]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-x86-64.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 #include "elf/x86-64.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* The relocation "howto" table. Order of fields:
34 type, size, bitsize, pc_relative, complain_on_overflow,
35 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
36 static reloc_howto_type x86_64_elf_howto_table[] =
37 {
38 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
39 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 FALSE),
41 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
42 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 FALSE),
44 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
45 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 TRUE),
47 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
48 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 FALSE),
50 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
51 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 TRUE),
53 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 FALSE),
56 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
57 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 MINUS_ONE, FALSE),
59 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
60 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 MINUS_ONE, FALSE),
62 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 MINUS_ONE, FALSE),
65 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 0xffffffff, TRUE),
68 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
69 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 FALSE),
74 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
76 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_signed,
77 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
78 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
80 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
81 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
82 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 MINUS_ONE, FALSE),
88 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 MINUS_ONE, FALSE),
91 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 0xffffffff, TRUE),
94 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
95 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 0xffffffff, TRUE),
97 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 0xffffffff, FALSE),
100 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 0xffffffff, TRUE),
103 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
105 0xffffffff, FALSE),
106 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
108 TRUE),
109 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
111 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
114 FALSE, 0xffffffff, 0xffffffff, TRUE),
115
116 /* GNU extension to record C++ vtable hierarchy. */
117 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
118 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
119
120 /* GNU extension to record C++ vtable member usage. */
121 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
122 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
123 FALSE)
124 };
125
126 /* Map BFD relocs to the x86_64 elf relocs. */
127 struct elf_reloc_map
128 {
129 bfd_reloc_code_real_type bfd_reloc_val;
130 unsigned char elf_reloc_val;
131 };
132
133 static const struct elf_reloc_map x86_64_reloc_map[] =
134 {
135 { BFD_RELOC_NONE, R_X86_64_NONE, },
136 { BFD_RELOC_64, R_X86_64_64, },
137 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
138 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
139 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
140 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
141 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
142 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
143 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
144 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
145 { BFD_RELOC_32, R_X86_64_32, },
146 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
147 { BFD_RELOC_16, R_X86_64_16, },
148 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
149 { BFD_RELOC_8, R_X86_64_8, },
150 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
151 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
152 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
153 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
154 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
155 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
156 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
157 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
158 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
159 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
160 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
161 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
162 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
163 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
164 };
165
166
167 /* Given a BFD reloc type, return a HOWTO structure. */
168 static reloc_howto_type *
169 elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
170 bfd_reloc_code_real_type code)
171 {
172 unsigned int i;
173
174 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
175 i++)
176 {
177 if (x86_64_reloc_map[i].bfd_reloc_val == code)
178 return &x86_64_elf_howto_table[i];
179 }
180 return 0;
181 }
182
183 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
184
185 static void
186 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
187 Elf_Internal_Rela *dst)
188 {
189 unsigned r_type, i;
190
191 r_type = ELF64_R_TYPE (dst->r_info);
192 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
193 || r_type >= (unsigned int) R_X86_64_max)
194 {
195 if (r_type > (unsigned int) R_X86_64_GOTPC32)
196 {
197 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
198 abfd, (int) r_type);
199 r_type = R_X86_64_NONE;
200 }
201 i = r_type;
202 }
203 else
204 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_GOTPC32 - 1);
205 cache_ptr->howto = &x86_64_elf_howto_table[i];
206 BFD_ASSERT (r_type == cache_ptr->howto->type);
207 }
208 \f
209 /* Support for core dump NOTE sections. */
210 static bfd_boolean
211 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
212 {
213 int offset;
214 size_t size;
215
216 switch (note->descsz)
217 {
218 default:
219 return FALSE;
220
221 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
222 /* pr_cursig */
223 elf_tdata (abfd)->core_signal
224 = bfd_get_16 (abfd, note->descdata + 12);
225
226 /* pr_pid */
227 elf_tdata (abfd)->core_pid
228 = bfd_get_32 (abfd, note->descdata + 32);
229
230 /* pr_reg */
231 offset = 112;
232 size = 216;
233
234 break;
235 }
236
237 /* Make a ".reg/999" section. */
238 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
239 size, note->descpos + offset);
240 }
241
242 static bfd_boolean
243 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
244 {
245 switch (note->descsz)
246 {
247 default:
248 return FALSE;
249
250 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
251 elf_tdata (abfd)->core_program
252 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
253 elf_tdata (abfd)->core_command
254 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
255 }
256
257 /* Note that for some reason, a spurious space is tacked
258 onto the end of the args in some (at least one anyway)
259 implementations, so strip it off if it exists. */
260
261 {
262 char *command = elf_tdata (abfd)->core_command;
263 int n = strlen (command);
264
265 if (0 < n && command[n - 1] == ' ')
266 command[n - 1] = '\0';
267 }
268
269 return TRUE;
270 }
271 \f
272 /* Functions for the x86-64 ELF linker. */
273
274 /* The name of the dynamic interpreter. This is put in the .interp
275 section. */
276
277 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
278
279 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
280 copying dynamic variables from a shared lib into an app's dynbss
281 section, and instead use a dynamic relocation to point into the
282 shared lib. */
283 #define ELIMINATE_COPY_RELOCS 1
284
285 /* The size in bytes of an entry in the global offset table. */
286
287 #define GOT_ENTRY_SIZE 8
288
289 /* The size in bytes of an entry in the procedure linkage table. */
290
291 #define PLT_ENTRY_SIZE 16
292
293 /* The first entry in a procedure linkage table looks like this. See the
294 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
295
296 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
297 {
298 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
299 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
300 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
301 };
302
303 /* Subsequent entries in a procedure linkage table look like this. */
304
305 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
306 {
307 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
308 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
309 0x68, /* pushq immediate */
310 0, 0, 0, 0, /* replaced with index into relocation table. */
311 0xe9, /* jmp relative */
312 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
313 };
314
315 /* The x86-64 linker needs to keep track of the number of relocs that
316 it decides to copy as dynamic relocs in check_relocs for each symbol.
317 This is so that it can later discard them if they are found to be
318 unnecessary. We store the information in a field extending the
319 regular ELF linker hash table. */
320
321 struct elf64_x86_64_dyn_relocs
322 {
323 /* Next section. */
324 struct elf64_x86_64_dyn_relocs *next;
325
326 /* The input section of the reloc. */
327 asection *sec;
328
329 /* Total number of relocs copied for the input section. */
330 bfd_size_type count;
331
332 /* Number of pc-relative relocs copied for the input section. */
333 bfd_size_type pc_count;
334 };
335
336 /* x86-64 ELF linker hash entry. */
337
338 struct elf64_x86_64_link_hash_entry
339 {
340 struct elf_link_hash_entry elf;
341
342 /* Track dynamic relocs copied for this symbol. */
343 struct elf64_x86_64_dyn_relocs *dyn_relocs;
344
345 #define GOT_UNKNOWN 0
346 #define GOT_NORMAL 1
347 #define GOT_TLS_GD 2
348 #define GOT_TLS_IE 3
349 unsigned char tls_type;
350 };
351
352 #define elf64_x86_64_hash_entry(ent) \
353 ((struct elf64_x86_64_link_hash_entry *)(ent))
354
355 struct elf64_x86_64_obj_tdata
356 {
357 struct elf_obj_tdata root;
358
359 /* tls_type for each local got entry. */
360 char *local_got_tls_type;
361 };
362
363 #define elf64_x86_64_tdata(abfd) \
364 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
365
366 #define elf64_x86_64_local_got_tls_type(abfd) \
367 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
368
369
370 /* x86-64 ELF linker hash table. */
371
372 struct elf64_x86_64_link_hash_table
373 {
374 struct elf_link_hash_table elf;
375
376 /* Short-cuts to get to dynamic linker sections. */
377 asection *sgot;
378 asection *sgotplt;
379 asection *srelgot;
380 asection *splt;
381 asection *srelplt;
382 asection *sdynbss;
383 asection *srelbss;
384
385 union {
386 bfd_signed_vma refcount;
387 bfd_vma offset;
388 } tls_ld_got;
389
390 /* Small local sym to section mapping cache. */
391 struct sym_sec_cache sym_sec;
392 };
393
394 /* Get the x86-64 ELF linker hash table from a link_info structure. */
395
396 #define elf64_x86_64_hash_table(p) \
397 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
398
399 /* Create an entry in an x86-64 ELF linker hash table. */
400
401 static struct bfd_hash_entry *
402 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
403 const char *string)
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf64_x86_64_link_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf64_x86_64_link_hash_entry *eh;
420
421 eh = (struct elf64_x86_64_link_hash_entry *) entry;
422 eh->dyn_relocs = NULL;
423 eh->tls_type = GOT_UNKNOWN;
424 }
425
426 return entry;
427 }
428
429 /* Create an X86-64 ELF linker hash table. */
430
431 static struct bfd_link_hash_table *
432 elf64_x86_64_link_hash_table_create (bfd *abfd)
433 {
434 struct elf64_x86_64_link_hash_table *ret;
435 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
436
437 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
438 if (ret == NULL)
439 return NULL;
440
441 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
442 {
443 free (ret);
444 return NULL;
445 }
446
447 ret->sgot = NULL;
448 ret->sgotplt = NULL;
449 ret->srelgot = NULL;
450 ret->splt = NULL;
451 ret->srelplt = NULL;
452 ret->sdynbss = NULL;
453 ret->srelbss = NULL;
454 ret->sym_sec.abfd = NULL;
455 ret->tls_ld_got.refcount = 0;
456
457 return &ret->elf.root;
