]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
* configure.ac (ia64*-*-*vms*): Add support for ld.
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
263 flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
292
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
294
295 return TRUE;
296 }
297
298 /* Create dynamic sections when linking against a dynamic object. */
299
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 {
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
308
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
312
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
323
324 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
329
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
333 {
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
339 }
340
341 s = bfd_make_section_anyway_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
349
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
352
353 if (bed->want_dynbss)
354 {
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_anyway_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 }
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1246 }
1247
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1363
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1366
1367 *size_change_ok = TRUE;
1368 }
1369
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1376
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1383
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1389 {
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1393
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1396
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1402
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1405 }
1406
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1412
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1415 {
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1422 }
1423
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1426 {
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 /* If the real definition is defined by a regular object file,
2514 don't do anything special. See the longer description in
2515 _bfd_elf_adjust_dynamic_symbol, below. */
2516 if (h->u.weakdef->def_regular)
2517 h->u.weakdef = NULL;
2518 else
2519 {
2520 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2521
2522 while (h->root.type == bfd_link_hash_indirect)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524
2525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2526 || h->root.type == bfd_link_hash_defweak);
2527 BFD_ASSERT (weakdef->def_dynamic);
2528 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2529 || weakdef->root.type == bfd_link_hash_defweak);
2530 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2531 }
2532 }
2533
2534 return TRUE;
2535 }
2536
2537 /* Make the backend pick a good value for a dynamic symbol. This is
2538 called via elf_link_hash_traverse, and also calls itself
2539 recursively. */
2540
2541 static bfd_boolean
2542 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2543 {
2544 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2545 bfd *dynobj;
2546 const struct elf_backend_data *bed;
2547
2548 if (! is_elf_hash_table (eif->info->hash))
2549 return FALSE;
2550
2551 /* Ignore indirect symbols. These are added by the versioning code. */
2552 if (h->root.type == bfd_link_hash_indirect)
2553 return TRUE;
2554
2555 /* Fix the symbol flags. */
2556 if (! _bfd_elf_fix_symbol_flags (h, eif))
2557 return FALSE;
2558
2559 /* If this symbol does not require a PLT entry, and it is not
2560 defined by a dynamic object, or is not referenced by a regular
2561 object, ignore it. We do have to handle a weak defined symbol,
2562 even if no regular object refers to it, if we decided to add it
2563 to the dynamic symbol table. FIXME: Do we normally need to worry
2564 about symbols which are defined by one dynamic object and
2565 referenced by another one? */
2566 if (!h->needs_plt
2567 && h->type != STT_GNU_IFUNC
2568 && (h->def_regular
2569 || !h->def_dynamic
2570 || (!h->ref_regular
2571 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2572 {
2573 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2574 return TRUE;
2575 }
2576
2577 /* If we've already adjusted this symbol, don't do it again. This
2578 can happen via a recursive call. */
2579 if (h->dynamic_adjusted)
2580 return TRUE;
2581
2582 /* Don't look at this symbol again. Note that we must set this
2583 after checking the above conditions, because we may look at a
2584 symbol once, decide not to do anything, and then get called
2585 recursively later after REF_REGULAR is set below. */
2586 h->dynamic_adjusted = 1;
2587
2588 /* If this is a weak definition, and we know a real definition, and
2589 the real symbol is not itself defined by a regular object file,
2590 then get a good value for the real definition. We handle the
2591 real symbol first, for the convenience of the backend routine.
2592
2593 Note that there is a confusing case here. If the real definition
2594 is defined by a regular object file, we don't get the real symbol
2595 from the dynamic object, but we do get the weak symbol. If the
2596 processor backend uses a COPY reloc, then if some routine in the
2597 dynamic object changes the real symbol, we will not see that
2598 change in the corresponding weak symbol. This is the way other
2599 ELF linkers work as well, and seems to be a result of the shared
2600 library model.
2601
2602 I will clarify this issue. Most SVR4 shared libraries define the
2603 variable _timezone and define timezone as a weak synonym. The
2604 tzset call changes _timezone. If you write
2605 extern int timezone;
2606 int _timezone = 5;
2607 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2608 you might expect that, since timezone is a synonym for _timezone,
2609 the same number will print both times. However, if the processor
2610 backend uses a COPY reloc, then actually timezone will be copied
2611 into your process image, and, since you define _timezone
2612 yourself, _timezone will not. Thus timezone and _timezone will
2613 wind up at different memory locations. The tzset call will set
2614 _timezone, leaving timezone unchanged. */
2615
2616 if (h->u.weakdef != NULL)
2617 {
2618 /* If we get to this point, there is an implicit reference to
2619 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2620 h->u.weakdef->ref_regular = 1;
2621
2622 /* Ensure that the backend adjust_dynamic_symbol function sees
2623 H->U.WEAKDEF before H by recursively calling ourselves. */
2624 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2625 return FALSE;
2626 }
2627
2628 /* If a symbol has no type and no size and does not require a PLT
2629 entry, then we are probably about to do the wrong thing here: we
2630 are probably going to create a COPY reloc for an empty object.
2631 This case can arise when a shared object is built with assembly
2632 code, and the assembly code fails to set the symbol type. */
2633 if (h->size == 0
2634 && h->type == STT_NOTYPE
2635 && !h->needs_plt)
2636 (*_bfd_error_handler)
2637 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2638 h->root.root.string);
2639
2640 dynobj = elf_hash_table (eif->info)->dynobj;
2641 bed = get_elf_backend_data (dynobj);
2642
2643 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2644 {
2645 eif->failed = TRUE;
2646 return FALSE;
2647 }
2648
2649 return TRUE;
2650 }
2651
2652 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2653 DYNBSS. */
2654
2655 bfd_boolean
2656 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2657 asection *dynbss)
2658 {
2659 unsigned int power_of_two;
2660 bfd_vma mask;
2661 asection *sec = h->root.u.def.section;
2662
2663 /* The section aligment of definition is the maximum alignment
2664 requirement of symbols defined in the section. Since we don't
2665 know the symbol alignment requirement, we start with the
2666 maximum alignment and check low bits of the symbol address
2667 for the minimum alignment. */
2668 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2669 mask = ((bfd_vma) 1 << power_of_two) - 1;
2670 while ((h->root.u.def.value & mask) != 0)
2671 {
2672 mask >>= 1;
2673 --power_of_two;
2674 }
2675
2676 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2677 dynbss))
2678 {
2679 /* Adjust the section alignment if needed. */
2680 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2681 power_of_two))
2682 return FALSE;
2683 }
2684
2685 /* We make sure that the symbol will be aligned properly. */
2686 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2687
2688 /* Define the symbol as being at this point in DYNBSS. */
2689 h->root.u.def.section = dynbss;
2690 h->root.u.def.value = dynbss->size;
2691
2692 /* Increment the size of DYNBSS to make room for the symbol. */
2693 dynbss->size += h->size;
2694
2695 return TRUE;
2696 }
2697
2698 /* Adjust all external symbols pointing into SEC_MERGE sections
2699 to reflect the object merging within the sections. */
2700
2701 static bfd_boolean
2702 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2703 {
2704 asection *sec;
2705
2706 if ((h->root.type == bfd_link_hash_defined
2707 || h->root.type == bfd_link_hash_defweak)
2708 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2709 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2710 {
2711 bfd *output_bfd = (bfd *) data;
2712
2713 h->root.u.def.value =
2714 _bfd_merged_section_offset (output_bfd,
2715 &h->root.u.def.section,
2716 elf_section_data (sec)->sec_info,
2717 h->root.u.def.value);
2718 }
2719
2720 return TRUE;
2721 }
2722
2723 /* Returns false if the symbol referred to by H should be considered
2724 to resolve local to the current module, and true if it should be
2725 considered to bind dynamically. */
2726
2727 bfd_boolean
2728 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2729 struct bfd_link_info *info,
2730 bfd_boolean not_local_protected)
2731 {
2732 bfd_boolean binding_stays_local_p;
2733 const struct elf_backend_data *bed;
2734 struct elf_link_hash_table *hash_table;
2735
2736 if (h == NULL)
2737 return FALSE;
2738
2739 while (h->root.type == bfd_link_hash_indirect
2740 || h->root.type == bfd_link_hash_warning)
2741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2742
2743 /* If it was forced local, then clearly it's not dynamic. */
2744 if (h->dynindx == -1)
2745 return FALSE;
2746 if (h->forced_local)
2747 return FALSE;
2748
2749 /* Identify the cases where name binding rules say that a
2750 visible symbol resolves locally. */
2751 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2752
2753 switch (ELF_ST_VISIBILITY (h->other))
2754 {
2755 case STV_INTERNAL:
2756 case STV_HIDDEN:
2757 return FALSE;
2758
2759 case STV_PROTECTED:
2760 hash_table = elf_hash_table (info);
2761 if (!is_elf_hash_table (hash_table))
2762 return FALSE;
2763
2764 bed = get_elf_backend_data (hash_table->dynobj);
2765
2766 /* Proper resolution for function pointer equality may require
2767 that these symbols perhaps be resolved dynamically, even though
2768 we should be resolving them to the current module. */
2769 if (!not_local_protected || !bed->is_function_type (h->type))
2770 binding_stays_local_p = TRUE;
2771 break;
2772
2773 default:
2774 break;
2775 }
2776
2777 /* If it isn't defined locally, then clearly it's dynamic. */
2778 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2779 return TRUE;
2780
2781 /* Otherwise, the symbol is dynamic if binding rules don't tell
2782 us that it remains local. */
2783 return !binding_stays_local_p;
2784 }
2785
2786 /* Return true if the symbol referred to by H should be considered
2787 to resolve local to the current module, and false otherwise. Differs
2788 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2789 undefined symbols. The two functions are virtually identical except
2790 for the place where forced_local and dynindx == -1 are tested. If
2791 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2792 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2793 the symbol is local only for defined symbols.
