]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-x86-64.c
s/boolean/bfd_boolean/ s/true/TRUE/ s/false/FALSE/. Simplify
[thirdparty/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 #include "elf/x86-64.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
36 {
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
39 FALSE),
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
42 FALSE),
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
45 TRUE),
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
48 FALSE),
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
51 TRUE),
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
54 FALSE),
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
57 MINUS_ONE, FALSE),
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
66 0xffffffff, TRUE),
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
92 0xffffffff, TRUE),
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
98 0xffffffff, FALSE),
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
101 0xffffffff, TRUE),
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
104 0xffffffff, FALSE),
105
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
109
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
113 FALSE)
114 };
115
116 /* Map BFD relocs to the x86_64 elf relocs. */
117 struct elf_reloc_map
118 {
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
121 };
122
123 static const struct elf_reloc_map x86_64_reloc_map[] =
124 {
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
151 };
152
153 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
154 PARAMS ((bfd *, bfd_reloc_code_real_type));
155 static void elf64_x86_64_info_to_howto
156 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
157 static bfd_boolean elf64_x86_64_grok_prstatus
158 PARAMS ((bfd *, Elf_Internal_Note *));
159 static bfd_boolean elf64_x86_64_grok_psinfo
160 PARAMS ((bfd *, Elf_Internal_Note *));
161 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
162 PARAMS ((bfd *));
163 static int elf64_x86_64_tls_transition
164 PARAMS ((struct bfd_link_info *, int, int));
165 static bfd_boolean elf64_x86_64_mkobject
166 PARAMS((bfd *));
167 static bfd_boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
168 static bfd_boolean create_got_section
169 PARAMS((bfd *, struct bfd_link_info *));
170 static bfd_boolean elf64_x86_64_create_dynamic_sections
171 PARAMS((bfd *, struct bfd_link_info *));
172 static void elf64_x86_64_copy_indirect_symbol
173 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
174 struct elf_link_hash_entry *));
175 static bfd_boolean elf64_x86_64_check_relocs
176 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
177 const Elf_Internal_Rela *));
178 static asection *elf64_x86_64_gc_mark_hook
179 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
180 struct elf_link_hash_entry *, Elf_Internal_Sym *));
181
182 static bfd_boolean elf64_x86_64_gc_sweep_hook
183 PARAMS ((bfd *, struct bfd_link_info *, asection *,
184 const Elf_Internal_Rela *));
185
186 static struct bfd_hash_entry *link_hash_newfunc
187 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
188 static bfd_boolean elf64_x86_64_adjust_dynamic_symbol
189 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
190
191 static bfd_boolean allocate_dynrelocs
192 PARAMS ((struct elf_link_hash_entry *, PTR));
193 static bfd_boolean readonly_dynrelocs
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195 static bfd_boolean elf64_x86_64_size_dynamic_sections
196 PARAMS ((bfd *, struct bfd_link_info *));
197 static bfd_vma dtpoff_base
198 PARAMS ((struct bfd_link_info *));
199 static bfd_vma tpoff
200 PARAMS ((struct bfd_link_info *, bfd_vma));
201 static bfd_boolean elf64_x86_64_relocate_section
202 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
203 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
204 static bfd_boolean elf64_x86_64_finish_dynamic_symbol
205 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
206 Elf_Internal_Sym *sym));
207 static bfd_boolean elf64_x86_64_finish_dynamic_sections
208 PARAMS ((bfd *, struct bfd_link_info *));
209 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class
210 PARAMS ((const Elf_Internal_Rela *));
211
212 /* Given a BFD reloc type, return a HOWTO structure. */
213 static reloc_howto_type *
214 elf64_x86_64_reloc_type_lookup (abfd, code)
215 bfd *abfd ATTRIBUTE_UNUSED;
216 bfd_reloc_code_real_type code;
217 {
218 unsigned int i;
219 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
220 i++)
221 {
222 if (x86_64_reloc_map[i].bfd_reloc_val == code)
223 return &x86_64_elf_howto_table[i];
224 }
225 return 0;
226 }
227
228 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
229
230 static void
231 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf_Internal_Rela *dst;
235 {
236 unsigned r_type, i;
237
238 r_type = ELF64_R_TYPE (dst->r_info);
239 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
240 {
241 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
242 i = r_type;
243 }
244 else
245 {
246 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
247 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
248 }
249 cache_ptr->howto = &x86_64_elf_howto_table[i];
250 BFD_ASSERT (r_type == cache_ptr->howto->type);
251 }
252 \f
253 /* Support for core dump NOTE sections. */
254 static bfd_boolean
255 elf64_x86_64_grok_prstatus (abfd, note)
256 bfd *abfd;
257 Elf_Internal_Note *note;
258 {
259 int offset;
260 size_t raw_size;
261
262 switch (note->descsz)
263 {
264 default:
265 return FALSE;
266
267 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
268 /* pr_cursig */
269 elf_tdata (abfd)->core_signal
270 = bfd_get_16 (abfd, note->descdata + 12);
271
272 /* pr_pid */
273 elf_tdata (abfd)->core_pid
274 = bfd_get_32 (abfd, note->descdata + 32);
275
276 /* pr_reg */
277 offset = 112;
278 raw_size = 216;
279
280 break;
281 }
282
283 /* Make a ".reg/999" section. */
284 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
285 raw_size, note->descpos + offset);
286 }
287
288 static bfd_boolean
289 elf64_x86_64_grok_psinfo (abfd, note)
290 bfd *abfd;
291 Elf_Internal_Note *note;
292 {
293 switch (note->descsz)
294 {
295 default:
296 return FALSE;
297
298 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
299 elf_tdata (abfd)->core_program
300 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
301 elf_tdata (abfd)->core_command
302 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
303 }
304
305 /* Note that for some reason, a spurious space is tacked
306 onto the end of the args in some (at least one anyway)
307 implementations, so strip it off if it exists. */
308
309 {
310 char *command = elf_tdata (abfd)->core_command;
311 int n = strlen (command);
312
313 if (0 < n && command[n - 1] == ' ')
314 command[n - 1] = '\0';
315 }
316
317 return TRUE;
318 }
319 \f
320 /* Functions for the x86-64 ELF linker. */
321
322 /* The name of the dynamic interpreter. This is put in the .interp
323 section. */
324
325 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
326
327 /* The size in bytes of an entry in the global offset table. */
328
329 #define GOT_ENTRY_SIZE 8
330
331 /* The size in bytes of an entry in the procedure linkage table. */
332
333 #define PLT_ENTRY_SIZE 16
334
335 /* The first entry in a procedure linkage table looks like this. See the
336 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
337
338 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
339 {
340 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
341 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
342 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
343 };
344
345 /* Subsequent entries in a procedure linkage table look like this. */
346
347 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
348 {
349 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
350 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
351 0x68, /* pushq immediate */
352 0, 0, 0, 0, /* replaced with index into relocation table. */
353 0xe9, /* jmp relative */
354 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
355 };
356
357 /* The x86-64 linker needs to keep track of the number of relocs that
358 it decides to copy as dynamic relocs in check_relocs for each symbol.
359 This is so that it can later discard them if they are found to be
360 unnecessary. We store the information in a field extending the
361 regular ELF linker hash table. */
362
363 struct elf64_x86_64_dyn_relocs
364 {
365 /* Next section. */
366 struct elf64_x86_64_dyn_relocs *next;
367
368 /* The input section of the reloc. */
369 asection *sec;
370
371 /* Total number of relocs copied for the input section. */
372 bfd_size_type count;
373
374 /* Number of pc-relative relocs copied for the input section. */
375 bfd_size_type pc_count;
376 };
377
378 /* x86-64 ELF linker hash entry. */
379
380 struct elf64_x86_64_link_hash_entry
381 {
382 struct elf_link_hash_entry elf;
383
384 /* Track dynamic relocs copied for this symbol. */
385 struct elf64_x86_64_dyn_relocs *dyn_relocs;
386
387 #define GOT_UNKNOWN 0
388 #define GOT_NORMAL 1
389 #define GOT_TLS_GD 2
390 #define GOT_TLS_IE 3
391 unsigned char tls_type;
392 };
393
394 #define elf64_x86_64_hash_entry(ent) \
395 ((struct elf64_x86_64_link_hash_entry *)(ent))
396
397 struct elf64_x86_64_obj_tdata
398 {
399 struct elf_obj_tdata root;
400
401 /* tls_type for each local got entry. */
402 char *local_got_tls_type;
403 };
404
405 #define elf64_x86_64_tdata(abfd) \
406 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
407
408 #define elf64_x86_64_local_got_tls_type(abfd) \
409 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
410
411
412 /* x86-64 ELF linker hash table. */
413
414 struct elf64_x86_64_link_hash_table
415 {
416 struct elf_link_hash_table elf;
417
418 /* Short-cuts to get to dynamic linker sections. */
419 asection *sgot;
420 asection *sgotplt;
421 asection *srelgot;
422 asection *splt;
423 asection *srelplt;
424 asection *sdynbss;
425 asection *srelbss;
426
427 union {
428 bfd_signed_vma refcount;
429 bfd_vma offset;
430 } tls_ld_got;
431
432 /* Small local sym to section mapping cache. */
433 struct sym_sec_cache sym_sec;
434 };
435
436 /* Get the x86-64 ELF linker hash table from a link_info structure. */
437
438 #define elf64_x86_64_hash_table(p) \
439 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
440
441 /* Create an entry in an x86-64 ELF linker hash table. */
442
443 static struct bfd_hash_entry *
444 link_hash_newfunc (entry, table, string)
445 struct bfd_hash_entry *entry;
446 struct bfd_hash_table *table;
447 const char *string;
448 {
449 /* Allocate the structure if it has not already been allocated by a
450 subclass. */
451 if (entry == NULL)
452 {
453 entry = bfd_hash_allocate (table,
454 sizeof (struct elf64_x86_64_link_hash_entry));
455 if (entry == NULL)
456 return entry;
457 }
458
459 /* Call the allocation method of the superclass. */
460 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
461 if (entry != NULL)
462 {
463 struct elf64_x86_64_link_hash_entry *eh;
464
465 eh = (struct elf64_x86_64_link_hash_entry *) entry;
