]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
ld: pru: Increase the default memory region sizes
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2024 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
36
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 {
40 size_t count, raw;
41
42 count = sec->reloc_count;
43 if (count >= LONG_MAX / 2 / sizeof (arelent *)
44 || _bfd_mul_overflow (count, sizeof (Elf64_External_Rela), &raw))
45 {
46 bfd_set_error (bfd_error_file_too_big);
47 return -1;
48 }
49 if (!bfd_write_p (abfd))
50 {
51 ufile_ptr filesize = bfd_get_file_size (abfd);
52 if (filesize != 0 && raw > filesize)
53 {
54 bfd_set_error (bfd_error_file_truncated);
55 return -1;
56 }
57 }
58 return (count * 2 + 1) * sizeof (arelent *);
59 }
60
61 static long
62 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
63 {
64 long ret = _bfd_elf_get_dynamic_reloc_upper_bound (abfd);
65 if (ret > LONG_MAX / 2)
66 {
67 bfd_set_error (bfd_error_file_too_big);
68 ret = -1;
69 }
70 else if (ret > 0)
71 ret *= 2;
72 return ret;
73 }
74
75 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
76 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
77 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
78 for the same location, R_SPARC_LO10 and R_SPARC_13. */
79
80 static bool
81 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
82 Elf_Internal_Shdr *rel_hdr,
83 asymbol **symbols, bool dynamic)
84 {
85 void * allocated = NULL;
86 bfd_byte *native_relocs;
87 arelent *relent;
88 unsigned int i;
89 int entsize;
90 bfd_size_type count;
91 arelent *relents;
92
93 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
94 return false;
95 allocated = _bfd_malloc_and_read (abfd, rel_hdr->sh_size, rel_hdr->sh_size);
96 if (allocated == NULL)
97 return false;
98
99 native_relocs = (bfd_byte *) allocated;
100
101 relents = asect->relocation + canon_reloc_count (asect);
102
103 entsize = rel_hdr->sh_entsize;
104 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
105
106 count = rel_hdr->sh_size / entsize;
107
108 for (i = 0, relent = relents; i < count;
109 i++, relent++, native_relocs += entsize)
110 {
111 Elf_Internal_Rela rela;
112 unsigned int r_type;
113
114 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
115
116 /* The address of an ELF reloc is section relative for an object
117 file, and absolute for an executable file or shared library.
118 The address of a normal BFD reloc is always section relative,
119 and the address of a dynamic reloc is absolute.. */
120 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
121 relent->address = rela.r_offset;
122 else
123 relent->address = rela.r_offset - asect->vma;
124
125 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
126 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
127 else if (/* PR 17512: file: 996185f8. */
128 ELF64_R_SYM (rela.r_info) > (dynamic
129 ? bfd_get_dynamic_symcount (abfd)
130 : bfd_get_symcount (abfd)))
131 {
132 _bfd_error_handler
133 /* xgettext:c-format */
134 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
135 abfd, asect, i, (long) ELF64_R_SYM (rela.r_info));
136 bfd_set_error (bfd_error_bad_value);
137 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
138 }
139 else
140 {
141 asymbol **ps, *s;
142
143 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
144 s = *ps;
145
146 /* Canonicalize ELF section symbols. FIXME: Why? */
147 if ((s->flags & BSF_SECTION_SYM) == 0)
148 relent->sym_ptr_ptr = ps;
149 else
150 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
151 }
152
153 relent->addend = rela.r_addend;
154
155 r_type = ELF64_R_TYPE_ID (rela.r_info);
156 if (r_type == R_SPARC_OLO10)
157 {
158 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_LO10);
159 relent[1].address = relent->address;
160 relent++;
161 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
162 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
163 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_13);
164 }
165 else
166 {
167 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type);
168 if (relent->howto == NULL)
169 goto error_return;
170 }
171 }
172
173 canon_reloc_count (asect) += relent - relents;
174
175 free (allocated);
176 return true;
177
178 error_return:
179 free (allocated);
180 return false;
181 }
182
183 /* Read in and swap the external relocs. */
184
185 static bool
186 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
187 asymbol **symbols, bool dynamic)
188 {
189 struct bfd_elf_section_data * const d = elf_section_data (asect);
190 Elf_Internal_Shdr *rel_hdr;
191 Elf_Internal_Shdr *rel_hdr2;
192 bfd_size_type amt;
193
194 if (asect->relocation != NULL)
195 return true;
196
197 if (! dynamic)
198 {
199 if ((asect->flags & SEC_RELOC) == 0
200 || asect->reloc_count == 0)
201 return true;
202
203 rel_hdr = d->rel.hdr;
204 rel_hdr2 = d->rela.hdr;
205
206 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
207 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
208 }
209 else
210 {
211 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
