfd, r_symndx);
5375 if (isym == NULL)
5376 return FALSE;
5377
5378 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5379 if (s != NULL && s != sec)
5380 opd_sym_map[rel->r_offset / 8] = s;
5381 }
5382 }
5383 /* Fall through. */
5384
5385 case R_PPC64_REL30:
5386 case R_PPC64_REL32:
5387 case R_PPC64_REL64:
5388 case R_PPC64_ADDR14:
5389 case R_PPC64_ADDR14_BRNTAKEN:
5390 case R_PPC64_ADDR14_BRTAKEN:
5391 case R_PPC64_ADDR16:
5392 case R_PPC64_ADDR16_DS:
5393 case R_PPC64_ADDR16_HA:
5394 case R_PPC64_ADDR16_HI:
5395 case R_PPC64_ADDR16_HIGHER:
5396 case R_PPC64_ADDR16_HIGHERA:
5397 case R_PPC64_ADDR16_HIGHEST:
5398 case R_PPC64_ADDR16_HIGHESTA:
5399 case R_PPC64_ADDR16_LO:
5400 case R_PPC64_ADDR16_LO_DS:
5401 case R_PPC64_ADDR24:
5402 case R_PPC64_ADDR32:
5403 case R_PPC64_UADDR16:
5404 case R_PPC64_UADDR32:
5405 case R_PPC64_UADDR64:
5406 case R_PPC64_TOC:
5407 if (h != NULL && !info->shared)
5408 /* We may need a copy reloc. */
5409 h->non_got_ref = 1;
5410
5411 /* Don't propagate .opd relocs. */
5412 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5413 break;
5414
5415 /* If we are creating a shared library, and this is a reloc
5416 against a global symbol, or a non PC relative reloc
5417 against a local symbol, then we need to copy the reloc
5418 into the shared library. However, if we are linking with
5419 -Bsymbolic, we do not need to copy a reloc against a
5420 global symbol which is defined in an object we are
5421 including in the link (i.e., DEF_REGULAR is set). At
5422 this point we have not seen all the input files, so it is
5423 possible that DEF_REGULAR is not set now but will be set
5424 later (it is never cleared). In case of a weak definition,
5425 DEF_REGULAR may be cleared later by a strong definition in
5426 a shared library. We account for that possibility below by
5427 storing information in the dyn_relocs field of the hash
5428 table entry. A similar situation occurs when creating
5429 shared libraries and symbol visibility changes render the
5430 symbol local.
5431
5432 If on the other hand, we are creating an executable, we
5433 may need to keep relocations for symbols satisfied by a
5434 dynamic library if we manage to avoid copy relocs for the
5435 symbol. */
5436 dodyn:
5437 if ((info->shared
5438 && (must_be_dyn_reloc (info, r_type)
5439 || (h != NULL
5440 && (! info->symbolic
5441 || h->root.type == bfd_link_hash_defweak
5442 || !h->def_regular))))
5443 || (ELIMINATE_COPY_RELOCS
5444 && !info->shared
5445 && h != NULL
5446 && (h->root.type == bfd_link_hash_defweak
5447 || !h->def_regular))
5448 || (!info->shared
5449 && ifunc != NULL))
5450 {
5451 struct elf_dyn_relocs *p;
5452 struct elf_dyn_relocs **head;
5453
5454 /* We must copy these reloc types into the output file.
5455 Create a reloc section in dynobj and make room for
5456 this reloc. */
5457 if (sreloc == NULL)
5458 {
5459 sreloc = _bfd_elf_make_dynamic_reloc_section
5460 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5461
5462 if (sreloc == NULL)
5463 return FALSE;
5464 }
5465
5466 /* If this is a global symbol, we count the number of
5467 relocations we need for this symbol. */
5468 if (h != NULL)
5469 {
5470 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5471 }
5472 else
5473 {
5474 /* Track dynamic relocs needed for local syms too.
5475 We really need local syms available to do this
5476 easily. Oh well. */
5477 asection *s;
5478 void *vpp;
5479 Elf_Internal_Sym *isym;
5480
5481 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5482 abfd, r_symndx);
5483 if (isym == NULL)
5484 return FALSE;
5485
5486 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5487 if (s == NULL)
5488 s = sec;
5489
5490 vpp = &elf_section_data (s)->local_dynrel;
5491 head = (struct elf_dyn_relocs **) vpp;
5492 }
5493
5494 p = *head;
5495 if (p == NULL || p->sec != sec)
5496 {
5497 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5498 if (p == NULL)
5499 return FALSE;
5500 p->next = *head;
5501 *head = p;
5502 p->sec = sec;
5503 p->count = 0;
5504 p->pc_count = 0;
5505 }
5506
5507 p->count += 1;
5508 if (!must_be_dyn_reloc (info, r_type))
5509 p->pc_count += 1;
5510 }
5511 break;
5512
5513 default:
5514 break;
5515 }
5516 }
5517
5518 return TRUE;
5519 }
5520
5521 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5522 of the code entry point, and its section. */
5523
5524 static bfd_vma
5525 opd_entry_value (asection *opd_sec,
5526 bfd_vma offset,
5527 asection **code_sec,
5528 bfd_vma *code_off,
5529 bfd_boolean in_code_sec)
5530 {
5531 bfd *opd_bfd = opd_sec->owner;
5532 Elf_Internal_Rela *relocs;
5533 Elf_Internal_Rela *lo, *hi, *look;
5534 bfd_vma val;
5535
5536 /* No relocs implies we are linking a --just-symbols object, or looking
5537 at a final linked executable with addr2line or somesuch. */
5538 if (opd_sec->reloc_count == 0)
5539 {
5540 char buf[8];
5541
5542 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8))
5543 return (bfd_vma) -1;
5544
5545 val = bfd_get_64 (opd_bfd, buf);
5546 if (code_sec != NULL)
5547 {
5548 asection *sec, *likely = NULL;
5549
5550 if (in_code_sec)
5551 {
5552 sec = *code_sec;
5553 if (sec->vma <= val
5554 && val < sec->vma + sec->size)
5555 likely = sec;
5556 else
5557 val = -1;
5558 }
5559 else
5560 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5561 if (sec->vma <= val
5562 && (sec->flags & SEC_LOAD) != 0
5563 && (sec->flags & SEC_ALLOC) != 0)
5564 likely = sec;
5565 if (likely != NULL)
5566 {
5567 *code_sec = likely;
5568 if (code_off != NULL)
5569 *code_off = val - likely->vma;
5570 }
5571 }
5572 return val;
5573 }
5574
5575 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5576
5577 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5578 if (relocs == NULL)
5579 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5580
5581 /* Go find the opd reloc at the sym address. */
5582 lo = relocs;
5583 BFD_ASSERT (lo != NULL);
5584 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5585 val = (bfd_vma) -1;
5586 while (lo < hi)
5587 {
5588 look = lo + (hi - lo) / 2;
5589 if (look->r_offset < offset)
5590 lo = look + 1;
5591 else if (look->r_offset > offset)
5592 hi = look;
5593 else
5594 {
5595 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5596
5597 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5598 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5599 {
5600 unsigned long symndx = ELF64_R_SYM (look->r_info);
5601 asection *sec;
5602
5603 if (symndx < symtab_hdr->sh_info
5604 || elf_sym_hashes (opd_bfd) == NULL)
5605 {
5606 Elf_Internal_Sym *sym;
5607
5608 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5609 if (sym == NULL)
5610 {
5611 size_t symcnt = symtab_hdr->sh_info;
5612 if (elf_sym_hashes (opd_bfd) == NULL)
5613 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5614 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5615 0, NULL, NULL, NULL);
5616 if (sym == NULL)
5617 break;
5618 symtab_hdr->contents = (bfd_byte *) sym;
5619 }
5620
5621 sym += symndx;
5622 val = sym->st_value;
5623 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5624 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5625 }
5626 else
5627 {
5628 struct elf_link_hash_entry **sym_hashes;
5629 struct elf_link_hash_entry *rh;
5630
5631 sym_hashes = elf_sym_hashes (opd_bfd);
5632 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5633 rh = elf_follow_link (rh);
5634 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5635 || rh->root.type == bfd_link_hash_defweak);
5636 val = rh->root.u.def.value;
5637 sec = rh->root.u.def.section;
5638 }
5639 val += look->r_addend;
5640 if (code_off != NULL)
5641 *code_off = val;
5642 if (code_sec != NULL)
5643 {
5644 if (in_code_sec && *code_sec != sec)
5645 return -1;
5646 else
5647 *code_sec = sec;
5648 }
5649 if (sec != NULL && sec->output_section != NULL)
5650 val += sec->output_section->vma + sec->output_offset;
5651 }
5652 break;
5653 }
5654 }
5655
5656 return val;
5657 }
5658
5659 /* If the ELF symbol SYM might be a function in SEC, return the
5660 function size and set *CODE_OFF to the function's entry point,
5661 otherwise return zero. */
5662
5663 static bfd_size_type
5664 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5665 bfd_vma *code_off)
5666 {
5667 bfd_size_type size;
5668
5669 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5670 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5671 return 0;
5672
5673 size = 0;
5674 if (!(sym->flags & BSF_SYNTHETIC))
5675 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5676
5677 if (strcmp (sym->section->name, ".opd") == 0)
5678 {
5679 if (opd_entry_value (sym->section, sym->value,
5680 &sec, code_off, TRUE) == (bfd_vma) -1)
5681 return 0;
5682 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5683 symbol. This size has nothing to do with the code size of the
5684 function, which is what we're supposed to return, but the
5685 code size isn't available without looking up the dot-sym.
5686 However, doing that would be a waste of time particularly
5687 since elf_find_function will look at the dot-sym anyway.
5688 Now, elf_find_function will keep the largest size of any
5689 function sym found at the code address of interest, so return
5690 1 here to avoid it incorrectly caching a larger function size
5691 for a small function. This does mean we return the wrong
5692 size for a new-ABI function of size 24, but all that does is
5693 disable caching for such functions. */
5694 if (size == 24)
5695 size = 1;
5696 }
5697 else
5698 {
5699 if (sym->section != sec)
5700 return 0;
5701 *code_off = sym->value;
5702 }
5703 if (size == 0)
5704 size = 1;
5705 return size;
5706 }
5707
5708 /* Return true if symbol is defined in a regular object file. */
5709
5710 static bfd_boolean
5711 is_static_defined (struct elf_link_hash_entry *h)
5712 {
5713 return ((h->root.type == bfd_link_hash_defined
5714 || h->root.type == bfd_link_hash_defweak)
5715 && h->root.u.def.section != NULL
5716 && h->root.u.def.section->output_section != NULL);
5717 }
5718
5719 /* If FDH is a function descriptor symbol, return the associated code
5720 entry symbol if it is defined. Return NULL otherwise. */
5721
5722 static struct ppc_link_hash_entry *
5723 defined_code_entry (struct ppc_link_hash_entry *fdh)
5724 {
5725 if (fdh->is_func_descriptor)
5726 {
5727 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5728 if (fh->elf.root.type == bfd_link_hash_defined
5729 || fh->elf.root.type == bfd_link_hash_defweak)
5730 return fh;
5731 }
5732 return NULL;
5733 }
5734
5735 /* If FH is a function code entry symbol, return the associated
5736 function descriptor symbol if it is defined. Return NULL otherwise. */
5737
5738 static struct ppc_link_hash_entry *
5739 defined_func_desc (struct ppc_link_hash_entry *fh)
5740 {
5741 if (fh->oh != NULL
5742 && fh->oh->is_func_descriptor)
5743 {
5744 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5745 if (fdh->elf.root.type == bfd_link_hash_defined
5746 || fdh->elf.root.type == bfd_link_hash_defweak)
5747 return fdh;
5748 }
5749 return NULL;
5750 }
5751
5752 /* Mark all our entry sym sections, both opd and code section. */
5753
5754 static void
5755 ppc64_elf_gc_keep (struct bfd_link_info *info)
5756 {
5757 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5758 struct bfd_sym_chain *sym;
5759
5760 if (htab == NULL)
5761 return;
5762
5763 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5764 {
5765 struct ppc_link_hash_entry *eh, *fh;
5766 asection *sec;
5767
5768 eh = (struct ppc_link_hash_entry *)
5769 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5770 if (eh == NULL)
5771 continue;
5772 if (eh->elf.root.type != bfd_link_hash_defined
5773 && eh->elf.root.type != bfd_link_hash_defweak)
5774 continue;
5775
5776 fh = defined_code_entry (eh);
5777 if (fh != NULL)
5778 {
5779 sec = fh->elf.root.u.def.section;
5780 sec->flags |= SEC_KEEP;
5781 }
5782 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5783 && opd_entry_value (eh->elf.root.u.def.section,
5784 eh->elf.root.u.def.value,
5785 &sec, NULL, FALSE) != (bfd_vma) -1)
5786 sec->flags |= SEC_KEEP;
5787
5788 sec = eh->elf.root.u.def.section;
5789 sec->flags |= SEC_KEEP;
5790 }
5791 }
5792
5793 /* Mark sections containing dynamically referenced symbols. When
5794 building shared libraries, we must assume that any visible symbol is
5795 referenced. */
5796
5797 static bfd_boolean
5798 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5799 {
5800 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5801 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5802 struct ppc_link_hash_entry *fdh;
5803
5804 /* Dynamic linking info is on the func descriptor sym. */
5805 fdh = defined_func_desc (eh);
5806 if (fdh != NULL)
5807 eh = fdh;
5808
5809 if ((eh->elf.root.type == bfd_link_hash_defined
5810 || eh->elf.root.type == bfd_link_hash_defweak)
5811 && (eh->elf.ref_dynamic
5812 || (!info->executable
5813 && eh->elf.def_regular
5814 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5815 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5816 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5817 || !bfd_hide_sym_by_version (info->version_info,
5818 eh->elf.root.root.string)))))
5819 {
5820 asection *code_sec;
5821 struct ppc_link_hash_entry *fh;
5822
5823 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5824
5825 /* Function descriptor syms cause the associated
5826 function code sym section to be marked. */
5827 fh = defined_code_entry (eh);
5828 if (fh != NULL)
5829 {
5830 code_sec = fh->elf.root.u.def.section;
5831 code_sec->flags |= SEC_KEEP;
5832 }
5833 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5834 && opd_entry_value (eh->elf.root.u.def.section,
5835 eh->elf.root.u.def.value,
5836 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5837 code_sec->flags |= SEC_KEEP;
5838 }
5839
5840 return TRUE;
5841 }
5842
5843 /* Return the section that should be marked against GC for a given
5844 relocation. */
5845
5846 static asection *
5847 ppc64_elf_gc_mark_hook (asection *sec,
5848 struct bfd_link_info *info,
5849 Elf_Internal_Rela *rel,
5850 struct elf_link_hash_entry *h,
5851 Elf_Internal_Sym *sym)
5852 {
5853 asection *rsec;
5854
5855 /* Syms return NULL if we're marking .opd, so we avoid marking all
5856 function sections, as all functions are referenced in .opd. */
5857 rsec = NULL;
5858 if (get_opd_info (sec) != NULL)
5859 return rsec;
5860
5861 if (h != NULL)
5862 {
5863 enum elf_ppc64_reloc_type r_type;
5864 struct ppc_link_hash_entry *eh, *fh, *fdh;
5865
5866 r_type = ELF64_R_TYPE (rel->r_info);
5867 switch (r_type)
5868 {
5869 case R_PPC64_GNU_VTINHERIT:
5870 case R_PPC64_GNU_VTENTRY:
5871 break;
5872
5873 default:
5874 switch (h->root.type)
5875 {
5876 case bfd_link_hash_defined:
5877 case bfd_link_hash_defweak:
5878 eh = (struct ppc_link_hash_entry *) h;
5879 fdh = defined_func_desc (eh);
5880 if (fdh != NULL)
5881 eh = fdh;
5882
5883 /* Function descriptor syms cause the associated
5884 function code sym section to be marked. */
5885 fh = defined_code_entry (eh);
5886 if (fh != NULL)
5887 {
5888 /* They also mark their opd section. */
5889 eh->elf.root.u.def.section->gc_mark = 1;
5890
5891 rsec = fh->elf.root.u.def.section;
5892 }
5893 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5894 && opd_entry_value (eh->elf.root.u.def.section,
5895 eh->elf.root.u.def.value,
5896 &rsec, NULL, FALSE) != (bfd_vma) -1)
5897 eh->elf.root.u.def.section->gc_mark = 1;
5898 else
5899 rsec = h->root.u.def.section;
5900 break;
5901
5902 case bfd_link_hash_common:
5903 rsec = h->root.u.c.p->section;
5904 break;
5905
5906 default:
5907 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5908 }
5909 }
5910 }
5911 else
5912 {
5913 struct _opd_sec_data *opd;
5914
5915 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5916 opd = get_opd_info (rsec);
5917 if (opd != NULL && opd->func_sec != NULL)
5918 {
5919 rsec->gc_mark = 1;
5920
5921 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5922 }
5923 }
5924
5925 return rsec;
5926 }
5927
5928 /* Update the .got, .plt. and dynamic reloc reference counts for the
5929 section being removed. */
5930
5931 static bfd_boolean
5932 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5933 asection *sec, const Elf_Internal_Rela *relocs)
5934 {
5935 struct ppc_link_hash_table *htab;
5936 Elf_Internal_Shdr *symtab_hdr;
5937 struct elf_link_hash_entry **sym_hashes;
5938 struct got_entry **local_got_ents;
5939 const Elf_Internal_Rela *rel, *relend;
5940
5941 if (info->relocatable)
5942 return TRUE;
5943
5944 if ((sec->flags & SEC_ALLOC) == 0)
5945 return TRUE;
5946
5947 elf_section_data (sec)->local_dynrel = NULL;
5948
5949 htab = ppc_hash_table (info);
5950 if (htab == NULL)
5951 return FALSE;
5952
5953 symtab_hdr = &elf_symtab_hdr (abfd);
5954 sym_hashes = elf_sym_hashes (abfd);
5955 local_got_ents = elf_local_got_ents (abfd);
5956
5957 relend = relocs + sec->reloc_count;
5958 for (rel = relocs; rel < relend; rel++)
5959 {
5960 unsigned long r_symndx;
5961 enum elf_ppc64_reloc_type r_type;
5962 struct elf_link_hash_entry *h = NULL;
5963 unsigned char tls_type = 0;
5964
5965 r_symndx = ELF64_R_SYM (rel->r_info);
5966 r_type = ELF64_R_TYPE (rel->r_info);
5967 if (r_symndx >= symtab_hdr->sh_info)
5968 {
5969 struct ppc_link_hash_entry *eh;
5970 struct elf_dyn_relocs **pp;
5971 struct elf_dyn_relocs *p;
5972
5973 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5974 h = elf_follow_link (h);
5975 eh = (struct ppc_link_hash_entry *) h;
5976
5977 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5978 if (p->sec == sec)
5979 {
5980 /* Everything must go for SEC. */
5981 *pp = p->next;
5982 break;
5983 }
5984 }
5985
5986 if (is_branch_reloc (r_type))
5987 {
5988 struct plt_entry **ifunc = NULL;
5989 if (h != NULL)
5990 {
5991 if (h->type == STT_GNU_IFUNC)
5992 ifunc = &h->plt.plist;
5993 }
5994 else if (local_got_ents != NULL)
5995 {
5996 struct plt_entry **local_plt = (struct plt_entry **)
5997 (local_got_ents + symtab_hdr->sh_info);
5998 unsigned char *local_got_tls_masks = (unsigned char *)
5999 (local_plt + symtab_hdr->sh_info);
6000 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6001 ifunc = local_plt + r_symndx;
6002 }
6003 if (ifunc != NULL)
6004 {
6005 struct plt_entry *ent;
6006
6007 for (ent = *ifunc; ent != NULL; ent = ent->next)
6008 if (ent->addend == rel->r_addend)
6009 break;
6010 if (ent == NULL)
6011 abort ();
6012 if (ent->plt.refcount > 0)
6013 ent->plt.refcount -= 1;
6014 continue;
6015 }
6016 }
6017
6018 switch (r_type)
6019 {
6020 case R_PPC64_GOT_TLSLD16:
6021 case R_PPC64_GOT_TLSLD16_LO:
6022 case R_PPC64_GOT_TLSLD16_HI:
6023 case R_PPC64_GOT_TLSLD16_HA:
6024 tls_type = TLS_TLS | TLS_LD;
6025 goto dogot;
6026
6027 case R_PPC64_GOT_TLSGD16:
6028 case R_PPC64_GOT_TLSGD16_LO:
6029 case R_PPC64_GOT_TLSGD16_HI:
6030 case R_PPC64_GOT_TLSGD16_HA:
6031 tls_type = TLS_TLS | TLS_GD;
6032 goto dogot;
6033
6034 case R_PPC64_GOT_TPREL16_DS:
6035 case R_PPC64_GOT_TPREL16_LO_DS:
6036 case R_PPC64_GOT_TPREL16_HI:
6037 case R_PPC64_GOT_TPREL16_HA:
6038 tls_type = TLS_TLS | TLS_TPREL;
6039 goto dogot;
6040
6041 case R_PPC64_GOT_DTPREL16_DS:
6042 case R_PPC64_GOT_DTPREL16_LO_DS:
6043 case R_PPC64_GOT_DTPREL16_HI:
6044 case R_PPC64_GOT_DTPREL16_HA:
6045 tls_type = TLS_TLS | TLS_DTPREL;
6046 goto dogot;
6047
6048 case R_PPC64_GOT16:
6049 case R_PPC64_GOT16_DS:
6050 case R_PPC64_GOT16_HA:
6051 case R_PPC64_GOT16_HI:
6052 case R_PPC64_GOT16_LO:
6053 case R_PPC64_GOT16_LO_DS:
6054 dogot:
6055 {
6056 struct got_entry *ent;
6057
6058 if (h != NULL)
6059 ent = h->got.glist;
6060 else
6061 ent = local_got_ents[r_symndx];
6062
6063 for (; ent != NULL; ent = ent->next)
6064 if (ent->addend == rel->r_addend
6065 && ent->owner == abfd
6066 && ent->tls_type == tls_type)
6067 break;
6068 if (ent == NULL)
6069 abort ();
6070 if (ent->got.refcount > 0)
6071 ent->got.refcount -= 1;
6072 }
6073 break;
6074
6075 case R_PPC64_PLT16_HA:
6076 case R_PPC64_PLT16_HI:
6077 case R_PPC64_PLT16_LO:
6078 case R_PPC64_PLT32:
6079 case R_PPC64_PLT64:
6080 case R_PPC64_REL14:
6081 case R_PPC64_REL14_BRNTAKEN:
6082 case R_PPC64_REL14_BRTAKEN:
6083 case R_PPC64_REL24:
6084 if (h != NULL)
6085 {
6086 struct plt_entry *ent;
6087
6088 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6089 if (ent->addend == rel->r_addend)
6090 break;
6091 if (ent != NULL && ent->plt.refcount > 0)
6092 ent->plt.refcount -= 1;
6093 }
6094 break;
6095
6096 default:
6097 break;
6098 }
6099 }
6100 return TRUE;
6101 }
6102
6103 /* The maximum size of .sfpr. */
6104 #define SFPR_MAX (218*4)
6105
6106 struct sfpr_def_parms
6107 {
6108 const char name[12];
6109 unsigned char lo, hi;
6110 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6111 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6112 };
6113
6114 /* Auto-generate _save*, _rest* functions in .sfpr. */
6115
6116 static bfd_boolean
6117 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6118 {
6119 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6120 unsigned int i;
6121 size_t len = strlen (parm->name);
6122 bfd_boolean writing = FALSE;
6123 char sym[16];
6124
6125 if (htab == NULL)
6126 return FALSE;
6127
6128 memcpy (sym, parm->name, len);
6129 sym[len + 2] = 0;
6130
6131 for (i = parm->lo; i <= parm->hi; i++)
6132 {
6133 struct elf_link_hash_entry *h;
6134
6135 sym[len + 0] = i / 10 + '0';
6136 sym[len + 1] = i % 10 + '0';
6137 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6138 if (h != NULL
6139 && !h->def_regular)
6140 {
6141 h->root.type = bfd_link_hash_defined;
6142 h->root.u.def.section = htab->sfpr;
6143 h->root.u.def.value = htab->sfpr->size;
6144 h->type = STT_FUNC;
6145 h->def_regular = 1;
6146 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6147 writing = TRUE;
6148 if (htab->sfpr->contents == NULL)
6149 {
6150 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6151 if (htab->sfpr->contents == NULL)
6152 return FALSE;
6153 }
6154 }
6155 if (writing)
6156 {
6157 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6158 if (i != parm->hi)
6159 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6160 else
6161 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6162 htab->sfpr->size = p - htab->sfpr->contents;
6163 }
6164 }
6165
6166 return TRUE;
6167 }
6168
6169 static bfd_byte *
6170 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6171 {
6172 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6173 return p + 4;
6174 }
6175
6176 static bfd_byte *
6177 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6178 {
6179 p = savegpr0 (abfd, p, r);
6180 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6181 p = p + 4;
6182 bfd_put_32 (abfd, BLR, p);
6183 return p + 4;
6184 }
6185
6186 static bfd_byte *
6187 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6188 {
6189 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6190 return p + 4;
6191 }
6192
6193 static bfd_byte *
6194 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6195 {
6196 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6197 p = p + 4;
6198 p = restgpr0 (abfd, p, r);
6199 bfd_put_32 (abfd, MTLR_R0, p);
6200 p = p + 4;
6201 if (r == 29)
6202 {
6203 p = restgpr0 (abfd, p, 30);
6204 p = restgpr0 (abfd, p, 31);
6205 }
6206 bfd_put_32 (abfd, BLR, p);
6207 return p + 4;
6208 }
6209
6210 static bfd_byte *
6211 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6212 {
6213 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6214 return p + 4;
6215 }
6216
6217 static bfd_byte *
6218 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6219 {
6220 p = savegpr1 (abfd, p, r);
6221 bfd_put_32 (abfd, BLR, p);
6222 return p + 4;
6223 }
6224
6225 static bfd_byte *
6226 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6227 {
6228 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6229 return p + 4;
6230 }
6231
6232 static bfd_byte *
6233 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6234 {
6235 p = restgpr1 (abfd, p, r);
6236 bfd_put_32 (abfd, BLR, p);
6237 return p + 4;
6238 }
6239
6240 static bfd_byte *
6241 savefpr (bfd *abfd, bfd_byte *p, int r)
6242 {
6243 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6244 return p + 4;
6245 }
6246
6247 static bfd_byte *
6248 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6249 {
6250 p = savefpr (abfd, p, r);
6251 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6252 p = p + 4;
6253 bfd_put_32 (abfd, BLR, p);
6254 return p + 4;
6255 }
6256
6257 static bfd_byte *
6258 restfpr (bfd *abfd, bfd_byte *p, int r)
6259 {
6260 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6261 return p + 4;
6262 }
6263
6264 static bfd_byte *
6265 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6266 {
6267 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6268 p = p + 4;
6269 p = restfpr (abfd, p, r);
6270 bfd_put_32 (abfd, MTLR_R0, p);
6271 p = p + 4;
6272 if (r == 29)
6273 {
6274 p = restfpr (abfd, p, 30);
6275 p = restfpr (abfd, p, 31);
6276 }
6277 bfd_put_32 (abfd, BLR, p);
6278 return p + 4;
6279 }
6280
6281 static bfd_byte *
6282 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6283 {
6284 p = savefpr (abfd, p, r);
6285 bfd_put_32 (abfd, BLR, p);
6286 return p + 4;
6287 }
6288
6289 static bfd_byte *
6290 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6291 {
6292 p = restfpr (abfd, p, r);
6293 bfd_put_32 (abfd, BLR, p);
6294 return p + 4;
6295 }
6296
6297 static bfd_byte *
6298 savevr (bfd *abfd, bfd_byte *p, int r)
6299 {
6300 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6301 p = p + 4;
6302 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6303 return p + 4;
6304 }
6305
6306 static bfd_byte *
6307 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6308 {
6309 p = savevr (abfd, p, r);
6310 bfd_put_32 (abfd, BLR, p);
6311 return p + 4;
6312 }
6313
6314 static bfd_byte *
6315 restvr (bfd *abfd, bfd_byte *p, int r)
6316 {
6317 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6318 p = p + 4;
6319 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6320 return p + 4;
6321 }
6322
6323 static bfd_byte *
6324 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6325 {
6326 p = restvr (abfd, p, r);
6327 bfd_put_32 (abfd, BLR, p);
6328 return p + 4;
6329 }
6330
6331 /* Called via elf_link_hash_traverse to transfer dynamic linking
6332 information on function code symbol entries to their corresponding
6333 function descriptor symbol entries. */
6334
6335 static bfd_boolean
6336 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6337 {
6338 struct bfd_link_info *info;
6339 struct ppc_link_hash_table *htab;
6340 struct plt_entry *ent;
6341 struct ppc_link_hash_entry *fh;
6342 struct ppc_link_hash_entry *fdh;
6343 bfd_boolean force_local;
6344
6345 fh = (struct ppc_link_hash_entry *) h;
6346 if (fh->elf.root.type == bfd_link_hash_indirect)
6347 return TRUE;
6348
6349 info = inf;
6350 htab = ppc_hash_table (info);
6351 if (htab == NULL)
6352 return FALSE;
6353
6354 /* Resolve undefined references to dot-symbols as the value
6355 in the function descriptor, if we have one in a regular object.
6356 This is to satisfy cases like ".quad .foo". Calls to functions
6357 in dynamic objects are handled elsewhere. */
6358 if (fh->elf.root.type == bfd_link_hash_undefweak
6359 && fh->was_undefined
6360 && (fdh = defined_func_desc (fh)) != NULL
6361 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6362 && opd_entry_value (fdh->elf.root.u.def.section,
6363 fdh->elf.root.u.def.value,
6364 &fh->elf.root.u.def.section,
6365 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6366 {
6367 fh->elf.root.type = fdh->elf.root.type;
6368 fh->elf.forced_local = 1;
6369 fh->elf.def_regular = fdh->elf.def_regular;
6370 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6371 }
6372
6373 /* If this is a function code symbol, transfer dynamic linking
6374 information to the function descriptor symbol. */
6375 if (!fh->is_func)
6376 return TRUE;
6377
6378 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6379 if (ent->plt.refcount > 0)
6380 break;
6381 if (ent == NULL
6382 || fh->elf.root.root.string[0] != '.'
6383 || fh->elf.root.root.string[1] == '\0')
6384 return TRUE;
6385
6386 /* Find the corresponding function descriptor symbol. Create it
6387 as undefined if necessary. */
6388
6389 fdh = lookup_fdh (fh, htab);
6390 if (fdh == NULL
6391 && !info->executable
6392 && (fh->elf.root.type == bfd_link_hash_undefined
6393 || fh->elf.root.type == bfd_link_hash_undefweak))
6394 {
6395 fdh = make_fdh (info, fh);
6396 if (fdh == NULL)
6397 return FALSE;
6398 }
6399
6400 /* Fake function descriptors are made undefweak. If the function
6401 code symbol is strong undefined, make the fake sym the same.
6402 If the function code symbol is defined, then force the fake
6403 descriptor local; We can't support overriding of symbols in a
6404 shared library on a fake descriptor. */
6405
6406 if (fdh != NULL
6407 && fdh->fake
6408 && fdh->elf.root.type == bfd_link_hash_undefweak)
6409 {
6410 if (fh->elf.root.type == bfd_link_hash_undefined)
6411 {
6412 fdh->elf.root.type = bfd_link_hash_undefined;
6413 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6414 }
6415 else if (fh->elf.root.type == bfd_link_hash_defined
6416 || fh->elf.root.type == bfd_link_hash_defweak)
6417 {
6418 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6419 }
6420 }
6421
6422 if (fdh != NULL
6423 && !fdh->elf.forced_local
6424 && (!info->executable
6425 || fdh->elf.def_dynamic
6426 || fdh->elf.ref_dynamic
6427 || (fdh->elf.root.type == bfd_link_hash_undefweak
6428 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6429 {
6430 if (fdh->elf.dynindx == -1)
6431 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6432 return FALSE;
6433 fdh->elf.ref_regular |= fh->elf.ref_regular;
6434 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6435 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6436 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6437 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6438 {
6439 move_plt_plist (fh, fdh);
6440 fdh->elf.needs_plt = 1;
6441 }
6442 fdh->is_func_descriptor = 1;
6443 fdh->oh = fh;
6444 fh->oh = fdh;
6445 }
6446
6447 /* Now that the info is on the function descriptor, clear the
6448 function code sym info. Any function code syms for which we
6449 don't have a definition in a regular file, we force local.
6450 This prevents a shared library from exporting syms that have
6451 been imported from another library. Function code syms that
6452 are really in the library we must leave global to prevent the
6453 linker dragging in a definition from a static library. */
6454 force_local = (!fh->elf.def_regular
6455 || fdh == NULL
6456 || !fdh->elf.def_regular
6457 || fdh->elf.forced_local);
6458 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6459
6460 return TRUE;
6461 }
6462
6463 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6464 this hook to a) provide some gcc support functions, and b) transfer
6465 dynamic linking information gathered so far on function code symbol
6466 entries, to their corresponding function descriptor symbol entries. */
6467
6468 static bfd_boolean
6469 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6470 struct bfd_link_info *info)
6471 {
6472 struct ppc_link_hash_table *htab;
6473 unsigned int i;
6474 static const struct sfpr_def_parms funcs[] =
6475 {
6476 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6477 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6478 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6479 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6480 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6481 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6482 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6483 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6484 { "._savef", 14, 31, savefpr, savefpr1_tail },
6485 { "._restf", 14, 31, restfpr, restfpr1_tail },
6486 { "_savevr_", 20, 31, savevr, savevr_tail },
6487 { "_restvr_", 20, 31, restvr, restvr_tail }
6488 };
6489
6490 htab = ppc_hash_table (info);
6491 if (htab == NULL)
6492 return FALSE;
6493
6494 if (htab->sfpr == NULL)
6495 /* We don't have any relocs. */
6496 return TRUE;
6497
6498 /* Provide any missing _save* and _rest* functions. */
6499 htab->sfpr->size = 0;
6500 if (!info->relocatable)
6501 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6502 if (!sfpr_define (info, &funcs[i]))
6503 return FALSE;
6504
6505 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6506
6507 if (htab->sfpr->size == 0)
6508 htab->sfpr->flags |= SEC_EXCLUDE;
6509
6510 return TRUE;
6511 }
6512
6513 /* Adjust a symbol defined by a dynamic object and referenced by a
6514 regular object. The current definition is in some section of the
6515 dynamic object, but we're not including those sections. We have to
6516 change the definition to something the rest of the link can
6517 understand. */
6518
6519 static bfd_boolean
6520 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6521 struct elf_link_hash_entry *h)
6522 {
6523 struct ppc_link_hash_table *htab;
6524 asection *s;
6525
6526 htab = ppc_hash_table (info);
6527 if (htab == NULL)
6528 return FALSE;
6529
6530 /* Deal with function syms. */
6531 if (h->type == STT_FUNC
6532 || h->type == STT_GNU_IFUNC
6533 || h->needs_plt)
6534 {
6535 /* Clear procedure linkage table information for any symbol that
6536 won't need a .plt entry. */
6537 struct plt_entry *ent;
6538 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6539 if (ent->plt.refcount > 0)
6540 break;
6541 if (ent == NULL
6542 || (h->type != STT_GNU_IFUNC
6543 && (SYMBOL_CALLS_LOCAL (info, h)
6544 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6545 && h->root.type == bfd_link_hash_undefweak))))
6546 {
6547 h->plt.plist = NULL;
6548 h->needs_plt = 0;
6549 }
6550 }
6551 else
6552 h->plt.plist = NULL;
6553
6554 /* If this is a weak symbol, and there is a real definition, the
6555 processor independent code will have arranged for us to see the
6556 real definition first, and we can just use the same value. */
6557 if (h->u.weakdef != NULL)
6558 {
6559 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6560 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6561 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6562 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6563 if (ELIMINATE_COPY_RELOCS)
6564 h->non_got_ref = h->u.weakdef->non_got_ref;
6565 return TRUE;
6566 }
6567
6568 /* If we are creating a shared library, we must presume that the
6569 only references to the symbol are via the global offset table.