466 eh->dyn_relocs = NULL;
467 eh->tls_type = GOT_UNKNOWN;
468 }
469
470 return entry;
471 }
472
473 /* Create an X86-64 ELF linker hash table. */
474
475 static struct bfd_link_hash_table *
476 elf64_x86_64_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf64_x86_64_link_hash_table *ret;
480 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
481
482 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
487 {
488 free (ret);
489 return NULL;
490 }
491
492 ret->sgot = NULL;
493 ret->sgotplt = NULL;
494 ret->srelgot = NULL;
495 ret->splt = NULL;
496 ret->srelplt = NULL;
497 ret->sdynbss = NULL;
498 ret->srelbss = NULL;
499 ret->sym_sec.abfd = NULL;
500 ret->tls_ld_got.refcount = 0;
501
502 return &ret->elf.root;
503 }
504
505 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
506 shortcuts to them in our hash table. */
507
508 static bfd_boolean
509 create_got_section (dynobj, info)
510 bfd *dynobj;
511 struct bfd_link_info *info;
512 {
513 struct elf64_x86_64_link_hash_table *htab;
514
515 if (! _bfd_elf_create_got_section (dynobj, info))
516 return FALSE;
517
518 htab = elf64_x86_64_hash_table (info);
519 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
520 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
521 if (!htab->sgot || !htab->sgotplt)
522 abort ();
523
524 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
525 if (htab->srelgot == NULL
526 || ! bfd_set_section_flags (dynobj, htab->srelgot,
527 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
528 | SEC_IN_MEMORY | SEC_LINKER_CREATED
529 | SEC_READONLY))
530 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
531 return FALSE;
532 return TRUE;
533 }
534
535 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
536 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
537 hash table. */
538
539 static bfd_boolean
540 elf64_x86_64_create_dynamic_sections (dynobj, info)
541 bfd *dynobj;
542 struct bfd_link_info *info;
543 {
544 struct elf64_x86_64_link_hash_table *htab;
545
546 htab = elf64_x86_64_hash_table (info);
547 if (!htab->sgot && !create_got_section (dynobj, info))
548 return FALSE;
549
550 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
551 return FALSE;
552
553 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
554 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
555 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
556 if (!info->shared)
557 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
558
559 if (!htab->splt || !htab->srelplt || !htab->sdynbss
560 || (!info->shared && !htab->srelbss))
561 abort ();
562
563 return TRUE;
564 }
565
566 /* Copy the extra info we tack onto an elf_link_hash_entry. */
567
568 static void
569 elf64_x86_64_copy_indirect_symbol (bed, dir, ind)
570 struct elf_backend_data *bed;
571 struct elf_link_hash_entry *dir, *ind;
572 {
573 struct elf64_x86_64_link_hash_entry *edir, *eind;
574
575 edir = (struct elf64_x86_64_link_hash_entry *) dir;
576 eind = (struct elf64_x86_64_link_hash_entry *) ind;
577
578 if (eind->dyn_relocs != NULL)
579 {
580 if (edir->dyn_relocs != NULL)
581 {
582 struct elf64_x86_64_dyn_relocs **pp;
583 struct elf64_x86_64_dyn_relocs *p;
584
585 if (ind->root.type == bfd_link_hash_indirect)
586 abort ();
587
588 /* Add reloc counts against the weak sym to the strong sym
589 list. Merge any entries against the same section. */
590 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
591 {
592 struct elf64_x86_64_dyn_relocs *q;
593
594 for (q = edir->dyn_relocs; q != NULL; q = q->next)
595 if (q->sec == p->sec)
596 {
597 q->pc_count += p->pc_count;
598 q->count += p->count;
599 *pp = p->next;
600 break;
601 }
602 if (q == NULL)
603 pp = &p->next;
604 }
605 *pp = edir->dyn_relocs;
606 }
607
608 edir->dyn_relocs = eind->dyn_relocs;
609 eind->dyn_relocs = NULL;
610 }
611
612 if (ind->root.type == bfd_link_hash_indirect
613 && dir->got.refcount <= 0)
614 {
615 edir->tls_type = eind->tls_type;
616 eind->tls_type = GOT_UNKNOWN;
617 }
618
619 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
620 }
621
622 static bfd_boolean
623 elf64_x86_64_mkobject (abfd)
624 bfd *abfd;
625 {
626 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
627 abfd->tdata.any = bfd_zalloc (abfd, amt);
628 if (abfd->tdata.any == NULL)
629 return FALSE;
630 return TRUE;
631 }
632
633 static bfd_boolean
634 elf64_x86_64_elf_object_p (abfd)
635 bfd *abfd;
636 {
637 /* Allocate our special target data. */
638 struct elf64_x86_64_obj_tdata *new_tdata;
639 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
640 new_tdata = bfd_zalloc (abfd, amt);
641 if (new_tdata == NULL)
642 return FALSE;
643 new_tdata->root = *abfd->tdata.elf_obj_data;
644 abfd->tdata.any = new_tdata;
645 /* Set the right machine number for an x86-64 elf64 file. */
646 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
647 return TRUE;
648 }
649
650 static int
651 elf64_x86_64_tls_transition (info, r_type, is_local)
652 struct bfd_link_info *info;
653 int r_type;
654 int is_local;
655 {
656 if (info->shared)
657 return r_type;
658
659 switch (r_type)
660 {
661 case R_X86_64_TLSGD:
662 case R_X86_64_GOTTPOFF:
663 if (is_local)
664 return R_X86_64_TPOFF32;
665 return R_X86_64_GOTTPOFF;
666 case R_X86_64_TLSLD:
667 return R_X86_64_TPOFF32;
668 }
669
670 return r_type;
671 }
672
673 /* Look through the relocs for a section during the first phase, and
674 calculate needed space in the global offset table, procedure
675 linkage table, and dynamic reloc sections. */
676
677 static bfd_boolean
678 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
679 bfd *abfd;
680 struct bfd_link_info *info;
681 asection *sec;
682 const Elf_Internal_Rela *relocs;
683 {
684 struct elf64_x86_64_link_hash_table *htab;
685 Elf_Internal_Shdr *symtab_hdr;
686 struct elf_link_hash_entry **sym_hashes;
687 const Elf_Internal_Rela *rel;
688 const Elf_Internal_Rela *rel_end;
689 asection *sreloc;
690
691 if (info->relocateable)
692 return TRUE;
693
694 htab = elf64_x86_64_hash_table (info);
695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
696 sym_hashes = elf_sym_hashes (abfd);
697
698 sreloc = NULL;
699
700 rel_end = relocs + sec->reloc_count;
701 for (rel = relocs; rel < rel_end; rel++)
702 {
703 unsigned int r_type;
704 unsigned long r_symndx;
705 struct elf_link_hash_entry *h;
706
707 r_symndx = ELF64_R_SYM (rel->r_info);
708 r_type = ELF64_R_TYPE (rel->r_info);
709
710 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
711 {
712 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
713 bfd_archive_filename (abfd),
714 r_symndx);
715 return FALSE;
716 }
717
718 if (r_symndx < symtab_hdr->sh_info)
719 h = NULL;
720 else
721 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
722
723 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
724 switch (r_type)
725 {
726 case R_X86_64_TLSLD:
727 htab->tls_ld_got.refcount += 1;
728 goto create_got;
729
730 case R_X86_64_TPOFF32:
731 if (info->shared)
732 {
733 (*_bfd_error_handler)
734 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
735 bfd_archive_filename (abfd),
736 x86_64_elf_howto_table[r_type].name);
737 bfd_set_error (bfd_error_bad_value);
738 return FALSE;
739 }
740 break;
741
742 case R_X86_64_GOTTPOFF:
743 if (info->shared)
744 info->flags |= DF_STATIC_TLS;
745 /* Fall through */
746
747 case R_X86_64_GOT32:
748 case R_X86_64_GOTPCREL:
749 case R_X86_64_TLSGD:
750 /* This symbol requires a global offset table entry. */
751 {
752 int tls_type, old_tls_type;
753
754 switch (r_type)
755 {
756 default: tls_type = GOT_NORMAL; break;
757 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
758 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
759 }
760
761 if (h != NULL)
762 {
763 h->got.refcount += 1;
764 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
765 }
766 else
767 {
768 bfd_signed_vma *local_got_refcounts;
769
770 /* This is a global offset table entry for a local symbol. */
771 local_got_refcounts = elf_local_got_refcounts (abfd);
772 if (local_got_refcounts == NULL)
773 {
774 bfd_size_type size;
775
776 size = symtab_hdr->sh_info;
777 size *= sizeof (bfd_signed_vma) + sizeof (char);
778 local_got_refcounts = ((bfd_signed_vma *)
779 bfd_zalloc (abfd, size));
780 if (local_got_refcounts == NULL)
781 return FALSE;
782 elf_local_got_refcounts (abfd) = local_got_refcounts;
783 elf64_x86_64_local_got_tls_type (abfd)
784 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
785 }
786 local_got_refcounts[r_symndx] += 1;
787 old_tls_type
788 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
789 }
790
791 /* If a TLS symbol is accessed using IE at least once,
792 there is no point to use dynamic model for it. */
793 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
794 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
795 {
796 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
797 tls_type = old_tls_type;
798 else
799 {
800 (*_bfd_error_handler)
801 (_("%s: %s' accessed both as normal and thread local symbol"),
802 bfd_archive_filename (abfd),
803 h ? h->root.root.string : "<local>");
804 return FALSE;
805 }
806 }
807
808 if (old_tls_type != tls_type)
809 {
810 if (h != NULL)
811 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
812 else
813 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
814 }
815 }
816 /* Fall through */
817
818 //case R_X86_64_GOTPCREL:
819 create_got:
820 if (htab->sgot == NULL)
821 {
822 if (htab->elf.dynobj == NULL)
823 htab->elf.dynobj = abfd;
824 if (!create_got_section (htab->elf.dynobj, info))
825 return FALSE;
826 }
827 break;
828
829 case R_X86_64_PLT32:
830 /* This symbol requires a procedure linkage table entry. We
831 actually build the entry in adjust_dynamic_symbol,
832 because this might be a case of linking PIC code which is
833 never referenced by a dynamic object, in which case we
834 don't need to generate a procedure linkage table entry
835 after all. */
836
837 /* If this is a local symbol, we resolve it directly without
838 creating a procedure linkage table entry. */
839 if (h == NULL)
840 continue;
841
842 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
843 h->plt.refcount += 1;
844 break;
845
846 case R_X86_64_8:
847 case R_X86_64_16:
848 case R_X86_64_32:
849 case R_X86_64_32S:
850 /* Let's help debug shared library creation. These relocs
851 cannot be used in shared libs. Don't error out for
852 sections we don't care about, such as debug sections or
853 non-constant sections. */
854 if (info->shared
855 && (sec->flags & SEC_ALLOC) != 0
856 && (sec->flags & SEC_READONLY) != 0)
857 {
858 (*_bfd_error_handler)
859 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
860 bfd_archive_filename (abfd),
861 x86_64_elf_howto_table[r_type].name);
862 bfd_set_error (bfd_error_bad_value);
863 return FALSE;
864 }
865 /* Fall through. */
866
867 case R_X86_64_PC8:
868 case R_X86_64_PC16:
869 case R_X86_64_PC32:
870 case R_X86_64_64:
871 if (h != NULL && !info->shared)
872 {
873 /* If this reloc is in a read-only section, we might
874 need a copy reloc. We can't check reliably at this
875 stage whether the section is read-only, as input
876 sections have not yet been mapped to output sections.