212 case because relocations against this section may use the
213 dynamic symbol table, and in that case bfd_section_from_shdr
214 in elf.c does not update the RELOC_COUNT. */
215 if (asect->size == 0)
216 return true;
217
218 rel_hdr = &d->this_hdr;
219 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
220 rel_hdr2 = NULL;
221 }
222
223 amt = asect->reloc_count;
224 amt *= 2 * sizeof (arelent);
225 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
226 if (asect->relocation == NULL)
227 return false;
228
229 /* The elf64_sparc_slurp_one_reloc_table routine increments
230 canon_reloc_count. */
231 canon_reloc_count (asect) = 0;
232
233 if (rel_hdr
234 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
235 dynamic))
236 return false;
237
238 if (rel_hdr2
239 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
240 dynamic))
241 return false;
242
243 return true;
244 }
245
246 /* Canonicalize the relocs. */
247
248 static long
249 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
250 arelent **relptr, asymbol **symbols)
251 {
252 arelent *tblptr;
253 unsigned int i;
254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
255
256 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
257 return -1;
258
259 tblptr = section->relocation;
260 for (i = 0; i < canon_reloc_count (section); i++)
261 *relptr++ = tblptr++;
262
263 *relptr = NULL;
264
265 return canon_reloc_count (section);
266 }
267
268
269 /* Canonicalize the dynamic relocation entries. Note that we return
270 the dynamic relocations as a single block, although they are
271 actually associated with particular sections; the interface, which
272 was designed for SunOS style shared libraries, expects that there
273 is only one set of dynamic relocs. Any section that was actually
274 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
275 the dynamic symbol table, is considered to be a dynamic reloc
276 section. */
277
278 static long
279 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
280 asymbol **syms)
281 {
282 asection *s;
283 long ret;
284
285 if (elf_dynsymtab (abfd) == 0)
286 {
287 bfd_set_error (bfd_error_invalid_operation);
288 return -1;
289 }
290
291 ret = 0;
292 for (s = abfd->sections; s != NULL; s = s->next)
293 {
294 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
295 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
296 {
297 arelent *p;
298 long count, i;
299
300 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, true))
301 return -1;
302 count = canon_reloc_count (s);
303 p = s->relocation;
304 for (i = 0; i < count; i++)
305 *storage++ = p++;
306 ret += count;
307 }
308 }
309
310 *storage = NULL;
311
312 return ret;
313 }
314
315 /* Install a new set of internal relocs. */
316
317 static void
318 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
319 asection *asect,
320 arelent **location,
321 unsigned int count)
322 {
323 asect->orelocation = location;
324 canon_reloc_count (asect) = count;
325 if (count != 0)
326 asect->flags |= SEC_RELOC;
327 else
328 asect->flags &= ~SEC_RELOC;
329 }
330
331 /* Write out the relocs. */
332
333 static void
334 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
335 {
336 bool *failedp = (bool *) data;
337 Elf_Internal_Shdr *rela_hdr;
338 bfd_vma addr_offset;
339 Elf64_External_Rela *outbound_relocas, *src_rela;
340 unsigned int idx, count;
341 asymbol *last_sym = 0;
342 int last_sym_idx = 0;
343
344 /* If we have already failed, don't do anything. */
345 if (*failedp)
346 return;
347
348 if ((sec->flags & SEC_RELOC) == 0)
349 return;
350
351 /* The linker backend writes the relocs out itself, and sets the
352 reloc_count field to zero to inhibit writing them here. Also,
353 sometimes the SEC_RELOC flag gets set even when there aren't any
354 relocs. */
355 if (canon_reloc_count (sec) == 0)
356 return;
357
358 /* We can combine two relocs that refer to the same address
359 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
360 latter is R_SPARC_13 with no associated symbol. */
361 count = 0;
362 for (idx = 0; idx < canon_reloc_count (sec); idx++)
363 {
364 bfd_vma addr;
365
366 ++count;
367
368 addr = sec->orelocation[idx]->address;
369 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
370 && idx < canon_reloc_count (sec) - 1)
371 {
372 arelent *r = sec->orelocation[idx + 1];
373
374 if (r->howto->type == R_SPARC_13
375 && r->address == addr
376 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
377 && (*r->sym_ptr_ptr)->value == 0)
378 ++idx;
379 }
380 }
381
382 rela_hdr = elf_section_data (sec)->rela.hdr;
383
384 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
385 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
386 if (rela_hdr->contents == NULL)
387 {
388 *failedp = true;
389 return;
390 }
391
392 /* Figure out whether the relocations are RELA or REL relocations. */
393 if (rela_hdr->sh_type != SHT_RELA)
394 abort ();
395
396 /* The address of an ELF reloc is section relative for an object
397 file, and absolute for an executable file or shared library.
