]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-ppc.c
Stop the BFD library from treating annobin symbols as potential function symbols.
[thirdparty/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2021 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 /* Don't generate unused section symbols. */
29 #define TARGET_KEEP_UNUSED_SECTION_SYMBOLS false
30
31 #include "sysdep.h"
32 #include <stdarg.h>
33 #include "bfd.h"
34 #include "bfdlink.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "elf/ppc64.h"
38 #include "elf64-ppc.h"
39 #include "dwarf2.h"
40
41 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
42 #define OCTETS_PER_BYTE(ABFD, SEC) 1
43
44 static bfd_reloc_status_type ppc64_elf_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_branch_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_toc_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
57 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
58 static bfd_reloc_status_type ppc64_elf_toc64_reloc
59 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
60 static bfd_reloc_status_type ppc64_elf_prefix_reloc
61 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
62 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
63 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
64 static bfd_vma opd_entry_value
65 (asection *, bfd_vma, asection **, bfd_vma *, bool);
66
67 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
68 #define TARGET_LITTLE_NAME "elf64-powerpcle"
69 #define TARGET_BIG_SYM powerpc_elf64_vec
70 #define TARGET_BIG_NAME "elf64-powerpc"
71 #define ELF_ARCH bfd_arch_powerpc
72 #define ELF_TARGET_ID PPC64_ELF_DATA
73 #define ELF_MACHINE_CODE EM_PPC64
74 #define ELF_MAXPAGESIZE 0x10000
75 #define ELF_COMMONPAGESIZE 0x1000
76 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
77 #define elf_info_to_howto ppc64_elf_info_to_howto
78
79 #define elf_backend_want_got_sym 0
80 #define elf_backend_want_plt_sym 0
81 #define elf_backend_plt_alignment 3
82 #define elf_backend_plt_not_loaded 1
83 #define elf_backend_got_header_size 8
84 #define elf_backend_want_dynrelro 1
85 #define elf_backend_can_gc_sections 1
86 #define elf_backend_can_refcount 1
87 #define elf_backend_rela_normal 1
88 #define elf_backend_dtrel_excludes_plt 1
89 #define elf_backend_default_execstack 0
90
91 #define bfd_elf64_mkobject ppc64_elf_mkobject
92 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
93 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
94 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
95 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
96 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
97 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
98 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
99 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
100 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
101
102 #define elf_backend_object_p ppc64_elf_object_p
103 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
104 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
105 #define elf_backend_write_core_note ppc64_elf_write_core_note
106 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
107 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
108 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
109 #define elf_backend_check_directives ppc64_elf_before_check_relocs
110 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
111 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
112 #define elf_backend_check_relocs ppc64_elf_check_relocs
113 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
114 #define elf_backend_gc_keep ppc64_elf_gc_keep
115 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
116 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
117 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
118 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
119 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
120 #define elf_backend_always_size_sections ppc64_elf_edit
121 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
122 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
123 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
124 #define elf_backend_action_discarded ppc64_elf_action_discarded
125 #define elf_backend_relocate_section ppc64_elf_relocate_section
126 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
127 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
128 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
129 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
130 #define elf_backend_special_sections ppc64_elf_special_sections
131 #define elf_backend_section_flags ppc64_elf_section_flags
132 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
133 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
134 #define elf_backend_get_reloc_section bfd_get_section_by_name
135
136 /* The name of the dynamic interpreter. This is put in the .interp
137 section. */
138 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
139
140 /* The size in bytes of an entry in the procedure linkage table. */
141 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
142 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
143
144 /* The initial size of the plt reserved for the dynamic linker. */
145 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
146
147 /* Offsets to some stack save slots. */
148 #define STK_LR 16
149 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
150 /* This one is dodgy. ELFv2 does not have a linker word, so use the
151 CR save slot. Used only by optimised __tls_get_addr call stub,
152 relying on __tls_get_addr_opt not saving CR.. */
153 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
154
155 /* TOC base pointers offset from start of TOC. */
156 #define TOC_BASE_OFF 0x8000
157 /* TOC base alignment. */
158 #define TOC_BASE_ALIGN 256
159
160 /* Offset of tp and dtp pointers from start of TLS block. */
161 #define TP_OFFSET 0x7000
162 #define DTP_OFFSET 0x8000
163
164 /* .plt call stub instructions. The normal stub is like this, but
165 sometimes the .plt entry crosses a 64k boundary and we need to
166 insert an addi to adjust r11. */
167 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
168 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
169 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
170 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
171 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
172 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
173 #define BCTR 0x4e800420 /* bctr */
174
175 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
176 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
177 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
178 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
179 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
180
181 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
182 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
183 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
184 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
185 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
186 #define BNECTR 0x4ca20420 /* bnectr+ */
187 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
188
189 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
190 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
191 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
192
193 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
194 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
195 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
196
197 #define LI_R11_0 0x39600000 /* li %r11,0 */
198 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
199 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
200 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
201 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
202 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
203 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
204 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
205 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
206 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
207 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
208 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
209 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
210 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
211 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
212 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
213 #define PADDI_R12_PC 0x0610000039800000ULL
214 #define PLD_R12_PC 0x04100000e5800000ULL
215 #define PNOP 0x0700000000000000ULL
216
217 /* __glink_PLTresolve stub instructions. We enter with the index in
218 R0 for ELFv1, and the address of a glink branch in R12 for ELFv2. */
219 #define GLINK_PLTRESOLVE_SIZE(htab) \
220 (8u + (htab->opd_abi ? 11 * 4 : htab->has_plt_localentry0 ? 14 * 4 : 13 * 4))
221 /* 0: */
222 /* .quad plt0-1f */
223 /* __glink: */
224 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
225 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
226 /* 1: */
227 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
228 /* ld %2,(0b-1b)(%11) */
229 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
230 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
231 /* ld %12,0(%11) */
232 /* ld %2,8(%11) */
233 /* mtctr %12 */
234 /* ld %11,16(%11) */
235 /* bctr */
236
237 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
238 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
239 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
240 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
241 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
242 #define LD_R0_0R11 0xe80b0000 /* ld %r0,0(%r11) */
243 #define ADD_R11_R0_R11 0x7d605a14 /* add %r11,%r0,%r11 */
244
245 /* Pad with this. */
246 #define NOP 0x60000000
247
248 /* Some other nops. */
249 #define CROR_151515 0x4def7b82
250 #define CROR_313131 0x4ffffb82
251
252 /* .glink entries for the first 32k functions are two instructions. */
253 #define LI_R0_0 0x38000000 /* li %r0,0 */
254 #define B_DOT 0x48000000 /* b . */
255
256 /* After that, we need two instructions to load the index, followed by
257 a branch. */
258 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
259 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
260
261 /* Instructions used by the save and restore reg functions. */
262 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
263 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
264 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
265 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
266 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
267 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
268 #define LI_R12_0 0x39800000 /* li %r12,0 */
269 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
270 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
271 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
272 #define BLR 0x4e800020 /* blr */
273
274 /* Since .opd is an array of descriptors and each entry will end up
275 with identical R_PPC64_RELATIVE relocs, there is really no need to
276 propagate .opd relocs; The dynamic linker should be taught to
277 relocate .opd without reloc entries. */
278 #ifndef NO_OPD_RELOCS
279 #define NO_OPD_RELOCS 0
280 #endif
281
282 #ifndef ARRAY_SIZE
283 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
284 #endif
285
286 static inline int
287 abiversion (bfd *abfd)
288 {
289 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
290 }
291
292 static inline void
293 set_abiversion (bfd *abfd, int ver)
294 {
295 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
296 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
297 }
298 \f
299 /* Relocation HOWTO's. */
300 /* Like other ELF RELA targets that don't apply multiple
301 field-altering relocations to the same localation, src_mask is
302 always zero and pcrel_offset is the same as pc_relative.
303 PowerPC can always use a zero bitpos, even when the field is not at
304 the LSB. For example, a REL24 could use rightshift=2, bisize=24
305 and bitpos=2 which matches the ABI description, or as we do here,
306 rightshift=0, bitsize=26 and bitpos=0. */
307 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
308 complain, special_func) \
309 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
310 complain_overflow_ ## complain, special_func, \
311 #type, false, 0, mask, pc_relative)
312
313 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
314
315 static reloc_howto_type ppc64_elf_howto_raw[] =
316 {
317 /* This reloc does nothing. */
318 HOW (R_PPC64_NONE, 3, 0, 0, 0, false, dont,
319 bfd_elf_generic_reloc),
320
321 /* A standard 32 bit relocation. */
322 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, false, bitfield,
323 bfd_elf_generic_reloc),
324
325 /* An absolute 26 bit branch; the lower two bits must be zero.
326 FIXME: we don't check that, we just clear them. */
327 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, false, bitfield,
328 bfd_elf_generic_reloc),
329
330 /* A standard 16 bit relocation. */
331 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, false, bitfield,
332 bfd_elf_generic_reloc),
333
334 /* A 16 bit relocation without overflow. */
335 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, false, dont,
336 bfd_elf_generic_reloc),
337
338 /* Bits 16-31 of an address. */
339 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, false, signed,
340 bfd_elf_generic_reloc),
341
342 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
343 bits, treated as a signed number, is negative. */
344 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, false, signed,
345 ppc64_elf_ha_reloc),
346
347 /* An absolute 16 bit branch; the lower two bits must be zero.
348 FIXME: we don't check that, we just clear them. */
349 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, false, signed,
350 ppc64_elf_branch_reloc),
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, false, signed,
356 ppc64_elf_brtaken_reloc),
357
358 /* An absolute 16 bit branch, for which bit 10 should be set to
359 indicate that the branch is not expected to be taken. The lower
360 two bits must be zero. */
361 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, false, signed,
362 ppc64_elf_brtaken_reloc),
363
364 /* A relative 26 bit branch; the lower two bits must be zero. */
365 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, true, signed,
366 ppc64_elf_branch_reloc),
367
368 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
369 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, true, signed,
370 ppc64_elf_branch_reloc),
371
372 /* A relative 16 bit branch; the lower two bits must be zero. */
373 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, true, signed,
374 ppc64_elf_branch_reloc),
375
376 /* A relative 16 bit branch. Bit 10 should be set to indicate that
377 the branch is expected to be taken. The lower two bits must be
378 zero. */
379 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, true, signed,
380 ppc64_elf_brtaken_reloc),
381
382 /* A relative 16 bit branch. Bit 10 should be set to indicate that
383 the branch is not expected to be taken. The lower two bits must
384 be zero. */
385 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, true, signed,
386 ppc64_elf_brtaken_reloc),
387
388 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
389 symbol. */
390 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, false, signed,
391 ppc64_elf_unhandled_reloc),
392
393 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
394 the symbol. */
395 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, false, dont,
396 ppc64_elf_unhandled_reloc),
397
398 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
399 the symbol. */
400 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, false, signed,
401 ppc64_elf_unhandled_reloc),
402
403 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
404 the symbol. */
405 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, false, signed,
406 ppc64_elf_unhandled_reloc),
407
408 /* This is used only by the dynamic linker. The symbol should exist
409 both in the object being run and in some shared library. The
410 dynamic linker copies the data addressed by the symbol from the
411 shared library into the object, because the object being
412 run has to have the data at some particular address. */
413 HOW (R_PPC64_COPY, 0, 0, 0, 0, false, dont,
414 ppc64_elf_unhandled_reloc),
415
416 /* Like R_PPC64_ADDR64, but used when setting global offset table
417 entries. */
418 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
419 ppc64_elf_unhandled_reloc),
420
421 /* Created by the link editor. Marks a procedure linkage table
422 entry for a symbol. */
423 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, false, dont,
424 ppc64_elf_unhandled_reloc),
425
426 /* Used only by the dynamic linker. When the object is run, this
427 doubleword64 is set to the load address of the object, plus the
428 addend. */
429 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
430 bfd_elf_generic_reloc),
431
432 /* Like R_PPC64_ADDR32, but may be unaligned. */
433 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, false, bitfield,
434 bfd_elf_generic_reloc),
435
436 /* Like R_PPC64_ADDR16, but may be unaligned. */
437 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, false, bitfield,
438 bfd_elf_generic_reloc),
439
440 /* 32-bit PC relative. */
441 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, true, signed,
442 bfd_elf_generic_reloc),
443
444 /* 32-bit relocation to the symbol's procedure linkage table. */
445 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, false, bitfield,
446 ppc64_elf_unhandled_reloc),
447
448 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
449 FIXME: R_PPC64_PLTREL32 not supported. */
450 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, true, signed,
451 ppc64_elf_unhandled_reloc),
452
453 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
454 the symbol. */
455 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, false, dont,
456 ppc64_elf_unhandled_reloc),
457
458 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
459 the symbol. */
460 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, false, signed,
461 ppc64_elf_unhandled_reloc),
462
463 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
464 the symbol. */
465 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, false, signed,
466 ppc64_elf_unhandled_reloc),
467
468 /* 16-bit section relative relocation. */
469 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, false, signed,
470 ppc64_elf_sectoff_reloc),
471
472 /* Like R_PPC64_SECTOFF, but no overflow warning. */
473 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, false, dont,
474 ppc64_elf_sectoff_reloc),
475
476 /* 16-bit upper half section relative relocation. */
477 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, false, signed,
478 ppc64_elf_sectoff_reloc),
479
480 /* 16-bit upper half adjusted section relative relocation. */
481 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, false, signed,
482 ppc64_elf_sectoff_ha_reloc),
483
484 /* Like R_PPC64_REL24 without touching the two least significant bits. */
485 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, true, dont,
486 bfd_elf_generic_reloc),
487
488 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
489
490 /* A standard 64-bit relocation. */
491 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
492 bfd_elf_generic_reloc),
493
494 /* The bits 32-47 of an address. */
495 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, false, dont,
496 bfd_elf_generic_reloc),
497
498 /* The bits 32-47 of an address, plus 1 if the contents of the low
499 16 bits, treated as a signed number, is negative. */
500 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, false, dont,
501 ppc64_elf_ha_reloc),
502
503 /* The bits 48-63 of an address. */
504 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, false, dont,
505 bfd_elf_generic_reloc),
506
507 /* The bits 48-63 of an address, plus 1 if the contents of the low
508 16 bits, treated as a signed number, is negative. */
509 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, false, dont,
510 ppc64_elf_ha_reloc),
511
512 /* Like ADDR64, but may be unaligned. */
513 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
514 bfd_elf_generic_reloc),
515
516 /* 64-bit relative relocation. */
517 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, true, dont,
518 bfd_elf_generic_reloc),
519
520 /* 64-bit relocation to the symbol's procedure linkage table. */
521 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
522 ppc64_elf_unhandled_reloc),
523
524 /* 64-bit PC relative relocation to the symbol's procedure linkage
525 table. */
526 /* FIXME: R_PPC64_PLTREL64 not supported. */
527 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, true, dont,
528 ppc64_elf_unhandled_reloc),
529
530 /* 16 bit TOC-relative relocation. */
531 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
532 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, false, signed,
533 ppc64_elf_toc_reloc),
534
535 /* 16 bit TOC-relative relocation without overflow. */
536 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
537 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, false, dont,
538 ppc64_elf_toc_reloc),
539
540 /* 16 bit TOC-relative relocation, high 16 bits. */
541 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
542 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, false, signed,
543 ppc64_elf_toc_reloc),
544
545 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
546 contents of the low 16 bits, treated as a signed number, is
547 negative. */
548 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
549 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, false, signed,
550 ppc64_elf_toc_ha_reloc),
551
552 /* 64-bit relocation; insert value of TOC base (.TOC.). */
553 /* R_PPC64_TOC 51 doubleword64 .TOC. */
554 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
555 ppc64_elf_toc64_reloc),
556
557 /* Like R_PPC64_GOT16, but also informs the link editor that the
558 value to relocate may (!) refer to a PLT entry which the link
559 editor (a) may replace with the symbol value. If the link editor
560 is unable to fully resolve the symbol, it may (b) create a PLT
561 entry and store the address to the new PLT entry in the GOT.
562 This permits lazy resolution of function symbols at run time.
563 The link editor may also skip all of this and just (c) emit a
564 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
565 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
566 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, false,signed,
567 ppc64_elf_unhandled_reloc),
568
569 /* Like R_PPC64_PLTGOT16, but without overflow. */
570 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
571 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, false, dont,
572 ppc64_elf_unhandled_reloc),
573
574 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
575 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
576 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, false, signed,
577 ppc64_elf_unhandled_reloc),
578
579 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
580 1 if the contents of the low 16 bits, treated as a signed number,
581 is negative. */
582 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
583 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, false, signed,
584 ppc64_elf_unhandled_reloc),
585
586 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
587 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, false, signed,
588 bfd_elf_generic_reloc),
589
590 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
591 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
592 bfd_elf_generic_reloc),
593
594 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
595 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, false, signed,
596 ppc64_elf_unhandled_reloc),
597
598 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
599 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
600 ppc64_elf_unhandled_reloc),
601
602 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
603 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
604 ppc64_elf_unhandled_reloc),
605
606 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
607 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, false, signed,
608 ppc64_elf_sectoff_reloc),
609
610 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
611 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, false, dont,
612 ppc64_elf_sectoff_reloc),
613
614 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
615 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, false, signed,
616 ppc64_elf_toc_reloc),
617
618 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
619 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
620 ppc64_elf_toc_reloc),
621
622 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
623 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
624 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, false, signed,
625 ppc64_elf_unhandled_reloc),
626
627 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
628 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
629 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
630 ppc64_elf_unhandled_reloc),
631
632 /* Marker relocs for TLS. */
633 HOW (R_PPC64_TLS, 2, 32, 0, 0, false, dont,
634 bfd_elf_generic_reloc),
635
636 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, false, dont,
637 bfd_elf_generic_reloc),
638
639 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, false, dont,
640 bfd_elf_generic_reloc),
641
642 /* Marker reloc for optimizing r2 save in prologue rather than on
643 each plt call stub. */
644 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, false, dont,
645 bfd_elf_generic_reloc),
646
647 /* Marker relocs on inline plt call instructions. */
648 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, false, dont,
649 bfd_elf_generic_reloc),
650
651 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, false, dont,
652 bfd_elf_generic_reloc),
653
654 /* Computes the load module index of the load module that contains the
655 definition of its TLS sym. */
656 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
657 ppc64_elf_unhandled_reloc),
658
659 /* Computes a dtv-relative displacement, the difference between the value
660 of sym+add and the base address of the thread-local storage block that
661 contains the definition of sym, minus 0x8000. */
662 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
663 ppc64_elf_unhandled_reloc),
664
665 /* A 16 bit dtprel reloc. */
666 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, false, signed,
667 ppc64_elf_unhandled_reloc),
668
669 /* Like DTPREL16, but no overflow. */
670 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, false, dont,
671 ppc64_elf_unhandled_reloc),
672
673 /* Like DTPREL16_LO, but next higher group of 16 bits. */
674 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, false, signed,
675 ppc64_elf_unhandled_reloc),
676
677 /* Like DTPREL16_HI, but adjust for low 16 bits. */
678 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, false, signed,
679 ppc64_elf_unhandled_reloc),
680
681 /* Like DTPREL16_HI, but next higher group of 16 bits. */
682 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, false, dont,
683 ppc64_elf_unhandled_reloc),
684
685 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
686 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, false, dont,
687 ppc64_elf_unhandled_reloc),
688
689 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
690 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, false, dont,
691 ppc64_elf_unhandled_reloc),
692
693 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
694 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, false, dont,
695 ppc64_elf_unhandled_reloc),
696
697 /* Like DTPREL16, but for insns with a DS field. */
698 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, false, signed,
699 ppc64_elf_unhandled_reloc),
700
701 /* Like DTPREL16_DS, but no overflow. */
702 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
703 ppc64_elf_unhandled_reloc),
704
705 /* Computes a tp-relative displacement, the difference between the value of
706 sym+add and the value of the thread pointer (r13). */
707 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
708 ppc64_elf_unhandled_reloc),
709
710 /* A 16 bit tprel reloc. */
711 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, false, signed,
712 ppc64_elf_unhandled_reloc),
713
714 /* Like TPREL16, but no overflow. */
715 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, false, dont,
716 ppc64_elf_unhandled_reloc),
717
718 /* Like TPREL16_LO, but next higher group of 16 bits. */
719 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, false, signed,
720 ppc64_elf_unhandled_reloc),
721
722 /* Like TPREL16_HI, but adjust for low 16 bits. */
723 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, false, signed,
724 ppc64_elf_unhandled_reloc),
725
726 /* Like TPREL16_HI, but next higher group of 16 bits. */
727 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, false, dont,
728 ppc64_elf_unhandled_reloc),
729
730 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
731 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, false, dont,
732 ppc64_elf_unhandled_reloc),
733
734 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
735 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, false, dont,
736 ppc64_elf_unhandled_reloc),
737
738 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
739 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, false, dont,
740 ppc64_elf_unhandled_reloc),
741
742 /* Like TPREL16, but for insns with a DS field. */
743 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, false, signed,
744 ppc64_elf_unhandled_reloc),
745
746 /* Like TPREL16_DS, but no overflow. */
747 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
748 ppc64_elf_unhandled_reloc),
749
750 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
751 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
752 to the first entry relative to the TOC base (r2). */
753 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, false, signed,
754 ppc64_elf_unhandled_reloc),
755
756 /* Like GOT_TLSGD16, but no overflow. */
757 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, false, dont,
758 ppc64_elf_unhandled_reloc),
759
760 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
761 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, false, signed,
762 ppc64_elf_unhandled_reloc),
763
764 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
765 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, false, signed,
766 ppc64_elf_unhandled_reloc),
767
768 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
769 with values (sym+add)@dtpmod and zero, and computes the offset to the
770 first entry relative to the TOC base (r2). */
771 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, false, signed,
772 ppc64_elf_unhandled_reloc),
773
774 /* Like GOT_TLSLD16, but no overflow. */
775 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, false, dont,
776 ppc64_elf_unhandled_reloc),
777
778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
779 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, false, signed,
780 ppc64_elf_unhandled_reloc),
781
782 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
783 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, false, signed,
784 ppc64_elf_unhandled_reloc),
785
786 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
787 the offset to the entry relative to the TOC base (r2). */
788 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, false, signed,
789 ppc64_elf_unhandled_reloc),
790
791 /* Like GOT_DTPREL16_DS, but no overflow. */
792 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
793 ppc64_elf_unhandled_reloc),
794
795 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
796 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, false, signed,
797 ppc64_elf_unhandled_reloc),
798
799 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
800 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, false, signed,
801 ppc64_elf_unhandled_reloc),
802
803 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
804 offset to the entry relative to the TOC base (r2). */
805 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, false, signed,
806 ppc64_elf_unhandled_reloc),
807
808 /* Like GOT_TPREL16_DS, but no overflow. */
809 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, false, dont,
810 ppc64_elf_unhandled_reloc),
811
812 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
813 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, false, signed,
814 ppc64_elf_unhandled_reloc),
815
816 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
817 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, false, signed,
818 ppc64_elf_unhandled_reloc),
819
820 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, false, dont,
821 ppc64_elf_unhandled_reloc),
822
823 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
824 bfd_elf_generic_reloc),
825
826 /* A 16 bit relative relocation. */
827 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, true, signed,
828 bfd_elf_generic_reloc),
829
830 /* A 16 bit relative relocation without overflow. */
831 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, true, dont,
832 bfd_elf_generic_reloc),
833
834 /* The high order 16 bits of a relative address. */
835 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, true, signed,
836 bfd_elf_generic_reloc),
837
838 /* The high order 16 bits of a relative address, plus 1 if the contents of
839 the low 16 bits, treated as a signed number, is negative. */
840 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, true, signed,
841 ppc64_elf_ha_reloc),
842
843 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, true, dont,
844 bfd_elf_generic_reloc),
845
846 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, true, dont,
847 ppc64_elf_ha_reloc),
848
849 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, true, dont,
850 bfd_elf_generic_reloc),
851
852 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, true, dont,
853 ppc64_elf_ha_reloc),
854
855 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, true, dont,
856 bfd_elf_generic_reloc),
857
858 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, true, dont,
859 ppc64_elf_ha_reloc),
860
861 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
862 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, true, signed,
863 ppc64_elf_ha_reloc),
864
865 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
866 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, false, signed,
867 ppc64_elf_ha_reloc),
868
869 /* Like R_PPC64_ADDR16_HI, but no overflow. */
870 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, false, dont,
871 bfd_elf_generic_reloc),
872
873 /* Like R_PPC64_ADDR16_HA, but no overflow. */
874 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, false, dont,
875 ppc64_elf_ha_reloc),
876
877 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
878 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, false, dont,
879 ppc64_elf_unhandled_reloc),
880
881 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
882 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, false, dont,
883 ppc64_elf_unhandled_reloc),
884
885 /* Like R_PPC64_TPREL16_HI, but no overflow. */
886 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, false, dont,
887 ppc64_elf_unhandled_reloc),
888
889 /* Like R_PPC64_TPREL16_HA, but no overflow. */
890 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, false, dont,
891 ppc64_elf_unhandled_reloc),
892
893 /* Marker reloc on ELFv2 large-model function entry. */
894 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, false, dont,
895 bfd_elf_generic_reloc),
896
897 /* Like ADDR64, but use local entry point of function. */
898 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, false, dont,
899 bfd_elf_generic_reloc),
900
901 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, false, dont,
902 bfd_elf_generic_reloc),
903
904 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, false, dont,
905 bfd_elf_generic_reloc),
906
907 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, false, dont,
908 bfd_elf_generic_reloc),
909
910 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, false, signed,
911 ppc64_elf_prefix_reloc),
912
913 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, false, dont,
914 ppc64_elf_prefix_reloc),
915
916 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, false, dont,
917 ppc64_elf_prefix_reloc),
918
919 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, false, dont,
920 ppc64_elf_prefix_reloc),
921
922 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
923 ppc64_elf_prefix_reloc),
924
925 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
926 ppc64_elf_unhandled_reloc),
927
928 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
929 ppc64_elf_unhandled_reloc),
930
931 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
932 ppc64_elf_unhandled_reloc),
933
934 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, false, signed,
935 ppc64_elf_unhandled_reloc),
936
937 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, false, signed,
938 ppc64_elf_unhandled_reloc),
939
940 HOW (R_PPC64_GOT_TLSGD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
941 ppc64_elf_unhandled_reloc),
942
943 HOW (R_PPC64_GOT_TLSLD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
944 ppc64_elf_unhandled_reloc),
945
946 HOW (R_PPC64_GOT_TPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
947 ppc64_elf_unhandled_reloc),
948
949 HOW (R_PPC64_GOT_DTPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, true, signed,
950 ppc64_elf_unhandled_reloc),
951
952 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, false, dont,
953 bfd_elf_generic_reloc),
954
955 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, false, dont,
956 ppc64_elf_ha_reloc),
957
958 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, false, dont,
959 bfd_elf_generic_reloc),
960
961 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, false, dont,
962 ppc64_elf_ha_reloc),
963
964 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, true, dont,
965 bfd_elf_generic_reloc),
966
967 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, true, dont,
968 ppc64_elf_ha_reloc),
969
970 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, true, dont,
971 bfd_elf_generic_reloc),
972
973 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, true, dont,
974 ppc64_elf_ha_reloc),
975
976 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, false, signed,
977 ppc64_elf_prefix_reloc),
978
979 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, true, signed,
980 ppc64_elf_prefix_reloc),
981
982 /* GNU extension to record C++ vtable hierarchy. */
983 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, false, dont,
984 NULL),
985
986 /* GNU extension to record C++ vtable member usage. */
987 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, false, dont,
988 NULL),
989 };
990
991 \f
992 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
993 be done. */
994
995 static void
996 ppc_howto_init (void)
997 {
998 unsigned int i, type;
999
1000 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1001 {
1002 type = ppc64_elf_howto_raw[i].type;
1003 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
1004 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1005 }
1006 }
1007
1008 static reloc_howto_type *
1009 ppc64_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
1010 {
1011 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1012
1013 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1014 /* Initialize howto table if needed. */
1015 ppc_howto_init ();
1016
1017 switch (code)
1018 {
1019 default:
1020 /* xgettext:c-format */
1021 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1022 (int) code);
1023 bfd_set_error (bfd_error_bad_value);
1024 return NULL;
1025
1026 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1027 break;
1028 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1029 break;
1030 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1031 break;
1032 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1033 break;
1034 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1035 break;
1036 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1037 break;
1038 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1039 break;
1040 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1041 break;
1042 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1043 break;
1044 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1045 break;
1046 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1047 break;
1048 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1049 break;
1050 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1051 break;
1052 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1053 break;
1054 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1055 break;
1056 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1057 break;
1058 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1059 break;
1060 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1061 break;
1062 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1063 break;
1064 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1065 break;
1066 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1067 break;
1068 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1069 break;
1070 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1071 break;
1072 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1073 break;
1074 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1075 break;
1076 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1077 break;
1078 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1079 break;
1080 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1081 break;
1082 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1083 break;
1084 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1085 break;
1086 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1087 break;
1088 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1089 break;
1090 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1091 break;
1092 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1093 break;
1094 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1095 break;
1096 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1097 break;
1098 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1099 break;
1100 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1101 break;
1102 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1103 break;
1104 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1105 break;
1106 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1107 break;
1108 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1109 break;
1110 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1111 break;
1112 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1113 break;
1114 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1115 break;
1116 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1117 break;
1118 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1119 break;
1120 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1121 break;
1122 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1123 break;
1124 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1125 break;
1126 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1127 break;
1128 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1129 break;
1130 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1131 break;
1132 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1133 break;
1134 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1135 break;
1136 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1137 break;
1138 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1139 break;
1140 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1141 break;
1142 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1143 break;
1144 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1145 break;
1146 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1147 break;
1148 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1149 break;
1150 case BFD_RELOC_PPC64_TLS_PCREL:
1151 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1152 break;
1153 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1154 break;
1155 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1156 break;
1157 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1158 break;
1159 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1160 break;
1161 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1162 break;
1163 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1164 break;
1165 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1166 break;
1167 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1168 break;
1169 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1170 break;
1171 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1172 break;
1173 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1174 break;
1175 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1176 break;
1177 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1178 break;
1179 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1180 break;
1181 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1182 break;
1183 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1184 break;
1185 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1186 break;
1187 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1188 break;
1189 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1190 break;
1191 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1192 break;
1193 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1194 break;
1195 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1196 break;
1197 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1198 break;
1199 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1200 break;
1201 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1202 break;
1203 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1204 break;
1205 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1206 break;
1207 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1208 break;
1209 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1210 break;
1211 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1212 break;
1213 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1214 break;
1215 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1216 break;
1217 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1218 break;
1219 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1220 break;
1221 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1222 break;
1223 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1224 break;
1225 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1226 break;
1227 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1228 break;
1229 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1230 break;
1231 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1232 break;
1233 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1234 break;
1235 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1236 break;
1237 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1238 break;
1239 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1240 break;
1241 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1242 break;
1243 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1244 break;
1245 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1246 break;
1247 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1248 break;
1249 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1250 break;
1251 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1252 break;
1253 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1254 break;
1255 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1256 break;
1257 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1258 break;
1259 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1260 break;
1261 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1262 break;
1263 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1264 break;
1265 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1266 break;
1267 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1268 break;
1269 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1270 break;
1271 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1272 break;
1273 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1274 break;
1275 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1276 break;
1277 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1278 break;
1279 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1280 break;
1281 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1282 break;
1283 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1284 break;
1285 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1286 break;
1287 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1288 break;
1289 case BFD_RELOC_PPC64_GOT_TLSGD_PCREL34: r = R_PPC64_GOT_TLSGD_PCREL34;
1290 break;
1291 case BFD_RELOC_PPC64_GOT_TLSLD_PCREL34: r = R_PPC64_GOT_TLSLD_PCREL34;
1292 break;
1293 case BFD_RELOC_PPC64_GOT_TPREL_PCREL34: r = R_PPC64_GOT_TPREL_PCREL34;
1294 break;
1295 case BFD_RELOC_PPC64_GOT_DTPREL_PCREL34: r = R_PPC64_GOT_DTPREL_PCREL34;
1296 break;
1297 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1298 break;
1299 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1300 break;
1301 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1302 break;
1303 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1304 break;
1305 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1306 break;
1307 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1308 break;
1309 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1310 break;
1311 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1312 break;
1313 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1314 break;
1315 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1316 break;
1317 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1318 break;
1319 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1320 break;
1321 }
1322
1323 return ppc64_elf_howto_table[r];
1324 };
1325
1326 static reloc_howto_type *
1327 ppc64_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
1328 {
1329 unsigned int i;
1330 static char *compat_map[][2] = {
1331 { "R_PPC64_GOT_TLSGD34", "R_PPC64_GOT_TLSGD_PCREL34" },
1332 { "R_PPC64_GOT_TLSLD34", "R_PPC64_GOT_TLSLD_PCREL34" },
1333 { "R_PPC64_GOT_TPREL34", "R_PPC64_GOT_TPREL_PCREL34" },
1334 { "R_PPC64_GOT_DTPREL34", "R_PPC64_GOT_DTPREL_PCREL34" }
1335 };
1336
1337 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1338 if (ppc64_elf_howto_raw[i].name != NULL
1339 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1340 return &ppc64_elf_howto_raw[i];
1341
1342 /* Handle old names of relocations in case they were used by
1343 .reloc directives.
1344 FIXME: Remove this soon. Mapping the reloc names is very likely
1345 completely unnecessary. */
1346 for (i = 0; i < ARRAY_SIZE (compat_map); i++)
1347 if (strcasecmp (compat_map[i][0], r_name) == 0)
1348 {
1349 _bfd_error_handler (_("warning: %s should be used rather than %s"),
1350 compat_map[i][1], compat_map[i][0]);
1351 return ppc64_elf_reloc_name_lookup (abfd, compat_map[i][1]);
1352 }
1353
1354 return NULL;
1355 }
1356
1357 /* Set the howto pointer for a PowerPC ELF reloc. */
1358
1359 static bool
1360 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1361 Elf_Internal_Rela *dst)
1362 {
1363 unsigned int type;
1364
1365 /* Initialize howto table if needed. */
1366 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1367 ppc_howto_init ();
1368
1369 type = ELF64_R_TYPE (dst->r_info);
1370 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1371 {
1372 /* xgettext:c-format */
1373 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1374 abfd, type);
1375 bfd_set_error (bfd_error_bad_value);
1376 return false;
1377 }
1378 cache_ptr->howto = ppc64_elf_howto_table[type];
1379 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1380 {
1381 /* xgettext:c-format */
1382 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1383 abfd, type);
1384 bfd_set_error (bfd_error_bad_value);
1385 return false;
1386 }
1387
1388 return true;
1389 }
1390
1391 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1392
1393 static bfd_reloc_status_type
1394 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1395 void *data, asection *input_section,
1396 bfd *output_bfd, char **error_message)
1397 {
1398 enum elf_ppc64_reloc_type r_type;
1399 long insn;
1400 bfd_size_type octets;
1401 bfd_vma value;
1402
1403 /* If this is a relocatable link (output_bfd test tells us), just
1404 call the generic function. Any adjustment will be done at final
1405 link time. */
1406 if (output_bfd != NULL)
1407 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1408 input_section, output_bfd, error_message);
1409
1410 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1411 We won't actually be using the low bits, so trashing them
1412 doesn't matter. */
1413 r_type = reloc_entry->howto->type;
1414 if (r_type == R_PPC64_ADDR16_HIGHERA34
1415 || r_type == R_PPC64_ADDR16_HIGHESTA34
1416 || r_type == R_PPC64_REL16_HIGHERA34
1417 || r_type == R_PPC64_REL16_HIGHESTA34)
1418 reloc_entry->addend += 1ULL << 33;
1419 else
1420 reloc_entry->addend += 1U << 15;
1421 if (r_type != R_PPC64_REL16DX_HA)
1422 return bfd_reloc_continue;
1423
1424 value = 0;
1425 if (!bfd_is_com_section (symbol->section))
1426 value = symbol->value;
1427 value += (reloc_entry->addend
1428 + symbol->section->output_offset
1429 + symbol->section->output_section->vma);
1430 value -= (reloc_entry->address
1431 + input_section->output_offset
1432 + input_section->output_section->vma);
1433 value = (bfd_signed_vma) value >> 16;
1434
1435 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1436 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1437 insn &= ~0x1fffc1;
1438 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1439 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1440 if (value + 0x8000 > 0xffff)
1441 return bfd_reloc_overflow;
1442 return bfd_reloc_ok;
1443 }
1444
1445 static bfd_reloc_status_type
1446 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1447 void *data, asection *input_section,
1448 bfd *output_bfd, char **error_message)
1449 {
1450 if (output_bfd != NULL)
1451 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1452 input_section, output_bfd, error_message);
1453
1454 if (strcmp (symbol->section->name, ".opd") == 0
1455 && (symbol->section->owner->flags & DYNAMIC) == 0)
1456 {
1457 bfd_vma dest = opd_entry_value (symbol->section,
1458 symbol->value + reloc_entry->addend,
1459 NULL, NULL, false);
1460 if (dest != (bfd_vma) -1)
1461 reloc_entry->addend = dest - (symbol->value
1462 + symbol->section->output_section->vma
1463 + symbol->section->output_offset);
1464 }
1465 else
1466 {
1467 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1468
1469 if (symbol->section->owner != abfd
1470 && symbol->section->owner != NULL
1471 && abiversion (symbol->section->owner) >= 2)
1472 {
1473 unsigned int i;
1474
1475 for (i = 0; i < symbol->section->owner->symcount; ++i)
1476 {
1477 asymbol *symdef = symbol->section->owner->outsymbols[i];
1478
1479 if (strcmp (symdef->name, symbol->name) == 0)
1480 {
1481 elfsym = (elf_symbol_type *) symdef;
1482 break;
1483 }
1484 }
1485 }
1486 reloc_entry->addend
1487 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1488 }
1489 return bfd_reloc_continue;
1490 }
1491
1492 static bfd_reloc_status_type
1493 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1494 void *data, asection *input_section,
1495 bfd *output_bfd, char **error_message)
1496 {
1497 long insn;
1498 enum elf_ppc64_reloc_type r_type;
1499 bfd_size_type octets;
1500 /* Assume 'at' branch hints. */
1501 bool is_isa_v2 = true;
1502
1503 /* If this is a relocatable link (output_bfd test tells us), just
1504 call the generic function. Any adjustment will be done at final
1505 link time. */
1506 if (output_bfd != NULL)
1507 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1508 input_section, output_bfd, error_message);
1509
1510 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1511 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1512 insn &= ~(0x01 << 21);
1513 r_type = reloc_entry->howto->type;
1514 if (r_type == R_PPC64_ADDR14_BRTAKEN
1515 || r_type == R_PPC64_REL14_BRTAKEN)
1516 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1517
1518 if (is_isa_v2)
1519 {
1520 /* Set 'a' bit. This is 0b00010 in BO field for branch
1521 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1522 for branch on CTR insns (BO == 1a00t or 1a01t). */
1523 if ((insn & (0x14 << 21)) == (0x04 << 21))
1524 insn |= 0x02 << 21;
1525 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1526 insn |= 0x08 << 21;
1527 else
1528 goto out;
1529 }
1530 else
1531 {
1532 bfd_vma target = 0;
1533 bfd_vma from;
1534
1535 if (!bfd_is_com_section (symbol->section))
1536 target = symbol->value;
1537 target += symbol->section->output_section->vma;
1538 target += symbol->section->output_offset;
1539 target += reloc_entry->addend;
1540
1541 from = (reloc_entry->address
1542 + input_section->output_offset
1543 + input_section->output_section->vma);
1544
1545 /* Invert 'y' bit if not the default. */
1546 if ((bfd_signed_vma) (target - from) < 0)
1547 insn ^= 0x01 << 21;
1548 }
1549 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1550 out:
1551 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1552 input_section, output_bfd, error_message);
1553 }
1554
1555 static bfd_reloc_status_type
1556 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1557 void *data, asection *input_section,
1558 bfd *output_bfd, char **error_message)
1559 {
1560 /* If this is a relocatable link (output_bfd test tells us), just
1561 call the generic function. Any adjustment will be done at final
1562 link time. */
1563 if (output_bfd != NULL)
1564 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1565 input_section, output_bfd, error_message);
1566
1567 /* Subtract the symbol section base address. */
1568 reloc_entry->addend -= symbol->section->output_section->vma;
1569 return bfd_reloc_continue;
1570 }
1571
1572 static bfd_reloc_status_type
1573 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1574 void *data, asection *input_section,
1575 bfd *output_bfd, char **error_message)
1576 {
1577 /* If this is a relocatable link (output_bfd test tells us), just
1578 call the generic function. Any adjustment will be done at final
1579 link time. */
1580 if (output_bfd != NULL)
1581 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1582 input_section, output_bfd, error_message);
1583
1584 /* Subtract the symbol section base address. */
1585 reloc_entry->addend -= symbol->section->output_section->vma;
1586
1587 /* Adjust the addend for sign extension of the low 16 bits. */
1588 reloc_entry->addend += 0x8000;
1589 return bfd_reloc_continue;
1590 }
1591
1592 static bfd_reloc_status_type
1593 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1594 void *data, asection *input_section,
1595 bfd *output_bfd, char **error_message)
1596 {
1597 bfd_vma TOCstart;
1598
1599 /* If this is a relocatable link (output_bfd test tells us), just
1600 call the generic function. Any adjustment will be done at final
1601 link time. */
1602 if (output_bfd != NULL)
1603 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1604 input_section, output_bfd, error_message);
1605
1606 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1607 if (TOCstart == 0)
1608 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1609
1610 /* Subtract the TOC base address. */
1611 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1612 return bfd_reloc_continue;
1613 }
1614
1615 static bfd_reloc_status_type
1616 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1617 void *data, asection *input_section,
1618 bfd *output_bfd, char **error_message)
1619 {
1620 bfd_vma TOCstart;
1621
1622 /* If this is a relocatable link (output_bfd test tells us), just
1623 call the generic function. Any adjustment will be done at final
1624 link time. */
1625 if (output_bfd != NULL)
1626 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1627 input_section, output_bfd, error_message);
1628
1629 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1630 if (TOCstart == 0)
1631 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1632
1633 /* Subtract the TOC base address. */
1634 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1635
1636 /* Adjust the addend for sign extension of the low 16 bits. */
1637 reloc_entry->addend += 0x8000;
1638 return bfd_reloc_continue;
1639 }
1640
1641 static bfd_reloc_status_type
1642 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1643 void *data, asection *input_section,
1644 bfd *output_bfd, char **error_message)
1645 {
1646 bfd_vma TOCstart;
1647 bfd_size_type octets;
1648
1649 /* If this is a relocatable link (output_bfd test tells us), just
1650 call the generic function. Any adjustment will be done at final
1651 link time. */
1652 if (output_bfd != NULL)
1653 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1654 input_section, output_bfd, error_message);
1655
1656 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1657 if (TOCstart == 0)
1658 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1659
1660 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1661 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1662 return bfd_reloc_ok;
1663 }
1664
1665 static bfd_reloc_status_type
1666 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1667 void *data, asection *input_section,
1668 bfd *output_bfd, char **error_message)
1669 {
1670 uint64_t insn;
1671 bfd_vma targ;
1672
1673 if (output_bfd != NULL)
1674 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1675 input_section, output_bfd, error_message);
1676
1677 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1678 insn <<= 32;
1679 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1680
1681 targ = (symbol->section->output_section->vma
1682 + symbol->section->output_offset
1683 + reloc_entry->addend);
1684 if (!bfd_is_com_section (symbol->section))
1685 targ += symbol->value;
1686 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1687 targ += 1ULL << 33;
1688 if (reloc_entry->howto->pc_relative)
1689 {
1690 bfd_vma from = (reloc_entry->address
1691 + input_section->output_offset
1692 + input_section->output_section->vma);
1693 targ -=from;
1694 }
1695 targ >>= reloc_entry->howto->rightshift;
1696 insn &= ~reloc_entry->howto->dst_mask;
1697 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1698 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1699 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1700 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1701 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1702 >= 1ULL << reloc_entry->howto->bitsize))
1703 return bfd_reloc_overflow;
1704 return bfd_reloc_ok;
1705 }
1706
1707 static bfd_reloc_status_type
1708 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1709 void *data, asection *input_section,
1710 bfd *output_bfd, char **error_message)
1711 {
1712 /* If this is a relocatable link (output_bfd test tells us), just
1713 call the generic function. Any adjustment will be done at final
1714 link time. */
1715 if (output_bfd != NULL)
1716 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1717 input_section, output_bfd, error_message);
1718
1719 if (error_message != NULL)
1720 {
1721 static char *message;
1722 free (message);
1723 if (asprintf (&message, _("generic linker can't handle %s"),
1724 reloc_entry->howto->name) < 0)
1725 message = NULL;
1726 *error_message = message;
1727 }
1728 return bfd_reloc_dangerous;
1729 }
1730
1731 /* Track GOT entries needed for a given symbol. We might need more
1732 than one got entry per symbol. */
1733 struct got_entry
1734 {
1735 struct got_entry *next;
1736
1737 /* The symbol addend that we'll be placing in the GOT. */
1738 bfd_vma addend;
1739
1740 /* Unlike other ELF targets, we use separate GOT entries for the same
1741 symbol referenced from different input files. This is to support
1742 automatic multiple TOC/GOT sections, where the TOC base can vary
1743 from one input file to another. After partitioning into TOC groups
1744 we merge entries within the group.
1745
1746 Point to the BFD owning this GOT entry. */
1747 bfd *owner;
1748
1749 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1750 TLS_TPREL or TLS_DTPREL for tls entries. */
1751 unsigned char tls_type;
1752
1753 /* Non-zero if got.ent points to real entry. */
1754 unsigned char is_indirect;
1755
1756 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1757 union
1758 {
1759 bfd_signed_vma refcount;
1760 bfd_vma offset;
1761 struct got_entry *ent;
1762 } got;
1763 };
1764
1765 /* The same for PLT. */
1766 struct plt_entry
1767 {
1768 struct plt_entry *next;
1769
1770 bfd_vma addend;
1771
1772 union
1773 {
1774 bfd_signed_vma refcount;
1775 bfd_vma offset;
1776 } plt;
1777 };
1778
1779 struct ppc64_elf_obj_tdata
1780 {
1781 struct elf_obj_tdata elf;
1782
1783 /* Shortcuts to dynamic linker sections. */
1784 asection *got;
1785 asection *relgot;
1786
1787 /* Used during garbage collection. We attach global symbols defined
1788 on removed .opd entries to this section so that the sym is removed. */
1789 asection *deleted_section;
1790
1791 /* TLS local dynamic got entry handling. Support for multiple GOT
1792 sections means we potentially need one of these for each input bfd. */
1793 struct got_entry tlsld_got;
1794
1795 union
1796 {
1797 /* A copy of relocs before they are modified for --emit-relocs. */
1798 Elf_Internal_Rela *relocs;
1799
1800 /* Section contents. */
1801 bfd_byte *contents;
1802 } opd;
1803
1804 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1805 the reloc to be in the range -32768 to 32767. */
1806 unsigned int has_small_toc_reloc : 1;
1807
1808 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1809 instruction not one we handle. */
1810 unsigned int unexpected_toc_insn : 1;
1811
1812 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1813 this file. */
1814 unsigned int has_optrel : 1;
1815 };
1816
1817 #define ppc64_elf_tdata(bfd) \
1818 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1819
1820 #define ppc64_tlsld_got(bfd) \
1821 (&ppc64_elf_tdata (bfd)->tlsld_got)
1822
1823 #define is_ppc64_elf(bfd) \
1824 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1825 && elf_object_id (bfd) == PPC64_ELF_DATA)
1826
1827 /* Override the generic function because we store some extras. */
1828
1829 static bool
1830 ppc64_elf_mkobject (bfd *abfd)
1831 {
1832 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1833 PPC64_ELF_DATA);
1834 }
1835
1836 /* Fix bad default arch selected for a 64 bit input bfd when the
1837 default is 32 bit. Also select arch based on apuinfo. */
1838
1839 static bool
1840 ppc64_elf_object_p (bfd *abfd)
1841 {
1842 if (!abfd->arch_info->the_default)
1843 return true;
1844
1845 if (abfd->arch_info->bits_per_word == 32)
1846 {
1847 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1848
1849 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1850 {
1851 /* Relies on arch after 32 bit default being 64 bit default. */
1852 abfd->arch_info = abfd->arch_info->next;
1853 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1854 }
1855 }
1856 return _bfd_elf_ppc_set_arch (abfd);
1857 }
1858
1859 /* Support for core dump NOTE sections. */
1860
1861 static bool
1862 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1863 {
1864 size_t offset, size;
1865
1866 if (note->descsz != 504)
1867 return false;
1868
1869 /* pr_cursig */
1870 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1871
1872 /* pr_pid */
1873 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1874
1875 /* pr_reg */
1876 offset = 112;
1877 size = 384;
1878
1879 /* Make a ".reg/999" section. */
1880 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1881 size, note->descpos + offset);
1882 }
1883
1884 static bool
1885 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1886 {
1887 if (note->descsz != 136)
1888 return false;
1889
1890 elf_tdata (abfd)->core->pid
1891 = bfd_get_32 (abfd, note->descdata + 24);
1892 elf_tdata (abfd)->core->program
1893 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1894 elf_tdata (abfd)->core->command
1895 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1896
1897 return true;
1898 }
1899
1900 static char *
1901 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1902 ...)
1903 {
1904 switch (note_type)
1905 {
1906 default:
1907 return NULL;
1908
1909 case NT_PRPSINFO:
1910 {
1911 char data[136] ATTRIBUTE_NONSTRING;
1912 va_list ap;
1913
1914 va_start (ap, note_type);
1915 memset (data, 0, sizeof (data));
1916 strncpy (data + 40, va_arg (ap, const char *), 16);
1917 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1918 DIAGNOSTIC_PUSH;
1919 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1920 -Wstringop-truncation:
1921 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1922 */
1923 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1924 #endif
1925 strncpy (data + 56, va_arg (ap, const char *), 80);
1926 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1927 DIAGNOSTIC_POP;
1928 #endif
1929 va_end (ap);
1930 return elfcore_write_note (abfd, buf, bufsiz,
1931 "CORE", note_type, data, sizeof (data));
1932 }
1933
1934 case NT_PRSTATUS:
1935 {
1936 char data[504];
1937 va_list ap;
1938 long pid;
1939 int cursig;
1940 const void *greg;
1941
1942 va_start (ap, note_type);
1943 memset (data, 0, 112);
1944 pid = va_arg (ap, long);
1945 bfd_put_32 (abfd, pid, data + 32);
1946 cursig = va_arg (ap, int);
1947 bfd_put_16 (abfd, cursig, data + 12);
1948 greg = va_arg (ap, const void *);
1949 memcpy (data + 112, greg, 384);
1950 memset (data + 496, 0, 8);
1951 va_end (ap);
1952 return elfcore_write_note (abfd, buf, bufsiz,
1953 "CORE", note_type, data, sizeof (data));
1954 }
1955 }
1956 }
1957
1958 /* Add extra PPC sections. */
1959
1960 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1961 {
1962 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1963 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1964 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1965 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1966 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1967 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1968 { NULL, 0, 0, 0, 0 }
1969 };
1970
1971 enum _ppc64_sec_type {
1972 sec_normal = 0,
1973 sec_opd = 1,
1974 sec_toc = 2
1975 };
1976
1977 struct _ppc64_elf_section_data
1978 {
1979 struct bfd_elf_section_data elf;
1980
1981 union
1982 {
1983 /* An array with one entry for each opd function descriptor,
1984 and some spares since opd entries may be either 16 or 24 bytes. */
1985 #define OPD_NDX(OFF) ((OFF) >> 4)
1986 struct _opd_sec_data
1987 {
1988 /* Points to the function code section for local opd entries. */
1989 asection **func_sec;
1990
1991 /* After editing .opd, adjust references to opd local syms. */
1992 long *adjust;
1993 } opd;
1994
1995 /* An array for toc sections, indexed by offset/8. */
1996 struct _toc_sec_data
1997 {
1998 /* Specifies the relocation symbol index used at a given toc offset. */
1999 unsigned *symndx;
2000
2001 /* And the relocation addend. */
2002 bfd_vma *add;
2003 } toc;
2004 } u;
2005
2006 enum _ppc64_sec_type sec_type:2;
2007
2008 /* Flag set when small branches are detected. Used to
2009 select suitable defaults for the stub group size. */
2010 unsigned int has_14bit_branch:1;
2011
2012 /* Flag set when PLTCALL relocs are detected. */
2013 unsigned int has_pltcall:1;
2014
2015 /* Flag set when section has PLT/GOT/TOC relocations that can be
2016 optimised. */
2017 unsigned int has_optrel:1;
2018 };
2019
2020 #define ppc64_elf_section_data(sec) \
2021 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2022
2023 static bool
2024 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2025 {
2026 if (!sec->used_by_bfd)
2027 {
2028 struct _ppc64_elf_section_data *sdata;
2029 size_t amt = sizeof (*sdata);
2030
2031 sdata = bfd_zalloc (abfd, amt);
2032 if (sdata == NULL)
2033 return false;
2034 sec->used_by_bfd = sdata;
2035 }
2036
2037 return _bfd_elf_new_section_hook (abfd, sec);
2038 }
2039
2040 static bool
2041 ppc64_elf_section_flags (const Elf_Internal_Shdr *hdr)
2042 {
2043 const char *name = hdr->bfd_section->name;
2044
2045 if (startswith (name, ".sbss")
2046 || startswith (name, ".sdata"))
2047 hdr->bfd_section->flags |= SEC_SMALL_DATA;
2048
2049 return true;
2050 }
2051
2052 static struct _opd_sec_data *
2053 get_opd_info (asection * sec)
2054 {
2055 if (sec != NULL
2056 && ppc64_elf_section_data (sec) != NULL
2057 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2058 return &ppc64_elf_section_data (sec)->u.opd;
2059 return NULL;
2060 }
2061 \f
2062 /* Parameters for the qsort hook. */
2063 static bool synthetic_relocatable;
2064 static const asection *synthetic_opd;
2065
2066 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2067
2068 static int
2069 compare_symbols (const void *ap, const void *bp)
2070 {
2071 const asymbol *a = *(const asymbol **) ap;
2072 const asymbol *b = *(const asymbol **) bp;
2073
2074 /* Section symbols first. */
2075 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2076 return -1;
2077 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2078 return 1;
2079
2080 /* then .opd symbols. */
2081 if (synthetic_opd != NULL)
2082 {
2083 if (strcmp (a->section->name, ".opd") == 0
2084 && strcmp (b->section->name, ".opd") != 0)
2085 return -1;
2086 if (strcmp (a->section->name, ".opd") != 0
2087 && strcmp (b->section->name, ".opd") == 0)
2088 return 1;
2089 }
2090
2091 /* then other code symbols. */
2092 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2093 == (SEC_CODE | SEC_ALLOC))
2094 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2095 != (SEC_CODE | SEC_ALLOC)))
2096 return -1;
2097
2098 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2099 != (SEC_CODE | SEC_ALLOC))
2100 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2101 == (SEC_CODE | SEC_ALLOC)))
2102 return 1;
2103
2104 if (synthetic_relocatable)
2105 {
2106 if (a->section->id < b->section->id)
2107 return -1;
2108
2109 if (a->section->id > b->section->id)
2110 return 1;
2111 }
2112
2113 if (a->value + a->section->vma < b->value + b->section->vma)
2114 return -1;
2115
2116 if (a->value + a->section->vma > b->value + b->section->vma)
2117 return 1;
2118
2119 /* For syms with the same value, prefer strong dynamic global function
2120 syms over other syms. */
2121 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2122 return -1;
2123
2124 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2125 return 1;
2126
2127 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2128 return -1;
2129
2130 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2131 return 1;
2132
2133 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2134 return -1;
2135
2136 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2137 return 1;
2138
2139 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2140 return -1;
2141
2142 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2143 return 1;
2144
2145 /* Finally, sort on where the symbol is in memory. The symbols will
2146 be in at most two malloc'd blocks, one for static syms, one for
2147 dynamic syms, and we distinguish the two blocks above by testing
2148 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2149 originally in the same order as the symbols (and we're not
2150 sorting the symbols themselves), this ensures a stable sort. */
2151 if (a < b)
2152 return -1;
2153 if (a > b)
2154 return 1;
2155 return 0;
2156 }
2157
2158 /* Search SYMS for a symbol of the given VALUE. */
2159
2160 static asymbol *
2161 sym_exists_at (asymbol **syms, size_t lo, size_t hi, unsigned int id,
2162 bfd_vma value)
2163 {
2164 size_t mid;
2165
2166 if (id == (unsigned) -1)
2167 {
2168 while (lo < hi)
2169 {
2170 mid = (lo + hi) >> 1;
2171 if (syms[mid]->value + syms[mid]->section->vma < value)
2172 lo = mid + 1;
2173 else if (syms[mid]->value + syms[mid]->section->vma > value)
2174 hi = mid;
2175 else
2176 return syms[mid];
2177 }
2178 }
2179 else
2180 {
2181 while (lo < hi)
2182 {
2183 mid = (lo + hi) >> 1;
2184 if (syms[mid]->section->id < id)
2185 lo = mid + 1;
2186 else if (syms[mid]->section->id > id)
2187 hi = mid;
2188 else if (syms[mid]->value < value)
2189 lo = mid + 1;
2190 else if (syms[mid]->value > value)
2191 hi = mid;
2192 else
2193 return syms[mid];
2194 }
2195 }
2196 return NULL;
2197 }
2198
2199 static bool
2200 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2201 {
2202 bfd_vma vma = *(bfd_vma *) ptr;
2203 return ((section->flags & SEC_ALLOC) != 0
2204 && section->vma <= vma
2205 && vma < section->vma + section->size);
2206 }
2207
2208 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2209 entry syms. Also generate @plt symbols for the glink branch table.
2210 Returns count of synthetic symbols in RET or -1 on error. */
2211
2212 static long
2213 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2214 long static_count, asymbol **static_syms,
2215 long dyn_count, asymbol **dyn_syms,
2216 asymbol **ret)
2217 {
2218 asymbol *s;
2219 size_t i, j, count;
2220 char *names;
2221 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2222 asection *opd = NULL;
2223 bool relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2224 asymbol **syms;
2225 int abi = abiversion (abfd);
2226
2227 *ret = NULL;
2228
2229 if (abi < 2)
2230 {
2231 opd = bfd_get_section_by_name (abfd, ".opd");
2232 if (opd == NULL && abi == 1)
2233 return 0;
2234 }
2235
2236 syms = NULL;
2237 codesecsym = 0;
2238 codesecsymend = 0;
2239 secsymend = 0;
2240 opdsymend = 0;
2241 symcount = 0;
2242 if (opd != NULL)
2243 {
2244 symcount = static_count;
2245 if (!relocatable)
2246 symcount += dyn_count;
2247 if (symcount == 0)
2248 return 0;
2249
2250 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2251 if (syms == NULL)
2252 return -1;
2253
2254 if (!relocatable && static_count != 0 && dyn_count != 0)
2255 {
2256 /* Use both symbol tables. */
2257 memcpy (syms, static_syms, static_count * sizeof (*syms));
2258 memcpy (syms + static_count, dyn_syms,
2259 (dyn_count + 1) * sizeof (*syms));
2260 }
2261 else if (!relocatable && static_count == 0)
2262 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2263 else
2264 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2265
2266 /* Trim uninteresting symbols. Interesting symbols are section,
2267 function, and notype symbols. */
2268 for (i = 0, j = 0; i < symcount; ++i)
2269 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2270 | BSF_RELC | BSF_SRELC)) == 0)
2271 syms[j++] = syms[i];
2272 symcount = j;
2273
2274 synthetic_relocatable = relocatable;
2275 synthetic_opd = opd;
2276 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2277
2278 if (!relocatable && symcount > 1)
2279 {
2280 /* Trim duplicate syms, since we may have merged the normal
2281 and dynamic symbols. Actually, we only care about syms
2282 that have different values, so trim any with the same
2283 value. Don't consider ifunc and ifunc resolver symbols
2284 duplicates however, because GDB wants to know whether a
2285 text symbol is an ifunc resolver. */
2286 for (i = 1, j = 1; i < symcount; ++i)
2287 {
2288 const asymbol *s0 = syms[i - 1];
2289 const asymbol *s1 = syms[i];
2290
2291 if ((s0->value + s0->section->vma
2292 != s1->value + s1->section->vma)
2293 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2294 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2295 syms[j++] = syms[i];
2296 }
2297 symcount = j;
2298 }
2299
2300 i = 0;
2301 /* Note that here and in compare_symbols we can't compare opd and
2302 sym->section directly. With separate debug info files, the
2303 symbols will be extracted from the debug file while abfd passed
2304 to this function is the real binary. */
2305 if ((syms[i]->flags & BSF_SECTION_SYM) != 0
2306 && strcmp (syms[i]->section->name, ".opd") == 0)
2307 ++i;
2308 codesecsym = i;
2309
2310 for (; i < symcount; ++i)
2311 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2312 | SEC_THREAD_LOCAL))
2313 != (SEC_CODE | SEC_ALLOC))
2314 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2315 break;
2316 codesecsymend = i;
2317
2318 for (; i < symcount; ++i)
2319 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2320 break;
2321 secsymend = i;
2322
2323 for (; i < symcount; ++i)
2324 if (strcmp (syms[i]->section->name, ".opd") != 0)
2325 break;
2326 opdsymend = i;
2327
2328 for (; i < symcount; ++i)
2329 if (((syms[i]->section->flags
2330 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2331 != (SEC_CODE | SEC_ALLOC))
2332 break;
2333 symcount = i;
2334 }
2335 count = 0;
2336
2337 if (relocatable)
2338 {
2339 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
2340 arelent *r;
2341 size_t size;
2342 size_t relcount;
2343
2344 if (opdsymend == secsymend)
2345 goto done;
2346
2347 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2348 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2349 if (relcount == 0)
2350 goto done;
2351
2352 if (!(*slurp_relocs) (abfd, opd, static_syms, false))
2353 {
2354 count = -1;
2355 goto done;
2356 }
2357
2358 size = 0;
2359 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2360 {
2361 asymbol *sym;
2362
2363 while (r < opd->relocation + relcount
2364 && r->address < syms[i]->value + opd->vma)
2365 ++r;
2366
2367 if (r == opd->relocation + relcount)
2368 break;
2369
2370 if (r->address != syms[i]->value + opd->vma)
2371 continue;
2372
2373 if (r->howto->type != R_PPC64_ADDR64)
2374 continue;
2375
2376 sym = *r->sym_ptr_ptr;
2377 if (!sym_exists_at (syms, opdsymend, symcount,
2378 sym->section->id, sym->value + r->addend))
2379 {
2380 ++count;
2381 size += sizeof (asymbol);
2382 size += strlen (syms[i]->name) + 2;
2383 }
2384 }
2385
2386 if (size == 0)
2387 goto done;
2388 s = *ret = bfd_malloc (size);
2389 if (s == NULL)
2390 {
2391 count = -1;
2392 goto done;
2393 }
2394
2395 names = (char *) (s + count);
2396
2397 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2398 {
2399 asymbol *sym;
2400
2401 while (r < opd->relocation + relcount
2402 && r->address < syms[i]->value + opd->vma)
2403 ++r;
2404
2405 if (r == opd->relocation + relcount)
2406 break;
2407
2408 if (r->address != syms[i]->value + opd->vma)
2409 continue;
2410
2411 if (r->howto->type != R_PPC64_ADDR64)
2412 continue;
2413
2414 sym = *r->sym_ptr_ptr;
2415 if (!sym_exists_at (syms, opdsymend, symcount,
2416 sym->section->id, sym->value + r->addend))
2417 {
2418 size_t len;
2419
2420 *s = *syms[i];
2421 s->flags |= BSF_SYNTHETIC;
2422 s->section = sym->section;
2423 s->value = sym->value + r->addend;
2424 s->name = names;
2425 *names++ = '.';
2426 len = strlen (syms[i]->name);
2427 memcpy (names, syms[i]->name, len + 1);
2428 names += len + 1;
2429 /* Have udata.p point back to the original symbol this
2430 synthetic symbol was derived from. */
2431 s->udata.p = syms[i];
2432 s++;
2433 }
2434 }
2435 }
2436 else
2437 {
2438 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
2439 bfd_byte *contents = NULL;
2440 size_t size;
2441 size_t plt_count = 0;
2442 bfd_vma glink_vma = 0, resolv_vma = 0;
2443 asection *dynamic, *glink = NULL, *relplt = NULL;
2444 arelent *p;
2445
2446 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2447 {
2448 free_contents_and_exit_err:
2449 count = -1;
2450 free_contents_and_exit:
2451 free (contents);
2452 goto done;
2453 }
2454
2455 size = 0;
2456 for (i = secsymend; i < opdsymend; ++i)
2457 {
2458 bfd_vma ent;
2459
2460 /* Ignore bogus symbols. */
2461 if (syms[i]->value > opd->size - 8)
2462 continue;
2463
2464 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2465 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2466 {
2467 ++count;
2468 size += sizeof (asymbol);
2469 size += strlen (syms[i]->name) + 2;
2470 }
2471 }
2472
2473 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2474 if (dyn_count != 0
2475 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2476 {
2477 bfd_byte *dynbuf, *extdyn, *extdynend;
2478 size_t extdynsize;
2479 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2480
2481 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2482 goto free_contents_and_exit_err;
2483
2484 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2485 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2486
2487 extdyn = dynbuf;
2488 extdynend = extdyn + dynamic->size;
2489 for (; extdyn < extdynend; extdyn += extdynsize)
2490 {
2491 Elf_Internal_Dyn dyn;
2492 (*swap_dyn_in) (abfd, extdyn, &dyn);
2493
2494 if (dyn.d_tag == DT_NULL)
2495 break;
2496
2497 if (dyn.d_tag == DT_PPC64_GLINK)
2498 {
2499 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2500 See comment in ppc64_elf_finish_dynamic_sections. */
2501 glink_vma = dyn.d_un.d_val + 8 * 4;
2502 /* The .glink section usually does not survive the final
2503 link; search for the section (usually .text) where the
2504 glink stubs now reside. */
2505 glink = bfd_sections_find_if (abfd, section_covers_vma,
2506 &glink_vma);
2507 break;
2508 }
2509 }
2510
2511 free (dynbuf);
2512 }
2513
2514 if (glink != NULL)
2515 {
2516 /* Determine __glink trampoline by reading the relative branch
2517 from the first glink stub. */
2518 bfd_byte buf[4];
2519 unsigned int off = 0;
2520
2521 while (bfd_get_section_contents (abfd, glink, buf,
2522 glink_vma + off - glink->vma, 4))
2523 {
2524 unsigned int insn = bfd_get_32 (abfd, buf);
2525 insn ^= B_DOT;
2526 if ((insn & ~0x3fffffc) == 0)
2527 {
2528 resolv_vma
2529 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2530 break;
2531 }
2532 off += 4;
2533 if (off > 4)
2534 break;
2535 }
2536
2537 if (resolv_vma)
2538 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2539
2540 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2541 if (relplt != NULL)
2542 {
2543 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2544 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, true))
2545 goto free_contents_and_exit_err;
2546
2547 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2548 size += plt_count * sizeof (asymbol);
2549
2550 p = relplt->relocation;
2551 for (i = 0; i < plt_count; i++, p++)
2552 {
2553 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2554 if (p->addend != 0)
2555 size += sizeof ("+0x") - 1 + 16;
2556 }
2557 }
2558 }
2559
2560 if (size == 0)
2561 goto free_contents_and_exit;
2562 s = *ret = bfd_malloc (size);
2563 if (s == NULL)
2564 goto free_contents_and_exit_err;
2565
2566 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2567
2568 for (i = secsymend; i < opdsymend; ++i)
2569 {
2570 bfd_vma ent;
2571
2572 if (syms[i]->value > opd->size - 8)
2573 continue;
2574
2575 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2576 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2577 {
2578 size_t lo, hi;
2579 size_t len;
2580 asection *sec = abfd->sections;
2581
2582 *s = *syms[i];
2583 lo = codesecsym;
2584 hi = codesecsymend;
2585 while (lo < hi)
2586 {
2587 size_t mid = (lo + hi) >> 1;
2588 if (syms[mid]->section->vma < ent)
2589 lo = mid + 1;
2590 else if (syms[mid]->section->vma > ent)
2591 hi = mid;
2592 else
2593 {
2594 sec = syms[mid]->section;
2595 break;
2596 }
2597 }
2598
2599 if (lo >= hi && lo > codesecsym)
2600 sec = syms[lo - 1]->section;
2601
2602 for (; sec != NULL; sec = sec->next)
2603 {
2604 if (sec->vma > ent)
2605 break;
2606 /* SEC_LOAD may not be set if SEC is from a separate debug
2607 info file. */
2608 if ((sec->flags & SEC_ALLOC) == 0)
2609 break;
2610 if ((sec->flags & SEC_CODE) != 0)
2611 s->section = sec;
2612 }
2613 s->flags |= BSF_SYNTHETIC;
2614 s->value = ent - s->section->vma;
2615 s->name = names;
2616 *names++ = '.';
2617 len = strlen (syms[i]->name);
2618 memcpy (names, syms[i]->name, len + 1);
2619 names += len + 1;
2620 /* Have udata.p point back to the original symbol this
2621 synthetic symbol was derived from. */
2622 s->udata.p = syms[i];
2623 s++;
2624 }
2625 }
2626 free (contents);
2627
2628 if (glink != NULL && relplt != NULL)
2629 {
2630 if (resolv_vma)
2631 {
2632 /* Add a symbol for the main glink trampoline. */
2633 memset (s, 0, sizeof *s);
2634 s->the_bfd = abfd;
2635 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2636 s->section = glink;
2637 s->value = resolv_vma - glink->vma;
2638 s->name = names;
2639 memcpy (names, "__glink_PLTresolve",
2640 sizeof ("__glink_PLTresolve"));
2641 names += sizeof ("__glink_PLTresolve");
2642 s++;
2643 count++;
2644 }
2645
2646 /* FIXME: It would be very much nicer to put sym@plt on the
2647 stub rather than on the glink branch table entry. The
2648 objdump disassembler would then use a sensible symbol
2649 name on plt calls. The difficulty in doing so is
2650 a) finding the stubs, and,
2651 b) matching stubs against plt entries, and,
2652 c) there can be multiple stubs for a given plt entry.
