]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-ppc.c
Fix 17492, ld segfault with --oformat=binary
[thirdparty/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x1000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 2, /* size (0 = byte, 1 = short, 2 = long) */
262 32, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor. */
2958 struct _opd_sec_data
2959 {
2960 /* Points to the function code section for local opd entries. */
2961 asection **func_sec;
2962
2963 /* After editing .opd, adjust references to opd local syms. */
2964 long *adjust;
2965 } opd;
2966
2967 /* An array for toc sections, indexed by offset/8. */
2968 struct _toc_sec_data
2969 {
2970 /* Specifies the relocation symbol index used at a given toc offset. */
2971 unsigned *symndx;
2972
2973 /* And the relocation addend. */
2974 bfd_vma *add;
2975 } toc;
2976 } u;
2977
2978 enum _ppc64_sec_type sec_type:2;
2979
2980 /* Flag set when small branches are detected. Used to
2981 select suitable defaults for the stub group size. */
2982 unsigned int has_14bit_branch:1;
2983 };
2984
2985 #define ppc64_elf_section_data(sec) \
2986 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2987
2988 static bfd_boolean
2989 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2990 {
2991 if (!sec->used_by_bfd)
2992 {
2993 struct _ppc64_elf_section_data *sdata;
2994 bfd_size_type amt = sizeof (*sdata);
2995
2996 sdata = bfd_zalloc (abfd, amt);
2997 if (sdata == NULL)
2998 return FALSE;
2999 sec->used_by_bfd = sdata;
3000 }
3001
3002 return _bfd_elf_new_section_hook (abfd, sec);
3003 }
3004
3005 static struct _opd_sec_data *
3006 get_opd_info (asection * sec)
3007 {
3008 if (sec != NULL
3009 && ppc64_elf_section_data (sec) != NULL
3010 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3011 return &ppc64_elf_section_data (sec)->u.opd;
3012 return NULL;
3013 }
3014 \f
3015 /* Parameters for the qsort hook. */
3016 static bfd_boolean synthetic_relocatable;
3017
3018 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3019
3020 static int
3021 compare_symbols (const void *ap, const void *bp)
3022 {
3023 const asymbol *a = * (const asymbol **) ap;
3024 const asymbol *b = * (const asymbol **) bp;
3025
3026 /* Section symbols first. */
3027 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3028 return -1;
3029 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3030 return 1;
3031
3032 /* then .opd symbols. */
3033 if (strcmp (a->section->name, ".opd") == 0
3034 && strcmp (b->section->name, ".opd") != 0)
3035 return -1;
3036 if (strcmp (a->section->name, ".opd") != 0
3037 && strcmp (b->section->name, ".opd") == 0)
3038 return 1;
3039
3040 /* then other code symbols. */
3041 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3042 == (SEC_CODE | SEC_ALLOC)
3043 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 return -1;
3046
3047 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3048 != (SEC_CODE | SEC_ALLOC)
3049 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 == (SEC_CODE | SEC_ALLOC))
3051 return 1;
3052
3053 if (synthetic_relocatable)
3054 {
3055 if (a->section->id < b->section->id)
3056 return -1;
3057
3058 if (a->section->id > b->section->id)
3059 return 1;
3060 }
3061
3062 if (a->value + a->section->vma < b->value + b->section->vma)
3063 return -1;
3064
3065 if (a->value + a->section->vma > b->value + b->section->vma)
3066 return 1;
3067
3068 /* For syms with the same value, prefer strong dynamic global function
3069 syms over other syms. */
3070 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3071 return -1;
3072
3073 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3074 return 1;
3075
3076 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3077 return -1;
3078
3079 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3080 return 1;
3081
3082 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3083 return -1;
3084
3085 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3086 return 1;
3087
3088 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3089 return -1;
3090
3091 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3092 return 1;
3093
3094 return 0;
3095 }
3096
3097 /* Search SYMS for a symbol of the given VALUE. */
3098
3099 static asymbol *
3100 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3101 {
3102 long mid;
3103
3104 if (id == -1)
3105 {
3106 while (lo < hi)
3107 {
3108 mid = (lo + hi) >> 1;
3109 if (syms[mid]->value + syms[mid]->section->vma < value)
3110 lo = mid + 1;
3111 else if (syms[mid]->value + syms[mid]->section->vma > value)
3112 hi = mid;
3113 else
3114 return syms[mid];
3115 }
3116 }
3117 else
3118 {
3119 while (lo < hi)
3120 {
3121 mid = (lo + hi) >> 1;
3122 if (syms[mid]->section->id < id)
3123 lo = mid + 1;
3124 else if (syms[mid]->section->id > id)
3125 hi = mid;
3126 else if (syms[mid]->value < value)
3127 lo = mid + 1;
3128 else if (syms[mid]->value > value)
3129 hi = mid;
3130 else
3131 return syms[mid];
3132 }
3133 }
3134 return NULL;
3135 }
3136
3137 static bfd_boolean
3138 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3139 {
3140 bfd_vma vma = *(bfd_vma *) ptr;
3141 return ((section->flags & SEC_ALLOC) != 0
3142 && section->vma <= vma
3143 && vma < section->vma + section->size);
3144 }
3145
3146 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3147 entry syms. Also generate @plt symbols for the glink branch table. */
3148
3149 static long
3150 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3151 long static_count, asymbol **static_syms,
3152 long dyn_count, asymbol **dyn_syms,
3153 asymbol **ret)
3154 {
3155 asymbol *s;
3156 long i;
3157 long count;
3158 char *names;
3159 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3160 asection *opd = NULL;
3161 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3162 asymbol **syms;
3163 int abi = abiversion (abfd);
3164
3165 *ret = NULL;
3166
3167 if (abi < 2)
3168 {
3169 opd = bfd_get_section_by_name (abfd, ".opd");
3170 if (opd == NULL && abi == 1)
3171 return 0;
3172 }
3173
3174 symcount = static_count;
3175 if (!relocatable)
3176 symcount += dyn_count;
3177 if (symcount == 0)
3178 return 0;
3179
3180 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3181 if (syms == NULL)
3182 return -1;
3183
3184 if (!relocatable && static_count != 0 && dyn_count != 0)
3185 {
3186 /* Use both symbol tables. */
3187 memcpy (syms, static_syms, static_count * sizeof (*syms));
3188 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3189 }
3190 else if (!relocatable && static_count == 0)
3191 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3192 else
3193 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3194
3195 synthetic_relocatable = relocatable;
3196 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3197
3198 if (!relocatable && symcount > 1)
3199 {
3200 long j;
3201 /* Trim duplicate syms, since we may have merged the normal and
3202 dynamic symbols. Actually, we only care about syms that have
3203 different values, so trim any with the same value. */
3204 for (i = 1, j = 1; i < symcount; ++i)
3205 if (syms[i - 1]->value + syms[i - 1]->section->vma
3206 != syms[i]->value + syms[i]->section->vma)
3207 syms[j++] = syms[i];
3208 symcount = j;
3209 }
3210
3211 i = 0;
3212 if (strcmp (syms[i]->section->name, ".opd") == 0)
3213 ++i;
3214 codesecsym = i;
3215
3216 for (; i < symcount; ++i)
3217 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3218 != (SEC_CODE | SEC_ALLOC))
3219 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3220 break;
3221 codesecsymend = i;
3222
3223 for (; i < symcount; ++i)
3224 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3225 break;
3226 secsymend = i;
3227
3228 for (; i < symcount; ++i)
3229 if (strcmp (syms[i]->section->name, ".opd") != 0)
3230 break;
3231 opdsymend = i;
3232
3233 for (; i < symcount; ++i)
3234 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3235 != (SEC_CODE | SEC_ALLOC))
3236 break;
3237 symcount = i;
3238
3239 count = 0;
3240
3241 if (relocatable)
3242 {
3243 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3244 arelent *r;
3245 size_t size;
3246 long relcount;
3247
3248 if (opdsymend == secsymend)
3249 goto done;
3250
3251 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3252 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3253 if (relcount == 0)
3254 goto done;
3255
3256 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3257 {
3258 count = -1;
3259 goto done;
3260 }
3261
3262 size = 0;
3263 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3264 {
3265 asymbol *sym;
3266
3267 while (r < opd->relocation + relcount
3268 && r->address < syms[i]->value + opd->vma)
3269 ++r;
3270
3271 if (r == opd->relocation + relcount)
3272 break;
3273
3274 if (r->address != syms[i]->value + opd->vma)
3275 continue;
3276
3277 if (r->howto->type != R_PPC64_ADDR64)
3278 continue;
3279
3280 sym = *r->sym_ptr_ptr;
3281 if (!sym_exists_at (syms, opdsymend, symcount,
3282 sym->section->id, sym->value + r->addend))
3283 {
3284 ++count;
3285 size += sizeof (asymbol);
3286 size += strlen (syms[i]->name) + 2;
3287 }
3288 }
3289
3290 s = *ret = bfd_malloc (size);
3291 if (s == NULL)
3292 {
3293 count = -1;
3294 goto done;
3295 }
3296
3297 names = (char *) (s + count);
3298
3299 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3300 {
3301 asymbol *sym;
3302
3303 while (r < opd->relocation + relcount
3304 && r->address < syms[i]->value + opd->vma)
3305 ++r;
3306
3307 if (r == opd->relocation + relcount)
3308 break;
3309
3310 if (r->address != syms[i]->value + opd->vma)
3311 continue;
3312
3313 if (r->howto->type != R_PPC64_ADDR64)
3314 continue;
3315
3316 sym = *r->sym_ptr_ptr;
3317 if (!sym_exists_at (syms, opdsymend, symcount,
3318 sym->section->id, sym->value + r->addend))
3319 {
3320 size_t len;
3321
3322 *s = *syms[i];
3323 s->flags |= BSF_SYNTHETIC;
3324 s->section = sym->section;
3325 s->value = sym->value + r->addend;
3326 s->name = names;
3327 *names++ = '.';
3328 len = strlen (syms[i]->name);
3329 memcpy (names, syms[i]->name, len + 1);
3330 names += len + 1;
3331 /* Have udata.p point back to the original symbol this
3332 synthetic symbol was derived from. */
3333 s->udata.p = syms[i];
3334 s++;
3335 }
3336 }
3337 }
3338 else
3339 {
3340 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3341 bfd_byte *contents = NULL;
3342 size_t size;
3343 long plt_count = 0;
3344 bfd_vma glink_vma = 0, resolv_vma = 0;
3345 asection *dynamic, *glink = NULL, *relplt = NULL;
3346 arelent *p;
3347
3348 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3349 {
3350 free_contents_and_exit:
3351 if (contents)
3352 free (contents);
3353 count = -1;
3354 goto done;
3355 }
3356
3357 size = 0;
3358 for (i = secsymend; i < opdsymend; ++i)
3359 {
3360 bfd_vma ent;
3361
3362 /* Ignore bogus symbols. */
3363 if (syms[i]->value > opd->size - 8)
3364 continue;
3365
3366 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3367 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3368 {
3369 ++count;
3370 size += sizeof (asymbol);
3371 size += strlen (syms[i]->name) + 2;
3372 }
3373 }
3374
3375 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3376 if (dyn_count != 0
3377 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3378 {
3379 bfd_byte *dynbuf, *extdyn, *extdynend;
3380 size_t extdynsize;
3381 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3382
3383 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3384 goto free_contents_and_exit;
3385
3386 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3387 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3388
3389 extdyn = dynbuf;
3390 extdynend = extdyn + dynamic->size;
3391 for (; extdyn < extdynend; extdyn += extdynsize)
3392 {
3393 Elf_Internal_Dyn dyn;
3394 (*swap_dyn_in) (abfd, extdyn, &dyn);
3395
3396 if (dyn.d_tag == DT_NULL)
3397 break;
3398
3399 if (dyn.d_tag == DT_PPC64_GLINK)
3400 {
3401 /* The first glink stub starts at offset 32; see
3402 comment in ppc64_elf_finish_dynamic_sections. */
3403 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3404 /* The .glink section usually does not survive the final
3405 link; search for the section (usually .text) where the
3406 glink stubs now reside. */
3407 glink = bfd_sections_find_if (abfd, section_covers_vma,
3408 &glink_vma);
3409 break;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 if (glink != NULL)
3417 {
3418 /* Determine __glink trampoline by reading the relative branch
3419 from the first glink stub. */
3420 bfd_byte buf[4];
3421 unsigned int off = 0;
3422
3423 while (bfd_get_section_contents (abfd, glink, buf,
3424 glink_vma + off - glink->vma, 4))
3425 {
3426 unsigned int insn = bfd_get_32 (abfd, buf);
3427 insn ^= B_DOT;
3428 if ((insn & ~0x3fffffc) == 0)
3429 {
3430 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3431 break;
3432 }
3433 off += 4;
3434 if (off > 4)
3435 break;
3436 }
3437
3438 if (resolv_vma)
3439 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3440
3441 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3442 if (relplt != NULL)
3443 {
3444 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3445 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3446 goto free_contents_and_exit;
3447
3448 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3449 size += plt_count * sizeof (asymbol);
3450
3451 p = relplt->relocation;
3452 for (i = 0; i < plt_count; i++, p++)
3453 {
3454 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3455 if (p->addend != 0)
3456 size += sizeof ("+0x") - 1 + 16;
3457 }
3458 }
3459 }
3460
3461 s = *ret = bfd_malloc (size);
3462 if (s == NULL)
3463 goto free_contents_and_exit;
3464
3465 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3466
3467 for (i = secsymend; i < opdsymend; ++i)
3468 {
3469 bfd_vma ent;
3470
3471 if (syms[i]->value > opd->size - 8)
3472 continue;
3473
3474 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3475 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3476 {
3477 long lo, hi;
3478 size_t len;
3479 asection *sec = abfd->sections;
3480
3481 *s = *syms[i];
3482 lo = codesecsym;
3483 hi = codesecsymend;
3484 while (lo < hi)
3485 {
3486 long mid = (lo + hi) >> 1;
3487 if (syms[mid]->section->vma < ent)
3488 lo = mid + 1;
3489 else if (syms[mid]->section->vma > ent)
3490 hi = mid;
3491 else
3492 {
3493 sec = syms[mid]->section;
3494 break;
3495 }
3496 }
3497
3498 if (lo >= hi && lo > codesecsym)
3499 sec = syms[lo - 1]->section;
3500
3501 for (; sec != NULL; sec = sec->next)
3502 {
3503 if (sec->vma > ent)
3504 break;
3505 /* SEC_LOAD may not be set if SEC is from a separate debug
3506 info file. */
3507 if ((sec->flags & SEC_ALLOC) == 0)
3508 break;
3509 if ((sec->flags & SEC_CODE) != 0)
3510 s->section = sec;
3511 }
3512 s->flags |= BSF_SYNTHETIC;
3513 s->value = ent - s->section->vma;
3514 s->name = names;
3515 *names++ = '.';
3516 len = strlen (syms[i]->name);
3517 memcpy (names, syms[i]->name, len + 1);
3518 names += len + 1;
3519 /* Have udata.p point back to the original symbol this
3520 synthetic symbol was derived from. */
3521 s->udata.p = syms[i];
3522 s++;
3523 }
3524 }
3525 free (contents);
3526
3527 if (glink != NULL && relplt != NULL)
3528 {
3529 if (resolv_vma)
3530 {
3531 /* Add a symbol for the main glink trampoline. */
3532 memset (s, 0, sizeof *s);
3533 s->the_bfd = abfd;
3534 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3535 s->section = glink;
3536 s->value = resolv_vma - glink->vma;
3537 s->name = names;
3538 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3539 names += sizeof ("__glink_PLTresolve");
3540 s++;
3541 count++;
3542 }
3543
3544 /* FIXME: It would be very much nicer to put sym@plt on the
3545 stub rather than on the glink branch table entry. The
3546 objdump disassembler would then use a sensible symbol
3547 name on plt calls. The difficulty in doing so is
3548 a) finding the stubs, and,
3549 b) matching stubs against plt entries, and,
3550 c) there can be multiple stubs for a given plt entry.
3551
3552 Solving (a) could be done by code scanning, but older
3553 ppc64 binaries used different stubs to current code.
3554 (b) is the tricky one since you need to known the toc
3555 pointer for at least one function that uses a pic stub to
3556 be able to calculate the plt address referenced.
3557 (c) means gdb would need to set multiple breakpoints (or
3558 find the glink branch itself) when setting breakpoints
3559 for pending shared library loads. */
3560 p = relplt->relocation;
3561 for (i = 0; i < plt_count; i++, p++)
3562 {
3563 size_t len;
3564
3565 *s = **p->sym_ptr_ptr;
3566 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3567 we are defining a symbol, ensure one of them is set. */
3568 if ((s->flags & BSF_LOCAL) == 0)
3569 s->flags |= BSF_GLOBAL;
3570 s->flags |= BSF_SYNTHETIC;
3571 s->section = glink;
3572 s->value = glink_vma - glink->vma;
3573 s->name = names;
3574 s->udata.p = NULL;
3575 len = strlen ((*p->sym_ptr_ptr)->name);
3576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3577 names += len;
3578 if (p->addend != 0)
3579 {
3580 memcpy (names, "+0x", sizeof ("+0x") - 1);
3581 names += sizeof ("+0x") - 1;
3582 bfd_sprintf_vma (abfd, names, p->addend);
3583 names += strlen (names);
3584 }
3585 memcpy (names, "@plt", sizeof ("@plt"));
3586 names += sizeof ("@plt");
3587 s++;
3588 if (abi < 2)
3589 {
3590 glink_vma += 8;
3591 if (i >= 0x8000)
3592 glink_vma += 4;
3593 }
3594 else
3595 glink_vma += 4;
3596 }
3597 count += plt_count;
3598 }
3599 }
3600
3601 done:
3602 free (syms);
3603 return count;
3604 }
3605 \f
3606 /* The following functions are specific to the ELF linker, while
3607 functions above are used generally. Those named ppc64_elf_* are
3608 called by the main ELF linker code. They appear in this file more
3609 or less in the order in which they are called. eg.
3610 ppc64_elf_check_relocs is called early in the link process,
3611 ppc64_elf_finish_dynamic_sections is one of the last functions
3612 called.
3613
3614 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3615 functions have both a function code symbol and a function descriptor
3616 symbol. A call to foo in a relocatable object file looks like:
3617
3618 . .text
3619 . x:
3620 . bl .foo
3621 . nop
3622
3623 The function definition in another object file might be:
3624
3625 . .section .opd
3626 . foo: .quad .foo
3627 . .quad .TOC.@tocbase
3628 . .quad 0
3629 .
3630 . .text
3631 . .foo: blr
3632
3633 When the linker resolves the call during a static link, the branch
3634 unsurprisingly just goes to .foo and the .opd information is unused.
3635 If the function definition is in a shared library, things are a little
3636 different: The call goes via a plt call stub, the opd information gets
3637 copied to the plt, and the linker patches the nop.
3638
3639 . x:
3640 . bl .foo_stub
3641 . ld 2,40(1)
3642 .
3643 .
3644 . .foo_stub:
3645 . std 2,40(1) # in practice, the call stub
3646 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3647 . addi 11,11,Lfoo@toc@l # this is the general idea
3648 . ld 12,0(11)
3649 . ld 2,8(11)
3650 . mtctr 12
3651 . ld 11,16(11)
3652 . bctr
3653 .
3654 . .section .plt
3655 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3656
3657 The "reloc ()" notation is supposed to indicate that the linker emits
3658 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3659 copying.
3660
3661 What are the difficulties here? Well, firstly, the relocations
3662 examined by the linker in check_relocs are against the function code
3663 sym .foo, while the dynamic relocation in the plt is emitted against
3664 the function descriptor symbol, foo. Somewhere along the line, we need
3665 to carefully copy dynamic link information from one symbol to the other.
3666 Secondly, the generic part of the elf linker will make .foo a dynamic
3667 symbol as is normal for most other backends. We need foo dynamic
3668 instead, at least for an application final link. However, when
3669 creating a shared library containing foo, we need to have both symbols
3670 dynamic so that references to .foo are satisfied during the early
3671 stages of linking. Otherwise the linker might decide to pull in a
3672 definition from some other object, eg. a static library.
3673
3674 Update: As of August 2004, we support a new convention. Function
3675 calls may use the function descriptor symbol, ie. "bl foo". This
3676 behaves exactly as "bl .foo". */
3677
3678 /* Of those relocs that might be copied as dynamic relocs, this function
3679 selects those that must be copied when linking a shared library,
3680 even when the symbol is local. */
3681
3682 static int
3683 must_be_dyn_reloc (struct bfd_link_info *info,
3684 enum elf_ppc64_reloc_type r_type)
3685 {
3686 switch (r_type)
3687 {
3688 default:
3689 return 1;
3690
3691 case R_PPC64_REL32:
3692 case R_PPC64_REL64:
3693 case R_PPC64_REL30:
3694 return 0;
3695
3696 case R_PPC64_TPREL16:
3697 case R_PPC64_TPREL16_LO:
3698 case R_PPC64_TPREL16_HI:
3699 case R_PPC64_TPREL16_HA:
3700 case R_PPC64_TPREL16_DS:
3701 case R_PPC64_TPREL16_LO_DS:
3702 case R_PPC64_TPREL16_HIGH:
3703 case R_PPC64_TPREL16_HIGHA:
3704 case R_PPC64_TPREL16_HIGHER:
3705 case R_PPC64_TPREL16_HIGHERA:
3706 case R_PPC64_TPREL16_HIGHEST:
3707 case R_PPC64_TPREL16_HIGHESTA:
3708 case R_PPC64_TPREL64:
3709 return !info->executable;
3710 }
3711 }
3712
3713 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3714 copying dynamic variables from a shared lib into an app's dynbss
3715 section, and instead use a dynamic relocation to point into the
3716 shared lib. With code that gcc generates, it's vital that this be
3717 enabled; In the PowerPC64 ABI, the address of a function is actually
3718 the address of a function descriptor, which resides in the .opd
3719 section. gcc uses the descriptor directly rather than going via the
3720 GOT as some other ABI's do, which means that initialized function
3721 pointers must reference the descriptor. Thus, a function pointer
3722 initialized to the address of a function in a shared library will
3723 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3724 redefines the function descriptor symbol to point to the copy. This
3725 presents a problem as a plt entry for that function is also
3726 initialized from the function descriptor symbol and the copy reloc
3727 may not be initialized first. */
3728 #define ELIMINATE_COPY_RELOCS 1
3729
3730 /* Section name for stubs is the associated section name plus this
3731 string. */
3732 #define STUB_SUFFIX ".stub"
3733
3734 /* Linker stubs.
3735 ppc_stub_long_branch:
3736 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3737 destination, but a 24 bit branch in a stub section will reach.
3738 . b dest
3739
3740 ppc_stub_plt_branch:
3741 Similar to the above, but a 24 bit branch in the stub section won't
3742 reach its destination.
3743 . addis %r11,%r2,xxx@toc@ha
3744 . ld %r12,xxx@toc@l(%r11)
3745 . mtctr %r12
3746 . bctr
3747
3748 ppc_stub_plt_call:
3749 Used to call a function in a shared library. If it so happens that
3750 the plt entry referenced crosses a 64k boundary, then an extra
3751 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3752 . std %r2,40(%r1)
3753 . addis %r11,%r2,xxx@toc@ha
3754 . ld %r12,xxx+0@toc@l(%r11)
3755 . mtctr %r12
3756 . ld %r2,xxx+8@toc@l(%r11)
3757 . ld %r11,xxx+16@toc@l(%r11)
3758 . bctr
3759
3760 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3761 code to adjust the value and save r2 to support multiple toc sections.
3762 A ppc_stub_long_branch with an r2 offset looks like:
3763 . std %r2,40(%r1)
3764 . addis %r2,%r2,off@ha
3765 . addi %r2,%r2,off@l
3766 . b dest
3767
3768 A ppc_stub_plt_branch with an r2 offset looks like:
3769 . std %r2,40(%r1)
3770 . addis %r11,%r2,xxx@toc@ha
3771 . ld %r12,xxx@toc@l(%r11)
3772 . addis %r2,%r2,off@ha
3773 . addi %r2,%r2,off@l
3774 . mtctr %r12
3775 . bctr
3776
3777 In cases where the "addis" instruction would add zero, the "addis" is
3778 omitted and following instructions modified slightly in some cases.
3779 */
3780
3781 enum ppc_stub_type {
3782 ppc_stub_none,
3783 ppc_stub_long_branch,
3784 ppc_stub_long_branch_r2off,
3785 ppc_stub_plt_branch,
3786 ppc_stub_plt_branch_r2off,
3787 ppc_stub_plt_call,
3788 ppc_stub_plt_call_r2save,
3789 ppc_stub_global_entry
3790 };
3791
3792 struct ppc_stub_hash_entry {
3793
3794 /* Base hash table entry structure. */
3795 struct bfd_hash_entry root;
3796
3797 enum ppc_stub_type stub_type;
3798
3799 /* The stub section. */
3800 asection *stub_sec;
3801
3802 /* Offset within stub_sec of the beginning of this stub. */
3803 bfd_vma stub_offset;
3804
3805 /* Given the symbol's value and its section we can determine its final
3806 value when building the stubs (so the stub knows where to jump. */
3807 bfd_vma target_value;
3808 asection *target_section;
3809
3810 /* The symbol table entry, if any, that this was derived from. */
3811 struct ppc_link_hash_entry *h;
3812 struct plt_entry *plt_ent;
3813
3814 /* Where this stub is being called from, or, in the case of combined
3815 stub sections, the first input section in the group. */
3816 asection *id_sec;
3817
3818 /* Symbol st_other. */
3819 unsigned char other;
3820 };
3821
3822 struct ppc_branch_hash_entry {
3823
3824 /* Base hash table entry structure. */
3825 struct bfd_hash_entry root;
3826
3827 /* Offset within branch lookup table. */
3828 unsigned int offset;
3829
3830 /* Generation marker. */
3831 unsigned int iter;
3832 };
3833
3834 /* Used to track dynamic relocations for local symbols. */
3835 struct ppc_dyn_relocs
3836 {
3837 struct ppc_dyn_relocs *next;
3838
3839 /* The input section of the reloc. */
3840 asection *sec;
3841
3842 /* Total number of relocs copied for the input section. */
3843 unsigned int count : 31;
3844
3845 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3846 unsigned int ifunc : 1;
3847 };
3848
3849 struct ppc_link_hash_entry
3850 {
3851 struct elf_link_hash_entry elf;
3852
3853 union {
3854 /* A pointer to the most recently used stub hash entry against this
3855 symbol. */
3856 struct ppc_stub_hash_entry *stub_cache;
3857
3858 /* A pointer to the next symbol starting with a '.' */
3859 struct ppc_link_hash_entry *next_dot_sym;
3860 } u;
3861
3862 /* Track dynamic relocs copied for this symbol. */
3863 struct elf_dyn_relocs *dyn_relocs;
3864
3865 /* Link between function code and descriptor symbols. */
3866 struct ppc_link_hash_entry *oh;
3867
3868 /* Flag function code and descriptor symbols. */
3869 unsigned int is_func:1;
3870 unsigned int is_func_descriptor:1;
3871 unsigned int fake:1;
3872
3873 /* Whether global opd/toc sym has been adjusted or not.
3874 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3875 should be set for all globals defined in any opd/toc section. */
3876 unsigned int adjust_done:1;
3877
3878 /* Set if we twiddled this symbol to weak at some stage. */
3879 unsigned int was_undefined:1;
3880
3881 /* Contexts in which symbol is used in the GOT (or TOC).
3882 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3883 corresponding relocs are encountered during check_relocs.
3884 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3885 indicate the corresponding GOT entry type is not needed.
3886 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3887 a TPREL one. We use a separate flag rather than setting TPREL
3888 just for convenience in distinguishing the two cases. */
3889 #define TLS_GD 1 /* GD reloc. */
3890 #define TLS_LD 2 /* LD reloc. */
3891 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3892 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3893 #define TLS_TLS 16 /* Any TLS reloc. */
3894 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3895 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3896 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3897 unsigned char tls_mask;
3898 };
3899
3900 /* ppc64 ELF linker hash table. */
3901
3902 struct ppc_link_hash_table
3903 {
3904 struct elf_link_hash_table elf;
3905
3906 /* The stub hash table. */
3907 struct bfd_hash_table stub_hash_table;
3908
3909 /* Another hash table for plt_branch stubs. */
3910 struct bfd_hash_table branch_hash_table;
3911
3912 /* Hash table for function prologue tocsave. */
3913 htab_t tocsave_htab;
3914
3915 /* Various options and other info passed from the linker. */
3916 struct ppc64_elf_params *params;
3917
3918 /* Array to keep track of which stub sections have been created, and
3919 information on stub grouping. */
3920 struct map_stub {
3921 /* This is the section to which stubs in the group will be attached. */
3922 asection *link_sec;
3923 /* The stub section. */
3924 asection *stub_sec;
3925 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3926 bfd_vma toc_off;
3927 } *stub_group;
3928
3929 /* Temp used when calculating TOC pointers. */
3930 bfd_vma toc_curr;
3931 bfd *toc_bfd;
3932 asection *toc_first_sec;
3933
3934 /* Highest input section id. */
3935 int top_id;
3936
3937 /* Highest output section index. */
3938 int top_index;
3939
3940 /* Used when adding symbols. */
3941 struct ppc_link_hash_entry *dot_syms;
3942
3943 /* List of input sections for each output section. */
3944 asection **input_list;
3945
3946 /* Shortcuts to get to dynamic linker sections. */
3947 asection *dynbss;
3948 asection *relbss;
3949 asection *glink;
3950 asection *sfpr;
3951 asection *brlt;
3952 asection *relbrlt;
3953 asection *glink_eh_frame;
3954
3955 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3956 struct ppc_link_hash_entry *tls_get_addr;
3957 struct ppc_link_hash_entry *tls_get_addr_fd;
3958
3959 /* The size of reliplt used by got entry relocs. */
3960 bfd_size_type got_reli_size;
3961
3962 /* Statistics. */
3963 unsigned long stub_count[ppc_stub_global_entry];
3964
3965 /* Number of stubs against global syms. */
3966 unsigned long stub_globals;
3967
3968 /* Set if we're linking code with function descriptors. */
3969 unsigned int opd_abi:1;
3970
3971 /* Support for multiple toc sections. */
3972 unsigned int do_multi_toc:1;
3973 unsigned int multi_toc_needed:1;
3974 unsigned int second_toc_pass:1;
3975 unsigned int do_toc_opt:1;
3976
3977 /* Set on error. */
3978 unsigned int stub_error:1;
3979
3980 /* Temp used by ppc64_elf_before_check_relocs. */
3981 unsigned int twiddled_syms:1;
3982
3983 /* Incremented every time we size stubs. */
3984 unsigned int stub_iteration;
3985
3986 /* Small local sym cache. */
3987 struct sym_cache sym_cache;
3988 };
3989
3990 /* Rename some of the generic section flags to better document how they
3991 are used here. */
3992
3993 /* Nonzero if this section has TLS related relocations. */
3994 #define has_tls_reloc sec_flg0
3995
3996 /* Nonzero if this section has a call to __tls_get_addr. */
3997 #define has_tls_get_addr_call sec_flg1
3998
3999 /* Nonzero if this section has any toc or got relocs. */
4000 #define has_toc_reloc sec_flg2
4001
4002 /* Nonzero if this section has a call to another section that uses
4003 the toc or got. */
4004 #define makes_toc_func_call sec_flg3
4005
4006 /* Recursion protection when determining above flag. */
4007 #define call_check_in_progress sec_flg4
4008 #define call_check_done sec_flg5
4009
4010 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4011
4012 #define ppc_hash_table(p) \
4013 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4014 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4015
4016 #define ppc_stub_hash_lookup(table, string, create, copy) \
4017 ((struct ppc_stub_hash_entry *) \
4018 bfd_hash_lookup ((table), (string), (create), (copy)))
4019
4020 #define ppc_branch_hash_lookup(table, string, create, copy) \
4021 ((struct ppc_branch_hash_entry *) \
4022 bfd_hash_lookup ((table), (string), (create), (copy)))
4023
4024 /* Create an entry in the stub hash table. */
4025
4026 static struct bfd_hash_entry *
4027 stub_hash_newfunc (struct bfd_hash_entry *entry,
4028 struct bfd_hash_table *table,
4029 const char *string)
4030 {
4031 /* Allocate the structure if it has not already been allocated by a
4032 subclass. */
4033 if (entry == NULL)
4034 {
4035 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4036 if (entry == NULL)
4037 return entry;
4038 }
4039
4040 /* Call the allocation method of the superclass. */
4041 entry = bfd_hash_newfunc (entry, table, string);
4042 if (entry != NULL)
4043 {
4044 struct ppc_stub_hash_entry *eh;
4045
4046 /* Initialize the local fields. */
4047 eh = (struct ppc_stub_hash_entry *) entry;
4048 eh->stub_type = ppc_stub_none;
4049 eh->stub_sec = NULL;
4050 eh->stub_offset = 0;
4051 eh->target_value = 0;
4052 eh->target_section = NULL;
4053 eh->h = NULL;
4054 eh->plt_ent = NULL;
4055 eh->id_sec = NULL;
4056 eh->other = 0;
4057 }
4058
4059 return entry;
4060 }
4061
4062 /* Create an entry in the branch hash table. */
4063
4064 static struct bfd_hash_entry *
4065 branch_hash_newfunc (struct bfd_hash_entry *entry,
4066 struct bfd_hash_table *table,
4067 const char *string)
4068 {
4069 /* Allocate the structure if it has not already been allocated by a
4070 subclass. */
4071 if (entry == NULL)
4072 {
4073 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4074 if (entry == NULL)
4075 return entry;
4076 }
4077
4078 /* Call the allocation method of the superclass. */
4079 entry = bfd_hash_newfunc (entry, table, string);
4080 if (entry != NULL)
4081 {
4082 struct ppc_branch_hash_entry *eh;
4083
4084 /* Initialize the local fields. */
4085 eh = (struct ppc_branch_hash_entry *) entry;
4086 eh->offset = 0;
4087 eh->iter = 0;
4088 }
4089
4090 return entry;
4091 }
4092
4093 /* Create an entry in a ppc64 ELF linker hash table. */
4094
4095 static struct bfd_hash_entry *
4096 link_hash_newfunc (struct bfd_hash_entry *entry,
4097 struct bfd_hash_table *table,
4098 const char *string)
4099 {
4100 /* Allocate the structure if it has not already been allocated by a
4101 subclass. */
4102 if (entry == NULL)
4103 {
4104 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4105 if (entry == NULL)
4106 return entry;
4107 }
4108
4109 /* Call the allocation method of the superclass. */
4110 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4111 if (entry != NULL)
4112 {
4113 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4114
4115 memset (&eh->u.stub_cache, 0,
4116 (sizeof (struct ppc_link_hash_entry)
4117 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4118
4119 /* When making function calls, old ABI code references function entry
4120 points (dot symbols), while new ABI code references the function
4121 descriptor symbol. We need to make any combination of reference and
4122 definition work together, without breaking archive linking.
4123
4124 For a defined function "foo" and an undefined call to "bar":
4125 An old object defines "foo" and ".foo", references ".bar" (possibly
4126 "bar" too).
4127 A new object defines "foo" and references "bar".
4128
4129 A new object thus has no problem with its undefined symbols being
4130 satisfied by definitions in an old object. On the other hand, the
4131 old object won't have ".bar" satisfied by a new object.
4132
4133 Keep a list of newly added dot-symbols. */
4134
4135 if (string[0] == '.')
4136 {
4137 struct ppc_link_hash_table *htab;
4138
4139 htab = (struct ppc_link_hash_table *) table;
4140 eh->u.next_dot_sym = htab->dot_syms;
4141 htab->dot_syms = eh;
4142 }
4143 }
4144
4145 return entry;
4146 }
4147
4148 struct tocsave_entry {
4149 asection *sec;
4150 bfd_vma offset;
4151 };
4152
4153 static hashval_t
4154 tocsave_htab_hash (const void *p)
4155 {
4156 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4157 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4158 }
4159
4160 static int
4161 tocsave_htab_eq (const void *p1, const void *p2)
4162 {
4163 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4164 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4165 return e1->sec == e2->sec && e1->offset == e2->offset;
4166 }
4167
4168 /* Destroy a ppc64 ELF linker hash table. */
4169
4170 static void
4171 ppc64_elf_link_hash_table_free (bfd *obfd)
4172 {
4173 struct ppc_link_hash_table *htab;
4174
4175 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4176 if (htab->tocsave_htab)
4177 htab_delete (htab->tocsave_htab);
4178 bfd_hash_table_free (&htab->branch_hash_table);
4179 bfd_hash_table_free (&htab->stub_hash_table);
4180 _bfd_elf_link_hash_table_free (obfd);
4181 }
4182
4183 /* Create a ppc64 ELF linker hash table. */
4184
4185 static struct bfd_link_hash_table *
4186 ppc64_elf_link_hash_table_create (bfd *abfd)
4187 {
4188 struct ppc_link_hash_table *htab;
4189 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4190
4191 htab = bfd_zmalloc (amt);
4192 if (htab == NULL)
4193 return NULL;
4194
4195 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4196 sizeof (struct ppc_link_hash_entry),
4197 PPC64_ELF_DATA))
4198 {
4199 free (htab);
4200 return NULL;
4201 }
4202
4203 /* Init the stub hash table too. */
4204 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4205 sizeof (struct ppc_stub_hash_entry)))
4206 {
4207 _bfd_elf_link_hash_table_free (abfd);
4208 return NULL;
4209 }
4210
4211 /* And the branch hash table. */
4212 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4213 sizeof (struct ppc_branch_hash_entry)))
4214 {
4215 bfd_hash_table_free (&htab->stub_hash_table);
4216 _bfd_elf_link_hash_table_free (abfd);
4217 return NULL;
4218 }
4219
4220 htab->tocsave_htab = htab_try_create (1024,
4221 tocsave_htab_hash,
4222 tocsave_htab_eq,
4223 NULL);
4224 if (htab->tocsave_htab == NULL)
4225 {
4226 ppc64_elf_link_hash_table_free (abfd);
4227 return NULL;
4228 }
4229 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4230
4231 /* Initializing two fields of the union is just cosmetic. We really
4232 only care about glist, but when compiled on a 32-bit host the
4233 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4234 debugger inspection of these fields look nicer. */
4235 htab->elf.init_got_refcount.refcount = 0;
4236 htab->elf.init_got_refcount.glist = NULL;
4237 htab->elf.init_plt_refcount.refcount = 0;
4238 htab->elf.init_plt_refcount.glist = NULL;
4239 htab->elf.init_got_offset.offset = 0;
4240 htab->elf.init_got_offset.glist = NULL;
4241 htab->elf.init_plt_offset.offset = 0;
4242 htab->elf.init_plt_offset.glist = NULL;
4243
4244 return &htab->elf.root;
4245 }
4246
4247 /* Create sections for linker generated code. */
4248
4249 static bfd_boolean
4250 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4251 {
4252 struct ppc_link_hash_table *htab;
4253 flagword flags;
4254
4255 htab = ppc_hash_table (info);
4256
4257 /* Create .sfpr for code to save and restore fp regs. */
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4261 flags);
4262 if (htab->sfpr == NULL
4263 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4264 return FALSE;
4265
4266 /* Create .glink for lazy dynamic linking support. */
4267 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4268 flags);
4269 if (htab->glink == NULL
4270 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4271 return FALSE;
4272
4273 if (!info->no_ld_generated_unwind_info)
4274 {
4275 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4276 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4277 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4278 ".eh_frame",
4279 flags);
4280 if (htab->glink_eh_frame == NULL
4281 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4282 return FALSE;
4283 }
4284
4285 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4286 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4287 if (htab->elf.iplt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4289 return FALSE;
4290
4291 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4292 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4293 htab->elf.irelplt
4294 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4295 if (htab->elf.irelplt == NULL
4296 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4297 return FALSE;
4298
4299 /* Create branch lookup table for plt_branch stubs. */
4300 flags = (SEC_ALLOC | SEC_LOAD
4301 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4302 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4303 flags);
4304 if (htab->brlt == NULL
4305 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4306 return FALSE;
4307
4308 if (!info->shared)
4309 return TRUE;
4310
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4312 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4313 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4314 ".rela.branch_lt",
4315 flags);
4316 if (htab->relbrlt == NULL
4317 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4318 return FALSE;
4319
4320 return TRUE;
4321 }
4322
4323 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4324
4325 bfd_boolean
4326 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4327 struct ppc64_elf_params *params)
4328 {
4329 struct ppc_link_hash_table *htab;
4330
4331 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4332
4333 /* Always hook our dynamic sections into the first bfd, which is the
4334 linker created stub bfd. This ensures that the GOT header is at
4335 the start of the output TOC section. */
4336 htab = ppc_hash_table (info);
4337 if (htab == NULL)
4338 return FALSE;
4339 htab->elf.dynobj = params->stub_bfd;
4340 htab->params = params;
4341
4342 if (info->relocatable)
4343 return TRUE;
4344
4345 return create_linkage_sections (htab->elf.dynobj, info);
4346 }
4347
4348 /* Build a name for an entry in the stub hash table. */
4349
4350 static char *
4351 ppc_stub_name (const asection *input_section,
4352 const asection *sym_sec,
4353 const struct ppc_link_hash_entry *h,
4354 const Elf_Internal_Rela *rel)
4355 {
4356 char *stub_name;
4357 ssize_t len;
4358
4359 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4360 offsets from a sym as a branch target? In fact, we could
4361 probably assume the addend is always zero. */
4362 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4363
4364 if (h)
4365 {
4366 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4367 stub_name = bfd_malloc (len);
4368 if (stub_name == NULL)
4369 return stub_name;
4370
4371 len = sprintf (stub_name, "%08x.%s+%x",
4372 input_section->id & 0xffffffff,
4373 h->elf.root.root.string,
4374 (int) rel->r_addend & 0xffffffff);
4375 }
4376 else
4377 {
4378 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4379 stub_name = bfd_malloc (len);
4380 if (stub_name == NULL)
4381 return stub_name;
4382
4383 len = sprintf (stub_name, "%08x.%x:%x+%x",
4384 input_section->id & 0xffffffff,
4385 sym_sec->id & 0xffffffff,
4386 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4387 (int) rel->r_addend & 0xffffffff);
4388 }
4389 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4390 stub_name[len - 2] = 0;
4391 return stub_name;
4392 }
4393
4394 /* Look up an entry in the stub hash. Stub entries are cached because
4395 creating the stub name takes a bit of time. */
4396
4397 static struct ppc_stub_hash_entry *
4398 ppc_get_stub_entry (const asection *input_section,
4399 const asection *sym_sec,
4400 struct ppc_link_hash_entry *h,
4401 const Elf_Internal_Rela *rel,
4402 struct ppc_link_hash_table *htab)
4403 {
4404 struct ppc_stub_hash_entry *stub_entry;
4405 const asection *id_sec;
4406
4407 /* If this input section is part of a group of sections sharing one
4408 stub section, then use the id of the first section in the group.
4409 Stub names need to include a section id, as there may well be
4410 more than one stub used to reach say, printf, and we need to
4411 distinguish between them. */
4412 id_sec = htab->stub_group[input_section->id].link_sec;
4413
4414 if (h != NULL && h->u.stub_cache != NULL
4415 && h->u.stub_cache->h == h
4416 && h->u.stub_cache->id_sec == id_sec)
4417 {
4418 stub_entry = h->u.stub_cache;
4419 }
4420 else
4421 {
4422 char *stub_name;
4423
4424 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4425 if (stub_name == NULL)
4426 return NULL;
4427
4428 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4429 stub_name, FALSE, FALSE);
4430 if (h != NULL)
4431 h->u.stub_cache = stub_entry;
4432
4433 free (stub_name);
4434 }
4435
4436 return stub_entry;
4437 }
4438
4439 /* Add a new stub entry to the stub hash. Not all fields of the new
4440 stub entry are initialised. */
4441
4442 static struct ppc_stub_hash_entry *
4443 ppc_add_stub (const char *stub_name,
4444 asection *section,
4445 struct bfd_link_info *info)
4446 {
4447 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4448 asection *link_sec;
4449 asection *stub_sec;
4450 struct ppc_stub_hash_entry *stub_entry;
4451
4452 link_sec = htab->stub_group[section->id].link_sec;
4453 stub_sec = htab->stub_group[section->id].stub_sec;
4454 if (stub_sec == NULL)
4455 {
4456 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4457 if (stub_sec == NULL)
4458 {
4459 size_t namelen;
4460 bfd_size_type len;
4461 char *s_name;
4462
4463 namelen = strlen (link_sec->name);
4464 len = namelen + sizeof (STUB_SUFFIX);
4465 s_name = bfd_alloc (htab->params->stub_bfd, len);
4466 if (s_name == NULL)
4467 return NULL;
4468
4469 memcpy (s_name, link_sec->name, namelen);
4470 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4471 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4472 if (stub_sec == NULL)
4473 return NULL;
4474 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4475 }
4476 htab->stub_group[section->id].stub_sec = stub_sec;
4477 }
4478
4479 /* Enter this entry into the linker stub hash table. */
4480 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4481 TRUE, FALSE);
4482 if (stub_entry == NULL)
4483 {
4484 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4485 section->owner, stub_name);
4486 return NULL;
4487 }
4488
4489 stub_entry->stub_sec = stub_sec;
4490 stub_entry->stub_offset = 0;
4491 stub_entry->id_sec = link_sec;
4492 return stub_entry;
4493 }
4494
4495 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4496 not already done. */
4497
4498 static bfd_boolean
4499 create_got_section (bfd *abfd, struct bfd_link_info *info)
4500 {
4501 asection *got, *relgot;
4502 flagword flags;
4503 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4504
4505 if (!is_ppc64_elf (abfd))
4506 return FALSE;
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 if (!htab->elf.sgot
4511 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4512 return FALSE;
4513
4514 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4515 | SEC_LINKER_CREATED);
4516
4517 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4518 if (!got
4519 || !bfd_set_section_alignment (abfd, got, 3))
4520 return FALSE;
4521
4522 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4523 flags | SEC_READONLY);
4524 if (!relgot
4525 || ! bfd_set_section_alignment (abfd, relgot, 3))
4526 return FALSE;
4527
4528 ppc64_elf_tdata (abfd)->got = got;
4529 ppc64_elf_tdata (abfd)->relgot = relgot;
4530 return TRUE;
4531 }
4532
4533 /* Create the dynamic sections, and set up shortcuts. */
4534
4535 static bfd_boolean
4536 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4537 {
4538 struct ppc_link_hash_table *htab;
4539
4540 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4541 return FALSE;
4542
4543 htab = ppc_hash_table (info);
4544 if (htab == NULL)
4545 return FALSE;
4546
4547 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4548 if (!info->shared)
4549 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4550
4551 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4552 || (!info->shared && !htab->relbss))
4553 abort ();
4554
4555 return TRUE;
4556 }
4557
4558 /* Follow indirect and warning symbol links. */
4559
4560 static inline struct bfd_link_hash_entry *
4561 follow_link (struct bfd_link_hash_entry *h)
4562 {
4563 while (h->type == bfd_link_hash_indirect
4564 || h->type == bfd_link_hash_warning)
4565 h = h->u.i.link;
4566 return h;
4567 }
4568
4569 static inline struct elf_link_hash_entry *
4570 elf_follow_link (struct elf_link_hash_entry *h)
4571 {
4572 return (struct elf_link_hash_entry *) follow_link (&h->root);
4573 }
4574
4575 static inline struct ppc_link_hash_entry *
4576 ppc_follow_link (struct ppc_link_hash_entry *h)
4577 {
4578 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4579 }
4580
4581 /* Merge PLT info on FROM with that on TO. */
4582
4583 static void
4584 move_plt_plist (struct ppc_link_hash_entry *from,
4585 struct ppc_link_hash_entry *to)
4586 {
4587 if (from->elf.plt.plist != NULL)
4588 {
4589 if (to->elf.plt.plist != NULL)
4590 {
4591 struct plt_entry **entp;
4592 struct plt_entry *ent;
4593
4594 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4595 {
4596 struct plt_entry *dent;
4597
4598 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4599 if (dent->addend == ent->addend)
4600 {
4601 dent->plt.refcount += ent->plt.refcount;
4602 *entp = ent->next;
4603 break;
4604 }
4605 if (dent == NULL)
4606 entp = &ent->next;
4607 }
4608 *entp = to->elf.plt.plist;
4609 }
4610
4611 to->elf.plt.plist = from->elf.plt.plist;
4612 from->elf.plt.plist = NULL;
4613 }
4614 }
4615
4616 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4617
4618 static void
4619 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4620 struct elf_link_hash_entry *dir,
4621 struct elf_link_hash_entry *ind)
4622 {
4623 struct ppc_link_hash_entry *edir, *eind;
4624
4625 edir = (struct ppc_link_hash_entry *) dir;
4626 eind = (struct ppc_link_hash_entry *) ind;
4627
4628 edir->is_func |= eind->is_func;
4629 edir->is_func_descriptor |= eind->is_func_descriptor;
4630 edir->tls_mask |= eind->tls_mask;
4631 if (eind->oh != NULL)
4632 edir->oh = ppc_follow_link (eind->oh);
4633
4634 /* If called to transfer flags for a weakdef during processing
4635 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4636 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4637 if (!(ELIMINATE_COPY_RELOCS
4638 && eind->elf.root.type != bfd_link_hash_indirect
4639 && edir->elf.dynamic_adjusted))
4640 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4641
4642 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4643 edir->elf.ref_regular |= eind->elf.ref_regular;
4644 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4645 edir->elf.needs_plt |= eind->elf.needs_plt;
4646 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4647
4648 /* Copy over any dynamic relocs we may have on the indirect sym. */
4649 if (eind->dyn_relocs != NULL)
4650 {
4651 if (edir->dyn_relocs != NULL)
4652 {
4653 struct elf_dyn_relocs **pp;
4654 struct elf_dyn_relocs *p;
4655
4656 /* Add reloc counts against the indirect sym to the direct sym
4657 list. Merge any entries against the same section. */
4658 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4659 {
4660 struct elf_dyn_relocs *q;
4661
4662 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4663 if (q->sec == p->sec)
4664 {
4665 q->pc_count += p->pc_count;
4666 q->count += p->count;
4667 *pp = p->next;
4668 break;
4669 }
4670 if (q == NULL)
4671 pp = &p->next;
4672 }
4673 *pp = edir->dyn_relocs;
4674 }
4675
4676 edir->dyn_relocs = eind->dyn_relocs;
4677 eind->dyn_relocs = NULL;
4678 }
4679
4680 /* If we were called to copy over info for a weak sym, that's all.