877 Tentatively set the flag for now, and correct in
878 adjust_dynamic_symbol. */
879 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
880
881 /* We may need a .plt entry if the function this reloc
882 refers to is in a shared lib. */
883 h->plt.refcount += 1;
884 }
885
886 /* If we are creating a shared library, and this is a reloc
887 against a global symbol, or a non PC relative reloc
888 against a local symbol, then we need to copy the reloc
889 into the shared library. However, if we are linking with
890 -Bsymbolic, we do not need to copy a reloc against a
891 global symbol which is defined in an object we are
892 including in the link (i.e., DEF_REGULAR is set). At
893 this point we have not seen all the input files, so it is
894 possible that DEF_REGULAR is not set now but will be set
895 later (it is never cleared). In case of a weak definition,
896 DEF_REGULAR may be cleared later by a strong definition in
897 a shared library. We account for that possibility below by
898 storing information in the relocs_copied field of the hash
899 table entry. A similar situation occurs when creating
900 shared libraries and symbol visibility changes render the
901 symbol local.
902
903 If on the other hand, we are creating an executable, we
904 may need to keep relocations for symbols satisfied by a
905 dynamic library if we manage to avoid copy relocs for the
906 symbol. */
907 if ((info->shared
908 && (sec->flags & SEC_ALLOC) != 0
909 && (((r_type != R_X86_64_PC8)
910 && (r_type != R_X86_64_PC16)
911 && (r_type != R_X86_64_PC32))
912 || (h != NULL
913 && (! info->symbolic
914 || h->root.type == bfd_link_hash_defweak
915 || (h->elf_link_hash_flags
916 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
917 || (!info->shared
918 && (sec->flags & SEC_ALLOC) != 0
919 && h != NULL
920 && (h->root.type == bfd_link_hash_defweak
921 || (h->elf_link_hash_flags
922 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
923 {
924 struct elf64_x86_64_dyn_relocs *p;
925 struct elf64_x86_64_dyn_relocs **head;
926
927 /* We must copy these reloc types into the output file.
928 Create a reloc section in dynobj and make room for
929 this reloc. */
930 if (sreloc == NULL)
931 {
932 const char *name;
933 bfd *dynobj;
934
935 name = (bfd_elf_string_from_elf_section
936 (abfd,
937 elf_elfheader (abfd)->e_shstrndx,
938 elf_section_data (sec)->rel_hdr.sh_name));
939 if (name == NULL)
940 return FALSE;
941
942 if (strncmp (name, ".rela", 5) != 0
943 || strcmp (bfd_get_section_name (abfd, sec),
944 name + 5) != 0)
945 {
946 (*_bfd_error_handler)
947 (_("%s: bad relocation section name `%s\'"),
948 bfd_archive_filename (abfd), name);
949 }
950
951 if (htab->elf.dynobj == NULL)
952 htab->elf.dynobj = abfd;
953
954 dynobj = htab->elf.dynobj;
955
956 sreloc = bfd_get_section_by_name (dynobj, name);
957 if (sreloc == NULL)
958 {
959 flagword flags;
960
961 sreloc = bfd_make_section (dynobj, name);
962 flags = (SEC_HAS_CONTENTS | SEC_READONLY
963 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
964 if ((sec->flags & SEC_ALLOC) != 0)
965 flags |= SEC_ALLOC | SEC_LOAD;
966 if (sreloc == NULL
967 || ! bfd_set_section_flags (dynobj, sreloc, flags)
968 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
969 return FALSE;
970 }
971 elf_section_data (sec)->sreloc = sreloc;
972 }
973
974 /* If this is a global symbol, we count the number of
975 relocations we need for this symbol. */
976 if (h != NULL)
977 {
978 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
979 }
980 else
981 {
982 /* Track dynamic relocs needed for local syms too.
983 We really need local syms available to do this
984 easily. Oh well. */
985
986 asection *s;
987 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
988 sec, r_symndx);
989 if (s == NULL)
990 return FALSE;
991
992 head = ((struct elf64_x86_64_dyn_relocs **)
993 &elf_section_data (s)->local_dynrel);
994 }
995
996 p = *head;
997 if (p == NULL || p->sec != sec)
998 {
999 bfd_size_type amt = sizeof *p;
1000 p = ((struct elf64_x86_64_dyn_relocs *)
1001 bfd_alloc (htab->elf.dynobj, amt));
1002 if (p == NULL)
1003 return FALSE;
1004 p->next = *head;
1005 *head = p;
1006 p->sec = sec;
1007 p->count = 0;
1008 p->pc_count = 0;
1009 }
1010
1011 p->count += 1;
1012 if (r_type == R_X86_64_PC8
1013 || r_type == R_X86_64_PC16
1014 || r_type == R_X86_64_PC32)
1015 p->pc_count += 1;
1016 }
1017 break;
1018
1019 /* This relocation describes the C++ object vtable hierarchy.
1020 Reconstruct it for later use during GC. */
1021 case R_X86_64_GNU_VTINHERIT:
1022 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1023 return FALSE;
1024 break;
1025
1026 /* This relocation describes which C++ vtable entries are actually
1027 used. Record for later use during GC. */
1028 case R_X86_64_GNU_VTENTRY:
1029 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1030 return FALSE;
1031 break;
1032
1033 default:
1034 break;
1035 }
1036 }
1037
1038 return TRUE;
1039 }
1040
1041 /* Return the section that should be marked against GC for a given
1042 relocation. */
1043
1044 static asection *
1045 elf64_x86_64_gc_mark_hook (sec, info, rel, h, sym)
1046 asection *sec;
1047 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1048 Elf_Internal_Rela *rel;
1049 struct elf_link_hash_entry *h;
1050 Elf_Internal_Sym *sym;
1051 {
1052 if (h != NULL)
1053 {
1054 switch (ELF64_R_TYPE (rel->r_info))
1055 {
1056 case R_X86_64_GNU_VTINHERIT:
1057 case R_X86_64_GNU_VTENTRY:
1058 break;
1059
1060 default:
1061 switch (h->root.type)
1062 {
1063 case bfd_link_hash_defined:
1064 case bfd_link_hash_defweak:
1065 return h->root.u.def.section;
1066
1067 case bfd_link_hash_common:
1068 return h->root.u.c.p->section;
1069
1070 default:
1071 break;
1072 }
1073 }
1074 }
1075 else
1076 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1077
1078 return NULL;
1079 }
1080
1081 /* Update the got entry reference counts for the section being removed. */
1082
1083 static bfd_boolean
1084 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
1085 bfd *abfd;
1086 struct bfd_link_info *info;
1087 asection *sec;
1088 const Elf_Internal_Rela *relocs;
1089 {
1090 Elf_Internal_Shdr *symtab_hdr;
1091 struct elf_link_hash_entry **sym_hashes;
1092 bfd_signed_vma *local_got_refcounts;
1093 const Elf_Internal_Rela *rel, *relend;
1094 unsigned long r_symndx;
1095 int r_type;
1096 struct elf_link_hash_entry *h;
1097
1098 elf_section_data (sec)->local_dynrel = NULL;
1099
1100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1101 sym_hashes = elf_sym_hashes (abfd);
1102 local_got_refcounts = elf_local_got_refcounts (abfd);
1103
1104 relend = relocs + sec->reloc_count;
1105 for (rel = relocs; rel < relend; rel++)
1106 switch ((r_type = elf64_x86_64_tls_transition (info,
1107 ELF64_R_TYPE (rel->r_info),
1108 ELF64_R_SYM (rel->r_info)
1109 >= symtab_hdr->sh_info)))
1110 {
1111 case R_X86_64_TLSLD:
1112 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1113 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1114 break;
1115
1116 case R_X86_64_TLSGD:
1117 case R_X86_64_GOTTPOFF:
1118 case R_X86_64_GOT32:
1119 case R_X86_64_GOTPCREL:
1120 r_symndx = ELF64_R_SYM (rel->r_info);
1121 if (r_symndx >= symtab_hdr->sh_info)
1122 {
1123 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1124 if (h->got.refcount > 0)
1125 h->got.refcount -= 1;
1126 }
1127 else if (local_got_refcounts != NULL)
1128 {
1129 if (local_got_refcounts[r_symndx] > 0)
1130 local_got_refcounts[r_symndx] -= 1;
1131 }
1132 break;
1133
1134 case R_X86_64_8:
1135 case R_X86_64_16:
1136 case R_X86_64_32:
1137 case R_X86_64_64:
1138 case R_X86_64_32S:
1139 case R_X86_64_PC8:
1140 case R_X86_64_PC16:
1141 case R_X86_64_PC32:
1142 r_symndx = ELF64_R_SYM (rel->r_info);
1143 if (r_symndx >= symtab_hdr->sh_info)
1144 {
1145 struct elf64_x86_64_link_hash_entry *eh;
1146 struct elf64_x86_64_dyn_relocs **pp;
1147 struct elf64_x86_64_dyn_relocs *p;
1148
1149 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1150
1151 if (!info->shared && h->plt.refcount > 0)
1152 h->plt.refcount -= 1;
1153
1154 eh = (struct elf64_x86_64_link_hash_entry *) h;
1155
1156 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1157 if (p->sec == sec)
1158 {
1159 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8
1160 || ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16
1161 || ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)
1162 p->pc_count -= 1;
1163 p->count -= 1;
1164 if (p->count == 0)
1165 *pp = p->next;
1166 break;
1167 }
1168 }
1169 break;
1170
1171
1172 case R_X86_64_PLT32:
1173 r_symndx = ELF64_R_SYM (rel->r_info);
1174 if (r_symndx >= symtab_hdr->sh_info)
1175 {
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 if (h->plt.refcount > 0)
1178 h->plt.refcount -= 1;
1179 }
1180 break;
1181
1182 default:
1183 break;
1184 }
1185
1186 return TRUE;
1187 }
1188
1189 /* Adjust a symbol defined by a dynamic object and referenced by a
1190 regular object. The current definition is in some section of the
1191 dynamic object, but we're not including those sections. We have to
1192 change the definition to something the rest of the link can
1193 understand. */
1194
1195 static bfd_boolean
1196 elf64_x86_64_adjust_dynamic_symbol (info, h)
1197 struct bfd_link_info *info;
1198 struct elf_link_hash_entry *h;
1199 {
1200 struct elf64_x86_64_link_hash_table *htab;
1201 struct elf64_x86_64_link_hash_entry * eh;
1202 struct elf64_x86_64_dyn_relocs *p;
1203 asection *s;
1204 unsigned int power_of_two;
1205
1206 /* If this is a function, put it in the procedure linkage table. We
1207 will fill in the contents of the procedure linkage table later,
1208 when we know the address of the .got section. */
1209 if (h->type == STT_FUNC
1210 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1211 {
1212 if (h->plt.refcount <= 0
1213 || (! info->shared
1214 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1215 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1216 && h->root.type != bfd_link_hash_undefweak
1217 && h->root.type != bfd_link_hash_undefined))
1218 {
1219 /* This case can occur if we saw a PLT32 reloc in an input
1220 file, but the symbol was never referred to by a dynamic
1221 object, or if all references were garbage collected. In
1222 such a case, we don't actually need to build a procedure
1223 linkage table, and we can just do a PC32 reloc instead. */
1224 h->plt.offset = (bfd_vma) -1;
1225 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1226 }
1227
1228 return TRUE;
1229 }
1230 else
1231 /* It's possible that we incorrectly decided a .plt reloc was
1232 needed for an R_X86_64_PC32 reloc to a non-function sym in
1233 check_relocs. We can't decide accurately between function and
1234 non-function syms in check-relocs; Objects loaded later in
1235 the link may change h->type. So fix it now. */
1236 h->plt.offset = (bfd_vma) -1;
1237
1238 /* If this is a weak symbol, and there is a real definition, the
1239 processor independent code will have arranged for us to see the
1240 real definition first, and we can just use the same value. */
1241 if (h->weakdef != NULL)
1242 {
1243 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1244 || h->weakdef->root.type == bfd_link_hash_defweak);
1245 h->root.u.def.section = h->weakdef->root.u.def.section;
1246 h->root.u.def.value = h->weakdef->root.u.def.value;
1247 return TRUE;
1248 }
1249
1250 /* This is a reference to a symbol defined by a dynamic object which
1251 is not a function. */
1252
1253 /* If we are creating a shared library, we must presume that the
1254 only references to the symbol are via the global offset table.
