]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
* elf32-sparc.c (elf32_sparc_relocate_section): Don't abort
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
72
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd *, bfd *));
75
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
78
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
107 \f
108 /* The relocation "howto" table. */
109
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118
119 static reloc_howto_type sparc64_elf_howto_table[] =
120 {
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
153 #endif
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
204 };
205
206 struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
209 };
210
211 static const struct elf_reloc_map sparc_reloc_map[] =
212 {
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
291 };
292
293 static reloc_howto_type *
294 sparc64_elf_reloc_type_lookup (abfd, code)
295 bfd *abfd ATTRIBUTE_UNUSED;
296 bfd_reloc_code_real_type code;
297 {
298 unsigned int i;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
300 {
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
303 }
304 return 0;
305 }
306
307 static void
308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309 bfd *abfd ATTRIBUTE_UNUSED;
310 arelent *cache_ptr;
311 Elf_Internal_Rela *dst;
312 {
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
315 }
316 \f
317 struct sparc64_elf_section_data
318 {
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
321 };
322
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
327
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
330 more space. */
331
332 static long
333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334 bfd *abfd ATTRIBUTE_UNUSED;
335 asection *sec;
336 {
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
338 }
339
340 static long
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342 bfd *abfd;
343 {
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
345 }
346
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
351
352 static bfd_boolean
353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354 bfd *abfd;
355 asection *asect;
356 Elf_Internal_Shdr *rel_hdr;
357 asymbol **symbols;
358 bfd_boolean dynamic;
359 {
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
362 arelent *relent;
363 unsigned int i;
364 int entsize;
365 bfd_size_type count;
366 arelent *relents;
367
368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369 if (allocated == NULL)
370 goto error_return;
371
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374 goto error_return;
375
376 native_relocs = (bfd_byte *) allocated;
377
378 relents = asect->relocation + canon_reloc_count (asect);
379
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
382
383 count = rel_hdr->sh_size / entsize;
384
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
387 {
388 Elf_Internal_Rela rela;
389
390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
391
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
398 else
399 relent->address = rela.r_offset - asect->vma;
400
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403 else
404 {
405 asymbol **ps, *s;
406
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 s = *ps;
409
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
413 else
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
415 }
416
417 relent->addend = rela.r_addend;
418
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
421 {
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
424 relent++;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
428 }
429 else
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
431 }
432
433 canon_reloc_count (asect) += relent - relents;
434
435 if (allocated != NULL)
436 free (allocated);
437
438 return TRUE;
439
440 error_return:
441 if (allocated != NULL)
442 free (allocated);
443 return FALSE;
444 }
445
446 /* Read in and swap the external relocs. */
447
448 static bfd_boolean
449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450 bfd *abfd;
451 asection *asect;
452 asymbol **symbols;
453 bfd_boolean dynamic;
454 {
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
458 bfd_size_type amt;
459
460 if (asect->relocation != NULL)
461 return TRUE;
462
463 if (! dynamic)
464 {
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
467 return TRUE;
468
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
471
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
474 }
475 else
476 {
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect->_raw_size == 0)
482 return TRUE;
483
484 rel_hdr = &d->this_hdr;
485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486 rel_hdr2 = NULL;
487 }
488
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492 if (asect->relocation == NULL)
493 return FALSE;
494
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
498
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 dynamic))
501 return FALSE;
502
503 if (rel_hdr2
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 dynamic))
506 return FALSE;
507
508 return TRUE;
509 }
510
511 /* Canonicalize the relocs. */
512
513 static long
514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515 bfd *abfd;
516 sec_ptr section;
517 arelent **relptr;
518 asymbol **symbols;
519 {
520 arelent *tblptr;
521 unsigned int i;
522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
523
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525 return -1;
526
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
530
531 *relptr = NULL;
532
533 return canon_reloc_count (section);
534 }
535
536
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
544 section. */
545
546 static long
547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548 bfd *abfd;
549 arelent **storage;
550 asymbol **syms;
551 {
552 asection *s;
553 long ret;
554
555 if (elf_dynsymtab (abfd) == 0)
556 {
557 bfd_set_error (bfd_error_invalid_operation);
558 return -1;
559 }
560
561 ret = 0;
562 for (s = abfd->sections; s != NULL; s = s->next)
563 {
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
566 {
567 arelent *p;
568 long count, i;
569
570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 return -1;
572 count = canon_reloc_count (s);
573 p = s->relocation;
574 for (i = 0; i < count; i++)
575 *storage++ = p++;
576 ret += count;
577 }
578 }
579
580 *storage = NULL;
581
582 return ret;
583 }
584
585 /* Write out the relocs. */
586
587 static void
588 sparc64_elf_write_relocs (abfd, sec, data)
589 bfd *abfd;
590 asection *sec;
591 PTR data;
592 {
593 bfd_boolean *failedp = (bfd_boolean *) data;
594 Elf_Internal_Shdr *rela_hdr;
595 Elf64_External_Rela *outbound_relocas, *src_rela;
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
599
600 /* If we have already failed, don't do anything. */
601 if (*failedp)
602 return;
603
604 if ((sec->flags & SEC_RELOC) == 0)
605 return;
606
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
610 relocs. */
611 if (sec->reloc_count == 0)
612 return;
613
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
617 count = 0;
618 for (idx = 0; idx < sec->reloc_count; idx++)
619 {
620 bfd_vma addr;
621
622 ++count;
623
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
627 {
628 arelent *r = sec->orelocation[idx + 1];
629
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
634 ++idx;
635 }
636 }
637
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
639
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
643 {
644 *failedp = TRUE;
645 return;
646 }
647
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
650 abort ();
651
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654 src_rela = outbound_relocas;
655
656 for (idx = 0; idx < sec->reloc_count; idx++)
657 {
658 Elf_Internal_Rela dst_rela;
659 arelent *ptr;
660 asymbol *sym;
661 int n;
662
663 ptr = sec->orelocation[idx];
664
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
670 else
671 dst_rela.r_offset = ptr->address + sec->vma;
672
673 sym = *ptr->sym_ptr_ptr;
674 if (sym == last_sym)
675 n = last_sym_idx;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 n = STN_UNDEF;
678 else
679 {
680 last_sym = sym;
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 if (n < 0)
683 {
684 *failedp = TRUE;
685 return;
686 }
687 last_sym_idx = n;
688 }
689
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
693 {
694 *failedp = TRUE;
695 return;
696 }
697
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
700 {
701 arelent *r = sec->orelocation[idx + 1];
702
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
707 {
708 idx++;
709 dst_rela.r_info
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 R_SPARC_OLO10));
712 }
713 else
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
715 }
716 else
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
718
719 dst_rela.r_addend = ptr->addend;
720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721 ++src_rela;
722 }
723 }
724 \f
725 /* Sparc64 ELF linker hash table. */
726
727 struct sparc64_elf_app_reg
728 {
729 unsigned char bind;
730 unsigned short shndx;
731 bfd *abfd;
732 char *name;
733 };
734
735 struct sparc64_elf_link_hash_table
736 {
737 struct elf_link_hash_table root;
738
739 struct sparc64_elf_app_reg app_regs [4];
740 };
741
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
743
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
746
747 /* Create a Sparc64 ELF linker hash table. */
748
749 static struct bfd_link_hash_table *
750 sparc64_elf_bfd_link_hash_table_create (abfd)
751 bfd *abfd;
752 {
753 struct sparc64_elf_link_hash_table *ret;
754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
755
756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758 return NULL;
759
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
762 {
763 free (ret);
764 return NULL;
765 }
766
767 return &ret->root.root;
768 }
769 \f
770 /* Utility for performing the standard initial work of an instruction
771 relocation.