458 }
459
460 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
461 shortcuts to them in our hash table. */
462
463 static bfd_boolean
464 create_got_section (bfd *dynobj, struct bfd_link_info *info)
465 {
466 struct elf64_x86_64_link_hash_table *htab;
467
468 if (! _bfd_elf_create_got_section (dynobj, info))
469 return FALSE;
470
471 htab = elf64_x86_64_hash_table (info);
472 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
473 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
474 if (!htab->sgot || !htab->sgotplt)
475 abort ();
476
477 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
478 (SEC_ALLOC | SEC_LOAD
479 | SEC_HAS_CONTENTS
480 | SEC_IN_MEMORY
481 | SEC_LINKER_CREATED
482 | SEC_READONLY));
483 if (htab->srelgot == NULL
484 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
485 return FALSE;
486 return TRUE;
487 }
488
489 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
490 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
491 hash table. */
492
493 static bfd_boolean
494 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
495 {
496 struct elf64_x86_64_link_hash_table *htab;
497
498 htab = elf64_x86_64_hash_table (info);
499 if (!htab->sgot && !create_got_section (dynobj, info))
500 return FALSE;
501
502 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
503 return FALSE;
504
505 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
506 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
507 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
508 if (!info->shared)
509 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
510
511 if (!htab->splt || !htab->srelplt || !htab->sdynbss
512 || (!info->shared && !htab->srelbss))
513 abort ();
514
515 return TRUE;
516 }
517
518 /* Copy the extra info we tack onto an elf_link_hash_entry. */
519
520 static void
521 elf64_x86_64_copy_indirect_symbol (const struct elf_backend_data *bed,
522 struct elf_link_hash_entry *dir,
523 struct elf_link_hash_entry *ind)
524 {
525 struct elf64_x86_64_link_hash_entry *edir, *eind;
526
527 edir = (struct elf64_x86_64_link_hash_entry *) dir;
528 eind = (struct elf64_x86_64_link_hash_entry *) ind;
529
530 if (eind->dyn_relocs != NULL)
531 {
532 if (edir->dyn_relocs != NULL)
533 {
534 struct elf64_x86_64_dyn_relocs **pp;
535 struct elf64_x86_64_dyn_relocs *p;
536
537 if (ind->root.type == bfd_link_hash_indirect)
538 abort ();
539
540 /* Add reloc counts against the weak sym to the strong sym
541 list. Merge any entries against the same section. */
542 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
543 {
544 struct elf64_x86_64_dyn_relocs *q;
545
546 for (q = edir->dyn_relocs; q != NULL; q = q->next)
547 if (q->sec == p->sec)
548 {
549 q->pc_count += p->pc_count;
550 q->count += p->count;
551 *pp = p->next;
552 break;
553 }
554 if (q == NULL)
555 pp = &p->next;
556 }
557 *pp = edir->dyn_relocs;
558 }
559
560 edir->dyn_relocs = eind->dyn_relocs;
561 eind->dyn_relocs = NULL;
562 }
563
564 if (ind->root.type == bfd_link_hash_indirect
565 && dir->got.refcount <= 0)
566 {
567 edir->tls_type = eind->tls_type;
568 eind->tls_type = GOT_UNKNOWN;
569 }
570
571 if (ELIMINATE_COPY_RELOCS
572 && ind->root.type != bfd_link_hash_indirect
573 && dir->dynamic_adjusted)
574 {
575 /* If called to transfer flags for a weakdef during processing
576 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
577 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
578 dir->ref_dynamic |= ind->ref_dynamic;
579 dir->ref_regular |= ind->ref_regular;
580 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
581 dir->needs_plt |= ind->needs_plt;
582 dir->pointer_equality_needed |= ind->pointer_equality_needed;
583 }
584 else
585 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
586 }
587
588 static bfd_boolean
589 elf64_x86_64_mkobject (bfd *abfd)
590 {
591 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
592 abfd->tdata.any = bfd_zalloc (abfd, amt);
593 if (abfd->tdata.any == NULL)
594 return FALSE;
595 return TRUE;
596 }
597
598 static bfd_boolean
599 elf64_x86_64_elf_object_p (bfd *abfd)
600 {
601 /* Set the right machine number for an x86-64 elf64 file. */
602 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
603 return TRUE;
604 }
605
606 static int
607 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
608 {
609 if (info->shared)
610 return r_type;
611
612 switch (r_type)
613 {
614 case R_X86_64_TLSGD:
615 case R_X86_64_GOTTPOFF:
616 if (is_local)
617 return R_X86_64_TPOFF32;
618 return R_X86_64_GOTTPOFF;
619 case R_X86_64_TLSLD:
620 return R_X86_64_TPOFF32;
621 }
622
623 return r_type;
624 }
625
626 /* Look through the relocs for a section during the first phase, and
627 calculate needed space in the global offset table, procedure
628 linkage table, and dynamic reloc sections. */
629
630 static bfd_boolean
631 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
632 const Elf_Internal_Rela *relocs)
633 {
634 struct elf64_x86_64_link_hash_table *htab;
635 Elf_Internal_Shdr *symtab_hdr;
636 struct elf_link_hash_entry **sym_hashes;
637 const Elf_Internal_Rela *rel;
638 const Elf_Internal_Rela *rel_end;
639 asection *sreloc;
640
641 if (info->relocatable)
642 return TRUE;
643
644 htab = elf64_x86_64_hash_table (info);
645 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
646 sym_hashes = elf_sym_hashes (abfd);
647
648 sreloc = NULL;
649
650 rel_end = relocs + sec->reloc_count;
651 for (rel = relocs; rel < rel_end; rel++)
652 {
653 unsigned int r_type;
654 unsigned long r_symndx;
655 struct elf_link_hash_entry *h;
656
657 r_symndx = ELF64_R_SYM (rel->r_info);
658 r_type = ELF64_R_TYPE (rel->r_info);
659
660 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
661 {
662 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
663 abfd, r_symndx);
664 return FALSE;
665 }
666
667 if (r_symndx < symtab_hdr->sh_info)
668 h = NULL;
669 else
670 {
671 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
672 while (h->root.type == bfd_link_hash_indirect
673 || h->root.type == bfd_link_hash_warning)
674 h = (struct elf_link_hash_entry *) h->root.u.i.link;
675 }
676
677 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
678 switch (r_type)
679 {
680 case R_X86_64_TLSLD:
681 htab->tls_ld_got.refcount += 1;
682 goto create_got;
683
684 case R_X86_64_TPOFF32:
685 if (info->shared)
686 {
687 (*_bfd_error_handler)
688 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
689 abfd,
690 x86_64_elf_howto_table[r_type].name,
691 (h) ? h->root.root.string : "a local symbol");
692 bfd_set_error (bfd_error_bad_value);
693 return FALSE;
694 }
695 break;
696
697 case R_X86_64_GOTTPOFF:
698 if (info->shared)
699 info->flags |= DF_STATIC_TLS;
700 /* Fall through */
701
702 case R_X86_64_GOT32:
703 case R_X86_64_GOTPCREL:
704 case R_X86_64_TLSGD:
705 /* This symbol requires a global offset table entry. */
706 {
707 int tls_type, old_tls_type;
708
709 switch (r_type)
710 {
711 default: tls_type = GOT_NORMAL; break;
712 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
713 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
714 }
715
716 if (h != NULL)
717 {
718 h->got.refcount += 1;
719 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
720 }
721 else
722 {
723 bfd_signed_vma *local_got_refcounts;
724
725 /* This is a global offset table entry for a local symbol. */
726 local_got_refcounts = elf_local_got_refcounts (abfd);
727 if (local_got_refcounts == NULL)
728 {
729 bfd_size_type size;
730
731 size = symtab_hdr->sh_info;
732 size *= sizeof (bfd_signed_vma) + sizeof (char);
733 local_got_refcounts = ((bfd_signed_vma *)
734 bfd_zalloc (abfd, size));
735 if (local_got_refcounts == NULL)
736 return FALSE;
737 elf_local_got_refcounts (abfd) = local_got_refcounts;
738 elf64_x86_64_local_got_tls_type (abfd)
739 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
740 }
741 local_got_refcounts[r_symndx] += 1;
742 old_tls_type
743 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
744 }
745
746 /* If a TLS symbol is accessed using IE at least once,
747 there is no point to use dynamic model for it. */
748 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
749 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
750 {
751 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
752 tls_type = old_tls_type;
753 else
754 {
755 (*_bfd_error_handler)
756 (_("%B: %s' accessed both as normal and thread local symbol"),
757 abfd, h ? h->root.root.string : "<local>");
758 return FALSE;
759 }
760 }
761
762 if (old_tls_type != tls_type)
763 {
764 if (h != NULL)
765 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
766 else
767 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
768 }
769 }
770 /* Fall through */
771
772 case R_X86_64_GOTOFF64:
773 case R_X86_64_GOTPC32:
774 create_got:
775 if (htab->sgot == NULL)
776 {
777 if (htab->elf.dynobj == NULL)
778 htab->elf.dynobj = abfd;
779 if (!create_got_section (htab->elf.dynobj, info))
780 return FALSE;
781 }
782 break;
783
784 case R_X86_64_PLT32:
785 /* This symbol requires a procedure linkage table entry. We
786 actually build the entry in adjust_dynamic_symbol,
787 because this might be a case of linking PIC code which is
788 never referenced by a dynamic object, in which case we
789 don't need to generate a procedure linkage table entry
790 after all. */
791
792 /* If this is a local symbol, we resolve it directly without
793 creating a procedure linkage table entry. */
794 if (h == NULL)
795 continue;
796
797 h->needs_plt = 1;
798 h->plt.refcount += 1;
799 break;
800
801 case R_X86_64_8:
802 case R_X86_64_16:
803 case R_X86_64_32:
804 case R_X86_64_32S:
805 /* Let's help debug shared library creation. These relocs
806 cannot be used in shared libs. Don't error out for
807 sections we don't care about, such as debug sections or
808 non-constant sections. */
809 if (info->shared
810 && (sec->flags & SEC_ALLOC) != 0
811 && (sec->flags & SEC_READONLY) != 0)
812 {
813 (*_bfd_error_handler)
814 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
815 abfd,
816 x86_64_elf_howto_table[r_type].name,
817 (h) ? h->root.root.string : "a local symbol");
818 bfd_set_error (bfd_error_bad_value);
819 return FALSE;
820 }
821 /* Fall through. */
822
823 case R_X86_64_PC8:
824 case R_X86_64_PC16:
825 case R_X86_64_PC32:
826 case R_X86_64_PC64:
827 case R_X86_64_64:
828 if (h != NULL && !info->shared)
829 {
830 /* If this reloc is in a read-only section, we might
831 need a copy reloc. We can't check reliably at this
832 stage whether the section is read-only, as input
833 sections have not yet been mapped to output sections.
834 Tentatively set the flag for now, and correct in
835 adjust_dynamic_symbol. */
836 h->non_got_ref = 1;
837
838 /* We may need a .plt entry if the function this reloc
839 refers to is in a shared lib. */
840 h->plt.refcount += 1;
841 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
842 h->pointer_equality_needed = 1;
843 }
844
845 /* If we are creating a shared library, and this is a reloc
846 against a global symbol, or a non PC relative reloc
847 against a local symbol, then we need to copy the reloc
848 into the shared library. However, if we are linking with
849 -Bsymbolic, we do not need to copy a reloc against a
850 global symbol which is defined in an object we are
851 including in the link (i.e., DEF_REGULAR is set). At
852 this point we have not seen all the input files, so it is
853 possible that DEF_REGULAR is not set now but will be set
854 later (it is never cleared). In case of a weak definition,
855 DEF_REGULAR may be cleared later by a strong definition in
856 a shared library. We account for that possibility below by
857 storing information in the relocs_copied field of the hash
858 table entry. A similar situation occurs when creating
859 shared libraries and symbol visibility changes render the
860 symbol local.
861
862 If on the other hand, we are creating an executable, we
863 may need to keep relocations for symbols satisfied by a
864 dynamic library if we manage to avoid copy relocs for the
865 symbol. */
866 if ((info->shared
867 && (sec->flags & SEC_ALLOC) != 0
868 && (((r_type != R_X86_64_PC8)
869 && (r_type != R_X86_64_PC16)
870 && (r_type != R_X86_64_PC32)
871 && (r_type != R_X86_64_PC64))
872 || (h != NULL
873 && (! info->symbolic
874 || h->root.type == bfd_link_hash_defweak
875 || !h->def_regular))))
876 || (ELIMINATE_COPY_RELOCS
877 && !info->shared
878 && (sec->flags & SEC_ALLOC) != 0
879 && h != NULL
880 && (h->root.type == bfd_link_hash_defweak
881 || !h->def_regular)))
882 {
883 struct elf64_x86_64_dyn_relocs *p;
884 struct elf64_x86_64_dyn_relocs **head;
885
886 /* We must copy these reloc types into the output file.