4681 You might think dyn_relocs need not be copied over; After all,
4682 both syms will be dynamic or both non-dynamic so we're just
4683 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4684 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4685 dyn_relocs in read-only sections, and it does so on what is the
4686 DIR sym here. */
4687 if (eind->elf.root.type != bfd_link_hash_indirect)
4688 return;
4689
4690 /* Copy over got entries that we may have already seen to the
4691 symbol which just became indirect. */
4692 if (eind->elf.got.glist != NULL)
4693 {
4694 if (edir->elf.got.glist != NULL)
4695 {
4696 struct got_entry **entp;
4697 struct got_entry *ent;
4698
4699 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4700 {
4701 struct got_entry *dent;
4702
4703 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4704 if (dent->addend == ent->addend
4705 && dent->owner == ent->owner
4706 && dent->tls_type == ent->tls_type)
4707 {
4708 dent->got.refcount += ent->got.refcount;
4709 *entp = ent->next;
4710 break;
4711 }
4712 if (dent == NULL)
4713 entp = &ent->next;
4714 }
4715 *entp = edir->elf.got.glist;
4716 }
4717
4718 edir->elf.got.glist = eind->elf.got.glist;
4719 eind->elf.got.glist = NULL;
4720 }
4721
4722 /* And plt entries. */
4723 move_plt_plist (eind, edir);
4724
4725 if (eind->elf.dynindx != -1)
4726 {
4727 if (edir->elf.dynindx != -1)
4728 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4729 edir->elf.dynstr_index);
4730 edir->elf.dynindx = eind->elf.dynindx;
4731 edir->elf.dynstr_index = eind->elf.dynstr_index;
4732 eind->elf.dynindx = -1;
4733 eind->elf.dynstr_index = 0;
4734 }
4735 }
4736
4737 /* Find the function descriptor hash entry from the given function code
4738 hash entry FH. Link the entries via their OH fields. */
4739
4740 static struct ppc_link_hash_entry *
4741 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4742 {
4743 struct ppc_link_hash_entry *fdh = fh->oh;
4744
4745 if (fdh == NULL)
4746 {
4747 const char *fd_name = fh->elf.root.root.string + 1;
4748
4749 fdh = (struct ppc_link_hash_entry *)
4750 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4751 if (fdh == NULL)
4752 return fdh;
4753
4754 fdh->is_func_descriptor = 1;
4755 fdh->oh = fh;
4756 fh->is_func = 1;
4757 fh->oh = fdh;
4758 }
4759
4760 return ppc_follow_link (fdh);
4761 }
4762
4763 /* Make a fake function descriptor sym for the code sym FH. */
4764
4765 static struct ppc_link_hash_entry *
4766 make_fdh (struct bfd_link_info *info,
4767 struct ppc_link_hash_entry *fh)
4768 {
4769 bfd *abfd;
4770 asymbol *newsym;
4771 struct bfd_link_hash_entry *bh;
4772 struct ppc_link_hash_entry *fdh;
4773
4774 abfd = fh->elf.root.u.undef.abfd;
4775 newsym = bfd_make_empty_symbol (abfd);
4776 newsym->name = fh->elf.root.root.string + 1;
4777 newsym->section = bfd_und_section_ptr;
4778 newsym->value = 0;
4779 newsym->flags = BSF_WEAK;
4780
4781 bh = NULL;
4782 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4783 newsym->flags, newsym->section,
4784 newsym->value, NULL, FALSE, FALSE,
4785 &bh))
4786 return NULL;
4787
4788 fdh = (struct ppc_link_hash_entry *) bh;
4789 fdh->elf.non_elf = 0;
4790 fdh->fake = 1;
4791 fdh->is_func_descriptor = 1;
4792 fdh->oh = fh;
4793 fh->is_func = 1;
4794 fh->oh = fdh;
4795 return fdh;
4796 }
4797
4798 /* Fix function descriptor symbols defined in .opd sections to be
4799 function type. */
4800
4801 static bfd_boolean
4802 ppc64_elf_add_symbol_hook (bfd *ibfd,
4803 struct bfd_link_info *info,
4804 Elf_Internal_Sym *isym,
4805 const char **name,
4806 flagword *flags ATTRIBUTE_UNUSED,
4807 asection **sec,
4808 bfd_vma *value ATTRIBUTE_UNUSED)
4809 {
4810 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4811 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4812 && (ibfd->flags & DYNAMIC) == 0
4813 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4814 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4815
4816 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4817 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4818 && *sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4821
4822 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4823 {
4824 if (abiversion (ibfd) == 0)
4825 set_abiversion (ibfd, 2);
4826 else if (abiversion (ibfd) == 1)
4827 {
4828 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4829 " for ABI version 1\n"), name);
4830 bfd_set_error (bfd_error_bad_value);
4831 return FALSE;
4832 }
4833 }
4834
4835 return TRUE;
4836 }
4837
4838 /* Merge non-visibility st_other attributes: local entry point. */
4839
4840 static void
4841 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4842 const Elf_Internal_Sym *isym,
4843 bfd_boolean definition,
4844 bfd_boolean dynamic)
4845 {
4846 if (definition && !dynamic)
4847 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4848 | ELF_ST_VISIBILITY (h->other));
4849 }
4850
4851 /* This function makes an old ABI object reference to ".bar" cause the
4852 inclusion of a new ABI object archive that defines "bar".
4853 NAME is a symbol defined in an archive. Return a symbol in the hash
4854 table that might be satisfied by the archive symbols. */
4855
4856 static struct elf_link_hash_entry *
4857 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4858 struct bfd_link_info *info,
4859 const char *name)
4860 {
4861 struct elf_link_hash_entry *h;
4862 char *dot_name;
4863 size_t len;
4864
4865 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4866 if (h != NULL
4867 /* Don't return this sym if it is a fake function descriptor
4868 created by add_symbol_adjust. */
4869 && !(h->root.type == bfd_link_hash_undefweak
4870 && ((struct ppc_link_hash_entry *) h)->fake))
4871 return h;
4872
4873 if (name[0] == '.')
4874 return h;
4875
4876 len = strlen (name);
4877 dot_name = bfd_alloc (abfd, len + 2);
4878 if (dot_name == NULL)
4879 return (struct elf_link_hash_entry *) 0 - 1;
4880 dot_name[0] = '.';
4881 memcpy (dot_name + 1, name, len + 1);
4882 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4883 bfd_release (abfd, dot_name);
4884 return h;
4885 }
4886
4887 /* This function satisfies all old ABI object references to ".bar" if a
4888 new ABI object defines "bar". Well, at least, undefined dot symbols
4889 are made weak. This stops later archive searches from including an
4890 object if we already have a function descriptor definition. It also
4891 prevents the linker complaining about undefined symbols.
4892 We also check and correct mismatched symbol visibility here. The
4893 most restrictive visibility of the function descriptor and the
4894 function entry symbol is used. */
4895
4896 static bfd_boolean
4897 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4898 {
4899 struct ppc_link_hash_table *htab;
4900 struct ppc_link_hash_entry *fdh;
4901
4902 if (eh->elf.root.type == bfd_link_hash_indirect)
4903 return TRUE;
4904
4905 if (eh->elf.root.type == bfd_link_hash_warning)
4906 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4907
4908 if (eh->elf.root.root.string[0] != '.')
4909 abort ();
4910
4911 htab = ppc_hash_table (info);
4912 if (htab == NULL)
4913 return FALSE;
4914
4915 fdh = lookup_fdh (eh, htab);
4916 if (fdh == NULL)
4917 {
4918 if (!info->relocatable
4919 && (eh->elf.root.type == bfd_link_hash_undefined
4920 || eh->elf.root.type == bfd_link_hash_undefweak)
4921 && eh->elf.ref_regular)
4922 {
4923 /* Make an undefweak function descriptor sym, which is enough to
4924 pull in an --as-needed shared lib, but won't cause link
4925 errors. Archives are handled elsewhere. */
4926 fdh = make_fdh (info, eh);
4927 if (fdh == NULL)
4928 return FALSE;
4929 fdh->elf.ref_regular = 1;
4930 }
4931 }
4932 else
4933 {
4934 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4935 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4936 if (entry_vis < descr_vis)
4937 fdh->elf.other += entry_vis - descr_vis;
4938 else if (entry_vis > descr_vis)
4939 eh->elf.other += descr_vis - entry_vis;
4940
4941 if ((fdh->elf.root.type == bfd_link_hash_defined
4942 || fdh->elf.root.type == bfd_link_hash_defweak)
4943 && eh->elf.root.type == bfd_link_hash_undefined)
4944 {
4945 eh->elf.root.type = bfd_link_hash_undefweak;
4946 eh->was_undefined = 1;
4947 htab->twiddled_syms = 1;
4948 }
4949 }
4950
4951 return TRUE;
4952 }
4953
4954 /* Set up opd section info and abiversion for IBFD, and process list
4955 of dot-symbols we made in link_hash_newfunc. */
4956
4957 static bfd_boolean
4958 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4959 {
4960 struct ppc_link_hash_table *htab;
4961 struct ppc_link_hash_entry **p, *eh;
4962 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4963
4964 if (opd != NULL && opd->size != 0)
4965 {
4966 if (abiversion (ibfd) == 0)
4967 set_abiversion (ibfd, 1);
4968 else if (abiversion (ibfd) == 2)
4969 {
4970 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4971 " version %d\n"),
4972 ibfd, abiversion (ibfd));
4973 bfd_set_error (bfd_error_bad_value);
4974 return FALSE;
4975 }
4976
4977 if ((ibfd->flags & DYNAMIC) == 0
4978 && (opd->flags & SEC_RELOC) != 0
4979 && opd->reloc_count != 0
4980 && !bfd_is_abs_section (opd->output_section))
4981 {
4982 /* Garbage collection needs some extra help with .opd sections.
4983 We don't want to necessarily keep everything referenced by
4984 relocs in .opd, as that would keep all functions. Instead,
4985 if we reference an .opd symbol (a function descriptor), we
4986 want to keep the function code symbol's section. This is
4987 easy for global symbols, but for local syms we need to keep
4988 information about the associated function section. */
4989 bfd_size_type amt;
4990 asection **opd_sym_map;
4991
4992 amt = opd->size * sizeof (*opd_sym_map) / 8;
4993 opd_sym_map = bfd_zalloc (ibfd, amt);
4994 if (opd_sym_map == NULL)
4995 return FALSE;
4996 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4997 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4998 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4999 }
5000 }
5001
5002 if (!is_ppc64_elf (info->output_bfd))
5003 return TRUE;
5004 htab = ppc_hash_table (info);
5005 if (htab == NULL)
5006 return FALSE;
5007
5008 /* For input files without an explicit abiversion in e_flags
5009 we should have flagged any with symbol st_other bits set
5010 as ELFv1 and above flagged those with .opd as ELFv2.
5011 Set the output abiversion if not yet set, and for any input
5012 still ambiguous, take its abiversion from the output.
5013 Differences in ABI are reported later. */
5014 if (abiversion (info->output_bfd) == 0)
5015 set_abiversion (info->output_bfd, abiversion (ibfd));
5016 else if (abiversion (ibfd) == 0)
5017 set_abiversion (ibfd, abiversion (info->output_bfd));
5018
5019 p = &htab->dot_syms;
5020 while ((eh = *p) != NULL)
5021 {
5022 *p = NULL;
5023 if (&eh->elf == htab->elf.hgot)
5024 ;
5025 else if (htab->elf.hgot == NULL
5026 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5027 htab->elf.hgot = &eh->elf;
5028 else if (!add_symbol_adjust (eh, info))
5029 return FALSE;
5030 p = &eh->u.next_dot_sym;
5031 }
5032
5033 /* Clear the list for non-ppc64 input files. */
5034 p = &htab->dot_syms;
5035 while ((eh = *p) != NULL)
5036 {
5037 *p = NULL;
5038 p = &eh->u.next_dot_sym;
5039 }
5040
5041 /* We need to fix the undefs list for any syms we have twiddled to
5042 undef_weak. */
5043 if (htab->twiddled_syms)
5044 {
5045 bfd_link_repair_undef_list (&htab->elf.root);
5046 htab->twiddled_syms = 0;
5047 }
5048 return TRUE;
5049 }
5050
5051 /* Undo hash table changes when an --as-needed input file is determined
5052 not to be needed. */
5053
5054 static bfd_boolean
5055 ppc64_elf_notice_as_needed (bfd *ibfd,
5056 struct bfd_link_info *info,
5057 enum notice_asneeded_action act)
5058 {
5059 if (act == notice_not_needed)
5060 {
5061 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5062
5063 if (htab == NULL)
5064 return FALSE;
5065
5066 htab->dot_syms = NULL;
5067 }
5068 return _bfd_elf_notice_as_needed (ibfd, info, act);
5069 }
5070
5071 /* If --just-symbols against a final linked binary, then assume we need
5072 toc adjusting stubs when calling functions defined there. */
5073
5074 static void
5075 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5076 {
5077 if ((sec->flags & SEC_CODE) != 0
5078 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5079 && is_ppc64_elf (sec->owner))
5080 {
5081 if (abiversion (sec->owner) >= 2
5082 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5083 sec->has_toc_reloc = 1;
5084 }
5085 _bfd_elf_link_just_syms (sec, info);
5086 }
5087
5088 static struct plt_entry **
5089 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5090 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5091 {
5092 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5093 struct plt_entry **local_plt;
5094 unsigned char *local_got_tls_masks;
5095
5096 if (local_got_ents == NULL)
5097 {
5098 bfd_size_type size = symtab_hdr->sh_info;
5099
5100 size *= (sizeof (*local_got_ents)
5101 + sizeof (*local_plt)
5102 + sizeof (*local_got_tls_masks));
5103 local_got_ents = bfd_zalloc (abfd, size);
5104 if (local_got_ents == NULL)
5105 return NULL;
5106 elf_local_got_ents (abfd) = local_got_ents;
5107 }
5108
5109 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5110 {
5111 struct got_entry *ent;
5112
5113 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5114 if (ent->addend == r_addend
5115 && ent->owner == abfd
5116 && ent->tls_type == tls_type)
5117 break;
5118 if (ent == NULL)
5119 {
5120 bfd_size_type amt = sizeof (*ent);
5121 ent = bfd_alloc (abfd, amt);
5122 if (ent == NULL)
5123 return FALSE;
5124 ent->next = local_got_ents[r_symndx];
5125 ent->addend = r_addend;
5126 ent->owner = abfd;
5127 ent->tls_type = tls_type;
5128 ent->is_indirect = FALSE;
5129 ent->got.refcount = 0;
5130 local_got_ents[r_symndx] = ent;
5131 }
5132 ent->got.refcount += 1;
5133 }
5134
5135 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5136 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5137 local_got_tls_masks[r_symndx] |= tls_type;
5138
5139 return local_plt + r_symndx;
5140 }
5141
5142 static bfd_boolean
5143 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5144 {
5145 struct plt_entry *ent;
5146
5147 for (ent = *plist; ent != NULL; ent = ent->next)
5148 if (ent->addend == addend)
5149 break;
5150 if (ent == NULL)
5151 {
5152 bfd_size_type amt = sizeof (*ent);
5153 ent = bfd_alloc (abfd, amt);
5154 if (ent == NULL)
5155 return FALSE;
5156 ent->next = *plist;
5157 ent->addend = addend;
5158 ent->plt.refcount = 0;
5159 *plist = ent;
5160 }
5161 ent->plt.refcount += 1;
5162 return TRUE;
5163 }
5164
5165 static bfd_boolean
5166 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5167 {
5168 return (r_type == R_PPC64_REL24
5169 || r_type == R_PPC64_REL14
5170 || r_type == R_PPC64_REL14_BRTAKEN
5171 || r_type == R_PPC64_REL14_BRNTAKEN
5172 || r_type == R_PPC64_ADDR24
5173 || r_type == R_PPC64_ADDR14
5174 || r_type == R_PPC64_ADDR14_BRTAKEN
5175 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5176 }
5177
5178 /* Look through the relocs for a section during the first phase, and
5179 calculate needed space in the global offset table, procedure
5180 linkage table, and dynamic reloc sections. */
5181
5182 static bfd_boolean
5183 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5184 asection *sec, const Elf_Internal_Rela *relocs)
5185 {
5186 struct ppc_link_hash_table *htab;
5187 Elf_Internal_Shdr *symtab_hdr;
5188 struct elf_link_hash_entry **sym_hashes;
5189 const Elf_Internal_Rela *rel;
5190 const Elf_Internal_Rela *rel_end;
5191 asection *sreloc;
5192 asection **opd_sym_map;
5193 struct elf_link_hash_entry *tga, *dottga;
5194
5195 if (info->relocatable)
5196 return TRUE;
5197
5198 /* Don't do anything special with non-loaded, non-alloced sections.
5199 In particular, any relocs in such sections should not affect GOT
5200 and PLT reference counting (ie. we don't allow them to create GOT
5201 or PLT entries), there's no possibility or desire to optimize TLS
5202 relocs, and there's not much point in propagating relocs to shared
5203 libs that the dynamic linker won't relocate. */
5204 if ((sec->flags & SEC_ALLOC) == 0)
5205 return TRUE;
5206
5207 BFD_ASSERT (is_ppc64_elf (abfd));
5208
5209 htab = ppc_hash_table (info);
5210 if (htab == NULL)
5211 return FALSE;
5212
5213 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5214 FALSE, FALSE, TRUE);
5215 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5216 FALSE, FALSE, TRUE);
5217 symtab_hdr = &elf_symtab_hdr (abfd);
5218 sym_hashes = elf_sym_hashes (abfd);
5219 sreloc = NULL;
5220 opd_sym_map = NULL;
5221 if (ppc64_elf_section_data (sec) != NULL
5222 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5223 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5224
5225 rel_end = relocs + sec->reloc_count;
5226 for (rel = relocs; rel < rel_end; rel++)
5227 {
5228 unsigned long r_symndx;
5229 struct elf_link_hash_entry *h;
5230 enum elf_ppc64_reloc_type r_type;
5231 int tls_type;
5232 struct _ppc64_elf_section_data *ppc64_sec;
5233 struct plt_entry **ifunc;
5234
5235 r_symndx = ELF64_R_SYM (rel->r_info);
5236 if (r_symndx < symtab_hdr->sh_info)
5237 h = NULL;
5238 else
5239 {
5240 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5241 h = elf_follow_link (h);
5242
5243 /* PR15323, ref flags aren't set for references in the same
5244 object. */
5245 h->root.non_ir_ref = 1;
5246
5247 if (h == htab->elf.hgot)
5248 sec->has_toc_reloc = 1;
5249 }
5250
5251 tls_type = 0;
5252 ifunc = NULL;
5253 if (h != NULL)
5254 {
5255 if (h->type == STT_GNU_IFUNC)
5256 {
5257 h->needs_plt = 1;
5258 ifunc = &h->plt.plist;
5259 }
5260 }
5261 else
5262 {
5263 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5264 abfd, r_symndx);
5265 if (isym == NULL)
5266 return FALSE;
5267
5268 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5269 {
5270 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5271 rel->r_addend, PLT_IFUNC);
5272 if (ifunc == NULL)
5273 return FALSE;
5274 }
5275 }
5276 r_type = ELF64_R_TYPE (rel->r_info);
5277 if (is_branch_reloc (r_type))
5278 {
5279 if (h != NULL && (h == tga || h == dottga))
5280 {
5281 if (rel != relocs
5282 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5283 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5284 /* We have a new-style __tls_get_addr call with a marker
5285 reloc. */
5286 ;
5287 else
5288 /* Mark this section as having an old-style call. */
5289 sec->has_tls_get_addr_call = 1;
5290 }
5291
5292 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5293 if (ifunc != NULL
5294 && !update_plt_info (abfd, ifunc, rel->r_addend))
5295 return FALSE;
5296 }
5297
5298 switch (r_type)
5299 {
5300 case R_PPC64_TLSGD:
5301 case R_PPC64_TLSLD:
5302 /* These special tls relocs tie a call to __tls_get_addr with
5303 its parameter symbol. */
5304 break;
5305
5306 case R_PPC64_GOT_TLSLD16:
5307 case R_PPC64_GOT_TLSLD16_LO:
5308 case R_PPC64_GOT_TLSLD16_HI:
5309 case R_PPC64_GOT_TLSLD16_HA:
5310 tls_type = TLS_TLS | TLS_LD;
5311 goto dogottls;
5312
5313 case R_PPC64_GOT_TLSGD16:
5314 case R_PPC64_GOT_TLSGD16_LO:
5315 case R_PPC64_GOT_TLSGD16_HI:
5316 case R_PPC64_GOT_TLSGD16_HA:
5317 tls_type = TLS_TLS | TLS_GD;
5318 goto dogottls;
5319
5320 case R_PPC64_GOT_TPREL16_DS:
5321 case R_PPC64_GOT_TPREL16_LO_DS:
5322 case R_PPC64_GOT_TPREL16_HI:
5323 case R_PPC64_GOT_TPREL16_HA:
5324 if (info->shared)
5325 info->flags |= DF_STATIC_TLS;
5326 tls_type = TLS_TLS | TLS_TPREL;
5327 goto dogottls;
5328
5329 case R_PPC64_GOT_DTPREL16_DS:
5330 case R_PPC64_GOT_DTPREL16_LO_DS:
5331 case R_PPC64_GOT_DTPREL16_HI:
5332 case R_PPC64_GOT_DTPREL16_HA:
5333 tls_type = TLS_TLS | TLS_DTPREL;
5334 dogottls:
5335 sec->has_tls_reloc = 1;
5336 /* Fall thru */
5337
5338 case R_PPC64_GOT16:
5339 case R_PPC64_GOT16_DS:
5340 case R_PPC64_GOT16_HA:
5341 case R_PPC64_GOT16_HI:
5342 case R_PPC64_GOT16_LO:
5343 case R_PPC64_GOT16_LO_DS:
5344 /* This symbol requires a global offset table entry. */
5345 sec->has_toc_reloc = 1;
5346 if (r_type == R_PPC64_GOT_TLSLD16
5347 || r_type == R_PPC64_GOT_TLSGD16
5348 || r_type == R_PPC64_GOT_TPREL16_DS
5349 || r_type == R_PPC64_GOT_DTPREL16_DS
5350 || r_type == R_PPC64_GOT16
5351 || r_type == R_PPC64_GOT16_DS)
5352 {
5353 htab->do_multi_toc = 1;
5354 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5355 }
5356
5357 if (ppc64_elf_tdata (abfd)->got == NULL
5358 && !create_got_section (abfd, info))
5359 return FALSE;
5360
5361 if (h != NULL)
5362 {
5363 struct ppc_link_hash_entry *eh;
5364 struct got_entry *ent;
5365
5366 eh = (struct ppc_link_hash_entry *) h;
5367 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5368 if (ent->addend == rel->r_addend
5369 && ent->owner == abfd
5370 && ent->tls_type == tls_type)
5371 break;
5372 if (ent == NULL)
5373 {
5374 bfd_size_type amt = sizeof (*ent);
5375 ent = bfd_alloc (abfd, amt);
5376 if (ent == NULL)
5377 return FALSE;
5378 ent->next = eh->elf.got.glist;
5379 ent->addend = rel->r_addend;
5380 ent->owner = abfd;
5381 ent->tls_type = tls_type;
5382 ent->is_indirect = FALSE;
5383 ent->got.refcount = 0;
5384 eh->elf.got.glist = ent;
5385 }
5386 ent->got.refcount += 1;
5387 eh->tls_mask |= tls_type;
5388 }
5389 else
5390 /* This is a global offset table entry for a local symbol. */
5391 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5392 rel->r_addend, tls_type))
5393 return FALSE;
5394
5395 /* We may also need a plt entry if the symbol turns out to be
5396 an ifunc. */
5397 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5398 {
5399 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5400 return FALSE;
5401 }
5402 break;
5403
5404 case R_PPC64_PLT16_HA:
5405 case R_PPC64_PLT16_HI:
5406 case R_PPC64_PLT16_LO:
5407 case R_PPC64_PLT32:
5408 case R_PPC64_PLT64:
5409 /* This symbol requires a procedure linkage table entry. We
5410 actually build the entry in adjust_dynamic_symbol,
5411 because this might be a case of linking PIC code without
5412 linking in any dynamic objects, in which case we don't
5413 need to generate a procedure linkage table after all. */
5414 if (h == NULL)
5415 {
5416 /* It does not make sense to have a procedure linkage
5417 table entry for a local symbol. */
5418 bfd_set_error (bfd_error_bad_value);
5419 return FALSE;
5420 }
5421 else
5422 {
5423 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5424 return FALSE;
5425 h->needs_plt = 1;
5426 if (h->root.root.string[0] == '.'
5427 && h->root.root.string[1] != '\0')
5428 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5429 }
5430 break;
5431
5432 /* The following relocations don't need to propagate the
5433 relocation if linking a shared object since they are
5434 section relative. */
5435 case R_PPC64_SECTOFF:
5436 case R_PPC64_SECTOFF_LO:
5437 case R_PPC64_SECTOFF_HI:
5438 case R_PPC64_SECTOFF_HA:
5439 case R_PPC64_SECTOFF_DS:
5440 case R_PPC64_SECTOFF_LO_DS:
5441 case R_PPC64_DTPREL16:
5442 case R_PPC64_DTPREL16_LO:
5443 case R_PPC64_DTPREL16_HI:
5444 case R_PPC64_DTPREL16_HA:
5445 case R_PPC64_DTPREL16_DS:
5446 case R_PPC64_DTPREL16_LO_DS:
5447 case R_PPC64_DTPREL16_HIGH:
5448 case R_PPC64_DTPREL16_HIGHA:
5449 case R_PPC64_DTPREL16_HIGHER:
5450 case R_PPC64_DTPREL16_HIGHERA:
5451 case R_PPC64_DTPREL16_HIGHEST:
5452 case R_PPC64_DTPREL16_HIGHESTA:
5453 break;
5454
5455 /* Nor do these. */
5456 case R_PPC64_REL16:
5457 case R_PPC64_REL16_LO:
5458 case R_PPC64_REL16_HI:
5459 case R_PPC64_REL16_HA:
5460 break;
5461
5462 /* Not supported as a dynamic relocation. */
5463 case R_PPC64_ADDR64_LOCAL:
5464 if (info->shared)
5465 {
5466 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5467 ppc_howto_init ();
5468 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5469 "in shared libraries and PIEs.\n"),
5470 abfd, sec, rel->r_offset,
5471 ppc64_elf_howto_table[r_type]->name);
5472 bfd_set_error (bfd_error_bad_value);
5473 return FALSE;
5474 }
5475 break;
5476
5477 case R_PPC64_TOC16:
5478 case R_PPC64_TOC16_DS:
5479 htab->do_multi_toc = 1;
5480 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5481 case R_PPC64_TOC16_LO:
5482 case R_PPC64_TOC16_HI:
5483 case R_PPC64_TOC16_HA:
5484 case R_PPC64_TOC16_LO_DS:
5485 sec->has_toc_reloc = 1;
5486 break;
5487
5488 /* This relocation describes the C++ object vtable hierarchy.
5489 Reconstruct it for later use during GC. */
5490 case R_PPC64_GNU_VTINHERIT:
5491 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5492 return FALSE;
5493 break;
5494
5495 /* This relocation describes which C++ vtable entries are actually
5496 used. Record for later use during GC. */
5497 case R_PPC64_GNU_VTENTRY:
5498 BFD_ASSERT (h != NULL);
5499 if (h != NULL
5500 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5501 return FALSE;
5502 break;
5503
5504 case R_PPC64_REL14:
5505 case R_PPC64_REL14_BRTAKEN:
5506 case R_PPC64_REL14_BRNTAKEN:
5507 {
5508 asection *dest = NULL;
5509
5510 /* Heuristic: If jumping outside our section, chances are
5511 we are going to need a stub. */
5512 if (h != NULL)
5513 {
5514 /* If the sym is weak it may be overridden later, so
5515 don't assume we know where a weak sym lives. */
5516 if (h->root.type == bfd_link_hash_defined)
5517 dest = h->root.u.def.section;
5518 }
5519 else
5520 {
5521 Elf_Internal_Sym *isym;
5522
5523 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5524 abfd, r_symndx);
5525 if (isym == NULL)
5526 return FALSE;
5527
5528 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5529 }
5530
5531 if (dest != sec)
5532 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5533 }
5534 /* Fall through. */
5535
5536 case R_PPC64_REL24:
5537 if (h != NULL && ifunc == NULL)
5538 {
5539 /* We may need a .plt entry if the function this reloc
5540 refers to is in a shared lib. */
5541 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5542 return FALSE;
5543 h->needs_plt = 1;
5544 if (h->root.root.string[0] == '.'
5545 && h->root.root.string[1] != '\0')
5546 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5547 if (h == tga || h == dottga)
5548 sec->has_tls_reloc = 1;
5549 }
5550 break;
5551
5552 case R_PPC64_TPREL64:
5553 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5554 if (info->shared)
5555 info->flags |= DF_STATIC_TLS;
5556 goto dotlstoc;
5557
5558 case R_PPC64_DTPMOD64:
5559 if (rel + 1 < rel_end
5560 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5561 && rel[1].r_offset == rel->r_offset + 8)
5562 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5563 else
5564 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5565 goto dotlstoc;
5566
5567 case R_PPC64_DTPREL64:
5568 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5569 if (rel != relocs
5570 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5571 && rel[-1].r_offset == rel->r_offset - 8)
5572 /* This is the second reloc of a dtpmod, dtprel pair.
5573 Don't mark with TLS_DTPREL. */
5574 goto dodyn;
5575
5576 dotlstoc:
5577 sec->has_tls_reloc = 1;
5578 if (h != NULL)
5579 {
5580 struct ppc_link_hash_entry *eh;
5581 eh = (struct ppc_link_hash_entry *) h;
5582 eh->tls_mask |= tls_type;
5583 }
5584 else
5585 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5586 rel->r_addend, tls_type))
5587 return FALSE;
5588
5589 ppc64_sec = ppc64_elf_section_data (sec);
5590 if (ppc64_sec->sec_type != sec_toc)
5591 {
5592 bfd_size_type amt;
5593
5594 /* One extra to simplify get_tls_mask. */
5595 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5596 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5597 if (ppc64_sec->u.toc.symndx == NULL)
5598 return FALSE;
5599 amt = sec->size * sizeof (bfd_vma) / 8;
5600 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5601 if (ppc64_sec->u.toc.add == NULL)
5602 return FALSE;
5603 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5604 ppc64_sec->sec_type = sec_toc;
5605 }
5606 BFD_ASSERT (rel->r_offset % 8 == 0);
5607 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5608 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5609
5610 /* Mark the second slot of a GD or LD entry.
5611 -1 to indicate GD and -2 to indicate LD. */
5612 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5613 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5614 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5615 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5616 goto dodyn;
5617
5618 case R_PPC64_TPREL16:
5619 case R_PPC64_TPREL16_LO:
5620 case R_PPC64_TPREL16_HI:
5621 case R_PPC64_TPREL16_HA:
5622 case R_PPC64_TPREL16_DS:
5623 case R_PPC64_TPREL16_LO_DS:
5624 case R_PPC64_TPREL16_HIGH:
5625 case R_PPC64_TPREL16_HIGHA:
5626 case R_PPC64_TPREL16_HIGHER:
5627 case R_PPC64_TPREL16_HIGHERA:
5628 case R_PPC64_TPREL16_HIGHEST:
5629 case R_PPC64_TPREL16_HIGHESTA:
5630 if (info->shared)
5631 {
5632 info->flags |= DF_STATIC_TLS;
5633 goto dodyn;
5634 }
5635 break;
5636
5637 case R_PPC64_ADDR64:
5638 if (opd_sym_map != NULL
5639 && rel + 1 < rel_end
5640 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5641 {
5642 if (h != NULL)
5643 {
5644 if (h->root.root.string[0] == '.'
5645 && h->root.root.string[1] != 0
5646 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5647 ;
5648 else
5649 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5650 }
5651 else
5652 {
5653 asection *s;
5654 Elf_Internal_Sym *isym;
5655
5656 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5657 abfd, r_symndx);
5658 if (isym == NULL)
5659 return FALSE;
5660
5661 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5662 if (s != NULL && s != sec)
5663 opd_sym_map[rel->r_offset / 8] = s;
5664 }
5665 }
5666 /* Fall through. */
5667
5668 case R_PPC64_ADDR16:
5669 case R_PPC64_ADDR16_DS:
5670 case R_PPC64_ADDR16_HA:
5671 case R_PPC64_ADDR16_HI:
5672 case R_PPC64_ADDR16_HIGH:
5673 case R_PPC64_ADDR16_HIGHA:
5674 case R_PPC64_ADDR16_HIGHER:
5675 case R_PPC64_ADDR16_HIGHERA:
5676 case R_PPC64_ADDR16_HIGHEST:
5677 case R_PPC64_ADDR16_HIGHESTA:
5678 case R_PPC64_ADDR16_LO:
5679 case R_PPC64_ADDR16_LO_DS:
5680 if (h != NULL && !info->shared && abiversion (abfd) != 1
5681 && rel->r_addend == 0)
5682 {
5683 /* We may need a .plt entry if this reloc refers to a
5684 function in a shared lib. */
5685 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5686 return FALSE;
5687 h->pointer_equality_needed = 1;
5688 }
5689 /* Fall through. */
5690
5691 case R_PPC64_REL30:
5692 case R_PPC64_REL32:
5693 case R_PPC64_REL64:
5694 case R_PPC64_ADDR14:
5695 case R_PPC64_ADDR14_BRNTAKEN:
5696 case R_PPC64_ADDR14_BRTAKEN:
5697 case R_PPC64_ADDR24:
5698 case R_PPC64_ADDR32:
5699 case R_PPC64_UADDR16:
5700 case R_PPC64_UADDR32:
5701 case R_PPC64_UADDR64:
5702 case R_PPC64_TOC:
5703 if (h != NULL && !info->shared)
5704 /* We may need a copy reloc. */
5705 h->non_got_ref = 1;
5706
5707 /* Don't propagate .opd relocs. */
5708 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5709 break;
5710
5711 /* If we are creating a shared library, and this is a reloc
5712 against a global symbol, or a non PC relative reloc
5713 against a local symbol, then we need to copy the reloc
5714 into the shared library. However, if we are linking with
5715 -Bsymbolic, we do not need to copy a reloc against a
5716 global symbol which is defined in an object we are
5717 including in the link (i.e., DEF_REGULAR is set). At
5718 this point we have not seen all the input files, so it is
5719 possible that DEF_REGULAR is not set now but will be set
5720 later (it is never cleared). In case of a weak definition,
5721 DEF_REGULAR may be cleared later by a strong definition in
5722 a shared library. We account for that possibility below by
5723 storing information in the dyn_relocs field of the hash
5724 table entry. A similar situation occurs when creating
5725 shared libraries and symbol visibility changes render the
5726 symbol local.
5727
5728 If on the other hand, we are creating an executable, we
5729 may need to keep relocations for symbols satisfied by a
5730 dynamic library if we manage to avoid copy relocs for the
5731 symbol. */
5732 dodyn:
5733 if ((info->shared
5734 && (must_be_dyn_reloc (info, r_type)
5735 || (h != NULL
5736 && (!SYMBOLIC_BIND (info, h)
5737 || h->root.type == bfd_link_hash_defweak
5738 || !h->def_regular))))
5739 || (ELIMINATE_COPY_RELOCS
5740 && !info->shared
5741 && h != NULL
5742 && (h->root.type == bfd_link_hash_defweak
5743 || !h->def_regular))
5744 || (!info->shared
5745 && ifunc != NULL))
5746 {
5747 /* We must copy these reloc types into the output file.
5748 Create a reloc section in dynobj and make room for
5749 this reloc. */
5750 if (sreloc == NULL)
5751 {
5752 sreloc = _bfd_elf_make_dynamic_reloc_section
5753 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5754
5755 if (sreloc == NULL)
5756 return FALSE;
5757 }
5758
5759 /* If this is a global symbol, we count the number of
5760 relocations we need for this symbol. */
5761 if (h != NULL)
5762 {
5763 struct elf_dyn_relocs *p;
5764 struct elf_dyn_relocs **head;
5765
5766 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5767 p = *head;
5768 if (p == NULL || p->sec != sec)
5769 {
5770 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5771 if (p == NULL)
5772 return FALSE;
5773 p->next = *head;
5774 *head = p;
5775 p->sec = sec;
5776 p->count = 0;
5777 p->pc_count = 0;
5778 }
5779 p->count += 1;
5780 if (!must_be_dyn_reloc (info, r_type))
5781 p->pc_count += 1;
5782 }
5783 else
5784 {
5785 /* Track dynamic relocs needed for local syms too.
5786 We really need local syms available to do this
5787 easily. Oh well. */
5788 struct ppc_dyn_relocs *p;
5789 struct ppc_dyn_relocs **head;
5790 bfd_boolean is_ifunc;
5791 asection *s;
5792 void *vpp;
5793 Elf_Internal_Sym *isym;
5794
5795 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5796 abfd, r_symndx);
5797 if (isym == NULL)
5798 return FALSE;
5799
5800 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5801 if (s == NULL)
5802 s = sec;
5803
5804 vpp = &elf_section_data (s)->local_dynrel;
5805 head = (struct ppc_dyn_relocs **) vpp;
5806 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5807 p = *head;
5808 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5809 p = p->next;
5810 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5811 {
5812 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5813 if (p == NULL)
5814 return FALSE;
5815 p->next = *head;
5816 *head = p;
5817 p->sec = sec;
5818 p->ifunc = is_ifunc;
5819 p->count = 0;
5820 }
5821 p->count += 1;
5822 }
5823 }
5824 break;
5825
5826 default:
5827 break;
5828 }
5829 }
5830
5831 return TRUE;
5832 }
5833
5834 /* Merge backend specific data from an object file to the output
5835 object file when linking. */
5836
5837 static bfd_boolean
5838 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5839 {
5840 unsigned long iflags, oflags;
5841
5842 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5843 return TRUE;
5844
5845 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5846 return TRUE;
5847
5848 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5849 return FALSE;
5850
5851 iflags = elf_elfheader (ibfd)->e_flags;
5852 oflags = elf_elfheader (obfd)->e_flags;
5853
5854 if (iflags & ~EF_PPC64_ABI)
5855 {
5856 (*_bfd_error_handler)
5857 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5858 bfd_set_error (bfd_error_bad_value);
5859 return FALSE;
5860 }
5861 else if (iflags != oflags && iflags != 0)
5862 {
5863 (*_bfd_error_handler)
5864 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5865 ibfd, iflags, oflags);
5866 bfd_set_error (bfd_error_bad_value);
5867 return FALSE;
5868 }
5869
5870 /* Merge Tag_compatibility attributes and any common GNU ones. */
5871 _bfd_elf_merge_object_attributes (ibfd, obfd);
5872
5873 return TRUE;
5874 }
5875
5876 static bfd_boolean
5877 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5878 {
5879 /* Print normal ELF private data. */
5880 _bfd_elf_print_private_bfd_data (abfd, ptr);
5881
5882 if (elf_elfheader (abfd)->e_flags != 0)
5883 {
5884 FILE *file = ptr;
5885
5886 /* xgettext:c-format */
5887 fprintf (file, _("private flags = 0x%lx:"),
5888 elf_elfheader (abfd)->e_flags);
5889
5890 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5891 fprintf (file, _(" [abiv%ld]"),
5892 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5893 fputc ('\n', file);
5894 }
5895
5896 return TRUE;
5897 }
5898
5899 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5900 of the code entry point, and its section. */
5901
5902 static bfd_vma
5903 opd_entry_value (asection *opd_sec,
5904 bfd_vma offset,
5905 asection **code_sec,
5906 bfd_vma *code_off,
5907 bfd_boolean in_code_sec)
5908 {
5909 bfd *opd_bfd = opd_sec->owner;
5910 Elf_Internal_Rela *relocs;
5911 Elf_Internal_Rela *lo, *hi, *look;
5912 bfd_vma val;
5913
5914 /* No relocs implies we are linking a --just-symbols object, or looking
5915 at a final linked executable with addr2line or somesuch. */
5916 if (opd_sec->reloc_count == 0)
5917 {
5918 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5919
5920 if (contents == NULL)
5921 {
5922 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5923 return (bfd_vma) -1;
5924 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5925 }
5926
5927 val = bfd_get_64 (opd_bfd, contents + offset);
5928 if (code_sec != NULL)
5929 {
5930 asection *sec, *likely = NULL;
5931
5932 if (in_code_sec)
5933 {
5934 sec = *code_sec;
5935 if (sec->vma <= val
5936 && val < sec->vma + sec->size)
5937 likely = sec;
5938 else
5939 val = -1;
5940 }
5941 else
5942 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5943 if (sec->vma <= val
5944 && (sec->flags & SEC_LOAD) != 0
5945 && (sec->flags & SEC_ALLOC) != 0)
5946 likely = sec;
5947 if (likely != NULL)
5948 {
5949 *code_sec = likely;
5950 if (code_off != NULL)
5951 *code_off = val - likely->vma;
5952 }
5953 }
5954 return val;
5955 }
5956
5957 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5958
5959 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5960 if (relocs == NULL)
5961 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5962
5963 /* Go find the opd reloc at the sym address. */
5964 lo = relocs;
5965 BFD_ASSERT (lo != NULL);
5966 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5967 val = (bfd_vma) -1;
5968 while (lo < hi)
5969 {
5970 look = lo + (hi - lo) / 2;
5971 if (look->r_offset < offset)
5972 lo = look + 1;
5973 else if (look->r_offset > offset)
5974 hi = look;
5975 else
5976 {
5977 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5978
5979 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5980 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5981 {
5982 unsigned long symndx = ELF64_R_SYM (look->r_info);
5983 asection *sec;
5984
5985 if (symndx < symtab_hdr->sh_info
5986 || elf_sym_hashes (opd_bfd) == NULL)
5987 {
5988 Elf_Internal_Sym *sym;
5989
5990 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5991 if (sym == NULL)
5992 {
5993 size_t symcnt = symtab_hdr->sh_info;
5994 if (elf_sym_hashes (opd_bfd) == NULL)
5995 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5996 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5997 0, NULL, NULL, NULL);
5998 if (sym == NULL)
5999 break;
6000 symtab_hdr->contents = (bfd_byte *) sym;
6001 }
6002
6003 sym += symndx;
6004 val = sym->st_value;
6005 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6006 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6007 }
6008 else
6009 {
6010 struct elf_link_hash_entry **sym_hashes;
6011 struct elf_link_hash_entry *rh;
6012
6013 sym_hashes = elf_sym_hashes (opd_bfd);
6014 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6015 if (rh != NULL)
6016 {
6017 rh = elf_follow_link (rh);
6018 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6019 || rh->root.type == bfd_link_hash_defweak);
6020 val = rh->root.u.def.value;
6021 sec = rh->root.u.def.section;
6022 }
6023 else
6024 {
6025 /* Handle the odd case where we can be called
6026 during bfd_elf_link_add_symbols before the
6027 symbol hashes have been fully populated. */
6028 Elf_Internal_Sym *sym;
6029
6030 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
6031 symndx, NULL, NULL, NULL);
6032 if (sym == NULL)
6033 break;
6034
6035 val = sym->st_value;
6036 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6037 free (sym);
6038 }
6039 }
6040 val += look->r_addend;
6041 if (code_off != NULL)
6042 *code_off = val;
6043 if (code_sec != NULL)
6044 {
6045 if (in_code_sec && *code_sec != sec)
6046 return -1;
6047 else
6048 *code_sec = sec;
6049 }
6050 if (sec != NULL && sec->output_section != NULL)
6051 val += sec->output_section->vma + sec->output_offset;
6052 }
6053 break;
6054 }
6055 }
6056
6057 return val;
6058 }
6059
6060 /* If the ELF symbol SYM might be a function in SEC, return the
6061 function size and set *CODE_OFF to the function's entry point,
6062 otherwise return zero. */
6063
6064 static bfd_size_type
6065 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6066 bfd_vma *code_off)
6067 {
6068 bfd_size_type size;
6069
6070 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6071 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6072 return 0;
6073
6074 size = 0;
6075 if (!(sym->flags & BSF_SYNTHETIC))
6076 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6077
6078 if (strcmp (sym->section->name, ".opd") == 0)
6079 {
6080 if (opd_entry_value (sym->section, sym->value,
6081 &sec, code_off, TRUE) == (bfd_vma) -1)
6082 return 0;
6083 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6084 symbol. This size has nothing to do with the code size of the
6085 function, which is what we're supposed to return, but the
6086 code size isn't available without looking up the dot-sym.