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
777
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd,
780 reloc_entry,
781 symbol,
782 data,
783 input_section,
784 output_bfd,
785 prelocation,
786 pinsn)
787 bfd *abfd;
788 arelent *reloc_entry;
789 asymbol *symbol;
790 PTR data;
791 asection *input_section;
792 bfd *output_bfd;
793 bfd_vma *prelocation;
794 bfd_vma *pinsn;
795 {
796 bfd_vma relocation;
797 reloc_howto_type *howto = reloc_entry->howto;
798
799 if (output_bfd != (bfd *) NULL
800 && (symbol->flags & BSF_SECTION_SYM) == 0
801 && (! howto->partial_inplace
802 || reloc_entry->addend == 0))
803 {
804 reloc_entry->address += input_section->output_offset;
805 return bfd_reloc_ok;
806 }
807
808 /* This works because partial_inplace is FALSE. */
809 if (output_bfd != NULL)
810 return bfd_reloc_continue;
811
812 if (reloc_entry->address > input_section->_cooked_size)
813 return bfd_reloc_outofrange;
814
815 relocation = (symbol->value
816 + symbol->section->output_section->vma
817 + symbol->section->output_offset);
818 relocation += reloc_entry->addend;
819 if (howto->pc_relative)
820 {
821 relocation -= (input_section->output_section->vma
822 + input_section->output_offset);
823 relocation -= reloc_entry->address;
824 }
825
826 *prelocation = relocation;
827 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828 return bfd_reloc_other;
829 }
830
831 /* For unsupported relocs. */
832
833 static bfd_reloc_status_type
834 sparc_elf_notsup_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd ATTRIBUTE_UNUSED;
842 arelent *reloc_entry ATTRIBUTE_UNUSED;
843 asymbol *symbol ATTRIBUTE_UNUSED;
844 PTR data ATTRIBUTE_UNUSED;
845 asection *input_section ATTRIBUTE_UNUSED;
846 bfd *output_bfd ATTRIBUTE_UNUSED;
847 char **error_message ATTRIBUTE_UNUSED;
848 {
849 return bfd_reloc_notsupported;
850 }
851
852 /* Handle the WDISP16 reloc. */
853
854 static bfd_reloc_status_type
855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 output_bfd, error_message)
857 bfd *abfd;
858 arelent *reloc_entry;
859 asymbol *symbol;
860 PTR data;
861 asection *input_section;
862 bfd *output_bfd;
863 char **error_message ATTRIBUTE_UNUSED;
864 {
865 bfd_vma relocation;
866 bfd_vma insn;
867 bfd_reloc_status_type status;
868
869 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 input_section, output_bfd, &relocation, &insn);
871 if (status != bfd_reloc_other)
872 return status;
873
874 insn &= ~ (bfd_vma) 0x303fff;
875 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
876 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
877
878 if ((bfd_signed_vma) relocation < - 0x40000
879 || (bfd_signed_vma) relocation > 0x3ffff)
880 return bfd_reloc_overflow;
881 else
882 return bfd_reloc_ok;
883 }
884
885 /* Handle the HIX22 reloc. */
886
887 static bfd_reloc_status_type
888 sparc_elf_hix22_reloc (abfd,
889 reloc_entry,
890 symbol,
891 data,
892 input_section,
893 output_bfd,
894 error_message)
895 bfd *abfd;
896 arelent *reloc_entry;
897 asymbol *symbol;
898 PTR data;
899 asection *input_section;
900 bfd *output_bfd;
901 char **error_message ATTRIBUTE_UNUSED;
902 {
903 bfd_vma relocation;
904 bfd_vma insn;
905 bfd_reloc_status_type status;
906
907 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 input_section, output_bfd, &relocation, &insn);
909 if (status != bfd_reloc_other)
910 return status;
911
912 relocation ^= MINUS_ONE;
913 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
914 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
915
916 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917 return bfd_reloc_overflow;
918 else
919 return bfd_reloc_ok;
920 }
921
922 /* Handle the LOX10 reloc. */
923
924 static bfd_reloc_status_type
925 sparc_elf_lox10_reloc (abfd,
926 reloc_entry,
927 symbol,
928 data,
929 input_section,
930 output_bfd,
931 error_message)
932 bfd *abfd;
933 arelent *reloc_entry;
934 asymbol *symbol;
935 PTR data;
936 asection *input_section;
937 bfd *output_bfd;
938 char **error_message ATTRIBUTE_UNUSED;
939 {
940 bfd_vma relocation;
941 bfd_vma insn;
942 bfd_reloc_status_type status;
943
944 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 input_section, output_bfd, &relocation, &insn);
946 if (status != bfd_reloc_other)
947 return status;
948
949 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
950 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
951
952 return bfd_reloc_ok;
953 }
954 \f
955 /* PLT/GOT stuff */
956
957 /* Both the headers and the entries are icache aligned. */
958 #define PLT_ENTRY_SIZE 32
959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD 32768
961 #define GOT_RESERVED_ENTRIES 1
962
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
964
965 /* Fill in the .plt section. */
966
967 static void
968 sparc64_elf_build_plt (output_bfd, contents, nentries)
969 bfd *output_bfd;
970 unsigned char *contents;
971 int nentries;
972 {
973 const unsigned int nop = 0x01000000;
974 int i, j;
975
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
978
979 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
980 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
981
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
984
985 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
986 {
987 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988 unsigned int sethi, ba;
989
990 /* sethi (. - plt0), %g1 */
991 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
992
993 /* ba,a,pt %xcc, plt1 */
994 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
995
996 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1004 }
1005
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
1009
1010 for (; i < nentries; i += 160)
1011 {
1012 int block = (i + 160 <= nentries ? 160 : nentries - i);
1013 for (j = 0; j < block; ++j)
1014 {
1015 unsigned char *entry, *ptr;
1016 unsigned int ldx;
1017
1018 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1020
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1023
1024 /* mov %o7,%g5
1025 call .+8
1026 nop
1027 ldx [%o7+P],%g1
1028 jmpl %o7+%g1,%g1
1029 mov %g5,%o7 */
1030 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1033 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1034 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1036
1037 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1038 }
1039 }
1040 }
1041
1042 /* Return the offset of a particular plt entry within the .plt section. */
1043
1044 static bfd_vma
1045 sparc64_elf_plt_entry_offset (index)
1046 bfd_vma index;
1047 {
1048 bfd_vma block, ofs;
1049
1050 if (index < LARGE_PLT_THRESHOLD)
1051 return index * PLT_ENTRY_SIZE;
1052
1053 /* See above for details. */
1054
1055 block = (index - LARGE_PLT_THRESHOLD) / 160;
1056 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1057
1058 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1059 }
1060
1061 static bfd_vma
1062 sparc64_elf_plt_ptr_offset (index, max)
1063 bfd_vma index;
1064 bfd_vma max;
1065 {
1066 bfd_vma block, ofs, last;
1067
1068 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1069
1070 /* See above for details. */
1071
1072 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1073 ofs = index - block;
1074 if (block + 160 > max)
1075 last = (max - LARGE_PLT_THRESHOLD) % 160;
1076 else
1077 last = 160;
1078
1079 return (block * PLT_ENTRY_SIZE
1080 + last * 6*4
1081 + ofs * 8);
1082 }
1083 \f
1084 /* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1086 table. */
1087
1088 static bfd_boolean
1089 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 asection *sec;
1093 const Elf_Internal_Rela *relocs;
1094 {
1095 bfd *dynobj;
1096 Elf_Internal_Shdr *symtab_hdr;
1097 struct elf_link_hash_entry **sym_hashes;
1098 bfd_vma *local_got_offsets;
1099 const Elf_Internal_Rela *rel;
1100 const Elf_Internal_Rela *rel_end;
1101 asection *sgot;
1102 asection *srelgot;
1103 asection *sreloc;
1104
1105 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1106 return TRUE;
1107
1108 dynobj = elf_hash_table (info)->dynobj;
1109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110 sym_hashes = elf_sym_hashes (abfd);
1111 local_got_offsets = elf_local_got_offsets (abfd);
1112
1113 sgot = NULL;
1114 srelgot = NULL;
1115 sreloc = NULL;
1116
1117 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1118 for (rel = relocs; rel < rel_end; rel++)
1119 {
1120 unsigned long r_symndx;
1121 struct elf_link_hash_entry *h;
1122
1123 r_symndx = ELF64_R_SYM (rel->r_info);
1124 if (r_symndx < symtab_hdr->sh_info)
1125 h = NULL;
1126 else
1127 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1128
1129 switch (ELF64_R_TYPE_ID (rel->r_info))
1130 {
1131 case R_SPARC_GOT10:
1132 case R_SPARC_GOT13:
1133 case R_SPARC_GOT22:
1134 /* This symbol requires a global offset table entry. */
1135
1136 if (dynobj == NULL)
1137 {
1138 /* Create the .got section. */
1139 elf_hash_table (info)->dynobj = dynobj = abfd;
1140 if (! _bfd_elf_create_got_section (dynobj, info))
1141 return FALSE;
1142 }
1143
1144 if (sgot == NULL)
1145 {
1146 sgot = bfd_get_section_by_name (dynobj, ".got");
1147 BFD_ASSERT (sgot != NULL);
1148 }
1149
1150 if (srelgot == NULL && (h != NULL || info->shared))
1151 {
1152 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 if (srelgot == NULL)
1154 {
1155 srelgot = bfd_make_section (dynobj, ".rela.got");
1156 if (srelgot == NULL
1157 || ! bfd_set_section_flags (dynobj, srelgot,
1158 (SEC_ALLOC
1159 | SEC_LOAD
1160 | SEC_HAS_CONTENTS
1161 | SEC_IN_MEMORY
1162 | SEC_LINKER_CREATED
1163 | SEC_READONLY))
1164 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1165 return FALSE;
1166 }
1167 }
1168
1169 if (h != NULL)
1170 {
1171 if (h->got.offset != (bfd_vma) -1)
1172 {
1173 /* We have already allocated space in the .got. */
1174 break;
1175 }
1176 h->got.offset = sgot->_raw_size;
1177
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h->dynindx == -1)
1180 {
1181 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1182 return FALSE;
1183 }
1184
1185 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1186 }
1187 else
1188 {
1189 /* This is a global offset table entry for a local
1190 symbol. */
1191 if (local_got_offsets == NULL)
1192 {
1193 bfd_size_type size;
1194 register unsigned int i;
1195
1196 size = symtab_hdr->sh_info;
1197 size *= sizeof (bfd_vma);
1198 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 if (local_got_offsets == NULL)
1200 return FALSE;
1201 elf_local_got_offsets (abfd) = local_got_offsets;
1202 for (i = 0; i < symtab_hdr->sh_info; i++)
1203 local_got_offsets[i] = (bfd_vma) -1;
1204 }
1205 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1206 {
1207 /* We have already allocated space in the .got. */
1208 break;
1209 }
1210 local_got_offsets[r_symndx] = sgot->_raw_size;
1211
1212 if (info->shared)
1213 {
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
1217 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1218 }
1219 }
1220
1221 sgot->_raw_size += 8;
1222
1223 #if 0
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
1232 if (sgot->_raw_size >= 0x1000
1233 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235 #endif
1236
1237 break;
1238
1239 case R_SPARC_WPLT30:
1240 case R_SPARC_PLT32:
1241 case R_SPARC_HIPLT22:
1242 case R_SPARC_LOPLT10:
1243 case R_SPARC_PCPLT32:
1244 case R_SPARC_PCPLT22:
1245 case R_SPARC_PCPLT10:
1246 case R_SPARC_PLT64:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1252
1253 if (h == NULL)
1254 {
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value);
1258 return FALSE;
1259 }
1260
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h->dynindx == -1)
1263 {
1264 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1265 return FALSE;
1266 }
1267
1268 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1269 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 break;
1272 /* Fall through. */
1273 case R_SPARC_PC10:
1274 case R_SPARC_PC22:
1275 case R_SPARC_PC_HH22:
1276 case R_SPARC_PC_HM10:
1277 case R_SPARC_PC_LM22:
1278 if (h != NULL
1279 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 break;
1281 /* Fall through. */
1282 case R_SPARC_DISP8:
1283 case R_SPARC_DISP16:
1284 case R_SPARC_DISP32:
1285 case R_SPARC_DISP64:
1286 case R_SPARC_WDISP30:
1287 case R_SPARC_WDISP22:
1288 case R_SPARC_WDISP19:
1289 case R_SPARC_WDISP16:
1290 if (h == NULL)
1291 break;
1292 /* Fall through. */
1293 case R_SPARC_8:
1294 case R_SPARC_16:
1295 case R_SPARC_32:
1296 case R_SPARC_HI22:
1297 case R_SPARC_22:
1298 case R_SPARC_13:
1299 case R_SPARC_LO10:
1300 case R_SPARC_UA32:
1301 case R_SPARC_10:
1302 case R_SPARC_11:
1303 case R_SPARC_64:
1304 case R_SPARC_OLO10:
1305 case R_SPARC_HH22:
1306 case R_SPARC_HM10:
1307 case R_SPARC_LM22:
1308 case R_SPARC_7:
1309 case R_SPARC_5:
1310 case R_SPARC_6:
1311 case R_SPARC_HIX22:
1312 case R_SPARC_LOX10:
1313 case R_SPARC_H44:
1314 case R_SPARC_M44:
1315 case R_SPARC_L44:
1316 case R_SPARC_UA64:
1317 case R_SPARC_UA16:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
1320 dynobj and make room for the reloc.