1255 For such cases we need not do anything here; the relocations will
1256 be handled correctly by relocate_section. */
1257 if (info->shared)
1258 return TRUE;
1259
1260 /* If there are no references to this symbol that do not use the
1261 GOT, we don't need to generate a copy reloc. */
1262 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1263 return TRUE;
1264
1265 /* If -z nocopyreloc was given, we won't generate them either. */
1266 if (info->nocopyreloc)
1267 {
1268 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1269 return TRUE;
1270 }
1271
1272 eh = (struct elf64_x86_64_link_hash_entry *) h;
1273 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1274 {
1275 s = p->sec->output_section;
1276 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1277 break;
1278 }
1279
1280 /* If we didn't find any dynamic relocs in read-only sections, then
1281 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1282 if (p == NULL)
1283 {
1284 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1285 return TRUE;
1286 }
1287
1288 /* We must allocate the symbol in our .dynbss section, which will
1289 become part of the .bss section of the executable. There will be
1290 an entry for this symbol in the .dynsym section. The dynamic
1291 object will contain position independent code, so all references
1292 from the dynamic object to this symbol will go through the global
1293 offset table. The dynamic linker will use the .dynsym entry to
1294 determine the address it must put in the global offset table, so
1295 both the dynamic object and the regular object will refer to the
1296 same memory location for the variable. */
1297
1298 htab = elf64_x86_64_hash_table (info);
1299
1300 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1301 to copy the initial value out of the dynamic object and into the
1302 runtime process image. */
1303 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1304 {
1305 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1306 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1307 }
1308
1309 /* We need to figure out the alignment required for this symbol. I
1310 have no idea how ELF linkers handle this. 16-bytes is the size
1311 of the largest type that requires hard alignment -- long double. */
1312 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1313 this construct. */
1314 power_of_two = bfd_log2 (h->size);
1315 if (power_of_two > 4)
1316 power_of_two = 4;
1317
1318 /* Apply the required alignment. */
1319 s = htab->sdynbss;
1320 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1321 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1322 {
1323 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1324 return FALSE;
1325 }
1326
1327 /* Define the symbol as being at this point in the section. */
1328 h->root.u.def.section = s;
1329 h->root.u.def.value = s->_raw_size;
1330
1331 /* Increment the section size to make room for the symbol. */
1332 s->_raw_size += h->size;
1333
1334 return TRUE;
1335 }
1336
1337 /* This is the condition under which elf64_x86_64_finish_dynamic_symbol
1338 will be called from elflink.h. If elflink.h doesn't call our
1339 finish_dynamic_symbol routine, we'll need to do something about
1340 initializing any .plt and .got entries in elf64_x86_64_relocate_section. */
1341 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1342 ((DYN) \
1343 && ((INFO)->shared \
1344 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1345 && ((H)->dynindx != -1 \
1346 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1347
1348 /* Allocate space in .plt, .got and associated reloc sections for
1349 dynamic relocs. */
1350
1351 static bfd_boolean
1352 allocate_dynrelocs (h, inf)
1353 struct elf_link_hash_entry *h;
1354 PTR inf;
1355 {
1356 struct bfd_link_info *info;
1357 struct elf64_x86_64_link_hash_table *htab;
1358 struct elf64_x86_64_link_hash_entry *eh;
1359 struct elf64_x86_64_dyn_relocs *p;
1360
1361 if (h->root.type == bfd_link_hash_indirect)
1362 return TRUE;
1363
1364 if (h->root.type == bfd_link_hash_warning)
1365 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1366
1367 info = (struct bfd_link_info *) inf;
1368 htab = elf64_x86_64_hash_table (info);
1369
1370 if (htab->elf.dynamic_sections_created
1371 && h->plt.refcount > 0)
1372 {
1373 /* Make sure this symbol is output as a dynamic symbol.
1374 Undefined weak syms won't yet be marked as dynamic. */
1375 if (h->dynindx == -1
1376 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1377 {
1378 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1379 return FALSE;
1380 }
1381
1382 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1383 {
1384 asection *s = htab->splt;
1385
1386 /* If this is the first .plt entry, make room for the special
1387 first entry. */
1388 if (s->_raw_size == 0)
1389 s->_raw_size += PLT_ENTRY_SIZE;
1390
1391 h->plt.offset = s->_raw_size;
1392
1393 /* If this symbol is not defined in a regular file, and we are
1394 not generating a shared library, then set the symbol to this
1395 location in the .plt. This is required to make function
1396 pointers compare as equal between the normal executable and
1397 the shared library. */
1398 if (! info->shared
1399 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1400 {
1401 h->root.u.def.section = s;
1402 h->root.u.def.value = h->plt.offset;
1403 }
1404
1405 /* Make room for this entry. */
1406 s->_raw_size += PLT_ENTRY_SIZE;
1407
1408 /* We also need to make an entry in the .got.plt section, which
1409 will be placed in the .got section by the linker script. */
1410 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1411
1412 /* We also need to make an entry in the .rela.plt section. */
1413 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1414 }
1415 else
1416 {
1417 h->plt.offset = (bfd_vma) -1;
1418 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1419 }
1420 }
1421 else
1422 {
1423 h->plt.offset = (bfd_vma) -1;
1424 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1425 }
1426
1427 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1428 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1429 if (h->got.refcount > 0
1430 && !info->shared
1431 && h->dynindx == -1
1432 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1433 h->got.offset = (bfd_vma) -1;
1434 else if (h->got.refcount > 0)
1435 {
1436 asection *s;
1437 bfd_boolean dyn;
1438 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1439
1440 /* Make sure this symbol is output as a dynamic symbol.
1441 Undefined weak syms won't yet be marked as dynamic. */
1442 if (h->dynindx == -1
1443 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1444 {
1445 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1446 return FALSE;
1447 }
1448
1449 s = htab->sgot;
1450 h->got.offset = s->_raw_size;
1451 s->_raw_size += GOT_ENTRY_SIZE;
1452 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1453 if (tls_type == GOT_TLS_GD)
1454 s->_raw_size += GOT_ENTRY_SIZE;
1455 dyn = htab->elf.dynamic_sections_created;
1456 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1457 and two if global.
1458 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1459 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1460 || tls_type == GOT_TLS_IE)
1461 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1462 else if (tls_type == GOT_TLS_GD)
1463 htab->srelgot->_raw_size += 2 * sizeof (Elf64_External_Rela);
1464 else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1465 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1466 }
1467 else
1468 h->got.offset = (bfd_vma) -1;
1469
1470 eh = (struct elf64_x86_64_link_hash_entry *) h;
1471 if (eh->dyn_relocs == NULL)
1472 return TRUE;
1473
1474 /* In the shared -Bsymbolic case, discard space allocated for
1475 dynamic pc-relative relocs against symbols which turn out to be
1476 defined in regular objects. For the normal shared case, discard
1477 space for pc-relative relocs that have become local due to symbol
1478 visibility changes. */
1479
1480 if (info->shared)
1481 {
1482 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1483 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1484 || info->symbolic))
1485 {
1486 struct elf64_x86_64_dyn_relocs **pp;
1487
1488 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1489 {
1490 p->count -= p->pc_count;
1491 p->pc_count = 0;
1492 if (p->count == 0)
1493 *pp = p->next;
1494 else
1495 pp = &p->next;
1496 }
1497 }
1498 }
1499 else
1500 {
1501 /* For the non-shared case, discard space for relocs against
1502 symbols which turn out to need copy relocs or are not
1503 dynamic. */
1504
1505 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1506 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1507 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1508 || (htab->elf.dynamic_sections_created
1509 && (h->root.type == bfd_link_hash_undefweak
1510 || h->root.type == bfd_link_hash_undefined))))
1511 {
1512 /* Make sure this symbol is output as a dynamic symbol.