2653
2654 Solving (a) could be done by code scanning, but older
2655 ppc64 binaries used different stubs to current code.
2656 (b) is the tricky one since you need to known the toc
2657 pointer for at least one function that uses a pic stub to
2658 be able to calculate the plt address referenced.
2659 (c) means gdb would need to set multiple breakpoints (or
2660 find the glink branch itself) when setting breakpoints
2661 for pending shared library loads. */
2662 p = relplt->relocation;
2663 for (i = 0; i < plt_count; i++, p++)
2664 {
2665 size_t len;
2666
2667 *s = **p->sym_ptr_ptr;
2668 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2669 we are defining a symbol, ensure one of them is set. */
2670 if ((s->flags & BSF_LOCAL) == 0)
2671 s->flags |= BSF_GLOBAL;
2672 s->flags |= BSF_SYNTHETIC;
2673 s->section = glink;
2674 s->value = glink_vma - glink->vma;
2675 s->name = names;
2676 s->udata.p = NULL;
2677 len = strlen ((*p->sym_ptr_ptr)->name);
2678 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2679 names += len;
2680 if (p->addend != 0)
2681 {
2682 memcpy (names, "+0x", sizeof ("+0x") - 1);
2683 names += sizeof ("+0x") - 1;
2684 bfd_sprintf_vma (abfd, names, p->addend);
2685 names += strlen (names);
2686 }
2687 memcpy (names, "@plt", sizeof ("@plt"));
2688 names += sizeof ("@plt");
2689 s++;
2690 if (abi < 2)
2691 {
2692 glink_vma += 8;
2693 if (i >= 0x8000)
2694 glink_vma += 4;
2695 }
2696 else
2697 glink_vma += 4;
2698 }
2699 count += plt_count;
2700 }
2701 }
2702
2703 done:
2704 free (syms);
2705 return count;
2706 }
2707 \f
2708 /* The following functions are specific to the ELF linker, while
2709 functions above are used generally. Those named ppc64_elf_* are
2710 called by the main ELF linker code. They appear in this file more
2711 or less in the order in which they are called. eg.
2712 ppc64_elf_check_relocs is called early in the link process,
2713 ppc64_elf_finish_dynamic_sections is one of the last functions
2714 called.
2715
2716 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2717 functions have both a function code symbol and a function descriptor
2718 symbol. A call to foo in a relocatable object file looks like:
2719
2720 . .text
2721 . x:
2722 . bl .foo
2723 . nop
2724
2725 The function definition in another object file might be:
2726
2727 . .section .opd
2728 . foo: .quad .foo
2729 . .quad .TOC.@tocbase
2730 . .quad 0
2731 .
2732 . .text
2733 . .foo: blr
2734
2735 When the linker resolves the call during a static link, the branch
2736 unsurprisingly just goes to .foo and the .opd information is unused.
2737 If the function definition is in a shared library, things are a little
2738 different: The call goes via a plt call stub, the opd information gets
2739 copied to the plt, and the linker patches the nop.
2740
2741 . x:
2742 . bl .foo_stub
2743 . ld 2,40(1)
2744 .
2745 .
2746 . .foo_stub:
2747 . std 2,40(1) # in practice, the call stub
2748 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2749 . addi 11,11,Lfoo@toc@l # this is the general idea
2750 . ld 12,0(11)
2751 . ld 2,8(11)
2752 . mtctr 12
2753 . ld 11,16(11)
2754 . bctr
2755 .
2756 . .section .plt
2757 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2758
2759 The "reloc ()" notation is supposed to indicate that the linker emits
2760 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2761 copying.
2762
2763 What are the difficulties here? Well, firstly, the relocations
2764 examined by the linker in check_relocs are against the function code
2765 sym .foo, while the dynamic relocation in the plt is emitted against
2766 the function descriptor symbol, foo. Somewhere along the line, we need
2767 to carefully copy dynamic link information from one symbol to the other.
2768 Secondly, the generic part of the elf linker will make .foo a dynamic
2769 symbol as is normal for most other backends. We need foo dynamic
2770 instead, at least for an application final link. However, when
2771 creating a shared library containing foo, we need to have both symbols
2772 dynamic so that references to .foo are satisfied during the early
2773 stages of linking. Otherwise the linker might decide to pull in a
2774 definition from some other object, eg. a static library.
2775
2776 Update: As of August 2004, we support a new convention. Function
2777 calls may use the function descriptor symbol, ie. "bl foo". This
2778 behaves exactly as "bl .foo". */
2779
2780 /* Of those relocs that might be copied as dynamic relocs, this
2781 function selects those that must be copied when linking a shared
2782 library or PIE, even when the symbol is local. */
2783
2784 static int
2785 must_be_dyn_reloc (struct bfd_link_info *info,
2786 enum elf_ppc64_reloc_type r_type)
2787 {
2788 switch (r_type)
2789 {
2790 default:
2791 /* Only relative relocs can be resolved when the object load
2792 address isn't fixed. DTPREL64 is excluded because the
2793 dynamic linker needs to differentiate global dynamic from
2794 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2795 return 1;
2796
2797 case R_PPC64_REL32:
2798 case R_PPC64_REL64:
2799 case R_PPC64_REL30:
2800 case R_PPC64_TOC16:
2801 case R_PPC64_TOC16_DS:
2802 case R_PPC64_TOC16_LO:
2803 case R_PPC64_TOC16_HI:
2804 case R_PPC64_TOC16_HA:
2805 case R_PPC64_TOC16_LO_DS:
2806 return 0;
2807
2808 case R_PPC64_TPREL16:
2809 case R_PPC64_TPREL16_LO:
2810 case R_PPC64_TPREL16_HI:
2811 case R_PPC64_TPREL16_HA:
2812 case R_PPC64_TPREL16_DS:
2813 case R_PPC64_TPREL16_LO_DS:
2814 case R_PPC64_TPREL16_HIGH:
2815 case R_PPC64_TPREL16_HIGHA:
2816 case R_PPC64_TPREL16_HIGHER:
2817 case R_PPC64_TPREL16_HIGHERA:
2818 case R_PPC64_TPREL16_HIGHEST:
2819 case R_PPC64_TPREL16_HIGHESTA:
2820 case R_PPC64_TPREL64:
2821 case R_PPC64_TPREL34:
2822 /* These relocations are relative but in a shared library the
2823 linker doesn't know the thread pointer base. */
2824 return bfd_link_dll (info);
2825 }
2826 }
2827
2828 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2829 copying dynamic variables from a shared lib into an app's .dynbss
2830 section, and instead use a dynamic relocation to point into the
2831 shared lib. With code that gcc generates it is vital that this be
2832 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2833 actually the address of a function descriptor which resides in the
2834 .opd section. gcc uses the descriptor directly rather than going
2835 via the GOT as some other ABIs do, which means that initialized
2836 function pointers reference the descriptor. Thus, a function
2837 pointer initialized to the address of a function in a shared
2838 library will either require a .dynbss copy and a copy reloc, or a
2839 dynamic reloc. Using a .dynbss copy redefines the function
2840 descriptor symbol to point to the copy. This presents a problem as
2841 a PLT entry for that function is also initialized from the function
2842 descriptor symbol and the copy may not be initialized first. */
2843 #define ELIMINATE_COPY_RELOCS 1
2844
2845 /* Section name for stubs is the associated section name plus this
2846 string. */
2847 #define STUB_SUFFIX ".stub"
2848
2849 /* Linker stubs.
2850 ppc_stub_long_branch:
2851 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2852 destination, but a 24 bit branch in a stub section will reach.
2853 . b dest
2854
2855 ppc_stub_plt_branch:
2856 Similar to the above, but a 24 bit branch in the stub section won't
2857 reach its destination.
2858 . addis %r12,%r2,xxx@toc@ha
2859 . ld %r12,xxx@toc@l(%r12)
2860 . mtctr %r12
2861 . bctr
2862
2863 ppc_stub_plt_call:
2864 Used to call a function in a shared library. If it so happens that
2865 the plt entry referenced crosses a 64k boundary, then an extra
2866 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2867 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2868 . addis %r11,%r2,xxx@toc@ha
2869 . ld %r12,xxx+0@toc@l(%r11)
2870 . mtctr %r12
2871 . ld %r2,xxx+8@toc@l(%r11)
2872 . ld %r11,xxx+16@toc@l(%r11)
2873 . bctr
2874
2875 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2876 code to adjust the value and save r2 to support multiple toc sections.
2877 A ppc_stub_long_branch with an r2 offset looks like:
2878 . std %r2,40(%r1)
2879 . addis %r2,%r2,off@ha
2880 . addi %r2,%r2,off@l
2881 . b dest
2882
2883 A ppc_stub_plt_branch with an r2 offset looks like:
2884 . std %r2,40(%r1)
2885 . addis %r12,%r2,xxx@toc@ha
2886 . ld %r12,xxx@toc@l(%r12)
2887 . addis %r2,%r2,off@ha
2888 . addi %r2,%r2,off@l
2889 . mtctr %r12
2890 . bctr
2891
2892 All of the above stubs are shown as their ELFv1 variants. ELFv2
2893 variants exist too, simpler for plt calls since a new toc pointer
2894 and static chain are not loaded by the stub. In addition, ELFv2
2895 has some more complex stubs to handle calls marked with NOTOC
2896 relocs from functions where r2 is not a valid toc pointer. These
2897 come in two flavours, the ones shown below, and _both variants that
2898 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2899 one call is from a function where r2 is used as the toc pointer but
2900 needs a toc adjusting stub for small-model multi-toc, and another
2901 call is from a function where r2 is not valid.
2902 ppc_stub_long_branch_notoc:
2903 . mflr %r12
2904 . bcl 20,31,1f
2905 . 1:
2906 . mflr %r11
2907 . mtlr %r12
2908 . addis %r12,%r11,dest-1b@ha
2909 . addi %r12,%r12,dest-1b@l
2910 . b dest
2911
2912 ppc_stub_plt_branch_notoc:
2913 . mflr %r12
2914 . bcl 20,31,1f
2915 . 1:
2916 . mflr %r11
2917 . mtlr %r12
2918 . lis %r12,xxx-1b@highest
2919 . ori %r12,%r12,xxx-1b@higher
2920 . sldi %r12,%r12,32
2921 . oris %r12,%r12,xxx-1b@high
2922 . ori %r12,%r12,xxx-1b@l
2923 . add %r12,%r11,%r12
2924 . mtctr %r12
2925 . bctr
2926
2927 ppc_stub_plt_call_notoc:
2928 . mflr %r12
2929 . bcl 20,31,1f
2930 . 1:
2931 . mflr %r11
2932 . mtlr %r12
2933 . lis %r12,xxx-1b@highest
2934 . ori %r12,%r12,xxx-1b@higher
2935 . sldi %r12,%r12,32
2936 . oris %r12,%r12,xxx-1b@high
2937 . ori %r12,%r12,xxx-1b@l
2938 . ldx %r12,%r11,%r12
2939 . mtctr %r12
2940 . bctr
2941
2942 There are also ELFv1 power10 variants of these stubs.
2943 ppc_stub_long_branch_notoc:
2944 . pla %r12,dest@pcrel
2945 . b dest
2946 ppc_stub_plt_branch_notoc:
2947 . lis %r11,(dest-1f)@highesta34
2948 . ori %r11,%r11,(dest-1f)@highera34
2949 . sldi %r11,%r11,34
2950 . 1: pla %r12,dest@pcrel
2951 . add %r12,%r11,%r12
2952 . mtctr %r12
2953 . bctr
2954 ppc_stub_plt_call_notoc:
2955 . lis %r11,(xxx-1f)@highesta34
2956 . ori %r11,%r11,(xxx-1f)@highera34
2957 . sldi %r11,%r11,34
2958 . 1: pla %r12,xxx@pcrel
2959 . ldx %r12,%r11,%r12
2960 . mtctr %r12
2961 . bctr
2962
2963 In cases where the high instructions would add zero, they are
2964 omitted and following instructions modified in some cases.
2965 For example, a power10 ppc_stub_plt_call_notoc might simplify down
2966 to
2967 . pld %r12,xxx@pcrel
2968 . mtctr %r12
2969 . bctr
2970
2971 For a given stub group (a set of sections all using the same toc
2972 pointer value) there will be just one stub type used for any
2973 particular function symbol. For example, if printf is called from
2974 code with the tocsave optimization (ie. r2 saved in function
2975 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2976 and from other code without the tocsave optimization requiring a
2977 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2978 type will be created. Calls with the tocsave optimization will
2979 enter this stub after the instruction saving r2. A similar
2980 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2981 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2982 to call an external function like printf. If other calls to printf
2983 require a ppc_stub_plt_call linkage stub then a single
2984 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2985 call. If other calls to printf require a ppc_stub_plt_call_r2save
2986 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2987 be created and calls not requiring r2 to be saved will enter the
2988 stub after the r2 save instruction. There is an analogous
2989 hierarchy of long branch and plt branch stubs for local call
2990 linkage. */
2991
2992 enum ppc_stub_type
2993 {
2994 ppc_stub_none,
2995 ppc_stub_long_branch,
2996 ppc_stub_long_branch_r2off,
2997 ppc_stub_long_branch_notoc,
2998 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2999 ppc_stub_plt_branch,
3000 ppc_stub_plt_branch_r2off,
3001 ppc_stub_plt_branch_notoc,
3002 ppc_stub_plt_branch_both,
3003 ppc_stub_plt_call,
3004 ppc_stub_plt_call_r2save,
3005 ppc_stub_plt_call_notoc,
3006 ppc_stub_plt_call_both,
3007 ppc_stub_global_entry,
3008 ppc_stub_save_res
3009 };
3010
3011 /* Information on stub grouping. */
3012 struct map_stub
3013 {
3014 /* The stub section. */
3015 asection *stub_sec;
3016 /* This is the section to which stubs in the group will be attached. */
3017 asection *link_sec;
3018 /* Next group. */
3019 struct map_stub *next;
3020 /* Whether to emit a copy of register save/restore functions in this
3021 group. */
3022 int needs_save_res;
3023 /* Current offset within stubs after the insn restoring lr in a
3024 _notoc or _both stub using bcl for pc-relative addressing, or
3025 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3026 unsigned int lr_restore;
3027 /* Accumulated size of EH info emitted to describe return address
3028 if stubs modify lr. Does not include 17 byte FDE header. */
3029 unsigned int eh_size;
3030 /* Offset in glink_eh_frame to the start of EH info for this group. */
3031 unsigned int eh_base;
3032 };
3033
3034 struct ppc_stub_hash_entry
3035 {
3036 /* Base hash table entry structure. */
3037 struct bfd_hash_entry root;
3038
3039 enum ppc_stub_type stub_type;
3040
3041 /* Group information. */
3042 struct map_stub *group;
3043
3044 /* Offset within stub_sec of the beginning of this stub. */
3045 bfd_vma stub_offset;
3046
3047 /* Given the symbol's value and its section we can determine its final
3048 value when building the stubs (so the stub knows where to jump. */
3049 bfd_vma target_value;
3050 asection *target_section;
3051
3052 /* The symbol table entry, if any, that this was derived from. */
3053 struct ppc_link_hash_entry *h;
3054 struct plt_entry *plt_ent;
3055
3056 /* Symbol type. */
3057 unsigned char symtype;
3058
3059 /* Symbol st_other. */
3060 unsigned char other;
3061 };
3062
3063 struct ppc_branch_hash_entry
3064 {
3065 /* Base hash table entry structure. */
3066 struct bfd_hash_entry root;
3067
3068 /* Offset within branch lookup table. */
3069 unsigned int offset;
3070
3071 /* Generation marker. */
3072 unsigned int iter;
3073 };
3074
3075 /* Used to track dynamic relocations for local symbols. */
3076 struct ppc_dyn_relocs
3077 {
3078 struct ppc_dyn_relocs *next;
3079
3080 /* The input section of the reloc. */
3081 asection *sec;
3082
3083 /* Total number of relocs copied for the input section. */
3084 unsigned int count : 31;
3085
3086 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3087 unsigned int ifunc : 1;
3088 };
3089
3090 struct ppc_link_hash_entry
3091 {
3092 struct elf_link_hash_entry elf;
3093
3094 union
3095 {
3096 /* A pointer to the most recently used stub hash entry against this
3097 symbol. */
3098 struct ppc_stub_hash_entry *stub_cache;
3099
3100 /* A pointer to the next symbol starting with a '.' */
3101 struct ppc_link_hash_entry *next_dot_sym;
3102 } u;
3103
3104 /* Link between function code and descriptor symbols. */
3105 struct ppc_link_hash_entry *oh;
3106
3107 /* Flag function code and descriptor symbols. */
3108 unsigned int is_func:1;
3109 unsigned int is_func_descriptor:1;
3110 unsigned int fake:1;
3111
3112 /* Whether global opd/toc sym has been adjusted or not.
3113 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3114 should be set for all globals defined in any opd/toc section. */
3115 unsigned int adjust_done:1;
3116
3117 /* Set if this is an out-of-line register save/restore function,
3118 with non-standard calling convention. */
3119 unsigned int save_res:1;
3120
3121 /* Set if a duplicate symbol with non-zero localentry is detected,
3122 even when the duplicate symbol does not provide a definition. */
3123 unsigned int non_zero_localentry:1;
3124
3125 /* Contexts in which symbol is used in the GOT (or TOC).
3126 Bits are or'd into the mask as the corresponding relocs are
3127 encountered during check_relocs, with TLS_TLS being set when any
3128 of the other TLS bits are set. tls_optimize clears bits when
3129 optimizing to indicate the corresponding GOT entry type is not
3130 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3131 set TLS_GDIE when a GD reloc turns into an IE one.
3132 These flags are also kept for local symbols. */
3133 #define TLS_TLS 1 /* Any TLS reloc. */
3134 #define TLS_GD 2 /* GD reloc. */
3135 #define TLS_LD 4 /* LD reloc. */
3136 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3137 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3138 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3139 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3140 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3141 unsigned char tls_mask;
3142
3143 /* The above field is also used to mark function symbols. In which
3144 case TLS_TLS will be 0. */
3145 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3146 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3147 #define NON_GOT 256 /* local symbol plt, not stored. */
3148 };
3149
3150 static inline struct ppc_link_hash_entry *
3151 ppc_elf_hash_entry (struct elf_link_hash_entry *ent)
3152 {
3153 return (struct ppc_link_hash_entry *) ent;
3154 }
3155
3156 static inline struct elf_link_hash_entry *
3157 elf_hash_entry (struct ppc_link_hash_entry *ent)
3158 {
3159 return (struct elf_link_hash_entry *) ent;
3160 }
3161
3162 /* ppc64 ELF linker hash table. */
3163
3164 struct ppc_link_hash_table
3165 {
3166 struct elf_link_hash_table elf;
3167
3168 /* The stub hash table. */
3169 struct bfd_hash_table stub_hash_table;
3170
3171 /* Another hash table for plt_branch stubs. */
3172 struct bfd_hash_table branch_hash_table;
3173
3174 /* Hash table for function prologue tocsave. */
3175 htab_t tocsave_htab;
3176
3177 /* Various options and other info passed from the linker. */
3178 struct ppc64_elf_params *params;
3179
3180 /* The size of sec_info below. */
3181 unsigned int sec_info_arr_size;
3182
3183 /* Per-section array of extra section info. Done this way rather
3184 than as part of ppc64_elf_section_data so we have the info for
3185 non-ppc64 sections. */
3186 struct
3187 {
3188 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3189 bfd_vma toc_off;
3190
3191 union
3192 {
3193 /* The section group that this section belongs to. */
3194 struct map_stub *group;
3195 /* A temp section list pointer. */
3196 asection *list;
3197 } u;
3198 } *sec_info;
3199
3200 /* Linked list of groups. */
3201 struct map_stub *group;
3202
3203 /* Temp used when calculating TOC pointers. */
3204 bfd_vma toc_curr;
3205 bfd *toc_bfd;
3206 asection *toc_first_sec;
3207
3208 /* Used when adding symbols. */
3209 struct ppc_link_hash_entry *dot_syms;
3210
3211 /* Shortcuts to get to dynamic linker sections. */
3212 asection *glink;
3213 asection *global_entry;
3214 asection *sfpr;
3215 asection *pltlocal;
3216 asection *relpltlocal;
3217 asection *brlt;
3218 asection *relbrlt;
3219 asection *glink_eh_frame;
3220
3221 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3222 struct ppc_link_hash_entry *tls_get_addr;
3223 struct ppc_link_hash_entry *tls_get_addr_fd;
3224 struct ppc_link_hash_entry *tga_desc;
3225 struct ppc_link_hash_entry *tga_desc_fd;
3226 struct map_stub *tga_group;
3227
3228 /* The size of reliplt used by got entry relocs. */
3229 bfd_size_type got_reli_size;
3230
3231 /* Statistics. */
3232 unsigned long stub_count[ppc_stub_global_entry];
3233
3234 /* Number of stubs against global syms. */
3235 unsigned long stub_globals;
3236
3237 /* Set if we're linking code with function descriptors. */
3238 unsigned int opd_abi:1;
3239
3240 /* Support for multiple toc sections. */
3241 unsigned int do_multi_toc:1;
3242 unsigned int multi_toc_needed:1;
3243 unsigned int second_toc_pass:1;
3244 unsigned int do_toc_opt:1;
3245
3246 /* Set if tls optimization is enabled. */
3247 unsigned int do_tls_opt:1;
3248
3249 /* Set if inline plt calls should be converted to direct calls. */
3250 unsigned int can_convert_all_inline_plt:1;
3251
3252 /* Set on error. */
3253 unsigned int stub_error:1;
3254
3255 /* Whether func_desc_adjust needs to be run over symbols. */
3256 unsigned int need_func_desc_adj:1;
3257
3258 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3259 unsigned int has_plt_localentry0:1;
3260
3261 /* Whether calls are made via the PLT from NOTOC functions. */
3262 unsigned int notoc_plt:1;
3263
3264 /* Whether any code linked seems to be Power10. */
3265 unsigned int has_power10_relocs:1;
3266
3267 /* Incremented every time we size stubs. */
3268 unsigned int stub_iteration;
3269 };
3270
3271 /* Rename some of the generic section flags to better document how they
3272 are used here. */
3273
3274 /* Nonzero if this section has TLS related relocations. */
3275 #define has_tls_reloc sec_flg0
3276
3277 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3278 relocations. */
3279 #define nomark_tls_get_addr sec_flg1
3280
3281 /* Nonzero if this section has any toc or got relocs. */
3282 #define has_toc_reloc sec_flg2
3283
3284 /* Nonzero if this section has a call to another section that uses
3285 the toc or got. */
3286 #define makes_toc_func_call sec_flg3
3287
3288 /* Recursion protection when determining above flag. */
3289 #define call_check_in_progress sec_flg4
3290 #define call_check_done sec_flg5
3291
3292 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3293
3294 #define ppc_hash_table(p) \
3295 ((is_elf_hash_table ((p)->hash) \
3296 && elf_hash_table_id (elf_hash_table (p)) == PPC64_ELF_DATA) \
3297 ? (struct ppc_link_hash_table *) (p)->hash : NULL)
3298
3299 #define ppc_stub_hash_lookup(table, string, create, copy) \
3300 ((struct ppc_stub_hash_entry *) \
3301 bfd_hash_lookup ((table), (string), (create), (copy)))
3302
3303 #define ppc_branch_hash_lookup(table, string, create, copy) \
3304 ((struct ppc_branch_hash_entry *) \
3305 bfd_hash_lookup ((table), (string), (create), (copy)))
3306
3307 /* Create an entry in the stub hash table. */
3308
3309 static struct bfd_hash_entry *
3310 stub_hash_newfunc (struct bfd_hash_entry *entry,
3311 struct bfd_hash_table *table,
3312 const char *string)
3313 {
3314 /* Allocate the structure if it has not already been allocated by a
3315 subclass. */
3316 if (entry == NULL)
3317 {
3318 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3319 if (entry == NULL)
3320 return entry;
3321 }
3322
3323 /* Call the allocation method of the superclass. */
3324 entry = bfd_hash_newfunc (entry, table, string);
3325 if (entry != NULL)
3326 {
3327 struct ppc_stub_hash_entry *eh;
3328
3329 /* Initialize the local fields. */
3330 eh = (struct ppc_stub_hash_entry *) entry;
3331 eh->stub_type = ppc_stub_none;
3332 eh->group = NULL;
3333 eh->stub_offset = 0;
3334 eh->target_value = 0;
3335 eh->target_section = NULL;
3336 eh->h = NULL;
3337 eh->plt_ent = NULL;
3338 eh->other = 0;
3339 }
3340
3341 return entry;
3342 }
3343
3344 /* Create an entry in the branch hash table. */
3345
3346 static struct bfd_hash_entry *
3347 branch_hash_newfunc (struct bfd_hash_entry *entry,
3348 struct bfd_hash_table *table,
3349 const char *string)
3350 {
3351 /* Allocate the structure if it has not already been allocated by a
3352 subclass. */
3353 if (entry == NULL)
3354 {
3355 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3356 if (entry == NULL)
3357 return entry;
3358 }
3359
3360 /* Call the allocation method of the superclass. */
3361 entry = bfd_hash_newfunc (entry, table, string);
3362 if (entry != NULL)
3363 {
3364 struct ppc_branch_hash_entry *eh;
3365
3366 /* Initialize the local fields. */
3367 eh = (struct ppc_branch_hash_entry *) entry;
3368 eh->offset = 0;
3369 eh->iter = 0;
3370 }
3371
3372 return entry;
3373 }
3374
3375 /* Create an entry in a ppc64 ELF linker hash table. */
3376
3377 static struct bfd_hash_entry *
3378 link_hash_newfunc (struct bfd_hash_entry *entry,
3379 struct bfd_hash_table *table,
3380 const char *string)
3381 {
3382 /* Allocate the structure if it has not already been allocated by a
3383 subclass. */
3384 if (entry == NULL)
3385 {
3386 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3387 if (entry == NULL)
3388 return entry;
3389 }
3390
3391 /* Call the allocation method of the superclass. */
3392 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3393 if (entry != NULL)
3394 {
3395 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3396
3397 memset (&eh->u.stub_cache, 0,
3398 (sizeof (struct ppc_link_hash_entry)
3399 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3400
3401 /* When making function calls, old ABI code references function entry
3402 points (dot symbols), while new ABI code references the function
3403 descriptor symbol. We need to make any combination of reference and
3404 definition work together, without breaking archive linking.
3405
3406 For a defined function "foo" and an undefined call to "bar":
3407 An old object defines "foo" and ".foo", references ".bar" (possibly
3408 "bar" too).
3409 A new object defines "foo" and references "bar".
3410
3411 A new object thus has no problem with its undefined symbols being
3412 satisfied by definitions in an old object. On the other hand, the
3413 old object won't have ".bar" satisfied by a new object.
3414
3415 Keep a list of newly added dot-symbols. */
3416
3417 if (string[0] == '.')
3418 {
3419 struct ppc_link_hash_table *htab;
3420
3421 htab = (struct ppc_link_hash_table *) table;
3422 eh->u.next_dot_sym = htab->dot_syms;
3423 htab->dot_syms = eh;
3424 }
3425 }
3426
3427 return entry;
3428 }
3429
3430 struct tocsave_entry
3431 {
3432 asection *sec;
3433 bfd_vma offset;
3434 };
3435
3436 static hashval_t
3437 tocsave_htab_hash (const void *p)
3438 {
3439 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3440 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3441 }
3442
3443 static int
3444 tocsave_htab_eq (const void *p1, const void *p2)
3445 {
3446 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3447 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3448 return e1->sec == e2->sec && e1->offset == e2->offset;
3449 }
3450
3451 /* Destroy a ppc64 ELF linker hash table. */
3452
3453 static void
3454 ppc64_elf_link_hash_table_free (bfd *obfd)
3455 {
3456 struct ppc_link_hash_table *htab;
3457
3458 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3459 if (htab->tocsave_htab)
3460 htab_delete (htab->tocsave_htab);
3461 bfd_hash_table_free (&htab->branch_hash_table);
3462 bfd_hash_table_free (&htab->stub_hash_table);
3463 _bfd_elf_link_hash_table_free (obfd);
3464 }
3465
3466 /* Create a ppc64 ELF linker hash table. */
3467
3468 static struct bfd_link_hash_table *
3469 ppc64_elf_link_hash_table_create (bfd *abfd)
3470 {
3471 struct ppc_link_hash_table *htab;
3472 size_t amt = sizeof (struct ppc_link_hash_table);
3473
3474 htab = bfd_zmalloc (amt);
3475 if (htab == NULL)
3476 return NULL;
3477
3478 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3479 sizeof (struct ppc_link_hash_entry),
3480 PPC64_ELF_DATA))
3481 {
3482 free (htab);
3483 return NULL;
3484 }
3485
3486 /* Init the stub hash table too. */
3487 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3488 sizeof (struct ppc_stub_hash_entry)))
3489 {
3490 _bfd_elf_link_hash_table_free (abfd);
3491 return NULL;
3492 }
3493
3494 /* And the branch hash table. */
3495 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3496 sizeof (struct ppc_branch_hash_entry)))
3497 {
3498 bfd_hash_table_free (&htab->stub_hash_table);
3499 _bfd_elf_link_hash_table_free (abfd);
3500 return NULL;
3501 }
3502
3503 htab->tocsave_htab = htab_try_create (1024,
3504 tocsave_htab_hash,
3505 tocsave_htab_eq,
3506 NULL);
3507 if (htab->tocsave_htab == NULL)
3508 {
3509 ppc64_elf_link_hash_table_free (abfd);
3510 return NULL;
3511 }
3512 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3513
3514 /* Initializing two fields of the union is just cosmetic. We really
3515 only care about glist, but when compiled on a 32-bit host the
3516 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3517 debugger inspection of these fields look nicer. */
3518 htab->elf.init_got_refcount.refcount = 0;
3519 htab->elf.init_got_refcount.glist = NULL;
3520 htab->elf.init_plt_refcount.refcount = 0;
3521 htab->elf.init_plt_refcount.glist = NULL;
3522 htab->elf.init_got_offset.offset = 0;
3523 htab->elf.init_got_offset.glist = NULL;
3524 htab->elf.init_plt_offset.offset = 0;
3525 htab->elf.init_plt_offset.glist = NULL;
3526
3527 return &htab->elf.root;
3528 }
3529
3530 /* Create sections for linker generated code. */
3531
3532 static bool
3533 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3534 {
3535 struct ppc_link_hash_table *htab;
3536 flagword flags;
3537
3538 htab = ppc_hash_table (info);
3539
3540 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3541 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3542 if (htab->params->save_restore_funcs)
3543 {
3544 /* Create .sfpr for code to save and restore fp regs. */
3545 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3546 flags);
3547 if (htab->sfpr == NULL
3548 || !bfd_set_section_alignment (htab->sfpr, 2))
3549 return false;
3550 }
3551
3552 if (bfd_link_relocatable (info))
3553 return true;
3554
3555 /* Create .glink for lazy dynamic linking support. */
3556 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3557 flags);
3558 if (htab->glink == NULL
3559 || !bfd_set_section_alignment (htab->glink, 3))
3560 return false;
3561
3562 /* The part of .glink used by global entry stubs, separate so that
3563 it can be aligned appropriately without affecting htab->glink. */
3564 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3565 flags);
3566 if (htab->global_entry == NULL
3567 || !bfd_set_section_alignment (htab->global_entry, 2))
3568 return false;
3569
3570 if (!info->no_ld_generated_unwind_info)
3571 {
3572 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3573 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3574 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3575 ".eh_frame",
3576 flags);
3577 if (htab->glink_eh_frame == NULL
3578 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3579 return false;
3580 }
3581
3582 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3583 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3584 if (htab->elf.iplt == NULL
3585 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3586 return false;
3587
3588 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3589 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3590 htab->elf.irelplt
3591 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3592 if (htab->elf.irelplt == NULL
3593 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3594 return false;
3595
3596 /* Create branch lookup table for plt_branch stubs. */
3597 flags = (SEC_ALLOC | SEC_LOAD
3598 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3599 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3600 flags);
3601 if (htab->brlt == NULL
3602 || !bfd_set_section_alignment (htab->brlt, 3))
3603 return false;
3604
3605 /* Local plt entries, put in .branch_lt but a separate section for
3606 convenience. */
3607 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3608 flags);
3609 if (htab->pltlocal == NULL
3610 || !bfd_set_section_alignment (htab->pltlocal, 3))
3611 return false;
3612
3613 if (!bfd_link_pic (info))
3614 return true;
3615
3616 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3617 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3618 htab->relbrlt
3619 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3620 if (htab->relbrlt == NULL
3621 || !bfd_set_section_alignment (htab->relbrlt, 3))
3622 return false;
3623
3624 htab->relpltlocal
3625 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3626 if (htab->relpltlocal == NULL
3627 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3628 return false;
3629
3630 return true;
3631 }
3632
3633 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3634
3635 bool
3636 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3637 struct ppc64_elf_params *params)
3638 {
3639 struct ppc_link_hash_table *htab;
3640
3641 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3642
3643 /* Always hook our dynamic sections into the first bfd, which is the
3644 linker created stub bfd. This ensures that the GOT header is at
3645 the start of the output TOC section. */
3646 htab = ppc_hash_table (info);
3647 htab->elf.dynobj = params->stub_bfd;
3648 htab->params = params;
3649
3650 return create_linkage_sections (htab->elf.dynobj, info);
3651 }
3652
3653 /* Build a name for an entry in the stub hash table. */
3654
3655 static char *
3656 ppc_stub_name (const asection *input_section,
3657 const asection *sym_sec,
3658 const struct ppc_link_hash_entry *h,
3659 const Elf_Internal_Rela *rel)
3660 {
3661 char *stub_name;
3662 ssize_t len;
3663
3664 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3665 offsets from a sym as a branch target? In fact, we could
3666 probably assume the addend is always zero. */
3667 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3668
3669 if (h)
3670 {
3671 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3672 stub_name = bfd_malloc (len);
3673 if (stub_name == NULL)
3674 return stub_name;
3675
3676 len = sprintf (stub_name, "%08x.%s+%x",
3677 input_section->id & 0xffffffff,
3678 h->elf.root.root.string,
3679 (int) rel->r_addend & 0xffffffff);
3680 }
3681 else
3682 {
3683 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3684 stub_name = bfd_malloc (len);
3685 if (stub_name == NULL)
3686 return stub_name;
3687
3688 len = sprintf (stub_name, "%08x.%x:%x+%x",
3689 input_section->id & 0xffffffff,
3690 sym_sec->id & 0xffffffff,
3691 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3692 (int) rel->r_addend & 0xffffffff);
3693 }
3694 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3695 stub_name[len - 2] = 0;
3696 return stub_name;
3697 }
3698
3699 /* If mixing power10 with non-power10 code and --power10-stubs is not
3700 specified (or is auto) then calls using @notoc relocations that
3701 need a stub will utilize power10 instructions in the stub, and
3702 calls without @notoc relocations will not use power10 instructions.
3703 The two classes of stubs are stored in separate stub_hash_table
3704 entries having the same key string. The two entries will always be
3705 adjacent on entry->root.next chain, even if hash table resizing
3706 occurs. This function selects the correct entry to use. */
3707
3708 static struct ppc_stub_hash_entry *
3709 select_alt_stub (struct ppc_stub_hash_entry *entry, bool notoc)
3710 {
3711 bool have_notoc;
3712
3713 have_notoc = (entry->stub_type == ppc_stub_plt_call_notoc
3714 || entry->stub_type == ppc_stub_plt_branch_notoc
3715 || entry->stub_type == ppc_stub_long_branch_notoc);
3716
3717 if (have_notoc != notoc)
3718 {
3719 const char *stub_name = entry->root.string;
3720
3721 entry = (struct ppc_stub_hash_entry *) entry->root.next;
3722 if (entry != NULL
3723 && entry->root.string != stub_name)
3724 entry = NULL;
3725 }
3726
3727 return entry;
3728 }
3729
3730 /* Look up an entry in the stub hash. Stub entries are cached because
3731 creating the stub name takes a bit of time. */
3732
3733 static struct ppc_stub_hash_entry *
3734 ppc_get_stub_entry (const asection *input_section,
3735 const asection *sym_sec,
3736 struct ppc_link_hash_entry *h,
3737 const Elf_Internal_Rela *rel,
3738 struct ppc_link_hash_table *htab)
3739 {
3740 struct ppc_stub_hash_entry *stub_entry;
3741 struct map_stub *group;
3742
3743 /* If this input section is part of a group of sections sharing one
3744 stub section, then use the id of the first section in the group.
3745 Stub names need to include a section id, as there may well be
3746 more than one stub used to reach say, printf, and we need to
3747 distinguish between them. */
3748 group = htab->sec_info[input_section->id].u.group;
3749 if (group == NULL)
3750 return NULL;
3751
3752 if (h != NULL && h->u.stub_cache != NULL
3753 && h->u.stub_cache->h == h
3754 && h->u.stub_cache->group == group)
3755 {
3756 stub_entry = h->u.stub_cache;
3757 }
3758 else
3759 {
3760 char *stub_name;
3761
3762 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3763 if (stub_name == NULL)
3764 return NULL;
3765
3766 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3767 stub_name, false, false);
3768 if (h != NULL)
3769 h->u.stub_cache = stub_entry;
3770
3771 free (stub_name);
3772 }
3773
3774 if (stub_entry != NULL && htab->params->power10_stubs == -1)
3775 {
3776 bool notoc = ELF64_R_TYPE (rel->r_info) == R_PPC64_REL24_NOTOC;
3777
3778 stub_entry = select_alt_stub (stub_entry, notoc);
3779 }
3780
3781 return stub_entry;
3782 }
3783
3784 /* Add a new stub entry to the stub hash. Not all fields of the new
3785 stub entry are initialised. */
3786
3787 static struct ppc_stub_hash_entry *
3788 ppc_add_stub (const char *stub_name,
3789 asection *section,
3790 struct bfd_link_info *info)
3791 {
3792 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3793 struct map_stub *group;
3794 asection *link_sec;
3795 asection *stub_sec;
3796 struct ppc_stub_hash_entry *stub_entry;
3797
3798 group = htab->sec_info[section->id].u.group;
3799 link_sec = group->link_sec;
3800 stub_sec = group->stub_sec;
3801 if (stub_sec == NULL)
3802 {
3803 size_t namelen;
3804 bfd_size_type len;
3805 char *s_name;
3806
3807 namelen = strlen (link_sec->name);
3808 len = namelen + sizeof (STUB_SUFFIX);
3809 s_name = bfd_alloc (htab->params->stub_bfd, len);
3810 if (s_name == NULL)
3811 return NULL;
3812
3813 memcpy (s_name, link_sec->name, namelen);
3814 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3815 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3816 if (stub_sec == NULL)
3817 return NULL;
3818 group->stub_sec = stub_sec;
3819 }
3820
3821 /* Enter this entry into the linker stub hash table. */
3822 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3823 true, false);
3824 if (stub_entry == NULL)
3825 {
3826 /* xgettext:c-format */
3827 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3828 section->owner, stub_name);
3829 return NULL;
3830 }
3831
3832 stub_entry->group = group;
3833 stub_entry->stub_offset = 0;
3834 return stub_entry;
3835 }
3836
3837 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3838 not already done. */
3839
3840 static bool
3841 create_got_section (bfd *abfd, struct bfd_link_info *info)
3842 {
3843 asection *got, *relgot;
3844 flagword flags;
3845 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3846
3847 if (!is_ppc64_elf (abfd))
3848 return false;
3849 if (htab == NULL)
3850 return false;
3851
3852 if (!htab->elf.sgot
3853 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3854 return false;
3855
3856 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3857 | SEC_LINKER_CREATED);
3858
3859 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3860 if (!got
3861 || !bfd_set_section_alignment (got, 3))
3862 return false;
3863
3864 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3865 flags | SEC_READONLY);
3866 if (!relgot
3867 || !bfd_set_section_alignment (relgot, 3))
3868 return false;
3869
3870 ppc64_elf_tdata (abfd)->got = got;
3871 ppc64_elf_tdata (abfd)->relgot = relgot;
3872 return true;
3873 }
3874
3875 /* Follow indirect and warning symbol links. */
3876
3877 static inline struct bfd_link_hash_entry *
3878 follow_link (struct bfd_link_hash_entry *h)
3879 {
3880 while (h->type == bfd_link_hash_indirect
3881 || h->type == bfd_link_hash_warning)
3882 h = h->u.i.link;
3883 return h;
3884 }
3885
3886 static inline struct elf_link_hash_entry *
3887 elf_follow_link (struct elf_link_hash_entry *h)
3888 {
3889 return (struct elf_link_hash_entry *) follow_link (&h->root);
3890 }
3891
3892 static inline struct ppc_link_hash_entry *
3893 ppc_follow_link (struct ppc_link_hash_entry *h)
3894 {
3895 return ppc_elf_hash_entry (elf_follow_link (&h->elf));
3896 }
3897
3898 /* Merge PLT info on FROM with that on TO. */
3899
3900 static void
3901 move_plt_plist (struct ppc_link_hash_entry *from,
3902 struct ppc_link_hash_entry *to)
3903 {
3904 if (from->elf.plt.plist != NULL)
3905 {
3906 if (to->elf.plt.plist != NULL)
3907 {
3908 struct plt_entry **entp;
3909 struct plt_entry *ent;
3910
3911 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3912 {
3913 struct plt_entry *dent;
3914
3915 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3916 if (dent->addend == ent->addend)
3917 {
3918 dent->plt.refcount += ent->plt.refcount;
3919 *entp = ent->next;
3920 break;
3921 }
3922 if (dent == NULL)
3923 entp = &ent->next;
3924 }
3925 *entp = to->elf.plt.plist;
3926 }
3927
3928 to->elf.plt.plist = from->elf.plt.plist;
3929 from->elf.plt.plist = NULL;
3930 }
3931 }
3932
3933 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3934
3935 static void
3936 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3937 struct elf_link_hash_entry *dir,
3938 struct elf_link_hash_entry *ind)
3939 {
3940 struct ppc_link_hash_entry *edir, *eind;
3941
3942 edir = ppc_elf_hash_entry (dir);
3943 eind = ppc_elf_hash_entry (ind);
3944
3945 edir->is_func |= eind->is_func;
3946 edir->is_func_descriptor |= eind->is_func_descriptor;
3947 edir->tls_mask |= eind->tls_mask;
3948 if (eind->oh != NULL)
3949 edir->oh = ppc_follow_link (eind->oh);
3950
3951 if (edir->elf.versioned != versioned_hidden)
3952 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3953 edir->elf.ref_regular |= eind->elf.ref_regular;
3954 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3955 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3956 edir->elf.needs_plt |= eind->elf.needs_plt;
3957 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3958
3959 /* If we were called to copy over info for a weak sym, don't copy
3960 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3961 in order to simplify readonly_dynrelocs and save a field in the
3962 symbol hash entry, but that means dyn_relocs can't be used in any
3963 tests about a specific symbol, or affect other symbol flags which
3964 are then tested. */
3965 if (eind->elf.root.type != bfd_link_hash_indirect)
3966 return;
3967
3968 /* Copy over any dynamic relocs we may have on the indirect sym. */
3969 if (ind->dyn_relocs != NULL)
3970 {
3971 if (dir->dyn_relocs != NULL)
3972 {
3973 struct elf_dyn_relocs **pp;
3974 struct elf_dyn_relocs *p;
3975
3976 /* Add reloc counts against the indirect sym to the direct sym
3977 list. Merge any entries against the same section. */
3978 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
3979 {
3980 struct elf_dyn_relocs *q;
3981
3982 for (q = dir->dyn_relocs; q != NULL; q = q->next)
3983 if (q->sec == p->sec)
3984 {
3985 q->pc_count += p->pc_count;
3986 q->count += p->count;
3987 *pp = p->next;
3988 break;
3989 }
3990 if (q == NULL)
3991 pp = &p->next;
3992 }
3993 *pp = dir->dyn_relocs;
3994 }
3995
3996 dir->dyn_relocs = ind->dyn_relocs;
3997 ind->dyn_relocs = NULL;
3998 }
3999
4000 /* Copy over got entries that we may have already seen to the
4001 symbol which just became indirect. */
4002 if (eind->elf.got.glist != NULL)
4003 {
4004 if (edir->elf.got.glist != NULL)
4005 {
4006 struct got_entry **entp;
4007 struct got_entry *ent;
4008
4009 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4010 {
4011 struct got_entry *dent;
4012
4013 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4014 if (dent->addend == ent->addend
4015 && dent->owner == ent->owner
4016 && dent->tls_type == ent->tls_type)
4017 {
4018 dent->got.refcount += ent->got.refcount;
4019 *entp = ent->next;
4020 break;
4021 }
4022 if (dent == NULL)
4023 entp = &ent->next;
4024 }
4025 *entp = edir->elf.got.glist;
4026 }
4027
4028 edir->elf.got.glist = eind->elf.got.glist;
4029 eind->elf.got.glist = NULL;
4030 }
4031
4032 /* And plt entries. */
4033 move_plt_plist (eind, edir);
4034
4035 if (eind->elf.dynindx != -1)
4036 {
4037 if (edir->elf.dynindx != -1)
4038 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4039 edir->elf.dynstr_index);
4040 edir->elf.dynindx = eind->elf.dynindx;
4041 edir->elf.dynstr_index = eind->elf.dynstr_index;
4042 eind->elf.dynindx = -1;
4043 eind->elf.dynstr_index = 0;
4044 }
4045 }
4046
4047 /* Find the function descriptor hash entry from the given function code
4048 hash entry FH. Link the entries via their OH fields. */
4049
4050 static struct ppc_link_hash_entry *
4051 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4052 {
4053 struct ppc_link_hash_entry *fdh = fh->oh;
4054
4055 if (fdh == NULL)
4056 {
4057 const char *fd_name = fh->elf.root.root.string + 1;
4058
4059 fdh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, fd_name,
4060 false, false, false));
4061 if (fdh == NULL)
4062 return fdh;
4063
4064 fdh->is_func_descriptor = 1;
4065 fdh->oh = fh;
4066 fh->is_func = 1;
4067 fh->oh = fdh;
4068 }
4069
4070 fdh = ppc_follow_link (fdh);
4071 fdh->is_func_descriptor = 1;
4072 fdh->oh = fh;
4073 return fdh;
4074 }
4075
4076 /* Make a fake function descriptor sym for the undefined code sym FH. */
4077
4078 static struct ppc_link_hash_entry *
4079 make_fdh (struct bfd_link_info *info,
4080 struct ppc_link_hash_entry *fh)
4081 {
4082 bfd *abfd = fh->elf.root.u.undef.abfd;
4083 struct bfd_link_hash_entry *bh = NULL;
4084 struct ppc_link_hash_entry *fdh;
4085 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
4086 ? BSF_WEAK
4087 : BSF_GLOBAL);
4088
4089 if (!_bfd_generic_link_add_one_symbol (info, abfd,
4090 fh->elf.root.root.string + 1,
4091 flags, bfd_und_section_ptr, 0,
4092 NULL, false, false, &bh))
4093 return NULL;
4094
4095 fdh = (struct ppc_link_hash_entry *) bh;
4096 fdh->elf.non_elf = 0;
4097 fdh->fake = 1;
4098 fdh->is_func_descriptor = 1;
4099 fdh->oh = fh;
4100 fh->is_func = 1;
4101 fh->oh = fdh;
4102 return fdh;
4103 }
4104
4105 /* Fix function descriptor symbols defined in .opd sections to be
4106 function type. */
4107
4108 static bool
4109 ppc64_elf_add_symbol_hook (bfd *ibfd,
4110 struct bfd_link_info *info,
4111 Elf_Internal_Sym *isym,
4112 const char **name,
4113 flagword *flags ATTRIBUTE_UNUSED,
4114 asection **sec,
4115 bfd_vma *value)
4116 {
4117 if (*sec != NULL
4118 && strcmp ((*sec)->name, ".opd") == 0)
4119 {
4120 asection *code_sec;
4121
4122 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4123 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4124 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4125
4126 /* If the symbol is a function defined in .opd, and the function
4127 code is in a discarded group, let it appear to be undefined. */
4128 if (!bfd_link_relocatable (info)
4129 && (*sec)->reloc_count != 0
4130 && opd_entry_value (*sec, *value, &code_sec, NULL,
4131 false) != (bfd_vma) -1
4132 && discarded_section (code_sec))
4133 {
4134 *sec = bfd_und_section_ptr;
4135 isym->st_shndx = SHN_UNDEF;
4136 }
4137 }
4138 else if (*sec != NULL
4139 && strcmp ((*sec)->name, ".toc") == 0
4140 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4141 {
4142 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4143 if (htab != NULL)
4144 htab->params->object_in_toc = 1;
4145 }
4146
4147 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4148 {
4149 if (abiversion (ibfd) == 0)
4150 set_abiversion (ibfd, 2);
4151 else if (abiversion (ibfd) == 1)
4152 {
4153 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4154 " for ABI version 1"), *name);
4155 bfd_set_error (bfd_error_bad_value);
4156 return false;
4157 }
4158 }
4159
4160 return true;
4161 }
4162
4163 /* Merge non-visibility st_other attributes: local entry point. */
4164
4165 static void
4166 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4167 unsigned int st_other,
4168 bool definition,
4169 bool dynamic)
4170 {
4171 if (definition && (!dynamic || !h->def_regular))
4172 h->other = ((st_other & ~ELF_ST_VISIBILITY (-1))
4173 | ELF_ST_VISIBILITY (h->other));
4174 }
4175
4176 /* Hook called on merging a symbol. We use this to clear "fake" since
4177 we now have a real symbol. */
4178
4179 static bool
4180 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4181 const Elf_Internal_Sym *isym,
4182 asection **psec ATTRIBUTE_UNUSED,
4183 bool newdef ATTRIBUTE_UNUSED,
4184 bool olddef ATTRIBUTE_UNUSED,
4185 bfd *oldbfd ATTRIBUTE_UNUSED,
4186 const asection *oldsec ATTRIBUTE_UNUSED)
4187 {
4188 ppc_elf_hash_entry (h)->fake = 0;
4189 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4190 ppc_elf_hash_entry (h)->non_zero_localentry = 1;
4191 return true;
4192 }
4193
4194 /* This function makes an old ABI object reference to ".bar" cause the
4195 inclusion of a new ABI object archive that defines "bar".
4196 NAME is a symbol defined in an archive. Return a symbol in the hash
4197 table that might be satisfied by the archive symbols. */
4198
4199 static struct bfd_link_hash_entry *
4200 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4201 struct bfd_link_info *info,
4202 const char *name)
4203 {
4204 struct bfd_link_hash_entry *h;
4205 char *dot_name;
4206 size_t len;
4207
4208 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4209 if (h != NULL
4210 && ppc_hash_table (info) != NULL
4211 /* Don't return this sym if it is a fake function descriptor
4212 created by add_symbol_adjust. */
4213 && !((struct ppc_link_hash_entry *) h)->fake)
4214 return h;
4215
4216 if (name[0] == '.')
4217 return h;
4218
4219 len = strlen (name);
4220 dot_name = bfd_alloc (abfd, len + 2);
4221 if (dot_name == NULL)
4222 return (struct bfd_link_hash_entry *) -1;
4223 dot_name[0] = '.';
4224 memcpy (dot_name + 1, name, len + 1);
4225 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4226 bfd_release (abfd, dot_name);
4227 if (h != NULL)
4228 return h;
4229
4230 if (strcmp (name, "__tls_get_addr_opt") == 0)
4231 h = _bfd_elf_archive_symbol_lookup (abfd, info, "__tls_get_addr_desc");
4232 return h;
4233 }
4234
4235 /* This function satisfies all old ABI object references to ".bar" if a
4236 new ABI object defines "bar". Well, at least, undefined dot symbols
4237 are made weak. This stops later archive searches from including an
4238 object if we already have a function descriptor definition. It also
4239 prevents the linker complaining about undefined symbols.
4240 We also check and correct mismatched symbol visibility here. The
4241 most restrictive visibility of the function descriptor and the
4242 function entry symbol is used. */
4243
4244 static bool
4245 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4246 {
4247 struct ppc_link_hash_table *htab;
4248 struct ppc_link_hash_entry *fdh;
4249
4250 if (eh->elf.root.type == bfd_link_hash_warning)
4251 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4252
4253 if (eh->elf.root.type == bfd_link_hash_indirect)
4254 return true;
4255
4256 if (eh->elf.root.root.string[0] != '.')
4257 abort ();
4258
4259 htab = ppc_hash_table (info);
4260 if (htab == NULL)
4261 return false;
4262
4263 fdh = lookup_fdh (eh, htab);
4264 if (fdh == NULL
4265 && !bfd_link_relocatable (info)
4266 && (eh->elf.root.type == bfd_link_hash_undefined
4267 || eh->elf.root.type == bfd_link_hash_undefweak)
4268 && eh->elf.ref_regular)
4269 {
4270 /* Make an undefined function descriptor sym, in order to
4271 pull in an --as-needed shared lib. Archives are handled
4272 elsewhere. */
4273 fdh = make_fdh (info, eh);
4274 if (fdh == NULL)
4275 return false;
4276 }
4277
4278 if (fdh != NULL)
4279 {
4280 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4281 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4282
4283 /* Make both descriptor and entry symbol have the most
4284 constraining visibility of either symbol. */
4285 if (entry_vis < descr_vis)
4286 fdh->elf.other += entry_vis - descr_vis;
4287 else if (entry_vis > descr_vis)
4288 eh->elf.other += descr_vis - entry_vis;
4289
4290 /* Propagate reference flags from entry symbol to function
4291 descriptor symbol. */
4292 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4293 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4294 fdh->elf.ref_regular |= eh->elf.ref_regular;
4295 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4296
4297 if (!fdh->elf.forced_local
4298 && fdh->elf.dynindx == -1
4299 && fdh->elf.versioned != versioned_hidden
4300 && (bfd_link_dll (info)
4301 || fdh->elf.def_dynamic
4302 || fdh->elf.ref_dynamic)
4303 && (eh->elf.ref_regular
4304 || eh->elf.def_regular))
4305 {
4306 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4307 return false;
4308 }
4309 }
4310
4311 return true;
4312 }
4313
4314 /* Set up opd section info and abiversion for IBFD, and process list
4315 of dot-symbols we made in link_hash_newfunc. */
4316
4317 static bool
4318 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4319 {
4320 struct ppc_link_hash_table *htab;
4321 struct ppc_link_hash_entry **p, *eh;
4322 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4323
4324 if (opd != NULL && opd->size != 0)
4325 {
4326 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4327 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4328
4329 if (abiversion (ibfd) == 0)
4330 set_abiversion (ibfd, 1);
4331 else if (abiversion (ibfd) >= 2)
4332 {
4333 /* xgettext:c-format */
4334 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4335 ibfd, abiversion (ibfd));
4336 bfd_set_error (bfd_error_bad_value);
4337 return false;
4338 }
4339 }
4340
4341 if (is_ppc64_elf (info->output_bfd))
4342 {
4343 /* For input files without an explicit abiversion in e_flags
4344 we should have flagged any with symbol st_other bits set
4345 as ELFv1 and above flagged those with .opd as ELFv2.
4346 Set the output abiversion if not yet set, and for any input
4347 still ambiguous, take its abiversion from the output.
4348 Differences in ABI are reported later. */
4349 if (abiversion (info->output_bfd) == 0)
4350 set_abiversion (info->output_bfd, abiversion (ibfd));
4351 else if (abiversion (ibfd) == 0)
4352 set_abiversion (ibfd, abiversion (info->output_bfd));
4353 }
4354
4355 htab = ppc_hash_table (info);
4356 if (htab == NULL)
4357 return true;
4358
4359 if (opd != NULL && opd->size != 0
4360 && (ibfd->flags & DYNAMIC) == 0
4361 && (opd->flags & SEC_RELOC) != 0
4362 && opd->reloc_count != 0
4363 && !bfd_is_abs_section (opd->output_section)
4364 && info->gc_sections)
4365 {
4366 /* Garbage collection needs some extra help with .opd sections.
4367 We don't want to necessarily keep everything referenced by
4368 relocs in .opd, as that would keep all functions. Instead,
4369 if we reference an .opd symbol (a function descriptor), we
4370 want to keep the function code symbol's section. This is
4371 easy for global symbols, but for local syms we need to keep
4372 information about the associated function section. */
4373 bfd_size_type amt;
4374 asection **opd_sym_map;
4375 Elf_Internal_Shdr *symtab_hdr;
4376 Elf_Internal_Rela *relocs, *rel_end, *rel;
4377
4378 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4379 opd_sym_map = bfd_zalloc (ibfd, amt);
4380 if (opd_sym_map == NULL)
4381 return false;
4382 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4383 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4384 info->keep_memory);
4385 if (relocs == NULL)
4386 return false;
4387 symtab_hdr = &elf_symtab_hdr (ibfd);
4388 rel_end = relocs + opd->reloc_count - 1;
4389 for (rel = relocs; rel < rel_end; rel++)
4390 {
4391 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4392 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4393
4394 if (r_type == R_PPC64_ADDR64
4395 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4396 && r_symndx < symtab_hdr->sh_info)
4397 {
4398 Elf_Internal_Sym *isym;
4399 asection *s;
4400
4401 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, ibfd,
4402 r_symndx);
4403 if (isym == NULL)
4404 {
4405 if (elf_section_data (opd)->relocs != relocs)
4406 free (relocs);
4407 return false;
4408 }
4409
4410 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4411 if (s != NULL && s != opd)
4412 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4413 }
4414 }
4415 if (elf_section_data (opd)->relocs != relocs)
4416 free (relocs);
4417 }
4418
4419 p = &htab->dot_syms;
4420 while ((eh = *p) != NULL)
4421 {
4422 *p = NULL;
4423 if (&eh->elf == htab->elf.hgot)
4424 ;
4425 else if (htab->elf.hgot == NULL
4426 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4427 htab->elf.hgot = &eh->elf;
4428 else if (abiversion (ibfd) <= 1)
4429 {
4430 htab->need_func_desc_adj = 1;
4431 if (!add_symbol_adjust (eh, info))
4432 return false;
4433 }
4434 p = &eh->u.next_dot_sym;
4435 }
4436 return true;
4437 }
4438
4439 /* Undo hash table changes when an --as-needed input file is determined
4440 not to be needed. */
4441
4442 static bool
4443 ppc64_elf_notice_as_needed (bfd *ibfd,
4444 struct bfd_link_info *info,
4445 enum notice_asneeded_action act)
4446 {
4447 if (act == notice_not_needed)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450
4451 if (htab == NULL)
4452 return false;
4453
4454 htab->dot_syms = NULL;
4455 }
4456 return _bfd_elf_notice_as_needed (ibfd, info, act);
4457 }
4458
4459 /* If --just-symbols against a final linked binary, then assume we need
4460 toc adjusting stubs when calling functions defined there. */
4461
4462 static void
4463 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4464 {
4465 if ((sec->flags & SEC_CODE) != 0
4466 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4467 && is_ppc64_elf (sec->owner))
4468 {
4469 if (abiversion (sec->owner) >= 2
4470 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4471 sec->has_toc_reloc = 1;
4472 }
4473 _bfd_elf_link_just_syms (sec, info);
4474 }
4475
4476 static struct plt_entry **
4477 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4478 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4479 {
4480 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4481 struct plt_entry **local_plt;
4482 unsigned char *local_got_tls_masks;
4483
4484 if (local_got_ents == NULL)
4485 {
4486 bfd_size_type size = symtab_hdr->sh_info;
4487
4488 size *= (sizeof (*local_got_ents)
4489 + sizeof (*local_plt)
4490 + sizeof (*local_got_tls_masks));
4491 local_got_ents = bfd_zalloc (abfd, size);
4492 if (local_got_ents == NULL)
4493 return NULL;
4494 elf_local_got_ents (abfd) = local_got_ents;
4495 }
4496
4497 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4498 {
4499 struct got_entry *ent;
4500
4501 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4502 if (ent->addend == r_addend
4503 && ent->owner == abfd
4504 && ent->tls_type == tls_type)
4505 break;
4506 if (ent == NULL)
4507 {
4508 size_t amt = sizeof (*ent);
4509 ent = bfd_alloc (abfd, amt);
4510 if (ent == NULL)
4511 return false;
4512 ent->next = local_got_ents[r_symndx];
4513 ent->addend = r_addend;
4514 ent->owner = abfd;
4515 ent->tls_type = tls_type;
4516 ent->is_indirect = false;
4517 ent->got.refcount = 0;
4518 local_got_ents[r_symndx] = ent;
4519 }
4520 ent->got.refcount += 1;
4521 }
4522
4523 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4524 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4525 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4526
4527 return local_plt + r_symndx;
4528 }
4529
4530 static bool
4531 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4532 {
4533 struct plt_entry *ent;
4534
4535 for (ent = *plist; ent != NULL; ent = ent->next)
4536 if (ent->addend == addend)
4537 break;
4538 if (ent == NULL)
4539 {
4540 size_t amt = sizeof (*ent);
4541 ent = bfd_alloc (abfd, amt);
4542 if (ent == NULL)
4543 return false;
4544 ent->next = *plist;
4545 ent->addend = addend;
4546 ent->plt.refcount = 0;
4547 *plist = ent;
4548 }
4549 ent->plt.refcount += 1;
4550 return true;
4551 }
4552
4553 static bool
4554 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4555 {
4556 return (r_type == R_PPC64_REL24
4557 || r_type == R_PPC64_REL24_NOTOC
4558 || r_type == R_PPC64_REL14
4559 || r_type == R_PPC64_REL14_BRTAKEN
4560 || r_type == R_PPC64_REL14_BRNTAKEN
4561 || r_type == R_PPC64_ADDR24
4562 || r_type == R_PPC64_ADDR14
4563 || r_type == R_PPC64_ADDR14_BRTAKEN
4564 || r_type == R_PPC64_ADDR14_BRNTAKEN
4565 || r_type == R_PPC64_PLTCALL
4566 || r_type == R_PPC64_PLTCALL_NOTOC);
4567 }
4568
4569 /* Relocs on inline plt call sequence insns prior to the call. */
4570
4571 static bool
4572 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4573 {
4574 return (r_type == R_PPC64_PLT16_HA
4575 || r_type == R_PPC64_PLT16_HI
4576 || r_type == R_PPC64_PLT16_LO
4577 || r_type == R_PPC64_PLT16_LO_DS
4578 || r_type == R_PPC64_PLT_PCREL34
4579 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4580 || r_type == R_PPC64_PLTSEQ
4581 || r_type == R_PPC64_PLTSEQ_NOTOC);
4582 }
4583
4584 /* Look through the relocs for a section during the first phase, and
4585 calculate needed space in the global offset table, procedure
4586 linkage table, and dynamic reloc sections. */
4587
4588 static bool
4589 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4590 asection *sec, const Elf_Internal_Rela *relocs)
4591 {
4592 struct ppc_link_hash_table *htab;
4593 Elf_Internal_Shdr *symtab_hdr;
4594 struct elf_link_hash_entry **sym_hashes;
4595 const Elf_Internal_Rela *rel;
4596 const Elf_Internal_Rela *rel_end;
4597 asection *sreloc;
4598 struct elf_link_hash_entry *tga, *dottga;
4599 bool is_opd;
4600
4601 if (bfd_link_relocatable (info))
4602 return true;
4603
4604 BFD_ASSERT (is_ppc64_elf (abfd));
4605
4606 htab = ppc_hash_table (info);
4607 if (htab == NULL)
4608 return false;
4609
4610 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4611 false, false, true);
4612 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4613 false, false, true);
4614 symtab_hdr = &elf_symtab_hdr (abfd);
4615 sym_hashes = elf_sym_hashes (abfd);
4616 sreloc = NULL;
4617 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4618 rel_end = relocs + sec->reloc_count;
4619 for (rel = relocs; rel < rel_end; rel++)
4620 {
4621 unsigned long r_symndx;
4622 struct elf_link_hash_entry *h;
4623 enum elf_ppc64_reloc_type r_type;
4624 int tls_type;
4625 struct _ppc64_elf_section_data *ppc64_sec;
4626 struct plt_entry **ifunc, **plt_list;
4627
4628 r_symndx = ELF64_R_SYM (rel->r_info);
4629 if (r_symndx < symtab_hdr->sh_info)
4630 h = NULL;
4631 else
4632 {
4633 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4634 h = elf_follow_link (h);
4635
4636 if (h == htab->elf.hgot)
4637 sec->has_toc_reloc = 1;
4638 }
4639
4640 r_type = ELF64_R_TYPE (rel->r_info);
4641 switch (r_type)
4642 {
4643 case R_PPC64_D34:
4644 case R_PPC64_D34_LO:
4645 case R_PPC64_D34_HI30:
4646 case R_PPC64_D34_HA30:
4647 case R_PPC64_D28:
4648 case R_PPC64_TPREL34:
4649 case R_PPC64_DTPREL34:
4650 case R_PPC64_PCREL34:
4651 case R_PPC64_GOT_PCREL34:
4652 case R_PPC64_GOT_TLSGD_PCREL34:
4653 case R_PPC64_GOT_TLSLD_PCREL34:
4654 case R_PPC64_GOT_TPREL_PCREL34:
4655 case R_PPC64_GOT_DTPREL_PCREL34:
4656 case R_PPC64_PLT_PCREL34:
4657 case R_PPC64_PLT_PCREL34_NOTOC:
4658 case R_PPC64_PCREL28:
4659 htab->has_power10_relocs = 1;
4660 break;
4661 default:
4662 break;
4663 }
4664
4665 switch (r_type)
4666 {
4667 case R_PPC64_PLT16_HA:
4668 case R_PPC64_GOT_TLSLD16_HA:
4669 case R_PPC64_GOT_TLSGD16_HA:
4670 case R_PPC64_GOT_TPREL16_HA:
4671 case R_PPC64_GOT_DTPREL16_HA:
4672 case R_PPC64_GOT16_HA:
4673 case R_PPC64_TOC16_HA:
4674 case R_PPC64_PLT16_LO:
4675 case R_PPC64_PLT16_LO_DS:
4676 case R_PPC64_GOT_TLSLD16_LO:
4677 case R_PPC64_GOT_TLSGD16_LO:
4678 case R_PPC64_GOT_TPREL16_LO_DS:
4679 case R_PPC64_GOT_DTPREL16_LO_DS:
4680 case R_PPC64_GOT16_LO:
4681 case R_PPC64_GOT16_LO_DS:
4682 case R_PPC64_TOC16_LO:
4683 case R_PPC64_TOC16_LO_DS:
4684 case R_PPC64_GOT_PCREL34:
4685 ppc64_elf_tdata (abfd)->has_optrel = 1;
4686 ppc64_elf_section_data (sec)->has_optrel = 1;
4687 break;
4688 default:
4689 break;
4690 }
4691
4692 ifunc = NULL;
4693 if (h != NULL)
4694 {
4695 if (h->type == STT_GNU_IFUNC)
4696 {
4697 h->needs_plt = 1;
4698 ifunc = &h->plt.plist;
4699 }
4700 }
4701 else
4702 {
4703 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4704 abfd, r_symndx);
4705 if (isym == NULL)
4706 return false;
4707
4708 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4709 {
4710 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4711 rel->r_addend,
4712 NON_GOT | PLT_IFUNC);
4713 if (ifunc == NULL)
4714 return false;
4715 }
4716 }
4717
4718 tls_type = 0;
4719 switch (r_type)
4720 {
4721 case R_PPC64_TLSGD:
4722 case R_PPC64_TLSLD:
4723 /* These special tls relocs tie a call to __tls_get_addr with
4724 its parameter symbol. */
4725 if (h != NULL)
4726 ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
4727 else
4728 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4729 rel->r_addend,
4730 NON_GOT | TLS_TLS | TLS_MARK))
4731 return false;
4732 sec->has_tls_reloc = 1;
4733 break;
4734
4735 case R_PPC64_GOT_TLSLD16:
4736 case R_PPC64_GOT_TLSLD16_LO:
4737 case R_PPC64_GOT_TLSLD16_HI:
4738 case R_PPC64_GOT_TLSLD16_HA:
4739 case R_PPC64_GOT_TLSLD_PCREL34:
4740 tls_type = TLS_TLS | TLS_LD;
4741 goto dogottls;
4742
4743 case R_PPC64_GOT_TLSGD16:
4744 case R_PPC64_GOT_TLSGD16_LO:
4745 case R_PPC64_GOT_TLSGD16_HI:
4746 case R_PPC64_GOT_TLSGD16_HA:
4747 case R_PPC64_GOT_TLSGD_PCREL34:
4748 tls_type = TLS_TLS | TLS_GD;
4749 goto dogottls;
4750
4751 case R_PPC64_GOT_TPREL16_DS:
4752 case R_PPC64_GOT_TPREL16_LO_DS:
4753 case R_PPC64_GOT_TPREL16_HI:
4754 case R_PPC64_GOT_TPREL16_HA:
4755 case R_PPC64_GOT_TPREL_PCREL34:
4756 if (bfd_link_dll (info))
4757 info->flags |= DF_STATIC_TLS;
4758 tls_type = TLS_TLS | TLS_TPREL;
4759 goto dogottls;
4760
4761 case R_PPC64_GOT_DTPREL16_DS:
4762 case R_PPC64_GOT_DTPREL16_LO_DS:
4763 case R_PPC64_GOT_DTPREL16_HI:
4764 case R_PPC64_GOT_DTPREL16_HA:
4765 case R_PPC64_GOT_DTPREL_PCREL34:
4766 tls_type = TLS_TLS | TLS_DTPREL;
4767 dogottls:
4768 sec->has_tls_reloc = 1;
4769 goto dogot;
4770
4771 case R_PPC64_GOT16:
4772 case R_PPC64_GOT16_LO:
4773 case R_PPC64_GOT16_HI:
4774 case R_PPC64_GOT16_HA:
4775 case R_PPC64_GOT16_DS:
4776 case R_PPC64_GOT16_LO_DS:
4777 case R_PPC64_GOT_PCREL34:
4778 dogot:
4779 /* This symbol requires a global offset table entry. */
4780 sec->has_toc_reloc = 1;
4781 if (r_type == R_PPC64_GOT_TLSLD16
4782 || r_type == R_PPC64_GOT_TLSGD16
4783 || r_type == R_PPC64_GOT_TPREL16_DS
4784 || r_type == R_PPC64_GOT_DTPREL16_DS
4785 || r_type == R_PPC64_GOT16
4786 || r_type == R_PPC64_GOT16_DS)
4787 {
4788 htab->do_multi_toc = 1;
4789 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4790 }
4791
4792 if (ppc64_elf_tdata (abfd)->got == NULL
4793 && !create_got_section (abfd, info))
4794 return false;
4795
4796 if (h != NULL)
4797 {
4798 struct ppc_link_hash_entry *eh;
4799 struct got_entry *ent;
4800
4801 eh = ppc_elf_hash_entry (h);
4802 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4803 if (ent->addend == rel->r_addend
4804 && ent->owner == abfd
4805 && ent->tls_type == tls_type)
4806 break;
4807 if (ent == NULL)
4808 {
4809 size_t amt = sizeof (*ent);
4810 ent = bfd_alloc (abfd, amt);
4811 if (ent == NULL)
4812 return false;
4813 ent->next = eh->elf.got.glist;
4814 ent->addend = rel->r_addend;
4815 ent->owner = abfd;
4816 ent->tls_type = tls_type;
4817 ent->is_indirect = false;
4818 ent->got.refcount = 0;
4819 eh->elf.got.glist = ent;
4820 }
4821 ent->got.refcount += 1;
4822 eh->tls_mask |= tls_type;
4823 }
4824 else
4825 /* This is a global offset table entry for a local symbol. */
4826 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4827 rel->r_addend, tls_type))
4828 return false;
4829 break;
4830
4831 case R_PPC64_PLT16_HA:
4832 case R_PPC64_PLT16_HI:
4833 case R_PPC64_PLT16_LO:
4834 case R_PPC64_PLT16_LO_DS:
4835 case R_PPC64_PLT_PCREL34:
4836 case R_PPC64_PLT_PCREL34_NOTOC:
4837 case R_PPC64_PLT32:
4838 case R_PPC64_PLT64:
4839 /* This symbol requires a procedure linkage table entry. */
4840 plt_list = ifunc;
4841 if (h != NULL)
4842 {
4843 h->needs_plt = 1;
4844 if (h->root.root.string[0] == '.'