6570 For such cases we need not do anything here; the relocations will
6571 be handled correctly by relocate_section. */
6572 if (info->shared)
6573 return TRUE;
6574
6575 /* If there are no references to this symbol that do not use the
6576 GOT, we don't need to generate a copy reloc. */
6577 if (!h->non_got_ref)
6578 return TRUE;
6579
6580 /* Don't generate a copy reloc for symbols defined in the executable. */
6581 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6582 return TRUE;
6583
6584 if (ELIMINATE_COPY_RELOCS)
6585 {
6586 struct ppc_link_hash_entry * eh;
6587 struct elf_dyn_relocs *p;
6588
6589 eh = (struct ppc_link_hash_entry *) h;
6590 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6591 {
6592 s = p->sec->output_section;
6593 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6594 break;
6595 }
6596
6597 /* If we didn't find any dynamic relocs in read-only sections, then
6598 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6599 if (p == NULL)
6600 {
6601 h->non_got_ref = 0;
6602 return TRUE;
6603 }
6604 }
6605
6606 if (h->plt.plist != NULL)
6607 {
6608 /* We should never get here, but unfortunately there are versions
6609 of gcc out there that improperly (for this ABI) put initialized
6610 function pointers, vtable refs and suchlike in read-only
6611 sections. Allow them to proceed, but warn that this might
6612 break at runtime. */
6613 info->callbacks->einfo
6614 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6615 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6616 h->root.root.string);
6617 }
6618
6619 /* This is a reference to a symbol defined by a dynamic object which
6620 is not a function. */
6621
6622 /* We must allocate the symbol in our .dynbss section, which will
6623 become part of the .bss section of the executable. There will be
6624 an entry for this symbol in the .dynsym section. The dynamic
6625 object will contain position independent code, so all references
6626 from the dynamic object to this symbol will go through the global
6627 offset table. The dynamic linker will use the .dynsym entry to
6628 determine the address it must put in the global offset table, so
6629 both the dynamic object and the regular object will refer to the
6630 same memory location for the variable. */
6631
6632 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6633 to copy the initial value out of the dynamic object and into the
6634 runtime process image. We need to remember the offset into the
6635 .rela.bss section we are going to use. */
6636 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6637 {
6638 htab->relbss->size += sizeof (Elf64_External_Rela);
6639 h->needs_copy = 1;
6640 }
6641
6642 s = htab->dynbss;
6643
6644 return _bfd_elf_adjust_dynamic_copy (h, s);
6645 }
6646
6647 /* If given a function descriptor symbol, hide both the function code
6648 sym and the descriptor. */
6649 static void
6650 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6651 struct elf_link_hash_entry *h,
6652 bfd_boolean force_local)
6653 {
6654 struct ppc_link_hash_entry *eh;
6655 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6656
6657 eh = (struct ppc_link_hash_entry *) h;
6658 if (eh->is_func_descriptor)
6659 {
6660 struct ppc_link_hash_entry *fh = eh->oh;
6661
6662 if (fh == NULL)
6663 {
6664 const char *p, *q;
6665 struct ppc_link_hash_table *htab;
6666 char save;
6667
6668 /* We aren't supposed to use alloca in BFD because on
6669 systems which do not have alloca the version in libiberty
6670 calls xmalloc, which might cause the program to crash
6671 when it runs out of memory. This function doesn't have a
6672 return status, so there's no way to gracefully return an
6673 error. So cheat. We know that string[-1] can be safely
6674 accessed; It's either a string in an ELF string table,
6675 or allocated in an objalloc structure. */
6676
6677 p = eh->elf.root.root.string - 1;
6678 save = *p;
6679 *(char *) p = '.';
6680 htab = ppc_hash_table (info);
6681 if (htab == NULL)
6682 return;
6683
6684 fh = (struct ppc_link_hash_entry *)
6685 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6686 *(char *) p = save;
6687
6688 /* Unfortunately, if it so happens that the string we were
6689 looking for was allocated immediately before this string,
6690 then we overwrote the string terminator. That's the only
6691 reason the lookup should fail. */
6692 if (fh == NULL)
6693 {
6694 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6695 while (q >= eh->elf.root.root.string && *q == *p)
6696 --q, --p;
6697 if (q < eh->elf.root.root.string && *p == '.')
6698 fh = (struct ppc_link_hash_entry *)
6699 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6700 }
6701 if (fh != NULL)
6702 {
6703 eh->oh = fh;
6704 fh->oh = eh;
6705 }
6706 }
6707 if (fh != NULL)
6708 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6709 }
6710 }
6711
6712 static bfd_boolean
6713 get_sym_h (struct elf_link_hash_entry **hp,
6714 Elf_Internal_Sym **symp,
6715 asection **symsecp,
6716 unsigned char **tls_maskp,
6717 Elf_Internal_Sym **locsymsp,
6718 unsigned long r_symndx,
6719 bfd *ibfd)
6720 {
6721 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6722
6723 if (r_symndx >= symtab_hdr->sh_info)
6724 {
6725 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6726 struct elf_link_hash_entry *h;
6727
6728 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6729 h = elf_follow_link (h);
6730
6731 if (hp != NULL)
6732 *hp = h;
6733
6734 if (symp != NULL)
6735 *symp = NULL;
6736
6737 if (symsecp != NULL)
6738 {
6739 asection *symsec = NULL;
6740 if (h->root.type == bfd_link_hash_defined
6741 || h->root.type == bfd_link_hash_defweak)
6742 symsec = h->root.u.def.section;
6743 *symsecp = symsec;
6744 }
6745
6746 if (tls_maskp != NULL)
6747 {
6748 struct ppc_link_hash_entry *eh;
6749
6750 eh = (struct ppc_link_hash_entry *) h;
6751 *tls_maskp = &eh->tls_mask;
6752 }
6753 }
6754 else
6755 {
6756 Elf_Internal_Sym *sym;
6757 Elf_Internal_Sym *locsyms = *locsymsp;
6758
6759 if (locsyms == NULL)
6760 {
6761 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6762 if (locsyms == NULL)
6763 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6764 symtab_hdr->sh_info,
6765 0, NULL, NULL, NULL);
6766 if (locsyms == NULL)
6767 return FALSE;
6768 *locsymsp = locsyms;
6769 }
6770 sym = locsyms + r_symndx;
6771
6772 if (hp != NULL)
6773 *hp = NULL;
6774
6775 if (symp != NULL)
6776 *symp = sym;
6777
6778 if (symsecp != NULL)
6779 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6780
6781 if (tls_maskp != NULL)
6782 {
6783 struct got_entry **lgot_ents;
6784 unsigned char *tls_mask;
6785
6786 tls_mask = NULL;
6787 lgot_ents = elf_local_got_ents (ibfd);
6788 if (lgot_ents != NULL)
6789 {
6790 struct plt_entry **local_plt = (struct plt_entry **)
6791 (lgot_ents + symtab_hdr->sh_info);
6792 unsigned char *lgot_masks = (unsigned char *)
6793 (local_plt + symtab_hdr->sh_info);
6794 tls_mask = &lgot_masks[r_symndx];
6795 }
6796 *tls_maskp = tls_mask;
6797 }
6798 }
6799 return TRUE;
6800 }
6801
6802 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6803 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6804 type suitable for optimization, and 1 otherwise. */
6805
6806 static int
6807 get_tls_mask (unsigned char **tls_maskp,
6808 unsigned long *toc_symndx,
6809 bfd_vma *toc_addend,
6810 Elf_Internal_Sym **locsymsp,
6811 const Elf_Internal_Rela *rel,
6812 bfd *ibfd)
6813 {
6814 unsigned long r_symndx;
6815 int next_r;
6816 struct elf_link_hash_entry *h;
6817 Elf_Internal_Sym *sym;
6818 asection *sec;
6819 bfd_vma off;
6820
6821 r_symndx = ELF64_R_SYM (rel->r_info);
6822 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6823 return 0;
6824
6825 if ((*tls_maskp != NULL && **tls_maskp != 0)
6826 || sec == NULL
6827 || ppc64_elf_section_data (sec) == NULL
6828 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6829 return 1;
6830
6831 /* Look inside a TOC section too. */
6832 if (h != NULL)
6833 {
6834 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6835 off = h->root.u.def.value;
6836 }
6837 else
6838 off = sym->st_value;
6839 off += rel->r_addend;
6840 BFD_ASSERT (off % 8 == 0);
6841 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6842 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6843 if (toc_symndx != NULL)
6844 *toc_symndx = r_symndx;
6845 if (toc_addend != NULL)
6846 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6847 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6848 return 0;
6849 if ((h == NULL || is_static_defined (h))
6850 && (next_r == -1 || next_r == -2))
6851 return 1 - next_r;
6852 return 1;
6853 }
6854
6855 /* Find (or create) an entry in the tocsave hash table. */
6856
6857 static struct tocsave_entry *
6858 tocsave_find (struct ppc_link_hash_table *htab,
6859 enum insert_option insert,
6860 Elf_Internal_Sym **local_syms,
6861 const Elf_Internal_Rela *irela,
6862 bfd *ibfd)
6863 {
6864 unsigned long r_indx;
6865 struct elf_link_hash_entry *h;
6866 Elf_Internal_Sym *sym;
6867 struct tocsave_entry ent, *p;
6868 hashval_t hash;
6869 struct tocsave_entry **slot;
6870
6871 r_indx = ELF64_R_SYM (irela->r_info);
6872 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6873 return NULL;
6874 if (ent.sec == NULL || ent.sec->output_section == NULL)
6875 {
6876 (*_bfd_error_handler)
6877 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6878 return NULL;
6879 }
6880
6881 if (h != NULL)
6882 ent.offset = h->root.u.def.value;
6883 else
6884 ent.offset = sym->st_value;
6885 ent.offset += irela->r_addend;
6886
6887 hash = tocsave_htab_hash (&ent);
6888 slot = ((struct tocsave_entry **)
6889 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6890 if (slot == NULL)
6891 return NULL;
6892
6893 if (*slot == NULL)
6894 {
6895 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6896 if (p == NULL)
6897 return NULL;
6898 *p = ent;
6899 *slot = p;
6900 }
6901 return *slot;
6902 }
6903
6904 /* Adjust all global syms defined in opd sections. In gcc generated
6905 code for the old ABI, these will already have been done. */
6906
6907 static bfd_boolean
6908 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6909 {
6910 struct ppc_link_hash_entry *eh;
6911 asection *sym_sec;
6912 struct _opd_sec_data *opd;
6913
6914 if (h->root.type == bfd_link_hash_indirect)
6915 return TRUE;
6916
6917 if (h->root.type != bfd_link_hash_defined
6918 && h->root.type != bfd_link_hash_defweak)
6919 return TRUE;
6920
6921 eh = (struct ppc_link_hash_entry *) h;
6922 if (eh->adjust_done)
6923 return TRUE;
6924
6925 sym_sec = eh->elf.root.u.def.section;
6926 opd = get_opd_info (sym_sec);
6927 if (opd != NULL && opd->adjust != NULL)
6928 {
6929 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6930 if (adjust == -1)
6931 {
6932 /* This entry has been deleted. */
6933 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6934 if (dsec == NULL)
6935 {
6936 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6937 if (discarded_section (dsec))
6938 {
6939 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6940 break;
6941 }
6942 }
6943 eh->elf.root.u.def.value = 0;
6944 eh->elf.root.u.def.section = dsec;
6945 }
6946 else
6947 eh->elf.root.u.def.value += adjust;
6948 eh->adjust_done = 1;
6949 }
6950 return TRUE;
6951 }
6952
6953 /* Handles decrementing dynamic reloc counts for the reloc specified by
6954 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6955 have already been determined. */
6956
6957 static bfd_boolean
6958 dec_dynrel_count (bfd_vma r_info,
6959 asection *sec,
6960 struct bfd_link_info *info,
6961 Elf_Internal_Sym **local_syms,
6962 struct elf_link_hash_entry *h,
6963 asection *sym_sec)
6964 {
6965 enum elf_ppc64_reloc_type r_type;
6966 struct elf_dyn_relocs *p;
6967 struct elf_dyn_relocs **pp;
6968
6969 /* Can this reloc be dynamic? This switch, and later tests here
6970 should be kept in sync with the code in check_relocs. */
6971 r_type = ELF64_R_TYPE (r_info);
6972 switch (r_type)
6973 {
6974 default:
6975 return TRUE;
6976
6977 case R_PPC64_TPREL16:
6978 case R_PPC64_TPREL16_LO:
6979 case R_PPC64_TPREL16_HI:
6980 case R_PPC64_TPREL16_HA:
6981 case R_PPC64_TPREL16_DS:
6982 case R_PPC64_TPREL16_LO_DS:
6983 case R_PPC64_TPREL16_HIGHER:
6984 case R_PPC64_TPREL16_HIGHERA:
6985 case R_PPC64_TPREL16_HIGHEST:
6986 case R_PPC64_TPREL16_HIGHESTA:
6987 if (!info->shared)
6988 return TRUE;
6989
6990 case R_PPC64_TPREL64:
6991 case R_PPC64_DTPMOD64:
6992 case R_PPC64_DTPREL64:
6993 case R_PPC64_ADDR64:
6994 case R_PPC64_REL30:
6995 case R_PPC64_REL32:
6996 case R_PPC64_REL64:
6997 case R_PPC64_ADDR14:
6998 case R_PPC64_ADDR14_BRNTAKEN:
6999 case R_PPC64_ADDR14_BRTAKEN:
7000 case R_PPC64_ADDR16:
7001 case R_PPC64_ADDR16_DS:
7002 case R_PPC64_ADDR16_HA:
7003 case R_PPC64_ADDR16_HI:
7004 case R_PPC64_ADDR16_HIGHER:
7005 case R_PPC64_ADDR16_HIGHERA:
7006 case R_PPC64_ADDR16_HIGHEST:
7007 case R_PPC64_ADDR16_HIGHESTA:
7008 case R_PPC64_ADDR16_LO:
7009 case R_PPC64_ADDR16_LO_DS:
7010 case R_PPC64_ADDR24:
7011 case R_PPC64_ADDR32:
7012 case R_PPC64_UADDR16:
7013 case R_PPC64_UADDR32:
7014 case R_PPC64_UADDR64:
7015 case R_PPC64_TOC:
7016 break;
7017 }
7018
7019 if (local_syms != NULL)
7020 {
7021 unsigned long r_symndx;
7022 Elf_Internal_Sym *sym;
7023 bfd *ibfd = sec->owner;
7024
7025 r_symndx = ELF64_R_SYM (r_info);
7026 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7027 return FALSE;
7028 }
7029
7030 if ((info->shared
7031 && (must_be_dyn_reloc (info, r_type)
7032 || (h != NULL
7033 && (!info->symbolic
7034 || h->root.type == bfd_link_hash_defweak
7035 || !h->def_regular))))
7036 || (ELIMINATE_COPY_RELOCS
7037 && !info->shared
7038 && h != NULL
7039 && (h->root.type == bfd_link_hash_defweak
7040 || !h->def_regular)))
7041 ;
7042 else
7043 return TRUE;
7044
7045 if (h != NULL)
7046 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7047 else
7048 {
7049 if (sym_sec != NULL)
7050 {
7051 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
7052 pp = (struct elf_dyn_relocs **) vpp;
7053 }
7054 else
7055 {
7056 void *vpp = &elf_section_data (sec)->local_dynrel;
7057 pp = (struct elf_dyn_relocs **) vpp;
7058 }
7059
7060 /* elf_gc_sweep may have already removed all dyn relocs associated
7061 with local syms for a given section. Don't report a dynreloc
7062 miscount. */
7063 if (*pp == NULL)
7064 return TRUE;
7065 }
7066
7067 while ((p = *pp) != NULL)
7068 {
7069 if (p->sec == sec)
7070 {
7071 if (!must_be_dyn_reloc (info, r_type))
7072 p->pc_count -= 1;
7073 p->count -= 1;
7074 if (p->count == 0)
7075 *pp = p->next;
7076 return TRUE;
7077 }
7078 pp = &p->next;
7079 }
7080
7081 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7082 sec->owner, sec);
7083 bfd_set_error (bfd_error_bad_value);
7084 return FALSE;
7085 }
7086
7087 /* Remove unused Official Procedure Descriptor entries. Currently we
7088 only remove those associated with functions in discarded link-once
7089 sections, or weakly defined functions that have been overridden. It
7090 would be possible to remove many more entries for statically linked
7091 applications. */
7092
7093 bfd_boolean
7094 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7095 {
7096 bfd *ibfd;
7097 bfd_boolean some_edited = FALSE;
7098 asection *need_pad = NULL;
7099
7100 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7101 {
7102 asection *sec;
7103 Elf_Internal_Rela *relstart, *rel, *relend;
7104 Elf_Internal_Shdr *symtab_hdr;
7105 Elf_Internal_Sym *local_syms;
7106 bfd_vma offset;
7107 struct _opd_sec_data *opd;
7108 bfd_boolean need_edit, add_aux_fields;
7109 bfd_size_type cnt_16b = 0;
7110
7111 if (!is_ppc64_elf (ibfd))
7112 continue;
7113
7114 sec = bfd_get_section_by_name (ibfd, ".opd");
7115 if (sec == NULL || sec->size == 0)
7116 continue;
7117
7118 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7119 continue;
7120
7121 if (sec->output_section == bfd_abs_section_ptr)
7122 continue;
7123
7124 /* Look through the section relocs. */
7125 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7126 continue;
7127
7128 local_syms = NULL;
7129 symtab_hdr = &elf_symtab_hdr (ibfd);
7130
7131 /* Read the relocations. */
7132 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7133 info->keep_memory);
7134 if (relstart == NULL)
7135 return FALSE;
7136
7137 /* First run through the relocs to check they are sane, and to
7138 determine whether we need to edit this opd section. */
7139 need_edit = FALSE;
7140 need_pad = sec;
7141 offset = 0;
7142 relend = relstart + sec->reloc_count;
7143 for (rel = relstart; rel < relend; )
7144 {
7145 enum elf_ppc64_reloc_type r_type;
7146 unsigned long r_symndx;
7147 asection *sym_sec;
7148 struct elf_link_hash_entry *h;
7149 Elf_Internal_Sym *sym;
7150
7151 /* .opd contains a regular array of 16 or 24 byte entries. We're
7152 only interested in the reloc pointing to a function entry
7153 point. */
7154 if (rel->r_offset != offset
7155 || rel + 1 >= relend
7156 || (rel + 1)->r_offset != offset + 8)
7157 {
7158 /* If someone messes with .opd alignment then after a
7159 "ld -r" we might have padding in the middle of .opd.
7160 Also, there's nothing to prevent someone putting
7161 something silly in .opd with the assembler. No .opd
7162 optimization for them! */
7163 broken_opd:
7164 (*_bfd_error_handler)
7165 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7166 need_edit = FALSE;
7167 break;
7168 }
7169
7170 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7171 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7172 {
7173 (*_bfd_error_handler)
7174 (_("%B: unexpected reloc type %u in .opd section"),
7175 ibfd, r_type);
7176 need_edit = FALSE;
7177 break;
7178 }
7179
7180 r_symndx = ELF64_R_SYM (rel->r_info);
7181 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7182 r_symndx, ibfd))
7183 goto error_ret;
7184
7185 if (sym_sec == NULL || sym_sec->owner == NULL)
7186 {
7187 const char *sym_name;
7188 if (h != NULL)
7189 sym_name = h->root.root.string;
7190 else
7191 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7192 sym_sec);
7193
7194 (*_bfd_error_handler)
7195 (_("%B: undefined sym `%s' in .opd section"),
7196 ibfd, sym_name);
7197 need_edit = FALSE;
7198 break;
7199 }
7200
7201 /* opd entries are always for functions defined in the
7202 current input bfd. If the symbol isn't defined in the
7203 input bfd, then we won't be using the function in this
7204 bfd; It must be defined in a linkonce section in another
7205 bfd, or is weak. It's also possible that we are
7206 discarding the function due to a linker script /DISCARD/,
7207 which we test for via the output_section. */
7208 if (sym_sec->owner != ibfd
7209 || sym_sec->output_section == bfd_abs_section_ptr)
7210 need_edit = TRUE;
7211
7212 rel += 2;
7213 if (rel == relend
7214 || (rel + 1 == relend && rel->r_offset == offset + 16))
7215 {
7216 if (sec->size == offset + 24)
7217 {
7218 need_pad = NULL;
7219 break;
7220 }
7221 if (rel == relend && sec->size == offset + 16)
7222 {
7223 cnt_16b++;
7224 break;
7225 }
7226 goto broken_opd;
7227 }
7228
7229 if (rel->r_offset == offset + 24)
7230 offset += 24;
7231 else if (rel->r_offset != offset + 16)
7232 goto broken_opd;
7233 else if (rel + 1 < relend
7234 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7235 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7236 {
7237 offset += 16;
7238 cnt_16b++;
7239 }
7240 else if (rel + 2 < relend
7241 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7242 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7243 {
7244 offset += 24;
7245 rel += 1;
7246 }
7247 else
7248 goto broken_opd;
7249 }
7250
7251 add_aux_fields = non_overlapping && cnt_16b > 0;
7252
7253 if (need_edit || add_aux_fields)
7254 {
7255 Elf_Internal_Rela *write_rel;
7256 Elf_Internal_Shdr *rel_hdr;
7257 bfd_byte *rptr, *wptr;
7258 bfd_byte *new_contents;
7259 bfd_boolean skip;
7260 long opd_ent_size;
7261 bfd_size_type amt;
7262
7263 new_contents = NULL;
7264 amt = sec->size * sizeof (long) / 8;
7265 opd = &ppc64_elf_section_data (sec)->u.opd;
7266 opd->adjust = bfd_zalloc (sec->owner, amt);
7267 if (opd->adjust == NULL)
7268 return FALSE;
7269 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7270
7271 /* This seems a waste of time as input .opd sections are all
7272 zeros as generated by gcc, but I suppose there's no reason
7273 this will always be so. We might start putting something in
7274 the third word of .opd entries. */
7275 if ((sec->flags & SEC_IN_MEMORY) == 0)
7276 {
7277 bfd_byte *loc;
7278 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7279 {
7280 if (loc != NULL)
7281 free (loc);
7282 error_ret:
7283 if (local_syms != NULL
7284 && symtab_hdr->contents != (unsigned char *) local_syms)
7285 free (local_syms);
7286 if (elf_section_data (sec)->relocs != relstart)
7287 free (relstart);
7288 return FALSE;
7289 }
7290 sec->contents = loc;
7291 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7292 }
7293
7294 elf_section_data (sec)->relocs = relstart;
7295
7296 new_contents = sec->contents;
7297 if (add_aux_fields)
7298 {
7299 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7300 if (new_contents == NULL)
7301 return FALSE;
7302 need_pad = FALSE;
7303 }
7304 wptr = new_contents;
7305 rptr = sec->contents;
7306
7307 write_rel = relstart;
7308 skip = FALSE;
7309 offset = 0;
7310 opd_ent_size = 0;
7311 for (rel = relstart; rel < relend; rel++)
7312 {
7313 unsigned long r_symndx;
7314 asection *sym_sec;
7315 struct elf_link_hash_entry *h;
7316 Elf_Internal_Sym *sym;
7317
7318 r_symndx = ELF64_R_SYM (rel->r_info);
7319 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7320 r_symndx, ibfd))
7321 goto error_ret;
7322
7323 if (rel->r_offset == offset)
7324 {
7325 struct ppc_link_hash_entry *fdh = NULL;
7326
7327 /* See if the .opd entry is full 24 byte or
7328 16 byte (with fd_aux entry overlapped with next
7329 fd_func). */
7330 opd_ent_size = 24;
7331 if ((rel + 2 == relend && sec->size == offset + 16)
7332 || (rel + 3 < relend
7333 && rel[2].r_offset == offset + 16
7334 && rel[3].r_offset == offset + 24
7335 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7336 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7337 opd_ent_size = 16;
7338
7339 if (h != NULL
7340 && h->root.root.string[0] == '.')
7341 {
7342 struct ppc_link_hash_table *htab;
7343
7344 htab = ppc_hash_table (info);
7345 if (htab != NULL)
7346 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7347 htab);
7348 if (fdh != NULL
7349 && fdh->elf.root.type != bfd_link_hash_defined
7350 && fdh->elf.root.type != bfd_link_hash_defweak)
7351 fdh = NULL;
7352 }
7353
7354 skip = (sym_sec->owner != ibfd
7355 || sym_sec->output_section == bfd_abs_section_ptr);
7356 if (skip)
7357 {
7358 if (fdh != NULL && sym_sec->owner == ibfd)
7359 {
7360 /* Arrange for the function descriptor sym
7361 to be dropped. */
7362 fdh->elf.root.u.def.value = 0;
7363 fdh->elf.root.u.def.section = sym_sec;
7364 }
7365 opd->adjust[rel->r_offset / 8] = -1;
7366 }
7367 else
7368 {
7369 /* We'll be keeping this opd entry. */
7370
7371 if (fdh != NULL)
7372 {
7373 /* Redefine the function descriptor symbol to
7374 this location in the opd section. It is
7375 necessary to update the value here rather
7376 than using an array of adjustments as we do
7377 for local symbols, because various places
7378 in the generic ELF code use the value
7379 stored in u.def.value. */
7380 fdh->elf.root.u.def.value = wptr - new_contents;
7381 fdh->adjust_done = 1;
7382 }
7383
7384 /* Local syms are a bit tricky. We could
7385 tweak them as they can be cached, but
7386 we'd need to look through the local syms
7387 for the function descriptor sym which we
7388 don't have at the moment. So keep an
7389 array of adjustments. */
7390 opd->adjust[rel->r_offset / 8]
7391 = (wptr - new_contents) - (rptr - sec->contents);
7392
7393 if (wptr != rptr)
7394 memcpy (wptr, rptr, opd_ent_size);
7395 wptr += opd_ent_size;
7396 if (add_aux_fields && opd_ent_size == 16)
7397 {
7398 memset (wptr, '\0', 8);
7399 wptr += 8;
7400 }
7401 }
7402 rptr += opd_ent_size;
7403 offset += opd_ent_size;
7404 }
7405
7406 if (skip)
7407 {
7408 if (!NO_OPD_RELOCS
7409 && !info->relocatable
7410 && !dec_dynrel_count (rel->r_info, sec, info,
7411 NULL, h, sym_sec))
7412 goto error_ret;
7413 }
7414 else
7415 {
7416 /* We need to adjust any reloc offsets to point to the
7417 new opd entries. While we're at it, we may as well
7418 remove redundant relocs. */
7419 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7420 if (write_rel != rel)
7421 memcpy (write_rel, rel, sizeof (*rel));
7422 ++write_rel;
7423 }
7424 }
7425
7426 sec->size = wptr - new_contents;
7427 sec->reloc_count = write_rel - relstart;
7428 if (add_aux_fields)
7429 {
7430 free (sec->contents);
7431 sec->contents = new_contents;
7432 }
7433
7434 /* Fudge the header size too, as this is used later in
7435 elf_bfd_final_link if we are emitting relocs. */
7436 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7437 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7438 some_edited = TRUE;
7439 }
7440 else if (elf_section_data (sec)->relocs != relstart)
7441 free (relstart);
7442
7443 if (local_syms != NULL
7444 && symtab_hdr->contents != (unsigned char *) local_syms)
7445 {
7446 if (!info->keep_memory)
7447 free (local_syms);
7448 else
7449 symtab_hdr->contents = (unsigned char *) local_syms;
7450 }
7451 }
7452
7453 if (some_edited)
7454 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7455
7456 /* If we are doing a final link and the last .opd entry is just 16 byte
7457 long, add a 8 byte padding after it. */
7458 if (need_pad != NULL && !info->relocatable)
7459 {
7460 bfd_byte *p;
7461
7462 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7463 {
7464 BFD_ASSERT (need_pad->size > 0);
7465
7466 p = bfd_malloc (need_pad->size + 8);
7467 if (p == NULL)
7468 return FALSE;
7469
7470 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7471 p, 0, need_pad->size))
7472 return FALSE;
7473
7474 need_pad->contents = p;
7475 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7476 }
7477 else
7478 {
7479 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7480 if (p == NULL)
7481 return FALSE;
7482
7483 need_pad->contents = p;
7484 }
7485
7486 memset (need_pad->contents + need_pad->size, 0, 8);
7487 need_pad->size += 8;
7488 }
7489
7490 return TRUE;
7491 }
7492
7493 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7494
7495 asection *
7496 ppc64_elf_tls_setup (struct bfd_link_info *info,
7497 int no_tls_get_addr_opt,
7498 int *no_multi_toc)
7499 {
7500 struct ppc_link_hash_table *htab;
7501
7502 htab = ppc_hash_table (info);
7503 if (htab == NULL)
7504 return NULL;
7505
7506 if (*no_multi_toc)
7507 htab->do_multi_toc = 0;
7508 else if (!htab->do_multi_toc)
7509 *no_multi_toc = 1;
7510
7511 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7512 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7513 FALSE, FALSE, TRUE));
7514 /* Move dynamic linking info to the function descriptor sym. */
7515 if (htab->tls_get_addr != NULL)
7516 func_desc_adjust (&htab->tls_get_addr->elf, info);
7517 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7518 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7519 FALSE, FALSE, TRUE));
7520 if (!no_tls_get_addr_opt)
7521 {
7522 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7523
7524 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7525 FALSE, FALSE, TRUE);
7526 if (opt != NULL)
7527 func_desc_adjust (opt, info);
7528 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7529 FALSE, FALSE, TRUE);
7530 if (opt_fd != NULL
7531 && (opt_fd->root.type == bfd_link_hash_defined
7532 || opt_fd->root.type == bfd_link_hash_defweak))
7533 {
7534 /* If glibc supports an optimized __tls_get_addr call stub,
7535 signalled by the presence of __tls_get_addr_opt, and we'll
7536 be calling __tls_get_addr via a plt call stub, then
7537 make __tls_get_addr point to __tls_get_addr_opt. */
7538 tga_fd = &htab->tls_get_addr_fd->elf;
7539 if (htab->elf.dynamic_sections_created
7540 && tga_fd != NULL
7541 && (tga_fd->type == STT_FUNC
7542 || tga_fd->needs_plt)
7543 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7544 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7545 && tga_fd->root.type == bfd_link_hash_undefweak)))
7546 {
7547 struct plt_entry *ent;
7548
7549 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7550 if (ent->plt.refcount > 0)
7551 break;
7552 if (ent != NULL)
7553 {
7554 tga_fd->root.type = bfd_link_hash_indirect;
7555 tga_fd->root.u.i.link = &opt_fd->root;
7556 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7557 if (opt_fd->dynindx != -1)
7558 {
7559 /* Use __tls_get_addr_opt in dynamic relocations. */
7560 opt_fd->dynindx = -1;
7561 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7562 opt_fd->dynstr_index);
7563 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7564 return NULL;
7565 }
7566 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7567 tga = &htab->tls_get_addr->elf;
7568 if (opt != NULL && tga != NULL)
7569 {
7570 tga->root.type = bfd_link_hash_indirect;
7571 tga->root.u.i.link = &opt->root;
7572 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7573 _bfd_elf_link_hash_hide_symbol (info, opt,
7574 tga->forced_local);
7575 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7576 }
7577 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7578 htab->tls_get_addr_fd->is_func_descriptor = 1;
7579 if (htab->tls_get_addr != NULL)
7580 {
7581 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7582 htab->tls_get_addr->is_func = 1;
7583 }
7584 }
7585 }
7586 }
7587 else
7588 no_tls_get_addr_opt = TRUE;
7589 }
7590 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7591 return _bfd_elf_tls_setup (info->output_bfd, info);
7592 }
7593
7594 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7595 HASH1 or HASH2. */
7596
7597 static bfd_boolean
7598 branch_reloc_hash_match (const bfd *ibfd,
7599 const Elf_Internal_Rela *rel,
7600 const struct ppc_link_hash_entry *hash1,
7601 const struct ppc_link_hash_entry *hash2)
7602 {
7603 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7604 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7605 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7606
7607 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7608 {
7609 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7610 struct elf_link_hash_entry *h;
7611
7612 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7613 h = elf_follow_link (h);
7614 if (h == &hash1->elf || h == &hash2->elf)
7615 return TRUE;
7616 }
7617 return FALSE;
7618 }
7619
7620 /* Run through all the TLS relocs looking for optimization
7621 opportunities. The linker has been hacked (see ppc64elf.em) to do
7622 a preliminary section layout so that we know the TLS segment
7623 offsets. We can't optimize earlier because some optimizations need
7624 to know the tp offset, and we need to optimize before allocating
7625 dynamic relocations. */
7626
7627 bfd_boolean
7628 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7629 {
7630 bfd *ibfd;
7631 asection *sec;
7632 struct ppc_link_hash_table *htab;
7633 unsigned char *toc_ref;
7634 int pass;
7635
7636 if (info->relocatable || !info->executable)
7637 return TRUE;
7638
7639 htab = ppc_hash_table (info);
7640 if (htab == NULL)
7641 return FALSE;
7642
7643 /* Make two passes over the relocs. On the first pass, mark toc
7644 entries involved with tls relocs, and check that tls relocs
7645 involved in setting up a tls_get_addr call are indeed followed by
7646 such a call. If they are not, we can't do any tls optimization.