2794 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2795 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2796 treatment of undefined weak symbols. For those that do not make
2797 undefined weak symbols dynamic, both functions may return false. */
2798
2799 bfd_boolean
2800 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2801 struct bfd_link_info *info,
2802 bfd_boolean local_protected)
2803 {
2804 const struct elf_backend_data *bed;
2805 struct elf_link_hash_table *hash_table;
2806
2807 /* If it's a local sym, of course we resolve locally. */
2808 if (h == NULL)
2809 return TRUE;
2810
2811 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2812 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2813 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2814 return TRUE;
2815
2816 /* Common symbols that become definitions don't get the DEF_REGULAR
2817 flag set, so test it first, and don't bail out. */
2818 if (ELF_COMMON_DEF_P (h))
2819 /* Do nothing. */;
2820 /* If we don't have a definition in a regular file, then we can't
2821 resolve locally. The sym is either undefined or dynamic. */
2822 else if (!h->def_regular)
2823 return FALSE;
2824
2825 /* Forced local symbols resolve locally. */
2826 if (h->forced_local)
2827 return TRUE;
2828
2829 /* As do non-dynamic symbols. */
2830 if (h->dynindx == -1)
2831 return TRUE;
2832
2833 /* At this point, we know the symbol is defined and dynamic. In an
2834 executable it must resolve locally, likewise when building symbolic
2835 shared libraries. */
2836 if (info->executable || SYMBOLIC_BIND (info, h))
2837 return TRUE;
2838
2839 /* Now deal with defined dynamic symbols in shared libraries. Ones
2840 with default visibility might not resolve locally. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2842 return FALSE;
2843
2844 hash_table = elf_hash_table (info);
2845 if (!is_elf_hash_table (hash_table))
2846 return TRUE;
2847
2848 bed = get_elf_backend_data (hash_table->dynobj);
2849
2850 /* STV_PROTECTED non-function symbols are local. */
2851 if (!bed->is_function_type (h->type))
2852 return TRUE;
2853
2854 /* Function pointer equality tests may require that STV_PROTECTED
2855 symbols be treated as dynamic symbols. If the address of a
2856 function not defined in an executable is set to that function's
2857 plt entry in the executable, then the address of the function in
2858 a shared library must also be the plt entry in the executable. */
2859 return local_protected;
2860 }
2861
2862 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2863 aligned. Returns the first TLS output section. */
2864
2865 struct bfd_section *
2866 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2867 {
2868 struct bfd_section *sec, *tls;
2869 unsigned int align = 0;
2870
2871 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2872 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2873 break;
2874 tls = sec;
2875
2876 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2877 if (sec->alignment_power > align)
2878 align = sec->alignment_power;
2879
2880 elf_hash_table (info)->tls_sec = tls;
2881
2882 /* Ensure the alignment of the first section is the largest alignment,
2883 so that the tls segment starts aligned. */
2884 if (tls != NULL)
2885 tls->alignment_power = align;
2886
2887 return tls;
2888 }
2889
2890 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2891 static bfd_boolean
2892 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2893 Elf_Internal_Sym *sym)
2894 {
2895 const struct elf_backend_data *bed;
2896
2897 /* Local symbols do not count, but target specific ones might. */
2898 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2899 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2900 return FALSE;
2901
2902 bed = get_elf_backend_data (abfd);
2903 /* Function symbols do not count. */
2904 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2905 return FALSE;
2906
2907 /* If the section is undefined, then so is the symbol. */
2908 if (sym->st_shndx == SHN_UNDEF)
2909 return FALSE;
2910
2911 /* If the symbol is defined in the common section, then
2912 it is a common definition and so does not count. */
2913 if (bed->common_definition (sym))
2914 return FALSE;
2915
2916 /* If the symbol is in a target specific section then we
2917 must rely upon the backend to tell us what it is. */
2918 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2919 /* FIXME - this function is not coded yet:
2920
2921 return _bfd_is_global_symbol_definition (abfd, sym);
2922
2923 Instead for now assume that the definition is not global,
2924 Even if this is wrong, at least the linker will behave
2925 in the same way that it used to do. */
2926 return FALSE;
2927
2928 return TRUE;
2929 }
2930
2931 /* Search the symbol table of the archive element of the archive ABFD
2932 whose archive map contains a mention of SYMDEF, and determine if
2933 the symbol is defined in this element. */
2934 static bfd_boolean
2935 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2936 {
2937 Elf_Internal_Shdr * hdr;
2938 bfd_size_type symcount;
2939 bfd_size_type extsymcount;
2940 bfd_size_type extsymoff;
2941 Elf_Internal_Sym *isymbuf;
2942 Elf_Internal_Sym *isym;
2943 Elf_Internal_Sym *isymend;
2944 bfd_boolean result;
2945
2946 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2947 if (abfd == NULL)
2948 return FALSE;
2949
2950 if (! bfd_check_format (abfd, bfd_object))
2951 return FALSE;
2952
2953 /* If we have already included the element containing this symbol in the
2954 link then we do not need to include it again. Just claim that any symbol
2955 it contains is not a definition, so that our caller will not decide to
2956 (re)include this element. */
2957 if (abfd->archive_pass)
2958 return FALSE;
2959
2960 /* Select the appropriate symbol table. */
2961 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2962 hdr = &elf_tdata (abfd)->symtab_hdr;
2963 else
2964 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2965
2966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2967
2968 /* The sh_info field of the symtab header tells us where the
2969 external symbols start. We don't care about the local symbols. */
2970 if (elf_bad_symtab (abfd))
2971 {
2972 extsymcount = symcount;
2973 extsymoff = 0;
2974 }
2975 else
2976 {
2977 extsymcount = symcount - hdr->sh_info;
2978 extsymoff = hdr->sh_info;
2979 }
2980
2981 if (extsymcount == 0)
2982 return FALSE;
2983
2984 /* Read in the symbol table. */
2985 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2986 NULL, NULL, NULL);
2987 if (isymbuf == NULL)
2988 return FALSE;
2989
2990 /* Scan the symbol table looking for SYMDEF. */
2991 result = FALSE;
2992 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2993 {
2994 const char *name;
2995
2996 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2997 isym->st_name);
2998 if (name == NULL)