1513 Undefined weak syms won't yet be marked as dynamic. */
1514 if (h->dynindx == -1
1515 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1516 {
1517 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1518 return FALSE;
1519 }
1520
1521 /* If that succeeded, we know we'll be keeping all the
1522 relocs. */
1523 if (h->dynindx != -1)
1524 goto keep;
1525 }
1526
1527 eh->dyn_relocs = NULL;
1528
1529 keep: ;
1530 }
1531
1532 /* Finally, allocate space. */
1533 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1534 {
1535 asection *sreloc = elf_section_data (p->sec)->sreloc;
1536 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1537 }
1538
1539 return TRUE;
1540 }
1541
1542 /* Find any dynamic relocs that apply to read-only sections. */
1543
1544 static bfd_boolean
1545 readonly_dynrelocs (h, inf)
1546 struct elf_link_hash_entry *h;
1547 PTR inf;
1548 {
1549 struct elf64_x86_64_link_hash_entry *eh;
1550 struct elf64_x86_64_dyn_relocs *p;
1551
1552 if (h->root.type == bfd_link_hash_warning)
1553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1554
1555 eh = (struct elf64_x86_64_link_hash_entry *) h;
1556 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1557 {
1558 asection *s = p->sec->output_section;
1559
1560 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1561 {
1562 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1563
1564 info->flags |= DF_TEXTREL;
1565
1566 /* Not an error, just cut short the traversal. */
1567 return FALSE;
1568 }
1569 }
1570 return TRUE;
1571 }
1572
1573 /* Set the sizes of the dynamic sections. */
1574
1575 static bfd_boolean
1576 elf64_x86_64_size_dynamic_sections (output_bfd, info)
1577 bfd *output_bfd ATTRIBUTE_UNUSED;
1578 struct bfd_link_info *info;
1579 {
1580 struct elf64_x86_64_link_hash_table *htab;
1581 bfd *dynobj;
1582 asection *s;
1583 bfd_boolean relocs;
1584 bfd *ibfd;
1585
1586 htab = elf64_x86_64_hash_table (info);
1587 dynobj = htab->elf.dynobj;
1588 if (dynobj == NULL)
1589 abort ();
1590
1591 if (htab->elf.dynamic_sections_created)
1592 {
1593 /* Set the contents of the .interp section to the interpreter. */
1594 if (! info->shared)
1595 {
1596 s = bfd_get_section_by_name (dynobj, ".interp");
1597 if (s == NULL)
1598 abort ();
1599 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1600 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1601 }
1602 }
1603
1604 /* Set up .got offsets for local syms, and space for local dynamic
1605 relocs. */
1606 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1607 {
1608 bfd_signed_vma *local_got;
1609 bfd_signed_vma *end_local_got;
1610 char *local_tls_type;
1611 bfd_size_type locsymcount;
1612 Elf_Internal_Shdr *symtab_hdr;
1613 asection *srel;
1614
1615 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1616 continue;
1617
1618 for (s = ibfd->sections; s != NULL; s = s->next)
1619 {
1620 struct elf64_x86_64_dyn_relocs *p;
1621
1622 for (p = *((struct elf64_x86_64_dyn_relocs **)
1623 &elf_section_data (s)->local_dynrel);
1624 p != NULL;
1625 p = p->next)
1626 {
1627 if (!bfd_is_abs_section (p->sec)
1628 && bfd_is_abs_section (p->sec->output_section))
1629 {
1630 /* Input section has been discarded, either because
1631 it is a copy of a linkonce section or due to
1632 linker script /DISCARD/, so we'll be discarding
1633 the relocs too. */
1634 }
1635 else if (p->count != 0)
1636 {
1637 srel = elf_section_data (p->sec)->sreloc;
1638 srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
1639 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1640 info->flags |= DF_TEXTREL;
1641
1642 }
1643 }
1644 }
1645
1646 local_got = elf_local_got_refcounts (ibfd);
1647 if (!local_got)
1648 continue;
1649
1650 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1651 locsymcount = symtab_hdr->sh_info;
1652 end_local_got = local_got + locsymcount;
1653 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1654 s = htab->sgot;
1655 srel = htab->srelgot;
1656 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1657 {
1658 if (*local_got > 0)
1659 {
1660 *local_got = s->_raw_size;
1661 s->_raw_size += GOT_ENTRY_SIZE;
1662 if (*local_tls_type == GOT_TLS_GD)
1663 s->_raw_size += GOT_ENTRY_SIZE;
1664 if (info->shared
1665 || *local_tls_type == GOT_TLS_GD
1666 || *local_tls_type == GOT_TLS_IE)
1667 srel->_raw_size += sizeof (Elf64_External_Rela);
1668 }
1669 else
1670 *local_got = (bfd_vma) -1;
1671 }
1672 }
1673
1674 if (htab->tls_ld_got.refcount > 0)
1675 {
1676 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1677 relocs. */
1678 htab->tls_ld_got.offset = htab->sgot->_raw_size;
1679 htab->sgot->_raw_size += 2 * GOT_ENTRY_SIZE;
1680 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1681 }
1682 else
1683 htab->tls_ld_got.offset = -1;
1684
1685 /* Allocate global sym .plt and .got entries, and space for global
1686 sym dynamic relocs. */
1687 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1688
1689 /* We now have determined the sizes of the various dynamic sections.
1690 Allocate memory for them. */
1691 relocs = FALSE;
1692 for (s = dynobj->sections; s != NULL; s = s->next)
1693 {
1694 if ((s->flags & SEC_LINKER_CREATED) == 0)
1695 continue;
1696
1697 if (s == htab->splt
1698 || s == htab->sgot
1699 || s == htab->sgotplt)
1700 {
1701 /* Strip this section if we don't need it; see the
1702 comment below. */
1703 }
1704 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1705 {
1706 if (s->_raw_size != 0 && s != htab->srelplt)
1707 relocs = TRUE;
1708
1709 /* We use the reloc_count field as a counter if we need
1710 to copy relocs into the output file. */
1711 s->reloc_count = 0;
1712 }
1713 else
1714 {
1715 /* It's not one of our sections, so don't allocate space. */
1716 continue;
1717 }
1718
1719 if (s->_raw_size == 0)
1720 {
1721 /* If we don't need this section, strip it from the
1722 output file. This is mostly to handle .rela.bss and
1723 .rela.plt. We must create both sections in
1724 create_dynamic_sections, because they must be created
1725 before the linker maps input sections to output
1726 sections. The linker does that before
1727 adjust_dynamic_symbol is called, and it is that
1728 function which decides whether anything needs to go
1729 into these sections. */
1730
1731 _bfd_strip_section_from_output (info, s);
1732 continue;
1733 }
1734
1735 /* Allocate memory for the section contents. We use bfd_zalloc
1736 here in case unused entries are not reclaimed before the
1737 section's contents are written out. This should not happen,
1738 but this way if it does, we get a R_X86_64_NONE reloc instead
1739 of garbage. */
1740 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1741 if (s->contents == NULL)
1742 return FALSE;
1743 }
1744
1745 if (htab->elf.dynamic_sections_created)
1746 {
1747 /* Add some entries to the .dynamic section. We fill in the
1748 values later, in elf64_x86_64_finish_dynamic_sections, but we
1749 must add the entries now so that we get the correct size for
1750 the .dynamic section. The DT_DEBUG entry is filled in by the
1751 dynamic linker and used by the debugger. */
1752 #define add_dynamic_entry(TAG, VAL) \
1753 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1754
1755 if (! info->shared)
1756 {
1757 if (!add_dynamic_entry (DT_DEBUG, 0))
1758 return FALSE;
1759 }
1760
1761 if (htab->splt->_raw_size != 0)
1762 {
1763 if (!add_dynamic_entry (DT_PLTGOT, 0)
1764 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1765 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1766 || !add_dynamic_entry (DT_JMPREL, 0))
1767 return FALSE;
1768 }
1769
1770 if (relocs)
1771 {
1772 if (!add_dynamic_entry (DT_RELA, 0)
1773 || !add_dynamic_entry (DT_RELASZ, 0)
1774 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1775 return FALSE;
1776
1777 /* If any dynamic relocs apply to a read-only section,
1778 then we need a DT_TEXTREL entry. */
1779 if ((info->flags & DF_TEXTREL) == 0)
1780 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1781 (PTR) info);
1782
1783 if ((info->flags & DF_TEXTREL) != 0)
1784 {
1785 if (!add_dynamic_entry (DT_TEXTREL, 0))
1786 return FALSE;
1787 }
1788 }
1789 }
1790 #undef add_dynamic_entry
1791
1792 return TRUE;
1793 }
1794
1795 /* Return the base VMA address which should be subtracted from real addresses
1796 when resolving @dtpoff relocation.
1797 This is PT_TLS segment p_vaddr. */
1798
1799 static bfd_vma
1800 dtpoff_base (info)
1801 struct bfd_link_info *info;
1802 {
1803 /* If tls_segment is NULL, we should have signalled an error already. */
1804 if (elf_hash_table (info)->tls_segment == NULL)
1805 return 0;
1806 return elf_hash_table (info)->tls_segment->start;
1807 }
1808
1809 /* Return the relocation value for @tpoff relocation
1810 if STT_TLS virtual address is ADDRESS. */
1811
1812 static bfd_vma
1813 tpoff (info, address)
1814 struct bfd_link_info *info;
1815 bfd_vma address;
1816 {
1817 struct elf_link_tls_segment *tls_segment
1818 = elf_hash_table (info)->tls_segment;
1819
1820 /* If tls_segment is NULL, we should have signalled an error already. */
1821 if (tls_segment == NULL)
1822 return 0;
1823 return address - align_power (tls_segment->size, tls_segment->align)
1824 - tls_segment->start;
1825 }
1826
1827 /* Relocate an x86_64 ELF section. */
1828
1829 static bfd_boolean
1830 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1831 contents, relocs, local_syms, local_sections)
1832 bfd *output_bfd;
1833 struct bfd_link_info *info;
1834 bfd *input_bfd;
1835 asection *input_section;
1836 bfd_byte *contents;
1837 Elf_Internal_Rela *relocs;
1838 Elf_Internal_Sym *local_syms;
1839 asection **local_sections;
1840 {
1841 struct elf64_x86_64_link_hash_table *htab;
1842 Elf_Internal_Shdr *symtab_hdr;
1843 struct elf_link_hash_entry **sym_hashes;
1844 bfd_vma *local_got_offsets;
1845 Elf_Internal_Rela *rel;
1846 Elf_Internal_Rela *relend;
1847
1848 if (info->relocateable)
1849 return TRUE;
1850
1851 htab = elf64_x86_64_hash_table (info);
1852 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1853 sym_hashes = elf_sym_hashes (input_bfd);
1854 local_got_offsets = elf_local_got_offsets (input_bfd);
1855
1856 rel = relocs;
1857 relend = relocs + input_section->reloc_count;
1858 for (; rel < relend; rel++)
1859 {
1860 unsigned int r_type;
1861 reloc_howto_type *howto;
1862 unsigned long r_symndx;
1863 struct elf_link_hash_entry *h;
1864 Elf_Internal_Sym *sym;
1865 asection *sec;
1866 bfd_vma off;
1867 bfd_vma relocation;
1868 bfd_boolean unresolved_reloc;
1869 bfd_reloc_status_type r;
1870 int tls_type;
1871
1872 r_type = ELF64_R_TYPE (rel->r_info);
1873 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1874 || r_type == (int) R_X86_64_GNU_VTENTRY)
1875 continue;
1876
1877 if (r_type >= R_X86_64_max)
1878 {
1879 bfd_set_error (bfd_error_bad_value);
1880 return FALSE;
1881 }
1882
1883 howto = x86_64_elf_howto_table + r_type;
1884 r_symndx = ELF64_R_SYM (rel->r_info);
1885 h = NULL;
1886 sym = NULL;
1887 sec = NULL;
1888 unresolved_reloc = FALSE;
1889 if (r_symndx < symtab_hdr->sh_info)
1890 {
1891 sym = local_syms + r_symndx;
1892 sec = local_sections[r_symndx];
1893
1894 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1895 }
1896 else
1897 {
1898 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1899 while (h->root.type == bfd_link_hash_indirect
1900 || h->root.type == bfd_link_hash_warning)
1901 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1902
1903 if (h->root.type == bfd_link_hash_defined
1904 || h->root.type == bfd_link_hash_defweak)
1905 {
1906 sec = h->root.u.def.section;
1907 if (sec->output_section == NULL)
1908 {
1909 /* Set a flag that will be cleared later if we find a
1910 relocation value for this symbol. output_section
1911 is typically NULL for symbols satisfied by a shared
1912 library. */
1913 unresolved_reloc = TRUE;
1914 relocation = 0;
1915 }
1916 else
1917 relocation = (h->root.u.def.value
1918 + sec->output_section->vma
1919 + sec->output_offset);
1920 }
1921 else if (h->root.type == bfd_link_hash_undefweak)
1922 relocation = 0;
1923 else if (info->shared
1924 && (!info->symbolic || info->allow_shlib_undefined)
1925 && !info->no_undefined
1926 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1927 relocation = 0;
1928 else
1929 {
1930 if (! ((*info->callbacks->undefined_symbol)
1931 (info, h->root.root.string, input_bfd,
1932 input_section, rel->r_offset,
1933 (!info->shared || info->no_undefined
1934 || ELF_ST_VISIBILITY (h->other)))))
1935 return FALSE;
1936 relocation = 0;
1937 }
1938 }
1939 /* When generating a shared object, the relocations handled here are
1940 copied into the output file to be resolved at run time. */
1941 switch (r_type)
1942 {
1943 case R_X86_64_GOT32:
1944 /* Relocation is to the entry for this symbol in the global
1945 offset table. */
1946 case R_X86_64_GOTPCREL:
1947 /* Use global offset table as symbol value. */
1948 if (htab->sgot == NULL)
1949 abort ();
1950
1951 if (h != NULL)
1952 {
1953 bfd_boolean dyn;
1954
1955 off = h->got.offset;
1956 dyn = htab->elf.dynamic_sections_created;
1957
1958 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1959 || (info->shared
1960 && (info->symbolic
1961 || h->dynindx == -1
1962 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1963 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1964 {
1965 /* This is actually a static link, or it is a -Bsymbolic
1966 link and the symbol is defined locally, or the symbol
1967 was forced to be local because of a version file. We
1968 must initialize this entry in the global offset table.