1321
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info->shared && (sec->flags & SEC_ALLOC))
1327 {
1328 if (sreloc == NULL)
1329 {
1330 const char *name;
1331
1332 name = (bfd_elf_string_from_elf_section
1333 (abfd,
1334 elf_elfheader (abfd)->e_shstrndx,
1335 elf_section_data (sec)->rel_hdr.sh_name));
1336 if (name == NULL)
1337 return FALSE;
1338
1339 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd, sec),
1341 name + 5) == 0);
1342
1343 sreloc = bfd_get_section_by_name (dynobj, name);
1344 if (sreloc == NULL)
1345 {
1346 flagword flags;
1347
1348 sreloc = bfd_make_section (dynobj, name);
1349 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 if ((sec->flags & SEC_ALLOC) != 0)
1352 flags |= SEC_ALLOC | SEC_LOAD;
1353 if (sreloc == NULL
1354 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1356 return FALSE;
1357 }
1358 if (sec->flags & SEC_READONLY)
1359 info->flags |= DF_TEXTREL;
1360 }
1361
1362 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1363 }
1364 break;
1365
1366 case R_SPARC_REGISTER:
1367 /* Nothing to do. */
1368 break;
1369
1370 default:
1371 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1372 bfd_archive_filename (abfd),
1373 ELF64_R_TYPE_ID (rel->r_info));
1374 return FALSE;
1375 }
1376 }
1377
1378 return TRUE;
1379 }
1380
1381 /* Hook called by the linker routine which adds symbols from an object
1382 file. We use it for STT_REGISTER symbols. */
1383
1384 static bfd_boolean
1385 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1386 bfd *abfd;
1387 struct bfd_link_info *info;
1388 Elf_Internal_Sym *sym;
1389 const char **namep;
1390 flagword *flagsp ATTRIBUTE_UNUSED;
1391 asection **secp ATTRIBUTE_UNUSED;
1392 bfd_vma *valp ATTRIBUTE_UNUSED;
1393 {
1394 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1395
1396 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1397 {
1398 int reg;
1399 struct sparc64_elf_app_reg *p;
1400
1401 reg = (int)sym->st_value;
1402 switch (reg & ~1)
1403 {
1404 case 2: reg -= 2; break;
1405 case 6: reg -= 4; break;
1406 default:
1407 (*_bfd_error_handler)
1408 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1409 bfd_archive_filename (abfd));
1410 return FALSE;
1411 }
1412
1413 if (info->hash->creator != abfd->xvec
1414 || (abfd->flags & DYNAMIC) != 0)
1415 {
1416 /* STT_REGISTER only works when linking an elf64_sparc object.
1417 If STT_REGISTER comes from a dynamic object, don't put it into
1418 the output bfd. The dynamic linker will recheck it. */
1419 *namep = NULL;
1420 return TRUE;
1421 }
1422
1423 p = sparc64_elf_hash_table(info)->app_regs + reg;
1424
1425 if (p->name != NULL && strcmp (p->name, *namep))
1426 {
1427 (*_bfd_error_handler)
1428 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1429 (int) sym->st_value,
1430 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1431 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1432 return FALSE;
1433 }
1434
1435 if (p->name == NULL)
1436 {
1437 if (**namep)
1438 {
1439 struct elf_link_hash_entry *h;
1440
1441 h = (struct elf_link_hash_entry *)
1442 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1443
1444 if (h != NULL)
1445 {
1446 unsigned char type = h->type;
1447
1448 if (type > STT_FUNC)
1449 type = 0;
1450 (*_bfd_error_handler)
1451 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 *namep, bfd_archive_filename (abfd),
1453 stt_types[type], bfd_archive_filename (p->abfd));
1454 return FALSE;
1455 }
1456
1457 p->name = bfd_hash_allocate (&info->hash->table,
1458 strlen (*namep) + 1);
1459 if (!p->name)
1460 return FALSE;
1461
1462 strcpy (p->name, *namep);
1463 }
1464 else
1465 p->name = "";
1466 p->bind = ELF_ST_BIND (sym->st_info);
1467 p->abfd = abfd;
1468 p->shndx = sym->st_shndx;
1469 }
1470 else
1471 {
1472 if (p->bind == STB_WEAK
1473 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1474 {
1475 p->bind = STB_GLOBAL;
1476 p->abfd = abfd;
1477 }
1478 }
1479 *namep = NULL;
1480 return TRUE;
1481 }
1482 else if (*namep && **namep
1483 && info->hash->creator == abfd->xvec)
1484 {
1485 int i;
1486 struct sparc64_elf_app_reg *p;
1487
1488 p = sparc64_elf_hash_table(info)->app_regs;
1489 for (i = 0; i < 4; i++, p++)
1490 if (p->name != NULL && ! strcmp (p->name, *namep))
1491 {
1492 unsigned char type = ELF_ST_TYPE (sym->st_info);
1493
1494 if (type > STT_FUNC)
1495 type = 0;
1496 (*_bfd_error_handler)
1497 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 *namep, stt_types[type], bfd_archive_filename (abfd),
1499 bfd_archive_filename (p->abfd));
1500 return FALSE;
1501 }
1502 }
1503 return TRUE;
1504 }
1505
1506 /* This function takes care of emitting STT_REGISTER symbols
1507 which we cannot easily keep in the symbol hash table. */
1508
1509 static bfd_boolean
1510 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1511 bfd *output_bfd ATTRIBUTE_UNUSED;
1512 struct bfd_link_info *info;
1513 PTR finfo;
1514 bfd_boolean (*func)
1515 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1516 struct elf_link_hash_entry *));
1517 {
1518 int reg;
1519 struct sparc64_elf_app_reg *app_regs =
1520 sparc64_elf_hash_table(info)->app_regs;
1521 Elf_Internal_Sym sym;
1522
1523 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524 at the end of the dynlocal list, so they came at the end of the local
1525 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1526 to back up symtab->sh_info. */
1527 if (elf_hash_table (info)->dynlocal)
1528 {
1529 bfd * dynobj = elf_hash_table (info)->dynobj;
1530 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1531 struct elf_link_local_dynamic_entry *e;
1532
1533 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1534 if (e->input_indx == -1)
1535 break;
1536 if (e)
1537 {
1538 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1539 = e->dynindx;
1540 }
1541 }
1542
1543 if (info->strip == strip_all)
1544 return TRUE;
1545
1546 for (reg = 0; reg < 4; reg++)
1547 if (app_regs [reg].name != NULL)
1548 {
1549 if (info->strip == strip_some
1550 && bfd_hash_lookup (info->keep_hash,
1551 app_regs [reg].name,
1552 FALSE, FALSE) == NULL)
1553 continue;
1554
1555 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1556 sym.st_size = 0;
1557 sym.st_other = 0;
1558 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1559 sym.st_shndx = app_regs [reg].shndx;
1560 if (! (*func) (finfo, app_regs [reg].name, &sym,
1561 sym.st_shndx == SHN_ABS
1562 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1563 NULL))
1564 return FALSE;
1565 }
1566
1567 return TRUE;
1568 }
1569
1570 static int
1571 sparc64_elf_get_symbol_type (elf_sym, type)
1572 Elf_Internal_Sym * elf_sym;
1573 int type;
1574 {
1575 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1576 return STT_REGISTER;
1577 else
1578 return type;
1579 }
1580
1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582 even in SHN_UNDEF section. */
1583
1584 static void
1585 sparc64_elf_symbol_processing (abfd, asym)
1586 bfd *abfd ATTRIBUTE_UNUSED;
1587 asymbol *asym;
1588 {
1589 elf_symbol_type *elfsym;
1590
1591 elfsym = (elf_symbol_type *) asym;
1592 if (elfsym->internal_elf_sym.st_info
1593 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1594 {
1595 asym->flags |= BSF_GLOBAL;
1596 }
1597 }
1598
1599 /* Adjust a symbol defined by a dynamic object and referenced by a
1600 regular object. The current definition is in some section of the
1601 dynamic object, but we're not including those sections. We have to
1602 change the definition to something the rest of the link can
1603 understand. */
1604
1605 static bfd_boolean
1606 sparc64_elf_adjust_dynamic_symbol (info, h)
1607 struct bfd_link_info *info;
1608 struct elf_link_hash_entry *h;
1609 {
1610 bfd *dynobj;
1611 asection *s;
1612 unsigned int power_of_two;
1613
1614 dynobj = elf_hash_table (info)->dynobj;
1615
1616 /* Make sure we know what is going on here. */
1617 BFD_ASSERT (dynobj != NULL
1618 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1619 || h->weakdef != NULL
1620 || ((h->elf_link_hash_flags
1621 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1622 && (h->elf_link_hash_flags
1623 & ELF_LINK_HASH_REF_REGULAR) != 0
1624 && (h->elf_link_hash_flags
1625 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1626
1627 /* If this is a function, put it in the procedure linkage table. We
1628 will fill in the contents of the procedure linkage table later
1629 (although we could actually do it here). The STT_NOTYPE
1630 condition is a hack specifically for the Oracle libraries
1631 delivered for Solaris; for some inexplicable reason, they define
1632 some of their functions as STT_NOTYPE when they really should be
1633 STT_FUNC. */
1634 if (h->type == STT_FUNC
1635 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1636 || (h->type == STT_NOTYPE
1637 && (h->root.type == bfd_link_hash_defined
1638 || h->root.type == bfd_link_hash_defweak)
1639 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1640 {
1641 if (! elf_hash_table (info)->dynamic_sections_created)
1642 {
1643 /* This case can occur if we saw a WPLT30 reloc in an input
1644 file, but none of the input files were dynamic objects.