7647 On the second pass twiddle tls_mask flags to notify
7648 relocate_section that optimization can be done, and adjust got
7649 and plt refcounts. */
7650 toc_ref = NULL;
7651 for (pass = 0; pass < 2; ++pass)
7652 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7653 {
7654 Elf_Internal_Sym *locsyms = NULL;
7655 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7656
7657 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7658 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7659 {
7660 Elf_Internal_Rela *relstart, *rel, *relend;
7661 bfd_boolean found_tls_get_addr_arg = 0;
7662
7663 /* Read the relocations. */
7664 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7665 info->keep_memory);
7666 if (relstart == NULL)
7667 return FALSE;
7668
7669 relend = relstart + sec->reloc_count;
7670 for (rel = relstart; rel < relend; rel++)
7671 {
7672 enum elf_ppc64_reloc_type r_type;
7673 unsigned long r_symndx;
7674 struct elf_link_hash_entry *h;
7675 Elf_Internal_Sym *sym;
7676 asection *sym_sec;
7677 unsigned char *tls_mask;
7678 unsigned char tls_set, tls_clear, tls_type = 0;
7679 bfd_vma value;
7680 bfd_boolean ok_tprel, is_local;
7681 long toc_ref_index = 0;
7682 int expecting_tls_get_addr = 0;
7683 bfd_boolean ret = FALSE;
7684
7685 r_symndx = ELF64_R_SYM (rel->r_info);
7686 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7687 r_symndx, ibfd))
7688 {
7689 err_free_rel:
7690 if (elf_section_data (sec)->relocs != relstart)
7691 free (relstart);
7692 if (toc_ref != NULL)
7693 free (toc_ref);
7694 if (locsyms != NULL
7695 && (elf_symtab_hdr (ibfd).contents
7696 != (unsigned char *) locsyms))
7697 free (locsyms);
7698 return ret;
7699 }
7700
7701 if (h != NULL)
7702 {
7703 if (h->root.type == bfd_link_hash_defined
7704 || h->root.type == bfd_link_hash_defweak)
7705 value = h->root.u.def.value;
7706 else if (h->root.type == bfd_link_hash_undefweak)
7707 value = 0;
7708 else
7709 {
7710 found_tls_get_addr_arg = 0;
7711 continue;
7712 }
7713 }
7714 else
7715 /* Symbols referenced by TLS relocs must be of type
7716 STT_TLS. So no need for .opd local sym adjust. */
7717 value = sym->st_value;
7718
7719 ok_tprel = FALSE;
7720 is_local = FALSE;
7721 if (h == NULL
7722 || !h->def_dynamic)
7723 {
7724 is_local = TRUE;
7725 if (h != NULL
7726 && h->root.type == bfd_link_hash_undefweak)
7727 ok_tprel = TRUE;
7728 else
7729 {
7730 value += sym_sec->output_offset;
7731 value += sym_sec->output_section->vma;
7732 value -= htab->elf.tls_sec->vma;
7733 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7734 < (bfd_vma) 1 << 32);
7735 }
7736 }
7737
7738 r_type = ELF64_R_TYPE (rel->r_info);
7739 /* If this section has old-style __tls_get_addr calls
7740 without marker relocs, then check that each
7741 __tls_get_addr call reloc is preceded by a reloc
7742 that conceivably belongs to the __tls_get_addr arg
7743 setup insn. If we don't find matching arg setup
7744 relocs, don't do any tls optimization. */
7745 if (pass == 0
7746 && sec->has_tls_get_addr_call
7747 && h != NULL
7748 && (h == &htab->tls_get_addr->elf
7749 || h == &htab->tls_get_addr_fd->elf)
7750 && !found_tls_get_addr_arg
7751 && is_branch_reloc (r_type))
7752 {
7753 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7754 "TLS optimization disabled\n"),
7755 ibfd, sec, rel->r_offset);
7756 ret = TRUE;
7757 goto err_free_rel;
7758 }
7759
7760 found_tls_get_addr_arg = 0;
7761 switch (r_type)
7762 {
7763 case R_PPC64_GOT_TLSLD16:
7764 case R_PPC64_GOT_TLSLD16_LO:
7765 expecting_tls_get_addr = 1;
7766 found_tls_get_addr_arg = 1;
7767 /* Fall thru */
7768
7769 case R_PPC64_GOT_TLSLD16_HI:
7770 case R_PPC64_GOT_TLSLD16_HA:
7771 /* These relocs should never be against a symbol
7772 defined in a shared lib. Leave them alone if
7773 that turns out to be the case. */
7774 if (!is_local)
7775 continue;
7776
7777 /* LD -> LE */
7778 tls_set = 0;
7779 tls_clear = TLS_LD;
7780 tls_type = TLS_TLS | TLS_LD;
7781 break;
7782
7783 case R_PPC64_GOT_TLSGD16:
7784 case R_PPC64_GOT_TLSGD16_LO:
7785 expecting_tls_get_addr = 1;
7786 found_tls_get_addr_arg = 1;
7787 /* Fall thru */
7788
7789 case R_PPC64_GOT_TLSGD16_HI:
7790 case R_PPC64_GOT_TLSGD16_HA:
7791 if (ok_tprel)
7792 /* GD -> LE */
7793 tls_set = 0;
7794 else
7795 /* GD -> IE */
7796 tls_set = TLS_TLS | TLS_TPRELGD;
7797 tls_clear = TLS_GD;
7798 tls_type = TLS_TLS | TLS_GD;
7799 break;
7800
7801 case R_PPC64_GOT_TPREL16_DS:
7802 case R_PPC64_GOT_TPREL16_LO_DS:
7803 case R_PPC64_GOT_TPREL16_HI:
7804 case R_PPC64_GOT_TPREL16_HA:
7805 if (ok_tprel)
7806 {
7807 /* IE -> LE */
7808 tls_set = 0;
7809 tls_clear = TLS_TPREL;
7810 tls_type = TLS_TLS | TLS_TPREL;
7811 break;
7812 }
7813 continue;
7814
7815 case R_PPC64_TLSGD:
7816 case R_PPC64_TLSLD:
7817 found_tls_get_addr_arg = 1;
7818 /* Fall thru */
7819
7820 case R_PPC64_TLS:
7821 case R_PPC64_TOC16:
7822 case R_PPC64_TOC16_LO:
7823 if (sym_sec == NULL || sym_sec != toc)
7824 continue;
7825
7826 /* Mark this toc entry as referenced by a TLS
7827 code sequence. We can do that now in the
7828 case of R_PPC64_TLS, and after checking for
7829 tls_get_addr for the TOC16 relocs. */
7830 if (toc_ref == NULL)
7831 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7832 if (toc_ref == NULL)
7833 goto err_free_rel;
7834
7835 if (h != NULL)
7836 value = h->root.u.def.value;
7837 else
7838 value = sym->st_value;
7839 value += rel->r_addend;
7840 BFD_ASSERT (value < toc->size && value % 8 == 0);
7841 toc_ref_index = (value + toc->output_offset) / 8;
7842 if (r_type == R_PPC64_TLS
7843 || r_type == R_PPC64_TLSGD
7844 || r_type == R_PPC64_TLSLD)
7845 {
7846 toc_ref[toc_ref_index] = 1;
7847 continue;
7848 }
7849
7850 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7851 continue;
7852
7853 tls_set = 0;
7854 tls_clear = 0;
7855 expecting_tls_get_addr = 2;
7856 break;
7857
7858 case R_PPC64_TPREL64:
7859 if (pass == 0
7860 || sec != toc
7861 || toc_ref == NULL
7862 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7863 continue;
7864 if (ok_tprel)
7865 {
7866 /* IE -> LE */
7867 tls_set = TLS_EXPLICIT;
7868 tls_clear = TLS_TPREL;
7869 break;
7870 }
7871 continue;
7872
7873 case R_PPC64_DTPMOD64:
7874 if (pass == 0
7875 || sec != toc
7876 || toc_ref == NULL
7877 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7878 continue;
7879 if (rel + 1 < relend
7880 && (rel[1].r_info
7881 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7882 && rel[1].r_offset == rel->r_offset + 8)
7883 {
7884 if (ok_tprel)
7885 /* GD -> LE */
7886 tls_set = TLS_EXPLICIT | TLS_GD;
7887 else
7888 /* GD -> IE */
7889 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7890 tls_clear = TLS_GD;
7891 }
7892 else
7893 {
7894 if (!is_local)
7895 continue;
7896
7897 /* LD -> LE */
7898 tls_set = TLS_EXPLICIT;
7899 tls_clear = TLS_LD;
7900 }
7901 break;
7902
7903 default:
7904 continue;
7905 }
7906
7907 if (pass == 0)
7908 {
7909 if (!expecting_tls_get_addr
7910 || !sec->has_tls_get_addr_call)
7911 continue;
7912
7913 if (rel + 1 < relend
7914 && branch_reloc_hash_match (ibfd, rel + 1,
7915 htab->tls_get_addr,
7916 htab->tls_get_addr_fd))
7917 {
7918 if (expecting_tls_get_addr == 2)
7919 {
7920 /* Check for toc tls entries. */
7921 unsigned char *toc_tls;
7922 int retval;
7923
7924 retval = get_tls_mask (&toc_tls, NULL, NULL,
7925 &locsyms,
7926 rel, ibfd);
7927 if (retval == 0)
7928 goto err_free_rel;
7929 if (toc_tls != NULL)
7930 {
7931 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
7932 found_tls_get_addr_arg = 1;
7933 if (retval > 1)
7934 toc_ref[toc_ref_index] = 1;
7935 }
7936 }
7937 continue;
7938 }
7939
7940 if (expecting_tls_get_addr != 1)
7941 continue;
7942
7943 /* Uh oh, we didn't find the expected call. We
7944 could just mark this symbol to exclude it
7945 from tls optimization but it's safer to skip
7946 the entire optimization. */
7947 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
7948 "TLS optimization disabled\n"),
7949 ibfd, sec, rel->r_offset);
7950 ret = TRUE;
7951 goto err_free_rel;
7952 }
7953
7954 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7955 {
7956 struct plt_entry *ent;
7957 for (ent = htab->tls_get_addr->elf.plt.plist;
7958 ent != NULL;
7959 ent = ent->next)
7960 if (ent->addend == 0)
7961 {
7962 if (ent->plt.refcount > 0)
7963 {
7964 ent->plt.refcount -= 1;
7965 expecting_tls_get_addr = 0;
7966 }
7967 break;
7968 }
7969 }
7970
7971 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7972 {
7973 struct plt_entry *ent;
7974 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7975 ent != NULL;
7976 ent = ent->next)
7977 if (ent->addend == 0)
7978 {
7979 if (ent->plt.refcount > 0)
7980 ent->plt.refcount -= 1;
7981 break;
7982 }
7983 }
7984
7985 if (tls_clear == 0)
7986 continue;
7987
7988 if ((tls_set & TLS_EXPLICIT) == 0)
7989 {
7990 struct got_entry *ent;
7991
7992 /* Adjust got entry for this reloc. */
7993 if (h != NULL)
7994 ent = h->got.glist;
7995 else
7996 ent = elf_local_got_ents (ibfd)[r_symndx];
7997
7998 for (; ent != NULL; ent = ent->next)
7999 if (ent->addend == rel->r_addend
8000 && ent->owner == ibfd
8001 && ent->tls_type == tls_type)
8002 break;
8003 if (ent == NULL)
8004 abort ();
8005
8006 if (tls_set == 0)
8007 {
8008 /* We managed to get rid of a got entry. */
8009 if (ent->got.refcount > 0)
8010 ent->got.refcount -= 1;
8011 }
8012 }
8013 else
8014 {
8015 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8016 we'll lose one or two dyn relocs. */
8017 if (!dec_dynrel_count (rel->r_info, sec, info,
8018 NULL, h, sym_sec))
8019 return FALSE;
8020
8021 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8022 {
8023 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8024 NULL, h, sym_sec))
8025 return FALSE;
8026 }
8027 }
8028
8029 *tls_mask |= tls_set;
8030 *tls_mask &= ~tls_clear;
8031 }
8032
8033 if (elf_section_data (sec)->relocs != relstart)
8034 free (relstart);
8035 }
8036
8037 if (locsyms != NULL
8038 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8039 {
8040 if (!info->keep_memory)
8041 free (locsyms);
8042 else
8043 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8044 }
8045 }
8046
8047 if (toc_ref != NULL)
8048 free (toc_ref);
8049 return TRUE;
8050 }
8051
8052 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8053 the values of any global symbols in a toc section that has been
8054 edited. Globals in toc sections should be a rarity, so this function
8055 sets a flag if any are found in toc sections other than the one just
8056 edited, so that futher hash table traversals can be avoided. */
8057
8058 struct adjust_toc_info
8059 {
8060 asection *toc;
8061 unsigned long *skip;
8062 bfd_boolean global_toc_syms;
8063 };
8064
8065 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8066
8067 static bfd_boolean
8068 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8069 {
8070 struct ppc_link_hash_entry *eh;
8071 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8072 unsigned long i;
8073
8074 if (h->root.type != bfd_link_hash_defined
8075 && h->root.type != bfd_link_hash_defweak)
8076 return TRUE;
8077
8078 eh = (struct ppc_link_hash_entry *) h;
8079 if (eh->adjust_done)
8080 return TRUE;
8081
8082 if (eh->elf.root.u.def.section == toc_inf->toc)
8083 {
8084 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8085 i = toc_inf->toc->rawsize >> 3;
8086 else
8087 i = eh->elf.root.u.def.value >> 3;
8088
8089 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8090 {
8091 (*_bfd_error_handler)
8092 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8093 do
8094 ++i;
8095 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8096 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8097 }
8098
8099 eh->elf.root.u.def.value -= toc_inf->skip[i];
8100 eh->adjust_done = 1;
8101 }
8102 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8103 toc_inf->global_toc_syms = TRUE;
8104
8105 return TRUE;
8106 }
8107
8108 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8109
8110 static bfd_boolean
8111 ok_lo_toc_insn (unsigned int insn)
8112 {
8113 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8114 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8115 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8116 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8117 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8118 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8119 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8120 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8121 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8122 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8123 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8124 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8125 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8126 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8127 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8128 && (insn & 3) != 1)
8129 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8130 && ((insn & 3) == 0 || (insn & 3) == 3))
8131 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8132 }
8133
8134 /* Examine all relocs referencing .toc sections in order to remove
8135 unused .toc entries. */
8136
8137 bfd_boolean
8138 ppc64_elf_edit_toc (struct bfd_link_info *info)
8139 {
8140 bfd *ibfd;
8141 struct adjust_toc_info toc_inf;
8142 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8143
8144 htab->do_toc_opt = 1;
8145 toc_inf.global_toc_syms = TRUE;
8146 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8147 {
8148 asection *toc, *sec;
8149 Elf_Internal_Shdr *symtab_hdr;
8150 Elf_Internal_Sym *local_syms;
8151 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8152 unsigned long *skip, *drop;
8153 unsigned char *used;
8154 unsigned char *keep, last, some_unused;
8155
8156 if (!is_ppc64_elf (ibfd))
8157 continue;
8158
8159 toc = bfd_get_section_by_name (ibfd, ".toc");
8160 if (toc == NULL
8161 || toc->size == 0
8162 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8163 || discarded_section (toc))
8164 continue;
8165
8166 toc_relocs = NULL;
8167 local_syms = NULL;
8168 symtab_hdr = &elf_symtab_hdr (ibfd);
8169
8170 /* Look at sections dropped from the final link. */
8171 skip = NULL;
8172 relstart = NULL;
8173 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8174 {
8175 if (sec->reloc_count == 0
8176 || !discarded_section (sec)
8177 || get_opd_info (sec)
8178 || (sec->flags & SEC_ALLOC) == 0
8179 || (sec->flags & SEC_DEBUGGING) != 0)
8180 continue;
8181
8182 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8183 if (relstart == NULL)
8184 goto error_ret;
8185
8186 /* Run through the relocs to see which toc entries might be
8187 unused. */
8188 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8189 {
8190 enum elf_ppc64_reloc_type r_type;
8191 unsigned long r_symndx;
8192 asection *sym_sec;
8193 struct elf_link_hash_entry *h;
8194 Elf_Internal_Sym *sym;
8195 bfd_vma val;
8196
8197 r_type = ELF64_R_TYPE (rel->r_info);
8198 switch (r_type)
8199 {
8200 default:
8201 continue;
8202
8203 case R_PPC64_TOC16:
8204 case R_PPC64_TOC16_LO:
8205 case R_PPC64_TOC16_HI:
8206 case R_PPC64_TOC16_HA:
8207 case R_PPC64_TOC16_DS:
8208 case R_PPC64_TOC16_LO_DS:
8209 break;
8210 }
8211
8212 r_symndx = ELF64_R_SYM (rel->r_info);
8213 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8214 r_symndx, ibfd))
8215 goto error_ret;
8216
8217 if (sym_sec != toc)
8218 continue;
8219
8220 if (h != NULL)
8221 val = h->root.u.def.value;
8222 else
8223 val = sym->st_value;
8224 val += rel->r_addend;
8225
8226 if (val >= toc->size)
8227 continue;
8228
8229 /* Anything in the toc ought to be aligned to 8 bytes.
8230 If not, don't mark as unused. */
8231 if (val & 7)
8232 continue;
8233
8234 if (skip == NULL)
8235 {
8236 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8237 if (skip == NULL)
8238 goto error_ret;
8239 }
8240
8241 skip[val >> 3] = ref_from_discarded;
8242 }
8243
8244 if (elf_section_data (sec)->relocs != relstart)
8245 free (relstart);
8246 }
8247
8248 /* For largetoc loads of address constants, we can convert
8249 . addis rx,2,addr@got@ha
8250 . ld ry,addr@got@l(rx)
8251 to
8252 . addis rx,2,addr@toc@ha
8253 . addi ry,rx,addr@toc@l
8254 when addr is within 2G of the toc pointer. This then means
8255 that the word storing "addr" in the toc is no longer needed. */
8256
8257 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8258 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8259 && toc->reloc_count != 0)
8260 {
8261 /* Read toc relocs. */
8262 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8263 info->keep_memory);
8264 if (toc_relocs == NULL)
8265 goto error_ret;
8266
8267 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8268 {
8269 enum elf_ppc64_reloc_type r_type;
8270 unsigned long r_symndx;
8271 asection *sym_sec;
8272 struct elf_link_hash_entry *h;
8273 Elf_Internal_Sym *sym;
8274 bfd_vma val, addr;
8275
8276 r_type = ELF64_R_TYPE (rel->r_info);
8277 if (r_type != R_PPC64_ADDR64)
8278 continue;
8279
8280 r_symndx = ELF64_R_SYM (rel->r_info);
8281 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8282 r_symndx, ibfd))
8283 goto error_ret;
8284
8285 if (sym_sec == NULL
8286 || discarded_section (sym_sec))
8287 continue;
8288
8289 if (!SYMBOL_CALLS_LOCAL (info, h))
8290 continue;
8291
8292 if (h != NULL)
8293 {
8294 if (h->type == STT_GNU_IFUNC)
8295 continue;
8296 val = h->root.u.def.value;
8297 }
8298 else
8299 {
8300 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8301 continue;
8302 val = sym->st_value;
8303 }
8304 val += rel->r_addend;
8305 val += sym_sec->output_section->vma + sym_sec->output_offset;
8306
8307 /* We don't yet know the exact toc pointer value, but we
8308 know it will be somewhere in the toc section. Don't
8309 optimize if the difference from any possible toc
8310 pointer is outside [ff..f80008000, 7fff7fff]. */
8311 addr = toc->output_section->vma + TOC_BASE_OFF;
8312 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8313 continue;
8314
8315 addr = toc->output_section->vma + toc->output_section->rawsize;
8316 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8317 continue;
8318
8319 if (skip == NULL)
8320 {
8321 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8322 if (skip == NULL)
8323 goto error_ret;
8324 }
8325
8326 skip[rel->r_offset >> 3]
8327 |= can_optimize | ((rel - toc_relocs) << 2);
8328 }
8329 }
8330
8331 if (skip == NULL)
8332 continue;
8333
8334 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8335 if (used == NULL)
8336 {
8337 error_ret:
8338 if (local_syms != NULL
8339 && symtab_hdr->contents != (unsigned char *) local_syms)
8340 free (local_syms);
8341 if (sec != NULL
8342 && relstart != NULL
8343 && elf_section_data (sec)->relocs != relstart)
8344 free (relstart);
8345 if (toc_relocs != NULL
8346 && elf_section_data (toc)->relocs != toc_relocs)
8347 free (toc_relocs);
8348 if (skip != NULL)
8349 free (skip);
8350 return FALSE;
8351 }
8352
8353 /* Now check all kept sections that might reference the toc.
8354 Check the toc itself last. */
8355 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8356 : ibfd->sections);
8357 sec != NULL;
8358 sec = (sec == toc ? NULL
8359 : sec->next == NULL ? toc
8360 : sec->next == toc && toc->next ? toc->next
8361 : sec->next))
8362 {
8363 int repeat;
8364
8365 if (sec->reloc_count == 0
8366 || discarded_section (sec)
8367 || get_opd_info (sec)
8368 || (sec->flags & SEC_ALLOC) == 0
8369 || (sec->flags & SEC_DEBUGGING) != 0)
8370 continue;
8371
8372 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8373 info->keep_memory);
8374 if (relstart == NULL)
8375 goto error_ret;
8376
8377 /* Mark toc entries referenced as used. */
8378 do
8379 {
8380 repeat = 0;
8381 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8382 {
8383 enum elf_ppc64_reloc_type r_type;
8384 unsigned long r_symndx;
8385 asection *sym_sec;
8386 struct elf_link_hash_entry *h;
8387 Elf_Internal_Sym *sym;
8388 bfd_vma val;
8389 enum {no_check, check_lo, check_ha} insn_check;
8390
8391 r_type = ELF64_R_TYPE (rel->r_info);
8392 switch (r_type)
8393 {
8394 default:
8395 insn_check = no_check;
8396 break;
8397
8398 case R_PPC64_GOT_TLSLD16_HA:
8399 case R_PPC64_GOT_TLSGD16_HA:
8400 case R_PPC64_GOT_TPREL16_HA:
8401 case R_PPC64_GOT_DTPREL16_HA:
8402 case R_PPC64_GOT16_HA:
8403 case R_PPC64_TOC16_HA:
8404 insn_check = check_ha;
8405 break;
8406
8407 case R_PPC64_GOT_TLSLD16_LO:
8408 case R_PPC64_GOT_TLSGD16_LO:
8409 case R_PPC64_GOT_TPREL16_LO_DS:
8410 case R_PPC64_GOT_DTPREL16_LO_DS:
8411 case R_PPC64_GOT16_LO:
8412 case R_PPC64_GOT16_LO_DS:
8413 case R_PPC64_TOC16_LO:
8414 case R_PPC64_TOC16_LO_DS:
8415 insn_check = check_lo;
8416 break;
8417 }
8418
8419 if (insn_check != no_check)
8420 {
8421 bfd_vma off = rel->r_offset & ~3;
8422 unsigned char buf[4];
8423 unsigned int insn;
8424
8425 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8426 {
8427 free (used);
8428 goto error_ret;
8429 }
8430 insn = bfd_get_32 (ibfd, buf);
8431 if (insn_check == check_lo
8432 ? !ok_lo_toc_insn (insn)
8433 : ((insn & ((0x3f << 26) | 0x1f << 16))
8434 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8435 {
8436 char str[12];
8437
8438 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8439 sprintf (str, "%#08x", insn);
8440 info->callbacks->einfo
8441 (_("%P: %H: toc optimization is not supported for"
8442 " %s instruction.\n"),
8443 ibfd, sec, rel->r_offset & ~3, str);
8444 }
8445 }
8446
8447 switch (r_type)
8448 {
8449 case R_PPC64_TOC16:
8450 case R_PPC64_TOC16_LO:
8451 case R_PPC64_TOC16_HI:
8452 case R_PPC64_TOC16_HA:
8453 case R_PPC64_TOC16_DS:
8454 case R_PPC64_TOC16_LO_DS:
8455 /* In case we're taking addresses of toc entries. */
8456 case R_PPC64_ADDR64:
8457 break;
8458
8459 default:
8460 continue;
8461 }
8462
8463 r_symndx = ELF64_R_SYM (rel->r_info);
8464 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8465 r_symndx, ibfd))
8466 {
8467 free (used);
8468 goto error_ret;
8469 }
8470
8471 if (sym_sec != toc)
8472 continue;
8473
8474 if (h != NULL)
8475 val = h->root.u.def.value;
8476 else
8477 val = sym->st_value;
8478 val += rel->r_addend;
8479
8480 if (val >= toc->size)
8481 continue;
8482
8483 if ((skip[val >> 3] & can_optimize) != 0)
8484 {
8485 bfd_vma off;
8486 unsigned char opc;
8487
8488 switch (r_type)
8489 {
8490 case R_PPC64_TOC16_HA:
8491 break;
8492
8493 case R_PPC64_TOC16_LO_DS:
8494 off = rel->r_offset;
8495 off += (bfd_big_endian (ibfd) ? -2 : 3);
8496 if (!bfd_get_section_contents (ibfd, sec, &opc,
8497 off, 1))
8498 {
8499 free (used);
8500 goto error_ret;
8501 }
8502 if ((opc & (0x3f << 2)) == (58u << 2))
8503 break;
8504 /* Fall thru */
8505
8506 default:
8507 /* Wrong sort of reloc, or not a ld. We may
8508 as well clear ref_from_discarded too. */
8509 skip[val >> 3] = 0;
8510 }
8511 }
8512
8513 if (sec != toc)
8514 used[val >> 3] = 1;
8515 /* For the toc section, we only mark as used if this
8516 entry itself isn't unused. */
8517 else if ((used[rel->r_offset >> 3]
8518 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8519 && !used[val >> 3])
8520 {
8521 /* Do all the relocs again, to catch reference
8522 chains. */
8523 repeat = 1;
8524 used[val >> 3] = 1;
8525 }
8526 }
8527 }
8528 while (repeat);
8529
8530 if (elf_section_data (sec)->relocs != relstart)
8531 free (relstart);
8532 }
8533
8534 /* Merge the used and skip arrays. Assume that TOC
8535 doublewords not appearing as either used or unused belong
8536 to to an entry more than one doubleword in size. */
8537 for (drop = skip, keep = used, last = 0, some_unused = 0;
8538 drop < skip + (toc->size + 7) / 8;
8539 ++drop, ++keep)
8540 {
8541 if (*keep)
8542 {
8543 *drop &= ~ref_from_discarded;
8544 if ((*drop & can_optimize) != 0)
8545 some_unused = 1;
8546 last = 0;
8547 }
8548 else if ((*drop & ref_from_discarded) != 0)
8549 {
8550 some_unused = 1;
8551 last = ref_from_discarded;
8552 }
8553 else
8554 *drop = last;
8555 }
8556
8557 free (used);
8558
8559 if (some_unused)
8560 {
8561 bfd_byte *contents, *src;
8562 unsigned long off;
8563 Elf_Internal_Sym *sym;
8564 bfd_boolean local_toc_syms = FALSE;
8565
8566 /* Shuffle the toc contents, and at the same time convert the
8567 skip array from booleans into offsets. */
8568 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8569 goto error_ret;
8570
8571 elf_section_data (toc)->this_hdr.contents = contents;
8572
8573 for (src = contents, off = 0, drop = skip;
8574 src < contents + toc->size;
8575 src += 8, ++drop)
8576 {
8577 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8578 off += 8;
8579 else if (off != 0)
8580 {
8581 *drop = off;
8582 memcpy (src - off, src, 8);
8583 }
8584 }
8585 *drop = off;
8586 toc->rawsize = toc->size;
8587 toc->size = src - contents - off;
8588
8589 /* Adjust addends for relocs against the toc section sym,
8590 and optimize any accesses we can. */
8591 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8592 {
8593 if (sec->reloc_count == 0
8594 || discarded_section (sec))
8595 continue;
8596
8597 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8598 info->keep_memory);
8599 if (relstart == NULL)
8600 goto error_ret;
8601
8602 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8603 {
8604 enum elf_ppc64_reloc_type r_type;
8605 unsigned long r_symndx;
8606 asection *sym_sec;
8607 struct elf_link_hash_entry *h;
8608 bfd_vma val;
8609
8610 r_type = ELF64_R_TYPE (rel->r_info);
8611 switch (r_type)
8612 {
8613 default:
8614 continue;
8615
8616 case R_PPC64_TOC16:
8617 case R_PPC64_TOC16_LO:
8618 case R_PPC64_TOC16_HI:
8619 case R_PPC64_TOC16_HA:
8620 case R_PPC64_TOC16_DS:
8621 case R_PPC64_TOC16_LO_DS:
8622 case R_PPC64_ADDR64:
8623 break;
8624 }
8625
8626 r_symndx = ELF64_R_SYM (rel->r_info);
8627 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8628 r_symndx, ibfd))
8629 goto error_ret;
8630
8631 if (sym_sec != toc)
8632 continue;
8633
8634 if (h != NULL)
8635 val = h->root.u.def.value;
8636 else
8637 {
8638 val = sym->st_value;
8639 if (val != 0)
8640 local_toc_syms = TRUE;
8641 }
8642
8643 val += rel->r_addend;
8644
8645 if (val > toc->rawsize)
8646 val = toc->rawsize;
8647 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8648 continue;
8649 else if ((skip[val >> 3] & can_optimize) != 0)
8650 {
8651 Elf_Internal_Rela *tocrel
8652 = toc_relocs + (skip[val >> 3] >> 2);
8653 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8654
8655 switch (r_type)
8656 {
8657 case R_PPC64_TOC16_HA:
8658 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8659 break;
8660
8661 case R_PPC64_TOC16_LO_DS:
8662 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8663 break;
8664
8665 default:
8666 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8667 ppc_howto_init ();
8668 info->callbacks->einfo
8669 (_("%P: %H: %s references "
8670 "optimized away TOC entry\n"),
8671 ibfd, sec, rel->r_offset,
8672 ppc64_elf_howto_table[r_type]->name);
8673 bfd_set_error (bfd_error_bad_value);
8674 goto error_ret;
8675 }
8676 rel->r_addend = tocrel->r_addend;
8677 elf_section_data (sec)->relocs = relstart;
8678 continue;
8679 }
8680
8681 if (h != NULL || sym->st_value != 0)
8682 continue;
8683
8684 rel->r_addend -= skip[val >> 3];
8685 elf_section_data (sec)->relocs = relstart;
8686 }
8687
8688 if (elf_section_data (sec)->relocs != relstart)
8689 free (relstart);
8690 }
8691
8692 /* We shouldn't have local or global symbols defined in the TOC,
8693 but handle them anyway. */
8694 if (local_syms != NULL)
8695 for (sym = local_syms;
8696 sym < local_syms + symtab_hdr->sh_info;
8697 ++sym)
8698 if (sym->st_value != 0
8699 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8700 {
8701 unsigned long i;
8702
8703 if (sym->st_value > toc->rawsize)
8704 i = toc->rawsize >> 3;
8705 else
8706 i = sym->st_value >> 3;
8707
8708 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8709 {
8710 if (local_toc_syms)
8711 (*_bfd_error_handler)
8712 (_("%s defined on removed toc entry"),
8713 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8714 do
8715 ++i;
8716 while ((skip[i] & (ref_from_discarded | can_optimize)));
8717 sym->st_value = (bfd_vma) i << 3;
8718 }
8719
8720 sym->st_value -= skip[i];
8721 symtab_hdr->contents = (unsigned char *) local_syms;
8722 }
8723
8724 /* Adjust any global syms defined in this toc input section. */
8725 if (toc_inf.global_toc_syms)
8726 {
8727 toc_inf.toc = toc;
8728 toc_inf.skip = skip;
8729 toc_inf.global_toc_syms = FALSE;
8730 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8731 &toc_inf);
8732 }
8733
8734 if (toc->reloc_count != 0)
8735 {
8736 Elf_Internal_Shdr *rel_hdr;
8737 Elf_Internal_Rela *wrel;
8738 bfd_size_type sz;
8739
8740 /* Remove unused toc relocs, and adjust those we keep. */
8741 if (toc_relocs == NULL)
8742 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8743 info->keep_memory);
8744 if (toc_relocs == NULL)
8745 goto error_ret;
8746
8747 wrel = toc_relocs;
8748 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8749 if ((skip[rel->r_offset >> 3]
8750 & (ref_from_discarded | can_optimize)) == 0)
8751 {
8752 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8753 wrel->r_info = rel->r_info;
8754 wrel->r_addend = rel->r_addend;
8755 ++wrel;
8756 }
8757 else if (!dec_dynrel_count (rel->r_info, toc, info,
8758 &local_syms, NULL, NULL))
8759 goto error_ret;
8760
8761 elf_section_data (toc)->relocs = toc_relocs;
8762 toc->reloc_count = wrel - toc_relocs;
8763 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8764 sz = rel_hdr->sh_entsize;
8765 rel_hdr->sh_size = toc->reloc_count * sz;
8766 }
8767 }
8768 else if (toc_relocs != NULL
8769 && elf_section_data (toc)->relocs != toc_relocs)
8770 free (toc_relocs);
8771
8772 if (local_syms != NULL
8773 && symtab_hdr->contents != (unsigned char *) local_syms)
8774 {
8775 if (!info->keep_memory)
8776 free (local_syms);
8777 else
8778 symtab_hdr->contents = (unsigned char *) local_syms;
8779 }
8780 free (skip);
8781 }
8782
8783 return TRUE;
8784 }
8785
8786 /* Return true iff input section I references the TOC using
8787 instructions limited to +/-32k offsets. */
8788
8789 bfd_boolean
8790 ppc64_elf_has_small_toc_reloc (asection *i)
8791 {
8792 return (is_ppc64_elf (i->owner)
8793 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8794 }
8795
8796 /* Allocate space for one GOT entry. */
8797
8798 static void
8799 allocate_got (struct elf_link_hash_entry *h,
8800 struct bfd_link_info *info,
8801 struct got_entry *gent)
8802 {
8803 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8804 bfd_boolean dyn;
8805 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8806 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8807 ? 16 : 8);
8808 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8809 ? 2 : 1) * sizeof (Elf64_External_Rela);
8810 asection *got = ppc64_elf_tdata (gent->owner)->got;
8811
8812 gent->got.offset = got->size;
8813 got->size += entsize;
8814
8815 dyn = htab->elf.dynamic_sections_created;
8816 if ((info->shared
8817 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8818 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8819 || h->root.type != bfd_link_hash_undefweak))
8820 {
8821 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8822 relgot->size += rentsize;
8823 }
8824 else if (h->type == STT_GNU_IFUNC)
8825 {
8826 asection *relgot = htab->reliplt;
8827 relgot->size += rentsize;
8828 htab->got_reli_size += rentsize;
8829 }
8830 }
8831
8832 /* This function merges got entries in the same toc group. */
8833
8834 static void
8835 merge_got_entries (struct got_entry **pent)
8836 {
8837 struct got_entry *ent, *ent2;
8838
8839 for (ent = *pent; ent != NULL; ent = ent->next)
8840 if (!ent->is_indirect)
8841 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8842 if (!ent2->is_indirect
8843 && ent2->addend == ent->addend
8844 && ent2->tls_type == ent->tls_type
8845 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8846 {
8847 ent2->is_indirect = TRUE;
8848 ent2->got.ent = ent;
8849 }
8850 }
8851
8852 /* Allocate space in .plt, .got and associated reloc sections for
8853 dynamic relocs. */
8854
8855 static bfd_boolean
8856 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8857 {
8858 struct bfd_link_info *info;
8859 struct ppc_link_hash_table *htab;
8860 asection *s;
8861 struct ppc_link_hash_entry *eh;
8862 struct elf_dyn_relocs *p;
8863 struct got_entry **pgent, *gent;
8864
8865 if (h->root.type == bfd_link_hash_indirect)
8866 return TRUE;
8867
8868 info = (struct bfd_link_info *) inf;
8869 htab = ppc_hash_table (info);
8870 if (htab == NULL)
8871 return FALSE;
8872
8873 if ((htab->elf.dynamic_sections_created
8874 && h->dynindx != -1
8875 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8876 || h->type == STT_GNU_IFUNC)
8877 {
8878 struct plt_entry *pent;
8879 bfd_boolean doneone = FALSE;
8880 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8881 if (pent->plt.refcount > 0)
8882 {
8883 if (!htab->elf.dynamic_sections_created
8884 || h->dynindx == -1)
8885 {
8886 s = htab->iplt;
8887 pent->plt.offset = s->size;
8888 s->size += PLT_ENTRY_SIZE;
8889 s = htab->reliplt;
8890 }
8891 else
8892 {
8893 /* If this is the first .plt entry, make room for the special
8894 first entry. */
8895 s = htab->plt;
8896 if (s->size == 0)
8897 s->size += PLT_INITIAL_ENTRY_SIZE;
8898
8899 pent->plt.offset = s->size;
8900
8901 /* Make room for this entry. */
8902 s->size += PLT_ENTRY_SIZE;
8903
8904 /* Make room for the .glink code. */
8905 s = htab->glink;
8906 if (s->size == 0)
8907 s->size += GLINK_CALL_STUB_SIZE;
8908 /* We need bigger stubs past index 32767. */
8909 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8910 s->size += 4;
8911 s->size += 2*4;
8912
8913 /* We also need to make an entry in the .rela.plt section. */
8914 s = htab->relplt;
8915 }
8916 s->size += sizeof (Elf64_External_Rela);
8917 doneone = TRUE;
8918 }
8919 else
8920 pent->plt.offset = (bfd_vma) -1;
8921 if (!doneone)
8922 {
8923 h->plt.plist = NULL;
8924 h->needs_plt = 0;
8925 }
8926 }
8927 else
8928 {
8929 h->plt.plist = NULL;
8930 h->needs_plt = 0;
8931 }
8932
8933 eh = (struct ppc_link_hash_entry *) h;
8934 /* Run through the TLS GD got entries first if we're changing them
8935 to TPREL. */
8936 if ((eh->tls_mask & TLS_TPRELGD) != 0)
8937 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8938 if (gent->got.refcount > 0
8939 && (gent->tls_type & TLS_GD) != 0)
8940 {
8941 /* This was a GD entry that has been converted to TPREL. If
8942 there happens to be a TPREL entry we can use that one. */
8943 struct got_entry *ent;
8944 for (ent = h->got.glist; ent != NULL; ent = ent->next)
8945 if (ent->got.refcount > 0
8946 && (ent->tls_type & TLS_TPREL) != 0
8947 && ent->addend == gent->addend
8948 && ent->owner == gent->owner)
8949 {
8950 gent->got.refcount = 0;
8951 break;
8952 }
8953
8954 /* If not, then we'll be using our own TPREL entry. */
8955 if (gent->got.refcount != 0)
8956 gent->tls_type = TLS_TLS | TLS_TPREL;
8957 }
8958
8959 /* Remove any list entry that won't generate a word in the GOT before
8960 we call merge_got_entries. Otherwise we risk merging to empty
8961 entries. */
8962 pgent = &h->got.glist;
8963 while ((gent = *pgent) != NULL)
8964 if (gent->got.refcount > 0)
8965 {
8966 if ((gent->tls_type & TLS_LD) != 0
8967 && !h->def_dynamic)
8968 {
8969 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
8970 *pgent = gent->next;
8971 }
8972 else
8973 pgent = &gent->next;
8974 }
8975 else
8976 *pgent = gent->next;
8977
8978 if (!htab->do_multi_toc)
8979 merge_got_entries (&h->got.glist);
8980
8981 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8982 if (!gent->is_indirect)
8983 {
8984 /* Make sure this symbol is output as a dynamic symbol.