398 The address of a BFD reloc is always section relative. */
399 addr_offset = 0;
400 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
401 addr_offset = sec->vma;
402
403 /* orelocation has the data, reloc_count has the count... */
404 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
405 src_rela = outbound_relocas;
406
407 for (idx = 0; idx < canon_reloc_count (sec); idx++)
408 {
409 Elf_Internal_Rela dst_rela;
410 arelent *ptr;
411 asymbol *sym;
412 int n;
413
414 ptr = sec->orelocation[idx];
415 sym = *ptr->sym_ptr_ptr;
416 if (sym == last_sym)
417 n = last_sym_idx;
418 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
419 n = STN_UNDEF;
420 else
421 {
422 last_sym = sym;
423 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
424 if (n < 0)
425 {
426 *failedp = true;
427 return;
428 }
429 last_sym_idx = n;
430 }
431
432 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
433 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
434 && ! _bfd_elf_validate_reloc (abfd, ptr))
435 {
436 *failedp = true;
437 return;
438 }
439
440 if (ptr->howto->type == R_SPARC_LO10
441 && idx < canon_reloc_count (sec) - 1)
442 {
443 arelent *r = sec->orelocation[idx + 1];
444
445 if (r->howto->type == R_SPARC_13
446 && r->address == ptr->address
447 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
448 && (*r->sym_ptr_ptr)->value == 0)
449 {
450 idx++;
451 dst_rela.r_info
452 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
453 R_SPARC_OLO10));
454 }
455 else
456 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
457 }
458 else
459 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
460
461 dst_rela.r_offset = ptr->address + addr_offset;
462 dst_rela.r_addend = ptr->addend;
463
464 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
465 ++src_rela;
466 }
467 }
468 \f
469 /* Hook called by the linker routine which adds symbols from an object
470 file. We use it for STT_REGISTER symbols. */
471
472 static bool
473 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
474 Elf_Internal_Sym *sym, const char **namep,
475 flagword *flagsp ATTRIBUTE_UNUSED,
476 asection **secp ATTRIBUTE_UNUSED,
477 bfd_vma *valp ATTRIBUTE_UNUSED)
478 {
479 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
480
481 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
482 {
483 int reg;
484 struct _bfd_sparc_elf_app_reg *p;
485
486 reg = (int)sym->st_value;
487 switch (reg & ~1)
488 {
489 case 2: reg -= 2; break;
490 case 6: reg -= 4; break;
491 default:
492 _bfd_error_handler
493 (_("%pB: only registers %%g[2367] can be declared using STT_REGISTER"),
494 abfd);
495 return false;
496 }
497
498 if (info->output_bfd->xvec != abfd->xvec
499 || (abfd->flags & DYNAMIC) != 0)
500 {
501 /* STT_REGISTER only works when linking an elf64_sparc object.