6087 However, doing that would be a waste of time particularly
6088 since elf_find_function will look at the dot-sym anyway.
6089 Now, elf_find_function will keep the largest size of any
6090 function sym found at the code address of interest, so return
6091 1 here to avoid it incorrectly caching a larger function size
6092 for a small function. This does mean we return the wrong
6093 size for a new-ABI function of size 24, but all that does is
6094 disable caching for such functions. */
6095 if (size == 24)
6096 size = 1;
6097 }
6098 else
6099 {
6100 if (sym->section != sec)
6101 return 0;
6102 *code_off = sym->value;
6103 }
6104 if (size == 0)
6105 size = 1;
6106 return size;
6107 }
6108
6109 /* Return true if symbol is defined in a regular object file. */
6110
6111 static bfd_boolean
6112 is_static_defined (struct elf_link_hash_entry *h)
6113 {
6114 return ((h->root.type == bfd_link_hash_defined
6115 || h->root.type == bfd_link_hash_defweak)
6116 && h->root.u.def.section != NULL
6117 && h->root.u.def.section->output_section != NULL);
6118 }
6119
6120 /* If FDH is a function descriptor symbol, return the associated code
6121 entry symbol if it is defined. Return NULL otherwise. */
6122
6123 static struct ppc_link_hash_entry *
6124 defined_code_entry (struct ppc_link_hash_entry *fdh)
6125 {
6126 if (fdh->is_func_descriptor)
6127 {
6128 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6129 if (fh->elf.root.type == bfd_link_hash_defined
6130 || fh->elf.root.type == bfd_link_hash_defweak)
6131 return fh;
6132 }
6133 return NULL;
6134 }
6135
6136 /* If FH is a function code entry symbol, return the associated
6137 function descriptor symbol if it is defined. Return NULL otherwise. */
6138
6139 static struct ppc_link_hash_entry *
6140 defined_func_desc (struct ppc_link_hash_entry *fh)
6141 {
6142 if (fh->oh != NULL
6143 && fh->oh->is_func_descriptor)
6144 {
6145 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6146 if (fdh->elf.root.type == bfd_link_hash_defined
6147 || fdh->elf.root.type == bfd_link_hash_defweak)
6148 return fdh;
6149 }
6150 return NULL;
6151 }
6152
6153 /* Mark all our entry sym sections, both opd and code section. */
6154
6155 static void
6156 ppc64_elf_gc_keep (struct bfd_link_info *info)
6157 {
6158 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6159 struct bfd_sym_chain *sym;
6160
6161 if (htab == NULL)
6162 return;
6163
6164 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6165 {
6166 struct ppc_link_hash_entry *eh, *fh;
6167 asection *sec;
6168
6169 eh = (struct ppc_link_hash_entry *)
6170 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6171 if (eh == NULL)
6172 continue;
6173 if (eh->elf.root.type != bfd_link_hash_defined
6174 && eh->elf.root.type != bfd_link_hash_defweak)
6175 continue;
6176
6177 fh = defined_code_entry (eh);
6178 if (fh != NULL)
6179 {
6180 sec = fh->elf.root.u.def.section;
6181 sec->flags |= SEC_KEEP;
6182 }
6183 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6184 && opd_entry_value (eh->elf.root.u.def.section,
6185 eh->elf.root.u.def.value,
6186 &sec, NULL, FALSE) != (bfd_vma) -1)
6187 sec->flags |= SEC_KEEP;
6188
6189 sec = eh->elf.root.u.def.section;
6190 sec->flags |= SEC_KEEP;
6191 }
6192 }
6193
6194 /* Mark sections containing dynamically referenced symbols. When
6195 building shared libraries, we must assume that any visible symbol is
6196 referenced. */
6197
6198 static bfd_boolean
6199 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6200 {
6201 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6202 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6203 struct ppc_link_hash_entry *fdh;
6204 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6205
6206 /* Dynamic linking info is on the func descriptor sym. */
6207 fdh = defined_func_desc (eh);
6208 if (fdh != NULL)
6209 eh = fdh;
6210
6211 if ((eh->elf.root.type == bfd_link_hash_defined
6212 || eh->elf.root.type == bfd_link_hash_defweak)
6213 && (eh->elf.ref_dynamic
6214 || (eh->elf.def_regular
6215 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6216 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6217 && (!info->executable
6218 || info->export_dynamic
6219 || (eh->elf.dynamic
6220 && d != NULL
6221 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6222 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6223 || !bfd_hide_sym_by_version (info->version_info,
6224 eh->elf.root.root.string)))))
6225 {
6226 asection *code_sec;
6227 struct ppc_link_hash_entry *fh;
6228
6229 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6230
6231 /* Function descriptor syms cause the associated
6232 function code sym section to be marked. */
6233 fh = defined_code_entry (eh);
6234 if (fh != NULL)
6235 {
6236 code_sec = fh->elf.root.u.def.section;
6237 code_sec->flags |= SEC_KEEP;
6238 }
6239 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6240 && opd_entry_value (eh->elf.root.u.def.section,
6241 eh->elf.root.u.def.value,
6242 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6243 code_sec->flags |= SEC_KEEP;
6244 }
6245
6246 return TRUE;
6247 }
6248
6249 /* Return the section that should be marked against GC for a given
6250 relocation. */
6251
6252 static asection *
6253 ppc64_elf_gc_mark_hook (asection *sec,
6254 struct bfd_link_info *info,
6255 Elf_Internal_Rela *rel,
6256 struct elf_link_hash_entry *h,
6257 Elf_Internal_Sym *sym)
6258 {
6259 asection *rsec;
6260
6261 /* Syms return NULL if we're marking .opd, so we avoid marking all
6262 function sections, as all functions are referenced in .opd. */
6263 rsec = NULL;
6264 if (get_opd_info (sec) != NULL)
6265 return rsec;
6266
6267 if (h != NULL)
6268 {
6269 enum elf_ppc64_reloc_type r_type;
6270 struct ppc_link_hash_entry *eh, *fh, *fdh;
6271
6272 r_type = ELF64_R_TYPE (rel->r_info);
6273 switch (r_type)
6274 {
6275 case R_PPC64_GNU_VTINHERIT:
6276 case R_PPC64_GNU_VTENTRY:
6277 break;
6278
6279 default:
6280 switch (h->root.type)
6281 {
6282 case bfd_link_hash_defined:
6283 case bfd_link_hash_defweak:
6284 eh = (struct ppc_link_hash_entry *) h;
6285 fdh = defined_func_desc (eh);
6286 if (fdh != NULL)
6287 eh = fdh;
6288
6289 /* Function descriptor syms cause the associated
6290 function code sym section to be marked. */
6291 fh = defined_code_entry (eh);
6292 if (fh != NULL)
6293 {
6294 /* They also mark their opd section. */
6295 eh->elf.root.u.def.section->gc_mark = 1;
6296
6297 rsec = fh->elf.root.u.def.section;
6298 }
6299 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6300 && opd_entry_value (eh->elf.root.u.def.section,
6301 eh->elf.root.u.def.value,
6302 &rsec, NULL, FALSE) != (bfd_vma) -1)
6303 eh->elf.root.u.def.section->gc_mark = 1;
6304 else
6305 rsec = h->root.u.def.section;
6306 break;
6307
6308 case bfd_link_hash_common:
6309 rsec = h->root.u.c.p->section;
6310 break;
6311
6312 default:
6313 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6314 }
6315 }
6316 }
6317 else
6318 {
6319 struct _opd_sec_data *opd;
6320
6321 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6322 opd = get_opd_info (rsec);
6323 if (opd != NULL && opd->func_sec != NULL)
6324 {
6325 rsec->gc_mark = 1;
6326
6327 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6328 }
6329 }
6330
6331 return rsec;
6332 }
6333
6334 /* Update the .got, .plt. and dynamic reloc reference counts for the
6335 section being removed. */
6336
6337 static bfd_boolean
6338 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6339 asection *sec, const Elf_Internal_Rela *relocs)
6340 {
6341 struct ppc_link_hash_table *htab;
6342 Elf_Internal_Shdr *symtab_hdr;
6343 struct elf_link_hash_entry **sym_hashes;
6344 struct got_entry **local_got_ents;
6345 const Elf_Internal_Rela *rel, *relend;
6346
6347 if (info->relocatable)
6348 return TRUE;
6349
6350 if ((sec->flags & SEC_ALLOC) == 0)
6351 return TRUE;
6352
6353 elf_section_data (sec)->local_dynrel = NULL;
6354
6355 htab = ppc_hash_table (info);
6356 if (htab == NULL)
6357 return FALSE;
6358
6359 symtab_hdr = &elf_symtab_hdr (abfd);
6360 sym_hashes = elf_sym_hashes (abfd);
6361 local_got_ents = elf_local_got_ents (abfd);
6362
6363 relend = relocs + sec->reloc_count;
6364 for (rel = relocs; rel < relend; rel++)
6365 {
6366 unsigned long r_symndx;
6367 enum elf_ppc64_reloc_type r_type;
6368 struct elf_link_hash_entry *h = NULL;
6369 unsigned char tls_type = 0;
6370
6371 r_symndx = ELF64_R_SYM (rel->r_info);
6372 r_type = ELF64_R_TYPE (rel->r_info);
6373 if (r_symndx >= symtab_hdr->sh_info)
6374 {
6375 struct ppc_link_hash_entry *eh;
6376 struct elf_dyn_relocs **pp;
6377 struct elf_dyn_relocs *p;
6378
6379 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6380 h = elf_follow_link (h);
6381 eh = (struct ppc_link_hash_entry *) h;
6382
6383 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6384 if (p->sec == sec)
6385 {
6386 /* Everything must go for SEC. */
6387 *pp = p->next;
6388 break;
6389 }
6390 }
6391
6392 if (is_branch_reloc (r_type))
6393 {
6394 struct plt_entry **ifunc = NULL;
6395 if (h != NULL)
6396 {
6397 if (h->type == STT_GNU_IFUNC)
6398 ifunc = &h->plt.plist;
6399 }
6400 else if (local_got_ents != NULL)
6401 {
6402 struct plt_entry **local_plt = (struct plt_entry **)
6403 (local_got_ents + symtab_hdr->sh_info);
6404 unsigned char *local_got_tls_masks = (unsigned char *)
6405 (local_plt + symtab_hdr->sh_info);
6406 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6407 ifunc = local_plt + r_symndx;
6408 }
6409 if (ifunc != NULL)
6410 {
6411 struct plt_entry *ent;
6412
6413 for (ent = *ifunc; ent != NULL; ent = ent->next)
6414 if (ent->addend == rel->r_addend)
6415 break;
6416 if (ent == NULL)
6417 abort ();
6418 if (ent->plt.refcount > 0)
6419 ent->plt.refcount -= 1;
6420 continue;
6421 }
6422 }
6423
6424 switch (r_type)
6425 {
6426 case R_PPC64_GOT_TLSLD16:
6427 case R_PPC64_GOT_TLSLD16_LO:
6428 case R_PPC64_GOT_TLSLD16_HI:
6429 case R_PPC64_GOT_TLSLD16_HA:
6430 tls_type = TLS_TLS | TLS_LD;
6431 goto dogot;
6432
6433 case R_PPC64_GOT_TLSGD16:
6434 case R_PPC64_GOT_TLSGD16_LO:
6435 case R_PPC64_GOT_TLSGD16_HI:
6436 case R_PPC64_GOT_TLSGD16_HA:
6437 tls_type = TLS_TLS | TLS_GD;
6438 goto dogot;
6439
6440 case R_PPC64_GOT_TPREL16_DS:
6441 case R_PPC64_GOT_TPREL16_LO_DS:
6442 case R_PPC64_GOT_TPREL16_HI:
6443 case R_PPC64_GOT_TPREL16_HA:
6444 tls_type = TLS_TLS | TLS_TPREL;
6445 goto dogot;
6446
6447 case R_PPC64_GOT_DTPREL16_DS:
6448 case R_PPC64_GOT_DTPREL16_LO_DS:
6449 case R_PPC64_GOT_DTPREL16_HI:
6450 case R_PPC64_GOT_DTPREL16_HA:
6451 tls_type = TLS_TLS | TLS_DTPREL;
6452 goto dogot;
6453
6454 case R_PPC64_GOT16:
6455 case R_PPC64_GOT16_DS:
6456 case R_PPC64_GOT16_HA:
6457 case R_PPC64_GOT16_HI:
6458 case R_PPC64_GOT16_LO:
6459 case R_PPC64_GOT16_LO_DS:
6460 dogot:
6461 {
6462 struct got_entry *ent;
6463
6464 if (h != NULL)
6465 ent = h->got.glist;
6466 else
6467 ent = local_got_ents[r_symndx];
6468
6469 for (; ent != NULL; ent = ent->next)
6470 if (ent->addend == rel->r_addend
6471 && ent->owner == abfd
6472 && ent->tls_type == tls_type)
6473 break;
6474 if (ent == NULL)
6475 abort ();
6476 if (ent->got.refcount > 0)
6477 ent->got.refcount -= 1;
6478 }
6479 break;
6480
6481 case R_PPC64_PLT16_HA:
6482 case R_PPC64_PLT16_HI:
6483 case R_PPC64_PLT16_LO:
6484 case R_PPC64_PLT32:
6485 case R_PPC64_PLT64:
6486 case R_PPC64_REL14:
6487 case R_PPC64_REL14_BRNTAKEN:
6488 case R_PPC64_REL14_BRTAKEN:
6489 case R_PPC64_REL24:
6490 if (h != NULL)
6491 {
6492 struct plt_entry *ent;
6493
6494 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6495 if (ent->addend == rel->r_addend)
6496 break;
6497 if (ent != NULL && ent->plt.refcount > 0)
6498 ent->plt.refcount -= 1;
6499 }
6500 break;
6501
6502 default:
6503 break;
6504 }
6505 }
6506 return TRUE;
6507 }
6508
6509 /* The maximum size of .sfpr. */
6510 #define SFPR_MAX (218*4)
6511
6512 struct sfpr_def_parms
6513 {
6514 const char name[12];
6515 unsigned char lo, hi;
6516 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6517 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6518 };
6519
6520 /* Auto-generate _save*, _rest* functions in .sfpr. */
6521
6522 static bfd_boolean
6523 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6524 {
6525 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6526 unsigned int i;
6527 size_t len = strlen (parm->name);
6528 bfd_boolean writing = FALSE;
6529 char sym[16];
6530
6531 if (htab == NULL)
6532 return FALSE;
6533
6534 memcpy (sym, parm->name, len);
6535 sym[len + 2] = 0;
6536
6537 for (i = parm->lo; i <= parm->hi; i++)
6538 {
6539 struct elf_link_hash_entry *h;
6540
6541 sym[len + 0] = i / 10 + '0';
6542 sym[len + 1] = i % 10 + '0';
6543 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6544 if (h != NULL
6545 && !h->def_regular)
6546 {
6547 h->root.type = bfd_link_hash_defined;
6548 h->root.u.def.section = htab->sfpr;
6549 h->root.u.def.value = htab->sfpr->size;
6550 h->type = STT_FUNC;
6551 h->def_regular = 1;
6552 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6553 writing = TRUE;
6554 if (htab->sfpr->contents == NULL)
6555 {
6556 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6557 if (htab->sfpr->contents == NULL)
6558 return FALSE;
6559 }
6560 }
6561 if (writing)
6562 {
6563 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6564 if (i != parm->hi)
6565 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6566 else
6567 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6568 htab->sfpr->size = p - htab->sfpr->contents;
6569 }
6570 }
6571
6572 return TRUE;
6573 }
6574
6575 static bfd_byte *
6576 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6577 {
6578 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6579 return p + 4;
6580 }
6581
6582 static bfd_byte *
6583 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6584 {
6585 p = savegpr0 (abfd, p, r);
6586 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6587 p = p + 4;
6588 bfd_put_32 (abfd, BLR, p);
6589 return p + 4;
6590 }
6591
6592 static bfd_byte *
6593 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6594 {
6595 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6596 return p + 4;
6597 }
6598
6599 static bfd_byte *
6600 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6601 {
6602 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6603 p = p + 4;
6604 p = restgpr0 (abfd, p, r);
6605 bfd_put_32 (abfd, MTLR_R0, p);
6606 p = p + 4;
6607 if (r == 29)
6608 {
6609 p = restgpr0 (abfd, p, 30);
6610 p = restgpr0 (abfd, p, 31);
6611 }
6612 bfd_put_32 (abfd, BLR, p);
6613 return p + 4;
6614 }
6615
6616 static bfd_byte *
6617 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6618 {
6619 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6620 return p + 4;
6621 }
6622
6623 static bfd_byte *
6624 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6625 {
6626 p = savegpr1 (abfd, p, r);
6627 bfd_put_32 (abfd, BLR, p);
6628 return p + 4;
6629 }
6630
6631 static bfd_byte *
6632 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6633 {
6634 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6635 return p + 4;
6636 }
6637
6638 static bfd_byte *
6639 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6640 {
6641 p = restgpr1 (abfd, p, r);
6642 bfd_put_32 (abfd, BLR, p);
6643 return p + 4;
6644 }
6645
6646 static bfd_byte *
6647 savefpr (bfd *abfd, bfd_byte *p, int r)
6648 {
6649 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6650 return p + 4;
6651 }
6652
6653 static bfd_byte *
6654 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6655 {
6656 p = savefpr (abfd, p, r);
6657 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6658 p = p + 4;
6659 bfd_put_32 (abfd, BLR, p);
6660 return p + 4;
6661 }
6662
6663 static bfd_byte *
6664 restfpr (bfd *abfd, bfd_byte *p, int r)
6665 {
6666 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6667 return p + 4;
6668 }
6669
6670 static bfd_byte *
6671 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6672 {
6673 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6674 p = p + 4;
6675 p = restfpr (abfd, p, r);
6676 bfd_put_32 (abfd, MTLR_R0, p);
6677 p = p + 4;
6678 if (r == 29)
6679 {
6680 p = restfpr (abfd, p, 30);
6681 p = restfpr (abfd, p, 31);
6682 }
6683 bfd_put_32 (abfd, BLR, p);
6684 return p + 4;
6685 }
6686
6687 static bfd_byte *
6688 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6689 {
6690 p = savefpr (abfd, p, r);
6691 bfd_put_32 (abfd, BLR, p);
6692 return p + 4;
6693 }
6694
6695 static bfd_byte *
6696 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6697 {
6698 p = restfpr (abfd, p, r);
6699 bfd_put_32 (abfd, BLR, p);
6700 return p + 4;
6701 }
6702
6703 static bfd_byte *
6704 savevr (bfd *abfd, bfd_byte *p, int r)
6705 {
6706 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6707 p = p + 4;
6708 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6709 return p + 4;
6710 }
6711
6712 static bfd_byte *
6713 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6714 {
6715 p = savevr (abfd, p, r);
6716 bfd_put_32 (abfd, BLR, p);
6717 return p + 4;
6718 }
6719
6720 static bfd_byte *
6721 restvr (bfd *abfd, bfd_byte *p, int r)
6722 {
6723 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6724 p = p + 4;
6725 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6726 return p + 4;
6727 }
6728
6729 static bfd_byte *
6730 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6731 {
6732 p = restvr (abfd, p, r);
6733 bfd_put_32 (abfd, BLR, p);
6734 return p + 4;
6735 }
6736
6737 /* Called via elf_link_hash_traverse to transfer dynamic linking
6738 information on function code symbol entries to their corresponding
6739 function descriptor symbol entries. */
6740
6741 static bfd_boolean
6742 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6743 {
6744 struct bfd_link_info *info;
6745 struct ppc_link_hash_table *htab;
6746 struct plt_entry *ent;
6747 struct ppc_link_hash_entry *fh;
6748 struct ppc_link_hash_entry *fdh;
6749 bfd_boolean force_local;
6750
6751 fh = (struct ppc_link_hash_entry *) h;
6752 if (fh->elf.root.type == bfd_link_hash_indirect)
6753 return TRUE;
6754
6755 info = inf;
6756 htab = ppc_hash_table (info);
6757 if (htab == NULL)
6758 return FALSE;
6759
6760 /* Resolve undefined references to dot-symbols as the value
6761 in the function descriptor, if we have one in a regular object.
6762 This is to satisfy cases like ".quad .foo". Calls to functions
6763 in dynamic objects are handled elsewhere. */
6764 if (fh->elf.root.type == bfd_link_hash_undefweak
6765 && fh->was_undefined
6766 && (fdh = defined_func_desc (fh)) != NULL
6767 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6768 && opd_entry_value (fdh->elf.root.u.def.section,
6769 fdh->elf.root.u.def.value,
6770 &fh->elf.root.u.def.section,
6771 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6772 {
6773 fh->elf.root.type = fdh->elf.root.type;
6774 fh->elf.forced_local = 1;
6775 fh->elf.def_regular = fdh->elf.def_regular;
6776 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6777 }
6778
6779 /* If this is a function code symbol, transfer dynamic linking
6780 information to the function descriptor symbol. */
6781 if (!fh->is_func)
6782 return TRUE;
6783
6784 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6785 if (ent->plt.refcount > 0)
6786 break;
6787 if (ent == NULL
6788 || fh->elf.root.root.string[0] != '.'
6789 || fh->elf.root.root.string[1] == '\0')
6790 return TRUE;
6791
6792 /* Find the corresponding function descriptor symbol. Create it
6793 as undefined if necessary. */
6794
6795 fdh = lookup_fdh (fh, htab);
6796 if (fdh == NULL
6797 && !info->executable
6798 && (fh->elf.root.type == bfd_link_hash_undefined
6799 || fh->elf.root.type == bfd_link_hash_undefweak))
6800 {
6801 fdh = make_fdh (info, fh);
6802 if (fdh == NULL)
6803 return FALSE;
6804 }
6805
6806 /* Fake function descriptors are made undefweak. If the function
6807 code symbol is strong undefined, make the fake sym the same.
6808 If the function code symbol is defined, then force the fake
6809 descriptor local; We can't support overriding of symbols in a
6810 shared library on a fake descriptor. */
6811
6812 if (fdh != NULL
6813 && fdh->fake
6814 && fdh->elf.root.type == bfd_link_hash_undefweak)
6815 {
6816 if (fh->elf.root.type == bfd_link_hash_undefined)
6817 {
6818 fdh->elf.root.type = bfd_link_hash_undefined;
6819 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6820 }
6821 else if (fh->elf.root.type == bfd_link_hash_defined
6822 || fh->elf.root.type == bfd_link_hash_defweak)
6823 {
6824 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6825 }
6826 }
6827
6828 if (fdh != NULL
6829 && !fdh->elf.forced_local
6830 && (!info->executable
6831 || fdh->elf.def_dynamic
6832 || fdh->elf.ref_dynamic
6833 || (fdh->elf.root.type == bfd_link_hash_undefweak
6834 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6835 {
6836 if (fdh->elf.dynindx == -1)
6837 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6838 return FALSE;
6839 fdh->elf.ref_regular |= fh->elf.ref_regular;
6840 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6841 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6842 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6843 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6844 {
6845 move_plt_plist (fh, fdh);
6846 fdh->elf.needs_plt = 1;
6847 }
6848 fdh->is_func_descriptor = 1;
6849 fdh->oh = fh;
6850 fh->oh = fdh;
6851 }
6852
6853 /* Now that the info is on the function descriptor, clear the
6854 function code sym info. Any function code syms for which we
6855 don't have a definition in a regular file, we force local.
6856 This prevents a shared library from exporting syms that have
6857 been imported from another library. Function code syms that
6858 are really in the library we must leave global to prevent the
6859 linker dragging in a definition from a static library. */
6860 force_local = (!fh->elf.def_regular
6861 || fdh == NULL
6862 || !fdh->elf.def_regular
6863 || fdh->elf.forced_local);
6864 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6865
6866 return TRUE;
6867 }
6868
6869 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6870 this hook to a) provide some gcc support functions, and b) transfer
6871 dynamic linking information gathered so far on function code symbol
6872 entries, to their corresponding function descriptor symbol entries. */
6873
6874 static bfd_boolean
6875 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6876 struct bfd_link_info *info)
6877 {
6878 struct ppc_link_hash_table *htab;
6879 unsigned int i;
6880 static const struct sfpr_def_parms funcs[] =
6881 {
6882 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6883 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6884 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6885 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6886 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6887 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6888 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6889 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6890 { "._savef", 14, 31, savefpr, savefpr1_tail },
6891 { "._restf", 14, 31, restfpr, restfpr1_tail },
6892 { "_savevr_", 20, 31, savevr, savevr_tail },
6893 { "_restvr_", 20, 31, restvr, restvr_tail }
6894 };
6895
6896 htab = ppc_hash_table (info);
6897 if (htab == NULL)
6898 return FALSE;
6899
6900 if (!info->relocatable
6901 && htab->elf.hgot != NULL)
6902 {
6903 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6904 /* Make .TOC. defined so as to prevent it being made dynamic.
6905 The wrong value here is fixed later in ppc64_elf_set_toc. */
6906 htab->elf.hgot->type = STT_OBJECT;
6907 htab->elf.hgot->root.type = bfd_link_hash_defined;
6908 htab->elf.hgot->root.u.def.value = 0;
6909 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6910 htab->elf.hgot->def_regular = 1;
6911 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6912 | STV_HIDDEN);
6913 }
6914
6915 if (htab->sfpr == NULL)
6916 /* We don't have any relocs. */
6917 return TRUE;
6918
6919 /* Provide any missing _save* and _rest* functions. */
6920 htab->sfpr->size = 0;
6921 if (htab->params->save_restore_funcs)
6922 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6923 if (!sfpr_define (info, &funcs[i]))
6924 return FALSE;
6925
6926 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6927
6928 if (htab->sfpr->size == 0)
6929 htab->sfpr->flags |= SEC_EXCLUDE;
6930
6931 return TRUE;
6932 }
6933
6934 /* Return true if we have dynamic relocs that apply to read-only sections. */
6935
6936 static bfd_boolean
6937 readonly_dynrelocs (struct elf_link_hash_entry *h)
6938 {
6939 struct ppc_link_hash_entry *eh;
6940 struct elf_dyn_relocs *p;
6941
6942 eh = (struct ppc_link_hash_entry *) h;
6943 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6944 {
6945 asection *s = p->sec->output_section;
6946
6947 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6948 return TRUE;
6949 }
6950 return FALSE;
6951 }
6952
6953 /* Adjust a symbol defined by a dynamic object and referenced by a
6954 regular object. The current definition is in some section of the
6955 dynamic object, but we're not including those sections. We have to
6956 change the definition to something the rest of the link can
6957 understand. */
6958
6959 static bfd_boolean
6960 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6961 struct elf_link_hash_entry *h)
6962 {
6963 struct ppc_link_hash_table *htab;
6964 asection *s;
6965
6966 htab = ppc_hash_table (info);
6967 if (htab == NULL)
6968 return FALSE;
6969
6970 /* Deal with function syms. */
6971 if (h->type == STT_FUNC
6972 || h->type == STT_GNU_IFUNC
6973 || h->needs_plt)
6974 {
6975 /* Clear procedure linkage table information for any symbol that
6976 won't need a .plt entry. */
6977 struct plt_entry *ent;
6978 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6979 if (ent->plt.refcount > 0)
6980 break;
6981 if (ent == NULL
6982 || (h->type != STT_GNU_IFUNC
6983 && (SYMBOL_CALLS_LOCAL (info, h)
6984 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6985 && h->root.type == bfd_link_hash_undefweak))))
6986 {
6987 h->plt.plist = NULL;
6988 h->needs_plt = 0;
6989 h->pointer_equality_needed = 0;
6990 }
6991 else if (abiversion (info->output_bfd) == 2)
6992 {
6993 /* Taking a function's address in a read/write section
6994 doesn't require us to define the function symbol in the
6995 executable on a global entry stub. A dynamic reloc can
6996 be used instead. */
6997 if (h->pointer_equality_needed
6998 && h->type != STT_GNU_IFUNC
6999 && !readonly_dynrelocs (h))
7000 {
7001 h->pointer_equality_needed = 0;
7002 h->non_got_ref = 0;
7003 }
7004
7005 /* After adjust_dynamic_symbol, non_got_ref set in the
7006 non-shared case means that we have allocated space in
7007 .dynbss for the symbol and thus dyn_relocs for this
7008 symbol should be discarded.
7009 If we get here we know we are making a PLT entry for this
7010 symbol, and in an executable we'd normally resolve
7011 relocations against this symbol to the PLT entry. Allow
7012 dynamic relocs if the reference is weak, and the dynamic
7013 relocs will not cause text relocation. */
7014 else if (!h->ref_regular_nonweak
7015 && h->non_got_ref
7016 && h->type != STT_GNU_IFUNC
7017 && !readonly_dynrelocs (h))
7018 h->non_got_ref = 0;
7019
7020 /* If making a plt entry, then we don't need copy relocs. */
7021 return TRUE;
7022 }
7023 }
7024 else
7025 h->plt.plist = NULL;
7026
7027 /* If this is a weak symbol, and there is a real definition, the
7028 processor independent code will have arranged for us to see the
7029 real definition first, and we can just use the same value. */
7030 if (h->u.weakdef != NULL)
7031 {
7032 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7033 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7034 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7035 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7036 if (ELIMINATE_COPY_RELOCS)
7037 h->non_got_ref = h->u.weakdef->non_got_ref;
7038 return TRUE;
7039 }
7040
7041 /* If we are creating a shared library, we must presume that the
7042 only references to the symbol are via the global offset table.
7043 For such cases we need not do anything here; the relocations will
7044 be handled correctly by relocate_section. */
7045 if (info->shared)
7046 return TRUE;
7047
7048 /* If there are no references to this symbol that do not use the
7049 GOT, we don't need to generate a copy reloc. */
7050 if (!h->non_got_ref)
7051 return TRUE;
7052
7053 /* Don't generate a copy reloc for symbols defined in the executable. */
7054 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7055 return TRUE;
7056
7057 /* If we didn't find any dynamic relocs in read-only sections, then
7058 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7059 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7060 {
7061 h->non_got_ref = 0;
7062 return TRUE;
7063 }
7064
7065 if (h->plt.plist != NULL)
7066 {
7067 /* We should never get here, but unfortunately there are versions
7068 of gcc out there that improperly (for this ABI) put initialized
7069 function pointers, vtable refs and suchlike in read-only
7070 sections. Allow them to proceed, but warn that this might
7071 break at runtime. */
7072 info->callbacks->einfo
7073 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7074 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7075 h->root.root.string);
7076 }
7077
7078 /* This is a reference to a symbol defined by a dynamic object which
7079 is not a function. */
7080
7081 /* We must allocate the symbol in our .dynbss section, which will
7082 become part of the .bss section of the executable. There will be
7083 an entry for this symbol in the .dynsym section. The dynamic
7084 object will contain position independent code, so all references
7085 from the dynamic object to this symbol will go through the global
7086 offset table. The dynamic linker will use the .dynsym entry to
7087 determine the address it must put in the global offset table, so
7088 both the dynamic object and the regular object will refer to the
7089 same memory location for the variable. */
7090
7091 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7092 to copy the initial value out of the dynamic object and into the
7093 runtime process image. We need to remember the offset into the
7094 .rela.bss section we are going to use. */
7095 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7096 {
7097 htab->relbss->size += sizeof (Elf64_External_Rela);
7098 h->needs_copy = 1;
7099 }
7100
7101 s = htab->dynbss;
7102
7103 return _bfd_elf_adjust_dynamic_copy (h, s);
7104 }
7105
7106 /* If given a function descriptor symbol, hide both the function code
7107 sym and the descriptor. */
7108 static void
7109 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7110 struct elf_link_hash_entry *h,
7111 bfd_boolean force_local)
7112 {
7113 struct ppc_link_hash_entry *eh;
7114 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7115
7116 eh = (struct ppc_link_hash_entry *) h;
7117 if (eh->is_func_descriptor)
7118 {
7119 struct ppc_link_hash_entry *fh = eh->oh;
7120
7121 if (fh == NULL)
7122 {
7123 const char *p, *q;
7124 struct ppc_link_hash_table *htab;
7125 char save;
7126
7127 /* We aren't supposed to use alloca in BFD because on
7128 systems which do not have alloca the version in libiberty
7129 calls xmalloc, which might cause the program to crash
7130 when it runs out of memory. This function doesn't have a
7131 return status, so there's no way to gracefully return an
7132 error. So cheat. We know that string[-1] can be safely
7133 accessed; It's either a string in an ELF string table,
7134 or allocated in an objalloc structure. */
7135
7136 p = eh->elf.root.root.string - 1;
7137 save = *p;
7138 *(char *) p = '.';
7139 htab = ppc_hash_table (info);
7140 if (htab == NULL)
7141 return;
7142
7143 fh = (struct ppc_link_hash_entry *)
7144 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7145 *(char *) p = save;
7146
7147 /* Unfortunately, if it so happens that the string we were
7148 looking for was allocated immediately before this string,
7149 then we overwrote the string terminator. That's the only
7150 reason the lookup should fail. */
7151 if (fh == NULL)
7152 {
7153 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7154 while (q >= eh->elf.root.root.string && *q == *p)
7155 --q, --p;
7156 if (q < eh->elf.root.root.string && *p == '.')
7157 fh = (struct ppc_link_hash_entry *)
7158 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7159 }
7160 if (fh != NULL)
7161 {
7162 eh->oh = fh;
7163 fh->oh = eh;
7164 }
7165 }
7166 if (fh != NULL)
7167 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7168 }
7169 }
7170
7171 static bfd_boolean
7172 get_sym_h (struct elf_link_hash_entry **hp,
7173 Elf_Internal_Sym **symp,
7174 asection **symsecp,
7175 unsigned char **tls_maskp,
7176 Elf_Internal_Sym **locsymsp,
7177 unsigned long r_symndx,
7178 bfd *ibfd)
7179 {
7180 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7181
7182 if (r_symndx >= symtab_hdr->sh_info)
7183 {
7184 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7185 struct elf_link_hash_entry *h;
7186
7187 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7188 h = elf_follow_link (h);
7189
7190 if (hp != NULL)
7191 *hp = h;
7192
7193 if (symp != NULL)
7194 *symp = NULL;
7195
7196 if (symsecp != NULL)
7197 {
7198 asection *symsec = NULL;
7199 if (h->root.type == bfd_link_hash_defined
7200 || h->root.type == bfd_link_hash_defweak)
7201 symsec = h->root.u.def.section;
7202 *symsecp = symsec;
7203 }
7204
7205 if (tls_maskp != NULL)
7206 {
7207 struct ppc_link_hash_entry *eh;
7208
7209 eh = (struct ppc_link_hash_entry *) h;
7210 *tls_maskp = &eh->tls_mask;
7211 }
7212 }
7213 else
7214 {
7215 Elf_Internal_Sym *sym;
7216 Elf_Internal_Sym *locsyms = *locsymsp;
7217
7218 if (locsyms == NULL)
7219 {
7220 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7221 if (locsyms == NULL)
7222 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7223 symtab_hdr->sh_info,
7224 0, NULL, NULL, NULL);
7225 if (locsyms == NULL)
7226 return FALSE;
7227 *locsymsp = locsyms;
7228 }
7229 sym = locsyms + r_symndx;
7230
7231 if (hp != NULL)
7232 *hp = NULL;
7233
7234 if (symp != NULL)
7235 *symp = sym;
7236
7237 if (symsecp != NULL)
7238 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7239
7240 if (tls_maskp != NULL)
7241 {
7242 struct got_entry **lgot_ents;
7243 unsigned char *tls_mask;
7244
7245 tls_mask = NULL;
7246 lgot_ents = elf_local_got_ents (ibfd);
7247 if (lgot_ents != NULL)
7248 {
7249 struct plt_entry **local_plt = (struct plt_entry **)
7250 (lgot_ents + symtab_hdr->sh_info);
7251 unsigned char *lgot_masks = (unsigned char *)
7252 (local_plt + symtab_hdr->sh_info);
7253 tls_mask = &lgot_masks[r_symndx];
7254 }
7255 *tls_maskp = tls_mask;
7256 }
7257 }
7258 return TRUE;
7259 }
7260
7261 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7262 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7263 type suitable for optimization, and 1 otherwise. */
7264
7265 static int
7266 get_tls_mask (unsigned char **tls_maskp,
7267 unsigned long *toc_symndx,
7268 bfd_vma *toc_addend,
7269 Elf_Internal_Sym **locsymsp,
7270 const Elf_Internal_Rela *rel,
7271 bfd *ibfd)
7272 {
7273 unsigned long r_symndx;
7274 int next_r;
7275 struct elf_link_hash_entry *h;
7276 Elf_Internal_Sym *sym;
7277 asection *sec;
7278 bfd_vma off;
7279
7280 r_symndx = ELF64_R_SYM (rel->r_info);
7281 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7282 return 0;
7283
7284 if ((*tls_maskp != NULL && **tls_maskp != 0)
7285 || sec == NULL
7286 || ppc64_elf_section_data (sec) == NULL
7287 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7288 return 1;
7289
7290 /* Look inside a TOC section too. */
7291 if (h != NULL)
7292 {
7293 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7294 off = h->root.u.def.value;
7295 }
7296 else
7297 off = sym->st_value;
7298 off += rel->r_addend;
7299 BFD_ASSERT (off % 8 == 0);
7300 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7301 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7302 if (toc_symndx != NULL)
7303 *toc_symndx = r_symndx;
7304 if (toc_addend != NULL)
7305 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7306 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7307 return 0;
7308 if ((h == NULL || is_static_defined (h))
7309 && (next_r == -1 || next_r == -2))
7310 return 1 - next_r;
7311 return 1;
7312 }
7313
7314 /* Find (or create) an entry in the tocsave hash table. */
7315
7316 static struct tocsave_entry *
7317 tocsave_find (struct ppc_link_hash_table *htab,
7318 enum insert_option insert,
7319 Elf_Internal_Sym **local_syms,
7320 const Elf_Internal_Rela *irela,
7321 bfd *ibfd)
7322 {
7323 unsigned long r_indx;
7324 struct elf_link_hash_entry *h;
7325 Elf_Internal_Sym *sym;
7326 struct tocsave_entry ent, *p;
7327 hashval_t hash;
7328 struct tocsave_entry **slot;
7329
7330 r_indx = ELF64_R_SYM (irela->r_info);
7331 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7332 return NULL;
7333 if (ent.sec == NULL || ent.sec->output_section == NULL)
7334 {
7335 (*_bfd_error_handler)
7336 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7337 return NULL;
7338 }
7339
7340 if (h != NULL)
7341 ent.offset = h->root.u.def.value;
7342 else
7343 ent.offset = sym->st_value;
7344 ent.offset += irela->r_addend;
7345
7346 hash = tocsave_htab_hash (&ent);
7347 slot = ((struct tocsave_entry **)
7348 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7349 if (slot == NULL)
7350 return NULL;
7351
7352 if (*slot == NULL)
7353 {
7354 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7355 if (p == NULL)
7356 return NULL;
7357 *p = ent;
7358 *slot = p;
7359 }
7360 return *slot;
7361 }
7362
7363 /* Adjust all global syms defined in opd sections. In gcc generated
7364 code for the old ABI, these will already have been done. */
7365
7366 static bfd_boolean
7367 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7368 {
7369 struct ppc_link_hash_entry *eh;
7370 asection *sym_sec;
7371 struct _opd_sec_data *opd;
7372
7373 if (h->root.type == bfd_link_hash_indirect)
7374 return TRUE;
7375
7376 if (h->root.type != bfd_link_hash_defined
7377 && h->root.type != bfd_link_hash_defweak)
7378 return TRUE;
7379
7380 eh = (struct ppc_link_hash_entry *) h;
7381 if (eh->adjust_done)
7382 return TRUE;
7383
7384 sym_sec = eh->elf.root.u.def.section;
7385 opd = get_opd_info (sym_sec);
7386 if (opd != NULL && opd->adjust != NULL)
7387 {
7388 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7389 if (adjust == -1)
7390 {
7391 /* This entry has been deleted. */
7392 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7393 if (dsec == NULL)
7394 {
7395 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7396 if (discarded_section (dsec))
7397 {
7398 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7399 break;
7400 }
7401 }
7402 eh->elf.root.u.def.value = 0;
7403 eh->elf.root.u.def.section = dsec;
7404 }
7405 else
7406 eh->elf.root.u.def.value += adjust;
7407 eh->adjust_done = 1;
7408 }
7409 return TRUE;
7410 }
7411
7412 /* Handles decrementing dynamic reloc counts for the reloc specified by
7413 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7414 have already been determined. */
7415
7416 static bfd_boolean
7417 dec_dynrel_count (bfd_vma r_info,
7418 asection *sec,
7419 struct bfd_link_info *info,
7420 Elf_Internal_Sym **local_syms,
7421 struct elf_link_hash_entry *h,
7422 Elf_Internal_Sym *sym)
7423 {
7424 enum elf_ppc64_reloc_type r_type;
7425 asection *sym_sec = NULL;
7426
7427 /* Can this reloc be dynamic? This switch, and later tests here
7428 should be kept in sync with the code in check_relocs. */
7429 r_type = ELF64_R_TYPE (r_info);
7430 switch (r_type)
7431 {
7432 default:
7433 return TRUE;
7434
7435 case R_PPC64_TPREL16:
7436 case R_PPC64_TPREL16_LO:
7437 case R_PPC64_TPREL16_HI:
7438 case R_PPC64_TPREL16_HA:
7439 case R_PPC64_TPREL16_DS:
7440 case R_PPC64_TPREL16_LO_DS:
7441 case R_PPC64_TPREL16_HIGH:
7442 case R_PPC64_TPREL16_HIGHA:
7443 case R_PPC64_TPREL16_HIGHER:
7444 case R_PPC64_TPREL16_HIGHERA:
7445 case R_PPC64_TPREL16_HIGHEST:
7446 case R_PPC64_TPREL16_HIGHESTA:
7447 if (!info->shared)
7448 return TRUE;
7449
7450 case R_PPC64_TPREL64:
7451 case R_PPC64_DTPMOD64:
7452 case R_PPC64_DTPREL64:
7453 case R_PPC64_ADDR64:
7454 case R_PPC64_REL30:
7455 case R_PPC64_REL32:
7456 case R_PPC64_REL64:
7457 case R_PPC64_ADDR14:
7458 case R_PPC64_ADDR14_BRNTAKEN:
7459 case R_PPC64_ADDR14_BRTAKEN:
7460 case R_PPC64_ADDR16:
7461 case R_PPC64_ADDR16_DS:
7462 case R_PPC64_ADDR16_HA:
7463 case R_PPC64_ADDR16_HI:
7464 case R_PPC64_ADDR16_HIGH:
7465 case R_PPC64_ADDR16_HIGHA:
7466 case R_PPC64_ADDR16_HIGHER:
7467 case R_PPC64_ADDR16_HIGHERA:
7468 case R_PPC64_ADDR16_HIGHEST:
7469 case R_PPC64_ADDR16_HIGHESTA:
7470 case R_PPC64_ADDR16_LO:
7471 case R_PPC64_ADDR16_LO_DS:
7472 case R_PPC64_ADDR24:
7473 case R_PPC64_ADDR32:
7474 case R_PPC64_UADDR16:
7475 case R_PPC64_UADDR32:
7476 case R_PPC64_UADDR64:
7477 case R_PPC64_TOC:
7478 break;
7479 }
7480
7481 if (local_syms != NULL)
7482 {
7483 unsigned long r_symndx;
7484 bfd *ibfd = sec->owner;
7485
7486 r_symndx = ELF64_R_SYM (r_info);
7487 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7488 return FALSE;
7489 }
7490
7491 if ((info->shared
7492 && (must_be_dyn_reloc (info, r_type)
7493 || (h != NULL
7494 && (!SYMBOLIC_BIND (info, h)
7495 || h->root.type == bfd_link_hash_defweak
7496 || !h->def_regular))))
7497 || (ELIMINATE_COPY_RELOCS
7498 && !info->shared
7499 && h != NULL
7500 && (h->root.type == bfd_link_hash_defweak
7501 || !h->def_regular)))
7502 ;
7503 else
7504 return TRUE;
7505
7506 if (h != NULL)
7507 {
7508 struct elf_dyn_relocs *p;
7509 struct elf_dyn_relocs **pp;
7510 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7511
7512 /* elf_gc_sweep may have already removed all dyn relocs associated
7513 with local syms for a given section. Also, symbol flags are
7514 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7515 report a dynreloc miscount. */
7516 if (*pp == NULL && info->gc_sections)
7517 return TRUE;
7518
7519 while ((p = *pp) != NULL)
7520 {
7521 if (p->sec == sec)
7522 {
7523 if (!must_be_dyn_reloc (info, r_type))
7524 p->pc_count -= 1;
7525 p->count -= 1;
7526 if (p->count == 0)
7527 *pp = p->next;
7528 return TRUE;
7529 }
7530 pp = &p->next;
7531 }
7532 }
7533 else
7534 {
7535 struct ppc_dyn_relocs *p;
7536 struct ppc_dyn_relocs **pp;
7537 void *vpp;
7538 bfd_boolean is_ifunc;
7539
7540 if (local_syms == NULL)
7541 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7542 if (sym_sec == NULL)
7543 sym_sec = sec;
7544
7545 vpp = &elf_section_data (sym_sec)->local_dynrel;
7546 pp = (struct ppc_dyn_relocs **) vpp;
7547
7548 if (*pp == NULL && info->gc_sections)
7549 return TRUE;
7550
7551 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7552 while ((p = *pp) != NULL)
7553 {
7554 if (p->sec == sec && p->ifunc == is_ifunc)
7555 {
7556 p->count -= 1;
7557 if (p->count == 0)
7558 *pp = p->next;
7559 return TRUE;
7560 }
7561 pp = &p->next;
7562 }
7563 }
7564
7565 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7566 sec->owner, sec);
7567 bfd_set_error (bfd_error_bad_value);
7568 return FALSE;
7569 }
7570
7571 /* Remove unused Official Procedure Descriptor entries. Currently we
7572 only remove those associated with functions in discarded link-once
7573 sections, or weakly defined functions that have been overridden. It
7574 would be possible to remove many more entries for statically linked
7575 applications. */
7576
7577 bfd_boolean
7578 ppc64_elf_edit_opd (struct bfd_link_info *info)
7579 {
7580 bfd *ibfd;
7581 bfd_boolean some_edited = FALSE;
7582 asection *need_pad = NULL;
7583 struct ppc_link_hash_table *htab;
7584
7585 htab = ppc_hash_table (info);
7586 if (htab == NULL)
7587 return FALSE;
7588
7589 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7590 {
7591 asection *sec;
7592 Elf_Internal_Rela *relstart, *rel, *relend;
7593 Elf_Internal_Shdr *symtab_hdr;
7594 Elf_Internal_Sym *local_syms;
7595 bfd_vma offset;
7596 struct _opd_sec_data *opd;
7597 bfd_boolean need_edit, add_aux_fields;
7598 bfd_size_type cnt_16b = 0;
7599
7600 if (!is_ppc64_elf (ibfd))
7601 continue;
7602
7603 sec = bfd_get_section_by_name (ibfd, ".opd");
7604 if (sec == NULL || sec->size == 0)
7605 continue;
7606
7607 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7608 continue;
7609
7610 if (sec->output_section == bfd_abs_section_ptr)
7611 continue;
7612
7613 /* Look through the section relocs. */
7614 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7615 continue;
7616
7617 local_syms = NULL;
7618 symtab_hdr = &elf_symtab_hdr (ibfd);
7619
7620 /* Read the relocations. */
7621 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7622 info->keep_memory);
7623 if (relstart == NULL)
7624 return FALSE;
7625
7626 /* First run through the relocs to check they are sane, and to
7627 determine whether we need to edit this opd section. */
7628 need_edit = FALSE;
7629 need_pad = sec;
7630 offset = 0;
7631 relend = relstart + sec->reloc_count;
7632 for (rel = relstart; rel < relend; )
7633 {
7634 enum elf_ppc64_reloc_type r_type;
7635 unsigned long r_symndx;
7636 asection *sym_sec;
7637 struct elf_link_hash_entry *h;
7638 Elf_Internal_Sym *sym;
7639
7640 /* .opd contains a regular array of 16 or 24 byte entries. We're
7641 only interested in the reloc pointing to a function entry
7642 point. */
7643 if (rel->r_offset != offset
7644 || rel + 1 >= relend
7645 || (rel + 1)->r_offset != offset + 8)
7646 {
7647 /* If someone messes with .opd alignment then after a
7648 "ld -r" we might have padding in the middle of .opd.