8985 Undefined weak syms won't yet be marked as dynamic,
8986 nor will all TLS symbols. */
8987 if (h->dynindx == -1
8988 && !h->forced_local
8989 && h->type != STT_GNU_IFUNC
8990 && htab->elf.dynamic_sections_created)
8991 {
8992 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8993 return FALSE;
8994 }
8995
8996 if (!is_ppc64_elf (gent->owner))
8997 abort ();
8998
8999 allocate_got (h, info, gent);
9000 }
9001
9002 if (eh->dyn_relocs == NULL
9003 || (!htab->elf.dynamic_sections_created
9004 && h->type != STT_GNU_IFUNC))
9005 return TRUE;
9006
9007 /* In the shared -Bsymbolic case, discard space allocated for
9008 dynamic pc-relative relocs against symbols which turn out to be
9009 defined in regular objects. For the normal shared case, discard
9010 space for relocs that have become local due to symbol visibility
9011 changes. */
9012
9013 if (info->shared)
9014 {
9015 /* Relocs that use pc_count are those that appear on a call insn,
9016 or certain REL relocs (see must_be_dyn_reloc) that can be
9017 generated via assembly. We want calls to protected symbols to
9018 resolve directly to the function rather than going via the plt.
9019 If people want function pointer comparisons to work as expected
9020 then they should avoid writing weird assembly. */
9021 if (SYMBOL_CALLS_LOCAL (info, h))
9022 {
9023 struct elf_dyn_relocs **pp;
9024
9025 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9026 {
9027 p->count -= p->pc_count;
9028 p->pc_count = 0;
9029 if (p->count == 0)
9030 *pp = p->next;
9031 else
9032 pp = &p->next;
9033 }
9034 }
9035
9036 /* Also discard relocs on undefined weak syms with non-default
9037 visibility. */
9038 if (eh->dyn_relocs != NULL
9039 && h->root.type == bfd_link_hash_undefweak)
9040 {
9041 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9042 eh->dyn_relocs = NULL;
9043
9044 /* Make sure this symbol is output as a dynamic symbol.
9045 Undefined weak syms won't yet be marked as dynamic. */
9046 else if (h->dynindx == -1
9047 && !h->forced_local)
9048 {
9049 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9050 return FALSE;
9051 }
9052 }
9053 }
9054 else if (h->type == STT_GNU_IFUNC)
9055 {
9056 if (!h->non_got_ref)
9057 eh->dyn_relocs = NULL;
9058 }
9059 else if (ELIMINATE_COPY_RELOCS)
9060 {
9061 /* For the non-shared case, discard space for relocs against
9062 symbols which turn out to need copy relocs or are not
9063 dynamic. */
9064
9065 if (!h->non_got_ref
9066 && !h->def_regular)
9067 {
9068 /* Make sure this symbol is output as a dynamic symbol.
9069 Undefined weak syms won't yet be marked as dynamic. */
9070 if (h->dynindx == -1
9071 && !h->forced_local)
9072 {
9073 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9074 return FALSE;
9075 }
9076
9077 /* If that succeeded, we know we'll be keeping all the
9078 relocs. */
9079 if (h->dynindx != -1)
9080 goto keep;
9081 }
9082
9083 eh->dyn_relocs = NULL;
9084
9085 keep: ;
9086 }
9087
9088 /* Finally, allocate space. */
9089 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9090 {
9091 asection *sreloc = elf_section_data (p->sec)->sreloc;
9092 if (!htab->elf.dynamic_sections_created)
9093 sreloc = htab->reliplt;
9094 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9095 }
9096
9097 return TRUE;
9098 }
9099
9100 /* Find any dynamic relocs that apply to read-only sections. */
9101
9102 static bfd_boolean
9103 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9104 {
9105 struct ppc_link_hash_entry *eh;
9106 struct elf_dyn_relocs *p;
9107
9108 eh = (struct ppc_link_hash_entry *) h;
9109 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9110 {
9111 asection *s = p->sec->output_section;
9112
9113 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9114 {
9115 struct bfd_link_info *info = inf;
9116
9117 info->flags |= DF_TEXTREL;
9118
9119 /* Not an error, just cut short the traversal. */
9120 return FALSE;
9121 }
9122 }
9123 return TRUE;
9124 }
9125
9126 /* Set the sizes of the dynamic sections. */
9127
9128 static bfd_boolean
9129 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9130 struct bfd_link_info *info)
9131 {
9132 struct ppc_link_hash_table *htab;
9133 bfd *dynobj;
9134 asection *s;
9135 bfd_boolean relocs;
9136 bfd *ibfd;
9137 struct got_entry *first_tlsld;
9138
9139 htab = ppc_hash_table (info);
9140 if (htab == NULL)
9141 return FALSE;
9142
9143 dynobj = htab->elf.dynobj;
9144 if (dynobj == NULL)
9145 abort ();
9146
9147 if (htab->elf.dynamic_sections_created)
9148 {
9149 /* Set the contents of the .interp section to the interpreter. */
9150 if (info->executable)
9151 {
9152 s = bfd_get_linker_section (dynobj, ".interp");
9153 if (s == NULL)
9154 abort ();
9155 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9156 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9157 }
9158 }
9159
9160 /* Set up .got offsets for local syms, and space for local dynamic
9161 relocs. */
9162 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9163 {
9164 struct got_entry **lgot_ents;
9165 struct got_entry **end_lgot_ents;
9166 struct plt_entry **local_plt;
9167 struct plt_entry **end_local_plt;
9168 unsigned char *lgot_masks;
9169 bfd_size_type locsymcount;
9170 Elf_Internal_Shdr *symtab_hdr;
9171 asection *srel;
9172
9173 if (!is_ppc64_elf (ibfd))
9174 continue;
9175
9176 for (s = ibfd->sections; s != NULL; s = s->next)
9177 {
9178 struct elf_dyn_relocs *p;
9179
9180 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9181 {
9182 if (!bfd_is_abs_section (p->sec)
9183 && bfd_is_abs_section (p->sec->output_section))
9184 {
9185 /* Input section has been discarded, either because
9186 it is a copy of a linkonce section or due to
9187 linker script /DISCARD/, so we'll be discarding
9188 the relocs too. */
9189 }
9190 else if (p->count != 0)
9191 {
9192 srel = elf_section_data (p->sec)->sreloc;
9193 if (!htab->elf.dynamic_sections_created)
9194 srel = htab->reliplt;
9195 srel->size += p->count * sizeof (Elf64_External_Rela);
9196 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9197 info->flags |= DF_TEXTREL;
9198 }
9199 }
9200 }
9201
9202 lgot_ents = elf_local_got_ents (ibfd);
9203 if (!lgot_ents)
9204 continue;
9205
9206 symtab_hdr = &elf_symtab_hdr (ibfd);
9207 locsymcount = symtab_hdr->sh_info;
9208 end_lgot_ents = lgot_ents + locsymcount;
9209 local_plt = (struct plt_entry **) end_lgot_ents;
9210 end_local_plt = local_plt + locsymcount;
9211 lgot_masks = (unsigned char *) end_local_plt;
9212 s = ppc64_elf_tdata (ibfd)->got;
9213 srel = ppc64_elf_tdata (ibfd)->relgot;
9214 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9215 {
9216 struct got_entry **pent, *ent;
9217
9218 pent = lgot_ents;
9219 while ((ent = *pent) != NULL)
9220 if (ent->got.refcount > 0)
9221 {
9222 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9223 {
9224 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9225 *pent = ent->next;
9226 }
9227 else
9228 {
9229 unsigned int num = 1;
9230 ent->got.offset = s->size;
9231 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9232 num = 2;
9233 s->size += num * 8;
9234 if (info->shared)
9235 srel->size += num * sizeof (Elf64_External_Rela);
9236 else if ((*lgot_masks & PLT_IFUNC) != 0)
9237 {
9238 htab->reliplt->size
9239 += num * sizeof (Elf64_External_Rela);
9240 htab->got_reli_size
9241 += num * sizeof (Elf64_External_Rela);
9242 }
9243 pent = &ent->next;
9244 }
9245 }
9246 else
9247 *pent = ent->next;
9248 }
9249
9250 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9251 for (; local_plt < end_local_plt; ++local_plt)
9252 {
9253 struct plt_entry *ent;
9254
9255 for (ent = *local_plt; ent != NULL; ent = ent->next)
9256 if (ent->plt.refcount > 0)
9257 {
9258 s = htab->iplt;
9259 ent->plt.offset = s->size;
9260 s->size += PLT_ENTRY_SIZE;
9261
9262 htab->reliplt->size += sizeof (Elf64_External_Rela);
9263 }
9264 else
9265 ent->plt.offset = (bfd_vma) -1;
9266 }
9267 }
9268
9269 /* Allocate global sym .plt and .got entries, and space for global
9270 sym dynamic relocs. */
9271 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9272
9273 first_tlsld = NULL;
9274 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9275 {
9276 struct got_entry *ent;
9277
9278 if (!is_ppc64_elf (ibfd))
9279 continue;
9280
9281 ent = ppc64_tlsld_got (ibfd);
9282 if (ent->got.refcount > 0)
9283 {
9284 if (!htab->do_multi_toc && first_tlsld != NULL)
9285 {
9286 ent->is_indirect = TRUE;
9287 ent->got.ent = first_tlsld;
9288 }
9289 else
9290 {
9291 if (first_tlsld == NULL)
9292 first_tlsld = ent;
9293 s = ppc64_elf_tdata (ibfd)->got;
9294 ent->got.offset = s->size;
9295 ent->owner = ibfd;
9296 s->size += 16;
9297 if (info->shared)
9298 {
9299 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9300 srel->size += sizeof (Elf64_External_Rela);
9301 }
9302 }
9303 }
9304 else
9305 ent->got.offset = (bfd_vma) -1;
9306 }
9307
9308 /* We now have determined the sizes of the various dynamic sections.
9309 Allocate memory for them. */
9310 relocs = FALSE;
9311 for (s = dynobj->sections; s != NULL; s = s->next)
9312 {
9313 if ((s->flags & SEC_LINKER_CREATED) == 0)
9314 continue;
9315
9316 if (s == htab->brlt || s == htab->relbrlt)
9317 /* These haven't been allocated yet; don't strip. */
9318 continue;
9319 else if (s == htab->got
9320 || s == htab->plt
9321 || s == htab->iplt
9322 || s == htab->glink
9323 || s == htab->dynbss)
9324 {
9325 /* Strip this section if we don't need it; see the
9326 comment below. */
9327 }
9328 else if (s == htab->glink_eh_frame)
9329 {
9330 if (!bfd_is_abs_section (s->output_section))
9331 /* Not sized yet. */
9332 continue;
9333 }
9334 else if (CONST_STRNEQ (s->name, ".rela"))
9335 {
9336 if (s->size != 0)
9337 {
9338 if (s != htab->relplt)
9339 relocs = TRUE;
9340
9341 /* We use the reloc_count field as a counter if we need
9342 to copy relocs into the output file. */
9343 s->reloc_count = 0;
9344 }
9345 }
9346 else
9347 {
9348 /* It's not one of our sections, so don't allocate space. */
9349 continue;
9350 }
9351
9352 if (s->size == 0)
9353 {
9354 /* If we don't need this section, strip it from the
9355 output file. This is mostly to handle .rela.bss and
9356 .rela.plt. We must create both sections in
9357 create_dynamic_sections, because they must be created
9358 before the linker maps input sections to output
9359 sections. The linker does that before
9360 adjust_dynamic_symbol is called, and it is that
9361 function which decides whether anything needs to go
9362 into these sections. */
9363 s->flags |= SEC_EXCLUDE;
9364 continue;
9365 }
9366
9367 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9368 continue;
9369
9370 /* Allocate memory for the section contents. We use bfd_zalloc
9371 here in case unused entries are not reclaimed before the
9372 section's contents are written out. This should not happen,
9373 but this way if it does we get a R_PPC64_NONE reloc in .rela
9374 sections instead of garbage.
9375 We also rely on the section contents being zero when writing
9376 the GOT. */
9377 s->contents = bfd_zalloc (dynobj, s->size);
9378 if (s->contents == NULL)
9379 return FALSE;
9380 }
9381
9382 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9383 {
9384 if (!is_ppc64_elf (ibfd))
9385 continue;
9386
9387 s = ppc64_elf_tdata (ibfd)->got;
9388 if (s != NULL && s != htab->got)
9389 {
9390 if (s->size == 0)
9391 s->flags |= SEC_EXCLUDE;
9392 else
9393 {
9394 s->contents = bfd_zalloc (ibfd, s->size);
9395 if (s->contents == NULL)
9396 return FALSE;
9397 }
9398 }
9399 s = ppc64_elf_tdata (ibfd)->relgot;
9400 if (s != NULL)
9401 {
9402 if (s->size == 0)
9403 s->flags |= SEC_EXCLUDE;
9404 else
9405 {
9406 s->contents = bfd_zalloc (ibfd, s->size);
9407 if (s->contents == NULL)
9408 return FALSE;
9409 relocs = TRUE;
9410 s->reloc_count = 0;
9411 }
9412 }
9413 }
9414
9415 if (htab->elf.dynamic_sections_created)
9416 {
9417 /* Add some entries to the .dynamic section. We fill in the
9418 values later, in ppc64_elf_finish_dynamic_sections, but we
9419 must add the entries now so that we get the correct size for
9420 the .dynamic section. The DT_DEBUG entry is filled in by the
9421 dynamic linker and used by the debugger. */
9422 #define add_dynamic_entry(TAG, VAL) \
9423 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9424
9425 if (info->executable)
9426 {
9427 if (!add_dynamic_entry (DT_DEBUG, 0))
9428 return FALSE;
9429 }
9430
9431 if (htab->plt != NULL && htab->plt->size != 0)
9432 {
9433 if (!add_dynamic_entry (DT_PLTGOT, 0)
9434 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9435 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9436 || !add_dynamic_entry (DT_JMPREL, 0)
9437 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9438 return FALSE;
9439 }
9440
9441 if (NO_OPD_RELOCS)
9442 {
9443 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9444 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9445 return FALSE;
9446 }
9447
9448 if (!htab->no_tls_get_addr_opt
9449 && htab->tls_get_addr_fd != NULL
9450 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9451 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9452 return FALSE;
9453
9454 if (relocs)
9455 {
9456 if (!add_dynamic_entry (DT_RELA, 0)
9457 || !add_dynamic_entry (DT_RELASZ, 0)
9458 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9459 return FALSE;
9460
9461 /* If any dynamic relocs apply to a read-only section,
9462 then we need a DT_TEXTREL entry. */
9463 if ((info->flags & DF_TEXTREL) == 0)
9464 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9465
9466 if ((info->flags & DF_TEXTREL) != 0)
9467 {
9468 if (!add_dynamic_entry (DT_TEXTREL, 0))
9469 return FALSE;
9470 }
9471 }
9472 }
9473 #undef add_dynamic_entry
9474
9475 return TRUE;
9476 }
9477
9478 /* Determine the type of stub needed, if any, for a call. */
9479
9480 static inline enum ppc_stub_type
9481 ppc_type_of_stub (asection *input_sec,
9482 const Elf_Internal_Rela *rel,
9483 struct ppc_link_hash_entry **hash,
9484 struct plt_entry **plt_ent,
9485 bfd_vma destination)
9486 {
9487 struct ppc_link_hash_entry *h = *hash;
9488 bfd_vma location;
9489 bfd_vma branch_offset;
9490 bfd_vma max_branch_offset;
9491 enum elf_ppc64_reloc_type r_type;
9492
9493 if (h != NULL)
9494 {
9495 struct plt_entry *ent;
9496 struct ppc_link_hash_entry *fdh = h;
9497 if (h->oh != NULL
9498 && h->oh->is_func_descriptor)
9499 {
9500 fdh = ppc_follow_link (h->oh);
9501 *hash = fdh;
9502 }
9503
9504 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9505 if (ent->addend == rel->r_addend
9506 && ent->plt.offset != (bfd_vma) -1)
9507 {
9508 *plt_ent = ent;
9509 return ppc_stub_plt_call;
9510 }
9511
9512 /* Here, we know we don't have a plt entry. If we don't have a
9513 either a defined function descriptor or a defined entry symbol
9514 in a regular object file, then it is pointless trying to make
9515 any other type of stub. */
9516 if (!is_static_defined (&fdh->elf)
9517 && !is_static_defined (&h->elf))
9518 return ppc_stub_none;
9519 }
9520 else if (elf_local_got_ents (input_sec->owner) != NULL)
9521 {
9522 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9523 struct plt_entry **local_plt = (struct plt_entry **)
9524 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9525 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9526
9527 if (local_plt[r_symndx] != NULL)
9528 {
9529 struct plt_entry *ent;
9530
9531 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9532 if (ent->addend == rel->r_addend
9533 && ent->plt.offset != (bfd_vma) -1)
9534 {
9535 *plt_ent = ent;
9536 return ppc_stub_plt_call;
9537 }
9538 }
9539 }
9540
9541 /* Determine where the call point is. */
9542 location = (input_sec->output_offset
9543 + input_sec->output_section->vma
9544 + rel->r_offset);
9545
9546 branch_offset = destination - location;
9547 r_type = ELF64_R_TYPE (rel->r_info);
9548
9549 /* Determine if a long branch stub is needed. */
9550 max_branch_offset = 1 << 25;
9551 if (r_type != R_PPC64_REL24)
9552 max_branch_offset = 1 << 15;
9553
9554 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9555 /* We need a stub. Figure out whether a long_branch or plt_branch
9556 is needed later. */
9557 return ppc_stub_long_branch;
9558
9559 return ppc_stub_none;
9560 }
9561
9562 /* With power7 weakly ordered memory model, it is possible for ld.so
9563 to update a plt entry in one thread and have another thread see a
9564 stale zero toc entry. To avoid this we need some sort of acquire
9565 barrier in the call stub. One solution is to make the load of the
9566 toc word seem to appear to depend on the load of the function entry
9567 word. Another solution is to test for r2 being zero, and branch to
9568 the appropriate glink entry if so.
9569
9570 . fake dep barrier compare
9571 . ld 11,xxx(2) ld 11,xxx(2)
9572 . mtctr 11 mtctr 11
9573 . xor 11,11,11 ld 2,xxx+8(2)
9574 . add 2,2,11 cmpldi 2,0
9575 . ld 2,xxx+8(2) bnectr+
9576 . bctr b <glink_entry>
9577
9578 The solution involving the compare turns out to be faster, so
9579 that's what we use unless the branch won't reach. */
9580
9581 #define ALWAYS_USE_FAKE_DEP 0
9582 #define ALWAYS_EMIT_R2SAVE 0
9583
9584 #define PPC_LO(v) ((v) & 0xffff)
9585 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9586 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9587
9588 static inline unsigned int
9589 plt_stub_size (struct ppc_link_hash_table *htab,
9590 struct ppc_stub_hash_entry *stub_entry,
9591 bfd_vma off)
9592 {
9593 unsigned size = PLT_CALL_STUB_SIZE;
9594
9595 if (!(ALWAYS_EMIT_R2SAVE
9596 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9597 size -= 4;
9598 if (!htab->plt_static_chain)
9599 size -= 4;
9600 if (htab->plt_thread_safe)
9601 size += 8;
9602 if (PPC_HA (off) == 0)
9603 size -= 4;
9604 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9605 size += 4;
9606 if (stub_entry->h != NULL
9607 && (stub_entry->h == htab->tls_get_addr_fd
9608 || stub_entry->h == htab->tls_get_addr)
9609 && !htab->no_tls_get_addr_opt)
9610 size += 13 * 4;
9611 return size;
9612 }
9613
9614 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9615 then return the padding needed to do so. */
9616 static inline unsigned int
9617 plt_stub_pad (struct ppc_link_hash_table *htab,
9618 struct ppc_stub_hash_entry *stub_entry,
9619 bfd_vma plt_off)
9620 {
9621 int stub_align = 1 << htab->plt_stub_align;
9622 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9623 bfd_vma stub_off = stub_entry->stub_sec->size;
9624
9625 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9626 > (stub_size & -stub_align))
9627 return stub_align - (stub_off & (stub_align - 1));
9628 return 0;
9629 }
9630
9631 /* Build a .plt call stub. */
9632
9633 static inline bfd_byte *
9634 build_plt_stub (struct ppc_link_hash_table *htab,
9635 struct ppc_stub_hash_entry *stub_entry,
9636 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9637 {
9638 bfd *obfd = htab->stub_bfd;
9639 bfd_boolean plt_static_chain = htab->plt_static_chain;
9640 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9641 bfd_boolean use_fake_dep = plt_thread_safe;
9642 bfd_vma cmp_branch_off = 0;
9643
9644 if (!ALWAYS_USE_FAKE_DEP
9645 && plt_thread_safe
9646 && !(stub_entry->h != NULL
9647 && (stub_entry->h == htab->tls_get_addr_fd
9648 || stub_entry->h == htab->tls_get_addr)
9649 && !htab->no_tls_get_addr_opt))
9650 {
9651 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9652 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9653 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9654 bfd_vma to, from;
9655
9656 if (pltindex > 32768)
9657 glinkoff += (pltindex - 32768) * 4;
9658 to = (glinkoff
9659 + htab->glink->output_offset
9660 + htab->glink->output_section->vma);
9661 from = (p - stub_entry->stub_sec->contents
9662 + 4 * (ALWAYS_EMIT_R2SAVE
9663 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9664 + 4 * (PPC_HA (offset) != 0)
9665 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9666 != PPC_HA (offset))
9667 + 4 * (plt_static_chain != 0)
9668 + 20
9669 + stub_entry->stub_sec->output_offset
9670 + stub_entry->stub_sec->output_section->vma);
9671 cmp_branch_off = to - from;
9672 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9673 }
9674
9675 if (PPC_HA (offset) != 0)
9676 {
9677 if (r != NULL)
9678 {
9679 if (ALWAYS_EMIT_R2SAVE
9680 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9681 r[0].r_offset += 4;
9682 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9683 r[1].r_offset = r[0].r_offset + 4;
9684 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9685 r[1].r_addend = r[0].r_addend;
9686 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9687 {
9688 r[2].r_offset = r[1].r_offset + 4;
9689 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9690 r[2].r_addend = r[0].r_addend;
9691 }
9692 else
9693 {
9694 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9695 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9696 r[2].r_addend = r[0].r_addend + 8;
9697 if (plt_static_chain)
9698 {
9699 r[3].r_offset = r[2].r_offset + 4;
9700 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9701 r[3].r_addend = r[0].r_addend + 16;
9702 }
9703 }
9704 }
9705 if (ALWAYS_EMIT_R2SAVE
9706 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9707 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9708 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9709 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9710 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9711 {
9712 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9713 offset = 0;
9714 }
9715 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9716 if (use_fake_dep)
9717 {
9718 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9719 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9720 }
9721 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9722 if (plt_static_chain)
9723 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9724 }
9725 else
9726 {
9727 if (r != NULL)
9728 {
9729 if (ALWAYS_EMIT_R2SAVE
9730 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9731 r[0].r_offset += 4;
9732 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9733 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9734 {
9735 r[1].r_offset = r[0].r_offset + 4;
9736 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9737 r[1].r_addend = r[0].r_addend;
9738 }
9739 else
9740 {
9741 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9742 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9743 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9744 if (plt_static_chain)
9745 {
9746 r[2].r_offset = r[1].r_offset + 4;
9747 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9748 r[2].r_addend = r[0].r_addend + 8;
9749 }
9750 }
9751 }
9752 if (ALWAYS_EMIT_R2SAVE
9753 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9754 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9755 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9756 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9757 {
9758 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9759 offset = 0;
9760 }
9761 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9762 if (use_fake_dep)
9763 {
9764 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9765 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9766 }
9767 if (plt_static_chain)
9768 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9769 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9770 }
9771 if (plt_thread_safe && !use_fake_dep)
9772 {
9773 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9774 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9775 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
9776 }
9777 else
9778 bfd_put_32 (obfd, BCTR, p), p += 4;
9779 return p;
9780 }
9781
9782 /* Build a special .plt call stub for __tls_get_addr. */
9783
9784 #define LD_R11_0R3 0xe9630000
9785 #define LD_R12_0R3 0xe9830000
9786 #define MR_R0_R3 0x7c601b78
9787 #define CMPDI_R11_0 0x2c2b0000
9788 #define ADD_R3_R12_R13 0x7c6c6a14
9789 #define BEQLR 0x4d820020
9790 #define MR_R3_R0 0x7c030378
9791 #define MFLR_R11 0x7d6802a6
9792 #define STD_R11_0R1 0xf9610000
9793 #define BCTRL 0x4e800421
9794 #define LD_R11_0R1 0xe9610000
9795 #define LD_R2_0R1 0xe8410000
9796 #define MTLR_R11 0x7d6803a6
9797
9798 static inline bfd_byte *
9799 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9800 struct ppc_stub_hash_entry *stub_entry,
9801 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9802 {
9803 bfd *obfd = htab->stub_bfd;
9804
9805 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9806 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9807 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9808 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9809 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9810 bfd_put_32 (obfd, BEQLR, p), p += 4;
9811 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9812 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9813 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9814
9815 if (r != NULL)
9816 r[0].r_offset += 9 * 4;
9817 p = build_plt_stub (htab, stub_entry, p, offset, r);
9818 bfd_put_32 (obfd, BCTRL, p - 4);
9819
9820 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9821 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9822 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9823 bfd_put_32 (obfd, BLR, p), p += 4;
9824
9825 return p;
9826 }
9827
9828 static Elf_Internal_Rela *
9829 get_relocs (asection *sec, int count)
9830 {
9831 Elf_Internal_Rela *relocs;
9832 struct bfd_elf_section_data *elfsec_data;
9833
9834 elfsec_data = elf_section_data (sec);
9835 relocs = elfsec_data->relocs;
9836 if (relocs == NULL)
9837 {
9838 bfd_size_type relsize;
9839 relsize = sec->reloc_count * sizeof (*relocs);
9840 relocs = bfd_alloc (sec->owner, relsize);
9841 if (relocs == NULL)
9842 return NULL;
9843 elfsec_data->relocs = relocs;
9844 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9845 sizeof (Elf_Internal_Shdr));
9846 if (elfsec_data->rela.hdr == NULL)
9847 return NULL;
9848 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9849 * sizeof (Elf64_External_Rela));
9850 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9851 sec->reloc_count = 0;
9852 }
9853 relocs += sec->reloc_count;
9854 sec->reloc_count += count;
9855 return relocs;
9856 }
9857
9858 static bfd_vma
9859 get_r2off (struct bfd_link_info *info,
9860 struct ppc_stub_hash_entry *stub_entry)
9861 {
9862 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9863 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9864
9865 if (r2off == 0)
9866 {
9867 /* Support linking -R objects. Get the toc pointer from the
9868 opd entry. */
9869 char buf[8];
9870 asection *opd = stub_entry->h->elf.root.u.def.section;
9871 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9872
9873 if (strcmp (opd->name, ".opd") != 0
9874 || opd->reloc_count != 0)
9875 {
9876 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
9877 stub_entry->h->elf.root.root.string);
9878 bfd_set_error (bfd_error_bad_value);
9879 return 0;
9880 }
9881 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9882 return 0;
9883 r2off = bfd_get_64 (opd->owner, buf);
9884 r2off -= elf_gp (info->output_bfd);
9885 }
9886 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9887 return r2off;
9888 }
9889
9890 static bfd_boolean
9891 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9892 {
9893 struct ppc_stub_hash_entry *stub_entry;
9894 struct ppc_branch_hash_entry *br_entry;
9895 struct bfd_link_info *info;
9896 struct ppc_link_hash_table *htab;
9897 bfd_byte *loc;
9898 bfd_byte *p;
9899 bfd_vma dest, off;
9900 int size;
9901 Elf_Internal_Rela *r;
9902 asection *plt;
9903
9904 /* Massage our args to the form they really have. */
9905 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9906 info = in_arg;
9907
9908 htab = ppc_hash_table (info);
9909 if (htab == NULL)
9910 return FALSE;
9911
9912 /* Make a note of the offset within the stubs for this entry. */
9913 stub_entry->stub_offset = stub_entry->stub_sec->size;
9914 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
9915
9916 htab->stub_count[stub_entry->stub_type - 1] += 1;
9917 switch (stub_entry->stub_type)
9918 {
9919 case ppc_stub_long_branch:
9920 case ppc_stub_long_branch_r2off:
9921 /* Branches are relative. This is where we are going to. */
9922 off = dest = (stub_entry->target_value
9923 + stub_entry->target_section->output_offset
9924 + stub_entry->target_section->output_section->vma);
9925
9926 /* And this is where we are coming from. */
9927 off -= (stub_entry->stub_offset
9928 + stub_entry->stub_sec->output_offset
9929 + stub_entry->stub_sec->output_section->vma);
9930
9931 size = 4;
9932 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9933 {
9934 bfd_vma r2off = get_r2off (info, stub_entry);
9935
9936 if (r2off == 0)
9937 {
9938 htab->stub_error = TRUE;
9939 return FALSE;
9940 }
9941 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
9942 loc += 4;
9943 size = 12;
9944 if (PPC_HA (r2off) != 0)
9945 {
9946 size = 16;
9947 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
9948 loc += 4;
9949 }
9950 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
9951 loc += 4;
9952 off -= size - 4;
9953 }
9954 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
9955
9956 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
9957 {
9958 info->callbacks->einfo
9959 (_("%P: long branch stub `%s' offset overflow\n"),
9960 stub_entry->root.string);
9961 htab->stub_error = TRUE;
9962 return FALSE;
9963 }
9964
9965 if (info->emitrelocations)
9966 {
9967 r = get_relocs (stub_entry->stub_sec, 1);
9968 if (r == NULL)
9969 return FALSE;
9970 r->r_offset = loc - stub_entry->stub_sec->contents;
9971 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
9972 r->r_addend = dest;
9973 if (stub_entry->h != NULL)
9974 {
9975 struct elf_link_hash_entry **hashes;
9976 unsigned long symndx;
9977 struct ppc_link_hash_entry *h;
9978
9979 hashes = elf_sym_hashes (htab->stub_bfd);
9980 if (hashes == NULL)
9981 {
9982 bfd_size_type hsize;
9983
9984 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
9985 hashes = bfd_zalloc (htab->stub_bfd, hsize);
9986 if (hashes == NULL)
9987 return FALSE;
9988 elf_sym_hashes (htab->stub_bfd) = hashes;
9989 htab->stub_globals = 1;
9990 }
9991 symndx = htab->stub_globals++;
9992 h = stub_entry->h;
9993 hashes[symndx] = &h->elf;
9994 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
9995 if (h->oh != NULL && h->oh->is_func)
9996 h = ppc_follow_link (h->oh);
9997 if (h->elf.root.u.def.section != stub_entry->target_section)
9998 /* H is an opd symbol. The addend must be zero. */
9999 r->r_addend = 0;
10000 else
10001 {
10002 off = (h->elf.root.u.def.value
10003 + h->elf.root.u.def.section->output_offset
10004 + h->elf.root.u.def.section->output_section->vma);
10005 r->r_addend -= off;
10006 }
10007 }
10008 }
10009 break;
10010
10011 case ppc_stub_plt_branch:
10012 case ppc_stub_plt_branch_r2off:
10013 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10014 stub_entry->root.string + 9,
10015 FALSE, FALSE);
10016 if (br_entry == NULL)
10017 {
10018 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10019 stub_entry->root.string);
10020 htab->stub_error = TRUE;
10021 return FALSE;
10022 }
10023
10024 dest = (stub_entry->target_value
10025 + stub_entry->target_section->output_offset
10026 + stub_entry->target_section->output_section->vma);
10027
10028 bfd_put_64 (htab->brlt->owner, dest,
10029 htab->brlt->contents + br_entry->offset);
10030
10031 if (br_entry->iter == htab->stub_iteration)
10032 {
10033 br_entry->iter = 0;
10034
10035 if (htab->relbrlt != NULL)
10036 {
10037 /* Create a reloc for the branch lookup table entry. */
10038 Elf_Internal_Rela rela;
10039 bfd_byte *rl;
10040
10041 rela.r_offset = (br_entry->offset
10042 + htab->brlt->output_offset