887 Create a reloc section in dynobj and make room for
888 this reloc. */
889 if (sreloc == NULL)
890 {
891 const char *name;
892 bfd *dynobj;
893
894 name = (bfd_elf_string_from_elf_section
895 (abfd,
896 elf_elfheader (abfd)->e_shstrndx,
897 elf_section_data (sec)->rel_hdr.sh_name));
898 if (name == NULL)
899 return FALSE;
900
901 if (strncmp (name, ".rela", 5) != 0
902 || strcmp (bfd_get_section_name (abfd, sec),
903 name + 5) != 0)
904 {
905 (*_bfd_error_handler)
906 (_("%B: bad relocation section name `%s\'"),
907 abfd, name);
908 }
909
910 if (htab->elf.dynobj == NULL)
911 htab->elf.dynobj = abfd;
912
913 dynobj = htab->elf.dynobj;
914
915 sreloc = bfd_get_section_by_name (dynobj, name);
916 if (sreloc == NULL)
917 {
918 flagword flags;
919
920 flags = (SEC_HAS_CONTENTS | SEC_READONLY
921 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
922 if ((sec->flags & SEC_ALLOC) != 0)
923 flags |= SEC_ALLOC | SEC_LOAD;
924 sreloc = bfd_make_section_with_flags (dynobj,
925 name,
926 flags);
927 if (sreloc == NULL
928 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
929 return FALSE;
930 }
931 elf_section_data (sec)->sreloc = sreloc;
932 }
933
934 /* If this is a global symbol, we count the number of
935 relocations we need for this symbol. */
936 if (h != NULL)
937 {
938 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
939 }
940 else
941 {
942 /* Track dynamic relocs needed for local syms too.
943 We really need local syms available to do this
944 easily. Oh well. */
945
946 asection *s;
947 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
948 sec, r_symndx);
949 if (s == NULL)
950 return FALSE;
951
952 head = ((struct elf64_x86_64_dyn_relocs **)
953 &elf_section_data (s)->local_dynrel);
954 }
955
956 p = *head;
957 if (p == NULL || p->sec != sec)
958 {
959 bfd_size_type amt = sizeof *p;
960 p = ((struct elf64_x86_64_dyn_relocs *)
961 bfd_alloc (htab->elf.dynobj, amt));
962 if (p == NULL)
963 return FALSE;
964 p->next = *head;
965 *head = p;
966 p->sec = sec;
967 p->count = 0;
968 p->pc_count = 0;
969 }
970
971 p->count += 1;
972 if (r_type == R_X86_64_PC8
973 || r_type == R_X86_64_PC16
974 || r_type == R_X86_64_PC32
975 || r_type == R_X86_64_PC64)
976 p->pc_count += 1;
977 }
978 break;
979
980 /* This relocation describes the C++ object vtable hierarchy.
981 Reconstruct it for later use during GC. */
982 case R_X86_64_GNU_VTINHERIT:
983 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
984 return FALSE;
985 break;
986
987 /* This relocation describes which C++ vtable entries are actually
988 used. Record for later use during GC. */
989 case R_X86_64_GNU_VTENTRY:
990 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
991 return FALSE;
992 break;
993
994 default:
995 break;
996 }
997 }
998
999 return TRUE;
1000 }
1001
1002 /* Return the section that should be marked against GC for a given
1003 relocation. */
1004
1005 static asection *
1006 elf64_x86_64_gc_mark_hook (asection *sec,
1007 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1008 Elf_Internal_Rela *rel,
1009 struct elf_link_hash_entry *h,
1010 Elf_Internal_Sym *sym)
1011 {
1012 if (h != NULL)
1013 {
1014 switch (ELF64_R_TYPE (rel->r_info))
1015 {
1016 case R_X86_64_GNU_VTINHERIT:
1017 case R_X86_64_GNU_VTENTRY:
1018 break;
1019
1020 default:
1021 switch (h->root.type)
1022 {
1023 case bfd_link_hash_defined:
1024 case bfd_link_hash_defweak:
1025 return h->root.u.def.section;
1026
1027 case bfd_link_hash_common:
1028 return h->root.u.c.p->section;
1029
1030 default:
1031 break;
1032 }
1033 }
1034 }
1035 else
1036 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1037
1038 return NULL;
1039 }
1040
1041 /* Update the got entry reference counts for the section being removed. */
1042
1043 static bfd_boolean
1044 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1045 asection *sec, const Elf_Internal_Rela *relocs)
1046 {
1047 Elf_Internal_Shdr *symtab_hdr;
1048 struct elf_link_hash_entry **sym_hashes;
1049 bfd_signed_vma *local_got_refcounts;
1050 const Elf_Internal_Rela *rel, *relend;
1051
1052 elf_section_data (sec)->local_dynrel = NULL;
1053
1054 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1055 sym_hashes = elf_sym_hashes (abfd);
1056 local_got_refcounts = elf_local_got_refcounts (abfd);
1057
1058 relend = relocs + sec->reloc_count;
1059 for (rel = relocs; rel < relend; rel++)
1060 {
1061 unsigned long r_symndx;
1062 unsigned int r_type;
1063 struct elf_link_hash_entry *h = NULL;
1064
1065 r_symndx = ELF64_R_SYM (rel->r_info);
1066 if (r_symndx >= symtab_hdr->sh_info)
1067 {
1068 struct elf64_x86_64_link_hash_entry *eh;
1069 struct elf64_x86_64_dyn_relocs **pp;
1070 struct elf64_x86_64_dyn_relocs *p;
1071
1072 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1073 while (h->root.type == bfd_link_hash_indirect
1074 || h->root.type == bfd_link_hash_warning)
1075 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1076 eh = (struct elf64_x86_64_link_hash_entry *) h;
1077
1078 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1079 if (p->sec == sec)
1080 {
1081 /* Everything must go for SEC. */
1082 *pp = p->next;
1083 break;
1084 }
1085 }
1086
1087 r_type = ELF64_R_TYPE (rel->r_info);
1088 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1089 switch (r_type)
1090 {
1091 case R_X86_64_TLSLD:
1092 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1093 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1094 break;
1095
1096 case R_X86_64_TLSGD:
1097 case R_X86_64_GOTTPOFF:
1098 case R_X86_64_GOT32:
1099 case R_X86_64_GOTPCREL:
1100 if (h != NULL)
1101 {
1102 if (h->got.refcount > 0)
1103 h->got.refcount -= 1;
1104 }
1105 else if (local_got_refcounts != NULL)
1106 {
1107 if (local_got_refcounts[r_symndx] > 0)
1108 local_got_refcounts[r_symndx] -= 1;
1109 }
1110 break;
1111
1112 case R_X86_64_8:
1113 case R_X86_64_16:
1114 case R_X86_64_32:
1115 case R_X86_64_64:
1116 case R_X86_64_32S:
1117 case R_X86_64_PC8:
1118 case R_X86_64_PC16:
1119 case R_X86_64_PC32:
1120 case R_X86_64_PC64:
1121 if (info->shared)
1122 break;
1123 /* Fall thru */
1124
1125 case R_X86_64_PLT32:
1126 if (h != NULL)
1127 {
1128 if (h->plt.refcount > 0)
1129 h->plt.refcount -= 1;
1130 }
1131 break;
1132
1133 default:
1134 break;
1135 }
1136 }
1137
1138 return TRUE;
1139 }
1140
1141 /* Adjust a symbol defined by a dynamic object and referenced by a
1142 regular object. The current definition is in some section of the
1143 dynamic object, but we're not including those sections. We have to
1144 change the definition to something the rest of the link can
1145 understand. */
1146
1147 static bfd_boolean
1148 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1149 struct elf_link_hash_entry *h)
1150 {
1151 struct elf64_x86_64_link_hash_table *htab;
1152 asection *s;
1153 unsigned int power_of_two;
1154
1155 /* If this is a function, put it in the procedure linkage table. We
1156 will fill in the contents of the procedure linkage table later,
1157 when we know the address of the .got section. */
1158 if (h->type == STT_FUNC
1159 || h->needs_plt)
1160 {
1161 if (h->plt.refcount <= 0
1162 || SYMBOL_CALLS_LOCAL (info, h)
1163 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && h->root.type == bfd_link_hash_undefweak))
1165 {
1166 /* This case can occur if we saw a PLT32 reloc in an input
1167 file, but the symbol was never referred to by a dynamic
1168 object, or if all references were garbage collected. In
1169 such a case, we don't actually need to build a procedure
1170 linkage table, and we can just do a PC32 reloc instead. */
1171 h->plt.offset = (bfd_vma) -1;
1172 h->needs_plt = 0;
1173 }
1174
1175 return TRUE;
1176 }
1177 else
1178 /* It's possible that we incorrectly decided a .plt reloc was
1179 needed for an R_X86_64_PC32 reloc to a non-function sym in
1180 check_relocs. We can't decide accurately between function and
1181 non-function syms in check-relocs; Objects loaded later in
1182 the link may change h->type. So fix it now. */
1183 h->plt.offset = (bfd_vma) -1;
1184
1185 /* If this is a weak symbol, and there is a real definition, the
1186 processor independent code will have arranged for us to see the
1187 real definition first, and we can just use the same value. */
1188 if (h->u.weakdef != NULL)
1189 {
1190 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1191 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1192 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1193 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1194 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1195 h->non_got_ref = h->u.weakdef->non_got_ref;
1196 return TRUE;
1197 }
1198
1199 /* This is a reference to a symbol defined by a dynamic object which
1200 is not a function. */
1201
1202 /* If we are creating a shared library, we must presume that the
1203 only references to the symbol are via the global offset table.
1204 For such cases we need not do anything here; the relocations will
1205 be handled correctly by relocate_section. */
1206 if (info->shared)
1207 return TRUE;
1208
1209 /* If there are no references to this symbol that do not use the
1210 GOT, we don't need to generate a copy reloc. */
1211 if (!h->non_got_ref)
1212 return TRUE;
1213
1214 /* If -z nocopyreloc was given, we won't generate them either. */
1215 if (info->nocopyreloc)
1216 {
1217 h->non_got_ref = 0;
1218 return TRUE;
1219 }
1220
1221 if (ELIMINATE_COPY_RELOCS)
1222 {
1223 struct elf64_x86_64_link_hash_entry * eh;
1224 struct elf64_x86_64_dyn_relocs *p;
1225
1226 eh = (struct elf64_x86_64_link_hash_entry *) h;
1227 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1228 {
1229 s = p->sec->output_section;
1230 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1231 break;
1232 }
1233
1234 /* If we didn't find any dynamic relocs in read-only sections, then
1235 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1236 if (p == NULL)
1237 {
1238 h->non_got_ref = 0;
1239 return TRUE;
1240 }
1241 }
1242
1243 /* We must allocate the symbol in our .dynbss section, which will
1244 become part of the .bss section of the executable. There will be
1245 an entry for this symbol in the .dynsym section. The dynamic
1246 object will contain position independent code, so all references
1247 from the dynamic object to this symbol will go through the global
1248 offset table. The dynamic linker will use the .dynsym entry to
1249 determine the address it must put in the global offset table, so
1250 both the dynamic object and the regular object will refer to the
1251 same memory location for the variable. */
1252
1253 htab = elf64_x86_64_hash_table (info);
1254
1255 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1256 to copy the initial value out of the dynamic object and into the
1257 runtime process image. */
1258 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1259 {
1260 htab->srelbss->size += sizeof (Elf64_External_Rela);
1261 h->needs_copy = 1;
1262 }
1263
1264 /* We need to figure out the alignment required for this symbol. I
1265 have no idea how ELF linkers handle this. 16-bytes is the size
1266 of the largest type that requires hard alignment -- long double. */
1267 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1268 this construct. */
1269 power_of_two = bfd_log2 (h->size);
1270 if (power_of_two > 4)
1271 power_of_two = 4;
1272
1273 /* Apply the required alignment. */
1274 s = htab->sdynbss;
1275 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1276 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1277 {
1278 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1279 return FALSE;
1280 }
1281
1282 /* Define the symbol as being at this point in the section. */
1283 h->root.u.def.section = s;
1284 h->root.u.def.value = s->size;
1285
1286 /* Increment the section size to make room for the symbol. */
1287 s->size += h->size;
1288
1289 return TRUE;
1290 }
1291
1292 /* Allocate space in .plt, .got and associated reloc sections for
1293 dynamic relocs. */
1294
1295 static bfd_boolean
1296 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1297 {
1298 struct bfd_link_info *info;
1299 struct elf64_x86_64_link_hash_table *htab;
1300 struct elf64_x86_64_link_hash_entry *eh;
1301 struct elf64_x86_64_dyn_relocs *p;
1302
1303 if (h->root.type == bfd_link_hash_indirect)
1304 return TRUE;
1305
1306 if (h->root.type == bfd_link_hash_warning)
1307 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1308
1309 info = (struct bfd_link_info *) inf;
1310 htab = elf64_x86_64_hash_table (info);
1311
1312 if (htab->elf.dynamic_sections_created
1313 && h->plt.refcount > 0)
1314 {
1315 /* Make sure this symbol is output as a dynamic symbol.