4845 && h->root.root.string[1] != '\0')
4846 ppc_elf_hash_entry (h)->is_func = 1;
4847 ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
4848 plt_list = &h->plt.plist;
4849 }
4850 if (plt_list == NULL)
4851 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4852 rel->r_addend,
4853 NON_GOT | PLT_KEEP);
4854 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4855 return false;
4856 break;
4857
4858 /* The following relocations don't need to propagate the
4859 relocation if linking a shared object since they are
4860 section relative. */
4861 case R_PPC64_SECTOFF:
4862 case R_PPC64_SECTOFF_LO:
4863 case R_PPC64_SECTOFF_HI:
4864 case R_PPC64_SECTOFF_HA:
4865 case R_PPC64_SECTOFF_DS:
4866 case R_PPC64_SECTOFF_LO_DS:
4867 case R_PPC64_DTPREL16:
4868 case R_PPC64_DTPREL16_LO:
4869 case R_PPC64_DTPREL16_HI:
4870 case R_PPC64_DTPREL16_HA:
4871 case R_PPC64_DTPREL16_DS:
4872 case R_PPC64_DTPREL16_LO_DS:
4873 case R_PPC64_DTPREL16_HIGH:
4874 case R_PPC64_DTPREL16_HIGHA:
4875 case R_PPC64_DTPREL16_HIGHER:
4876 case R_PPC64_DTPREL16_HIGHERA:
4877 case R_PPC64_DTPREL16_HIGHEST:
4878 case R_PPC64_DTPREL16_HIGHESTA:
4879 break;
4880
4881 /* Nor do these. */
4882 case R_PPC64_REL16:
4883 case R_PPC64_REL16_LO:
4884 case R_PPC64_REL16_HI:
4885 case R_PPC64_REL16_HA:
4886 case R_PPC64_REL16_HIGH:
4887 case R_PPC64_REL16_HIGHA:
4888 case R_PPC64_REL16_HIGHER:
4889 case R_PPC64_REL16_HIGHERA:
4890 case R_PPC64_REL16_HIGHEST:
4891 case R_PPC64_REL16_HIGHESTA:
4892 case R_PPC64_REL16_HIGHER34:
4893 case R_PPC64_REL16_HIGHERA34:
4894 case R_PPC64_REL16_HIGHEST34:
4895 case R_PPC64_REL16_HIGHESTA34:
4896 case R_PPC64_REL16DX_HA:
4897 break;
4898
4899 /* Not supported as a dynamic relocation. */
4900 case R_PPC64_ADDR64_LOCAL:
4901 if (bfd_link_pic (info))
4902 {
4903 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4904 ppc_howto_init ();
4905 /* xgettext:c-format */
4906 info->callbacks->einfo (_("%H: %s reloc unsupported "
4907 "in shared libraries and PIEs\n"),
4908 abfd, sec, rel->r_offset,
4909 ppc64_elf_howto_table[r_type]->name);
4910 bfd_set_error (bfd_error_bad_value);
4911 return false;
4912 }
4913 break;
4914
4915 case R_PPC64_TOC16:
4916 case R_PPC64_TOC16_DS:
4917 htab->do_multi_toc = 1;
4918 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4919 /* Fall through. */
4920 case R_PPC64_TOC16_LO:
4921 case R_PPC64_TOC16_HI:
4922 case R_PPC64_TOC16_HA:
4923 case R_PPC64_TOC16_LO_DS:
4924 sec->has_toc_reloc = 1;
4925 if (h != NULL && bfd_link_executable (info))
4926 {
4927 /* We may need a copy reloc. */
4928 h->non_got_ref = 1;
4929 /* Strongly prefer a copy reloc over a dynamic reloc.
4930 glibc ld.so as of 2019-08 will error out if one of
4931 these relocations is emitted. */
4932 h->needs_copy = 1;
4933 goto dodyn;
4934 }
4935 break;
4936
4937 /* Marker reloc. */
4938 case R_PPC64_ENTRY:
4939 break;
4940
4941 /* This relocation describes the C++ object vtable hierarchy.
4942 Reconstruct it for later use during GC. */
4943 case R_PPC64_GNU_VTINHERIT:
4944 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4945 return false;
4946 break;
4947
4948 /* This relocation describes which C++ vtable entries are actually
4949 used. Record for later use during GC. */
4950 case R_PPC64_GNU_VTENTRY:
4951 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4952 return false;
4953 break;
4954
4955 case R_PPC64_REL14:
4956 case R_PPC64_REL14_BRTAKEN:
4957 case R_PPC64_REL14_BRNTAKEN:
4958 {
4959 asection *dest = NULL;
4960
4961 /* Heuristic: If jumping outside our section, chances are
4962 we are going to need a stub. */
4963 if (h != NULL)
4964 {
4965 /* If the sym is weak it may be overridden later, so
4966 don't assume we know where a weak sym lives. */
4967 if (h->root.type == bfd_link_hash_defined)
4968 dest = h->root.u.def.section;
4969 }
4970 else
4971 {
4972 Elf_Internal_Sym *isym;
4973
4974 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4975 abfd, r_symndx);
4976 if (isym == NULL)
4977 return false;
4978
4979 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4980 }
4981
4982 if (dest != sec)
4983 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4984 }
4985 goto rel24;
4986
4987 case R_PPC64_PLTCALL:
4988 case R_PPC64_PLTCALL_NOTOC:
4989 ppc64_elf_section_data (sec)->has_pltcall = 1;
4990 /* Fall through. */
4991
4992 case R_PPC64_REL24:
4993 case R_PPC64_REL24_NOTOC:
4994 rel24:
4995 plt_list = ifunc;
4996 if (h != NULL)
4997 {
4998 h->needs_plt = 1;
4999 if (h->root.root.string[0] == '.'
5000 && h->root.root.string[1] != '\0')
5001 ppc_elf_hash_entry (h)->is_func = 1;
5002
5003 if (h == tga || h == dottga)
5004 {
5005 sec->has_tls_reloc = 1;
5006 if (rel != relocs
5007 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5008 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5009 /* We have a new-style __tls_get_addr call with
5010 a marker reloc. */
5011 ;
5012 else
5013 /* Mark this section as having an old-style call. */
5014 sec->nomark_tls_get_addr = 1;
5015 }
5016 plt_list = &h->plt.plist;
5017 }
5018
5019 /* We may need a .plt entry if the function this reloc
5020 refers to is in a shared lib. */
5021 if (plt_list
5022 && !update_plt_info (abfd, plt_list, rel->r_addend))
5023 return false;
5024 break;
5025
5026 case R_PPC64_ADDR14:
5027 case R_PPC64_ADDR14_BRNTAKEN:
5028 case R_PPC64_ADDR14_BRTAKEN:
5029 case R_PPC64_ADDR24:
5030 goto dodyn;
5031
5032 case R_PPC64_TPREL64:
5033 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5034 if (bfd_link_dll (info))
5035 info->flags |= DF_STATIC_TLS;
5036 goto dotlstoc;
5037
5038 case R_PPC64_DTPMOD64:
5039 if (rel + 1 < rel_end
5040 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5041 && rel[1].r_offset == rel->r_offset + 8)
5042 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5043 else
5044 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5045 goto dotlstoc;
5046
5047 case R_PPC64_DTPREL64:
5048 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5049 if (rel != relocs
5050 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5051 && rel[-1].r_offset == rel->r_offset - 8)
5052 /* This is the second reloc of a dtpmod, dtprel pair.
5053 Don't mark with TLS_DTPREL. */
5054 goto dodyn;
5055
5056 dotlstoc:
5057 sec->has_tls_reloc = 1;
5058 if (h != NULL)
5059 ppc_elf_hash_entry (h)->tls_mask |= tls_type & 0xff;
5060 else
5061 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5062 rel->r_addend, tls_type))
5063 return false;
5064
5065 ppc64_sec = ppc64_elf_section_data (sec);
5066 if (ppc64_sec->sec_type != sec_toc)
5067 {
5068 bfd_size_type amt;
5069
5070 /* One extra to simplify get_tls_mask. */
5071 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5072 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5073 if (ppc64_sec->u.toc.symndx == NULL)
5074 return false;
5075 amt = sec->size * sizeof (bfd_vma) / 8;
5076 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5077 if (ppc64_sec->u.toc.add == NULL)
5078 return false;
5079 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5080 ppc64_sec->sec_type = sec_toc;
5081 }
5082 BFD_ASSERT (rel->r_offset % 8 == 0);
5083 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5084 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5085
5086 /* Mark the second slot of a GD or LD entry.
5087 -1 to indicate GD and -2 to indicate LD. */
5088 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5089 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5090 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5091 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5092 goto dodyn;
5093
5094 case R_PPC64_TPREL16_HI:
5095 case R_PPC64_TPREL16_HA:
5096 case R_PPC64_TPREL16_HIGH:
5097 case R_PPC64_TPREL16_HIGHA:
5098 case R_PPC64_TPREL16_HIGHER:
5099 case R_PPC64_TPREL16_HIGHERA:
5100 case R_PPC64_TPREL16_HIGHEST:
5101 case R_PPC64_TPREL16_HIGHESTA:
5102 sec->has_tls_reloc = 1;
5103 /* Fall through. */
5104 case R_PPC64_TPREL34:
5105 case R_PPC64_TPREL16:
5106 case R_PPC64_TPREL16_DS:
5107 case R_PPC64_TPREL16_LO:
5108 case R_PPC64_TPREL16_LO_DS:
5109 if (bfd_link_dll (info))
5110 info->flags |= DF_STATIC_TLS;
5111 goto dodyn;
5112
5113 case R_PPC64_ADDR64:
5114 if (is_opd
5115 && rel + 1 < rel_end
5116 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5117 {
5118 if (h != NULL)
5119 ppc_elf_hash_entry (h)->is_func = 1;
5120 }
5121 /* Fall through. */
5122
5123 case R_PPC64_ADDR16:
5124 case R_PPC64_ADDR16_DS:
5125 case R_PPC64_ADDR16_HA:
5126 case R_PPC64_ADDR16_HI:
5127 case R_PPC64_ADDR16_HIGH:
5128 case R_PPC64_ADDR16_HIGHA:
5129 case R_PPC64_ADDR16_HIGHER:
5130 case R_PPC64_ADDR16_HIGHERA:
5131 case R_PPC64_ADDR16_HIGHEST:
5132 case R_PPC64_ADDR16_HIGHESTA:
5133 case R_PPC64_ADDR16_LO:
5134 case R_PPC64_ADDR16_LO_DS:
5135 case R_PPC64_D34:
5136 case R_PPC64_D34_LO:
5137 case R_PPC64_D34_HI30:
5138 case R_PPC64_D34_HA30:
5139 case R_PPC64_ADDR16_HIGHER34:
5140 case R_PPC64_ADDR16_HIGHERA34:
5141 case R_PPC64_ADDR16_HIGHEST34:
5142 case R_PPC64_ADDR16_HIGHESTA34:
5143 case R_PPC64_D28:
5144 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5145 && rel->r_addend == 0)
5146 {
5147 /* We may need a .plt entry if this reloc refers to a
5148 function in a shared lib. */
5149 if (!update_plt_info (abfd, &h->plt.plist, 0))
5150 return false;
5151 h->pointer_equality_needed = 1;
5152 }
5153 /* Fall through. */
5154
5155 case R_PPC64_REL30:
5156 case R_PPC64_REL32:
5157 case R_PPC64_REL64:
5158 case R_PPC64_ADDR32:
5159 case R_PPC64_UADDR16:
5160 case R_PPC64_UADDR32:
5161 case R_PPC64_UADDR64:
5162 case R_PPC64_TOC:
5163 if (h != NULL && bfd_link_executable (info))
5164 /* We may need a copy reloc. */
5165 h->non_got_ref = 1;
5166
5167 /* Don't propagate .opd relocs. */
5168 if (NO_OPD_RELOCS && is_opd)
5169 break;
5170
5171 /* If we are creating a shared library, and this is a reloc
5172 against a global symbol, or a non PC relative reloc
5173 against a local symbol, then we need to copy the reloc
5174 into the shared library. However, if we are linking with
5175 -Bsymbolic, we do not need to copy a reloc against a
5176 global symbol which is defined in an object we are
5177 including in the link (i.e., DEF_REGULAR is set). At
5178 this point we have not seen all the input files, so it is
5179 possible that DEF_REGULAR is not set now but will be set
5180 later (it is never cleared). In case of a weak definition,
5181 DEF_REGULAR may be cleared later by a strong definition in
5182 a shared library. We account for that possibility below by
5183 storing information in the dyn_relocs field of the hash
5184 table entry. A similar situation occurs when creating
5185 shared libraries and symbol visibility changes render the
5186 symbol local.
5187
5188 If on the other hand, we are creating an executable, we
5189 may need to keep relocations for symbols satisfied by a
5190 dynamic library if we manage to avoid copy relocs for the
5191 symbol. */
5192 dodyn:
5193 if ((h != NULL
5194 && (h->root.type == bfd_link_hash_defweak
5195 || !h->def_regular))
5196 || (h != NULL
5197 && !bfd_link_executable (info)
5198 && !SYMBOLIC_BIND (info, h))
5199 || (bfd_link_pic (info)
5200 && must_be_dyn_reloc (info, r_type))
5201 || (!bfd_link_pic (info)
5202 && ifunc != NULL))
5203 {
5204 /* We must copy these reloc types into the output file.
5205 Create a reloc section in dynobj and make room for
5206 this reloc. */
5207 if (sreloc == NULL)
5208 {
5209 sreloc = _bfd_elf_make_dynamic_reloc_section
5210 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ true);
5211
5212 if (sreloc == NULL)
5213 return false;
5214 }
5215
5216 /* If this is a global symbol, we count the number of
5217 relocations we need for this symbol. */
5218 if (h != NULL)
5219 {
5220 struct elf_dyn_relocs *p;
5221 struct elf_dyn_relocs **head;
5222
5223 head = &h->dyn_relocs;
5224 p = *head;
5225 if (p == NULL || p->sec != sec)
5226 {
5227 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5228 if (p == NULL)
5229 return false;
5230 p->next = *head;
5231 *head = p;
5232 p->sec = sec;
5233 p->count = 0;
5234 p->pc_count = 0;
5235 }
5236 p->count += 1;
5237 if (!must_be_dyn_reloc (info, r_type))
5238 p->pc_count += 1;
5239 }
5240 else
5241 {
5242 /* Track dynamic relocs needed for local syms too.
5243 We really need local syms available to do this
5244 easily. Oh well. */
5245 struct ppc_dyn_relocs *p;
5246 struct ppc_dyn_relocs **head;
5247 bool is_ifunc;
5248 asection *s;
5249 void *vpp;
5250 Elf_Internal_Sym *isym;
5251
5252 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
5253 abfd, r_symndx);
5254 if (isym == NULL)
5255 return false;
5256
5257 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5258 if (s == NULL)
5259 s = sec;
5260
5261 vpp = &elf_section_data (s)->local_dynrel;
5262 head = (struct ppc_dyn_relocs **) vpp;
5263 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5264 p = *head;
5265 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5266 p = p->next;
5267 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5268 {
5269 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5270 if (p == NULL)
5271 return false;
5272 p->next = *head;
5273 *head = p;
5274 p->sec = sec;
5275 p->ifunc = is_ifunc;
5276 p->count = 0;
5277 }
5278 p->count += 1;
5279 }
5280 }
5281 break;
5282
5283 default:
5284 break;
5285 }
5286 }
5287
5288 return true;
5289 }
5290
5291 /* Merge backend specific data from an object file to the output
5292 object file when linking. */
5293
5294 static bool
5295 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5296 {
5297 bfd *obfd = info->output_bfd;
5298 unsigned long iflags, oflags;
5299
5300 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5301 return true;
5302
5303 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5304 return true;
5305
5306 if (!_bfd_generic_verify_endian_match (ibfd, info))
5307 return false;
5308
5309 iflags = elf_elfheader (ibfd)->e_flags;
5310 oflags = elf_elfheader (obfd)->e_flags;
5311
5312 if (iflags & ~EF_PPC64_ABI)
5313 {
5314 _bfd_error_handler
5315 /* xgettext:c-format */
5316 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5317 bfd_set_error (bfd_error_bad_value);
5318 return false;
5319 }
5320 else if (iflags != oflags && iflags != 0)
5321 {
5322 _bfd_error_handler
5323 /* xgettext:c-format */
5324 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5325 ibfd, iflags, oflags);
5326 bfd_set_error (bfd_error_bad_value);
5327 return false;
5328 }
5329
5330 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5331 return false;
5332
5333 /* Merge Tag_compatibility attributes and any common GNU ones. */
5334 return _bfd_elf_merge_object_attributes (ibfd, info);
5335 }
5336
5337 static bool
5338 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5339 {
5340 /* Print normal ELF private data. */
5341 _bfd_elf_print_private_bfd_data (abfd, ptr);
5342
5343 if (elf_elfheader (abfd)->e_flags != 0)
5344 {
5345 FILE *file = ptr;
5346
5347 fprintf (file, _("private flags = 0x%lx:"),
5348 elf_elfheader (abfd)->e_flags);
5349
5350 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5351 fprintf (file, _(" [abiv%ld]"),
5352 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5353 fputc ('\n', file);
5354 }
5355
5356 return true;
5357 }
5358
5359 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5360 of the code entry point, and its section, which must be in the same
5361 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5362
5363 static bfd_vma
5364 opd_entry_value (asection *opd_sec,
5365 bfd_vma offset,
5366 asection **code_sec,
5367 bfd_vma *code_off,
5368 bool in_code_sec)
5369 {
5370 bfd *opd_bfd = opd_sec->owner;
5371 Elf_Internal_Rela *relocs;
5372 Elf_Internal_Rela *lo, *hi, *look;
5373 bfd_vma val;
5374
5375 /* No relocs implies we are linking a --just-symbols object, or looking
5376 at a final linked executable with addr2line or somesuch. */
5377 if (opd_sec->reloc_count == 0)
5378 {
5379 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5380
5381 if (contents == NULL)
5382 {
5383 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5384 return (bfd_vma) -1;
5385 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5386 }
5387
5388 /* PR 17512: file: 64b9dfbb. */
5389 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5390 return (bfd_vma) -1;
5391
5392 val = bfd_get_64 (opd_bfd, contents + offset);
5393 if (code_sec != NULL)
5394 {
5395 asection *sec, *likely = NULL;
5396
5397 if (in_code_sec)
5398 {
5399 sec = *code_sec;
5400 if (sec->vma <= val
5401 && val < sec->vma + sec->size)
5402 likely = sec;
5403 else
5404 val = -1;
5405 }
5406 else
5407 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5408 if (sec->vma <= val
5409 && (sec->flags & SEC_LOAD) != 0
5410 && (sec->flags & SEC_ALLOC) != 0)
5411 likely = sec;
5412 if (likely != NULL)
5413 {
5414 *code_sec = likely;
5415 if (code_off != NULL)
5416 *code_off = val - likely->vma;
5417 }
5418 }
5419 return val;
5420 }
5421
5422 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5423
5424 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5425 if (relocs == NULL)
5426 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, true);
5427 /* PR 17512: file: df8e1fd6. */
5428 if (relocs == NULL)
5429 return (bfd_vma) -1;
5430
5431 /* Go find the opd reloc at the sym address. */
5432 lo = relocs;
5433 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5434 val = (bfd_vma) -1;
5435 while (lo < hi)
5436 {
5437 look = lo + (hi - lo) / 2;
5438 if (look->r_offset < offset)
5439 lo = look + 1;
5440 else if (look->r_offset > offset)
5441 hi = look;
5442 else
5443 {
5444 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5445
5446 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5447 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5448 {
5449 unsigned long symndx = ELF64_R_SYM (look->r_info);
5450 asection *sec = NULL;
5451
5452 if (symndx >= symtab_hdr->sh_info
5453 && elf_sym_hashes (opd_bfd) != NULL)
5454 {
5455 struct elf_link_hash_entry **sym_hashes;
5456 struct elf_link_hash_entry *rh;
5457
5458 sym_hashes = elf_sym_hashes (opd_bfd);
5459 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5460 if (rh != NULL)
5461 {
5462 rh = elf_follow_link (rh);
5463 if (rh->root.type != bfd_link_hash_defined
5464 && rh->root.type != bfd_link_hash_defweak)
5465 break;
5466 if (rh->root.u.def.section->owner == opd_bfd)
5467 {
5468 val = rh->root.u.def.value;
5469 sec = rh->root.u.def.section;
5470 }
5471 }
5472 }
5473
5474 if (sec == NULL)
5475 {
5476 Elf_Internal_Sym *sym;
5477
5478 if (symndx < symtab_hdr->sh_info)
5479 {
5480 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5481 if (sym == NULL)
5482 {
5483 size_t symcnt = symtab_hdr->sh_info;
5484 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5485 symcnt, 0,
5486 NULL, NULL, NULL);
5487 if (sym == NULL)
5488 break;
5489 symtab_hdr->contents = (bfd_byte *) sym;
5490 }
5491 sym += symndx;
5492 }
5493 else
5494 {
5495 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5496 1, symndx,
5497 NULL, NULL, NULL);
5498 if (sym == NULL)
5499 break;
5500 }
5501 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5502 if (sec == NULL)
5503 break;
5504 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5505 val = sym->st_value;
5506 }
5507
5508 val += look->r_addend;
5509 if (code_off != NULL)
5510 *code_off = val;
5511 if (code_sec != NULL)
5512 {
5513 if (in_code_sec && *code_sec != sec)
5514 return -1;
5515 else
5516 *code_sec = sec;
5517 }
5518 if (sec->output_section != NULL)
5519 val += sec->output_section->vma + sec->output_offset;
5520 }
5521 break;
5522 }
5523 }
5524
5525 return val;
5526 }
5527
5528 /* If the ELF symbol SYM might be a function in SEC, return the
5529 function size and set *CODE_OFF to the function's entry point,
5530 otherwise return zero. */
5531
5532 static bfd_size_type
5533 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5534 bfd_vma *code_off)
5535 {
5536 bfd_size_type size;
5537 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
5538
5539 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5540 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5541 return 0;
5542
5543 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
5544
5545 /* In theory we should check that the symbol's type satisfies
5546 _bfd_elf_is_function_type(), but there are some function-like
5547 symbols which would fail this test. (eg _start). Instead
5548 we check for hidden, local, notype symbols with zero size.
5549 This type of symbol is generated by the annobin plugin for gcc
5550 and clang, and should not be considered to be a function symbol. */
5551 if (size == 0
5552 && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL)
5553 && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE
5554 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
5555 return 0;
5556
5557 if (strcmp (sym->section->name, ".opd") == 0)
5558 {
5559 struct _opd_sec_data *opd = get_opd_info (sym->section);
5560 bfd_vma symval = sym->value;
5561
5562 if (opd != NULL
5563 && opd->adjust != NULL
5564 && elf_section_data (sym->section)->relocs != NULL)
5565 {
5566 /* opd_entry_value will use cached relocs that have been
5567 adjusted, but with raw symbols. That means both local
5568 and global symbols need adjusting. */
5569 long adjust = opd->adjust[OPD_NDX (symval)];
5570 if (adjust == -1)
5571 return 0;
5572 symval += adjust;
5573 }
5574
5575 if (opd_entry_value (sym->section, symval,
5576 &sec, code_off, true) == (bfd_vma) -1)
5577 return 0;
5578 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5579 symbol. This size has nothing to do with the code size of the
5580 function, which is what we're supposed to return, but the
5581 code size isn't available without looking up the dot-sym.
5582 However, doing that would be a waste of time particularly
5583 since elf_find_function will look at the dot-sym anyway.
5584 Now, elf_find_function will keep the largest size of any
5585 function sym found at the code address of interest, so return
5586 1 here to avoid it incorrectly caching a larger function size
5587 for a small function. This does mean we return the wrong
5588 size for a new-ABI function of size 24, but all that does is
5589 disable caching for such functions. */
5590 if (size == 24)
5591 size = 1;
5592 }
5593 else
5594 {
5595 if (sym->section != sec)
5596 return 0;
5597 *code_off = sym->value;
5598 }
5599
5600 /* Do not return 0 for the function's size. */
5601 return size ? size : 1;
5602 }
5603
5604 /* Return true if symbol is a strong function defined in an ELFv2
5605 object with st_other localentry bits of zero, ie. its local entry
5606 point coincides with its global entry point. */
5607
5608 static bool
5609 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5610 {
5611 return (h != NULL
5612 && h->type == STT_FUNC
5613 && h->root.type == bfd_link_hash_defined
5614 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5615 && !ppc_elf_hash_entry (h)->non_zero_localentry
5616 && is_ppc64_elf (h->root.u.def.section->owner)
5617 && abiversion (h->root.u.def.section->owner) >= 2);
5618 }
5619
5620 /* Return true if symbol is defined in a regular object file. */
5621
5622 static bool
5623 is_static_defined (struct elf_link_hash_entry *h)
5624 {
5625 return ((h->root.type == bfd_link_hash_defined
5626 || h->root.type == bfd_link_hash_defweak)
5627 && h->root.u.def.section != NULL
5628 && h->root.u.def.section->output_section != NULL);
5629 }
5630
5631 /* If FDH is a function descriptor symbol, return the associated code
5632 entry symbol if it is defined. Return NULL otherwise. */
5633
5634 static struct ppc_link_hash_entry *
5635 defined_code_entry (struct ppc_link_hash_entry *fdh)
5636 {
5637 if (fdh->is_func_descriptor)
5638 {
5639 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5640 if (fh->elf.root.type == bfd_link_hash_defined
5641 || fh->elf.root.type == bfd_link_hash_defweak)
5642 return fh;
5643 }
5644 return NULL;
5645 }
5646
5647 /* If FH is a function code entry symbol, return the associated
5648 function descriptor symbol if it is defined. Return NULL otherwise. */
5649
5650 static struct ppc_link_hash_entry *
5651 defined_func_desc (struct ppc_link_hash_entry *fh)
5652 {
5653 if (fh->oh != NULL
5654 && fh->oh->is_func_descriptor)
5655 {
5656 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5657 if (fdh->elf.root.type == bfd_link_hash_defined
5658 || fdh->elf.root.type == bfd_link_hash_defweak)
5659 return fdh;
5660 }
5661 return NULL;
5662 }
5663
5664 /* Given H is a symbol that satisfies is_static_defined, return the
5665 value in the output file. */
5666
5667 static bfd_vma
5668 defined_sym_val (struct elf_link_hash_entry *h)
5669 {
5670 return (h->root.u.def.section->output_section->vma
5671 + h->root.u.def.section->output_offset
5672 + h->root.u.def.value);
5673 }
5674
5675 /* Return true if H matches __tls_get_addr or one of its variants. */
5676
5677 static bool
5678 is_tls_get_addr (struct elf_link_hash_entry *h,
5679 struct ppc_link_hash_table *htab)
5680 {
5681 return (h == elf_hash_entry (htab->tls_get_addr_fd)
5682 || h == elf_hash_entry (htab->tga_desc_fd)
5683 || h == elf_hash_entry (htab->tls_get_addr)
5684 || h == elf_hash_entry (htab->tga_desc));
5685 }
5686
5687 static bool func_desc_adjust (struct elf_link_hash_entry *, void *);
5688
5689 /* Garbage collect sections, after first dealing with dot-symbols. */
5690
5691 static bool
5692 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5693 {
5694 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5695
5696 if (htab != NULL && htab->need_func_desc_adj)
5697 {
5698 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5699 htab->need_func_desc_adj = 0;
5700 }
5701 return bfd_elf_gc_sections (abfd, info);
5702 }
5703
5704 /* Mark all our entry sym sections, both opd and code section. */
5705
5706 static void
5707 ppc64_elf_gc_keep (struct bfd_link_info *info)
5708 {
5709 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5710 struct bfd_sym_chain *sym;
5711
5712 if (htab == NULL)
5713 return;
5714
5715 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5716 {
5717 struct ppc_link_hash_entry *eh, *fh;
5718 asection *sec;
5719
5720 eh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym->name,
5721 false, false, true));
5722 if (eh == NULL)
5723 continue;
5724 if (eh->elf.root.type != bfd_link_hash_defined
5725 && eh->elf.root.type != bfd_link_hash_defweak)
5726 continue;
5727
5728 fh = defined_code_entry (eh);
5729 if (fh != NULL)
5730 {
5731 sec = fh->elf.root.u.def.section;
5732 sec->flags |= SEC_KEEP;
5733 }
5734 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5735 && opd_entry_value (eh->elf.root.u.def.section,
5736 eh->elf.root.u.def.value,
5737 &sec, NULL, false) != (bfd_vma) -1)
5738 sec->flags |= SEC_KEEP;
5739
5740 sec = eh->elf.root.u.def.section;
5741 sec->flags |= SEC_KEEP;
5742 }
5743 }
5744
5745 /* Mark sections containing dynamically referenced symbols. When
5746 building shared libraries, we must assume that any visible symbol is
5747 referenced. */
5748
5749 static bool
5750 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5751 {
5752 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5753 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
5754 struct ppc_link_hash_entry *fdh;
5755 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5756
5757 /* Dynamic linking info is on the func descriptor sym. */
5758 fdh = defined_func_desc (eh);
5759 if (fdh != NULL)
5760 eh = fdh;
5761
5762 if ((eh->elf.root.type == bfd_link_hash_defined
5763 || eh->elf.root.type == bfd_link_hash_defweak)
5764 && (!eh->elf.start_stop
5765 || eh->elf.root.ldscript_def
5766 || !info->start_stop_gc)
5767 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5768 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5769 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5770 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5771 && (!bfd_link_executable (info)
5772 || info->gc_keep_exported
5773 || info->export_dynamic
5774 || (eh->elf.dynamic
5775 && d != NULL
5776 && (*d->match) (&d->head, NULL,
5777 eh->elf.root.root.string)))
5778 && (eh->elf.versioned >= versioned
5779 || !bfd_hide_sym_by_version (info->version_info,
5780 eh->elf.root.root.string)))))
5781 {
5782 asection *code_sec;
5783 struct ppc_link_hash_entry *fh;
5784
5785 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5786
5787 /* Function descriptor syms cause the associated
5788 function code sym section to be marked. */
5789 fh = defined_code_entry (eh);
5790 if (fh != NULL)
5791 {
5792 code_sec = fh->elf.root.u.def.section;
5793 code_sec->flags |= SEC_KEEP;
5794 }
5795 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5796 && opd_entry_value (eh->elf.root.u.def.section,
5797 eh->elf.root.u.def.value,
5798 &code_sec, NULL, false) != (bfd_vma) -1)
5799 code_sec->flags |= SEC_KEEP;
5800 }
5801
5802 return true;
5803 }
5804
5805 /* Return the section that should be marked against GC for a given
5806 relocation. */
5807
5808 static asection *
5809 ppc64_elf_gc_mark_hook (asection *sec,
5810 struct bfd_link_info *info,
5811 Elf_Internal_Rela *rel,
5812 struct elf_link_hash_entry *h,
5813 Elf_Internal_Sym *sym)
5814 {
5815 asection *rsec;
5816
5817 /* Syms return NULL if we're marking .opd, so we avoid marking all
5818 function sections, as all functions are referenced in .opd. */
5819 rsec = NULL;
5820 if (get_opd_info (sec) != NULL)
5821 return rsec;
5822
5823 if (h != NULL)
5824 {
5825 enum elf_ppc64_reloc_type r_type;
5826 struct ppc_link_hash_entry *eh, *fh, *fdh;
5827
5828 r_type = ELF64_R_TYPE (rel->r_info);
5829 switch (r_type)
5830 {
5831 case R_PPC64_GNU_VTINHERIT:
5832 case R_PPC64_GNU_VTENTRY:
5833 break;
5834
5835 default:
5836 switch (h->root.type)
5837 {
5838 case bfd_link_hash_defined:
5839 case bfd_link_hash_defweak:
5840 eh = ppc_elf_hash_entry (h);
5841 fdh = defined_func_desc (eh);
5842 if (fdh != NULL)
5843 {
5844 /* -mcall-aixdesc code references the dot-symbol on
5845 a call reloc. Mark the function descriptor too
5846 against garbage collection. */
5847 fdh->elf.mark = 1;
5848 if (fdh->elf.is_weakalias)
5849 weakdef (&fdh->elf)->mark = 1;
5850 eh = fdh;
5851 }
5852
5853 /* Function descriptor syms cause the associated
5854 function code sym section to be marked. */
5855 fh = defined_code_entry (eh);
5856 if (fh != NULL)
5857 {
5858 /* They also mark their opd section. */
5859 eh->elf.root.u.def.section->gc_mark = 1;
5860
5861 rsec = fh->elf.root.u.def.section;
5862 }
5863 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5864 && opd_entry_value (eh->elf.root.u.def.section,
5865 eh->elf.root.u.def.value,
5866 &rsec, NULL, false) != (bfd_vma) -1)
5867 eh->elf.root.u.def.section->gc_mark = 1;
5868 else
5869 rsec = h->root.u.def.section;
5870 break;
5871
5872 case bfd_link_hash_common:
5873 rsec = h->root.u.c.p->section;
5874 break;
5875
5876 default:
5877 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5878 }
5879 }
5880 }
5881 else
5882 {
5883 struct _opd_sec_data *opd;
5884
5885 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5886 opd = get_opd_info (rsec);
5887 if (opd != NULL && opd->func_sec != NULL)
5888 {
5889 rsec->gc_mark = 1;
5890
5891 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5892 }
5893 }
5894
5895 return rsec;
5896 }
5897
5898 /* The maximum size of .sfpr. */
5899 #define SFPR_MAX (218*4)
5900
5901 struct sfpr_def_parms
5902 {
5903 const char name[12];
5904 unsigned char lo, hi;
5905 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5906 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5907 };
5908
5909 /* Auto-generate _save*, _rest* functions in .sfpr.
5910 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5911 instead. */
5912
5913 static bool
5914 sfpr_define (struct bfd_link_info *info,
5915 const struct sfpr_def_parms *parm,
5916 asection *stub_sec)
5917 {
5918 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5919 unsigned int i;
5920 size_t len = strlen (parm->name);
5921 bool writing = false;
5922 char sym[16];
5923
5924 if (htab == NULL)
5925 return false;
5926
5927 memcpy (sym, parm->name, len);
5928 sym[len + 2] = 0;
5929
5930 for (i = parm->lo; i <= parm->hi; i++)
5931 {
5932 struct ppc_link_hash_entry *h;
5933
5934 sym[len + 0] = i / 10 + '0';
5935 sym[len + 1] = i % 10 + '0';
5936 h = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym,
5937 writing, true, true));
5938 if (stub_sec != NULL)
5939 {
5940 if (h != NULL
5941 && h->elf.root.type == bfd_link_hash_defined
5942 && h->elf.root.u.def.section == htab->sfpr)
5943 {
5944 struct elf_link_hash_entry *s;
5945 char buf[32];
5946 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5947 s = elf_link_hash_lookup (&htab->elf, buf, true, true, false);
5948 if (s == NULL)
5949 return false;
5950 if (s->root.type == bfd_link_hash_new)
5951 {
5952 s->root.type = bfd_link_hash_defined;
5953 s->root.u.def.section = stub_sec;
5954 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5955 + h->elf.root.u.def.value);
5956 s->ref_regular = 1;
5957 s->def_regular = 1;
5958 s->ref_regular_nonweak = 1;
5959 s->forced_local = 1;
5960 s->non_elf = 0;
5961 s->root.linker_def = 1;
5962 }
5963 }
5964 continue;
5965 }
5966 if (h != NULL)
5967 {
5968 h->save_res = 1;
5969 if (!h->elf.def_regular)
5970 {
5971 h->elf.root.type = bfd_link_hash_defined;
5972 h->elf.root.u.def.section = htab->sfpr;
5973 h->elf.root.u.def.value = htab->sfpr->size;
5974 h->elf.type = STT_FUNC;
5975 h->elf.def_regular = 1;
5976 h->elf.non_elf = 0;
5977 _bfd_elf_link_hash_hide_symbol (info, &h->elf, true);
5978 writing = true;
5979 if (htab->sfpr->contents == NULL)
5980 {
5981 htab->sfpr->contents
5982 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5983 if (htab->sfpr->contents == NULL)
5984 return false;
5985 }
5986 }
5987 }
5988 if (writing)
5989 {
5990 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5991 if (i != parm->hi)
5992 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5993 else
5994 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5995 htab->sfpr->size = p - htab->sfpr->contents;
5996 }
5997 }
5998
5999 return true;
6000 }
6001
6002 static bfd_byte *
6003 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6004 {
6005 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6006 return p + 4;
6007 }
6008
6009 static bfd_byte *
6010 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6011 {
6012 p = savegpr0 (abfd, p, r);
6013 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6014 p = p + 4;
6015 bfd_put_32 (abfd, BLR, p);
6016 return p + 4;
6017 }
6018
6019 static bfd_byte *
6020 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6021 {
6022 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6023 return p + 4;
6024 }
6025
6026 static bfd_byte *
6027 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6028 {
6029 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6030 p = p + 4;
6031 p = restgpr0 (abfd, p, r);
6032 bfd_put_32 (abfd, MTLR_R0, p);
6033 p = p + 4;
6034 if (r == 29)
6035 {
6036 p = restgpr0 (abfd, p, 30);
6037 p = restgpr0 (abfd, p, 31);
6038 }
6039 bfd_put_32 (abfd, BLR, p);
6040 return p + 4;
6041 }
6042
6043 static bfd_byte *
6044 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6045 {
6046 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6047 return p + 4;
6048 }
6049
6050 static bfd_byte *
6051 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6052 {
6053 p = savegpr1 (abfd, p, r);
6054 bfd_put_32 (abfd, BLR, p);
6055 return p + 4;
6056 }
6057
6058 static bfd_byte *
6059 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6060 {
6061 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6062 return p + 4;
6063 }
6064
6065 static bfd_byte *
6066 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6067 {
6068 p = restgpr1 (abfd, p, r);
6069 bfd_put_32 (abfd, BLR, p);
6070 return p + 4;
6071 }
6072
6073 static bfd_byte *
6074 savefpr (bfd *abfd, bfd_byte *p, int r)
6075 {
6076 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6077 return p + 4;
6078 }
6079
6080 static bfd_byte *
6081 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6082 {
6083 p = savefpr (abfd, p, r);
6084 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6085 p = p + 4;
6086 bfd_put_32 (abfd, BLR, p);
6087 return p + 4;
6088 }
6089
6090 static bfd_byte *
6091 restfpr (bfd *abfd, bfd_byte *p, int r)
6092 {
6093 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6094 return p + 4;
6095 }
6096
6097 static bfd_byte *
6098 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6099 {
6100 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6101 p = p + 4;
6102 p = restfpr (abfd, p, r);
6103 bfd_put_32 (abfd, MTLR_R0, p);
6104 p = p + 4;
6105 if (r == 29)
6106 {
6107 p = restfpr (abfd, p, 30);
6108 p = restfpr (abfd, p, 31);
6109 }
6110 bfd_put_32 (abfd, BLR, p);
6111 return p + 4;
6112 }
6113
6114 static bfd_byte *
6115 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6116 {
6117 p = savefpr (abfd, p, r);
6118 bfd_put_32 (abfd, BLR, p);
6119 return p + 4;
6120 }
6121
6122 static bfd_byte *
6123 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6124 {
6125 p = restfpr (abfd, p, r);
6126 bfd_put_32 (abfd, BLR, p);
6127 return p + 4;
6128 }
6129
6130 static bfd_byte *
6131 savevr (bfd *abfd, bfd_byte *p, int r)
6132 {
6133 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6134 p = p + 4;
6135 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6136 return p + 4;
6137 }
6138
6139 static bfd_byte *
6140 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6141 {
6142 p = savevr (abfd, p, r);
6143 bfd_put_32 (abfd, BLR, p);
6144 return p + 4;
6145 }
6146
6147 static bfd_byte *
6148 restvr (bfd *abfd, bfd_byte *p, int r)
6149 {
6150 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6151 p = p + 4;
6152 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6153 return p + 4;
6154 }
6155
6156 static bfd_byte *
6157 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6158 {
6159 p = restvr (abfd, p, r);
6160 bfd_put_32 (abfd, BLR, p);
6161 return p + 4;
6162 }
6163
6164 #define STDU_R1_0R1 0xf8210001
6165 #define ADDI_R1_R1 0x38210000
6166
6167 /* Emit prologue of wrapper preserving regs around a call to
6168 __tls_get_addr_opt. */
6169
6170 static bfd_byte *
6171 tls_get_addr_prologue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6172 {
6173 unsigned int i;
6174
6175 bfd_put_32 (obfd, MFLR_R0, p);
6176 p += 4;
6177 bfd_put_32 (obfd, STD_R0_0R1 + 16, p);
6178 p += 4;
6179
6180 if (htab->opd_abi)
6181 {
6182 for (i = 4; i < 12; i++)
6183 {
6184 bfd_put_32 (obfd,
6185 STD_R0_0R1 | i << 21 | (-(13 - i) * 8 & 0xffff), p);
6186 p += 4;
6187 }
6188 bfd_put_32 (obfd, STDU_R1_0R1 | (-128 & 0xffff), p);
6189 p += 4;
6190 }
6191 else
6192 {
6193 for (i = 4; i < 12; i++)
6194 {
6195 bfd_put_32 (obfd,
6196 STD_R0_0R1 | i << 21 | (-(12 - i) * 8 & 0xffff), p);
6197 p += 4;
6198 }
6199 bfd_put_32 (obfd, STDU_R1_0R1 | (-96 & 0xffff), p);
6200 p += 4;
6201 }
6202 return p;
6203 }
6204
6205 /* Emit epilogue of wrapper preserving regs around a call to
6206 __tls_get_addr_opt. */
6207
6208 static bfd_byte *
6209 tls_get_addr_epilogue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6210 {
6211 unsigned int i;
6212
6213 if (htab->opd_abi)
6214 {
6215 for (i = 4; i < 12; i++)
6216 {
6217 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (128 - (13 - i) * 8), p);
6218 p += 4;
6219 }
6220 bfd_put_32 (obfd, ADDI_R1_R1 | 128, p);
6221 p += 4;
6222 }
6223 else
6224 {
6225 for (i = 4; i < 12; i++)
6226 {
6227 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (96 - (12 - i) * 8), p);
6228 p += 4;
6229 }
6230 bfd_put_32 (obfd, ADDI_R1_R1 | 96, p);
6231 p += 4;
6232 }
6233 bfd_put_32 (obfd, LD_R0_0R1 | 16, p);
6234 p += 4;
6235 bfd_put_32 (obfd, MTLR_R0, p);
6236 p += 4;
6237 bfd_put_32 (obfd, BLR, p);
6238 p += 4;
6239 return p;
6240 }
6241
6242 /* Called via elf_link_hash_traverse to transfer dynamic linking
6243 information on function code symbol entries to their corresponding
6244 function descriptor symbol entries. */
6245
6246 static bool
6247 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6248 {
6249 struct bfd_link_info *info;
6250 struct ppc_link_hash_table *htab;
6251 struct ppc_link_hash_entry *fh;
6252 struct ppc_link_hash_entry *fdh;
6253 bool force_local;
6254
6255 fh = ppc_elf_hash_entry (h);
6256 if (fh->elf.root.type == bfd_link_hash_indirect)
6257 return true;
6258
6259 if (!fh->is_func)
6260 return true;
6261
6262 if (fh->elf.root.root.string[0] != '.'
6263 || fh->elf.root.root.string[1] == '\0')
6264 return true;
6265
6266 info = inf;
6267 htab = ppc_hash_table (info);
6268 if (htab == NULL)
6269 return false;
6270
6271 /* Find the corresponding function descriptor symbol. */
6272 fdh = lookup_fdh (fh, htab);
6273
6274 /* Resolve undefined references to dot-symbols as the value
6275 in the function descriptor, if we have one in a regular object.
6276 This is to satisfy cases like ".quad .foo". Calls to functions
6277 in dynamic objects are handled elsewhere. */
6278 if ((fh->elf.root.type == bfd_link_hash_undefined
6279 || fh->elf.root.type == bfd_link_hash_undefweak)
6280 && (fdh->elf.root.type == bfd_link_hash_defined
6281 || fdh->elf.root.type == bfd_link_hash_defweak)
6282 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6283 && opd_entry_value (fdh->elf.root.u.def.section,
6284 fdh->elf.root.u.def.value,
6285 &fh->elf.root.u.def.section,
6286 &fh->elf.root.u.def.value, false) != (bfd_vma) -1)
6287 {
6288 fh->elf.root.type = fdh->elf.root.type;
6289 fh->elf.forced_local = 1;
6290 fh->elf.def_regular = fdh->elf.def_regular;
6291 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6292 }
6293
6294 if (!fh->elf.dynamic)
6295 {
6296 struct plt_entry *ent;
6297
6298 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6299 if (ent->plt.refcount > 0)
6300 break;
6301 if (ent == NULL)
6302 return true;
6303 }
6304
6305 /* Create a descriptor as undefined if necessary. */
6306 if (fdh == NULL
6307 && !bfd_link_executable (info)
6308 && (fh->elf.root.type == bfd_link_hash_undefined
6309 || fh->elf.root.type == bfd_link_hash_undefweak))
6310 {
6311 fdh = make_fdh (info, fh);
6312 if (fdh == NULL)
6313 return false;
6314 }
6315
6316 /* We can't support overriding of symbols on a fake descriptor. */
6317 if (fdh != NULL
6318 && fdh->fake
6319 && (fh->elf.root.type == bfd_link_hash_defined
6320 || fh->elf.root.type == bfd_link_hash_defweak))
6321 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, true);
6322
6323 /* Transfer dynamic linking information to the function descriptor. */
6324 if (fdh != NULL)
6325 {
6326 fdh->elf.ref_regular |= fh->elf.ref_regular;
6327 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6328 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6329 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6330 fdh->elf.dynamic |= fh->elf.dynamic;
6331 fdh->elf.needs_plt |= (fh->elf.needs_plt
6332 || fh->elf.type == STT_FUNC
6333 || fh->elf.type == STT_GNU_IFUNC);
6334 move_plt_plist (fh, fdh);
6335
6336 if (!fdh->elf.forced_local
6337 && fh->elf.dynindx != -1)
6338 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6339 return false;
6340 }
6341
6342 /* Now that the info is on the function descriptor, clear the
6343 function code sym info. Any function code syms for which we
6344 don't have a definition in a regular file, we force local.
6345 This prevents a shared library from exporting syms that have
6346 been imported from another library. Function code syms that
6347 are really in the library we must leave global to prevent the
6348 linker dragging in a definition from a static library. */
6349 force_local = (!fh->elf.def_regular
6350 || fdh == NULL
6351 || !fdh->elf.def_regular
6352 || fdh->elf.forced_local);
6353 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6354
6355 return true;
6356 }
6357
6358 static const struct sfpr_def_parms save_res_funcs[] =
6359 {
6360 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6361 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6362 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6363 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6364 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6365 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6366 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6367 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6368 { "._savef", 14, 31, savefpr, savefpr1_tail },
6369 { "._restf", 14, 31, restfpr, restfpr1_tail },
6370 { "_savevr_", 20, 31, savevr, savevr_tail },
6371 { "_restvr_", 20, 31, restvr, restvr_tail }
6372 };
6373
6374 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6375 this hook to a) run the edit functions in this file, b) provide
6376 some gcc support functions, and c) transfer dynamic linking
6377 information gathered so far on function code symbol entries, to
6378 their corresponding function descriptor symbol entries. */
6379
6380 static bool
6381 ppc64_elf_edit (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6382 {
6383 struct ppc_link_hash_table *htab;
6384
6385 htab = ppc_hash_table (info);
6386 if (htab == NULL)
6387 return false;
6388
6389 /* Call back into the linker, which then runs the edit functions. */
6390 htab->params->edit ();
6391
6392 /* Provide any missing _save* and _rest* functions. */
6393 if (htab->sfpr != NULL)
6394 {
6395 unsigned int i;
6396
6397 htab->sfpr->size = 0;
6398 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6399 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6400 return false;
6401 if (htab->sfpr->size == 0)
6402 htab->sfpr->flags |= SEC_EXCLUDE;
6403 }
6404
6405 if (bfd_link_relocatable (info))
6406 return true;
6407
6408 if (htab->elf.hgot != NULL)
6409 {
6410 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, true);
6411 /* Make .TOC. defined so as to prevent it being made dynamic.
6412 The wrong value here is fixed later in ppc64_elf_set_toc. */
6413 if (!htab->elf.hgot->def_regular
6414 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6415 {
6416 htab->elf.hgot->root.type = bfd_link_hash_defined;
6417 htab->elf.hgot->root.u.def.value = 0;
6418 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6419 htab->elf.hgot->def_regular = 1;
6420 htab->elf.hgot->root.linker_def = 1;
6421 }
6422 htab->elf.hgot->type = STT_OBJECT;
6423 htab->elf.hgot->other
6424 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6425 }
6426
6427 if (htab->need_func_desc_adj)
6428 {
6429 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6430 htab->need_func_desc_adj = 0;
6431 }
6432
6433 return true;
6434 }
6435
6436 /* Return true if we have dynamic relocs against H or any of its weak
6437 aliases, that apply to read-only sections. Cannot be used after
6438 size_dynamic_sections. */
6439
6440 static bool
6441 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6442 {
6443 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6444 do
6445 {
6446 if (_bfd_elf_readonly_dynrelocs (&eh->elf))
6447 return true;
6448 eh = ppc_elf_hash_entry (eh->elf.u.alias);
6449 }
6450 while (eh != NULL && &eh->elf != h);
6451
6452 return false;
6453 }
6454
6455 /* Return whether EH has pc-relative dynamic relocs. */
6456
6457 static bool
6458 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6459 {
6460 struct elf_dyn_relocs *p;
6461
6462 for (p = eh->elf.dyn_relocs; p != NULL; p = p->next)
6463 if (p->pc_count != 0)
6464 return true;
6465 return false;
6466 }
6467
6468 /* Return true if a global entry stub will be created for H. Valid
6469 for ELFv2 before plt entries have been allocated. */
6470
6471 static bool
6472 global_entry_stub (struct elf_link_hash_entry *h)
6473 {
6474 struct plt_entry *pent;
6475
6476 if (!h->pointer_equality_needed
6477 || h->def_regular)
6478 return false;
6479
6480 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6481 if (pent->plt.refcount > 0
6482 && pent->addend == 0)
6483 return true;
6484
6485 return false;
6486 }
6487
6488 /* Adjust a symbol defined by a dynamic object and referenced by a
6489 regular object. The current definition is in some section of the
6490 dynamic object, but we're not including those sections. We have to
6491 change the definition to something the rest of the link can
6492 understand. */
6493
6494 static bool
6495 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6496 struct elf_link_hash_entry *h)
6497 {
6498 struct ppc_link_hash_table *htab;
6499 asection *s, *srel;
6500
6501 htab = ppc_hash_table (info);
6502 if (htab == NULL)
6503 return false;
6504
6505 /* Deal with function syms. */
6506 if (h->type == STT_FUNC
6507 || h->type == STT_GNU_IFUNC
6508 || h->needs_plt)
6509 {
6510 bool local = (ppc_elf_hash_entry (h)->save_res
6511 || SYMBOL_CALLS_LOCAL (info, h)
6512 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6513 /* Discard dyn_relocs when non-pic if we've decided that a
6514 function symbol is local and not an ifunc. We keep dynamic
6515 relocs for ifuncs when local rather than always emitting a
6516 plt call stub for them and defining the symbol on the call
6517 stub. We can't do that for ELFv1 anyway (a function symbol
6518 is defined on a descriptor, not code) and it can be faster at
6519 run-time due to not needing to bounce through a stub. The
6520 dyn_relocs for ifuncs will be applied even in a static
6521 executable. */
6522 if (!bfd_link_pic (info)
6523 && h->type != STT_GNU_IFUNC
6524 && local)
6525 h->dyn_relocs = NULL;
6526
6527 /* Clear procedure linkage table information for any symbol that
6528 won't need a .plt entry. */
6529 struct plt_entry *ent;
6530 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6531 if (ent->plt.refcount > 0)
6532 break;
6533 if (ent == NULL
6534 || (h->type != STT_GNU_IFUNC
6535 && local
6536 && (htab->can_convert_all_inline_plt
6537 || (ppc_elf_hash_entry (h)->tls_mask
6538 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6539 {
6540 h->plt.plist = NULL;
6541 h->needs_plt = 0;
6542 h->pointer_equality_needed = 0;
6543 }
6544 else if (abiversion (info->output_bfd) >= 2)
6545 {
6546 /* Taking a function's address in a read/write section
6547 doesn't require us to define the function symbol in the
6548 executable on a global entry stub. A dynamic reloc can
6549 be used instead. The reason we prefer a few more dynamic
6550 relocs is that calling via a global entry stub costs a
6551 few more instructions, and pointer_equality_needed causes
6552 extra work in ld.so when resolving these symbols. */
6553 if (global_entry_stub (h))
6554 {
6555 if (!_bfd_elf_readonly_dynrelocs (h))
6556 {
6557 h->pointer_equality_needed = 0;
6558 /* If we haven't seen a branch reloc and the symbol
6559 isn't an ifunc then we don't need a plt entry. */
6560 if (!h->needs_plt)
6561 h->plt.plist = NULL;
6562 }
6563 else if (!bfd_link_pic (info))
6564 /* We are going to be defining the function symbol on the
6565 plt stub, so no dyn_relocs needed when non-pic. */
6566 h->dyn_relocs = NULL;
6567 }
6568
6569 /* ELFv2 function symbols can't have copy relocs. */
6570 return true;
6571 }
6572 else if (!h->needs_plt
6573 && !_bfd_elf_readonly_dynrelocs (h))
6574 {
6575 /* If we haven't seen a branch reloc and the symbol isn't an
6576 ifunc then we don't need a plt entry. */
6577 h->plt.plist = NULL;
6578 h->pointer_equality_needed = 0;
6579 return true;
6580 }
6581 }
6582 else
6583 h->plt.plist = NULL;
6584
6585 /* If this is a weak symbol, and there is a real definition, the
6586 processor independent code will have arranged for us to see the
6587 real definition first, and we can just use the same value. */
6588 if (h->is_weakalias)
6589 {
6590 struct elf_link_hash_entry *def = weakdef (h);
6591 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6592 h->root.u.def.section = def->root.u.def.section;
6593 h->root.u.def.value = def->root.u.def.value;
6594 if (def->root.u.def.section == htab->elf.sdynbss
6595 || def->root.u.def.section == htab->elf.sdynrelro)
6596 h->dyn_relocs = NULL;
6597 return true;
6598 }
6599
6600 /* If we are creating a shared library, we must presume that the
6601 only references to the symbol are via the global offset table.
6602 For such cases we need not do anything here; the relocations will
6603 be handled correctly by relocate_section. */
6604 if (!bfd_link_executable (info))
6605 return true;
6606
6607 /* If there are no references to this symbol that do not use the
6608 GOT, we don't need to generate a copy reloc. */
6609 if (!h->non_got_ref)
6610 return true;
6611
6612 /* Don't generate a copy reloc for symbols defined in the executable. */
6613 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6614
6615 /* If -z nocopyreloc was given, don't generate them either. */
6616 || info->nocopyreloc
6617
6618 /* If we don't find any dynamic relocs in read-only sections, then
6619 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6620 || (ELIMINATE_COPY_RELOCS
6621 && !h->needs_copy
6622 && !alias_readonly_dynrelocs (h))
6623
6624 /* Protected variables do not work with .dynbss. The copy in
6625 .dynbss won't be used by the shared library with the protected
6626 definition for the variable. Text relocations are preferable
6627 to an incorrect program. */
6628 || h->protected_def)
6629 return true;
6630
6631 if (h->type == STT_FUNC
6632 || h->type == STT_GNU_IFUNC)
6633 {
6634 /* .dynbss copies of function symbols only work if we have
6635 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6636 use dot-symbols and set the function symbol size to the text
6637 size of the function rather than the size of the descriptor.
6638 That's wrong for copying a descriptor. */
6639 if (ppc_elf_hash_entry (h)->oh == NULL
6640 || !(h->size == 24 || h->size == 16))
6641 return true;
6642
6643 /* We should never get here, but unfortunately there are old
6644 versions of gcc (circa gcc-3.2) that improperly for the
6645 ELFv1 ABI put initialized function pointers, vtable refs and
6646 suchlike in read-only sections. Allow them to proceed, but
6647 warn that this might break at runtime. */
6648 info->callbacks->einfo
6649 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6650 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6651 h->root.root.string);
6652 }
6653
6654 /* This is a reference to a symbol defined by a dynamic object which
6655 is not a function. */
6656
6657 /* We must allocate the symbol in our .dynbss section, which will
6658 become part of the .bss section of the executable. There will be
6659 an entry for this symbol in the .dynsym section. The dynamic
6660 object will contain position independent code, so all references
6661 from the dynamic object to this symbol will go through the global
6662 offset table. The dynamic linker will use the .dynsym entry to
6663 determine the address it must put in the global offset table, so
6664 both the dynamic object and the regular object will refer to the
6665 same memory location for the variable. */
6666 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6667 {
6668 s = htab->elf.sdynrelro;
6669 srel = htab->elf.sreldynrelro;
6670 }
6671 else
6672 {
6673 s = htab->elf.sdynbss;
6674 srel = htab->elf.srelbss;
6675 }
6676 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6677 {
6678 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6679 linker to copy the initial value out of the dynamic object
6680 and into the runtime process image. */
6681 srel->size += sizeof (Elf64_External_Rela);
6682 h->needs_copy = 1;
6683 }
6684
6685 /* We no longer want dyn_relocs. */
6686 h->dyn_relocs = NULL;
6687 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6688 }
6689
6690 /* If given a function descriptor symbol, hide both the function code
6691 sym and the descriptor. */
6692 static void
6693 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6694 struct elf_link_hash_entry *h,
6695 bool force_local)
6696 {
6697 struct ppc_link_hash_entry *eh;
6698 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6699
6700 if (ppc_hash_table (info) == NULL)
6701 return;
6702
6703 eh = ppc_elf_hash_entry (h);
6704 if (eh->is_func_descriptor)
6705 {
6706 struct ppc_link_hash_entry *fh = eh->oh;
6707
6708 if (fh == NULL)
6709 {
6710 const char *p, *q;
6711 struct elf_link_hash_table *htab = elf_hash_table (info);
6712 char save;
6713
6714 /* We aren't supposed to use alloca in BFD because on
6715 systems which do not have alloca the version in libiberty
6716 calls xmalloc, which might cause the program to crash
6717 when it runs out of memory. This function doesn't have a
6718 return status, so there's no way to gracefully return an
6719 error. So cheat. We know that string[-1] can be safely
6720 accessed; It's either a string in an ELF string table,
6721 or allocated in an objalloc structure. */
6722
6723 p = eh->elf.root.root.string - 1;
6724 save = *p;
6725 *(char *) p = '.';
6726 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, false,
6727 false, false));
6728 *(char *) p = save;
6729
6730 /* Unfortunately, if it so happens that the string we were
6731 looking for was allocated immediately before this string,
6732 then we overwrote the string terminator. That's the only
6733 reason the lookup should fail. */
6734 if (fh == NULL)
6735 {
6736 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6737 while (q >= eh->elf.root.root.string && *q == *p)
6738 --q, --p;
6739 if (q < eh->elf.root.root.string && *p == '.')