1645 In such a case, we don't actually need to build a
1646 procedure linkage table, and we can just do a WDISP30
1647 reloc instead. */
1648 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1649 return TRUE;
1650 }
1651
1652 s = bfd_get_section_by_name (dynobj, ".plt");
1653 BFD_ASSERT (s != NULL);
1654
1655 /* The first four bit in .plt is reserved. */
1656 if (s->_raw_size == 0)
1657 s->_raw_size = PLT_HEADER_SIZE;
1658
1659 /* To simplify matters later, just store the plt index here. */
1660 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1661
1662 /* If this symbol is not defined in a regular file, and we are
1663 not generating a shared library, then set the symbol to this
1664 location in the .plt. This is required to make function
1665 pointers compare as equal between the normal executable and
1666 the shared library. */
1667 if (! info->shared
1668 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1669 {
1670 h->root.u.def.section = s;
1671 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1672 }
1673
1674 /* Make room for this entry. */
1675 s->_raw_size += PLT_ENTRY_SIZE;
1676
1677 /* We also need to make an entry in the .rela.plt section. */
1678
1679 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1680 BFD_ASSERT (s != NULL);
1681
1682 s->_raw_size += sizeof (Elf64_External_Rela);
1683
1684 /* The procedure linkage table size is bounded by the magnitude
1685 of the offset we can describe in the entry. */
1686 if (s->_raw_size >= (bfd_vma)1 << 32)
1687 {
1688 bfd_set_error (bfd_error_bad_value);
1689 return FALSE;
1690 }
1691
1692 return TRUE;
1693 }
1694
1695 /* If this is a weak symbol, and there is a real definition, the
1696 processor independent code will have arranged for us to see the
1697 real definition first, and we can just use the same value. */
1698 if (h->weakdef != NULL)
1699 {
1700 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1701 || h->weakdef->root.type == bfd_link_hash_defweak);
1702 h->root.u.def.section = h->weakdef->root.u.def.section;
1703 h->root.u.def.value = h->weakdef->root.u.def.value;
1704 return TRUE;
1705 }
1706
1707 /* This is a reference to a symbol defined by a dynamic object which
1708 is not a function. */
1709
1710 /* If we are creating a shared library, we must presume that the
1711 only references to the symbol are via the global offset table.
1712 For such cases we need not do anything here; the relocations will
1713 be handled correctly by relocate_section. */
1714 if (info->shared)
1715 return TRUE;
1716
1717 /* We must allocate the symbol in our .dynbss section, which will
1718 become part of the .bss section of the executable. There will be
1719 an entry for this symbol in the .dynsym section. The dynamic
1720 object will contain position independent code, so all references
1721 from the dynamic object to this symbol will go through the global
1722 offset table. The dynamic linker will use the .dynsym entry to
1723 determine the address it must put in the global offset table, so
1724 both the dynamic object and the regular object will refer to the
1725 same memory location for the variable. */
1726
1727 s = bfd_get_section_by_name (dynobj, ".dynbss");
1728 BFD_ASSERT (s != NULL);
1729
1730 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1731 to copy the initial value out of the dynamic object and into the
1732 runtime process image. We need to remember the offset into the
1733 .rel.bss section we are going to use. */
1734 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1735 {
1736 asection *srel;
1737
1738 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1739 BFD_ASSERT (srel != NULL);
1740 srel->_raw_size += sizeof (Elf64_External_Rela);
1741 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1742 }
1743
1744 /* We need to figure out the alignment required for this symbol. I
1745 have no idea how ELF linkers handle this. 16-bytes is the size
1746 of the largest type that requires hard alignment -- long double. */
1747 power_of_two = bfd_log2 (h->size);
1748 if (power_of_two > 4)
1749 power_of_two = 4;
1750
1751 /* Apply the required alignment. */
1752 s->_raw_size = BFD_ALIGN (s->_raw_size,
1753 (bfd_size_type) (1 << power_of_two));
1754 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1755 {
1756 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1757 return FALSE;
1758 }
1759
1760 /* Define the symbol as being at this point in the section. */
1761 h->root.u.def.section = s;
1762 h->root.u.def.value = s->_raw_size;
1763
1764 /* Increment the section size to make room for the symbol. */
1765 s->_raw_size += h->size;
1766
1767 return TRUE;
1768 }
1769
1770 /* Set the sizes of the dynamic sections. */
1771
1772 static bfd_boolean
1773 sparc64_elf_size_dynamic_sections (output_bfd, info)
1774 bfd *output_bfd;
1775 struct bfd_link_info *info;
1776 {
1777 bfd *dynobj;
1778 asection *s;
1779 bfd_boolean relplt;
1780
1781 dynobj = elf_hash_table (info)->dynobj;
1782 BFD_ASSERT (dynobj != NULL);
1783
1784 if (elf_hash_table (info)->dynamic_sections_created)
1785 {
1786 /* Set the contents of the .interp section to the interpreter. */
1787 if (info->executable)
1788 {
1789 s = bfd_get_section_by_name (dynobj, ".interp");
1790 BFD_ASSERT (s != NULL);
1791 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1792 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1793 }
1794 }
1795 else
1796 {
1797 /* We may have created entries in the .rela.got section.
1798 However, if we are not creating the dynamic sections, we will
1799 not actually use these entries. Reset the size of .rela.got,
1800 which will cause it to get stripped from the output file
1801 below. */
1802 s = bfd_get_section_by_name (dynobj, ".rela.got");
1803 if (s != NULL)
1804 s->_raw_size = 0;
1805 }
1806
1807 /* The check_relocs and adjust_dynamic_symbol entry points have
1808 determined the sizes of the various dynamic sections. Allocate
1809 memory for them. */
1810 relplt = FALSE;
1811 for (s = dynobj->sections; s != NULL; s = s->next)
1812 {
1813 const char *name;
1814 bfd_boolean strip;
1815
1816 if ((s->flags & SEC_LINKER_CREATED) == 0)
1817 continue;
1818
1819 /* It's OK to base decisions on the section name, because none
1820 of the dynobj section names depend upon the input files. */
1821 name = bfd_get_section_name (dynobj, s);
1822
1823 strip = FALSE;
1824
1825 if (strncmp (name, ".rela", 5) == 0)
1826 {
1827 if (s->_raw_size == 0)
1828 {
1829 /* If we don't need this section, strip it from the
1830 output file. This is to handle .rela.bss and
1831 .rel.plt. We must create it in
1832 create_dynamic_sections, because it must be created
1833 before the linker maps input sections to output
1834 sections. The linker does that before
1835 adjust_dynamic_symbol is called, and it is that
1836 function which decides whether anything needs to go
1837 into these sections. */
1838 strip = TRUE;
1839 }
1840 else
1841 {
1842 if (strcmp (name, ".rela.plt") == 0)
1843 relplt = TRUE;
1844
1845 /* We use the reloc_count field as a counter if we need
1846 to copy relocs into the output file. */
1847 s->reloc_count = 0;
1848 }
1849 }
1850 else if (strcmp (name, ".plt") != 0
1851 && strncmp (name, ".got", 4) != 0)
1852 {
1853 /* It's not one of our sections, so don't allocate space. */
1854 continue;
1855 }
1856
1857 if (strip)
1858 {
1859 _bfd_strip_section_from_output (info, s);
1860 continue;
1861 }
1862
1863 /* Allocate memory for the section contents. Zero the memory
1864 for the benefit of .rela.plt, which has 4 unused entries
1865 at the beginning, and we don't want garbage. */
1866 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1867 if (s->contents == NULL && s->_raw_size != 0)
1868 return FALSE;
1869 }
1870
1871 if (elf_hash_table (info)->dynamic_sections_created)
1872 {
1873 /* Add some entries to the .dynamic section. We fill in the
1874 values later, in sparc64_elf_finish_dynamic_sections, but we
1875 must add the entries now so that we get the correct size for
1876 the .dynamic section. The DT_DEBUG entry is filled in by the
1877 dynamic linker and used by the debugger. */
1878 #define add_dynamic_entry(TAG, VAL) \
1879 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1880
1881 int reg;
1882 struct sparc64_elf_app_reg * app_regs;
1883 struct elf_strtab_hash *dynstr;
1884 struct elf_link_hash_table *eht = elf_hash_table (info);
1885
1886 if (info->executable)
1887 {
1888 if (!add_dynamic_entry (DT_DEBUG, 0))
1889 return FALSE;
1890 }
1891
1892 if (relplt)
1893 {
1894 if (!add_dynamic_entry (DT_PLTGOT, 0)
1895 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1896 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1897 || !add_dynamic_entry (DT_JMPREL, 0))