1316 Undefined weak syms won't yet be marked as dynamic. */
1317 if (h->dynindx == -1
1318 && !h->forced_local)
1319 {
1320 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1321 return FALSE;
1322 }
1323
1324 if (info->shared
1325 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1326 {
1327 asection *s = htab->splt;
1328
1329 /* If this is the first .plt entry, make room for the special
1330 first entry. */
1331 if (s->size == 0)
1332 s->size += PLT_ENTRY_SIZE;
1333
1334 h->plt.offset = s->size;
1335
1336 /* If this symbol is not defined in a regular file, and we are
1337 not generating a shared library, then set the symbol to this
1338 location in the .plt. This is required to make function
1339 pointers compare as equal between the normal executable and
1340 the shared library. */
1341 if (! info->shared
1342 && !h->def_regular)
1343 {
1344 h->root.u.def.section = s;
1345 h->root.u.def.value = h->plt.offset;
1346 }
1347
1348 /* Make room for this entry. */
1349 s->size += PLT_ENTRY_SIZE;
1350
1351 /* We also need to make an entry in the .got.plt section, which
1352 will be placed in the .got section by the linker script. */
1353 htab->sgotplt->size += GOT_ENTRY_SIZE;
1354
1355 /* We also need to make an entry in the .rela.plt section. */
1356 htab->srelplt->size += sizeof (Elf64_External_Rela);
1357 }
1358 else
1359 {
1360 h->plt.offset = (bfd_vma) -1;
1361 h->needs_plt = 0;
1362 }
1363 }
1364 else
1365 {
1366 h->plt.offset = (bfd_vma) -1;
1367 h->needs_plt = 0;
1368 }
1369
1370 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1371 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1372 if (h->got.refcount > 0
1373 && !info->shared
1374 && h->dynindx == -1
1375 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1376 h->got.offset = (bfd_vma) -1;
1377 else if (h->got.refcount > 0)
1378 {
1379 asection *s;
1380 bfd_boolean dyn;
1381 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1382
1383 /* Make sure this symbol is output as a dynamic symbol.
1384 Undefined weak syms won't yet be marked as dynamic. */
1385 if (h->dynindx == -1
1386 && !h->forced_local)
1387 {
1388 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1389 return FALSE;
1390 }
1391
1392 s = htab->sgot;
1393 h->got.offset = s->size;
1394 s->size += GOT_ENTRY_SIZE;
1395 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1396 if (tls_type == GOT_TLS_GD)
1397 s->size += GOT_ENTRY_SIZE;
1398 dyn = htab->elf.dynamic_sections_created;
1399 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1400 and two if global.
1401 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1402 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1403 || tls_type == GOT_TLS_IE)
1404 htab->srelgot->size += sizeof (Elf64_External_Rela);
1405 else if (tls_type == GOT_TLS_GD)
1406 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1407 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1408 || h->root.type != bfd_link_hash_undefweak)
1409 && (info->shared
1410 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1411 htab->srelgot->size += sizeof (Elf64_External_Rela);
1412 }
1413 else
1414 h->got.offset = (bfd_vma) -1;
1415
1416 eh = (struct elf64_x86_64_link_hash_entry *) h;
1417 if (eh->dyn_relocs == NULL)
1418 return TRUE;
1419
1420 /* In the shared -Bsymbolic case, discard space allocated for
1421 dynamic pc-relative relocs against symbols which turn out to be
1422 defined in regular objects. For the normal shared case, discard
1423 space for pc-relative relocs that have become local due to symbol
1424 visibility changes. */
1425
1426 if (info->shared)
1427 {
1428 /* Relocs that use pc_count are those that appear on a call
1429 insn, or certain REL relocs that can generated via assembly.
1430 We want calls to protected symbols to resolve directly to the
1431 function rather than going via the plt. If people want
1432 function pointer comparisons to work as expected then they
1433 should avoid writing weird assembly. */
1434 if (SYMBOL_CALLS_LOCAL (info, h))
1435 {
1436 struct elf64_x86_64_dyn_relocs **pp;
1437
1438 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1439 {
1440 p->count -= p->pc_count;
1441 p->pc_count = 0;
1442 if (p->count == 0)
1443 *pp = p->next;
1444 else
1445 pp = &p->next;
1446 }
1447 }
1448
1449 /* Also discard relocs on undefined weak syms with non-default
1450 visibility. */
1451 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1452 && h->root.type == bfd_link_hash_undefweak)
1453 eh->dyn_relocs = NULL;
1454 }
1455 else if (ELIMINATE_COPY_RELOCS)
1456 {
1457 /* For the non-shared case, discard space for relocs against
1458 symbols which turn out to need copy relocs or are not
1459 dynamic. */
1460
1461 if (!h->non_got_ref
1462 && ((h->def_dynamic
1463 && !h->def_regular)
1464 || (htab->elf.dynamic_sections_created
1465 && (h->root.type == bfd_link_hash_undefweak
1466 || h->root.type == bfd_link_hash_undefined))))
1467 {
1468 /* Make sure this symbol is output as a dynamic symbol.
1469 Undefined weak syms won't yet be marked as dynamic. */
1470 if (h->dynindx == -1
1471 && !h->forced_local)
1472 {
1473 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1474 return FALSE;
1475 }
1476
1477 /* If that succeeded, we know we'll be keeping all the
1478 relocs. */
1479 if (h->dynindx != -1)
1480 goto keep;
1481 }
1482
1483 eh->dyn_relocs = NULL;
1484
1485 keep: ;
1486 }
1487
1488 /* Finally, allocate space. */
1489 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1490 {
1491 asection *sreloc = elf_section_data (p->sec)->sreloc;
1492 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1493 }
1494
1495 return TRUE;
1496 }
1497
1498 /* Find any dynamic relocs that apply to read-only sections. */
1499
1500 static bfd_boolean
1501 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1502 {
1503 struct elf64_x86_64_link_hash_entry *eh;
1504 struct elf64_x86_64_dyn_relocs *p;
1505
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1508
1509 eh = (struct elf64_x86_64_link_hash_entry *) h;
1510 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1511 {
1512 asection *s = p->sec->output_section;
1513
1514 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1515 {
1516 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1517
1518 info->flags |= DF_TEXTREL;
1519
1520 /* Not an error, just cut short the traversal. */
1521 return FALSE;
1522 }
1523 }
1524 return TRUE;
1525 }
1526
1527 /* Set the sizes of the dynamic sections. */
1528
1529 static bfd_boolean
1530 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1531 struct bfd_link_info *info)
1532 {
1533 struct elf64_x86_64_link_hash_table *htab;
1534 bfd *dynobj;
1535 asection *s;
1536 bfd_boolean relocs;
1537 bfd *ibfd;
1538
1539 htab = elf64_x86_64_hash_table (info);
1540 dynobj = htab->elf.dynobj;
1541 if (dynobj == NULL)
1542 abort ();
1543
1544 if (htab->elf.dynamic_sections_created)
1545 {
1546 /* Set the contents of the .interp section to the interpreter. */
1547 if (info->executable)
1548 {
1549 s = bfd_get_section_by_name (dynobj, ".interp");
1550 if (s == NULL)
1551 abort ();
1552 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1553 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1554 }
1555 }
1556
1557 /* Set up .got offsets for local syms, and space for local dynamic
1558 relocs. */
1559 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1560 {
1561 bfd_signed_vma *local_got;
1562 bfd_signed_vma *end_local_got;
1563 char *local_tls_type;
1564 bfd_size_type locsymcount;
1565 Elf_Internal_Shdr *symtab_hdr;
1566 asection *srel;
1567
1568 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1569 continue;
1570
1571 for (s = ibfd->sections; s != NULL; s = s->next)
1572 {
1573 struct elf64_x86_64_dyn_relocs *p;
1574
1575 for (p = *((struct elf64_x86_64_dyn_relocs **)
1576 &elf_section_data (s)->local_dynrel);
1577 p != NULL;
1578 p = p->next)
1579 {
1580 if (!bfd_is_abs_section (p->sec)
1581 && bfd_is_abs_section (p->sec->output_section))
1582 {
1583 /* Input section has been discarded, either because
1584 it is a copy of a linkonce section or due to
1585 linker script /DISCARD/, so we'll be discarding
1586 the relocs too. */
1587 }
1588 else if (p->count != 0)
1589 {
1590 srel = elf_section_data (p->sec)->sreloc;
1591 srel->size += p->count * sizeof (Elf64_External_Rela);
1592 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1593 info->flags |= DF_TEXTREL;
1594
1595 }
1596 }
1597 }
1598
1599 local_got = elf_local_got_refcounts (ibfd);
1600 if (!local_got)
1601 continue;
1602
1603 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1604 locsymcount = symtab_hdr->sh_info;
1605 end_local_got = local_got + locsymcount;
1606 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1607 s = htab->sgot;
1608 srel = htab->srelgot;
1609 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1610 {
1611 if (*local_got > 0)
1612 {
1613 *local_got = s->size;
1614 s->size += GOT_ENTRY_SIZE;
1615 if (*local_tls_type == GOT_TLS_GD)
1616 s->size += GOT_ENTRY_SIZE;
1617 if (info->shared
1618 || *local_tls_type == GOT_TLS_GD
1619 || *local_tls_type == GOT_TLS_IE)
1620 srel->size += sizeof (Elf64_External_Rela);
1621 }
1622 else
1623 *local_got = (bfd_vma) -1;
1624 }
1625 }
1626
1627 if (htab->tls_ld_got.refcount > 0)
1628 {
1629 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1630 relocs. */
1631 htab->tls_ld_got.offset = htab->sgot->size;
1632 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1633 htab->srelgot->size += sizeof (Elf64_External_Rela);
1634 }
1635 else
1636 htab->tls_ld_got.offset = -1;
1637
1638 /* Allocate global sym .plt and .got entries, and space for global
1639 sym dynamic relocs. */
1640 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1641
1642 /* We now have determined the sizes of the various dynamic sections.