502 If STT_REGISTER comes from a dynamic object, don't put it into
503 the output bfd. The dynamic linker will recheck it. */
504 *namep = NULL;
505 return true;
506 }
507
508 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
509
510 if (p->name != NULL && strcmp (p->name, *namep))
511 {
512 _bfd_error_handler
513 /* xgettext:c-format */
514 (_("register %%g%d used incompatibly: %s in %pB,"
515 " previously %s in %pB"),
516 (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
517 *p->name ? p->name : "#scratch", p->abfd);
518 return false;
519 }
520
521 if (p->name == NULL)
522 {
523 if (**namep)
524 {
525 struct elf_link_hash_entry *h;
526
527 h = (struct elf_link_hash_entry *)
528 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
529
530 if (h != NULL)
531 {
532 unsigned char type = h->type;
533
534 if (type > STT_FUNC)
535 type = 0;
536 _bfd_error_handler
537 /* xgettext:c-format */
538 (_("symbol `%s' has differing types: REGISTER in %pB,"
539 " previously %s in %pB"),
540 *namep, abfd, stt_types[type], p->abfd);
541 return false;
542 }
543
544 p->name = bfd_hash_allocate (&info->hash->table,
545 strlen (*namep) + 1);
546 if (!p->name)
547 return false;
548
549 strcpy (p->name, *namep);
550 }
551 else
552 p->name = "";
553 p->bind = ELF_ST_BIND (sym->st_info);
554 p->abfd = abfd;
555 p->shndx = sym->st_shndx;
556 }
557 else
558 {
559 if (p->bind == STB_WEAK
560 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
561 {
562 p->bind = STB_GLOBAL;
563 p->abfd = abfd;
564 }
565 }
566 *namep = NULL;
567 return true;
568 }
569 else if (*namep && **namep
570 && info->output_bfd->xvec == abfd->xvec)
571 {
572 int i;
573 struct _bfd_sparc_elf_app_reg *p;
574
575 p = _bfd_sparc_elf_hash_table(info)->app_regs;
576 for (i = 0; i < 4; i++, p++)
577 if (p->name != NULL && ! strcmp (p->name, *namep))
578 {
579 unsigned char type = ELF_ST_TYPE (sym->st_info);
580
581 if (type > STT_FUNC)
582 type = 0;
583 _bfd_error_handler
584 /* xgettext:c-format */
585 (_("Symbol `%s' has differing types: %s in %pB,"
586 " previously REGISTER in %pB"),
587 *namep, stt_types[type], abfd, p->abfd);
588 return false;
589 }
590 }
591 return true;
592 }
593
594 /* This function takes care of emitting STT_REGISTER symbols
595 which we cannot easily keep in the symbol hash table. */
596
597 static bool
598 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
599 struct bfd_link_info *info,
600 void * flaginfo,
601 int (*func) (void *, const char *,
602 Elf_Internal_Sym *,
603 asection *,
604 struct elf_link_hash_entry *))
605 {
606 int reg;
607 struct _bfd_sparc_elf_app_reg *app_regs =
608 _bfd_sparc_elf_hash_table(info)->app_regs;
609 Elf_Internal_Sym sym;
610
611 for (reg = 0; reg < 4; reg++)
612 if (app_regs [reg].name != NULL)
613 {
614 if (info->strip == strip_some
615 && bfd_hash_lookup (info->keep_hash,
616 app_regs [reg].name,
617 false, false) == NULL)
618 continue;
619
620 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
621 sym.st_size = 0;
622 sym.st_other = 0;
623 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
624 sym.st_shndx = app_regs [reg].shndx;
625 sym.st_target_internal = 0;
626 if ((*func) (flaginfo, app_regs [reg].name, &sym,
627 sym.st_shndx == SHN_ABS
628 ? bfd_abs_section_ptr : bfd_und_section_ptr,
629 NULL) != 1)
630 return false;
631 }
632
633 return true;
634 }
635
636 static int
637 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
638 {
639 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
640 return STT_REGISTER;
641 else
642 return type;
643 }
644
645 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
646 even in SHN_UNDEF section. */
647
648 static void
649 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
650 {
651 elf_symbol_type *elfsym;
652
653 elfsym = (elf_symbol_type *) asym;
654 if (elfsym->internal_elf_sym.st_info
655 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
656 {
657 asym->flags |= BSF_GLOBAL;
658 }
659 }
660
661 \f
662 /* Functions for dealing with the e_flags field. */
663
664 /* Merge backend specific data from an object file to the output
665 object file when linking. */
666
667 static bool
668 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
669 {
670 bfd *obfd = info->output_bfd;
671 bool error;
672 flagword new_flags, old_flags;
673 int new_mm, old_mm;
674
675 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
676 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
677 return true;
678
679 new_flags = elf_elfheader (ibfd)->e_flags;
680 old_flags = elf_elfheader (obfd)->e_flags;
681
682 if (!elf_flags_init (obfd)) /* First call, no flags set */
683 {
684 elf_flags_init (obfd) = true;
685 elf_elfheader (obfd)->e_flags = new_flags;
686 }
687
688 else if (new_flags == old_flags) /* Compatible flags are ok */
689 ;
690
691 else /* Incompatible flags */
692 {
693 error = false;
694
695 #define EF_SPARC_ISA_EXTENSIONS \