1898 return FALSE;
1899 }
1900
1901 if (!add_dynamic_entry (DT_RELA, 0)
1902 || !add_dynamic_entry (DT_RELASZ, 0)
1903 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1904 return FALSE;
1905
1906 if (info->flags & DF_TEXTREL)
1907 {
1908 if (!add_dynamic_entry (DT_TEXTREL, 0))
1909 return FALSE;
1910 }
1911
1912 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1913 entries if needed. */
1914 app_regs = sparc64_elf_hash_table (info)->app_regs;
1915 dynstr = eht->dynstr;
1916
1917 for (reg = 0; reg < 4; reg++)
1918 if (app_regs [reg].name != NULL)
1919 {
1920 struct elf_link_local_dynamic_entry *entry, *e;
1921
1922 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1923 return FALSE;
1924
1925 entry = (struct elf_link_local_dynamic_entry *)
1926 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1927 if (entry == NULL)
1928 return FALSE;
1929
1930 /* We cheat here a little bit: the symbol will not be local, so we
1931 put it at the end of the dynlocal linked list. We will fix it
1932 later on, as we have to fix other fields anyway. */
1933 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1934 entry->isym.st_size = 0;
1935 if (*app_regs [reg].name != '\0')
1936 entry->isym.st_name
1937 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1938 else
1939 entry->isym.st_name = 0;
1940 entry->isym.st_other = 0;
1941 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1942 STT_REGISTER);
1943 entry->isym.st_shndx = app_regs [reg].shndx;
1944 entry->next = NULL;
1945 entry->input_bfd = output_bfd;
1946 entry->input_indx = -1;
1947
1948 if (eht->dynlocal == NULL)
1949 eht->dynlocal = entry;
1950 else
1951 {
1952 for (e = eht->dynlocal; e->next; e = e->next)
1953 ;
1954 e->next = entry;
1955 }
1956 eht->dynsymcount++;
1957 }
1958 }
1959 #undef add_dynamic_entry
1960
1961 return TRUE;
1962 }
1963 \f
1964 static bfd_boolean
1965 sparc64_elf_new_section_hook (abfd, sec)
1966 bfd *abfd;
1967 asection *sec;
1968 {
1969 struct sparc64_elf_section_data *sdata;
1970 bfd_size_type amt = sizeof (*sdata);
1971
1972 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1973 if (sdata == NULL)
1974 return FALSE;
1975 sec->used_by_bfd = (PTR) sdata;
1976
1977 return _bfd_elf_new_section_hook (abfd, sec);
1978 }
1979
1980 static bfd_boolean
1981 sparc64_elf_relax_section (abfd, section, link_info, again)
1982 bfd *abfd ATTRIBUTE_UNUSED;
1983 asection *section ATTRIBUTE_UNUSED;
1984 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1985 bfd_boolean *again;
1986 {
1987 *again = FALSE;
1988 sec_do_relax (section) = 1;
1989 return TRUE;
1990 }
1991 \f
1992 /* Relocate a SPARC64 ELF section. */
1993
1994 static bfd_boolean
1995 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1996 contents, relocs, local_syms, local_sections)
1997 bfd *output_bfd;
1998 struct bfd_link_info *info;
1999 bfd *input_bfd;
2000 asection *input_section;
2001 bfd_byte *contents;
2002 Elf_Internal_Rela *relocs;
2003 Elf_Internal_Sym *local_syms;
2004 asection **local_sections;
2005 {
2006 bfd *dynobj;
2007 Elf_Internal_Shdr *symtab_hdr;
2008 struct elf_link_hash_entry **sym_hashes;
2009 bfd_vma *local_got_offsets;
2010 bfd_vma got_base;
2011 asection *sgot;
2012 asection *splt;
2013 asection *sreloc;
2014 Elf_Internal_Rela *rel;
2015 Elf_Internal_Rela *relend;
2016
2017 if (info->relocatable)
2018 return TRUE;
2019
2020 dynobj = elf_hash_table (info)->dynobj;
2021 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2022 sym_hashes = elf_sym_hashes (input_bfd);
2023 local_got_offsets = elf_local_got_offsets (input_bfd);
2024
2025 if (elf_hash_table(info)->hgot == NULL)
2026 got_base = 0;
2027 else
2028 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2029
2030 sgot = sreloc = NULL;
2031 splt = bfd_get_section_by_name (dynobj, ".plt");
2032
2033 rel = relocs;
2034 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2035 for (; rel < relend; rel++)
2036 {
2037 int r_type;
2038 reloc_howto_type *howto;
2039 unsigned long r_symndx;
2040 struct elf_link_hash_entry *h;
2041 Elf_Internal_Sym *sym;
2042 asection *sec;
2043 bfd_vma relocation, off;
2044 bfd_reloc_status_type r;
2045 bfd_boolean is_plt = FALSE;
2046 bfd_boolean unresolved_reloc;
2047
2048 r_type = ELF64_R_TYPE_ID (rel->r_info);
2049 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2050 {
2051 bfd_set_error (bfd_error_bad_value);
2052 return FALSE;
2053 }
2054 howto = sparc64_elf_howto_table + r_type;
2055
2056 /* This is a final link. */
2057 r_symndx = ELF64_R_SYM (rel->r_info);
2058 h = NULL;
2059 sym = NULL;
2060 sec = NULL;
2061 unresolved_reloc = FALSE;
2062 if (r_symndx < symtab_hdr->sh_info)
2063 {
2064 sym = local_syms + r_symndx;
2065 sec = local_sections[r_symndx];
2066 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2067 }
2068 else
2069 {
2070 bfd_boolean warned;
2071
2072 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2073 r_symndx, symtab_hdr, sym_hashes,
2074 h, sec, relocation,
2075 unresolved_reloc, warned);
2076 if (warned)
2077 {
2078 /* To avoid generating warning messages about truncated
2079 relocations, set the relocation's address to be the same as
2080 the start of this section. */
2081 if (input_section->output_section != NULL)
2082 relocation = input_section->output_section->vma;
2083 else
2084 relocation = 0;
2085 }
2086 }
2087
2088 do_dynreloc:
2089 /* When generating a shared object, these relocations are copied
2090 into the output file to be resolved at run time. */
2091 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2092 {
2093 switch (r_type)
2094 {
2095 case R_SPARC_PC10:
2096 case R_SPARC_PC22:
2097 case R_SPARC_PC_HH22:
2098 case R_SPARC_PC_HM10:
2099 case R_SPARC_PC_LM22:
2100 if (h != NULL
2101 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2102 break;
2103 /* Fall through. */
2104 case R_SPARC_DISP8:
2105 case R_SPARC_DISP16:
2106 case R_SPARC_DISP32:
2107 case R_SPARC_DISP64:
2108 case R_SPARC_WDISP30:
2109 case R_SPARC_WDISP22:
2110 case R_SPARC_WDISP19:
2111 case R_SPARC_WDISP16:
2112 if (h == NULL)
2113 break;
2114 /* Fall through. */
2115 case R_SPARC_8:
2116 case R_SPARC_16:
2117 case R_SPARC_32:
2118 case R_SPARC_HI22:
2119 case R_SPARC_22:
2120 case R_SPARC_13:
2121 case R_SPARC_LO10:
2122 case R_SPARC_UA32:
2123 case R_SPARC_10:
2124 case R_SPARC_11:
2125 case R_SPARC_64:
2126 case R_SPARC_OLO10:
2127 case R_SPARC_HH22:
2128 case R_SPARC_HM10:
2129 case R_SPARC_LM22:
2130 case R_SPARC_7:
2131 case R_SPARC_5:
2132 case R_SPARC_6:
2133 case R_SPARC_HIX22:
2134 case R_SPARC_LOX10:
2135 case R_SPARC_H44:
2136 case R_SPARC_M44:
2137 case R_SPARC_L44:
2138 case R_SPARC_UA64:
2139 case R_SPARC_UA16:
2140 {
2141 Elf_Internal_Rela outrel;
2142 bfd_byte *loc;
2143 bfd_boolean skip, relocate;
2144
2145 if (sreloc == NULL)
2146 {
2147 const char *name =
2148 (bfd_elf_string_from_elf_section
2149 (input_bfd,
2150 elf_elfheader (input_bfd)->e_shstrndx,
2151 elf_section_data (input_section)->rel_hdr.sh_name));
2152
2153 if (name == NULL)
2154 return FALSE;
2155
2156 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2157 && strcmp (bfd_get_section_name(input_bfd,
2158 input_section),
2159 name + 5) == 0);
2160
2161 sreloc = bfd_get_section_by_name (dynobj, name);
2162 BFD_ASSERT (sreloc != NULL);
2163 }
2164
2165 skip = FALSE;
2166 relocate = FALSE;
2167
2168 outrel.r_offset =
2169 _bfd_elf_section_offset (output_bfd, info, input_section,
2170 rel->r_offset);
2171 if (outrel.r_offset == (bfd_vma) -1)
2172 skip = TRUE;
2173 else if (outrel.r_offset == (bfd_vma) -2)
2174 skip = TRUE, relocate = TRUE;
2175
2176 outrel.r_offset += (input_section->output_section->vma
2177 + input_section->output_offset);
2178
2179 /* Optimize unaligned reloc usage now that we know where
2180 it finally resides. */
2181 switch (r_type)
2182 {
2183 case R_SPARC_16:
2184 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2185 break;
2186 case R_SPARC_UA16:
2187 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2188 break;
2189 case R_SPARC_32:
2190 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2191 break;
2192 case R_SPARC_UA32:
2193 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2194 break;
2195 case R_SPARC_64:
2196 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2197 break;
2198 case R_SPARC_UA64:
2199 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2200 break;
2201 case R_SPARC_DISP8:
2202 case R_SPARC_DISP16:
2203 case R_SPARC_DISP32:
2204 case R_SPARC_DISP64:
2205 /* If the symbol is not dynamic, we should not keep
2206 a dynamic relocation. But an .rela.* slot has been
2207 allocated for it, output R_SPARC_NONE.