1643 Allocate memory for them. */
1644 relocs = FALSE;
1645 for (s = dynobj->sections; s != NULL; s = s->next)
1646 {
1647 if ((s->flags & SEC_LINKER_CREATED) == 0)
1648 continue;
1649
1650 if (s == htab->splt
1651 || s == htab->sgot
1652 || s == htab->sgotplt
1653 || s == htab->sdynbss)
1654 {
1655 /* Strip this section if we don't need it; see the
1656 comment below. */
1657 }
1658 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1659 {
1660 if (s->size != 0 && s != htab->srelplt)
1661 relocs = TRUE;
1662
1663 /* We use the reloc_count field as a counter if we need
1664 to copy relocs into the output file. */
1665 s->reloc_count = 0;
1666 }
1667 else
1668 {
1669 /* It's not one of our sections, so don't allocate space. */
1670 continue;
1671 }
1672
1673 if (s->size == 0)
1674 {
1675 /* If we don't need this section, strip it from the
1676 output file. This is mostly to handle .rela.bss and
1677 .rela.plt. We must create both sections in
1678 create_dynamic_sections, because they must be created
1679 before the linker maps input sections to output
1680 sections. The linker does that before
1681 adjust_dynamic_symbol is called, and it is that
1682 function which decides whether anything needs to go
1683 into these sections. */
1684
1685 s->flags |= SEC_EXCLUDE;
1686 continue;
1687 }
1688
1689 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1690 continue;
1691
1692 /* Allocate memory for the section contents. We use bfd_zalloc
1693 here in case unused entries are not reclaimed before the
1694 section's contents are written out. This should not happen,
1695 but this way if it does, we get a R_X86_64_NONE reloc instead
1696 of garbage. */
1697 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1698 if (s->contents == NULL)
1699 return FALSE;
1700 }
1701
1702 if (htab->elf.dynamic_sections_created)
1703 {
1704 /* Add some entries to the .dynamic section. We fill in the
1705 values later, in elf64_x86_64_finish_dynamic_sections, but we
1706 must add the entries now so that we get the correct size for
1707 the .dynamic section. The DT_DEBUG entry is filled in by the
1708 dynamic linker and used by the debugger. */
1709 #define add_dynamic_entry(TAG, VAL) \
1710 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1711
1712 if (info->executable)
1713 {
1714 if (!add_dynamic_entry (DT_DEBUG, 0))
1715 return FALSE;
1716 }
1717
1718 if (htab->splt->size != 0)
1719 {
1720 if (!add_dynamic_entry (DT_PLTGOT, 0)
1721 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1722 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1723 || !add_dynamic_entry (DT_JMPREL, 0))
1724 return FALSE;
1725 }
1726
1727 if (relocs)
1728 {
1729 if (!add_dynamic_entry (DT_RELA, 0)
1730 || !add_dynamic_entry (DT_RELASZ, 0)
1731 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1732 return FALSE;
1733
1734 /* If any dynamic relocs apply to a read-only section,
1735 then we need a DT_TEXTREL entry. */
1736 if ((info->flags & DF_TEXTREL) == 0)
1737 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1738 (PTR) info);
1739
1740 if ((info->flags & DF_TEXTREL) != 0)
1741 {
1742 if (!add_dynamic_entry (DT_TEXTREL, 0))
1743 return FALSE;
1744 }
1745 }
1746 }
1747 #undef add_dynamic_entry
1748
1749 return TRUE;
1750 }
1751
1752 /* Return the base VMA address which should be subtracted from real addresses
1753 when resolving @dtpoff relocation.
1754 This is PT_TLS segment p_vaddr. */
1755
1756 static bfd_vma
1757 dtpoff_base (struct bfd_link_info *info)
1758 {
1759 /* If tls_sec is NULL, we should have signalled an error already. */
1760 if (elf_hash_table (info)->tls_sec == NULL)
1761 return 0;
1762 return elf_hash_table (info)->tls_sec->vma;
1763 }
1764
1765 /* Return the relocation value for @tpoff relocation
1766 if STT_TLS virtual address is ADDRESS. */
1767
1768 static bfd_vma
1769 tpoff (struct bfd_link_info *info, bfd_vma address)
1770 {
1771 struct elf_link_hash_table *htab = elf_hash_table (info);
1772
1773 /* If tls_segment is NULL, we should have signalled an error already. */
1774 if (htab->tls_sec == NULL)
1775 return 0;
1776 return address - htab->tls_size - htab->tls_sec->vma;
1777 }
1778
1779 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
1780 branch? */
1781
1782 static bfd_boolean
1783 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
1784 {
1785 /* Opcode Instruction
1786 0xe8 call
1787 0xe9 jump
1788 0x0f 0x8x conditional jump */
1789 return ((offset > 0
1790 && (contents [offset - 1] == 0xe8
1791 || contents [offset - 1] == 0xe9))
1792 || (offset > 1
1793 && contents [offset - 2] == 0x0f
1794 && (contents [offset - 1] & 0xf0) == 0x80));
1795 }
1796
1797 /* Relocate an x86_64 ELF section. */
1798
1799 static bfd_boolean
1800 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1801 bfd *input_bfd, asection *input_section,
1802 bfd_byte *contents, Elf_Internal_Rela *relocs,
1803 Elf_Internal_Sym *local_syms,
1804 asection **local_sections)
1805 {
1806 struct elf64_x86_64_link_hash_table *htab;
1807 Elf_Internal_Shdr *symtab_hdr;
1808 struct elf_link_hash_entry **sym_hashes;
1809 bfd_vma *local_got_offsets;
1810 Elf_Internal_Rela *rel;
1811 Elf_Internal_Rela *relend;
1812
1813 if (info->relocatable)
1814 return TRUE;
1815
1816 htab = elf64_x86_64_hash_table (info);
1817 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1818 sym_hashes = elf_sym_hashes (input_bfd);
1819 local_got_offsets = elf_local_got_offsets (input_bfd);
1820
1821 rel = relocs;
1822 relend = relocs + input_section->reloc_count;
1823 for (; rel < relend; rel++)
1824 {
1825 unsigned int r_type;
1826 reloc_howto_type *howto;
1827 unsigned long r_symndx;
1828 struct elf_link_hash_entry *h;
1829 Elf_Internal_Sym *sym;
1830 asection *sec;
1831 bfd_vma off;
1832 bfd_vma relocation;
1833 bfd_boolean unresolved_reloc;
1834 bfd_reloc_status_type r;
1835 int tls_type;
1836
1837 r_type = ELF64_R_TYPE (rel->r_info);
1838 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1839 || r_type == (int) R_X86_64_GNU_VTENTRY)
1840 continue;
1841
1842 if (r_type >= R_X86_64_max)
1843 {
1844 bfd_set_error (bfd_error_bad_value);
1845 return FALSE;
1846 }
1847
1848 howto = x86_64_elf_howto_table + r_type;
1849 r_symndx = ELF64_R_SYM (rel->r_info);
1850 h = NULL;
1851 sym = NULL;
1852 sec = NULL;
1853 unresolved_reloc = FALSE;
1854 if (r_symndx < symtab_hdr->sh_info)
1855 {
1856 sym = local_syms + r_symndx;
1857 sec = local_sections[r_symndx];
1858
1859 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1860 }
1861 else
1862 {
1863 bfd_boolean warned;
1864
1865 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1866 r_symndx, symtab_hdr, sym_hashes,
1867 h, sec, relocation,
1868 unresolved_reloc, warned);
1869 }
1870 /* When generating a shared object, the relocations handled here are
1871 copied into the output file to be resolved at run time. */
1872 switch (r_type)
1873 {
1874 case R_X86_64_GOT32:
1875 /* Relocation is to the entry for this symbol in the global
1876 offset table. */
1877 case R_X86_64_GOTPCREL:
1878 /* Use global offset table as symbol value. */
1879 if (htab->sgot == NULL)
1880 abort ();
1881
1882 if (h != NULL)
1883 {
1884 bfd_boolean dyn;
1885
1886 off = h->got.offset;
1887 dyn = htab->elf.dynamic_sections_created;
1888
1889 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1890 || (info->shared
1891 && SYMBOL_REFERENCES_LOCAL (info, h))
1892 || (ELF_ST_VISIBILITY (h->other)
1893 && h->root.type == bfd_link_hash_undefweak))
1894 {
1895 /* This is actually a static link, or it is a -Bsymbolic
1896 link and the symbol is defined locally, or the symbol
1897 was forced to be local because of a version file. We
1898 must initialize this entry in the global offset table.
1899 Since the offset must always be a multiple of 8, we
1900 use the least significant bit to record whether we
1901 have initialized it already.
1902
1903 When doing a dynamic link, we create a .rela.got
1904 relocation entry to initialize the value. This is
1905 done in the finish_dynamic_symbol routine. */
1906 if ((off & 1) != 0)
1907 off &= ~1;
1908 else
1909 {
1910 bfd_put_64 (output_bfd, relocation,
1911 htab->sgot->contents + off);
1912 h->got.offset |= 1;
1913 }
1914 }
1915 else
1916 unresolved_reloc = FALSE;
1917 }
1918 else
1919 {
1920 if (local_got_offsets == NULL)
1921 abort ();
1922
1923 off = local_got_offsets[r_symndx];
1924
1925 /* The offset must always be a multiple of 8. We use
1926 the least significant bit to record whether we have
1927 already generated the necessary reloc. */
1928 if ((off & 1) != 0)
1929 off &= ~1;
1930 else
1931 {
1932 bfd_put_64 (output_bfd, relocation,
1933 htab->sgot->contents + off);
1934
1935 if (info->shared)
1936 {
1937 asection *s;
1938 Elf_Internal_Rela outrel;
1939 bfd_byte *loc;
1940
1941 /* We need to generate a R_X86_64_RELATIVE reloc
1942 for the dynamic linker. */
1943 s = htab->srelgot;
1944 if (s == NULL)
1945 abort ();
1946
1947 outrel.r_offset = (htab->sgot->output_section->vma
1948 + htab->sgot->output_offset
1949 + off);
1950 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1951 outrel.r_addend = relocation;
1952 loc = s->contents;
1953 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1954 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1955 }
1956
1957 local_got_offsets[r_symndx] |= 1;
1958 }
1959 }
1960
1961 if (off >= (bfd_vma) -2)
1962 abort ();
1963
1964 relocation = htab->sgot->output_section->vma
1965 + htab->sgot->output_offset + off;
1966 if (r_type != R_X86_64_GOTPCREL)
1967 relocation -= htab->sgotplt->output_section->vma
1968 - htab->sgotplt->output_offset;
1969
1970 break;
1971
1972 case R_X86_64_GOTOFF64:
1973 /* Relocation is relative to the start of the global offset
1974 table. */
1975
1976 /* Check to make sure it isn't a protected function symbol
1977 for shared library since it may not be local when used
1978 as function address. */
1979 if (info->shared
1980 && h
1981 && h->def_regular
1982 && h->type == STT_FUNC
1983 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1984 {
1985 (*_bfd_error_handler)
1986 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
1987 input_bfd, h->root.root.string);
1988 bfd_set_error (bfd_error_bad_value);
1989 return FALSE;
1990 }
1991
1992 /* Note that sgot is not involved in this
1993 calculation. We always want the start of .got.plt. If we
1994 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
1995 permitted by the ABI, we might have to change this
1996 calculation. */
1997 relocation -= htab->sgotplt->output_section->vma
1998 + htab->sgotplt->output_offset;
1999 break;
2000
2001 case R_X86_64_GOTPC32:
2002 /* Use global offset table as symbol value. */
2003 relocation = htab->sgotplt->output_section->vma
2004 + htab->sgotplt->output_offset;
2005 unresolved_reloc = FALSE;
2006 break;
2007
2008 case R_X86_64_PLT32:
2009 /* Relocation is to the entry for this symbol in the
2010 procedure linkage table. */
2011
2012 /* Resolve a PLT32 reloc against a local symbol directly,
2013 without using the procedure linkage table. */
2014 if (h == NULL)
2015 break;
2016
2017 if (h->plt.offset == (bfd_vma) -1
2018 || htab->splt == NULL)
2019 {
2020 /* We didn't make a PLT entry for this symbol. This
2021 happens when statically linking PIC code, or when
2022 using -Bsymbolic. */
2023 break;
2024 }
2025
2026 relocation = (htab->splt->output_section->vma
2027 + htab->splt->output_offset
2028 + h->plt.offset);
2029 unresolved_reloc = FALSE;
2030 break;
2031
2032 case R_X86_64_PC8:
2033 case R_X86_64_PC16:
2034 case R_X86_64_PC32:
2035 if (info->shared
2036 && !SYMBOL_REFERENCES_LOCAL (info, h)
2037 && (input_section->flags & SEC_ALLOC) != 0
2038 && (input_section->flags & SEC_READONLY) != 0
2039 && (!h->def_regular
2040 || r_type != R_X86_64_PC32
2041 || h->type != STT_FUNC
2042 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2043 || !is_32bit_relative_branch (contents,
2044 rel->r_offset)))
2045 {
2046 if (h->def_regular
2047 && r_type == R_X86_64_PC32
2048 && h->type == STT_FUNC
2049 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2050 (*_bfd_error_handler)
2051 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2052 input_bfd, h->root.root.string);
2053 else
2054 (*_bfd_error_handler)
2055 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2056 input_bfd, x86_64_elf_howto_table[r_type].name,
2057 h->root.root.string);
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 /* Fall through. */
2062
2063 case R_X86_64_8:
2064 case R_X86_64_16:
2065 case R_X86_64_32:
2066 case R_X86_64_PC64:
2067 case R_X86_64_64:
2068 /* FIXME: The ABI says the linker should make sure the value is
2069 the same when it's zeroextended to 64 bit. */
2070
2071 /* r_symndx will be zero only for relocs against symbols
2072 from removed linkonce sections, or sections discarded by
2073 a linker script. */
2074 if (r_symndx == 0
2075 || (input_section->flags & SEC_ALLOC) == 0)
2076 break;
2077
2078 if ((info->shared
2079 && (h == NULL
2080 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2081 || h->root.type != bfd_link_hash_undefweak)
2082 && ((r_type != R_X86_64_PC8
2083 && r_type != R_X86_64_PC16
2084 && r_type != R_X86_64_PC32
2085 && r_type != R_X86_64_PC64)
2086 || !SYMBOL_CALLS_LOCAL (info, h)))
2087 || (ELIMINATE_COPY_RELOCS
2088 && !info->shared
2089 && h != NULL
2090 && h->dynindx != -1
2091 && !h->non_got_ref
2092 && ((h->def_dynamic
2093 && !h->def_regular)
2094 || h->root.type == bfd_link_hash_undefweak
2095 || h->root.type == bfd_link_hash_undefined)))
2096 {
2097 Elf_Internal_Rela outrel;
2098 bfd_byte *loc;
2099 bfd_boolean skip, relocate;
2100 asection *sreloc;
2101
2102 /* When generating a shared object, these relocations
2103 are copied into the output file to be resolved at run
2104 time. */
2105 skip = FALSE;
2106 relocate = FALSE;
2107
2108 outrel.r_offset =
2109 _bfd_elf_section_offset (output_bfd, info, input_section,
2110 rel->r_offset);
2111 if (outrel.r_offset == (bfd_vma) -1)
2112 skip = TRUE;
2113 else if (outrel.r_offset == (bfd_vma) -2)
2114 skip = TRUE, relocate = TRUE;
2115
2116 outrel.r_offset += (input_section->output_section->vma
2117 + input_section->output_offset);
2118
2119 if (skip)
2120 memset (&outrel, 0, sizeof outrel);
2121
2122 /* h->dynindx may be -1 if this symbol was marked to
2123 become local. */
2124 else if (h != NULL
2125 && h->dynindx != -1
2126 && (r_type == R_X86_64_PC8
2127 || r_type == R_X86_64_PC16
2128 || r_type == R_X86_64_PC32
2129 || r_type == R_X86_64_PC64
2130 || !info->shared
2131 || !info->symbolic
2132 || !h->def_regular))
2133 {
2134 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2135 outrel.r_addend = rel->r_addend;
2136 }
2137 else
2138 {
2139 /* This symbol is local, or marked to become local. */
2140 if (r_type == R_X86_64_64)
2141 {
2142 relocate = TRUE;
2143 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2144 outrel.r_addend = relocation + rel->r_addend;
2145 }
2146 else
2147 {
2148 long sindx;
2149
2150 if (bfd_is_abs_section (sec))
2151 sindx = 0;
2152 else if (sec == NULL || sec->owner == NULL)
2153 {
2154 bfd_set_error (bfd_error_bad_value);
2155 return FALSE;
2156 }
2157 else
2158 {
2159 asection *osec;
2160
2161 osec = sec->output_section;
2162 sindx = elf_section_data (osec)->dynindx;
2163 BFD_ASSERT (sindx > 0);
2164 }
2165
2166 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2167 outrel.r_addend = relocation + rel->r_addend;
2168 }
2169 }
2170
2171 sreloc = elf_section_data (input_section)->sreloc;
2172 if (sreloc == NULL)
2173 abort ();
2174
2175 loc = sreloc->contents;
2176 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2177 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2178
2179 /* If this reloc is against an external symbol, we do
2180 not want to fiddle with the addend. Otherwise, we
2181 need to include the symbol value so that it becomes
2182 an addend for the dynamic reloc. */
2183 if (! relocate)
2184 continue;
2185 }
2186
2187 break;
2188
2189 case R_X86_64_TLSGD:
2190 case R_X86_64_GOTTPOFF:
2191 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2192 tls_type = GOT_UNKNOWN;
2193 if (h == NULL && local_got_offsets)
2194 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2195 else if (h != NULL)
2196 {
2197 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2198 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2199 r_type = R_X86_64_TPOFF32;
2200 }
2201 if (r_type == R_X86_64_TLSGD)
2202 {
2203 if (tls_type == GOT_TLS_IE)
2204 r_type = R_X86_64_GOTTPOFF;
2205 }
2206
2207 if (r_type == R_X86_64_TPOFF32)
2208 {
2209 BFD_ASSERT (! unresolved_reloc);
2210 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2211 {
2212 unsigned int i;
2213 static unsigned char tlsgd[8]
2214 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2215
2216 /* GD->LE transition.
2217 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2218 .word 0x6666; rex64; call __tls_get_addr@plt
2219 Change it into:
2220 movq %fs:0, %rax
2221 leaq foo@tpoff(%rax), %rax */
2222 BFD_ASSERT (rel->r_offset >= 4);
2223 for (i = 0; i < 4; i++)
2224 BFD_ASSERT (bfd_get_8 (input_bfd,
2225 contents + rel->r_offset - 4 + i)
2226 == tlsgd[i]);
2227 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2228 for (i = 0; i < 4; i++)
2229 BFD_ASSERT (bfd_get_8 (input_bfd,
2230 contents + rel->r_offset + 4 + i)
2231 == tlsgd[i+4]);
2232 BFD_ASSERT (rel + 1 < relend);
2233 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2234 memcpy (contents + rel->r_offset - 4,
2235 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2236 16);
2237 bfd_put_32 (output_bfd, tpoff (info, relocation),
2238 contents + rel->r_offset + 8);
2239 /* Skip R_X86_64_PLT32. */
2240 rel++;
2241 continue;
2242 }
2243 else
2244 {
2245 unsigned int val, type, reg;
2246
2247 /* IE->LE transition:
2248 Originally it can be one of:
2249 movq foo@gottpoff(%rip), %reg
2250 addq foo@gottpoff(%rip), %reg
2251 We change it into:
2252 movq $foo, %reg
2253 leaq foo(%reg), %reg
2254 addq $foo, %reg. */
2255 BFD_ASSERT (rel->r_offset >= 3);
2256 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2257 BFD_ASSERT (val == 0x48 || val == 0x4c);
2258 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2259 BFD_ASSERT (type == 0x8b || type == 0x03);
2260 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2261 BFD_ASSERT ((reg & 0xc7) == 5);
2262 reg >>= 3;
2263 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2264 if (type == 0x8b)
2265 {
2266 /* movq */
2267 if (val == 0x4c)
2268 bfd_put_8 (output_bfd, 0x49,
2269 contents + rel->r_offset - 3);
2270 bfd_put_8 (output_bfd, 0xc7,
2271 contents + rel->r_offset - 2);
2272 bfd_put_8 (output_bfd, 0xc0 | reg,
2273 contents + rel->r_offset - 1);
2274 }
2275 else if (reg == 4)
2276 {
2277 /* addq -> addq - addressing with %rsp/%r12 is
2278 special */
2279 if (val == 0x4c)
2280 bfd_put_8 (output_bfd, 0x49,
2281 contents + rel->r_offset - 3);
2282 bfd_put_8 (output_bfd, 0x81,
2283 contents + rel->r_offset - 2);
2284 bfd_put_8 (output_bfd, 0xc0 | reg,
2285 contents + rel->r_offset - 1);
2286 }
2287 else
2288 {
2289 /* addq -> leaq */
2290 if (val == 0x4c)
2291 bfd_put_8 (output_bfd, 0x4d,
2292 contents + rel->r_offset - 3);
2293 bfd_put_8 (output_bfd, 0x8d,
2294 contents + rel->r_offset - 2);
2295 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2296 contents + rel->r_offset - 1);
2297 }
2298 bfd_put_32 (output_bfd, tpoff (info, relocation),
2299 contents + rel->r_offset);
2300 continue;
2301 }
2302 }
2303
2304 if (htab->sgot == NULL)
2305 abort ();
2306
2307 if (h != NULL)
2308 off = h->got.offset;
2309 else
2310 {
2311 if (local_got_offsets == NULL)
2312 abort ();
2313
2314 off = local_got_offsets[r_symndx];
2315 }
2316
2317 if ((off & 1) != 0)
2318 off &= ~1;
2319 else
2320 {
2321 Elf_Internal_Rela outrel;
2322 bfd_byte *loc;
2323 int dr_type, indx;
2324
2325 if (htab->srelgot == NULL)
2326 abort ();
2327
2328 outrel.r_offset = (htab->sgot->output_section->vma
2329 + htab->sgot->output_offset + off);
2330
2331 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2332 if (r_type == R_X86_64_TLSGD)
2333 dr_type = R_X86_64_DTPMOD64;
2334 else
2335 dr_type = R_X86_64_TPOFF64;
2336
2337 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2338 outrel.r_addend = 0;
2339 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2340 outrel.r_addend = relocation - dtpoff_base (info);
2341 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2342
2343 loc = htab->srelgot->contents;
2344 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2345 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2346
2347 if (r_type == R_X86_64_TLSGD)
2348 {
2349 if (indx == 0)
2350 {
2351 BFD_ASSERT (! unresolved_reloc);
2352 bfd_put_64 (output_bfd,
2353 relocation - dtpoff_base (info),
2354 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2355 }
2356 else
2357 {
2358 bfd_put_64 (output_bfd, 0,
2359 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2360 outrel.r_info = ELF64_R_INFO (indx,
2361 R_X86_64_DTPOFF64);
2362 outrel.r_offset += GOT_ENTRY_SIZE;
2363 htab->srelgot->reloc_count++;
2364 loc += sizeof (Elf64_External_Rela);
2365 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2366 }
2367 }
2368
2369 if (h != NULL)
2370 h->got.offset |= 1;
2371 else
2372 local_got_offsets[r_symndx] |= 1;
2373 }
2374
2375 if (off >= (bfd_vma) -2)
2376 abort ();
2377 if (r_type == ELF64_R_TYPE (rel->r_info))
2378 {
2379 relocation = htab->sgot->output_section->vma
2380 + htab->sgot->output_offset + off;
2381 unresolved_reloc = FALSE;
2382 }
2383 else
2384 {
2385 unsigned int i;
2386 static unsigned char tlsgd[8]
2387 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2388
2389 /* GD->IE transition.