2999 break;
3000
3001 if (strcmp (name, symdef->name) == 0)
3002 {
3003 result = is_global_data_symbol_definition (abfd, isym);
3004 break;
3005 }
3006 }
3007
3008 free (isymbuf);
3009
3010 return result;
3011 }
3012 \f
3013 /* Add an entry to the .dynamic table. */
3014
3015 bfd_boolean
3016 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3017 bfd_vma tag,
3018 bfd_vma val)
3019 {
3020 struct elf_link_hash_table *hash_table;
3021 const struct elf_backend_data *bed;
3022 asection *s;
3023 bfd_size_type newsize;
3024 bfd_byte *newcontents;
3025 Elf_Internal_Dyn dyn;
3026
3027 hash_table = elf_hash_table (info);
3028 if (! is_elf_hash_table (hash_table))
3029 return FALSE;
3030
3031 bed = get_elf_backend_data (hash_table->dynobj);
3032 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3033 BFD_ASSERT (s != NULL);
3034
3035 newsize = s->size + bed->s->sizeof_dyn;
3036 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3037 if (newcontents == NULL)
3038 return FALSE;
3039
3040 dyn.d_tag = tag;
3041 dyn.d_un.d_val = val;
3042 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3043
3044 s->size = newsize;
3045 s->contents = newcontents;
3046
3047 return TRUE;
3048 }
3049
3050 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3051 otherwise just check whether one already exists. Returns -1 on error,
3052 1 if a DT_NEEDED tag already exists, and 0 on success. */
3053
3054 static int
3055 elf_add_dt_needed_tag (bfd *abfd,
3056 struct bfd_link_info *info,
3057 const char *soname,
3058 bfd_boolean do_it)
3059 {
3060 struct elf_link_hash_table *hash_table;
3061 bfd_size_type oldsize;
3062 bfd_size_type strindex;
3063
3064 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3065 return -1;
3066
3067 hash_table = elf_hash_table (info);
3068 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3069 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3070 if (strindex == (bfd_size_type) -1)
3071 return -1;
3072
3073 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3074 {
3075 asection *sdyn;
3076 const struct elf_backend_data *bed;
3077 bfd_byte *extdyn;
3078
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3081 if (sdyn != NULL)
3082 for (extdyn = sdyn->contents;
3083 extdyn < sdyn->contents + sdyn->size;
3084 extdyn += bed->s->sizeof_dyn)
3085 {
3086 Elf_Internal_Dyn dyn;
3087
3088 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3089 if (dyn.d_tag == DT_NEEDED
3090 && dyn.d_un.d_val == strindex)
3091 {
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3093 return 1;
3094 }
3095 }
3096 }
3097
3098 if (do_it)
3099 {
3100 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3101 return -1;
3102
3103 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3104 return -1;
3105 }
3106 else
3107 /* We were just checking for existence of the tag. */
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109
3110 return 0;
3111 }
3112
3113 static bfd_boolean
3114 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3115 {
3116 for (; needed != NULL; needed = needed->next)
3117 if (strcmp (soname, needed->name) == 0)
3118 return TRUE;
3119
3120 return FALSE;
3121 }
3122
3123 /* Sort symbol by value and section. */
3124 static int
3125 elf_sort_symbol (const void *arg1, const void *arg2)
3126 {
3127 const struct elf_link_hash_entry *h1;
3128 const struct elf_link_hash_entry *h2;
3129 bfd_signed_vma vdiff;
3130
3131 h1 = *(const struct elf_link_hash_entry **) arg1;
3132 h2 = *(const struct elf_link_hash_entry **) arg2;
3133 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3134 if (vdiff != 0)
3135 return vdiff > 0 ? 1 : -1;
3136 else
3137 {
3138 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3139 if (sdiff != 0)
3140 return sdiff > 0 ? 1 : -1;
3141 }
3142 return 0;
3143 }
3144
3145 /* This function is used to adjust offsets into .dynstr for
3146 dynamic symbols. This is called via elf_link_hash_traverse. */
3147
3148 static bfd_boolean
3149 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3150 {
3151 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3152
3153 if (h->dynindx != -1)
3154 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3155 return TRUE;
3156 }
3157
3158 /* Assign string offsets in .dynstr, update all structures referencing
3159 them. */
3160
3161 static bfd_boolean
3162 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3163 {
3164 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3165 struct elf_link_local_dynamic_entry *entry;
3166 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3167 bfd *dynobj = hash_table->dynobj;
3168 asection *sdyn;
3169 bfd_size_type size;
3170 const struct elf_backend_data *bed;
3171 bfd_byte *extdyn;
3172
3173 _bfd_elf_strtab_finalize (dynstr);
3174 size = _bfd_elf_strtab_size (dynstr);
3175
3176 bed = get_elf_backend_data (dynobj);
3177 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3178 BFD_ASSERT (sdyn != NULL);
3179
3180 /* Update all .dynamic entries referencing .dynstr strings. */
3181 for (extdyn = sdyn->contents;
3182 extdyn < sdyn->contents + sdyn->size;
3183 extdyn += bed->s->sizeof_dyn)
3184 {
3185 Elf_Internal_Dyn dyn;
3186
3187 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3188 switch (dyn.d_tag)
3189 {
3190 case DT_STRSZ:
3191 dyn.d_un.d_val = size;
3192 break;
3193 case DT_NEEDED:
3194 case DT_SONAME:
3195 case DT_RPATH:
3196 case DT_RUNPATH:
3197 case DT_FILTER:
3198 case DT_AUXILIARY:
3199 case DT_AUDIT:
3200 case DT_DEPAUDIT:
3201 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3202 break;
3203 default:
3204 continue;
3205 }
3206 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3207 }
3208
3209 /* Now update local dynamic symbols. */
3210 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3211 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3212 entry->isym.st_name);
3213
3214 /* And the rest of dynamic symbols. */
3215 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3216
3217 /* Adjust version definitions. */
3218 if (elf_tdata (output_bfd)->cverdefs)
3219 {
3220 asection *s;
3221 bfd_byte *p;
3222 bfd_size_type i;
3223 Elf_Internal_Verdef def;
3224 Elf_Internal_Verdaux defaux;
3225
3226 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3227 p = s->contents;
3228 do
3229 {
3230 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3231 &def);
3232 p += sizeof (Elf_External_Verdef);
3233 if (def.vd_aux != sizeof (Elf_External_Verdef))
3234 continue;
3235 for (i = 0; i < def.vd_cnt; ++i)
3236 {
3237 _bfd_elf_swap_verdaux_in (output_bfd,
3238 (Elf_External_Verdaux *) p, &defaux);
3239 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3240 defaux.vda_name);
3241 _bfd_elf_swap_verdaux_out (output_bfd,
3242 &defaux, (Elf_External_Verdaux *) p);
3243 p += sizeof (Elf_External_Verdaux);
3244 }
3245 }
3246 while (def.vd_next);
3247 }
3248
3249 /* Adjust version references. */
3250 if (elf_tdata (output_bfd)->verref)