2208 FIXME: Add code tracking needed dynamic relocs as
2209 e.g. i386 has. */
2210 if (h->dynindx == -1)
2211 skip = TRUE, relocate = TRUE;
2212 break;
2213 }
2214
2215 if (skip)
2216 memset (&outrel, 0, sizeof outrel);
2217 /* h->dynindx may be -1 if the symbol was marked to
2218 become local. */
2219 else if (h != NULL && ! is_plt
2220 && ((! info->symbolic && h->dynindx != -1)
2221 || (h->elf_link_hash_flags
2222 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2223 {
2224 BFD_ASSERT (h->dynindx != -1);
2225 outrel.r_info
2226 = ELF64_R_INFO (h->dynindx,
2227 ELF64_R_TYPE_INFO (
2228 ELF64_R_TYPE_DATA (rel->r_info),
2229 r_type));
2230 outrel.r_addend = rel->r_addend;
2231 }
2232 else
2233 {
2234 outrel.r_addend = relocation + rel->r_addend;
2235 if (r_type == R_SPARC_64)
2236 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2237 else
2238 {
2239 long indx;
2240
2241 if (is_plt)
2242 sec = splt;
2243
2244 if (bfd_is_abs_section (sec))
2245 indx = 0;
2246 else if (sec == NULL || sec->owner == NULL)
2247 {
2248 bfd_set_error (bfd_error_bad_value);
2249 return FALSE;
2250 }
2251 else
2252 {
2253 asection *osec;
2254
2255 osec = sec->output_section;
2256 indx = elf_section_data (osec)->dynindx;
2257
2258 /* We are turning this relocation into one
2259 against a section symbol, so subtract out
2260 the output section's address but not the
2261 offset of the input section in the output
2262 section. */
2263 outrel.r_addend -= osec->vma;
2264
2265 /* FIXME: we really should be able to link non-pic
2266 shared libraries. */
2267 if (indx == 0)
2268 {
2269 BFD_FAIL ();
2270 (*_bfd_error_handler)
2271 (_("%s: probably compiled without -fPIC?"),
2272 bfd_archive_filename (input_bfd));
2273 bfd_set_error (bfd_error_bad_value);
2274 return FALSE;
2275 }
2276 }
2277
2278 outrel.r_info
2279 = ELF64_R_INFO (indx,
2280 ELF64_R_TYPE_INFO (
2281 ELF64_R_TYPE_DATA (rel->r_info),
2282 r_type));
2283 }
2284 }
2285
2286 loc = sreloc->contents;
2287 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2288 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2289
2290 /* This reloc will be computed at runtime, so there's no
2291 need to do anything now. */
2292 if (! relocate)
2293 continue;
2294 }
2295 break;
2296 }
2297 }
2298
2299 switch (r_type)
2300 {
2301 case R_SPARC_GOT10:
2302 case R_SPARC_GOT13:
2303 case R_SPARC_GOT22:
2304 /* Relocation is to the entry for this symbol in the global
2305 offset table. */
2306 if (sgot == NULL)
2307 {
2308 sgot = bfd_get_section_by_name (dynobj, ".got");
2309 BFD_ASSERT (sgot != NULL);
2310 }
2311
2312 if (h != NULL)
2313 {
2314 bfd_boolean dyn;
2315
2316 off = h->got.offset;
2317 BFD_ASSERT (off != (bfd_vma) -1);
2318 dyn = elf_hash_table (info)->dynamic_sections_created;
2319
2320 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2321 || (info->shared
2322 && (info->symbolic
2323 || h->dynindx == -1
2324 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2325 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2326 {
2327 /* This is actually a static link, or it is a -Bsymbolic
2328 link and the symbol is defined locally, or the symbol
2329 was forced to be local because of a version file. We
2330 must initialize this entry in the global offset table.
2331 Since the offset must always be a multiple of 8, we
2332 use the least significant bit to record whether we
2333 have initialized it already.
2334
2335 When doing a dynamic link, we create a .rela.got
2336 relocation entry to initialize the value. This is
2337 done in the finish_dynamic_symbol routine. */
2338
2339 if ((off & 1) != 0)
2340 off &= ~1;
2341 else
2342 {
2343 bfd_put_64 (output_bfd, relocation,
2344 sgot->contents + off);
2345 h->got.offset |= 1;
2346 }
2347 }
2348 else
2349 unresolved_reloc = FALSE;
2350 }
2351 else
2352 {
2353 BFD_ASSERT (local_got_offsets != NULL);
2354 off = local_got_offsets[r_symndx];
2355 BFD_ASSERT (off != (bfd_vma) -1);
2356
2357 /* The offset must always be a multiple of 8. We use
2358 the least significant bit to record whether we have
2359 already processed this entry. */
2360 if ((off & 1) != 0)
2361 off &= ~1;
2362 else
2363 {
2364 local_got_offsets[r_symndx] |= 1;
2365
2366 if (info->shared)
2367 {
2368 asection *s;
2369 Elf_Internal_Rela outrel;
2370 bfd_byte *loc;
2371
2372 /* The Solaris 2.7 64-bit linker adds the contents
2373 of the location to the value of the reloc.
2374 Note this is different behaviour to the
2375 32-bit linker, which both adds the contents
2376 and ignores the addend. So clear the location. */
2377 bfd_put_64 (output_bfd, (bfd_vma) 0,
2378 sgot->contents + off);
2379
2380 /* We need to generate a R_SPARC_RELATIVE reloc
2381 for the dynamic linker. */
2382 s = bfd_get_section_by_name(dynobj, ".rela.got");
2383 BFD_ASSERT (s != NULL);
2384
2385 outrel.r_offset = (sgot->output_section->vma
2386 + sgot->output_offset
2387 + off);
2388 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2389 outrel.r_addend = relocation;
2390 loc = s->contents;
2391 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2392 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2393 }
2394 else
2395 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2396 }
2397 }
2398 relocation = sgot->output_offset + off - got_base;
2399 goto do_default;
2400
2401 case R_SPARC_WPLT30:
2402 case R_SPARC_PLT32:
2403 case R_SPARC_HIPLT22:
2404 case R_SPARC_LOPLT10:
2405 case R_SPARC_PCPLT32:
2406 case R_SPARC_PCPLT22:
2407 case R_SPARC_PCPLT10:
2408 case R_SPARC_PLT64:
2409 /* Relocation is to the entry for this symbol in the
2410 procedure linkage table. */
2411 BFD_ASSERT (h != NULL);
2412
2413 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2414 {
2415 /* We didn't make a PLT entry for this symbol. This
2416 happens when statically linking PIC code, or when
2417 using -Bsymbolic. */
2418 goto do_default;
2419 }
2420
2421 relocation = (splt->output_section->vma
2422 + splt->output_offset
2423 + sparc64_elf_plt_entry_offset (h->plt.offset));
2424 unresolved_reloc = FALSE;
2425 if (r_type == R_SPARC_WPLT30)
2426 goto do_wplt30;
2427 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2428 {
2429 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2430 is_plt = TRUE;
2431 goto do_dynreloc;
2432 }
2433 goto do_default;
2434
2435 case R_SPARC_OLO10:
2436 {
2437 bfd_vma x;
2438
2439 relocation += rel->r_addend;
2440 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2441
2442 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2443 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2444 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2445
2446 r = bfd_check_overflow (howto->complain_on_overflow,
2447 howto->bitsize, howto->rightshift,
2448 bfd_arch_bits_per_address (input_bfd),
2449 relocation);
2450 }
2451 break;
2452
2453 case R_SPARC_WDISP16:
2454 {
2455 bfd_vma x;
2456
2457 relocation += rel->r_addend;
2458 /* Adjust for pc-relative-ness. */
2459 relocation -= (input_section->output_section->vma
2460 + input_section->output_offset);
2461 relocation -= rel->r_offset;
2462
2463 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2464 x &= ~(bfd_vma) 0x303fff;
2465 x |= ((((relocation >> 2) & 0xc000) << 6)
2466 | ((relocation >> 2) & 0x3fff));
2467 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2468
2469 r = bfd_check_overflow (howto->complain_on_overflow,
2470 howto->bitsize, howto->rightshift,
2471 bfd_arch_bits_per_address (input_bfd),
2472 relocation);
2473 }
2474 break;
2475
2476 case R_SPARC_HIX22:
2477 {
2478 bfd_vma x;
2479
2480 relocation += rel->r_addend;
2481 relocation = relocation ^ MINUS_ONE;
2482
2483 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2484 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2485 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2486
2487 r = bfd_check_overflow (howto->complain_on_overflow,
2488 howto->bitsize, howto->rightshift,
2489 bfd_arch_bits_per_address (input_bfd),
2490 relocation);
2491 }
2492 break;
2493
2494 case R_SPARC_LOX10:
2495 {
2496 bfd_vma x;
2497
2498 relocation += rel->r_addend;
2499 relocation = (relocation & 0x3ff) | 0x1c00;
2500
2501 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2502 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2503 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2504
2505 r = bfd_reloc_ok;
2506 }
2507 break;
2508
2509 case R_SPARC_WDISP30:
2510 do_wplt30:
2511 if (sec_do_relax (input_section)
2512 && rel->r_offset + 4 < input_section->_raw_size)
2513 {
2514 #define G0 0
2515 #define O7 15
2516 #define XCC (2 << 20)
2517 #define COND(x) (((x)&0xf)<<25)
2518 #define CONDA COND(0x8)
2519 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2520 #define INSN_BA (F2(0,2) | CONDA)
2521 #define INSN_OR F3(2, 0x2, 0)
2522 #define INSN_NOP F2(0,4)
2523
2524 bfd_vma x, y;
2525
2526 /* If the instruction is a call with either:
2527 restore
2528 arithmetic instruction with rd == %o7
2529 where rs1 != %o7 and rs2 if it is register != %o7
2530 then we can optimize if the call destination is near
2531 by changing the call into a branch always. */
2532 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2533 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2534 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2535 {
2536 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2537 || ((y & OP3(0x28)) == 0 /* arithmetic */
2538 && (y & RD(~0)) == RD(O7)))
2539 && (y & RS1(~0)) != RS1(O7)
2540 && ((y & F3I(~0))
2541 || (y & RS2(~0)) != RS2(O7)))
2542 {
2543 bfd_vma reloc;
2544
2545 reloc = relocation + rel->r_addend - rel->r_offset;
2546 reloc -= (input_section->output_section->vma
2547 + input_section->output_offset);
2548 if (reloc & 3)
2549 goto do_default;
2550
2551 /* Ensure the branch fits into simm22. */
2552 if ((reloc & ~(bfd_vma)0x7fffff)
2553 && ((reloc | 0x7fffff) != MINUS_ONE))
2554 goto do_default;
2555 reloc >>= 2;
2556
2557 /* Check whether it fits into simm19. */