1969 Since the offset must always be a multiple of 8, we
1970 use the least significant bit to record whether we
1971 have initialized it already.
1972
1973 When doing a dynamic link, we create a .rela.got
1974 relocation entry to initialize the value. This is
1975 done in the finish_dynamic_symbol routine. */
1976 if ((off & 1) != 0)
1977 off &= ~1;
1978 else
1979 {
1980 bfd_put_64 (output_bfd, relocation,
1981 htab->sgot->contents + off);
1982 h->got.offset |= 1;
1983 }
1984 }
1985 else
1986 unresolved_reloc = FALSE;
1987 }
1988 else
1989 {
1990 if (local_got_offsets == NULL)
1991 abort ();
1992
1993 off = local_got_offsets[r_symndx];
1994
1995 /* The offset must always be a multiple of 8. We use
1996 the least significant bit to record whether we have
1997 already generated the necessary reloc. */
1998 if ((off & 1) != 0)
1999 off &= ~1;
2000 else
2001 {
2002 bfd_put_64 (output_bfd, relocation,
2003 htab->sgot->contents + off);
2004
2005 if (info->shared)
2006 {
2007 asection *s;
2008 Elf_Internal_Rela outrel;
2009 bfd_byte *loc;
2010
2011 /* We need to generate a R_X86_64_RELATIVE reloc
2012 for the dynamic linker. */
2013 s = htab->srelgot;
2014 if (s == NULL)
2015 abort ();
2016
2017 outrel.r_offset = (htab->sgot->output_section->vma
2018 + htab->sgot->output_offset
2019 + off);
2020 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2021 outrel.r_addend = relocation;
2022 loc = s->contents;
2023 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2024 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2025 }
2026
2027 local_got_offsets[r_symndx] |= 1;
2028 }
2029 }
2030
2031 if (off >= (bfd_vma) -2)
2032 abort ();
2033
2034 relocation = htab->sgot->output_offset + off;
2035 if (r_type == R_X86_64_GOTPCREL)
2036 relocation += htab->sgot->output_section->vma;
2037
2038 break;
2039
2040 case R_X86_64_PLT32:
2041 /* Relocation is to the entry for this symbol in the
2042 procedure linkage table. */
2043
2044 /* Resolve a PLT32 reloc against a local symbol directly,
2045 without using the procedure linkage table. */
2046 if (h == NULL)
2047 break;
2048
2049 if (h->plt.offset == (bfd_vma) -1
2050 || htab->splt == NULL)
2051 {
2052 /* We didn't make a PLT entry for this symbol. This
2053 happens when statically linking PIC code, or when
2054 using -Bsymbolic. */
2055 break;
2056 }
2057
2058 relocation = (htab->splt->output_section->vma
2059 + htab->splt->output_offset
2060 + h->plt.offset);
2061 unresolved_reloc = FALSE;
2062 break;
2063
2064 case R_X86_64_PC8:
2065 case R_X86_64_PC16:
2066 case R_X86_64_PC32:
2067 case R_X86_64_8:
2068 case R_X86_64_16:
2069 case R_X86_64_32:
2070 case R_X86_64_64:
2071 /* FIXME: The ABI says the linker should make sure the value is
2072 the same when it's zeroextended to 64 bit. */
2073
2074 /* r_symndx will be zero only for relocs against symbols
2075 from removed linkonce sections, or sections discarded by
2076 a linker script. */
2077 if (r_symndx == 0
2078 || (input_section->flags & SEC_ALLOC) == 0)
2079 break;
2080
2081 if ((info->shared
2082 && ((r_type != R_X86_64_PC8
2083 && r_type != R_X86_64_PC16
2084 && r_type != R_X86_64_PC32)
2085 || (h != NULL
2086 && h->dynindx != -1
2087 && (! info->symbolic
2088 || (h->elf_link_hash_flags
2089 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2090 || (!info->shared
2091 && h != NULL
2092 && h->dynindx != -1
2093 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2094 && (((h->elf_link_hash_flags
2095 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2096 && (h->elf_link_hash_flags
2097 & ELF_LINK_HASH_DEF_REGULAR) == 0)
2098 || h->root.type == bfd_link_hash_undefweak
2099 || h->root.type == bfd_link_hash_undefined)))
2100 {
2101 Elf_Internal_Rela outrel;
2102 bfd_byte *loc;
2103 bfd_boolean skip, relocate;
2104 asection *sreloc;
2105
2106 /* When generating a shared object, these relocations
2107 are copied into the output file to be resolved at run
2108 time. */
2109
2110 skip = FALSE;
2111 relocate = FALSE;
2112
2113 outrel.r_offset =
2114 _bfd_elf_section_offset (output_bfd, info, input_section,
2115 rel->r_offset);
2116 if (outrel.r_offset == (bfd_vma) -1)
2117 skip = TRUE;
2118 else if (outrel.r_offset == (bfd_vma) -2)
2119 skip = TRUE, relocate = TRUE;
2120
2121 outrel.r_offset += (input_section->output_section->vma
2122 + input_section->output_offset);
2123
2124 if (skip)
2125 memset (&outrel, 0, sizeof outrel);
2126
2127 /* h->dynindx may be -1 if this symbol was marked to
2128 become local. */
2129 else if (h != NULL
2130 && h->dynindx != -1
2131 && (r_type == R_X86_64_PC8
2132 || r_type == R_X86_64_PC16
2133 || r_type == R_X86_64_PC32
2134 || !info->shared
2135 || !info->symbolic
2136 || (h->elf_link_hash_flags
2137 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2138 {
2139 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2140 outrel.r_addend = rel->r_addend;
2141 }
2142 else
2143 {
2144 /* This symbol is local, or marked to become local. */
2145 if (r_type == R_X86_64_64)
2146 {
2147 relocate = TRUE;
2148 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2149 outrel.r_addend = relocation + rel->r_addend;
2150 }
2151 else
2152 {
2153 long sindx;
2154
2155 if (h == NULL)
2156 sec = local_sections[r_symndx];
2157 else
2158 {
2159 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2160 || (h->root.type
2161 == bfd_link_hash_defweak));
2162 sec = h->root.u.def.section;
2163 }
2164 if (sec != NULL && bfd_is_abs_section (sec))
2165 sindx = 0;
2166 else if (sec == NULL || sec->owner == NULL)
2167 {
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 else
2172 {
2173 asection *osec;
2174
2175 osec = sec->output_section;
2176 sindx = elf_section_data (osec)->dynindx;
2177 BFD_ASSERT (sindx > 0);
2178 }
2179
2180 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2181 outrel.r_addend = relocation + rel->r_addend;
2182 }
2183 }
2184
2185 sreloc = elf_section_data (input_section)->sreloc;
2186 if (sreloc == NULL)
2187 abort ();
2188
2189 loc = sreloc->contents;
2190 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2191 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2192
2193 /* If this reloc is against an external symbol, we do
2194 not want to fiddle with the addend. Otherwise, we
2195 need to include the symbol value so that it becomes
2196 an addend for the dynamic reloc. */
2197 if (! relocate)
2198 continue;
2199 }
2200
2201 break;
2202
2203 case R_X86_64_TLSGD:
2204 case R_X86_64_GOTTPOFF:
2205 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2206 tls_type = GOT_UNKNOWN;
2207 if (h == NULL && local_got_offsets)
2208 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2209 else if (h != NULL)
2210 {
2211 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2212 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2213 r_type = R_X86_64_TPOFF32;
2214 }
2215 if (r_type == R_X86_64_TLSGD)
2216 {
2217 if (tls_type == GOT_TLS_IE)
2218 r_type = R_X86_64_GOTTPOFF;
2219 }
2220
2221 if (r_type == R_X86_64_TPOFF32)
2222 {
2223 BFD_ASSERT (! unresolved_reloc);
2224 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2225 {
2226 unsigned int i;
2227 static unsigned char tlsgd[8]
2228 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2229
2230 /* GD->LE transition.