3251 {
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verneed need;
3256 Elf_Internal_Vernaux needaux;
3257
3258 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3259 p = s->contents;
3260 do
3261 {
3262 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3263 &need);
3264 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3265 _bfd_elf_swap_verneed_out (output_bfd, &need,
3266 (Elf_External_Verneed *) p);
3267 p += sizeof (Elf_External_Verneed);
3268 for (i = 0; i < need.vn_cnt; ++i)
3269 {
3270 _bfd_elf_swap_vernaux_in (output_bfd,
3271 (Elf_External_Vernaux *) p, &needaux);
3272 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3273 needaux.vna_name);
3274 _bfd_elf_swap_vernaux_out (output_bfd,
3275 &needaux,
3276 (Elf_External_Vernaux *) p);
3277 p += sizeof (Elf_External_Vernaux);
3278 }
3279 }
3280 while (need.vn_next);
3281 }
3282
3283 return TRUE;
3284 }
3285 \f
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 The default is to only match when the INPUT and OUTPUT are exactly
3288 the same target. */
3289
3290 bfd_boolean
3291 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3293 {
3294 return input == output;
3295 }
3296
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 This version is used when different targets for the same architecture
3299 are virtually identical. */
3300
3301 bfd_boolean
3302 _bfd_elf_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3304 {
3305 const struct elf_backend_data *obed, *ibed;
3306
3307 if (input == output)
3308 return TRUE;
3309
3310 ibed = xvec_get_elf_backend_data (input);
3311 obed = xvec_get_elf_backend_data (output);
3312
3313 if (ibed->arch != obed->arch)
3314 return FALSE;
3315
3316 /* If both backends are using this function, deem them compatible. */
3317 return ibed->relocs_compatible == obed->relocs_compatible;
3318 }
3319
3320 /* Add symbols from an ELF object file to the linker hash table. */
3321
3322 static bfd_boolean
3323 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3324 {
3325 Elf_Internal_Ehdr *ehdr;
3326 Elf_Internal_Shdr *hdr;
3327 bfd_size_type symcount;
3328 bfd_size_type extsymcount;
3329 bfd_size_type extsymoff;
3330 struct elf_link_hash_entry **sym_hash;
3331 bfd_boolean dynamic;
3332 Elf_External_Versym *extversym = NULL;
3333 Elf_External_Versym *ever;
3334 struct elf_link_hash_entry *weaks;
3335 struct elf_link_hash_entry **nondeflt_vers = NULL;
3336 bfd_size_type nondeflt_vers_cnt = 0;
3337 Elf_Internal_Sym *isymbuf = NULL;
3338 Elf_Internal_Sym *isym;
3339 Elf_Internal_Sym *isymend;
3340 const struct elf_backend_data *bed;
3341 bfd_boolean add_needed;
3342 struct elf_link_hash_table *htab;
3343 bfd_size_type amt;
3344 void *alloc_mark = NULL;
3345 struct bfd_hash_entry **old_table = NULL;
3346 unsigned int old_size = 0;
3347 unsigned int old_count = 0;
3348 void *old_tab = NULL;
3349 void *old_hash;
3350 void *old_ent;
3351 struct bfd_link_hash_entry *old_undefs = NULL;
3352 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3353 long old_dynsymcount = 0;
3354 size_t tabsize = 0;
3355 size_t hashsize = 0;
3356
3357 htab = elf_hash_table (info);
3358 bed = get_elf_backend_data (abfd);
3359
3360 if ((abfd->flags & DYNAMIC) == 0)
3361 dynamic = FALSE;
3362 else
3363 {
3364 dynamic = TRUE;
3365
3366 /* You can't use -r against a dynamic object. Also, there's no
3367 hope of using a dynamic object which does not exactly match
3368 the format of the output file. */
3369 if (info->relocatable
3370 || !is_elf_hash_table (htab)
3371 || info->output_bfd->xvec != abfd->xvec)
3372 {
3373 if (info->relocatable)
3374 bfd_set_error (bfd_error_invalid_operation);
3375 else
3376 bfd_set_error (bfd_error_wrong_format);
3377 goto error_return;
3378 }
3379 }
3380
3381 ehdr = elf_elfheader (abfd);
3382 if (info->warn_alternate_em
3383 && bed->elf_machine_code != ehdr->e_machine
3384 && ((bed->elf_machine_alt1 != 0
3385 && ehdr->e_machine == bed->elf_machine_alt1)
3386 || (bed->elf_machine_alt2 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt2)))
3388 info->callbacks->einfo
3389 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3390 ehdr->e_machine, abfd, bed->elf_machine_code);
3391
3392 /* As a GNU extension, any input sections which are named
3393 .gnu.warning.SYMBOL are treated as warning symbols for the given
3394 symbol. This differs from .gnu.warning sections, which generate
3395 warnings when they are included in an output file. */
3396 /* PR 12761: Also generate this warning when building shared libraries. */
3397 if (info->executable || info->shared)
3398 {
3399 asection *s;
3400
3401 for (s = abfd->sections; s != NULL; s = s->next)
3402 {
3403 const char *name;
3404
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3407 {
3408 char *msg;
3409 bfd_size_type sz;
3410
3411 name += sizeof ".gnu.warning." - 1;
3412
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3423 {
3424 struct elf_link_hash_entry *h;
3425
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3427
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3432 {
3433 /* We don't want to issue this warning. Clobber
3434 the section size so that the warning does not
3435 get copied into the output file. */
3436 s->size = 0;
3437 continue;
3438 }
3439 }
3440
3441 sz = s->size;
3442 msg = (char *) bfd_alloc (abfd, sz + 1);
3443 if (msg == NULL)
3444 goto error_return;
3445
3446 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3447 goto error_return;
3448
3449 msg[sz] = '\0';
3450
3451 if (! (_bfd_generic_link_add_one_symbol
3452 (info, abfd, name, BSF_WARNING, s, 0, msg,
3453 FALSE, bed->collect, NULL)))
3454 goto error_return;
3455
3456 if (! info->relocatable)
3457 {
3458 /* Clobber the section size so that the warning does
3459 not get copied into the output file. */
3460 s->size = 0;
3461
3462 /* Also set SEC_EXCLUDE, so that symbols defined in
3463 the warning section don't get copied to the output. */
3464 s->flags |= SEC_EXCLUDE;
3465 }
3466 }
3467 }
3468 }
3469
3470 add_needed = TRUE;
3471 if (! dynamic)
3472 {
3473 /* If we are creating a shared library, create all the dynamic
3474 sections immediately. We need to attach them to something,
3475 so we attach them to this BFD, provided it is the right
3476 format. FIXME: If there are no input BFD's of the same
3477 format as the output, we can't make a shared library. */
3478 if (info->shared
3479 && is_elf_hash_table (htab)
3480 && info->output_bfd->xvec == abfd->xvec
3481 && !htab->dynamic_sections_created)
3482 {
3483 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3484 goto error_return;
3485 }
3486 }
3487 else if (!is_elf_hash_table (htab))
3488 goto error_return;
3489 else
3490 {
3491 asection *s;
3492 const char *soname = NULL;
3493 char *audit = NULL;
3494 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3495 int ret;
3496
3497 /* ld --just-symbols and dynamic objects don't mix very well.