2558 if ((reloc & 0x3c0000) == 0
2559 || (reloc & 0x3c0000) == 0x3c0000)
2560 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2561 else
2562 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2563 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2564 r = bfd_reloc_ok;
2565 if (rel->r_offset >= 4
2566 && (y & (0xffffffff ^ RS1(~0)))
2567 == (INSN_OR | RD(O7) | RS2(G0)))
2568 {
2569 bfd_vma z;
2570 unsigned int reg;
2571
2572 z = bfd_get_32 (input_bfd,
2573 contents + rel->r_offset - 4);
2574 if ((z & (0xffffffff ^ RD(~0)))
2575 != (INSN_OR | RS1(O7) | RS2(G0)))
2576 break;
2577
2578 /* The sequence was
2579 or %o7, %g0, %rN
2580 call foo
2581 or %rN, %g0, %o7
2582
2583 If call foo was replaced with ba, replace
2584 or %rN, %g0, %o7 with nop. */
2585
2586 reg = (y & RS1(~0)) >> 14;
2587 if (reg != ((z & RD(~0)) >> 25)
2588 || reg == G0 || reg == O7)
2589 break;
2590
2591 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2592 contents + rel->r_offset + 4);
2593 }
2594 break;
2595 }
2596 }
2597 }
2598 /* Fall through. */
2599
2600 default:
2601 do_default:
2602 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2603 contents, rel->r_offset,
2604 relocation, rel->r_addend);
2605 break;
2606 }
2607
2608 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2609 because such sections are not SEC_ALLOC and thus ld.so will
2610 not process them. */
2611 if (unresolved_reloc
2612 && !((input_section->flags & SEC_DEBUGGING) != 0
2613 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2614 (*_bfd_error_handler)
2615 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2616 bfd_archive_filename (input_bfd),
2617 bfd_get_section_name (input_bfd, input_section),
2618 (long) rel->r_offset,
2619 h->root.root.string);
2620
2621 switch (r)
2622 {
2623 case bfd_reloc_ok:
2624 break;
2625
2626 default:
2627 case bfd_reloc_outofrange:
2628 abort ();
2629
2630 case bfd_reloc_overflow:
2631 {
2632 const char *name;
2633
2634 /* The Solaris native linker silently disregards
2635 overflows. We don't, but this breaks stabs debugging
2636 info, whose relocations are only 32-bits wide. Ignore
2637 overflows for discarded entries. */
2638 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2639 && _bfd_elf_section_offset (output_bfd, info, input_section,
2640 rel->r_offset) == (bfd_vma) -1)
2641 break;
2642
2643 if (h != NULL)
2644 {
2645 if (h->root.type == bfd_link_hash_undefweak
2646 && howto->pc_relative)
2647 {
2648 /* Assume this is a call protected by other code that
2649 detect the symbol is undefined. If this is the case,
2650 we can safely ignore the overflow. If not, the
2651 program is hosed anyway, and a little warning isn't
2652 going to help. */
2653 break;
2654 }
2655
2656 name = h->root.root.string;
2657 }
2658 else
2659 {
2660 name = (bfd_elf_string_from_elf_section
2661 (input_bfd,
2662 symtab_hdr->sh_link,
2663 sym->st_name));
2664 if (name == NULL)
2665 return FALSE;
2666 if (*name == '\0')
2667 name = bfd_section_name (input_bfd, sec);
2668 }
2669 if (! ((*info->callbacks->reloc_overflow)
2670 (info, name, howto->name, (bfd_vma) 0,
2671 input_bfd, input_section, rel->r_offset)))
2672 return FALSE;
2673 }
2674 break;
2675 }
2676 }
2677
2678 return TRUE;
2679 }
2680
2681 /* Finish up dynamic symbol handling. We set the contents of various
2682 dynamic sections here. */
2683
2684 static bfd_boolean
2685 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2686 bfd *output_bfd;
2687 struct bfd_link_info *info;
2688 struct elf_link_hash_entry *h;
2689 Elf_Internal_Sym *sym;
2690 {
2691 bfd *dynobj;
2692
2693 dynobj = elf_hash_table (info)->dynobj;
2694
2695 if (h->plt.offset != (bfd_vma) -1)
2696 {
2697 asection *splt;
2698 asection *srela;
2699 Elf_Internal_Rela rela;
2700 bfd_byte *loc;
2701
2702 /* This symbol has an entry in the PLT. Set it up. */
2703
2704 BFD_ASSERT (h->dynindx != -1);
2705
2706 splt = bfd_get_section_by_name (dynobj, ".plt");
2707 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2708 BFD_ASSERT (splt != NULL && srela != NULL);
2709
2710 /* Fill in the entry in the .rela.plt section. */
2711
2712 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2713 {
2714 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2715 rela.r_addend = 0;
2716 }
2717 else
2718 {
2719 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2720 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2721 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2722 -(splt->output_section->vma + splt->output_offset);
2723 }
2724 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2725 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2726
2727 /* Adjust for the first 4 reserved elements in the .plt section
2728 when setting the offset in the .rela.plt section.
2729 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2730 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2731
2732 loc = srela->contents;
2733 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2734 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2735
2736 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2737 {
2738 /* Mark the symbol as undefined, rather than as defined in
2739 the .plt section. Leave the value alone. */
2740 sym->st_shndx = SHN_UNDEF;
2741 /* If the symbol is weak, we do need to clear the value.
2742 Otherwise, the PLT entry would provide a definition for
2743 the symbol even if the symbol wasn't defined anywhere,
2744 and so the symbol would never be NULL. */
2745 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2746 == 0)
2747 sym->st_value = 0;
2748 }
2749 }
2750
2751 if (h->got.offset != (bfd_vma) -1)
2752 {
2753 asection *sgot;
2754 asection *srela;
2755 Elf_Internal_Rela rela;
2756 bfd_byte *loc;
2757
2758 /* This symbol has an entry in the GOT. Set it up. */
2759
2760 sgot = bfd_get_section_by_name (dynobj, ".got");
2761 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2762 BFD_ASSERT (sgot != NULL && srela != NULL);
2763
2764 rela.r_offset = (sgot->output_section->vma
2765 + sgot->output_offset
2766 + (h->got.offset &~ (bfd_vma) 1));
2767
2768 /* If this is a -Bsymbolic link, and the symbol is defined
2769 locally, we just want to emit a RELATIVE reloc. Likewise if
2770 the symbol was forced to be local because of a version file.
2771 The entry in the global offset table will already have been
2772 initialized in the relocate_section function. */
2773 if (info->shared
2774 && (info->symbolic || h->dynindx == -1)
2775 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2776 {
2777 asection *sec = h->root.u.def.section;
2778 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2779 rela.r_addend = (h->root.u.def.value
2780 + sec->output_section->vma
2781 + sec->output_offset);
2782 }
2783 else
2784 {
2785 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2786 rela.r_addend = 0;
2787 }
2788
2789 bfd_put_64 (output_bfd, (bfd_vma) 0,
2790 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2791 loc = srela->contents;
2792 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2793 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2794 }
2795
2796 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2797 {
2798 asection *s;
2799 Elf_Internal_Rela rela;
2800 bfd_byte *loc;
2801
2802 /* This symbols needs a copy reloc. Set it up. */
2803 BFD_ASSERT (h->dynindx != -1);
2804
2805 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2806 ".rela.bss");
2807 BFD_ASSERT (s != NULL);
2808
2809 rela.r_offset = (h->root.u.def.value
2810 + h->root.u.def.section->output_section->vma
2811 + h->root.u.def.section->output_offset);
2812 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2813 rela.r_addend = 0;
2814 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2815 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2816 }
2817
2818 /* Mark some specially defined symbols as absolute. */
2819 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2820 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2821 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2822 sym->st_shndx = SHN_ABS;
2823
2824 return TRUE;
2825 }
2826
2827 /* Finish up the dynamic sections. */
2828
2829 static bfd_boolean
2830 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2831 bfd *output_bfd;
2832 struct bfd_link_info *info;
2833 {
2834 bfd *dynobj;
2835 int stt_regidx = -1;
2836 asection *sdyn;
2837 asection *sgot;
2838
2839 dynobj = elf_hash_table (info)->dynobj;
2840
2841 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2842
2843 if (elf_hash_table (info)->dynamic_sections_created)
2844 {
2845 asection *splt;
2846 Elf64_External_Dyn *dyncon, *dynconend;
2847
2848 splt = bfd_get_section_by_name (dynobj, ".plt");
2849 BFD_ASSERT (splt != NULL && sdyn != NULL);
2850
2851 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2852 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2853 for (; dyncon < dynconend; dyncon++)
2854 {
2855 Elf_Internal_Dyn dyn;
2856 const char *name;
2857 bfd_boolean size;
2858
2859 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2860
2861 switch (dyn.d_tag)
2862 {
2863 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2864 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2865 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2866 case DT_SPARC_REGISTER:
2867 if (stt_regidx == -1)
2868 {
2869 stt_regidx =
2870 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2871 if (stt_regidx == -1)
2872 return FALSE;
2873 }
2874 dyn.d_un.d_val = stt_regidx++;
2875 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2876 /* fallthrough */
2877 default: name = NULL; size = FALSE; break;
2878 }
2879
2880 if (name != NULL)
2881 {
2882 asection *s;
2883
2884 s = bfd_get_section_by_name (output_bfd, name);
2885 if (s == NULL)
2886 dyn.d_un.d_val = 0;
2887 else
2888 {
2889 if (! size)
2890 dyn.d_un.d_ptr = s->vma;
2891 else
2892 {
2893 if (s->_cooked_size != 0)
2894 dyn.d_un.d_val = s->_cooked_size;
2895 else