10043 + htab->brlt->output_section->vma);
10044 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10045 rela.r_addend = dest;
10046
10047 rl = htab->relbrlt->contents;
10048 rl += (htab->relbrlt->reloc_count++
10049 * sizeof (Elf64_External_Rela));
10050 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10051 }
10052 else if (info->emitrelocations)
10053 {
10054 r = get_relocs (htab->brlt, 1);
10055 if (r == NULL)
10056 return FALSE;
10057 /* brlt, being SEC_LINKER_CREATED does not go through the
10058 normal reloc processing. Symbols and offsets are not
10059 translated from input file to output file form, so
10060 set up the offset per the output file. */
10061 r->r_offset = (br_entry->offset
10062 + htab->brlt->output_offset
10063 + htab->brlt->output_section->vma);
10064 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10065 r->r_addend = dest;
10066 }
10067 }
10068
10069 dest = (br_entry->offset
10070 + htab->brlt->output_offset
10071 + htab->brlt->output_section->vma);
10072
10073 off = (dest
10074 - elf_gp (htab->brlt->output_section->owner)
10075 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10076
10077 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10078 {
10079 info->callbacks->einfo
10080 (_("%P: linkage table error against `%T'\n"),
10081 stub_entry->root.string);
10082 bfd_set_error (bfd_error_bad_value);
10083 htab->stub_error = TRUE;
10084 return FALSE;
10085 }
10086
10087 if (info->emitrelocations)
10088 {
10089 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10090 if (r == NULL)
10091 return FALSE;
10092 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10093 if (bfd_big_endian (info->output_bfd))
10094 r[0].r_offset += 2;
10095 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10096 r[0].r_offset += 4;
10097 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10098 r[0].r_addend = dest;
10099 if (PPC_HA (off) != 0)
10100 {
10101 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10102 r[1].r_offset = r[0].r_offset + 4;
10103 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10104 r[1].r_addend = r[0].r_addend;
10105 }
10106 }
10107
10108 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10109 {
10110 if (PPC_HA (off) != 0)
10111 {
10112 size = 16;
10113 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10114 loc += 4;
10115 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10116 }
10117 else
10118 {
10119 size = 12;
10120 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10121 }
10122 }
10123 else
10124 {
10125 bfd_vma r2off = get_r2off (info, stub_entry);
10126
10127 if (r2off == 0)
10128 {
10129 htab->stub_error = TRUE;
10130 return FALSE;
10131 }
10132
10133 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10134 loc += 4;
10135 size = 20;
10136 if (PPC_HA (off) != 0)
10137 {
10138 size += 4;
10139 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10140 loc += 4;
10141 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10142 loc += 4;
10143 }
10144 else
10145 {
10146 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10147 loc += 4;
10148 }
10149
10150 if (PPC_HA (r2off) != 0)
10151 {
10152 size += 4;
10153 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10154 loc += 4;
10155 }
10156 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10157 }
10158 loc += 4;
10159 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10160 loc += 4;
10161 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10162 break;
10163
10164 case ppc_stub_plt_call:
10165 case ppc_stub_plt_call_r2save:
10166 if (stub_entry->h != NULL
10167 && stub_entry->h->is_func_descriptor
10168 && stub_entry->h->oh != NULL)
10169 {
10170 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10171
10172 /* If the old-ABI "dot-symbol" is undefined make it weak so
10173 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10174 FIXME: We used to define the symbol on one of the call
10175 stubs instead, which is why we test symbol section id
10176 against htab->top_id in various places. Likely all
10177 these checks could now disappear. */
10178 if (fh->elf.root.type == bfd_link_hash_undefined)
10179 fh->elf.root.type = bfd_link_hash_undefweak;
10180 /* Stop undo_symbol_twiddle changing it back to undefined. */
10181 fh->was_undefined = 0;
10182 }
10183
10184 /* Now build the stub. */
10185 dest = stub_entry->plt_ent->plt.offset & ~1;
10186 if (dest >= (bfd_vma) -2)
10187 abort ();
10188
10189 plt = htab->plt;
10190 if (!htab->elf.dynamic_sections_created
10191 || stub_entry->h == NULL
10192 || stub_entry->h->elf.dynindx == -1)
10193 plt = htab->iplt;
10194
10195 dest += plt->output_offset + plt->output_section->vma;
10196
10197 if (stub_entry->h == NULL
10198 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10199 {
10200 Elf_Internal_Rela rela;
10201 bfd_byte *rl;
10202
10203 rela.r_offset = dest;
10204 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10205 rela.r_addend = (stub_entry->target_value
10206 + stub_entry->target_section->output_offset
10207 + stub_entry->target_section->output_section->vma);
10208
10209 rl = (htab->reliplt->contents
10210 + (htab->reliplt->reloc_count++
10211 * sizeof (Elf64_External_Rela)));
10212 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10213 stub_entry->plt_ent->plt.offset |= 1;
10214 }
10215
10216 off = (dest
10217 - elf_gp (plt->output_section->owner)
10218 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10219
10220 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10221 {
10222 info->callbacks->einfo
10223 (_("%P: linkage table error against `%T'\n"),
10224 stub_entry->h != NULL
10225 ? stub_entry->h->elf.root.root.string
10226 : "<local sym>");
10227 bfd_set_error (bfd_error_bad_value);
10228 htab->stub_error = TRUE;
10229 return FALSE;
10230 }
10231
10232 if (htab->plt_stub_align != 0)
10233 {
10234 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10235
10236 stub_entry->stub_sec->size += pad;
10237 stub_entry->stub_offset = stub_entry->stub_sec->size;
10238 loc += pad;
10239 }
10240
10241 r = NULL;
10242 if (info->emitrelocations)
10243 {
10244 r = get_relocs (stub_entry->stub_sec,
10245 (2
10246 + (PPC_HA (off) != 0)
10247 + (htab->plt_static_chain
10248 && PPC_HA (off + 16) == PPC_HA (off))));
10249 if (r == NULL)
10250 return FALSE;
10251 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10252 if (bfd_big_endian (info->output_bfd))
10253 r[0].r_offset += 2;
10254 r[0].r_addend = dest;
10255 }
10256 if (stub_entry->h != NULL
10257 && (stub_entry->h == htab->tls_get_addr_fd
10258 || stub_entry->h == htab->tls_get_addr)
10259 && !htab->no_tls_get_addr_opt)
10260 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10261 else
10262 p = build_plt_stub (htab, stub_entry, loc, off, r);
10263 size = p - loc;
10264 break;
10265
10266 default:
10267 BFD_FAIL ();
10268 return FALSE;
10269 }
10270
10271 stub_entry->stub_sec->size += size;
10272
10273 if (htab->emit_stub_syms)
10274 {
10275 struct elf_link_hash_entry *h;
10276 size_t len1, len2;
10277 char *name;
10278 const char *const stub_str[] = { "long_branch",
10279 "long_branch_r2off",
10280 "plt_branch",
10281 "plt_branch_r2off",
10282 "plt_call",
10283 "plt_call" };
10284
10285 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10286 len2 = strlen (stub_entry->root.string);
10287 name = bfd_malloc (len1 + len2 + 2);
10288 if (name == NULL)
10289 return FALSE;
10290 memcpy (name, stub_entry->root.string, 9);
10291 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10292 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10293 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10294 if (h == NULL)
10295 return FALSE;
10296 if (h->root.type == bfd_link_hash_new)
10297 {
10298 h->root.type = bfd_link_hash_defined;
10299 h->root.u.def.section = stub_entry->stub_sec;
10300 h->root.u.def.value = stub_entry->stub_offset;
10301 h->ref_regular = 1;
10302 h->def_regular = 1;
10303 h->ref_regular_nonweak = 1;
10304 h->forced_local = 1;
10305 h->non_elf = 0;
10306 }
10307 }
10308
10309 return TRUE;
10310 }
10311
10312 /* As above, but don't actually build the stub. Just bump offset so
10313 we know stub section sizes, and select plt_branch stubs where
10314 long_branch stubs won't do. */
10315
10316 static bfd_boolean
10317 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10318 {
10319 struct ppc_stub_hash_entry *stub_entry;
10320 struct bfd_link_info *info;
10321 struct ppc_link_hash_table *htab;
10322 bfd_vma off;
10323 int size;
10324
10325 /* Massage our args to the form they really have. */
10326 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10327 info = in_arg;
10328
10329 htab = ppc_hash_table (info);
10330 if (htab == NULL)
10331 return FALSE;
10332
10333 if (stub_entry->stub_type == ppc_stub_plt_call
10334 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10335 {
10336 asection *plt;
10337 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10338 if (off >= (bfd_vma) -2)
10339 abort ();
10340 plt = htab->plt;
10341 if (!htab->elf.dynamic_sections_created
10342 || stub_entry->h == NULL
10343 || stub_entry->h->elf.dynindx == -1)
10344 plt = htab->iplt;
10345 off += (plt->output_offset
10346 + plt->output_section->vma
10347 - elf_gp (plt->output_section->owner)
10348 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10349
10350 size = plt_stub_size (htab, stub_entry, off);
10351 if (htab->plt_stub_align)
10352 size += plt_stub_pad (htab, stub_entry, off);
10353 if (info->emitrelocations)
10354 {
10355 stub_entry->stub_sec->reloc_count
10356 += (2
10357 + (PPC_HA (off) != 0)
10358 + (htab->plt_static_chain
10359 && PPC_HA (off + 16) == PPC_HA (off)));
10360 stub_entry->stub_sec->flags |= SEC_RELOC;
10361 }
10362 }
10363 else
10364 {
10365 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10366 variants. */
10367 bfd_vma r2off = 0;
10368
10369 off = (stub_entry->target_value
10370 + stub_entry->target_section->output_offset
10371 + stub_entry->target_section->output_section->vma);
10372 off -= (stub_entry->stub_sec->size
10373 + stub_entry->stub_sec->output_offset
10374 + stub_entry->stub_sec->output_section->vma);
10375
10376 /* Reset the stub type from the plt variant in case we now
10377 can reach with a shorter stub. */
10378 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10379 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10380
10381 size = 4;
10382 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10383 {
10384 r2off = get_r2off (info, stub_entry);
10385 if (r2off == 0)
10386 {
10387 htab->stub_error = TRUE;
10388 return FALSE;
10389 }
10390 size = 12;
10391 if (PPC_HA (r2off) != 0)
10392 size = 16;
10393 off -= size - 4;
10394 }
10395
10396 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10397 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10398 {
10399 struct ppc_branch_hash_entry *br_entry;
10400
10401 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10402 stub_entry->root.string + 9,
10403 TRUE, FALSE);
10404 if (br_entry == NULL)
10405 {
10406 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10407 stub_entry->root.string);
10408 htab->stub_error = TRUE;
10409 return FALSE;
10410 }
10411
10412 if (br_entry->iter != htab->stub_iteration)
10413 {
10414 br_entry->iter = htab->stub_iteration;
10415 br_entry->offset = htab->brlt->size;
10416 htab->brlt->size += 8;
10417
10418 if (htab->relbrlt != NULL)
10419 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10420 else if (info->emitrelocations)
10421 {
10422 htab->brlt->reloc_count += 1;
10423 htab->brlt->flags |= SEC_RELOC;
10424 }
10425 }
10426
10427 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10428 off = (br_entry->offset
10429 + htab->brlt->output_offset
10430 + htab->brlt->output_section->vma
10431 - elf_gp (htab->brlt->output_section->owner)
10432 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10433
10434 if (info->emitrelocations)
10435 {
10436 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10437 stub_entry->stub_sec->flags |= SEC_RELOC;
10438 }
10439
10440 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10441 {
10442 size = 12;
10443 if (PPC_HA (off) != 0)
10444 size = 16;
10445 }
10446 else
10447 {
10448 size = 20;
10449 if (PPC_HA (off) != 0)
10450 size += 4;
10451
10452 if (PPC_HA (r2off) != 0)
10453 size += 4;
10454 }
10455 }
10456 else if (info->emitrelocations)
10457 {
10458 stub_entry->stub_sec->reloc_count += 1;
10459 stub_entry->stub_sec->flags |= SEC_RELOC;
10460 }
10461 }
10462
10463 stub_entry->stub_sec->size += size;
10464 return TRUE;
10465 }
10466
10467 /* Set up various things so that we can make a list of input sections
10468 for each output section included in the link. Returns -1 on error,
10469 0 when no stubs will be needed, and 1 on success. */
10470
10471 int
10472 ppc64_elf_setup_section_lists
10473 (struct bfd_link_info *info,
10474 asection *(*add_stub_section) (const char *, asection *),
10475 void (*layout_sections_again) (void))
10476 {
10477 bfd *input_bfd;
10478 int top_id, top_index, id;
10479 asection *section;
10480 asection **input_list;
10481 bfd_size_type amt;
10482 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10483
10484 if (htab == NULL)
10485 return -1;
10486 /* Stash our params away. */
10487 htab->add_stub_section = add_stub_section;
10488 htab->layout_sections_again = layout_sections_again;
10489
10490 if (htab->brlt == NULL)
10491 return 0;
10492
10493 /* Find the top input section id. */
10494 for (input_bfd = info->input_bfds, top_id = 3;
10495 input_bfd != NULL;
10496 input_bfd = input_bfd->link_next)
10497 {
10498 for (section = input_bfd->sections;
10499 section != NULL;
10500 section = section->next)
10501 {
10502 if (top_id < section->id)
10503 top_id = section->id;
10504 }
10505 }
10506
10507 htab->top_id = top_id;
10508 amt = sizeof (struct map_stub) * (top_id + 1);
10509 htab->stub_group = bfd_zmalloc (amt);
10510 if (htab->stub_group == NULL)
10511 return -1;
10512
10513 /* Set toc_off for com, und, abs and ind sections. */
10514 for (id = 0; id < 3; id++)
10515 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10516
10517 /* We can't use output_bfd->section_count here to find the top output
10518 section index as some sections may have been removed, and
10519 strip_excluded_output_sections doesn't renumber the indices. */
10520 for (section = info->output_bfd->sections, top_index = 0;
10521 section != NULL;
10522 section = section->next)
10523 {
10524 if (top_index < section->index)
10525 top_index = section->index;
10526 }
10527
10528 htab->top_index = top_index;
10529 amt = sizeof (asection *) * (top_index + 1);
10530 input_list = bfd_zmalloc (amt);
10531 htab->input_list = input_list;
10532 if (input_list == NULL)
10533 return -1;
10534
10535 return 1;
10536 }
10537
10538 /* Set up for first pass at multitoc partitioning. */
10539
10540 void
10541 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10542 {
10543 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10544
10545 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd);
10546 htab->toc_curr = elf_gp (info->output_bfd);
10547 htab->toc_bfd = NULL;
10548 htab->toc_first_sec = NULL;
10549 }
10550
10551 /* The linker repeatedly calls this function for each TOC input section
10552 and linker generated GOT section. Group input bfds such that the toc
10553 within a group is less than 64k in size. */
10554
10555 bfd_boolean
10556 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10557 {
10558 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10559 bfd_vma addr, off, limit;
10560
10561 if (htab == NULL)
10562 return FALSE;
10563
10564 if (!htab->second_toc_pass)
10565 {
10566 /* Keep track of the first .toc or .got section for this input bfd. */
10567 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
10568
10569 if (new_bfd)
10570 {
10571 htab->toc_bfd = isec->owner;
10572 htab->toc_first_sec = isec;
10573 }
10574
10575 addr = isec->output_offset + isec->output_section->vma;
10576 off = addr - htab->toc_curr;
10577 limit = 0x80008000;
10578 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10579 limit = 0x10000;
10580 if (off + isec->size > limit)
10581 {
10582 addr = (htab->toc_first_sec->output_offset
10583 + htab->toc_first_sec->output_section->vma);
10584 htab->toc_curr = addr;
10585 }
10586
10587 /* toc_curr is the base address of this toc group. Set elf_gp
10588 for the input section to be the offset relative to the
10589 output toc base plus 0x8000. Making the input elf_gp an
10590 offset allows us to move the toc as a whole without
10591 recalculating input elf_gp. */
10592 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10593 off += TOC_BASE_OFF;
10594
10595 /* Die if someone uses a linker script that doesn't keep input
10596 file .toc and .got together. */
10597 if (new_bfd
10598 && elf_gp (isec->owner) != 0
10599 && elf_gp (isec->owner) != off)
10600 return FALSE;
10601
10602 elf_gp (isec->owner) = off;
10603 return TRUE;
10604 }
10605
10606 /* During the second pass toc_first_sec points to the start of
10607 a toc group, and toc_curr is used to track the old elf_gp.
10608 We use toc_bfd to ensure we only look at each bfd once. */
10609 if (htab->toc_bfd == isec->owner)
10610 return TRUE;
10611 htab->toc_bfd = isec->owner;
10612
10613 if (htab->toc_first_sec == NULL
10614 || htab->toc_curr != elf_gp (isec->owner))
10615 {
10616 htab->toc_curr = elf_gp (isec->owner);
10617 htab->toc_first_sec = isec;
10618 }
10619 addr = (htab->toc_first_sec->output_offset
10620 + htab->toc_first_sec->output_section->vma);
10621 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10622 elf_gp (isec->owner) = off;
10623
10624 return TRUE;
10625 }
10626
10627 /* Called via elf_link_hash_traverse to merge GOT entries for global
10628 symbol H. */
10629
10630 static bfd_boolean
10631 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10632 {
10633 if (h->root.type == bfd_link_hash_indirect)
10634 return TRUE;
10635
10636 merge_got_entries (&h->got.glist);
10637
10638 return TRUE;
10639 }
10640
10641 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10642 symbol H. */
10643
10644 static bfd_boolean
10645 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10646 {
10647 struct got_entry *gent;
10648
10649 if (h->root.type == bfd_link_hash_indirect)
10650 return TRUE;
10651
10652 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10653 if (!gent->is_indirect)
10654 allocate_got (h, (struct bfd_link_info *) inf, gent);
10655 return TRUE;
10656 }
10657
10658 /* Called on the first multitoc pass after the last call to
10659 ppc64_elf_next_toc_section. This function removes duplicate GOT
10660 entries. */
10661
10662 bfd_boolean
10663 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10664 {
10665 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10666 struct bfd *ibfd, *ibfd2;
10667 bfd_boolean done_something;
10668
10669 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10670
10671 if (!htab->do_multi_toc)
10672 return FALSE;
10673
10674 /* Merge global sym got entries within a toc group. */
10675 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10676
10677 /* And tlsld_got. */
10678 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10679 {
10680 struct got_entry *ent, *ent2;
10681
10682 if (!is_ppc64_elf (ibfd))
10683 continue;
10684
10685 ent = ppc64_tlsld_got (ibfd);
10686 if (!ent->is_indirect
10687 && ent->got.offset != (bfd_vma) -1)
10688 {
10689 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10690 {
10691 if (!is_ppc64_elf (ibfd2))
10692 continue;
10693
10694 ent2 = ppc64_tlsld_got (ibfd2);
10695 if (!ent2->is_indirect
10696 && ent2->got.offset != (bfd_vma) -1
10697 && elf_gp (ibfd2) == elf_gp (ibfd))
10698 {
10699 ent2->is_indirect = TRUE;
10700 ent2->got.ent = ent;
10701 }
10702 }
10703 }
10704 }
10705
10706 /* Zap sizes of got sections. */
10707 htab->reliplt->rawsize = htab->reliplt->size;
10708 htab->reliplt->size -= htab->got_reli_size;
10709 htab->got_reli_size = 0;
10710
10711 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10712 {
10713 asection *got, *relgot;
10714
10715 if (!is_ppc64_elf (ibfd))
10716 continue;
10717
10718 got = ppc64_elf_tdata (ibfd)->got;
10719 if (got != NULL)
10720 {
10721 got->rawsize = got->size;
10722 got->size = 0;
10723 relgot = ppc64_elf_tdata (ibfd)->relgot;
10724 relgot->rawsize = relgot->size;
10725 relgot->size = 0;
10726 }
10727 }
10728
10729 /* Now reallocate the got, local syms first. We don't need to
10730 allocate section contents again since we never increase size. */
10731 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10732 {
10733 struct got_entry **lgot_ents;
10734 struct got_entry **end_lgot_ents;
10735 struct plt_entry **local_plt;
10736 struct plt_entry **end_local_plt;
10737 unsigned char *lgot_masks;
10738 bfd_size_type locsymcount;
10739 Elf_Internal_Shdr *symtab_hdr;
10740 asection *s, *srel;
10741
10742 if (!is_ppc64_elf (ibfd))
10743 continue;
10744
10745 lgot_ents = elf_local_got_ents (ibfd);
10746 if (!lgot_ents)
10747 continue;
10748
10749 symtab_hdr = &elf_symtab_hdr (ibfd);
10750 locsymcount = symtab_hdr->sh_info;
10751 end_lgot_ents = lgot_ents + locsymcount;
10752 local_plt = (struct plt_entry **) end_lgot_ents;
10753 end_local_plt = local_plt + locsymcount;
10754 lgot_masks = (unsigned char *) end_local_plt;
10755 s = ppc64_elf_tdata (ibfd)->got;
10756 srel = ppc64_elf_tdata (ibfd)->relgot;
10757 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10758 {
10759 struct got_entry *ent;
10760
10761 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10762 {
10763 unsigned int num = 1;
10764 ent->got.offset = s->size;
10765 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10766 num = 2;
10767 s->size += num * 8;
10768 if (info->shared)
10769 srel->size += num * sizeof (Elf64_External_Rela);
10770 else if ((*lgot_masks & PLT_IFUNC) != 0)
10771 {
10772 htab->reliplt->size
10773 += num * sizeof (Elf64_External_Rela);
10774 htab->got_reli_size
10775 += num * sizeof (Elf64_External_Rela);
10776 }
10777 }
10778 }
10779 }
10780
10781 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10782
10783 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10784 {
10785 struct got_entry *ent;
10786
10787 if (!is_ppc64_elf (ibfd))
10788 continue;
10789
10790 ent = ppc64_tlsld_got (ibfd);
10791 if (!ent->is_indirect
10792 && ent->got.offset != (bfd_vma) -1)
10793 {
10794 asection *s = ppc64_elf_tdata (ibfd)->got;
10795 ent->got.offset = s->size;
10796 s->size += 16;
10797 if (info->shared)
10798 {
10799 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10800 srel->size += sizeof (Elf64_External_Rela);
10801 }
10802 }
10803 }
10804
10805 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10806 if (!done_something)
10807 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10808 {
10809 asection *got;
10810
10811 if (!is_ppc64_elf (ibfd))
10812 continue;
10813
10814 got = ppc64_elf_tdata (ibfd)->got;
10815 if (got != NULL)
10816 {
10817 done_something = got->rawsize != got->size;
10818 if (done_something)
10819 break;
10820 }
10821 }
10822
10823 if (done_something)
10824 (*htab->layout_sections_again) ();
10825
10826 /* Set up for second pass over toc sections to recalculate elf_gp
10827 on input sections. */
10828 htab->toc_bfd = NULL;
10829 htab->toc_first_sec = NULL;
10830 htab->second_toc_pass = TRUE;
10831 return done_something;
10832 }
10833
10834 /* Called after second pass of multitoc partitioning. */
10835
10836 void
10837 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10838 {
10839 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10840
10841 /* After the second pass, toc_curr tracks the TOC offset used
10842 for code sections below in ppc64_elf_next_input_section. */
10843 htab->toc_curr = TOC_BASE_OFF;
10844 }
10845
10846 /* No toc references were found in ISEC. If the code in ISEC makes no
10847 calls, then there's no need to use toc adjusting stubs when branching
10848 into ISEC. Actually, indirect calls from ISEC are OK as they will
10849 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10850 needed, and 2 if a cyclical call-graph was found but no other reason
10851 for a stub was detected. If called from the top level, a return of
10852 2 means the same as a return of 0. */
10853
10854 static int
10855 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10856 {
10857 int ret;
10858
10859 /* Mark this section as checked. */
10860 isec->call_check_done = 1;
10861
10862 /* We know none of our code bearing sections will need toc stubs. */
10863 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10864 return 0;
10865
10866 if (isec->size == 0)
10867 return 0;
10868
10869 if (isec->output_section == NULL)
10870 return 0;
10871
10872 ret = 0;
10873 if (isec->reloc_count != 0)
10874 {
10875 Elf_Internal_Rela *relstart, *rel;
10876 Elf_Internal_Sym *local_syms;
10877 struct ppc_link_hash_table *htab;
10878
10879 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10880 info->keep_memory);
10881 if (relstart == NULL)
10882 return -1;
10883
10884 /* Look for branches to outside of this section. */
10885 local_syms = NULL;
10886 htab = ppc_hash_table (info);
10887 if (htab == NULL)
10888 return -1;
10889
10890 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10891 {
10892 enum elf_ppc64_reloc_type r_type;
10893 unsigned long r_symndx;
10894 struct elf_link_hash_entry *h;
10895 struct ppc_link_hash_entry *eh;
10896 Elf_Internal_Sym *sym;
10897 asection *sym_sec;
10898 struct _opd_sec_data *opd;
10899 bfd_vma sym_value;
10900 bfd_vma dest;
10901
10902 r_type = ELF64_R_TYPE (rel->r_info);
10903 if (r_type != R_PPC64_REL24
10904 && r_type != R_PPC64_REL14
10905 && r_type != R_PPC64_REL14_BRTAKEN
10906 && r_type != R_PPC64_REL14_BRNTAKEN)
10907 continue;
10908
10909 r_symndx = ELF64_R_SYM (rel->r_info);
10910 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
10911 isec->owner))
10912 {
10913 ret = -1;
10914 break;
10915 }
10916
10917 /* Calls to dynamic lib functions go through a plt call stub
10918 that uses r2. */
10919 eh = (struct ppc_link_hash_entry *) h;
10920 if (eh != NULL
10921 && (eh->elf.plt.plist != NULL
10922 || (eh->oh != NULL
10923 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
10924 {
10925 ret = 1;
10926 break;
10927 }
10928
10929 if (sym_sec == NULL)
10930 /* Ignore other undefined symbols. */
10931 continue;
10932
10933 /* Assume branches to other sections not included in the
10934 link need stubs too, to cover -R and absolute syms. */
10935 if (sym_sec->output_section == NULL)
10936 {
10937 ret = 1;
10938 break;
10939 }
10940
10941 if (h == NULL)
10942 sym_value = sym->st_value;
10943 else
10944 {
10945 if (h->root.type != bfd_link_hash_defined
10946 && h->root.type != bfd_link_hash_defweak)
10947 abort ();
10948 sym_value = h->root.u.def.value;
10949 }
10950 sym_value += rel->r_addend;
10951
10952 /* If this branch reloc uses an opd sym, find the code section. */
10953 opd = get_opd_info (sym_sec);
10954 if (opd != NULL)
10955 {
10956 if (h == NULL && opd->adjust != NULL)
10957 {
10958 long adjust;
10959
10960 adjust = opd->adjust[sym->st_value / 8];
10961 if (adjust == -1)
10962 /* Assume deleted functions won't ever be called. */
10963 continue;
10964 sym_value += adjust;
10965 }
10966
10967 dest = opd_entry_value (sym_sec, sym_value,
10968 &sym_sec, NULL, FALSE);
10969 if (dest == (bfd_vma) -1)
10970 continue;
10971 }
10972 else
10973 dest = (sym_value
10974 + sym_sec->output_offset
10975 + sym_sec->output_section->vma);
10976
10977 /* Ignore branch to self. */
10978 if (sym_sec == isec)
10979 continue;
10980
10981 /* If the called function uses the toc, we need a stub. */
10982 if (sym_sec->has_toc_reloc
10983 || sym_sec->makes_toc_func_call)
10984 {
10985 ret = 1;
10986 break;
10987 }
10988
10989 /* Assume any branch that needs a long branch stub might in fact
10990 need a plt_branch stub. A plt_branch stub uses r2. */
10991 else if (dest - (isec->output_offset
10992 + isec->output_section->vma
10993 + rel->r_offset) + (1 << 25) >= (2 << 25))
10994 {
10995 ret = 1;
10996 break;
10997 }
10998
10999 /* If calling back to a section in the process of being
11000 tested, we can't say for sure that no toc adjusting stubs
11001 are needed, so don't return zero. */
11002 else if (sym_sec->call_check_in_progress)
11003 ret = 2;
11004
11005 /* Branches to another section that itself doesn't have any TOC
11006 references are OK. Recursively call ourselves to check. */
11007 else if (!sym_sec->call_check_done)
11008 {
11009 int recur;
11010
11011 /* Mark current section as indeterminate, so that other
11012 sections that call back to current won't be marked as
11013 known. */
11014 isec->call_check_in_progress = 1;
11015 recur = toc_adjusting_stub_needed (info, sym_sec);
11016 isec->call_check_in_progress = 0;
11017
11018 if (recur != 0)
11019 {
11020 ret = recur;
11021 if (recur != 2)
11022 break;
11023 }
11024 }
11025 }
11026
11027 if (local_syms != NULL
11028 && (elf_symtab_hdr (isec->owner).contents
11029 != (unsigned char *) local_syms))
11030 free (local_syms);
11031 if (elf_section_data (isec)->relocs != relstart)
11032 free (relstart);
11033 }
11034
11035 if ((ret & 1) == 0
11036 && isec->map_head.s != NULL
11037 && (strcmp (isec->output_section->name, ".init") == 0
11038 || strcmp (isec->output_section->name, ".fini") == 0))
11039 {
11040 if (isec->map_head.s->has_toc_reloc
11041 || isec->map_head.s->makes_toc_func_call)
11042 ret = 1;
11043 else if (!isec->map_head.s->call_check_done)
11044 {
11045 int recur;
11046 isec->call_check_in_progress = 1;
11047 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11048 isec->call_check_in_progress = 0;
11049 if (recur != 0)
11050 ret = recur;
11051 }
11052 }
11053
11054 if (ret == 1)
11055 isec->makes_toc_func_call = 1;
11056
11057 return ret;
11058 }
11059
11060 /* The linker repeatedly calls this function for each input section,
11061 in the order that input sections are linked into output sections.
11062 Build lists of input sections to determine groupings between which
11063 we may insert linker stubs. */
11064
11065 bfd_boolean
11066 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11067 {
11068 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11069
11070 if (htab == NULL)
11071 return FALSE;
11072
11073 if ((isec->output_section->flags & SEC_CODE) != 0
11074 && isec->output_section->index <= htab->top_index)
11075 {
11076 asection **list = htab->input_list + isec->output_section->index;
11077 /* Steal the link_sec pointer for our list. */
11078 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11079 /* This happens to make the list in reverse order,
11080 which is what we want. */
11081 PREV_SEC (isec) = *list;
11082 *list = isec;
11083 }
11084
11085 if (htab->multi_toc_needed)
11086 {
11087 /* If a code section has a function that uses the TOC then we need
11088 to use the right TOC (obviously). Also, make sure that .opd gets
11089 the correct TOC value for R_PPC64_TOC relocs that don't have or
11090 can't find their function symbol (shouldn't ever happen now).
11091 Also specially treat .fixup for the linux kernel. .fixup
11092 contains branches, but only back to the function that hit an
11093 exception. */
11094 if (isec->has_toc_reloc
11095 || (isec->flags & SEC_CODE) == 0
11096 || strcmp (isec->name, ".fixup") == 0)
11097 {
11098 if (elf_gp (isec->owner) != 0)
11099 htab->toc_curr = elf_gp (isec->owner);
11100 }
11101 else
11102 {
11103 if (!isec->call_check_done
11104 && toc_adjusting_stub_needed (info, isec) < 0)
11105 return FALSE;
11106 /* If we make a local call from this section, ie. a branch
11107 without a following nop, then we have no place to put a
11108 toc restoring insn. We must use the same toc group as
11109 the callee.