7649 Also, there's nothing to prevent someone putting
7650 something silly in .opd with the assembler. No .opd
7651 optimization for them! */
7652 broken_opd:
7653 (*_bfd_error_handler)
7654 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7655 need_edit = FALSE;
7656 break;
7657 }
7658
7659 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7660 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7661 {
7662 (*_bfd_error_handler)
7663 (_("%B: unexpected reloc type %u in .opd section"),
7664 ibfd, r_type);
7665 need_edit = FALSE;
7666 break;
7667 }
7668
7669 r_symndx = ELF64_R_SYM (rel->r_info);
7670 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7671 r_symndx, ibfd))
7672 goto error_ret;
7673
7674 if (sym_sec == NULL || sym_sec->owner == NULL)
7675 {
7676 const char *sym_name;
7677 if (h != NULL)
7678 sym_name = h->root.root.string;
7679 else
7680 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7681 sym_sec);
7682
7683 (*_bfd_error_handler)
7684 (_("%B: undefined sym `%s' in .opd section"),
7685 ibfd, sym_name);
7686 need_edit = FALSE;
7687 break;
7688 }
7689
7690 /* opd entries are always for functions defined in the
7691 current input bfd. If the symbol isn't defined in the
7692 input bfd, then we won't be using the function in this
7693 bfd; It must be defined in a linkonce section in another
7694 bfd, or is weak. It's also possible that we are
7695 discarding the function due to a linker script /DISCARD/,
7696 which we test for via the output_section. */
7697 if (sym_sec->owner != ibfd
7698 || sym_sec->output_section == bfd_abs_section_ptr)
7699 need_edit = TRUE;
7700
7701 rel += 2;
7702 if (rel == relend
7703 || (rel + 1 == relend && rel->r_offset == offset + 16))
7704 {
7705 if (sec->size == offset + 24)
7706 {
7707 need_pad = NULL;
7708 break;
7709 }
7710 if (rel == relend && sec->size == offset + 16)
7711 {
7712 cnt_16b++;
7713 break;
7714 }
7715 goto broken_opd;
7716 }
7717
7718 if (rel->r_offset == offset + 24)
7719 offset += 24;
7720 else if (rel->r_offset != offset + 16)
7721 goto broken_opd;
7722 else if (rel + 1 < relend
7723 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7724 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7725 {
7726 offset += 16;
7727 cnt_16b++;
7728 }
7729 else if (rel + 2 < relend
7730 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7731 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7732 {
7733 offset += 24;
7734 rel += 1;
7735 }
7736 else
7737 goto broken_opd;
7738 }
7739
7740 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7741
7742 if (need_edit || add_aux_fields)
7743 {
7744 Elf_Internal_Rela *write_rel;
7745 Elf_Internal_Shdr *rel_hdr;
7746 bfd_byte *rptr, *wptr;
7747 bfd_byte *new_contents;
7748 bfd_boolean skip;
7749 long opd_ent_size;
7750 bfd_size_type amt;
7751
7752 new_contents = NULL;
7753 amt = sec->size * sizeof (long) / 8;
7754 opd = &ppc64_elf_section_data (sec)->u.opd;
7755 opd->adjust = bfd_zalloc (sec->owner, amt);
7756 if (opd->adjust == NULL)
7757 return FALSE;
7758 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7759
7760 /* This seems a waste of time as input .opd sections are all
7761 zeros as generated by gcc, but I suppose there's no reason
7762 this will always be so. We might start putting something in
7763 the third word of .opd entries. */
7764 if ((sec->flags & SEC_IN_MEMORY) == 0)
7765 {
7766 bfd_byte *loc;
7767 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7768 {
7769 if (loc != NULL)
7770 free (loc);
7771 error_ret:
7772 if (local_syms != NULL
7773 && symtab_hdr->contents != (unsigned char *) local_syms)
7774 free (local_syms);
7775 if (elf_section_data (sec)->relocs != relstart)
7776 free (relstart);
7777 return FALSE;
7778 }
7779 sec->contents = loc;
7780 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7781 }
7782
7783 elf_section_data (sec)->relocs = relstart;
7784
7785 new_contents = sec->contents;
7786 if (add_aux_fields)
7787 {
7788 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7789 if (new_contents == NULL)
7790 return FALSE;
7791 need_pad = FALSE;
7792 }
7793 wptr = new_contents;
7794 rptr = sec->contents;
7795
7796 write_rel = relstart;
7797 skip = FALSE;
7798 offset = 0;
7799 opd_ent_size = 0;
7800 for (rel = relstart; rel < relend; rel++)
7801 {
7802 unsigned long r_symndx;
7803 asection *sym_sec;
7804 struct elf_link_hash_entry *h;
7805 Elf_Internal_Sym *sym;
7806
7807 r_symndx = ELF64_R_SYM (rel->r_info);
7808 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7809 r_symndx, ibfd))
7810 goto error_ret;
7811
7812 if (rel->r_offset == offset)
7813 {
7814 struct ppc_link_hash_entry *fdh = NULL;
7815
7816 /* See if the .opd entry is full 24 byte or
7817 16 byte (with fd_aux entry overlapped with next
7818 fd_func). */
7819 opd_ent_size = 24;
7820 if ((rel + 2 == relend && sec->size == offset + 16)
7821 || (rel + 3 < relend
7822 && rel[2].r_offset == offset + 16
7823 && rel[3].r_offset == offset + 24
7824 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7825 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7826 opd_ent_size = 16;
7827
7828 if (h != NULL
7829 && h->root.root.string[0] == '.')
7830 {
7831 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7832 if (fdh != NULL
7833 && fdh->elf.root.type != bfd_link_hash_defined
7834 && fdh->elf.root.type != bfd_link_hash_defweak)
7835 fdh = NULL;
7836 }
7837
7838 skip = (sym_sec->owner != ibfd
7839 || sym_sec->output_section == bfd_abs_section_ptr);
7840 if (skip)
7841 {
7842 if (fdh != NULL && sym_sec->owner == ibfd)
7843 {
7844 /* Arrange for the function descriptor sym
7845 to be dropped. */
7846 fdh->elf.root.u.def.value = 0;
7847 fdh->elf.root.u.def.section = sym_sec;
7848 }
7849 opd->adjust[rel->r_offset / 8] = -1;
7850 }
7851 else
7852 {
7853 /* We'll be keeping this opd entry. */
7854
7855 if (fdh != NULL)
7856 {
7857 /* Redefine the function descriptor symbol to
7858 this location in the opd section. It is
7859 necessary to update the value here rather
7860 than using an array of adjustments as we do
7861 for local symbols, because various places
7862 in the generic ELF code use the value
7863 stored in u.def.value. */
7864 fdh->elf.root.u.def.value = wptr - new_contents;
7865 fdh->adjust_done = 1;
7866 }
7867
7868 /* Local syms are a bit tricky. We could
7869 tweak them as they can be cached, but
7870 we'd need to look through the local syms
7871 for the function descriptor sym which we
7872 don't have at the moment. So keep an
7873 array of adjustments. */
7874 opd->adjust[rel->r_offset / 8]
7875 = (wptr - new_contents) - (rptr - sec->contents);
7876
7877 if (wptr != rptr)
7878 memcpy (wptr, rptr, opd_ent_size);
7879 wptr += opd_ent_size;
7880 if (add_aux_fields && opd_ent_size == 16)
7881 {
7882 memset (wptr, '\0', 8);
7883 wptr += 8;
7884 }
7885 }
7886 rptr += opd_ent_size;
7887 offset += opd_ent_size;
7888 }
7889
7890 if (skip)
7891 {
7892 if (!NO_OPD_RELOCS
7893 && !info->relocatable
7894 && !dec_dynrel_count (rel->r_info, sec, info,
7895 NULL, h, sym))
7896 goto error_ret;
7897 }
7898 else
7899 {
7900 /* We need to adjust any reloc offsets to point to the
7901 new opd entries. While we're at it, we may as well
7902 remove redundant relocs. */
7903 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7904 if (write_rel != rel)
7905 memcpy (write_rel, rel, sizeof (*rel));
7906 ++write_rel;
7907 }
7908 }
7909
7910 sec->size = wptr - new_contents;
7911 sec->reloc_count = write_rel - relstart;
7912 if (add_aux_fields)
7913 {
7914 free (sec->contents);
7915 sec->contents = new_contents;
7916 }
7917
7918 /* Fudge the header size too, as this is used later in
7919 elf_bfd_final_link if we are emitting relocs. */
7920 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7921 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7922 some_edited = TRUE;
7923 }
7924 else if (elf_section_data (sec)->relocs != relstart)
7925 free (relstart);
7926
7927 if (local_syms != NULL
7928 && symtab_hdr->contents != (unsigned char *) local_syms)
7929 {
7930 if (!info->keep_memory)
7931 free (local_syms);
7932 else
7933 symtab_hdr->contents = (unsigned char *) local_syms;
7934 }
7935 }
7936
7937 if (some_edited)
7938 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7939
7940 /* If we are doing a final link and the last .opd entry is just 16 byte
7941 long, add a 8 byte padding after it. */
7942 if (need_pad != NULL && !info->relocatable)
7943 {
7944 bfd_byte *p;
7945
7946 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7947 {
7948 BFD_ASSERT (need_pad->size > 0);
7949
7950 p = bfd_malloc (need_pad->size + 8);
7951 if (p == NULL)
7952 return FALSE;
7953
7954 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7955 p, 0, need_pad->size))
7956 return FALSE;
7957
7958 need_pad->contents = p;
7959 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7960 }
7961 else
7962 {
7963 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7964 if (p == NULL)
7965 return FALSE;
7966
7967 need_pad->contents = p;
7968 }
7969
7970 memset (need_pad->contents + need_pad->size, 0, 8);
7971 need_pad->size += 8;
7972 }
7973
7974 return TRUE;
7975 }
7976
7977 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7978
7979 asection *
7980 ppc64_elf_tls_setup (struct bfd_link_info *info)
7981 {
7982 struct ppc_link_hash_table *htab;
7983
7984 htab = ppc_hash_table (info);
7985 if (htab == NULL)
7986 return NULL;
7987
7988 if (abiversion (info->output_bfd) == 1)
7989 htab->opd_abi = 1;
7990
7991 if (htab->params->no_multi_toc)
7992 htab->do_multi_toc = 0;
7993 else if (!htab->do_multi_toc)
7994 htab->params->no_multi_toc = 1;
7995
7996 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7997 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7998 FALSE, FALSE, TRUE));
7999 /* Move dynamic linking info to the function descriptor sym. */
8000 if (htab->tls_get_addr != NULL)
8001 func_desc_adjust (&htab->tls_get_addr->elf, info);
8002 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8003 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8004 FALSE, FALSE, TRUE));
8005 if (!htab->params->no_tls_get_addr_opt)
8006 {
8007 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8008
8009 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8010 FALSE, FALSE, TRUE);
8011 if (opt != NULL)
8012 func_desc_adjust (opt, info);
8013 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8014 FALSE, FALSE, TRUE);
8015 if (opt_fd != NULL
8016 && (opt_fd->root.type == bfd_link_hash_defined
8017 || opt_fd->root.type == bfd_link_hash_defweak))
8018 {
8019 /* If glibc supports an optimized __tls_get_addr call stub,
8020 signalled by the presence of __tls_get_addr_opt, and we'll
8021 be calling __tls_get_addr via a plt call stub, then
8022 make __tls_get_addr point to __tls_get_addr_opt. */
8023 tga_fd = &htab->tls_get_addr_fd->elf;
8024 if (htab->elf.dynamic_sections_created
8025 && tga_fd != NULL
8026 && (tga_fd->type == STT_FUNC
8027 || tga_fd->needs_plt)
8028 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8029 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8030 && tga_fd->root.type == bfd_link_hash_undefweak)))
8031 {
8032 struct plt_entry *ent;
8033
8034 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8035 if (ent->plt.refcount > 0)
8036 break;
8037 if (ent != NULL)
8038 {
8039 tga_fd->root.type = bfd_link_hash_indirect;
8040 tga_fd->root.u.i.link = &opt_fd->root;
8041 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8042 if (opt_fd->dynindx != -1)
8043 {
8044 /* Use __tls_get_addr_opt in dynamic relocations. */
8045 opt_fd->dynindx = -1;
8046 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8047 opt_fd->dynstr_index);
8048 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8049 return NULL;
8050 }
8051 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8052 tga = &htab->tls_get_addr->elf;
8053 if (opt != NULL && tga != NULL)
8054 {
8055 tga->root.type = bfd_link_hash_indirect;
8056 tga->root.u.i.link = &opt->root;
8057 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8058 _bfd_elf_link_hash_hide_symbol (info, opt,
8059 tga->forced_local);
8060 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8061 }
8062 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8063 htab->tls_get_addr_fd->is_func_descriptor = 1;
8064 if (htab->tls_get_addr != NULL)
8065 {
8066 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8067 htab->tls_get_addr->is_func = 1;
8068 }
8069 }
8070 }
8071 }
8072 else
8073 htab->params->no_tls_get_addr_opt = TRUE;
8074 }
8075 return _bfd_elf_tls_setup (info->output_bfd, info);
8076 }
8077
8078 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8079 HASH1 or HASH2. */
8080
8081 static bfd_boolean
8082 branch_reloc_hash_match (const bfd *ibfd,
8083 const Elf_Internal_Rela *rel,
8084 const struct ppc_link_hash_entry *hash1,
8085 const struct ppc_link_hash_entry *hash2)
8086 {
8087 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8088 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8089 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8090
8091 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8092 {
8093 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8094 struct elf_link_hash_entry *h;
8095
8096 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8097 h = elf_follow_link (h);
8098 if (h == &hash1->elf || h == &hash2->elf)
8099 return TRUE;
8100 }
8101 return FALSE;
8102 }
8103
8104 /* Run through all the TLS relocs looking for optimization
8105 opportunities. The linker has been hacked (see ppc64elf.em) to do
8106 a preliminary section layout so that we know the TLS segment
8107 offsets. We can't optimize earlier because some optimizations need
8108 to know the tp offset, and we need to optimize before allocating
8109 dynamic relocations. */
8110
8111 bfd_boolean
8112 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8113 {
8114 bfd *ibfd;
8115 asection *sec;
8116 struct ppc_link_hash_table *htab;
8117 unsigned char *toc_ref;
8118 int pass;
8119
8120 if (info->relocatable || !info->executable)
8121 return TRUE;
8122
8123 htab = ppc_hash_table (info);
8124 if (htab == NULL)
8125 return FALSE;
8126
8127 /* Make two passes over the relocs. On the first pass, mark toc
8128 entries involved with tls relocs, and check that tls relocs
8129 involved in setting up a tls_get_addr call are indeed followed by
8130 such a call. If they are not, we can't do any tls optimization.
8131 On the second pass twiddle tls_mask flags to notify
8132 relocate_section that optimization can be done, and adjust got
8133 and plt refcounts. */
8134 toc_ref = NULL;
8135 for (pass = 0; pass < 2; ++pass)
8136 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8137 {
8138 Elf_Internal_Sym *locsyms = NULL;
8139 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8140
8141 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8142 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8143 {
8144 Elf_Internal_Rela *relstart, *rel, *relend;
8145 bfd_boolean found_tls_get_addr_arg = 0;
8146
8147 /* Read the relocations. */
8148 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8149 info->keep_memory);
8150 if (relstart == NULL)
8151 {
8152 free (toc_ref);
8153 return FALSE;
8154 }
8155
8156 relend = relstart + sec->reloc_count;
8157 for (rel = relstart; rel < relend; rel++)
8158 {
8159 enum elf_ppc64_reloc_type r_type;
8160 unsigned long r_symndx;
8161 struct elf_link_hash_entry *h;
8162 Elf_Internal_Sym *sym;
8163 asection *sym_sec;
8164 unsigned char *tls_mask;
8165 unsigned char tls_set, tls_clear, tls_type = 0;
8166 bfd_vma value;
8167 bfd_boolean ok_tprel, is_local;
8168 long toc_ref_index = 0;
8169 int expecting_tls_get_addr = 0;
8170 bfd_boolean ret = FALSE;
8171
8172 r_symndx = ELF64_R_SYM (rel->r_info);
8173 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8174 r_symndx, ibfd))
8175 {
8176 err_free_rel:
8177 if (elf_section_data (sec)->relocs != relstart)
8178 free (relstart);
8179 if (toc_ref != NULL)
8180 free (toc_ref);
8181 if (locsyms != NULL
8182 && (elf_symtab_hdr (ibfd).contents
8183 != (unsigned char *) locsyms))
8184 free (locsyms);
8185 return ret;
8186 }
8187
8188 if (h != NULL)
8189 {
8190 if (h->root.type == bfd_link_hash_defined
8191 || h->root.type == bfd_link_hash_defweak)
8192 value = h->root.u.def.value;
8193 else if (h->root.type == bfd_link_hash_undefweak)
8194 value = 0;
8195 else
8196 {
8197 found_tls_get_addr_arg = 0;
8198 continue;
8199 }
8200 }
8201 else
8202 /* Symbols referenced by TLS relocs must be of type
8203 STT_TLS. So no need for .opd local sym adjust. */
8204 value = sym->st_value;
8205
8206 ok_tprel = FALSE;
8207 is_local = FALSE;
8208 if (h == NULL
8209 || !h->def_dynamic)
8210 {
8211 is_local = TRUE;
8212 if (h != NULL
8213 && h->root.type == bfd_link_hash_undefweak)
8214 ok_tprel = TRUE;
8215 else
8216 {
8217 value += sym_sec->output_offset;
8218 value += sym_sec->output_section->vma;
8219 value -= htab->elf.tls_sec->vma;
8220 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8221 < (bfd_vma) 1 << 32);
8222 }
8223 }
8224
8225 r_type = ELF64_R_TYPE (rel->r_info);
8226 /* If this section has old-style __tls_get_addr calls
8227 without marker relocs, then check that each
8228 __tls_get_addr call reloc is preceded by a reloc
8229 that conceivably belongs to the __tls_get_addr arg
8230 setup insn. If we don't find matching arg setup
8231 relocs, don't do any tls optimization. */
8232 if (pass == 0
8233 && sec->has_tls_get_addr_call
8234 && h != NULL
8235 && (h == &htab->tls_get_addr->elf
8236 || h == &htab->tls_get_addr_fd->elf)
8237 && !found_tls_get_addr_arg
8238 && is_branch_reloc (r_type))
8239 {
8240 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8241 "TLS optimization disabled\n"),
8242 ibfd, sec, rel->r_offset);
8243 ret = TRUE;
8244 goto err_free_rel;
8245 }
8246
8247 found_tls_get_addr_arg = 0;
8248 switch (r_type)
8249 {
8250 case R_PPC64_GOT_TLSLD16:
8251 case R_PPC64_GOT_TLSLD16_LO:
8252 expecting_tls_get_addr = 1;
8253 found_tls_get_addr_arg = 1;
8254 /* Fall thru */
8255
8256 case R_PPC64_GOT_TLSLD16_HI:
8257 case R_PPC64_GOT_TLSLD16_HA:
8258 /* These relocs should never be against a symbol
8259 defined in a shared lib. Leave them alone if
8260 that turns out to be the case. */
8261 if (!is_local)
8262 continue;
8263
8264 /* LD -> LE */
8265 tls_set = 0;
8266 tls_clear = TLS_LD;
8267 tls_type = TLS_TLS | TLS_LD;
8268 break;
8269
8270 case R_PPC64_GOT_TLSGD16:
8271 case R_PPC64_GOT_TLSGD16_LO:
8272 expecting_tls_get_addr = 1;
8273 found_tls_get_addr_arg = 1;
8274 /* Fall thru */
8275
8276 case R_PPC64_GOT_TLSGD16_HI:
8277 case R_PPC64_GOT_TLSGD16_HA:
8278 if (ok_tprel)
8279 /* GD -> LE */
8280 tls_set = 0;
8281 else
8282 /* GD -> IE */
8283 tls_set = TLS_TLS | TLS_TPRELGD;
8284 tls_clear = TLS_GD;
8285 tls_type = TLS_TLS | TLS_GD;
8286 break;
8287
8288 case R_PPC64_GOT_TPREL16_DS:
8289 case R_PPC64_GOT_TPREL16_LO_DS:
8290 case R_PPC64_GOT_TPREL16_HI:
8291 case R_PPC64_GOT_TPREL16_HA:
8292 if (ok_tprel)
8293 {
8294 /* IE -> LE */
8295 tls_set = 0;
8296 tls_clear = TLS_TPREL;
8297 tls_type = TLS_TLS | TLS_TPREL;
8298 break;
8299 }
8300 continue;
8301
8302 case R_PPC64_TLSGD:
8303 case R_PPC64_TLSLD:
8304 found_tls_get_addr_arg = 1;
8305 /* Fall thru */
8306
8307 case R_PPC64_TLS:
8308 case R_PPC64_TOC16:
8309 case R_PPC64_TOC16_LO:
8310 if (sym_sec == NULL || sym_sec != toc)
8311 continue;
8312
8313 /* Mark this toc entry as referenced by a TLS
8314 code sequence. We can do that now in the
8315 case of R_PPC64_TLS, and after checking for
8316 tls_get_addr for the TOC16 relocs. */
8317 if (toc_ref == NULL)
8318 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8319 if (toc_ref == NULL)
8320 goto err_free_rel;
8321
8322 if (h != NULL)
8323 value = h->root.u.def.value;
8324 else
8325 value = sym->st_value;
8326 value += rel->r_addend;
8327 BFD_ASSERT (value < toc->size && value % 8 == 0);
8328 toc_ref_index = (value + toc->output_offset) / 8;
8329 if (r_type == R_PPC64_TLS
8330 || r_type == R_PPC64_TLSGD
8331 || r_type == R_PPC64_TLSLD)
8332 {
8333 toc_ref[toc_ref_index] = 1;
8334 continue;
8335 }
8336
8337 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8338 continue;
8339
8340 tls_set = 0;
8341 tls_clear = 0;
8342 expecting_tls_get_addr = 2;
8343 break;
8344
8345 case R_PPC64_TPREL64:
8346 if (pass == 0
8347 || sec != toc
8348 || toc_ref == NULL
8349 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8350 continue;
8351 if (ok_tprel)
8352 {
8353 /* IE -> LE */
8354 tls_set = TLS_EXPLICIT;
8355 tls_clear = TLS_TPREL;
8356 break;
8357 }
8358 continue;
8359
8360 case R_PPC64_DTPMOD64:
8361 if (pass == 0
8362 || sec != toc
8363 || toc_ref == NULL
8364 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8365 continue;
8366 if (rel + 1 < relend
8367 && (rel[1].r_info
8368 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8369 && rel[1].r_offset == rel->r_offset + 8)
8370 {
8371 if (ok_tprel)
8372 /* GD -> LE */
8373 tls_set = TLS_EXPLICIT | TLS_GD;
8374 else
8375 /* GD -> IE */
8376 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8377 tls_clear = TLS_GD;
8378 }
8379 else
8380 {
8381 if (!is_local)
8382 continue;
8383
8384 /* LD -> LE */
8385 tls_set = TLS_EXPLICIT;
8386 tls_clear = TLS_LD;
8387 }
8388 break;
8389
8390 default:
8391 continue;
8392 }
8393
8394 if (pass == 0)
8395 {
8396 if (!expecting_tls_get_addr
8397 || !sec->has_tls_get_addr_call)
8398 continue;
8399
8400 if (rel + 1 < relend
8401 && branch_reloc_hash_match (ibfd, rel + 1,
8402 htab->tls_get_addr,
8403 htab->tls_get_addr_fd))
8404 {
8405 if (expecting_tls_get_addr == 2)
8406 {
8407 /* Check for toc tls entries. */
8408 unsigned char *toc_tls;
8409 int retval;
8410
8411 retval = get_tls_mask (&toc_tls, NULL, NULL,
8412 &locsyms,
8413 rel, ibfd);
8414 if (retval == 0)
8415 goto err_free_rel;
8416 if (toc_tls != NULL)
8417 {
8418 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8419 found_tls_get_addr_arg = 1;
8420 if (retval > 1)
8421 toc_ref[toc_ref_index] = 1;
8422 }
8423 }
8424 continue;
8425 }
8426
8427 if (expecting_tls_get_addr != 1)
8428 continue;
8429
8430 /* Uh oh, we didn't find the expected call. We
8431 could just mark this symbol to exclude it
8432 from tls optimization but it's safer to skip
8433 the entire optimization. */
8434 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8435 "TLS optimization disabled\n"),
8436 ibfd, sec, rel->r_offset);
8437 ret = TRUE;
8438 goto err_free_rel;
8439 }
8440
8441 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8442 {
8443 struct plt_entry *ent;
8444 for (ent = htab->tls_get_addr->elf.plt.plist;
8445 ent != NULL;
8446 ent = ent->next)
8447 if (ent->addend == 0)
8448 {
8449 if (ent->plt.refcount > 0)
8450 {
8451 ent->plt.refcount -= 1;
8452 expecting_tls_get_addr = 0;
8453 }
8454 break;
8455 }
8456 }
8457
8458 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8459 {
8460 struct plt_entry *ent;
8461 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8462 ent != NULL;
8463 ent = ent->next)
8464 if (ent->addend == 0)
8465 {
8466 if (ent->plt.refcount > 0)
8467 ent->plt.refcount -= 1;
8468 break;
8469 }
8470 }
8471
8472 if (tls_clear == 0)
8473 continue;
8474
8475 if ((tls_set & TLS_EXPLICIT) == 0)
8476 {
8477 struct got_entry *ent;
8478
8479 /* Adjust got entry for this reloc. */
8480 if (h != NULL)
8481 ent = h->got.glist;
8482 else
8483 ent = elf_local_got_ents (ibfd)[r_symndx];
8484
8485 for (; ent != NULL; ent = ent->next)
8486 if (ent->addend == rel->r_addend
8487 && ent->owner == ibfd
8488 && ent->tls_type == tls_type)
8489 break;
8490 if (ent == NULL)
8491 abort ();
8492
8493 if (tls_set == 0)
8494 {
8495 /* We managed to get rid of a got entry. */
8496 if (ent->got.refcount > 0)
8497 ent->got.refcount -= 1;
8498 }
8499 }
8500 else
8501 {
8502 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8503 we'll lose one or two dyn relocs. */
8504 if (!dec_dynrel_count (rel->r_info, sec, info,
8505 NULL, h, sym))
8506 return FALSE;
8507
8508 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8509 {
8510 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8511 NULL, h, sym))
8512 return FALSE;
8513 }
8514 }
8515
8516 *tls_mask |= tls_set;
8517 *tls_mask &= ~tls_clear;
8518 }
8519
8520 if (elf_section_data (sec)->relocs != relstart)
8521 free (relstart);
8522 }
8523
8524 if (locsyms != NULL
8525 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8526 {
8527 if (!info->keep_memory)
8528 free (locsyms);
8529 else
8530 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8531 }
8532 }
8533
8534 if (toc_ref != NULL)
8535 free (toc_ref);
8536 return TRUE;
8537 }
8538
8539 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8540 the values of any global symbols in a toc section that has been
8541 edited. Globals in toc sections should be a rarity, so this function
8542 sets a flag if any are found in toc sections other than the one just
8543 edited, so that futher hash table traversals can be avoided. */
8544
8545 struct adjust_toc_info
8546 {
8547 asection *toc;
8548 unsigned long *skip;
8549 bfd_boolean global_toc_syms;
8550 };
8551
8552 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8553
8554 static bfd_boolean
8555 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8556 {
8557 struct ppc_link_hash_entry *eh;
8558 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8559 unsigned long i;
8560
8561 if (h->root.type != bfd_link_hash_defined
8562 && h->root.type != bfd_link_hash_defweak)
8563 return TRUE;
8564
8565 eh = (struct ppc_link_hash_entry *) h;
8566 if (eh->adjust_done)
8567 return TRUE;
8568
8569 if (eh->elf.root.u.def.section == toc_inf->toc)
8570 {
8571 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8572 i = toc_inf->toc->rawsize >> 3;
8573 else
8574 i = eh->elf.root.u.def.value >> 3;
8575
8576 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8577 {
8578 (*_bfd_error_handler)
8579 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8580 do
8581 ++i;
8582 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8583 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8584 }
8585
8586 eh->elf.root.u.def.value -= toc_inf->skip[i];
8587 eh->adjust_done = 1;
8588 }
8589 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8590 toc_inf->global_toc_syms = TRUE;
8591
8592 return TRUE;
8593 }
8594
8595 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8596
8597 static bfd_boolean
8598 ok_lo_toc_insn (unsigned int insn)
8599 {
8600 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8601 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8602 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8603 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8604 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8605 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8606 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8607 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8608 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8609 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8610 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8611 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8612 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8613 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8614 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8615 && (insn & 3) != 1)
8616 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8617 && ((insn & 3) == 0 || (insn & 3) == 3))
8618 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8619 }
8620
8621 /* Examine all relocs referencing .toc sections in order to remove
8622 unused .toc entries. */
8623
8624 bfd_boolean
8625 ppc64_elf_edit_toc (struct bfd_link_info *info)
8626 {
8627 bfd *ibfd;
8628 struct adjust_toc_info toc_inf;
8629 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8630
8631 htab->do_toc_opt = 1;
8632 toc_inf.global_toc_syms = TRUE;
8633 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8634 {
8635 asection *toc, *sec;
8636 Elf_Internal_Shdr *symtab_hdr;
8637 Elf_Internal_Sym *local_syms;
8638 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8639 unsigned long *skip, *drop;
8640 unsigned char *used;
8641 unsigned char *keep, last, some_unused;
8642
8643 if (!is_ppc64_elf (ibfd))
8644 continue;
8645
8646 toc = bfd_get_section_by_name (ibfd, ".toc");
8647 if (toc == NULL
8648 || toc->size == 0
8649 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8650 || discarded_section (toc))
8651 continue;
8652
8653 toc_relocs = NULL;
8654 local_syms = NULL;
8655 symtab_hdr = &elf_symtab_hdr (ibfd);
8656
8657 /* Look at sections dropped from the final link. */
8658 skip = NULL;
8659 relstart = NULL;
8660 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8661 {
8662 if (sec->reloc_count == 0
8663 || !discarded_section (sec)
8664 || get_opd_info (sec)
8665 || (sec->flags & SEC_ALLOC) == 0
8666 || (sec->flags & SEC_DEBUGGING) != 0)
8667 continue;
8668
8669 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8670 if (relstart == NULL)
8671 goto error_ret;
8672
8673 /* Run through the relocs to see which toc entries might be
8674 unused. */
8675 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8676 {
8677 enum elf_ppc64_reloc_type r_type;
8678 unsigned long r_symndx;
8679 asection *sym_sec;
8680 struct elf_link_hash_entry *h;
8681 Elf_Internal_Sym *sym;
8682 bfd_vma val;
8683
8684 r_type = ELF64_R_TYPE (rel->r_info);
8685 switch (r_type)
8686 {
8687 default:
8688 continue;
8689
8690 case R_PPC64_TOC16:
8691 case R_PPC64_TOC16_LO:
8692 case R_PPC64_TOC16_HI:
8693 case R_PPC64_TOC16_HA:
8694 case R_PPC64_TOC16_DS:
8695 case R_PPC64_TOC16_LO_DS:
8696 break;
8697 }
8698
8699 r_symndx = ELF64_R_SYM (rel->r_info);
8700 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8701 r_symndx, ibfd))
8702 goto error_ret;
8703
8704 if (sym_sec != toc)
8705 continue;
8706
8707 if (h != NULL)
8708 val = h->root.u.def.value;
8709 else
8710 val = sym->st_value;
8711 val += rel->r_addend;
8712
8713 if (val >= toc->size)
8714 continue;
8715
8716 /* Anything in the toc ought to be aligned to 8 bytes.
8717 If not, don't mark as unused. */
8718 if (val & 7)
8719 continue;
8720
8721 if (skip == NULL)
8722 {
8723 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8724 if (skip == NULL)
8725 goto error_ret;
8726 }
8727
8728 skip[val >> 3] = ref_from_discarded;
8729 }
8730
8731 if (elf_section_data (sec)->relocs != relstart)
8732 free (relstart);
8733 }
8734
8735 /* For largetoc loads of address constants, we can convert
8736 . addis rx,2,addr@got@ha
8737 . ld ry,addr@got@l(rx)
8738 to
8739 . addis rx,2,addr@toc@ha
8740 . addi ry,rx,addr@toc@l
8741 when addr is within 2G of the toc pointer. This then means
8742 that the word storing "addr" in the toc is no longer needed. */
8743
8744 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8745 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8746 && toc->reloc_count != 0)
8747 {
8748 /* Read toc relocs. */
8749 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8750 info->keep_memory);
8751 if (toc_relocs == NULL)
8752 goto error_ret;
8753
8754 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8755 {
8756 enum elf_ppc64_reloc_type r_type;
8757 unsigned long r_symndx;
8758 asection *sym_sec;
8759 struct elf_link_hash_entry *h;
8760 Elf_Internal_Sym *sym;
8761 bfd_vma val, addr;
8762
8763 r_type = ELF64_R_TYPE (rel->r_info);
8764 if (r_type != R_PPC64_ADDR64)
8765 continue;
8766
8767 r_symndx = ELF64_R_SYM (rel->r_info);
8768 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8769 r_symndx, ibfd))
8770 goto error_ret;
8771
8772 if (sym_sec == NULL
8773 || discarded_section (sym_sec))
8774 continue;
8775
8776 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8777 continue;
8778
8779 if (h != NULL)
8780 {
8781 if (h->type == STT_GNU_IFUNC)
8782 continue;
8783 val = h->root.u.def.value;
8784 }
8785 else
8786 {
8787 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8788 continue;
8789 val = sym->st_value;
8790 }
8791 val += rel->r_addend;
8792 val += sym_sec->output_section->vma + sym_sec->output_offset;
8793
8794 /* We don't yet know the exact toc pointer value, but we
8795 know it will be somewhere in the toc section. Don't
8796 optimize if the difference from any possible toc
8797 pointer is outside [ff..f80008000, 7fff7fff]. */
8798 addr = toc->output_section->vma + TOC_BASE_OFF;
8799 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8800 continue;
8801
8802 addr = toc->output_section->vma + toc->output_section->rawsize;
8803 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8804 continue;
8805
8806 if (skip == NULL)
8807 {
8808 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8809 if (skip == NULL)
8810 goto error_ret;
8811 }
8812
8813 skip[rel->r_offset >> 3]
8814 |= can_optimize | ((rel - toc_relocs) << 2);
8815 }
8816 }
8817
8818 if (skip == NULL)
8819 continue;
8820
8821 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8822 if (used == NULL)
8823 {
8824 error_ret:
8825 if (local_syms != NULL
8826 && symtab_hdr->contents != (unsigned char *) local_syms)
8827 free (local_syms);
8828 if (sec != NULL
8829 && relstart != NULL
8830 && elf_section_data (sec)->relocs != relstart)
8831 free (relstart);
8832 if (toc_relocs != NULL
8833 && elf_section_data (toc)->relocs != toc_relocs)
8834 free (toc_relocs);
8835 if (skip != NULL)
8836 free (skip);
8837 return FALSE;
8838 }
8839
8840 /* Now check all kept sections that might reference the toc.
8841 Check the toc itself last. */
8842 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8843 : ibfd->sections);
8844 sec != NULL;
8845 sec = (sec == toc ? NULL
8846 : sec->next == NULL ? toc
8847 : sec->next == toc && toc->next ? toc->next
8848 : sec->next))
8849 {
8850 int repeat;
8851
8852 if (sec->reloc_count == 0
8853 || discarded_section (sec)
8854 || get_opd_info (sec)
8855 || (sec->flags & SEC_ALLOC) == 0
8856 || (sec->flags & SEC_DEBUGGING) != 0)
8857 continue;
8858
8859 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8860 info->keep_memory);
8861 if (relstart == NULL)
8862 {
8863 free (used);
8864 goto error_ret;
8865 }
8866
8867 /* Mark toc entries referenced as used. */
8868 do
8869 {
8870 repeat = 0;
8871 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8872 {
8873 enum elf_ppc64_reloc_type r_type;
8874 unsigned long r_symndx;
8875 asection *sym_sec;
8876 struct elf_link_hash_entry *h;
8877 Elf_Internal_Sym *sym;
8878 bfd_vma val;
8879 enum {no_check, check_lo, check_ha} insn_check;
8880
8881 r_type = ELF64_R_TYPE (rel->r_info);
8882 switch (r_type)
8883 {
8884 default:
8885 insn_check = no_check;
8886 break;
8887
8888 case R_PPC64_GOT_TLSLD16_HA:
8889 case R_PPC64_GOT_TLSGD16_HA:
8890 case R_PPC64_GOT_TPREL16_HA:
8891 case R_PPC64_GOT_DTPREL16_HA:
8892 case R_PPC64_GOT16_HA:
8893 case R_PPC64_TOC16_HA:
8894 insn_check = check_ha;
8895 break;
8896
8897 case R_PPC64_GOT_TLSLD16_LO:
8898 case R_PPC64_GOT_TLSGD16_LO:
8899 case R_PPC64_GOT_TPREL16_LO_DS:
8900 case R_PPC64_GOT_DTPREL16_LO_DS:
8901 case R_PPC64_GOT16_LO:
8902 case R_PPC64_GOT16_LO_DS:
8903 case R_PPC64_TOC16_LO:
8904 case R_PPC64_TOC16_LO_DS:
8905 insn_check = check_lo;
8906 break;
8907 }
8908
8909 if (insn_check != no_check)
8910 {
8911 bfd_vma off = rel->r_offset & ~3;
8912 unsigned char buf[4];
8913 unsigned int insn;
8914
8915 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8916 {
8917 free (used);
8918 goto error_ret;
8919 }
8920 insn = bfd_get_32 (ibfd, buf);
8921 if (insn_check == check_lo
8922 ? !ok_lo_toc_insn (insn)
8923 : ((insn & ((0x3f << 26) | 0x1f << 16))
8924 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8925 {
8926 char str[12];
8927
8928 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8929 sprintf (str, "%#08x", insn);
8930 info->callbacks->einfo
8931 (_("%P: %H: toc optimization is not supported for"
8932 " %s instruction.\n"),
8933 ibfd, sec, rel->r_offset & ~3, str);
8934 }
8935 }
8936
8937 switch (r_type)
8938 {
8939 case R_PPC64_TOC16:
8940 case R_PPC64_TOC16_LO:
8941 case R_PPC64_TOC16_HI:
8942 case R_PPC64_TOC16_HA:
8943 case R_PPC64_TOC16_DS:
8944 case R_PPC64_TOC16_LO_DS:
8945 /* In case we're taking addresses of toc entries. */
8946 case R_PPC64_ADDR64:
8947 break;
8948
8949 default:
8950 continue;
8951 }
8952
8953 r_symndx = ELF64_R_SYM (rel->r_info);
8954 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8955 r_symndx, ibfd))
8956 {
8957 free (used);
8958 goto error_ret;
8959 }
8960
8961 if (sym_sec != toc)
8962 continue;
8963
8964 if (h != NULL)
8965 val = h->root.u.def.value;
8966 else
8967 val = sym->st_value;
8968 val += rel->r_addend;
8969
8970 if (val >= toc->size)
8971 continue;
8972
8973 if ((skip[val >> 3] & can_optimize) != 0)
8974 {
8975 bfd_vma off;
8976 unsigned char opc;
8977
8978 switch (r_type)
8979 {
8980 case R_PPC64_TOC16_HA:
8981 break;
8982
8983 case R_PPC64_TOC16_LO_DS:
8984 off = rel->r_offset;
8985 off += (bfd_big_endian (ibfd) ? -2 : 3);
8986 if (!bfd_get_section_contents (ibfd, sec, &opc,
8987 off, 1))
8988 {
8989 free (used);
8990 goto error_ret;
8991 }
8992 if ((opc & (0x3f << 2)) == (58u << 2))
8993 break;
8994 /* Fall thru */
8995
8996 default:
8997 /* Wrong sort of reloc, or not a ld. We may
8998 as well clear ref_from_discarded too. */
8999 skip[val >> 3] = 0;
9000 }
9001 }
9002
9003 if (sec != toc)
9004 used[val >> 3] = 1;
9005 /* For the toc section, we only mark as used if this
9006 entry itself isn't unused. */
9007 else if ((used[rel->r_offset >> 3]
9008 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9009 && !used[val >> 3])
9010 {
9011 /* Do all the relocs again, to catch reference
9012 chains. */
9013 repeat = 1;
9014 used[val >> 3] = 1;
9015 }
9016 }
9017 }
9018 while (repeat);
9019
9020 if (elf_section_data (sec)->relocs != relstart)
9021 free (relstart);
9022 }
9023
9024 /* Merge the used and skip arrays. Assume that TOC
9025 doublewords not appearing as either used or unused belong
9026 to to an entry more than one doubleword in size. */
9027 for (drop = skip, keep = used, last = 0, some_unused = 0;
9028 drop < skip + (toc->size + 7) / 8;
9029 ++drop, ++keep)
9030 {
9031 if (*keep)
9032 {
9033 *drop &= ~ref_from_discarded;
9034 if ((*drop & can_optimize) != 0)
9035 some_unused = 1;
9036 last = 0;
9037 }
9038 else if ((*drop & ref_from_discarded) != 0)
9039 {
9040 some_unused = 1;
9041 last = ref_from_discarded;
9042 }
9043 else
9044 *drop = last;
9045 }
9046
9047 free (used);
9048
9049 if (some_unused)
9050 {
9051 bfd_byte *contents, *src;
9052 unsigned long off;
9053 Elf_Internal_Sym *sym;
9054 bfd_boolean local_toc_syms = FALSE;
9055
9056 /* Shuffle the toc contents, and at the same time convert the
9057 skip array from booleans into offsets. */
9058 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9059 goto error_ret;
9060
9061 elf_section_data (toc)->this_hdr.contents = contents;
9062
9063 for (src = contents, off = 0, drop = skip;
9064 src < contents + toc->size;
9065 src += 8, ++drop)
9066 {
9067 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9068 off += 8;
9069 else if (off != 0)
9070 {
9071 *drop = off;
9072 memcpy (src - off, src, 8);
9073 }
9074 }
9075 *drop = off;
9076 toc->rawsize = toc->size;
9077 toc->size = src - contents - off;
9078
9079 /* Adjust addends for relocs against the toc section sym,
9080 and optimize any accesses we can. */
9081 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9082 {
9083 if (sec->reloc_count == 0
9084 || discarded_section (sec))
9085 continue;
9086
9087 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9088 info->keep_memory);
9089 if (relstart == NULL)
9090 goto error_ret;
9091
9092 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9093 {
9094 enum elf_ppc64_reloc_type r_type;
9095 unsigned long r_symndx;
9096 asection *sym_sec;
9097 struct elf_link_hash_entry *h;
9098 bfd_vma val;
9099
9100 r_type = ELF64_R_TYPE (rel->r_info);
9101 switch (r_type)
9102 {
9103 default:
9104 continue;
9105
9106 case R_PPC64_TOC16:
9107 case R_PPC64_TOC16_LO:
9108 case R_PPC64_TOC16_HI:
9109 case R_PPC64_TOC16_HA:
9110 case R_PPC64_TOC16_DS:
9111 case R_PPC64_TOC16_LO_DS:
9112 case R_PPC64_ADDR64:
9113 break;
9114 }
9115
9116 r_symndx = ELF64_R_SYM (rel->r_info);
9117 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9118 r_symndx, ibfd))
9119 goto error_ret;
9120
9121 if (sym_sec != toc)
9122 continue;
9123
9124 if (h != NULL)
9125 val = h->root.u.def.value;
9126 else
9127 {
9128 val = sym->st_value;
9129 if (val != 0)
9130 local_toc_syms = TRUE;
9131 }
9132
9133 val += rel->r_addend;
9134
9135 if (val > toc->rawsize)
9136 val = toc->rawsize;
9137 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9138 continue;
9139 else if ((skip[val >> 3] & can_optimize) != 0)
9140 {
9141 Elf_Internal_Rela *tocrel
9142 = toc_relocs + (skip[val >> 3] >> 2);
9143 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9144
9145 switch (r_type)
9146 {
9147 case R_PPC64_TOC16_HA:
9148 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9149 break;
9150
9151 case R_PPC64_TOC16_LO_DS:
9152 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9153 break;
9154
9155 default:
9156 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9157 ppc_howto_init ();
9158 info->callbacks->einfo
9159 (_("%P: %H: %s references "
9160 "optimized away TOC entry\n"),
9161 ibfd, sec, rel->r_offset,
9162 ppc64_elf_howto_table[r_type]->name);
9163 bfd_set_error (bfd_error_bad_value);
9164 goto error_ret;
9165 }
9166 rel->r_addend = tocrel->r_addend;
9167 elf_section_data (sec)->relocs = relstart;
9168 continue;
9169 }
9170
9171 if (h != NULL || sym->st_value != 0)
9172 continue;
9173
9174 rel->r_addend -= skip[val >> 3];
9175 elf_section_data (sec)->relocs = relstart;
9176 }
9177
9178 if (elf_section_data (sec)->relocs != relstart)
9179 free (relstart);
9180 }
9181
9182 /* We shouldn't have local or global symbols defined in the TOC,
9183 but handle them anyway. */
9184 if (local_syms != NULL)
9185 for (sym = local_syms;
9186 sym < local_syms + symtab_hdr->sh_info;
9187 ++sym)
9188 if (sym->st_value != 0
9189 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9190 {
9191 unsigned long i;
9192
9193 if (sym->st_value > toc->rawsize)
9194 i = toc->rawsize >> 3;
9195 else
9196 i = sym->st_value >> 3;
9197
9198 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9199 {
9200 if (local_toc_syms)
9201 (*_bfd_error_handler)
9202 (_("%s defined on removed toc entry"),
9203 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9204 do
9205 ++i;
9206 while ((skip[i] & (ref_from_discarded | can_optimize)));
9207 sym->st_value = (bfd_vma) i << 3;
9208 }
9209
9210 sym->st_value -= skip[i];
9211 symtab_hdr->contents = (unsigned char *) local_syms;
9212 }
9213
9214 /* Adjust any global syms defined in this toc input section. */
9215 if (toc_inf.global_toc_syms)
9216 {
9217 toc_inf.toc = toc;
9218 toc_inf.skip = skip;
9219 toc_inf.global_toc_syms = FALSE;
9220 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9221 &toc_inf);
9222 }
9223
9224 if (toc->reloc_count != 0)
9225 {
9226 Elf_Internal_Shdr *rel_hdr;
9227 Elf_Internal_Rela *wrel;
9228 bfd_size_type sz;
9229
9230 /* Remove unused toc relocs, and adjust those we keep. */
9231 if (toc_relocs == NULL)
9232 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9233 info->keep_memory);
9234 if (toc_relocs == NULL)
9235 goto error_ret;
9236
9237 wrel = toc_relocs;
9238 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9239 if ((skip[rel->r_offset >> 3]
9240 & (ref_from_discarded | can_optimize)) == 0)
9241 {
9242 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9243 wrel->r_info = rel->r_info;
9244 wrel->r_addend = rel->r_addend;
9245 ++wrel;
9246 }
9247 else if (!dec_dynrel_count (rel->r_info, toc, info,
9248 &local_syms, NULL, NULL))
9249 goto error_ret;
9250
9251 elf_section_data (toc)->relocs = toc_relocs;
9252 toc->reloc_count = wrel - toc_relocs;
9253 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9254 sz = rel_hdr->sh_entsize;
9255 rel_hdr->sh_size = toc->reloc_count * sz;
9256 }
9257 }
9258 else if (toc_relocs != NULL
9259 && elf_section_data (toc)->relocs != toc_relocs)
9260 free (toc_relocs);
9261
9262 if (local_syms != NULL
9263 && symtab_hdr->contents != (unsigned char *) local_syms)
9264 {
9265 if (!info->keep_memory)
9266 free (local_syms);
9267 else
9268 symtab_hdr->contents = (unsigned char *) local_syms;
9269 }
9270 free (skip);
9271 }
9272
9273 return TRUE;
9274 }
9275
9276 /* Return true iff input section I references the TOC using
9277 instructions limited to +/-32k offsets. */
9278
9279 bfd_boolean
9280 ppc64_elf_has_small_toc_reloc (asection *i)
9281 {
9282 return (is_ppc64_elf (i->owner)
9283 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9284 }
9285
9286 /* Allocate space for one GOT entry. */
9287
9288 static void
9289 allocate_got (struct elf_link_hash_entry *h,
9290 struct bfd_link_info *info,
9291 struct got_entry *gent)
9292 {
9293 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9294 bfd_boolean dyn;
9295 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9296 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9297 ? 16 : 8);
9298 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9299 ? 2 : 1) * sizeof (Elf64_External_Rela);
9300 asection *got = ppc64_elf_tdata (gent->owner)->got;
9301
9302 gent->got.offset = got->size;
9303 got->size += entsize;
9304
9305 dyn = htab->elf.dynamic_sections_created;
9306 if (h->type == STT_GNU_IFUNC)
9307 {
9308 htab->elf.irelplt->size += rentsize;
9309 htab->got_reli_size += rentsize;
9310 }
9311 else if ((info->shared
9312 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9313 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9314 || h->root.type != bfd_link_hash_undefweak))
9315 {
9316 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9317 relgot->size += rentsize;
9318 }
9319 }
9320
9321 /* This function merges got entries in the same toc group. */
9322
9323 static void
9324 merge_got_entries (struct got_entry **pent)
9325 {
9326 struct got_entry *ent, *ent2;
9327
9328 for (ent = *pent; ent != NULL; ent = ent->next)
9329 if (!ent->is_indirect)
9330 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9331 if (!ent2->is_indirect
9332 && ent2->addend == ent->addend
9333 && ent2->tls_type == ent->tls_type
9334 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9335 {
9336 ent2->is_indirect = TRUE;
9337 ent2->got.ent = ent;
9338 }
9339 }
9340
9341 /* Allocate space in .plt, .got and associated reloc sections for
9342 dynamic relocs. */
9343
9344 static bfd_boolean
9345 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9346 {
9347 struct bfd_link_info *info;
9348 struct ppc_link_hash_table *htab;
9349 asection *s;
9350 struct ppc_link_hash_entry *eh;
9351 struct elf_dyn_relocs *p;
9352 struct got_entry **pgent, *gent;
9353
9354 if (h->root.type == bfd_link_hash_indirect)
9355 return TRUE;
9356
9357 info = (struct bfd_link_info *) inf;
9358 htab = ppc_hash_table (info);
9359 if (htab == NULL)
9360 return FALSE;
9361
9362 if ((htab->elf.dynamic_sections_created
9363 && h->dynindx != -1
9364 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9365 || h->type == STT_GNU_IFUNC)
9366 {
9367 struct plt_entry *pent;
9368 bfd_boolean doneone = FALSE;
9369 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9370 if (pent->plt.refcount > 0)
9371 {
9372 if (!htab->elf.dynamic_sections_created
9373 || h->dynindx == -1)
9374 {
9375 s = htab->elf.iplt;
9376 pent->plt.offset = s->size;
9377 s->size += PLT_ENTRY_SIZE (htab);
9378 s = htab->elf.irelplt;
9379 }
9380 else
9381 {
9382 /* If this is the first .plt entry, make room for the special
9383 first entry. */
9384 s = htab->elf.splt;
9385 if (s->size == 0)
9386 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9387
9388 pent->plt.offset = s->size;
9389
9390 /* Make room for this entry. */
9391 s->size += PLT_ENTRY_SIZE (htab);
9392
9393 /* Make room for the .glink code. */
9394 s = htab->glink;
9395 if (s->size == 0)
9396 s->size += GLINK_CALL_STUB_SIZE;
9397 if (htab->opd_abi)
9398 {
9399 /* We need bigger stubs past index 32767. */
9400 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9401 s->size += 4;
9402 s->size += 2*4;
9403 }
9404 else
9405 s->size += 4;
9406
9407 /* We also need to make an entry in the .rela.plt section. */
9408 s = htab->elf.srelplt;
9409 }
9410 s->size += sizeof (Elf64_External_Rela);
9411 doneone = TRUE;
9412 }
9413 else
9414 pent->plt.offset = (bfd_vma) -1;
9415 if (!doneone)
9416 {
9417 h->plt.plist = NULL;
9418 h->needs_plt = 0;
9419 }
9420 }
9421 else
9422 {
9423 h->plt.plist = NULL;
9424 h->needs_plt = 0;
9425 }
9426
9427 eh = (struct ppc_link_hash_entry *) h;
9428 /* Run through the TLS GD got entries first if we're changing them
9429 to TPREL. */
9430 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9431 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9432 if (gent->got.refcount > 0
9433 && (gent->tls_type & TLS_GD) != 0)
9434 {
9435 /* This was a GD entry that has been converted to TPREL. If
9436 there happens to be a TPREL entry we can use that one. */
9437 struct got_entry *ent;
9438 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9439 if (ent->got.refcount > 0
9440 && (ent->tls_type & TLS_TPREL) != 0
9441 && ent->addend == gent->addend
9442 && ent->owner == gent->owner)
9443 {
9444 gent->got.refcount = 0;
9445 break;
9446 }
9447
9448 /* If not, then we'll be using our own TPREL entry. */
9449 if (gent->got.refcount != 0)
9450 gent->tls_type = TLS_TLS | TLS_TPREL;
9451 }
9452
9453 /* Remove any list entry that won't generate a word in the GOT before
9454 we call merge_got_entries. Otherwise we risk merging to empty
9455 entries. */
9456 pgent = &h->got.glist;
9457 while ((gent = *pgent) != NULL)
9458 if (gent->got.refcount > 0)
9459 {
9460 if ((gent->tls_type & TLS_LD) != 0
9461 && !h->def_dynamic)
9462 {
9463 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9464 *pgent = gent->next;
9465 }
9466 else
9467 pgent = &gent->next;
9468 }
9469 else
9470 *pgent = gent->next;
9471
9472 if (!htab->do_multi_toc)
9473 merge_got_entries (&h->got.glist);
9474
9475 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9476 if (!gent->is_indirect)
9477 {
9478 /* Make sure this symbol is output as a dynamic symbol.