2231 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2232 .word 0x6666; rex64; call __tls_get_addr@plt
2233 Change it into:
2234 movq %fs:0, %rax
2235 leaq foo@tpoff(%rax), %rax */
2236 BFD_ASSERT (rel->r_offset >= 4);
2237 for (i = 0; i < 4; i++)
2238 BFD_ASSERT (bfd_get_8 (input_bfd,
2239 contents + rel->r_offset - 4 + i)
2240 == tlsgd[i]);
2241 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2242 for (i = 0; i < 4; i++)
2243 BFD_ASSERT (bfd_get_8 (input_bfd,
2244 contents + rel->r_offset + 4 + i)
2245 == tlsgd[i+4]);
2246 BFD_ASSERT (rel + 1 < relend);
2247 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2248 memcpy (contents + rel->r_offset - 4,
2249 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2250 16);
2251 bfd_put_32 (output_bfd, tpoff (info, relocation),
2252 contents + rel->r_offset + 8);
2253 /* Skip R_X86_64_PLT32. */
2254 rel++;
2255 continue;
2256 }
2257 else
2258 {
2259 unsigned int val, type, reg;
2260
2261 /* IE->LE transition:
2262 Originally it can be one of:
2263 movq foo@gottpoff(%rip), %reg
2264 addq foo@gottpoff(%rip), %reg
2265 We change it into:
2266 movq $foo, %reg
2267 leaq foo(%reg), %reg
2268 addq $foo, %reg. */
2269 BFD_ASSERT (rel->r_offset >= 3);
2270 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2271 BFD_ASSERT (val == 0x48 || val == 0x4c);
2272 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2273 BFD_ASSERT (type == 0x8b || type == 0x03);
2274 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2275 BFD_ASSERT ((reg & 0xc7) == 5);
2276 reg >>= 3;
2277 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2278 if (type == 0x8b)
2279 {
2280 /* movq */
2281 if (val == 0x4c)
2282 bfd_put_8 (output_bfd, 0x49,
2283 contents + rel->r_offset - 3);
2284 bfd_put_8 (output_bfd, 0xc7,
2285 contents + rel->r_offset - 2);
2286 bfd_put_8 (output_bfd, 0xc0 | reg,
2287 contents + rel->r_offset - 1);
2288 }
2289 else if (reg == 4)
2290 {
2291 /* addq -> addq - addressing with %rsp/%r12 is
2292 special */
2293 if (val == 0x4c)
2294 bfd_put_8 (output_bfd, 0x49,
2295 contents + rel->r_offset - 3);
2296 bfd_put_8 (output_bfd, 0x81,
2297 contents + rel->r_offset - 2);
2298 bfd_put_8 (output_bfd, 0xc0 | reg,
2299 contents + rel->r_offset - 1);
2300 }
2301 else
2302 {
2303 /* addq -> leaq */
2304 if (val == 0x4c)
2305 bfd_put_8 (output_bfd, 0x4d,
2306 contents + rel->r_offset - 3);
2307 bfd_put_8 (output_bfd, 0x8d,
2308 contents + rel->r_offset - 2);
2309 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2310 contents + rel->r_offset - 1);
2311 }
2312 bfd_put_32 (output_bfd, tpoff (info, relocation),
2313 contents + rel->r_offset);
2314 continue;
2315 }
2316 }
2317
2318 if (htab->sgot == NULL)
2319 abort ();
2320
2321 if (h != NULL)
2322 off = h->got.offset;
2323 else
2324 {
2325 if (local_got_offsets == NULL)
2326 abort ();
2327
2328 off = local_got_offsets[r_symndx];
2329 }
2330
2331 if ((off & 1) != 0)
2332 off &= ~1;
2333 else
2334 {
2335 Elf_Internal_Rela outrel;
2336 bfd_byte *loc;
2337 int dr_type, indx;
2338
2339 if (htab->srelgot == NULL)
2340 abort ();
2341
2342 outrel.r_offset = (htab->sgot->output_section->vma
2343 + htab->sgot->output_offset + off);
2344
2345 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2346 if (r_type == R_X86_64_TLSGD)
2347 dr_type = R_X86_64_DTPMOD64;
2348 else
2349 dr_type = R_X86_64_TPOFF64;
2350
2351 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2352 outrel.r_addend = 0;
2353 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2354 outrel.r_addend = relocation - dtpoff_base (info);
2355 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2356
2357 loc = htab->srelgot->contents;
2358 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2359 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2360
2361 if (r_type == R_X86_64_TLSGD)
2362 {
2363 if (indx == 0)
2364 {
2365 BFD_ASSERT (! unresolved_reloc);
2366 bfd_put_64 (output_bfd,
2367 relocation - dtpoff_base (info),
2368 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2369 }
2370 else
2371 {
2372 bfd_put_64 (output_bfd, 0,
2373 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2374 outrel.r_info = ELF64_R_INFO (indx,
2375 R_X86_64_DTPOFF64);
2376 outrel.r_offset += GOT_ENTRY_SIZE;
2377 htab->srelgot->reloc_count++;
2378 loc += sizeof (Elf64_External_Rela);
2379 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2380 }
2381 }
2382
2383 if (h != NULL)
2384 h->got.offset |= 1;
2385 else
2386 local_got_offsets[r_symndx] |= 1;
2387 }
2388
2389 if (off >= (bfd_vma) -2)
2390 abort ();
2391 if (r_type == ELF64_R_TYPE (rel->r_info))
2392 {
2393 relocation = htab->sgot->output_section->vma
2394 + htab->sgot->output_offset + off;
2395 unresolved_reloc = FALSE;
2396 }
2397 else
2398 {
2399 unsigned int i;
2400 static unsigned char tlsgd[8]
2401 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2402
2403 /* GD->IE transition.
2404 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2405 .word 0x6666; rex64; call __tls_get_addr@plt
2406 Change it into:
2407 movq %fs:0, %rax
2408 addq foo@gottpoff(%rip), %rax */
2409 BFD_ASSERT (rel->r_offset >= 4);
2410 for (i = 0; i < 4; i++)
2411 BFD_ASSERT (bfd_get_8 (input_bfd,
2412 contents + rel->r_offset - 4 + i)
2413 == tlsgd[i]);
2414 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2415 for (i = 0; i < 4; i++)
2416 BFD_ASSERT (bfd_get_8 (input_bfd,
2417 contents + rel->r_offset + 4 + i)
2418 == tlsgd[i+4]);
2419 BFD_ASSERT (rel + 1 < relend);
2420 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2421 memcpy (contents + rel->r_offset - 4,
2422 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2423 16);
2424
2425 relocation = (htab->sgot->output_section->vma
2426 + htab->sgot->output_offset + off
2427 - rel->r_offset
2428 - input_section->output_section->vma
2429 - input_section->output_offset
2430 - 12);
2431 bfd_put_32 (output_bfd, relocation,
2432 contents + rel->r_offset + 8);
2433 /* Skip R_X86_64_PLT32. */
2434 rel++;
2435 continue;
2436 }
2437 break;
2438
2439 case R_X86_64_TLSLD:
2440 if (! info->shared)
2441 {
2442 /* LD->LE transition:
2443 Ensure it is:
2444 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2445 We change it into:
2446 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2447 BFD_ASSERT (rel->r_offset >= 3);
2448 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2449 == 0x48);
2450 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2451 == 0x8d);
2452 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2453 == 0x3d);
2454 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2455 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2456 == 0xe8);
2457 BFD_ASSERT (rel + 1 < relend);
2458 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2459 memcpy (contents + rel->r_offset - 3,
2460 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2461 /* Skip R_X86_64_PLT32. */
2462 rel++;
2463 continue;
2464 }
2465
2466 if (htab->sgot == NULL)
2467 abort ();
2468
2469 off = htab->tls_ld_got.offset;
2470 if (off & 1)
2471 off &= ~1;
2472 else
2473 {
2474 Elf_Internal_Rela outrel;
2475 bfd_byte *loc;
2476
2477 if (htab->srelgot == NULL)
2478 abort ();
2479
2480 outrel.r_offset = (htab->sgot->output_section->vma
2481 + htab->sgot->output_offset + off);
2482
2483 bfd_put_64 (output_bfd, 0,
2484 htab->sgot->contents + off);
2485 bfd_put_64 (output_bfd, 0,
2486 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2487 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2488 outrel.r_addend = 0;
2489 loc = htab->srelgot->contents;
2490 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2491 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2492 htab->tls_ld_got.offset |= 1;
2493 }
2494 relocation = htab->sgot->output_section->vma
2495 + htab->sgot->output_offset + off;
2496 unresolved_reloc = FALSE;
2497 break;
2498
2499 case R_X86_64_DTPOFF32:
2500 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2501 relocation -= dtpoff_base (info);
2502 else
2503 relocation = tpoff (info, relocation);
2504 break;
2505
2506 case R_X86_64_TPOFF32:
2507 BFD_ASSERT (! info->shared);
2508 relocation = tpoff (info, relocation);
2509 break;
2510
2511 default:
2512 break;
2513 }
2514
2515 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2516 because such sections are not SEC_ALLOC and thus ld.so will
2517 not process them. */
2518 if (unresolved_reloc
2519 && !((input_section->flags & SEC_DEBUGGING) != 0
2520 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2521 (*_bfd_error_handler)
2522 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2523 bfd_archive_filename (input_bfd),
2524 bfd_get_section_name (input_bfd, input_section),
2525 (long) rel->r_offset,
2526 h->root.root.string);
2527
2528 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2529 contents, rel->r_offset,
2530 relocation, rel->r_addend);
2531
2532 if (r != bfd_reloc_ok)
2533 {
2534 const char *name;
2535
2536 if (h != NULL)
2537 name = h->root.root.string;
2538 else
2539 {
2540 name = bfd_elf_string_from_elf_section (input_bfd,
2541 symtab_hdr->sh_link,
2542 sym->st_name);
2543 if (name == NULL)
2544 return FALSE;
2545 if (*name == '\0')
2546 name = bfd_section_name (input_bfd, sec);
2547 }
2548
2549 if (r == bfd_reloc_overflow)
2550 {
2551
2552 if (! ((*info->callbacks->reloc_overflow)
2553 (info, name, howto->name, (bfd_vma) 0,
2554 input_bfd, input_section, rel->r_offset)))
2555 return FALSE;
2556 }
2557 else
2558 {
2559 (*_bfd_error_handler)
2560 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2561 bfd_archive_filename (input_bfd),
2562 bfd_get_section_name (input_bfd, input_section),
2563 (long) rel->r_offset, name, (int) r);
2564 return FALSE;
2565 }
2566 }
2567 }
2568
2569 return TRUE;
2570 }
2571
2572 /* Finish up dynamic symbol handling. We set the contents of various
2573 dynamic sections here. */
2574
2575 static bfd_boolean
2576 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
2577 bfd *output_bfd;
2578 struct bfd_link_info *info;
2579 struct elf_link_hash_entry *h;
2580 Elf_Internal_Sym *sym;
2581 {
2582 struct elf64_x86_64_link_hash_table *htab;
2583
2584 htab = elf64_x86_64_hash_table (info);
2585
2586 if (h->plt.offset != (bfd_vma) -1)
2587 {
2588 bfd_vma plt_index;
2589 bfd_vma got_offset;
2590 Elf_Internal_Rela rela;
2591 bfd_byte *loc;
2592
2593 /* This symbol has an entry in the procedure linkage table. Set
2594 it up. */
2595
2596 if (h->dynindx == -1
2597 || htab->splt == NULL
2598 || htab->sgotplt == NULL
2599 || htab->srelplt == NULL)
2600 abort ();
2601
2602 /* Get the index in the procedure linkage table which
2603 corresponds to this symbol. This is the index of this symbol
2604 in all the symbols for which we are making plt entries. The
2605 first entry in the procedure linkage table is reserved. */
2606 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2607
2608 /* Get the offset into the .got table of the entry that