11110 Testing makes_toc_func_call actually tests for *any*
11111 calls to functions that need a good toc pointer. A more
11112 precise test would be better, as this one will set
11113 incorrect values for pasted .init/.fini fragments.
11114 (Fixed later in check_pasted_section.) */
11115 if (isec->makes_toc_func_call
11116 && elf_gp (isec->owner) != 0)
11117 htab->toc_curr = elf_gp (isec->owner);
11118 }
11119 }
11120
11121 /* Functions that don't use the TOC can belong in any TOC group.
11122 Use the last TOC base. */
11123 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11124 return TRUE;
11125 }
11126
11127 /* Check that all .init and .fini sections use the same toc, if they
11128 have toc relocs. */
11129
11130 static bfd_boolean
11131 check_pasted_section (struct bfd_link_info *info, const char *name)
11132 {
11133 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11134
11135 if (o != NULL)
11136 {
11137 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11138 bfd_vma toc_off = 0;
11139 asection *i;
11140
11141 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11142 if (i->has_toc_reloc)
11143 {
11144 if (toc_off == 0)
11145 toc_off = htab->stub_group[i->id].toc_off;
11146 else if (toc_off != htab->stub_group[i->id].toc_off)
11147 return FALSE;
11148 }
11149
11150 if (toc_off == 0)
11151 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11152 if (i->makes_toc_func_call)
11153 {
11154 toc_off = htab->stub_group[i->id].toc_off;
11155 break;
11156 }
11157
11158 /* Make sure the whole pasted function uses the same toc offset. */
11159 if (toc_off != 0)
11160 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11161 htab->stub_group[i->id].toc_off = toc_off;
11162 }
11163 return TRUE;
11164 }
11165
11166 bfd_boolean
11167 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11168 {
11169 return (check_pasted_section (info, ".init")
11170 & check_pasted_section (info, ".fini"));
11171 }
11172
11173 /* See whether we can group stub sections together. Grouping stub
11174 sections may result in fewer stubs. More importantly, we need to
11175 put all .init* and .fini* stubs at the beginning of the .init or
11176 .fini output sections respectively, because glibc splits the
11177 _init and _fini functions into multiple parts. Putting a stub in
11178 the middle of a function is not a good idea. */
11179
11180 static void
11181 group_sections (struct ppc_link_hash_table *htab,
11182 bfd_size_type stub_group_size,
11183 bfd_boolean stubs_always_before_branch)
11184 {
11185 asection **list;
11186 bfd_size_type stub14_group_size;
11187 bfd_boolean suppress_size_errors;
11188
11189 suppress_size_errors = FALSE;
11190 stub14_group_size = stub_group_size;
11191 if (stub_group_size == 1)
11192 {
11193 /* Default values. */
11194 if (stubs_always_before_branch)
11195 {
11196 stub_group_size = 0x1e00000;
11197 stub14_group_size = 0x7800;
11198 }
11199 else
11200 {
11201 stub_group_size = 0x1c00000;
11202 stub14_group_size = 0x7000;
11203 }
11204 suppress_size_errors = TRUE;
11205 }
11206
11207 list = htab->input_list + htab->top_index;
11208 do
11209 {
11210 asection *tail = *list;
11211 while (tail != NULL)
11212 {
11213 asection *curr;
11214 asection *prev;
11215 bfd_size_type total;
11216 bfd_boolean big_sec;
11217 bfd_vma curr_toc;
11218
11219 curr = tail;
11220 total = tail->size;
11221 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11222 && ppc64_elf_section_data (tail)->has_14bit_branch
11223 ? stub14_group_size : stub_group_size);
11224 if (big_sec && !suppress_size_errors)
11225 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11226 tail->owner, tail);
11227 curr_toc = htab->stub_group[tail->id].toc_off;
11228
11229 while ((prev = PREV_SEC (curr)) != NULL
11230 && ((total += curr->output_offset - prev->output_offset)
11231 < (ppc64_elf_section_data (prev) != NULL
11232 && ppc64_elf_section_data (prev)->has_14bit_branch
11233 ? stub14_group_size : stub_group_size))
11234 && htab->stub_group[prev->id].toc_off == curr_toc)
11235 curr = prev;
11236
11237 /* OK, the size from the start of CURR to the end is less
11238 than stub_group_size and thus can be handled by one stub
11239 section. (or the tail section is itself larger than
11240 stub_group_size, in which case we may be toast.) We
11241 should really be keeping track of the total size of stubs
11242 added here, as stubs contribute to the final output
11243 section size. That's a little tricky, and this way will
11244 only break if stubs added make the total size more than
11245 2^25, ie. for the default stub_group_size, if stubs total
11246 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11247 do
11248 {
11249 prev = PREV_SEC (tail);
11250 /* Set up this stub group. */
11251 htab->stub_group[tail->id].link_sec = curr;
11252 }
11253 while (tail != curr && (tail = prev) != NULL);
11254
11255 /* But wait, there's more! Input sections up to stub_group_size
11256 bytes before the stub section can be handled by it too.
11257 Don't do this if we have a really large section after the
11258 stubs, as adding more stubs increases the chance that
11259 branches may not reach into the stub section. */
11260 if (!stubs_always_before_branch && !big_sec)
11261 {
11262 total = 0;
11263 while (prev != NULL
11264 && ((total += tail->output_offset - prev->output_offset)
11265 < (ppc64_elf_section_data (prev) != NULL
11266 && ppc64_elf_section_data (prev)->has_14bit_branch
11267 ? stub14_group_size : stub_group_size))
11268 && htab->stub_group[prev->id].toc_off == curr_toc)
11269 {
11270 tail = prev;
11271 prev = PREV_SEC (tail);
11272 htab->stub_group[tail->id].link_sec = curr;
11273 }
11274 }
11275 tail = prev;
11276 }
11277 }
11278 while (list-- != htab->input_list);
11279 free (htab->input_list);
11280 #undef PREV_SEC
11281 }
11282
11283 static const unsigned char glink_eh_frame_cie[] =
11284 {
11285 0, 0, 0, 16, /* length. */
11286 0, 0, 0, 0, /* id. */
11287 1, /* CIE version. */
11288 'z', 'R', 0, /* Augmentation string. */
11289 4, /* Code alignment. */
11290 0x78, /* Data alignment. */
11291 65, /* RA reg. */
11292 1, /* Augmentation size. */
11293 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11294 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11295 };
11296
11297 /* Stripping output sections is normally done before dynamic section
11298 symbols have been allocated. This function is called later, and
11299 handles cases like htab->brlt which is mapped to its own output
11300 section. */
11301
11302 static void
11303 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11304 {
11305 if (isec->size == 0
11306 && isec->output_section->size == 0
11307 && !(isec->output_section->flags & SEC_KEEP)
11308 && !bfd_section_removed_from_list (info->output_bfd,
11309 isec->output_section)
11310 && elf_section_data (isec->output_section)->dynindx == 0)
11311 {
11312 isec->output_section->flags |= SEC_EXCLUDE;
11313 bfd_section_list_remove (info->output_bfd, isec->output_section);
11314 info->output_bfd->section_count--;
11315 }
11316 }
11317
11318 /* Determine and set the size of the stub section for a final link.
11319
11320 The basic idea here is to examine all the relocations looking for
11321 PC-relative calls to a target that is unreachable with a "bl"
11322 instruction. */
11323
11324 bfd_boolean
11325 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11326 bfd_boolean plt_static_chain, int plt_thread_safe,
11327 int plt_stub_align)
11328 {
11329 bfd_size_type stub_group_size;
11330 bfd_boolean stubs_always_before_branch;
11331 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11332
11333 if (htab == NULL)
11334 return FALSE;
11335
11336 htab->plt_static_chain = plt_static_chain;
11337 htab->plt_stub_align = plt_stub_align;
11338 if (plt_thread_safe == -1 && !info->executable)
11339 plt_thread_safe = 1;
11340 if (plt_thread_safe == -1)
11341 {
11342 static const char *const thread_starter[] =
11343 {
11344 "pthread_create",
11345 /* libstdc++ */
11346 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11347 /* librt */
11348 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11349 "mq_notify", "create_timer",
11350 /* libanl */
11351 "getaddrinfo_a",
11352 /* libgomp */
11353 "GOMP_parallel_start",
11354 "GOMP_parallel_loop_static_start",
11355 "GOMP_parallel_loop_dynamic_start",
11356 "GOMP_parallel_loop_guided_start",
11357 "GOMP_parallel_loop_runtime_start",
11358 "GOMP_parallel_sections_start",
11359 };
11360 unsigned i;
11361
11362 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11363 {
11364 struct elf_link_hash_entry *h;
11365 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11366 FALSE, FALSE, TRUE);
11367 plt_thread_safe = h != NULL && h->ref_regular;
11368 if (plt_thread_safe)
11369 break;
11370 }
11371 }
11372 htab->plt_thread_safe = plt_thread_safe;
11373 htab->dot_toc_dot = ((struct ppc_link_hash_entry *)
11374 elf_link_hash_lookup (&htab->elf, ".TOC.",
11375 FALSE, FALSE, TRUE));
11376 stubs_always_before_branch = group_size < 0;
11377 if (group_size < 0)
11378 stub_group_size = -group_size;
11379 else
11380 stub_group_size = group_size;
11381
11382 group_sections (htab, stub_group_size, stubs_always_before_branch);
11383
11384 while (1)
11385 {
11386 bfd *input_bfd;
11387 unsigned int bfd_indx;
11388 asection *stub_sec;
11389
11390 htab->stub_iteration += 1;
11391
11392 for (input_bfd = info->input_bfds, bfd_indx = 0;
11393 input_bfd != NULL;
11394 input_bfd = input_bfd->link_next, bfd_indx++)
11395 {
11396 Elf_Internal_Shdr *symtab_hdr;
11397 asection *section;
11398 Elf_Internal_Sym *local_syms = NULL;
11399
11400 if (!is_ppc64_elf (input_bfd))
11401 continue;
11402
11403 /* We'll need the symbol table in a second. */
11404 symtab_hdr = &elf_symtab_hdr (input_bfd);
11405 if (symtab_hdr->sh_info == 0)
11406 continue;
11407
11408 /* Walk over each section attached to the input bfd. */
11409 for (section = input_bfd->sections;
11410 section != NULL;
11411 section = section->next)
11412 {
11413 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11414
11415 /* If there aren't any relocs, then there's nothing more
11416 to do. */
11417 if ((section->flags & SEC_RELOC) == 0
11418 || (section->flags & SEC_ALLOC) == 0
11419 || (section->flags & SEC_LOAD) == 0
11420 || (section->flags & SEC_CODE) == 0
11421 || section->reloc_count == 0)
11422 continue;
11423
11424 /* If this section is a link-once section that will be
11425 discarded, then don't create any stubs. */
11426 if (section->output_section == NULL
11427 || section->output_section->owner != info->output_bfd)
11428 continue;
11429
11430 /* Get the relocs. */
11431 internal_relocs
11432 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11433 info->keep_memory);
11434 if (internal_relocs == NULL)
11435 goto error_ret_free_local;
11436
11437 /* Now examine each relocation. */
11438 irela = internal_relocs;
11439 irelaend = irela + section->reloc_count;
11440 for (; irela < irelaend; irela++)
11441 {
11442 enum elf_ppc64_reloc_type r_type;
11443 unsigned int r_indx;
11444 enum ppc_stub_type stub_type;
11445 struct ppc_stub_hash_entry *stub_entry;
11446 asection *sym_sec, *code_sec;
11447 bfd_vma sym_value, code_value;
11448 bfd_vma destination;
11449 bfd_boolean ok_dest;
11450 struct ppc_link_hash_entry *hash;
11451 struct ppc_link_hash_entry *fdh;
11452 struct elf_link_hash_entry *h;
11453 Elf_Internal_Sym *sym;
11454 char *stub_name;
11455 const asection *id_sec;
11456 struct _opd_sec_data *opd;
11457 struct plt_entry *plt_ent;
11458
11459 r_type = ELF64_R_TYPE (irela->r_info);
11460 r_indx = ELF64_R_SYM (irela->r_info);
11461
11462 if (r_type >= R_PPC64_max)
11463 {
11464 bfd_set_error (bfd_error_bad_value);
11465 goto error_ret_free_internal;
11466 }
11467
11468 /* Only look for stubs on branch instructions. */
11469 if (r_type != R_PPC64_REL24
11470 && r_type != R_PPC64_REL14
11471 && r_type != R_PPC64_REL14_BRTAKEN
11472 && r_type != R_PPC64_REL14_BRNTAKEN)
11473 continue;
11474
11475 /* Now determine the call target, its name, value,
11476 section. */
11477 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11478 r_indx, input_bfd))
11479 goto error_ret_free_internal;
11480 hash = (struct ppc_link_hash_entry *) h;
11481
11482 ok_dest = FALSE;
11483 fdh = NULL;
11484 sym_value = 0;
11485 if (hash == NULL)
11486 {
11487 sym_value = sym->st_value;
11488 ok_dest = TRUE;
11489 }
11490 else if (hash->elf.root.type == bfd_link_hash_defined
11491 || hash->elf.root.type == bfd_link_hash_defweak)
11492 {
11493 sym_value = hash->elf.root.u.def.value;
11494 if (sym_sec->output_section != NULL)
11495 ok_dest = TRUE;
11496 }
11497 else if (hash->elf.root.type == bfd_link_hash_undefweak
11498 || hash->elf.root.type == bfd_link_hash_undefined)
11499 {
11500 /* Recognise an old ABI func code entry sym, and
11501 use the func descriptor sym instead if it is
11502 defined. */
11503 if (hash->elf.root.root.string[0] == '.'
11504 && (fdh = lookup_fdh (hash, htab)) != NULL)
11505 {
11506 if (fdh->elf.root.type == bfd_link_hash_defined
11507 || fdh->elf.root.type == bfd_link_hash_defweak)
11508 {
11509 sym_sec = fdh->elf.root.u.def.section;
11510 sym_value = fdh->elf.root.u.def.value;
11511 if (sym_sec->output_section != NULL)
11512 ok_dest = TRUE;
11513 }
11514 else
11515 fdh = NULL;
11516 }
11517 }
11518 else
11519 {
11520 bfd_set_error (bfd_error_bad_value);
11521 goto error_ret_free_internal;
11522 }
11523
11524 destination = 0;
11525 if (ok_dest)
11526 {
11527 sym_value += irela->r_addend;
11528 destination = (sym_value
11529 + sym_sec->output_offset
11530 + sym_sec->output_section->vma);
11531 }
11532
11533 code_sec = sym_sec;
11534 code_value = sym_value;
11535 opd = get_opd_info (sym_sec);
11536 if (opd != NULL)
11537 {
11538 bfd_vma dest;
11539
11540 if (hash == NULL && opd->adjust != NULL)
11541 {
11542 long adjust = opd->adjust[sym_value / 8];
11543 if (adjust == -1)
11544 continue;
11545 code_value += adjust;
11546 sym_value += adjust;
11547 }
11548 dest = opd_entry_value (sym_sec, sym_value,
11549 &code_sec, &code_value, FALSE);
11550 if (dest != (bfd_vma) -1)
11551 {
11552 destination = dest;
11553 if (fdh != NULL)
11554 {
11555 /* Fixup old ABI sym to point at code
11556 entry. */
11557 hash->elf.root.type = bfd_link_hash_defweak;
11558 hash->elf.root.u.def.section = code_sec;
11559 hash->elf.root.u.def.value = code_value;
11560 }
11561 }
11562 }
11563
11564 /* Determine what (if any) linker stub is needed. */
11565 plt_ent = NULL;
11566 stub_type = ppc_type_of_stub (section, irela, &hash,
11567 &plt_ent, destination);
11568
11569 if (stub_type != ppc_stub_plt_call)
11570 {
11571 /* Check whether we need a TOC adjusting stub.
11572 Since the linker pastes together pieces from
11573 different object files when creating the
11574 _init and _fini functions, it may be that a
11575 call to what looks like a local sym is in
11576 fact a call needing a TOC adjustment. */
11577 if (code_sec != NULL
11578 && code_sec->output_section != NULL
11579 && (htab->stub_group[code_sec->id].toc_off
11580 != htab->stub_group[section->id].toc_off)
11581 && (code_sec->has_toc_reloc
11582 || code_sec->makes_toc_func_call))
11583 stub_type = ppc_stub_long_branch_r2off;
11584 }
11585
11586 if (stub_type == ppc_stub_none)
11587 continue;
11588
11589 /* __tls_get_addr calls might be eliminated. */
11590 if (stub_type != ppc_stub_plt_call
11591 && hash != NULL
11592 && (hash == htab->tls_get_addr
11593 || hash == htab->tls_get_addr_fd)
11594 && section->has_tls_reloc
11595 && irela != internal_relocs)
11596 {
11597 /* Get tls info. */
11598 unsigned char *tls_mask;
11599
11600 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11601 irela - 1, input_bfd))
11602 goto error_ret_free_internal;
11603 if (*tls_mask != 0)
11604 continue;
11605 }
11606
11607 if (stub_type == ppc_stub_plt_call
11608 && irela + 1 < irelaend
11609 && irela[1].r_offset == irela->r_offset + 4
11610 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11611 {
11612 if (!tocsave_find (htab, INSERT,
11613 &local_syms, irela + 1, input_bfd))
11614 goto error_ret_free_internal;
11615 }
11616 else if (stub_type == ppc_stub_plt_call)
11617 stub_type = ppc_stub_plt_call_r2save;
11618
11619 /* Support for grouping stub sections. */
11620 id_sec = htab->stub_group[section->id].link_sec;
11621
11622 /* Get the name of this stub. */
11623 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11624 if (!stub_name)
11625 goto error_ret_free_internal;
11626
11627 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11628 stub_name, FALSE, FALSE);
11629 if (stub_entry != NULL)
11630 {
11631 /* The proper stub has already been created. */
11632 free (stub_name);
11633 if (stub_type == ppc_stub_plt_call_r2save)
11634 stub_entry->stub_type = stub_type;
11635 continue;
11636 }
11637
11638 stub_entry = ppc_add_stub (stub_name, section, info);
11639 if (stub_entry == NULL)
11640 {
11641 free (stub_name);
11642 error_ret_free_internal:
11643 if (elf_section_data (section)->relocs == NULL)
11644 free (internal_relocs);
11645 error_ret_free_local:
11646 if (local_syms != NULL
11647 && (symtab_hdr->contents
11648 != (unsigned char *) local_syms))
11649 free (local_syms);
11650 return FALSE;
11651 }
11652
11653 stub_entry->stub_type = stub_type;
11654 if (stub_type != ppc_stub_plt_call
11655 && stub_type != ppc_stub_plt_call_r2save)
11656 {
11657 stub_entry->target_value = code_value;
11658 stub_entry->target_section = code_sec;
11659 }
11660 else
11661 {
11662 stub_entry->target_value = sym_value;
11663 stub_entry->target_section = sym_sec;
11664 }
11665 stub_entry->h = hash;
11666 stub_entry->plt_ent = plt_ent;
11667 stub_entry->addend = irela->r_addend;
11668
11669 if (stub_entry->h != NULL)
11670 htab->stub_globals += 1;
11671 }
11672
11673 /* We're done with the internal relocs, free them. */
11674 if (elf_section_data (section)->relocs != internal_relocs)
11675 free (internal_relocs);
11676 }
11677
11678 if (local_syms != NULL
11679 && symtab_hdr->contents != (unsigned char *) local_syms)
11680 {
11681 if (!info->keep_memory)
11682 free (local_syms);
11683 else
11684 symtab_hdr->contents = (unsigned char *) local_syms;
11685 }
11686 }
11687
11688 /* We may have added some stubs. Find out the new size of the
11689 stub sections. */
11690 for (stub_sec = htab->stub_bfd->sections;
11691 stub_sec != NULL;
11692 stub_sec = stub_sec->next)
11693 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11694 {
11695 stub_sec->rawsize = stub_sec->size;
11696 stub_sec->size = 0;
11697 stub_sec->reloc_count = 0;
11698 stub_sec->flags &= ~SEC_RELOC;
11699 }
11700
11701 htab->brlt->size = 0;
11702 htab->brlt->reloc_count = 0;
11703 htab->brlt->flags &= ~SEC_RELOC;
11704 if (htab->relbrlt != NULL)
11705 htab->relbrlt->size = 0;
11706
11707 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11708
11709 if (info->emitrelocations
11710 && htab->glink != NULL && htab->glink->size != 0)
11711 {
11712 htab->glink->reloc_count = 1;
11713 htab->glink->flags |= SEC_RELOC;
11714 }
11715
11716 if (htab->glink_eh_frame != NULL
11717 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11718 && htab->glink_eh_frame->output_section->size != 0)
11719 {
11720 size_t size = 0, align;
11721
11722 for (stub_sec = htab->stub_bfd->sections;
11723 stub_sec != NULL;
11724 stub_sec = stub_sec->next)
11725 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11726 size += 20;
11727 if (htab->glink != NULL && htab->glink->size != 0)
11728 size += 24;
11729 if (size != 0)
11730 size += sizeof (glink_eh_frame_cie);
11731 align = 1;
11732 align <<= htab->glink_eh_frame->output_section->alignment_power;
11733 align -= 1;
11734 size = (size + align) & ~align;
11735 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11736 htab->glink_eh_frame->size = size;
11737 }
11738
11739 if (htab->plt_stub_align != 0)
11740 for (stub_sec = htab->stub_bfd->sections;
11741 stub_sec != NULL;
11742 stub_sec = stub_sec->next)
11743 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11744 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11745 & (-1 << htab->plt_stub_align));
11746
11747 for (stub_sec = htab->stub_bfd->sections;
11748 stub_sec != NULL;
11749 stub_sec = stub_sec->next)
11750 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11751 && stub_sec->rawsize != stub_sec->size)
11752 break;
11753
11754 /* Exit from this loop when no stubs have been added, and no stubs
11755 have changed size. */
11756 if (stub_sec == NULL
11757 && (htab->glink_eh_frame == NULL
11758 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11759 break;
11760
11761 /* Ask the linker to do its stuff. */
11762 (*htab->layout_sections_again) ();
11763 }
11764
11765 maybe_strip_output (info, htab->brlt);
11766 if (htab->glink_eh_frame != NULL)
11767 maybe_strip_output (info, htab->glink_eh_frame);
11768
11769 return TRUE;
11770 }
11771
11772 /* Called after we have determined section placement. If sections
11773 move, we'll be called again. Provide a value for TOCstart. */
11774
11775 bfd_vma
11776 ppc64_elf_toc (bfd *obfd)
11777 {
11778 asection *s;
11779 bfd_vma TOCstart;
11780
11781 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11782 order. The TOC starts where the first of these sections starts. */
11783 s = bfd_get_section_by_name (obfd, ".got");
11784 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11785 s = bfd_get_section_by_name (obfd, ".toc");
11786 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11787 s = bfd_get_section_by_name (obfd, ".tocbss");
11788 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11789 s = bfd_get_section_by_name (obfd, ".plt");
11790 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11791 {
11792 /* This may happen for
11793 o references to TOC base (SYM@toc / TOC[tc0]) without a
11794 .toc directive
11795 o bad linker script
11796 o --gc-sections and empty TOC sections
11797
11798 FIXME: Warn user? */
11799
11800 /* Look for a likely section. We probably won't even be
11801 using TOCstart. */
11802 for (s = obfd->sections; s != NULL; s = s->next)
11803 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11804 | SEC_EXCLUDE))
11805 == (SEC_ALLOC | SEC_SMALL_DATA))
11806 break;
11807 if (s == NULL)
11808 for (s = obfd->sections; s != NULL; s = s->next)
11809 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11810 == (SEC_ALLOC | SEC_SMALL_DATA))
11811 break;
11812 if (s == NULL)
11813 for (s = obfd->sections; s != NULL; s = s->next)
11814 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11815 == SEC_ALLOC)
11816 break;
11817 if (s == NULL)
11818 for (s = obfd->sections; s != NULL; s = s->next)
11819 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11820 break;
11821 }
11822
11823 TOCstart = 0;
11824 if (s != NULL)
11825 TOCstart = s->output_section->vma + s->output_offset;
11826
11827 return TOCstart;
11828 }
11829
11830 /* Build all the stubs associated with the current output file.
11831 The stubs are kept in a hash table attached to the main linker
11832 hash table. This function is called via gldelf64ppc_finish. */
11833
11834 bfd_boolean
11835 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11836 struct bfd_link_info *info,
11837 char **stats)
11838 {
11839 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11840 asection *stub_sec;
11841 bfd_byte *p;
11842 int stub_sec_count = 0;
11843
11844 if (htab == NULL)
11845 return FALSE;
11846
11847 htab->emit_stub_syms = emit_stub_syms;
11848
11849 /* Allocate memory to hold the linker stubs. */
11850 for (stub_sec = htab->stub_bfd->sections;
11851 stub_sec != NULL;
11852 stub_sec = stub_sec->next)
11853 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11854 && stub_sec->size != 0)
11855 {
11856 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11857 if (stub_sec->contents == NULL)
11858 return FALSE;
11859 /* We want to check that built size is the same as calculated
11860 size. rawsize is a convenient location to use. */
11861 stub_sec->rawsize = stub_sec->size;
11862 stub_sec->size = 0;
11863 }
11864
11865 if (htab->glink != NULL && htab->glink->size != 0)
11866 {
11867 unsigned int indx;
11868 bfd_vma plt0;
11869
11870 /* Build the .glink plt call stub. */
11871 if (htab->emit_stub_syms)
11872 {
11873 struct elf_link_hash_entry *h;
11874 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11875 TRUE, FALSE, FALSE);
11876 if (h == NULL)
11877 return FALSE;
11878 if (h->root.type == bfd_link_hash_new)
11879 {
11880 h->root.type = bfd_link_hash_defined;
11881 h->root.u.def.section = htab->glink;
11882 h->root.u.def.value = 8;
11883 h->ref_regular = 1;
11884 h->def_regular = 1;
11885 h->ref_regular_nonweak = 1;
11886 h->forced_local = 1;
11887 h->non_elf = 0;
11888 }
11889 }
11890 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11891 if (info->emitrelocations)
11892 {
11893 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11894 if (r == NULL)
11895 return FALSE;
11896 r->r_offset = (htab->glink->output_offset
11897 + htab->glink->output_section->vma);
11898 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
11899 r->r_addend = plt0;
11900 }
11901 p = htab->glink->contents;
11902 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
11903 bfd_put_64 (htab->glink->owner, plt0, p);
11904 p += 8;
11905 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
11906 p += 4;
11907 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
11908 p += 4;
11909 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
11910 p += 4;
11911 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
11912 p += 4;
11913 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
11914 p += 4;
11915 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
11916 p += 4;
11917 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
11918 p += 4;
11919 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
11920 p += 4;
11921 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
11922 p += 4;
11923 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
11924 p += 4;
11925 bfd_put_32 (htab->glink->owner, BCTR, p);
11926 p += 4;
11927 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
11928 {
11929 bfd_put_32 (htab->glink->owner, NOP, p);
11930 p += 4;
11931 }
11932
11933 /* Build the .glink lazy link call stubs. */
11934 indx = 0;
11935 while (p < htab->glink->contents + htab->glink->size)
11936 {
11937 if (indx < 0x8000)
11938 {
11939 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
11940 p += 4;
11941 }
11942 else
11943 {
11944 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
11945 p += 4;
11946 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
11947 p += 4;
11948 }
11949 bfd_put_32 (htab->glink->owner,
11950 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
11951 indx++;
11952 p += 4;
11953 }
11954 htab->glink->rawsize = p - htab->glink->contents;
11955 }
11956
11957 if (htab->brlt->size != 0)
11958 {
11959 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
11960 htab->brlt->size);
11961 if (htab->brlt->contents == NULL)
11962 return FALSE;
11963 }
11964 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
11965 {
11966 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
11967 htab->relbrlt->size);
11968 if (htab->relbrlt->contents == NULL)
11969 return FALSE;
11970 }
11971
11972 if (htab->glink_eh_frame != NULL
11973 && htab->glink_eh_frame->size != 0)
11974 {
11975 bfd_vma val;
11976 bfd_byte *last_fde;
11977 size_t last_fde_len, size, align, pad;
11978
11979 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
11980 if (p == NULL)
11981 return FALSE;
11982 htab->glink_eh_frame->contents = p;
11983 last_fde = p;
11984
11985 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11986
11987 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
11988 /* CIE length (rewrite in case little-endian). */
11989 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
11990 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
11991 p += sizeof (glink_eh_frame_cie);
11992
11993 for (stub_sec = htab->stub_bfd->sections;
11994 stub_sec != NULL;
11995 stub_sec = stub_sec->next)
11996 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11997 {
11998 last_fde = p;
11999 last_fde_len = 16;
12000 /* FDE length. */
12001 bfd_put_32 (htab->elf.dynobj, 16, p);
12002 p += 4;
12003 /* CIE pointer. */
12004 val = p - htab->glink_eh_frame->contents;
12005 bfd_put_32 (htab->elf.dynobj, val, p);
12006 p += 4;
12007 /* Offset to stub section. */
12008 val = (stub_sec->output_section->vma
12009 + stub_sec->output_offset);
12010 val -= (htab->glink_eh_frame->output_section->vma
12011 + htab->glink_eh_frame->output_offset);
12012 val -= p - htab->glink_eh_frame->contents;
12013 if (val + 0x80000000 > 0xffffffff)
12014 {
12015 info->callbacks->einfo
12016 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12017 stub_sec->name);
12018 return FALSE;
12019 }
12020 bfd_put_32 (htab->elf.dynobj, val, p);
12021 p += 4;
12022 /* stub section size. */
12023 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12024 p += 4;
12025 /* Augmentation. */
12026 p += 1;
12027 /* Pad. */
12028 p += 3;
12029 }
12030 if (htab->glink != NULL && htab->glink->size != 0)
12031 {
12032 last_fde = p;
12033 last_fde_len = 20;
12034 /* FDE length. */
12035 bfd_put_32 (htab->elf.dynobj, 20, p);
12036 p += 4;
12037 /* CIE pointer. */
12038 val = p - htab->glink_eh_frame->contents;
12039 bfd_put_32 (htab->elf.dynobj, val, p);
12040 p += 4;
12041 /* Offset to .glink. */
12042 val = (htab->glink->output_section->vma
12043 + htab->glink->output_offset
12044 + 8);
12045 val -= (htab->glink_eh_frame->output_section->vma
12046 + htab->glink_eh_frame->output_offset);
12047 val -= p - htab->glink_eh_frame->contents;
12048 if (val + 0x80000000 > 0xffffffff)
12049 {
12050 info->callbacks->einfo
12051 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12052 htab->glink->name);
12053 return FALSE;
12054 }
12055 bfd_put_32 (htab->elf.dynobj, val, p);
12056 p += 4;
12057 /* .glink size. */
12058 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
12059 p += 4;
12060 /* Augmentation. */
12061 p += 1;
12062
12063 *p++ = DW_CFA_advance_loc + 1;
12064 *p++ = DW_CFA_register;
12065 *p++ = 65;
12066 *p++ = 12;
12067 *p++ = DW_CFA_advance_loc + 4;
12068 *p++ = DW_CFA_restore_extended;
12069 *p++ = 65;
12070 }
12071 /* Subsume any padding into the last FDE if user .eh_frame
12072 sections are aligned more than glink_eh_frame. Otherwise any
12073 zero padding will be seen as a terminator. */
12074 size = p - htab->glink_eh_frame->contents;
12075 align = 1;
12076 align <<= htab->glink_eh_frame->output_section->alignment_power;
12077 align -= 1;
12078 pad = ((size + align) & ~align) - size;
12079 htab->glink_eh_frame->size = size + pad;
12080 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12081 }
12082
12083 /* Build the stubs as directed by the stub hash table. */
12084 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12085
12086 if (htab->relbrlt != NULL)
12087 htab->relbrlt->reloc_count = 0;
12088
12089 if (htab->plt_stub_align != 0)
12090 for (stub_sec = htab->stub_bfd->sections;
12091 stub_sec != NULL;
12092 stub_sec = stub_sec->next)
12093 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12094 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12095 & (-1 << htab->plt_stub_align));
12096
12097 for (stub_sec = htab->stub_bfd->sections;
12098 stub_sec != NULL;
12099 stub_sec = stub_sec->next)
12100 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12101 {
12102 stub_sec_count += 1;
12103 if (stub_sec->rawsize != stub_sec->size)
12104 break;
12105 }
12106
12107 if (stub_sec != NULL
12108 || htab->glink->rawsize != htab->glink->size
12109 || (htab->glink_eh_frame != NULL
12110 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12111 {
12112 htab->stub_error = TRUE;
12113 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12114 }
12115
12116 if (htab->stub_error)
12117 return FALSE;
12118
12119 if (stats != NULL)
12120 {
12121 *stats = bfd_malloc (500);
12122 if (*stats == NULL)
12123 return FALSE;
12124
12125 sprintf (*stats, _("linker stubs in %u group%s\n"
12126 " branch %lu\n"
12127 " toc adjust %lu\n"
12128 " long branch %lu\n"
12129 " long toc adj %lu\n"
12130 " plt call %lu\n"
12131 " plt call toc %lu"),
12132 stub_sec_count,
12133 stub_sec_count == 1 ? "" : "s",
12134 htab->stub_count[ppc_stub_long_branch - 1],
12135 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12136 htab->stub_count[ppc_stub_plt_branch - 1],
12137 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12138 htab->stub_count[ppc_stub_plt_call - 1],
12139 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12140 }
12141 return TRUE;
12142 }
12143
12144 /* This function undoes the changes made by add_symbol_adjust. */
12145
12146 static bfd_boolean
12147 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12148 {
12149 struct ppc_link_hash_entry *eh;
12150
12151 if (h->root.type == bfd_link_hash_indirect)
12152 return TRUE;
12153
12154 eh = (struct ppc_link_hash_entry *) h;
12155 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12156 return TRUE;
12157
12158 eh->elf.root.type = bfd_link_hash_undefined;
12159 return TRUE;
12160 }
12161
12162 void
12163 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12164 {
12165 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12166
12167 if (htab != NULL)
12168 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12169 }
12170
12171 /* What to do when ld finds relocations against symbols defined in
12172 discarded sections. */
12173
12174 static unsigned int
12175 ppc64_elf_action_discarded (asection *sec)
12176 {
12177 if (strcmp (".opd", sec->name) == 0)
12178 return 0;
12179
12180 if (strcmp (".toc", sec->name) == 0)
12181 return 0;
12182
12183 if (strcmp (".toc1", sec->name) == 0)
12184 return 0;
12185
12186 return _bfd_elf_default_action_discarded (sec);
12187 }
12188
12189 /* The RELOCATE_SECTION function is called by the ELF backend linker
12190 to handle the relocations for a section.