9479 Undefined weak syms won't yet be marked as dynamic,
9480 nor will all TLS symbols. */
9481 if (h->dynindx == -1
9482 && !h->forced_local
9483 && h->type != STT_GNU_IFUNC
9484 && htab->elf.dynamic_sections_created)
9485 {
9486 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9487 return FALSE;
9488 }
9489
9490 if (!is_ppc64_elf (gent->owner))
9491 abort ();
9492
9493 allocate_got (h, info, gent);
9494 }
9495
9496 if (eh->dyn_relocs == NULL
9497 || (!htab->elf.dynamic_sections_created
9498 && h->type != STT_GNU_IFUNC))
9499 return TRUE;
9500
9501 /* In the shared -Bsymbolic case, discard space allocated for
9502 dynamic pc-relative relocs against symbols which turn out to be
9503 defined in regular objects. For the normal shared case, discard
9504 space for relocs that have become local due to symbol visibility
9505 changes. */
9506
9507 if (info->shared)
9508 {
9509 /* Relocs that use pc_count are those that appear on a call insn,
9510 or certain REL relocs (see must_be_dyn_reloc) that can be
9511 generated via assembly. We want calls to protected symbols to
9512 resolve directly to the function rather than going via the plt.
9513 If people want function pointer comparisons to work as expected
9514 then they should avoid writing weird assembly. */
9515 if (SYMBOL_CALLS_LOCAL (info, h))
9516 {
9517 struct elf_dyn_relocs **pp;
9518
9519 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9520 {
9521 p->count -= p->pc_count;
9522 p->pc_count = 0;
9523 if (p->count == 0)
9524 *pp = p->next;
9525 else
9526 pp = &p->next;
9527 }
9528 }
9529
9530 /* Also discard relocs on undefined weak syms with non-default
9531 visibility. */
9532 if (eh->dyn_relocs != NULL
9533 && h->root.type == bfd_link_hash_undefweak)
9534 {
9535 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9536 eh->dyn_relocs = NULL;
9537
9538 /* Make sure this symbol is output as a dynamic symbol.
9539 Undefined weak syms won't yet be marked as dynamic. */
9540 else if (h->dynindx == -1
9541 && !h->forced_local)
9542 {
9543 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9544 return FALSE;
9545 }
9546 }
9547 }
9548 else if (h->type == STT_GNU_IFUNC)
9549 {
9550 if (!h->non_got_ref)
9551 eh->dyn_relocs = NULL;
9552 }
9553 else if (ELIMINATE_COPY_RELOCS)
9554 {
9555 /* For the non-shared case, discard space for relocs against
9556 symbols which turn out to need copy relocs or are not
9557 dynamic. */
9558
9559 if (!h->non_got_ref
9560 && !h->def_regular)
9561 {
9562 /* Make sure this symbol is output as a dynamic symbol.
9563 Undefined weak syms won't yet be marked as dynamic. */
9564 if (h->dynindx == -1
9565 && !h->forced_local)
9566 {
9567 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9568 return FALSE;
9569 }
9570
9571 /* If that succeeded, we know we'll be keeping all the
9572 relocs. */
9573 if (h->dynindx != -1)
9574 goto keep;
9575 }
9576
9577 eh->dyn_relocs = NULL;
9578
9579 keep: ;
9580 }
9581
9582 /* Finally, allocate space. */
9583 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9584 {
9585 asection *sreloc = elf_section_data (p->sec)->sreloc;
9586 if (eh->elf.type == STT_GNU_IFUNC)
9587 sreloc = htab->elf.irelplt;
9588 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9589 }
9590
9591 return TRUE;
9592 }
9593
9594 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9595 to set up space for global entry stubs. These are put in glink,
9596 after the branch table. */
9597
9598 static bfd_boolean
9599 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9600 {
9601 struct bfd_link_info *info;
9602 struct ppc_link_hash_table *htab;
9603 struct plt_entry *pent;
9604 asection *s;
9605
9606 if (h->root.type == bfd_link_hash_indirect)
9607 return TRUE;
9608
9609 if (!h->pointer_equality_needed)
9610 return TRUE;
9611
9612 if (h->def_regular)
9613 return TRUE;
9614
9615 info = inf;
9616 htab = ppc_hash_table (info);
9617 if (htab == NULL)
9618 return FALSE;
9619
9620 s = htab->glink;
9621 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9622 if (pent->plt.offset != (bfd_vma) -1
9623 && pent->addend == 0)
9624 {
9625 /* For ELFv2, if this symbol is not defined in a regular file
9626 and we are not generating a shared library or pie, then we
9627 need to define the symbol in the executable on a call stub.
9628 This is to avoid text relocations. */
9629 s->size = (s->size + 15) & -16;
9630 h->root.u.def.section = s;
9631 h->root.u.def.value = s->size;
9632 s->size += 16;
9633 break;
9634 }
9635 return TRUE;
9636 }
9637
9638 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9639 read-only sections. */
9640
9641 static bfd_boolean
9642 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9643 {
9644 if (h->root.type == bfd_link_hash_indirect)
9645 return TRUE;
9646
9647 if (readonly_dynrelocs (h))
9648 {
9649 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9650
9651 /* Not an error, just cut short the traversal. */
9652 return FALSE;
9653 }
9654 return TRUE;
9655 }
9656
9657 /* Set the sizes of the dynamic sections. */
9658
9659 static bfd_boolean
9660 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9661 struct bfd_link_info *info)
9662 {
9663 struct ppc_link_hash_table *htab;
9664 bfd *dynobj;
9665 asection *s;
9666 bfd_boolean relocs;
9667 bfd *ibfd;
9668 struct got_entry *first_tlsld;
9669
9670 htab = ppc_hash_table (info);
9671 if (htab == NULL)
9672 return FALSE;
9673
9674 dynobj = htab->elf.dynobj;
9675 if (dynobj == NULL)
9676 abort ();
9677
9678 if (htab->elf.dynamic_sections_created)
9679 {
9680 /* Set the contents of the .interp section to the interpreter. */
9681 if (info->executable)
9682 {
9683 s = bfd_get_linker_section (dynobj, ".interp");
9684 if (s == NULL)
9685 abort ();
9686 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9687 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9688 }
9689 }
9690
9691 /* Set up .got offsets for local syms, and space for local dynamic
9692 relocs. */
9693 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9694 {
9695 struct got_entry **lgot_ents;
9696 struct got_entry **end_lgot_ents;
9697 struct plt_entry **local_plt;
9698 struct plt_entry **end_local_plt;
9699 unsigned char *lgot_masks;
9700 bfd_size_type locsymcount;
9701 Elf_Internal_Shdr *symtab_hdr;
9702
9703 if (!is_ppc64_elf (ibfd))
9704 continue;
9705
9706 for (s = ibfd->sections; s != NULL; s = s->next)
9707 {
9708 struct ppc_dyn_relocs *p;
9709
9710 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9711 {
9712 if (!bfd_is_abs_section (p->sec)
9713 && bfd_is_abs_section (p->sec->output_section))
9714 {
9715 /* Input section has been discarded, either because
9716 it is a copy of a linkonce section or due to
9717 linker script /DISCARD/, so we'll be discarding
9718 the relocs too. */
9719 }
9720 else if (p->count != 0)
9721 {
9722 asection *srel = elf_section_data (p->sec)->sreloc;
9723 if (p->ifunc)
9724 srel = htab->elf.irelplt;
9725 srel->size += p->count * sizeof (Elf64_External_Rela);
9726 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9727 info->flags |= DF_TEXTREL;
9728 }
9729 }
9730 }
9731
9732 lgot_ents = elf_local_got_ents (ibfd);
9733 if (!lgot_ents)
9734 continue;
9735
9736 symtab_hdr = &elf_symtab_hdr (ibfd);
9737 locsymcount = symtab_hdr->sh_info;
9738 end_lgot_ents = lgot_ents + locsymcount;
9739 local_plt = (struct plt_entry **) end_lgot_ents;
9740 end_local_plt = local_plt + locsymcount;
9741 lgot_masks = (unsigned char *) end_local_plt;
9742 s = ppc64_elf_tdata (ibfd)->got;
9743 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9744 {
9745 struct got_entry **pent, *ent;
9746
9747 pent = lgot_ents;
9748 while ((ent = *pent) != NULL)
9749 if (ent->got.refcount > 0)
9750 {
9751 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9752 {
9753 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9754 *pent = ent->next;
9755 }
9756 else
9757 {
9758 unsigned int ent_size = 8;
9759 unsigned int rel_size = sizeof (Elf64_External_Rela);
9760
9761 ent->got.offset = s->size;
9762 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9763 {
9764 ent_size *= 2;
9765 rel_size *= 2;
9766 }
9767 s->size += ent_size;
9768 if ((*lgot_masks & PLT_IFUNC) != 0)
9769 {
9770 htab->elf.irelplt->size += rel_size;
9771 htab->got_reli_size += rel_size;
9772 }
9773 else if (info->shared)
9774 {
9775 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9776 srel->size += rel_size;
9777 }
9778 pent = &ent->next;
9779 }
9780 }
9781 else
9782 *pent = ent->next;
9783 }
9784
9785 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9786 for (; local_plt < end_local_plt; ++local_plt)
9787 {
9788 struct plt_entry *ent;
9789
9790 for (ent = *local_plt; ent != NULL; ent = ent->next)
9791 if (ent->plt.refcount > 0)
9792 {
9793 s = htab->elf.iplt;
9794 ent->plt.offset = s->size;
9795 s->size += PLT_ENTRY_SIZE (htab);
9796
9797 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9798 }
9799 else
9800 ent->plt.offset = (bfd_vma) -1;
9801 }
9802 }
9803
9804 /* Allocate global sym .plt and .got entries, and space for global
9805 sym dynamic relocs. */
9806 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9807 /* Stash the end of glink branch table. */
9808 if (htab->glink != NULL)
9809 htab->glink->rawsize = htab->glink->size;
9810
9811 if (!htab->opd_abi && !info->shared)
9812 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9813
9814 first_tlsld = NULL;
9815 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9816 {
9817 struct got_entry *ent;
9818
9819 if (!is_ppc64_elf (ibfd))
9820 continue;
9821
9822 ent = ppc64_tlsld_got (ibfd);
9823 if (ent->got.refcount > 0)
9824 {
9825 if (!htab->do_multi_toc && first_tlsld != NULL)
9826 {
9827 ent->is_indirect = TRUE;
9828 ent->got.ent = first_tlsld;
9829 }
9830 else
9831 {
9832 if (first_tlsld == NULL)
9833 first_tlsld = ent;
9834 s = ppc64_elf_tdata (ibfd)->got;
9835 ent->got.offset = s->size;
9836 ent->owner = ibfd;
9837 s->size += 16;
9838 if (info->shared)
9839 {
9840 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9841 srel->size += sizeof (Elf64_External_Rela);
9842 }
9843 }
9844 }
9845 else
9846 ent->got.offset = (bfd_vma) -1;
9847 }
9848
9849 /* We now have determined the sizes of the various dynamic sections.
9850 Allocate memory for them. */
9851 relocs = FALSE;
9852 for (s = dynobj->sections; s != NULL; s = s->next)
9853 {
9854 if ((s->flags & SEC_LINKER_CREATED) == 0)
9855 continue;
9856
9857 if (s == htab->brlt || s == htab->relbrlt)
9858 /* These haven't been allocated yet; don't strip. */
9859 continue;
9860 else if (s == htab->elf.sgot
9861 || s == htab->elf.splt
9862 || s == htab->elf.iplt
9863 || s == htab->glink
9864 || s == htab->dynbss)
9865 {
9866 /* Strip this section if we don't need it; see the
9867 comment below. */
9868 }
9869 else if (s == htab->glink_eh_frame)
9870 {
9871 if (!bfd_is_abs_section (s->output_section))
9872 /* Not sized yet. */
9873 continue;
9874 }
9875 else if (CONST_STRNEQ (s->name, ".rela"))
9876 {
9877 if (s->size != 0)
9878 {
9879 if (s != htab->elf.srelplt)
9880 relocs = TRUE;
9881
9882 /* We use the reloc_count field as a counter if we need
9883 to copy relocs into the output file. */
9884 s->reloc_count = 0;
9885 }
9886 }
9887 else
9888 {
9889 /* It's not one of our sections, so don't allocate space. */
9890 continue;
9891 }
9892
9893 if (s->size == 0)
9894 {
9895 /* If we don't need this section, strip it from the
9896 output file. This is mostly to handle .rela.bss and
9897 .rela.plt. We must create both sections in
9898 create_dynamic_sections, because they must be created
9899 before the linker maps input sections to output
9900 sections. The linker does that before
9901 adjust_dynamic_symbol is called, and it is that
9902 function which decides whether anything needs to go
9903 into these sections. */
9904 s->flags |= SEC_EXCLUDE;
9905 continue;
9906 }
9907
9908 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9909 continue;
9910
9911 /* Allocate memory for the section contents. We use bfd_zalloc
9912 here in case unused entries are not reclaimed before the
9913 section's contents are written out. This should not happen,
9914 but this way if it does we get a R_PPC64_NONE reloc in .rela
9915 sections instead of garbage.
9916 We also rely on the section contents being zero when writing
9917 the GOT. */
9918 s->contents = bfd_zalloc (dynobj, s->size);
9919 if (s->contents == NULL)
9920 return FALSE;
9921 }
9922
9923 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9924 {
9925 if (!is_ppc64_elf (ibfd))
9926 continue;
9927
9928 s = ppc64_elf_tdata (ibfd)->got;
9929 if (s != NULL && s != htab->elf.sgot)
9930 {
9931 if (s->size == 0)
9932 s->flags |= SEC_EXCLUDE;
9933 else
9934 {
9935 s->contents = bfd_zalloc (ibfd, s->size);
9936 if (s->contents == NULL)
9937 return FALSE;
9938 }
9939 }
9940 s = ppc64_elf_tdata (ibfd)->relgot;
9941 if (s != NULL)
9942 {
9943 if (s->size == 0)
9944 s->flags |= SEC_EXCLUDE;
9945 else
9946 {
9947 s->contents = bfd_zalloc (ibfd, s->size);
9948 if (s->contents == NULL)
9949 return FALSE;
9950 relocs = TRUE;
9951 s->reloc_count = 0;
9952 }
9953 }
9954 }
9955
9956 if (htab->elf.dynamic_sections_created)
9957 {
9958 bfd_boolean tls_opt;
9959
9960 /* Add some entries to the .dynamic section. We fill in the
9961 values later, in ppc64_elf_finish_dynamic_sections, but we
9962 must add the entries now so that we get the correct size for
9963 the .dynamic section. The DT_DEBUG entry is filled in by the
9964 dynamic linker and used by the debugger. */
9965 #define add_dynamic_entry(TAG, VAL) \
9966 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9967
9968 if (info->executable)
9969 {
9970 if (!add_dynamic_entry (DT_DEBUG, 0))
9971 return FALSE;
9972 }
9973
9974 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9975 {
9976 if (!add_dynamic_entry (DT_PLTGOT, 0)
9977 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9978 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9979 || !add_dynamic_entry (DT_JMPREL, 0)
9980 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9981 return FALSE;
9982 }
9983
9984 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
9985 {
9986 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9987 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9988 return FALSE;
9989 }
9990
9991 tls_opt = (!htab->params->no_tls_get_addr_opt
9992 && htab->tls_get_addr_fd != NULL
9993 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
9994 if (tls_opt || !htab->opd_abi)
9995 {
9996 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
9997 return FALSE;
9998 }
9999
10000 if (relocs)
10001 {
10002 if (!add_dynamic_entry (DT_RELA, 0)
10003 || !add_dynamic_entry (DT_RELASZ, 0)
10004 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10005 return FALSE;
10006
10007 /* If any dynamic relocs apply to a read-only section,
10008 then we need a DT_TEXTREL entry. */
10009 if ((info->flags & DF_TEXTREL) == 0)
10010 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10011
10012 if ((info->flags & DF_TEXTREL) != 0)
10013 {
10014 if (!add_dynamic_entry (DT_TEXTREL, 0))
10015 return FALSE;
10016 }
10017 }
10018 }
10019 #undef add_dynamic_entry
10020
10021 return TRUE;
10022 }
10023
10024 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10025
10026 static bfd_boolean
10027 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10028 {
10029 if (h->plt.plist != NULL
10030 && !h->def_regular
10031 && !h->pointer_equality_needed)
10032 return FALSE;
10033
10034 return _bfd_elf_hash_symbol (h);
10035 }
10036
10037 /* Determine the type of stub needed, if any, for a call. */
10038
10039 static inline enum ppc_stub_type
10040 ppc_type_of_stub (asection *input_sec,
10041 const Elf_Internal_Rela *rel,
10042 struct ppc_link_hash_entry **hash,
10043 struct plt_entry **plt_ent,
10044 bfd_vma destination,
10045 unsigned long local_off)
10046 {
10047 struct ppc_link_hash_entry *h = *hash;
10048 bfd_vma location;
10049 bfd_vma branch_offset;
10050 bfd_vma max_branch_offset;
10051 enum elf_ppc64_reloc_type r_type;
10052
10053 if (h != NULL)
10054 {
10055 struct plt_entry *ent;
10056 struct ppc_link_hash_entry *fdh = h;
10057 if (h->oh != NULL
10058 && h->oh->is_func_descriptor)
10059 {
10060 fdh = ppc_follow_link (h->oh);
10061 *hash = fdh;
10062 }
10063
10064 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10065 if (ent->addend == rel->r_addend
10066 && ent->plt.offset != (bfd_vma) -1)
10067 {
10068 *plt_ent = ent;
10069 return ppc_stub_plt_call;
10070 }
10071
10072 /* Here, we know we don't have a plt entry. If we don't have a
10073 either a defined function descriptor or a defined entry symbol
10074 in a regular object file, then it is pointless trying to make
10075 any other type of stub. */
10076 if (!is_static_defined (&fdh->elf)
10077 && !is_static_defined (&h->elf))
10078 return ppc_stub_none;
10079 }
10080 else if (elf_local_got_ents (input_sec->owner) != NULL)
10081 {
10082 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10083 struct plt_entry **local_plt = (struct plt_entry **)
10084 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10085 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10086
10087 if (local_plt[r_symndx] != NULL)
10088 {
10089 struct plt_entry *ent;
10090
10091 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10092 if (ent->addend == rel->r_addend
10093 && ent->plt.offset != (bfd_vma) -1)
10094 {
10095 *plt_ent = ent;
10096 return ppc_stub_plt_call;
10097 }
10098 }
10099 }
10100
10101 /* Determine where the call point is. */
10102 location = (input_sec->output_offset
10103 + input_sec->output_section->vma
10104 + rel->r_offset);
10105
10106 branch_offset = destination - location;
10107 r_type = ELF64_R_TYPE (rel->r_info);
10108
10109 /* Determine if a long branch stub is needed. */
10110 max_branch_offset = 1 << 25;
10111 if (r_type != R_PPC64_REL24)
10112 max_branch_offset = 1 << 15;
10113
10114 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10115 /* We need a stub. Figure out whether a long_branch or plt_branch
10116 is needed later. */
10117 return ppc_stub_long_branch;
10118
10119 return ppc_stub_none;
10120 }
10121
10122 /* With power7 weakly ordered memory model, it is possible for ld.so
10123 to update a plt entry in one thread and have another thread see a
10124 stale zero toc entry. To avoid this we need some sort of acquire
10125 barrier in the call stub. One solution is to make the load of the
10126 toc word seem to appear to depend on the load of the function entry
10127 word. Another solution is to test for r2 being zero, and branch to
10128 the appropriate glink entry if so.
10129
10130 . fake dep barrier compare
10131 . ld 12,xxx(2) ld 12,xxx(2)
10132 . mtctr 12 mtctr 12
10133 . xor 11,12,12 ld 2,xxx+8(2)
10134 . add 2,2,11 cmpldi 2,0
10135 . ld 2,xxx+8(2) bnectr+
10136 . bctr b <glink_entry>
10137
10138 The solution involving the compare turns out to be faster, so
10139 that's what we use unless the branch won't reach. */
10140
10141 #define ALWAYS_USE_FAKE_DEP 0
10142 #define ALWAYS_EMIT_R2SAVE 0
10143
10144 #define PPC_LO(v) ((v) & 0xffff)
10145 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10146 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10147
10148 static inline unsigned int
10149 plt_stub_size (struct ppc_link_hash_table *htab,
10150 struct ppc_stub_hash_entry *stub_entry,
10151 bfd_vma off)
10152 {
10153 unsigned size = 12;
10154
10155 if (ALWAYS_EMIT_R2SAVE
10156 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10157 size += 4;
10158 if (PPC_HA (off) != 0)
10159 size += 4;
10160 if (htab->opd_abi)
10161 {
10162 size += 4;
10163 if (htab->params->plt_static_chain)
10164 size += 4;
10165 if (htab->params->plt_thread_safe)
10166 size += 8;
10167 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10168 size += 4;
10169 }
10170 if (stub_entry->h != NULL
10171 && (stub_entry->h == htab->tls_get_addr_fd
10172 || stub_entry->h == htab->tls_get_addr)
10173 && !htab->params->no_tls_get_addr_opt)
10174 size += 13 * 4;
10175 return size;
10176 }
10177
10178 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10179 then return the padding needed to do so. */
10180 static inline unsigned int
10181 plt_stub_pad (struct ppc_link_hash_table *htab,
10182 struct ppc_stub_hash_entry *stub_entry,
10183 bfd_vma plt_off)
10184 {
10185 int stub_align = 1 << htab->params->plt_stub_align;
10186 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10187 bfd_vma stub_off = stub_entry->stub_sec->size;
10188
10189 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10190 > (stub_size & -stub_align))
10191 return stub_align - (stub_off & (stub_align - 1));
10192 return 0;
10193 }
10194
10195 /* Build a .plt call stub. */
10196
10197 static inline bfd_byte *
10198 build_plt_stub (struct ppc_link_hash_table *htab,
10199 struct ppc_stub_hash_entry *stub_entry,
10200 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10201 {
10202 bfd *obfd = htab->params->stub_bfd;
10203 bfd_boolean plt_load_toc = htab->opd_abi;
10204 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10205 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10206 bfd_boolean use_fake_dep = plt_thread_safe;
10207 bfd_vma cmp_branch_off = 0;
10208
10209 if (!ALWAYS_USE_FAKE_DEP
10210 && plt_load_toc
10211 && plt_thread_safe
10212 && !(stub_entry->h != NULL
10213 && (stub_entry->h == htab->tls_get_addr_fd
10214 || stub_entry->h == htab->tls_get_addr)
10215 && !htab->params->no_tls_get_addr_opt))
10216 {
10217 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10218 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10219 / PLT_ENTRY_SIZE (htab));
10220 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10221 bfd_vma to, from;
10222
10223 if (pltindex > 32768)
10224 glinkoff += (pltindex - 32768) * 4;
10225 to = (glinkoff
10226 + htab->glink->output_offset
10227 + htab->glink->output_section->vma);
10228 from = (p - stub_entry->stub_sec->contents
10229 + 4 * (ALWAYS_EMIT_R2SAVE
10230 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10231 + 4 * (PPC_HA (offset) != 0)
10232 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10233 != PPC_HA (offset))
10234 + 4 * (plt_static_chain != 0)
10235 + 20
10236 + stub_entry->stub_sec->output_offset
10237 + stub_entry->stub_sec->output_section->vma);
10238 cmp_branch_off = to - from;
10239 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10240 }
10241
10242 if (PPC_HA (offset) != 0)
10243 {
10244 if (r != NULL)
10245 {
10246 if (ALWAYS_EMIT_R2SAVE
10247 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10248 r[0].r_offset += 4;
10249 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10250 r[1].r_offset = r[0].r_offset + 4;
10251 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10252 r[1].r_addend = r[0].r_addend;
10253 if (plt_load_toc)
10254 {
10255 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10256 {
10257 r[2].r_offset = r[1].r_offset + 4;
10258 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10259 r[2].r_addend = r[0].r_addend;
10260 }
10261 else
10262 {
10263 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10264 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10265 r[2].r_addend = r[0].r_addend + 8;
10266 if (plt_static_chain)
10267 {
10268 r[3].r_offset = r[2].r_offset + 4;
10269 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10270 r[3].r_addend = r[0].r_addend + 16;
10271 }
10272 }
10273 }
10274 }
10275 if (ALWAYS_EMIT_R2SAVE
10276 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10277 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10278 if (plt_load_toc)
10279 {
10280 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10281 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10282 }
10283 else
10284 {
10285 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10286 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10287 }
10288 if (plt_load_toc
10289 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10290 {
10291 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10292 offset = 0;
10293 }
10294 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10295 if (plt_load_toc)
10296 {
10297 if (use_fake_dep)
10298 {
10299 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10300 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10301 }
10302 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10303 if (plt_static_chain)
10304 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10305 }
10306 }
10307 else
10308 {
10309 if (r != NULL)
10310 {
10311 if (ALWAYS_EMIT_R2SAVE
10312 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10313 r[0].r_offset += 4;
10314 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10315 if (plt_load_toc)
10316 {
10317 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10318 {
10319 r[1].r_offset = r[0].r_offset + 4;
10320 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10321 r[1].r_addend = r[0].r_addend;
10322 }
10323 else
10324 {
10325 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10326 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10327 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10328 if (plt_static_chain)
10329 {
10330 r[2].r_offset = r[1].r_offset + 4;
10331 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10332 r[2].r_addend = r[0].r_addend + 8;
10333 }
10334 }
10335 }
10336 }
10337 if (ALWAYS_EMIT_R2SAVE
10338 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10339 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10340 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10341 if (plt_load_toc
10342 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10343 {
10344 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10345 offset = 0;
10346 }
10347 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10348 if (plt_load_toc)
10349 {
10350 if (use_fake_dep)
10351 {
10352 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10353 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10354 }
10355 if (plt_static_chain)
10356 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10357 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10358 }
10359 }
10360 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10361 {
10362 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10363 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10364 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10365 }
10366 else
10367 bfd_put_32 (obfd, BCTR, p), p += 4;
10368 return p;
10369 }
10370
10371 /* Build a special .plt call stub for __tls_get_addr. */
10372
10373 #define LD_R11_0R3 0xe9630000
10374 #define LD_R12_0R3 0xe9830000
10375 #define MR_R0_R3 0x7c601b78
10376 #define CMPDI_R11_0 0x2c2b0000
10377 #define ADD_R3_R12_R13 0x7c6c6a14
10378 #define BEQLR 0x4d820020
10379 #define MR_R3_R0 0x7c030378
10380 #define STD_R11_0R1 0xf9610000
10381 #define BCTRL 0x4e800421
10382 #define LD_R11_0R1 0xe9610000
10383 #define MTLR_R11 0x7d6803a6
10384
10385 static inline bfd_byte *
10386 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10387 struct ppc_stub_hash_entry *stub_entry,
10388 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10389 {
10390 bfd *obfd = htab->params->stub_bfd;
10391
10392 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10393 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10394 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10395 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10396 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10397 bfd_put_32 (obfd, BEQLR, p), p += 4;
10398 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10399 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10400 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10401
10402 if (r != NULL)
10403 r[0].r_offset += 9 * 4;
10404 p = build_plt_stub (htab, stub_entry, p, offset, r);
10405 bfd_put_32 (obfd, BCTRL, p - 4);
10406
10407 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10408 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10409 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10410 bfd_put_32 (obfd, BLR, p), p += 4;
10411
10412 return p;
10413 }
10414
10415 static Elf_Internal_Rela *
10416 get_relocs (asection *sec, int count)
10417 {
10418 Elf_Internal_Rela *relocs;
10419 struct bfd_elf_section_data *elfsec_data;
10420
10421 elfsec_data = elf_section_data (sec);
10422 relocs = elfsec_data->relocs;
10423 if (relocs == NULL)
10424 {
10425 bfd_size_type relsize;
10426 relsize = sec->reloc_count * sizeof (*relocs);
10427 relocs = bfd_alloc (sec->owner, relsize);
10428 if (relocs == NULL)
10429 return NULL;
10430 elfsec_data->relocs = relocs;
10431 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10432 sizeof (Elf_Internal_Shdr));
10433 if (elfsec_data->rela.hdr == NULL)
10434 return NULL;
10435 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10436 * sizeof (Elf64_External_Rela));
10437 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10438 sec->reloc_count = 0;
10439 }
10440 relocs += sec->reloc_count;
10441 sec->reloc_count += count;
10442 return relocs;
10443 }
10444
10445 static bfd_vma
10446 get_r2off (struct bfd_link_info *info,
10447 struct ppc_stub_hash_entry *stub_entry)
10448 {
10449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10450 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10451
10452 if (r2off == 0)
10453 {
10454 /* Support linking -R objects. Get the toc pointer from the
10455 opd entry. */
10456 char buf[8];
10457 if (!htab->opd_abi)
10458 return r2off;
10459 asection *opd = stub_entry->h->elf.root.u.def.section;
10460 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10461
10462 if (strcmp (opd->name, ".opd") != 0
10463 || opd->reloc_count != 0)
10464 {
10465 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10466 stub_entry->h->elf.root.root.string);
10467 bfd_set_error (bfd_error_bad_value);
10468 return 0;
10469 }
10470 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10471 return 0;
10472 r2off = bfd_get_64 (opd->owner, buf);
10473 r2off -= elf_gp (info->output_bfd);
10474 }
10475 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10476 return r2off;
10477 }
10478
10479 static bfd_boolean
10480 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10481 {
10482 struct ppc_stub_hash_entry *stub_entry;
10483 struct ppc_branch_hash_entry *br_entry;
10484 struct bfd_link_info *info;
10485 struct ppc_link_hash_table *htab;
10486 bfd_byte *loc;
10487 bfd_byte *p;
10488 bfd_vma dest, off;
10489 int size;
10490 Elf_Internal_Rela *r;
10491 asection *plt;
10492
10493 /* Massage our args to the form they really have. */
10494 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10495 info = in_arg;
10496
10497 htab = ppc_hash_table (info);
10498 if (htab == NULL)
10499 return FALSE;
10500
10501 /* Make a note of the offset within the stubs for this entry. */
10502 stub_entry->stub_offset = stub_entry->stub_sec->size;
10503 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10504
10505 htab->stub_count[stub_entry->stub_type - 1] += 1;
10506 switch (stub_entry->stub_type)
10507 {
10508 case ppc_stub_long_branch:
10509 case ppc_stub_long_branch_r2off:
10510 /* Branches are relative. This is where we are going to. */
10511 dest = (stub_entry->target_value
10512 + stub_entry->target_section->output_offset
10513 + stub_entry->target_section->output_section->vma);
10514 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10515 off = dest;
10516
10517 /* And this is where we are coming from. */
10518 off -= (stub_entry->stub_offset
10519 + stub_entry->stub_sec->output_offset
10520 + stub_entry->stub_sec->output_section->vma);
10521
10522 size = 4;
10523 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10524 {
10525 bfd_vma r2off = get_r2off (info, stub_entry);
10526
10527 if (r2off == 0)
10528 {
10529 htab->stub_error = TRUE;
10530 return FALSE;
10531 }
10532 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10533 loc += 4;
10534 size = 12;
10535 if (PPC_HA (r2off) != 0)
10536 {
10537 size = 16;
10538 bfd_put_32 (htab->params->stub_bfd,
10539 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10540 loc += 4;
10541 }
10542 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10543 loc += 4;
10544 off -= size - 4;
10545 }
10546 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10547
10548 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10549 {
10550 info->callbacks->einfo
10551 (_("%P: long branch stub `%s' offset overflow\n"),
10552 stub_entry->root.string);
10553 htab->stub_error = TRUE;
10554 return FALSE;
10555 }
10556
10557 if (info->emitrelocations)
10558 {
10559 r = get_relocs (stub_entry->stub_sec, 1);
10560 if (r == NULL)
10561 return FALSE;
10562 r->r_offset = loc - stub_entry->stub_sec->contents;
10563 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10564 r->r_addend = dest;
10565 if (stub_entry->h != NULL)
10566 {
10567 struct elf_link_hash_entry **hashes;
10568 unsigned long symndx;
10569 struct ppc_link_hash_entry *h;
10570
10571 hashes = elf_sym_hashes (htab->params->stub_bfd);
10572 if (hashes == NULL)
10573 {
10574 bfd_size_type hsize;
10575
10576 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10577 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10578 if (hashes == NULL)
10579 return FALSE;
10580 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10581 htab->stub_globals = 1;
10582 }
10583 symndx = htab->stub_globals++;
10584 h = stub_entry->h;
10585 hashes[symndx] = &h->elf;
10586 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10587 if (h->oh != NULL && h->oh->is_func)
10588 h = ppc_follow_link (h->oh);
10589 if (h->elf.root.u.def.section != stub_entry->target_section)
10590 /* H is an opd symbol. The addend must be zero. */
10591 r->r_addend = 0;
10592 else
10593 {
10594 off = (h->elf.root.u.def.value
10595 + h->elf.root.u.def.section->output_offset
10596 + h->elf.root.u.def.section->output_section->vma);
10597 r->r_addend -= off;
10598 }
10599 }
10600 }
10601 break;
10602
10603 case ppc_stub_plt_branch:
10604 case ppc_stub_plt_branch_r2off:
10605 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10606 stub_entry->root.string + 9,
10607 FALSE, FALSE);
10608 if (br_entry == NULL)
10609 {
10610 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10611 stub_entry->root.string);
10612 htab->stub_error = TRUE;
10613 return FALSE;
10614 }
10615
10616 dest = (stub_entry->target_value
10617 + stub_entry->target_section->output_offset
10618 + stub_entry->target_section->output_section->vma);
10619 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10620 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10621
10622 bfd_put_64 (htab->brlt->owner, dest,
10623 htab->brlt->contents + br_entry->offset);
10624
10625 if (br_entry->iter == htab->stub_iteration)
10626 {
10627 br_entry->iter = 0;
10628
10629 if (htab->relbrlt != NULL)
10630 {
10631 /* Create a reloc for the branch lookup table entry. */
10632 Elf_Internal_Rela rela;
10633 bfd_byte *rl;
10634
10635 rela.r_offset = (br_entry->offset
10636 + htab->brlt->output_offset
10637 + htab->brlt->output_section->vma);
10638 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10639 rela.r_addend = dest;
10640
10641 rl = htab->relbrlt->contents;
10642 rl += (htab->relbrlt->reloc_count++
10643 * sizeof (Elf64_External_Rela));
10644 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10645 }
10646 else if (info->emitrelocations)
10647 {
10648 r = get_relocs (htab->brlt, 1);
10649 if (r == NULL)
10650 return FALSE;
10651 /* brlt, being SEC_LINKER_CREATED does not go through the
10652 normal reloc processing. Symbols and offsets are not
10653 translated from input file to output file form, so
10654 set up the offset per the output file. */
10655 r->r_offset = (br_entry->offset
10656 + htab->brlt->output_offset
10657 + htab->brlt->output_section->vma);
10658 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10659 r->r_addend = dest;
10660 }
10661 }
10662
10663 dest = (br_entry->offset
10664 + htab->brlt->output_offset
10665 + htab->brlt->output_section->vma);
10666
10667 off = (dest
10668 - elf_gp (htab->brlt->output_section->owner)
10669 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10670
10671 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10672 {
10673 info->callbacks->einfo
10674 (_("%P: linkage table error against `%T'\n"),
10675 stub_entry->root.string);
10676 bfd_set_error (bfd_error_bad_value);
10677 htab->stub_error = TRUE;
10678 return FALSE;
10679 }
10680
10681 if (info->emitrelocations)
10682 {
10683 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10684 if (r == NULL)
10685 return FALSE;
10686 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10687 if (bfd_big_endian (info->output_bfd))
10688 r[0].r_offset += 2;
10689 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10690 r[0].r_offset += 4;
10691 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10692 r[0].r_addend = dest;
10693 if (PPC_HA (off) != 0)
10694 {
10695 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10696 r[1].r_offset = r[0].r_offset + 4;
10697 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10698 r[1].r_addend = r[0].r_addend;
10699 }
10700 }
10701
10702 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10703 {
10704 if (PPC_HA (off) != 0)
10705 {
10706 size = 16;
10707 bfd_put_32 (htab->params->stub_bfd,
10708 ADDIS_R12_R2 | PPC_HA (off), loc);
10709 loc += 4;
10710 bfd_put_32 (htab->params->stub_bfd,
10711 LD_R12_0R12 | PPC_LO (off), loc);
10712 }
10713 else
10714 {
10715 size = 12;
10716 bfd_put_32 (htab->params->stub_bfd,
10717 LD_R12_0R2 | PPC_LO (off), loc);
10718 }
10719 }
10720 else
10721 {
10722 bfd_vma r2off = get_r2off (info, stub_entry);
10723
10724 if (r2off == 0 && htab->opd_abi)
10725 {
10726 htab->stub_error = TRUE;
10727 return FALSE;
10728 }
10729
10730 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10731 loc += 4;
10732 size = 16;
10733 if (PPC_HA (off) != 0)
10734 {
10735 size += 4;
10736 bfd_put_32 (htab->params->stub_bfd,
10737 ADDIS_R12_R2 | PPC_HA (off), loc);
10738 loc += 4;
10739 bfd_put_32 (htab->params->stub_bfd,
10740 LD_R12_0R12 | PPC_LO (off), loc);
10741 }
10742 else
10743 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10744
10745 if (PPC_HA (r2off) != 0)
10746 {
10747 size += 4;
10748 loc += 4;
10749 bfd_put_32 (htab->params->stub_bfd,
10750 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10751 }
10752 if (PPC_LO (r2off) != 0)
10753 {
10754 size += 4;
10755 loc += 4;
10756 bfd_put_32 (htab->params->stub_bfd,
10757 ADDI_R2_R2 | PPC_LO (r2off), loc);
10758 }
10759 }
10760 loc += 4;
10761 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10762 loc += 4;
10763 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10764 break;
10765
10766 case ppc_stub_plt_call:
10767 case ppc_stub_plt_call_r2save:
10768 if (stub_entry->h != NULL
10769 && stub_entry->h->is_func_descriptor
10770 && stub_entry->h->oh != NULL)
10771 {
10772 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10773
10774 /* If the old-ABI "dot-symbol" is undefined make it weak so
10775 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10776 FIXME: We used to define the symbol on one of the call
10777 stubs instead, which is why we test symbol section id
10778 against htab->top_id in various places. Likely all
10779 these checks could now disappear. */
10780 if (fh->elf.root.type == bfd_link_hash_undefined)
10781 fh->elf.root.type = bfd_link_hash_undefweak;
10782 /* Stop undo_symbol_twiddle changing it back to undefined. */
10783 fh->was_undefined = 0;
10784 }
10785
10786 /* Now build the stub. */
10787 dest = stub_entry->plt_ent->plt.offset & ~1;
10788 if (dest >= (bfd_vma) -2)
10789 abort ();
10790
10791 plt = htab->elf.splt;
10792 if (!htab->elf.dynamic_sections_created
10793 || stub_entry->h == NULL
10794 || stub_entry->h->elf.dynindx == -1)
10795 plt = htab->elf.iplt;
10796
10797 dest += plt->output_offset + plt->output_section->vma;
10798
10799 if (stub_entry->h == NULL
10800 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10801 {
10802 Elf_Internal_Rela rela;
10803 bfd_byte *rl;
10804
10805 rela.r_offset = dest;
10806 if (htab->opd_abi)
10807 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10808 else
10809 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10810 rela.r_addend = (stub_entry->target_value
10811 + stub_entry->target_section->output_offset
10812 + stub_entry->target_section->output_section->vma);
10813
10814 rl = (htab->elf.irelplt->contents
10815 + (htab->elf.irelplt->reloc_count++
10816 * sizeof (Elf64_External_Rela)));
10817 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10818 stub_entry->plt_ent->plt.offset |= 1;
10819 }
10820
10821 off = (dest
10822 - elf_gp (plt->output_section->owner)
10823 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10824
10825 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10826 {
10827 info->callbacks->einfo
10828 (_("%P: linkage table error against `%T'\n"),
10829 stub_entry->h != NULL
10830 ? stub_entry->h->elf.root.root.string
10831 : "<local sym>");
10832 bfd_set_error (bfd_error_bad_value);
10833 htab->stub_error = TRUE;
10834 return FALSE;
10835 }
10836
10837 if (htab->params->plt_stub_align != 0)
10838 {
10839 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10840
10841 stub_entry->stub_sec->size += pad;
10842 stub_entry->stub_offset = stub_entry->stub_sec->size;
10843 loc += pad;
10844 }
10845
10846 r = NULL;
10847 if (info->emitrelocations)
10848 {
10849 r = get_relocs (stub_entry->stub_sec,
10850 ((PPC_HA (off) != 0)
10851 + (htab->opd_abi
10852 ? 2 + (htab->params->plt_static_chain
10853 && PPC_HA (off + 16) == PPC_HA (off))
10854 : 1)));
10855 if (r == NULL)
10856 return FALSE;
10857 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10858 if (bfd_big_endian (info->output_bfd))
10859 r[0].r_offset += 2;
10860 r[0].r_addend = dest;
10861 }
10862 if (stub_entry->h != NULL
10863 && (stub_entry->h == htab->tls_get_addr_fd
10864 || stub_entry->h == htab->tls_get_addr)
10865 && !htab->params->no_tls_get_addr_opt)
10866 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10867 else
10868 p = build_plt_stub (htab, stub_entry, loc, off, r);
10869 size = p - loc;
10870 break;
10871
10872 default:
10873 BFD_FAIL ();
10874 return FALSE;
10875 }
10876
10877 stub_entry->stub_sec->size += size;
10878
10879 if (htab->params->emit_stub_syms)
10880 {
10881 struct elf_link_hash_entry *h;
10882 size_t len1, len2;
10883 char *name;
10884 const char *const stub_str[] = { "long_branch",
10885 "long_branch_r2off",
10886 "plt_branch",
10887 "plt_branch_r2off",
10888 "plt_call",
10889 "plt_call" };
10890
10891 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10892 len2 = strlen (stub_entry->root.string);
10893 name = bfd_malloc (len1 + len2 + 2);
10894 if (name == NULL)
10895 return FALSE;
10896 memcpy (name, stub_entry->root.string, 9);
10897 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10898 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10899 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10900 if (h == NULL)
10901 return FALSE;
10902 if (h->root.type == bfd_link_hash_new)
10903 {
10904 h->root.type = bfd_link_hash_defined;
10905 h->root.u.def.section = stub_entry->stub_sec;
10906 h->root.u.def.value = stub_entry->stub_offset;
10907 h->ref_regular = 1;
10908 h->def_regular = 1;
10909 h->ref_regular_nonweak = 1;
10910 h->forced_local = 1;
10911 h->non_elf = 0;
10912 }
10913 }
10914
10915 return TRUE;
10916 }
10917
10918 /* As above, but don't actually build the stub. Just bump offset so
10919 we know stub section sizes, and select plt_branch stubs where
10920 long_branch stubs won't do. */
10921
10922 static bfd_boolean
10923 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10924 {
10925 struct ppc_stub_hash_entry *stub_entry;
10926 struct bfd_link_info *info;
10927 struct ppc_link_hash_table *htab;
10928 bfd_vma off;
10929 int size;
10930
10931 /* Massage our args to the form they really have. */
10932 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10933 info = in_arg;
10934
10935 htab = ppc_hash_table (info);
10936 if (htab == NULL)
10937 return FALSE;
10938
10939 if (stub_entry->stub_type == ppc_stub_plt_call
10940 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10941 {
10942 asection *plt;
10943 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10944 if (off >= (bfd_vma) -2)
10945 abort ();
10946 plt = htab->elf.splt;
10947 if (!htab->elf.dynamic_sections_created
10948 || stub_entry->h == NULL
10949 || stub_entry->h->elf.dynindx == -1)
10950 plt = htab->elf.iplt;
10951 off += (plt->output_offset
10952 + plt->output_section->vma
10953 - elf_gp (plt->output_section->owner)
10954 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10955
10956 size = plt_stub_size (htab, stub_entry, off);
10957 if (htab->params->plt_stub_align)
10958 size += plt_stub_pad (htab, stub_entry, off);
10959 if (info->emitrelocations)
10960 {
10961 stub_entry->stub_sec->reloc_count
10962 += ((PPC_HA (off) != 0)
10963 + (htab->opd_abi
10964 ? 2 + (htab->params->plt_static_chain
10965 && PPC_HA (off + 16) == PPC_HA (off))
10966 : 1));
10967 stub_entry->stub_sec->flags |= SEC_RELOC;
10968 }
10969 }
10970 else
10971 {
10972 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10973 variants. */
10974 bfd_vma r2off = 0;
10975 bfd_vma local_off = 0;
10976
10977 off = (stub_entry->target_value
10978 + stub_entry->target_section->output_offset
10979 + stub_entry->target_section->output_section->vma);
10980 off -= (stub_entry->stub_sec->size
10981 + stub_entry->stub_sec->output_offset
10982 + stub_entry->stub_sec->output_section->vma);
10983
10984 /* Reset the stub type from the plt variant in case we now
10985 can reach with a shorter stub. */
10986 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10987 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10988
10989 size = 4;
10990 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10991 {
10992 r2off = get_r2off (info, stub_entry);
10993 if (r2off == 0 && htab->opd_abi)
10994 {
10995 htab->stub_error = TRUE;
10996 return FALSE;
10997 }
10998 size = 12;
10999 if (PPC_HA (r2off) != 0)
11000 size = 16;
11001 off -= size - 4;
11002 }
11003
11004 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11005
11006 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11007 Do the same for -R objects without function descriptors. */
11008 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11009 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11010 && r2off == 0))
11011 {
11012 struct ppc_branch_hash_entry *br_entry;
11013
11014 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11015 stub_entry->root.string + 9,
11016 TRUE, FALSE);
11017 if (br_entry == NULL)
11018 {
11019 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11020 stub_entry->root.string);
11021 htab->stub_error = TRUE;
11022 return FALSE;
11023 }
11024
11025 if (br_entry->iter != htab->stub_iteration)
11026 {
11027 br_entry->iter = htab->stub_iteration;
11028 br_entry->offset = htab->brlt->size;
11029 htab->brlt->size += 8;
11030
11031 if (htab->relbrlt != NULL)
11032 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11033 else if (info->emitrelocations)
11034 {
11035 htab->brlt->reloc_count += 1;
11036 htab->brlt->flags |= SEC_RELOC;
11037 }
11038 }
11039
11040 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11041 off = (br_entry->offset
11042 + htab->brlt->output_offset
11043 + htab->brlt->output_section->vma
11044 - elf_gp (htab->brlt->output_section->owner)
11045 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11046
11047 if (info->emitrelocations)
11048 {
11049 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11050 stub_entry->stub_sec->flags |= SEC_RELOC;
11051 }
11052
11053 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11054 {
11055 size = 12;
11056 if (PPC_HA (off) != 0)
11057 size = 16;
11058 }
11059 else
11060 {
11061 size = 16;
11062 if (PPC_HA (off) != 0)
11063 size += 4;
11064
11065 if (PPC_HA (r2off) != 0)
11066 size += 4;
11067 if (PPC_LO (r2off) != 0)
11068 size += 4;
11069 }
11070 }
11071 else if (info->emitrelocations)
11072 {
11073 stub_entry->stub_sec->reloc_count += 1;
11074 stub_entry->stub_sec->flags |= SEC_RELOC;
11075 }
11076 }
11077
11078 stub_entry->stub_sec->size += size;
11079 return TRUE;
11080 }
11081
11082 /* Set up various things so that we can make a list of input sections
11083 for each output section included in the link. Returns -1 on error,
11084 0 when no stubs will be needed, and 1 on success. */
11085
11086 int
11087 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11088 {
11089 bfd *input_bfd;
11090 int top_id, top_index, id;
11091 asection *section;
11092 asection **input_list;
11093 bfd_size_type amt;
11094 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11095
11096 if (htab == NULL)
11097 return -1;
11098
11099 /* Find the top input section id. */
11100 for (input_bfd = info->input_bfds, top_id = 3;
11101 input_bfd != NULL;
11102 input_bfd = input_bfd->link.next)
11103 {
11104 for (section = input_bfd->sections;
11105 section != NULL;
11106 section = section->next)
11107 {
11108 if (top_id < section->id)
11109 top_id = section->id;
11110 }
11111 }
11112
11113 htab->top_id = top_id;
11114 amt = sizeof (struct map_stub) * (top_id + 1);
11115 htab->stub_group = bfd_zmalloc (amt);
11116 if (htab->stub_group == NULL)
11117 return -1;
11118
11119 /* Set toc_off for com, und, abs and ind sections. */
11120 for (id = 0; id < 3; id++)
11121 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11122
11123 /* We can't use output_bfd->section_count here to find the top output
11124 section index as some sections may have been removed, and
11125 strip_excluded_output_sections doesn't renumber the indices. */
11126 for (section = info->output_bfd->sections, top_index = 0;
11127 section != NULL;
11128 section = section->next)
11129 {
11130 if (top_index < section->index)
11131 top_index = section->index;
11132 }
11133
11134 htab->top_index = top_index;
11135 amt = sizeof (asection *) * (top_index + 1);
11136 input_list = bfd_zmalloc (amt);
11137 htab->input_list = input_list;
11138 if (input_list == NULL)
11139 return -1;
11140
11141 return 1;
11142 }
11143
11144 /* Set up for first pass at multitoc partitioning. */
11145
11146 void
11147 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11148 {
11149 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11150
11151 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11152 htab->toc_bfd = NULL;
11153 htab->toc_first_sec = NULL;
11154 }
11155
11156 /* The linker repeatedly calls this function for each TOC input section
11157 and linker generated GOT section. Group input bfds such that the toc
11158 within a group is less than 64k in size. */
11159
11160 bfd_boolean
11161 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11162 {
11163 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11164 bfd_vma addr, off, limit;
11165
11166 if (htab == NULL)
11167 return FALSE;
11168
11169 if (!htab->second_toc_pass)
11170 {
11171 /* Keep track of the first .toc or .got section for this input bfd. */
11172 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11173
11174 if (new_bfd)
11175 {
11176 htab->toc_bfd = isec->owner;
11177 htab->toc_first_sec = isec;
11178 }
11179
11180 addr = isec->output_offset + isec->output_section->vma;
11181 off = addr - htab->toc_curr;
11182 limit = 0x80008000;
11183 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11184 limit = 0x10000;
11185 if (off + isec->size > limit)
11186 {
11187 addr = (htab->toc_first_sec->output_offset
11188 + htab->toc_first_sec->output_section->vma);
11189 htab->toc_curr = addr;
11190 }
11191
11192 /* toc_curr is the base address of this toc group. Set elf_gp
11193 for the input section to be the offset relative to the
11194 output toc base plus 0x8000. Making the input elf_gp an
11195 offset allows us to move the toc as a whole without
11196 recalculating input elf_gp. */
11197 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11198 off += TOC_BASE_OFF;
11199
11200 /* Die if someone uses a linker script that doesn't keep input
11201 file .toc and .got together. */
11202 if (new_bfd
11203 && elf_gp (isec->owner) != 0
11204 && elf_gp (isec->owner) != off)
11205 return FALSE;
11206
11207 elf_gp (isec->owner) = off;
11208 return TRUE;
11209 }
11210
11211 /* During the second pass toc_first_sec points to the start of
11212 a toc group, and toc_curr is used to track the old elf_gp.