3498 ld shouldn't allow it. */
3499 if ((s = abfd->sections) != NULL
3500 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3501 abort ();
3502
3503 /* If this dynamic lib was specified on the command line with
3504 --as-needed in effect, then we don't want to add a DT_NEEDED
3505 tag unless the lib is actually used. Similary for libs brought
3506 in by another lib's DT_NEEDED. When --no-add-needed is used
3507 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3508 any dynamic library in DT_NEEDED tags in the dynamic lib at
3509 all. */
3510 add_needed = (elf_dyn_lib_class (abfd)
3511 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3512 | DYN_NO_NEEDED)) == 0;
3513
3514 s = bfd_get_section_by_name (abfd, ".dynamic");
3515 if (s != NULL)
3516 {
3517 bfd_byte *dynbuf;
3518 bfd_byte *extdyn;
3519 unsigned int elfsec;
3520 unsigned long shlink;
3521
3522 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3523 {
3524 error_free_dyn:
3525 free (dynbuf);
3526 goto error_return;
3527 }
3528
3529 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3530 if (elfsec == SHN_BAD)
3531 goto error_free_dyn;
3532 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3533
3534 for (extdyn = dynbuf;
3535 extdyn < dynbuf + s->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3541 if (dyn.d_tag == DT_SONAME)
3542 {
3543 unsigned int tagv = dyn.d_un.d_val;
3544 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3545 if (soname == NULL)
3546 goto error_free_dyn;
3547 }
3548 if (dyn.d_tag == DT_NEEDED)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = (char *) bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 goto error_free_dyn;
3563 memcpy (anm, fnm, amt);
3564 n->name = anm;
3565 n->by = abfd;
3566 n->next = NULL;
3567 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3568 ;
3569 *pn = n;
3570 }
3571 if (dyn.d_tag == DT_RUNPATH)
3572 {
3573 struct bfd_link_needed_list *n, **pn;
3574 char *fnm, *anm;
3575 unsigned int tagv = dyn.d_un.d_val;
3576
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3584 if (anm == NULL)
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3587 n->name = anm;
3588 n->by = abfd;
3589 n->next = NULL;
3590 for (pn = & runpath;
3591 *pn != NULL;
3592 pn = &(*pn)->next)
3593 ;
3594 *pn = n;
3595 }
3596 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3597 if (!runpath && dyn.d_tag == DT_RPATH)
3598 {
3599 struct bfd_link_needed_list *n, **pn;
3600 char *fnm, *anm;
3601 unsigned int tagv = dyn.d_un.d_val;
3602
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3610 if (anm == NULL)
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3613 n->name = anm;
3614 n->by = abfd;
3615 n->next = NULL;
3616 for (pn = & rpath;
3617 *pn != NULL;
3618 pn = &(*pn)->next)
3619 ;
3620 *pn = n;
3621 }
3622 if (dyn.d_tag == DT_AUDIT)
3623 {
3624 unsigned int tagv = dyn.d_un.d_val;
3625 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3626 }
3627 }
3628
3629 free (dynbuf);
3630 }
3631
3632 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3633 frees all more recently bfd_alloc'd blocks as well. */
3634 if (runpath)
3635 rpath = runpath;
3636
3637 if (rpath)
3638 {
3639 struct bfd_link_needed_list **pn;
3640 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3641 ;
3642 *pn = rpath;
3643 }
3644
3645 /* We do not want to include any of the sections in a dynamic
3646 object in the output file. We hack by simply clobbering the
3647 list of sections in the BFD. This could be handled more
3648 cleanly by, say, a new section flag; the existing
3649 SEC_NEVER_LOAD flag is not the one we want, because that one
3650 still implies that the section takes up space in the output
3651 file. */
3652 bfd_section_list_clear (abfd);
3653
3654 /* Find the name to use in a DT_NEEDED entry that refers to this
3655 object. If the object has a DT_SONAME entry, we use it.
3656 Otherwise, if the generic linker stuck something in
3657 elf_dt_name, we use that. Otherwise, we just use the file
3658 name. */
3659 if (soname == NULL || *soname == '\0')
3660 {
3661 soname = elf_dt_name (abfd);
3662 if (soname == NULL || *soname == '\0')
3663 soname = bfd_get_filename (abfd);
3664 }
3665
3666 /* Save the SONAME because sometimes the linker emulation code
3667 will need to know it. */
3668 elf_dt_name (abfd) = soname;
3669
3670 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3671 if (ret < 0)
3672 goto error_return;
3673
3674 /* If we have already included this dynamic object in the
3675 link, just ignore it. There is no reason to include a
3676 particular dynamic object more than once. */
3677 if (ret > 0)
3678 return TRUE;
3679
3680 /* Save the DT_AUDIT entry for the linker emulation code. */
3681 elf_dt_audit (abfd) = audit;
3682 }
3683
3684 /* If this is a dynamic object, we always link against the .dynsym
3685 symbol table, not the .symtab symbol table. The dynamic linker
3686 will only see the .dynsym symbol table, so there is no reason to
3687 look at .symtab for a dynamic object. */
3688
3689 if (! dynamic || elf_dynsymtab (abfd) == 0)
3690 hdr = &elf_tdata (abfd)->symtab_hdr;
3691 else
3692 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3693
3694 symcount = hdr->sh_size / bed->s->sizeof_sym;
3695
3696 /* The sh_info field of the symtab header tells us where the
3697 external symbols start. We don't care about the local symbols at
3698 this point. */
3699 if (elf_bad_symtab (abfd))
3700 {
3701 extsymcount = symcount;
3702 extsymoff = 0;
3703 }
3704 else
3705 {
3706 extsymcount = symcount - hdr->sh_info;
3707 extsymoff = hdr->sh_info;
3708 }
3709
3710 sym_hash = NULL;
3711 if (extsymcount != 0)
3712 {
3713 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3714 NULL, NULL, NULL);
3715 if (isymbuf == NULL)
3716 goto error_return;
3717
3718 /* We store a pointer to the hash table entry for each external
3719 symbol. */
3720 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3721 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3722 if (sym_hash == NULL)
3723 goto error_free_sym;
3724 elf_sym_hashes (abfd) = sym_hash;
3725 }
3726
3727 if (dynamic)
3728 {
3729 /* Read in any version definitions. */
3730 if (!_bfd_elf_slurp_version_tables (abfd,
3731 info->default_imported_symver))
3732 goto error_free_sym;
3733
3734 /* Read in the symbol versions, but don't bother to convert them
3735 to internal format. */
3736 if (elf_dynversym (abfd) != 0)
3737 {
3738 Elf_Internal_Shdr *versymhdr;
3739
3740 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3741 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3742 if (extversym == NULL)
3743 goto error_free_sym;
3744 amt = versymhdr->sh_size;
3745 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3746 || bfd_bread (extversym, amt, abfd) != amt)
3747 goto error_free_vers;
3748 }
3749 }
3750
3751 /* If we are loading an as-needed shared lib, save the symbol table
3752 state before we start adding symbols. If the lib turns out
3753 to be unneeded, restore the state. */
3754 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3755 {
3756 unsigned int i;
3757 size_t entsize;
3758
3759 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3760 {
3761 struct bfd_hash_entry *p;
3762 struct elf_link_hash_entry *h;
3763
3764 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3765 {
3766 h = (struct elf_link_hash_entry *) p;
3767 entsize += htab->root.table.entsize;
3768 if (h->root.type == bfd_link_hash_warning)
3769 entsize += htab->root.table.entsize;
3770 }
3771 }
3772
3773 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3774 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3775 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3776 if (old_tab == NULL)
3777 goto error_free_vers;
3778
3779 /* Remember the current objalloc pointer, so that all mem for
3780 symbols added can later be reclaimed. */
3781 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3782 if (alloc_mark == NULL)
3783 goto error_free_vers;
3784
3785 /* Make a special call to the linker "notice" function to
3786 tell it that we are about to handle an as-needed lib. */
3787 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3788 notice_as_needed, 0, NULL))
3789 goto error_free_vers;
3790
3791 /* Clone the symbol table and sym hashes. Remember some
3792 pointers into the symbol table, and dynamic symbol count. */
3793 old_hash = (char *) old_tab + tabsize;
3794 old_ent = (char *) old_hash + hashsize;
3795 memcpy (old_tab, htab->root.table.table, tabsize);
3796 memcpy (old_hash, sym_hash, hashsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3803
3804 for (i = 0; i < htab->root.table.size; i++)
3805 {
3806 struct bfd_hash_entry *p;
3807 struct elf_link_hash_entry *h;
3808
3809 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3810 {
3811 memcpy (old_ent, p, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 h = (struct elf_link_hash_entry *) p;
3814 if (h->root.type == bfd_link_hash_warning)
3815 {
3816 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3817 old_ent = (char *) old_ent + htab->root.table.entsize;
3818 }
3819 }
3820 }
3821 }
3822
3823 weaks = NULL;
3824 ever = extversym != NULL ? extversym + extsymoff : NULL;
3825 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3826 isym < isymend;
3827 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3828 {
3829 int bind;
3830 bfd_vma value;
3831 asection *sec, *new_sec;
3832 flagword flags;
3833 const char *name;
3834 struct elf_link_hash_entry *h;
3835 bfd_boolean definition;