12191
12192 The relocs are always passed as Rela structures; if the section
12193 actually uses Rel structures, the r_addend field will always be
12194 zero.
12195
12196 This function is responsible for adjust the section contents as
12197 necessary, and (if using Rela relocs and generating a
12198 relocatable output file) adjusting the reloc addend as
12199 necessary.
12200
12201 This function does not have to worry about setting the reloc
12202 address or the reloc symbol index.
12203
12204 LOCAL_SYMS is a pointer to the swapped in local symbols.
12205
12206 LOCAL_SECTIONS is an array giving the section in the input file
12207 corresponding to the st_shndx field of each local symbol.
12208
12209 The global hash table entry for the global symbols can be found
12210 via elf_sym_hashes (input_bfd).
12211
12212 When generating relocatable output, this function must handle
12213 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12214 going to be the section symbol corresponding to the output
12215 section, which means that the addend must be adjusted
12216 accordingly. */
12217
12218 static bfd_boolean
12219 ppc64_elf_relocate_section (bfd *output_bfd,
12220 struct bfd_link_info *info,
12221 bfd *input_bfd,
12222 asection *input_section,
12223 bfd_byte *contents,
12224 Elf_Internal_Rela *relocs,
12225 Elf_Internal_Sym *local_syms,
12226 asection **local_sections)
12227 {
12228 struct ppc_link_hash_table *htab;
12229 Elf_Internal_Shdr *symtab_hdr;
12230 struct elf_link_hash_entry **sym_hashes;
12231 Elf_Internal_Rela *rel;
12232 Elf_Internal_Rela *relend;
12233 Elf_Internal_Rela outrel;
12234 bfd_byte *loc;
12235 struct got_entry **local_got_ents;
12236 bfd_vma TOCstart;
12237 bfd_boolean ret = TRUE;
12238 bfd_boolean is_opd;
12239 /* Assume 'at' branch hints. */
12240 bfd_boolean is_isa_v2 = TRUE;
12241 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12242
12243 /* Initialize howto table if needed. */
12244 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12245 ppc_howto_init ();
12246
12247 htab = ppc_hash_table (info);
12248 if (htab == NULL)
12249 return FALSE;
12250
12251 /* Don't relocate stub sections. */
12252 if (input_section->owner == htab->stub_bfd)
12253 return TRUE;
12254
12255 BFD_ASSERT (is_ppc64_elf (input_bfd));
12256
12257 local_got_ents = elf_local_got_ents (input_bfd);
12258 TOCstart = elf_gp (output_bfd);
12259 symtab_hdr = &elf_symtab_hdr (input_bfd);
12260 sym_hashes = elf_sym_hashes (input_bfd);
12261 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12262
12263 rel = relocs;
12264 relend = relocs + input_section->reloc_count;
12265 for (; rel < relend; rel++)
12266 {
12267 enum elf_ppc64_reloc_type r_type;
12268 bfd_vma addend;
12269 bfd_reloc_status_type r;
12270 Elf_Internal_Sym *sym;
12271 asection *sec;
12272 struct elf_link_hash_entry *h_elf;
12273 struct ppc_link_hash_entry *h;
12274 struct ppc_link_hash_entry *fdh;
12275 const char *sym_name;
12276 unsigned long r_symndx, toc_symndx;
12277 bfd_vma toc_addend;
12278 unsigned char tls_mask, tls_gd, tls_type;
12279 unsigned char sym_type;
12280 bfd_vma relocation;
12281 bfd_boolean unresolved_reloc;
12282 bfd_boolean warned;
12283 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12284 unsigned int insn;
12285 unsigned int mask;
12286 struct ppc_stub_hash_entry *stub_entry;
12287 bfd_vma max_br_offset;
12288 bfd_vma from;
12289 const Elf_Internal_Rela orig_rel = *rel;
12290
12291 r_type = ELF64_R_TYPE (rel->r_info);
12292 r_symndx = ELF64_R_SYM (rel->r_info);
12293
12294 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12295 symbol of the previous ADDR64 reloc. The symbol gives us the
12296 proper TOC base to use. */
12297 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12298 && rel != relocs
12299 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12300 && is_opd)
12301 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12302
12303 sym = NULL;
12304 sec = NULL;
12305 h_elf = NULL;
12306 sym_name = NULL;
12307 unresolved_reloc = FALSE;
12308 warned = FALSE;
12309
12310 if (r_symndx < symtab_hdr->sh_info)
12311 {
12312 /* It's a local symbol. */
12313 struct _opd_sec_data *opd;
12314
12315 sym = local_syms + r_symndx;
12316 sec = local_sections[r_symndx];
12317 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12318 sym_type = ELF64_ST_TYPE (sym->st_info);
12319 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12320 opd = get_opd_info (sec);
12321 if (opd != NULL && opd->adjust != NULL)
12322 {
12323 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12324 if (adjust == -1)
12325 relocation = 0;
12326 else
12327 {
12328 /* If this is a relocation against the opd section sym
12329 and we have edited .opd, adjust the reloc addend so
12330 that ld -r and ld --emit-relocs output is correct.
12331 If it is a reloc against some other .opd symbol,
12332 then the symbol value will be adjusted later. */
12333 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12334 rel->r_addend += adjust;
12335 else
12336 relocation += adjust;
12337 }
12338 }
12339 }
12340 else
12341 {
12342 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12343 r_symndx, symtab_hdr, sym_hashes,
12344 h_elf, sec, relocation,
12345 unresolved_reloc, warned);
12346 sym_name = h_elf->root.root.string;
12347 sym_type = h_elf->type;
12348 if (sec != NULL
12349 && sec->owner == output_bfd
12350 && strcmp (sec->name, ".opd") == 0)
12351 {
12352 /* This is a symbol defined in a linker script. All
12353 such are defined in output sections, even those
12354 defined by simple assignment from a symbol defined in
12355 an input section. Transfer the symbol to an
12356 appropriate input .opd section, so that a branch to
12357 this symbol will be mapped to the location specified
12358 by the opd entry. */
12359 struct bfd_link_order *lo;
12360 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12361 if (lo->type == bfd_indirect_link_order)
12362 {
12363 asection *isec = lo->u.indirect.section;
12364 if (h_elf->root.u.def.value >= isec->output_offset
12365 && h_elf->root.u.def.value < (isec->output_offset
12366 + isec->size))
12367 {
12368 h_elf->root.u.def.value -= isec->output_offset;
12369 h_elf->root.u.def.section = isec;
12370 sec = isec;
12371 break;
12372 }
12373 }
12374 }
12375 if (h_elf == &htab->dot_toc_dot->elf)
12376 {
12377 relocation = (TOCstart
12378 + htab->stub_group[input_section->id].toc_off);
12379 sec = bfd_abs_section_ptr;
12380 unresolved_reloc = FALSE;
12381 }
12382 }
12383 h = (struct ppc_link_hash_entry *) h_elf;
12384
12385 if (sec != NULL && discarded_section (sec))
12386 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12387 rel, 1, relend,
12388 ppc64_elf_howto_table[r_type], 0,
12389 contents);
12390
12391 if (info->relocatable)
12392 continue;
12393
12394 /* TLS optimizations. Replace instruction sequences and relocs
12395 based on information we collected in tls_optimize. We edit
12396 RELOCS so that --emit-relocs will output something sensible
12397 for the final instruction stream. */
12398 tls_mask = 0;
12399 tls_gd = 0;
12400 toc_symndx = 0;
12401 if (h != NULL)
12402 tls_mask = h->tls_mask;
12403 else if (local_got_ents != NULL)
12404 {
12405 struct plt_entry **local_plt = (struct plt_entry **)
12406 (local_got_ents + symtab_hdr->sh_info);
12407 unsigned char *lgot_masks = (unsigned char *)
12408 (local_plt + symtab_hdr->sh_info);
12409 tls_mask = lgot_masks[r_symndx];
12410 }
12411 if (tls_mask == 0
12412 && (r_type == R_PPC64_TLS
12413 || r_type == R_PPC64_TLSGD
12414 || r_type == R_PPC64_TLSLD))
12415 {
12416 /* Check for toc tls entries. */
12417 unsigned char *toc_tls;
12418
12419 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12420 &local_syms, rel, input_bfd))
12421 return FALSE;
12422
12423 if (toc_tls)
12424 tls_mask = *toc_tls;
12425 }
12426
12427 /* Check that tls relocs are used with tls syms, and non-tls
12428 relocs are used with non-tls syms. */
12429 if (r_symndx != STN_UNDEF
12430 && r_type != R_PPC64_NONE
12431 && (h == NULL
12432 || h->elf.root.type == bfd_link_hash_defined
12433 || h->elf.root.type == bfd_link_hash_defweak)
12434 && (IS_PPC64_TLS_RELOC (r_type)
12435 != (sym_type == STT_TLS
12436 || (sym_type == STT_SECTION
12437 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12438 {
12439 if (tls_mask != 0
12440 && (r_type == R_PPC64_TLS
12441 || r_type == R_PPC64_TLSGD
12442 || r_type == R_PPC64_TLSLD))
12443 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12444 ;
12445 else
12446 info->callbacks->einfo
12447 (!IS_PPC64_TLS_RELOC (r_type)
12448 ? _("%P: %H: %s used with TLS symbol `%T'\n")
12449 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
12450 input_bfd, input_section, rel->r_offset,
12451 ppc64_elf_howto_table[r_type]->name,
12452 sym_name);
12453 }
12454
12455 /* Ensure reloc mapping code below stays sane. */
12456 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12457 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12458 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12459 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12460 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12461 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12462 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12463 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12464 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12465 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12466 abort ();
12467
12468 switch (r_type)
12469 {
12470 default:
12471 break;
12472
12473 case R_PPC64_LO_DS_OPT:
12474 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12475 if ((insn & (0x3f << 26)) != 58u << 26)
12476 abort ();
12477 insn += (14u << 26) - (58u << 26);
12478 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12479 r_type = R_PPC64_TOC16_LO;
12480 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12481 break;
12482
12483 case R_PPC64_TOC16:
12484 case R_PPC64_TOC16_LO:
12485 case R_PPC64_TOC16_DS:
12486 case R_PPC64_TOC16_LO_DS:
12487 {
12488 /* Check for toc tls entries. */
12489 unsigned char *toc_tls;
12490 int retval;
12491
12492 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12493 &local_syms, rel, input_bfd);
12494 if (retval == 0)
12495 return FALSE;
12496
12497 if (toc_tls)
12498 {
12499 tls_mask = *toc_tls;
12500 if (r_type == R_PPC64_TOC16_DS
12501 || r_type == R_PPC64_TOC16_LO_DS)
12502 {
12503 if (tls_mask != 0
12504 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12505 goto toctprel;
12506 }
12507 else
12508 {
12509 /* If we found a GD reloc pair, then we might be
12510 doing a GD->IE transition. */
12511 if (retval == 2)
12512 {
12513 tls_gd = TLS_TPRELGD;
12514 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12515 goto tls_ldgd_opt;
12516 }
12517 else if (retval == 3)
12518 {
12519 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12520 goto tls_ldgd_opt;
12521 }
12522 }
12523 }
12524 }
12525 break;
12526
12527 case R_PPC64_GOT_TPREL16_HI:
12528 case R_PPC64_GOT_TPREL16_HA:
12529 if (tls_mask != 0
12530 && (tls_mask & TLS_TPREL) == 0)
12531 {
12532 rel->r_offset -= d_offset;
12533 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12534 r_type = R_PPC64_NONE;
12535 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12536 }
12537 break;
12538
12539 case R_PPC64_GOT_TPREL16_DS:
12540 case R_PPC64_GOT_TPREL16_LO_DS:
12541 if (tls_mask != 0
12542 && (tls_mask & TLS_TPREL) == 0)
12543 {
12544 toctprel:
12545 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12546 insn &= 31 << 21;
12547 insn |= 0x3c0d0000; /* addis 0,13,0 */
12548 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12549 r_type = R_PPC64_TPREL16_HA;
12550 if (toc_symndx != 0)
12551 {
12552 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12553 rel->r_addend = toc_addend;
12554 /* We changed the symbol. Start over in order to
12555 get h, sym, sec etc. right. */
12556 rel--;
12557 continue;
12558 }
12559 else
12560 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12561 }
12562 break;
12563
12564 case R_PPC64_TLS:
12565 if (tls_mask != 0
12566 && (tls_mask & TLS_TPREL) == 0)
12567 {
12568 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12569 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12570 if (insn == 0)
12571 abort ();
12572 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12573 /* Was PPC64_TLS which sits on insn boundary, now
12574 PPC64_TPREL16_LO which is at low-order half-word. */
12575 rel->r_offset += d_offset;
12576 r_type = R_PPC64_TPREL16_LO;
12577 if (toc_symndx != 0)
12578 {
12579 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12580 rel->r_addend = toc_addend;
12581 /* We changed the symbol. Start over in order to
12582 get h, sym, sec etc. right. */
12583 rel--;
12584 continue;
12585 }
12586 else
12587 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12588 }
12589 break;
12590
12591 case R_PPC64_GOT_TLSGD16_HI:
12592 case R_PPC64_GOT_TLSGD16_HA:
12593 tls_gd = TLS_TPRELGD;
12594 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12595 goto tls_gdld_hi;
12596 break;
12597
12598 case R_PPC64_GOT_TLSLD16_HI:
12599 case R_PPC64_GOT_TLSLD16_HA:
12600 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12601 {
12602 tls_gdld_hi:
12603 if ((tls_mask & tls_gd) != 0)
12604 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12605 + R_PPC64_GOT_TPREL16_DS);
12606 else
12607 {
12608 rel->r_offset -= d_offset;
12609 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12610 r_type = R_PPC64_NONE;
12611 }
12612 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12613 }
12614 break;
12615
12616 case R_PPC64_GOT_TLSGD16:
12617 case R_PPC64_GOT_TLSGD16_LO:
12618 tls_gd = TLS_TPRELGD;
12619 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12620 goto tls_ldgd_opt;
12621 break;
12622
12623 case R_PPC64_GOT_TLSLD16:
12624 case R_PPC64_GOT_TLSLD16_LO:
12625 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12626 {
12627 unsigned int insn1, insn2, insn3;
12628 bfd_vma offset;
12629
12630 tls_ldgd_opt:
12631 offset = (bfd_vma) -1;
12632 /* If not using the newer R_PPC64_TLSGD/LD to mark
12633 __tls_get_addr calls, we must trust that the call
12634 stays with its arg setup insns, ie. that the next
12635 reloc is the __tls_get_addr call associated with
12636 the current reloc. Edit both insns. */
12637 if (input_section->has_tls_get_addr_call
12638 && rel + 1 < relend
12639 && branch_reloc_hash_match (input_bfd, rel + 1,
12640 htab->tls_get_addr,
12641 htab->tls_get_addr_fd))
12642 offset = rel[1].r_offset;
12643 if ((tls_mask & tls_gd) != 0)
12644 {
12645 /* IE */
12646 insn1 = bfd_get_32 (output_bfd,
12647 contents + rel->r_offset - d_offset);
12648 insn1 &= (1 << 26) - (1 << 2);
12649 insn1 |= 58 << 26; /* ld */
12650 insn2 = 0x7c636a14; /* add 3,3,13 */
12651 if (offset != (bfd_vma) -1)
12652 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12653 if ((tls_mask & TLS_EXPLICIT) == 0)
12654 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12655 + R_PPC64_GOT_TPREL16_DS);
12656 else
12657 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12658 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12659 }
12660 else
12661 {
12662 /* LE */
12663 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12664 insn2 = 0x38630000; /* addi 3,3,0 */
12665 if (tls_gd == 0)
12666 {
12667 /* Was an LD reloc. */
12668 if (toc_symndx)
12669 sec = local_sections[toc_symndx];
12670 for (r_symndx = 0;
12671 r_symndx < symtab_hdr->sh_info;
12672 r_symndx++)
12673 if (local_sections[r_symndx] == sec)
12674 break;
12675 if (r_symndx >= symtab_hdr->sh_info)
12676 r_symndx = STN_UNDEF;
12677 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12678 if (r_symndx != STN_UNDEF)
12679 rel->r_addend -= (local_syms[r_symndx].st_value
12680 + sec->output_offset
12681 + sec->output_section->vma);
12682 }
12683 else if (toc_symndx != 0)
12684 {
12685 r_symndx = toc_symndx;
12686 rel->r_addend = toc_addend;
12687 }
12688 r_type = R_PPC64_TPREL16_HA;
12689 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12690 if (offset != (bfd_vma) -1)
12691 {
12692 rel[1].r_info = ELF64_R_INFO (r_symndx,
12693 R_PPC64_TPREL16_LO);
12694 rel[1].r_offset = offset + d_offset;
12695 rel[1].r_addend = rel->r_addend;
12696 }
12697 }
12698 bfd_put_32 (output_bfd, insn1,
12699 contents + rel->r_offset - d_offset);
12700 if (offset != (bfd_vma) -1)
12701 {
12702 insn3 = bfd_get_32 (output_bfd,
12703 contents + offset + 4);
12704 if (insn3 == NOP
12705 || insn3 == CROR_151515 || insn3 == CROR_313131)
12706 {
12707 rel[1].r_offset += 4;
12708 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12709 insn2 = NOP;
12710 }
12711 bfd_put_32 (output_bfd, insn2, contents + offset);
12712 }
12713 if ((tls_mask & tls_gd) == 0
12714 && (tls_gd == 0 || toc_symndx != 0))
12715 {
12716 /* We changed the symbol. Start over in order
12717 to get h, sym, sec etc. right. */
12718 rel--;
12719 continue;
12720 }
12721 }
12722 break;
12723
12724 case R_PPC64_TLSGD:
12725 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12726 {
12727 unsigned int insn2, insn3;
12728 bfd_vma offset = rel->r_offset;
12729
12730 if ((tls_mask & TLS_TPRELGD) != 0)
12731 {
12732 /* IE */
12733 r_type = R_PPC64_NONE;
12734 insn2 = 0x7c636a14; /* add 3,3,13 */
12735 }
12736 else
12737 {
12738 /* LE */
12739 if (toc_symndx != 0)
12740 {
12741 r_symndx = toc_symndx;
12742 rel->r_addend = toc_addend;
12743 }
12744 r_type = R_PPC64_TPREL16_LO;
12745 rel->r_offset = offset + d_offset;
12746 insn2 = 0x38630000; /* addi 3,3,0 */
12747 }
12748 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12749 /* Zap the reloc on the _tls_get_addr call too. */
12750 BFD_ASSERT (offset == rel[1].r_offset);
12751 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12752 insn3 = bfd_get_32 (output_bfd,
12753 contents + offset + 4);
12754 if (insn3 == NOP
12755 || insn3 == CROR_151515 || insn3 == CROR_313131)
12756 {
12757 rel->r_offset += 4;
12758 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12759 insn2 = NOP;
12760 }
12761 bfd_put_32 (output_bfd, insn2, contents + offset);
12762 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12763 {
12764 rel--;
12765 continue;
12766 }
12767 }
12768 break;
12769
12770 case R_PPC64_TLSLD:
12771 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12772 {
12773 unsigned int insn2, insn3;
12774 bfd_vma offset = rel->r_offset;
12775
12776 if (toc_symndx)
12777 sec = local_sections[toc_symndx];
12778 for (r_symndx = 0;
12779 r_symndx < symtab_hdr->sh_info;
12780 r_symndx++)
12781 if (local_sections[r_symndx] == sec)
12782 break;
12783 if (r_symndx >= symtab_hdr->sh_info)
12784 r_symndx = STN_UNDEF;
12785 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12786 if (r_symndx != STN_UNDEF)
12787 rel->r_addend -= (local_syms[r_symndx].st_value
12788 + sec->output_offset
12789 + sec->output_section->vma);
12790
12791 r_type = R_PPC64_TPREL16_LO;
12792 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12793 rel->r_offset = offset + d_offset;
12794 /* Zap the reloc on the _tls_get_addr call too. */
12795 BFD_ASSERT (offset == rel[1].r_offset);
12796 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12797 insn2 = 0x38630000; /* addi 3,3,0 */
12798 insn3 = bfd_get_32 (output_bfd,
12799 contents + offset + 4);
12800 if (insn3 == NOP
12801 || insn3 == CROR_151515 || insn3 == CROR_313131)
12802 {
12803 rel->r_offset += 4;
12804 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12805 insn2 = NOP;
12806 }
12807 bfd_put_32 (output_bfd, insn2, contents + offset);
12808 rel--;
12809 continue;
12810 }
12811 break;
12812
12813 case R_PPC64_DTPMOD64:
12814 if (rel + 1 < relend
12815 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12816 && rel[1].r_offset == rel->r_offset + 8)
12817 {
12818 if ((tls_mask & TLS_GD) == 0)
12819 {
12820 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12821 if ((tls_mask & TLS_TPRELGD) != 0)
12822 r_type = R_PPC64_TPREL64;
12823 else
12824 {
12825 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12826 r_type = R_PPC64_NONE;
12827 }
12828 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12829 }
12830 }
12831 else
12832 {
12833 if ((tls_mask & TLS_LD) == 0)
12834 {
12835 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12836 r_type = R_PPC64_NONE;
12837 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12838 }
12839 }
12840 break;
12841
12842 case R_PPC64_TPREL64:
12843 if ((tls_mask & TLS_TPREL) == 0)
12844 {
12845 r_type = R_PPC64_NONE;
12846 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12847 }
12848 break;
12849 }
12850
12851 /* Handle other relocations that tweak non-addend part of insn. */
12852 insn = 0;
12853 max_br_offset = 1 << 25;
12854 addend = rel->r_addend;
12855 reloc_dest = DEST_NORMAL;
12856 switch (r_type)
12857 {
12858 default:
12859 break;
12860
12861 case R_PPC64_TOCSAVE:
12862 if (relocation + addend == (rel->r_offset
12863 + input_section->output_offset
12864 + input_section->output_section->vma)
12865 && tocsave_find (htab, NO_INSERT,
12866 &local_syms, rel, input_bfd))
12867 {
12868 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12869 if (insn == NOP
12870 || insn == CROR_151515 || insn == CROR_313131)
12871 bfd_put_32 (input_bfd, STD_R2_40R1,
12872 contents + rel->r_offset);
12873 }
12874 break;
12875
12876 /* Branch taken prediction relocations. */
12877 case R_PPC64_ADDR14_BRTAKEN:
12878 case R_PPC64_REL14_BRTAKEN:
12879 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12880 /* Fall thru. */
12881
12882 /* Branch not taken prediction relocations. */
12883 case R_PPC64_ADDR14_BRNTAKEN:
12884 case R_PPC64_REL14_BRNTAKEN:
12885 insn |= bfd_get_32 (output_bfd,
12886 contents + rel->r_offset) & ~(0x01 << 21);
12887 /* Fall thru. */
12888
12889 case R_PPC64_REL14:
12890 max_br_offset = 1 << 15;
12891 /* Fall thru. */
12892
12893 case R_PPC64_REL24:
12894 /* Calls to functions with a different TOC, such as calls to
12895 shared objects, need to alter the TOC pointer. This is
12896 done using a linkage stub. A REL24 branching to these
12897 linkage stubs needs to be followed by a nop, as the nop
12898 will be replaced with an instruction to restore the TOC
12899 base pointer. */
12900 fdh = h;
12901 if (h != NULL
12902 && h->oh != NULL
12903 && h->oh->is_func_descriptor)
12904 fdh = ppc_follow_link (h->oh);
12905 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
12906 htab);
12907 if (stub_entry != NULL
12908 && (stub_entry->stub_type == ppc_stub_plt_call
12909 || stub_entry->stub_type == ppc_stub_plt_call_r2save
12910 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
12911 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
12912 {
12913 bfd_boolean can_plt_call = FALSE;
12914
12915 if (rel->r_offset + 8 <= input_section->size)
12916 {
12917 unsigned long nop;
12918 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
12919 if (nop == NOP
12920 || nop == CROR_151515 || nop == CROR_313131)
12921 {
12922 if (h != NULL
12923 && (h == htab->tls_get_addr_fd
12924 || h == htab->tls_get_addr)
12925 && !htab->no_tls_get_addr_opt)
12926 {
12927 /* Special stub used, leave nop alone. */
12928 }
12929 else
12930 bfd_put_32 (input_bfd, LD_R2_40R1,
12931 contents + rel->r_offset + 4);
12932 can_plt_call = TRUE;
12933 }
12934 }
12935
12936 if (!can_plt_call)
12937 {
12938 if (stub_entry->stub_type == ppc_stub_plt_call
12939 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12940 {
12941 /* If this is a plain branch rather than a branch
12942 and link, don't require a nop. However, don't
12943 allow tail calls in a shared library as they
12944 will result in r2 being corrupted. */
12945 unsigned long br;
12946 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
12947 if (info->executable && (br & 1) == 0)
12948 can_plt_call = TRUE;
12949 else
12950 stub_entry = NULL;
12951 }
12952 else if (h != NULL
12953 && strcmp (h->elf.root.root.string,
12954 ".__libc_start_main") == 0)
12955 {
12956 /* Allow crt1 branch to go via a toc adjusting stub. */
12957 can_plt_call = TRUE;
12958 }
12959 else
12960 {
12961 info->callbacks->einfo
12962 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
12963 "recompile with -fPIC"),
12964 input_bfd, input_section, rel->r_offset, sym_name);
12965
12966 bfd_set_error (bfd_error_bad_value);
12967 ret = FALSE;
12968 }
12969 }
12970
12971 if (can_plt_call
12972 && (stub_entry->stub_type == ppc_stub_plt_call
12973 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
12974 unresolved_reloc = FALSE;
12975 }
12976
12977 if ((stub_entry == NULL
12978 || stub_entry->stub_type == ppc_stub_long_branch
12979 || stub_entry->stub_type == ppc_stub_plt_branch)
12980 && get_opd_info (sec) != NULL)
12981 {
12982 /* The branch destination is the value of the opd entry. */
12983 bfd_vma off = (relocation + addend
12984 - sec->output_section->vma
12985 - sec->output_offset);
12986 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
12987 if (dest != (bfd_vma) -1)
12988 {
12989 relocation = dest;
12990 addend = 0;
12991 reloc_dest = DEST_OPD;
12992 }
12993 }
12994
12995 /* If the branch is out of reach we ought to have a long
12996 branch stub. */
12997 from = (rel->r_offset
12998 + input_section->output_offset
12999 + input_section->output_section->vma);
13000
13001 if (stub_entry != NULL
13002 && (stub_entry->stub_type == ppc_stub_long_branch
13003 || stub_entry->stub_type == ppc_stub_plt_branch)
13004 && (r_type == R_PPC64_ADDR14_BRTAKEN
13005 || r_type == R_PPC64_ADDR14_BRNTAKEN
13006 || (relocation + addend - from + max_br_offset
13007 < 2 * max_br_offset)))
13008 /* Don't use the stub if this branch is in range. */
13009 stub_entry = NULL;
13010
13011 if (stub_entry != NULL)
13012 {
13013 /* Munge up the value and addend so that we call the stub
13014 rather than the procedure directly. */
13015 relocation = (stub_entry->stub_offset
13016 + stub_entry->stub_sec->output_offset
13017 + stub_entry->stub_sec->output_section->vma);
13018 addend = 0;
13019 reloc_dest = DEST_STUB;
13020
13021 if ((stub_entry->stub_type == ppc_stub_plt_call
13022 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13023 && (ALWAYS_EMIT_R2SAVE
13024 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13025 && rel + 1 < relend
13026 && rel[1].r_offset == rel->r_offset + 4
13027 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13028 relocation += 4;
13029 }
13030
13031 if (insn != 0)
13032 {
13033 if (is_isa_v2)
13034 {
13035 /* Set 'a' bit. This is 0b00010 in BO field for branch
13036 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13037 for branch on CTR insns (BO == 1a00t or 1a01t). */
13038 if ((insn & (0x14 << 21)) == (0x04 << 21))
13039 insn |= 0x02 << 21;
13040 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13041 insn |= 0x08 << 21;
13042 else
13043 break;
13044 }
13045 else
13046 {
13047 /* Invert 'y' bit if not the default. */
13048 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13049 insn ^= 0x01 << 21;
13050 }
13051
13052 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13053 }
13054
13055 /* NOP out calls to undefined weak functions.
13056 We can thus call a weak function without first
13057 checking whether the function is defined. */
13058 else if (h != NULL
13059 && h->elf.root.type == bfd_link_hash_undefweak
13060 && h->elf.dynindx == -1
13061 && r_type == R_PPC64_REL24
13062 && relocation == 0
13063 && addend == 0)
13064 {
13065 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13066 continue;
13067 }
13068 break;
13069 }
13070
13071 /* Set `addend'. */
13072 tls_type = 0;
13073 switch (r_type)
13074 {
13075 default:
13076 info->callbacks->einfo
13077 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13078 input_bfd, (int) r_type, sym_name);
13079
13080 bfd_set_error (bfd_error_bad_value);
13081 ret = FALSE;
13082 continue;
13083
13084 case R_PPC64_NONE:
13085 case R_PPC64_TLS:
13086 case R_PPC64_TLSGD:
13087 case R_PPC64_TLSLD:
13088 case R_PPC64_TOCSAVE:
13089 case R_PPC64_GNU_VTINHERIT:
13090 case R_PPC64_GNU_VTENTRY:
13091 continue;
13092
13093 /* GOT16 relocations. Like an ADDR16 using the symbol's
13094 address in the GOT as relocation value instead of the
13095 symbol's value itself. Also, create a GOT entry for the
13096 symbol and put the symbol value there. */
13097 case R_PPC64_GOT_TLSGD16:
13098 case R_PPC64_GOT_TLSGD16_LO:
13099 case R_PPC64_GOT_TLSGD16_HI:
13100 case R_PPC64_GOT_TLSGD16_HA:
13101 tls_type = TLS_TLS | TLS_GD;
13102 goto dogot;
13103
13104 case R_PPC64_GOT_TLSLD16:
13105 case R_PPC64_GOT_TLSLD16_LO:
13106 case R_PPC64_GOT_TLSLD16_HI:
13107 case R_PPC64_GOT_TLSLD16_HA:
13108 tls_type = TLS_TLS | TLS_LD;
13109 goto dogot;
13110
13111 case R_PPC64_GOT_TPREL16_DS:
13112 case R_PPC64_GOT_TPREL16_LO_DS:
13113 case R_PPC64_GOT_TPREL16_HI:
13114 case R_PPC64_GOT_TPREL16_HA:
13115 tls_type = TLS_TLS | TLS_TPREL;
13116 goto dogot;
13117
13118 case R_PPC64_GOT_DTPREL16_DS:
13119 case R_PPC64_GOT_DTPREL16_LO_DS:
13120 case R_PPC64_GOT_DTPREL16_HI:
13121 case R_PPC64_GOT_DTPREL16_HA:
13122 tls_type = TLS_TLS | TLS_DTPREL;
13123 goto dogot;
13124
13125 case R_PPC64_GOT16:
13126 case R_PPC64_GOT16_LO:
13127 case R_PPC64_GOT16_HI:
13128 case R_PPC64_GOT16_HA:
13129 case R_PPC64_GOT16_DS:
13130 case R_PPC64_GOT16_LO_DS:
13131 dogot:
13132 {
13133 /* Relocation is to the entry for this symbol in the global
13134 offset table. */
13135 asection *got;
13136 bfd_vma *offp;
13137 bfd_vma off;
13138 unsigned long indx = 0;
13139 struct got_entry *ent;
13140
13141 if (tls_type == (TLS_TLS | TLS_LD)
13142 && (h == NULL
13143 || !h->elf.def_dynamic))
13144 ent = ppc64_tlsld_got (input_bfd);
13145 else
13146 {
13147
13148 if (h != NULL)
13149 {
13150 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13151 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13152 &h->elf)
13153 || (info->shared
13154 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13155 /* This is actually a static link, or it is a
13156 -Bsymbolic link and the symbol is defined
13157 locally, or the symbol was forced to be local
13158 because of a version file. */
13159 ;
13160 else
13161 {
13162 BFD_ASSERT (h->elf.dynindx != -1);
13163 indx = h->elf.dynindx;
13164 unresolved_reloc = FALSE;
13165 }
13166 ent = h->elf.got.glist;
13167 }
13168 else
13169 {
13170 if (local_got_ents == NULL)
13171 abort ();
13172 ent = local_got_ents[r_symndx];
13173 }
13174
13175 for (; ent != NULL; ent = ent->next)
13176 if (ent->addend == orig_rel.r_addend
13177 && ent->owner == input_bfd
13178 && ent->tls_type == tls_type)
13179 break;
13180 }
13181
13182 if (ent == NULL)
13183 abort ();
13184 if (ent->is_indirect)
13185 ent = ent->got.ent;
13186 offp = &ent->got.offset;
13187 got = ppc64_elf_tdata (ent->owner)->got;
13188 if (got == NULL)
13189 abort ();
13190
13191 /* The offset must always be a multiple of 8. We use the
13192 least significant bit to record whether we have already
13193 processed this entry. */
13194 off = *offp;
13195 if ((off & 1) != 0)
13196 off &= ~1;
13197 else
13198 {
13199 /* Generate relocs for the dynamic linker, except in
13200 the case of TLSLD where we'll use one entry per
13201 module. */
13202 asection *relgot;
13203 bfd_boolean ifunc;
13204
13205 *offp = off | 1;
13206 relgot = NULL;
13207 ifunc = (h != NULL
13208 ? h->elf.type == STT_GNU_IFUNC
13209 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13210 if ((info->shared || indx != 0)
13211 && (h == NULL
13212 || (tls_type == (TLS_TLS | TLS_LD)
13213 && !h->elf.def_dynamic)
13214 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13215 || h->elf.root.type != bfd_link_hash_undefweak))
13216 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13217 else if (ifunc)
13218 relgot = htab->reliplt;
13219 if (relgot != NULL)
13220 {
13221 outrel.r_offset = (got->output_section->vma
13222 + got->output_offset
13223 + off);
13224 outrel.r_addend = addend;
13225 if (tls_type & (TLS_LD | TLS_GD))
13226 {
13227 outrel.r_addend = 0;
13228 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13229 if (tls_type == (TLS_TLS | TLS_GD))
13230 {
13231 loc = relgot->contents;
13232 loc += (relgot->reloc_count++
13233 * sizeof (Elf64_External_Rela));
13234 bfd_elf64_swap_reloca_out (output_bfd,
13235 &outrel, loc);
13236 outrel.r_offset += 8;
13237 outrel.r_addend = addend;
13238 outrel.r_info
13239 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13240 }
13241 }
13242 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13243 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13244 else if (tls_type == (TLS_TLS | TLS_TPREL))
13245 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13246 else if (indx != 0)
13247 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13248 else
13249 {
13250 if (ifunc)
13251 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13252 else
13253 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13254
13255 /* Write the .got section contents for the sake
13256 of prelink. */
13257 loc = got->contents + off;
13258 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13259 loc);
13260 }
13261
13262 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13263 {
13264 outrel.r_addend += relocation;
13265 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13266 outrel.r_addend -= htab->elf.tls_sec->vma;
13267 }
13268 loc = relgot->contents;
13269 loc += (relgot->reloc_count++
13270 * sizeof (Elf64_External_Rela));
13271 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13272 }
13273
13274 /* Init the .got section contents here if we're not
13275 emitting a reloc. */
13276 else
13277 {
13278 relocation += addend;
13279 if (tls_type == (TLS_TLS | TLS_LD))
13280 relocation = 1;
13281 else if (tls_type != 0)
13282 {
13283 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13284 if (tls_type == (TLS_TLS | TLS_TPREL))
13285 relocation += DTP_OFFSET - TP_OFFSET;
13286
13287 if (tls_type == (TLS_TLS | TLS_GD))
13288 {
13289 bfd_put_64 (output_bfd, relocation,
13290 got->contents + off + 8);
13291 relocation = 1;
13292 }
13293 }
13294
13295 bfd_put_64 (output_bfd, relocation,
13296 got->contents + off);
13297 }
13298 }
13299
13300 if (off >= (bfd_vma) -2)
13301 abort ();
13302
13303 relocation = got->output_section->vma + got->output_offset + off;
13304 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13305 }
13306 break;
13307
13308 case R_PPC64_PLT16_HA:
13309 case R_PPC64_PLT16_HI:
13310 case R_PPC64_PLT16_LO:
13311 case R_PPC64_PLT32:
13312 case R_PPC64_PLT64:
13313 /* Relocation is to the entry for this symbol in the
13314 procedure linkage table. */
13315
13316 /* Resolve a PLT reloc against a local symbol directly,
13317 without using the procedure linkage table. */
13318 if (h == NULL)
13319 break;
13320
13321 /* It's possible that we didn't make a PLT entry for this
13322 symbol. This happens when statically linking PIC code,
13323 or when using -Bsymbolic. Go find a match if there is a
13324 PLT entry. */
13325 if (htab->plt != NULL)
13326 {
13327 struct plt_entry *ent;
13328 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13329 if (ent->addend == orig_rel.r_addend
13330 && ent->plt.offset != (bfd_vma) -1)
13331 {
13332 relocation = (htab->plt->output_section->vma
13333 + htab->plt->output_offset
13334 + ent->plt.offset);
13335 unresolved_reloc = FALSE;
13336 }
13337 }
13338 break;
13339
13340 case R_PPC64_TOC:
13341 /* Relocation value is TOC base. */
13342 relocation = TOCstart;
13343 if (r_symndx == STN_UNDEF)
13344 relocation += htab->stub_group[input_section->id].toc_off;
13345 else if (unresolved_reloc)
13346 ;
13347 else if (sec != NULL && sec->id <= htab->top_id)
13348 relocation += htab->stub_group[sec->id].toc_off;
13349 else
13350 unresolved_reloc = TRUE;
13351 goto dodyn;
13352
13353 /* TOC16 relocs. We want the offset relative to the TOC base,
13354 which is the address of the start of the TOC plus 0x8000.