11213 We use toc_bfd to ensure we only look at each bfd once. */
11214 if (htab->toc_bfd == isec->owner)
11215 return TRUE;
11216 htab->toc_bfd = isec->owner;
11217
11218 if (htab->toc_first_sec == NULL
11219 || htab->toc_curr != elf_gp (isec->owner))
11220 {
11221 htab->toc_curr = elf_gp (isec->owner);
11222 htab->toc_first_sec = isec;
11223 }
11224 addr = (htab->toc_first_sec->output_offset
11225 + htab->toc_first_sec->output_section->vma);
11226 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11227 elf_gp (isec->owner) = off;
11228
11229 return TRUE;
11230 }
11231
11232 /* Called via elf_link_hash_traverse to merge GOT entries for global
11233 symbol H. */
11234
11235 static bfd_boolean
11236 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11237 {
11238 if (h->root.type == bfd_link_hash_indirect)
11239 return TRUE;
11240
11241 merge_got_entries (&h->got.glist);
11242
11243 return TRUE;
11244 }
11245
11246 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11247 symbol H. */
11248
11249 static bfd_boolean
11250 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11251 {
11252 struct got_entry *gent;
11253
11254 if (h->root.type == bfd_link_hash_indirect)
11255 return TRUE;
11256
11257 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11258 if (!gent->is_indirect)
11259 allocate_got (h, (struct bfd_link_info *) inf, gent);
11260 return TRUE;
11261 }
11262
11263 /* Called on the first multitoc pass after the last call to
11264 ppc64_elf_next_toc_section. This function removes duplicate GOT
11265 entries. */
11266
11267 bfd_boolean
11268 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11269 {
11270 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11271 struct bfd *ibfd, *ibfd2;
11272 bfd_boolean done_something;
11273
11274 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11275
11276 if (!htab->do_multi_toc)
11277 return FALSE;
11278
11279 /* Merge global sym got entries within a toc group. */
11280 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11281
11282 /* And tlsld_got. */
11283 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11284 {
11285 struct got_entry *ent, *ent2;
11286
11287 if (!is_ppc64_elf (ibfd))
11288 continue;
11289
11290 ent = ppc64_tlsld_got (ibfd);
11291 if (!ent->is_indirect
11292 && ent->got.offset != (bfd_vma) -1)
11293 {
11294 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11295 {
11296 if (!is_ppc64_elf (ibfd2))
11297 continue;
11298
11299 ent2 = ppc64_tlsld_got (ibfd2);
11300 if (!ent2->is_indirect
11301 && ent2->got.offset != (bfd_vma) -1
11302 && elf_gp (ibfd2) == elf_gp (ibfd))
11303 {
11304 ent2->is_indirect = TRUE;
11305 ent2->got.ent = ent;
11306 }
11307 }
11308 }
11309 }
11310
11311 /* Zap sizes of got sections. */
11312 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11313 htab->elf.irelplt->size -= htab->got_reli_size;
11314 htab->got_reli_size = 0;
11315
11316 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11317 {
11318 asection *got, *relgot;
11319
11320 if (!is_ppc64_elf (ibfd))
11321 continue;
11322
11323 got = ppc64_elf_tdata (ibfd)->got;
11324 if (got != NULL)
11325 {
11326 got->rawsize = got->size;
11327 got->size = 0;
11328 relgot = ppc64_elf_tdata (ibfd)->relgot;
11329 relgot->rawsize = relgot->size;
11330 relgot->size = 0;
11331 }
11332 }
11333
11334 /* Now reallocate the got, local syms first. We don't need to
11335 allocate section contents again since we never increase size. */
11336 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11337 {
11338 struct got_entry **lgot_ents;
11339 struct got_entry **end_lgot_ents;
11340 struct plt_entry **local_plt;
11341 struct plt_entry **end_local_plt;
11342 unsigned char *lgot_masks;
11343 bfd_size_type locsymcount;
11344 Elf_Internal_Shdr *symtab_hdr;
11345 asection *s;
11346
11347 if (!is_ppc64_elf (ibfd))
11348 continue;
11349
11350 lgot_ents = elf_local_got_ents (ibfd);
11351 if (!lgot_ents)
11352 continue;
11353
11354 symtab_hdr = &elf_symtab_hdr (ibfd);
11355 locsymcount = symtab_hdr->sh_info;
11356 end_lgot_ents = lgot_ents + locsymcount;
11357 local_plt = (struct plt_entry **) end_lgot_ents;
11358 end_local_plt = local_plt + locsymcount;
11359 lgot_masks = (unsigned char *) end_local_plt;
11360 s = ppc64_elf_tdata (ibfd)->got;
11361 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11362 {
11363 struct got_entry *ent;
11364
11365 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11366 {
11367 unsigned int ent_size = 8;
11368 unsigned int rel_size = sizeof (Elf64_External_Rela);
11369
11370 ent->got.offset = s->size;
11371 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11372 {
11373 ent_size *= 2;
11374 rel_size *= 2;
11375 }
11376 s->size += ent_size;
11377 if ((*lgot_masks & PLT_IFUNC) != 0)
11378 {
11379 htab->elf.irelplt->size += rel_size;
11380 htab->got_reli_size += rel_size;
11381 }
11382 else if (info->shared)
11383 {
11384 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11385 srel->size += rel_size;
11386 }
11387 }
11388 }
11389 }
11390
11391 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11392
11393 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11394 {
11395 struct got_entry *ent;
11396
11397 if (!is_ppc64_elf (ibfd))
11398 continue;
11399
11400 ent = ppc64_tlsld_got (ibfd);
11401 if (!ent->is_indirect
11402 && ent->got.offset != (bfd_vma) -1)
11403 {
11404 asection *s = ppc64_elf_tdata (ibfd)->got;
11405 ent->got.offset = s->size;
11406 s->size += 16;
11407 if (info->shared)
11408 {
11409 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11410 srel->size += sizeof (Elf64_External_Rela);
11411 }
11412 }
11413 }
11414
11415 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11416 if (!done_something)
11417 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11418 {
11419 asection *got;
11420
11421 if (!is_ppc64_elf (ibfd))
11422 continue;
11423
11424 got = ppc64_elf_tdata (ibfd)->got;
11425 if (got != NULL)
11426 {
11427 done_something = got->rawsize != got->size;
11428 if (done_something)
11429 break;
11430 }
11431 }
11432
11433 if (done_something)
11434 (*htab->params->layout_sections_again) ();
11435
11436 /* Set up for second pass over toc sections to recalculate elf_gp
11437 on input sections. */
11438 htab->toc_bfd = NULL;
11439 htab->toc_first_sec = NULL;
11440 htab->second_toc_pass = TRUE;
11441 return done_something;
11442 }
11443
11444 /* Called after second pass of multitoc partitioning. */
11445
11446 void
11447 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11448 {
11449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11450
11451 /* After the second pass, toc_curr tracks the TOC offset used
11452 for code sections below in ppc64_elf_next_input_section. */
11453 htab->toc_curr = TOC_BASE_OFF;
11454 }
11455
11456 /* No toc references were found in ISEC. If the code in ISEC makes no
11457 calls, then there's no need to use toc adjusting stubs when branching
11458 into ISEC. Actually, indirect calls from ISEC are OK as they will
11459 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11460 needed, and 2 if a cyclical call-graph was found but no other reason
11461 for a stub was detected. If called from the top level, a return of
11462 2 means the same as a return of 0. */
11463
11464 static int
11465 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11466 {
11467 int ret;
11468
11469 /* Mark this section as checked. */
11470 isec->call_check_done = 1;
11471
11472 /* We know none of our code bearing sections will need toc stubs. */
11473 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11474 return 0;
11475
11476 if (isec->size == 0)
11477 return 0;
11478
11479 if (isec->output_section == NULL)
11480 return 0;
11481
11482 ret = 0;
11483 if (isec->reloc_count != 0)
11484 {
11485 Elf_Internal_Rela *relstart, *rel;
11486 Elf_Internal_Sym *local_syms;
11487 struct ppc_link_hash_table *htab;
11488
11489 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11490 info->keep_memory);
11491 if (relstart == NULL)
11492 return -1;
11493
11494 /* Look for branches to outside of this section. */
11495 local_syms = NULL;
11496 htab = ppc_hash_table (info);
11497 if (htab == NULL)
11498 return -1;
11499
11500 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11501 {
11502 enum elf_ppc64_reloc_type r_type;
11503 unsigned long r_symndx;
11504 struct elf_link_hash_entry *h;
11505 struct ppc_link_hash_entry *eh;
11506 Elf_Internal_Sym *sym;
11507 asection *sym_sec;
11508 struct _opd_sec_data *opd;
11509 bfd_vma sym_value;
11510 bfd_vma dest;
11511
11512 r_type = ELF64_R_TYPE (rel->r_info);
11513 if (r_type != R_PPC64_REL24
11514 && r_type != R_PPC64_REL14
11515 && r_type != R_PPC64_REL14_BRTAKEN
11516 && r_type != R_PPC64_REL14_BRNTAKEN)
11517 continue;
11518
11519 r_symndx = ELF64_R_SYM (rel->r_info);
11520 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11521 isec->owner))
11522 {
11523 ret = -1;
11524 break;
11525 }
11526
11527 /* Calls to dynamic lib functions go through a plt call stub
11528 that uses r2. */
11529 eh = (struct ppc_link_hash_entry *) h;
11530 if (eh != NULL
11531 && (eh->elf.plt.plist != NULL
11532 || (eh->oh != NULL
11533 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11534 {
11535 ret = 1;
11536 break;
11537 }
11538
11539 if (sym_sec == NULL)
11540 /* Ignore other undefined symbols. */
11541 continue;
11542
11543 /* Assume branches to other sections not included in the
11544 link need stubs too, to cover -R and absolute syms. */
11545 if (sym_sec->output_section == NULL)
11546 {
11547 ret = 1;
11548 break;
11549 }
11550
11551 if (h == NULL)
11552 sym_value = sym->st_value;
11553 else
11554 {
11555 if (h->root.type != bfd_link_hash_defined
11556 && h->root.type != bfd_link_hash_defweak)
11557 abort ();
11558 sym_value = h->root.u.def.value;
11559 }
11560 sym_value += rel->r_addend;
11561
11562 /* If this branch reloc uses an opd sym, find the code section. */
11563 opd = get_opd_info (sym_sec);
11564 if (opd != NULL)
11565 {
11566 if (h == NULL && opd->adjust != NULL)
11567 {
11568 long adjust;
11569
11570 adjust = opd->adjust[sym->st_value / 8];
11571 if (adjust == -1)
11572 /* Assume deleted functions won't ever be called. */
11573 continue;
11574 sym_value += adjust;
11575 }
11576
11577 dest = opd_entry_value (sym_sec, sym_value,
11578 &sym_sec, NULL, FALSE);
11579 if (dest == (bfd_vma) -1)
11580 continue;
11581 }
11582 else
11583 dest = (sym_value
11584 + sym_sec->output_offset
11585 + sym_sec->output_section->vma);
11586
11587 /* Ignore branch to self. */
11588 if (sym_sec == isec)
11589 continue;
11590
11591 /* If the called function uses the toc, we need a stub. */
11592 if (sym_sec->has_toc_reloc
11593 || sym_sec->makes_toc_func_call)
11594 {
11595 ret = 1;
11596 break;
11597 }
11598
11599 /* Assume any branch that needs a long branch stub might in fact
11600 need a plt_branch stub. A plt_branch stub uses r2. */
11601 else if (dest - (isec->output_offset
11602 + isec->output_section->vma
11603 + rel->r_offset) + (1 << 25)
11604 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11605 ? h->other
11606 : sym->st_other))
11607 {
11608 ret = 1;
11609 break;
11610 }
11611
11612 /* If calling back to a section in the process of being
11613 tested, we can't say for sure that no toc adjusting stubs
11614 are needed, so don't return zero. */
11615 else if (sym_sec->call_check_in_progress)
11616 ret = 2;
11617
11618 /* Branches to another section that itself doesn't have any TOC
11619 references are OK. Recursively call ourselves to check. */
11620 else if (!sym_sec->call_check_done)
11621 {
11622 int recur;
11623
11624 /* Mark current section as indeterminate, so that other
11625 sections that call back to current won't be marked as
11626 known. */
11627 isec->call_check_in_progress = 1;
11628 recur = toc_adjusting_stub_needed (info, sym_sec);
11629 isec->call_check_in_progress = 0;
11630
11631 if (recur != 0)
11632 {
11633 ret = recur;
11634 if (recur != 2)
11635 break;
11636 }
11637 }
11638 }
11639
11640 if (local_syms != NULL
11641 && (elf_symtab_hdr (isec->owner).contents
11642 != (unsigned char *) local_syms))
11643 free (local_syms);
11644 if (elf_section_data (isec)->relocs != relstart)
11645 free (relstart);
11646 }
11647
11648 if ((ret & 1) == 0
11649 && isec->map_head.s != NULL
11650 && (strcmp (isec->output_section->name, ".init") == 0
11651 || strcmp (isec->output_section->name, ".fini") == 0))
11652 {
11653 if (isec->map_head.s->has_toc_reloc
11654 || isec->map_head.s->makes_toc_func_call)
11655 ret = 1;
11656 else if (!isec->map_head.s->call_check_done)
11657 {
11658 int recur;
11659 isec->call_check_in_progress = 1;
11660 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11661 isec->call_check_in_progress = 0;
11662 if (recur != 0)
11663 ret = recur;
11664 }
11665 }
11666
11667 if (ret == 1)
11668 isec->makes_toc_func_call = 1;
11669
11670 return ret;
11671 }
11672
11673 /* The linker repeatedly calls this function for each input section,
11674 in the order that input sections are linked into output sections.
11675 Build lists of input sections to determine groupings between which
11676 we may insert linker stubs. */
11677
11678 bfd_boolean
11679 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11680 {
11681 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11682
11683 if (htab == NULL)
11684 return FALSE;
11685
11686 if ((isec->output_section->flags & SEC_CODE) != 0
11687 && isec->output_section->index <= htab->top_index)
11688 {
11689 asection **list = htab->input_list + isec->output_section->index;
11690 /* Steal the link_sec pointer for our list. */
11691 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11692 /* This happens to make the list in reverse order,
11693 which is what we want. */
11694 PREV_SEC (isec) = *list;
11695 *list = isec;
11696 }
11697
11698 if (htab->multi_toc_needed)
11699 {
11700 /* Analyse sections that aren't already flagged as needing a
11701 valid toc pointer. Exclude .fixup for the linux kernel.
11702 .fixup contains branches, but only back to the function that
11703 hit an exception. */
11704 if (!(isec->has_toc_reloc
11705 || (isec->flags & SEC_CODE) == 0
11706 || strcmp (isec->name, ".fixup") == 0
11707 || isec->call_check_done))
11708 {
11709 if (toc_adjusting_stub_needed (info, isec) < 0)
11710 return FALSE;
11711 }
11712 /* Make all sections use the TOC assigned for this object file.
11713 This will be wrong for pasted sections; We fix that in
11714 check_pasted_section(). */
11715 if (elf_gp (isec->owner) != 0)
11716 htab->toc_curr = elf_gp (isec->owner);
11717 }
11718
11719 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11720 return TRUE;
11721 }
11722
11723 /* Check that all .init and .fini sections use the same toc, if they
11724 have toc relocs. */
11725
11726 static bfd_boolean
11727 check_pasted_section (struct bfd_link_info *info, const char *name)
11728 {
11729 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11730
11731 if (o != NULL)
11732 {
11733 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11734 bfd_vma toc_off = 0;
11735 asection *i;
11736
11737 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11738 if (i->has_toc_reloc)
11739 {
11740 if (toc_off == 0)
11741 toc_off = htab->stub_group[i->id].toc_off;
11742 else if (toc_off != htab->stub_group[i->id].toc_off)
11743 return FALSE;
11744 }
11745
11746 if (toc_off == 0)
11747 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11748 if (i->makes_toc_func_call)
11749 {
11750 toc_off = htab->stub_group[i->id].toc_off;
11751 break;
11752 }
11753
11754 /* Make sure the whole pasted function uses the same toc offset. */
11755 if (toc_off != 0)
11756 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11757 htab->stub_group[i->id].toc_off = toc_off;
11758 }
11759 return TRUE;
11760 }
11761
11762 bfd_boolean
11763 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11764 {
11765 return (check_pasted_section (info, ".init")
11766 & check_pasted_section (info, ".fini"));
11767 }
11768
11769 /* See whether we can group stub sections together. Grouping stub
11770 sections may result in fewer stubs. More importantly, we need to
11771 put all .init* and .fini* stubs at the beginning of the .init or
11772 .fini output sections respectively, because glibc splits the
11773 _init and _fini functions into multiple parts. Putting a stub in
11774 the middle of a function is not a good idea. */
11775
11776 static void
11777 group_sections (struct ppc_link_hash_table *htab,
11778 bfd_size_type stub_group_size,
11779 bfd_boolean stubs_always_before_branch)
11780 {
11781 asection **list;
11782 bfd_size_type stub14_group_size;
11783 bfd_boolean suppress_size_errors;
11784
11785 suppress_size_errors = FALSE;
11786 stub14_group_size = stub_group_size;
11787 if (stub_group_size == 1)
11788 {
11789 /* Default values. */
11790 if (stubs_always_before_branch)
11791 {
11792 stub_group_size = 0x1e00000;
11793 stub14_group_size = 0x7800;
11794 }
11795 else
11796 {
11797 stub_group_size = 0x1c00000;
11798 stub14_group_size = 0x7000;
11799 }
11800 suppress_size_errors = TRUE;
11801 }
11802
11803 list = htab->input_list + htab->top_index;
11804 do
11805 {
11806 asection *tail = *list;
11807 while (tail != NULL)
11808 {
11809 asection *curr;
11810 asection *prev;
11811 bfd_size_type total;
11812 bfd_boolean big_sec;
11813 bfd_vma curr_toc;
11814
11815 curr = tail;
11816 total = tail->size;
11817 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11818 && ppc64_elf_section_data (tail)->has_14bit_branch
11819 ? stub14_group_size : stub_group_size);
11820 if (big_sec && !suppress_size_errors)
11821 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11822 tail->owner, tail);
11823 curr_toc = htab->stub_group[tail->id].toc_off;
11824
11825 while ((prev = PREV_SEC (curr)) != NULL
11826 && ((total += curr->output_offset - prev->output_offset)
11827 < (ppc64_elf_section_data (prev) != NULL
11828 && ppc64_elf_section_data (prev)->has_14bit_branch
11829 ? stub14_group_size : stub_group_size))
11830 && htab->stub_group[prev->id].toc_off == curr_toc)
11831 curr = prev;
11832
11833 /* OK, the size from the start of CURR to the end is less
11834 than stub_group_size and thus can be handled by one stub
11835 section. (or the tail section is itself larger than
11836 stub_group_size, in which case we may be toast.) We
11837 should really be keeping track of the total size of stubs
11838 added here, as stubs contribute to the final output
11839 section size. That's a little tricky, and this way will
11840 only break if stubs added make the total size more than
11841 2^25, ie. for the default stub_group_size, if stubs total
11842 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11843 do
11844 {
11845 prev = PREV_SEC (tail);
11846 /* Set up this stub group. */
11847 htab->stub_group[tail->id].link_sec = curr;
11848 }
11849 while (tail != curr && (tail = prev) != NULL);
11850
11851 /* But wait, there's more! Input sections up to stub_group_size
11852 bytes before the stub section can be handled by it too.
11853 Don't do this if we have a really large section after the
11854 stubs, as adding more stubs increases the chance that
11855 branches may not reach into the stub section. */
11856 if (!stubs_always_before_branch && !big_sec)
11857 {
11858 total = 0;
11859 while (prev != NULL
11860 && ((total += tail->output_offset - prev->output_offset)
11861 < (ppc64_elf_section_data (prev) != NULL
11862 && ppc64_elf_section_data (prev)->has_14bit_branch
11863 ? stub14_group_size : stub_group_size))
11864 && htab->stub_group[prev->id].toc_off == curr_toc)
11865 {
11866 tail = prev;
11867 prev = PREV_SEC (tail);
11868 htab->stub_group[tail->id].link_sec = curr;
11869 }
11870 }
11871 tail = prev;
11872 }
11873 }
11874 while (list-- != htab->input_list);
11875 free (htab->input_list);
11876 #undef PREV_SEC
11877 }
11878
11879 static const unsigned char glink_eh_frame_cie[] =
11880 {
11881 0, 0, 0, 16, /* length. */
11882 0, 0, 0, 0, /* id. */
11883 1, /* CIE version. */
11884 'z', 'R', 0, /* Augmentation string. */
11885 4, /* Code alignment. */
11886 0x78, /* Data alignment. */
11887 65, /* RA reg. */
11888 1, /* Augmentation size. */
11889 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11890 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11891 0, 0, 0, 0
11892 };
11893
11894 /* Stripping output sections is normally done before dynamic section
11895 symbols have been allocated. This function is called later, and
11896 handles cases like htab->brlt which is mapped to its own output
11897 section. */
11898
11899 static void
11900 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11901 {
11902 if (isec->size == 0
11903 && isec->output_section->size == 0
11904 && !(isec->output_section->flags & SEC_KEEP)
11905 && !bfd_section_removed_from_list (info->output_bfd,
11906 isec->output_section)
11907 && elf_section_data (isec->output_section)->dynindx == 0)
11908 {
11909 isec->output_section->flags |= SEC_EXCLUDE;
11910 bfd_section_list_remove (info->output_bfd, isec->output_section);
11911 info->output_bfd->section_count--;
11912 }
11913 }
11914
11915 /* Determine and set the size of the stub section for a final link.
11916
11917 The basic idea here is to examine all the relocations looking for
11918 PC-relative calls to a target that is unreachable with a "bl"
11919 instruction. */
11920
11921 bfd_boolean
11922 ppc64_elf_size_stubs (struct bfd_link_info *info)
11923 {
11924 bfd_size_type stub_group_size;
11925 bfd_boolean stubs_always_before_branch;
11926 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11927
11928 if (htab == NULL)
11929 return FALSE;
11930
11931 if (htab->params->plt_thread_safe == -1 && !info->executable)
11932 htab->params->plt_thread_safe = 1;
11933 if (!htab->opd_abi)
11934 htab->params->plt_thread_safe = 0;
11935 else if (htab->params->plt_thread_safe == -1)
11936 {
11937 static const char *const thread_starter[] =
11938 {
11939 "pthread_create",
11940 /* libstdc++ */
11941 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11942 /* librt */
11943 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11944 "mq_notify", "create_timer",
11945 /* libanl */
11946 "getaddrinfo_a",
11947 /* libgomp */
11948 "GOMP_parallel_start",
11949 "GOMP_parallel_loop_static_start",
11950 "GOMP_parallel_loop_dynamic_start",
11951 "GOMP_parallel_loop_guided_start",
11952 "GOMP_parallel_loop_runtime_start",
11953 "GOMP_parallel_sections_start",
11954 };
11955 unsigned i;
11956
11957 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11958 {
11959 struct elf_link_hash_entry *h;
11960 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11961 FALSE, FALSE, TRUE);
11962 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
11963 if (htab->params->plt_thread_safe)
11964 break;
11965 }
11966 }
11967 stubs_always_before_branch = htab->params->group_size < 0;
11968 if (htab->params->group_size < 0)
11969 stub_group_size = -htab->params->group_size;
11970 else
11971 stub_group_size = htab->params->group_size;
11972
11973 group_sections (htab, stub_group_size, stubs_always_before_branch);
11974
11975 while (1)
11976 {
11977 bfd *input_bfd;
11978 unsigned int bfd_indx;
11979 asection *stub_sec;
11980
11981 htab->stub_iteration += 1;
11982
11983 for (input_bfd = info->input_bfds, bfd_indx = 0;
11984 input_bfd != NULL;
11985 input_bfd = input_bfd->link.next, bfd_indx++)
11986 {
11987 Elf_Internal_Shdr *symtab_hdr;
11988 asection *section;
11989 Elf_Internal_Sym *local_syms = NULL;
11990
11991 if (!is_ppc64_elf (input_bfd))
11992 continue;
11993
11994 /* We'll need the symbol table in a second. */
11995 symtab_hdr = &elf_symtab_hdr (input_bfd);
11996 if (symtab_hdr->sh_info == 0)
11997 continue;
11998
11999 /* Walk over each section attached to the input bfd. */
12000 for (section = input_bfd->sections;
12001 section != NULL;
12002 section = section->next)
12003 {
12004 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12005
12006 /* If there aren't any relocs, then there's nothing more
12007 to do. */
12008 if ((section->flags & SEC_RELOC) == 0
12009 || (section->flags & SEC_ALLOC) == 0
12010 || (section->flags & SEC_LOAD) == 0
12011 || (section->flags & SEC_CODE) == 0
12012 || section->reloc_count == 0)
12013 continue;
12014
12015 /* If this section is a link-once section that will be
12016 discarded, then don't create any stubs. */
12017 if (section->output_section == NULL
12018 || section->output_section->owner != info->output_bfd)
12019 continue;
12020
12021 /* Get the relocs. */
12022 internal_relocs
12023 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12024 info->keep_memory);
12025 if (internal_relocs == NULL)
12026 goto error_ret_free_local;
12027
12028 /* Now examine each relocation. */
12029 irela = internal_relocs;
12030 irelaend = irela + section->reloc_count;
12031 for (; irela < irelaend; irela++)
12032 {
12033 enum elf_ppc64_reloc_type r_type;
12034 unsigned int r_indx;
12035 enum ppc_stub_type stub_type;
12036 struct ppc_stub_hash_entry *stub_entry;
12037 asection *sym_sec, *code_sec;
12038 bfd_vma sym_value, code_value;
12039 bfd_vma destination;
12040 unsigned long local_off;
12041 bfd_boolean ok_dest;
12042 struct ppc_link_hash_entry *hash;
12043 struct ppc_link_hash_entry *fdh;
12044 struct elf_link_hash_entry *h;
12045 Elf_Internal_Sym *sym;
12046 char *stub_name;
12047 const asection *id_sec;
12048 struct _opd_sec_data *opd;
12049 struct plt_entry *plt_ent;
12050
12051 r_type = ELF64_R_TYPE (irela->r_info);
12052 r_indx = ELF64_R_SYM (irela->r_info);
12053
12054 if (r_type >= R_PPC64_max)
12055 {
12056 bfd_set_error (bfd_error_bad_value);
12057 goto error_ret_free_internal;
12058 }
12059
12060 /* Only look for stubs on branch instructions. */
12061 if (r_type != R_PPC64_REL24
12062 && r_type != R_PPC64_REL14
12063 && r_type != R_PPC64_REL14_BRTAKEN
12064 && r_type != R_PPC64_REL14_BRNTAKEN)
12065 continue;
12066
12067 /* Now determine the call target, its name, value,
12068 section. */
12069 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12070 r_indx, input_bfd))
12071 goto error_ret_free_internal;
12072 hash = (struct ppc_link_hash_entry *) h;
12073
12074 ok_dest = FALSE;
12075 fdh = NULL;
12076 sym_value = 0;
12077 if (hash == NULL)
12078 {
12079 sym_value = sym->st_value;
12080 ok_dest = TRUE;
12081 }
12082 else if (hash->elf.root.type == bfd_link_hash_defined
12083 || hash->elf.root.type == bfd_link_hash_defweak)
12084 {
12085 sym_value = hash->elf.root.u.def.value;
12086 if (sym_sec->output_section != NULL)
12087 ok_dest = TRUE;
12088 }
12089 else if (hash->elf.root.type == bfd_link_hash_undefweak
12090 || hash->elf.root.type == bfd_link_hash_undefined)
12091 {
12092 /* Recognise an old ABI func code entry sym, and
12093 use the func descriptor sym instead if it is
12094 defined. */
12095 if (hash->elf.root.root.string[0] == '.'
12096 && (fdh = lookup_fdh (hash, htab)) != NULL)
12097 {
12098 if (fdh->elf.root.type == bfd_link_hash_defined
12099 || fdh->elf.root.type == bfd_link_hash_defweak)
12100 {
12101 sym_sec = fdh->elf.root.u.def.section;
12102 sym_value = fdh->elf.root.u.def.value;
12103 if (sym_sec->output_section != NULL)
12104 ok_dest = TRUE;
12105 }
12106 else
12107 fdh = NULL;
12108 }
12109 }
12110 else
12111 {
12112 bfd_set_error (bfd_error_bad_value);
12113 goto error_ret_free_internal;
12114 }
12115
12116 destination = 0;
12117 local_off = 0;
12118 if (ok_dest)
12119 {
12120 sym_value += irela->r_addend;
12121 destination = (sym_value
12122 + sym_sec->output_offset
12123 + sym_sec->output_section->vma);
12124 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12125 ? hash->elf.other
12126 : sym->st_other);
12127 }
12128
12129 code_sec = sym_sec;
12130 code_value = sym_value;
12131 opd = get_opd_info (sym_sec);
12132 if (opd != NULL)
12133 {
12134 bfd_vma dest;
12135
12136 if (hash == NULL && opd->adjust != NULL)
12137 {
12138 long adjust = opd->adjust[sym_value / 8];
12139 if (adjust == -1)
12140 continue;
12141 code_value += adjust;
12142 sym_value += adjust;
12143 }
12144 dest = opd_entry_value (sym_sec, sym_value,
12145 &code_sec, &code_value, FALSE);
12146 if (dest != (bfd_vma) -1)
12147 {
12148 destination = dest;
12149 if (fdh != NULL)
12150 {
12151 /* Fixup old ABI sym to point at code
12152 entry. */
12153 hash->elf.root.type = bfd_link_hash_defweak;
12154 hash->elf.root.u.def.section = code_sec;
12155 hash->elf.root.u.def.value = code_value;
12156 }
12157 }
12158 }
12159
12160 /* Determine what (if any) linker stub is needed. */
12161 plt_ent = NULL;
12162 stub_type = ppc_type_of_stub (section, irela, &hash,
12163 &plt_ent, destination,
12164 local_off);
12165
12166 if (stub_type != ppc_stub_plt_call)
12167 {
12168 /* Check whether we need a TOC adjusting stub.