3836 bfd_boolean size_change_ok;
3837 bfd_boolean type_change_ok;
3838 bfd_boolean new_weakdef;
3839 bfd_boolean override;
3840 bfd_boolean common;
3841 unsigned int old_alignment;
3842 bfd *old_bfd;
3843 bfd * undef_bfd = NULL;
3844
3845 override = FALSE;
3846
3847 flags = BSF_NO_FLAGS;
3848 sec = NULL;
3849 value = isym->st_value;
3850 *sym_hash = NULL;
3851 common = bed->common_definition (isym);
3852
3853 bind = ELF_ST_BIND (isym->st_info);
3854 switch (bind)
3855 {
3856 case STB_LOCAL:
3857 /* This should be impossible, since ELF requires that all
3858 global symbols follow all local symbols, and that sh_info
3859 point to the first global symbol. Unfortunately, Irix 5
3860 screws this up. */
3861 continue;
3862
3863 case STB_GLOBAL:
3864 if (isym->st_shndx != SHN_UNDEF && !common)
3865 flags = BSF_GLOBAL;
3866 break;
3867
3868 case STB_WEAK:
3869 flags = BSF_WEAK;
3870 break;
3871
3872 case STB_GNU_UNIQUE:
3873 flags = BSF_GNU_UNIQUE;
3874 break;
3875
3876 default:
3877 /* Leave it up to the processor backend. */
3878 break;
3879 }
3880
3881 if (isym->st_shndx == SHN_UNDEF)
3882 sec = bfd_und_section_ptr;
3883 else if (isym->st_shndx == SHN_ABS)
3884 sec = bfd_abs_section_ptr;
3885 else if (isym->st_shndx == SHN_COMMON)
3886 {
3887 sec = bfd_com_section_ptr;
3888 /* What ELF calls the size we call the value. What ELF
3889 calls the value we call the alignment. */
3890 value = isym->st_size;
3891 }
3892 else
3893 {
3894 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3895 if (sec == NULL)
3896 sec = bfd_abs_section_ptr;
3897 else if (elf_discarded_section (sec))
3898 {
3899 /* Symbols from discarded section are undefined. We keep
3900 its visibility. */
3901 sec = bfd_und_section_ptr;
3902 isym->st_shndx = SHN_UNDEF;
3903 }
3904 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3905 value -= sec->vma;
3906 }
3907
3908 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3909 isym->st_name);
3910 if (name == NULL)
3911 goto error_free_vers;
3912
3913 if (isym->st_shndx == SHN_COMMON
3914 && (abfd->flags & BFD_PLUGIN) != 0)
3915 {
3916 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3917
3918 if (xc == NULL)
3919 {
3920 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3921 | SEC_EXCLUDE);
3922 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3923 if (xc == NULL)
3924 goto error_free_vers;
3925 }
3926 sec = xc;
3927 }
3928 else if (isym->st_shndx == SHN_COMMON
3929 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3930 && !info->relocatable)
3931 {
3932 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3933
3934 if (tcomm == NULL)
3935 {
3936 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED);
3938 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 /* If this is a definition of a symbol which was previously
3982 referenced in a non-weak manner then make a note of the bfd
3983 that contained the reference. This is used if we need to
3984 refer to the source of the reference later on. */
3985 if (! bfd_is_und_section (sec))
3986 {
3987 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3988
3989 if (h != NULL
3990 && h->root.type == bfd_link_hash_undefined
3991 && h->root.u.undef.abfd)
3992 undef_bfd = h->root.u.undef.abfd;
3993 }
3994
3995 if (ever == NULL)
3996 {
3997 if (info->default_imported_symver)
3998 /* Use the default symbol version created earlier. */
3999 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4000 else
4001 iver.vs_vers = 0;
4002 }
4003 else
4004 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4005
4006 vernum = iver.vs_vers & VERSYM_VERSION;
4007
4008 /* If this is a hidden symbol, or if it is not version
4009 1, we append the version name to the symbol name.
4010 However, we do not modify a non-hidden absolute symbol
4011 if it is not a function, because it might be the version
4012 symbol itself. FIXME: What if it isn't? */
4013 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4014 || (vernum > 1
4015 && (!bfd_is_abs_section (sec)
4016 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4017 {
4018 const char *verstr;
4019 size_t namelen, verlen, newlen;
4020 char *newname, *p;
4021
4022 if (isym->st_shndx != SHN_UNDEF)
4023 {
4024 if (vernum > elf_tdata (abfd)->cverdefs)
4025 verstr = NULL;
4026 else if (vernum > 1)
4027 verstr =
4028 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4029 else
4030 verstr = "";
4031
4032 if (verstr == NULL)
4033 {
4034 (*_bfd_error_handler)
4035 (_("%B: %s: invalid version %u (max %d)"),
4036 abfd, name, vernum,
4037 elf_tdata (abfd)->cverdefs);
4038 bfd_set_error (bfd_error_bad_value);
4039 goto error_free_vers;
4040 }
4041 }
4042 else
4043 {
4044 /* We cannot simply test for the number of
4045 entries in the VERNEED section since the
4046 numbers for the needed versions do not start
4047 at 0. */
4048 Elf_Internal_Verneed *t;
4049
4050 verstr = NULL;
4051 for (t = elf_tdata (abfd)->verref;
4052 t != NULL;
4053 t = t->vn_nextref)
4054 {
4055 Elf_Internal_Vernaux *a;
4056
4057 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4058 {
4059 if (a->vna_other == vernum)
4060 {
4061 verstr = a->vna_nodename;
4062 break;
4063 }
4064 }
4065 if (a != NULL)
4066 break;
4067 }
4068 if (verstr == NULL)
4069 {
4070 (*_bfd_error_handler)
4071 (_("%B: %s: invalid needed version %d"),
4072 abfd, name, vernum);
4073 bfd_set_error (bfd_error_bad_value);
4074 goto error_free_vers;
4075 }
4076 }
4077
4078 namelen = strlen (name);
4079 verlen = strlen (verstr);
4080 newlen = namelen + verlen + 2;
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 ++newlen;
4084
4085 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4086 if (newname == NULL)
4087 goto error_free_vers;
4088 memcpy (newname, name, namelen);
4089 p = newname + namelen;
4090 *p++ = ELF_VER_CHR;
4091 /* If this is a defined non-hidden version symbol,
4092 we add another @ to the name. This indicates the
4093 default version of the symbol. */
4094 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4095 && isym->st_shndx != SHN_UNDEF)
4096 *p++ = ELF_VER_CHR;
4097 memcpy (p, verstr, verlen + 1);
4098
4099 name = newname;
4100 }
4101
4102 /* If necessary, make a second attempt to locate the bfd
4103 containing an unresolved, non-weak reference to the
4104 current symbol. */
4105 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4106 {
4107 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4108
4109 if (h != NULL
4110 && h->root.type == bfd_link_hash_undefined
4111 && h->root.u.undef.abfd)
4112 undef_bfd = h->root.u.undef.abfd;
4113 }
4114
4115 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4116 &value, &old_alignment,
4117 sym_hash, &skip, &override,
4118 &type_change_ok, &size_change_ok))
4119 goto error_free_vers;
4120
4121 if (skip)
4122 continue;
4123
4124 if (override)
4125 definition = FALSE;
4126
4127 h = *sym_hash;
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4131
4132 /* Remember the old alignment if this is a common symbol, so
4133 that we don't reduce the alignment later on. We can't
4134 check later, because _bfd_generic_link_add_one_symbol
4135 will set a default for the alignment which we want to
4136 override. We also remember the old bfd where the existing
4137 definition comes from. */
4138 switch (h->root.type)
4139 {
4140 default:
4141 break;
4142
4143 case bfd_link_hash_defined:
4144 case bfd_link_hash_defweak:
4145 old_bfd = h->root.u.def.section->owner;
4146 break;
4147
4148 case bfd_link_hash_common:
4149 old_bfd = h->root.u.c.p->section->owner;
4150 old_alignment = h->root.u.c.p->alignment_power;
4151 break;
4152 }
4153
4154 if (elf_tdata (abfd)->verdef != NULL
4155 && ! override
4156 && vernum > 1
4157 && definition)
4158 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4159 }
4160
4161 if (! (_bfd_generic_link_add_one_symbol
4162 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4163 (struct bfd_link_hash_entry **) sym_hash)))
4164 goto error_free_vers;
4165
4166 h = *sym_hash;
4167 while (h->root.type == bfd_link_hash_indirect
4168 || h->root.type == bfd_link_hash_warning)
4169 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4170
4171 *sym_hash = h;
4172 if (is_elf_hash_table (htab))
4173 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4174
4175 new_weakdef = FALSE;
4176 if (dynamic
4177 && definition
4178 && (flags & BSF_WEAK) != 0
4179 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4180 && is_elf_hash_table (htab)
4181 && h->u.weakdef == NULL)
4182 {
4183 /* Keep a list of all weak defined non function symbols from
4184 a dynamic object, using the weakdef field. Later in this
4185 function we will set the weakdef field to the correct
4186 value. We only put non-function symbols from dynamic
4187 objects on this list, because that happens to be the only
4188 time we need to know the normal symbol corresponding to a
4189 weak symbol, and the information is time consuming to
4190 figure out. If the weakdef field is not already NULL,
4191 then this symbol was already defined by some previous
4192 dynamic object, and we will be using that previous
4193 definition anyhow. */
4194
4195 h->u.weakdef = weaks;
4196 weaks = h;
4197 new_weakdef = TRUE;
4198 }
4199
4200 /* Set the alignment of a common symbol. */
4201 if ((common || bfd_is_com_section (sec))
4202 && h->root.type == bfd_link_hash_common)
4203 {
4204 unsigned int align;
4205
4206 if (common)
4207 align = bfd_log2 (isym->st_value);
4208 else
4209 {
4210 /* The new symbol is a common symbol in a shared object.