2609 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2610 bytes. The first three are reserved for the dynamic linker. */
2611 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2612
2613 /* Fill in the entry in the procedure linkage table. */
2614 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2615 PLT_ENTRY_SIZE);
2616
2617 /* Insert the relocation positions of the plt section. The magic
2618 numbers at the end of the statements are the positions of the
2619 relocations in the plt section. */
2620 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2621 instruction uses 6 bytes, subtract this value. */
2622 bfd_put_32 (output_bfd,
2623 (htab->sgotplt->output_section->vma
2624 + htab->sgotplt->output_offset
2625 + got_offset
2626 - htab->splt->output_section->vma
2627 - htab->splt->output_offset
2628 - h->plt.offset
2629 - 6),
2630 htab->splt->contents + h->plt.offset + 2);
2631 /* Put relocation index. */
2632 bfd_put_32 (output_bfd, plt_index,
2633 htab->splt->contents + h->plt.offset + 7);
2634 /* Put offset for jmp .PLT0. */
2635 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2636 htab->splt->contents + h->plt.offset + 12);
2637
2638 /* Fill in the entry in the global offset table, initially this
2639 points to the pushq instruction in the PLT which is at offset 6. */
2640 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2641 + htab->splt->output_offset
2642 + h->plt.offset + 6),
2643 htab->sgotplt->contents + got_offset);
2644
2645 /* Fill in the entry in the .rela.plt section. */
2646 rela.r_offset = (htab->sgotplt->output_section->vma
2647 + htab->sgotplt->output_offset
2648 + got_offset);
2649 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2650 rela.r_addend = 0;
2651 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2652 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2653
2654 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2655 {
2656 /* Mark the symbol as undefined, rather than as defined in
2657 the .plt section. Leave the value alone. This is a clue
2658 for the dynamic linker, to make function pointer
2659 comparisons work between an application and shared
2660 library. */
2661 sym->st_shndx = SHN_UNDEF;
2662 }
2663 }
2664
2665 if (h->got.offset != (bfd_vma) -1
2666 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2667 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2668 {
2669 Elf_Internal_Rela rela;
2670 bfd_byte *loc;
2671
2672 /* This symbol has an entry in the global offset table. Set it
2673 up. */
2674
2675 if (htab->sgot == NULL || htab->srelgot == NULL)
2676 abort ();
2677
2678 rela.r_offset = (htab->sgot->output_section->vma
2679 + htab->sgot->output_offset
2680 + (h->got.offset &~ (bfd_vma) 1));
2681
2682 /* If this is a static link, or it is a -Bsymbolic link and the
2683 symbol is defined locally or was forced to be local because
2684 of a version file, we just want to emit a RELATIVE reloc.
2685 The entry in the global offset table will already have been
2686 initialized in the relocate_section function. */
2687 if (info->shared
2688 && (info->symbolic
2689 || h->dynindx == -1
2690 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2691 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2692 {
2693 BFD_ASSERT((h->got.offset & 1) != 0);
2694 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2695 rela.r_addend = (h->root.u.def.value
2696 + h->root.u.def.section->output_section->vma
2697 + h->root.u.def.section->output_offset);
2698 }
2699 else
2700 {
2701 BFD_ASSERT((h->got.offset & 1) == 0);
2702 bfd_put_64 (output_bfd, (bfd_vma) 0,
2703 htab->sgot->contents + h->got.offset);
2704 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2705 rela.r_addend = 0;
2706 }
2707
2708 loc = htab->srelgot->contents;
2709 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2710 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2711 }
2712
2713 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2714 {
2715 Elf_Internal_Rela rela;
2716 bfd_byte *loc;
2717
2718 /* This symbol needs a copy reloc. Set it up. */
2719
2720 if (h->dynindx == -1
2721 || (h->root.type != bfd_link_hash_defined
2722 && h->root.type != bfd_link_hash_defweak)
2723 || htab->srelbss == NULL)
2724 abort ();
2725
2726 rela.r_offset = (h->root.u.def.value
2727 + h->root.u.def.section->output_section->vma
2728 + h->root.u.def.section->output_offset);
2729 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2730 rela.r_addend = 0;
2731 loc = htab->srelbss->contents;
2732 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2733 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2734 }
2735
2736 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2737 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2738 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2739 sym->st_shndx = SHN_ABS;
2740
2741 return TRUE;
2742 }
2743
2744 /* Used to decide how to sort relocs in an optimal manner for the
2745 dynamic linker, before writing them out. */
2746
2747 static enum elf_reloc_type_class
2748 elf64_x86_64_reloc_type_class (rela)
2749 const Elf_Internal_Rela *rela;
2750 {
2751 switch ((int) ELF64_R_TYPE (rela->r_info))
2752 {
2753 case R_X86_64_RELATIVE:
2754 return reloc_class_relative;
2755 case R_X86_64_JUMP_SLOT:
2756 return reloc_class_plt;
2757 case R_X86_64_COPY:
2758 return reloc_class_copy;
2759 default:
2760 return reloc_class_normal;
2761 }
2762 }
2763
2764 /* Finish up the dynamic sections. */
2765
2766 static bfd_boolean
2767 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
2768 bfd *output_bfd;
2769 struct bfd_link_info *info;
2770 {
2771 struct elf64_x86_64_link_hash_table *htab;
2772 bfd *dynobj;
2773 asection *sdyn;
2774
2775 htab = elf64_x86_64_hash_table (info);
2776 dynobj = htab->elf.dynobj;
2777 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2778
2779 if (htab->elf.dynamic_sections_created)
2780 {
2781 Elf64_External_Dyn *dyncon, *dynconend;
2782
2783 if (sdyn == NULL || htab->sgot == NULL)
2784 abort ();
2785
2786 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2787 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2788 for (; dyncon < dynconend; dyncon++)
2789 {
2790 Elf_Internal_Dyn dyn;
2791 asection *s;
2792
2793 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2794
2795 switch (dyn.d_tag)
2796 {
2797 default:
2798 continue;
2799
2800 case DT_PLTGOT:
2801 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2802 break;
2803
2804 case DT_JMPREL:
2805 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2806 break;
2807
2808 case DT_PLTRELSZ:
2809 s = htab->srelplt->output_section;
2810 if (s->_cooked_size != 0)
2811 dyn.d_un.d_val = s->_cooked_size;
2812 else
2813 dyn.d_un.d_val = s->_raw_size;
2814 break;
2815
2816 case DT_RELASZ:
2817 /* The procedure linkage table relocs (DT_JMPREL) should
2818 not be included in the overall relocs (DT_RELA).
2819 Therefore, we override the DT_RELASZ entry here to
2820 make it not include the JMPREL relocs. Since the
2821 linker script arranges for .rela.plt to follow all
2822 other relocation sections, we don't have to worry
2823 about changing the DT_RELA entry. */
2824 if (htab->srelplt != NULL)
2825 {
2826 s = htab->srelplt->output_section;
2827 if (s->_cooked_size != 0)
2828 dyn.d_un.d_val -= s->_cooked_size;
2829 else
2830 dyn.d_un.d_val -= s->_raw_size;
2831 }
2832 break;
2833 }
2834
2835 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2836 }
2837
2838 /* Fill in the special first entry in the procedure linkage table. */
2839 if (htab->splt && htab->splt->_raw_size > 0)
2840 {
2841 /* Fill in the first entry in the procedure linkage table. */
2842 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2843 PLT_ENTRY_SIZE);
2844 /* Add offset for pushq GOT+8(%rip), since the instruction
2845 uses 6 bytes subtract this value. */
2846 bfd_put_32 (output_bfd,
2847 (htab->sgotplt->output_section->vma
2848 + htab->sgotplt->output_offset
2849 + 8
2850 - htab->splt->output_section->vma
2851 - htab->splt->output_offset
2852 - 6),
2853 htab->splt->contents + 2);
2854 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2855 the end of the instruction. */
2856 bfd_put_32 (output_bfd,
2857 (htab->sgotplt->output_section->vma
2858 + htab->sgotplt->output_offset
2859 + 16
2860 - htab->splt->output_section->vma
2861 - htab->splt->output_offset
2862 - 12),
2863 htab->splt->contents + 8);
2864
2865 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2866 PLT_ENTRY_SIZE;
2867 }
2868 }
2869
2870 if (htab->sgotplt)
2871 {
2872 /* Fill in the first three entries in the global offset table. */
2873 if (htab->sgotplt->_raw_size > 0)
2874 {
2875 /* Set the first entry in the global offset table to the address of
2876 the dynamic section. */
2877 if (sdyn == NULL)
2878 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2879 else
2880 bfd_put_64 (output_bfd,
2881 sdyn->output_section->vma + sdyn->output_offset,
2882 htab->sgotplt->contents);
2883 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2884 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2885 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2886 }
2887
2888 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2889 GOT_ENTRY_SIZE;
2890 }
2891
2892 return TRUE;
2893 }
2894
2895
2896 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2897 #define TARGET_LITTLE_NAME "elf64-x86-64"
2898 #define ELF_ARCH bfd_arch_i386
2899 #define ELF_MACHINE_CODE EM_X86_64
2900 #define ELF_MAXPAGESIZE 0x100000
2901
2902 #define elf_backend_can_gc_sections 1
2903 #define elf_backend_can_refcount 1
2904 #define elf_backend_want_got_plt 1
2905 #define elf_backend_plt_readonly 1
2906 #define elf_backend_want_plt_sym 0
2907 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2908 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2909 #define elf_backend_rela_normal 1
2910
2911 #define elf_info_to_howto elf64_x86_64_info_to_howto
2912
2913 #define bfd_elf64_bfd_link_hash_table_create \
2914 elf64_x86_64_link_hash_table_create
2915 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2916
2917 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2918 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2919 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2920 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2921 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2922 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2923 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2924 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2925 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2926 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2927 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2928 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2929 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2930 #define elf_backend_object_p elf64_x86_64_elf_object_p
2931 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2932
2933 #include "elf64-target.h"