12169 Since the linker pastes together pieces from
12170 different object files when creating the
12171 _init and _fini functions, it may be that a
12172 call to what looks like a local sym is in
12173 fact a call needing a TOC adjustment. */
12174 if (code_sec != NULL
12175 && code_sec->output_section != NULL
12176 && (htab->stub_group[code_sec->id].toc_off
12177 != htab->stub_group[section->id].toc_off)
12178 && (code_sec->has_toc_reloc
12179 || code_sec->makes_toc_func_call))
12180 stub_type = ppc_stub_long_branch_r2off;
12181 }
12182
12183 if (stub_type == ppc_stub_none)
12184 continue;
12185
12186 /* __tls_get_addr calls might be eliminated. */
12187 if (stub_type != ppc_stub_plt_call
12188 && hash != NULL
12189 && (hash == htab->tls_get_addr
12190 || hash == htab->tls_get_addr_fd)
12191 && section->has_tls_reloc
12192 && irela != internal_relocs)
12193 {
12194 /* Get tls info. */
12195 unsigned char *tls_mask;
12196
12197 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12198 irela - 1, input_bfd))
12199 goto error_ret_free_internal;
12200 if (*tls_mask != 0)
12201 continue;
12202 }
12203
12204 if (stub_type == ppc_stub_plt_call
12205 && irela + 1 < irelaend
12206 && irela[1].r_offset == irela->r_offset + 4
12207 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12208 {
12209 if (!tocsave_find (htab, INSERT,
12210 &local_syms, irela + 1, input_bfd))
12211 goto error_ret_free_internal;
12212 }
12213 else if (stub_type == ppc_stub_plt_call)
12214 stub_type = ppc_stub_plt_call_r2save;
12215
12216 /* Support for grouping stub sections. */
12217 id_sec = htab->stub_group[section->id].link_sec;
12218
12219 /* Get the name of this stub. */
12220 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12221 if (!stub_name)
12222 goto error_ret_free_internal;
12223
12224 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12225 stub_name, FALSE, FALSE);
12226 if (stub_entry != NULL)
12227 {
12228 /* The proper stub has already been created. */
12229 free (stub_name);
12230 if (stub_type == ppc_stub_plt_call_r2save)
12231 stub_entry->stub_type = stub_type;
12232 continue;
12233 }
12234
12235 stub_entry = ppc_add_stub (stub_name, section, info);
12236 if (stub_entry == NULL)
12237 {
12238 free (stub_name);
12239 error_ret_free_internal:
12240 if (elf_section_data (section)->relocs == NULL)
12241 free (internal_relocs);
12242 error_ret_free_local:
12243 if (local_syms != NULL
12244 && (symtab_hdr->contents
12245 != (unsigned char *) local_syms))
12246 free (local_syms);
12247 return FALSE;
12248 }
12249
12250 stub_entry->stub_type = stub_type;
12251 if (stub_type != ppc_stub_plt_call
12252 && stub_type != ppc_stub_plt_call_r2save)
12253 {
12254 stub_entry->target_value = code_value;
12255 stub_entry->target_section = code_sec;
12256 }
12257 else
12258 {
12259 stub_entry->target_value = sym_value;
12260 stub_entry->target_section = sym_sec;
12261 }
12262 stub_entry->h = hash;
12263 stub_entry->plt_ent = plt_ent;
12264 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12265
12266 if (stub_entry->h != NULL)
12267 htab->stub_globals += 1;
12268 }
12269
12270 /* We're done with the internal relocs, free them. */
12271 if (elf_section_data (section)->relocs != internal_relocs)
12272 free (internal_relocs);
12273 }
12274
12275 if (local_syms != NULL
12276 && symtab_hdr->contents != (unsigned char *) local_syms)
12277 {
12278 if (!info->keep_memory)
12279 free (local_syms);
12280 else
12281 symtab_hdr->contents = (unsigned char *) local_syms;
12282 }
12283 }
12284
12285 /* We may have added some stubs. Find out the new size of the
12286 stub sections. */
12287 for (stub_sec = htab->params->stub_bfd->sections;
12288 stub_sec != NULL;
12289 stub_sec = stub_sec->next)
12290 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12291 {
12292 stub_sec->rawsize = stub_sec->size;
12293 stub_sec->size = 0;
12294 stub_sec->reloc_count = 0;
12295 stub_sec->flags &= ~SEC_RELOC;
12296 }
12297
12298 htab->brlt->size = 0;
12299 htab->brlt->reloc_count = 0;
12300 htab->brlt->flags &= ~SEC_RELOC;
12301 if (htab->relbrlt != NULL)
12302 htab->relbrlt->size = 0;
12303
12304 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12305
12306 if (info->emitrelocations
12307 && htab->glink != NULL && htab->glink->size != 0)
12308 {
12309 htab->glink->reloc_count = 1;
12310 htab->glink->flags |= SEC_RELOC;
12311 }
12312
12313 if (htab->glink_eh_frame != NULL
12314 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12315 && htab->glink_eh_frame->output_section->size != 0)
12316 {
12317 size_t size = 0, align;
12318
12319 for (stub_sec = htab->params->stub_bfd->sections;
12320 stub_sec != NULL;
12321 stub_sec = stub_sec->next)
12322 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12323 size += 24;
12324 if (htab->glink != NULL && htab->glink->size != 0)
12325 size += 24;
12326 if (size != 0)
12327 size += sizeof (glink_eh_frame_cie);
12328 align = 1;
12329 align <<= htab->glink_eh_frame->output_section->alignment_power;
12330 align -= 1;
12331 size = (size + align) & ~align;
12332 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12333 htab->glink_eh_frame->size = size;
12334 }
12335
12336 if (htab->params->plt_stub_align != 0)
12337 for (stub_sec = htab->params->stub_bfd->sections;
12338 stub_sec != NULL;
12339 stub_sec = stub_sec->next)
12340 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12341 stub_sec->size = ((stub_sec->size
12342 + (1 << htab->params->plt_stub_align) - 1)
12343 & (-1 << htab->params->plt_stub_align));
12344
12345 for (stub_sec = htab->params->stub_bfd->sections;
12346 stub_sec != NULL;
12347 stub_sec = stub_sec->next)
12348 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12349 && stub_sec->rawsize != stub_sec->size)
12350 break;
12351
12352 /* Exit from this loop when no stubs have been added, and no stubs
12353 have changed size. */
12354 if (stub_sec == NULL
12355 && (htab->glink_eh_frame == NULL
12356 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12357 break;
12358
12359 /* Ask the linker to do its stuff. */
12360 (*htab->params->layout_sections_again) ();
12361 }
12362
12363 if (htab->glink_eh_frame != NULL
12364 && htab->glink_eh_frame->size != 0)
12365 {
12366 bfd_vma val;
12367 bfd_byte *p, *last_fde;
12368 size_t last_fde_len, size, align, pad;
12369 asection *stub_sec;
12370
12371 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12372 if (p == NULL)
12373 return FALSE;
12374 htab->glink_eh_frame->contents = p;
12375 last_fde = p;
12376
12377 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12378 /* CIE length (rewrite in case little-endian). */
12379 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12380 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12381 p += sizeof (glink_eh_frame_cie);
12382
12383 for (stub_sec = htab->params->stub_bfd->sections;
12384 stub_sec != NULL;
12385 stub_sec = stub_sec->next)
12386 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12387 {
12388 last_fde = p;
12389 last_fde_len = 20;
12390 /* FDE length. */
12391 bfd_put_32 (htab->elf.dynobj, 20, p);
12392 p += 4;
12393 /* CIE pointer. */
12394 val = p - htab->glink_eh_frame->contents;
12395 bfd_put_32 (htab->elf.dynobj, val, p);
12396 p += 4;
12397 /* Offset to stub section, written later. */
12398 p += 4;
12399 /* stub section size. */
12400 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12401 p += 4;
12402 /* Augmentation. */
12403 p += 1;
12404 /* Pad. */
12405 p += 7;
12406 }
12407 if (htab->glink != NULL && htab->glink->size != 0)
12408 {
12409 last_fde = p;
12410 last_fde_len = 20;
12411 /* FDE length. */
12412 bfd_put_32 (htab->elf.dynobj, 20, p);
12413 p += 4;
12414 /* CIE pointer. */
12415 val = p - htab->glink_eh_frame->contents;
12416 bfd_put_32 (htab->elf.dynobj, val, p);
12417 p += 4;
12418 /* Offset to .glink, written later. */
12419 p += 4;
12420 /* .glink size. */
12421 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12422 p += 4;
12423 /* Augmentation. */
12424 p += 1;
12425
12426 *p++ = DW_CFA_advance_loc + 1;
12427 *p++ = DW_CFA_register;
12428 *p++ = 65;
12429 *p++ = 12;
12430 *p++ = DW_CFA_advance_loc + 4;
12431 *p++ = DW_CFA_restore_extended;
12432 *p++ = 65;
12433 }
12434 /* Subsume any padding into the last FDE if user .eh_frame
12435 sections are aligned more than glink_eh_frame. Otherwise any
12436 zero padding will be seen as a terminator. */
12437 size = p - htab->glink_eh_frame->contents;
12438 align = 1;
12439 align <<= htab->glink_eh_frame->output_section->alignment_power;
12440 align -= 1;
12441 pad = ((size + align) & ~align) - size;
12442 htab->glink_eh_frame->size = size + pad;
12443 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12444 }
12445
12446 maybe_strip_output (info, htab->brlt);
12447 if (htab->glink_eh_frame != NULL)
12448 maybe_strip_output (info, htab->glink_eh_frame);
12449
12450 return TRUE;
12451 }
12452
12453 /* Called after we have determined section placement. If sections
12454 move, we'll be called again. Provide a value for TOCstart. */
12455
12456 bfd_vma
12457 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12458 {
12459 asection *s;
12460 bfd_vma TOCstart;
12461
12462 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12463 order. The TOC starts where the first of these sections starts. */
12464 s = bfd_get_section_by_name (obfd, ".got");
12465 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12466 s = bfd_get_section_by_name (obfd, ".toc");
12467 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12468 s = bfd_get_section_by_name (obfd, ".tocbss");
12469 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12470 s = bfd_get_section_by_name (obfd, ".plt");
12471 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12472 {
12473 /* This may happen for
12474 o references to TOC base (SYM@toc / TOC[tc0]) without a
12475 .toc directive
12476 o bad linker script
12477 o --gc-sections and empty TOC sections
12478
12479 FIXME: Warn user? */
12480
12481 /* Look for a likely section. We probably won't even be
12482 using TOCstart. */
12483 for (s = obfd->sections; s != NULL; s = s->next)
12484 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12485 | SEC_EXCLUDE))
12486 == (SEC_ALLOC | SEC_SMALL_DATA))
12487 break;
12488 if (s == NULL)
12489 for (s = obfd->sections; s != NULL; s = s->next)
12490 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12491 == (SEC_ALLOC | SEC_SMALL_DATA))
12492 break;
12493 if (s == NULL)
12494 for (s = obfd->sections; s != NULL; s = s->next)
12495 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12496 == SEC_ALLOC)
12497 break;
12498 if (s == NULL)
12499 for (s = obfd->sections; s != NULL; s = s->next)
12500 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12501 break;
12502 }
12503
12504 TOCstart = 0;
12505 if (s != NULL)
12506 TOCstart = s->output_section->vma + s->output_offset;
12507
12508 _bfd_set_gp_value (obfd, TOCstart);
12509
12510 if (info != NULL && s != NULL)
12511 {
12512 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12513
12514 if (htab != NULL)
12515 {
12516 if (htab->elf.hgot != NULL)
12517 {
12518 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12519 htab->elf.hgot->root.u.def.section = s;
12520 }
12521 }
12522 else
12523 {
12524 struct bfd_link_hash_entry *bh = NULL;
12525 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12526 s, TOC_BASE_OFF, NULL, FALSE,
12527 FALSE, &bh);
12528 }
12529 }
12530 return TOCstart;
12531 }
12532
12533 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12534 write out any global entry stubs. */
12535
12536 static bfd_boolean
12537 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12538 {
12539 struct bfd_link_info *info;
12540 struct ppc_link_hash_table *htab;
12541 struct plt_entry *pent;
12542 asection *s;
12543
12544 if (h->root.type == bfd_link_hash_indirect)
12545 return TRUE;
12546
12547 if (!h->pointer_equality_needed)
12548 return TRUE;
12549
12550 if (h->def_regular)
12551 return TRUE;
12552
12553 info = inf;
12554 htab = ppc_hash_table (info);
12555 if (htab == NULL)
12556 return FALSE;
12557
12558 s = htab->glink;
12559 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12560 if (pent->plt.offset != (bfd_vma) -1
12561 && pent->addend == 0)
12562 {
12563 bfd_byte *p;
12564 asection *plt;
12565 bfd_vma off;
12566
12567 p = s->contents + h->root.u.def.value;
12568 plt = htab->elf.splt;
12569 if (!htab->elf.dynamic_sections_created
12570 || h->dynindx == -1)
12571 plt = htab->elf.iplt;
12572 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12573 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12574
12575 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12576 {
12577 info->callbacks->einfo
12578 (_("%P: linkage table error against `%T'\n"),
12579 h->root.root.string);
12580 bfd_set_error (bfd_error_bad_value);
12581 htab->stub_error = TRUE;
12582 }
12583
12584 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12585 if (htab->params->emit_stub_syms)
12586 {
12587 size_t len = strlen (h->root.root.string);
12588 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12589
12590 if (name == NULL)
12591 return FALSE;
12592
12593 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12594 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12595 if (h == NULL)
12596 return FALSE;
12597 if (h->root.type == bfd_link_hash_new)
12598 {
12599 h->root.type = bfd_link_hash_defined;
12600 h->root.u.def.section = s;
12601 h->root.u.def.value = p - s->contents;
12602 h->ref_regular = 1;
12603 h->def_regular = 1;
12604 h->ref_regular_nonweak = 1;
12605 h->forced_local = 1;
12606 h->non_elf = 0;
12607 }
12608 }
12609
12610 if (PPC_HA (off) != 0)
12611 {
12612 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12613 p += 4;
12614 }
12615 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12616 p += 4;
12617 bfd_put_32 (s->owner, MTCTR_R12, p);
12618 p += 4;
12619 bfd_put_32 (s->owner, BCTR, p);
12620 break;
12621 }
12622 return TRUE;
12623 }
12624
12625 /* Build all the stubs associated with the current output file.
12626 The stubs are kept in a hash table attached to the main linker
12627 hash table. This function is called via gldelf64ppc_finish. */
12628
12629 bfd_boolean
12630 ppc64_elf_build_stubs (struct bfd_link_info *info,
12631 char **stats)
12632 {
12633 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12634 asection *stub_sec;
12635 bfd_byte *p;
12636 int stub_sec_count = 0;
12637
12638 if (htab == NULL)
12639 return FALSE;
12640
12641 /* Allocate memory to hold the linker stubs. */
12642 for (stub_sec = htab->params->stub_bfd->sections;
12643 stub_sec != NULL;
12644 stub_sec = stub_sec->next)
12645 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12646 && stub_sec->size != 0)
12647 {
12648 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12649 if (stub_sec->contents == NULL)
12650 return FALSE;
12651 /* We want to check that built size is the same as calculated
12652 size. rawsize is a convenient location to use. */
12653 stub_sec->rawsize = stub_sec->size;
12654 stub_sec->size = 0;
12655 }
12656
12657 if (htab->glink != NULL && htab->glink->size != 0)
12658 {
12659 unsigned int indx;
12660 bfd_vma plt0;
12661
12662 /* Build the .glink plt call stub. */
12663 if (htab->params->emit_stub_syms)
12664 {
12665 struct elf_link_hash_entry *h;
12666 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12667 TRUE, FALSE, FALSE);
12668 if (h == NULL)
12669 return FALSE;
12670 if (h->root.type == bfd_link_hash_new)
12671 {
12672 h->root.type = bfd_link_hash_defined;
12673 h->root.u.def.section = htab->glink;
12674 h->root.u.def.value = 8;
12675 h->ref_regular = 1;
12676 h->def_regular = 1;
12677 h->ref_regular_nonweak = 1;
12678 h->forced_local = 1;
12679 h->non_elf = 0;
12680 }
12681 }
12682 plt0 = (htab->elf.splt->output_section->vma
12683 + htab->elf.splt->output_offset
12684 - 16);
12685 if (info->emitrelocations)
12686 {
12687 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12688 if (r == NULL)
12689 return FALSE;
12690 r->r_offset = (htab->glink->output_offset
12691 + htab->glink->output_section->vma);
12692 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12693 r->r_addend = plt0;
12694 }
12695 p = htab->glink->contents;
12696 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12697 bfd_put_64 (htab->glink->owner, plt0, p);
12698 p += 8;
12699 if (htab->opd_abi)
12700 {
12701 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12702 p += 4;
12703 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12704 p += 4;
12705 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12706 p += 4;
12707 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12708 p += 4;
12709 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12710 p += 4;
12711 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12712 p += 4;
12713 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12714 p += 4;
12715 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12716 p += 4;
12717 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12718 p += 4;
12719 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12720 p += 4;
12721 }
12722 else
12723 {
12724 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12725 p += 4;
12726 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12727 p += 4;
12728 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12729 p += 4;
12730 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12731 p += 4;
12732 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12733 p += 4;
12734 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12735 p += 4;
12736 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12737 p += 4;
12738 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12739 p += 4;
12740 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12741 p += 4;
12742 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12743 p += 4;
12744 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12745 p += 4;
12746 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12747 p += 4;
12748 }
12749 bfd_put_32 (htab->glink->owner, BCTR, p);
12750 p += 4;
12751 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12752 {
12753 bfd_put_32 (htab->glink->owner, NOP, p);
12754 p += 4;
12755 }
12756
12757 /* Build the .glink lazy link call stubs. */
12758 indx = 0;
12759 while (p < htab->glink->contents + htab->glink->rawsize)
12760 {
12761 if (htab->opd_abi)
12762 {
12763 if (indx < 0x8000)
12764 {
12765 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12766 p += 4;
12767 }
12768 else
12769 {
12770 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12771 p += 4;
12772 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12773 p);
12774 p += 4;
12775 }
12776 }
12777 bfd_put_32 (htab->glink->owner,
12778 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12779 indx++;
12780 p += 4;
12781 }
12782
12783 /* Build .glink global entry stubs. */
12784 if (htab->glink->size > htab->glink->rawsize)
12785 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12786 }
12787
12788 if (htab->brlt != NULL && htab->brlt->size != 0)
12789 {
12790 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12791 htab->brlt->size);
12792 if (htab->brlt->contents == NULL)
12793 return FALSE;
12794 }
12795 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12796 {
12797 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12798 htab->relbrlt->size);
12799 if (htab->relbrlt->contents == NULL)
12800 return FALSE;
12801 }
12802
12803 /* Build the stubs as directed by the stub hash table. */
12804 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12805
12806 if (htab->relbrlt != NULL)
12807 htab->relbrlt->reloc_count = 0;
12808
12809 if (htab->params->plt_stub_align != 0)
12810 for (stub_sec = htab->params->stub_bfd->sections;
12811 stub_sec != NULL;
12812 stub_sec = stub_sec->next)
12813 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12814 stub_sec->size = ((stub_sec->size
12815 + (1 << htab->params->plt_stub_align) - 1)
12816 & (-1 << htab->params->plt_stub_align));
12817
12818 for (stub_sec = htab->params->stub_bfd->sections;
12819 stub_sec != NULL;
12820 stub_sec = stub_sec->next)
12821 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12822 {
12823 stub_sec_count += 1;
12824 if (stub_sec->rawsize != stub_sec->size)
12825 break;
12826 }
12827
12828 /* Note that the glink_eh_frame check here is not only testing that
12829 the generated size matched the calculated size but also that
12830 bfd_elf_discard_info didn't make any changes to the section. */
12831 if (stub_sec != NULL
12832 || (htab->glink_eh_frame != NULL
12833 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12834 {
12835 htab->stub_error = TRUE;
12836 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12837 }
12838
12839 if (htab->stub_error)
12840 return FALSE;
12841
12842 if (stats != NULL)
12843 {
12844 *stats = bfd_malloc (500);
12845 if (*stats == NULL)
12846 return FALSE;
12847
12848 sprintf (*stats, _("linker stubs in %u group%s\n"
12849 " branch %lu\n"
12850 " toc adjust %lu\n"
12851 " long branch %lu\n"
12852 " long toc adj %lu\n"
12853 " plt call %lu\n"
12854 " plt call toc %lu\n"
12855 " global entry %lu"),
12856 stub_sec_count,
12857 stub_sec_count == 1 ? "" : "s",
12858 htab->stub_count[ppc_stub_long_branch - 1],
12859 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12860 htab->stub_count[ppc_stub_plt_branch - 1],
12861 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12862 htab->stub_count[ppc_stub_plt_call - 1],
12863 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12864 htab->stub_count[ppc_stub_global_entry - 1]);
12865 }
12866 return TRUE;
12867 }
12868
12869 /* This function undoes the changes made by add_symbol_adjust. */
12870
12871 static bfd_boolean
12872 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12873 {
12874 struct ppc_link_hash_entry *eh;
12875
12876 if (h->root.type == bfd_link_hash_indirect)
12877 return TRUE;
12878
12879 eh = (struct ppc_link_hash_entry *) h;
12880 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12881 return TRUE;
12882
12883 eh->elf.root.type = bfd_link_hash_undefined;
12884 return TRUE;
12885 }
12886
12887 void
12888 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12889 {
12890 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12891
12892 if (htab != NULL)
12893 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12894 }
12895
12896 /* What to do when ld finds relocations against symbols defined in
12897 discarded sections. */
12898
12899 static unsigned int
12900 ppc64_elf_action_discarded (asection *sec)
12901 {
12902 if (strcmp (".opd", sec->name) == 0)
12903 return 0;
12904
12905 if (strcmp (".toc", sec->name) == 0)
12906 return 0;
12907
12908 if (strcmp (".toc1", sec->name) == 0)
12909 return 0;
12910
12911 return _bfd_elf_default_action_discarded (sec);
12912 }
12913
12914 /* The RELOCATE_SECTION function is called by the ELF backend linker
12915 to handle the relocations for a section.
12916
12917 The relocs are always passed as Rela structures; if the section
12918 actually uses Rel structures, the r_addend field will always be
12919 zero.
12920
12921 This function is responsible for adjust the section contents as
12922 necessary, and (if using Rela relocs and generating a
12923 relocatable output file) adjusting the reloc addend as
12924 necessary.
12925
12926 This function does not have to worry about setting the reloc
12927 address or the reloc symbol index.
12928
12929 LOCAL_SYMS is a pointer to the swapped in local symbols.
12930
12931 LOCAL_SECTIONS is an array giving the section in the input file
12932 corresponding to the st_shndx field of each local symbol.
12933
12934 The global hash table entry for the global symbols can be found
12935 via elf_sym_hashes (input_bfd).
12936
12937 When generating relocatable output, this function must handle
12938 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12939 going to be the section symbol corresponding to the output
12940 section, which means that the addend must be adjusted
12941 accordingly. */
12942
12943 static bfd_boolean
12944 ppc64_elf_relocate_section (bfd *output_bfd,
12945 struct bfd_link_info *info,
12946 bfd *input_bfd,
12947 asection *input_section,
12948 bfd_byte *contents,
12949 Elf_Internal_Rela *relocs,
12950 Elf_Internal_Sym *local_syms,
12951 asection **local_sections)
12952 {
12953 struct ppc_link_hash_table *htab;
12954 Elf_Internal_Shdr *symtab_hdr;
12955 struct elf_link_hash_entry **sym_hashes;
12956 Elf_Internal_Rela *rel;
12957 Elf_Internal_Rela *relend;
12958 Elf_Internal_Rela outrel;
12959 bfd_byte *loc;
12960 struct got_entry **local_got_ents;
12961 bfd_vma TOCstart;
12962 bfd_boolean ret = TRUE;
12963 bfd_boolean is_opd;
12964 /* Assume 'at' branch hints. */
12965 bfd_boolean is_isa_v2 = TRUE;
12966 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12967
12968 /* Initialize howto table if needed. */
12969 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12970 ppc_howto_init ();
12971
12972 htab = ppc_hash_table (info);
12973 if (htab == NULL)
12974 return FALSE;
12975
12976 /* Don't relocate stub sections. */
12977 if (input_section->owner == htab->params->stub_bfd)
12978 return TRUE;
12979
12980 BFD_ASSERT (is_ppc64_elf (input_bfd));
12981
12982 local_got_ents = elf_local_got_ents (input_bfd);
12983 TOCstart = elf_gp (output_bfd);
12984 symtab_hdr = &elf_symtab_hdr (input_bfd);
12985 sym_hashes = elf_sym_hashes (input_bfd);
12986 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12987
12988 rel = relocs;
12989 relend = relocs + input_section->reloc_count;
12990 for (; rel < relend; rel++)
12991 {
12992 enum elf_ppc64_reloc_type r_type;
12993 bfd_vma addend;
12994 bfd_reloc_status_type r;
12995 Elf_Internal_Sym *sym;
12996 asection *sec;
12997 struct elf_link_hash_entry *h_elf;
12998 struct ppc_link_hash_entry *h;
12999 struct ppc_link_hash_entry *fdh;
13000 const char *sym_name;
13001 unsigned long r_symndx, toc_symndx;
13002 bfd_vma toc_addend;
13003 unsigned char tls_mask, tls_gd, tls_type;
13004 unsigned char sym_type;
13005 bfd_vma relocation;
13006 bfd_boolean unresolved_reloc;
13007 bfd_boolean warned;
13008 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13009 unsigned int insn;
13010 unsigned int mask;
13011 struct ppc_stub_hash_entry *stub_entry;
13012 bfd_vma max_br_offset;
13013 bfd_vma from;
13014 const Elf_Internal_Rela orig_rel = *rel;
13015 reloc_howto_type *howto;
13016 struct reloc_howto_struct alt_howto;
13017
13018 r_type = ELF64_R_TYPE (rel->r_info);
13019 r_symndx = ELF64_R_SYM (rel->r_info);
13020
13021 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13022 symbol of the previous ADDR64 reloc. The symbol gives us the
13023 proper TOC base to use. */
13024 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13025 && rel != relocs
13026 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13027 && is_opd)
13028 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13029
13030 sym = NULL;
13031 sec = NULL;
13032 h_elf = NULL;
13033 sym_name = NULL;
13034 unresolved_reloc = FALSE;
13035 warned = FALSE;
13036
13037 if (r_symndx < symtab_hdr->sh_info)
13038 {
13039 /* It's a local symbol. */
13040 struct _opd_sec_data *opd;
13041
13042 sym = local_syms + r_symndx;
13043 sec = local_sections[r_symndx];
13044 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13045 sym_type = ELF64_ST_TYPE (sym->st_info);
13046 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13047 opd = get_opd_info (sec);
13048 if (opd != NULL && opd->adjust != NULL)
13049 {
13050 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
13051 if (adjust == -1)
13052 relocation = 0;
13053 else
13054 {
13055 /* If this is a relocation against the opd section sym
13056 and we have edited .opd, adjust the reloc addend so
13057 that ld -r and ld --emit-relocs output is correct.
13058 If it is a reloc against some other .opd symbol,
13059 then the symbol value will be adjusted later. */
13060 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13061 rel->r_addend += adjust;
13062 else
13063 relocation += adjust;
13064 }
13065 }
13066 }
13067 else
13068 {
13069 bfd_boolean ignored;
13070
13071 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13072 r_symndx, symtab_hdr, sym_hashes,
13073 h_elf, sec, relocation,
13074 unresolved_reloc, warned, ignored);
13075 sym_name = h_elf->root.root.string;
13076 sym_type = h_elf->type;
13077 if (sec != NULL
13078 && sec->owner == output_bfd
13079 && strcmp (sec->name, ".opd") == 0)
13080 {
13081 /* This is a symbol defined in a linker script. All
13082 such are defined in output sections, even those
13083 defined by simple assignment from a symbol defined in
13084 an input section. Transfer the symbol to an
13085 appropriate input .opd section, so that a branch to
13086 this symbol will be mapped to the location specified
13087 by the opd entry. */
13088 struct bfd_link_order *lo;
13089 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13090 if (lo->type == bfd_indirect_link_order)
13091 {
13092 asection *isec = lo->u.indirect.section;
13093 if (h_elf->root.u.def.value >= isec->output_offset
13094 && h_elf->root.u.def.value < (isec->output_offset
13095 + isec->size))
13096 {
13097 h_elf->root.u.def.value -= isec->output_offset;
13098 h_elf->root.u.def.section = isec;
13099 sec = isec;
13100 break;
13101 }
13102 }
13103 }
13104 }
13105 h = (struct ppc_link_hash_entry *) h_elf;
13106
13107 if (sec != NULL && discarded_section (sec))
13108 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13109 rel, 1, relend,
13110 ppc64_elf_howto_table[r_type], 0,
13111 contents);
13112
13113 if (info->relocatable)
13114 continue;
13115
13116 if (h != NULL && &h->elf == htab->elf.hgot)
13117 {
13118 relocation = (TOCstart
13119 + htab->stub_group[input_section->id].toc_off);
13120 sec = bfd_abs_section_ptr;
13121 unresolved_reloc = FALSE;
13122 }
13123
13124 /* TLS optimizations. Replace instruction sequences and relocs
13125 based on information we collected in tls_optimize. We edit
13126 RELOCS so that --emit-relocs will output something sensible
13127 for the final instruction stream. */
13128 tls_mask = 0;
13129 tls_gd = 0;
13130 toc_symndx = 0;
13131 if (h != NULL)
13132 tls_mask = h->tls_mask;
13133 else if (local_got_ents != NULL)
13134 {
13135 struct plt_entry **local_plt = (struct plt_entry **)
13136 (local_got_ents + symtab_hdr->sh_info);
13137 unsigned char *lgot_masks = (unsigned char *)
13138 (local_plt + symtab_hdr->sh_info);
13139 tls_mask = lgot_masks[r_symndx];
13140 }
13141 if (tls_mask == 0
13142 && (r_type == R_PPC64_TLS
13143 || r_type == R_PPC64_TLSGD
13144 || r_type == R_PPC64_TLSLD))
13145 {
13146 /* Check for toc tls entries. */
13147 unsigned char *toc_tls;
13148
13149 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13150 &local_syms, rel, input_bfd))
13151 return FALSE;
13152
13153 if (toc_tls)
13154 tls_mask = *toc_tls;
13155 }
13156
13157 /* Check that tls relocs are used with tls syms, and non-tls
13158 relocs are used with non-tls syms. */
13159 if (r_symndx != STN_UNDEF
13160 && r_type != R_PPC64_NONE
13161 && (h == NULL
13162 || h->elf.root.type == bfd_link_hash_defined
13163 || h->elf.root.type == bfd_link_hash_defweak)
13164 && (IS_PPC64_TLS_RELOC (r_type)
13165 != (sym_type == STT_TLS
13166 || (sym_type == STT_SECTION
13167 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13168 {
13169 if (tls_mask != 0
13170 && (r_type == R_PPC64_TLS
13171 || r_type == R_PPC64_TLSGD
13172 || r_type == R_PPC64_TLSLD))
13173 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13174 ;
13175 else
13176 info->callbacks->einfo
13177 (!IS_PPC64_TLS_RELOC (r_type)
13178 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13179 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13180 input_bfd, input_section, rel->r_offset,
13181 ppc64_elf_howto_table[r_type]->name,
13182 sym_name);
13183 }
13184
13185 /* Ensure reloc mapping code below stays sane. */
13186 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13187 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13188 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13189 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13190 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13191 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13192 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13193 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13194 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13195 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13196 abort ();
13197
13198 switch (r_type)
13199 {
13200 default:
13201 break;
13202
13203 case R_PPC64_LO_DS_OPT:
13204 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13205 if ((insn & (0x3f << 26)) != 58u << 26)
13206 abort ();
13207 insn += (14u << 26) - (58u << 26);
13208 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13209 r_type = R_PPC64_TOC16_LO;
13210 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13211 break;
13212
13213 case R_PPC64_TOC16:
13214 case R_PPC64_TOC16_LO:
13215 case R_PPC64_TOC16_DS:
13216 case R_PPC64_TOC16_LO_DS:
13217 {
13218 /* Check for toc tls entries. */
13219 unsigned char *toc_tls;
13220 int retval;
13221
13222 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13223 &local_syms, rel, input_bfd);
13224 if (retval == 0)
13225 return FALSE;
13226
13227 if (toc_tls)
13228 {
13229 tls_mask = *toc_tls;
13230 if (r_type == R_PPC64_TOC16_DS
13231 || r_type == R_PPC64_TOC16_LO_DS)
13232 {
13233 if (tls_mask != 0
13234 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13235 goto toctprel;
13236 }
13237 else
13238 {
13239 /* If we found a GD reloc pair, then we might be
13240 doing a GD->IE transition. */
13241 if (retval == 2)
13242 {
13243 tls_gd = TLS_TPRELGD;
13244 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13245 goto tls_ldgd_opt;
13246 }
13247 else if (retval == 3)
13248 {
13249 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13250 goto tls_ldgd_opt;
13251 }
13252 }
13253 }
13254 }
13255 break;
13256
13257 case R_PPC64_GOT_TPREL16_HI:
13258 case R_PPC64_GOT_TPREL16_HA:
13259 if (tls_mask != 0
13260 && (tls_mask & TLS_TPREL) == 0)
13261 {
13262 rel->r_offset -= d_offset;
13263 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13264 r_type = R_PPC64_NONE;
13265 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13266 }
13267 break;
13268
13269 case R_PPC64_GOT_TPREL16_DS:
13270 case R_PPC64_GOT_TPREL16_LO_DS:
13271 if (tls_mask != 0
13272 && (tls_mask & TLS_TPREL) == 0)
13273 {
13274 toctprel:
13275 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13276 insn &= 31 << 21;
13277 insn |= 0x3c0d0000; /* addis 0,13,0 */
13278 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13279 r_type = R_PPC64_TPREL16_HA;
13280 if (toc_symndx != 0)
13281 {
13282 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13283 rel->r_addend = toc_addend;
13284 /* We changed the symbol. Start over in order to
13285 get h, sym, sec etc. right. */
13286 rel--;
13287 continue;
13288 }
13289 else
13290 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13291 }
13292 break;
13293
13294 case R_PPC64_TLS:
13295 if (tls_mask != 0
13296 && (tls_mask & TLS_TPREL) == 0)
13297 {
13298 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13299 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13300 if (insn == 0)
13301 abort ();
13302 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13303 /* Was PPC64_TLS which sits on insn boundary, now
13304 PPC64_TPREL16_LO which is at low-order half-word. */
13305 rel->r_offset += d_offset;
13306 r_type = R_PPC64_TPREL16_LO;
13307 if (toc_symndx != 0)
13308 {
13309 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13310 rel->r_addend = toc_addend;
13311 /* We changed the symbol. Start over in order to
13312 get h, sym, sec etc. right. */
13313 rel--;
13314 continue;
13315 }
13316 else
13317 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13318 }
13319 break;
13320
13321 case R_PPC64_GOT_TLSGD16_HI:
13322 case R_PPC64_GOT_TLSGD16_HA:
13323 tls_gd = TLS_TPRELGD;
13324 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13325 goto tls_gdld_hi;
13326 break;
13327
13328 case R_PPC64_GOT_TLSLD16_HI:
13329 case R_PPC64_GOT_TLSLD16_HA:
13330 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13331 {
13332 tls_gdld_hi:
13333 if ((tls_mask & tls_gd) != 0)
13334 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13335 + R_PPC64_GOT_TPREL16_DS);
13336 else
13337 {
13338 rel->r_offset -= d_offset;
13339 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13340 r_type = R_PPC64_NONE;
13341 }
13342 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13343 }
13344 break;
13345
13346 case R_PPC64_GOT_TLSGD16:
13347 case R_PPC64_GOT_TLSGD16_LO:
13348 tls_gd = TLS_TPRELGD;
13349 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13350 goto tls_ldgd_opt;
13351 break;
13352
13353 case R_PPC64_GOT_TLSLD16:
13354 case R_PPC64_GOT_TLSLD16_LO:
13355 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13356 {
13357 unsigned int insn1, insn2, insn3;
13358 bfd_vma offset;
13359
13360 tls_ldgd_opt:
13361 offset = (bfd_vma) -1;
13362 /* If not using the newer R_PPC64_TLSGD/LD to mark
13363 __tls_get_addr calls, we must trust that the call
13364 stays with its arg setup insns, ie. that the next
13365 reloc is the __tls_get_addr call associated with
13366 the current reloc. Edit both insns. */
13367 if (input_section->has_tls_get_addr_call
13368 && rel + 1 < relend
13369 && branch_reloc_hash_match (input_bfd, rel + 1,
13370 htab->tls_get_addr,
13371 htab->tls_get_addr_fd))
13372 offset = rel[1].r_offset;
13373 if ((tls_mask & tls_gd) != 0)
13374 {
13375 /* IE */
13376 insn1 = bfd_get_32 (output_bfd,
13377 contents + rel->r_offset - d_offset);
13378 insn1 &= (1 << 26) - (1 << 2);
13379 insn1 |= 58 << 26; /* ld */
13380 insn2 = 0x7c636a14; /* add 3,3,13 */
13381 if (offset != (bfd_vma) -1)
13382 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13383 if ((tls_mask & TLS_EXPLICIT) == 0)
13384 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13385 + R_PPC64_GOT_TPREL16_DS);
13386 else
13387 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13388 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13389 }
13390 else
13391 {
13392 /* LE */
13393 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13394 insn2 = 0x38630000; /* addi 3,3,0 */
13395 if (tls_gd == 0)
13396 {
13397 /* Was an LD reloc. */
13398 if (toc_symndx)
13399 sec = local_sections[toc_symndx];
13400 for (r_symndx = 0;
13401 r_symndx < symtab_hdr->sh_info;
13402 r_symndx++)
13403 if (local_sections[r_symndx] == sec)
13404 break;
13405 if (r_symndx >= symtab_hdr->sh_info)
13406 r_symndx = STN_UNDEF;
13407 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13408 if (r_symndx != STN_UNDEF)
13409 rel->r_addend -= (local_syms[r_symndx].st_value
13410 + sec->output_offset
13411 + sec->output_section->vma);
13412 }
13413 else if (toc_symndx != 0)
13414 {
13415 r_symndx = toc_symndx;
13416 rel->r_addend = toc_addend;
13417 }
13418 r_type = R_PPC64_TPREL16_HA;
13419 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13420 if (offset != (bfd_vma) -1)
13421 {
13422 rel[1].r_info = ELF64_R_INFO (r_symndx,
13423 R_PPC64_TPREL16_LO);
13424 rel[1].r_offset = offset + d_offset;
13425 rel[1].r_addend = rel->r_addend;
13426 }
13427 }
13428 bfd_put_32 (output_bfd, insn1,
13429 contents + rel->r_offset - d_offset);
13430 if (offset != (bfd_vma) -1)
13431 {
13432 insn3 = bfd_get_32 (output_bfd,
13433 contents + offset + 4);
13434 if (insn3 == NOP
13435 || insn3 == CROR_151515 || insn3 == CROR_313131)
13436 {
13437 rel[1].r_offset += 4;
13438 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13439 insn2 = NOP;
13440 }
13441 bfd_put_32 (output_bfd, insn2, contents + offset);
13442 }
13443 if ((tls_mask & tls_gd) == 0
13444 && (tls_gd == 0 || toc_symndx != 0))
13445 {
13446 /* We changed the symbol. Start over in order
13447 to get h, sym, sec etc. right. */
13448 rel--;
13449 continue;
13450 }
13451 }
13452 break;
13453
13454 case R_PPC64_TLSGD:
13455 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13456 {
13457 unsigned int insn2, insn3;
13458 bfd_vma offset = rel->r_offset;
13459
13460 if ((tls_mask & TLS_TPRELGD) != 0)
13461 {
13462 /* IE */
13463 r_type = R_PPC64_NONE;
13464 insn2 = 0x7c636a14; /* add 3,3,13 */
13465 }
13466 else
13467 {
13468 /* LE */
13469 if (toc_symndx != 0)
13470 {
13471 r_symndx = toc_symndx;
13472 rel->r_addend = toc_addend;
13473 }
13474 r_type = R_PPC64_TPREL16_LO;
13475 rel->r_offset = offset + d_offset;
13476 insn2 = 0x38630000; /* addi 3,3,0 */
13477 }
13478 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13479 /* Zap the reloc on the _tls_get_addr call too. */
13480 BFD_ASSERT (offset == rel[1].r_offset);
13481 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13482 insn3 = bfd_get_32 (output_bfd,
13483 contents + offset + 4);
13484 if (insn3 == NOP
13485 || insn3 == CROR_151515 || insn3 == CROR_313131)
13486 {
13487 rel->r_offset += 4;
13488 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13489 insn2 = NOP;
13490 }
13491 bfd_put_32 (output_bfd, insn2, contents + offset);
13492 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13493 {
13494 rel--;
13495 continue;
13496 }
13497 }
13498 break;
13499
13500 case R_PPC64_TLSLD:
13501 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13502 {
13503 unsigned int insn2, insn3;
13504 bfd_vma offset = rel->r_offset;
13505
13506 if (toc_symndx)
13507 sec = local_sections[toc_symndx];
13508 for (r_symndx = 0;
13509 r_symndx < symtab_hdr->sh_info;
13510 r_symndx++)
13511 if (local_sections[r_symndx] == sec)
13512 break;
13513 if (r_symndx >= symtab_hdr->sh_info)
13514 r_symndx = STN_UNDEF;
13515 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13516 if (r_symndx != STN_UNDEF)
13517 rel->r_addend -= (local_syms[r_symndx].st_value
13518 + sec->output_offset
13519 + sec->output_section->vma);
13520
13521 r_type = R_PPC64_TPREL16_LO;
13522 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13523 rel->r_offset = offset + d_offset;
13524 /* Zap the reloc on the _tls_get_addr call too. */
13525 BFD_ASSERT (offset == rel[1].r_offset);
13526 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13527 insn2 = 0x38630000; /* addi 3,3,0 */
13528 insn3 = bfd_get_32 (output_bfd,
13529 contents + offset + 4);
13530 if (insn3 == NOP
13531 || insn3 == CROR_151515 || insn3 == CROR_313131)
13532 {
13533 rel->r_offset += 4;
13534 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13535 insn2 = NOP;
13536 }
13537 bfd_put_32 (output_bfd, insn2, contents + offset);
13538 rel--;
13539 continue;
13540 }
13541 break;
13542
13543 case R_PPC64_DTPMOD64:
13544 if (rel + 1 < relend
13545 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13546 && rel[1].r_offset == rel->r_offset + 8)
13547 {
13548 if ((tls_mask & TLS_GD) == 0)
13549 {
13550 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13551 if ((tls_mask & TLS_TPRELGD) != 0)
13552 r_type = R_PPC64_TPREL64;
13553 else
13554 {
13555 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13556 r_type = R_PPC64_NONE;
13557 }
13558 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13559 }
13560 }
13561 else
13562 {
13563 if ((tls_mask & TLS_LD) == 0)
13564 {
13565 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13566 r_type = R_PPC64_NONE;
13567 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13568 }
13569 }
13570 break;
13571
13572 case R_PPC64_TPREL64:
13573 if ((tls_mask & TLS_TPREL) == 0)
13574 {
13575 r_type = R_PPC64_NONE;
13576 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13577 }
13578 break;
13579
13580 case R_PPC64_REL16_HA:
13581 /* If we are generating a non-PIC executable, edit
13582 . 0: addis 2,12,.TOC.-0b@ha
13583 . addi 2,2,.TOC.-0b@l
13584 used by ELFv2 global entry points to set up r2, to
13585 . lis 2,.TOC.@ha
13586 . addi 2,2,.TOC.@l
13587 if .TOC. is in range. */
13588 if (!info->shared
13589 && !info->traditional_format
13590 && h != NULL && &h->elf == htab->elf.hgot
13591 && rel + 1 < relend
13592 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13593 && rel[1].r_offset == rel->r_offset + 4
13594 && rel[1].r_addend == rel->r_addend + 4
13595 && relocation + 0x80008000 <= 0xffffffff)
13596 {
13597 unsigned int insn1, insn2;
13598 bfd_vma offset = rel->r_offset - d_offset;
13599 insn1 = bfd_get_32 (output_bfd, contents + offset);
13600 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13601 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13602 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13603 {
13604 r_type = R_PPC64_ADDR16_HA;
13605 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13606 rel->r_addend -= d_offset;
13607 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13608 rel[1].r_addend -= d_offset + 4;
13609 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13610 }
13611 }
13612 break;
13613 }
13614
13615 /* Handle other relocations that tweak non-addend part of insn. */
13616 insn = 0;
13617 max_br_offset = 1 << 25;
13618 addend = rel->r_addend;
13619 reloc_dest = DEST_NORMAL;
13620 switch (r_type)
13621 {
13622 default:
13623 break;
13624
13625 case R_PPC64_TOCSAVE:
13626 if (relocation + addend == (rel->r_offset
13627 + input_section->output_offset
13628 + input_section->output_section->vma)
13629 && tocsave_find (htab, NO_INSERT,
13630 &local_syms, rel, input_bfd))
13631 {
13632 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13633 if (insn == NOP
13634 || insn == CROR_151515 || insn == CROR_313131)
13635 bfd_put_32 (input_bfd,
13636 STD_R2_0R1 + STK_TOC (htab),
13637 contents + rel->r_offset);
13638 }
13639 break;
13640
13641 /* Branch taken prediction relocations. */
13642 case R_PPC64_ADDR14_BRTAKEN:
13643 case R_PPC64_REL14_BRTAKEN:
13644 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13645 /* Fall thru. */
13646
13647 /* Branch not taken prediction relocations. */
13648 case R_PPC64_ADDR14_BRNTAKEN:
13649 case R_PPC64_REL14_BRNTAKEN:
13650 insn |= bfd_get_32 (output_bfd,
13651 contents + rel->r_offset) & ~(0x01 << 21);
13652 /* Fall thru. */
13653
13654 case R_PPC64_REL14:
13655 max_br_offset = 1 << 15;
13656 /* Fall thru. */
13657
13658 case R_PPC64_REL24:
13659 /* Calls to functions with a different TOC, such as calls to
13660 shared objects, need to alter the TOC pointer. This is
13661 done using a linkage stub. A REL24 branching to these
13662 linkage stubs needs to be followed by a nop, as the nop
13663 will be replaced with an instruction to restore the TOC
13664 base pointer. */
13665 fdh = h;
13666 if (h != NULL
13667 && h->oh != NULL
13668 && h->oh->is_func_descriptor)
13669 fdh = ppc_follow_link (h->oh);
13670 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13671 htab);
13672 if (stub_entry != NULL
13673 && (stub_entry->stub_type == ppc_stub_plt_call
13674 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13675 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13676 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13677 {
13678 bfd_boolean can_plt_call = FALSE;
13679
13680 /* All of these stubs will modify r2, so there must be a
13681 branch and link followed by a nop. The nop is
13682 replaced by an insn to restore r2. */
13683 if (rel->r_offset + 8 <= input_section->size)
13684 {
13685 unsigned long br;
13686
13687 br = bfd_get_32 (input_bfd,
13688 contents + rel->r_offset);
13689 if ((br & 1) != 0)
13690 {
13691 unsigned long nop;
13692
13693 nop = bfd_get_32 (input_bfd,
13694 contents + rel->r_offset + 4);
13695 if (nop == NOP
13696 || nop == CROR_151515 || nop == CROR_313131)
13697 {
13698 if (h != NULL
13699 && (h == htab->tls_get_addr_fd
13700 || h == htab->tls_get_addr)
13701 && !htab->params->no_tls_get_addr_opt)
13702 {
13703 /* Special stub used, leave nop alone. */
13704 }
13705 else
13706 bfd_put_32 (input_bfd,
13707 LD_R2_0R1 + STK_TOC (htab),
13708 contents + rel->r_offset + 4);
13709 can_plt_call = TRUE;
13710 }
13711 }
13712 }
13713
13714 if (!can_plt_call && h != NULL)
13715 {
13716 const char *name = h->elf.root.root.string;
13717
13718 if (*name == '.')
13719 ++name;
13720
13721 if (strncmp (name, "__libc_start_main", 17) == 0
13722 && (name[17] == 0 || name[17] == '@'))
13723 {
13724 /* Allow crt1 branch to go via a toc adjusting
13725 stub. Other calls that never return could do
13726 the same, if we could detect such. */
13727 can_plt_call = TRUE;
13728 }
13729 }
13730
13731 if (!can_plt_call)
13732 {
13733 /* g++ as of 20130507 emits self-calls without a
13734 following nop. This is arguably wrong since we
13735 have conflicting information. On the one hand a
13736 global symbol and on the other a local call
13737 sequence, but don't error for this special case.
13738 It isn't possible to cheaply verify we have
13739 exactly such a call. Allow all calls to the same
13740 section. */
13741 asection *code_sec = sec;
13742
13743 if (get_opd_info (sec) != NULL)
13744 {
13745 bfd_vma off = (relocation + addend
13746 - sec->output_section->vma
13747 - sec->output_offset);
13748
13749 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13750 }
13751 if (code_sec == input_section)
13752 can_plt_call = TRUE;
13753 }
13754
13755 if (!can_plt_call)
13756 {
13757 if (stub_entry->stub_type == ppc_stub_plt_call
13758 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13759 info->callbacks->einfo
13760 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13761 "recompile with -fPIC\n"),
13762 input_bfd, input_section, rel->r_offset, sym_name);
13763 else
13764 info->callbacks->einfo
13765 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13766 "(-mcmodel=small toc adjust stub)\n"),
13767 input_bfd, input_section, rel->r_offset, sym_name);
13768
13769 bfd_set_error (bfd_error_bad_value);
13770 ret = FALSE;
13771 }
13772
13773 if (can_plt_call
13774 && (stub_entry->stub_type == ppc_stub_plt_call
13775 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13776 unresolved_reloc = FALSE;
13777 }
13778
13779 if ((stub_entry == NULL
13780 || stub_entry->stub_type == ppc_stub_long_branch
13781 || stub_entry->stub_type == ppc_stub_plt_branch)
13782 && get_opd_info (sec) != NULL)
13783 {
13784 /* The branch destination is the value of the opd entry. */
13785 bfd_vma off = (relocation + addend
13786 - sec->output_section->vma
13787 - sec->output_offset);
13788 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13789 if (dest != (bfd_vma) -1)
13790 {
13791 relocation = dest;
13792 addend = 0;
13793 reloc_dest = DEST_OPD;
13794 }
13795 }
13796
13797 /* If the branch is out of reach we ought to have a long
13798 branch stub. */
13799 from = (rel->r_offset
13800 + input_section->output_offset
13801 + input_section->output_section->vma);
13802
13803 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13804 ? fdh->elf.other
13805 : sym->st_other);
13806
13807 if (stub_entry != NULL
13808 && (stub_entry->stub_type == ppc_stub_long_branch
13809 || stub_entry->stub_type == ppc_stub_plt_branch)
13810 && (r_type == R_PPC64_ADDR14_BRTAKEN
13811 || r_type == R_PPC64_ADDR14_BRNTAKEN
13812 || (relocation + addend - from + max_br_offset
13813 < 2 * max_br_offset)))
13814 /* Don't use the stub if this branch is in range. */
13815 stub_entry = NULL;
13816
13817 if (stub_entry != NULL)
13818 {
13819 /* Munge up the value and addend so that we call the stub
13820 rather than the procedure directly. */
13821 relocation = (stub_entry->stub_offset
13822 + stub_entry->stub_sec->output_offset
13823 + stub_entry->stub_sec->output_section->vma);
13824 addend = 0;
13825 reloc_dest = DEST_STUB;
13826
13827 if ((stub_entry->stub_type == ppc_stub_plt_call
13828 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13829 && (ALWAYS_EMIT_R2SAVE
13830 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13831 && rel + 1 < relend
13832 && rel[1].r_offset == rel->r_offset + 4
13833 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13834 relocation += 4;
13835 }
13836
13837 if (insn != 0)
13838 {
13839 if (is_isa_v2)
13840 {
13841 /* Set 'a' bit. This is 0b00010 in BO field for branch
13842 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13843 for branch on CTR insns (BO == 1a00t or 1a01t). */
13844 if ((insn & (0x14 << 21)) == (0x04 << 21))
13845 insn |= 0x02 << 21;
13846 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13847 insn |= 0x08 << 21;
13848 else
13849 break;
13850 }
13851 else
13852 {
13853 /* Invert 'y' bit if not the default. */
13854 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13855 insn ^= 0x01 << 21;
13856 }
13857
13858 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13859 }
13860
13861 /* NOP out calls to undefined weak functions.