2390 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2391 .word 0x6666; rex64; call __tls_get_addr@plt
2392 Change it into:
2393 movq %fs:0, %rax
2394 addq foo@gottpoff(%rip), %rax */
2395 BFD_ASSERT (rel->r_offset >= 4);
2396 for (i = 0; i < 4; i++)
2397 BFD_ASSERT (bfd_get_8 (input_bfd,
2398 contents + rel->r_offset - 4 + i)
2399 == tlsgd[i]);
2400 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2401 for (i = 0; i < 4; i++)
2402 BFD_ASSERT (bfd_get_8 (input_bfd,
2403 contents + rel->r_offset + 4 + i)
2404 == tlsgd[i+4]);
2405 BFD_ASSERT (rel + 1 < relend);
2406 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2407 memcpy (contents + rel->r_offset - 4,
2408 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2409 16);
2410
2411 relocation = (htab->sgot->output_section->vma
2412 + htab->sgot->output_offset + off
2413 - rel->r_offset
2414 - input_section->output_section->vma
2415 - input_section->output_offset
2416 - 12);
2417 bfd_put_32 (output_bfd, relocation,
2418 contents + rel->r_offset + 8);
2419 /* Skip R_X86_64_PLT32. */
2420 rel++;
2421 continue;
2422 }
2423 break;
2424
2425 case R_X86_64_TLSLD:
2426 if (! info->shared)
2427 {
2428 /* LD->LE transition:
2429 Ensure it is:
2430 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2431 We change it into:
2432 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2433 BFD_ASSERT (rel->r_offset >= 3);
2434 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2435 == 0x48);
2436 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2437 == 0x8d);
2438 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2439 == 0x3d);
2440 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2441 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2442 == 0xe8);
2443 BFD_ASSERT (rel + 1 < relend);
2444 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2445 memcpy (contents + rel->r_offset - 3,
2446 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2447 /* Skip R_X86_64_PLT32. */
2448 rel++;
2449 continue;
2450 }
2451
2452 if (htab->sgot == NULL)
2453 abort ();
2454
2455 off = htab->tls_ld_got.offset;
2456 if (off & 1)
2457 off &= ~1;
2458 else
2459 {
2460 Elf_Internal_Rela outrel;
2461 bfd_byte *loc;
2462
2463 if (htab->srelgot == NULL)
2464 abort ();
2465
2466 outrel.r_offset = (htab->sgot->output_section->vma
2467 + htab->sgot->output_offset + off);
2468
2469 bfd_put_64 (output_bfd, 0,
2470 htab->sgot->contents + off);
2471 bfd_put_64 (output_bfd, 0,
2472 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2473 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2474 outrel.r_addend = 0;
2475 loc = htab->srelgot->contents;
2476 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2477 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2478 htab->tls_ld_got.offset |= 1;
2479 }
2480 relocation = htab->sgot->output_section->vma
2481 + htab->sgot->output_offset + off;
2482 unresolved_reloc = FALSE;
2483 break;
2484
2485 case R_X86_64_DTPOFF32:
2486 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2487 relocation -= dtpoff_base (info);
2488 else
2489 relocation = tpoff (info, relocation);
2490 break;
2491
2492 case R_X86_64_TPOFF32:
2493 BFD_ASSERT (! info->shared);
2494 relocation = tpoff (info, relocation);
2495 break;
2496
2497 default:
2498 break;
2499 }
2500
2501 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2502 because such sections are not SEC_ALLOC and thus ld.so will
2503 not process them. */
2504 if (unresolved_reloc
2505 && !((input_section->flags & SEC_DEBUGGING) != 0
2506 && h->def_dynamic))
2507 (*_bfd_error_handler)
2508 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2509 input_bfd,
2510 input_section,
2511 (long) rel->r_offset,
2512 h->root.root.string);
2513
2514 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2515 contents, rel->r_offset,
2516 relocation, rel->r_addend);
2517
2518 if (r != bfd_reloc_ok)
2519 {
2520 const char *name;
2521
2522 if (h != NULL)
2523 name = h->root.root.string;
2524 else
2525 {
2526 name = bfd_elf_string_from_elf_section (input_bfd,
2527 symtab_hdr->sh_link,
2528 sym->st_name);
2529 if (name == NULL)
2530 return FALSE;
2531 if (*name == '\0')
2532 name = bfd_section_name (input_bfd, sec);
2533 }
2534
2535 if (r == bfd_reloc_overflow)
2536 {
2537 if (h != NULL
2538 && h->root.type == bfd_link_hash_undefweak
2539 && howto->pc_relative)
2540 /* Ignore reloc overflow on branches to undefweak syms. */
2541 continue;
2542
2543 if (! ((*info->callbacks->reloc_overflow)
2544 (info, (h ? &h->root : NULL), name, howto->name,
2545 (bfd_vma) 0, input_bfd, input_section,
2546 rel->r_offset)))
2547 return FALSE;
2548 }
2549 else
2550 {
2551 (*_bfd_error_handler)
2552 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2553 input_bfd, input_section,
2554 (long) rel->r_offset, name, (int) r);
2555 return FALSE;
2556 }
2557 }
2558 }
2559
2560 return TRUE;
2561 }
2562
2563 /* Finish up dynamic symbol handling. We set the contents of various
2564 dynamic sections here. */
2565
2566 static bfd_boolean
2567 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2568 struct bfd_link_info *info,
2569 struct elf_link_hash_entry *h,
2570 Elf_Internal_Sym *sym)
2571 {
2572 struct elf64_x86_64_link_hash_table *htab;
2573
2574 htab = elf64_x86_64_hash_table (info);
2575
2576 if (h->plt.offset != (bfd_vma) -1)
2577 {
2578 bfd_vma plt_index;
2579 bfd_vma got_offset;
2580 Elf_Internal_Rela rela;
2581 bfd_byte *loc;
2582
2583 /* This symbol has an entry in the procedure linkage table. Set
2584 it up. */
2585 if (h->dynindx == -1
2586 || htab->splt == NULL
2587 || htab->sgotplt == NULL
2588 || htab->srelplt == NULL)
2589 abort ();
2590
2591 /* Get the index in the procedure linkage table which
2592 corresponds to this symbol. This is the index of this symbol
2593 in all the symbols for which we are making plt entries. The
2594 first entry in the procedure linkage table is reserved. */
2595 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2596
2597 /* Get the offset into the .got table of the entry that
2598 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2599 bytes. The first three are reserved for the dynamic linker. */
2600 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2601
2602 /* Fill in the entry in the procedure linkage table. */
2603 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2604 PLT_ENTRY_SIZE);
2605
2606 /* Insert the relocation positions of the plt section. The magic
2607 numbers at the end of the statements are the positions of the
2608 relocations in the plt section. */
2609 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2610 instruction uses 6 bytes, subtract this value. */
2611 bfd_put_32 (output_bfd,
2612 (htab->sgotplt->output_section->vma
2613 + htab->sgotplt->output_offset
2614 + got_offset
2615 - htab->splt->output_section->vma
2616 - htab->splt->output_offset
2617 - h->plt.offset
2618 - 6),
2619 htab->splt->contents + h->plt.offset + 2);
2620 /* Put relocation index. */
2621 bfd_put_32 (output_bfd, plt_index,
2622 htab->splt->contents + h->plt.offset + 7);
2623 /* Put offset for jmp .PLT0. */
2624 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2625 htab->splt->contents + h->plt.offset + 12);
2626
2627 /* Fill in the entry in the global offset table, initially this
2628 points to the pushq instruction in the PLT which is at offset 6. */
2629 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2630 + htab->splt->output_offset
2631 + h->plt.offset + 6),
2632 htab->sgotplt->contents + got_offset);
2633
2634 /* Fill in the entry in the .rela.plt section. */
2635 rela.r_offset = (htab->sgotplt->output_section->vma
2636 + htab->sgotplt->output_offset
2637 + got_offset);
2638 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2639 rela.r_addend = 0;
2640 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2641 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2642
2643 if (!h->def_regular)
2644 {
2645 /* Mark the symbol as undefined, rather than as defined in
2646 the .plt section. Leave the value if there were any
2647 relocations where pointer equality matters (this is a clue
2648 for the dynamic linker, to make function pointer
2649 comparisons work between an application and shared
2650 library), otherwise set it to zero. If a function is only
2651 called from a binary, there is no need to slow down
2652 shared libraries because of that. */
2653 sym->st_shndx = SHN_UNDEF;
2654 if (!h->pointer_equality_needed)
2655 sym->st_value = 0;
2656 }
2657 }
2658
2659 if (h->got.offset != (bfd_vma) -1
2660 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2661 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2662 {
2663 Elf_Internal_Rela rela;
2664 bfd_byte *loc;
2665
2666 /* This symbol has an entry in the global offset table. Set it
2667 up. */
2668 if (htab->sgot == NULL || htab->srelgot == NULL)
2669 abort ();
2670
2671 rela.r_offset = (htab->sgot->output_section->vma
2672 + htab->sgot->output_offset
2673 + (h->got.offset &~ (bfd_vma) 1));
2674
2675 /* If this is a static link, or it is a -Bsymbolic link and the
2676 symbol is defined locally or was forced to be local because
2677 of a version file, we just want to emit a RELATIVE reloc.
2678 The entry in the global offset table will already have been
2679 initialized in the relocate_section function. */
2680 if (info->shared
2681 && SYMBOL_REFERENCES_LOCAL (info, h))
2682 {
2683 BFD_ASSERT((h->got.offset & 1) != 0);
2684 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2685 rela.r_addend = (h->root.u.def.value
2686 + h->root.u.def.section->output_section->vma
2687 + h->root.u.def.section->output_offset);
2688 }
2689 else
2690 {
2691 BFD_ASSERT((h->got.offset & 1) == 0);
2692 bfd_put_64 (output_bfd, (bfd_vma) 0,
2693 htab->sgot->contents + h->got.offset);
2694 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2695 rela.r_addend = 0;
2696 }
2697
2698 loc = htab->srelgot->contents;
2699 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2700 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2701 }
2702
2703 if (h->needs_copy)
2704 {
2705 Elf_Internal_Rela rela;
2706 bfd_byte *loc;
2707
2708 /* This symbol needs a copy reloc. Set it up. */
2709
2710 if (h->dynindx == -1
2711 || (h->root.type != bfd_link_hash_defined
2712 && h->root.type != bfd_link_hash_defweak)
2713 || htab->srelbss == NULL)
2714 abort ();
2715
2716 rela.r_offset = (h->root.u.def.value
2717 + h->root.u.def.section->output_section->vma
2718 + h->root.u.def.section->output_offset);
2719 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2720 rela.r_addend = 0;
2721 loc = htab->srelbss->contents;
2722 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2723 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2724 }
2725
2726 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2727 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2728 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2729 sym->st_shndx = SHN_ABS;
2730
2731 return TRUE;
2732 }
2733
2734 /* Used to decide how to sort relocs in an optimal manner for the
2735 dynamic linker, before writing them out. */
2736
2737 static enum elf_reloc_type_class
2738 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2739 {
2740 switch ((int) ELF64_R_TYPE (rela->r_info))
2741 {
2742 case R_X86_64_RELATIVE:
2743 return reloc_class_relative;
2744 case R_X86_64_JUMP_SLOT:
2745 return reloc_class_plt;
2746 case R_X86_64_COPY:
2747 return reloc_class_copy;
2748 default:
2749 return reloc_class_normal;
2750 }
2751 }
2752
2753 /* Finish up the dynamic sections. */
2754
2755 static bfd_boolean
2756 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2757 {
2758 struct elf64_x86_64_link_hash_table *htab;
2759 bfd *dynobj;
2760 asection *sdyn;
2761
2762 htab = elf64_x86_64_hash_table (info);
2763 dynobj = htab->elf.dynobj;
2764 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2765
2766 if (htab->elf.dynamic_sections_created)
2767 {
2768 Elf64_External_Dyn *dyncon, *dynconend;
2769
2770 if (sdyn == NULL || htab->sgot == NULL)
2771 abort ();
2772
2773 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2774 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2775 for (; dyncon < dynconend; dyncon++)
2776 {
2777 Elf_Internal_Dyn dyn;
2778 asection *s;
2779
2780 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2781
2782 switch (dyn.d_tag)
2783 {
2784 default:
2785 continue;
2786
2787 case DT_PLTGOT:
2788 s = htab->sgotplt;
2789 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2790 break;
2791
2792 case DT_JMPREL:
2793 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2794 break;
2795
2796 case DT_PLTRELSZ:
2797 s = htab->srelplt->output_section;
2798 dyn.d_un.d_val = s->size;
2799 break;
2800
2801 case DT_RELASZ:
2802 /* The procedure linkage table relocs (DT_JMPREL) should
2803 not be included in the overall relocs (DT_RELA).