6740 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, false,
6741 false, false));
6742 }
6743 if (fh != NULL)
6744 {
6745 eh->oh = fh;
6746 fh->oh = eh;
6747 }
6748 }
6749 if (fh != NULL)
6750 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6751 }
6752 }
6753
6754 static bool
6755 get_sym_h (struct elf_link_hash_entry **hp,
6756 Elf_Internal_Sym **symp,
6757 asection **symsecp,
6758 unsigned char **tls_maskp,
6759 Elf_Internal_Sym **locsymsp,
6760 unsigned long r_symndx,
6761 bfd *ibfd)
6762 {
6763 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6764
6765 if (r_symndx >= symtab_hdr->sh_info)
6766 {
6767 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6768 struct elf_link_hash_entry *h;
6769
6770 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6771 h = elf_follow_link (h);
6772
6773 if (hp != NULL)
6774 *hp = h;
6775
6776 if (symp != NULL)
6777 *symp = NULL;
6778
6779 if (symsecp != NULL)
6780 {
6781 asection *symsec = NULL;
6782 if (h->root.type == bfd_link_hash_defined
6783 || h->root.type == bfd_link_hash_defweak)
6784 symsec = h->root.u.def.section;
6785 *symsecp = symsec;
6786 }
6787
6788 if (tls_maskp != NULL)
6789 *tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
6790 }
6791 else
6792 {
6793 Elf_Internal_Sym *sym;
6794 Elf_Internal_Sym *locsyms = *locsymsp;
6795
6796 if (locsyms == NULL)
6797 {
6798 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6799 if (locsyms == NULL)
6800 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6801 symtab_hdr->sh_info,
6802 0, NULL, NULL, NULL);
6803 if (locsyms == NULL)
6804 return false;
6805 *locsymsp = locsyms;
6806 }
6807 sym = locsyms + r_symndx;
6808
6809 if (hp != NULL)
6810 *hp = NULL;
6811
6812 if (symp != NULL)
6813 *symp = sym;
6814
6815 if (symsecp != NULL)
6816 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6817
6818 if (tls_maskp != NULL)
6819 {
6820 struct got_entry **lgot_ents;
6821 unsigned char *tls_mask;
6822
6823 tls_mask = NULL;
6824 lgot_ents = elf_local_got_ents (ibfd);
6825 if (lgot_ents != NULL)
6826 {
6827 struct plt_entry **local_plt = (struct plt_entry **)
6828 (lgot_ents + symtab_hdr->sh_info);
6829 unsigned char *lgot_masks = (unsigned char *)
6830 (local_plt + symtab_hdr->sh_info);
6831 tls_mask = &lgot_masks[r_symndx];
6832 }
6833 *tls_maskp = tls_mask;
6834 }
6835 }
6836 return true;
6837 }
6838
6839 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6840 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6841 type suitable for optimization, and 1 otherwise. */
6842
6843 static int
6844 get_tls_mask (unsigned char **tls_maskp,
6845 unsigned long *toc_symndx,
6846 bfd_vma *toc_addend,
6847 Elf_Internal_Sym **locsymsp,
6848 const Elf_Internal_Rela *rel,
6849 bfd *ibfd)
6850 {
6851 unsigned long r_symndx;
6852 int next_r;
6853 struct elf_link_hash_entry *h;
6854 Elf_Internal_Sym *sym;
6855 asection *sec;
6856 bfd_vma off;
6857
6858 r_symndx = ELF64_R_SYM (rel->r_info);
6859 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6860 return 0;
6861
6862 if ((*tls_maskp != NULL
6863 && (**tls_maskp & TLS_TLS) != 0
6864 && **tls_maskp != (TLS_TLS | TLS_MARK))
6865 || sec == NULL
6866 || ppc64_elf_section_data (sec) == NULL
6867 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6868 return 1;
6869
6870 /* Look inside a TOC section too. */
6871 if (h != NULL)
6872 {
6873 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6874 off = h->root.u.def.value;
6875 }
6876 else
6877 off = sym->st_value;
6878 off += rel->r_addend;
6879 BFD_ASSERT (off % 8 == 0);
6880 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6881 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6882 if (toc_symndx != NULL)
6883 *toc_symndx = r_symndx;
6884 if (toc_addend != NULL)
6885 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6886 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6887 return 0;
6888 if ((h == NULL || is_static_defined (h))
6889 && (next_r == -1 || next_r == -2))
6890 return 1 - next_r;
6891 return 1;
6892 }
6893
6894 /* Find (or create) an entry in the tocsave hash table. */
6895
6896 static struct tocsave_entry *
6897 tocsave_find (struct ppc_link_hash_table *htab,
6898 enum insert_option insert,
6899 Elf_Internal_Sym **local_syms,
6900 const Elf_Internal_Rela *irela,
6901 bfd *ibfd)
6902 {
6903 unsigned long r_indx;
6904 struct elf_link_hash_entry *h;
6905 Elf_Internal_Sym *sym;
6906 struct tocsave_entry ent, *p;
6907 hashval_t hash;
6908 struct tocsave_entry **slot;
6909
6910 r_indx = ELF64_R_SYM (irela->r_info);
6911 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6912 return NULL;
6913 if (ent.sec == NULL || ent.sec->output_section == NULL)
6914 {
6915 _bfd_error_handler
6916 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6917 return NULL;
6918 }
6919
6920 if (h != NULL)
6921 ent.offset = h->root.u.def.value;
6922 else
6923 ent.offset = sym->st_value;
6924 ent.offset += irela->r_addend;
6925
6926 hash = tocsave_htab_hash (&ent);
6927 slot = ((struct tocsave_entry **)
6928 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6929 if (slot == NULL)
6930 return NULL;
6931
6932 if (*slot == NULL)
6933 {
6934 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6935 if (p == NULL)
6936 return NULL;
6937 *p = ent;
6938 *slot = p;
6939 }
6940 return *slot;
6941 }
6942
6943 /* Adjust all global syms defined in opd sections. In gcc generated
6944 code for the old ABI, these will already have been done. */
6945
6946 static bool
6947 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6948 {
6949 struct ppc_link_hash_entry *eh;
6950 asection *sym_sec;
6951 struct _opd_sec_data *opd;
6952
6953 if (h->root.type == bfd_link_hash_indirect)
6954 return true;
6955
6956 if (h->root.type != bfd_link_hash_defined
6957 && h->root.type != bfd_link_hash_defweak)
6958 return true;
6959
6960 eh = ppc_elf_hash_entry (h);
6961 if (eh->adjust_done)
6962 return true;
6963
6964 sym_sec = eh->elf.root.u.def.section;
6965 opd = get_opd_info (sym_sec);
6966 if (opd != NULL && opd->adjust != NULL)
6967 {
6968 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6969 if (adjust == -1)
6970 {
6971 /* This entry has been deleted. */
6972 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6973 if (dsec == NULL)
6974 {
6975 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6976 if (discarded_section (dsec))
6977 {
6978 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6979 break;
6980 }
6981 }
6982 eh->elf.root.u.def.value = 0;
6983 eh->elf.root.u.def.section = dsec;
6984 }
6985 else
6986 eh->elf.root.u.def.value += adjust;
6987 eh->adjust_done = 1;
6988 }
6989 return true;
6990 }
6991
6992 /* Handles decrementing dynamic reloc counts for the reloc specified by
6993 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6994 have already been determined. */
6995
6996 static bool
6997 dec_dynrel_count (bfd_vma r_info,
6998 asection *sec,
6999 struct bfd_link_info *info,
7000 Elf_Internal_Sym **local_syms,
7001 struct elf_link_hash_entry *h,
7002 Elf_Internal_Sym *sym)
7003 {
7004 enum elf_ppc64_reloc_type r_type;
7005 asection *sym_sec = NULL;
7006
7007 /* Can this reloc be dynamic? This switch, and later tests here
7008 should be kept in sync with the code in check_relocs. */
7009 r_type = ELF64_R_TYPE (r_info);
7010 switch (r_type)
7011 {
7012 default:
7013 return true;
7014
7015 case R_PPC64_TOC16:
7016 case R_PPC64_TOC16_DS:
7017 case R_PPC64_TOC16_LO:
7018 case R_PPC64_TOC16_HI:
7019 case R_PPC64_TOC16_HA:
7020 case R_PPC64_TOC16_LO_DS:
7021 if (h == NULL)
7022 return true;
7023 break;
7024
7025 case R_PPC64_TPREL16:
7026 case R_PPC64_TPREL16_LO:
7027 case R_PPC64_TPREL16_HI:
7028 case R_PPC64_TPREL16_HA:
7029 case R_PPC64_TPREL16_DS:
7030 case R_PPC64_TPREL16_LO_DS:
7031 case R_PPC64_TPREL16_HIGH:
7032 case R_PPC64_TPREL16_HIGHA:
7033 case R_PPC64_TPREL16_HIGHER:
7034 case R_PPC64_TPREL16_HIGHERA:
7035 case R_PPC64_TPREL16_HIGHEST:
7036 case R_PPC64_TPREL16_HIGHESTA:
7037 case R_PPC64_TPREL64:
7038 case R_PPC64_TPREL34:
7039 case R_PPC64_DTPMOD64:
7040 case R_PPC64_DTPREL64:
7041 case R_PPC64_ADDR64:
7042 case R_PPC64_REL30:
7043 case R_PPC64_REL32:
7044 case R_PPC64_REL64:
7045 case R_PPC64_ADDR14:
7046 case R_PPC64_ADDR14_BRNTAKEN:
7047 case R_PPC64_ADDR14_BRTAKEN:
7048 case R_PPC64_ADDR16:
7049 case R_PPC64_ADDR16_DS:
7050 case R_PPC64_ADDR16_HA:
7051 case R_PPC64_ADDR16_HI:
7052 case R_PPC64_ADDR16_HIGH:
7053 case R_PPC64_ADDR16_HIGHA:
7054 case R_PPC64_ADDR16_HIGHER:
7055 case R_PPC64_ADDR16_HIGHERA:
7056 case R_PPC64_ADDR16_HIGHEST:
7057 case R_PPC64_ADDR16_HIGHESTA:
7058 case R_PPC64_ADDR16_LO:
7059 case R_PPC64_ADDR16_LO_DS:
7060 case R_PPC64_ADDR24:
7061 case R_PPC64_ADDR32:
7062 case R_PPC64_UADDR16:
7063 case R_PPC64_UADDR32:
7064 case R_PPC64_UADDR64:
7065 case R_PPC64_TOC:
7066 case R_PPC64_D34:
7067 case R_PPC64_D34_LO:
7068 case R_PPC64_D34_HI30:
7069 case R_PPC64_D34_HA30:
7070 case R_PPC64_ADDR16_HIGHER34:
7071 case R_PPC64_ADDR16_HIGHERA34:
7072 case R_PPC64_ADDR16_HIGHEST34:
7073 case R_PPC64_ADDR16_HIGHESTA34:
7074 case R_PPC64_D28:
7075 break;
7076 }
7077
7078 if (local_syms != NULL)
7079 {
7080 unsigned long r_symndx;
7081 bfd *ibfd = sec->owner;
7082
7083 r_symndx = ELF64_R_SYM (r_info);
7084 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7085 return false;
7086 }
7087
7088 if ((h != NULL
7089 && (h->root.type == bfd_link_hash_defweak
7090 || !h->def_regular))
7091 || (h != NULL
7092 && !bfd_link_executable (info)
7093 && !SYMBOLIC_BIND (info, h))
7094 || (bfd_link_pic (info)
7095 && must_be_dyn_reloc (info, r_type))
7096 || (!bfd_link_pic (info)
7097 && (h != NULL
7098 ? h->type == STT_GNU_IFUNC
7099 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
7100 ;
7101 else
7102 return true;
7103
7104 if (h != NULL)
7105 {
7106 struct elf_dyn_relocs *p;
7107 struct elf_dyn_relocs **pp;
7108 pp = &h->dyn_relocs;
7109
7110 /* elf_gc_sweep may have already removed all dyn relocs associated
7111 with local syms for a given section. Also, symbol flags are
7112 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7113 report a dynreloc miscount. */
7114 if (*pp == NULL && info->gc_sections)
7115 return true;
7116
7117 while ((p = *pp) != NULL)
7118 {
7119 if (p->sec == sec)
7120 {
7121 if (!must_be_dyn_reloc (info, r_type))
7122 p->pc_count -= 1;
7123 p->count -= 1;
7124 if (p->count == 0)
7125 *pp = p->next;
7126 return true;
7127 }
7128 pp = &p->next;
7129 }
7130 }
7131 else
7132 {
7133 struct ppc_dyn_relocs *p;
7134 struct ppc_dyn_relocs **pp;
7135 void *vpp;
7136 bool is_ifunc;
7137
7138 if (local_syms == NULL)
7139 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7140 if (sym_sec == NULL)
7141 sym_sec = sec;
7142
7143 vpp = &elf_section_data (sym_sec)->local_dynrel;
7144 pp = (struct ppc_dyn_relocs **) vpp;
7145
7146 if (*pp == NULL && info->gc_sections)
7147 return true;
7148
7149 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7150 while ((p = *pp) != NULL)
7151 {
7152 if (p->sec == sec && p->ifunc == is_ifunc)
7153 {
7154 p->count -= 1;
7155 if (p->count == 0)
7156 *pp = p->next;
7157 return true;
7158 }
7159 pp = &p->next;
7160 }
7161 }
7162
7163 /* xgettext:c-format */
7164 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7165 sec->owner, sec);
7166 bfd_set_error (bfd_error_bad_value);
7167 return false;
7168 }
7169
7170 /* Remove unused Official Procedure Descriptor entries. Currently we
7171 only remove those associated with functions in discarded link-once
7172 sections, or weakly defined functions that have been overridden. It
7173 would be possible to remove many more entries for statically linked
7174 applications. */
7175
7176 bool
7177 ppc64_elf_edit_opd (struct bfd_link_info *info)
7178 {
7179 bfd *ibfd;
7180 bool some_edited = false;
7181 asection *need_pad = NULL;
7182 struct ppc_link_hash_table *htab;
7183
7184 htab = ppc_hash_table (info);
7185 if (htab == NULL)
7186 return false;
7187
7188 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7189 {
7190 asection *sec;
7191 Elf_Internal_Rela *relstart, *rel, *relend;
7192 Elf_Internal_Shdr *symtab_hdr;
7193 Elf_Internal_Sym *local_syms;
7194 struct _opd_sec_data *opd;
7195 bool need_edit, add_aux_fields, broken;
7196 bfd_size_type cnt_16b = 0;
7197
7198 if (!is_ppc64_elf (ibfd))
7199 continue;
7200
7201 sec = bfd_get_section_by_name (ibfd, ".opd");
7202 if (sec == NULL || sec->size == 0)
7203 continue;
7204
7205 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7206 continue;
7207
7208 if (sec->output_section == bfd_abs_section_ptr)
7209 continue;
7210
7211 /* Look through the section relocs. */
7212 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7213 continue;
7214
7215 local_syms = NULL;
7216 symtab_hdr = &elf_symtab_hdr (ibfd);
7217
7218 /* Read the relocations. */
7219 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7220 info->keep_memory);
7221 if (relstart == NULL)
7222 return false;
7223
7224 /* First run through the relocs to check they are sane, and to
7225 determine whether we need to edit this opd section. */
7226 need_edit = false;
7227 broken = false;
7228 need_pad = sec;
7229 relend = relstart + sec->reloc_count;
7230 for (rel = relstart; rel < relend; )
7231 {
7232 enum elf_ppc64_reloc_type r_type;
7233 unsigned long r_symndx;
7234 asection *sym_sec;
7235 struct elf_link_hash_entry *h;
7236 Elf_Internal_Sym *sym;
7237 bfd_vma offset;
7238
7239 /* .opd contains an array of 16 or 24 byte entries. We're
7240 only interested in the reloc pointing to a function entry
7241 point. */
7242 offset = rel->r_offset;
7243 if (rel + 1 == relend
7244 || rel[1].r_offset != offset + 8)
7245 {
7246 /* If someone messes with .opd alignment then after a
7247 "ld -r" we might have padding in the middle of .opd.
7248 Also, there's nothing to prevent someone putting
7249 something silly in .opd with the assembler. No .opd
7250 optimization for them! */
7251 broken_opd:
7252 _bfd_error_handler
7253 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7254 broken = true;
7255 break;
7256 }
7257
7258 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7259 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7260 {
7261 _bfd_error_handler
7262 /* xgettext:c-format */
7263 (_("%pB: unexpected reloc type %u in .opd section"),
7264 ibfd, r_type);
7265 broken = true;
7266 break;
7267 }
7268
7269 r_symndx = ELF64_R_SYM (rel->r_info);
7270 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7271 r_symndx, ibfd))
7272 goto error_ret;
7273
7274 if (sym_sec == NULL || sym_sec->owner == NULL)
7275 {
7276 const char *sym_name;
7277 if (h != NULL)
7278 sym_name = h->root.root.string;
7279 else
7280 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7281 sym_sec);
7282
7283 _bfd_error_handler
7284 /* xgettext:c-format */
7285 (_("%pB: undefined sym `%s' in .opd section"),
7286 ibfd, sym_name);
7287 broken = true;
7288 break;
7289 }
7290
7291 /* opd entries are always for functions defined in the
7292 current input bfd. If the symbol isn't defined in the
7293 input bfd, then we won't be using the function in this
7294 bfd; It must be defined in a linkonce section in another
7295 bfd, or is weak. It's also possible that we are
7296 discarding the function due to a linker script /DISCARD/,
7297 which we test for via the output_section. */
7298 if (sym_sec->owner != ibfd
7299 || sym_sec->output_section == bfd_abs_section_ptr)
7300 need_edit = true;
7301
7302 rel += 2;
7303 if (rel + 1 == relend
7304 || (rel + 2 < relend
7305 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7306 ++rel;
7307
7308 if (rel == relend)
7309 {
7310 if (sec->size == offset + 24)
7311 {
7312 need_pad = NULL;
7313 break;
7314 }
7315 if (sec->size == offset + 16)
7316 {
7317 cnt_16b++;
7318 break;
7319 }
7320 goto broken_opd;
7321 }
7322 else if (rel + 1 < relend
7323 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7324 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7325 {
7326 if (rel[0].r_offset == offset + 16)
7327 cnt_16b++;
7328 else if (rel[0].r_offset != offset + 24)
7329 goto broken_opd;
7330 }
7331 else
7332 goto broken_opd;
7333 }
7334
7335 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7336
7337 if (!broken && (need_edit || add_aux_fields))
7338 {
7339 Elf_Internal_Rela *write_rel;
7340 Elf_Internal_Shdr *rel_hdr;
7341 bfd_byte *rptr, *wptr;
7342 bfd_byte *new_contents;
7343 bfd_size_type amt;
7344
7345 new_contents = NULL;
7346 amt = OPD_NDX (sec->size) * sizeof (long);
7347 opd = &ppc64_elf_section_data (sec)->u.opd;
7348 opd->adjust = bfd_zalloc (sec->owner, amt);
7349 if (opd->adjust == NULL)
7350 return false;
7351
7352 /* This seems a waste of time as input .opd sections are all
7353 zeros as generated by gcc, but I suppose there's no reason
7354 this will always be so. We might start putting something in
7355 the third word of .opd entries. */
7356 if ((sec->flags & SEC_IN_MEMORY) == 0)
7357 {
7358 bfd_byte *loc;
7359 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7360 {
7361 free (loc);
7362 error_ret:
7363 if (symtab_hdr->contents != (unsigned char *) local_syms)
7364 free (local_syms);
7365 if (elf_section_data (sec)->relocs != relstart)
7366 free (relstart);
7367 return false;
7368 }
7369 sec->contents = loc;
7370 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7371 }
7372
7373 elf_section_data (sec)->relocs = relstart;
7374
7375 new_contents = sec->contents;
7376 if (add_aux_fields)
7377 {
7378 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7379 if (new_contents == NULL)
7380 return false;
7381 need_pad = NULL;
7382 }
7383 wptr = new_contents;
7384 rptr = sec->contents;
7385 write_rel = relstart;
7386 for (rel = relstart; rel < relend; )
7387 {
7388 unsigned long r_symndx;
7389 asection *sym_sec;
7390 struct elf_link_hash_entry *h;
7391 struct ppc_link_hash_entry *fdh = NULL;
7392 Elf_Internal_Sym *sym;
7393 long opd_ent_size;
7394 Elf_Internal_Rela *next_rel;
7395 bool skip;
7396
7397 r_symndx = ELF64_R_SYM (rel->r_info);
7398 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7399 r_symndx, ibfd))
7400 goto error_ret;
7401
7402 next_rel = rel + 2;
7403 if (next_rel + 1 == relend
7404 || (next_rel + 2 < relend
7405 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7406 ++next_rel;
7407
7408 /* See if the .opd entry is full 24 byte or
7409 16 byte (with fd_aux entry overlapped with next
7410 fd_func). */
7411 opd_ent_size = 24;
7412 if (next_rel == relend)
7413 {
7414 if (sec->size == rel->r_offset + 16)
7415 opd_ent_size = 16;
7416 }
7417 else if (next_rel->r_offset == rel->r_offset + 16)
7418 opd_ent_size = 16;
7419
7420 if (h != NULL
7421 && h->root.root.string[0] == '.')
7422 {
7423 fdh = ppc_elf_hash_entry (h)->oh;
7424 if (fdh != NULL)
7425 {
7426 fdh = ppc_follow_link (fdh);
7427 if (fdh->elf.root.type != bfd_link_hash_defined
7428 && fdh->elf.root.type != bfd_link_hash_defweak)
7429 fdh = NULL;
7430 }
7431 }
7432
7433 skip = (sym_sec->owner != ibfd
7434 || sym_sec->output_section == bfd_abs_section_ptr);
7435 if (skip)
7436 {
7437 if (fdh != NULL && sym_sec->owner == ibfd)
7438 {
7439 /* Arrange for the function descriptor sym
7440 to be dropped. */
7441 fdh->elf.root.u.def.value = 0;
7442 fdh->elf.root.u.def.section = sym_sec;
7443 }
7444 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7445
7446 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7447 rel = next_rel;
7448 else
7449 while (1)
7450 {
7451 if (!dec_dynrel_count (rel->r_info, sec, info,
7452 NULL, h, sym))
7453 goto error_ret;
7454
7455 if (++rel == next_rel)
7456 break;
7457
7458 r_symndx = ELF64_R_SYM (rel->r_info);
7459 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7460 r_symndx, ibfd))
7461 goto error_ret;
7462 }
7463 }
7464 else
7465 {
7466 /* We'll be keeping this opd entry. */
7467 long adjust;
7468
7469 if (fdh != NULL)
7470 {
7471 /* Redefine the function descriptor symbol to
7472 this location in the opd section. It is
7473 necessary to update the value here rather
7474 than using an array of adjustments as we do
7475 for local symbols, because various places
7476 in the generic ELF code use the value
7477 stored in u.def.value. */
7478 fdh->elf.root.u.def.value = wptr - new_contents;
7479 fdh->adjust_done = 1;
7480 }
7481
7482 /* Local syms are a bit tricky. We could
7483 tweak them as they can be cached, but
7484 we'd need to look through the local syms
7485 for the function descriptor sym which we
7486 don't have at the moment. So keep an
7487 array of adjustments. */
7488 adjust = (wptr - new_contents) - (rptr - sec->contents);
7489 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7490
7491 if (wptr != rptr)
7492 memcpy (wptr, rptr, opd_ent_size);
7493 wptr += opd_ent_size;
7494 if (add_aux_fields && opd_ent_size == 16)
7495 {
7496 memset (wptr, '\0', 8);
7497 wptr += 8;
7498 }
7499
7500 /* We need to adjust any reloc offsets to point to the
7501 new opd entries. */
7502 for ( ; rel != next_rel; ++rel)
7503 {
7504 rel->r_offset += adjust;
7505 if (write_rel != rel)
7506 memcpy (write_rel, rel, sizeof (*rel));
7507 ++write_rel;
7508 }
7509 }
7510
7511 rptr += opd_ent_size;
7512 }
7513
7514 sec->size = wptr - new_contents;
7515 sec->reloc_count = write_rel - relstart;
7516 if (add_aux_fields)
7517 {
7518 free (sec->contents);
7519 sec->contents = new_contents;
7520 }
7521
7522 /* Fudge the header size too, as this is used later in
7523 elf_bfd_final_link if we are emitting relocs. */
7524 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7525 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7526 some_edited = true;
7527 }
7528 else if (elf_section_data (sec)->relocs != relstart)
7529 free (relstart);
7530
7531 if (local_syms != NULL
7532 && symtab_hdr->contents != (unsigned char *) local_syms)
7533 {
7534 if (!info->keep_memory)
7535 free (local_syms);
7536 else
7537 symtab_hdr->contents = (unsigned char *) local_syms;
7538 }
7539 }
7540
7541 if (some_edited)
7542 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7543
7544 /* If we are doing a final link and the last .opd entry is just 16 byte
7545 long, add a 8 byte padding after it. */
7546 if (need_pad != NULL && !bfd_link_relocatable (info))
7547 {
7548 bfd_byte *p;
7549
7550 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7551 {
7552 BFD_ASSERT (need_pad->size > 0);
7553
7554 p = bfd_malloc (need_pad->size + 8);
7555 if (p == NULL)
7556 return false;
7557
7558 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7559 p, 0, need_pad->size))
7560 return false;
7561
7562 need_pad->contents = p;
7563 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7564 }
7565 else
7566 {
7567 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7568 if (p == NULL)
7569 return false;
7570
7571 need_pad->contents = p;
7572 }
7573
7574 memset (need_pad->contents + need_pad->size, 0, 8);
7575 need_pad->size += 8;
7576 }
7577
7578 return true;
7579 }
7580
7581 /* Analyze inline PLT call relocations to see whether calls to locally
7582 defined functions can be converted to direct calls. */
7583
7584 bool
7585 ppc64_elf_inline_plt (struct bfd_link_info *info)
7586 {
7587 struct ppc_link_hash_table *htab;
7588 bfd *ibfd;
7589 asection *sec;
7590 bfd_vma low_vma, high_vma, limit;
7591
7592 htab = ppc_hash_table (info);
7593 if (htab == NULL)
7594 return false;
7595
7596 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7597 reduced somewhat to cater for possible stubs that might be added
7598 between the call and its destination. */
7599 if (htab->params->group_size < 0)
7600 {
7601 limit = -htab->params->group_size;
7602 if (limit == 1)
7603 limit = 0x1e00000;
7604 }
7605 else
7606 {
7607 limit = htab->params->group_size;
7608 if (limit == 1)
7609 limit = 0x1c00000;
7610 }
7611
7612 low_vma = -1;
7613 high_vma = 0;
7614 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7615 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7616 {
7617 if (low_vma > sec->vma)
7618 low_vma = sec->vma;
7619 if (high_vma < sec->vma + sec->size)
7620 high_vma = sec->vma + sec->size;
7621 }
7622
7623 /* If a "bl" can reach anywhere in local code sections, then we can
7624 convert all inline PLT sequences to direct calls when the symbol
7625 is local. */
7626 if (high_vma - low_vma < limit)
7627 {
7628 htab->can_convert_all_inline_plt = 1;
7629 return true;
7630 }
7631
7632 /* Otherwise, go looking through relocs for cases where a direct
7633 call won't reach. Mark the symbol on any such reloc to disable
7634 the optimization and keep the PLT entry as it seems likely that
7635 this will be better than creating trampolines. Note that this
7636 will disable the optimization for all inline PLT calls to a
7637 particular symbol, not just those that won't reach. The
7638 difficulty in doing a more precise optimization is that the
7639 linker needs to make a decision depending on whether a
7640 particular R_PPC64_PLTCALL insn can be turned into a direct
7641 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7642 the sequence, and there is nothing that ties those relocs
7643 together except their symbol. */
7644
7645 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7646 {
7647 Elf_Internal_Shdr *symtab_hdr;
7648 Elf_Internal_Sym *local_syms;
7649
7650 if (!is_ppc64_elf (ibfd))
7651 continue;
7652
7653 local_syms = NULL;
7654 symtab_hdr = &elf_symtab_hdr (ibfd);
7655
7656 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7657 if (ppc64_elf_section_data (sec)->has_pltcall
7658 && !bfd_is_abs_section (sec->output_section))
7659 {
7660 Elf_Internal_Rela *relstart, *rel, *relend;
7661
7662 /* Read the relocations. */
7663 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7664 info->keep_memory);
7665 if (relstart == NULL)
7666 return false;
7667
7668 relend = relstart + sec->reloc_count;
7669 for (rel = relstart; rel < relend; rel++)
7670 {
7671 enum elf_ppc64_reloc_type r_type;
7672 unsigned long r_symndx;
7673 asection *sym_sec;
7674 struct elf_link_hash_entry *h;
7675 Elf_Internal_Sym *sym;
7676 unsigned char *tls_maskp;
7677
7678 r_type = ELF64_R_TYPE (rel->r_info);
7679 if (r_type != R_PPC64_PLTCALL
7680 && r_type != R_PPC64_PLTCALL_NOTOC)
7681 continue;
7682
7683 r_symndx = ELF64_R_SYM (rel->r_info);
7684 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7685 r_symndx, ibfd))
7686 {
7687 if (elf_section_data (sec)->relocs != relstart)
7688 free (relstart);
7689 if (symtab_hdr->contents != (bfd_byte *) local_syms)
7690 free (local_syms);
7691 return false;
7692 }
7693
7694 if (sym_sec != NULL && sym_sec->output_section != NULL)
7695 {
7696 bfd_vma from, to;
7697 if (h != NULL)
7698 to = h->root.u.def.value;
7699 else
7700 to = sym->st_value;
7701 to += (rel->r_addend
7702 + sym_sec->output_offset
7703 + sym_sec->output_section->vma);
7704 from = (rel->r_offset
7705 + sec->output_offset
7706 + sec->output_section->vma);
7707 if (to - from + limit < 2 * limit
7708 && !(r_type == R_PPC64_PLTCALL_NOTOC
7709 && (((h ? h->other : sym->st_other)
7710 & STO_PPC64_LOCAL_MASK)
7711 > 1 << STO_PPC64_LOCAL_BIT)))
7712 *tls_maskp &= ~PLT_KEEP;
7713 }
7714 }
7715 if (elf_section_data (sec)->relocs != relstart)
7716 free (relstart);
7717 }
7718
7719 if (local_syms != NULL
7720 && symtab_hdr->contents != (unsigned char *) local_syms)
7721 {
7722 if (!info->keep_memory)
7723 free (local_syms);
7724 else
7725 symtab_hdr->contents = (unsigned char *) local_syms;
7726 }
7727 }
7728
7729 return true;
7730 }
7731
7732 /* Set htab->tls_get_addr and various other info specific to TLS.
7733 This needs to run before dynamic symbols are processed in
7734 bfd_elf_size_dynamic_sections. */
7735
7736 bool
7737 ppc64_elf_tls_setup (struct bfd_link_info *info)
7738 {
7739 struct ppc_link_hash_table *htab;
7740 struct elf_link_hash_entry *tga, *tga_fd, *desc, *desc_fd;
7741
7742 htab = ppc_hash_table (info);
7743 if (htab == NULL)
7744 return false;
7745
7746 if (abiversion (info->output_bfd) == 1)
7747 htab->opd_abi = 1;
7748
7749 if (htab->params->no_multi_toc)
7750 htab->do_multi_toc = 0;
7751 else if (!htab->do_multi_toc)
7752 htab->params->no_multi_toc = 1;
7753
7754 /* Default to --no-plt-localentry, as this option can cause problems
7755 with symbol interposition. For example, glibc libpthread.so and
7756 libc.so duplicate many pthread symbols, with a fallback
7757 implementation in libc.so. In some cases the fallback does more
7758 work than the pthread implementation. __pthread_condattr_destroy
7759 is one such symbol: the libpthread.so implementation is
7760 localentry:0 while the libc.so implementation is localentry:8.
7761 An app that "cleverly" uses dlopen to only load necessary
7762 libraries at runtime may omit loading libpthread.so when not
7763 running multi-threaded, which then results in the libc.so
7764 fallback symbols being used and ld.so complaining. Now there
7765 are workarounds in ld (see non_zero_localentry) to detect the
7766 pthread situation, but that may not be the only case where
7767 --plt-localentry can cause trouble. */
7768 if (htab->params->plt_localentry0 < 0)
7769 htab->params->plt_localentry0 = 0;
7770 if (htab->params->plt_localentry0 && htab->has_power10_relocs)
7771 {
7772 /* The issue is that __glink_PLTresolve saves r2, which is done
7773 because glibc ld.so _dl_runtime_resolve restores r2 to support
7774 a glibc plt call optimisation where global entry code is
7775 skipped on calls that resolve to the same binary. The
7776 __glink_PLTresolve save of r2 is incompatible with code
7777 making tail calls, because the tail call might go via the
7778 resolver and thus overwrite the proper saved r2. */
7779 _bfd_error_handler (_("warning: --plt-localentry is incompatible with "
7780 "power10 pc-relative code"));
7781 htab->params->plt_localentry0 = 0;
7782 }
7783 if (htab->params->plt_localentry0
7784 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7785 false, false, false) == NULL)
7786 _bfd_error_handler
7787 (_("warning: --plt-localentry is especially dangerous without "
7788 "ld.so support to detect ABI violations"));
7789
7790 tga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7791 false, false, true);
7792 htab->tls_get_addr = ppc_elf_hash_entry (tga);
7793
7794 /* Move dynamic linking info to the function descriptor sym. */
7795 if (tga != NULL)
7796 func_desc_adjust (tga, info);
7797 tga_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7798 false, false, true);
7799 htab->tls_get_addr_fd = ppc_elf_hash_entry (tga_fd);
7800
7801 desc = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_desc",
7802 false, false, true);
7803 htab->tga_desc = ppc_elf_hash_entry (desc);
7804 if (desc != NULL)
7805 func_desc_adjust (desc, info);
7806 desc_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_desc",
7807 false, false, true);
7808 htab->tga_desc_fd = ppc_elf_hash_entry (desc_fd);
7809
7810 if (htab->params->tls_get_addr_opt)
7811 {
7812 struct elf_link_hash_entry *opt, *opt_fd;
7813
7814 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7815 false, false, true);
7816 if (opt != NULL)
7817 func_desc_adjust (opt, info);
7818 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7819 false, false, true);
7820 if (opt_fd != NULL
7821 && (opt_fd->root.type == bfd_link_hash_defined
7822 || opt_fd->root.type == bfd_link_hash_defweak))
7823 {
7824 /* If glibc supports an optimized __tls_get_addr call stub,
7825 signalled by the presence of __tls_get_addr_opt, and we'll
7826 be calling __tls_get_addr via a plt call stub, then
7827 make __tls_get_addr point to __tls_get_addr_opt. */
7828 if (!(htab->elf.dynamic_sections_created
7829 && tga_fd != NULL
7830 && (tga_fd->type == STT_FUNC
7831 || tga_fd->needs_plt)
7832 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7833 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd))))
7834 tga_fd = NULL;
7835 if (!(htab->elf.dynamic_sections_created
7836 && desc_fd != NULL
7837 && (desc_fd->type == STT_FUNC
7838 || desc_fd->needs_plt)
7839 && !(SYMBOL_CALLS_LOCAL (info, desc_fd)
7840 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, desc_fd))))
7841 desc_fd = NULL;
7842
7843 if (tga_fd != NULL || desc_fd != NULL)
7844 {
7845 struct plt_entry *ent = NULL;
7846
7847 if (tga_fd != NULL)
7848 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7849 if (ent->plt.refcount > 0)
7850 break;
7851 if (ent == NULL && desc_fd != NULL)
7852 for (ent = desc_fd->plt.plist; ent != NULL; ent = ent->next)
7853 if (ent->plt.refcount > 0)
7854 break;
7855 if (ent != NULL)
7856 {
7857 if (tga_fd != NULL)
7858 {
7859 tga_fd->root.type = bfd_link_hash_indirect;
7860 tga_fd->root.u.i.link = &opt_fd->root;
7861 tga_fd->root.u.i.warning = NULL;
7862 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7863 }
7864 if (desc_fd != NULL)
7865 {
7866 desc_fd->root.type = bfd_link_hash_indirect;
7867 desc_fd->root.u.i.link = &opt_fd->root;
7868 desc_fd->root.u.i.warning = NULL;
7869 ppc64_elf_copy_indirect_symbol (info, opt_fd, desc_fd);
7870 }
7871 opt_fd->mark = 1;
7872 if (opt_fd->dynindx != -1)
7873 {
7874 /* Use __tls_get_addr_opt in dynamic relocations. */
7875 opt_fd->dynindx = -1;
7876 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7877 opt_fd->dynstr_index);
7878 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7879 return false;
7880 }
7881 if (tga_fd != NULL)
7882 {
7883 htab->tls_get_addr_fd = ppc_elf_hash_entry (opt_fd);
7884 tga = elf_hash_entry (htab->tls_get_addr);
7885 if (opt != NULL && tga != NULL)
7886 {
7887 tga->root.type = bfd_link_hash_indirect;
7888 tga->root.u.i.link = &opt->root;
7889 tga->root.u.i.warning = NULL;
7890 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7891 opt->mark = 1;
7892 _bfd_elf_link_hash_hide_symbol (info, opt,
7893 tga->forced_local);
7894 htab->tls_get_addr = ppc_elf_hash_entry (opt);
7895 }
7896 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7897 htab->tls_get_addr_fd->is_func_descriptor = 1;
7898 if (htab->tls_get_addr != NULL)
7899 {
7900 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7901 htab->tls_get_addr->is_func = 1;
7902 }
7903 }
7904 if (desc_fd != NULL)
7905 {
7906 htab->tga_desc_fd = ppc_elf_hash_entry (opt_fd);
7907 if (opt != NULL && desc != NULL)
7908 {
7909 desc->root.type = bfd_link_hash_indirect;
7910 desc->root.u.i.link = &opt->root;
7911 desc->root.u.i.warning = NULL;
7912 ppc64_elf_copy_indirect_symbol (info, opt, desc);
7913 opt->mark = 1;
7914 _bfd_elf_link_hash_hide_symbol (info, opt,
7915 desc->forced_local);
7916 htab->tga_desc = ppc_elf_hash_entry (opt);
7917 }
7918 htab->tga_desc_fd->oh = htab->tga_desc;
7919 htab->tga_desc_fd->is_func_descriptor = 1;
7920 if (htab->tga_desc != NULL)
7921 {
7922 htab->tga_desc->oh = htab->tga_desc_fd;
7923 htab->tga_desc->is_func = 1;
7924 }
7925 }
7926 }
7927 }
7928 }
7929 else if (htab->params->tls_get_addr_opt < 0)
7930 htab->params->tls_get_addr_opt = 0;
7931 }
7932
7933 if (htab->tga_desc_fd != NULL
7934 && htab->params->tls_get_addr_opt
7935 && htab->params->no_tls_get_addr_regsave == -1)
7936 htab->params->no_tls_get_addr_regsave = 0;
7937
7938 return true;
7939 }
7940
7941 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7942 any of HASH1, HASH2, HASH3, or HASH4. */
7943
7944 static bool
7945 branch_reloc_hash_match (bfd *ibfd,
7946 Elf_Internal_Rela *rel,
7947 struct ppc_link_hash_entry *hash1,
7948 struct ppc_link_hash_entry *hash2,
7949 struct ppc_link_hash_entry *hash3,
7950 struct ppc_link_hash_entry *hash4)
7951 {
7952 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7953 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7954 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7955
7956 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7957 {
7958 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7959 struct elf_link_hash_entry *h;
7960
7961 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7962 h = elf_follow_link (h);
7963 if (h == elf_hash_entry (hash1)
7964 || h == elf_hash_entry (hash2)
7965 || h == elf_hash_entry (hash3)
7966 || h == elf_hash_entry (hash4))
7967 return true;
7968 }
7969 return false;
7970 }
7971
7972 /* Run through all the TLS relocs looking for optimization
7973 opportunities. The linker has been hacked (see ppc64elf.em) to do
7974 a preliminary section layout so that we know the TLS segment
7975 offsets. We can't optimize earlier because some optimizations need
7976 to know the tp offset, and we need to optimize before allocating
7977 dynamic relocations. */
7978
7979 bool
7980 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7981 {
7982 bfd *ibfd;
7983 asection *sec;
7984 struct ppc_link_hash_table *htab;
7985 unsigned char *toc_ref;
7986 int pass;
7987
7988 if (!bfd_link_executable (info))
7989 return true;
7990
7991 htab = ppc_hash_table (info);
7992 if (htab == NULL)
7993 return false;
7994
7995 htab->do_tls_opt = 1;
7996
7997 /* Make two passes over the relocs. On the first pass, mark toc
7998 entries involved with tls relocs, and check that tls relocs
7999 involved in setting up a tls_get_addr call are indeed followed by
8000 such a call. If they are not, we can't do any tls optimization.
8001 On the second pass twiddle tls_mask flags to notify
8002 relocate_section that optimization can be done, and adjust got
8003 and plt refcounts. */
8004 toc_ref = NULL;
8005 for (pass = 0; pass < 2; ++pass)
8006 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8007 {
8008 Elf_Internal_Sym *locsyms = NULL;
8009 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8010
8011 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8012 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8013 {
8014 Elf_Internal_Rela *relstart, *rel, *relend;
8015 bool found_tls_get_addr_arg = 0;
8016
8017 /* Read the relocations. */
8018 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8019 info->keep_memory);
8020 if (relstart == NULL)
8021 {
8022 free (toc_ref);
8023 return false;
8024 }
8025
8026 relend = relstart + sec->reloc_count;
8027 for (rel = relstart; rel < relend; rel++)
8028 {
8029 enum elf_ppc64_reloc_type r_type;
8030 unsigned long r_symndx;
8031 struct elf_link_hash_entry *h;
8032 Elf_Internal_Sym *sym;
8033 asection *sym_sec;
8034 unsigned char *tls_mask;
8035 unsigned int tls_set, tls_clear, tls_type = 0;
8036 bfd_vma value;
8037 bool ok_tprel, is_local;
8038 long toc_ref_index = 0;
8039 int expecting_tls_get_addr = 0;
8040 bool ret = false;
8041
8042 r_symndx = ELF64_R_SYM (rel->r_info);
8043 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8044 r_symndx, ibfd))
8045 {
8046 err_free_rel:
8047 if (elf_section_data (sec)->relocs != relstart)
8048 free (relstart);
8049 free (toc_ref);
8050 if (elf_symtab_hdr (ibfd).contents
8051 != (unsigned char *) locsyms)
8052 free (locsyms);
8053 return ret;
8054 }
8055
8056 if (h != NULL)
8057 {
8058 if (h->root.type == bfd_link_hash_defined
8059 || h->root.type == bfd_link_hash_defweak)
8060 value = h->root.u.def.value;
8061 else if (h->root.type == bfd_link_hash_undefweak)
8062 value = 0;
8063 else
8064 {
8065 found_tls_get_addr_arg = 0;
8066 continue;
8067 }
8068 }
8069 else
8070 /* Symbols referenced by TLS relocs must be of type
8071 STT_TLS. So no need for .opd local sym adjust. */
8072 value = sym->st_value;
8073
8074 ok_tprel = false;
8075 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
8076 if (is_local)
8077 {
8078 if (h != NULL
8079 && h->root.type == bfd_link_hash_undefweak)
8080 ok_tprel = true;
8081 else if (sym_sec != NULL
8082 && sym_sec->output_section != NULL)
8083 {
8084 value += sym_sec->output_offset;
8085 value += sym_sec->output_section->vma;
8086 value -= htab->elf.tls_sec->vma + TP_OFFSET;
8087 /* Note that even though the prefix insns
8088 allow a 1<<33 offset we use the same test
8089 as for addis;addi. There may be a mix of
8090 pcrel and non-pcrel code and the decision
8091 to optimise is per symbol, not per TLS
8092 sequence. */
8093 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
8094 }
8095 }
8096
8097 r_type = ELF64_R_TYPE (rel->r_info);
8098 /* If this section has old-style __tls_get_addr calls
8099 without marker relocs, then check that each
8100 __tls_get_addr call reloc is preceded by a reloc
8101 that conceivably belongs to the __tls_get_addr arg
8102 setup insn. If we don't find matching arg setup
8103 relocs, don't do any tls optimization. */
8104 if (pass == 0
8105 && sec->nomark_tls_get_addr
8106 && h != NULL
8107 && is_tls_get_addr (h, htab)
8108 && !found_tls_get_addr_arg
8109 && is_branch_reloc (r_type))
8110 {
8111 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8112 "TLS optimization disabled\n"),
8113 ibfd, sec, rel->r_offset);
8114 ret = true;
8115 goto err_free_rel;
8116 }
8117
8118 found_tls_get_addr_arg = 0;
8119 switch (r_type)
8120 {
8121 case R_PPC64_GOT_TLSLD16:
8122 case R_PPC64_GOT_TLSLD16_LO:
8123 case R_PPC64_GOT_TLSLD_PCREL34:
8124 expecting_tls_get_addr = 1;
8125 found_tls_get_addr_arg = 1;
8126 /* Fall through. */
8127
8128 case R_PPC64_GOT_TLSLD16_HI:
8129 case R_PPC64_GOT_TLSLD16_HA:
8130 /* These relocs should never be against a symbol
8131 defined in a shared lib. Leave them alone if
8132 that turns out to be the case. */
8133 if (!is_local)
8134 continue;
8135
8136 /* LD -> LE */
8137 tls_set = 0;
8138 tls_clear = TLS_LD;
8139 tls_type = TLS_TLS | TLS_LD;
8140 break;
8141
8142 case R_PPC64_GOT_TLSGD16:
8143 case R_PPC64_GOT_TLSGD16_LO:
8144 case R_PPC64_GOT_TLSGD_PCREL34:
8145 expecting_tls_get_addr = 1;
8146 found_tls_get_addr_arg = 1;
8147 /* Fall through. */
8148
8149 case R_PPC64_GOT_TLSGD16_HI:
8150 case R_PPC64_GOT_TLSGD16_HA:
8151 if (ok_tprel)
8152 /* GD -> LE */
8153 tls_set = 0;
8154 else
8155 /* GD -> IE */
8156 tls_set = TLS_TLS | TLS_GDIE;
8157 tls_clear = TLS_GD;
8158 tls_type = TLS_TLS | TLS_GD;
8159 break;
8160
8161 case R_PPC64_GOT_TPREL_PCREL34:
8162 case R_PPC64_GOT_TPREL16_DS:
8163 case R_PPC64_GOT_TPREL16_LO_DS:
8164 case R_PPC64_GOT_TPREL16_HI:
8165 case R_PPC64_GOT_TPREL16_HA:
8166 if (ok_tprel)
8167 {
8168 /* IE -> LE */
8169 tls_set = 0;
8170 tls_clear = TLS_TPREL;
8171 tls_type = TLS_TLS | TLS_TPREL;
8172 break;
8173 }
8174 continue;
8175
8176 case R_PPC64_TLSLD:
8177 if (!is_local)
8178 continue;
8179 /* Fall through. */
8180 case R_PPC64_TLSGD:
8181 if (rel + 1 < relend
8182 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
8183 {
8184 if (pass != 0
8185 && (ELF64_R_TYPE (rel[1].r_info)
8186 != R_PPC64_PLTSEQ)
8187 && (ELF64_R_TYPE (rel[1].r_info)
8188 != R_PPC64_PLTSEQ_NOTOC))
8189 {
8190 r_symndx = ELF64_R_SYM (rel[1].r_info);
8191 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
8192 r_symndx, ibfd))
8193 goto err_free_rel;
8194 if (h != NULL)
8195 {
8196 struct plt_entry *ent = NULL;
8197
8198 for (ent = h->plt.plist;
8199 ent != NULL;
8200 ent = ent->next)
8201 if (ent->addend == rel[1].r_addend)
8202 break;
8203
8204 if (ent != NULL
8205 && ent->plt.refcount > 0)
8206 ent->plt.refcount -= 1;
8207 }
8208 }
8209 continue;
8210 }
8211 found_tls_get_addr_arg = 1;
8212 /* Fall through. */
8213
8214 case R_PPC64_TLS:
8215 case R_PPC64_TOC16:
8216 case R_PPC64_TOC16_LO:
8217 if (sym_sec == NULL || sym_sec != toc)
8218 continue;
8219
8220 /* Mark this toc entry as referenced by a TLS
8221 code sequence. We can do that now in the
8222 case of R_PPC64_TLS, and after checking for
8223 tls_get_addr for the TOC16 relocs. */
8224 if (toc_ref == NULL)
8225 toc_ref
8226 = bfd_zmalloc (toc->output_section->rawsize / 8);
8227 if (toc_ref == NULL)
8228 goto err_free_rel;
8229
8230 if (h != NULL)
8231 value = h->root.u.def.value;
8232 else
8233 value = sym->st_value;
8234 value += rel->r_addend;
8235 if (value % 8 != 0)
8236 continue;
8237 BFD_ASSERT (value < toc->size
8238 && toc->output_offset % 8 == 0);
8239 toc_ref_index = (value + toc->output_offset) / 8;
8240 if (r_type == R_PPC64_TLS
8241 || r_type == R_PPC64_TLSGD
8242 || r_type == R_PPC64_TLSLD)
8243 {
8244 toc_ref[toc_ref_index] = 1;
8245 continue;
8246 }
8247
8248 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8249 continue;
8250
8251 tls_set = 0;
8252 tls_clear = 0;
8253 expecting_tls_get_addr = 2;
8254 break;
8255
8256 case R_PPC64_TPREL64:
8257 if (pass == 0
8258 || sec != toc
8259 || toc_ref == NULL
8260 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8261 continue;
8262 if (ok_tprel)
8263 {
8264 /* IE -> LE */
8265 tls_set = TLS_EXPLICIT;
8266 tls_clear = TLS_TPREL;
8267 break;
8268 }
8269 continue;
8270
8271 case R_PPC64_DTPMOD64:
8272 if (pass == 0
8273 || sec != toc
8274 || toc_ref == NULL
8275 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8276 continue;
8277 if (rel + 1 < relend
8278 && (rel[1].r_info
8279 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8280 && rel[1].r_offset == rel->r_offset + 8)
8281 {
8282 if (ok_tprel)
8283 /* GD -> LE */
8284 tls_set = TLS_EXPLICIT | TLS_GD;
8285 else
8286 /* GD -> IE */
8287 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8288 tls_clear = TLS_GD;
8289 }
8290 else
8291 {
8292 if (!is_local)
8293 continue;
8294
8295 /* LD -> LE */
8296 tls_set = TLS_EXPLICIT;
8297 tls_clear = TLS_LD;
8298 }
8299 break;
8300
8301 case R_PPC64_TPREL16_HA:
8302 if (pass == 0)
8303 {
8304 unsigned char buf[4];
8305 unsigned int insn;
8306 bfd_vma off = rel->r_offset & ~3;
8307 if (!bfd_get_section_contents (ibfd, sec, buf,
8308 off, 4))
8309 goto err_free_rel;
8310 insn = bfd_get_32 (ibfd, buf);
8311 /* addis rt,13,imm */
8312 if ((insn & ((0x3fu << 26) | 0x1f << 16))
8313 != ((15u << 26) | (13 << 16)))
8314 {
8315 /* xgettext:c-format */
8316 info->callbacks->minfo
8317 (_("%H: warning: %s unexpected insn %#x.\n"),
8318 ibfd, sec, off, "R_PPC64_TPREL16_HA", insn);
8319 htab->do_tls_opt = 0;
8320 }
8321 }
8322 continue;
8323
8324 case R_PPC64_TPREL16_HI:
8325 case R_PPC64_TPREL16_HIGH:
8326 case R_PPC64_TPREL16_HIGHA:
8327 case R_PPC64_TPREL16_HIGHER:
8328 case R_PPC64_TPREL16_HIGHERA:
8329 case R_PPC64_TPREL16_HIGHEST:
8330 case R_PPC64_TPREL16_HIGHESTA:
8331 /* These can all be used in sequences along with
8332 TPREL16_LO or TPREL16_LO_DS in ways we aren't
8333 able to verify easily. */
8334 htab->do_tls_opt = 0;
8335 continue;
8336
8337 default:
8338 continue;
8339 }
8340
8341 if (pass == 0)
8342 {
8343 if (!expecting_tls_get_addr
8344 || !sec->nomark_tls_get_addr)
8345 continue;
8346
8347 if (rel + 1 < relend
8348 && branch_reloc_hash_match (ibfd, rel + 1,
8349 htab->tls_get_addr_fd,
8350 htab->tga_desc_fd,
8351 htab->tls_get_addr,
8352 htab->tga_desc))
8353 {
8354 if (expecting_tls_get_addr == 2)
8355 {
8356 /* Check for toc tls entries. */
8357 unsigned char *toc_tls;
8358 int retval;
8359
8360 retval = get_tls_mask (&toc_tls, NULL, NULL,
8361 &locsyms,
8362 rel, ibfd);
8363 if (retval == 0)
8364 goto err_free_rel;
8365 if (toc_tls != NULL)
8366 {
8367 if ((*toc_tls & TLS_TLS) != 0
8368 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8369 found_tls_get_addr_arg = 1;
8370 if (retval > 1)
8371 toc_ref[toc_ref_index] = 1;
8372 }
8373 }
8374 continue;
8375 }
8376
8377 /* Uh oh, we didn't find the expected call. We
8378 could just mark this symbol to exclude it
8379 from tls optimization but it's safer to skip
8380 the entire optimization. */
8381 /* xgettext:c-format */
8382 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8383 "TLS optimization disabled\n"),
8384 ibfd, sec, rel->r_offset);
8385 ret = true;
8386 goto err_free_rel;
8387 }
8388
8389 /* If we don't have old-style __tls_get_addr calls
8390 without TLSGD/TLSLD marker relocs, and we haven't
8391 found a new-style __tls_get_addr call with a
8392 marker for this symbol, then we either have a
8393 broken object file or an -mlongcall style
8394 indirect call to __tls_get_addr without a marker.
8395 Disable optimization in this case. */
8396 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8397 && (tls_set & TLS_EXPLICIT) == 0
8398 && !sec->nomark_tls_get_addr
8399 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8400 != (TLS_TLS | TLS_MARK)))
8401 continue;
8402
8403 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8404 {
8405 struct plt_entry *ent = NULL;
8406
8407 if (htab->tls_get_addr_fd != NULL)
8408 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8409 ent != NULL;
8410 ent = ent->next)
8411 if (ent->addend == 0)
8412 break;
8413
8414 if (ent == NULL && htab->tga_desc_fd != NULL)
8415 for (ent = htab->tga_desc_fd->elf.plt.plist;
8416 ent != NULL;
8417 ent = ent->next)
8418 if (ent->addend == 0)
8419 break;
8420
8421 if (ent == NULL && htab->tls_get_addr != NULL)
8422 for (ent = htab->tls_get_addr->elf.plt.plist;
8423 ent != NULL;
8424 ent = ent->next)
8425 if (ent->addend == 0)
8426 break;
8427
8428 if (ent == NULL && htab->tga_desc != NULL)
8429 for (ent = htab->tga_desc->elf.plt.plist;
8430 ent != NULL;
8431 ent = ent->next)
8432 if (ent->addend == 0)
8433 break;
8434
8435 if (ent != NULL
8436 && ent->plt.refcount > 0)
8437 ent->plt.refcount -= 1;
8438 }
8439
8440 if (tls_clear == 0)
8441 continue;
8442
8443 if ((tls_set & TLS_EXPLICIT) == 0)
8444 {
8445 struct got_entry *ent;
8446
8447 /* Adjust got entry for this reloc. */
8448 if (h != NULL)
8449 ent = h->got.glist;
8450 else
8451 ent = elf_local_got_ents (ibfd)[r_symndx];
8452
8453 for (; ent != NULL; ent = ent->next)
8454 if (ent->addend == rel->r_addend
8455 && ent->owner == ibfd
8456 && ent->tls_type == tls_type)
8457 break;
8458 if (ent == NULL)
8459 abort ();
8460
8461 if (tls_set == 0)
8462 {
8463 /* We managed to get rid of a got entry. */
8464 if (ent->got.refcount > 0)
8465 ent->got.refcount -= 1;
8466 }
8467 }
8468 else
8469 {
8470 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8471 we'll lose one or two dyn relocs. */
8472 if (!dec_dynrel_count (rel->r_info, sec, info,
8473 NULL, h, sym))
8474 return false;
8475
8476 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8477 {
8478 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8479 NULL, h, sym))
8480 return false;
8481 }
8482 }
8483
8484 *tls_mask |= tls_set & 0xff;
8485 *tls_mask &= ~tls_clear;
8486 }
8487
8488 if (elf_section_data (sec)->relocs != relstart)
8489 free (relstart);
8490 }
8491
8492 if (locsyms != NULL
8493 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8494 {
8495 if (!info->keep_memory)
8496 free (locsyms);
8497 else
8498 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8499 }
8500 }
8501
8502 free (toc_ref);
8503 return true;
8504 }
8505
8506 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8507 the values of any global symbols in a toc section that has been
8508 edited. Globals in toc sections should be a rarity, so this function
8509 sets a flag if any are found in toc sections other than the one just
8510 edited, so that further hash table traversals can be avoided. */
8511
8512 struct adjust_toc_info
8513 {
8514 asection *toc;
8515 unsigned long *skip;
8516 bool global_toc_syms;
8517 };
8518
8519 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8520
8521 static bool
8522 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8523 {
8524 struct ppc_link_hash_entry *eh;
8525 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8526 unsigned long i;
8527
8528 if (h->root.type != bfd_link_hash_defined
8529 && h->root.type != bfd_link_hash_defweak)
8530 return true;
8531
8532 eh = ppc_elf_hash_entry (h);
8533 if (eh->adjust_done)
8534 return true;
8535
8536 if (eh->elf.root.u.def.section == toc_inf->toc)
8537 {
8538 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8539 i = toc_inf->toc->rawsize >> 3;
8540 else
8541 i = eh->elf.root.u.def.value >> 3;
8542
8543 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8544 {
8545 _bfd_error_handler
8546 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8547 do
8548 ++i;
8549 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8550 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8551 }
8552
8553 eh->elf.root.u.def.value -= toc_inf->skip[i];
8554 eh->adjust_done = 1;
8555 }
8556 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8557 toc_inf->global_toc_syms = true;
8558
8559 return true;
8560 }
8561
8562 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8563 on a _LO variety toc/got reloc. */
8564
8565 static bool
8566 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8567 {
8568 return ((insn & (0x3fu << 26)) == 12u << 26 /* addic */
8569 || (insn & (0x3fu << 26)) == 14u << 26 /* addi */
8570 || (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
8571 || (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
8572 || (insn & (0x3fu << 26)) == 36u << 26 /* stw */
8573 || (insn & (0x3fu << 26)) == 38u << 26 /* stb */
8574 || (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
8575 || (insn & (0x3fu << 26)) == 42u << 26 /* lha */
8576 || (insn & (0x3fu << 26)) == 44u << 26 /* sth */
8577 || (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
8578 || (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
8579 || (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
8580 || (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
8581 || (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
8582 || (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
8583 || (insn & (0x3fu << 26)) == 56u << 26 /* lq,lfq */
8584 || ((insn & (0x3fu << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8585 /* Exclude lfqu by testing reloc. If relocs are ever
8586 defined for the reduced D field in psq_lu then those
8587 will need testing too. */
8588 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8589 || ((insn & (0x3fu << 26)) == 58u << 26 /* ld,lwa */
8590 && (insn & 1) == 0)
8591 || (insn & (0x3fu << 26)) == 60u << 26 /* stfq */
8592 || ((insn & (0x3fu << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8593 /* Exclude stfqu. psq_stu as above for psq_lu. */
8594 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8595 || ((insn & (0x3fu << 26)) == 62u << 26 /* std,stq */
8596 && (insn & 1) == 0));
8597 }
8598
8599 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8600 pld ra,symbol@got@pcrel
8601 load/store rt,off(ra)
8602 or
8603 pla ra,symbol@pcrel
8604 load/store rt,off(ra)
8605 may be translated to
8606 pload/pstore rt,symbol+off@pcrel
8607 nop.
8608 This function returns true if the optimization is possible, placing
8609 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8610
8611 On entry to this function, the linker has already determined that
8612 the pld can be replaced with pla: *PINSN1 is that pla insn,
8613 while *PINSN2 is the second instruction. */
8614
8615 static bool
8616 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8617 {
8618 uint64_t insn1 = *pinsn1;
8619 uint64_t insn2 = *pinsn2;
8620 bfd_signed_vma off;
8621
8622 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8623 {
8624 /* Check that regs match. */
8625 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8626 return false;
8627
8628 /* P8LS or PMLS form, non-pcrel. */
8629 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8630 return false;
8631
8632 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8633 *pinsn2 = PNOP;
8634 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8635 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8636 return true;
8637 }
8638
8639 insn2 >>= 32;
8640
8641 /* Check that regs match. */
8642 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8643 return false;
8644
8645 switch ((insn2 >> 26) & 63)
8646 {
8647 default:
8648 return false;
8649
8650 case 32: /* lwz */
8651 case 34: /* lbz */
8652 case 36: /* stw */
8653 case 38: /* stb */
8654 case 40: /* lhz */
8655 case 42: /* lha */
8656 case 44: /* sth */
8657 case 48: /* lfs */
8658 case 50: /* lfd */
8659 case 52: /* stfs */
8660 case 54: /* stfd */
8661 /* These are the PMLS cases, where we just need to tack a prefix
8662 on the insn. */
8663 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8664 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8665 off = insn2 & 0xffff;
8666 break;
8667
8668 case 58: /* lwa, ld */
8669 if ((insn2 & 1) != 0)
8670 return false;
8671 insn1 = ((1ULL << 58) | (1ULL << 52)
8672 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8673 | (insn2 & (31ULL << 21)));
8674 off = insn2 & 0xfffc;
8675 break;
8676
8677 case 57: /* lxsd, lxssp */
8678 if ((insn2 & 3) < 2)
8679 return false;
8680 insn1 = ((1ULL << 58) | (1ULL << 52)
8681 | ((40ULL | (insn2 & 3)) << 26)
8682 | (insn2 & (31ULL << 21)));
8683 off = insn2 & 0xfffc;
8684 break;
8685
8686 case 61: /* stxsd, stxssp, lxv, stxv */
8687 if ((insn2 & 3) == 0)
8688 return false;
8689 else if ((insn2 & 3) >= 2)
8690 {
8691 insn1 = ((1ULL << 58) | (1ULL << 52)
8692 | ((44ULL | (insn2 & 3)) << 26)
8693 | (insn2 & (31ULL << 21)));
8694 off = insn2 & 0xfffc;
8695 }
8696 else
8697 {
8698 insn1 = ((1ULL << 58) | (1ULL << 52)
8699 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8700 | (insn2 & (31ULL << 21)));
8701 off = insn2 & 0xfff0;
8702 }
8703 break;
8704
8705 case 56: /* lq */
8706 insn1 = ((1ULL << 58) | (1ULL << 52)
8707 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8708 off = insn2 & 0xffff;
8709 break;
8710
8711 case 6: /* lxvp, stxvp */
8712 if ((insn2 & 0xe) != 0)
8713 return false;
8714 insn1 = ((1ULL << 58) | (1ULL << 52)
8715 | ((insn2 & 1) == 0 ? 58ULL << 26 : 62ULL << 26)
8716 | (insn2 & (31ULL << 21)));
8717 off = insn2 & 0xfff0;
8718 break;
8719
8720 case 62: /* std, stq */
8721 if ((insn2 & 1) != 0)
8722 return false;
8723 insn1 = ((1ULL << 58) | (1ULL << 52)
8724 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8725 | (insn2 & (31ULL << 21)));
8726 off = insn2 & 0xfffc;
8727 break;
8728 }
8729
8730 *pinsn1 = insn1;
8731 *pinsn2 = (uint64_t) NOP << 32;
8732 *poff = (off ^ 0x8000) - 0x8000;
8733 return true;
8734 }
8735
8736 /* Examine all relocs referencing .toc sections in order to remove
8737 unused .toc entries. */
8738
8739 bool
8740 ppc64_elf_edit_toc (struct bfd_link_info *info)
8741 {
8742 bfd *ibfd;
8743 struct adjust_toc_info toc_inf;
8744 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8745
8746 htab->do_toc_opt = 1;
8747 toc_inf.global_toc_syms = true;
8748 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8749 {
8750 asection *toc, *sec;
8751 Elf_Internal_Shdr *symtab_hdr;
8752 Elf_Internal_Sym *local_syms;
8753 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8754 unsigned long *skip, *drop;
8755 unsigned char *used;
8756 unsigned char *keep, last, some_unused;
8757
8758 if (!is_ppc64_elf (ibfd))
8759 continue;
8760
8761 toc = bfd_get_section_by_name (ibfd, ".toc");
8762 if (toc == NULL
8763 || toc->size == 0
8764 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8765 || discarded_section (toc))
8766 continue;
8767
8768 toc_relocs = NULL;
8769 local_syms = NULL;
8770 symtab_hdr = &elf_symtab_hdr (ibfd);
8771
8772 /* Look at sections dropped from the final link. */
8773 skip = NULL;
8774 relstart = NULL;
8775 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8776 {
8777 if (sec->reloc_count == 0
8778 || !discarded_section (sec)
8779 || get_opd_info (sec)
8780 || (sec->flags & SEC_ALLOC) == 0
8781 || (sec->flags & SEC_DEBUGGING) != 0)
8782 continue;
8783
8784 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, false);
8785 if (relstart == NULL)
8786 goto error_ret;
8787
8788 /* Run through the relocs to see which toc entries might be
8789 unused. */
8790 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8791 {
8792 enum elf_ppc64_reloc_type r_type;
8793 unsigned long r_symndx;
8794 asection *sym_sec;
8795 struct elf_link_hash_entry *h;
8796 Elf_Internal_Sym *sym;
8797 bfd_vma val;
8798
8799 r_type = ELF64_R_TYPE (rel->r_info);
8800 switch (r_type)
8801 {
8802 default:
8803 continue;
8804
8805 case R_PPC64_TOC16:
8806 case R_PPC64_TOC16_LO:
8807 case R_PPC64_TOC16_HI:
8808 case R_PPC64_TOC16_HA:
8809 case R_PPC64_TOC16_DS:
8810 case R_PPC64_TOC16_LO_DS:
8811 break;
8812 }
8813
8814 r_symndx = ELF64_R_SYM (rel->r_info);
8815 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8816 r_symndx, ibfd))
8817 goto error_ret;
8818
8819 if (sym_sec != toc)
8820 continue;
8821
8822 if (h != NULL)
8823 val = h->root.u.def.value;
8824 else
8825 val = sym->st_value;
8826 val += rel->r_addend;
8827
8828 if (val >= toc->size)
8829 continue;
8830
8831 /* Anything in the toc ought to be aligned to 8 bytes.
8832 If not, don't mark as unused. */
8833 if (val & 7)
8834 continue;
8835
8836 if (skip == NULL)
8837 {
8838 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8839 if (skip == NULL)
8840 goto error_ret;
8841 }
8842
8843 skip[val >> 3] = ref_from_discarded;
8844 }
8845
8846 if (elf_section_data (sec)->relocs != relstart)
8847 free (relstart);
8848 }
8849
8850 /* For largetoc loads of address constants, we can convert
8851 . addis rx,2,addr@got@ha
8852 . ld ry,addr@got@l(rx)
8853 to
8854 . addis rx,2,addr@toc@ha
8855 . addi ry,rx,addr@toc@l
8856 when addr is within 2G of the toc pointer. This then means
8857 that the word storing "addr" in the toc is no longer needed. */
8858
8859 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8860 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8861 && toc->reloc_count != 0)
8862 {
8863 /* Read toc relocs. */
8864 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8865 info->keep_memory);
8866 if (toc_relocs == NULL)
8867 goto error_ret;
8868
8869 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8870 {
8871 enum elf_ppc64_reloc_type r_type;
8872 unsigned long r_symndx;
8873 asection *sym_sec;
8874 struct elf_link_hash_entry *h;
8875 Elf_Internal_Sym *sym;
8876 bfd_vma val, addr;
8877
8878 r_type = ELF64_R_TYPE (rel->r_info);
8879 if (r_type != R_PPC64_ADDR64)
8880 continue;
8881
8882 r_symndx = ELF64_R_SYM (rel->r_info);
8883 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8884 r_symndx, ibfd))
8885 goto error_ret;
8886
8887 if (sym_sec == NULL
8888 || sym_sec->output_section == NULL
8889 || discarded_section (sym_sec))
8890 continue;
8891
8892 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8893 continue;
8894
8895 if (h != NULL)
8896 {
8897 if (h->type == STT_GNU_IFUNC)
8898 continue;
8899 val = h->root.u.def.value;
8900 }
8901 else
8902 {
8903 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8904 continue;
8905 val = sym->st_value;
8906 }
8907 val += rel->r_addend;
8908 val += sym_sec->output_section->vma + sym_sec->output_offset;
8909
8910 /* We don't yet know the exact toc pointer value, but we
8911 know it will be somewhere in the toc section. Don't
8912 optimize if the difference from any possible toc
8913 pointer is outside [ff..f80008000, 7fff7fff]. */
8914 addr = toc->output_section->vma + TOC_BASE_OFF;
8915 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8916 continue;
8917
8918 addr = toc->output_section->vma + toc->output_section->rawsize;
8919 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8920 continue;
8921
8922 if (skip == NULL)
8923 {
8924 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8925 if (skip == NULL)
8926 goto error_ret;
8927 }
8928
8929 skip[rel->r_offset >> 3]
8930 |= can_optimize | ((rel - toc_relocs) << 2);
8931 }
8932 }
8933
8934 if (skip == NULL)
8935 continue;
8936
8937 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8938 if (used == NULL)
8939 {
8940 error_ret:
8941 if (symtab_hdr->contents != (unsigned char *) local_syms)
8942 free (local_syms);
8943 if (sec != NULL
8944 && elf_section_data (sec)->relocs != relstart)
8945 free (relstart);
8946 if (elf_section_data (toc)->relocs != toc_relocs)
8947 free (toc_relocs);
8948 free (skip);
8949 return false;
8950 }
8951
8952 /* Now check all kept sections that might reference the toc.