13862 We can thus call a weak function without first
13863 checking whether the function is defined. */
13864 else if (h != NULL
13865 && h->elf.root.type == bfd_link_hash_undefweak
13866 && h->elf.dynindx == -1
13867 && r_type == R_PPC64_REL24
13868 && relocation == 0
13869 && addend == 0)
13870 {
13871 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13872 continue;
13873 }
13874 break;
13875 }
13876
13877 /* Set `addend'. */
13878 tls_type = 0;
13879 switch (r_type)
13880 {
13881 default:
13882 info->callbacks->einfo
13883 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13884 input_bfd, (int) r_type, sym_name);
13885
13886 bfd_set_error (bfd_error_bad_value);
13887 ret = FALSE;
13888 continue;
13889
13890 case R_PPC64_NONE:
13891 case R_PPC64_TLS:
13892 case R_PPC64_TLSGD:
13893 case R_PPC64_TLSLD:
13894 case R_PPC64_TOCSAVE:
13895 case R_PPC64_GNU_VTINHERIT:
13896 case R_PPC64_GNU_VTENTRY:
13897 continue;
13898
13899 /* GOT16 relocations. Like an ADDR16 using the symbol's
13900 address in the GOT as relocation value instead of the
13901 symbol's value itself. Also, create a GOT entry for the
13902 symbol and put the symbol value there. */
13903 case R_PPC64_GOT_TLSGD16:
13904 case R_PPC64_GOT_TLSGD16_LO:
13905 case R_PPC64_GOT_TLSGD16_HI:
13906 case R_PPC64_GOT_TLSGD16_HA:
13907 tls_type = TLS_TLS | TLS_GD;
13908 goto dogot;
13909
13910 case R_PPC64_GOT_TLSLD16:
13911 case R_PPC64_GOT_TLSLD16_LO:
13912 case R_PPC64_GOT_TLSLD16_HI:
13913 case R_PPC64_GOT_TLSLD16_HA:
13914 tls_type = TLS_TLS | TLS_LD;
13915 goto dogot;
13916
13917 case R_PPC64_GOT_TPREL16_DS:
13918 case R_PPC64_GOT_TPREL16_LO_DS:
13919 case R_PPC64_GOT_TPREL16_HI:
13920 case R_PPC64_GOT_TPREL16_HA:
13921 tls_type = TLS_TLS | TLS_TPREL;
13922 goto dogot;
13923
13924 case R_PPC64_GOT_DTPREL16_DS:
13925 case R_PPC64_GOT_DTPREL16_LO_DS:
13926 case R_PPC64_GOT_DTPREL16_HI:
13927 case R_PPC64_GOT_DTPREL16_HA:
13928 tls_type = TLS_TLS | TLS_DTPREL;
13929 goto dogot;
13930
13931 case R_PPC64_GOT16:
13932 case R_PPC64_GOT16_LO:
13933 case R_PPC64_GOT16_HI:
13934 case R_PPC64_GOT16_HA:
13935 case R_PPC64_GOT16_DS:
13936 case R_PPC64_GOT16_LO_DS:
13937 dogot:
13938 {
13939 /* Relocation is to the entry for this symbol in the global
13940 offset table. */
13941 asection *got;
13942 bfd_vma *offp;
13943 bfd_vma off;
13944 unsigned long indx = 0;
13945 struct got_entry *ent;
13946
13947 if (tls_type == (TLS_TLS | TLS_LD)
13948 && (h == NULL
13949 || !h->elf.def_dynamic))
13950 ent = ppc64_tlsld_got (input_bfd);
13951 else
13952 {
13953
13954 if (h != NULL)
13955 {
13956 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13957 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13958 &h->elf)
13959 || (info->shared
13960 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13961 /* This is actually a static link, or it is a
13962 -Bsymbolic link and the symbol is defined
13963 locally, or the symbol was forced to be local
13964 because of a version file. */
13965 ;
13966 else
13967 {
13968 BFD_ASSERT (h->elf.dynindx != -1);
13969 indx = h->elf.dynindx;
13970 unresolved_reloc = FALSE;
13971 }
13972 ent = h->elf.got.glist;
13973 }
13974 else
13975 {
13976 if (local_got_ents == NULL)
13977 abort ();
13978 ent = local_got_ents[r_symndx];
13979 }
13980
13981 for (; ent != NULL; ent = ent->next)
13982 if (ent->addend == orig_rel.r_addend
13983 && ent->owner == input_bfd
13984 && ent->tls_type == tls_type)
13985 break;
13986 }
13987
13988 if (ent == NULL)
13989 abort ();
13990 if (ent->is_indirect)
13991 ent = ent->got.ent;
13992 offp = &ent->got.offset;
13993 got = ppc64_elf_tdata (ent->owner)->got;
13994 if (got == NULL)
13995 abort ();
13996
13997 /* The offset must always be a multiple of 8. We use the
13998 least significant bit to record whether we have already
13999 processed this entry. */
14000 off = *offp;
14001 if ((off & 1) != 0)
14002 off &= ~1;
14003 else
14004 {
14005 /* Generate relocs for the dynamic linker, except in
14006 the case of TLSLD where we'll use one entry per
14007 module. */
14008 asection *relgot;
14009 bfd_boolean ifunc;
14010
14011 *offp = off | 1;
14012 relgot = NULL;
14013 ifunc = (h != NULL
14014 ? h->elf.type == STT_GNU_IFUNC
14015 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14016 if (ifunc)
14017 relgot = htab->elf.irelplt;
14018 else if ((info->shared || indx != 0)
14019 && (h == NULL
14020 || (tls_type == (TLS_TLS | TLS_LD)
14021 && !h->elf.def_dynamic)
14022 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14023 || h->elf.root.type != bfd_link_hash_undefweak))
14024 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14025 if (relgot != NULL)
14026 {
14027 outrel.r_offset = (got->output_section->vma
14028 + got->output_offset
14029 + off);
14030 outrel.r_addend = addend;
14031 if (tls_type & (TLS_LD | TLS_GD))
14032 {
14033 outrel.r_addend = 0;
14034 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14035 if (tls_type == (TLS_TLS | TLS_GD))
14036 {
14037 loc = relgot->contents;
14038 loc += (relgot->reloc_count++
14039 * sizeof (Elf64_External_Rela));
14040 bfd_elf64_swap_reloca_out (output_bfd,
14041 &outrel, loc);
14042 outrel.r_offset += 8;
14043 outrel.r_addend = addend;
14044 outrel.r_info
14045 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14046 }
14047 }
14048 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14049 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14050 else if (tls_type == (TLS_TLS | TLS_TPREL))
14051 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14052 else if (indx != 0)
14053 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14054 else
14055 {
14056 if (ifunc)
14057 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14058 else
14059 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14060
14061 /* Write the .got section contents for the sake
14062 of prelink. */
14063 loc = got->contents + off;
14064 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14065 loc);
14066 }
14067
14068 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14069 {
14070 outrel.r_addend += relocation;
14071 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14072 outrel.r_addend -= htab->elf.tls_sec->vma;
14073 }
14074 loc = relgot->contents;
14075 loc += (relgot->reloc_count++
14076 * sizeof (Elf64_External_Rela));
14077 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14078 }
14079
14080 /* Init the .got section contents here if we're not
14081 emitting a reloc. */
14082 else
14083 {
14084 relocation += addend;
14085 if (tls_type == (TLS_TLS | TLS_LD))
14086 relocation = 1;
14087 else if (tls_type != 0)
14088 {
14089 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14090 if (tls_type == (TLS_TLS | TLS_TPREL))
14091 relocation += DTP_OFFSET - TP_OFFSET;
14092
14093 if (tls_type == (TLS_TLS | TLS_GD))
14094 {
14095 bfd_put_64 (output_bfd, relocation,
14096 got->contents + off + 8);
14097 relocation = 1;
14098 }
14099 }
14100
14101 bfd_put_64 (output_bfd, relocation,
14102 got->contents + off);
14103 }
14104 }
14105
14106 if (off >= (bfd_vma) -2)
14107 abort ();
14108
14109 relocation = got->output_section->vma + got->output_offset + off;
14110 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14111 }
14112 break;
14113
14114 case R_PPC64_PLT16_HA:
14115 case R_PPC64_PLT16_HI:
14116 case R_PPC64_PLT16_LO:
14117 case R_PPC64_PLT32:
14118 case R_PPC64_PLT64:
14119 /* Relocation is to the entry for this symbol in the
14120 procedure linkage table. */
14121
14122 /* Resolve a PLT reloc against a local symbol directly,
14123 without using the procedure linkage table. */
14124 if (h == NULL)
14125 break;
14126
14127 /* It's possible that we didn't make a PLT entry for this
14128 symbol. This happens when statically linking PIC code,
14129 or when using -Bsymbolic. Go find a match if there is a
14130 PLT entry. */
14131 if (htab->elf.splt != NULL)
14132 {
14133 struct plt_entry *ent;
14134 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14135 if (ent->plt.offset != (bfd_vma) -1
14136 && ent->addend == orig_rel.r_addend)
14137 {
14138 relocation = (htab->elf.splt->output_section->vma
14139 + htab->elf.splt->output_offset
14140 + ent->plt.offset);
14141 unresolved_reloc = FALSE;
14142 break;
14143 }
14144 }
14145 break;
14146
14147 case R_PPC64_TOC:
14148 /* Relocation value is TOC base. */
14149 relocation = TOCstart;
14150 if (r_symndx == STN_UNDEF)
14151 relocation += htab->stub_group[input_section->id].toc_off;
14152 else if (unresolved_reloc)
14153 ;
14154 else if (sec != NULL && sec->id <= htab->top_id)
14155 relocation += htab->stub_group[sec->id].toc_off;
14156 else
14157 unresolved_reloc = TRUE;
14158 goto dodyn;
14159
14160 /* TOC16 relocs. We want the offset relative to the TOC base,
14161 which is the address of the start of the TOC plus 0x8000.
14162 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14163 in this order. */
14164 case R_PPC64_TOC16:
14165 case R_PPC64_TOC16_LO:
14166 case R_PPC64_TOC16_HI:
14167 case R_PPC64_TOC16_DS:
14168 case R_PPC64_TOC16_LO_DS:
14169 case R_PPC64_TOC16_HA:
14170 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14171 break;
14172
14173 /* Relocate against the beginning of the section. */
14174 case R_PPC64_SECTOFF:
14175 case R_PPC64_SECTOFF_LO:
14176 case R_PPC64_SECTOFF_HI:
14177 case R_PPC64_SECTOFF_DS:
14178 case R_PPC64_SECTOFF_LO_DS:
14179 case R_PPC64_SECTOFF_HA:
14180 if (sec != NULL)
14181 addend -= sec->output_section->vma;
14182 break;
14183
14184 case R_PPC64_REL16:
14185 case R_PPC64_REL16_LO:
14186 case R_PPC64_REL16_HI:
14187 case R_PPC64_REL16_HA:
14188 break;
14189
14190 case R_PPC64_REL14:
14191 case R_PPC64_REL14_BRNTAKEN:
14192 case R_PPC64_REL14_BRTAKEN:
14193 case R_PPC64_REL24:
14194 break;
14195
14196 case R_PPC64_TPREL16:
14197 case R_PPC64_TPREL16_LO:
14198 case R_PPC64_TPREL16_HI:
14199 case R_PPC64_TPREL16_HA:
14200 case R_PPC64_TPREL16_DS:
14201 case R_PPC64_TPREL16_LO_DS:
14202 case R_PPC64_TPREL16_HIGH:
14203 case R_PPC64_TPREL16_HIGHA:
14204 case R_PPC64_TPREL16_HIGHER:
14205 case R_PPC64_TPREL16_HIGHERA:
14206 case R_PPC64_TPREL16_HIGHEST:
14207 case R_PPC64_TPREL16_HIGHESTA:
14208 if (h != NULL
14209 && h->elf.root.type == bfd_link_hash_undefweak
14210 && h->elf.dynindx == -1)
14211 {
14212 /* Make this relocation against an undefined weak symbol
14213 resolve to zero. This is really just a tweak, since
14214 code using weak externs ought to check that they are
14215 defined before using them. */
14216 bfd_byte *p = contents + rel->r_offset - d_offset;
14217
14218 insn = bfd_get_32 (output_bfd, p);
14219 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14220 if (insn != 0)
14221 bfd_put_32 (output_bfd, insn, p);
14222 break;
14223 }
14224 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14225 if (info->shared)
14226 /* The TPREL16 relocs shouldn't really be used in shared
14227 libs as they will result in DT_TEXTREL being set, but
14228 support them anyway. */
14229 goto dodyn;
14230 break;
14231
14232 case R_PPC64_DTPREL16:
14233 case R_PPC64_DTPREL16_LO:
14234 case R_PPC64_DTPREL16_HI:
14235 case R_PPC64_DTPREL16_HA:
14236 case R_PPC64_DTPREL16_DS:
14237 case R_PPC64_DTPREL16_LO_DS:
14238 case R_PPC64_DTPREL16_HIGH:
14239 case R_PPC64_DTPREL16_HIGHA:
14240 case R_PPC64_DTPREL16_HIGHER:
14241 case R_PPC64_DTPREL16_HIGHERA:
14242 case R_PPC64_DTPREL16_HIGHEST:
14243 case R_PPC64_DTPREL16_HIGHESTA:
14244 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14245 break;
14246
14247 case R_PPC64_ADDR64_LOCAL:
14248 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14249 ? h->elf.other
14250 : sym->st_other);
14251 break;
14252
14253 case R_PPC64_DTPMOD64:
14254 relocation = 1;
14255 addend = 0;
14256 goto dodyn;
14257
14258 case R_PPC64_TPREL64:
14259 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14260 goto dodyn;
14261
14262 case R_PPC64_DTPREL64:
14263 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14264 /* Fall thru */
14265
14266 /* Relocations that may need to be propagated if this is a
14267 dynamic object. */
14268 case R_PPC64_REL30:
14269 case R_PPC64_REL32:
14270 case R_PPC64_REL64:
14271 case R_PPC64_ADDR14:
14272 case R_PPC64_ADDR14_BRNTAKEN:
14273 case R_PPC64_ADDR14_BRTAKEN:
14274 case R_PPC64_ADDR16:
14275 case R_PPC64_ADDR16_DS:
14276 case R_PPC64_ADDR16_HA:
14277 case R_PPC64_ADDR16_HI:
14278 case R_PPC64_ADDR16_HIGH:
14279 case R_PPC64_ADDR16_HIGHA:
14280 case R_PPC64_ADDR16_HIGHER:
14281 case R_PPC64_ADDR16_HIGHERA:
14282 case R_PPC64_ADDR16_HIGHEST:
14283 case R_PPC64_ADDR16_HIGHESTA:
14284 case R_PPC64_ADDR16_LO:
14285 case R_PPC64_ADDR16_LO_DS:
14286 case R_PPC64_ADDR24:
14287 case R_PPC64_ADDR32:
14288 case R_PPC64_ADDR64:
14289 case R_PPC64_UADDR16:
14290 case R_PPC64_UADDR32:
14291 case R_PPC64_UADDR64:
14292 dodyn:
14293 if ((input_section->flags & SEC_ALLOC) == 0)
14294 break;
14295
14296 if (NO_OPD_RELOCS && is_opd)
14297 break;
14298
14299 if ((info->shared
14300 && (h == NULL
14301 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14302 || h->elf.root.type != bfd_link_hash_undefweak)
14303 && (must_be_dyn_reloc (info, r_type)
14304 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14305 || (ELIMINATE_COPY_RELOCS
14306 && !info->shared
14307 && h != NULL
14308 && h->elf.dynindx != -1
14309 && !h->elf.non_got_ref
14310 && !h->elf.def_regular)
14311 || (!info->shared
14312 && (h != NULL
14313 ? h->elf.type == STT_GNU_IFUNC
14314 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14315 {
14316 bfd_boolean skip, relocate;
14317 asection *sreloc;
14318 bfd_vma out_off;
14319
14320 /* When generating a dynamic object, these relocations
14321 are copied into the output file to be resolved at run
14322 time. */
14323
14324 skip = FALSE;
14325 relocate = FALSE;
14326
14327 out_off = _bfd_elf_section_offset (output_bfd, info,
14328 input_section, rel->r_offset);
14329 if (out_off == (bfd_vma) -1)
14330 skip = TRUE;
14331 else if (out_off == (bfd_vma) -2)
14332 skip = TRUE, relocate = TRUE;
14333 out_off += (input_section->output_section->vma
14334 + input_section->output_offset);
14335 outrel.r_offset = out_off;
14336 outrel.r_addend = rel->r_addend;
14337
14338 /* Optimize unaligned reloc use. */
14339 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14340 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14341 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14342 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14343 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14344 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14345 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14346 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14347 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14348
14349 if (skip)
14350 memset (&outrel, 0, sizeof outrel);
14351 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14352 && !is_opd
14353 && r_type != R_PPC64_TOC)
14354 {
14355 BFD_ASSERT (h->elf.dynindx != -1);
14356 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14357 }
14358 else
14359 {
14360 /* This symbol is local, or marked to become local,
14361 or this is an opd section reloc which must point
14362 at a local function. */
14363 outrel.r_addend += relocation;
14364 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14365 {
14366 if (is_opd && h != NULL)
14367 {
14368 /* Lie about opd entries. This case occurs
14369 when building shared libraries and we
14370 reference a function in another shared
14371 lib. The same thing happens for a weak
14372 definition in an application that's
14373 overridden by a strong definition in a
14374 shared lib. (I believe this is a generic
14375 bug in binutils handling of weak syms.)
14376 In these cases we won't use the opd
14377 entry in this lib. */
14378 unresolved_reloc = FALSE;
14379 }
14380 if (!is_opd
14381 && r_type == R_PPC64_ADDR64
14382 && (h != NULL
14383 ? h->elf.type == STT_GNU_IFUNC
14384 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14385 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14386 else
14387 {
14388 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14389
14390 /* We need to relocate .opd contents for ld.so.
14391 Prelink also wants simple and consistent rules
14392 for relocs. This make all RELATIVE relocs have
14393 *r_offset equal to r_addend. */
14394 relocate = TRUE;
14395 }
14396 }
14397 else
14398 {
14399 long indx = 0;
14400
14401 if (h != NULL
14402 ? h->elf.type == STT_GNU_IFUNC
14403 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14404 {
14405 info->callbacks->einfo
14406 (_("%P: %H: %s for indirect "
14407 "function `%T' unsupported\n"),
14408 input_bfd, input_section, rel->r_offset,
14409 ppc64_elf_howto_table[r_type]->name,
14410 sym_name);
14411 ret = FALSE;
14412 }
14413 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14414 ;
14415 else if (sec == NULL || sec->owner == NULL)
14416 {
14417 bfd_set_error (bfd_error_bad_value);
14418 return FALSE;
14419 }
14420 else
14421 {
14422 asection *osec;
14423
14424 osec = sec->output_section;
14425 indx = elf_section_data (osec)->dynindx;
14426
14427 if (indx == 0)
14428 {
14429 if ((osec->flags & SEC_READONLY) == 0
14430 && htab->elf.data_index_section != NULL)
14431 osec = htab->elf.data_index_section;
14432 else
14433 osec = htab->elf.text_index_section;
14434 indx = elf_section_data (osec)->dynindx;
14435 }
14436 BFD_ASSERT (indx != 0);
14437
14438 /* We are turning this relocation into one
14439 against a section symbol, so subtract out
14440 the output section's address but not the
14441 offset of the input section in the output
14442 section. */
14443 outrel.r_addend -= osec->vma;
14444 }
14445
14446 outrel.r_info = ELF64_R_INFO (indx, r_type);
14447 }
14448 }
14449
14450 sreloc = elf_section_data (input_section)->sreloc;
14451 if (h != NULL
14452 ? h->elf.type == STT_GNU_IFUNC
14453 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14454 sreloc = htab->elf.irelplt;
14455 if (sreloc == NULL)
14456 abort ();
14457
14458 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14459 >= sreloc->size)
14460 abort ();
14461 loc = sreloc->contents;
14462 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14463 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14464
14465 /* If this reloc is against an external symbol, it will
14466 be computed at runtime, so there's no need to do
14467 anything now. However, for the sake of prelink ensure
14468 that the section contents are a known value. */
14469 if (! relocate)
14470 {
14471 unresolved_reloc = FALSE;
14472 /* The value chosen here is quite arbitrary as ld.so
14473 ignores section contents except for the special
14474 case of .opd where the contents might be accessed
14475 before relocation. Choose zero, as that won't
14476 cause reloc overflow. */
14477 relocation = 0;
14478 addend = 0;
14479 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14480 to improve backward compatibility with older
14481 versions of ld. */
14482 if (r_type == R_PPC64_ADDR64)
14483 addend = outrel.r_addend;
14484 /* Adjust pc_relative relocs to have zero in *r_offset. */
14485 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14486 addend = (input_section->output_section->vma
14487 + input_section->output_offset
14488 + rel->r_offset);
14489 }
14490 }
14491 break;
14492
14493 case R_PPC64_COPY:
14494 case R_PPC64_GLOB_DAT:
14495 case R_PPC64_JMP_SLOT:
14496 case R_PPC64_JMP_IREL:
14497 case R_PPC64_RELATIVE:
14498 /* We shouldn't ever see these dynamic relocs in relocatable
14499 files. */
14500 /* Fall through. */
14501
14502 case R_PPC64_PLTGOT16:
14503 case R_PPC64_PLTGOT16_DS:
14504 case R_PPC64_PLTGOT16_HA:
14505 case R_PPC64_PLTGOT16_HI:
14506 case R_PPC64_PLTGOT16_LO:
14507 case R_PPC64_PLTGOT16_LO_DS:
14508 case R_PPC64_PLTREL32:
14509 case R_PPC64_PLTREL64:
14510 /* These ones haven't been implemented yet. */
14511
14512 info->callbacks->einfo
14513 (_("%P: %B: %s is not supported for `%T'\n"),
14514 input_bfd,
14515 ppc64_elf_howto_table[r_type]->name, sym_name);
14516
14517 bfd_set_error (bfd_error_invalid_operation);
14518 ret = FALSE;
14519 continue;
14520 }
14521
14522 /* Multi-instruction sequences that access the TOC can be
14523 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14524 to nop; addi rb,r2,x; */
14525 switch (r_type)
14526 {
14527 default:
14528 break;
14529
14530 case R_PPC64_GOT_TLSLD16_HI:
14531 case R_PPC64_GOT_TLSGD16_HI:
14532 case R_PPC64_GOT_TPREL16_HI:
14533 case R_PPC64_GOT_DTPREL16_HI:
14534 case R_PPC64_GOT16_HI:
14535 case R_PPC64_TOC16_HI:
14536 /* These relocs would only be useful if building up an
14537 offset to later add to r2, perhaps in an indexed
14538 addressing mode instruction. Don't try to optimize.
14539 Unfortunately, the possibility of someone building up an
14540 offset like this or even with the HA relocs, means that
14541 we need to check the high insn when optimizing the low
14542 insn. */
14543 break;
14544
14545 case R_PPC64_GOT_TLSLD16_HA:
14546 case R_PPC64_GOT_TLSGD16_HA:
14547 case R_PPC64_GOT_TPREL16_HA:
14548 case R_PPC64_GOT_DTPREL16_HA:
14549 case R_PPC64_GOT16_HA:
14550 case R_PPC64_TOC16_HA:
14551 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14552 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14553 {
14554 bfd_byte *p = contents + (rel->r_offset & ~3);
14555 bfd_put_32 (input_bfd, NOP, p);
14556 }
14557 break;
14558
14559 case R_PPC64_GOT_TLSLD16_LO:
14560 case R_PPC64_GOT_TLSGD16_LO:
14561 case R_PPC64_GOT_TPREL16_LO_DS:
14562 case R_PPC64_GOT_DTPREL16_LO_DS:
14563 case R_PPC64_GOT16_LO:
14564 case R_PPC64_GOT16_LO_DS:
14565 case R_PPC64_TOC16_LO:
14566 case R_PPC64_TOC16_LO_DS:
14567 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14568 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14569 {
14570 bfd_byte *p = contents + (rel->r_offset & ~3);
14571 insn = bfd_get_32 (input_bfd, p);
14572 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14573 {
14574 /* Transform addic to addi when we change reg. */
14575 insn &= ~((0x3f << 26) | (0x1f << 16));
14576 insn |= (14u << 26) | (2 << 16);
14577 }
14578 else
14579 {
14580 insn &= ~(0x1f << 16);
14581 insn |= 2 << 16;
14582 }
14583 bfd_put_32 (input_bfd, insn, p);
14584 }
14585 break;
14586 }
14587
14588 /* Do any further special processing. */
14589 howto = ppc64_elf_howto_table[(int) r_type];
14590 switch (r_type)
14591 {
14592 default:
14593 break;
14594
14595 case R_PPC64_REL16_HA:
14596 case R_PPC64_ADDR16_HA:
14597 case R_PPC64_ADDR16_HIGHA:
14598 case R_PPC64_ADDR16_HIGHERA:
14599 case R_PPC64_ADDR16_HIGHESTA:
14600 case R_PPC64_TOC16_HA:
14601 case R_PPC64_SECTOFF_HA:
14602 case R_PPC64_TPREL16_HA:
14603 case R_PPC64_TPREL16_HIGHA:
14604 case R_PPC64_TPREL16_HIGHERA:
14605 case R_PPC64_TPREL16_HIGHESTA:
14606 case R_PPC64_DTPREL16_HA:
14607 case R_PPC64_DTPREL16_HIGHA:
14608 case R_PPC64_DTPREL16_HIGHERA:
14609 case R_PPC64_DTPREL16_HIGHESTA:
14610 /* It's just possible that this symbol is a weak symbol
14611 that's not actually defined anywhere. In that case,
14612 'sec' would be NULL, and we should leave the symbol
14613 alone (it will be set to zero elsewhere in the link). */
14614 if (sec == NULL)
14615 break;
14616 /* Fall thru */
14617
14618 case R_PPC64_GOT16_HA:
14619 case R_PPC64_PLTGOT16_HA:
14620 case R_PPC64_PLT16_HA:
14621 case R_PPC64_GOT_TLSGD16_HA:
14622 case R_PPC64_GOT_TLSLD16_HA:
14623 case R_PPC64_GOT_TPREL16_HA:
14624 case R_PPC64_GOT_DTPREL16_HA:
14625 /* Add 0x10000 if sign bit in 0:15 is set.
14626 Bits 0:15 are not used. */
14627 addend += 0x8000;
14628 break;
14629
14630 case R_PPC64_ADDR16_DS:
14631 case R_PPC64_ADDR16_LO_DS:
14632 case R_PPC64_GOT16_DS:
14633 case R_PPC64_GOT16_LO_DS:
14634 case R_PPC64_PLT16_LO_DS:
14635 case R_PPC64_SECTOFF_DS:
14636 case R_PPC64_SECTOFF_LO_DS:
14637 case R_PPC64_TOC16_DS:
14638 case R_PPC64_TOC16_LO_DS:
14639 case R_PPC64_PLTGOT16_DS:
14640 case R_PPC64_PLTGOT16_LO_DS:
14641 case R_PPC64_GOT_TPREL16_DS:
14642 case R_PPC64_GOT_TPREL16_LO_DS:
14643 case R_PPC64_GOT_DTPREL16_DS:
14644 case R_PPC64_GOT_DTPREL16_LO_DS:
14645 case R_PPC64_TPREL16_DS:
14646 case R_PPC64_TPREL16_LO_DS:
14647 case R_PPC64_DTPREL16_DS:
14648 case R_PPC64_DTPREL16_LO_DS:
14649 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14650 mask = 3;
14651 /* If this reloc is against an lq insn, then the value must be
14652 a multiple of 16. This is somewhat of a hack, but the
14653 "correct" way to do this by defining _DQ forms of all the
14654 _DS relocs bloats all reloc switches in this file. It
14655 doesn't seem to make much sense to use any of these relocs
14656 in data, so testing the insn should be safe. */
14657 if ((insn & (0x3f << 26)) == (56u << 26))
14658 mask = 15;
14659 if (((relocation + addend) & mask) != 0)
14660 {
14661 info->callbacks->einfo
14662 (_("%P: %H: error: %s not a multiple of %u\n"),
14663 input_bfd, input_section, rel->r_offset,
14664 howto->name,
14665 mask + 1);
14666 bfd_set_error (bfd_error_bad_value);
14667 ret = FALSE;
14668 continue;
14669 }
14670 break;
14671 }
14672
14673 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14674 because such sections are not SEC_ALLOC and thus ld.so will
14675 not process them. */
14676 if (unresolved_reloc
14677 && !((input_section->flags & SEC_DEBUGGING) != 0
14678 && h->elf.def_dynamic)
14679 && _bfd_elf_section_offset (output_bfd, info, input_section,
14680 rel->r_offset) != (bfd_vma) -1)
14681 {
14682 info->callbacks->einfo
14683 (_("%P: %H: unresolvable %s against `%T'\n"),
14684 input_bfd, input_section, rel->r_offset,
14685 howto->name,
14686 h->elf.root.root.string);
14687 ret = FALSE;
14688 }
14689
14690 /* 16-bit fields in insns mostly have signed values, but a
14691 few insns have 16-bit unsigned values. Really, we should
14692 have different reloc types. */
14693 if (howto->complain_on_overflow != complain_overflow_dont
14694 && howto->dst_mask == 0xffff
14695 && (input_section->flags & SEC_CODE) != 0)
14696 {
14697 enum complain_overflow complain = complain_overflow_signed;
14698
14699 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14700 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14701 complain = complain_overflow_bitfield;
14702 else if (howto->rightshift == 0
14703 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14704 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14705 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14706 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14707 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14708 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14709 complain = complain_overflow_unsigned;
14710 if (howto->complain_on_overflow != complain)
14711 {
14712 alt_howto = *howto;
14713 alt_howto.complain_on_overflow = complain;
14714 howto = &alt_howto;
14715 }
14716 }
14717
14718 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14719 rel->r_offset, relocation, addend);
14720
14721 if (r != bfd_reloc_ok)
14722 {
14723 char *more_info = NULL;
14724 const char *reloc_name = howto->name;
14725
14726 if (reloc_dest != DEST_NORMAL)
14727 {
14728 more_info = bfd_malloc (strlen (reloc_name) + 8);
14729 if (more_info != NULL)
14730 {
14731 strcpy (more_info, reloc_name);
14732 strcat (more_info, (reloc_dest == DEST_OPD
14733 ? " (OPD)" : " (stub)"));
14734 reloc_name = more_info;
14735 }
14736 }
14737
14738 if (r == bfd_reloc_overflow)
14739 {
14740 if (warned)
14741 continue;
14742 if (h != NULL
14743 && h->elf.root.type == bfd_link_hash_undefweak
14744 && howto->pc_relative)
14745 {
14746 /* Assume this is a call protected by other code that
14747 detects the symbol is undefined. If this is the case,
14748 we can safely ignore the overflow. If not, the
14749 program is hosed anyway, and a little warning isn't
14750 going to help. */
14751
14752 continue;
14753 }
14754
14755 if (!((*info->callbacks->reloc_overflow)
14756 (info, &h->elf.root, sym_name,
14757 reloc_name, orig_rel.r_addend,
14758 input_bfd, input_section, rel->r_offset)))
14759 return FALSE;
14760 }
14761 else
14762 {
14763 info->callbacks->einfo
14764 (_("%P: %H: %s against `%T': error %d\n"),
14765 input_bfd, input_section, rel->r_offset,
14766 reloc_name, sym_name, (int) r);
14767 ret = FALSE;
14768 }
14769 if (more_info != NULL)
14770 free (more_info);
14771 }
14772 }
14773
14774 /* If we're emitting relocations, then shortly after this function
14775 returns, reloc offsets and addends for this section will be
14776 adjusted. Worse, reloc symbol indices will be for the output
14777 file rather than the input. Save a copy of the relocs for
14778 opd_entry_value. */
14779 if (is_opd && (info->emitrelocations || info->relocatable))
14780 {
14781 bfd_size_type amt;
14782 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14783 rel = bfd_alloc (input_bfd, amt);
14784 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14785 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14786 if (rel == NULL)
14787 return FALSE;
14788 memcpy (rel, relocs, amt);
14789 }
14790 return ret;
14791 }
14792
14793 /* Adjust the value of any local symbols in opd sections. */
14794
14795 static int
14796 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14797 const char *name ATTRIBUTE_UNUSED,
14798 Elf_Internal_Sym *elfsym,
14799 asection *input_sec,
14800 struct elf_link_hash_entry *h)
14801 {
14802 struct _opd_sec_data *opd;
14803 long adjust;
14804 bfd_vma value;
14805
14806 if (h != NULL)
14807 return 1;
14808
14809 opd = get_opd_info (input_sec);
14810 if (opd == NULL || opd->adjust == NULL)
14811 return 1;
14812
14813 value = elfsym->st_value - input_sec->output_offset;
14814 if (!info->relocatable)
14815 value -= input_sec->output_section->vma;
14816
14817 adjust = opd->adjust[value / 8];
14818 if (adjust == -1)
14819 return 2;
14820
14821 elfsym->st_value += adjust;
14822 return 1;
14823 }
14824
14825 /* Finish up dynamic symbol handling. We set the contents of various
14826 dynamic sections here. */
14827
14828 static bfd_boolean
14829 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14830 struct bfd_link_info *info,
14831 struct elf_link_hash_entry *h,
14832 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14833 {
14834 struct ppc_link_hash_table *htab;
14835 struct plt_entry *ent;
14836 Elf_Internal_Rela rela;
14837 bfd_byte *loc;
14838
14839 htab = ppc_hash_table (info);
14840 if (htab == NULL)
14841 return FALSE;
14842
14843 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14844 if (ent->plt.offset != (bfd_vma) -1)
14845 {
14846 /* This symbol has an entry in the procedure linkage
14847 table. Set it up. */
14848 if (!htab->elf.dynamic_sections_created
14849 || h->dynindx == -1)
14850 {
14851 BFD_ASSERT (h->type == STT_GNU_IFUNC
14852 && h->def_regular
14853 && (h->root.type == bfd_link_hash_defined
14854 || h->root.type == bfd_link_hash_defweak));
14855 rela.r_offset = (htab->elf.iplt->output_section->vma
14856 + htab->elf.iplt->output_offset
14857 + ent->plt.offset);
14858 if (htab->opd_abi)
14859 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14860 else
14861 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14862 rela.r_addend = (h->root.u.def.value
14863 + h->root.u.def.section->output_offset
14864 + h->root.u.def.section->output_section->vma
14865 + ent->addend);
14866 loc = (htab->elf.irelplt->contents
14867 + (htab->elf.irelplt->reloc_count++
14868 * sizeof (Elf64_External_Rela)));
14869 }
14870 else
14871 {
14872 rela.r_offset = (htab->elf.splt->output_section->vma
14873 + htab->elf.splt->output_offset
14874 + ent->plt.offset);
14875 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14876 rela.r_addend = ent->addend;
14877 loc = (htab->elf.srelplt->contents
14878 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14879 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14880 }
14881 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14882
14883 if (!htab->opd_abi)
14884 {
14885 if (!h->def_regular)
14886 {
14887 /* Mark the symbol as undefined, rather than as
14888 defined in glink. Leave the value if there were
14889 any relocations where pointer equality matters
14890 (this is a clue for the dynamic linker, to make
14891 function pointer comparisons work between an
14892 application and shared library), otherwise set it
14893 to zero. */
14894 sym->st_shndx = SHN_UNDEF;
14895 if (!h->pointer_equality_needed)
14896 sym->st_value = 0;
14897 else if (!h->ref_regular_nonweak)
14898 {
14899 /* This breaks function pointer comparisons, but
14900 that is better than breaking tests for a NULL
14901 function pointer. */
14902 sym->st_value = 0;
14903 }
14904 }
14905 }
14906 }
14907
14908 if (h->needs_copy)
14909 {
14910 /* This symbol needs a copy reloc. Set it up. */
14911
14912 if (h->dynindx == -1
14913 || (h->root.type != bfd_link_hash_defined
14914 && h->root.type != bfd_link_hash_defweak)
14915 || htab->relbss == NULL)
14916 abort ();
14917
14918 rela.r_offset = (h->root.u.def.value
14919 + h->root.u.def.section->output_section->vma
14920 + h->root.u.def.section->output_offset);
14921 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14922 rela.r_addend = 0;
14923 loc = htab->relbss->contents;
14924 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14925 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14926 }
14927
14928 return TRUE;
14929 }
14930
14931 /* Used to decide how to sort relocs in an optimal manner for the
14932 dynamic linker, before writing them out. */
14933
14934 static enum elf_reloc_type_class
14935 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14936 const asection *rel_sec,
14937 const Elf_Internal_Rela *rela)
14938 {
14939 enum elf_ppc64_reloc_type r_type;
14940 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14941
14942 if (rel_sec == htab->elf.irelplt)
14943 return reloc_class_ifunc;
14944
14945 r_type = ELF64_R_TYPE (rela->r_info);
14946 switch (r_type)
14947 {
14948 case R_PPC64_RELATIVE:
14949 return reloc_class_relative;
14950 case R_PPC64_JMP_SLOT:
14951 return reloc_class_plt;
14952 case R_PPC64_COPY:
14953 return reloc_class_copy;
14954 default:
14955 return reloc_class_normal;
14956 }
14957 }
14958
14959 /* Finish up the dynamic sections. */
14960
14961 static bfd_boolean
14962 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14963 struct bfd_link_info *info)
14964 {
14965 struct ppc_link_hash_table *htab;
14966 bfd *dynobj;
14967 asection *sdyn;
14968
14969 htab = ppc_hash_table (info);
14970 if (htab == NULL)
14971 return FALSE;
14972
14973 dynobj = htab->elf.dynobj;
14974 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14975
14976 if (htab->elf.dynamic_sections_created)
14977 {
14978 Elf64_External_Dyn *dyncon, *dynconend;
14979
14980 if (sdyn == NULL || htab->elf.sgot == NULL)
14981 abort ();
14982
14983 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14984 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14985 for (; dyncon < dynconend; dyncon++)
14986 {
14987 Elf_Internal_Dyn dyn;
14988 asection *s;
14989
14990 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14991
14992 switch (dyn.d_tag)
14993 {
14994 default:
14995 continue;
14996
14997 case DT_PPC64_GLINK:
14998 s = htab->glink;
14999 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15000 /* We stupidly defined DT_PPC64_GLINK to be the start
15001 of glink rather than the first entry point, which is
15002 what ld.so needs, and now have a bigger stub to
15003 support automatic multiple TOCs. */
15004 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15005 break;
15006
15007 case DT_PPC64_OPD:
15008 s = bfd_get_section_by_name (output_bfd, ".opd");
15009 if (s == NULL)
15010 continue;
15011 dyn.d_un.d_ptr = s->vma;
15012 break;
15013
15014 case DT_PPC64_OPT:
15015 if (htab->do_multi_toc && htab->multi_toc_needed)
15016 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15017 break;
15018
15019 case DT_PPC64_OPDSZ:
15020 s = bfd_get_section_by_name (output_bfd, ".opd");
15021 if (s == NULL)
15022 continue;
15023 dyn.d_un.d_val = s->size;
15024 break;
15025
15026 case DT_PLTGOT:
15027 s = htab->elf.splt;
15028 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15029 break;
15030
15031 case DT_JMPREL:
15032 s = htab->elf.srelplt;
15033 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15034 break;
15035
15036 case DT_PLTRELSZ:
15037 dyn.d_un.d_val = htab->elf.srelplt->size;
15038 break;
15039
15040 case DT_RELASZ:
15041 /* Don't count procedure linkage table relocs in the
15042 overall reloc count. */
15043 s = htab->elf.srelplt;
15044 if (s == NULL)
15045 continue;
15046 dyn.d_un.d_val -= s->size;
15047 break;
15048
15049 case DT_RELA:
15050 /* We may not be using the standard ELF linker script.
15051 If .rela.plt is the first .rela section, we adjust
15052 DT_RELA to not include it. */
15053 s = htab->elf.srelplt;
15054 if (s == NULL)
15055 continue;
15056 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15057 continue;
15058 dyn.d_un.d_ptr += s->size;
15059 break;
15060 }
15061
15062 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15063 }
15064 }
15065
15066 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15067 {
15068 /* Fill in the first entry in the global offset table.
15069 We use it to hold the link-time TOCbase. */
15070 bfd_put_64 (output_bfd,
15071 elf_gp (output_bfd) + TOC_BASE_OFF,
15072 htab->elf.sgot->contents);
15073
15074 /* Set .got entry size. */
15075 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15076 }
15077
15078 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15079 {
15080 /* Set .plt entry size. */
15081 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15082 = PLT_ENTRY_SIZE (htab);
15083 }
15084
15085 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15086 brlt ourselves if emitrelocations. */
15087 if (htab->brlt != NULL
15088 && htab->brlt->reloc_count != 0
15089 && !_bfd_elf_link_output_relocs (output_bfd,
15090 htab->brlt,
15091 elf_section_data (htab->brlt)->rela.hdr,
15092 elf_section_data (htab->brlt)->relocs,
15093 NULL))
15094 return FALSE;
15095
15096 if (htab->glink != NULL
15097 && htab->glink->reloc_count != 0
15098 && !_bfd_elf_link_output_relocs (output_bfd,
15099 htab->glink,
15100 elf_section_data (htab->glink)->rela.hdr,
15101 elf_section_data (htab->glink)->relocs,
15102 NULL))
15103 return FALSE;
15104
15105 if (htab->glink_eh_frame != NULL
15106 && htab->glink_eh_frame->size != 0)
15107 {
15108 bfd_vma val;
15109 bfd_byte *p;
15110 asection *stub_sec;
15111
15112 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15113 for (stub_sec = htab->params->stub_bfd->sections;
15114 stub_sec != NULL;
15115 stub_sec = stub_sec->next)
15116 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15117 {
15118 /* FDE length. */
15119 p += 4;
15120 /* CIE pointer. */
15121 p += 4;
15122 /* Offset to stub section. */
15123 val = (stub_sec->output_section->vma
15124 + stub_sec->output_offset);
15125 val -= (htab->glink_eh_frame->output_section->vma
15126 + htab->glink_eh_frame->output_offset
15127 + (p - htab->glink_eh_frame->contents));
15128 if (val + 0x80000000 > 0xffffffff)
15129 {
15130 info->callbacks->einfo
15131 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15132 stub_sec->name);
15133 return FALSE;
15134 }
15135 bfd_put_32 (dynobj, val, p);
15136 p += 4;
15137 /* stub section size. */
15138 p += 4;
15139 /* Augmentation. */
15140 p += 1;
15141 /* Pad. */
15142 p += 7;
15143 }
15144 if (htab->glink != NULL && htab->glink->size != 0)
15145 {
15146 /* FDE length. */
15147 p += 4;
15148 /* CIE pointer. */
15149 p += 4;
15150 /* Offset to .glink. */
15151 val = (htab->glink->output_section->vma
15152 + htab->glink->output_offset
15153 + 8);
15154 val -= (htab->glink_eh_frame->output_section->vma
15155 + htab->glink_eh_frame->output_offset
15156 + (p - htab->glink_eh_frame->contents));
15157 if (val + 0x80000000 > 0xffffffff)
15158 {
15159 info->callbacks->einfo
15160 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15161 htab->glink->name);
15162 return FALSE;
15163 }
15164 bfd_put_32 (dynobj, val, p);
15165 p += 4;
15166 /* .glink size. */
15167 p += 4;
15168 /* Augmentation. */
15169 p += 1;
15170 /* Ops. */
15171 p += 7;
15172 }
15173
15174 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15175 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15176 htab->glink_eh_frame,
15177 htab->glink_eh_frame->contents))
15178 return FALSE;
15179 }
15180
15181 /* We need to handle writing out multiple GOT sections ourselves,
15182 since we didn't add them to DYNOBJ. We know dynobj is the first
15183 bfd. */
15184 while ((dynobj = dynobj->link.next) != NULL)
15185 {
15186 asection *s;
15187
15188 if (!is_ppc64_elf (dynobj))
15189 continue;
15190
15191 s = ppc64_elf_tdata (dynobj)->got;
15192 if (s != NULL
15193 && s->size != 0
15194 && s->output_section != bfd_abs_section_ptr
15195 && !bfd_set_section_contents (output_bfd, s->output_section,
15196 s->contents, s->output_offset,
15197 s->size))
15198 return FALSE;
15199 s = ppc64_elf_tdata (dynobj)->relgot;
15200 if (s != NULL
15201 && s->size != 0
15202 && s->output_section != bfd_abs_section_ptr
15203 && !bfd_set_section_contents (output_bfd, s->output_section,
15204 s->contents, s->output_offset,
15205 s->size))
15206 return FALSE;
15207 }
15208
15209 return TRUE;
15210 }
15211
15212 #include "elf64-target.h"
15213
15214 /* FreeBSD support */
15215
15216 #undef TARGET_LITTLE_SYM
15217 #undef TARGET_LITTLE_NAME
15218
15219 #undef TARGET_BIG_SYM
15220 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15221 #undef TARGET_BIG_NAME
15222 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15223
15224 #undef ELF_OSABI
15225 #define ELF_OSABI ELFOSABI_FREEBSD
15226
15227 #undef elf64_bed
15228 #define elf64_bed elf64_powerpc_fbsd_bed
15229
15230 #include "elf64-target.h"
15231