13355 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13356 in this order. */
13357 case R_PPC64_TOC16:
13358 case R_PPC64_TOC16_LO:
13359 case R_PPC64_TOC16_HI:
13360 case R_PPC64_TOC16_DS:
13361 case R_PPC64_TOC16_LO_DS:
13362 case R_PPC64_TOC16_HA:
13363 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13364 break;
13365
13366 /* Relocate against the beginning of the section. */
13367 case R_PPC64_SECTOFF:
13368 case R_PPC64_SECTOFF_LO:
13369 case R_PPC64_SECTOFF_HI:
13370 case R_PPC64_SECTOFF_DS:
13371 case R_PPC64_SECTOFF_LO_DS:
13372 case R_PPC64_SECTOFF_HA:
13373 if (sec != NULL)
13374 addend -= sec->output_section->vma;
13375 break;
13376
13377 case R_PPC64_REL16:
13378 case R_PPC64_REL16_LO:
13379 case R_PPC64_REL16_HI:
13380 case R_PPC64_REL16_HA:
13381 break;
13382
13383 case R_PPC64_REL14:
13384 case R_PPC64_REL14_BRNTAKEN:
13385 case R_PPC64_REL14_BRTAKEN:
13386 case R_PPC64_REL24:
13387 break;
13388
13389 case R_PPC64_TPREL16:
13390 case R_PPC64_TPREL16_LO:
13391 case R_PPC64_TPREL16_HI:
13392 case R_PPC64_TPREL16_HA:
13393 case R_PPC64_TPREL16_DS:
13394 case R_PPC64_TPREL16_LO_DS:
13395 case R_PPC64_TPREL16_HIGHER:
13396 case R_PPC64_TPREL16_HIGHERA:
13397 case R_PPC64_TPREL16_HIGHEST:
13398 case R_PPC64_TPREL16_HIGHESTA:
13399 if (h != NULL
13400 && h->elf.root.type == bfd_link_hash_undefweak
13401 && h->elf.dynindx == -1)
13402 {
13403 /* Make this relocation against an undefined weak symbol
13404 resolve to zero. This is really just a tweak, since
13405 code using weak externs ought to check that they are
13406 defined before using them. */
13407 bfd_byte *p = contents + rel->r_offset - d_offset;
13408
13409 insn = bfd_get_32 (output_bfd, p);
13410 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13411 if (insn != 0)
13412 bfd_put_32 (output_bfd, insn, p);
13413 break;
13414 }
13415 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13416 if (info->shared)
13417 /* The TPREL16 relocs shouldn't really be used in shared
13418 libs as they will result in DT_TEXTREL being set, but
13419 support them anyway. */
13420 goto dodyn;
13421 break;
13422
13423 case R_PPC64_DTPREL16:
13424 case R_PPC64_DTPREL16_LO:
13425 case R_PPC64_DTPREL16_HI:
13426 case R_PPC64_DTPREL16_HA:
13427 case R_PPC64_DTPREL16_DS:
13428 case R_PPC64_DTPREL16_LO_DS:
13429 case R_PPC64_DTPREL16_HIGHER:
13430 case R_PPC64_DTPREL16_HIGHERA:
13431 case R_PPC64_DTPREL16_HIGHEST:
13432 case R_PPC64_DTPREL16_HIGHESTA:
13433 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13434 break;
13435
13436 case R_PPC64_DTPMOD64:
13437 relocation = 1;
13438 addend = 0;
13439 goto dodyn;
13440
13441 case R_PPC64_TPREL64:
13442 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13443 goto dodyn;
13444
13445 case R_PPC64_DTPREL64:
13446 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13447 /* Fall thru */
13448
13449 /* Relocations that may need to be propagated if this is a
13450 dynamic object. */
13451 case R_PPC64_REL30:
13452 case R_PPC64_REL32:
13453 case R_PPC64_REL64:
13454 case R_PPC64_ADDR14:
13455 case R_PPC64_ADDR14_BRNTAKEN:
13456 case R_PPC64_ADDR14_BRTAKEN:
13457 case R_PPC64_ADDR16:
13458 case R_PPC64_ADDR16_DS:
13459 case R_PPC64_ADDR16_HA:
13460 case R_PPC64_ADDR16_HI:
13461 case R_PPC64_ADDR16_HIGHER:
13462 case R_PPC64_ADDR16_HIGHERA:
13463 case R_PPC64_ADDR16_HIGHEST:
13464 case R_PPC64_ADDR16_HIGHESTA:
13465 case R_PPC64_ADDR16_LO:
13466 case R_PPC64_ADDR16_LO_DS:
13467 case R_PPC64_ADDR24:
13468 case R_PPC64_ADDR32:
13469 case R_PPC64_ADDR64:
13470 case R_PPC64_UADDR16:
13471 case R_PPC64_UADDR32:
13472 case R_PPC64_UADDR64:
13473 dodyn:
13474 if ((input_section->flags & SEC_ALLOC) == 0)
13475 break;
13476
13477 if (NO_OPD_RELOCS && is_opd)
13478 break;
13479
13480 if ((info->shared
13481 && (h == NULL
13482 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13483 || h->elf.root.type != bfd_link_hash_undefweak)
13484 && (must_be_dyn_reloc (info, r_type)
13485 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13486 || (ELIMINATE_COPY_RELOCS
13487 && !info->shared
13488 && h != NULL
13489 && h->elf.dynindx != -1
13490 && !h->elf.non_got_ref
13491 && !h->elf.def_regular)
13492 || (!info->shared
13493 && (h != NULL
13494 ? h->elf.type == STT_GNU_IFUNC
13495 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13496 {
13497 bfd_boolean skip, relocate;
13498 asection *sreloc;
13499 bfd_vma out_off;
13500
13501 /* When generating a dynamic object, these relocations
13502 are copied into the output file to be resolved at run
13503 time. */
13504
13505 skip = FALSE;
13506 relocate = FALSE;
13507
13508 out_off = _bfd_elf_section_offset (output_bfd, info,
13509 input_section, rel->r_offset);
13510 if (out_off == (bfd_vma) -1)
13511 skip = TRUE;
13512 else if (out_off == (bfd_vma) -2)
13513 skip = TRUE, relocate = TRUE;
13514 out_off += (input_section->output_section->vma
13515 + input_section->output_offset);
13516 outrel.r_offset = out_off;
13517 outrel.r_addend = rel->r_addend;
13518
13519 /* Optimize unaligned reloc use. */
13520 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13521 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13522 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13523 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13524 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13525 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13526 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13527 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13528 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13529
13530 if (skip)
13531 memset (&outrel, 0, sizeof outrel);
13532 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13533 && !is_opd
13534 && r_type != R_PPC64_TOC)
13535 {
13536 BFD_ASSERT (h->elf.dynindx != -1);
13537 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13538 }
13539 else
13540 {
13541 /* This symbol is local, or marked to become local,
13542 or this is an opd section reloc which must point
13543 at a local function. */
13544 outrel.r_addend += relocation;
13545 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13546 {
13547 if (is_opd && h != NULL)
13548 {
13549 /* Lie about opd entries. This case occurs
13550 when building shared libraries and we
13551 reference a function in another shared
13552 lib. The same thing happens for a weak
13553 definition in an application that's
13554 overridden by a strong definition in a
13555 shared lib. (I believe this is a generic
13556 bug in binutils handling of weak syms.)
13557 In these cases we won't use the opd
13558 entry in this lib. */
13559 unresolved_reloc = FALSE;
13560 }
13561 if (!is_opd
13562 && r_type == R_PPC64_ADDR64
13563 && (h != NULL
13564 ? h->elf.type == STT_GNU_IFUNC
13565 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13566 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13567 else
13568 {
13569 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13570
13571 /* We need to relocate .opd contents for ld.so.
13572 Prelink also wants simple and consistent rules
13573 for relocs. This make all RELATIVE relocs have
13574 *r_offset equal to r_addend. */
13575 relocate = TRUE;
13576 }
13577 }
13578 else
13579 {
13580 long indx = 0;
13581
13582 if (h != NULL
13583 ? h->elf.type == STT_GNU_IFUNC
13584 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13585 {
13586 info->callbacks->einfo
13587 (_("%P: %H: %s for indirect "
13588 "function `%T' unsupported\n"),
13589 input_bfd, input_section, rel->r_offset,
13590 ppc64_elf_howto_table[r_type]->name,
13591 sym_name);
13592 ret = FALSE;
13593 }
13594 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13595 ;
13596 else if (sec == NULL || sec->owner == NULL)
13597 {
13598 bfd_set_error (bfd_error_bad_value);
13599 return FALSE;
13600 }
13601 else
13602 {
13603 asection *osec;
13604
13605 osec = sec->output_section;
13606 indx = elf_section_data (osec)->dynindx;
13607
13608 if (indx == 0)
13609 {
13610 if ((osec->flags & SEC_READONLY) == 0
13611 && htab->elf.data_index_section != NULL)
13612 osec = htab->elf.data_index_section;
13613 else
13614 osec = htab->elf.text_index_section;
13615 indx = elf_section_data (osec)->dynindx;
13616 }
13617 BFD_ASSERT (indx != 0);
13618
13619 /* We are turning this relocation into one
13620 against a section symbol, so subtract out
13621 the output section's address but not the
13622 offset of the input section in the output
13623 section. */
13624 outrel.r_addend -= osec->vma;
13625 }
13626
13627 outrel.r_info = ELF64_R_INFO (indx, r_type);
13628 }
13629 }
13630
13631 sreloc = elf_section_data (input_section)->sreloc;
13632 if (!htab->elf.dynamic_sections_created)
13633 sreloc = htab->reliplt;
13634 if (sreloc == NULL)
13635 abort ();
13636
13637 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13638 >= sreloc->size)
13639 abort ();
13640 loc = sreloc->contents;
13641 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13642 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13643
13644 /* If this reloc is against an external symbol, it will
13645 be computed at runtime, so there's no need to do
13646 anything now. However, for the sake of prelink ensure
13647 that the section contents are a known value. */
13648 if (! relocate)
13649 {
13650 unresolved_reloc = FALSE;
13651 /* The value chosen here is quite arbitrary as ld.so
13652 ignores section contents except for the special
13653 case of .opd where the contents might be accessed
13654 before relocation. Choose zero, as that won't
13655 cause reloc overflow. */
13656 relocation = 0;
13657 addend = 0;
13658 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13659 to improve backward compatibility with older
13660 versions of ld. */
13661 if (r_type == R_PPC64_ADDR64)
13662 addend = outrel.r_addend;
13663 /* Adjust pc_relative relocs to have zero in *r_offset. */
13664 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13665 addend = (input_section->output_section->vma
13666 + input_section->output_offset
13667 + rel->r_offset);
13668 }
13669 }
13670 break;
13671
13672 case R_PPC64_COPY:
13673 case R_PPC64_GLOB_DAT:
13674 case R_PPC64_JMP_SLOT:
13675 case R_PPC64_JMP_IREL:
13676 case R_PPC64_RELATIVE:
13677 /* We shouldn't ever see these dynamic relocs in relocatable
13678 files. */
13679 /* Fall through. */
13680
13681 case R_PPC64_PLTGOT16:
13682 case R_PPC64_PLTGOT16_DS:
13683 case R_PPC64_PLTGOT16_HA:
13684 case R_PPC64_PLTGOT16_HI:
13685 case R_PPC64_PLTGOT16_LO:
13686 case R_PPC64_PLTGOT16_LO_DS:
13687 case R_PPC64_PLTREL32:
13688 case R_PPC64_PLTREL64:
13689 /* These ones haven't been implemented yet. */
13690
13691 info->callbacks->einfo
13692 (_("%P: %B: %s is not supported for `%T'\n"),
13693 input_bfd,
13694 ppc64_elf_howto_table[r_type]->name, sym_name);
13695
13696 bfd_set_error (bfd_error_invalid_operation);
13697 ret = FALSE;
13698 continue;
13699 }
13700
13701 /* Multi-instruction sequences that access the TOC can be
13702 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13703 to nop; addi rb,r2,x; */
13704 switch (r_type)
13705 {
13706 default:
13707 break;
13708
13709 case R_PPC64_GOT_TLSLD16_HI:
13710 case R_PPC64_GOT_TLSGD16_HI:
13711 case R_PPC64_GOT_TPREL16_HI:
13712 case R_PPC64_GOT_DTPREL16_HI:
13713 case R_PPC64_GOT16_HI:
13714 case R_PPC64_TOC16_HI:
13715 /* These relocs would only be useful if building up an
13716 offset to later add to r2, perhaps in an indexed
13717 addressing mode instruction. Don't try to optimize.
13718 Unfortunately, the possibility of someone building up an
13719 offset like this or even with the HA relocs, means that
13720 we need to check the high insn when optimizing the low
13721 insn. */
13722 break;
13723
13724 case R_PPC64_GOT_TLSLD16_HA:
13725 case R_PPC64_GOT_TLSGD16_HA:
13726 case R_PPC64_GOT_TPREL16_HA:
13727 case R_PPC64_GOT_DTPREL16_HA:
13728 case R_PPC64_GOT16_HA:
13729 case R_PPC64_TOC16_HA:
13730 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13731 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13732 {
13733 bfd_byte *p = contents + (rel->r_offset & ~3);
13734 bfd_put_32 (input_bfd, NOP, p);
13735 }
13736 break;
13737
13738 case R_PPC64_GOT_TLSLD16_LO:
13739 case R_PPC64_GOT_TLSGD16_LO:
13740 case R_PPC64_GOT_TPREL16_LO_DS:
13741 case R_PPC64_GOT_DTPREL16_LO_DS:
13742 case R_PPC64_GOT16_LO:
13743 case R_PPC64_GOT16_LO_DS:
13744 case R_PPC64_TOC16_LO:
13745 case R_PPC64_TOC16_LO_DS:
13746 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13747 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13748 {
13749 bfd_byte *p = contents + (rel->r_offset & ~3);
13750 insn = bfd_get_32 (input_bfd, p);
13751 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13752 {
13753 /* Transform addic to addi when we change reg. */
13754 insn &= ~((0x3f << 26) | (0x1f << 16));
13755 insn |= (14u << 26) | (2 << 16);
13756 }
13757 else
13758 {
13759 insn &= ~(0x1f << 16);
13760 insn |= 2 << 16;
13761 }
13762 bfd_put_32 (input_bfd, insn, p);
13763 }
13764 break;
13765 }
13766
13767 /* Do any further special processing. */
13768 switch (r_type)
13769 {
13770 default:
13771 break;
13772
13773 case R_PPC64_ADDR16_HA:
13774 case R_PPC64_REL16_HA:
13775 case R_PPC64_ADDR16_HIGHERA:
13776 case R_PPC64_ADDR16_HIGHESTA:
13777 case R_PPC64_TOC16_HA:
13778 case R_PPC64_SECTOFF_HA:
13779 case R_PPC64_TPREL16_HA:
13780 case R_PPC64_DTPREL16_HA:
13781 case R_PPC64_TPREL16_HIGHER:
13782 case R_PPC64_TPREL16_HIGHERA:
13783 case R_PPC64_TPREL16_HIGHEST:
13784 case R_PPC64_TPREL16_HIGHESTA:
13785 case R_PPC64_DTPREL16_HIGHER:
13786 case R_PPC64_DTPREL16_HIGHERA:
13787 case R_PPC64_DTPREL16_HIGHEST:
13788 case R_PPC64_DTPREL16_HIGHESTA:
13789 /* It's just possible that this symbol is a weak symbol
13790 that's not actually defined anywhere. In that case,
13791 'sec' would be NULL, and we should leave the symbol
13792 alone (it will be set to zero elsewhere in the link). */
13793 if (sec == NULL)
13794 break;
13795 /* Fall thru */
13796
13797 case R_PPC64_GOT16_HA:
13798 case R_PPC64_PLTGOT16_HA:
13799 case R_PPC64_PLT16_HA:
13800 case R_PPC64_GOT_TLSGD16_HA:
13801 case R_PPC64_GOT_TLSLD16_HA:
13802 case R_PPC64_GOT_TPREL16_HA:
13803 case R_PPC64_GOT_DTPREL16_HA:
13804 /* Add 0x10000 if sign bit in 0:15 is set.
13805 Bits 0:15 are not used. */
13806 addend += 0x8000;
13807 break;
13808
13809 case R_PPC64_ADDR16_DS:
13810 case R_PPC64_ADDR16_LO_DS:
13811 case R_PPC64_GOT16_DS:
13812 case R_PPC64_GOT16_LO_DS:
13813 case R_PPC64_PLT16_LO_DS:
13814 case R_PPC64_SECTOFF_DS:
13815 case R_PPC64_SECTOFF_LO_DS:
13816 case R_PPC64_TOC16_DS:
13817 case R_PPC64_TOC16_LO_DS:
13818 case R_PPC64_PLTGOT16_DS:
13819 case R_PPC64_PLTGOT16_LO_DS:
13820 case R_PPC64_GOT_TPREL16_DS:
13821 case R_PPC64_GOT_TPREL16_LO_DS:
13822 case R_PPC64_GOT_DTPREL16_DS:
13823 case R_PPC64_GOT_DTPREL16_LO_DS:
13824 case R_PPC64_TPREL16_DS:
13825 case R_PPC64_TPREL16_LO_DS:
13826 case R_PPC64_DTPREL16_DS:
13827 case R_PPC64_DTPREL16_LO_DS:
13828 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13829 mask = 3;
13830 /* If this reloc is against an lq insn, then the value must be
13831 a multiple of 16. This is somewhat of a hack, but the
13832 "correct" way to do this by defining _DQ forms of all the
13833 _DS relocs bloats all reloc switches in this file. It
13834 doesn't seem to make much sense to use any of these relocs
13835 in data, so testing the insn should be safe. */
13836 if ((insn & (0x3f << 26)) == (56u << 26))
13837 mask = 15;
13838 if (((relocation + addend) & mask) != 0)
13839 {
13840 info->callbacks->einfo
13841 (_("%P: %H: error: %s not a multiple of %u\n"),
13842 input_bfd, input_section, rel->r_offset,
13843 ppc64_elf_howto_table[r_type]->name,
13844 mask + 1);
13845 bfd_set_error (bfd_error_bad_value);
13846 ret = FALSE;
13847 continue;
13848 }
13849 break;
13850 }
13851
13852 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13853 because such sections are not SEC_ALLOC and thus ld.so will
13854 not process them. */
13855 if (unresolved_reloc
13856 && !((input_section->flags & SEC_DEBUGGING) != 0
13857 && h->elf.def_dynamic)
13858 && _bfd_elf_section_offset (output_bfd, info, input_section,
13859 rel->r_offset) != (bfd_vma) -1)
13860 {
13861 info->callbacks->einfo
13862 (_("%P: %H: unresolvable %s against `%T'\n"),
13863 input_bfd, input_section, rel->r_offset,
13864 ppc64_elf_howto_table[(int) r_type]->name,
13865 h->elf.root.root.string);
13866 ret = FALSE;
13867 }
13868
13869 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
13870 input_bfd,
13871 input_section,
13872 contents,
13873 rel->r_offset,
13874 relocation,
13875 addend);
13876
13877 if (r != bfd_reloc_ok)
13878 {
13879 char *more_info = NULL;
13880 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
13881
13882 if (reloc_dest != DEST_NORMAL)
13883 {
13884 more_info = bfd_malloc (strlen (reloc_name) + 8);
13885 if (more_info != NULL)
13886 {
13887 strcpy (more_info, reloc_name);
13888 strcat (more_info, (reloc_dest == DEST_OPD
13889 ? " (OPD)" : " (stub)"));
13890 reloc_name = more_info;
13891 }
13892 }
13893
13894 if (r == bfd_reloc_overflow)
13895 {
13896 if (warned)
13897 continue;
13898 if (h != NULL
13899 && h->elf.root.type == bfd_link_hash_undefweak
13900 && ppc64_elf_howto_table[r_type]->pc_relative)
13901 {
13902 /* Assume this is a call protected by other code that
13903 detects the symbol is undefined. If this is the case,
13904 we can safely ignore the overflow. If not, the
13905 program is hosed anyway, and a little warning isn't
13906 going to help. */
13907
13908 continue;
13909 }
13910
13911 if (!((*info->callbacks->reloc_overflow)
13912 (info, &h->elf.root, sym_name,
13913 reloc_name, orig_rel.r_addend,
13914 input_bfd, input_section, rel->r_offset)))
13915 return FALSE;
13916 }
13917 else
13918 {
13919 info->callbacks->einfo
13920 (_("%P: %H: %s against `%T': error %d\n"),
13921 input_bfd, input_section, rel->r_offset,
13922 reloc_name, sym_name, (int) r);
13923 ret = FALSE;
13924 }
13925 if (more_info != NULL)
13926 free (more_info);
13927 }
13928 }
13929
13930 /* If we're emitting relocations, then shortly after this function
13931 returns, reloc offsets and addends for this section will be
13932 adjusted. Worse, reloc symbol indices will be for the output
13933 file rather than the input. Save a copy of the relocs for
13934 opd_entry_value. */
13935 if (is_opd && (info->emitrelocations || info->relocatable))
13936 {
13937 bfd_size_type amt;
13938 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
13939 rel = bfd_alloc (input_bfd, amt);
13940 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
13941 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
13942 if (rel == NULL)
13943 return FALSE;
13944 memcpy (rel, relocs, amt);
13945 }
13946 return ret;
13947 }
13948
13949 /* Adjust the value of any local symbols in opd sections. */
13950
13951 static int
13952 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
13953 const char *name ATTRIBUTE_UNUSED,
13954 Elf_Internal_Sym *elfsym,
13955 asection *input_sec,
13956 struct elf_link_hash_entry *h)
13957 {
13958 struct _opd_sec_data *opd;
13959 long adjust;
13960 bfd_vma value;
13961
13962 if (h != NULL)
13963 return 1;
13964
13965 opd = get_opd_info (input_sec);
13966 if (opd == NULL || opd->adjust == NULL)
13967 return 1;
13968
13969 value = elfsym->st_value - input_sec->output_offset;
13970 if (!info->relocatable)
13971 value -= input_sec->output_section->vma;
13972
13973 adjust = opd->adjust[value / 8];
13974 if (adjust == -1)
13975 return 2;
13976
13977 elfsym->st_value += adjust;
13978 return 1;
13979 }
13980
13981 /* Finish up dynamic symbol handling. We set the contents of various
13982 dynamic sections here. */
13983
13984 static bfd_boolean
13985 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
13986 struct bfd_link_info *info,
13987 struct elf_link_hash_entry *h,
13988 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
13989 {
13990 struct ppc_link_hash_table *htab;
13991 struct plt_entry *ent;
13992 Elf_Internal_Rela rela;
13993 bfd_byte *loc;
13994
13995 htab = ppc_hash_table (info);
13996 if (htab == NULL)
13997 return FALSE;
13998
13999 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14000 if (ent->plt.offset != (bfd_vma) -1)
14001 {
14002 /* This symbol has an entry in the procedure linkage
14003 table. Set it up. */
14004 if (!htab->elf.dynamic_sections_created
14005 || h->dynindx == -1)
14006 {
14007 BFD_ASSERT (h->type == STT_GNU_IFUNC
14008 && h->def_regular
14009 && (h->root.type == bfd_link_hash_defined
14010 || h->root.type == bfd_link_hash_defweak));
14011 rela.r_offset = (htab->iplt->output_section->vma
14012 + htab->iplt->output_offset
14013 + ent->plt.offset);
14014 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14015 rela.r_addend = (h->root.u.def.value
14016 + h->root.u.def.section->output_offset
14017 + h->root.u.def.section->output_section->vma
14018 + ent->addend);
14019 loc = (htab->reliplt->contents
14020 + (htab->reliplt->reloc_count++
14021 * sizeof (Elf64_External_Rela)));
14022 }
14023 else
14024 {
14025 rela.r_offset = (htab->plt->output_section->vma
14026 + htab->plt->output_offset
14027 + ent->plt.offset);
14028 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14029 rela.r_addend = ent->addend;
14030 loc = (htab->relplt->contents
14031 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
14032 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
14033 }
14034 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14035 }
14036
14037 if (h->needs_copy)
14038 {
14039 /* This symbol needs a copy reloc. Set it up. */
14040
14041 if (h->dynindx == -1
14042 || (h->root.type != bfd_link_hash_defined
14043 && h->root.type != bfd_link_hash_defweak)
14044 || htab->relbss == NULL)
14045 abort ();
14046
14047 rela.r_offset = (h->root.u.def.value
14048 + h->root.u.def.section->output_section->vma
14049 + h->root.u.def.section->output_offset);
14050 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14051 rela.r_addend = 0;
14052 loc = htab->relbss->contents;
14053 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14054 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14055 }
14056
14057 return TRUE;
14058 }
14059
14060 /* Used to decide how to sort relocs in an optimal manner for the
14061 dynamic linker, before writing them out. */
14062
14063 static enum elf_reloc_type_class
14064 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
14065 {
14066 enum elf_ppc64_reloc_type r_type;
14067
14068 r_type = ELF64_R_TYPE (rela->r_info);
14069 switch (r_type)
14070 {
14071 case R_PPC64_RELATIVE:
14072 return reloc_class_relative;
14073 case R_PPC64_JMP_SLOT:
14074 return reloc_class_plt;
14075 case R_PPC64_COPY:
14076 return reloc_class_copy;
14077 default:
14078 return reloc_class_normal;
14079 }
14080 }
14081
14082 /* Finish up the dynamic sections. */
14083
14084 static bfd_boolean
14085 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14086 struct bfd_link_info *info)
14087 {
14088 struct ppc_link_hash_table *htab;
14089 bfd *dynobj;
14090 asection *sdyn;
14091
14092 htab = ppc_hash_table (info);
14093 if (htab == NULL)
14094 return FALSE;
14095
14096 dynobj = htab->elf.dynobj;
14097 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14098
14099 if (htab->elf.dynamic_sections_created)
14100 {
14101 Elf64_External_Dyn *dyncon, *dynconend;
14102
14103 if (sdyn == NULL || htab->got == NULL)
14104 abort ();
14105
14106 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14107 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14108 for (; dyncon < dynconend; dyncon++)
14109 {
14110 Elf_Internal_Dyn dyn;
14111 asection *s;
14112
14113 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14114
14115 switch (dyn.d_tag)
14116 {
14117 default:
14118 continue;
14119
14120 case DT_PPC64_GLINK:
14121 s = htab->glink;
14122 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14123 /* We stupidly defined DT_PPC64_GLINK to be the start
14124 of glink rather than the first entry point, which is
14125 what ld.so needs, and now have a bigger stub to
14126 support automatic multiple TOCs. */
14127 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14128 break;
14129
14130 case DT_PPC64_OPD:
14131 s = bfd_get_section_by_name (output_bfd, ".opd");
14132 if (s == NULL)
14133 continue;
14134 dyn.d_un.d_ptr = s->vma;
14135 break;
14136
14137 case DT_PPC64_OPDSZ:
14138 s = bfd_get_section_by_name (output_bfd, ".opd");
14139 if (s == NULL)
14140 continue;
14141 dyn.d_un.d_val = s->size;
14142 break;
14143
14144 case DT_PLTGOT:
14145 s = htab->plt;
14146 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14147 break;
14148
14149 case DT_JMPREL:
14150 s = htab->relplt;
14151 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14152 break;
14153
14154 case DT_PLTRELSZ:
14155 dyn.d_un.d_val = htab->relplt->size;
14156 break;
14157
14158 case DT_RELASZ:
14159 /* Don't count procedure linkage table relocs in the
14160 overall reloc count. */
14161 s = htab->relplt;
14162 if (s == NULL)
14163 continue;
14164 dyn.d_un.d_val -= s->size;
14165 break;
14166
14167 case DT_RELA:
14168 /* We may not be using the standard ELF linker script.
14169 If .rela.plt is the first .rela section, we adjust
14170 DT_RELA to not include it. */
14171 s = htab->relplt;
14172 if (s == NULL)
14173 continue;
14174 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14175 continue;
14176 dyn.d_un.d_ptr += s->size;
14177 break;
14178 }
14179
14180 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14181 }
14182 }
14183
14184 if (htab->got != NULL && htab->got->size != 0)
14185 {
14186 /* Fill in the first entry in the global offset table.
14187 We use it to hold the link-time TOCbase. */
14188 bfd_put_64 (output_bfd,
14189 elf_gp (output_bfd) + TOC_BASE_OFF,
14190 htab->got->contents);
14191
14192 /* Set .got entry size. */
14193 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14194 }
14195
14196 if (htab->plt != NULL && htab->plt->size != 0)
14197 {
14198 /* Set .plt entry size. */
14199 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14200 = PLT_ENTRY_SIZE;
14201 }
14202
14203 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14204 brlt ourselves if emitrelocations. */
14205 if (htab->brlt != NULL
14206 && htab->brlt->reloc_count != 0
14207 && !_bfd_elf_link_output_relocs (output_bfd,
14208 htab->brlt,
14209 elf_section_data (htab->brlt)->rela.hdr,
14210 elf_section_data (htab->brlt)->relocs,
14211 NULL))
14212 return FALSE;
14213
14214 if (htab->glink != NULL
14215 && htab->glink->reloc_count != 0
14216 && !_bfd_elf_link_output_relocs (output_bfd,
14217 htab->glink,
14218 elf_section_data (htab->glink)->rela.hdr,
14219 elf_section_data (htab->glink)->relocs,
14220 NULL))
14221 return FALSE;
14222
14223
14224 if (htab->glink_eh_frame != NULL
14225 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14226 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14227 htab->glink_eh_frame,
14228 htab->glink_eh_frame->contents))
14229 return FALSE;
14230
14231 /* We need to handle writing out multiple GOT sections ourselves,
14232 since we didn't add them to DYNOBJ. We know dynobj is the first
14233 bfd. */
14234 while ((dynobj = dynobj->link_next) != NULL)
14235 {
14236 asection *s;
14237
14238 if (!is_ppc64_elf (dynobj))
14239 continue;
14240
14241 s = ppc64_elf_tdata (dynobj)->got;
14242 if (s != NULL
14243 && s->size != 0
14244 && s->output_section != bfd_abs_section_ptr
14245 && !bfd_set_section_contents (output_bfd, s->output_section,
14246 s->contents, s->output_offset,
14247 s->size))
14248 return FALSE;
14249 s = ppc64_elf_tdata (dynobj)->relgot;
14250 if (s != NULL
14251 && s->size != 0
14252 && s->output_section != bfd_abs_section_ptr
14253 && !bfd_set_section_contents (output_bfd, s->output_section,
14254 s->contents, s->output_offset,
14255 s->size))
14256 return FALSE;
14257 }
14258
14259 return TRUE;
14260 }
14261
14262 #include "elf64-target.h"
14263
14264 /* FreeBSD support */
14265
14266 #undef TARGET_LITTLE_SYM
14267 #undef TARGET_LITTLE_NAME
14268
14269 #undef TARGET_BIG_SYM
14270 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14271 #undef TARGET_BIG_NAME
14272 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14273
14274 #undef ELF_OSABI
14275 #define ELF_OSABI ELFOSABI_FREEBSD
14276
14277 #undef elf64_bed
14278 #define elf64_bed elf64_powerpc_fbsd_bed
14279
14280 #include "elf64-target.h"
14281