2896 dyn.d_un.d_val = s->_raw_size;
2897 }
2898 }
2899 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2900 }
2901 }
2902
2903 /* Initialize the contents of the .plt section. */
2904 if (splt->_raw_size > 0)
2905 sparc64_elf_build_plt (output_bfd, splt->contents,
2906 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2907
2908 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2909 PLT_ENTRY_SIZE;
2910 }
2911
2912 /* Set the first entry in the global offset table to the address of
2913 the dynamic section. */
2914 sgot = bfd_get_section_by_name (dynobj, ".got");
2915 BFD_ASSERT (sgot != NULL);
2916 if (sgot->_raw_size > 0)
2917 {
2918 if (sdyn == NULL)
2919 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2920 else
2921 bfd_put_64 (output_bfd,
2922 sdyn->output_section->vma + sdyn->output_offset,
2923 sgot->contents);
2924 }
2925
2926 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2927
2928 return TRUE;
2929 }
2930
2931 static enum elf_reloc_type_class
2932 sparc64_elf_reloc_type_class (rela)
2933 const Elf_Internal_Rela *rela;
2934 {
2935 switch ((int) ELF64_R_TYPE (rela->r_info))
2936 {
2937 case R_SPARC_RELATIVE:
2938 return reloc_class_relative;
2939 case R_SPARC_JMP_SLOT:
2940 return reloc_class_plt;
2941 case R_SPARC_COPY:
2942 return reloc_class_copy;
2943 default:
2944 return reloc_class_normal;
2945 }
2946 }
2947 \f
2948 /* Functions for dealing with the e_flags field. */
2949
2950 /* Merge backend specific data from an object file to the output
2951 object file when linking. */
2952
2953 static bfd_boolean
2954 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2955 bfd *ibfd;
2956 bfd *obfd;
2957 {
2958 bfd_boolean error;
2959 flagword new_flags, old_flags;
2960 int new_mm, old_mm;
2961
2962 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2963 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2964 return TRUE;
2965
2966 new_flags = elf_elfheader (ibfd)->e_flags;
2967 old_flags = elf_elfheader (obfd)->e_flags;
2968
2969 if (!elf_flags_init (obfd)) /* First call, no flags set */
2970 {
2971 elf_flags_init (obfd) = TRUE;
2972 elf_elfheader (obfd)->e_flags = new_flags;
2973 }
2974
2975 else if (new_flags == old_flags) /* Compatible flags are ok */
2976 ;
2977
2978 else /* Incompatible flags */
2979 {
2980 error = FALSE;
2981
2982 #define EF_SPARC_ISA_EXTENSIONS \
2983 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2984
2985 if ((ibfd->flags & DYNAMIC) != 0)
2986 {
2987 /* We don't want dynamic objects memory ordering and
2988 architecture to have any role. That's what dynamic linker
2989 should do. */
2990 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2991 new_flags |= (old_flags
2992 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2993 }
2994 else
2995 {
2996 /* Choose the highest architecture requirements. */
2997 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2998 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2999 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3000 && (old_flags & EF_SPARC_HAL_R1))
3001 {
3002 error = TRUE;
3003 (*_bfd_error_handler)
3004 (_("%s: linking UltraSPARC specific with HAL specific code"),
3005 bfd_archive_filename (ibfd));
3006 }
3007 /* Choose the most restrictive memory ordering. */
3008 old_mm = (old_flags & EF_SPARCV9_MM);
3009 new_mm = (new_flags & EF_SPARCV9_MM);
3010 old_flags &= ~EF_SPARCV9_MM;
3011 new_flags &= ~EF_SPARCV9_MM;
3012 if (new_mm < old_mm)
3013 old_mm = new_mm;
3014 old_flags |= old_mm;
3015 new_flags |= old_mm;
3016 }
3017
3018 /* Warn about any other mismatches */
3019 if (new_flags != old_flags)
3020 {
3021 error = TRUE;
3022 (*_bfd_error_handler)
3023 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3024 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3025 }
3026
3027 elf_elfheader (obfd)->e_flags = old_flags;
3028
3029 if (error)
3030 {
3031 bfd_set_error (bfd_error_bad_value);
3032 return FALSE;
3033 }
3034 }
3035 return TRUE;
3036 }
3037
3038 /* MARCO: Set the correct entry size for the .stab section. */
3039
3040 static bfd_boolean
3041 sparc64_elf_fake_sections (abfd, hdr, sec)
3042 bfd *abfd ATTRIBUTE_UNUSED;
3043 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3044 asection *sec;
3045 {
3046 const char *name;
3047
3048 name = bfd_get_section_name (abfd, sec);
3049
3050 if (strcmp (name, ".stab") == 0)
3051 {
3052 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3053 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3054 }
3055
3056 return TRUE;
3057 }
3058 \f
3059 /* Print a STT_REGISTER symbol to file FILE. */
3060
3061 static const char *
3062 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3063 bfd *abfd ATTRIBUTE_UNUSED;
3064 PTR filep;
3065 asymbol *symbol;
3066 {
3067 FILE *file = (FILE *) filep;
3068 int reg, type;
3069
3070 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3071 != STT_REGISTER)
3072 return NULL;
3073
3074 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3075 type = symbol->flags;
3076 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3077 ((type & BSF_LOCAL)
3078 ? (type & BSF_GLOBAL) ? '!' : 'l'
3079 : (type & BSF_GLOBAL) ? 'g' : ' '),
3080 (type & BSF_WEAK) ? 'w' : ' ');
3081 if (symbol->name == NULL || symbol->name [0] == '\0')
3082 return "#scratch";
3083 else
3084 return symbol->name;
3085 }
3086 \f
3087 /* Set the right machine number for a SPARC64 ELF file. */
3088
3089 static bfd_boolean
3090 sparc64_elf_object_p (abfd)
3091 bfd *abfd;
3092 {
3093 unsigned long mach = bfd_mach_sparc_v9;
3094
3095 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3096 mach = bfd_mach_sparc_v9b;
3097 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3098 mach = bfd_mach_sparc_v9a;
3099 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3100 }
3101
3102 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3103 standard ELF, because R_SPARC_OLO10 has secondary addend in
3104 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3105 relocation handling routines. */
3106
3107 const struct elf_size_info sparc64_elf_size_info =
3108 {
3109 sizeof (Elf64_External_Ehdr),
3110 sizeof (Elf64_External_Phdr),
3111 sizeof (Elf64_External_Shdr),
3112 sizeof (Elf64_External_Rel),
3113 sizeof (Elf64_External_Rela),
3114 sizeof (Elf64_External_Sym),
3115 sizeof (Elf64_External_Dyn),
3116 sizeof (Elf_External_Note),
3117 4, /* hash-table entry size. */
3118 /* Internal relocations per external relocations.
3119 For link purposes we use just 1 internal per
3120 1 external, for assembly and slurp symbol table
3121 we use 2. */
3122 1,
3123 64, /* arch_size. */
3124 3, /* log_file_align. */
3125 ELFCLASS64,
3126 EV_CURRENT,
3127 bfd_elf64_write_out_phdrs,
3128 bfd_elf64_write_shdrs_and_ehdr,
3129 sparc64_elf_write_relocs,
3130 bfd_elf64_swap_symbol_in,
3131 bfd_elf64_swap_symbol_out,
3132 sparc64_elf_slurp_reloc_table,
3133 bfd_elf64_slurp_symbol_table,
3134 bfd_elf64_swap_dyn_in,
3135 bfd_elf64_swap_dyn_out,
3136 bfd_elf64_swap_reloc_in,
3137 bfd_elf64_swap_reloc_out,
3138 bfd_elf64_swap_reloca_in,
3139 bfd_elf64_swap_reloca_out
3140 };
3141
3142 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3143 #define TARGET_BIG_NAME "elf64-sparc"
3144 #define ELF_ARCH bfd_arch_sparc
3145 #define ELF_MAXPAGESIZE 0x100000
3146
3147 /* This is the official ABI value. */
3148 #define ELF_MACHINE_CODE EM_SPARCV9
3149
3150 /* This is the value that we used before the ABI was released. */
3151 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3152
3153 #define bfd_elf64_bfd_link_hash_table_create \
3154 sparc64_elf_bfd_link_hash_table_create
3155
3156 #define elf_info_to_howto \
3157 sparc64_elf_info_to_howto
3158 #define bfd_elf64_get_reloc_upper_bound \
3159 sparc64_elf_get_reloc_upper_bound
3160 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3161 sparc64_elf_get_dynamic_reloc_upper_bound
3162 #define bfd_elf64_canonicalize_reloc \
3163 sparc64_elf_canonicalize_reloc
3164 #define bfd_elf64_canonicalize_dynamic_reloc \
3165 sparc64_elf_canonicalize_dynamic_reloc
3166 #define bfd_elf64_bfd_reloc_type_lookup \
3167 sparc64_elf_reloc_type_lookup
3168 #define bfd_elf64_bfd_relax_section \
3169 sparc64_elf_relax_section
3170 #define bfd_elf64_new_section_hook \
3171 sparc64_elf_new_section_hook
3172
3173 #define elf_backend_create_dynamic_sections \
3174 _bfd_elf_create_dynamic_sections
3175 #define elf_backend_add_symbol_hook \
3176 sparc64_elf_add_symbol_hook
3177 #define elf_backend_get_symbol_type \
3178 sparc64_elf_get_symbol_type
3179 #define elf_backend_symbol_processing \
3180 sparc64_elf_symbol_processing
3181 #define elf_backend_check_relocs \
3182 sparc64_elf_check_relocs
3183 #define elf_backend_adjust_dynamic_symbol \
3184 sparc64_elf_adjust_dynamic_symbol
3185 #define elf_backend_size_dynamic_sections \
3186 sparc64_elf_size_dynamic_sections
3187 #define elf_backend_relocate_section \
3188 sparc64_elf_relocate_section
3189 #define elf_backend_finish_dynamic_symbol \
3190 sparc64_elf_finish_dynamic_symbol
3191 #define elf_backend_finish_dynamic_sections \
3192 sparc64_elf_finish_dynamic_sections
3193 #define elf_backend_print_symbol_all \
3194 sparc64_elf_print_symbol_all
3195 #define elf_backend_output_arch_syms \
3196 sparc64_elf_output_arch_syms
3197 #define bfd_elf64_bfd_merge_private_bfd_data \
3198 sparc64_elf_merge_private_bfd_data
3199 #define elf_backend_fake_sections \
3200 sparc64_elf_fake_sections
3201
3202 #define elf_backend_size_info \
3203 sparc64_elf_size_info
3204 #define elf_backend_object_p \
3205 sparc64_elf_object_p
3206 #define elf_backend_reloc_type_class \
3207 sparc64_elf_reloc_type_class
3208
3209 #define elf_backend_want_got_plt 0
3210 #define elf_backend_plt_readonly 0
3211 #define elf_backend_want_plt_sym 1
3212 #define elf_backend_rela_normal 1
3213
3214 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3215 #define elf_backend_plt_alignment 8
3216
3217 #define elf_backend_got_header_size 8
3218
3219 #include "elf64-target.h"