2804 Therefore, we override the DT_RELASZ entry here to
2805 make it not include the JMPREL relocs. Since the
2806 linker script arranges for .rela.plt to follow all
2807 other relocation sections, we don't have to worry
2808 about changing the DT_RELA entry. */
2809 if (htab->srelplt != NULL)
2810 {
2811 s = htab->srelplt->output_section;
2812 dyn.d_un.d_val -= s->size;
2813 }
2814 break;
2815 }
2816
2817 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2818 }
2819
2820 /* Fill in the special first entry in the procedure linkage table. */
2821 if (htab->splt && htab->splt->size > 0)
2822 {
2823 /* Fill in the first entry in the procedure linkage table. */
2824 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2825 PLT_ENTRY_SIZE);
2826 /* Add offset for pushq GOT+8(%rip), since the instruction
2827 uses 6 bytes subtract this value. */
2828 bfd_put_32 (output_bfd,
2829 (htab->sgotplt->output_section->vma
2830 + htab->sgotplt->output_offset
2831 + 8
2832 - htab->splt->output_section->vma
2833 - htab->splt->output_offset
2834 - 6),
2835 htab->splt->contents + 2);
2836 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2837 the end of the instruction. */
2838 bfd_put_32 (output_bfd,
2839 (htab->sgotplt->output_section->vma
2840 + htab->sgotplt->output_offset
2841 + 16
2842 - htab->splt->output_section->vma
2843 - htab->splt->output_offset
2844 - 12),
2845 htab->splt->contents + 8);
2846
2847 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2848 PLT_ENTRY_SIZE;
2849 }
2850 }
2851
2852 if (htab->sgotplt)
2853 {
2854 /* Fill in the first three entries in the global offset table. */
2855 if (htab->sgotplt->size > 0)
2856 {
2857 /* Set the first entry in the global offset table to the address of
2858 the dynamic section. */
2859 if (sdyn == NULL)
2860 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2861 else
2862 bfd_put_64 (output_bfd,
2863 sdyn->output_section->vma + sdyn->output_offset,
2864 htab->sgotplt->contents);
2865 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2866 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2867 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2868 }
2869
2870 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2871 GOT_ENTRY_SIZE;
2872 }
2873
2874 if (htab->sgot && htab->sgot->size > 0)
2875 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
2876 = GOT_ENTRY_SIZE;
2877
2878 return TRUE;
2879 }
2880
2881 /* Return address for Ith PLT stub in section PLT, for relocation REL
2882 or (bfd_vma) -1 if it should not be included. */
2883
2884 static bfd_vma
2885 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
2886 const arelent *rel ATTRIBUTE_UNUSED)
2887 {
2888 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
2889 }
2890
2891 /* Handle an x86-64 specific section when reading an object file. This
2892 is called when elfcode.h finds a section with an unknown type. */
2893
2894 static bfd_boolean
2895 elf64_x86_64_section_from_shdr (bfd *abfd,
2896 Elf_Internal_Shdr *hdr,
2897 const char *name,
2898 int shindex)
2899 {
2900 if (hdr->sh_type != SHT_X86_64_UNWIND)
2901 return FALSE;
2902
2903 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Hook called by the linker routine which adds symbols from an object
2910 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
2911 of .bss. */
2912
2913 static bfd_boolean
2914 elf64_x86_64_add_symbol_hook (bfd *abfd,
2915 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2916 Elf_Internal_Sym *sym,
2917 const char **namep ATTRIBUTE_UNUSED,
2918 flagword *flagsp ATTRIBUTE_UNUSED,
2919 asection **secp, bfd_vma *valp)
2920 {
2921 asection *lcomm;
2922
2923 switch (sym->st_shndx)
2924 {
2925 case SHN_X86_64_LCOMMON:
2926 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
2927 if (lcomm == NULL)
2928 {
2929 lcomm = bfd_make_section_with_flags (abfd,
2930 "LARGE_COMMON",
2931 (SEC_ALLOC
2932 | SEC_IS_COMMON
2933 | SEC_LINKER_CREATED));
2934 if (lcomm == NULL)
2935 return FALSE;
2936 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
2937 }
2938 *secp = lcomm;
2939 *valp = sym->st_size;
2940 break;
2941 }
2942 return TRUE;
2943 }
2944
2945
2946 /* Given a BFD section, try to locate the corresponding ELF section
2947 index. */
2948
2949 static bfd_boolean
2950 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
2951 asection *sec, int *index)
2952 {
2953 if (sec == &_bfd_elf_large_com_section)
2954 {
2955 *index = SHN_X86_64_LCOMMON;
2956 return TRUE;
2957 }
2958 return FALSE;
2959 }
2960
2961 /* Process a symbol. */
2962
2963 static void
2964 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
2965 asymbol *asym)
2966 {
2967 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
2968
2969 switch (elfsym->internal_elf_sym.st_shndx)
2970 {
2971 case SHN_X86_64_LCOMMON:
2972 asym->section = &_bfd_elf_large_com_section;
2973 asym->value = elfsym->internal_elf_sym.st_size;
2974 /* Common symbol doesn't set BSF_GLOBAL. */
2975 asym->flags &= ~BSF_GLOBAL;
2976 break;
2977 }
2978 }
2979
2980 static bfd_boolean
2981 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
2982 {
2983 return (sym->st_shndx == SHN_COMMON
2984 || sym->st_shndx == SHN_X86_64_LCOMMON);
2985 }
2986
2987 static unsigned int
2988 elf64_x86_64_common_section_index (asection *sec)
2989 {
2990 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
2991 return SHN_COMMON;
2992 else
2993 return SHN_X86_64_LCOMMON;
2994 }
2995
2996 static asection *
2997 elf64_x86_64_common_section (asection *sec)
2998 {
2999 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3000 return bfd_com_section_ptr;
3001 else
3002 return &_bfd_elf_large_com_section;
3003 }
3004
3005 static bfd_boolean
3006 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3007 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3008 struct elf_link_hash_entry *h,
3009 Elf_Internal_Sym *sym,
3010 asection **psec ATTRIBUTE_UNUSED,
3011 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3012 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3013 bfd_boolean *skip ATTRIBUTE_UNUSED,
3014 bfd_boolean *override ATTRIBUTE_UNUSED,
3015 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3016 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3017 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3018 bfd_boolean *newdyn,
3019 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3020 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3021 bfd *abfd ATTRIBUTE_UNUSED,
3022 asection **sec,
3023 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3024 bfd_boolean *olddyn,
3025 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3026 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3027 bfd *oldbfd ATTRIBUTE_UNUSED,
3028 asection **oldsec)
3029 {
3030 /* A normal common symbol and a large common symbol result in a
3031 normal common symbol. If we see the normal symbol first, we
3032 do nothing since the first one will be used. If we see the
3033 large common symbol first, we need to change the large common
3034 symbol to the normal common symbol. */
3035 if (!*olddyn
3036 && h->root.type == bfd_link_hash_common
3037 && !*newdyn
3038 && bfd_is_com_section (*sec)
3039 && *oldsec != *sec
3040 && sym->st_shndx == SHN_COMMON
3041 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3042 {
3043 h->root.u.c.p->section = bfd_make_section_old_way (abfd,
3044 "COMMON");
3045 h->root.u.c.p->section->flags = SEC_ALLOC;
3046 }
3047
3048 return TRUE;
3049 }
3050
3051 static int
3052 elf64_x86_64_additional_program_headers (bfd *abfd)
3053 {
3054 asection *s;
3055 int count = 0;
3056
3057 /* Check to see if we need a large readonly segment. */
3058 s = bfd_get_section_by_name (abfd, ".lrodata");
3059 if (s && (s->flags & SEC_LOAD))
3060 count++;
3061
3062 /* Check to see if we need a large data segment. Since .lbss sections
3063 is placed right after the .bss section, there should be no need for
3064 a large data segment just because of .lbss. */
3065 s = bfd_get_section_by_name (abfd, ".ldata");
3066 if (s && (s->flags & SEC_LOAD))
3067 count++;
3068
3069 return count;
3070 }
3071
3072 static const struct bfd_elf_special_section
3073 elf64_x86_64_special_sections[]=
3074 {
3075 { ".gnu.linkonce.lb", 16, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3076 { ".gnu.linkonce.lr", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3077 { ".gnu.linkonce.lt", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3078 { ".lbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3079 { ".ldata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3080 { ".lrodata", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3081 { NULL, 0, 0, 0, 0 }
3082 };
3083
3084 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3085 #define TARGET_LITTLE_NAME "elf64-x86-64"
3086 #define ELF_ARCH bfd_arch_i386
3087 #define ELF_MACHINE_CODE EM_X86_64
3088 #define ELF_MAXPAGESIZE 0x100000
3089
3090 #define elf_backend_can_gc_sections 1
3091 #define elf_backend_can_refcount 1
3092 #define elf_backend_want_got_plt 1
3093 #define elf_backend_plt_readonly 1
3094 #define elf_backend_want_plt_sym 0
3095 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3096 #define elf_backend_rela_normal 1
3097
3098 #define elf_info_to_howto elf64_x86_64_info_to_howto
3099
3100 #define bfd_elf64_bfd_link_hash_table_create \
3101 elf64_x86_64_link_hash_table_create
3102 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3103
3104 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3105 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3106 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3107 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3108 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3109 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3110 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3111 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3112 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3113 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3114 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3115 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3116 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3117 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3118 #define elf_backend_object_p elf64_x86_64_elf_object_p
3119 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3120
3121 #define elf_backend_section_from_shdr \
3122 elf64_x86_64_section_from_shdr
3123
3124 #define elf_backend_section_from_bfd_section \
3125 elf64_x86_64_elf_section_from_bfd_section
3126 #define elf_backend_add_symbol_hook \
3127 elf64_x86_64_add_symbol_hook
3128 #define elf_backend_symbol_processing \
3129 elf64_x86_64_symbol_processing
3130 #define elf_backend_common_section_index \
3131 elf64_x86_64_common_section_index
3132 #define elf_backend_common_section \
3133 elf64_x86_64_common_section
3134 #define elf_backend_common_definition \
3135 elf64_x86_64_common_definition
3136 #define elf_backend_merge_symbol \
3137 elf64_x86_64_merge_symbol
3138 #define elf_backend_special_sections \
3139 elf64_x86_64_special_sections
3140 #define elf_backend_additional_program_headers \
3141 elf64_x86_64_additional_program_headers
3142
3143 #include "elf64-target.h"