8953 Check the toc itself last. */
8954 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8955 : ibfd->sections);
8956 sec != NULL;
8957 sec = (sec == toc ? NULL
8958 : sec->next == NULL ? toc
8959 : sec->next == toc && toc->next ? toc->next
8960 : sec->next))
8961 {
8962 int repeat;
8963
8964 if (sec->reloc_count == 0
8965 || discarded_section (sec)
8966 || get_opd_info (sec)
8967 || (sec->flags & SEC_ALLOC) == 0
8968 || (sec->flags & SEC_DEBUGGING) != 0)
8969 continue;
8970
8971 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8972 info->keep_memory);
8973 if (relstart == NULL)
8974 {
8975 free (used);
8976 goto error_ret;
8977 }
8978
8979 /* Mark toc entries referenced as used. */
8980 do
8981 {
8982 repeat = 0;
8983 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8984 {
8985 enum elf_ppc64_reloc_type r_type;
8986 unsigned long r_symndx;
8987 asection *sym_sec;
8988 struct elf_link_hash_entry *h;
8989 Elf_Internal_Sym *sym;
8990 bfd_vma val;
8991
8992 r_type = ELF64_R_TYPE (rel->r_info);
8993 switch (r_type)
8994 {
8995 case R_PPC64_TOC16:
8996 case R_PPC64_TOC16_LO:
8997 case R_PPC64_TOC16_HI:
8998 case R_PPC64_TOC16_HA:
8999 case R_PPC64_TOC16_DS:
9000 case R_PPC64_TOC16_LO_DS:
9001 /* In case we're taking addresses of toc entries. */
9002 case R_PPC64_ADDR64:
9003 break;
9004
9005 default:
9006 continue;
9007 }
9008
9009 r_symndx = ELF64_R_SYM (rel->r_info);
9010 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9011 r_symndx, ibfd))
9012 {
9013 free (used);
9014 goto error_ret;
9015 }
9016
9017 if (sym_sec != toc)
9018 continue;
9019
9020 if (h != NULL)
9021 val = h->root.u.def.value;
9022 else
9023 val = sym->st_value;
9024 val += rel->r_addend;
9025
9026 if (val >= toc->size)
9027 continue;
9028
9029 if ((skip[val >> 3] & can_optimize) != 0)
9030 {
9031 bfd_vma off;
9032 unsigned char opc;
9033
9034 switch (r_type)
9035 {
9036 case R_PPC64_TOC16_HA:
9037 break;
9038
9039 case R_PPC64_TOC16_LO_DS:
9040 off = rel->r_offset;
9041 off += (bfd_big_endian (ibfd) ? -2 : 3);
9042 if (!bfd_get_section_contents (ibfd, sec, &opc,
9043 off, 1))
9044 {
9045 free (used);
9046 goto error_ret;
9047 }
9048 if ((opc & (0x3f << 2)) == (58u << 2))
9049 break;
9050 /* Fall through. */
9051
9052 default:
9053 /* Wrong sort of reloc, or not a ld. We may
9054 as well clear ref_from_discarded too. */
9055 skip[val >> 3] = 0;
9056 }
9057 }
9058
9059 if (sec != toc)
9060 used[val >> 3] = 1;
9061 /* For the toc section, we only mark as used if this
9062 entry itself isn't unused. */
9063 else if ((used[rel->r_offset >> 3]
9064 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9065 && !used[val >> 3])
9066 {
9067 /* Do all the relocs again, to catch reference
9068 chains. */
9069 repeat = 1;
9070 used[val >> 3] = 1;
9071 }
9072 }
9073 }
9074 while (repeat);
9075
9076 if (elf_section_data (sec)->relocs != relstart)
9077 free (relstart);
9078 }
9079
9080 /* Merge the used and skip arrays. Assume that TOC
9081 doublewords not appearing as either used or unused belong
9082 to an entry more than one doubleword in size. */
9083 for (drop = skip, keep = used, last = 0, some_unused = 0;
9084 drop < skip + (toc->size + 7) / 8;
9085 ++drop, ++keep)
9086 {
9087 if (*keep)
9088 {
9089 *drop &= ~ref_from_discarded;
9090 if ((*drop & can_optimize) != 0)
9091 some_unused = 1;
9092 last = 0;
9093 }
9094 else if ((*drop & ref_from_discarded) != 0)
9095 {
9096 some_unused = 1;
9097 last = ref_from_discarded;
9098 }
9099 else
9100 *drop = last;
9101 }
9102
9103 free (used);
9104
9105 if (some_unused)
9106 {
9107 bfd_byte *contents, *src;
9108 unsigned long off;
9109 Elf_Internal_Sym *sym;
9110 bool local_toc_syms = false;
9111
9112 /* Shuffle the toc contents, and at the same time convert the
9113 skip array from booleans into offsets. */
9114 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9115 goto error_ret;
9116
9117 elf_section_data (toc)->this_hdr.contents = contents;
9118
9119 for (src = contents, off = 0, drop = skip;
9120 src < contents + toc->size;
9121 src += 8, ++drop)
9122 {
9123 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9124 off += 8;
9125 else if (off != 0)
9126 {
9127 *drop = off;
9128 memcpy (src - off, src, 8);
9129 }
9130 }
9131 *drop = off;
9132 toc->rawsize = toc->size;
9133 toc->size = src - contents - off;
9134
9135 /* Adjust addends for relocs against the toc section sym,
9136 and optimize any accesses we can. */
9137 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9138 {
9139 if (sec->reloc_count == 0
9140 || discarded_section (sec))
9141 continue;
9142
9143 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9144 info->keep_memory);
9145 if (relstart == NULL)
9146 goto error_ret;
9147
9148 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9149 {
9150 enum elf_ppc64_reloc_type r_type;
9151 unsigned long r_symndx;
9152 asection *sym_sec;
9153 struct elf_link_hash_entry *h;
9154 bfd_vma val;
9155
9156 r_type = ELF64_R_TYPE (rel->r_info);
9157 switch (r_type)
9158 {
9159 default:
9160 continue;
9161
9162 case R_PPC64_TOC16:
9163 case R_PPC64_TOC16_LO:
9164 case R_PPC64_TOC16_HI:
9165 case R_PPC64_TOC16_HA:
9166 case R_PPC64_TOC16_DS:
9167 case R_PPC64_TOC16_LO_DS:
9168 case R_PPC64_ADDR64:
9169 break;
9170 }
9171
9172 r_symndx = ELF64_R_SYM (rel->r_info);
9173 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9174 r_symndx, ibfd))
9175 goto error_ret;
9176
9177 if (sym_sec != toc)
9178 continue;
9179
9180 if (h != NULL)
9181 val = h->root.u.def.value;
9182 else
9183 {
9184 val = sym->st_value;
9185 if (val != 0)
9186 local_toc_syms = true;
9187 }
9188
9189 val += rel->r_addend;
9190
9191 if (val > toc->rawsize)
9192 val = toc->rawsize;
9193 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9194 continue;
9195 else if ((skip[val >> 3] & can_optimize) != 0)
9196 {
9197 Elf_Internal_Rela *tocrel
9198 = toc_relocs + (skip[val >> 3] >> 2);
9199 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9200
9201 switch (r_type)
9202 {
9203 case R_PPC64_TOC16_HA:
9204 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9205 break;
9206
9207 case R_PPC64_TOC16_LO_DS:
9208 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9209 break;
9210
9211 default:
9212 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9213 ppc_howto_init ();
9214 info->callbacks->einfo
9215 /* xgettext:c-format */
9216 (_("%H: %s references "
9217 "optimized away TOC entry\n"),
9218 ibfd, sec, rel->r_offset,
9219 ppc64_elf_howto_table[r_type]->name);
9220 bfd_set_error (bfd_error_bad_value);
9221 goto error_ret;
9222 }
9223 rel->r_addend = tocrel->r_addend;
9224 elf_section_data (sec)->relocs = relstart;
9225 continue;
9226 }
9227
9228 if (h != NULL || sym->st_value != 0)
9229 continue;
9230
9231 rel->r_addend -= skip[val >> 3];
9232 elf_section_data (sec)->relocs = relstart;
9233 }
9234
9235 if (elf_section_data (sec)->relocs != relstart)
9236 free (relstart);
9237 }
9238
9239 /* We shouldn't have local or global symbols defined in the TOC,
9240 but handle them anyway. */
9241 if (local_syms != NULL)
9242 for (sym = local_syms;
9243 sym < local_syms + symtab_hdr->sh_info;
9244 ++sym)
9245 if (sym->st_value != 0
9246 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9247 {
9248 unsigned long i;
9249
9250 if (sym->st_value > toc->rawsize)
9251 i = toc->rawsize >> 3;
9252 else
9253 i = sym->st_value >> 3;
9254
9255 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9256 {
9257 if (local_toc_syms)
9258 _bfd_error_handler
9259 (_("%s defined on removed toc entry"),
9260 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9261 do
9262 ++i;
9263 while ((skip[i] & (ref_from_discarded | can_optimize)));
9264 sym->st_value = (bfd_vma) i << 3;
9265 }
9266
9267 sym->st_value -= skip[i];
9268 symtab_hdr->contents = (unsigned char *) local_syms;
9269 }
9270
9271 /* Adjust any global syms defined in this toc input section. */
9272 if (toc_inf.global_toc_syms)
9273 {
9274 toc_inf.toc = toc;
9275 toc_inf.skip = skip;
9276 toc_inf.global_toc_syms = false;
9277 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9278 &toc_inf);
9279 }
9280
9281 if (toc->reloc_count != 0)
9282 {
9283 Elf_Internal_Shdr *rel_hdr;
9284 Elf_Internal_Rela *wrel;
9285 bfd_size_type sz;
9286
9287 /* Remove unused toc relocs, and adjust those we keep. */
9288 if (toc_relocs == NULL)
9289 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9290 info->keep_memory);
9291 if (toc_relocs == NULL)
9292 goto error_ret;
9293
9294 wrel = toc_relocs;
9295 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9296 if ((skip[rel->r_offset >> 3]
9297 & (ref_from_discarded | can_optimize)) == 0)
9298 {
9299 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9300 wrel->r_info = rel->r_info;
9301 wrel->r_addend = rel->r_addend;
9302 ++wrel;
9303 }
9304 else if (!dec_dynrel_count (rel->r_info, toc, info,
9305 &local_syms, NULL, NULL))
9306 goto error_ret;
9307
9308 elf_section_data (toc)->relocs = toc_relocs;
9309 toc->reloc_count = wrel - toc_relocs;
9310 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9311 sz = rel_hdr->sh_entsize;
9312 rel_hdr->sh_size = toc->reloc_count * sz;
9313 }
9314 }
9315 else if (elf_section_data (toc)->relocs != toc_relocs)
9316 free (toc_relocs);
9317
9318 if (local_syms != NULL
9319 && symtab_hdr->contents != (unsigned char *) local_syms)
9320 {
9321 if (!info->keep_memory)
9322 free (local_syms);
9323 else
9324 symtab_hdr->contents = (unsigned char *) local_syms;
9325 }
9326 free (skip);
9327 }
9328
9329 /* Look for cases where we can change an indirect GOT access to
9330 a GOT relative or PC relative access, possibly reducing the
9331 number of GOT entries. */
9332 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9333 {
9334 asection *sec;
9335 Elf_Internal_Shdr *symtab_hdr;
9336 Elf_Internal_Sym *local_syms;
9337 Elf_Internal_Rela *relstart, *rel;
9338 bfd_vma got;
9339
9340 if (!is_ppc64_elf (ibfd))
9341 continue;
9342
9343 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9344 continue;
9345
9346 sec = ppc64_elf_tdata (ibfd)->got;
9347 got = 0;
9348 if (sec != NULL)
9349 got = sec->output_section->vma + sec->output_offset + 0x8000;
9350
9351 local_syms = NULL;
9352 symtab_hdr = &elf_symtab_hdr (ibfd);
9353
9354 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9355 {
9356 if (sec->reloc_count == 0
9357 || !ppc64_elf_section_data (sec)->has_optrel
9358 || discarded_section (sec))
9359 continue;
9360
9361 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9362 info->keep_memory);
9363 if (relstart == NULL)
9364 {
9365 got_error_ret:
9366 if (symtab_hdr->contents != (unsigned char *) local_syms)
9367 free (local_syms);
9368 if (sec != NULL
9369 && elf_section_data (sec)->relocs != relstart)
9370 free (relstart);
9371 return false;
9372 }
9373
9374 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9375 {
9376 enum elf_ppc64_reloc_type r_type;
9377 unsigned long r_symndx;
9378 Elf_Internal_Sym *sym;
9379 asection *sym_sec;
9380 struct elf_link_hash_entry *h;
9381 struct got_entry *ent;
9382 bfd_vma val, pc;
9383 unsigned char buf[8];
9384 unsigned int insn;
9385 enum {no_check, check_lo, check_ha} insn_check;
9386
9387 r_type = ELF64_R_TYPE (rel->r_info);
9388 switch (r_type)
9389 {
9390 default:
9391 insn_check = no_check;
9392 break;
9393
9394 case R_PPC64_PLT16_HA:
9395 case R_PPC64_GOT_TLSLD16_HA:
9396 case R_PPC64_GOT_TLSGD16_HA:
9397 case R_PPC64_GOT_TPREL16_HA:
9398 case R_PPC64_GOT_DTPREL16_HA:
9399 case R_PPC64_GOT16_HA:
9400 case R_PPC64_TOC16_HA:
9401 insn_check = check_ha;
9402 break;
9403
9404 case R_PPC64_PLT16_LO:
9405 case R_PPC64_PLT16_LO_DS:
9406 case R_PPC64_GOT_TLSLD16_LO:
9407 case R_PPC64_GOT_TLSGD16_LO:
9408 case R_PPC64_GOT_TPREL16_LO_DS:
9409 case R_PPC64_GOT_DTPREL16_LO_DS:
9410 case R_PPC64_GOT16_LO:
9411 case R_PPC64_GOT16_LO_DS:
9412 case R_PPC64_TOC16_LO:
9413 case R_PPC64_TOC16_LO_DS:
9414 insn_check = check_lo;
9415 break;
9416 }
9417
9418 if (insn_check != no_check)
9419 {
9420 bfd_vma off = rel->r_offset & ~3;
9421
9422 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9423 goto got_error_ret;
9424
9425 insn = bfd_get_32 (ibfd, buf);
9426 if (insn_check == check_lo
9427 ? !ok_lo_toc_insn (insn, r_type)
9428 : ((insn & ((0x3fu << 26) | 0x1f << 16))
9429 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9430 {
9431 char str[12];
9432
9433 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9434 sprintf (str, "%#08x", insn);
9435 info->callbacks->einfo
9436 /* xgettext:c-format */
9437 (_("%H: got/toc optimization is not supported for"
9438 " %s instruction\n"),
9439 ibfd, sec, rel->r_offset & ~3, str);
9440 continue;
9441 }
9442 }
9443
9444 switch (r_type)
9445 {
9446 /* Note that we don't delete GOT entries for
9447 R_PPC64_GOT16_DS since we'd need a lot more
9448 analysis. For starters, the preliminary layout is
9449 before the GOT, PLT, dynamic sections and stubs are
9450 laid out. Then we'd need to allow for changes in
9451 distance between sections caused by alignment. */
9452 default:
9453 continue;
9454
9455 case R_PPC64_GOT16_HA:
9456 case R_PPC64_GOT16_LO_DS:
9457 case R_PPC64_GOT_PCREL34:
9458 break;
9459 }
9460
9461 r_symndx = ELF64_R_SYM (rel->r_info);
9462 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9463 r_symndx, ibfd))
9464 goto got_error_ret;
9465
9466 if (sym_sec == NULL
9467 || sym_sec->output_section == NULL
9468 || discarded_section (sym_sec))
9469 continue;
9470
9471 if ((h ? h->type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
9472 continue;
9473
9474 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9475 continue;
9476
9477 if (h != NULL)
9478 val = h->root.u.def.value;
9479 else
9480 val = sym->st_value;
9481 val += rel->r_addend;
9482 val += sym_sec->output_section->vma + sym_sec->output_offset;
9483
9484 /* Fudge factor to allow for the fact that the preliminary layout
9485 isn't exact. Reduce limits by this factor. */
9486 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9487
9488 switch (r_type)
9489 {
9490 default:
9491 continue;
9492
9493 case R_PPC64_GOT16_HA:
9494 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9495 >= LIMIT_ADJUST (0x100000000ULL))
9496 continue;
9497
9498 if (!bfd_get_section_contents (ibfd, sec, buf,
9499 rel->r_offset & ~3, 4))
9500 goto got_error_ret;
9501 insn = bfd_get_32 (ibfd, buf);
9502 if (((insn & ((0x3fu << 26) | 0x1f << 16))
9503 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9504 continue;
9505 break;
9506
9507 case R_PPC64_GOT16_LO_DS:
9508 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9509 >= LIMIT_ADJUST (0x100000000ULL))
9510 continue;
9511 if (!bfd_get_section_contents (ibfd, sec, buf,
9512 rel->r_offset & ~3, 4))
9513 goto got_error_ret;
9514 insn = bfd_get_32 (ibfd, buf);
9515 if ((insn & (0x3fu << 26 | 0x3)) != 58u << 26 /* ld */)
9516 continue;
9517 break;
9518
9519 case R_PPC64_GOT_PCREL34:
9520 pc = rel->r_offset;
9521 pc += sec->output_section->vma + sec->output_offset;
9522 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9523 >= LIMIT_ADJUST (1ULL << 34))
9524 continue;
9525 if (!bfd_get_section_contents (ibfd, sec, buf,
9526 rel->r_offset & ~3, 8))
9527 goto got_error_ret;
9528 insn = bfd_get_32 (ibfd, buf);
9529 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9530 continue;
9531 insn = bfd_get_32 (ibfd, buf + 4);
9532 if ((insn & (0x3fu << 26)) != 57u << 26)
9533 continue;
9534 break;
9535 }
9536 #undef LIMIT_ADJUST
9537
9538 if (h != NULL)
9539 ent = h->got.glist;
9540 else
9541 {
9542 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9543 ent = local_got_ents[r_symndx];
9544 }
9545 for (; ent != NULL; ent = ent->next)
9546 if (ent->addend == rel->r_addend
9547 && ent->owner == ibfd
9548 && ent->tls_type == 0)
9549 break;
9550 BFD_ASSERT (ent && ent->got.refcount > 0);
9551 ent->got.refcount -= 1;
9552 }
9553
9554 if (elf_section_data (sec)->relocs != relstart)
9555 free (relstart);
9556 }
9557
9558 if (local_syms != NULL
9559 && symtab_hdr->contents != (unsigned char *) local_syms)
9560 {
9561 if (!info->keep_memory)
9562 free (local_syms);
9563 else
9564 symtab_hdr->contents = (unsigned char *) local_syms;
9565 }
9566 }
9567
9568 return true;
9569 }
9570
9571 /* Return true iff input section I references the TOC using
9572 instructions limited to +/-32k offsets. */
9573
9574 bool
9575 ppc64_elf_has_small_toc_reloc (asection *i)
9576 {
9577 return (is_ppc64_elf (i->owner)
9578 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9579 }
9580
9581 /* Allocate space for one GOT entry. */
9582
9583 static void
9584 allocate_got (struct elf_link_hash_entry *h,
9585 struct bfd_link_info *info,
9586 struct got_entry *gent)
9587 {
9588 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9589 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
9590 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9591 ? 16 : 8);
9592 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9593 ? 2 : 1) * sizeof (Elf64_External_Rela);
9594 asection *got = ppc64_elf_tdata (gent->owner)->got;
9595
9596 gent->got.offset = got->size;
9597 got->size += entsize;
9598
9599 if (h->type == STT_GNU_IFUNC)
9600 {
9601 htab->elf.irelplt->size += rentsize;
9602 htab->got_reli_size += rentsize;
9603 }
9604 else if (((bfd_link_pic (info)
9605 && !(gent->tls_type != 0
9606 && bfd_link_executable (info)
9607 && SYMBOL_REFERENCES_LOCAL (info, h)))
9608 || (htab->elf.dynamic_sections_created
9609 && h->dynindx != -1
9610 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9611 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9612 {
9613 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9614 relgot->size += rentsize;
9615 }
9616 }
9617
9618 /* This function merges got entries in the same toc group. */
9619
9620 static void
9621 merge_got_entries (struct got_entry **pent)
9622 {
9623 struct got_entry *ent, *ent2;
9624
9625 for (ent = *pent; ent != NULL; ent = ent->next)
9626 if (!ent->is_indirect)
9627 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9628 if (!ent2->is_indirect
9629 && ent2->addend == ent->addend
9630 && ent2->tls_type == ent->tls_type
9631 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9632 {
9633 ent2->is_indirect = true;
9634 ent2->got.ent = ent;
9635 }
9636 }
9637
9638 /* If H is undefined, make it dynamic if that makes sense. */
9639
9640 static bool
9641 ensure_undef_dynamic (struct bfd_link_info *info,
9642 struct elf_link_hash_entry *h)
9643 {
9644 struct elf_link_hash_table *htab = elf_hash_table (info);
9645
9646 if (htab->dynamic_sections_created
9647 && ((info->dynamic_undefined_weak != 0
9648 && h->root.type == bfd_link_hash_undefweak)
9649 || h->root.type == bfd_link_hash_undefined)
9650 && h->dynindx == -1
9651 && !h->forced_local
9652 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9653 return bfd_elf_link_record_dynamic_symbol (info, h);
9654 return true;
9655 }
9656
9657 /* Choose whether to use htab->iplt or htab->pltlocal rather than the
9658 usual htab->elf.splt section for a PLT entry. */
9659
9660 static inline
9661 bool use_local_plt (struct bfd_link_info *info,
9662 struct elf_link_hash_entry *h)
9663 {
9664 return (h == NULL
9665 || h->dynindx == -1
9666 || !elf_hash_table (info)->dynamic_sections_created);
9667 }
9668
9669 /* Allocate space in .plt, .got and associated reloc sections for
9670 dynamic relocs. */
9671
9672 static bool
9673 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9674 {
9675 struct bfd_link_info *info;
9676 struct ppc_link_hash_table *htab;
9677 asection *s;
9678 struct ppc_link_hash_entry *eh;
9679 struct got_entry **pgent, *gent;
9680
9681 if (h->root.type == bfd_link_hash_indirect)
9682 return true;
9683
9684 info = (struct bfd_link_info *) inf;
9685 htab = ppc_hash_table (info);
9686 if (htab == NULL)
9687 return false;
9688
9689 eh = ppc_elf_hash_entry (h);
9690 /* Run through the TLS GD got entries first if we're changing them
9691 to TPREL. */
9692 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9693 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9694 if (gent->got.refcount > 0
9695 && (gent->tls_type & TLS_GD) != 0)
9696 {
9697 /* This was a GD entry that has been converted to TPREL. If
9698 there happens to be a TPREL entry we can use that one. */
9699 struct got_entry *ent;
9700 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9701 if (ent->got.refcount > 0
9702 && (ent->tls_type & TLS_TPREL) != 0
9703 && ent->addend == gent->addend
9704 && ent->owner == gent->owner)
9705 {
9706 gent->got.refcount = 0;
9707 break;
9708 }
9709
9710 /* If not, then we'll be using our own TPREL entry. */
9711 if (gent->got.refcount != 0)
9712 gent->tls_type = TLS_TLS | TLS_TPREL;
9713 }
9714
9715 /* Remove any list entry that won't generate a word in the GOT before
9716 we call merge_got_entries. Otherwise we risk merging to empty
9717 entries. */
9718 pgent = &h->got.glist;
9719 while ((gent = *pgent) != NULL)
9720 if (gent->got.refcount > 0)
9721 {
9722 if ((gent->tls_type & TLS_LD) != 0
9723 && SYMBOL_REFERENCES_LOCAL (info, h))
9724 {
9725 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9726 *pgent = gent->next;
9727 }
9728 else
9729 pgent = &gent->next;
9730 }
9731 else
9732 *pgent = gent->next;
9733
9734 if (!htab->do_multi_toc)
9735 merge_got_entries (&h->got.glist);
9736
9737 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9738 if (!gent->is_indirect)
9739 {
9740 /* Ensure we catch all the cases where this symbol should
9741 be made dynamic. */
9742 if (!ensure_undef_dynamic (info, h))
9743 return false;
9744
9745 if (!is_ppc64_elf (gent->owner))
9746 abort ();
9747
9748 allocate_got (h, info, gent);
9749 }
9750
9751 /* If no dynamic sections we can't have dynamic relocs, except for
9752 IFUNCs which are handled even in static executables. */
9753 if (!htab->elf.dynamic_sections_created
9754 && h->type != STT_GNU_IFUNC)
9755 h->dyn_relocs = NULL;
9756
9757 /* Discard relocs on undefined symbols that must be local. */
9758 else if (h->root.type == bfd_link_hash_undefined
9759 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9760 h->dyn_relocs = NULL;
9761
9762 /* Also discard relocs on undefined weak syms with non-default
9763 visibility, or when dynamic_undefined_weak says so. */
9764 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9765 h->dyn_relocs = NULL;
9766
9767 if (h->dyn_relocs != NULL)
9768 {
9769 struct elf_dyn_relocs *p, **pp;
9770
9771 /* In the shared -Bsymbolic case, discard space allocated for
9772 dynamic pc-relative relocs against symbols which turn out to
9773 be defined in regular objects. For the normal shared case,
9774 discard space for relocs that have become local due to symbol
9775 visibility changes. */
9776 if (bfd_link_pic (info))
9777 {
9778 /* Relocs that use pc_count are those that appear on a call
9779 insn, or certain REL relocs (see must_be_dyn_reloc) that
9780 can be generated via assembly. We want calls to
9781 protected symbols to resolve directly to the function
9782 rather than going via the plt. If people want function
9783 pointer comparisons to work as expected then they should
9784 avoid writing weird assembly. */
9785 if (SYMBOL_CALLS_LOCAL (info, h))
9786 {
9787 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
9788 {
9789 p->count -= p->pc_count;
9790 p->pc_count = 0;
9791 if (p->count == 0)
9792 *pp = p->next;
9793 else
9794 pp = &p->next;
9795 }
9796 }
9797
9798 if (h->dyn_relocs != NULL)
9799 {
9800 /* Ensure we catch all the cases where this symbol
9801 should be made dynamic. */
9802 if (!ensure_undef_dynamic (info, h))
9803 return false;
9804 }
9805 }
9806
9807 /* For a fixed position executable, discard space for
9808 relocs against symbols which are not dynamic. */
9809 else if (h->type != STT_GNU_IFUNC)
9810 {
9811 if (h->dynamic_adjusted
9812 && !h->def_regular
9813 && !ELF_COMMON_DEF_P (h))
9814 {
9815 /* Ensure we catch all the cases where this symbol
9816 should be made dynamic. */
9817 if (!ensure_undef_dynamic (info, h))
9818 return false;
9819
9820 /* But if that didn't work out, discard dynamic relocs. */
9821 if (h->dynindx == -1)
9822 h->dyn_relocs = NULL;
9823 }
9824 else
9825 h->dyn_relocs = NULL;
9826 }
9827
9828 /* Finally, allocate space. */
9829 for (p = h->dyn_relocs; p != NULL; p = p->next)
9830 {
9831 asection *sreloc = elf_section_data (p->sec)->sreloc;
9832 if (eh->elf.type == STT_GNU_IFUNC)
9833 sreloc = htab->elf.irelplt;
9834 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9835 }
9836 }
9837
9838 /* We might need a PLT entry when the symbol
9839 a) is dynamic, or
9840 b) is an ifunc, or
9841 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9842 d) has plt16 relocs and we are linking statically. */
9843 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9844 || h->type == STT_GNU_IFUNC
9845 || (h->needs_plt && h->dynamic_adjusted)
9846 || (h->needs_plt
9847 && h->def_regular
9848 && !htab->elf.dynamic_sections_created
9849 && !htab->can_convert_all_inline_plt
9850 && (ppc_elf_hash_entry (h)->tls_mask
9851 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9852 {
9853 struct plt_entry *pent;
9854 bool doneone = false;
9855 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9856 if (pent->plt.refcount > 0)
9857 {
9858 if (use_local_plt (info, h))
9859 {
9860 if (h->type == STT_GNU_IFUNC)
9861 {
9862 s = htab->elf.iplt;
9863 pent->plt.offset = s->size;
9864 s->size += PLT_ENTRY_SIZE (htab);
9865 s = htab->elf.irelplt;
9866 }
9867 else
9868 {
9869 s = htab->pltlocal;
9870 pent->plt.offset = s->size;
9871 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9872 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9873 }
9874 }
9875 else
9876 {
9877 /* If this is the first .plt entry, make room for the special
9878 first entry. */
9879 s = htab->elf.splt;
9880 if (s->size == 0)
9881 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9882
9883 pent->plt.offset = s->size;
9884
9885 /* Make room for this entry. */
9886 s->size += PLT_ENTRY_SIZE (htab);
9887
9888 /* Make room for the .glink code. */
9889 s = htab->glink;
9890 if (s->size == 0)
9891 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9892 if (htab->opd_abi)
9893 {
9894 /* We need bigger stubs past index 32767. */
9895 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9896 s->size += 4;
9897 s->size += 2*4;
9898 }
9899 else
9900 s->size += 4;
9901
9902 /* We also need to make an entry in the .rela.plt section. */
9903 s = htab->elf.srelplt;
9904 }
9905 if (s != NULL)
9906 s->size += sizeof (Elf64_External_Rela);
9907 doneone = true;
9908 }
9909 else
9910 pent->plt.offset = (bfd_vma) -1;
9911 if (!doneone)
9912 {
9913 h->plt.plist = NULL;
9914 h->needs_plt = 0;
9915 }
9916 }
9917 else
9918 {
9919 h->plt.plist = NULL;
9920 h->needs_plt = 0;
9921 }
9922
9923 return true;
9924 }
9925
9926 #define PPC_LO(v) ((v) & 0xffff)
9927 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9928 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9929 #define D34(v) \
9930 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9931 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9932
9933 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9934 to set up space for global entry stubs. These are put in glink,
9935 after the branch table. */
9936
9937 static bool
9938 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9939 {
9940 struct bfd_link_info *info;
9941 struct ppc_link_hash_table *htab;
9942 struct plt_entry *pent;
9943 asection *s, *plt;
9944
9945 if (h->root.type == bfd_link_hash_indirect)
9946 return true;
9947
9948 if (!h->pointer_equality_needed)
9949 return true;
9950
9951 if (h->def_regular)
9952 return true;
9953
9954 info = inf;
9955 htab = ppc_hash_table (info);
9956 if (htab == NULL)
9957 return false;
9958
9959 s = htab->global_entry;
9960 plt = htab->elf.splt;
9961 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9962 if (pent->plt.offset != (bfd_vma) -1
9963 && pent->addend == 0)
9964 {
9965 /* For ELFv2, if this symbol is not defined in a regular file
9966 and we are not generating a shared library or pie, then we
9967 need to define the symbol in the executable on a call stub.
9968 This is to avoid text relocations. */
9969 bfd_vma off, stub_align, stub_off, stub_size;
9970 unsigned int align_power;
9971
9972 stub_size = 16;
9973 stub_off = s->size;
9974 if (htab->params->plt_stub_align >= 0)
9975 align_power = htab->params->plt_stub_align;
9976 else
9977 align_power = -htab->params->plt_stub_align;
9978 /* Setting section alignment is delayed until we know it is
9979 non-empty. Otherwise the .text output section will be
9980 aligned at least to plt_stub_align even when no global
9981 entry stubs are needed. */
9982 if (s->alignment_power < align_power)
9983 s->alignment_power = align_power;
9984 stub_align = (bfd_vma) 1 << align_power;
9985 if (htab->params->plt_stub_align >= 0
9986 || ((((stub_off + stub_size - 1) & -stub_align)
9987 - (stub_off & -stub_align))
9988 > ((stub_size - 1) & -stub_align)))
9989 stub_off = (stub_off + stub_align - 1) & -stub_align;
9990 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9991 off -= stub_off + s->output_offset + s->output_section->vma;
9992 /* Note that for --plt-stub-align negative we have a possible
9993 dependency between stub offset and size. Break that
9994 dependency by assuming the max stub size when calculating
9995 the stub offset. */
9996 if (PPC_HA (off) == 0)
9997 stub_size -= 4;
9998 h->root.type = bfd_link_hash_defined;
9999 h->root.u.def.section = s;
10000 h->root.u.def.value = stub_off;
10001 s->size = stub_off + stub_size;
10002 break;
10003 }
10004 return true;
10005 }
10006
10007 /* Set the sizes of the dynamic sections. */
10008
10009 static bool
10010 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
10011 struct bfd_link_info *info)
10012 {
10013 struct ppc_link_hash_table *htab;
10014 bfd *dynobj;
10015 asection *s;
10016 bool relocs;
10017 bfd *ibfd;
10018 struct got_entry *first_tlsld;
10019
10020 htab = ppc_hash_table (info);
10021 if (htab == NULL)
10022 return false;
10023
10024 dynobj = htab->elf.dynobj;
10025 if (dynobj == NULL)
10026 abort ();
10027
10028 if (htab->elf.dynamic_sections_created)
10029 {
10030 /* Set the contents of the .interp section to the interpreter. */
10031 if (bfd_link_executable (info) && !info->nointerp)
10032 {
10033 s = bfd_get_linker_section (dynobj, ".interp");
10034 if (s == NULL)
10035 abort ();
10036 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10037 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10038 }
10039 }
10040
10041 /* Set up .got offsets for local syms, and space for local dynamic
10042 relocs. */
10043 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10044 {
10045 struct got_entry **lgot_ents;
10046 struct got_entry **end_lgot_ents;
10047 struct plt_entry **local_plt;
10048 struct plt_entry **end_local_plt;
10049 unsigned char *lgot_masks;
10050 bfd_size_type locsymcount;
10051 Elf_Internal_Shdr *symtab_hdr;
10052
10053 if (!is_ppc64_elf (ibfd))
10054 continue;
10055
10056 for (s = ibfd->sections; s != NULL; s = s->next)
10057 {
10058 struct ppc_dyn_relocs *p;
10059
10060 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10061 {
10062 if (!bfd_is_abs_section (p->sec)
10063 && bfd_is_abs_section (p->sec->output_section))
10064 {
10065 /* Input section has been discarded, either because
10066 it is a copy of a linkonce section or due to
10067 linker script /DISCARD/, so we'll be discarding
10068 the relocs too. */
10069 }
10070 else if (p->count != 0)
10071 {
10072 asection *srel = elf_section_data (p->sec)->sreloc;
10073 if (p->ifunc)
10074 srel = htab->elf.irelplt;
10075 srel->size += p->count * sizeof (Elf64_External_Rela);
10076 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
10077 info->flags |= DF_TEXTREL;
10078 }
10079 }
10080 }
10081
10082 lgot_ents = elf_local_got_ents (ibfd);
10083 if (!lgot_ents)
10084 continue;
10085
10086 symtab_hdr = &elf_symtab_hdr (ibfd);
10087 locsymcount = symtab_hdr->sh_info;
10088 end_lgot_ents = lgot_ents + locsymcount;
10089 local_plt = (struct plt_entry **) end_lgot_ents;
10090 end_local_plt = local_plt + locsymcount;
10091 lgot_masks = (unsigned char *) end_local_plt;
10092 s = ppc64_elf_tdata (ibfd)->got;
10093 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10094 {
10095 struct got_entry **pent, *ent;
10096
10097 pent = lgot_ents;
10098 while ((ent = *pent) != NULL)
10099 if (ent->got.refcount > 0)
10100 {
10101 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
10102 {
10103 ppc64_tlsld_got (ibfd)->got.refcount += 1;
10104 *pent = ent->next;
10105 }
10106 else
10107 {
10108 unsigned int ent_size = 8;
10109 unsigned int rel_size = sizeof (Elf64_External_Rela);
10110
10111 ent->got.offset = s->size;
10112 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10113 {
10114 ent_size *= 2;
10115 rel_size *= 2;
10116 }
10117 s->size += ent_size;
10118 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10119 {
10120 htab->elf.irelplt->size += rel_size;
10121 htab->got_reli_size += rel_size;
10122 }
10123 else if (bfd_link_pic (info)
10124 && !(ent->tls_type != 0
10125 && bfd_link_executable (info)))
10126 {
10127 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10128 srel->size += rel_size;
10129 }
10130 pent = &ent->next;
10131 }
10132 }
10133 else
10134 *pent = ent->next;
10135 }
10136
10137 /* Allocate space for plt calls to local syms. */
10138 lgot_masks = (unsigned char *) end_local_plt;
10139 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
10140 {
10141 struct plt_entry *ent;
10142
10143 for (ent = *local_plt; ent != NULL; ent = ent->next)
10144 if (ent->plt.refcount > 0)
10145 {
10146 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10147 {
10148 s = htab->elf.iplt;
10149 ent->plt.offset = s->size;
10150 s->size += PLT_ENTRY_SIZE (htab);
10151 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
10152 }
10153 else if (htab->can_convert_all_inline_plt
10154 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
10155 ent->plt.offset = (bfd_vma) -1;
10156 else
10157 {
10158 s = htab->pltlocal;
10159 ent->plt.offset = s->size;
10160 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
10161 if (bfd_link_pic (info))
10162 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
10163 }
10164 }
10165 else
10166 ent->plt.offset = (bfd_vma) -1;
10167 }
10168 }
10169
10170 /* Allocate global sym .plt and .got entries, and space for global
10171 sym dynamic relocs. */
10172 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
10173
10174 if (!htab->opd_abi && !bfd_link_pic (info))
10175 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
10176
10177 first_tlsld = NULL;
10178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10179 {
10180 struct got_entry *ent;
10181
10182 if (!is_ppc64_elf (ibfd))
10183 continue;
10184
10185 ent = ppc64_tlsld_got (ibfd);
10186 if (ent->got.refcount > 0)
10187 {
10188 if (!htab->do_multi_toc && first_tlsld != NULL)
10189 {
10190 ent->is_indirect = true;
10191 ent->got.ent = first_tlsld;
10192 }
10193 else
10194 {
10195 if (first_tlsld == NULL)
10196 first_tlsld = ent;
10197 s = ppc64_elf_tdata (ibfd)->got;
10198 ent->got.offset = s->size;
10199 ent->owner = ibfd;
10200 s->size += 16;
10201 if (bfd_link_dll (info))
10202 {
10203 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10204 srel->size += sizeof (Elf64_External_Rela);
10205 }
10206 }
10207 }
10208 else
10209 ent->got.offset = (bfd_vma) -1;
10210 }
10211
10212 /* We now have determined the sizes of the various dynamic sections.
10213 Allocate memory for them. */
10214 relocs = false;
10215 for (s = dynobj->sections; s != NULL; s = s->next)
10216 {
10217 if ((s->flags & SEC_LINKER_CREATED) == 0)
10218 continue;
10219
10220 if (s == htab->brlt || s == htab->relbrlt)
10221 /* These haven't been allocated yet; don't strip. */
10222 continue;
10223 else if (s == htab->elf.sgot
10224 || s == htab->elf.splt
10225 || s == htab->elf.iplt
10226 || s == htab->pltlocal
10227 || s == htab->glink
10228 || s == htab->global_entry
10229 || s == htab->elf.sdynbss
10230 || s == htab->elf.sdynrelro)
10231 {
10232 /* Strip this section if we don't need it; see the
10233 comment below. */
10234 }
10235 else if (s == htab->glink_eh_frame)
10236 {
10237 if (!bfd_is_abs_section (s->output_section))
10238 /* Not sized yet. */
10239 continue;
10240 }
10241 else if (startswith (s->name, ".rela"))
10242 {
10243 if (s->size != 0)
10244 {
10245 if (s != htab->elf.srelplt)
10246 relocs = true;
10247
10248 /* We use the reloc_count field as a counter if we need
10249 to copy relocs into the output file. */
10250 s->reloc_count = 0;
10251 }
10252 }
10253 else
10254 {
10255 /* It's not one of our sections, so don't allocate space. */
10256 continue;
10257 }
10258
10259 if (s->size == 0)
10260 {
10261 /* If we don't need this section, strip it from the
10262 output file. This is mostly to handle .rela.bss and
10263 .rela.plt. We must create both sections in
10264 create_dynamic_sections, because they must be created
10265 before the linker maps input sections to output
10266 sections. The linker does that before
10267 adjust_dynamic_symbol is called, and it is that
10268 function which decides whether anything needs to go
10269 into these sections. */
10270 s->flags |= SEC_EXCLUDE;
10271 continue;
10272 }
10273
10274 if (bfd_is_abs_section (s->output_section))
10275 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10276 s->name);
10277
10278 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10279 continue;
10280
10281 /* Allocate memory for the section contents. We use bfd_zalloc
10282 here in case unused entries are not reclaimed before the
10283 section's contents are written out. This should not happen,
10284 but this way if it does we get a R_PPC64_NONE reloc in .rela
10285 sections instead of garbage.
10286 We also rely on the section contents being zero when writing
10287 the GOT and .dynrelro. */
10288 s->contents = bfd_zalloc (dynobj, s->size);
10289 if (s->contents == NULL)
10290 return false;
10291 }
10292
10293 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10294 {
10295 if (!is_ppc64_elf (ibfd))
10296 continue;
10297
10298 s = ppc64_elf_tdata (ibfd)->got;
10299 if (s != NULL && s != htab->elf.sgot)
10300 {
10301 if (s->size == 0)
10302 s->flags |= SEC_EXCLUDE;
10303 else
10304 {
10305 s->contents = bfd_zalloc (ibfd, s->size);
10306 if (s->contents == NULL)
10307 return false;
10308 }
10309 }
10310 s = ppc64_elf_tdata (ibfd)->relgot;
10311 if (s != NULL)
10312 {
10313 if (s->size == 0)
10314 s->flags |= SEC_EXCLUDE;
10315 else
10316 {
10317 s->contents = bfd_zalloc (ibfd, s->size);
10318 if (s->contents == NULL)
10319 return false;
10320 relocs = true;
10321 s->reloc_count = 0;
10322 }
10323 }
10324 }
10325
10326 if (htab->elf.dynamic_sections_created)
10327 {
10328 bool tls_opt;
10329
10330 /* Add some entries to the .dynamic section. We fill in the
10331 values later, in ppc64_elf_finish_dynamic_sections, but we
10332 must add the entries now so that we get the correct size for
10333 the .dynamic section. The DT_DEBUG entry is filled in by the
10334 dynamic linker and used by the debugger. */
10335 #define add_dynamic_entry(TAG, VAL) \
10336 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10337
10338 if (bfd_link_executable (info))
10339 {
10340 if (!add_dynamic_entry (DT_DEBUG, 0))
10341 return false;
10342 }
10343
10344 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10345 {
10346 if (!add_dynamic_entry (DT_PLTGOT, 0)
10347 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10348 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10349 || !add_dynamic_entry (DT_JMPREL, 0)
10350 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10351 return false;
10352 }
10353
10354 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10355 {
10356 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10357 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10358 return false;
10359 }
10360
10361 tls_opt = (htab->params->tls_get_addr_opt
10362 && ((htab->tls_get_addr_fd != NULL
10363 && htab->tls_get_addr_fd->elf.plt.plist != NULL)
10364 || (htab->tga_desc_fd != NULL
10365 && htab->tga_desc_fd->elf.plt.plist != NULL)));
10366 if (tls_opt || !htab->opd_abi)
10367 {
10368 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10369 return false;
10370 }
10371
10372 if (relocs)
10373 {
10374 if (!add_dynamic_entry (DT_RELA, 0)
10375 || !add_dynamic_entry (DT_RELASZ, 0)
10376 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10377 return false;
10378
10379 /* If any dynamic relocs apply to a read-only section,
10380 then we need a DT_TEXTREL entry. */
10381 if ((info->flags & DF_TEXTREL) == 0)
10382 elf_link_hash_traverse (&htab->elf,
10383 _bfd_elf_maybe_set_textrel, info);
10384
10385 if ((info->flags & DF_TEXTREL) != 0)
10386 {
10387 if (!add_dynamic_entry (DT_TEXTREL, 0))
10388 return false;
10389 }
10390 }
10391 }
10392 #undef add_dynamic_entry
10393
10394 return true;
10395 }
10396
10397 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10398
10399 static bool
10400 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10401 {
10402 if (h->plt.plist != NULL
10403 && !h->def_regular
10404 && !h->pointer_equality_needed)
10405 return false;
10406
10407 return _bfd_elf_hash_symbol (h);
10408 }
10409
10410 /* Determine the type of stub needed, if any, for a call. */
10411
10412 static inline enum ppc_stub_type
10413 ppc_type_of_stub (asection *input_sec,
10414 const Elf_Internal_Rela *rel,
10415 struct ppc_link_hash_entry **hash,
10416 struct plt_entry **plt_ent,
10417 bfd_vma destination,
10418 unsigned long local_off)
10419 {
10420 struct ppc_link_hash_entry *h = *hash;
10421 bfd_vma location;
10422 bfd_vma branch_offset;
10423 bfd_vma max_branch_offset;
10424 enum elf_ppc64_reloc_type r_type;
10425
10426 if (h != NULL)
10427 {
10428 struct plt_entry *ent;
10429 struct ppc_link_hash_entry *fdh = h;
10430 if (h->oh != NULL
10431 && h->oh->is_func_descriptor)
10432 {
10433 fdh = ppc_follow_link (h->oh);
10434 *hash = fdh;
10435 }
10436
10437 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10438 if (ent->addend == rel->r_addend
10439 && ent->plt.offset != (bfd_vma) -1)
10440 {
10441 *plt_ent = ent;
10442 return ppc_stub_plt_call;
10443 }
10444
10445 /* Here, we know we don't have a plt entry. If we don't have a
10446 either a defined function descriptor or a defined entry symbol
10447 in a regular object file, then it is pointless trying to make
10448 any other type of stub. */
10449 if (!is_static_defined (&fdh->elf)
10450 && !is_static_defined (&h->elf))
10451 return ppc_stub_none;
10452 }
10453 else if (elf_local_got_ents (input_sec->owner) != NULL)
10454 {
10455 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10456 struct plt_entry **local_plt = (struct plt_entry **)
10457 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10458 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10459
10460 if (local_plt[r_symndx] != NULL)
10461 {
10462 struct plt_entry *ent;
10463
10464 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10465 if (ent->addend == rel->r_addend
10466 && ent->plt.offset != (bfd_vma) -1)
10467 {
10468 *plt_ent = ent;
10469 return ppc_stub_plt_call;
10470 }
10471 }
10472 }
10473
10474 /* Determine where the call point is. */
10475 location = (input_sec->output_offset
10476 + input_sec->output_section->vma
10477 + rel->r_offset);
10478
10479 branch_offset = destination - location;
10480 r_type = ELF64_R_TYPE (rel->r_info);
10481
10482 /* Determine if a long branch stub is needed. */
10483 max_branch_offset = 1 << 25;
10484 if (r_type == R_PPC64_REL14
10485 || r_type == R_PPC64_REL14_BRTAKEN
10486 || r_type == R_PPC64_REL14_BRNTAKEN)
10487 max_branch_offset = 1 << 15;
10488
10489 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10490 /* We need a stub. Figure out whether a long_branch or plt_branch
10491 is needed later. */
10492 return ppc_stub_long_branch;
10493
10494 return ppc_stub_none;
10495 }
10496
10497 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10498 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10499 . mflr %r12
10500 . bcl 20,31,1f
10501 .1: mflr %r11
10502 . mtlr %r12
10503 . lis %r12,xxx-1b@highest
10504 . ori %r12,%r12,xxx-1b@higher
10505 . sldi %r12,%r12,32
10506 . oris %r12,%r12,xxx-1b@high
10507 . ori %r12,%r12,xxx-1b@l
10508 . add/ldx %r12,%r11,%r12 */
10509
10510 static bfd_byte *
10511 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bool load)
10512 {
10513 bfd_put_32 (abfd, MFLR_R12, p);
10514 p += 4;
10515 bfd_put_32 (abfd, BCL_20_31, p);
10516 p += 4;
10517 bfd_put_32 (abfd, MFLR_R11, p);
10518 p += 4;
10519 bfd_put_32 (abfd, MTLR_R12, p);
10520 p += 4;
10521 if (off + 0x8000 < 0x10000)
10522 {
10523 if (load)
10524 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10525 else
10526 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10527 p += 4;
10528 }
10529 else if (off + 0x80008000ULL < 0x100000000ULL)
10530 {
10531 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10532 p += 4;
10533 if (load)
10534 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10535 else
10536 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10537 p += 4;
10538 }
10539 else
10540 {
10541 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10542 {
10543 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10544 p += 4;
10545 }
10546 else
10547 {
10548 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10549 p += 4;
10550 if (((off >> 32) & 0xffff) != 0)
10551 {
10552 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10553 p += 4;
10554 }
10555 }
10556 if (((off >> 32) & 0xffffffffULL) != 0)
10557 {
10558 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10559 p += 4;
10560 }
10561 if (PPC_HI (off) != 0)
10562 {
10563 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10564 p += 4;
10565 }
10566 if (PPC_LO (off) != 0)
10567 {
10568 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10569 p += 4;
10570 }
10571 if (load)
10572 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10573 else
10574 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10575 p += 4;
10576 }
10577 return p;
10578 }
10579
10580 static unsigned int
10581 size_offset (bfd_vma off)
10582 {
10583 unsigned int size;
10584 if (off + 0x8000 < 0x10000)
10585 size = 4;
10586 else if (off + 0x80008000ULL < 0x100000000ULL)
10587 size = 8;
10588 else
10589 {
10590 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10591 size = 4;
10592 else
10593 {
10594 size = 4;
10595 if (((off >> 32) & 0xffff) != 0)
10596 size += 4;
10597 }
10598 if (((off >> 32) & 0xffffffffULL) != 0)
10599 size += 4;
10600 if (PPC_HI (off) != 0)
10601 size += 4;
10602 if (PPC_LO (off) != 0)
10603 size += 4;
10604 size += 4;
10605 }
10606 return size + 16;
10607 }
10608
10609 static unsigned int
10610 num_relocs_for_offset (bfd_vma off)
10611 {
10612 unsigned int num_rel;
10613 if (off + 0x8000 < 0x10000)
10614 num_rel = 1;
10615 else if (off + 0x80008000ULL < 0x100000000ULL)
10616 num_rel = 2;
10617 else
10618 {
10619 num_rel = 1;
10620 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10621 && ((off >> 32) & 0xffff) != 0)
10622 num_rel += 1;
10623 if (PPC_HI (off) != 0)
10624 num_rel += 1;
10625 if (PPC_LO (off) != 0)
10626 num_rel += 1;
10627 }
10628 return num_rel;
10629 }
10630
10631 static Elf_Internal_Rela *
10632 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10633 bfd_vma roff, bfd_vma targ, bfd_vma off)
10634 {
10635 bfd_vma relative_targ = targ - (roff - 8);
10636 if (bfd_big_endian (info->output_bfd))
10637 roff += 2;
10638 r->r_offset = roff;
10639 r->r_addend = relative_targ + roff;
10640 if (off + 0x8000 < 0x10000)
10641 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10642 else if (off + 0x80008000ULL < 0x100000000ULL)
10643 {
10644 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10645 ++r;
10646 roff += 4;
10647 r->r_offset = roff;
10648 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10649 r->r_addend = relative_targ + roff;
10650 }
10651 else
10652 {
10653 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10654 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10655 else
10656 {
10657 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10658 if (((off >> 32) & 0xffff) != 0)
10659 {
10660 ++r;
10661 roff += 4;
10662 r->r_offset = roff;
10663 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10664 r->r_addend = relative_targ + roff;
10665 }
10666 }
10667 if (((off >> 32) & 0xffffffffULL) != 0)
10668 roff += 4;
10669 if (PPC_HI (off) != 0)
10670 {
10671 ++r;
10672 roff += 4;
10673 r->r_offset = roff;
10674 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10675 r->r_addend = relative_targ + roff;
10676 }
10677 if (PPC_LO (off) != 0)
10678 {
10679 ++r;
10680 roff += 4;
10681 r->r_offset = roff;
10682 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10683 r->r_addend = relative_targ + roff;
10684 }
10685 }
10686 return r;
10687 }
10688
10689 static bfd_byte *
10690 build_power10_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10691 bool load)
10692 {
10693 uint64_t insn;
10694 if (off - odd + (1ULL << 33) < 1ULL << 34)
10695 {
10696 off -= odd;
10697 if (odd)
10698 {
10699 bfd_put_32 (abfd, NOP, p);
10700 p += 4;
10701 }
10702 if (load)
10703 insn = PLD_R12_PC;
10704 else
10705 insn = PADDI_R12_PC;
10706 insn |= D34 (off);
10707 bfd_put_32 (abfd, insn >> 32, p);
10708 p += 4;
10709 bfd_put_32 (abfd, insn, p);
10710 }
10711 /* The minimum value for paddi is -0x200000000. The minimum value
10712 for li is -0x8000, which when shifted by 34 and added gives a
10713 minimum value of -0x2000200000000. The maximum value is
10714 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10715 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10716 {
10717 off -= 8 - odd;
10718 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10719 p += 4;
10720 if (!odd)
10721 {
10722 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10723 p += 4;
10724 }
10725 insn = PADDI_R12_PC | D34 (off);
10726 bfd_put_32 (abfd, insn >> 32, p);
10727 p += 4;
10728 bfd_put_32 (abfd, insn, p);
10729 p += 4;
10730 if (odd)
10731 {
10732 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10733 p += 4;
10734 }
10735 if (load)
10736 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10737 else
10738 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10739 }
10740 else
10741 {
10742 off -= odd + 8;
10743 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10744 p += 4;
10745 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10746 p += 4;
10747 if (odd)
10748 {
10749 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10750 p += 4;
10751 }
10752 insn = PADDI_R12_PC | D34 (off);
10753 bfd_put_32 (abfd, insn >> 32, p);
10754 p += 4;
10755 bfd_put_32 (abfd, insn, p);
10756 p += 4;
10757 if (!odd)
10758 {
10759 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10760 p += 4;
10761 }
10762 if (load)
10763 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10764 else
10765 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10766 }
10767 p += 4;
10768 return p;
10769 }
10770
10771 static unsigned int
10772 size_power10_offset (bfd_vma off, int odd)
10773 {
10774 if (off - odd + (1ULL << 33) < 1ULL << 34)
10775 return odd + 8;
10776 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10777 return 20;
10778 else
10779 return 24;
10780 }
10781
10782 static unsigned int
10783 num_relocs_for_power10_offset (bfd_vma off, int odd)
10784 {
10785 if (off - odd + (1ULL << 33) < 1ULL << 34)
10786 return 1;
10787 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10788 return 2;
10789 else
10790 return 3;
10791 }
10792
10793 static Elf_Internal_Rela *
10794 emit_relocs_for_power10_offset (struct bfd_link_info *info,
10795 Elf_Internal_Rela *r, bfd_vma roff,
10796 bfd_vma targ, bfd_vma off, int odd)
10797 {
10798 if (off - odd + (1ULL << 33) < 1ULL << 34)
10799 roff += odd;
10800 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10801 {
10802 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10803 r->r_offset = roff + d_offset;
10804 r->r_addend = targ + 8 - odd - d_offset;
10805 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10806 ++r;
10807 roff += 8 - odd;
10808 }
10809 else
10810 {
10811 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10812 r->r_offset = roff + d_offset;
10813 r->r_addend = targ + 8 + odd - d_offset;
10814 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10815 ++r;
10816 roff += 4;
10817 r->r_offset = roff + d_offset;
10818 r->r_addend = targ + 4 + odd - d_offset;
10819 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10820 ++r;
10821 roff += 4 + odd;
10822 }
10823 r->r_offset = roff;
10824 r->r_addend = targ;
10825 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10826 return r;
10827 }
10828
10829 /* Emit .eh_frame opcode to advance pc by DELTA. */
10830
10831 static bfd_byte *
10832 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10833 {
10834 delta /= 4;
10835 if (delta < 64)
10836 *eh++ = DW_CFA_advance_loc + delta;
10837 else if (delta < 256)
10838 {
10839 *eh++ = DW_CFA_advance_loc1;
10840 *eh++ = delta;
10841 }
10842 else if (delta < 65536)
10843 {
10844 *eh++ = DW_CFA_advance_loc2;
10845 bfd_put_16 (abfd, delta, eh);
10846 eh += 2;
10847 }
10848 else
10849 {
10850 *eh++ = DW_CFA_advance_loc4;
10851 bfd_put_32 (abfd, delta, eh);
10852 eh += 4;
10853 }
10854 return eh;
10855 }
10856
10857 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10858
10859 static unsigned int
10860 eh_advance_size (unsigned int delta)
10861 {
10862 if (delta < 64 * 4)
10863 /* DW_CFA_advance_loc+[1..63]. */
10864 return 1;
10865 if (delta < 256 * 4)
10866 /* DW_CFA_advance_loc1, byte. */
10867 return 2;
10868 if (delta < 65536 * 4)
10869 /* DW_CFA_advance_loc2, 2 bytes. */
10870 return 3;
10871 /* DW_CFA_advance_loc4, 4 bytes. */
10872 return 5;
10873 }
10874
10875 /* With power7 weakly ordered memory model, it is possible for ld.so
10876 to update a plt entry in one thread and have another thread see a
10877 stale zero toc entry. To avoid this we need some sort of acquire
10878 barrier in the call stub. One solution is to make the load of the
10879 toc word seem to appear to depend on the load of the function entry
10880 word. Another solution is to test for r2 being zero, and branch to
10881 the appropriate glink entry if so.
10882
10883 . fake dep barrier compare
10884 . ld 12,xxx(2) ld 12,xxx(2)
10885 . mtctr 12 mtctr 12
10886 . xor 11,12,12 ld 2,xxx+8(2)
10887 . add 2,2,11 cmpldi 2,0
10888 . ld 2,xxx+8(2) bnectr+
10889 . bctr b <glink_entry>
10890
10891 The solution involving the compare turns out to be faster, so
10892 that's what we use unless the branch won't reach. */
10893
10894 #define ALWAYS_USE_FAKE_DEP 0
10895 #define ALWAYS_EMIT_R2SAVE 0
10896
10897 static inline unsigned int
10898 plt_stub_size (struct ppc_link_hash_table *htab,
10899 struct ppc_stub_hash_entry *stub_entry,
10900 bfd_vma off,
10901 unsigned int odd)
10902 {
10903 unsigned size;
10904
10905 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10906 {
10907 if (htab->params->power10_stubs != 0)
10908 size = 8 + size_power10_offset (off, odd);
10909 else
10910 size = 8 + size_offset (off - 8);
10911 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10912 size += 4;
10913 }
10914 else
10915 {
10916 size = 12;
10917 if (ALWAYS_EMIT_R2SAVE
10918 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10919 size += 4;
10920 if (PPC_HA (off) != 0)
10921 size += 4;
10922 if (htab->opd_abi)
10923 {
10924 size += 4;
10925 if (htab->params->plt_static_chain)
10926 size += 4;
10927 if (htab->params->plt_thread_safe
10928 && htab->elf.dynamic_sections_created
10929 && stub_entry->h != NULL
10930 && stub_entry->h->elf.dynindx != -1)
10931 size += 8;
10932 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain)
10933 != PPC_HA (off))
10934 size += 4;
10935 }
10936 }
10937 if (stub_entry->h != NULL
10938 && is_tls_get_addr (&stub_entry->h->elf, htab)
10939 && htab->params->tls_get_addr_opt)
10940 {
10941 if (!htab->params->no_tls_get_addr_regsave)
10942 {
10943 size += 30 * 4;
10944 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
10945 || stub_entry->stub_type == ppc_stub_plt_call_both)
10946 size += 4;
10947 }
10948 else
10949 {
10950 size += 7 * 4;
10951 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
10952 || stub_entry->stub_type == ppc_stub_plt_call_both)
10953 size += 6 * 4;
10954 }
10955 }
10956 return size;
10957 }
10958
10959 /* Depending on the sign of plt_stub_align:
10960 If positive, return the padding to align to a 2**plt_stub_align
10961 boundary.
10962 If negative, if this stub would cross fewer 2**plt_stub_align
10963 boundaries if we align, then return the padding needed to do so. */
10964
10965 static inline unsigned int
10966 plt_stub_pad (struct ppc_link_hash_table *htab,
10967 struct ppc_stub_hash_entry *stub_entry,
10968 bfd_vma plt_off,
10969 unsigned int odd)
10970 {
10971 int stub_align;
10972 unsigned stub_size;
10973 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10974
10975 if (htab->params->plt_stub_align >= 0)
10976 {
10977 stub_align = 1 << htab->params->plt_stub_align;
10978 if ((stub_off & (stub_align - 1)) != 0)
10979 return stub_align - (stub_off & (stub_align - 1));
10980 return 0;
10981 }
10982
10983 stub_align = 1 << -htab->params->plt_stub_align;
10984 stub_size = plt_stub_size (htab, stub_entry, plt_off, odd);
10985 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10986 > ((stub_size - 1) & -stub_align))
10987 return stub_align - (stub_off & (stub_align - 1));
10988 return 0;
10989 }
10990
10991 /* Build a .plt call stub. */
10992
10993 static inline bfd_byte *
10994 build_plt_stub (struct ppc_link_hash_table *htab,
10995 struct ppc_stub_hash_entry *stub_entry,
10996 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10997 {
10998 bfd *obfd = htab->params->stub_bfd;
10999 bool plt_load_toc = htab->opd_abi;
11000 bool plt_static_chain = htab->params->plt_static_chain;
11001 bool plt_thread_safe = (htab->params->plt_thread_safe
11002 && htab->elf.dynamic_sections_created
11003 && stub_entry->h != NULL
11004 && stub_entry->h->elf.dynindx != -1);
11005 bool use_fake_dep = plt_thread_safe;
11006 bfd_vma cmp_branch_off = 0;
11007
11008 if (!ALWAYS_USE_FAKE_DEP
11009 && plt_load_toc
11010 && plt_thread_safe
11011 && !(stub_entry->h != NULL
11012 && is_tls_get_addr (&stub_entry->h->elf, htab)
11013 && htab->params->tls_get_addr_opt))
11014 {
11015 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
11016 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
11017 / PLT_ENTRY_SIZE (htab));
11018 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
11019 bfd_vma to, from;
11020
11021 if (pltindex > 32768)
11022 glinkoff += (pltindex - 32768) * 4;
11023 to = (glinkoff
11024 + htab->glink->output_offset
11025 + htab->glink->output_section->vma);
11026 from = (p - stub_entry->group->stub_sec->contents
11027 + 4 * (ALWAYS_EMIT_R2SAVE
11028 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11029 + 4 * (PPC_HA (offset) != 0)
11030 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
11031 != PPC_HA (offset))
11032 + 4 * (plt_static_chain != 0)
11033 + 20
11034 + stub_entry->group->stub_sec->output_offset
11035 + stub_entry->group->stub_sec->output_section->vma);
11036 cmp_branch_off = to - from;
11037 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
11038 }
11039
11040 if (PPC_HA (offset) != 0)
11041 {
11042 if (r != NULL)
11043 {
11044 if (ALWAYS_EMIT_R2SAVE
11045 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11046 r[0].r_offset += 4;
11047 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11048 r[1].r_offset = r[0].r_offset + 4;
11049 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11050 r[1].r_addend = r[0].r_addend;
11051 if (plt_load_toc)
11052 {
11053 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11054 {
11055 r[2].r_offset = r[1].r_offset + 4;
11056 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
11057 r[2].r_addend = r[0].r_addend;
11058 }
11059 else
11060 {
11061 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
11062 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11063 r[2].r_addend = r[0].r_addend + 8;
11064 if (plt_static_chain)
11065 {
11066 r[3].r_offset = r[2].r_offset + 4;
11067 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11068 r[3].r_addend = r[0].r_addend + 16;
11069 }
11070 }
11071 }
11072 }
11073 if (ALWAYS_EMIT_R2SAVE
11074 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11075 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11076 if (plt_load_toc)
11077 {
11078 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
11079 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
11080 }
11081 else
11082 {
11083 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
11084 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
11085 }
11086 if (plt_load_toc
11087 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11088 {
11089 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
11090 offset = 0;
11091 }
11092 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11093 if (plt_load_toc)
11094 {
11095 if (use_fake_dep)
11096 {
11097 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
11098 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
11099 }
11100 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
11101 if (plt_static_chain)
11102 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
11103 }
11104 }
11105 else
11106 {
11107 if (r != NULL)
11108 {
11109 if (ALWAYS_EMIT_R2SAVE
11110 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11111 r[0].r_offset += 4;
11112 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11113 if (plt_load_toc)
11114 {
11115 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11116 {
11117 r[1].r_offset = r[0].r_offset + 4;
11118 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
11119 r[1].r_addend = r[0].r_addend;
11120 }
11121 else
11122 {
11123 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
11124 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11125 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
11126 if (plt_static_chain)
11127 {
11128 r[2].r_offset = r[1].r_offset + 4;
11129 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11130 r[2].r_addend = r[0].r_addend + 8;
11131 }
11132 }
11133 }
11134 }
11135 if (ALWAYS_EMIT_R2SAVE
11136 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11137 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11138 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
11139 if (plt_load_toc
11140 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11141 {
11142 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
11143 offset = 0;
11144 }
11145 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11146 if (plt_load_toc)
11147 {
11148 if (use_fake_dep)
11149 {
11150 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
11151 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
11152 }
11153 if (plt_static_chain)
11154 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
11155 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
11156 }
11157 }
11158 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
11159 {
11160 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
11161 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
11162 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
11163 }
11164 else
11165 bfd_put_32 (obfd, BCTR, p), p += 4;
11166 return p;
11167 }
11168
11169 /* Build a special .plt call stub for __tls_get_addr. */
11170
11171 #define LD_R0_0R3 0xe8030000
11172 #define LD_R12_0R3 0xe9830000
11173 #define MR_R0_R3 0x7c601b78
11174 #define CMPDI_R0_0 0x2c200000
11175 #define ADD_R3_R12_R13 0x7c6c6a14
11176 #define BEQLR 0x4d820020
11177 #define MR_R3_R0 0x7c030378
11178 #define BCTRL 0x4e800421
11179
11180 static bfd_byte *
11181 build_tls_get_addr_head (struct ppc_link_hash_table *htab,
11182 struct ppc_stub_hash_entry *stub_entry,
11183 bfd_byte *p)
11184 {
11185 bfd *obfd = htab->params->stub_bfd;
11186
11187 bfd_put_32 (obfd, LD_R0_0R3 + 0, p), p += 4;
11188 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
11189 bfd_put_32 (obfd, CMPDI_R0_0, p), p += 4;
11190 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
11191 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
11192 bfd_put_32 (obfd, BEQLR, p), p += 4;
11193 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
11194
11195 if (!htab->params->no_tls_get_addr_regsave)
11196 p = tls_get_addr_prologue (obfd, p, htab);
11197 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11198 || stub_entry->stub_type == ppc_stub_plt_call_both)
11199 {
11200 bfd_put_32 (obfd, MFLR_R0, p);
11201 p += 4;
11202 bfd_put_32 (obfd, STD_R0_0R1 + STK_LINKER (htab), p);
11203 p += 4;
11204 }
11205 return p;
11206 }
11207
11208 static bfd_byte *
11209 build_tls_get_addr_tail (struct ppc_link_hash_table *htab,
11210 struct ppc_stub_hash_entry *stub_entry,
11211 bfd_byte *p,
11212 bfd_byte *loc)
11213 {
11214 bfd *obfd = htab->params->stub_bfd;
11215
11216 if (!htab->params->no_tls_get_addr_regsave)
11217 {
11218 bfd_put_32 (obfd, BCTRL, p - 4);
11219
11220 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11221 || stub_entry->stub_type == ppc_stub_plt_call_both)
11222 {
11223 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11224 p += 4;
11225 }
11226 p = tls_get_addr_epilogue (obfd, p, htab);
11227 }
11228 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11229 || stub_entry->stub_type == ppc_stub_plt_call_both)
11230 {
11231 bfd_put_32 (obfd, BCTRL, p - 4);
11232
11233 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11234 p += 4;
11235 bfd_put_32 (obfd, LD_R0_0R1 + STK_LINKER (htab), p);
11236 p += 4;
11237 bfd_put_32 (obfd, MTLR_R0, p);
11238 p += 4;
11239 bfd_put_32 (obfd, BLR, p);
11240 p += 4;
11241 }
11242
11243 if (htab->glink_eh_frame != NULL
11244 && htab->glink_eh_frame->size != 0)
11245 {
11246 bfd_byte *base, *eh;
11247
11248 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
11249 eh = base + stub_entry->group->eh_size;
11250
11251 if (!htab->params->no_tls_get_addr_regsave)
11252 {
11253 unsigned int cfa_updt, delta, i;
11254
11255 /* After the bctrl, lr has been modified so we need to emit
11256 .eh_frame info saying the return address is on the stack. In
11257 fact we must put the EH info at or before the call rather
11258 than after it, because the EH info for a call needs to be
11259 specified by that point.