696 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
697
698 if ((ibfd->flags & DYNAMIC) != 0)
699 {
700 /* We don't want dynamic objects memory ordering and
701 architecture to have any role. That's what dynamic linker
702 should do. */
703 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
704 new_flags |= (old_flags
705 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
706 }
707 else
708 {
709 /* Choose the highest architecture requirements. */
710 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
711 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
712 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
713 && (old_flags & EF_SPARC_HAL_R1))
714 {
715 error = true;
716 _bfd_error_handler
717 (_("%pB: linking UltraSPARC specific with HAL specific code"),
718 ibfd);
719 }
720 /* Choose the most restrictive memory ordering. */
721 old_mm = (old_flags & EF_SPARCV9_MM);
722 new_mm = (new_flags & EF_SPARCV9_MM);
723 old_flags &= ~EF_SPARCV9_MM;
724 new_flags &= ~EF_SPARCV9_MM;
725 if (new_mm < old_mm)
726 old_mm = new_mm;
727 old_flags |= old_mm;
728 new_flags |= old_mm;
729 }
730
731 /* Warn about any other mismatches */
732 if (new_flags != old_flags)
733 {
734 error = true;
735 _bfd_error_handler
736 /* xgettext:c-format */
737 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
738 ibfd, new_flags, old_flags);
739 }
740
741 elf_elfheader (obfd)->e_flags = old_flags;
742
743 if (error)
744 {
745 bfd_set_error (bfd_error_bad_value);
746 return false;
747 }
748 }
749 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
750 }
751
752 /* MARCO: Set the correct entry size for the .stab section. */
753
754 static bool
755 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
756 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
757 asection *sec)
758 {
759 const char *name;
760
761 name = bfd_section_name (sec);
762
763 if (strcmp (name, ".stab") == 0)
764 {
765 /* Even in the 64bit case the stab entries are only 12 bytes long. */
766 elf_section_data (sec)->this_hdr.sh_entsize = 12;
767 }
768
769 return true;
770 }
771 \f
772 /* Print a STT_REGISTER symbol to file FILE. */
773
774 static const char *
775 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
776 asymbol *symbol)
777 {
778 FILE *file = (FILE *) filep;
779 int reg, type;
780
781 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
782 != STT_REGISTER)
783 return NULL;
784
785 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
786 type = symbol->flags;
787 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
788 ((type & BSF_LOCAL)
789 ? (type & BSF_GLOBAL) ? '!' : 'l'
790 : (type & BSF_GLOBAL) ? 'g' : ' '),
791 (type & BSF_WEAK) ? 'w' : ' ');
792 if (symbol->name == NULL || symbol->name [0] == '\0')
793 return "#scratch";
794 else
795 return symbol->name;
796 }
797 \f
798 /* Used to decide how to sort relocs in an optimal manner for the
799 dynamic linker, before writing them out. */
800
801 static enum elf_reloc_type_class
802 elf64_sparc_reloc_type_class (const struct bfd_link_info *info,
803 const asection *rel_sec ATTRIBUTE_UNUSED,
804 const Elf_Internal_Rela *rela)
805 {
806 bfd *abfd = info->output_bfd;
807 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
808 struct _bfd_sparc_elf_link_hash_table *htab
809 = _bfd_sparc_elf_hash_table (info);
810 BFD_ASSERT (htab != NULL);
811
812 if (htab->elf.dynsym != NULL
813 && htab->elf.dynsym->contents != NULL)
814 {
815 /* Check relocation against STT_GNU_IFUNC symbol if there are
816 dynamic symbols. */
817 unsigned long r_symndx = htab->r_symndx (rela->r_info);
818 if (r_symndx != STN_UNDEF)
819 {
820 Elf_Internal_Sym sym;
821 if (!bed->s->swap_symbol_in (abfd,
822 (htab->elf.dynsym->contents
823 + r_symndx * bed->s->sizeof_sym),
824 0, &sym))
825 abort ();
826
827 if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
828 return reloc_class_ifunc;
829 }
830 }
831
832 switch ((int) ELF64_R_TYPE (rela->r_info))
833 {
834 case R_SPARC_IRELATIVE:
835 return reloc_class_ifunc;
836 case R_SPARC_RELATIVE:
837 return reloc_class_relative;
838 case R_SPARC_JMP_SLOT:
839 return reloc_class_plt;
840 case R_SPARC_COPY:
841 return reloc_class_copy;
842 default:
843 return reloc_class_normal;
844 }
845 }
846
847 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
848 standard ELF, because R_SPARC_OLO10 has secondary addend in
849 ELF64_R_TYPE_DATA field. This structure is used to redirect the
850 relocation handling routines. */
851
852 const struct elf_size_info elf64_sparc_size_info =
853 {
854 sizeof (Elf64_External_Ehdr),
855 sizeof (Elf64_External_Phdr),
856 sizeof (Elf64_External_Shdr),
857 sizeof (Elf64_External_Rel),
858 sizeof (Elf64_External_Rela),
859 sizeof (Elf64_External_Sym),
860 sizeof (Elf64_External_Dyn),
861 sizeof (Elf_External_Note),
862 4, /* hash-table entry size. */
863 /* Internal relocations per external relocations.