4211 We need to get the alignment from the section. */
4212 align = new_sec->alignment_power;
4213 }
4214 if (align > old_alignment)
4215 h->root.u.c.p->alignment_power = align;
4216 else
4217 h->root.u.c.p->alignment_power = old_alignment;
4218 }
4219
4220 if (is_elf_hash_table (htab))
4221 {
4222 bfd_boolean dynsym;
4223
4224 /* Check the alignment when a common symbol is involved. This
4225 can change when a common symbol is overridden by a normal
4226 definition or a common symbol is ignored due to the old
4227 normal definition. We need to make sure the maximum
4228 alignment is maintained. */
4229 if ((old_alignment || common)
4230 && h->root.type != bfd_link_hash_common)
4231 {
4232 unsigned int common_align;
4233 unsigned int normal_align;
4234 unsigned int symbol_align;
4235 bfd *normal_bfd;
4236 bfd *common_bfd;
4237
4238 symbol_align = ffs (h->root.u.def.value) - 1;
4239 if (h->root.u.def.section->owner != NULL
4240 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4241 {
4242 normal_align = h->root.u.def.section->alignment_power;
4243 if (normal_align > symbol_align)
4244 normal_align = symbol_align;
4245 }
4246 else
4247 normal_align = symbol_align;
4248
4249 if (old_alignment)
4250 {
4251 common_align = old_alignment;
4252 common_bfd = old_bfd;
4253 normal_bfd = abfd;
4254 }
4255 else
4256 {
4257 common_align = bfd_log2 (isym->st_value);
4258 common_bfd = abfd;
4259 normal_bfd = old_bfd;
4260 }
4261
4262 if (normal_align < common_align)
4263 {
4264 /* PR binutils/2735 */
4265 if (normal_bfd == NULL)
4266 (*_bfd_error_handler)
4267 (_("Warning: alignment %u of common symbol `%s' in %B"
4268 " is greater than the alignment (%u) of its section %A"),
4269 common_bfd, h->root.u.def.section,
4270 1 << common_align, name, 1 << normal_align);
4271 else
4272 (*_bfd_error_handler)
4273 (_("Warning: alignment %u of symbol `%s' in %B"
4274 " is smaller than %u in %B"),
4275 normal_bfd, common_bfd,
4276 1 << normal_align, name, 1 << common_align);
4277 }
4278 }
4279
4280 /* Remember the symbol size if it isn't undefined. */
4281 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4282 && (definition || h->size == 0))
4283 {
4284 if (h->size != 0
4285 && h->size != isym->st_size
4286 && ! size_change_ok)
4287 (*_bfd_error_handler)
4288 (_("Warning: size of symbol `%s' changed"
4289 " from %lu in %B to %lu in %B"),
4290 old_bfd, abfd,
4291 name, (unsigned long) h->size,
4292 (unsigned long) isym->st_size);
4293
4294 h->size = isym->st_size;
4295 }
4296
4297 /* If this is a common symbol, then we always want H->SIZE
4298 to be the size of the common symbol. The code just above
4299 won't fix the size if a common symbol becomes larger. We
4300 don't warn about a size change here, because that is
4301 covered by --warn-common. Allow changed between different
4302 function types. */
4303 if (h->root.type == bfd_link_hash_common)
4304 h->size = h->root.u.c.size;
4305
4306 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4307 && (definition || h->type == STT_NOTYPE))
4308 {
4309 unsigned int type = ELF_ST_TYPE (isym->st_info);
4310
4311 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4312 symbol. */
4313 if (type == STT_GNU_IFUNC
4314 && (abfd->flags & DYNAMIC) != 0)
4315 type = STT_FUNC;
4316
4317 if (h->type != type)
4318 {
4319 if (h->type != STT_NOTYPE && ! type_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: type of symbol `%s' changed"
4322 " from %d to %d in %B"),
4323 abfd, name, h->type, type);
4324
4325 h->type = type;
4326 }
4327 }
4328
4329 /* Merge st_other field. */
4330 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4331
4332 /* Set a flag in the hash table entry indicating the type of
4333 reference or definition we just found. Keep a count of
4334 the number of dynamic symbols we find. A dynamic symbol
4335 is one which is referenced or defined by both a regular
4336 object and a shared object. */
4337 dynsym = FALSE;
4338 if (! dynamic)
4339 {
4340 if (! definition)
4341 {
4342 h->ref_regular = 1;
4343 if (bind != STB_WEAK)
4344 h->ref_regular_nonweak = 1;
4345 }
4346 else
4347 {
4348 h->def_regular = 1;
4349 if (h->def_dynamic)
4350 {
4351 h->def_dynamic = 0;
4352 h->ref_dynamic = 1;
4353 }
4354 }
4355 if (! info->executable
4356 || h->def_dynamic
4357 || h->ref_dynamic)
4358 dynsym = TRUE;
4359 }
4360 else
4361 {
4362 if (! definition)
4363 h->ref_dynamic = 1;
4364 else
4365 {
4366 h->def_dynamic = 1;
4367 h->dynamic_def = 1;
4368 }
4369 if (h->def_regular
4370 || h->ref_regular
4371 || (h->u.weakdef != NULL
4372 && ! new_weakdef
4373 && h->u.weakdef->dynindx != -1))
4374 dynsym = TRUE;
4375 }
4376
4377 /* We don't want to make debug symbol dynamic. */
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4379 dynsym = FALSE;
4380
4381 /* Nor should we make plugin symbols dynamic. */
4382 if ((abfd->flags & BFD_PLUGIN) != 0)
4383 dynsym = FALSE;
4384
4385 if (definition)
4386 h->target_internal = isym->st_target_internal;
4387
4388 /* Check to see if we need to add an indirect symbol for
4389 the default name. */
4390 if (definition || h->root.type == bfd_link_hash_common)
4391 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4392 &sec, &value, &dynsym,
4393 override))
4394 goto error_free_vers;
4395
4396 if (definition && !dynamic)
4397 {
4398 char *p = strchr (name, ELF_VER_CHR);
4399 if (p != NULL && p[1] != ELF_VER_CHR)
4400 {
4401 /* Queue non-default versions so that .symver x, x@FOO
4402 aliases can be checked. */
4403 if (!nondeflt_vers)
4404 {
4405 amt = ((isymend - isym + 1)
4406 * sizeof (struct elf_link_hash_entry *));
4407 nondeflt_vers =
4408 (struct elf_link_hash_entry **) bfd_malloc (amt);
4409 if (!nondeflt_vers)
4410 goto error_free_vers;
4411 }
4412 nondeflt_vers[nondeflt_vers_cnt++] = h;
4413 }
4414 }
4415
4416 if (dynsym && h->dynindx == -1)
4417 {
4418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4419 goto error_free_vers;
4420 if (h->u.weakdef != NULL
4421 && ! new_weakdef
4422 && h->u.weakdef->dynindx == -1)
4423 {
4424 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4425 goto error_free_vers;
4426 }
4427 }
4428 else if (dynsym && h->dynindx != -1)
4429 /* If the symbol already has a dynamic index, but
4430 visibility says it should not be visible, turn it into
4431 a local symbol. */
4432 switch (ELF_ST_VISIBILITY (h->other))
4433 {
4434 case STV_INTERNAL:
4435 case STV_HIDDEN:
4436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4437 dynsym = FALSE;
4438 break;
4439 }
4440
4441 if (!add_needed
4442 && definition
4443 && ((dynsym
4444 && h->ref_regular)
4445 || (h->ref_dynamic
4446 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4447 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4448 {
4449 int ret;
4450 const char *soname = elf_dt_name (abfd);
4451