11260 See libgcc/unwind-dw2.c execute_cfa_program.
11261 Any stack pointer update must be described immediately after
11262 the instruction making the change, and since the stdu occurs
11263 after saving regs we put all the reg saves and the cfa
11264 change there. */
11265 cfa_updt = stub_entry->stub_offset + 18 * 4;
11266 delta = cfa_updt - stub_entry->group->lr_restore;
11267 stub_entry->group->lr_restore
11268 = stub_entry->stub_offset + (p - loc) - 4;
11269 eh = eh_advance (htab->elf.dynobj, eh, delta);
11270 *eh++ = DW_CFA_def_cfa_offset;
11271 if (htab->opd_abi)
11272 {
11273 *eh++ = 128;
11274 *eh++ = 1;
11275 }
11276 else
11277 *eh++ = 96;
11278 *eh++ = DW_CFA_offset_extended_sf;
11279 *eh++ = 65;
11280 *eh++ = (-16 / 8) & 0x7f;
11281 for (i = 4; i < 12; i++)
11282 {
11283 *eh++ = DW_CFA_offset + i;
11284 *eh++ = (htab->opd_abi ? 13 : 12) - i;
11285 }
11286 *eh++ = (DW_CFA_advance_loc
11287 + (stub_entry->group->lr_restore - 8 - cfa_updt) / 4);
11288 *eh++ = DW_CFA_def_cfa_offset;
11289 *eh++ = 0;
11290 for (i = 4; i < 12; i++)
11291 *eh++ = DW_CFA_restore + i;
11292 *eh++ = DW_CFA_advance_loc + 2;
11293 *eh++ = DW_CFA_restore_extended;
11294 *eh++ = 65;
11295 stub_entry->group->eh_size = eh - base;
11296 }
11297 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11298 || stub_entry->stub_type == ppc_stub_plt_call_both)
11299 {
11300 unsigned int lr_used, delta;
11301
11302 lr_used = stub_entry->stub_offset + (p - 20 - loc);
11303 delta = lr_used - stub_entry->group->lr_restore;
11304 stub_entry->group->lr_restore = lr_used + 16;
11305 eh = eh_advance (htab->elf.dynobj, eh, delta);
11306 *eh++ = DW_CFA_offset_extended_sf;
11307 *eh++ = 65;
11308 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
11309 *eh++ = DW_CFA_advance_loc + 4;
11310 *eh++ = DW_CFA_restore_extended;
11311 *eh++ = 65;
11312 stub_entry->group->eh_size = eh - base;
11313 }
11314 }
11315 return p;
11316 }
11317
11318 static Elf_Internal_Rela *
11319 get_relocs (asection *sec, int count)
11320 {
11321 Elf_Internal_Rela *relocs;
11322 struct bfd_elf_section_data *elfsec_data;
11323
11324 elfsec_data = elf_section_data (sec);
11325 relocs = elfsec_data->relocs;
11326 if (relocs == NULL)
11327 {
11328 bfd_size_type relsize;
11329 relsize = sec->reloc_count * sizeof (*relocs);
11330 relocs = bfd_alloc (sec->owner, relsize);
11331 if (relocs == NULL)
11332 return NULL;
11333 elfsec_data->relocs = relocs;
11334 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
11335 sizeof (Elf_Internal_Shdr));
11336 if (elfsec_data->rela.hdr == NULL)
11337 return NULL;
11338 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
11339 * sizeof (Elf64_External_Rela));
11340 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
11341 sec->reloc_count = 0;
11342 }
11343 relocs += sec->reloc_count;
11344 sec->reloc_count += count;
11345 return relocs;
11346 }
11347
11348 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11349 forms, to the equivalent relocs against the global symbol given by
11350 STUB_ENTRY->H. */
11351
11352 static bool
11353 use_global_in_relocs (struct ppc_link_hash_table *htab,
11354 struct ppc_stub_hash_entry *stub_entry,
11355 Elf_Internal_Rela *r, unsigned int num_rel)
11356 {
11357 struct elf_link_hash_entry **hashes;
11358 unsigned long symndx;
11359 struct ppc_link_hash_entry *h;
11360 bfd_vma symval;
11361
11362 /* Relocs are always against symbols in their own object file. Fake
11363 up global sym hashes for the stub bfd (which has no symbols). */
11364 hashes = elf_sym_hashes (htab->params->stub_bfd);
11365 if (hashes == NULL)
11366 {
11367 bfd_size_type hsize;
11368
11369 /* When called the first time, stub_globals will contain the
11370 total number of symbols seen during stub sizing. After
11371 allocating, stub_globals is used as an index to fill the
11372 hashes array. */
11373 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
11374 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
11375 if (hashes == NULL)
11376 return false;
11377 elf_sym_hashes (htab->params->stub_bfd) = hashes;
11378 htab->stub_globals = 1;
11379 }
11380 symndx = htab->stub_globals++;
11381 h = stub_entry->h;
11382 hashes[symndx] = &h->elf;
11383 if (h->oh != NULL && h->oh->is_func)
11384 h = ppc_follow_link (h->oh);
11385 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
11386 || h->elf.root.type == bfd_link_hash_defweak);
11387 symval = defined_sym_val (&h->elf);
11388 while (num_rel-- != 0)
11389 {
11390 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
11391 if (h->elf.root.u.def.section != stub_entry->target_section)
11392 {
11393 /* H is an opd symbol. The addend must be zero, and the
11394 branch reloc is the only one we can convert. */
11395 r->r_addend = 0;
11396 break;
11397 }
11398 else
11399 r->r_addend -= symval;
11400 --r;
11401 }
11402 return true;
11403 }
11404
11405 static bfd_vma
11406 get_r2off (struct bfd_link_info *info,
11407 struct ppc_stub_hash_entry *stub_entry)
11408 {
11409 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11410 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11411
11412 if (r2off == 0)
11413 {
11414 /* Support linking -R objects. Get the toc pointer from the
11415 opd entry. */
11416 char buf[8];
11417 if (!htab->opd_abi)
11418 return r2off;
11419 asection *opd = stub_entry->h->elf.root.u.def.section;
11420 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11421
11422 if (strcmp (opd->name, ".opd") != 0
11423 || opd->reloc_count != 0)
11424 {
11425 info->callbacks->einfo
11426 (_("%P: cannot find opd entry toc for `%pT'\n"),
11427 stub_entry->h->elf.root.root.string);
11428 bfd_set_error (bfd_error_bad_value);
11429 return (bfd_vma) -1;
11430 }
11431 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11432 return (bfd_vma) -1;
11433 r2off = bfd_get_64 (opd->owner, buf);
11434 r2off -= elf_gp (info->output_bfd);
11435 }
11436 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11437 return r2off;
11438 }
11439
11440 static bool
11441 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11442 {
11443 struct ppc_stub_hash_entry *stub_entry;
11444 struct ppc_branch_hash_entry *br_entry;
11445 struct bfd_link_info *info;
11446 struct ppc_link_hash_table *htab;
11447 bfd *obfd;
11448 bfd_byte *loc;
11449 bfd_byte *p, *relp;
11450 bfd_vma targ, off;
11451 Elf_Internal_Rela *r;
11452 asection *plt;
11453 int num_rel;
11454 int odd;
11455 bool is_tga;
11456
11457 /* Massage our args to the form they really have. */
11458 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11459 info = in_arg;
11460
11461 /* Fail if the target section could not be assigned to an output
11462 section. The user should fix his linker script. */
11463 if (stub_entry->target_section != NULL
11464 && stub_entry->target_section->output_section == NULL
11465 && info->non_contiguous_regions)
11466 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11467 "Retry without --enable-non-contiguous-regions.\n"),
11468 stub_entry->target_section);
11469
11470 /* Same for the group. */
11471 if (stub_entry->group->stub_sec != NULL
11472 && stub_entry->group->stub_sec->output_section == NULL
11473 && info->non_contiguous_regions)
11474 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11475 "output section. Retry without "
11476 "--enable-non-contiguous-regions.\n"),
11477 stub_entry->group->stub_sec,
11478 stub_entry->target_section);
11479
11480 htab = ppc_hash_table (info);
11481 if (htab == NULL)
11482 return false;
11483
11484 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11485 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11486
11487 htab->stub_count[stub_entry->stub_type - 1] += 1;
11488 switch (stub_entry->stub_type)
11489 {
11490 case ppc_stub_long_branch:
11491 case ppc_stub_long_branch_r2off:
11492 /* Branches are relative. This is where we are going to. */
11493 targ = (stub_entry->target_value
11494 + stub_entry->target_section->output_offset
11495 + stub_entry->target_section->output_section->vma);
11496 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11497
11498 /* And this is where we are coming from. */
11499 off = (stub_entry->stub_offset
11500 + stub_entry->group->stub_sec->output_offset
11501 + stub_entry->group->stub_sec->output_section->vma);
11502 off = targ - off;
11503
11504 p = loc;
11505 obfd = htab->params->stub_bfd;
11506 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11507 {
11508 bfd_vma r2off = get_r2off (info, stub_entry);
11509
11510 if (r2off == (bfd_vma) -1)
11511 {
11512 htab->stub_error = true;
11513 return false;
11514 }
11515 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11516 p += 4;
11517 if (PPC_HA (r2off) != 0)
11518 {
11519 bfd_put_32 (obfd, ADDIS_R2_R2 | PPC_HA (r2off), p);
11520 p += 4;
11521 }
11522 if (PPC_LO (r2off) != 0)
11523 {
11524 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (r2off), p);
11525 p += 4;
11526 }
11527 off -= p - loc;
11528 }
11529 bfd_put_32 (obfd, B_DOT | (off & 0x3fffffc), p);
11530 p += 4;
11531
11532 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11533 {
11534 _bfd_error_handler
11535 (_("long branch stub `%s' offset overflow"),
11536 stub_entry->root.string);
11537 htab->stub_error = true;
11538 return false;
11539 }
11540
11541 if (info->emitrelocations)
11542 {
11543 r = get_relocs (stub_entry->group->stub_sec, 1);
11544 if (r == NULL)
11545 return false;
11546 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11547 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11548 r->r_addend = targ;
11549 if (stub_entry->h != NULL
11550 && !use_global_in_relocs (htab, stub_entry, r, 1))
11551 return false;
11552 }
11553 break;
11554
11555 case ppc_stub_plt_branch:
11556 case ppc_stub_plt_branch_r2off:
11557 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11558 stub_entry->root.string + 9,
11559 false, false);
11560 if (br_entry == NULL)
11561 {
11562 _bfd_error_handler (_("can't find branch stub `%s'"),
11563 stub_entry->root.string);
11564 htab->stub_error = true;
11565 return false;
11566 }
11567
11568 targ = (stub_entry->target_value
11569 + stub_entry->target_section->output_offset
11570 + stub_entry->target_section->output_section->vma);
11571 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11572 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11573
11574 bfd_put_64 (htab->brlt->owner, targ,
11575 htab->brlt->contents + br_entry->offset);
11576
11577 if (br_entry->iter == htab->stub_iteration)
11578 {
11579 br_entry->iter = 0;
11580
11581 if (htab->relbrlt != NULL)
11582 {
11583 /* Create a reloc for the branch lookup table entry. */
11584 Elf_Internal_Rela rela;
11585 bfd_byte *rl;
11586
11587 rela.r_offset = (br_entry->offset
11588 + htab->brlt->output_offset
11589 + htab->brlt->output_section->vma);
11590 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11591 rela.r_addend = targ;
11592
11593 rl = htab->relbrlt->contents;
11594 rl += (htab->relbrlt->reloc_count++
11595 * sizeof (Elf64_External_Rela));
11596 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11597 }
11598 else if (info->emitrelocations)
11599 {
11600 r = get_relocs (htab->brlt, 1);
11601 if (r == NULL)
11602 return false;
11603 /* brlt, being SEC_LINKER_CREATED does not go through the
11604 normal reloc processing. Symbols and offsets are not
11605 translated from input file to output file form, so
11606 set up the offset per the output file. */
11607 r->r_offset = (br_entry->offset
11608 + htab->brlt->output_offset
11609 + htab->brlt->output_section->vma);
11610 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11611 r->r_addend = targ;
11612 }
11613 }
11614
11615 targ = (br_entry->offset
11616 + htab->brlt->output_offset
11617 + htab->brlt->output_section->vma);
11618
11619 off = (elf_gp (info->output_bfd)
11620 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11621 off = targ - off;
11622
11623 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11624 {
11625 info->callbacks->einfo
11626 (_("%P: linkage table error against `%pT'\n"),
11627 stub_entry->root.string);
11628 bfd_set_error (bfd_error_bad_value);
11629 htab->stub_error = true;
11630 return false;
11631 }
11632
11633 if (info->emitrelocations)
11634 {
11635 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11636 if (r == NULL)
11637 return false;
11638 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11639 if (bfd_big_endian (info->output_bfd))
11640 r[0].r_offset += 2;
11641 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11642 r[0].r_offset += 4;
11643 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11644 r[0].r_addend = targ;
11645 if (PPC_HA (off) != 0)
11646 {
11647 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11648 r[1].r_offset = r[0].r_offset + 4;
11649 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11650 r[1].r_addend = r[0].r_addend;
11651 }
11652 }
11653
11654 p = loc;
11655 obfd = htab->params->stub_bfd;
11656 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11657 {
11658 if (PPC_HA (off) != 0)
11659 {
11660 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (off), p);
11661 p += 4;
11662 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (off), p);
11663 }
11664 else
11665 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (off), p);
11666 }
11667 else
11668 {
11669 bfd_vma r2off = get_r2off (info, stub_entry);
11670
11671 if (r2off == (bfd_vma) -1)
11672 {
11673 htab->stub_error = true;
11674 return false;
11675 }
11676
11677 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11678 p += 4;
11679 if (PPC_HA (off) != 0)
11680 {
11681 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (off), p);
11682 p += 4;
11683 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (off), p);
11684 }
11685 else
11686 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (off), p);
11687
11688 if (PPC_HA (r2off) != 0)
11689 {
11690 p += 4;
11691 bfd_put_32 (obfd, ADDIS_R2_R2 | PPC_HA (r2off), p);
11692 }
11693 if (PPC_LO (r2off) != 0)
11694 {
11695 p += 4;
11696 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (r2off), p);
11697 }
11698 }
11699 p += 4;
11700 bfd_put_32 (obfd, MTCTR_R12, p);
11701 p += 4;
11702 bfd_put_32 (obfd, BCTR, p);
11703 p += 4;
11704 break;
11705
11706 case ppc_stub_long_branch_notoc:
11707 case ppc_stub_long_branch_both:
11708 case ppc_stub_plt_branch_notoc:
11709 case ppc_stub_plt_branch_both:
11710 case ppc_stub_plt_call_notoc:
11711 case ppc_stub_plt_call_both:
11712 p = loc;
11713 off = (stub_entry->stub_offset
11714 + stub_entry->group->stub_sec->output_offset
11715 + stub_entry->group->stub_sec->output_section->vma);
11716 obfd = htab->params->stub_bfd;
11717 is_tga = ((stub_entry->stub_type == ppc_stub_plt_call_notoc
11718 || stub_entry->stub_type == ppc_stub_plt_call_both)
11719 && stub_entry->h != NULL
11720 && is_tls_get_addr (&stub_entry->h->elf, htab)
11721 && htab->params->tls_get_addr_opt);
11722 if (is_tga)
11723 {
11724 p = build_tls_get_addr_head (htab, stub_entry, p);
11725 off += p - loc;
11726 }
11727 if (stub_entry->stub_type == ppc_stub_long_branch_both
11728 || stub_entry->stub_type == ppc_stub_plt_branch_both
11729 || stub_entry->stub_type == ppc_stub_plt_call_both)
11730 {
11731 off += 4;
11732 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11733 p += 4;
11734 }
11735 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11736 {
11737 targ = stub_entry->plt_ent->plt.offset & ~1;
11738 if (targ >= (bfd_vma) -2)
11739 abort ();
11740
11741 plt = htab->elf.splt;
11742 if (use_local_plt (info, elf_hash_entry (stub_entry->h)))
11743 {
11744 if (stub_entry->symtype == STT_GNU_IFUNC)
11745 plt = htab->elf.iplt;
11746 else
11747 plt = htab->pltlocal;
11748 }
11749 targ += plt->output_offset + plt->output_section->vma;
11750 }
11751 else
11752 targ = (stub_entry->target_value
11753 + stub_entry->target_section->output_offset
11754 + stub_entry->target_section->output_section->vma);
11755 odd = off & 4;
11756 off = targ - off;
11757
11758 relp = p;
11759 num_rel = 0;
11760 if (htab->params->power10_stubs != 0)
11761 {
11762 bool load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11763 p = build_power10_offset (obfd, p, off, odd, load);
11764 }
11765 else
11766 {
11767 if (htab->glink_eh_frame != NULL
11768 && htab->glink_eh_frame->size != 0)
11769 {
11770 bfd_byte *base, *eh;
11771 unsigned int lr_used, delta;
11772
11773 base = (htab->glink_eh_frame->contents
11774 + stub_entry->group->eh_base + 17);
11775 eh = base + stub_entry->group->eh_size;
11776 lr_used = stub_entry->stub_offset + (p - loc) + 8;
11777 delta = lr_used - stub_entry->group->lr_restore;
11778 stub_entry->group->lr_restore = lr_used + 8;
11779 eh = eh_advance (htab->elf.dynobj, eh, delta);
11780 *eh++ = DW_CFA_register;
11781 *eh++ = 65;
11782 *eh++ = 12;
11783 *eh++ = DW_CFA_advance_loc + 2;
11784 *eh++ = DW_CFA_restore_extended;
11785 *eh++ = 65;
11786 stub_entry->group->eh_size = eh - base;
11787 }
11788
11789 /* The notoc stubs calculate their target (either a PLT entry or
11790 the global entry point of a function) relative to the PC
11791 returned by the "bcl" two instructions past the start of the
11792 sequence emitted by build_offset. The offset is therefore 8
11793 less than calculated from the start of the sequence. */
11794 off -= 8;
11795 p = build_offset (obfd, p, off,
11796 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11797 }
11798
11799 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11800 {
11801 bfd_vma from;
11802 num_rel = 1;
11803 from = (stub_entry->stub_offset
11804 + stub_entry->group->stub_sec->output_offset
11805 + stub_entry->group->stub_sec->output_section->vma
11806 + (p - loc));
11807 bfd_put_32 (obfd, B_DOT | ((targ - from) & 0x3fffffc), p);
11808 }
11809 else
11810 {
11811 bfd_put_32 (obfd, MTCTR_R12, p);
11812 p += 4;
11813 bfd_put_32 (obfd, BCTR, p);
11814 }
11815 p += 4;
11816
11817 if (is_tga)
11818 p = build_tls_get_addr_tail (htab, stub_entry, p, loc);
11819
11820 if (info->emitrelocations)
11821 {
11822 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11823 if (htab->params->power10_stubs != 0)
11824 num_rel += num_relocs_for_power10_offset (off, odd);
11825 else
11826 {
11827 num_rel += num_relocs_for_offset (off);
11828 roff += 16;
11829 }
11830 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11831 if (r == NULL)
11832 return false;
11833 if (htab->params->power10_stubs != 0)
11834 r = emit_relocs_for_power10_offset (info, r, roff, targ, off, odd);
11835 else
11836 r = emit_relocs_for_offset (info, r, roff, targ, off);
11837 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11838 || stub_entry->stub_type == ppc_stub_long_branch_both)
11839 {
11840 ++r;
11841 roff = p - 4 - stub_entry->group->stub_sec->contents;
11842 r->r_offset = roff;
11843 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11844 r->r_addend = targ;
11845 if (stub_entry->h != NULL
11846 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11847 return false;
11848 }
11849 }
11850 break;
11851
11852 case ppc_stub_plt_call:
11853 case ppc_stub_plt_call_r2save:
11854 if (stub_entry->h != NULL
11855 && stub_entry->h->is_func_descriptor
11856 && stub_entry->h->oh != NULL)
11857 {
11858 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11859
11860 /* If the old-ABI "dot-symbol" is undefined make it weak so
11861 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11862 if (fh->elf.root.type == bfd_link_hash_undefined
11863 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11864 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11865 fh->elf.root.type = bfd_link_hash_undefweak;
11866 }
11867
11868 /* Now build the stub. */
11869 targ = stub_entry->plt_ent->plt.offset & ~1;
11870 if (targ >= (bfd_vma) -2)
11871 abort ();
11872
11873 plt = htab->elf.splt;
11874 if (use_local_plt (info, elf_hash_entry (stub_entry->h)))
11875 {
11876 if (stub_entry->symtype == STT_GNU_IFUNC)
11877 plt = htab->elf.iplt;
11878 else
11879 plt = htab->pltlocal;
11880 }
11881 targ += plt->output_offset + plt->output_section->vma;
11882
11883 off = (elf_gp (info->output_bfd)
11884 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11885 off = targ - off;
11886
11887 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11888 {
11889 info->callbacks->einfo
11890 /* xgettext:c-format */
11891 (_("%P: linkage table error against `%pT'\n"),
11892 stub_entry->h != NULL
11893 ? stub_entry->h->elf.root.root.string
11894 : "<local sym>");
11895 bfd_set_error (bfd_error_bad_value);
11896 htab->stub_error = true;
11897 return false;
11898 }
11899
11900 r = NULL;
11901 if (info->emitrelocations)
11902 {
11903 r = get_relocs (stub_entry->group->stub_sec,
11904 ((PPC_HA (off) != 0)
11905 + (htab->opd_abi
11906 ? 2 + (htab->params->plt_static_chain
11907 && PPC_HA (off + 16) == PPC_HA (off))
11908 : 1)));
11909 if (r == NULL)
11910 return false;
11911 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11912 if (bfd_big_endian (info->output_bfd))
11913 r[0].r_offset += 2;
11914 r[0].r_addend = targ;
11915 }
11916 p = loc;
11917 obfd = htab->params->stub_bfd;
11918 is_tga = (stub_entry->h != NULL
11919 && is_tls_get_addr (&stub_entry->h->elf, htab)
11920 && htab->params->tls_get_addr_opt);
11921 if (is_tga)
11922 {
11923 p = build_tls_get_addr_head (htab, stub_entry, p);
11924 if (r != NULL)
11925 r[0].r_offset += p - loc;
11926 }
11927 p = build_plt_stub (htab, stub_entry, p, off, r);
11928 if (is_tga)
11929 p = build_tls_get_addr_tail (htab, stub_entry, p, loc);
11930 break;
11931
11932 case ppc_stub_save_res:
11933 return true;
11934
11935 default:
11936 BFD_FAIL ();
11937 return false;
11938 }
11939
11940 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11941
11942 if (htab->params->emit_stub_syms)
11943 {
11944 struct elf_link_hash_entry *h;
11945 size_t len1, len2;
11946 char *name;
11947 const char *const stub_str[] = { "long_branch",
11948 "long_branch",
11949 "long_branch",
11950 "long_branch",
11951 "plt_branch",
11952 "plt_branch",
11953 "plt_branch",
11954 "plt_branch",
11955 "plt_call",
11956 "plt_call",
11957 "plt_call",
11958 "plt_call" };
11959
11960 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11961 len2 = strlen (stub_entry->root.string);
11962 name = bfd_malloc (len1 + len2 + 2);
11963 if (name == NULL)
11964 return false;
11965 memcpy (name, stub_entry->root.string, 9);
11966 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11967 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11968 h = elf_link_hash_lookup (&htab->elf, name, true, false, false);
11969 if (h == NULL)
11970 return false;
11971 if (h->root.type == bfd_link_hash_new)
11972 {
11973 h->root.type = bfd_link_hash_defined;
11974 h->root.u.def.section = stub_entry->group->stub_sec;
11975 h->root.u.def.value = stub_entry->stub_offset;
11976 h->ref_regular = 1;
11977 h->def_regular = 1;
11978 h->ref_regular_nonweak = 1;
11979 h->forced_local = 1;
11980 h->non_elf = 0;
11981 h->root.linker_def = 1;
11982 }
11983 }
11984
11985 return true;
11986 }
11987
11988 /* As above, but don't actually build the stub. Just bump offset so
11989 we know stub section sizes, and select plt_branch stubs where
11990 long_branch stubs won't do. */
11991
11992 static bool
11993 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11994 {
11995 struct ppc_stub_hash_entry *stub_entry;
11996 struct bfd_link_info *info;
11997 struct ppc_link_hash_table *htab;
11998 asection *plt;
11999 bfd_vma targ, off, r2off;
12000 unsigned int size, extra, lr_used, delta, odd;
12001
12002 /* Massage our args to the form they really have. */
12003 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
12004 info = in_arg;
12005
12006 htab = ppc_hash_table (info);
12007 if (htab == NULL)
12008 return false;
12009
12010 /* Fail if the target section could not be assigned to an output
12011 section. The user should fix his linker script. */
12012 if (stub_entry->target_section != NULL
12013 && stub_entry->target_section->output_section == NULL
12014 && info->non_contiguous_regions)
12015 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output section. "
12016 "Retry without --enable-non-contiguous-regions.\n"),
12017 stub_entry->target_section);
12018
12019 /* Same for the group. */
12020 if (stub_entry->group->stub_sec != NULL
12021 && stub_entry->group->stub_sec->output_section == NULL
12022 && info->non_contiguous_regions)
12023 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
12024 "output section. Retry without "
12025 "--enable-non-contiguous-regions.\n"),
12026 stub_entry->group->stub_sec,
12027 stub_entry->target_section);
12028
12029 /* Make a note of the offset within the stubs for this entry. */
12030 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12031
12032 if (stub_entry->h != NULL
12033 && stub_entry->h->save_res
12034 && stub_entry->h->elf.root.type == bfd_link_hash_defined
12035 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
12036 {
12037 /* Don't make stubs to out-of-line register save/restore
12038 functions. Instead, emit copies of the functions. */
12039 stub_entry->group->needs_save_res = 1;
12040 stub_entry->stub_type = ppc_stub_save_res;
12041 return true;
12042 }
12043
12044 switch (stub_entry->stub_type)
12045 {
12046 case ppc_stub_plt_branch:
12047 case ppc_stub_plt_branch_r2off:
12048 /* Reset the stub type from the plt branch variant in case we now
12049 can reach with a shorter stub. */
12050 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12051 /* Fall through. */
12052 case ppc_stub_long_branch:
12053 case ppc_stub_long_branch_r2off:
12054 targ = (stub_entry->target_value
12055 + stub_entry->target_section->output_offset
12056 + stub_entry->target_section->output_section->vma);
12057 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
12058 off = (stub_entry->stub_offset
12059 + stub_entry->group->stub_sec->output_offset
12060 + stub_entry->group->stub_sec->output_section->vma);
12061
12062 size = 4;
12063 r2off = 0;
12064 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
12065 {
12066 r2off = get_r2off (info, stub_entry);
12067 if (r2off == (bfd_vma) -1)
12068 {
12069 htab->stub_error = true;
12070 return false;
12071 }
12072 size = 8;
12073 if (PPC_HA (r2off) != 0)
12074 size += 4;
12075 if (PPC_LO (r2off) != 0)
12076 size += 4;
12077 off += size - 4;
12078 }
12079 off = targ - off;
12080
12081 /* If the branch offset is too big, use a ppc_stub_plt_branch.
12082 Do the same for -R objects without function descriptors. */
12083 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
12084 && r2off == 0
12085 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
12086 || off + (1 << 25) >= (bfd_vma) (1 << 26))
12087 {
12088 struct ppc_branch_hash_entry *br_entry;
12089
12090 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
12091 stub_entry->root.string + 9,
12092 true, false);
12093 if (br_entry == NULL)
12094 {
12095 _bfd_error_handler (_("can't build branch stub `%s'"),
12096 stub_entry->root.string);
12097 htab->stub_error = true;
12098 return false;
12099 }
12100
12101 if (br_entry->iter != htab->stub_iteration)
12102 {
12103 br_entry->iter = htab->stub_iteration;
12104 br_entry->offset = htab->brlt->size;
12105 htab->brlt->size += 8;
12106
12107 if (htab->relbrlt != NULL)
12108 htab->relbrlt->size += sizeof (Elf64_External_Rela);
12109 else if (info->emitrelocations)
12110 {
12111 htab->brlt->reloc_count += 1;
12112 htab->brlt->flags |= SEC_RELOC;
12113 }
12114 }
12115
12116 targ = (br_entry->offset
12117 + htab->brlt->output_offset
12118 + htab->brlt->output_section->vma);
12119 off = (elf_gp (info->output_bfd)
12120 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12121 off = targ - off;
12122
12123 if (info->emitrelocations)
12124 {
12125 stub_entry->group->stub_sec->reloc_count
12126 += 1 + (PPC_HA (off) != 0);
12127 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12128 }
12129
12130 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
12131 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
12132 {
12133 size = 12;
12134 if (PPC_HA (off) != 0)
12135 size = 16;
12136 }
12137 else
12138 {
12139 size = 16;
12140 if (PPC_HA (off) != 0)
12141 size += 4;
12142
12143 if (PPC_HA (r2off) != 0)
12144 size += 4;
12145 if (PPC_LO (r2off) != 0)
12146 size += 4;
12147 }
12148 }
12149 else if (info->emitrelocations)
12150 {
12151 stub_entry->group->stub_sec->reloc_count += 1;
12152 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12153 }
12154 break;
12155
12156 case ppc_stub_plt_branch_notoc:
12157 case ppc_stub_plt_branch_both:
12158 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12159 /* Fall through. */
12160 case ppc_stub_long_branch_notoc:
12161 case ppc_stub_long_branch_both:
12162 off = (stub_entry->stub_offset
12163 + stub_entry->group->stub_sec->output_offset
12164 + stub_entry->group->stub_sec->output_section->vma);
12165 size = 0;
12166 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12167 size = 4;
12168 off += size;
12169 targ = (stub_entry->target_value
12170 + stub_entry->target_section->output_offset
12171 + stub_entry->target_section->output_section->vma);
12172 odd = off & 4;
12173 off = targ - off;
12174
12175 if (info->emitrelocations)
12176 {
12177 unsigned int num_rel;
12178 if (htab->params->power10_stubs != 0)
12179 num_rel = num_relocs_for_power10_offset (off, odd);
12180 else
12181 num_rel = num_relocs_for_offset (off - 8);
12182 stub_entry->group->stub_sec->reloc_count += num_rel;
12183 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12184 }
12185
12186 if (htab->params->power10_stubs != 0)
12187 extra = size_power10_offset (off, odd);
12188 else
12189 extra = size_offset (off - 8);
12190 /* Include branch insn plus those in the offset sequence. */
12191 size += 4 + extra;
12192 /* The branch insn is at the end, or "extra" bytes along. So
12193 its offset will be "extra" bytes less that that already
12194 calculated. */
12195 off -= extra;
12196
12197 if (htab->params->power10_stubs == 0)
12198 {
12199 /* After the bcl, lr has been modified so we need to emit
12200 .eh_frame info saying the return address is in r12. */
12201 lr_used = stub_entry->stub_offset + 8;
12202 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12203 lr_used += 4;
12204 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12205 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12206 DW_CFA_restore_extended 65. */
12207 delta = lr_used - stub_entry->group->lr_restore;
12208 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12209 stub_entry->group->lr_restore = lr_used + 8;
12210 }
12211
12212 /* If the branch can't reach, use a plt_branch. */
12213 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
12214 {
12215 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
12216 - ppc_stub_long_branch_notoc);
12217 size += 4;
12218 }
12219 else if (info->emitrelocations)
12220 stub_entry->group->stub_sec->reloc_count +=1;
12221 break;
12222
12223 case ppc_stub_plt_call_notoc:
12224 case ppc_stub_plt_call_both:
12225 lr_used = 0;
12226 if (stub_entry->h != NULL
12227 && is_tls_get_addr (&stub_entry->h->elf, htab)
12228 && htab->params->tls_get_addr_opt)
12229 {
12230 lr_used += 7 * 4;
12231 if (!htab->params->no_tls_get_addr_regsave)
12232 lr_used += 11 * 4;
12233 else if (stub_entry->stub_type == ppc_stub_plt_call_both)
12234 lr_used += 2 * 4;
12235 }
12236 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12237 lr_used += 4;
12238 targ = stub_entry->plt_ent->plt.offset & ~1;
12239 if (targ >= (bfd_vma) -2)
12240 abort ();
12241
12242 plt = htab->elf.splt;
12243 if (use_local_plt (info, elf_hash_entry (stub_entry->h)))
12244 {
12245 if (stub_entry->symtype == STT_GNU_IFUNC)
12246 plt = htab->elf.iplt;
12247 else
12248 plt = htab->pltlocal;
12249 }
12250 targ += plt->output_offset + plt->output_section->vma;
12251 off = (stub_entry->stub_offset
12252 + stub_entry->group->stub_sec->output_offset
12253 + stub_entry->group->stub_sec->output_section->vma
12254 + lr_used);
12255 odd = off & 4;
12256 off = targ - off;
12257
12258 if (htab->params->plt_stub_align != 0)
12259 {
12260 unsigned pad = plt_stub_pad (htab, stub_entry, off, odd);
12261
12262 stub_entry->group->stub_sec->size += pad;
12263 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12264 off -= pad;
12265 odd ^= pad & 4;
12266 }
12267
12268 if (info->emitrelocations)
12269 {
12270 unsigned int num_rel;
12271 if (htab->params->power10_stubs != 0)
12272 num_rel = num_relocs_for_power10_offset (off, odd);
12273 else
12274 num_rel = num_relocs_for_offset (off - 8);
12275 stub_entry->group->stub_sec->reloc_count += num_rel;
12276 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12277 }
12278
12279 size = plt_stub_size (htab, stub_entry, off, odd);
12280
12281 if (htab->params->power10_stubs == 0)
12282 {
12283 /* After the bcl, lr has been modified so we need to emit
12284 .eh_frame info saying the return address is in r12. */
12285 lr_used += stub_entry->stub_offset + 8;
12286 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12287 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12288 DW_CFA_restore_extended 65. */
12289 delta = lr_used - stub_entry->group->lr_restore;
12290 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12291 stub_entry->group->lr_restore = lr_used + 8;
12292 }
12293 if ((stub_entry->stub_type == ppc_stub_plt_call_notoc
12294 || stub_entry->stub_type == ppc_stub_plt_call_both)
12295 && stub_entry->h != NULL
12296 && is_tls_get_addr (&stub_entry->h->elf, htab)
12297 && htab->params->tls_get_addr_opt)
12298 {
12299 if (!htab->params->no_tls_get_addr_regsave)
12300 {
12301 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12302 delta = cfa_updt - stub_entry->group->lr_restore;
12303 stub_entry->group->eh_size += eh_advance_size (delta);
12304 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12305 stub_entry->group->lr_restore
12306 = stub_entry->stub_offset + size - 4;
12307 }
12308 else if (stub_entry->stub_type == ppc_stub_plt_call_both)
12309 {
12310 lr_used = stub_entry->stub_offset + size - 20;
12311 delta = lr_used - stub_entry->group->lr_restore;
12312 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12313 stub_entry->group->lr_restore
12314 = stub_entry->stub_offset + size - 4;
12315 }
12316 }
12317 break;
12318
12319 case ppc_stub_plt_call:
12320 case ppc_stub_plt_call_r2save:
12321 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
12322 if (targ >= (bfd_vma) -2)
12323 abort ();
12324 plt = htab->elf.splt;
12325 if (use_local_plt (info, elf_hash_entry (stub_entry->h)))
12326 {
12327 if (stub_entry->symtype == STT_GNU_IFUNC)
12328 plt = htab->elf.iplt;
12329 else
12330 plt = htab->pltlocal;
12331 }
12332 targ += plt->output_offset + plt->output_section->vma;
12333
12334 off = (elf_gp (info->output_bfd)
12335 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12336 off = targ - off;
12337
12338 if (htab->params->plt_stub_align != 0)
12339 {
12340 unsigned pad = plt_stub_pad (htab, stub_entry, off, 0);
12341
12342 stub_entry->group->stub_sec->size += pad;
12343 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12344 }
12345
12346 if (info->emitrelocations)
12347 {
12348 stub_entry->group->stub_sec->reloc_count
12349 += ((PPC_HA (off) != 0)
12350 + (htab->opd_abi
12351 ? 2 + (htab->params->plt_static_chain
12352 && PPC_HA (off + 16) == PPC_HA (off))
12353 : 1));
12354 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12355 }
12356
12357 size = plt_stub_size (htab, stub_entry, off, 0);
12358
12359 if (stub_entry->h != NULL
12360 && is_tls_get_addr (&stub_entry->h->elf, htab)
12361 && htab->params->tls_get_addr_opt
12362 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
12363 {
12364 if (!htab->params->no_tls_get_addr_regsave)
12365 {
12366 /* Adjustments to r1 need to be described. */
12367 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12368 delta = cfa_updt - stub_entry->group->lr_restore;
12369 stub_entry->group->eh_size += eh_advance_size (delta);
12370 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12371 }
12372 else
12373 {
12374 lr_used = stub_entry->stub_offset + size - 20;
12375 /* The eh_frame info will consist of a DW_CFA_advance_loc
12376 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12377 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12378 delta = lr_used - stub_entry->group->lr_restore;
12379 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12380 }
12381 stub_entry->group->lr_restore = stub_entry->stub_offset + size - 4;
12382 }
12383 break;
12384
12385 default:
12386 BFD_FAIL ();
12387 return false;
12388 }
12389
12390 stub_entry->group->stub_sec->size += size;
12391 return true;
12392 }
12393
12394 /* Set up various things so that we can make a list of input sections
12395 for each output section included in the link. Returns -1 on error,
12396 0 when no stubs will be needed, and 1 on success. */
12397
12398 int
12399 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
12400 {
12401 unsigned int id;
12402 size_t amt;
12403 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12404
12405 if (htab == NULL)
12406 return -1;
12407
12408 htab->sec_info_arr_size = _bfd_section_id;
12409 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
12410 htab->sec_info = bfd_zmalloc (amt);
12411 if (htab->sec_info == NULL)
12412 return -1;
12413
12414 /* Set toc_off for com, und, abs and ind sections. */
12415 for (id = 0; id < 3; id++)
12416 htab->sec_info[id].toc_off = TOC_BASE_OFF;
12417
12418 return 1;
12419 }
12420
12421 /* Set up for first pass at multitoc partitioning. */
12422
12423 void
12424 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
12425 {
12426 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12427
12428 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
12429 htab->toc_bfd = NULL;
12430 htab->toc_first_sec = NULL;
12431 }
12432
12433 /* The linker repeatedly calls this function for each TOC input section
12434 and linker generated GOT section. Group input bfds such that the toc
12435 within a group is less than 64k in size. */
12436
12437 bool
12438 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
12439 {
12440 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12441 bfd_vma addr, off, limit;
12442
12443 if (htab == NULL)
12444 return false;
12445
12446 if (!htab->second_toc_pass)
12447 {
12448 /* Keep track of the first .toc or .got section for this input bfd. */
12449 bool new_bfd = htab->toc_bfd != isec->owner;
12450
12451 if (new_bfd)
12452 {
12453 htab->toc_bfd = isec->owner;
12454 htab->toc_first_sec = isec;
12455 }
12456
12457 addr = isec->output_offset + isec->output_section->vma;
12458 off = addr - htab->toc_curr;
12459 limit = 0x80008000;
12460 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
12461 limit = 0x10000;
12462 if (off + isec->size > limit)
12463 {
12464 addr = (htab->toc_first_sec->output_offset
12465 + htab->toc_first_sec->output_section->vma);
12466 htab->toc_curr = addr;
12467 htab->toc_curr &= -TOC_BASE_ALIGN;
12468 }
12469
12470 /* toc_curr is the base address of this toc group. Set elf_gp
12471 for the input section to be the offset relative to the
12472 output toc base plus 0x8000. Making the input elf_gp an
12473 offset allows us to move the toc as a whole without
12474 recalculating input elf_gp. */
12475 off = htab->toc_curr - elf_gp (info->output_bfd);
12476 off += TOC_BASE_OFF;
12477
12478 /* Die if someone uses a linker script that doesn't keep input
12479 file .toc and .got together. */
12480 if (new_bfd
12481 && elf_gp (isec->owner) != 0
12482 && elf_gp (isec->owner) != off)
12483 return false;
12484
12485 elf_gp (isec->owner) = off;
12486 return true;
12487 }
12488
12489 /* During the second pass toc_first_sec points to the start of
12490 a toc group, and toc_curr is used to track the old elf_gp.
12491 We use toc_bfd to ensure we only look at each bfd once. */
12492 if (htab->toc_bfd == isec->owner)
12493 return true;
12494 htab->toc_bfd = isec->owner;
12495
12496 if (htab->toc_first_sec == NULL
12497 || htab->toc_curr != elf_gp (isec->owner))
12498 {
12499 htab->toc_curr = elf_gp (isec->owner);
12500 htab->toc_first_sec = isec;
12501 }
12502 addr = (htab->toc_first_sec->output_offset
12503 + htab->toc_first_sec->output_section->vma);
12504 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12505 elf_gp (isec->owner) = off;
12506
12507 return true;
12508 }
12509
12510 /* Called via elf_link_hash_traverse to merge GOT entries for global
12511 symbol H. */
12512
12513 static bool
12514 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12515 {
12516 if (h->root.type == bfd_link_hash_indirect)
12517 return true;
12518
12519 merge_got_entries (&h->got.glist);
12520
12521 return true;
12522 }
12523
12524 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12525 symbol H. */
12526
12527 static bool
12528 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12529 {
12530 struct got_entry *gent;
12531
12532 if (h->root.type == bfd_link_hash_indirect)
12533 return true;
12534
12535 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12536 if (!gent->is_indirect)
12537 allocate_got (h, (struct bfd_link_info *) inf, gent);
12538 return true;
12539 }
12540
12541 /* Called on the first multitoc pass after the last call to
12542 ppc64_elf_next_toc_section. This function removes duplicate GOT
12543 entries. */
12544
12545 bool
12546 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12547 {
12548 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12549 struct bfd *ibfd, *ibfd2;
12550 bool done_something;
12551
12552 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12553
12554 if (!htab->do_multi_toc)
12555 return false;
12556
12557 /* Merge global sym got entries within a toc group. */
12558 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12559
12560 /* And tlsld_got. */
12561 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12562 {
12563 struct got_entry *ent, *ent2;
12564
12565 if (!is_ppc64_elf (ibfd))
12566 continue;
12567
12568 ent = ppc64_tlsld_got (ibfd);
12569 if (!ent->is_indirect
12570 && ent->got.offset != (bfd_vma) -1)
12571 {
12572 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12573 {
12574 if (!is_ppc64_elf (ibfd2))
12575 continue;
12576
12577 ent2 = ppc64_tlsld_got (ibfd2);
12578 if (!ent2->is_indirect
12579 && ent2->got.offset != (bfd_vma) -1
12580 && elf_gp (ibfd2) == elf_gp (ibfd))
12581 {
12582 ent2->is_indirect = true;
12583 ent2->got.ent = ent;
12584 }
12585 }
12586 }
12587 }
12588
12589 /* Zap sizes of got sections. */
12590 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12591 htab->elf.irelplt->size -= htab->got_reli_size;
12592 htab->got_reli_size = 0;
12593
12594 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12595 {
12596 asection *got, *relgot;
12597
12598 if (!is_ppc64_elf (ibfd))
12599 continue;
12600
12601 got = ppc64_elf_tdata (ibfd)->got;
12602 if (got != NULL)
12603 {
12604 got->rawsize = got->size;
12605 got->size = 0;
12606 relgot = ppc64_elf_tdata (ibfd)->relgot;
12607 relgot->rawsize = relgot->size;
12608 relgot->size = 0;
12609 }
12610 }
12611
12612 /* Now reallocate the got, local syms first. We don't need to
12613 allocate section contents again since we never increase size. */
12614 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12615 {
12616 struct got_entry **lgot_ents;
12617 struct got_entry **end_lgot_ents;
12618 struct plt_entry **local_plt;
12619 struct plt_entry **end_local_plt;
12620 unsigned char *lgot_masks;
12621 bfd_size_type locsymcount;
12622 Elf_Internal_Shdr *symtab_hdr;
12623 asection *s;
12624
12625 if (!is_ppc64_elf (ibfd))
12626 continue;
12627
12628 lgot_ents = elf_local_got_ents (ibfd);
12629 if (!lgot_ents)
12630 continue;
12631
12632 symtab_hdr = &elf_symtab_hdr (ibfd);
12633 locsymcount = symtab_hdr->sh_info;
12634 end_lgot_ents = lgot_ents + locsymcount;
12635 local_plt = (struct plt_entry **) end_lgot_ents;
12636 end_local_plt = local_plt + locsymcount;
12637 lgot_masks = (unsigned char *) end_local_plt;
12638 s = ppc64_elf_tdata (ibfd)->got;
12639 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12640 {
12641 struct got_entry *ent;
12642
12643 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12644 {
12645 unsigned int ent_size = 8;
12646 unsigned int rel_size = sizeof (Elf64_External_Rela);
12647
12648 ent->got.offset = s->size;
12649 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12650 {
12651 ent_size *= 2;
12652 rel_size *= 2;
12653 }
12654 s->size += ent_size;
12655 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12656 {
12657 htab->elf.irelplt->size += rel_size;
12658 htab->got_reli_size += rel_size;
12659 }
12660 else if (bfd_link_pic (info)
12661 && !(ent->tls_type != 0
12662 && bfd_link_executable (info)))
12663 {
12664 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12665 srel->size += rel_size;
12666 }
12667 }
12668 }
12669 }
12670
12671 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12672
12673 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12674 {
12675 struct got_entry *ent;
12676
12677 if (!is_ppc64_elf (ibfd))
12678 continue;
12679
12680 ent = ppc64_tlsld_got (ibfd);
12681 if (!ent->is_indirect
12682 && ent->got.offset != (bfd_vma) -1)
12683 {
12684 asection *s = ppc64_elf_tdata (ibfd)->got;
12685 ent->got.offset = s->size;
12686 s->size += 16;
12687 if (bfd_link_dll (info))
12688 {
12689 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12690 srel->size += sizeof (Elf64_External_Rela);
12691 }
12692 }
12693 }
12694
12695 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12696 if (!done_something)
12697 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12698 {
12699 asection *got;
12700
12701 if (!is_ppc64_elf (ibfd))
12702 continue;
12703
12704 got = ppc64_elf_tdata (ibfd)->got;
12705 if (got != NULL)
12706 {
12707 done_something = got->rawsize != got->size;
12708 if (done_something)
12709 break;
12710 }
12711 }
12712
12713 if (done_something)
12714 (*htab->params->layout_sections_again) ();
12715
12716 /* Set up for second pass over toc sections to recalculate elf_gp
12717 on input sections. */
12718 htab->toc_bfd = NULL;
12719 htab->toc_first_sec = NULL;
12720 htab->second_toc_pass = true;
12721 return done_something;
12722 }
12723
12724 /* Called after second pass of multitoc partitioning. */
12725
12726 void
12727 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12728 {
12729 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12730
12731 /* After the second pass, toc_curr tracks the TOC offset used
12732 for code sections below in ppc64_elf_next_input_section. */
12733 htab->toc_curr = TOC_BASE_OFF;
12734 }
12735
12736 /* No toc references were found in ISEC. If the code in ISEC makes no
12737 calls, then there's no need to use toc adjusting stubs when branching
12738 into ISEC. Actually, indirect calls from ISEC are OK as they will
12739 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12740 needed, and 2 if a cyclical call-graph was found but no other reason
12741 for a stub was detected. If called from the top level, a return of
12742 2 means the same as a return of 0. */
12743
12744 static int
12745 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12746 {
12747 int ret;
12748
12749 /* Mark this section as checked. */
12750 isec->call_check_done = 1;
12751
12752 /* We know none of our code bearing sections will need toc stubs. */
12753 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12754 return 0;
12755
12756 if (isec->size == 0)
12757 return 0;
12758
12759 if (isec->output_section == NULL)
12760 return 0;
12761
12762 ret = 0;
12763 if (isec->reloc_count != 0)
12764 {
12765 Elf_Internal_Rela *relstart, *rel;
12766 Elf_Internal_Sym *local_syms;
12767 struct ppc_link_hash_table *htab;
12768
12769 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12770 info->keep_memory);
12771 if (relstart == NULL)
12772 return -1;
12773
12774 /* Look for branches to outside of this section. */
12775 local_syms = NULL;
12776 htab = ppc_hash_table (info);
12777 if (htab == NULL)
12778 return -1;
12779
12780 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12781 {
12782 enum elf_ppc64_reloc_type r_type;
12783 unsigned long r_symndx;
12784 struct elf_link_hash_entry *h;
12785 struct ppc_link_hash_entry *eh;
12786 Elf_Internal_Sym *sym;
12787 asection *sym_sec;
12788 struct _opd_sec_data *opd;
12789 bfd_vma sym_value;
12790 bfd_vma dest;
12791
12792 r_type = ELF64_R_TYPE (rel->r_info);
12793 if (r_type != R_PPC64_REL24
12794 && r_type != R_PPC64_REL24_NOTOC
12795 && r_type != R_PPC64_REL14
12796 && r_type != R_PPC64_REL14_BRTAKEN
12797 && r_type != R_PPC64_REL14_BRNTAKEN
12798 && r_type != R_PPC64_PLTCALL
12799 && r_type != R_PPC64_PLTCALL_NOTOC)
12800 continue;
12801
12802 r_symndx = ELF64_R_SYM (rel->r_info);
12803 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12804 isec->owner))
12805 {
12806 ret = -1;
12807 break;
12808 }
12809
12810 /* Calls to dynamic lib functions go through a plt call stub
12811 that uses r2. */
12812 eh = ppc_elf_hash_entry (h);
12813 if (eh != NULL
12814 && (eh->elf.plt.plist != NULL
12815 || (eh->oh != NULL
12816 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12817 {
12818 ret = 1;
12819 break;
12820 }
12821
12822 if (sym_sec == NULL)
12823 /* Ignore other undefined symbols. */
12824 continue;
12825
12826 /* Assume branches to other sections not included in the
12827 link need stubs too, to cover -R and absolute syms. */
12828 if (sym_sec->output_section == NULL)
12829 {
12830 ret = 1;
12831 break;
12832 }
12833
12834 if (h == NULL)
12835 sym_value = sym->st_value;
12836 else
12837 {
12838 if (h->root.type != bfd_link_hash_defined
12839 && h->root.type != bfd_link_hash_defweak)
12840 abort ();
12841 sym_value = h->root.u.def.value;
12842 }
12843 sym_value += rel->r_addend;
12844
12845 /* If this branch reloc uses an opd sym, find the code section. */
12846 opd = get_opd_info (sym_sec);
12847 if (opd != NULL)
12848 {
12849 if (h == NULL && opd->adjust != NULL)
12850 {
12851 long adjust;
12852
12853 adjust = opd->adjust[OPD_NDX (sym_value)];
12854 if (adjust == -1)
12855 /* Assume deleted functions won't ever be called. */
12856 continue;
12857 sym_value += adjust;
12858 }
12859
12860 dest = opd_entry_value (sym_sec, sym_value,
12861 &sym_sec, NULL, false);
12862 if (dest == (bfd_vma) -1)
12863 continue;
12864 }
12865 else
12866 dest = (sym_value
12867 + sym_sec->output_offset
12868 + sym_sec->output_section->vma);
12869
12870 /* Ignore branch to self. */
12871 if (sym_sec == isec)
12872 continue;
12873
12874 /* If the called function uses the toc, we need a stub. */
12875 if (sym_sec->has_toc_reloc
12876 || sym_sec->makes_toc_func_call)
12877 {
12878 ret = 1;
12879 break;
12880 }
12881
12882 /* Assume any branch that needs a long branch stub might in fact
12883 need a plt_branch stub. A plt_branch stub uses r2. */
12884 else if (dest - (isec->output_offset
12885 + isec->output_section->vma
12886 + rel->r_offset) + (1 << 25)
12887 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12888 ? h->other
12889 : sym->st_other))
12890 {
12891 ret = 1;
12892 break;
12893 }
12894
12895 /* If calling back to a section in the process of being
12896 tested, we can't say for sure that no toc adjusting stubs
12897 are needed, so don't return zero. */
12898 else if (sym_sec->call_check_in_progress)
12899 ret = 2;
12900
12901 /* Branches to another section that itself doesn't have any TOC
12902 references are OK. Recursively call ourselves to check. */
12903 else if (!sym_sec->call_check_done)
12904 {
12905 int recur;
12906
12907 /* Mark current section as indeterminate, so that other
12908 sections that call back to current won't be marked as
12909 known. */
12910 isec->call_check_in_progress = 1;
12911 recur = toc_adjusting_stub_needed (info, sym_sec);
12912 isec->call_check_in_progress = 0;
12913
12914 if (recur != 0)
12915 {
12916 ret = recur;
12917 if (recur != 2)
12918 break;
12919 }
12920 }
12921 }
12922
12923 if (elf_symtab_hdr (isec->owner).contents
12924 != (unsigned char *) local_syms)
12925 free (local_syms);
12926 if (elf_section_data (isec)->relocs != relstart)
12927 free (relstart);
12928 }
12929
12930 if ((ret & 1) == 0
12931 && isec->map_head.s != NULL
12932 && (strcmp (isec->output_section->name, ".init") == 0
12933 || strcmp (isec->output_section->name, ".fini") == 0))
12934 {
12935 if (isec->map_head.s->has_toc_reloc
12936 || isec->map_head.s->makes_toc_func_call)
12937 ret = 1;
12938 else if (!isec->map_head.s->call_check_done)
12939 {
12940 int recur;
12941 isec->call_check_in_progress = 1;
12942 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12943 isec->call_check_in_progress = 0;
12944 if (recur != 0)
12945 ret = recur;
12946 }
12947 }
12948
12949 if (ret == 1)
12950 isec->makes_toc_func_call = 1;
12951
12952 return ret;
12953 }
12954
12955 /* The linker repeatedly calls this function for each input section,
12956 in the order that input sections are linked into output sections.
12957 Build lists of input sections to determine groupings between which
12958 we may insert linker stubs. */
12959
12960 bool
12961 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12962 {
12963 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12964
12965 if (htab == NULL)
12966 return false;
12967
12968 if ((isec->output_section->flags & SEC_CODE) != 0
12969 && isec->output_section->id < htab->sec_info_arr_size)
12970 {
12971 /* This happens to make the list in reverse order,
12972 which is what we want. */
12973 htab->sec_info[isec->id].u.list
12974 = htab->sec_info[isec->output_section->id].u.list;
12975 htab->sec_info[isec->output_section->id].u.list = isec;
12976 }
12977
12978 if (htab->multi_toc_needed)
12979 {
12980 /* Analyse sections that aren't already flagged as needing a
12981 valid toc pointer. Exclude .fixup for the linux kernel.
12982 .fixup contains branches, but only back to the function that
12983 hit an exception. */
12984 if (!(isec->has_toc_reloc
12985 || (isec->flags & SEC_CODE) == 0
12986 || strcmp (isec->name, ".fixup") == 0
12987 || isec->call_check_done))
12988 {
12989 if (toc_adjusting_stub_needed (info, isec) < 0)
12990 return false;
12991 }
12992 /* Make all sections use the TOC assigned for this object file.
12993 This will be wrong for pasted sections; We fix that in
12994 check_pasted_section(). */
12995 if (elf_gp (isec->owner) != 0)
12996 htab->toc_curr = elf_gp (isec->owner);
12997 }
12998
12999 htab->sec_info[isec->id].toc_off = htab->toc_curr;
13000 return true;
13001 }
13002
13003 /* Check that all .init and .fini sections use the same toc, if they
13004 have toc relocs. */
13005
13006 static bool
13007 check_pasted_section (struct bfd_link_info *info, const char *name)
13008 {
13009 asection *o = bfd_get_section_by_name (info->output_bfd, name);
13010
13011 if (o != NULL)
13012 {
13013 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13014 bfd_vma toc_off = 0;
13015 asection *i;
13016
13017 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13018 if (i->has_toc_reloc)
13019 {
13020 if (toc_off == 0)
13021 toc_off = htab->sec_info[i->id].toc_off;
13022 else if (toc_off != htab->sec_info[i->id].toc_off)
13023 return false;
13024 }
13025
13026 if (toc_off == 0)
13027 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13028 if (i->makes_toc_func_call)
13029 {
13030 toc_off = htab->sec_info[i->id].toc_off;
13031 break;
13032 }
13033
13034 /* Make sure the whole pasted function uses the same toc offset. */
13035 if (toc_off != 0)
13036 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13037 htab->sec_info[i->id].toc_off = toc_off;
13038 }
13039 return true;
13040 }
13041
13042 bool
13043 ppc64_elf_check_init_fini (struct bfd_link_info *info)
13044 {
13045 return (check_pasted_section (info, ".init")
13046 & check_pasted_section (info, ".fini"));
13047 }
13048
13049 /* See whether we can group stub sections together. Grouping stub
13050 sections may result in fewer stubs. More importantly, we need to
13051 put all .init* and .fini* stubs at the beginning of the .init or
13052 .fini output sections respectively, because glibc splits the
13053 _init and _fini functions into multiple parts. Putting a stub in
13054 the middle of a function is not a good idea. */
13055
13056 static bool
13057 group_sections (struct bfd_link_info *info,
13058 bfd_size_type stub_group_size,
13059 bool stubs_always_before_branch)
13060 {
13061 struct ppc_link_hash_table *htab;
13062 asection *osec;
13063 bool suppress_size_errors;
13064
13065 htab = ppc_hash_table (info);
13066 if (htab == NULL)
13067 return false;
13068
13069 suppress_size_errors = false;
13070 if (stub_group_size == 1)
13071 {
13072 /* Default values. */
13073 if (stubs_always_before_branch)
13074 stub_group_size = 0x1e00000;
13075 else
13076 stub_group_size = 0x1c00000;
13077 suppress_size_errors = true;
13078 }
13079
13080 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
13081 {
13082 asection *tail;
13083
13084 if (osec->id >= htab->sec_info_arr_size)
13085 continue;
13086
13087 tail = htab->sec_info[osec->id].u.list;
13088 while (tail != NULL)
13089 {
13090 asection *curr;
13091 asection *prev;
13092 bfd_size_type total;
13093 bool big_sec;
13094 bfd_vma curr_toc;
13095 struct map_stub *group;
13096 bfd_size_type group_size;
13097
13098 curr = tail;
13099 total = tail->size;
13100 group_size = (ppc64_elf_section_data (tail) != NULL
13101 && ppc64_elf_section_data (tail)->has_14bit_branch
13102 ? stub_group_size >> 10 : stub_group_size);
13103
13104 big_sec = total > group_size;
13105 if (big_sec && !suppress_size_errors)
13106 /* xgettext:c-format */
13107 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
13108 tail->owner, tail);
13109 curr_toc = htab->sec_info[tail->id].toc_off;
13110
13111 while ((prev = htab->sec_info[curr->id].u.list) != NULL
13112 && ((total += curr->output_offset - prev->output_offset)
13113 < (ppc64_elf_section_data (prev) != NULL
13114 && ppc64_elf_section_data (prev)->has_14bit_branch
13115 ? (group_size = stub_group_size >> 10) : group_size))
13116 && htab->sec_info[prev->id].toc_off == curr_toc)
13117 curr = prev;
13118
13119 /* OK, the size from the start of CURR to the end is less
13120 than group_size and thus can be handled by one stub
13121 section. (or the tail section is itself larger than
13122 group_size, in which case we may be toast.) We should
13123 really be keeping track of the total size of stubs added
13124 here, as stubs contribute to the final output section
13125 size. That's a little tricky, and this way will only
13126 break if stubs added make the total size more than 2^25,
13127 ie. for the default stub_group_size, if stubs total more
13128 than 2097152 bytes, or nearly 75000 plt call stubs. */
13129 group = bfd_alloc (curr->owner, sizeof (*group));
13130 if (group == NULL)
13131 return false;
13132 group->link_sec = curr;
13133 group->stub_sec = NULL;
13134 group->needs_save_res = 0;
13135 group->lr_restore = 0;
13136 group->eh_size = 0;
13137 group->eh_base = 0;
13138 group->next = htab->group;
13139 htab->group = group;
13140 do
13141 {
13142 prev = htab->sec_info[tail->id].u.list;
13143 /* Set up this stub group. */
13144 htab->sec_info[tail->id].u.group = group;
13145 }
13146 while (tail != curr && (tail = prev) != NULL);
13147
13148 /* But wait, there's more! Input sections up to group_size
13149 bytes before the stub section can be handled by it too.
13150 Don't do this if we have a really large section after the
13151 stubs, as adding more stubs increases the chance that
13152 branches may not reach into the stub section. */
13153 if (!stubs_always_before_branch && !big_sec)
13154 {
13155 total = 0;
13156 while (prev != NULL
13157 && ((total += tail->output_offset - prev->output_offset)
13158 < (ppc64_elf_section_data (prev) != NULL
13159 && ppc64_elf_section_data (prev)->has_14bit_branch
13160 ? (group_size = stub_group_size >> 10)
13161 : group_size))
13162 && htab->sec_info[prev->id].toc_off == curr_toc)
13163 {
13164 tail = prev;
13165 prev = htab->sec_info[tail->id].u.list;
13166 htab->sec_info[tail->id].u.group = group;
13167 }
13168 }
13169 tail = prev;
13170 }
13171 }
13172 return true;
13173 }
13174
13175 static const unsigned char glink_eh_frame_cie[] =
13176 {
13177 0, 0, 0, 16, /* length. */
13178 0, 0, 0, 0, /* id. */
13179 1, /* CIE version. */
13180 'z', 'R', 0, /* Augmentation string. */
13181 4, /* Code alignment. */
13182 0x78, /* Data alignment. */
13183 65, /* RA reg. */
13184 1, /* Augmentation size. */
13185 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
13186 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
13187 };
13188
13189 /* Stripping output sections is normally done before dynamic section
13190 symbols have been allocated. This function is called later, and
13191 handles cases like htab->brlt which is mapped to its own output
13192 section. */
13193
13194 static void
13195 maybe_strip_output (struct bfd_link_info *info, asection *isec)
13196 {
13197 if (isec->size == 0
13198 && isec->output_section->size == 0
13199 && !(isec->output_section->flags & SEC_KEEP)
13200 && !bfd_section_removed_from_list (info->output_bfd,
13201 isec->output_section)
13202 && elf_section_data (isec->output_section)->dynindx == 0)
13203 {
13204 isec->output_section->flags |= SEC_EXCLUDE;
13205 bfd_section_list_remove (info->output_bfd, isec->output_section);
13206 info->output_bfd->section_count--;
13207 }
13208 }
13209
13210 /* Determine and set the size of the stub section for a final link.
13211
13212 The basic idea here is to examine all the relocations looking for
13213 PC-relative calls to a target that is unreachable with a "bl"
13214 instruction. */
13215
13216 bool
13217 ppc64_elf_size_stubs (struct bfd_link_info *info)
13218 {
13219 bfd_size_type stub_group_size;
13220 bool stubs_always_before_branch;
13221 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13222
13223 if (htab == NULL)
13224 return false;
13225
13226 if (htab->params->power10_stubs == -1 && !htab->has_power10_relocs)
13227 htab->params->power10_stubs = 0;
13228
13229 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
13230 htab->params->plt_thread_safe = 1;
13231 if (!htab->opd_abi)
13232 htab->params->plt_thread_safe = 0;
13233 else if (htab->params->plt_thread_safe == -1)
13234 {
13235 static const char *const thread_starter[] =
13236 {
13237 "pthread_create",
13238 /* libstdc++ */
13239 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13240 /* librt */
13241 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13242 "mq_notify", "create_timer",
13243 /* libanl */
13244 "getaddrinfo_a",
13245 /* libgomp */
13246 "GOMP_parallel",
13247 "GOMP_parallel_start",
13248 "GOMP_parallel_loop_static",
13249 "GOMP_parallel_loop_static_start",
13250 "GOMP_parallel_loop_dynamic",
13251 "GOMP_parallel_loop_dynamic_start",
13252 "GOMP_parallel_loop_guided",
13253 "GOMP_parallel_loop_guided_start",
13254 "GOMP_parallel_loop_runtime",
13255 "GOMP_parallel_loop_runtime_start",
13256 "GOMP_parallel_sections",
13257 "GOMP_parallel_sections_start",
13258 /* libgo */
13259 "__go_go",
13260 };
13261 unsigned i;
13262
13263 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
13264 {
13265 struct elf_link_hash_entry *h;
13266 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
13267 false, false, true);
13268 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
13269 if (htab->params->plt_thread_safe)
13270 break;
13271 }
13272 }
13273 stubs_always_before_branch = htab->params->group_size < 0;
13274 if (htab->params->group_size < 0)
13275 stub_group_size = -htab->params->group_size;
13276 else
13277 stub_group_size = htab->params->group_size;
13278
13279 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
13280 return false;
13281
13282 htab->tga_group = NULL;
13283 if (!htab->params->no_tls_get_addr_regsave
13284 && htab->tga_desc_fd != NULL
13285 && (htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefined
13286 || htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefweak)
13287 && htab->tls_get_addr_fd != NULL
13288 && is_static_defined (&htab->tls_get_addr_fd->elf))
13289 {
13290 asection *sym_sec, *code_sec, *stub_sec;
13291 bfd_vma sym_value;
13292 struct _opd_sec_data *opd;
13293
13294 sym_sec = htab->tls_get_addr_fd->elf.root.u.def.section;
13295 sym_value = defined_sym_val (&htab->tls_get_addr_fd->elf);
13296 code_sec = sym_sec;
13297 opd = get_opd_info (sym_sec);
13298 if (opd != NULL)
13299 opd_entry_value (sym_sec, sym_value, &code_sec, NULL, false);
13300 htab->tga_group = htab->sec_info[code_sec->id].u.group;
13301 stub_sec = (*htab->params->add_stub_section) (".tga_desc.stub",
13302 htab->tga_group->link_sec);
13303 if (stub_sec == NULL)
13304 return false;
13305 htab->tga_group->stub_sec = stub_sec;
13306
13307 htab->tga_desc_fd->elf.root.type = bfd_link_hash_defined;
13308 htab->tga_desc_fd->elf.root.u.def.section = stub_sec;
13309 htab->tga_desc_fd->elf.root.u.def.value = 0;
13310 htab->tga_desc_fd->elf.type = STT_FUNC;
13311 htab->tga_desc_fd->elf.def_regular = 1;
13312 htab->tga_desc_fd->elf.non_elf = 0;
13313 _bfd_elf_link_hash_hide_symbol (info, &htab->tga_desc_fd->elf, true);
13314 }
13315
13316 #define STUB_SHRINK_ITER 20
13317 /* Loop until no stubs added. After iteration 20 of this loop we may
13318 exit on a stub section shrinking. This is to break out of a
13319 pathological case where adding stubs on one iteration decreases
13320 section gaps (perhaps due to alignment), which then requires
13321 fewer or smaller stubs on the next iteration. */
13322
13323 while (1)
13324 {
13325 bfd *input_bfd;
13326 unsigned int bfd_indx;
13327 struct map_stub *group;
13328
13329 htab->stub_iteration += 1;
13330
13331 for (input_bfd = info->input_bfds, bfd_indx = 0;
13332 input_bfd != NULL;
13333 input_bfd = input_bfd->link.next, bfd_indx++)
13334 {
13335 Elf_Internal_Shdr *symtab_hdr;
13336 asection *section;
13337 Elf_Internal_Sym *local_syms = NULL;
13338
13339 if (!is_ppc64_elf (input_bfd))
13340 continue;
13341
13342 /* We'll need the symbol table in a second. */
13343 symtab_hdr = &elf_symtab_hdr (input_bfd);
13344 if (symtab_hdr->sh_info == 0)
13345 continue;
13346
13347 /* Walk over each section attached to the input bfd. */
13348 for (section = input_bfd->sections;
13349 section != NULL;
13350 section = section->next)
13351 {
13352 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
13353
13354 /* If there aren't any relocs, then there's nothing more
13355 to do. */
13356 if ((section->flags & SEC_RELOC) == 0
13357 || (section->flags & SEC_ALLOC) == 0
13358 || (section->flags & SEC_LOAD) == 0
13359 || (section->flags & SEC_CODE) == 0
13360 || section->reloc_count == 0)
13361 continue;
13362
13363 /* If this section is a link-once section that will be
13364 discarded, then don't create any stubs. */
13365 if (section->output_section == NULL
13366 || section->output_section->owner != info->output_bfd)
13367 continue;
13368
13369 /* Get the relocs. */
13370 internal_relocs
13371 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
13372 info->keep_memory);
13373 if (internal_relocs == NULL)
13374 goto error_ret_free_local;
13375
13376 /* Now examine each relocation. */
13377 irela = internal_relocs;
13378 irelaend = irela + section->reloc_count;
13379 for (; irela < irelaend; irela++)
13380 {
13381 enum elf_ppc64_reloc_type r_type;
13382 unsigned int r_indx;
13383 enum ppc_stub_type stub_type;
13384 struct ppc_stub_hash_entry *stub_entry;
13385 asection *sym_sec, *code_sec;
13386 bfd_vma sym_value, code_value;
13387 bfd_vma destination;
13388 unsigned long local_off;
13389 bool ok_dest;
13390 struct ppc_link_hash_entry *hash;
13391 struct ppc_link_hash_entry *fdh;
13392 struct elf_link_hash_entry *h;
13393 Elf_Internal_Sym *sym;
13394 char *stub_name;
13395 const asection *id_sec;
13396 struct _opd_sec_data *opd;
13397 struct plt_entry *plt_ent;
13398
13399 r_type = ELF64_R_TYPE (irela->r_info);
13400 r_indx = ELF64_R_SYM (irela->r_info);
13401
13402 if (r_type >= R_PPC64_max)
13403 {
13404 bfd_set_error (bfd_error_bad_value);
13405 goto error_ret_free_internal;
13406 }
13407
13408 /* Only look for stubs on branch instructions. */
13409 if (r_type != R_PPC64_REL24
13410 && r_type != R_PPC64_REL24_NOTOC
13411 && r_type != R_PPC64_REL14
13412 && r_type != R_PPC64_REL14_BRTAKEN
13413 && r_type != R_PPC64_REL14_BRNTAKEN)
13414 continue;
13415
13416 /* Now determine the call target, its name, value,
13417 section. */
13418 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
13419 r_indx, input_bfd))
13420 goto error_ret_free_internal;
13421 hash = ppc_elf_hash_entry (h);
13422
13423 ok_dest = false;
13424 fdh = NULL;
13425 sym_value = 0;
13426 if (hash == NULL)
13427 {
13428 sym_value = sym->st_value;
13429 if (sym_sec != NULL
13430 && sym_sec->output_section != NULL)
13431 ok_dest = true;
13432 }
13433 else if (hash->elf.root.type == bfd_link_hash_defined
13434 || hash->elf.root.type == bfd_link_hash_defweak)
13435 {
13436 sym_value = hash->elf.root.u.def.value;
13437 if (sym_sec->output_section != NULL)
13438 ok_dest = true;
13439 }
13440 else if (hash->elf.root.type == bfd_link_hash_undefweak
13441 || hash->elf.root.type == bfd_link_hash_undefined)
13442 {
13443 /* Recognise an old ABI func code entry sym, and
13444 use the func descriptor sym instead if it is
13445 defined. */
13446 if (hash->elf.root.root.string[0] == '.'
13447 && hash->oh != NULL)
13448 {
13449 fdh = ppc_follow_link (hash->oh);
13450 if (fdh->elf.root.type == bfd_link_hash_defined
13451 || fdh->elf.root.type == bfd_link_hash_defweak)
13452 {
13453 sym_sec = fdh->elf.root.u.def.section;
13454 sym_value = fdh->elf.root.u.def.value;
13455 if (sym_sec->output_section != NULL)
13456 ok_dest = true;
13457 }
13458 else
13459 fdh = NULL;
13460 }
13461 }
13462 else
13463 {
13464 bfd_set_error (bfd_error_bad_value);
13465 goto error_ret_free_internal;
13466 }
13467
13468 destination = 0;
13469 local_off = 0;
13470 if (ok_dest)
13471 {
13472 sym_value += irela->r_addend;
13473 destination = (sym_value
13474 + sym_sec->output_offset
13475 + sym_sec->output_section->vma);
13476 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
13477 ? hash->elf.other
13478 : sym->st_other);
13479 }
13480
13481 code_sec = sym_sec;
13482 code_value = sym_value;
13483 opd = get_opd_info (sym_sec);
13484 if (opd != NULL)
13485 {
13486 bfd_vma dest;
13487
13488 if (hash == NULL && opd->adjust != NULL)
13489 {
13490 long adjust = opd->adjust[OPD_NDX (sym_value)];
13491 if (adjust == -1)
13492 continue;
13493 code_value += adjust;
13494 sym_value += adjust;
13495 }
13496 dest = opd_entry_value (sym_sec, sym_value,
13497 &code_sec, &code_value, false);
13498 if (dest != (bfd_vma) -1)
13499 {
13500 destination = dest;
13501 if (fdh != NULL)
13502 {
13503 /* Fixup old ABI sym to point at code
13504 entry. */
13505 hash->elf.root.type = bfd_link_hash_defweak;
13506 hash->elf.root.u.def.section = code_sec;
13507 hash->elf.root.u.def.value = code_value;
13508 }
13509 }
13510 }
13511
13512 /* Determine what (if any) linker stub is needed. */
13513 plt_ent = NULL;
13514 stub_type = ppc_type_of_stub (section, irela, &hash,
13515 &plt_ent, destination,
13516 local_off);
13517
13518 if (r_type == R_PPC64_REL24_NOTOC)
13519 {
13520 if (stub_type == ppc_stub_plt_call)
13521 stub_type = ppc_stub_plt_call_notoc;
13522 else if (stub_type == ppc_stub_long_branch
13523 || (code_sec != NULL
13524 && code_sec->output_section != NULL
13525 && (((hash ? hash->elf.other : sym->st_other)
13526 & STO_PPC64_LOCAL_MASK)
13527 > 1 << STO_PPC64_LOCAL_BIT)))
13528 stub_type = ppc_stub_long_branch_notoc;
13529 }
13530 else if (stub_type != ppc_stub_plt_call)
13531 {
13532 /* Check whether we need a TOC adjusting stub.