864 For link purposes we use just 1 internal per
865 1 external, for assembly and slurp symbol table
866 we use 2. */
867 1,
868 64, /* arch_size. */
869 3, /* log_file_align. */
870 ELFCLASS64,
871 EV_CURRENT,
872 bfd_elf64_write_out_phdrs,
873 bfd_elf64_write_shdrs_and_ehdr,
874 bfd_elf64_checksum_contents,
875 elf64_sparc_write_relocs,
876 bfd_elf64_swap_symbol_in,
877 bfd_elf64_swap_symbol_out,
878 elf64_sparc_slurp_reloc_table,
879 bfd_elf64_slurp_symbol_table,
880 bfd_elf64_swap_dyn_in,
881 bfd_elf64_swap_dyn_out,
882 bfd_elf64_swap_reloc_in,
883 bfd_elf64_swap_reloc_out,
884 bfd_elf64_swap_reloca_in,
885 bfd_elf64_swap_reloca_out
886 };
887
888 #define TARGET_BIG_SYM sparc_elf64_vec
889 #define TARGET_BIG_NAME "elf64-sparc"
890 #define ELF_ARCH bfd_arch_sparc
891 #define ELF_MAXPAGESIZE 0x100000
892 #define ELF_COMMONPAGESIZE 0x2000
893
894 /* This is the official ABI value. */
895 #define ELF_MACHINE_CODE EM_SPARCV9
896
897 /* This is the value that we used before the ABI was released. */
898 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
899
900 #define elf_backend_reloc_type_class \
901 elf64_sparc_reloc_type_class
902 #define bfd_elf64_get_reloc_upper_bound \
903 elf64_sparc_get_reloc_upper_bound
904 #define bfd_elf64_get_dynamic_reloc_upper_bound \
905 elf64_sparc_get_dynamic_reloc_upper_bound
906 #define bfd_elf64_canonicalize_reloc \
907 elf64_sparc_canonicalize_reloc
908 #define bfd_elf64_canonicalize_dynamic_reloc \
909 elf64_sparc_canonicalize_dynamic_reloc
910 #define bfd_elf64_set_reloc \
911 elf64_sparc_set_reloc
912 #define elf_backend_add_symbol_hook \
913 elf64_sparc_add_symbol_hook
914 #define elf_backend_get_symbol_type \
915 elf64_sparc_get_symbol_type
916 #define elf_backend_symbol_processing \
917 elf64_sparc_symbol_processing
918 #define elf_backend_print_symbol_all \
919 elf64_sparc_print_symbol_all
920 #define elf_backend_output_arch_syms \
921 elf64_sparc_output_arch_syms
922 #define bfd_elf64_bfd_merge_private_bfd_data \
923 elf64_sparc_merge_private_bfd_data
924 #define elf_backend_fake_sections \
925 elf64_sparc_fake_sections
926 #define elf_backend_size_info \
927 elf64_sparc_size_info
928
929 #define elf_backend_plt_sym_val \
930 _bfd_sparc_elf_plt_sym_val
931 #define bfd_elf64_bfd_link_hash_table_create \
932 _bfd_sparc_elf_link_hash_table_create
933 #define elf_info_to_howto \
934 _bfd_sparc_elf_info_to_howto
935 #define elf_backend_copy_indirect_symbol \
936 _bfd_sparc_elf_copy_indirect_symbol
937 #define bfd_elf64_bfd_reloc_type_lookup \
938 _bfd_sparc_elf_reloc_type_lookup
939 #define bfd_elf64_bfd_reloc_name_lookup \
940 _bfd_sparc_elf_reloc_name_lookup
941 #define bfd_elf64_bfd_relax_section \
942 _bfd_sparc_elf_relax_section
943 #define bfd_elf64_new_section_hook \
944 _bfd_sparc_elf_new_section_hook
945
946 #define elf_backend_create_dynamic_sections \
947 _bfd_sparc_elf_create_dynamic_sections
948 #define elf_backend_relocs_compatible \
949 _bfd_elf_relocs_compatible
950 #define elf_backend_check_relocs \
951 _bfd_sparc_elf_check_relocs