13533 Since the linker pastes together pieces from
13534 different object files when creating the
13535 _init and _fini functions, it may be that a
13536 call to what looks like a local sym is in
13537 fact a call needing a TOC adjustment. */
13538 if ((code_sec != NULL
13539 && code_sec->output_section != NULL
13540 && (code_sec->has_toc_reloc
13541 || code_sec->makes_toc_func_call)
13542 && (htab->sec_info[code_sec->id].toc_off
13543 != htab->sec_info[section->id].toc_off))
13544 || (((hash ? hash->elf.other : sym->st_other)
13545 & STO_PPC64_LOCAL_MASK)
13546 == 1 << STO_PPC64_LOCAL_BIT))
13547 stub_type = ppc_stub_long_branch_r2off;
13548 }
13549
13550 if (stub_type == ppc_stub_none)
13551 continue;
13552
13553 /* __tls_get_addr calls might be eliminated. */
13554 if (stub_type != ppc_stub_plt_call
13555 && stub_type != ppc_stub_plt_call_notoc
13556 && hash != NULL
13557 && is_tls_get_addr (&hash->elf, htab)
13558 && section->has_tls_reloc
13559 && irela != internal_relocs)
13560 {
13561 /* Get tls info. */
13562 unsigned char *tls_mask;
13563
13564 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13565 irela - 1, input_bfd))
13566 goto error_ret_free_internal;
13567 if ((*tls_mask & TLS_TLS) != 0
13568 && (*tls_mask & (TLS_GD | TLS_LD)) == 0)
13569 continue;
13570 }
13571
13572 if (stub_type == ppc_stub_plt_call)
13573 {
13574 if (!htab->opd_abi
13575 && htab->params->plt_localentry0 != 0
13576 && is_elfv2_localentry0 (&hash->elf))
13577 htab->has_plt_localentry0 = 1;
13578 else if (irela + 1 < irelaend
13579 && irela[1].r_offset == irela->r_offset + 4
13580 && (ELF64_R_TYPE (irela[1].r_info)
13581 == R_PPC64_TOCSAVE))
13582 {
13583 if (!tocsave_find (htab, INSERT,
13584 &local_syms, irela + 1, input_bfd))
13585 goto error_ret_free_internal;
13586 }
13587 else
13588 stub_type = ppc_stub_plt_call_r2save;
13589 }
13590
13591 /* Support for grouping stub sections. */
13592 id_sec = htab->sec_info[section->id].u.group->link_sec;
13593
13594 /* Get the name of this stub. */
13595 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13596 if (!stub_name)
13597 goto error_ret_free_internal;
13598
13599 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13600 stub_name, false, false);
13601 if (stub_entry != NULL)
13602 {
13603 enum ppc_stub_type old_type;
13604
13605 /* A stub has already been created, but it may
13606 not be the required type. We shouldn't be
13607 transitioning from plt_call to long_branch
13608 stubs or vice versa, but we might be
13609 upgrading from plt_call to plt_call_r2save or
13610 from long_branch to long_branch_r2off. */
13611 free (stub_name);
13612 if (htab->params->power10_stubs == -1)
13613 {
13614 /* For --power10-stubs=auto, don't merge _notoc
13615 and other varieties of stubs. (The _both
13616 variety won't be created.) */
13617 bool notoc = r_type == R_PPC64_REL24_NOTOC;
13618 struct ppc_stub_hash_entry *alt_stub
13619 = select_alt_stub (stub_entry, notoc);
13620
13621 if (alt_stub == NULL)
13622 {
13623 alt_stub = (struct ppc_stub_hash_entry *)
13624 stub_hash_newfunc (NULL,
13625 &htab->stub_hash_table,
13626 stub_entry->root.string);
13627 if (alt_stub == NULL)
13628 {
13629 /* xgettext:c-format */
13630 _bfd_error_handler
13631 (_("%pB: cannot create stub entry %s"),
13632 section->owner, stub_entry->root.string);
13633 goto error_ret_free_internal;
13634 }
13635 *alt_stub = *stub_entry;
13636 stub_entry->root.next = &alt_stub->root;
13637 if (notoc)
13638 /* Sort notoc stubs first, for no good
13639 reason. */
13640 alt_stub = stub_entry;
13641 alt_stub->stub_type = stub_type;
13642 }
13643 stub_entry = alt_stub;
13644 }
13645 old_type = stub_entry->stub_type;
13646 switch (old_type)
13647 {
13648 default:
13649 abort ();
13650
13651 case ppc_stub_save_res:
13652 continue;
13653
13654 case ppc_stub_plt_call:
13655 case ppc_stub_plt_call_r2save:
13656 case ppc_stub_plt_call_notoc:
13657 case ppc_stub_plt_call_both:
13658 if (stub_type == ppc_stub_plt_call)
13659 continue;
13660 else if (stub_type == ppc_stub_plt_call_r2save)
13661 {
13662 if (old_type == ppc_stub_plt_call_notoc)
13663 stub_type = ppc_stub_plt_call_both;
13664 }
13665 else if (stub_type == ppc_stub_plt_call_notoc)
13666 {
13667 if (old_type == ppc_stub_plt_call_r2save)
13668 stub_type = ppc_stub_plt_call_both;
13669 }
13670 else
13671 abort ();
13672 break;
13673
13674 case ppc_stub_plt_branch:
13675 case ppc_stub_plt_branch_r2off:
13676 case ppc_stub_plt_branch_notoc:
13677 case ppc_stub_plt_branch_both:
13678 old_type += (ppc_stub_long_branch
13679 - ppc_stub_plt_branch);
13680 /* Fall through. */
13681 case ppc_stub_long_branch:
13682 case ppc_stub_long_branch_r2off:
13683 case ppc_stub_long_branch_notoc:
13684 case ppc_stub_long_branch_both:
13685 if (stub_type == ppc_stub_long_branch)
13686 continue;
13687 else if (stub_type == ppc_stub_long_branch_r2off)
13688 {
13689 if (old_type == ppc_stub_long_branch_notoc)
13690 stub_type = ppc_stub_long_branch_both;
13691 }
13692 else if (stub_type == ppc_stub_long_branch_notoc)
13693 {
13694 if (old_type == ppc_stub_long_branch_r2off)
13695 stub_type = ppc_stub_long_branch_both;
13696 }
13697 else
13698 abort ();
13699 break;
13700 }
13701 if (old_type < stub_type)
13702 stub_entry->stub_type = stub_type;
13703 continue;
13704 }
13705
13706 stub_entry = ppc_add_stub (stub_name, section, info);
13707 if (stub_entry == NULL)
13708 {
13709 free (stub_name);
13710 error_ret_free_internal:
13711 if (elf_section_data (section)->relocs == NULL)
13712 free (internal_relocs);
13713 error_ret_free_local:
13714 if (symtab_hdr->contents
13715 != (unsigned char *) local_syms)
13716 free (local_syms);
13717 return false;
13718 }
13719
13720 stub_entry->stub_type = stub_type;
13721 if (stub_type >= ppc_stub_plt_call
13722 && stub_type <= ppc_stub_plt_call_both)
13723 {
13724 stub_entry->target_value = sym_value;
13725 stub_entry->target_section = sym_sec;
13726 }
13727 else
13728 {
13729 stub_entry->target_value = code_value;
13730 stub_entry->target_section = code_sec;
13731 }
13732 stub_entry->h = hash;
13733 stub_entry->plt_ent = plt_ent;
13734 stub_entry->symtype
13735 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13736 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13737
13738 if (hash != NULL
13739 && (hash->elf.root.type == bfd_link_hash_defined
13740 || hash->elf.root.type == bfd_link_hash_defweak))
13741 htab->stub_globals += 1;
13742 }
13743
13744 /* We're done with the internal relocs, free them. */
13745 if (elf_section_data (section)->relocs != internal_relocs)
13746 free (internal_relocs);
13747 }
13748
13749 if (local_syms != NULL
13750 && symtab_hdr->contents != (unsigned char *) local_syms)
13751 {
13752 if (!info->keep_memory)
13753 free (local_syms);
13754 else
13755 symtab_hdr->contents = (unsigned char *) local_syms;
13756 }
13757 }
13758
13759 /* We may have added some stubs. Find out the new size of the
13760 stub sections. */
13761 for (group = htab->group; group != NULL; group = group->next)
13762 {
13763 group->lr_restore = 0;
13764 group->eh_size = 0;
13765 if (group->stub_sec != NULL)
13766 {
13767 asection *stub_sec = group->stub_sec;
13768
13769 if (htab->stub_iteration <= STUB_SHRINK_ITER
13770 || stub_sec->rawsize < stub_sec->size)
13771 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13772 stub_sec->rawsize = stub_sec->size;
13773 stub_sec->size = 0;
13774 stub_sec->reloc_count = 0;
13775 stub_sec->flags &= ~SEC_RELOC;
13776 }
13777 }
13778 if (htab->tga_group != NULL)
13779 {
13780 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13781 htab->tga_group->eh_size
13782 = 1 + 2 + (htab->opd_abi != 0) + 3 + 8 * 2 + 3 + 8 + 3;
13783 htab->tga_group->lr_restore = 23 * 4;
13784 htab->tga_group->stub_sec->size = 24 * 4;
13785 }
13786
13787 if (htab->stub_iteration <= STUB_SHRINK_ITER
13788 || htab->brlt->rawsize < htab->brlt->size)
13789 htab->brlt->rawsize = htab->brlt->size;
13790 htab->brlt->size = 0;
13791 htab->brlt->reloc_count = 0;
13792 htab->brlt->flags &= ~SEC_RELOC;
13793 if (htab->relbrlt != NULL)
13794 htab->relbrlt->size = 0;
13795
13796 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13797
13798 for (group = htab->group; group != NULL; group = group->next)
13799 if (group->needs_save_res)
13800 group->stub_sec->size += htab->sfpr->size;
13801
13802 if (info->emitrelocations
13803 && htab->glink != NULL && htab->glink->size != 0)
13804 {
13805 htab->glink->reloc_count = 1;
13806 htab->glink->flags |= SEC_RELOC;
13807 }
13808
13809 if (htab->glink_eh_frame != NULL
13810 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13811 && htab->glink_eh_frame->output_section->size > 8)
13812 {
13813 size_t size = 0, align = 4;
13814
13815 for (group = htab->group; group != NULL; group = group->next)
13816 if (group->eh_size != 0)
13817 size += (group->eh_size + 17 + align - 1) & -align;
13818 if (htab->glink != NULL && htab->glink->size != 0)
13819 size += (24 + align - 1) & -align;
13820 if (size != 0)
13821 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13822 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13823 size = (size + align - 1) & -align;
13824 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13825 htab->glink_eh_frame->size = size;
13826 }
13827
13828 if (htab->params->plt_stub_align != 0)
13829 for (group = htab->group; group != NULL; group = group->next)
13830 if (group->stub_sec != NULL)
13831 {
13832 int align = abs (htab->params->plt_stub_align);
13833 group->stub_sec->size
13834 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13835 }
13836
13837 for (group = htab->group; group != NULL; group = group->next)
13838 if (group->stub_sec != NULL
13839 && group->stub_sec->rawsize != group->stub_sec->size
13840 && (htab->stub_iteration <= STUB_SHRINK_ITER
13841 || group->stub_sec->rawsize < group->stub_sec->size))
13842 break;
13843
13844 if (group == NULL
13845 && (htab->brlt->rawsize == htab->brlt->size
13846 || (htab->stub_iteration > STUB_SHRINK_ITER
13847 && htab->brlt->rawsize > htab->brlt->size))
13848 && (htab->glink_eh_frame == NULL
13849 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)
13850 && (htab->tga_group == NULL
13851 || htab->stub_iteration > 1))
13852 break;
13853
13854 /* Ask the linker to do its stuff. */
13855 (*htab->params->layout_sections_again) ();
13856 }
13857
13858 if (htab->glink_eh_frame != NULL
13859 && htab->glink_eh_frame->size != 0)
13860 {
13861 bfd_vma val;
13862 bfd_byte *p, *last_fde;
13863 size_t last_fde_len, size, align, pad;
13864 struct map_stub *group;
13865
13866 /* It is necessary to at least have a rough outline of the
13867 linker generated CIEs and FDEs written before
13868 bfd_elf_discard_info is run, in order for these FDEs to be
13869 indexed in .eh_frame_hdr. */
13870 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13871 if (p == NULL)
13872 return false;
13873 htab->glink_eh_frame->contents = p;
13874 last_fde = p;
13875 align = 4;
13876
13877 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13878 /* CIE length (rewrite in case little-endian). */
13879 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13880 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13881 p += last_fde_len + 4;
13882
13883 for (group = htab->group; group != NULL; group = group->next)
13884 if (group->eh_size != 0)
13885 {
13886 group->eh_base = p - htab->glink_eh_frame->contents;
13887 last_fde = p;
13888 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13889 /* FDE length. */
13890 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13891 p += 4;
13892 /* CIE pointer. */
13893 val = p - htab->glink_eh_frame->contents;
13894 bfd_put_32 (htab->elf.dynobj, val, p);
13895 p += 4;
13896 /* Offset to stub section, written later. */
13897 p += 4;
13898 /* stub section size. */
13899 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13900 p += 4;
13901 /* Augmentation. */
13902 p += 1;
13903 /* Make sure we don't have all nops. This is enough for
13904 elf-eh-frame.c to detect the last non-nop opcode. */
13905 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13906 p = last_fde + last_fde_len + 4;
13907 }
13908 if (htab->glink != NULL && htab->glink->size != 0)
13909 {
13910 last_fde = p;
13911 last_fde_len = ((24 + align - 1) & -align) - 4;
13912 /* FDE length. */
13913 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13914 p += 4;
13915 /* CIE pointer. */
13916 val = p - htab->glink_eh_frame->contents;
13917 bfd_put_32 (htab->elf.dynobj, val, p);
13918 p += 4;
13919 /* Offset to .glink, written later. */
13920 p += 4;
13921 /* .glink size. */
13922 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13923 p += 4;
13924 /* Augmentation. */
13925 p += 1;
13926
13927 *p++ = DW_CFA_advance_loc + (htab->has_plt_localentry0 ? 3 : 2);
13928 *p++ = DW_CFA_register;
13929 *p++ = 65;
13930 *p++ = htab->opd_abi ? 12 : 0;
13931 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 4 : 2);
13932 *p++ = DW_CFA_restore_extended;
13933 *p++ = 65;
13934 p += ((24 + align - 1) & -align) - 24;
13935 }
13936 /* Subsume any padding into the last FDE if user .eh_frame
13937 sections are aligned more than glink_eh_frame. Otherwise any
13938 zero padding will be seen as a terminator. */
13939 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13940 size = p - htab->glink_eh_frame->contents;
13941 pad = ((size + align - 1) & -align) - size;
13942 htab->glink_eh_frame->size = size + pad;
13943 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13944 }
13945
13946 maybe_strip_output (info, htab->brlt);
13947 if (htab->relbrlt != NULL)
13948 maybe_strip_output (info, htab->relbrlt);
13949 if (htab->glink_eh_frame != NULL)
13950 maybe_strip_output (info, htab->glink_eh_frame);
13951
13952 return true;
13953 }
13954
13955 /* Called after we have determined section placement. If sections
13956 move, we'll be called again. Provide a value for TOCstart. */
13957
13958 bfd_vma
13959 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13960 {
13961 asection *s;
13962 bfd_vma TOCstart, adjust;
13963
13964 if (info != NULL)
13965 {
13966 struct elf_link_hash_entry *h;
13967 struct elf_link_hash_table *htab = elf_hash_table (info);
13968
13969 if (is_elf_hash_table (&htab->root)
13970 && htab->hgot != NULL)
13971 h = htab->hgot;
13972 else
13973 {
13974 h = (struct elf_link_hash_entry *)
13975 bfd_link_hash_lookup (&htab->root, ".TOC.", false, false, true);
13976 if (is_elf_hash_table (&htab->root))
13977 htab->hgot = h;
13978 }
13979 if (h != NULL
13980 && h->root.type == bfd_link_hash_defined
13981 && !h->root.linker_def
13982 && (!is_elf_hash_table (&htab->root)
13983 || h->def_regular))
13984 {
13985 TOCstart = defined_sym_val (h) - TOC_BASE_OFF;
13986 _bfd_set_gp_value (obfd, TOCstart);
13987 return TOCstart;
13988 }
13989 }
13990
13991 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13992 order. The TOC starts where the first of these sections starts. */
13993 s = bfd_get_section_by_name (obfd, ".got");
13994 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13995 s = bfd_get_section_by_name (obfd, ".toc");
13996 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13997 s = bfd_get_section_by_name (obfd, ".tocbss");
13998 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13999 s = bfd_get_section_by_name (obfd, ".plt");
14000 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
14001 {
14002 /* This may happen for
14003 o references to TOC base (SYM@toc / TOC[tc0]) without a
14004 .toc directive
14005 o bad linker script
14006 o --gc-sections and empty TOC sections
14007
14008 FIXME: Warn user? */
14009
14010 /* Look for a likely section. We probably won't even be
14011 using TOCstart. */
14012 for (s = obfd->sections; s != NULL; s = s->next)
14013 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
14014 | SEC_EXCLUDE))
14015 == (SEC_ALLOC | SEC_SMALL_DATA))
14016 break;
14017 if (s == NULL)
14018 for (s = obfd->sections; s != NULL; s = s->next)
14019 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
14020 == (SEC_ALLOC | SEC_SMALL_DATA))
14021 break;
14022 if (s == NULL)
14023 for (s = obfd->sections; s != NULL; s = s->next)
14024 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
14025 == SEC_ALLOC)
14026 break;
14027 if (s == NULL)
14028 for (s = obfd->sections; s != NULL; s = s->next)
14029 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
14030 break;
14031 }
14032
14033 TOCstart = 0;
14034 if (s != NULL)
14035 TOCstart = s->output_section->vma + s->output_offset;
14036
14037 /* Force alignment. */
14038 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
14039 TOCstart -= adjust;
14040 _bfd_set_gp_value (obfd, TOCstart);
14041
14042 if (info != NULL && s != NULL)
14043 {
14044 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14045
14046 if (htab != NULL)
14047 {
14048 if (htab->elf.hgot != NULL)
14049 {
14050 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
14051 htab->elf.hgot->root.u.def.section = s;
14052 }
14053 }
14054 else
14055 {
14056 struct bfd_link_hash_entry *bh = NULL;
14057 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
14058 s, TOC_BASE_OFF - adjust,
14059 NULL, false, false, &bh);
14060 }
14061 }
14062 return TOCstart;
14063 }
14064
14065 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
14066 write out any global entry stubs, and PLT relocations. */
14067
14068 static bool
14069 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
14070 {
14071 struct bfd_link_info *info;
14072 struct ppc_link_hash_table *htab;
14073 struct plt_entry *ent;
14074 asection *s;
14075
14076 if (h->root.type == bfd_link_hash_indirect)
14077 return true;
14078
14079 info = inf;
14080 htab = ppc_hash_table (info);
14081 if (htab == NULL)
14082 return false;
14083
14084 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14085 if (ent->plt.offset != (bfd_vma) -1)
14086 {
14087 /* This symbol has an entry in the procedure linkage
14088 table. Set it up. */
14089 Elf_Internal_Rela rela;
14090 asection *plt, *relplt;
14091 bfd_byte *loc;
14092
14093 if (use_local_plt (info, h))
14094 {
14095 if (!(h->def_regular
14096 && (h->root.type == bfd_link_hash_defined
14097 || h->root.type == bfd_link_hash_defweak)))
14098 continue;
14099 if (h->type == STT_GNU_IFUNC)
14100 {
14101 plt = htab->elf.iplt;
14102 relplt = htab->elf.irelplt;
14103 htab->elf.ifunc_resolvers = true;
14104 if (htab->opd_abi)
14105 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14106 else
14107 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14108 }
14109 else
14110 {
14111 plt = htab->pltlocal;
14112 if (bfd_link_pic (info))
14113 {
14114 relplt = htab->relpltlocal;
14115 if (htab->opd_abi)
14116 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14117 else
14118 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14119 }
14120 else
14121 relplt = NULL;
14122 }
14123 rela.r_addend = defined_sym_val (h) + ent->addend;
14124
14125 if (relplt == NULL)
14126 {
14127 loc = plt->contents + ent->plt.offset;
14128 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
14129 if (htab->opd_abi)
14130 {
14131 bfd_vma toc = elf_gp (info->output_bfd);
14132 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
14133 bfd_put_64 (info->output_bfd, toc, loc + 8);
14134 }
14135 }
14136 else
14137 {
14138 rela.r_offset = (plt->output_section->vma
14139 + plt->output_offset
14140 + ent->plt.offset);
14141 loc = relplt->contents + (relplt->reloc_count++
14142 * sizeof (Elf64_External_Rela));
14143 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14144 }
14145 }
14146 else
14147 {
14148 rela.r_offset = (htab->elf.splt->output_section->vma
14149 + htab->elf.splt->output_offset
14150 + ent->plt.offset);
14151 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14152 rela.r_addend = ent->addend;
14153 loc = (htab->elf.srelplt->contents
14154 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14155 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14156 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
14157 htab->elf.ifunc_resolvers = true;
14158 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14159 }
14160 }
14161
14162 if (!h->pointer_equality_needed)
14163 return true;
14164
14165 if (h->def_regular)
14166 return true;
14167
14168 s = htab->global_entry;
14169 if (s == NULL || s->size == 0)
14170 return true;
14171
14172 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14173 if (ent->plt.offset != (bfd_vma) -1
14174 && ent->addend == 0)
14175 {
14176 bfd_byte *p;
14177 asection *plt;
14178 bfd_vma off;
14179
14180 p = s->contents + h->root.u.def.value;
14181 plt = htab->elf.splt;
14182 if (use_local_plt (info, h))
14183 {
14184 if (h->type == STT_GNU_IFUNC)
14185 plt = htab->elf.iplt;
14186 else
14187 plt = htab->pltlocal;
14188 }
14189 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
14190 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
14191
14192 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
14193 {
14194 info->callbacks->einfo
14195 (_("%P: linkage table error against `%pT'\n"),
14196 h->root.root.string);
14197 bfd_set_error (bfd_error_bad_value);
14198 htab->stub_error = true;
14199 }
14200
14201 htab->stub_count[ppc_stub_global_entry - 1] += 1;
14202 if (htab->params->emit_stub_syms)
14203 {
14204 size_t len = strlen (h->root.root.string);
14205 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
14206
14207 if (name == NULL)
14208 return false;
14209
14210 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
14211 h = elf_link_hash_lookup (&htab->elf, name, true, false, false);
14212 if (h == NULL)
14213 return false;
14214 if (h->root.type == bfd_link_hash_new)
14215 {
14216 h->root.type = bfd_link_hash_defined;
14217 h->root.u.def.section = s;
14218 h->root.u.def.value = p - s->contents;
14219 h->ref_regular = 1;
14220 h->def_regular = 1;
14221 h->ref_regular_nonweak = 1;
14222 h->forced_local = 1;
14223 h->non_elf = 0;
14224 h->root.linker_def = 1;
14225 }
14226 }
14227
14228 if (PPC_HA (off) != 0)
14229 {
14230 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
14231 p += 4;
14232 }
14233 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
14234 p += 4;
14235 bfd_put_32 (s->owner, MTCTR_R12, p);
14236 p += 4;
14237 bfd_put_32 (s->owner, BCTR, p);
14238 break;
14239 }
14240 return true;
14241 }
14242
14243 /* Write PLT relocs for locals. */
14244
14245 static bool
14246 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
14247 {
14248 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14249 bfd *ibfd;
14250
14251 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14252 {
14253 struct got_entry **lgot_ents, **end_lgot_ents;
14254 struct plt_entry **local_plt, **lplt, **end_local_plt;
14255 Elf_Internal_Shdr *symtab_hdr;
14256 bfd_size_type locsymcount;
14257 Elf_Internal_Sym *local_syms = NULL;
14258 struct plt_entry *ent;
14259
14260 if (!is_ppc64_elf (ibfd))
14261 continue;
14262
14263 lgot_ents = elf_local_got_ents (ibfd);
14264 if (!lgot_ents)
14265 continue;
14266
14267 symtab_hdr = &elf_symtab_hdr (ibfd);
14268 locsymcount = symtab_hdr->sh_info;
14269 end_lgot_ents = lgot_ents + locsymcount;
14270 local_plt = (struct plt_entry **) end_lgot_ents;
14271 end_local_plt = local_plt + locsymcount;
14272 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
14273 for (ent = *lplt; ent != NULL; ent = ent->next)
14274 if (ent->plt.offset != (bfd_vma) -1)
14275 {
14276 Elf_Internal_Sym *sym;
14277 asection *sym_sec;
14278 asection *plt, *relplt;
14279 bfd_byte *loc;
14280 bfd_vma val;
14281
14282 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
14283 lplt - local_plt, ibfd))
14284 {
14285 if (symtab_hdr->contents != (unsigned char *) local_syms)
14286 free (local_syms);
14287 return false;
14288 }
14289
14290 val = sym->st_value + ent->addend;
14291 if (sym_sec != NULL && sym_sec->output_section != NULL)
14292 val += sym_sec->output_offset + sym_sec->output_section->vma;
14293
14294 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14295 {
14296 htab->elf.ifunc_resolvers = true;
14297 plt = htab->elf.iplt;
14298 relplt = htab->elf.irelplt;
14299 }
14300 else
14301 {
14302 plt = htab->pltlocal;
14303 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
14304 }
14305
14306 if (relplt == NULL)
14307 {
14308 loc = plt->contents + ent->plt.offset;
14309 bfd_put_64 (info->output_bfd, val, loc);
14310 if (htab->opd_abi)
14311 {
14312 bfd_vma toc = elf_gp (ibfd);
14313 bfd_put_64 (info->output_bfd, toc, loc + 8);
14314 }
14315 }
14316 else
14317 {
14318 Elf_Internal_Rela rela;
14319 rela.r_offset = (ent->plt.offset
14320 + plt->output_offset
14321 + plt->output_section->vma);
14322 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14323 {
14324 if (htab->opd_abi)
14325 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14326 else
14327 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14328 }
14329 else
14330 {
14331 if (htab->opd_abi)
14332 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14333 else
14334 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14335 }
14336 rela.r_addend = val;
14337 loc = relplt->contents + (relplt->reloc_count++
14338 * sizeof (Elf64_External_Rela));
14339 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14340 }
14341 }
14342
14343 if (local_syms != NULL
14344 && symtab_hdr->contents != (unsigned char *) local_syms)
14345 {
14346 if (!info->keep_memory)
14347 free (local_syms);
14348 else
14349 symtab_hdr->contents = (unsigned char *) local_syms;
14350 }
14351 }
14352 return true;
14353 }
14354
14355 /* Emit the static wrapper function preserving registers around a
14356 __tls_get_addr_opt call. */
14357
14358 static bool
14359 emit_tga_desc (struct ppc_link_hash_table *htab)
14360 {
14361 asection *stub_sec = htab->tga_group->stub_sec;
14362 unsigned int cfa_updt = 11 * 4;
14363 bfd_byte *p;
14364 bfd_vma to, from, delta;
14365
14366 BFD_ASSERT (htab->tga_desc_fd->elf.root.type == bfd_link_hash_defined
14367 && htab->tga_desc_fd->elf.root.u.def.section == stub_sec
14368 && htab->tga_desc_fd->elf.root.u.def.value == 0);
14369 to = defined_sym_val (&htab->tls_get_addr_fd->elf);
14370 from = defined_sym_val (&htab->tga_desc_fd->elf) + cfa_updt;
14371 delta = to - from;
14372 if (delta + (1 << 25) >= 1 << 26)
14373 {
14374 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14375 htab->stub_error = true;
14376 return false;
14377 }
14378
14379 p = stub_sec->contents;
14380 p = tls_get_addr_prologue (htab->elf.dynobj, p, htab);
14381 bfd_put_32 (stub_sec->owner, B_DOT | 1 | (delta & 0x3fffffc), p);
14382 p += 4;
14383 p = tls_get_addr_epilogue (htab->elf.dynobj, p, htab);
14384 return stub_sec->size == (bfd_size_type) (p - stub_sec->contents);
14385 }
14386
14387 /* Emit eh_frame describing the static wrapper function. */
14388
14389 static bfd_byte *
14390 emit_tga_desc_eh_frame (struct ppc_link_hash_table *htab, bfd_byte *p)
14391 {
14392 unsigned int cfa_updt = 11 * 4;
14393 unsigned int i;
14394
14395 *p++ = DW_CFA_advance_loc + cfa_updt / 4;
14396 *p++ = DW_CFA_def_cfa_offset;
14397 if (htab->opd_abi)
14398 {
14399 *p++ = 128;
14400 *p++ = 1;
14401 }
14402 else
14403 *p++ = 96;
14404 *p++ = DW_CFA_offset_extended_sf;
14405 *p++ = 65;
14406 *p++ = (-16 / 8) & 0x7f;
14407 for (i = 4; i < 12; i++)
14408 {
14409 *p++ = DW_CFA_offset + i;
14410 *p++ = (htab->opd_abi ? 13 : 12) - i;
14411 }
14412 *p++ = DW_CFA_advance_loc + 10;
14413 *p++ = DW_CFA_def_cfa_offset;
14414 *p++ = 0;
14415 for (i = 4; i < 12; i++)
14416 *p++ = DW_CFA_restore + i;
14417 *p++ = DW_CFA_advance_loc + 2;
14418 *p++ = DW_CFA_restore_extended;
14419 *p++ = 65;
14420 return p;
14421 }
14422
14423 /* Build all the stubs associated with the current output file.
14424 The stubs are kept in a hash table attached to the main linker
14425 hash table. This function is called via gldelf64ppc_finish. */
14426
14427 bool
14428 ppc64_elf_build_stubs (struct bfd_link_info *info,
14429 char **stats)
14430 {
14431 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14432 struct map_stub *group;
14433 asection *stub_sec;
14434 bfd_byte *p;
14435 int stub_sec_count = 0;
14436
14437 if (htab == NULL)
14438 return false;
14439
14440 /* Allocate memory to hold the linker stubs. */
14441 for (group = htab->group; group != NULL; group = group->next)
14442 {
14443 group->eh_size = 0;
14444 group->lr_restore = 0;
14445 if ((stub_sec = group->stub_sec) != NULL
14446 && stub_sec->size != 0)
14447 {
14448 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
14449 stub_sec->size);
14450 if (stub_sec->contents == NULL)
14451 return false;
14452 stub_sec->size = 0;
14453 }
14454 }
14455
14456 if (htab->glink != NULL && htab->glink->size != 0)
14457 {
14458 unsigned int indx;
14459 bfd_vma plt0;
14460
14461 /* Build the .glink plt call stub. */
14462 if (htab->params->emit_stub_syms)
14463 {
14464 struct elf_link_hash_entry *h;
14465 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
14466 true, false, false);
14467 if (h == NULL)
14468 return false;
14469 if (h->root.type == bfd_link_hash_new)
14470 {
14471 h->root.type = bfd_link_hash_defined;
14472 h->root.u.def.section = htab->glink;
14473 h->root.u.def.value = 8;
14474 h->ref_regular = 1;
14475 h->def_regular = 1;
14476 h->ref_regular_nonweak = 1;
14477 h->forced_local = 1;
14478 h->non_elf = 0;
14479 h->root.linker_def = 1;
14480 }
14481 }
14482 plt0 = (htab->elf.splt->output_section->vma
14483 + htab->elf.splt->output_offset
14484 - 16);
14485 if (info->emitrelocations)
14486 {
14487 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
14488 if (r == NULL)
14489 return false;
14490 r->r_offset = (htab->glink->output_offset
14491 + htab->glink->output_section->vma);
14492 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
14493 r->r_addend = plt0;
14494 }
14495 p = htab->glink->contents;
14496 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
14497 bfd_put_64 (htab->glink->owner, plt0, p);
14498 p += 8;
14499 if (htab->opd_abi)
14500 {
14501 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
14502 p += 4;
14503 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14504 p += 4;
14505 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14506 p += 4;
14507 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14508 p += 4;
14509 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
14510 p += 4;
14511 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14512 p += 4;
14513 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14514 p += 4;
14515 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
14516 p += 4;
14517 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14518 p += 4;
14519 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
14520 p += 4;
14521 }
14522 else
14523 {
14524 unsigned int insn;
14525
14526 /* 0:
14527 . .quad plt0-1f # plt0 entry relative to 1:
14528 #
14529 # We get here with r12 initially @ a glink branch
14530 # Load the address of _dl_runtime_resolve from plt0 and
14531 # jump to it, with r0 set to the index of the PLT entry
14532 # to be resolved and r11 the link map.
14533 __glink_PLTresolve:
14534 . std %r2,24(%r1) # optional
14535 . mflr %r0
14536 . bcl 20,31,1f
14537 1:
14538 . mflr %r11
14539 . mtlr %r0
14540 . ld %r0,(0b-1b)(%r11)
14541 . sub %r12,%r12,%r11
14542 . add %r11,%r0,%r11
14543 . addi %r0,%r12,1b-2f
14544 . ld %r12,0(%r11)
14545 . srdi %r0,%r0,2
14546 . mtctr %r12
14547 . ld %r11,8(%r11)
14548 . bctr
14549 2:
14550 . b __glink_PLTresolve
14551 . ...
14552 . b __glink_PLTresolve */
14553
14554 if (htab->has_plt_localentry0)
14555 {
14556 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
14557 p += 4;
14558 }
14559 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
14560 p += 4;
14561 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14562 p += 4;
14563 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14564 p += 4;
14565 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
14566 p += 4;
14567 if (htab->has_plt_localentry0)
14568 insn = LD_R0_0R11 | (-20 & 0xfffc);
14569 else
14570 insn = LD_R0_0R11 | (-16 & 0xfffc);
14571 bfd_put_32 (htab->glink->owner, insn, p);
14572 p += 4;
14573 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
14574 p += 4;
14575 bfd_put_32 (htab->glink->owner, ADD_R11_R0_R11, p);
14576 p += 4;
14577 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-44 & 0xffff), p);
14578 p += 4;
14579 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14580 p += 4;
14581 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
14582 p += 4;
14583 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14584 p += 4;
14585 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
14586 p += 4;
14587 }
14588 bfd_put_32 (htab->glink->owner, BCTR, p);
14589 p += 4;
14590 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
14591
14592 /* Build the .glink lazy link call stubs. */
14593 indx = 0;
14594 while (p < htab->glink->contents + htab->glink->size)
14595 {
14596 if (htab->opd_abi)
14597 {
14598 if (indx < 0x8000)
14599 {
14600 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
14601 p += 4;
14602 }
14603 else
14604 {
14605 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
14606 p += 4;
14607 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
14608 p);
14609 p += 4;
14610 }
14611 }
14612 bfd_put_32 (htab->glink->owner,
14613 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
14614 indx++;
14615 p += 4;
14616 }
14617 }
14618
14619 if (htab->tga_group != NULL)
14620 {
14621 htab->tga_group->lr_restore = 23 * 4;
14622 htab->tga_group->stub_sec->size = 24 * 4;
14623 if (!emit_tga_desc (htab))
14624 return false;
14625 if (htab->glink_eh_frame != NULL
14626 && htab->glink_eh_frame->size != 0)
14627 {
14628 size_t align = 4;
14629
14630 p = htab->glink_eh_frame->contents;
14631 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14632 p += 17;
14633 htab->tga_group->eh_size = emit_tga_desc_eh_frame (htab, p) - p;
14634 }
14635 }
14636
14637 /* Build .glink global entry stubs, and PLT relocs for globals. */
14638 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
14639
14640 if (!write_plt_relocs_for_local_syms (info))
14641 return false;
14642
14643 if (htab->brlt != NULL && htab->brlt->size != 0)
14644 {
14645 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
14646 htab->brlt->size);
14647 if (htab->brlt->contents == NULL)
14648 return false;
14649 }
14650 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
14651 {
14652 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
14653 htab->relbrlt->size);
14654 if (htab->relbrlt->contents == NULL)
14655 return false;
14656 }
14657
14658 /* Build the stubs as directed by the stub hash table. */
14659 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
14660
14661 for (group = htab->group; group != NULL; group = group->next)
14662 if (group->needs_save_res)
14663 group->stub_sec->size += htab->sfpr->size;
14664
14665 if (htab->relbrlt != NULL)
14666 htab->relbrlt->reloc_count = 0;
14667
14668 if (htab->params->plt_stub_align != 0)
14669 for (group = htab->group; group != NULL; group = group->next)
14670 if ((stub_sec = group->stub_sec) != NULL)
14671 {
14672 int align = abs (htab->params->plt_stub_align);
14673 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14674 }
14675
14676 for (group = htab->group; group != NULL; group = group->next)
14677 if (group->needs_save_res)
14678 {
14679 stub_sec = group->stub_sec;
14680 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14681 htab->sfpr->contents, htab->sfpr->size);
14682 if (htab->params->emit_stub_syms)
14683 {
14684 unsigned int i;
14685
14686 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14687 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14688 return false;
14689 }
14690 }
14691
14692 if (htab->glink_eh_frame != NULL
14693 && htab->glink_eh_frame->size != 0)
14694 {
14695 bfd_vma val;
14696 size_t align = 4;
14697
14698 p = htab->glink_eh_frame->contents;
14699 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14700
14701 for (group = htab->group; group != NULL; group = group->next)
14702 if (group->eh_size != 0)
14703 {
14704 /* Offset to stub section. */
14705 val = (group->stub_sec->output_section->vma
14706 + group->stub_sec->output_offset);
14707 val -= (htab->glink_eh_frame->output_section->vma
14708 + htab->glink_eh_frame->output_offset
14709 + (p + 8 - htab->glink_eh_frame->contents));
14710 if (val + 0x80000000 > 0xffffffff)
14711 {
14712 _bfd_error_handler
14713 (_("%s offset too large for .eh_frame sdata4 encoding"),
14714 group->stub_sec->name);
14715 return false;
14716 }
14717 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14718 p += (group->eh_size + 17 + 3) & -4;
14719 }
14720 if (htab->glink != NULL && htab->glink->size != 0)
14721 {
14722 /* Offset to .glink. */
14723 val = (htab->glink->output_section->vma
14724 + htab->glink->output_offset
14725 + 8);
14726 val -= (htab->glink_eh_frame->output_section->vma
14727 + htab->glink_eh_frame->output_offset
14728 + (p + 8 - htab->glink_eh_frame->contents));
14729 if (val + 0x80000000 > 0xffffffff)
14730 {
14731 _bfd_error_handler
14732 (_("%s offset too large for .eh_frame sdata4 encoding"),
14733 htab->glink->name);
14734 return false;
14735 }
14736 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14737 p += (24 + align - 1) & -align;
14738 }
14739 }
14740
14741 for (group = htab->group; group != NULL; group = group->next)
14742 if ((stub_sec = group->stub_sec) != NULL)
14743 {
14744 stub_sec_count += 1;
14745 if (stub_sec->rawsize != stub_sec->size
14746 && (htab->stub_iteration <= STUB_SHRINK_ITER
14747 || stub_sec->rawsize < stub_sec->size))
14748 break;
14749 }
14750
14751 if (group != NULL)
14752 {
14753 htab->stub_error = true;
14754 _bfd_error_handler (_("stubs don't match calculated size"));
14755 }
14756
14757 if (htab->stub_error)
14758 return false;
14759
14760 if (stats != NULL)
14761 {
14762 char *groupmsg;
14763 if (asprintf (&groupmsg,
14764 ngettext ("linker stubs in %u group\n",
14765 "linker stubs in %u groups\n",
14766 stub_sec_count),
14767 stub_sec_count) < 0)
14768 *stats = NULL;
14769 else
14770 {
14771 if (asprintf (stats, _("%s"
14772 " branch %lu\n"
14773 " branch toc adj %lu\n"
14774 " branch notoc %lu\n"
14775 " branch both %lu\n"
14776 " long branch %lu\n"
14777 " long toc adj %lu\n"
14778 " long notoc %lu\n"
14779 " long both %lu\n"
14780 " plt call %lu\n"
14781 " plt call save %lu\n"
14782 " plt call notoc %lu\n"
14783 " plt call both %lu\n"
14784 " global entry %lu"),
14785 groupmsg,
14786 htab->stub_count[ppc_stub_long_branch - 1],
14787 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14788 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14789 htab->stub_count[ppc_stub_long_branch_both - 1],
14790 htab->stub_count[ppc_stub_plt_branch - 1],
14791 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14792 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14793 htab->stub_count[ppc_stub_plt_branch_both - 1],
14794 htab->stub_count[ppc_stub_plt_call - 1],
14795 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14796 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14797 htab->stub_count[ppc_stub_plt_call_both - 1],
14798 htab->stub_count[ppc_stub_global_entry - 1]) < 0)
14799 *stats = NULL;
14800 free (groupmsg);
14801 }
14802 }
14803 return true;
14804 }
14805
14806 /* What to do when ld finds relocations against symbols defined in
14807 discarded sections. */
14808
14809 static unsigned int
14810 ppc64_elf_action_discarded (asection *sec)
14811 {
14812 if (strcmp (".opd", sec->name) == 0)
14813 return 0;
14814
14815 if (strcmp (".toc", sec->name) == 0)
14816 return 0;
14817
14818 if (strcmp (".toc1", sec->name) == 0)
14819 return 0;
14820
14821 return _bfd_elf_default_action_discarded (sec);
14822 }
14823
14824 /* These are the dynamic relocations supported by glibc. */
14825
14826 static bool
14827 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14828 {
14829 switch (r_type)
14830 {
14831 case R_PPC64_RELATIVE:
14832 case R_PPC64_NONE:
14833 case R_PPC64_ADDR64:
14834 case R_PPC64_GLOB_DAT:
14835 case R_PPC64_IRELATIVE:
14836 case R_PPC64_JMP_IREL:
14837 case R_PPC64_JMP_SLOT:
14838 case R_PPC64_DTPMOD64:
14839 case R_PPC64_DTPREL64:
14840 case R_PPC64_TPREL64:
14841 case R_PPC64_TPREL16_LO_DS:
14842 case R_PPC64_TPREL16_DS:
14843 case R_PPC64_TPREL16:
14844 case R_PPC64_TPREL16_LO:
14845 case R_PPC64_TPREL16_HI:
14846 case R_PPC64_TPREL16_HIGH:
14847 case R_PPC64_TPREL16_HA:
14848 case R_PPC64_TPREL16_HIGHA:
14849 case R_PPC64_TPREL16_HIGHER:
14850 case R_PPC64_TPREL16_HIGHEST:
14851 case R_PPC64_TPREL16_HIGHERA:
14852 case R_PPC64_TPREL16_HIGHESTA:
14853 case R_PPC64_ADDR16_LO_DS:
14854 case R_PPC64_ADDR16_LO:
14855 case R_PPC64_ADDR16_HI:
14856 case R_PPC64_ADDR16_HIGH:
14857 case R_PPC64_ADDR16_HA:
14858 case R_PPC64_ADDR16_HIGHA:
14859 case R_PPC64_REL30:
14860 case R_PPC64_COPY:
14861 case R_PPC64_UADDR64:
14862 case R_PPC64_UADDR32:
14863 case R_PPC64_ADDR32:
14864 case R_PPC64_ADDR24:
14865 case R_PPC64_ADDR16:
14866 case R_PPC64_UADDR16:
14867 case R_PPC64_ADDR16_DS:
14868 case R_PPC64_ADDR16_HIGHER:
14869 case R_PPC64_ADDR16_HIGHEST:
14870 case R_PPC64_ADDR16_HIGHERA:
14871 case R_PPC64_ADDR16_HIGHESTA:
14872 case R_PPC64_ADDR14:
14873 case R_PPC64_ADDR14_BRTAKEN:
14874 case R_PPC64_ADDR14_BRNTAKEN:
14875 case R_PPC64_REL32:
14876 case R_PPC64_REL64:
14877 return true;
14878
14879 default:
14880 return false;
14881 }
14882 }
14883
14884 /* The RELOCATE_SECTION function is called by the ELF backend linker
14885 to handle the relocations for a section.
14886
14887 The relocs are always passed as Rela structures; if the section
14888 actually uses Rel structures, the r_addend field will always be
14889 zero.
14890
14891 This function is responsible for adjust the section contents as
14892 necessary, and (if using Rela relocs and generating a
14893 relocatable output file) adjusting the reloc addend as
14894 necessary.
14895
14896 This function does not have to worry about setting the reloc
14897 address or the reloc symbol index.
14898
14899 LOCAL_SYMS is a pointer to the swapped in local symbols.
14900
14901 LOCAL_SECTIONS is an array giving the section in the input file
14902 corresponding to the st_shndx field of each local symbol.
14903
14904 The global hash table entry for the global symbols can be found
14905 via elf_sym_hashes (input_bfd).
14906
14907 When generating relocatable output, this function must handle
14908 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14909 going to be the section symbol corresponding to the output
14910 section, which means that the addend must be adjusted
14911 accordingly. */
14912
14913 static int
14914 ppc64_elf_relocate_section (bfd *output_bfd,
14915 struct bfd_link_info *info,
14916 bfd *input_bfd,
14917 asection *input_section,
14918 bfd_byte *contents,
14919 Elf_Internal_Rela *relocs,
14920 Elf_Internal_Sym *local_syms,
14921 asection **local_sections)
14922 {
14923 struct ppc_link_hash_table *htab;
14924 Elf_Internal_Shdr *symtab_hdr;
14925 struct elf_link_hash_entry **sym_hashes;
14926 Elf_Internal_Rela *rel;
14927 Elf_Internal_Rela *wrel;
14928 Elf_Internal_Rela *relend;
14929 Elf_Internal_Rela outrel;
14930 bfd_byte *loc;
14931 struct got_entry **local_got_ents;
14932 bfd_vma TOCstart;
14933 bool ret = true;
14934 bool is_opd;
14935 /* Assume 'at' branch hints. */
14936 bool is_isa_v2 = true;
14937 bool warned_dynamic = false;
14938 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14939
14940 /* Initialize howto table if needed. */
14941 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14942 ppc_howto_init ();
14943
14944 htab = ppc_hash_table (info);
14945 if (htab == NULL)
14946 return false;
14947
14948 /* Don't relocate stub sections. */
14949 if (input_section->owner == htab->params->stub_bfd)
14950 return true;
14951
14952 if (!is_ppc64_elf (input_bfd))
14953 {
14954 bfd_set_error (bfd_error_wrong_format);
14955 return false;
14956 }
14957
14958 local_got_ents = elf_local_got_ents (input_bfd);
14959 TOCstart = elf_gp (output_bfd);
14960 symtab_hdr = &elf_symtab_hdr (input_bfd);
14961 sym_hashes = elf_sym_hashes (input_bfd);
14962 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14963
14964 rel = wrel = relocs;
14965 relend = relocs + input_section->reloc_count;
14966 for (; rel < relend; wrel++, rel++)
14967 {
14968 enum elf_ppc64_reloc_type r_type;
14969 bfd_vma addend;
14970 bfd_reloc_status_type r;
14971 Elf_Internal_Sym *sym;
14972 asection *sec;
14973 struct elf_link_hash_entry *h_elf;
14974 struct ppc_link_hash_entry *h;
14975 struct ppc_link_hash_entry *fdh;
14976 const char *sym_name;
14977 unsigned long r_symndx, toc_symndx;
14978 bfd_vma toc_addend;
14979 unsigned char tls_mask, tls_gd, tls_type;
14980 unsigned char sym_type;
14981 bfd_vma relocation;
14982 bool unresolved_reloc, save_unresolved_reloc;
14983 bool warned;
14984 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14985 unsigned int insn;
14986 unsigned int mask;
14987 struct ppc_stub_hash_entry *stub_entry;
14988 bfd_vma max_br_offset;
14989 bfd_vma from;
14990 Elf_Internal_Rela orig_rel;
14991 reloc_howto_type *howto;
14992 struct reloc_howto_struct alt_howto;
14993 uint64_t pinsn;
14994 bfd_vma offset;
14995
14996 again:
14997 orig_rel = *rel;
14998
14999 r_type = ELF64_R_TYPE (rel->r_info);
15000 r_symndx = ELF64_R_SYM (rel->r_info);
15001
15002 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
15003 symbol of the previous ADDR64 reloc. The symbol gives us the
15004 proper TOC base to use. */
15005 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
15006 && wrel != relocs
15007 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
15008 && is_opd)
15009 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
15010
15011 sym = NULL;
15012 sec = NULL;
15013 h_elf = NULL;
15014 sym_name = NULL;
15015 unresolved_reloc = false;
15016 warned = false;
15017
15018 if (r_symndx < symtab_hdr->sh_info)
15019 {
15020 /* It's a local symbol. */
15021 struct _opd_sec_data *opd;
15022
15023 sym = local_syms + r_symndx;
15024 sec = local_sections[r_symndx];
15025 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
15026 sym_type = ELF64_ST_TYPE (sym->st_info);
15027 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
15028 opd = get_opd_info (sec);
15029 if (opd != NULL && opd->adjust != NULL)
15030 {
15031 long adjust = opd->adjust[OPD_NDX (sym->st_value
15032 + rel->r_addend)];
15033 if (adjust == -1)
15034 relocation = 0;
15035 else
15036 {
15037 /* If this is a relocation against the opd section sym
15038 and we have edited .opd, adjust the reloc addend so
15039 that ld -r and ld --emit-relocs output is correct.
15040 If it is a reloc against some other .opd symbol,
15041 then the symbol value will be adjusted later. */
15042 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
15043 rel->r_addend += adjust;
15044 else
15045 relocation += adjust;
15046 }
15047 }
15048 }
15049 else
15050 {
15051 bool ignored;
15052
15053 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
15054 r_symndx, symtab_hdr, sym_hashes,
15055 h_elf, sec, relocation,
15056 unresolved_reloc, warned, ignored);
15057 sym_name = h_elf->root.root.string;
15058 sym_type = h_elf->type;
15059 if (sec != NULL
15060 && sec->owner == output_bfd
15061 && strcmp (sec->name, ".opd") == 0)
15062 {
15063 /* This is a symbol defined in a linker script. All
15064 such are defined in output sections, even those
15065 defined by simple assignment from a symbol defined in
15066 an input section. Transfer the symbol to an
15067 appropriate input .opd section, so that a branch to
15068 this symbol will be mapped to the location specified
15069 by the opd entry. */
15070 struct bfd_link_order *lo;
15071 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
15072 if (lo->type == bfd_indirect_link_order)
15073 {
15074 asection *isec = lo->u.indirect.section;
15075 if (h_elf->root.u.def.value >= isec->output_offset
15076 && h_elf->root.u.def.value < (isec->output_offset
15077 + isec->size))
15078 {
15079 h_elf->root.u.def.value -= isec->output_offset;
15080 h_elf->root.u.def.section = isec;
15081 sec = isec;
15082 break;
15083 }
15084 }
15085 }
15086 }
15087 h = ppc_elf_hash_entry (h_elf);
15088
15089 if (sec != NULL && discarded_section (sec))
15090 {
15091 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
15092 input_bfd, input_section,
15093 contents, rel->r_offset);
15094 wrel->r_offset = rel->r_offset;
15095 wrel->r_info = 0;
15096 wrel->r_addend = 0;
15097
15098 /* For ld -r, remove relocations in debug sections against
15099 symbols defined in discarded sections. Not done for
15100 non-debug to preserve relocs in .eh_frame which the
15101 eh_frame editing code expects to be present. */
15102 if (bfd_link_relocatable (info)
15103 && (input_section->flags & SEC_DEBUGGING))
15104 wrel--;
15105
15106 continue;
15107 }
15108
15109 if (bfd_link_relocatable (info))
15110 goto copy_reloc;
15111
15112 if (h != NULL && &h->elf == htab->elf.hgot)
15113 {
15114 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15115 sec = bfd_abs_section_ptr;
15116 unresolved_reloc = false;
15117 }
15118
15119 /* TLS optimizations. Replace instruction sequences and relocs
15120 based on information we collected in tls_optimize. We edit
15121 RELOCS so that --emit-relocs will output something sensible
15122 for the final instruction stream. */
15123 tls_mask = 0;
15124 tls_gd = 0;
15125 toc_symndx = 0;
15126 if (h != NULL)
15127 tls_mask = h->tls_mask;
15128 else if (local_got_ents != NULL)
15129 {
15130 struct plt_entry **local_plt = (struct plt_entry **)
15131 (local_got_ents + symtab_hdr->sh_info);
15132 unsigned char *lgot_masks = (unsigned char *)
15133 (local_plt + symtab_hdr->sh_info);
15134 tls_mask = lgot_masks[r_symndx];
15135 }
15136 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
15137 && (r_type == R_PPC64_TLS
15138 || r_type == R_PPC64_TLSGD
15139 || r_type == R_PPC64_TLSLD))
15140 {
15141 /* Check for toc tls entries. */
15142 unsigned char *toc_tls;
15143
15144 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15145 &local_syms, rel, input_bfd))
15146 return false;
15147
15148 if (toc_tls)
15149 tls_mask = *toc_tls;
15150 }
15151
15152 /* Check that tls relocs are used with tls syms, and non-tls
15153 relocs are used with non-tls syms. */
15154 if (r_symndx != STN_UNDEF
15155 && r_type != R_PPC64_NONE
15156 && (h == NULL
15157 || h->elf.root.type == bfd_link_hash_defined
15158 || h->elf.root.type == bfd_link_hash_defweak)
15159 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
15160 {
15161 if ((tls_mask & TLS_TLS) != 0
15162 && (r_type == R_PPC64_TLS
15163 || r_type == R_PPC64_TLSGD
15164 || r_type == R_PPC64_TLSLD))
15165 /* R_PPC64_TLS is OK against a symbol in the TOC. */
15166 ;
15167 else
15168 info->callbacks->einfo
15169 (!IS_PPC64_TLS_RELOC (r_type)
15170 /* xgettext:c-format */
15171 ? _("%H: %s used with TLS symbol `%pT'\n")
15172 /* xgettext:c-format */
15173 : _("%H: %s used with non-TLS symbol `%pT'\n"),
15174 input_bfd, input_section, rel->r_offset,
15175 ppc64_elf_howto_table[r_type]->name,
15176 sym_name);
15177 }
15178
15179 /* Ensure reloc mapping code below stays sane. */
15180 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
15181 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
15182 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
15183 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
15184 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
15185 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
15186 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
15187 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
15188 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
15189 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
15190 abort ();
15191
15192 switch (r_type)
15193 {
15194 default:
15195 break;
15196
15197 case R_PPC64_LO_DS_OPT:
15198 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
15199 if ((insn & (0x3fu << 26)) != 58u << 26)
15200 abort ();
15201 insn += (14u << 26) - (58u << 26);
15202 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
15203 r_type = R_PPC64_TOC16_LO;
15204 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15205 break;
15206
15207 case R_PPC64_TOC16:
15208 case R_PPC64_TOC16_LO:
15209 case R_PPC64_TOC16_DS:
15210 case R_PPC64_TOC16_LO_DS:
15211 {
15212 /* Check for toc tls entries. */
15213 unsigned char *toc_tls;
15214 int retval;
15215
15216 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15217 &local_syms, rel, input_bfd);
15218 if (retval == 0)
15219 return false;
15220
15221 if (toc_tls)
15222 {
15223 tls_mask = *toc_tls;
15224 if (r_type == R_PPC64_TOC16_DS
15225 || r_type == R_PPC64_TOC16_LO_DS)
15226 {
15227 if ((tls_mask & TLS_TLS) != 0
15228 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
15229 goto toctprel;
15230 }
15231 else
15232 {
15233 /* If we found a GD reloc pair, then we might be
15234 doing a GD->IE transition. */
15235 if (retval == 2)
15236 {
15237 tls_gd = TLS_GDIE;
15238 if ((tls_mask & TLS_TLS) != 0
15239 && (tls_mask & TLS_GD) == 0)
15240 goto tls_ldgd_opt;
15241 }
15242 else if (retval == 3)
15243 {
15244 if ((tls_mask & TLS_TLS) != 0
15245 && (tls_mask & TLS_LD) == 0)
15246 goto tls_ldgd_opt;
15247 }
15248 }
15249 }
15250 }
15251 break;
15252
15253 case R_PPC64_GOT_TPREL16_HI:
15254 case R_PPC64_GOT_TPREL16_HA:
15255 if ((tls_mask & TLS_TLS) != 0
15256 && (tls_mask & TLS_TPREL) == 0)
15257 {
15258 rel->r_offset -= d_offset;
15259 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15260 r_type = R_PPC64_NONE;
15261 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15262 }
15263 break;
15264
15265 case R_PPC64_GOT_TPREL16_DS:
15266 case R_PPC64_GOT_TPREL16_LO_DS:
15267 if ((tls_mask & TLS_TLS) != 0
15268 && (tls_mask & TLS_TPREL) == 0)
15269 {
15270 toctprel:
15271 insn = bfd_get_32 (input_bfd,
15272 contents + rel->r_offset - d_offset);
15273 insn &= 31 << 21;
15274 insn |= 0x3c0d0000; /* addis 0,13,0 */
15275 bfd_put_32 (input_bfd, insn,
15276 contents + rel->r_offset - d_offset);
15277 r_type = R_PPC64_TPREL16_HA;
15278 if (toc_symndx != 0)
15279 {
15280 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15281 rel->r_addend = toc_addend;
15282 /* We changed the symbol. Start over in order to
15283 get h, sym, sec etc. right. */
15284 goto again;
15285 }
15286 else
15287 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15288 }
15289 break;
15290
15291 case R_PPC64_GOT_TPREL_PCREL34:
15292 if ((tls_mask & TLS_TLS) != 0
15293 && (tls_mask & TLS_TPREL) == 0)
15294 {
15295 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15296 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15297 pinsn <<= 32;
15298 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15299 pinsn += ((2ULL << 56) + (-1ULL << 52)
15300 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15301 bfd_put_32 (input_bfd, pinsn >> 32,
15302 contents + rel->r_offset);
15303 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15304 contents + rel->r_offset + 4);
15305 r_type = R_PPC64_TPREL34;
15306 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15307 }
15308 break;
15309
15310 case R_PPC64_TLS:
15311 if ((tls_mask & TLS_TLS) != 0
15312 && (tls_mask & TLS_TPREL) == 0)
15313 {
15314 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15315 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
15316 if (insn == 0)
15317 break;
15318 if ((rel->r_offset & 3) == 0)
15319 {
15320 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15321 /* Was PPC64_TLS which sits on insn boundary, now
15322 PPC64_TPREL16_LO which is at low-order half-word. */
15323 rel->r_offset += d_offset;
15324 r_type = R_PPC64_TPREL16_LO;
15325 if (toc_symndx != 0)
15326 {
15327 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15328 rel->r_addend = toc_addend;
15329 /* We changed the symbol. Start over in order to
15330 get h, sym, sec etc. right. */
15331 goto again;
15332 }
15333 else
15334 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15335 }
15336 else if ((rel->r_offset & 3) == 1)
15337 {
15338 /* For pcrel IE to LE we already have the full
15339 offset and thus don't need an addi here. A nop
15340 or mr will do. */
15341 if ((insn & (0x3fu << 26)) == 14 << 26)
15342 {
15343 /* Extract regs from addi rt,ra,si. */
15344 unsigned int rt = (insn >> 21) & 0x1f;
15345 unsigned int ra = (insn >> 16) & 0x1f;
15346 if (rt == ra)
15347 insn = NOP;
15348 else
15349 {
15350 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15351 insn = (rt << 16) | (ra << 21) | (ra << 11);
15352 insn |= (31u << 26) | (444u << 1);
15353 }
15354 }
15355 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
15356 }
15357 }
15358 break;
15359
15360 case R_PPC64_GOT_TLSGD16_HI:
15361 case R_PPC64_GOT_TLSGD16_HA:
15362 tls_gd = TLS_GDIE;
15363 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15364 goto tls_gdld_hi;
15365 break;
15366
15367 case R_PPC64_GOT_TLSLD16_HI:
15368 case R_PPC64_GOT_TLSLD16_HA:
15369 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15370 {
15371 tls_gdld_hi:
15372 if ((tls_mask & tls_gd) != 0)
15373 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
15374 + R_PPC64_GOT_TPREL16_DS);
15375 else
15376 {
15377 rel->r_offset -= d_offset;
15378 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15379 r_type = R_PPC64_NONE;
15380 }
15381 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15382 }
15383 break;
15384
15385 case R_PPC64_GOT_TLSGD16:
15386 case R_PPC64_GOT_TLSGD16_LO:
15387 tls_gd = TLS_GDIE;
15388 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15389 goto tls_ldgd_opt;
15390 break;
15391
15392 case R_PPC64_GOT_TLSLD16:
15393 case R_PPC64_GOT_TLSLD16_LO:
15394 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15395 {
15396 unsigned int insn1, insn2;
15397
15398 tls_ldgd_opt:
15399 offset = (bfd_vma) -1;
15400 /* If not using the newer R_PPC64_TLSGD/LD to mark
15401 __tls_get_addr calls, we must trust that the call
15402 stays with its arg setup insns, ie. that the next
15403 reloc is the __tls_get_addr call associated with
15404 the current reloc. Edit both insns. */
15405 if (input_section->nomark_tls_get_addr
15406 && rel + 1 < relend
15407 && branch_reloc_hash_match (input_bfd, rel + 1,
15408 htab->tls_get_addr_fd,
15409 htab->tga_desc_fd,
15410 htab->tls_get_addr,
15411 htab->tga_desc))
15412 offset = rel[1].r_offset;
15413 /* We read the low GOT_TLS (or TOC16) insn because we
15414 need to keep the destination reg. It may be
15415 something other than the usual r3, and moved to r3
15416 before the call by intervening code. */
15417 insn1 = bfd_get_32 (input_bfd,
15418 contents + rel->r_offset - d_offset);
15419 if ((tls_mask & tls_gd) != 0)
15420 {
15421 /* IE */
15422 insn1 &= (0x1f << 21) | (0x1f << 16);
15423 insn1 |= 58u << 26; /* ld */
15424 insn2 = 0x7c636a14; /* add 3,3,13 */
15425 if (offset != (bfd_vma) -1)
15426 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15427 if (r_type == R_PPC64_TOC16
15428 || r_type == R_PPC64_TOC16_LO)
15429 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
15430 else
15431 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
15432 + R_PPC64_GOT_TPREL16_DS);
15433 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15434 }
15435 else
15436 {
15437 /* LE */
15438 insn1 &= 0x1f << 21;
15439 insn1 |= 0x3c0d0000; /* addis r,13,0 */
15440 insn2 = 0x38630000; /* addi 3,3,0 */
15441 if (tls_gd == 0)
15442 {
15443 /* Was an LD reloc. */
15444 r_symndx = STN_UNDEF;
15445 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15446 }
15447 else if (toc_symndx != 0)
15448 {
15449 r_symndx = toc_symndx;
15450 rel->r_addend = toc_addend;
15451 }
15452 r_type = R_PPC64_TPREL16_HA;
15453 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15454 if (offset != (bfd_vma) -1)
15455 {
15456 rel[1].r_info = ELF64_R_INFO (r_symndx,
15457 R_PPC64_TPREL16_LO);
15458 rel[1].r_offset = offset + d_offset;
15459 rel[1].r_addend = rel->r_addend;
15460 }
15461 }
15462 bfd_put_32 (input_bfd, insn1,
15463 contents + rel->r_offset - d_offset);
15464 if (offset != (bfd_vma) -1)
15465 {
15466 bfd_put_32 (input_bfd, insn2, contents + offset);
15467 if (offset + 8 <= input_section->size)
15468 {
15469 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15470 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
15471 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
15472 }
15473 }
15474 if ((tls_mask & tls_gd) == 0
15475 && (tls_gd == 0 || toc_symndx != 0))
15476 {
15477 /* We changed the symbol. Start over in order
15478 to get h, sym, sec etc. right. */
15479 goto again;
15480 }
15481 }
15482 break;
15483
15484 case R_PPC64_GOT_TLSGD_PCREL34:
15485 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15486 {
15487 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15488 pinsn <<= 32;
15489 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15490 if ((tls_mask & TLS_GDIE) != 0)
15491 {
15492 /* IE, pla -> pld */
15493 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15494 r_type = R_PPC64_GOT_TPREL_PCREL34;
15495 }
15496 else
15497 {
15498 /* LE, pla pcrel -> paddi r13 */
15499 pinsn += (-1ULL << 52) + (13ULL << 16);
15500 r_type = R_PPC64_TPREL34;
15501 }
15502 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15503 bfd_put_32 (input_bfd, pinsn >> 32,
15504 contents + rel->r_offset);
15505 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15506 contents + rel->r_offset + 4);
15507 }
15508 break;
15509
15510 case R_PPC64_GOT_TLSLD_PCREL34:
15511 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15512 {
15513 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15514 pinsn <<= 32;
15515 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15516 pinsn += (-1ULL << 52) + (13ULL << 16);
15517 bfd_put_32 (input_bfd, pinsn >> 32,
15518 contents + rel->r_offset);
15519 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15520 contents + rel->r_offset + 4);
15521 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15522 r_symndx = STN_UNDEF;
15523 r_type = R_PPC64_TPREL34;
15524 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15525 goto again;
15526 }
15527 break;
15528
15529 case R_PPC64_TLSGD:
15530 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
15531 && rel + 1 < relend)
15532 {
15533 unsigned int insn2;
15534 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15535
15536 offset = rel->r_offset;
15537 if (is_plt_seq_reloc (r_type1))
15538 {
15539 bfd_put_32 (output_bfd, NOP, contents + offset);
15540 if (r_type1 == R_PPC64_PLT_PCREL34
15541 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15542 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15543 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15544 break;
15545 }
15546
15547 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15548 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15549
15550 if ((tls_mask & TLS_GDIE) != 0)
15551 {
15552 /* IE */
15553 r_type = R_PPC64_NONE;
15554 insn2 = 0x7c636a14; /* add 3,3,13 */
15555 }
15556 else
15557 {
15558 /* LE */
15559 if (toc_symndx != 0)
15560 {
15561 r_symndx = toc_symndx;
15562 rel->r_addend = toc_addend;
15563 }
15564 if (r_type1 == R_PPC64_REL24_NOTOC
15565 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15566 {
15567 r_type = R_PPC64_NONE;
15568 insn2 = NOP;
15569 }
15570 else
15571 {
15572 rel->r_offset = offset + d_offset;
15573 r_type = R_PPC64_TPREL16_LO;
15574 insn2 = 0x38630000; /* addi 3,3,0 */
15575 }
15576 }
15577 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15578 /* Zap the reloc on the _tls_get_addr call too. */
15579 BFD_ASSERT (offset == rel[1].r_offset);
15580 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15581 bfd_put_32 (input_bfd, insn2, contents + offset);
15582 if ((tls_mask & TLS_GDIE) == 0
15583 && toc_symndx != 0
15584 && r_type != R_PPC64_NONE)
15585 goto again;
15586 }
15587 break;
15588
15589 case R_PPC64_TLSLD:
15590 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
15591 && rel + 1 < relend)
15592 {
15593 unsigned int insn2;
15594 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15595
15596 offset = rel->r_offset;
15597 if (is_plt_seq_reloc (r_type1))
15598 {
15599 bfd_put_32 (output_bfd, NOP, contents + offset);
15600 if (r_type1 == R_PPC64_PLT_PCREL34
15601 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15602 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15603 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15604 break;
15605 }
15606
15607 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15608 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15609
15610 if (r_type1 == R_PPC64_REL24_NOTOC
15611 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15612 {
15613 r_type = R_PPC64_NONE;
15614 insn2 = NOP;
15615 }
15616 else
15617 {
15618 rel->r_offset = offset + d_offset;
15619 r_symndx = STN_UNDEF;
15620 r_type = R_PPC64_TPREL16_LO;
15621 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15622 insn2 = 0x38630000; /* addi 3,3,0 */
15623 }
15624 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15625 /* Zap the reloc on the _tls_get_addr call too. */
15626 BFD_ASSERT (offset == rel[1].r_offset);
15627 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15628 bfd_put_32 (input_bfd, insn2, contents + offset);
15629 if (r_type != R_PPC64_NONE)
15630 goto again;
15631 }
15632 break;
15633
15634 case R_PPC64_DTPMOD64:
15635 if (rel + 1 < relend
15636 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
15637 && rel[1].r_offset == rel->r_offset + 8)
15638 {
15639 if ((tls_mask & TLS_GD) == 0)
15640 {
15641 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
15642 if ((tls_mask & TLS_GDIE) != 0)
15643 r_type = R_PPC64_TPREL64;
15644 else
15645 {
15646 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15647 r_type = R_PPC64_NONE;
15648 }
15649 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15650 }
15651 }
15652 else
15653 {
15654 if ((tls_mask & TLS_LD) == 0)
15655 {
15656 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15657 r_type = R_PPC64_NONE;
15658 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15659 }
15660 }
15661 break;
15662
15663 case R_PPC64_TPREL64:
15664 if ((tls_mask & TLS_TPREL) == 0)
15665 {
15666 r_type = R_PPC64_NONE;
15667 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15668 }
15669 break;
15670
15671 case R_PPC64_ENTRY:
15672 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15673 if (!bfd_link_pic (info)
15674 && !info->traditional_format
15675 && relocation + 0x80008000 <= 0xffffffff)
15676 {
15677 unsigned int insn1, insn2;
15678
15679 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15680 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15681 if ((insn1 & ~0xfffc) == LD_R2_0R12
15682 && insn2 == ADD_R2_R2_R12)
15683 {
15684 bfd_put_32 (input_bfd,
15685 LIS_R2 + PPC_HA (relocation),
15686 contents + rel->r_offset);
15687 bfd_put_32 (input_bfd,
15688 ADDI_R2_R2 + PPC_LO (relocation),
15689 contents + rel->r_offset + 4);
15690 }
15691 }
15692 else
15693 {
15694 relocation -= (rel->r_offset
15695 + input_section->output_offset
15696 + input_section->output_section->vma);
15697 if (relocation + 0x80008000 <= 0xffffffff)
15698 {
15699 unsigned int insn1, insn2;
15700
15701 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15702 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15703 if ((insn1 & ~0xfffc) == LD_R2_0R12
15704 && insn2 == ADD_R2_R2_R12)
15705 {
15706 bfd_put_32 (input_bfd,
15707 ADDIS_R2_R12 + PPC_HA (relocation),
15708 contents + rel->r_offset);
15709 bfd_put_32 (input_bfd,
15710 ADDI_R2_R2 + PPC_LO (relocation),
15711 contents + rel->r_offset + 4);
15712 }
15713 }
15714 }
15715 break;
15716
15717 case R_PPC64_REL16_HA:
15718 /* If we are generating a non-PIC executable, edit
15719 . 0: addis 2,12,.TOC.-0b@ha
15720 . addi 2,2,.TOC.-0b@l
15721 used by ELFv2 global entry points to set up r2, to
15722 . lis 2,.TOC.@ha
15723 . addi 2,2,.TOC.@l
15724 if .TOC. is in range. */
15725 if (!bfd_link_pic (info)
15726 && !info->traditional_format
15727 && !htab->opd_abi
15728 && rel->r_addend == d_offset
15729 && h != NULL && &h->elf == htab->elf.hgot
15730 && rel + 1 < relend
15731 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15732 && rel[1].r_offset == rel->r_offset + 4
15733 && rel[1].r_addend == rel->r_addend + 4
15734 && relocation + 0x80008000 <= 0xffffffff)
15735 {
15736 unsigned int insn1, insn2;
15737 offset = rel->r_offset - d_offset;
15738 insn1 = bfd_get_32 (input_bfd, contents + offset);
15739 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15740 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15741 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15742 {
15743 r_type = R_PPC64_ADDR16_HA;
15744 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15745 rel->r_addend -= d_offset;
15746 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15747 rel[1].r_addend -= d_offset + 4;
15748 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15749 }
15750 }
15751 break;
15752 }
15753
15754 /* Handle other relocations that tweak non-addend part of insn. */
15755 insn = 0;
15756 max_br_offset = 1 << 25;
15757 addend = rel->r_addend;
15758 reloc_dest = DEST_NORMAL;
15759 switch (r_type)
15760 {
15761 default:
15762 break;
15763
15764 case R_PPC64_TOCSAVE:
15765 if (relocation + addend == (rel->r_offset
15766 + input_section->output_offset
15767 + input_section->output_section->vma)
15768 && tocsave_find (htab, NO_INSERT,
15769 &local_syms, rel, input_bfd))
15770 {
15771 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15772 if (insn == NOP
15773 || insn == CROR_151515 || insn == CROR_313131)
15774 bfd_put_32 (input_bfd,
15775 STD_R2_0R1 + STK_TOC (htab),
15776 contents + rel->r_offset);
15777 }
15778 break;
15779
15780 /* Branch taken prediction relocations. */
15781 case R_PPC64_ADDR14_BRTAKEN:
15782 case R_PPC64_REL14_BRTAKEN:
15783 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15784 /* Fall through. */
15785
15786 /* Branch not taken prediction relocations. */
15787 case R_PPC64_ADDR14_BRNTAKEN:
15788 case R_PPC64_REL14_BRNTAKEN:
15789 insn |= bfd_get_32 (input_bfd,
15790 contents + rel->r_offset) & ~(0x01 << 21);
15791 /* Fall through. */
15792
15793 case R_PPC64_REL14:
15794 max_br_offset = 1 << 15;
15795 /* Fall through. */
15796
15797 case R_PPC64_REL24:
15798 case R_PPC64_REL24_NOTOC:
15799 case R_PPC64_PLTCALL:
15800 case R_PPC64_PLTCALL_NOTOC:
15801 /* Calls to functions with a different TOC, such as calls to
15802 shared objects, need to alter the TOC pointer. This is
15803 done using a linkage stub. A REL24 branching to these
15804 linkage stubs needs to be followed by a nop, as the nop
15805 will be replaced with an instruction to restore the TOC
15806 base pointer. */
15807 fdh = h;
15808 if (h != NULL
15809 && h->oh != NULL
15810 && h->oh->is_func_descriptor)
15811 fdh = ppc_follow_link (h->oh);
15812 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15813 htab);
15814 if ((r_type == R_PPC64_PLTCALL
15815 || r_type == R_PPC64_PLTCALL_NOTOC)
15816 && stub_entry != NULL
15817 && stub_entry->stub_type >= ppc_stub_plt_call
15818 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15819 stub_entry = NULL;
15820
15821 if (stub_entry != NULL
15822 && ((stub_entry->stub_type >= ppc_stub_plt_call
15823 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15824 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15825 || stub_entry->stub_type == ppc_stub_plt_branch_both
15826 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15827 || stub_entry->stub_type == ppc_stub_long_branch_both))
15828 {
15829 bool can_plt_call = false;
15830
15831 if (stub_entry->stub_type == ppc_stub_plt_call
15832 && !htab->opd_abi
15833 && htab->params->plt_localentry0 != 0
15834 && h != NULL
15835 && is_elfv2_localentry0 (&h->elf))
15836 {
15837 /* The function doesn't use or change r2. */
15838 can_plt_call = true;
15839 }
15840 else if (r_type == R_PPC64_REL24_NOTOC)
15841 {
15842 /* NOTOC calls don't need to restore r2. */
15843 can_plt_call = true;
15844 }
15845
15846 /* All of these stubs may modify r2, so there must be a
15847 branch and link followed by a nop. The nop is
15848 replaced by an insn to restore r2. */
15849 else if (rel->r_offset + 8 <= input_section->size)
15850 {
15851 unsigned long br;
15852
15853 br = bfd_get_32 (input_bfd,
15854 contents + rel->r_offset);
15855 if ((br & 1) != 0)
15856 {
15857 unsigned long nop;
15858
15859 nop = bfd_get_32 (input_bfd,
15860 contents + rel->r_offset + 4);
15861 if (nop == LD_R2_0R1 + STK_TOC (htab))
15862 can_plt_call = true;
15863 else if (nop == NOP
15864 || nop == CROR_151515
15865 || nop == CROR_313131)
15866 {
15867 if (h != NULL
15868 && is_tls_get_addr (&h->elf, htab)
15869 && htab->params->tls_get_addr_opt)
15870 {
15871 /* Special stub used, leave nop alone. */
15872 }
15873 else
15874 bfd_put_32 (input_bfd,
15875 LD_R2_0R1 + STK_TOC (htab),
15876 contents + rel->r_offset + 4);
15877 can_plt_call = true;
15878 }
15879 }
15880 }
15881
15882 if (!can_plt_call && h != NULL)
15883 {
15884 const char *name = h->elf.root.root.string;
15885
15886 if (*name == '.')
15887 ++name;
15888
15889 if (startswith (name, "__libc_start_main")
15890 && (name[17] == 0 || name[17] == '@'))
15891 {
15892 /* Allow crt1 branch to go via a toc adjusting
15893 stub. Other calls that never return could do
15894 the same, if we could detect such. */
15895 can_plt_call = true;
15896 }
15897 }
15898
15899 if (!can_plt_call)
15900 {
15901 /* g++ as of 20130507 emits self-calls without a
15902 following nop. This is arguably wrong since we
15903 have conflicting information. On the one hand a
15904 global symbol and on the other a local call
15905 sequence, but don't error for this special case.
15906 It isn't possible to cheaply verify we have
15907 exactly such a call. Allow all calls to the same
15908 section. */
15909 asection *code_sec = sec;
15910
15911 if (get_opd_info (sec) != NULL)
15912 {
15913 bfd_vma off = (relocation + addend
15914 - sec->output_section->vma
15915 - sec->output_offset);
15916
15917 opd_entry_value (sec, off, &code_sec, NULL, false);
15918 }
15919 if (code_sec == input_section)
15920 can_plt_call = true;
15921 }
15922
15923 if (!can_plt_call)
15924 {
15925 if (stub_entry->stub_type >= ppc_stub_plt_call
15926 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15927 info->callbacks->einfo
15928 /* xgettext:c-format */
15929 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15930 "(plt call stub)\n"),
15931 input_bfd, input_section, rel->r_offset, sym_name);
15932 else
15933 info->callbacks->einfo
15934 /* xgettext:c-format */
15935 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15936 "(toc save/adjust stub)\n"),
15937 input_bfd, input_section, rel->r_offset, sym_name);
15938
15939 bfd_set_error (bfd_error_bad_value);
15940 ret = false;
15941 }
15942
15943 if (can_plt_call
15944 && stub_entry->stub_type >= ppc_stub_plt_call
15945 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15946 unresolved_reloc = false;
15947 }
15948
15949 if ((stub_entry == NULL
15950 || stub_entry->stub_type == ppc_stub_long_branch
15951 || stub_entry->stub_type == ppc_stub_plt_branch)
15952 && get_opd_info (sec) != NULL)
15953 {
15954 /* The branch destination is the value of the opd entry. */
15955 bfd_vma off = (relocation + addend
15956 - sec->output_section->vma
15957 - sec->output_offset);
15958 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, false);
15959 if (dest != (bfd_vma) -1)
15960 {
15961 relocation = dest;
15962 addend = 0;
15963 reloc_dest = DEST_OPD;
15964 }
15965 }
15966
15967 /* If the branch is out of reach we ought to have a long
15968 branch stub. */
15969 from = (rel->r_offset
15970 + input_section->output_offset
15971 + input_section->output_section->vma);
15972
15973 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15974 ? fdh->elf.other
15975 : sym->st_other);
15976
15977 if (stub_entry != NULL
15978 && (stub_entry->stub_type == ppc_stub_long_branch
15979 || stub_entry->stub_type == ppc_stub_plt_branch)
15980 && (r_type == R_PPC64_ADDR14_BRTAKEN
15981 || r_type == R_PPC64_ADDR14_BRNTAKEN
15982 || (relocation + addend - from + max_br_offset
15983 < 2 * max_br_offset)))
15984 /* Don't use the stub if this branch is in range. */
15985 stub_entry = NULL;
15986
15987 if (stub_entry != NULL
15988 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15989 || stub_entry->stub_type == ppc_stub_long_branch_both
15990 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15991 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15992 && (r_type != R_PPC64_REL24_NOTOC
15993 || ((fdh ? fdh->elf.other : sym->st_other)
15994 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15995 && (relocation + addend - from + max_br_offset
15996 < 2 * max_br_offset))
15997 stub_entry = NULL;
15998
15999 if (stub_entry != NULL
16000 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
16001 || stub_entry->stub_type == ppc_stub_long_branch_both
16002 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
16003 || stub_entry->stub_type == ppc_stub_plt_branch_both)
16004 && r_type == R_PPC64_REL24_NOTOC
16005 && (relocation + addend - from + max_br_offset
16006 < 2 * max_br_offset))
16007 stub_entry = NULL;
16008
16009 if (stub_entry != NULL)
16010 {
16011 /* Munge up the value and addend so that we call the stub
16012 rather than the procedure directly. */
16013 asection *stub_sec = stub_entry->group->stub_sec;
16014
16015 if (stub_entry->stub_type == ppc_stub_save_res)
16016 relocation += (stub_sec->output_offset
16017 + stub_sec->output_section->vma
16018 + stub_sec->size - htab->sfpr->size
16019 - htab->sfpr->output_offset
16020 - htab->sfpr->output_section->vma);
16021 else
16022 relocation = (stub_entry->stub_offset
16023 + stub_sec->output_offset
16024 + stub_sec->output_section->vma);
16025 addend = 0;
16026 reloc_dest = DEST_STUB;
16027
16028 if ((((stub_entry->stub_type == ppc_stub_plt_call
16029 && ALWAYS_EMIT_R2SAVE)
16030 || stub_entry->stub_type == ppc_stub_plt_call_r2save
16031 || stub_entry->stub_type == ppc_stub_plt_call_both)
16032 && rel + 1 < relend
16033 && rel[1].r_offset == rel->r_offset + 4
16034 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
16035 || ((stub_entry->stub_type == ppc_stub_long_branch_both
16036 || stub_entry->stub_type == ppc_stub_plt_branch_both
16037 || stub_entry->stub_type == ppc_stub_plt_call_both)
16038 && r_type == R_PPC64_REL24_NOTOC))
16039 {
16040 /* Skip over the r2 store at the start of the stub. */
16041 if (!(stub_entry->stub_type >= ppc_stub_plt_call
16042 && htab->params->tls_get_addr_opt
16043 && h != NULL
16044 && is_tls_get_addr (&h->elf, htab)))
16045 relocation += 4;
16046 }
16047
16048 if (r_type == R_PPC64_REL24_NOTOC
16049 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
16050 || stub_entry->stub_type == ppc_stub_plt_call_both))
16051 htab->notoc_plt = 1;
16052 }
16053
16054 if (insn != 0)
16055 {
16056 if (is_isa_v2)
16057 {
16058 /* Set 'a' bit. This is 0b00010 in BO field for branch
16059 on CR(BI) insns (BO == 001at or 011at), and 0b01000
16060 for branch on CTR insns (BO == 1a00t or 1a01t). */
16061 if ((insn & (0x14 << 21)) == (0x04 << 21))
16062 insn |= 0x02 << 21;
16063 else if ((insn & (0x14 << 21)) == (0x10 << 21))
16064 insn |= 0x08 << 21;
16065 else
16066 break;
16067 }
16068 else
16069 {
16070 /* Invert 'y' bit if not the default. */
16071 if ((bfd_signed_vma) (relocation + addend - from) < 0)
16072 insn ^= 0x01 << 21;
16073 }
16074
16075 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
16076 }
16077
16078 /* NOP out calls to undefined weak functions.
16079 We can thus call a weak function without first
16080 checking whether the function is defined. */
16081 else if (h != NULL
16082 && h->elf.root.type == bfd_link_hash_undefweak
16083 && h->elf.dynindx == -1
16084 && (r_type == R_PPC64_REL24
16085 || r_type == R_PPC64_REL24_NOTOC)
16086 && relocation == 0
16087 && addend == 0)
16088 {
16089 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
16090 goto copy_reloc;
16091 }
16092 break;
16093
16094 case R_PPC64_GOT16_DS:
16095 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16096 || !htab->do_toc_opt)
16097 break;
16098 from = TOCstart + htab->sec_info[input_section->id].toc_off;
16099 if (relocation + addend - from + 0x8000 < 0x10000
16100 && sec != NULL
16101 && sec->output_section != NULL
16102 && !discarded_section (sec)
16103 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16104 {
16105 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16106 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
16107 {
16108 insn += (14u << 26) - (58u << 26);
16109 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
16110 r_type = R_PPC64_TOC16;
16111 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16112 }
16113 }
16114 break;
16115
16116 case R_PPC64_GOT16_LO_DS:
16117 case R_PPC64_GOT16_HA:
16118 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16119 || !htab->do_toc_opt)
16120 break;
16121 from = TOCstart + htab->sec_info[input_section->id].toc_off;
16122 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
16123 && sec != NULL
16124 && sec->output_section != NULL
16125 && !discarded_section (sec)
16126 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16127 {
16128 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16129 if (r_type == R_PPC64_GOT16_LO_DS
16130 && (insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
16131 {
16132 insn += (14u << 26) - (58u << 26);
16133 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
16134 r_type = R_PPC64_TOC16_LO;
16135 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16136 }
16137 else if (r_type == R_PPC64_GOT16_HA
16138 && (insn & (0x3fu << 26)) == 15u << 26 /* addis */)
16139 {
16140 r_type = R_PPC64_TOC16_HA;
16141 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16142 }
16143 }
16144 break;
16145
16146 case R_PPC64_GOT_PCREL34:
16147 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16148 || !htab->do_toc_opt)
16149 break;
16150 from = (rel->r_offset
16151 + input_section->output_section->vma
16152 + input_section->output_offset);
16153 if (!(relocation - from + (1ULL << 33) < 1ULL << 34
16154 && sec != NULL
16155 && sec->output_section != NULL
16156 && !discarded_section (sec)
16157 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
16158 break;
16159
16160 offset = rel->r_offset;
16161 pinsn = bfd_get_32 (input_bfd, contents + offset);
16162 pinsn <<= 32;
16163 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16164 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16165 != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
16166 break;
16167
16168 /* Replace with paddi. */
16169 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
16170 r_type = R_PPC64_PCREL34;
16171 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16172 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
16173 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
16174 /* Fall through. */
16175
16176 case R_PPC64_PCREL34:
16177 if (!htab->params->no_pcrel_opt
16178 && rel + 1 < relend
16179 && rel[1].r_offset == rel->r_offset
16180 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT)
16181 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16182 {
16183 offset = rel->r_offset;
16184 pinsn = bfd_get_32 (input_bfd, contents + offset);
16185 pinsn <<= 32;
16186 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16187 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16188 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
16189 | (14ULL << 26) /* paddi */))
16190 {
16191 bfd_vma off2 = rel[1].r_addend;
16192 if (off2 == 0)
16193 /* zero means next insn. */
16194 off2 = 8;
16195 off2 += offset;
16196 if (off2 + 4 <= input_section->size)
16197 {
16198 uint64_t pinsn2;
16199 bfd_signed_vma addend_off;
16200 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
16201 pinsn2 <<= 32;
16202 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16203 {
16204 if (off2 + 8 > input_section->size)
16205 break;
16206 pinsn2 |= bfd_get_32 (input_bfd,
16207 contents + off2 + 4);
16208 }
16209 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
16210 {
16211 addend += addend_off;
16212 rel->r_addend = addend;
16213 bfd_put_32 (input_bfd, pinsn >> 32,
16214 contents + offset);
16215 bfd_put_32 (input_bfd, pinsn,
16216 contents + offset + 4);
16217 bfd_put_32 (input_bfd, pinsn2 >> 32,
16218 contents + off2);
16219 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16220 bfd_put_32 (input_bfd, pinsn2,
16221 contents + off2 + 4);
16222 }
16223 }
16224 }
16225 }
16226 break;
16227 }
16228
16229 tls_type = 0;
16230 save_unresolved_reloc = unresolved_reloc;
16231 switch (r_type)
16232 {
16233 default:
16234 /* xgettext:c-format */
16235 _bfd_error_handler (_("%pB: %s unsupported"),
16236 input_bfd, ppc64_elf_howto_table[r_type]->name);
16237
16238 bfd_set_error (bfd_error_bad_value);
16239 ret = false;
16240 goto copy_reloc;
16241
16242 case R_PPC64_NONE:
16243 case R_PPC64_TLS:
16244 case R_PPC64_TLSGD:
16245 case R_PPC64_TLSLD:
16246 case R_PPC64_TOCSAVE:
16247 case R_PPC64_GNU_VTINHERIT:
16248 case R_PPC64_GNU_VTENTRY:
16249 case R_PPC64_ENTRY:
16250 case R_PPC64_PCREL_OPT:
16251 goto copy_reloc;
16252
16253 /* GOT16 relocations. Like an ADDR16 using the symbol's
16254 address in the GOT as relocation value instead of the
16255 symbol's value itself. Also, create a GOT entry for the
16256 symbol and put the symbol value there. */
16257 case R_PPC64_GOT_TLSGD16:
16258 case R_PPC64_GOT_TLSGD16_LO:
16259 case R_PPC64_GOT_TLSGD16_HI:
16260 case R_PPC64_GOT_TLSGD16_HA:
16261 case R_PPC64_GOT_TLSGD_PCREL34:
16262 tls_type = TLS_TLS | TLS_GD;
16263 goto dogot;
16264
16265 case R_PPC64_GOT_TLSLD16:
16266 case R_PPC64_GOT_TLSLD16_LO:
16267 case R_PPC64_GOT_TLSLD16_HI:
16268 case R_PPC64_GOT_TLSLD16_HA:
16269 case R_PPC64_GOT_TLSLD_PCREL34:
16270 tls_type = TLS_TLS | TLS_LD;
16271 goto dogot;
16272
16273 case R_PPC64_GOT_TPREL16_DS:
16274 case R_PPC64_GOT_TPREL16_LO_DS:
16275 case R_PPC64_GOT_TPREL16_HI:
16276 case R_PPC64_GOT_TPREL16_HA:
16277 case R_PPC64_GOT_TPREL_PCREL34:
16278 tls_type = TLS_TLS | TLS_TPREL;
16279 goto dogot;
16280
16281 case R_PPC64_GOT_DTPREL16_DS:
16282 case R_PPC64_GOT_DTPREL16_LO_DS:
16283 case R_PPC64_GOT_DTPREL16_HI:
16284 case R_PPC64_GOT_DTPREL16_HA:
16285 case R_PPC64_GOT_DTPREL_PCREL34:
16286 tls_type = TLS_TLS | TLS_DTPREL;
16287 goto dogot;
16288
16289 case R_PPC64_GOT16:
16290 case R_PPC64_GOT16_LO:
16291 case R_PPC64_GOT16_HI:
16292 case R_PPC64_GOT16_HA:
16293 case R_PPC64_GOT16_DS:
16294 case R_PPC64_GOT16_LO_DS:
16295 case R_PPC64_GOT_PCREL34:
16296 dogot:
16297 {
16298 /* Relocation is to the entry for this symbol in the global
16299 offset table. */
16300 asection *got;
16301 bfd_vma *offp;
16302 bfd_vma off;
16303 unsigned long indx = 0;
16304 struct got_entry *ent;
16305
16306 if (tls_type == (TLS_TLS | TLS_LD)
16307 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16308 ent = ppc64_tlsld_got (input_bfd);
16309 else
16310 {
16311 if (h != NULL)
16312 {
16313 if (!htab->elf.dynamic_sections_created
16314 || h->elf.dynindx == -1
16315 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16316 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16317 /* This is actually a static link, or it is a
16318 -Bsymbolic link and the symbol is defined
16319 locally, or the symbol was forced to be local
16320 because of a version file. */
16321 ;
16322 else
16323 {
16324 indx = h->elf.dynindx;
16325 unresolved_reloc = false;
16326 }
16327 ent = h->elf.got.glist;
16328 }
16329 else
16330 {
16331 if (local_got_ents == NULL)
16332 abort ();
16333 ent = local_got_ents[r_symndx];
16334 }
16335
16336 for (; ent != NULL; ent = ent->next)
16337 if (ent->addend == orig_rel.r_addend
16338 && ent->owner == input_bfd
16339 && ent->tls_type == tls_type)
16340 break;
16341 }
16342
16343 if (ent == NULL)
16344 abort ();
16345 if (ent->is_indirect)
16346 ent = ent->got.ent;
16347 offp = &ent->got.offset;
16348 got = ppc64_elf_tdata (ent->owner)->got;
16349 if (got == NULL)
16350 abort ();
16351
16352 /* The offset must always be a multiple of 8. We use the
16353 least significant bit to record whether we have already
16354 processed this entry. */
16355 off = *offp;
16356 if ((off & 1) != 0)
16357 off &= ~1;
16358 else
16359 {
16360 /* Generate relocs for the dynamic linker, except in
16361 the case of TLSLD where we'll use one entry per
16362 module. */
16363 asection *relgot;
16364 bool ifunc;
16365
16366 *offp = off | 1;
16367 relgot = NULL;
16368 ifunc = (h != NULL
16369 ? h->elf.type == STT_GNU_IFUNC
16370 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
16371 if (ifunc)
16372 {
16373 relgot = htab->elf.irelplt;
16374 if (indx == 0 || is_static_defined (&h->elf))
16375 htab->elf.ifunc_resolvers = true;
16376 }
16377 else if (indx != 0
16378 || (bfd_link_pic (info)
16379 && (h == NULL
16380 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16381 && !(tls_type != 0
16382 && bfd_link_executable (info)
16383 && (h == NULL
16384 || SYMBOL_REFERENCES_LOCAL (info,
16385 &h->elf)))))
16386 relgot = ppc64_elf_tdata (ent->owner)->relgot;
16387 if (relgot != NULL)
16388 {
16389 outrel.r_offset = (got->output_section->vma
16390 + got->output_offset
16391 + off);
16392 outrel.r_addend = orig_rel.r_addend;
16393 if (tls_type & (TLS_LD | TLS_GD))
16394 {
16395 outrel.r_addend = 0;
16396 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
16397 if (tls_type == (TLS_TLS | TLS_GD))
16398 {
16399 loc = relgot->contents;
16400 loc += (relgot->reloc_count++
16401 * sizeof (Elf64_External_Rela));
16402 bfd_elf64_swap_reloca_out (output_bfd,
16403 &outrel, loc);
16404 outrel.r_offset += 8;
16405 outrel.r_addend = orig_rel.r_addend;
16406 outrel.r_info
16407 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16408 }
16409 }
16410 else if (tls_type == (TLS_TLS | TLS_DTPREL))
16411 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16412 else if (tls_type == (TLS_TLS | TLS_TPREL))
16413 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
16414 else if (indx != 0)
16415 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
16416 else
16417 {
16418 if (ifunc)
16419 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16420 else
16421 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16422
16423 /* Write the .got section contents for the sake
16424 of prelink. */
16425 loc = got->contents + off;
16426 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
16427 loc);
16428 }
16429
16430 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
16431 {
16432 outrel.r_addend += relocation;
16433 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
16434 {
16435 if (htab->elf.tls_sec == NULL)
16436 outrel.r_addend = 0;
16437 else
16438 outrel.r_addend -= htab->elf.tls_sec->vma;
16439 }
16440 }
16441 loc = relgot->contents;
16442 loc += (relgot->reloc_count++
16443 * sizeof (Elf64_External_Rela));
16444 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16445 }
16446
16447 /* Init the .got section contents here if we're not
16448 emitting a reloc. */
16449 else
16450 {
16451 relocation += orig_rel.r_addend;
16452 if (tls_type != 0)
16453 {
16454 if (htab->elf.tls_sec == NULL)
16455 relocation = 0;
16456 else
16457 {
16458 if (tls_type & TLS_LD)
16459 relocation = 0;
16460 else
16461 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
16462 if (tls_type & TLS_TPREL)
16463 relocation += DTP_OFFSET - TP_OFFSET;
16464 }
16465
16466 if (tls_type & (TLS_GD | TLS_LD))
16467 {
16468 bfd_put_64 (output_bfd, relocation,
16469 got->contents + off + 8);
16470 relocation = 1;
16471 }
16472 }
16473 bfd_put_64 (output_bfd, relocation,
16474 got->contents + off);
16475 }
16476 }
16477
16478 if (off >= (bfd_vma) -2)
16479 abort ();
16480
16481 relocation = got->output_section->vma + got->output_offset + off;
16482 addend = 0;
16483 if (!(r_type == R_PPC64_GOT_PCREL34
16484 || r_type == R_PPC64_GOT_TLSGD_PCREL34
16485 || r_type == R_PPC64_GOT_TLSLD_PCREL34
16486 || r_type == R_PPC64_GOT_TPREL_PCREL34
16487 || r_type == R_PPC64_GOT_DTPREL_PCREL34))
16488 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
16489 }
16490 break;
16491
16492 case R_PPC64_PLT16_HA:
16493 case R_PPC64_PLT16_HI:
16494 case R_PPC64_PLT16_LO:
16495 case R_PPC64_PLT16_LO_DS:
16496 case R_PPC64_PLT_PCREL34:
16497 case R_PPC64_PLT_PCREL34_NOTOC:
16498 case R_PPC64_PLT32:
16499 case R_PPC64_PLT64:
16500 case R_PPC64_PLTSEQ:
16501 case R_PPC64_PLTSEQ_NOTOC:
16502 case R_PPC64_PLTCALL:
16503 case R_PPC64_PLTCALL_NOTOC:
16504 /* Relocation is to the entry for this symbol in the
16505 procedure linkage table. */
16506 unresolved_reloc = true;
16507 {
16508 struct plt_entry **plt_list = NULL;
16509 if (h != NULL)
16510 plt_list = &h->elf.plt.plist;
16511 else if (local_got_ents != NULL)
16512 {
16513 struct plt_entry **local_plt = (struct plt_entry **)
16514 (local_got_ents + symtab_hdr->sh_info);
16515 plt_list = local_plt + r_symndx;
16516 }
16517 if (plt_list)
16518 {
16519 struct plt_entry *ent;
16520
16521 for (ent = *plt_list; ent != NULL; ent = ent->next)
16522 if (ent->plt.offset != (bfd_vma) -1
16523 && ent->addend == orig_rel.r_addend)
16524 {
16525 asection *plt;
16526 bfd_vma got;
16527
16528 plt = htab->elf.splt;
16529 if (use_local_plt (info, elf_hash_entry (h)))
16530 {
16531 if (h != NULL
16532 ? h->elf.type == STT_GNU_IFUNC
16533 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16534 plt = htab->elf.iplt;
16535 else
16536 plt = htab->pltlocal;
16537 }
16538 relocation = (plt->output_section->vma
16539 + plt->output_offset
16540 + ent->plt.offset);
16541 if (r_type == R_PPC64_PLT16_HA
16542 || r_type == R_PPC64_PLT16_HI
16543 || r_type == R_PPC64_PLT16_LO
16544 || r_type == R_PPC64_PLT16_LO_DS)
16545 {
16546 got = (elf_gp (output_bfd)
16547 + htab->sec_info[input_section->id].toc_off);
16548 relocation -= got;
16549 }
16550 addend = 0;
16551 unresolved_reloc = false;
16552 break;
16553 }
16554 }
16555 }
16556 break;
16557
16558 case R_PPC64_TOC:
16559 /* Relocation value is TOC base. */
16560 relocation = TOCstart;
16561 if (r_symndx == STN_UNDEF)
16562 relocation += htab->sec_info[input_section->id].toc_off;
16563 else if (unresolved_reloc)
16564 ;
16565 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
16566 relocation += htab->sec_info[sec->id].toc_off;
16567 else
16568 unresolved_reloc = true;
16569 goto dodyn;
16570
16571 /* TOC16 relocs. We want the offset relative to the TOC base,
16572 which is the address of the start of the TOC plus 0x8000.
16573 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16574 in this order. */
16575 case R_PPC64_TOC16:
16576 case R_PPC64_TOC16_LO:
16577 case R_PPC64_TOC16_HI:
16578 case R_PPC64_TOC16_DS:
16579 case R_PPC64_TOC16_LO_DS:
16580 case R_PPC64_TOC16_HA:
16581 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
16582 if (h != NULL)
16583 goto dodyn;
16584 break;
16585
16586 /* Relocate against the beginning of the section. */
16587 case R_PPC64_SECTOFF:
16588 case R_PPC64_SECTOFF_LO:
16589 case R_PPC64_SECTOFF_HI:
16590 case R_PPC64_SECTOFF_DS:
16591 case R_PPC64_SECTOFF_LO_DS:
16592 case R_PPC64_SECTOFF_HA:
16593 if (sec != NULL)
16594 addend -= sec->output_section->vma;
16595 break;
16596
16597 case R_PPC64_REL16:
16598 case R_PPC64_REL16_LO:
16599 case R_PPC64_REL16_HI:
16600 case R_PPC64_REL16_HA:
16601 case R_PPC64_REL16_HIGH:
16602 case R_PPC64_REL16_HIGHA:
16603 case R_PPC64_REL16_HIGHER:
16604 case R_PPC64_REL16_HIGHERA:
16605 case R_PPC64_REL16_HIGHEST:
16606 case R_PPC64_REL16_HIGHESTA:
16607 case R_PPC64_REL16_HIGHER34:
16608 case R_PPC64_REL16_HIGHERA34:
16609 case R_PPC64_REL16_HIGHEST34:
16610 case R_PPC64_REL16_HIGHESTA34:
16611 case R_PPC64_REL16DX_HA:
16612 case R_PPC64_REL14:
16613 case R_PPC64_REL14_BRNTAKEN:
16614 case R_PPC64_REL14_BRTAKEN:
16615 case R_PPC64_REL24:
16616 case R_PPC64_REL24_NOTOC:
16617 case R_PPC64_PCREL34:
16618 case R_PPC64_PCREL28:
16619 break;
16620
16621 case R_PPC64_TPREL16:
16622 case R_PPC64_TPREL16_LO:
16623 case R_PPC64_TPREL16_HI:
16624 case R_PPC64_TPREL16_HA:
16625 case R_PPC64_TPREL16_DS:
16626 case R_PPC64_TPREL16_LO_DS:
16627 case R_PPC64_TPREL16_HIGH:
16628 case R_PPC64_TPREL16_HIGHA:
16629 case R_PPC64_TPREL16_HIGHER:
16630 case R_PPC64_TPREL16_HIGHERA:
16631 case R_PPC64_TPREL16_HIGHEST:
16632 case R_PPC64_TPREL16_HIGHESTA:
16633 case R_PPC64_TPREL34:
16634 if (h != NULL
16635 && h->elf.root.type == bfd_link_hash_undefweak
16636 && h->elf.dynindx == -1)
16637 {
16638 /* Make this relocation against an undefined weak symbol
16639 resolve to zero. This is really just a tweak, since
16640 code using weak externs ought to check that they are
16641 defined before using them. */
16642 bfd_byte *p = contents + rel->r_offset - d_offset;
16643
16644 insn = bfd_get_32 (input_bfd, p);
16645 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
16646 if (insn != 0)
16647 bfd_put_32 (input_bfd, insn, p);
16648 break;
16649 }
16650 if (htab->elf.tls_sec != NULL)
16651 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16652 /* The TPREL16 relocs shouldn't really be used in shared
16653 libs or with non-local symbols as that will result in
16654 DT_TEXTREL being set, but support them anyway. */
16655 goto dodyn;
16656
16657 case R_PPC64_DTPREL16:
16658 case R_PPC64_DTPREL16_LO:
16659 case R_PPC64_DTPREL16_HI:
16660 case R_PPC64_DTPREL16_HA:
16661 case R_PPC64_DTPREL16_DS:
16662 case R_PPC64_DTPREL16_LO_DS:
16663 case R_PPC64_DTPREL16_HIGH:
16664 case R_PPC64_DTPREL16_HIGHA:
16665 case R_PPC64_DTPREL16_HIGHER:
16666 case R_PPC64_DTPREL16_HIGHERA:
16667 case R_PPC64_DTPREL16_HIGHEST:
16668 case R_PPC64_DTPREL16_HIGHESTA:
16669 case R_PPC64_DTPREL34:
16670 if (htab->elf.tls_sec != NULL)
16671 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16672 break;
16673
16674 case R_PPC64_ADDR64_LOCAL:
16675 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
16676 ? h->elf.other
16677 : sym->st_other);
16678 break;
16679
16680 case R_PPC64_DTPMOD64:
16681 relocation = 1;
16682 addend = 0;
16683 goto dodyn;
16684
16685 case R_PPC64_TPREL64:
16686 if (htab->elf.tls_sec != NULL)
16687 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16688 goto dodyn;
16689
16690 case R_PPC64_DTPREL64:
16691 if (htab->elf.tls_sec != NULL)
16692 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16693 /* Fall through. */
16694
16695 /* Relocations that may need to be propagated if this is a
16696 dynamic object. */
16697 case R_PPC64_REL30:
16698 case R_PPC64_REL32:
16699 case R_PPC64_REL64:
16700 case R_PPC64_ADDR14:
16701 case R_PPC64_ADDR14_BRNTAKEN:
16702 case R_PPC64_ADDR14_BRTAKEN:
16703 case R_PPC64_ADDR16:
16704 case R_PPC64_ADDR16_DS:
16705 case R_PPC64_ADDR16_HA:
16706 case R_PPC64_ADDR16_HI:
16707 case R_PPC64_ADDR16_HIGH:
16708 case R_PPC64_ADDR16_HIGHA:
16709 case R_PPC64_ADDR16_HIGHER:
16710 case R_PPC64_ADDR16_HIGHERA:
16711 case R_PPC64_ADDR16_HIGHEST:
16712 case R_PPC64_ADDR16_HIGHESTA:
16713 case R_PPC64_ADDR16_LO:
16714 case R_PPC64_ADDR16_LO_DS:
16715 case R_PPC64_ADDR16_HIGHER34:
16716 case R_PPC64_ADDR16_HIGHERA34:
16717 case R_PPC64_ADDR16_HIGHEST34:
16718 case R_PPC64_ADDR16_HIGHESTA34:
16719 case R_PPC64_ADDR24:
16720 case R_PPC64_ADDR32:
16721 case R_PPC64_ADDR64:
16722 case R_PPC64_UADDR16:
16723 case R_PPC64_UADDR32:
16724 case R_PPC64_UADDR64:
16725 case R_PPC64_D34:
16726 case R_PPC64_D34_LO:
16727 case R_PPC64_D34_HI30:
16728 case R_PPC64_D34_HA30:
16729 case R_PPC64_D28:
16730 dodyn:
16731 if ((input_section->flags & SEC_ALLOC) == 0)
16732 break;
16733
16734 if (NO_OPD_RELOCS && is_opd)
16735 break;
16736
16737 if (bfd_link_pic (info)
16738 ? ((h == NULL
16739 || h->elf.dyn_relocs != NULL)
16740 && ((h != NULL && pc_dynrelocs (h))
16741 || must_be_dyn_reloc (info, r_type)))
16742 : (h != NULL
16743 ? h->elf.dyn_relocs != NULL
16744 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16745 {
16746 bool skip, relocate;
16747 asection *sreloc;
16748 bfd_vma out_off;
16749 long indx = 0;
16750
16751 /* When generating a dynamic object, these relocations
16752 are copied into the output file to be resolved at run
16753 time. */
16754
16755 skip = false;
16756 relocate = false;
16757
16758 out_off = _bfd_elf_section_offset (output_bfd, info,
16759 input_section, rel->r_offset);
16760 if (out_off == (bfd_vma) -1)
16761 skip = true;
16762 else if (out_off == (bfd_vma) -2)
16763 skip = true, relocate = true;
16764 out_off += (input_section->output_section->vma
16765 + input_section->output_offset);
16766 outrel.r_offset = out_off;
16767 outrel.r_addend = rel->r_addend;
16768
16769 /* Optimize unaligned reloc use. */
16770 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16771 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16772 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16773 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16774 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16775 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16776 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16777 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16778 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16779
16780 if (skip)
16781 memset (&outrel, 0, sizeof outrel);
16782 else if (h != NULL
16783 && !SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16784 && !is_opd
16785 && r_type != R_PPC64_TOC)
16786 {
16787 indx = h->elf.dynindx;
16788 BFD_ASSERT (indx != -1);
16789 outrel.r_info = ELF64_R_INFO (indx, r_type);
16790 }
16791 else
16792 {
16793 /* This symbol is local, or marked to become local,
16794 or this is an opd section reloc which must point
16795 at a local function. */
16796 outrel.r_addend += relocation;
16797 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16798 {
16799 if (is_opd && h != NULL)
16800 {
16801 /* Lie about opd entries. This case occurs
16802 when building shared libraries and we
16803 reference a function in another shared
16804 lib. The same thing happens for a weak
16805 definition in an application that's
16806 overridden by a strong definition in a
16807 shared lib. (I believe this is a generic
16808 bug in binutils handling of weak syms.)
16809 In these cases we won't use the opd
16810 entry in this lib. */
16811 unresolved_reloc = false;
16812 }
16813 if (!is_opd
16814 && r_type == R_PPC64_ADDR64
16815 && (h != NULL
16816 ? h->elf.type == STT_GNU_IFUNC
16817 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16818 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16819 else
16820 {
16821 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16822
16823 /* We need to relocate .opd contents for ld.so.
16824 Prelink also wants simple and consistent rules
16825 for relocs. This make all RELATIVE relocs have
16826 *r_offset equal to r_addend. */
16827 relocate = true;
16828 }
16829 }
16830 else
16831 {
16832 if (h != NULL
16833 ? h->elf.type == STT_GNU_IFUNC
16834 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16835 {
16836 info->callbacks->einfo
16837 /* xgettext:c-format */
16838 (_("%H: %s for indirect "
16839 "function `%pT' unsupported\n"),
16840 input_bfd, input_section, rel->r_offset,
16841 ppc64_elf_howto_table[r_type]->name,
16842 sym_name);
16843 ret = false;
16844 }
16845 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16846 ;
16847 else if (sec == NULL || sec->owner == NULL)
16848 {
16849 bfd_set_error (bfd_error_bad_value);
16850 return false;
16851 }
16852 else
16853 {
16854 asection *osec = sec->output_section;
16855
16856 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16857 {
16858 /* TLS symbol values are relative to the
16859 TLS segment. Dynamic relocations for
16860 local TLS symbols therefore can't be
16861 reduced to a relocation against their
16862 section symbol because it holds the
16863 address of the section, not a value
16864 relative to the TLS segment. We could
16865 change the .tdata dynamic section symbol
16866 to be zero value but STN_UNDEF works
16867 and is used elsewhere, eg. for TPREL64
16868 GOT relocs against local TLS symbols. */
16869 osec = htab->elf.tls_sec;
16870 indx = 0;
16871 }
16872 else
16873 {
16874 indx = elf_section_data (osec)->dynindx;
16875 if (indx == 0)
16876 {
16877 if ((osec->flags & SEC_READONLY) == 0
16878 && htab->elf.data_index_section != NULL)
16879 osec = htab->elf.data_index_section;
16880 else
16881 osec = htab->elf.text_index_section;
16882 indx = elf_section_data (osec)->dynindx;
16883 }
16884 BFD_ASSERT (indx != 0);
16885 }
16886
16887 /* We are turning this relocation into one
16888 against a section symbol, so subtract out
16889 the output section's address but not the
16890 offset of the input section in the output
16891 section. */
16892 outrel.r_addend -= osec->vma;
16893 }
16894
16895 outrel.r_info = ELF64_R_INFO (indx, r_type);
16896 }
16897 }
16898
16899 sreloc = elf_section_data (input_section)->sreloc;
16900 if (h != NULL
16901 ? h->elf.type == STT_GNU_IFUNC
16902 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16903 {
16904 sreloc = htab->elf.irelplt;
16905 if (indx == 0 || is_static_defined (&h->elf))
16906 htab->elf.ifunc_resolvers = true;
16907 }
16908 if (sreloc == NULL)
16909 abort ();
16910
16911 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16912 >= sreloc->size)
16913 abort ();
16914 loc = sreloc->contents;
16915 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16916 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16917
16918 if (!warned_dynamic
16919 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16920 {
16921 info->callbacks->einfo
16922 /* xgettext:c-format */
16923 (_("%X%P: %pB: %s against %pT "
16924 "is not supported by glibc as a dynamic relocation\n"),
16925 input_bfd,
16926 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16927 sym_name);
16928 warned_dynamic = true;
16929 }
16930
16931 /* If this reloc is against an external symbol, it will
16932 be computed at runtime, so there's no need to do
16933 anything now. However, for the sake of prelink ensure
16934 that the section contents are a known value. */
16935 if (!relocate)
16936 {
16937 unresolved_reloc = false;
16938 /* The value chosen here is quite arbitrary as ld.so
16939 ignores section contents except for the special
16940 case of .opd where the contents might be accessed
16941 before relocation. Choose zero, as that won't
16942 cause reloc overflow. */
16943 relocation = 0;
16944 addend = 0;
16945 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16946 to improve backward compatibility with older
16947 versions of ld. */
16948 if (r_type == R_PPC64_ADDR64)
16949 addend = outrel.r_addend;
16950 /* Adjust pc_relative relocs to have zero in *r_offset. */
16951 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16952 addend = outrel.r_offset;
16953 }
16954 }
16955 break;
16956
16957 case R_PPC64_COPY:
16958 case R_PPC64_GLOB_DAT:
16959 case R_PPC64_JMP_SLOT:
16960 case R_PPC64_JMP_IREL:
16961 case R_PPC64_RELATIVE:
16962 /* We shouldn't ever see these dynamic relocs in relocatable
16963 files. */
16964 /* Fall through. */
16965
16966 case R_PPC64_PLTGOT16:
16967 case R_PPC64_PLTGOT16_DS:
16968 case R_PPC64_PLTGOT16_HA:
16969 case R_PPC64_PLTGOT16_HI:
16970 case R_PPC64_PLTGOT16_LO:
16971 case R_PPC64_PLTGOT16_LO_DS:
16972 case R_PPC64_PLTREL32:
16973 case R_PPC64_PLTREL64:
16974 /* These ones haven't been implemented yet. */
16975
16976 info->callbacks->einfo
16977 /* xgettext:c-format */
16978 (_("%P: %pB: %s is not supported for `%pT'\n"),
16979 input_bfd,
16980 ppc64_elf_howto_table[r_type]->name, sym_name);
16981
16982 bfd_set_error (bfd_error_invalid_operation);
16983 ret = false;
16984 goto copy_reloc;
16985 }
16986
16987 /* Multi-instruction sequences that access the TOC can be
16988 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16989 to nop; addi rb,r2,x; */
16990 switch (r_type)
16991 {
16992 default:
16993 break;
16994
16995 case R_PPC64_GOT_TLSLD16_HI:
16996 case R_PPC64_GOT_TLSGD16_HI:
16997 case R_PPC64_GOT_TPREL16_HI:
16998 case R_PPC64_GOT_DTPREL16_HI:
16999 case R_PPC64_GOT16_HI:
17000 case R_PPC64_TOC16_HI:
17001 /* These relocs would only be useful if building up an
17002 offset to later add to r2, perhaps in an indexed
17003 addressing mode instruction. Don't try to optimize.
17004 Unfortunately, the possibility of someone building up an
17005 offset like this or even with the HA relocs, means that
17006 we need to check the high insn when optimizing the low
17007 insn. */
17008 break;
17009
17010 case R_PPC64_PLTCALL_NOTOC:
17011 if (!unresolved_reloc)
17012 htab->notoc_plt = 1;
17013 /* Fall through. */
17014 case R_PPC64_PLTCALL:
17015 if (unresolved_reloc)
17016 {
17017 /* No plt entry. Make this into a direct call. */
17018 bfd_byte *p = contents + rel->r_offset;
17019 insn = bfd_get_32 (input_bfd, p);
17020 insn &= 1;
17021 bfd_put_32 (input_bfd, B_DOT | insn, p);
17022 if (r_type == R_PPC64_PLTCALL)
17023 bfd_put_32 (input_bfd, NOP, p + 4);
17024 unresolved_reloc = save_unresolved_reloc;
17025 r_type = R_PPC64_REL24;
17026 }
17027 break;
17028
17029 case R_PPC64_PLTSEQ_NOTOC:
17030 case R_PPC64_PLTSEQ:
17031 if (unresolved_reloc)
17032 {
17033 unresolved_reloc = false;
17034 goto nop_it;
17035 }
17036 break;
17037
17038 case R_PPC64_PLT_PCREL34_NOTOC:
17039 if (!unresolved_reloc)
17040 htab->notoc_plt = 1;
17041 /* Fall through. */
17042 case R_PPC64_PLT_PCREL34:
17043 if (unresolved_reloc)
17044 {
17045 bfd_byte *p = contents + rel->r_offset;
17046 bfd_put_32 (input_bfd, PNOP >> 32, p);
17047 bfd_put_32 (input_bfd, PNOP, p + 4);
17048 unresolved_reloc = false;
17049 goto copy_reloc;
17050 }
17051 break;
17052
17053 case R_PPC64_PLT16_HA:
17054 if (unresolved_reloc)
17055 {
17056 unresolved_reloc = false;
17057 goto nop_it;
17058 }
17059 /* Fall through. */
17060 case R_PPC64_GOT_TLSLD16_HA:
17061 case R_PPC64_GOT_TLSGD16_HA:
17062 case R_PPC64_GOT_TPREL16_HA:
17063 case R_PPC64_GOT_DTPREL16_HA:
17064 case R_PPC64_GOT16_HA:
17065 case R_PPC64_TOC16_HA:
17066 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
17067 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
17068 {
17069 bfd_byte *p;
17070 nop_it:
17071 p = contents + (rel->r_offset & ~3);
17072 bfd_put_32 (input_bfd, NOP, p);
17073 goto copy_reloc;
17074 }
17075 break;
17076
17077 case R_PPC64_PLT16_LO:
17078 case R_PPC64_PLT16_LO_DS:
17079 if (unresolved_reloc)
17080 {
17081 unresolved_reloc = false;
17082 goto nop_it;
17083 }
17084 /* Fall through. */
17085 case R_PPC64_GOT_TLSLD16_LO:
17086 case R_PPC64_GOT_TLSGD16_LO:
17087 case R_PPC64_GOT_TPREL16_LO_DS:
17088 case R_PPC64_GOT_DTPREL16_LO_DS:
17089 case R_PPC64_GOT16_LO:
17090 case R_PPC64_GOT16_LO_DS:
17091 case R_PPC64_TOC16_LO:
17092 case R_PPC64_TOC16_LO_DS:
17093 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
17094 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
17095 {
17096 bfd_byte *p = contents + (rel->r_offset & ~3);
17097 insn = bfd_get_32 (input_bfd, p);
17098 if ((insn & (0x3fu << 26)) == 12u << 26 /* addic */)
17099 {
17100 /* Transform addic to addi when we change reg. */
17101 insn &= ~((0x3fu << 26) | (0x1f << 16));
17102 insn |= (14u << 26) | (2 << 16);
17103 }
17104 else
17105 {
17106 insn &= ~(0x1f << 16);
17107 insn |= 2 << 16;
17108 }
17109 bfd_put_32 (input_bfd, insn, p);
17110 }
17111 break;
17112
17113 case R_PPC64_TPREL16_HA:
17114 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
17115 {
17116 bfd_byte *p = contents + (rel->r_offset & ~3);
17117 bfd_put_32 (input_bfd, NOP, p);
17118 goto copy_reloc;
17119 }
17120 break;
17121
17122 case R_PPC64_TPREL16_LO:
17123 case R_PPC64_TPREL16_LO_DS:
17124 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
17125 {
17126 bfd_byte *p = contents + (rel->r_offset & ~3);
17127 insn = bfd_get_32 (input_bfd, p);
17128 insn &= ~(0x1f << 16);
17129 insn |= 13 << 16;
17130 bfd_put_32 (input_bfd, insn, p);
17131 }
17132 break;
17133 }
17134
17135 /* Do any further special processing. */
17136 switch (r_type)
17137 {
17138 default:
17139 break;
17140
17141 case R_PPC64_REL16_HA:
17142 case R_PPC64_REL16_HIGHA:
17143 case R_PPC64_REL16_HIGHERA:
17144 case R_PPC64_REL16_HIGHESTA:
17145 case R_PPC64_REL16DX_HA:
17146 case R_PPC64_ADDR16_HA:
17147 case R_PPC64_ADDR16_HIGHA:
17148 case R_PPC64_ADDR16_HIGHERA:
17149 case R_PPC64_ADDR16_HIGHESTA:
17150 case R_PPC64_TOC16_HA:
17151 case R_PPC64_SECTOFF_HA:
17152 case R_PPC64_TPREL16_HA:
17153 case R_PPC64_TPREL16_HIGHA:
17154 case R_PPC64_TPREL16_HIGHERA:
17155 case R_PPC64_TPREL16_HIGHESTA:
17156 case R_PPC64_DTPREL16_HA:
17157 case R_PPC64_DTPREL16_HIGHA:
17158 case R_PPC64_DTPREL16_HIGHERA:
17159 case R_PPC64_DTPREL16_HIGHESTA:
17160 /* It's just possible that this symbol is a weak symbol
17161 that's not actually defined anywhere. In that case,
17162 'sec' would be NULL, and we should leave the symbol
17163 alone (it will be set to zero elsewhere in the link). */
17164 if (sec == NULL)
17165 break;
17166 /* Fall through. */
17167
17168 case R_PPC64_GOT16_HA:
17169 case R_PPC64_PLTGOT16_HA:
17170 case R_PPC64_PLT16_HA:
17171 case R_PPC64_GOT_TLSGD16_HA:
17172 case R_PPC64_GOT_TLSLD16_HA:
17173 case R_PPC64_GOT_TPREL16_HA:
17174 case R_PPC64_GOT_DTPREL16_HA:
17175 /* Add 0x10000 if sign bit in 0:15 is set.
17176 Bits 0:15 are not used. */
17177 addend += 0x8000;
17178 break;
17179
17180 case R_PPC64_D34_HA30:
17181 case R_PPC64_ADDR16_HIGHERA34:
17182 case R_PPC64_ADDR16_HIGHESTA34:
17183 case R_PPC64_REL16_HIGHERA34:
17184 case R_PPC64_REL16_HIGHESTA34:
17185 if (sec != NULL)
17186 addend += 1ULL << 33;
17187 break;
17188
17189 case R_PPC64_ADDR16_DS:
17190 case R_PPC64_ADDR16_LO_DS:
17191 case R_PPC64_GOT16_DS:
17192 case R_PPC64_GOT16_LO_DS:
17193 case R_PPC64_PLT16_LO_DS:
17194 case R_PPC64_SECTOFF_DS:
17195 case R_PPC64_SECTOFF_LO_DS:
17196 case R_PPC64_TOC16_DS:
17197 case R_PPC64_TOC16_LO_DS:
17198 case R_PPC64_PLTGOT16_DS:
17199 case R_PPC64_PLTGOT16_LO_DS:
17200 case R_PPC64_GOT_TPREL16_DS:
17201 case R_PPC64_GOT_TPREL16_LO_DS:
17202 case R_PPC64_GOT_DTPREL16_DS:
17203 case R_PPC64_GOT_DTPREL16_LO_DS:
17204 case R_PPC64_TPREL16_DS:
17205 case R_PPC64_TPREL16_LO_DS:
17206 case R_PPC64_DTPREL16_DS:
17207 case R_PPC64_DTPREL16_LO_DS:
17208 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17209 mask = 3;
17210 /* If this reloc is against an lq, lxv, or stxv insn, then
17211 the value must be a multiple of 16. This is somewhat of
17212 a hack, but the "correct" way to do this by defining _DQ
17213 forms of all the _DS relocs bloats all reloc switches in
17214 this file. It doesn't make much sense to use these
17215 relocs in data, so testing the insn should be safe. */
17216 if ((insn & (0x3fu << 26)) == (56u << 26)
17217 || ((insn & (0x3fu << 26)) == (61u << 26) && (insn & 3) == 1))
17218 mask = 15;
17219 relocation += addend;
17220 addend = insn & (mask ^ 3);
17221 if ((relocation & mask) != 0)
17222 {
17223 relocation ^= relocation & mask;
17224 info->callbacks->einfo
17225 /* xgettext:c-format */
17226 (_("%H: error: %s not a multiple of %u\n"),
17227 input_bfd, input_section, rel->r_offset,
17228 ppc64_elf_howto_table[r_type]->name,
17229 mask + 1);
17230 bfd_set_error (bfd_error_bad_value);
17231 ret = false;
17232 goto copy_reloc;
17233 }
17234 break;
17235 }
17236
17237 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17238 because such sections are not SEC_ALLOC and thus ld.so will
17239 not process them. */
17240 howto = ppc64_elf_howto_table[(int) r_type];
17241 if (unresolved_reloc
17242 && !((input_section->flags & SEC_DEBUGGING) != 0
17243 && h->elf.def_dynamic)
17244 && _bfd_elf_section_offset (output_bfd, info, input_section,
17245 rel->r_offset) != (bfd_vma) -1)
17246 {
17247 info->callbacks->einfo
17248 /* xgettext:c-format */
17249 (_("%H: unresolvable %s against `%pT'\n"),
17250 input_bfd, input_section, rel->r_offset,
17251 howto->name,
17252 h->elf.root.root.string);
17253 ret = false;
17254 }
17255
17256 /* 16-bit fields in insns mostly have signed values, but a
17257 few insns have 16-bit unsigned values. Really, we should
17258 have different reloc types. */
17259 if (howto->complain_on_overflow != complain_overflow_dont
17260 && howto->dst_mask == 0xffff
17261 && (input_section->flags & SEC_CODE) != 0)
17262 {
17263 enum complain_overflow complain = complain_overflow_signed;
17264
17265 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17266 if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
17267 complain = complain_overflow_bitfield;
17268 else if (howto->rightshift == 0
17269 ? ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
17270 || (insn & (0x3fu << 26)) == 24u << 26 /* ori */
17271 || (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
17272 : ((insn & (0x3fu << 26)) == 29u << 26 /* andis */
17273 || (insn & (0x3fu << 26)) == 25u << 26 /* oris */
17274 || (insn & (0x3fu << 26)) == 27u << 26 /* xoris */))
17275 complain = complain_overflow_unsigned;
17276 if (howto->complain_on_overflow != complain)
17277 {
17278 alt_howto = *howto;
17279 alt_howto.complain_on_overflow = complain;
17280 howto = &alt_howto;
17281 }
17282 }
17283
17284 switch (r_type)
17285 {
17286 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17287 case R_PPC64_D34:
17288 case R_PPC64_D34_LO:
17289 case R_PPC64_D34_HI30:
17290 case R_PPC64_D34_HA30:
17291 case R_PPC64_PCREL34:
17292 case R_PPC64_GOT_PCREL34:
17293 case R_PPC64_TPREL34:
17294 case R_PPC64_DTPREL34:
17295 case R_PPC64_GOT_TLSGD_PCREL34:
17296 case R_PPC64_GOT_TLSLD_PCREL34:
17297 case R_PPC64_GOT_TPREL_PCREL34:
17298 case R_PPC64_GOT_DTPREL_PCREL34:
17299 case R_PPC64_PLT_PCREL34:
17300 case R_PPC64_PLT_PCREL34_NOTOC:
17301 case R_PPC64_D28:
17302 case R_PPC64_PCREL28:
17303 if (rel->r_offset + 8 > input_section->size)
17304 r = bfd_reloc_outofrange;
17305 else
17306 {
17307 relocation += addend;
17308 if (howto->pc_relative)
17309 relocation -= (rel->r_offset
17310 + input_section->output_offset
17311 + input_section->output_section->vma);
17312 relocation >>= howto->rightshift;
17313
17314 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17315 pinsn <<= 32;
17316 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
17317
17318 pinsn &= ~howto->dst_mask;
17319 pinsn |= (((relocation << 16) | (relocation & 0xffff))
17320 & howto->dst_mask);
17321 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
17322 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
17323 r = bfd_reloc_ok;
17324 if (howto->complain_on_overflow == complain_overflow_signed
17325 && (relocation + (1ULL << (howto->bitsize - 1))
17326 >= 1ULL << howto->bitsize))
17327 r = bfd_reloc_overflow;
17328 }
17329 break;
17330
17331 case R_PPC64_REL16DX_HA:
17332 if (rel->r_offset + 4 > input_section->size)
17333 r = bfd_reloc_outofrange;
17334 else
17335 {
17336 relocation += addend;
17337 relocation -= (rel->r_offset
17338 + input_section->output_offset
17339 + input_section->output_section->vma);
17340 relocation = (bfd_signed_vma) relocation >> 16;
17341 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17342 insn &= ~0x1fffc1;
17343 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
17344 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
17345 r = bfd_reloc_ok;
17346 if (relocation + 0x8000 > 0xffff)
17347 r = bfd_reloc_overflow;
17348 }
17349 break;
17350
17351 default:
17352 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
17353 contents, rel->r_offset,
17354 relocation, addend);
17355 }
17356
17357 if (r != bfd_reloc_ok)
17358 {
17359 char *more_info = NULL;
17360 const char *reloc_name = howto->name;
17361
17362 if (reloc_dest != DEST_NORMAL)
17363 {
17364 more_info = bfd_malloc (strlen (reloc_name) + 8);
17365 if (more_info != NULL)
17366 {
17367 strcpy (more_info, reloc_name);
17368 strcat (more_info, (reloc_dest == DEST_OPD
17369 ? " (OPD)" : " (stub)"));
17370 reloc_name = more_info;
17371 }
17372 }
17373
17374 if (r == bfd_reloc_overflow)
17375 {
17376 /* On code like "if (foo) foo();" don't report overflow
17377 on a branch to zero when foo is undefined. */
17378 if (!warned
17379 && (reloc_dest == DEST_STUB
17380 || !(h != NULL
17381 && (h->elf.root.type == bfd_link_hash_undefweak
17382 || h->elf.root.type == bfd_link_hash_undefined)
17383 && is_branch_reloc (r_type))))
17384 info->callbacks->reloc_overflow
17385 (info, (struct bfd_link_hash_entry *) h, sym_name,
17386 reloc_name, orig_rel.r_addend, input_bfd, input_section,
17387 rel->r_offset);
17388 }
17389 else
17390 {
17391 info->callbacks->einfo
17392 /* xgettext:c-format */
17393 (_("%H: %s against `%pT': error %d\n"),
17394 input_bfd, input_section, rel->r_offset,
17395 reloc_name, sym_name, (int) r);
17396 ret = false;
17397 }
17398 free (more_info);
17399 }
17400 copy_reloc:
17401 if (wrel != rel)
17402 *wrel = *rel;
17403 }
17404
17405 if (wrel != rel)
17406 {
17407 Elf_Internal_Shdr *rel_hdr;
17408 size_t deleted = rel - wrel;
17409
17410 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
17411 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17412 if (rel_hdr->sh_size == 0)
17413 {
17414 /* It is too late to remove an empty reloc section. Leave
17415 one NONE reloc.
17416 ??? What is wrong with an empty section??? */
17417 rel_hdr->sh_size = rel_hdr->sh_entsize;
17418 deleted -= 1;
17419 }
17420 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
17421 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17422 input_section->reloc_count -= deleted;
17423 }
17424
17425 /* If we're emitting relocations, then shortly after this function
17426 returns, reloc offsets and addends for this section will be
17427 adjusted. Worse, reloc symbol indices will be for the output
17428 file rather than the input. Save a copy of the relocs for
17429 opd_entry_value. */
17430 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
17431 {
17432 bfd_size_type amt;
17433 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
17434 rel = bfd_alloc (input_bfd, amt);
17435 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
17436 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
17437 if (rel == NULL)
17438 return false;
17439 memcpy (rel, relocs, amt);
17440 }
17441 return ret;
17442 }
17443
17444 /* Adjust the value of any local symbols in opd sections. */
17445
17446 static int
17447 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
17448 const char *name ATTRIBUTE_UNUSED,
17449 Elf_Internal_Sym *elfsym,
17450 asection *input_sec,
17451 struct elf_link_hash_entry *h)
17452 {
17453 struct _opd_sec_data *opd;
17454 long adjust;
17455 bfd_vma value;
17456
17457 if (h != NULL)
17458 return 1;
17459
17460 opd = get_opd_info (input_sec);
17461 if (opd == NULL || opd->adjust == NULL)
17462 return 1;
17463
17464 value = elfsym->st_value - input_sec->output_offset;
17465 if (!bfd_link_relocatable (info))
17466 value -= input_sec->output_section->vma;
17467
17468 adjust = opd->adjust[OPD_NDX (value)];
17469 if (adjust == -1)
17470 return 2;
17471
17472 elfsym->st_value += adjust;
17473 return 1;
17474 }
17475
17476 /* Finish up dynamic symbol handling. We set the contents of various
17477 dynamic sections here. */
17478
17479 static bool
17480 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
17481 struct bfd_link_info *info,
17482 struct elf_link_hash_entry *h,
17483 Elf_Internal_Sym *sym)
17484 {
17485 struct ppc_link_hash_table *htab;
17486 struct plt_entry *ent;
17487
17488 htab = ppc_hash_table (info);
17489 if (htab == NULL)
17490 return false;
17491
17492 if (!htab->opd_abi && !h->def_regular)
17493 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
17494 if (ent->plt.offset != (bfd_vma) -1)
17495 {
17496 /* Mark the symbol as undefined, rather than as
17497 defined in glink. Leave the value if there were
17498 any relocations where pointer equality matters
17499 (this is a clue for the dynamic linker, to make
17500 function pointer comparisons work between an
17501 application and shared library), otherwise set it
17502 to zero. */
17503 sym->st_shndx = SHN_UNDEF;
17504 if (!h->pointer_equality_needed)
17505 sym->st_value = 0;
17506 else if (!h->ref_regular_nonweak)
17507 {
17508 /* This breaks function pointer comparisons, but
17509 that is better than breaking tests for a NULL
17510 function pointer. */
17511 sym->st_value = 0;
17512 }
17513 break;
17514 }
17515
17516 if (h->needs_copy
17517 && (h->root.type == bfd_link_hash_defined
17518 || h->root.type == bfd_link_hash_defweak)
17519 && (h->root.u.def.section == htab->elf.sdynbss
17520 || h->root.u.def.section == htab->elf.sdynrelro))
17521 {
17522 /* This symbol needs a copy reloc. Set it up. */
17523 Elf_Internal_Rela rela;
17524 asection *srel;
17525 bfd_byte *loc;
17526
17527 if (h->dynindx == -1)
17528 abort ();
17529
17530 rela.r_offset = defined_sym_val (h);
17531 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
17532 rela.r_addend = 0;
17533 if (h->root.u.def.section == htab->elf.sdynrelro)
17534 srel = htab->elf.sreldynrelro;
17535 else
17536 srel = htab->elf.srelbss;
17537 loc = srel->contents;
17538 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
17539 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
17540 }
17541
17542 return true;
17543 }
17544
17545 /* Used to decide how to sort relocs in an optimal manner for the
17546 dynamic linker, before writing them out. */
17547
17548 static enum elf_reloc_type_class
17549 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
17550 const asection *rel_sec,
17551 const Elf_Internal_Rela *rela)
17552 {
17553 enum elf_ppc64_reloc_type r_type;
17554 struct ppc_link_hash_table *htab = ppc_hash_table (info);
17555
17556 if (rel_sec == htab->elf.irelplt)
17557 return reloc_class_ifunc;
17558
17559 r_type = ELF64_R_TYPE (rela->r_info);
17560 switch (r_type)
17561 {
17562 case R_PPC64_RELATIVE:
17563 return reloc_class_relative;
17564 case R_PPC64_JMP_SLOT:
17565 return reloc_class_plt;
17566 case R_PPC64_COPY:
17567 return reloc_class_copy;
17568 default:
17569 return reloc_class_normal;
17570 }
17571 }
17572
17573 /* Finish up the dynamic sections. */
17574
17575 static bool
17576 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
17577 struct bfd_link_info *info)
17578 {
17579 struct ppc_link_hash_table *htab;
17580 bfd *dynobj;
17581 asection *sdyn;
17582
17583 htab = ppc_hash_table (info);
17584 if (htab == NULL)
17585 return false;
17586
17587 dynobj = htab->elf.dynobj;
17588 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17589
17590 if (htab->elf.dynamic_sections_created)
17591 {
17592 Elf64_External_Dyn *dyncon, *dynconend;
17593
17594 if (sdyn == NULL || htab->elf.sgot == NULL)
17595 abort ();
17596
17597 dyncon = (Elf64_External_Dyn *) sdyn->contents;
17598 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
17599 for (; dyncon < dynconend; dyncon++)
17600 {
17601 Elf_Internal_Dyn dyn;
17602 asection *s;
17603
17604 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
17605
17606 switch (dyn.d_tag)
17607 {
17608 default:
17609 continue;
17610
17611 case DT_PPC64_GLINK:
17612 s = htab->glink;
17613 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17614 /* We stupidly defined DT_PPC64_GLINK to be the start
17615 of glink rather than the first entry point, which is
17616 what ld.so needs, and now have a bigger stub to
17617 support automatic multiple TOCs. */
17618 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
17619 break;
17620
17621 case DT_PPC64_OPD:
17622 s = bfd_get_section_by_name (output_bfd, ".opd");
17623 if (s == NULL)
17624 continue;
17625 dyn.d_un.d_ptr = s->vma;
17626 break;
17627
17628 case DT_PPC64_OPT:
17629 if ((htab->do_multi_toc && htab->multi_toc_needed)
17630 || htab->notoc_plt)
17631 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
17632 if (htab->has_plt_localentry0)
17633 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
17634 break;
17635
17636 case DT_PPC64_OPDSZ:
17637 s = bfd_get_section_by_name (output_bfd, ".opd");
17638 if (s == NULL)
17639 continue;
17640 dyn.d_un.d_val = s->size;
17641 break;
17642
17643 case DT_PLTGOT:
17644 s = htab->elf.splt;
17645 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17646 break;
17647
17648 case DT_JMPREL:
17649 s = htab->elf.srelplt;
17650 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17651 break;
17652
17653 case DT_PLTRELSZ:
17654 dyn.d_un.d_val = htab->elf.srelplt->size;
17655 break;
17656
17657 case DT_TEXTREL:
17658 if (htab->elf.ifunc_resolvers)
17659 info->callbacks->einfo
17660 (_("%P: warning: text relocations and GNU indirect "
17661 "functions may result in a segfault at runtime\n"));
17662 continue;
17663 }
17664
17665 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
17666 }
17667 }
17668
17669 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
17670 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17671 {
17672 /* Fill in the first entry in the global offset table.
17673 We use it to hold the link-time TOCbase. */
17674 bfd_put_64 (output_bfd,
17675 elf_gp (output_bfd) + TOC_BASE_OFF,
17676 htab->elf.sgot->contents);
17677
17678 /* Set .got entry size. */
17679 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17680 = 8;
17681 }
17682
17683 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17684 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17685 {
17686 /* Set .plt entry size. */
17687 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17688 = PLT_ENTRY_SIZE (htab);
17689 }
17690
17691 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17692 brlt ourselves if emitrelocations. */
17693 if (htab->brlt != NULL
17694 && htab->brlt->reloc_count != 0
17695 && !_bfd_elf_link_output_relocs (output_bfd,
17696 htab->brlt,
17697 elf_section_data (htab->brlt)->rela.hdr,
17698 elf_section_data (htab->brlt)->relocs,
17699 NULL))
17700 return false;
17701
17702 if (htab->glink != NULL
17703 && htab->glink->reloc_count != 0
17704 && !_bfd_elf_link_output_relocs (output_bfd,
17705 htab->glink,
17706 elf_section_data (htab->glink)->rela.hdr,
17707 elf_section_data (htab->glink)->relocs,
17708 NULL))
17709 return false;
17710
17711
17712 if (htab->glink_eh_frame != NULL
17713 && htab->glink_eh_frame->size != 0
17714 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17715 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17716 htab->glink_eh_frame,
17717 htab->glink_eh_frame->contents))
17718 return false;
17719
17720 /* We need to handle writing out multiple GOT sections ourselves,
17721 since we didn't add them to DYNOBJ. We know dynobj is the first
17722 bfd. */
17723 while ((dynobj = dynobj->link.next) != NULL)
17724 {
17725 asection *s;
17726
17727 if (!is_ppc64_elf (dynobj))
17728 continue;
17729
17730 s = ppc64_elf_tdata (dynobj)->got;
17731 if (s != NULL
17732 && s->size != 0
17733 && s->output_section != bfd_abs_section_ptr
17734 && !bfd_set_section_contents (output_bfd, s->output_section,
17735 s->contents, s->output_offset,
17736 s->size))
17737 return false;
17738 s = ppc64_elf_tdata (dynobj)->relgot;
17739 if (s != NULL
17740 && s->size != 0
17741 && s->output_section != bfd_abs_section_ptr
17742 && !bfd_set_section_contents (output_bfd, s->output_section,
17743 s->contents, s->output_offset,
17744 s->size))
17745 return false;
17746 }
17747
17748 return true;
17749 }
17750
17751 #include "elf64-target.h"
17752
17753 /* FreeBSD support */
17754
17755 #undef TARGET_LITTLE_SYM
17756 #define TARGET_LITTLE_SYM powerpc_elf64_fbsd_le_vec
17757 #undef TARGET_LITTLE_NAME
17758 #define TARGET_LITTLE_NAME "elf64-powerpcle-freebsd"
17759
17760 #undef TARGET_BIG_SYM
17761 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17762 #undef TARGET_BIG_NAME
17763 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17764
17765 #undef ELF_OSABI
17766 #define ELF_OSABI ELFOSABI_FREEBSD
17767
17768 #undef elf64_bed
17769 #define elf64_bed elf64_powerpc_fbsd_bed
17770
17771 #include "elf64-target.h"