952 #define elf_backend_adjust_dynamic_symbol \
953 _bfd_sparc_elf_adjust_dynamic_symbol
954 #define elf_backend_omit_section_dynsym \
955 _bfd_sparc_elf_omit_section_dynsym
956 #define elf_backend_late_size_sections \
957 _bfd_sparc_elf_late_size_sections
958 #define elf_backend_relocate_section \
959 _bfd_sparc_elf_relocate_section
960 #define elf_backend_finish_dynamic_symbol \
961 _bfd_sparc_elf_finish_dynamic_symbol
962 #define elf_backend_finish_dynamic_sections \
963 _bfd_sparc_elf_finish_dynamic_sections
964 #define elf_backend_fixup_symbol \
965 _bfd_sparc_elf_fixup_symbol
966
967 #define bfd_elf64_mkobject \
968 _bfd_sparc_elf_mkobject
969 #define elf_backend_object_p \
970 _bfd_sparc_elf_object_p
971 #define elf_backend_gc_mark_hook \
972 _bfd_sparc_elf_gc_mark_hook
973 #define elf_backend_init_index_section \
974 _bfd_elf_init_1_index_section
975
976 #define elf_backend_can_gc_sections 1
977 #define elf_backend_can_refcount 1
978 #define elf_backend_want_got_plt 0
979 #define elf_backend_plt_readonly 0
980 #define elf_backend_want_plt_sym 1
981 #define elf_backend_got_header_size 8
982 #define elf_backend_want_dynrelro 1
983 #define elf_backend_rela_normal 1
984
985 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
986 #define elf_backend_plt_alignment 8
987
988 #include "elf64-target.h"
989
990 /* FreeBSD support */
991 #undef TARGET_BIG_SYM
992 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
993 #undef TARGET_BIG_NAME
994 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
995 #undef ELF_OSABI
996 #define ELF_OSABI ELFOSABI_FREEBSD
997
998 #undef elf64_bed
999 #define elf64_bed elf64_sparc_fbsd_bed
1000
1001 #include "elf64-target.h"
1002
1003 /* Solaris 2. */
1004
1005 #undef TARGET_BIG_SYM
1006 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
1007 #undef TARGET_BIG_NAME
1008 #define TARGET_BIG_NAME "elf64-sparc-sol2"
1009
1010 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
1011 objects won't be recognized. */
1012 #undef ELF_OSABI
1013
1014 #undef elf64_bed
1015 #define elf64_bed elf64_sparc_sol2_bed
1016
1017 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
1018 boundary. */
1019 #undef elf_backend_static_tls_alignment
1020 #define elf_backend_static_tls_alignment 16
1021
1022 #undef elf_backend_strtab_flags
1023 #define elf_backend_strtab_flags SHF_STRINGS
1024
1025 static bool
1026 elf64_sparc_copy_solaris_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
1027 bfd *obfd ATTRIBUTE_UNUSED,
1028 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
1029 Elf_Internal_Shdr *osection ATTRIBUTE_UNUSED)
1030 {
1031 /* PR 19938: FIXME: Need to add code for setting the sh_info
1032 and sh_link fields of Solaris specific section types. */
1033 return false;
1034 }
1035
1036 #undef elf_backend_copy_special_section_fields
1037 #define elf_backend_copy_special_section_fields elf64_sparc_copy_solaris_special_section_fields
1038
1039 #include "elf64-target.h"
1040
1041 #undef elf_backend_strtab_flags
1042 #undef elf_backend_copy_special_section_fields