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4456 a weak one. */
4457 if (undef_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4459 {
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4462 undef_bfd, name);
4463 (*_bfd_error_handler)
4464 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4465 abfd, name);
4466 bfd_set_error (bfd_error_invalid_operation);
4467 goto error_free_vers;
4468 }
4469
4470 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4471 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4472
4473 add_needed = TRUE;
4474 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4475 if (ret < 0)
4476 goto error_free_vers;
4477
4478 BFD_ASSERT (ret == 0);
4479 }
4480 }
4481 }
4482
4483 if (extversym != NULL)
4484 {
4485 free (extversym);
4486 extversym = NULL;
4487 }
4488
4489 if (isymbuf != NULL)
4490 {
4491 free (isymbuf);
4492 isymbuf = NULL;
4493 }
4494
4495 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4496 {
4497 unsigned int i;
4498
4499 /* Restore the symbol table. */
4500 if (bed->as_needed_cleanup)
4501 (*bed->as_needed_cleanup) (abfd, info);
4502 old_hash = (char *) old_tab + tabsize;
4503 old_ent = (char *) old_hash + hashsize;
4504 sym_hash = elf_sym_hashes (abfd);
4505 htab->root.table.table = old_table;
4506 htab->root.table.size = old_size;
4507 htab->root.table.count = old_count;
4508 memcpy (htab->root.table.table, old_tab, tabsize);
4509 memcpy (sym_hash, old_hash, hashsize);
4510 htab->root.undefs = old_undefs;
4511 htab->root.undefs_tail = old_undefs_tail;
4512 for (i = 0; i < htab->root.table.size; i++)
4513 {
4514 struct bfd_hash_entry *p;
4515 struct elf_link_hash_entry *h;
4516 bfd_size_type size;
4517 unsigned int alignment_power;
4518
4519 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4520 {
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->dynindx >= old_dynsymcount)
4525 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4526
4527 /* Preserve the maximum alignment and size for common
4528 symbols even if this dynamic lib isn't on DT_NEEDED
4529 since it can still be loaded at the run-time by another
4530 dynamic lib. */
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 size = h->root.u.c.size;
4534 alignment_power = h->root.u.c.p->alignment_power;
4535 }
4536 else
4537 {
4538 size = 0;
4539 alignment_power = 0;
4540 }
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4545 {
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4548 }
4549 else if (h->root.type == bfd_link_hash_common)
4550 {
4551 if (size > h->root.u.c.size)
4552 h->root.u.c.size = size;
4553 if (alignment_power > h->root.u.c.p->alignment_power)
4554 h->root.u.c.p->alignment_power = alignment_power;
4555 }
4556 }
4557 }
4558
4559 /* Make a special call to the linker "notice" function to
4560 tell it that symbols added for crefs may need to be removed. */
4561 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4562 notice_not_needed, 0, NULL))
4563 goto error_free_vers;
4564
4565 free (old_tab);
4566 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4567 alloc_mark);
4568 if (nondeflt_vers != NULL)
4569 free (nondeflt_vers);
4570 return TRUE;
4571 }
4572
4573 if (old_tab != NULL)
4574 {
4575 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4576 notice_needed, 0, NULL))
4577 goto error_free_vers;
4578 free (old_tab);
4579 old_tab = NULL;
4580 }
4581
4582 /* Now that all the symbols from this input file are created, handle
4583 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4584 if (nondeflt_vers != NULL)
4585 {
4586 bfd_size_type cnt, symidx;
4587
4588 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4589 {
4590 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4591 char *shortname, *p;
4592
4593 p = strchr (h->root.root.string, ELF_VER_CHR);
4594 if (p == NULL
4595 || (h->root.type != bfd_link_hash_defined
4596 && h->root.type != bfd_link_hash_defweak))
4597 continue;
4598
4599 amt = p - h->root.root.string;
4600 shortname = (char *) bfd_malloc (amt + 1);
4601 if (!shortname)
4602 goto error_free_vers;
4603 memcpy (shortname, h->root.root.string, amt);
4604 shortname[amt] = '\0';
4605
4606 hi = (struct elf_link_hash_entry *)
4607 bfd_link_hash_lookup (&htab->root, shortname,
4608 FALSE, FALSE, FALSE);
4609 if (hi != NULL
4610 && hi->root.type == h->root.type
4611 && hi->root.u.def.value == h->root.u.def.value
4612 && hi->root.u.def.section == h->root.u.def.section)
4613 {
4614 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4615 hi->root.type = bfd_link_hash_indirect;
4616 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4617 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4618 sym_hash = elf_sym_hashes (abfd);
4619 if (sym_hash)
4620 for (symidx = 0; symidx < extsymcount; ++symidx)
4621 if (sym_hash[symidx] == hi)
4622 {
4623 sym_hash[symidx] = h;
4624 break;
4625 }
4626 }
4627 free (shortname);
4628 }
4629 free (nondeflt_vers);
4630 nondeflt_vers = NULL;
4631 }
4632
4633 /* Now set the weakdefs field correctly for all the weak defined
4634 symbols we found. The only way to do this is to search all the
4635 symbols. Since we only need the information for non functions in
4636 dynamic objects, that's the only time we actually put anything on
4637 the list WEAKS. We need this information so that if a regular
4638 object refers to a symbol defined weakly in a dynamic object, the
4639 real symbol in the dynamic object is also put in the dynamic
4640 symbols; we also must arrange for both symbols to point to the
4641 same memory location. We could handle the general case of symbol
4642 aliasing, but a general symbol alias can only be generated in
4643 assembler code, handling it correctly would be very time
4644 consuming, and other ELF linkers don't handle general aliasing
4645 either. */
4646 if (weaks != NULL)
4647 {
4648 struct elf_link_hash_entry **hpp;
4649 struct elf_link_hash_entry **hppend;
4650 struct elf_link_hash_entry **sorted_sym_hash;
4651 struct elf_link_hash_entry *h;
4652 size_t sym_count;
4653
4654 /* Since we have to search the whole symbol list for each weak
4655 defined symbol, search time for N weak defined symbols will be
4656 O(N^2). Binary search will cut it down to O(NlogN). */
4657 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4658 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4659 if (sorted_sym_hash == NULL)
4660 goto error_return;
4661 sym_hash = sorted_sym_hash;
4662 hpp = elf_sym_hashes (abfd);
4663 hppend = hpp + extsymcount;
4664 sym_count = 0;
4665 for (; hpp < hppend; hpp++)
4666 {
4667 h = *hpp;
4668 if (h != NULL
4669 && h->root.type == bfd_link_hash_defined
4670 && !bed->is_function_type (h->type))
4671 {
4672 *sym_hash = h;
4673 sym_hash++;
4674 sym_count++;
4675 }
4676 }
4677
4678 qsort (sorted_sym_hash, sym_count,
4679 sizeof (struct elf_link_hash_entry *),
4680 elf_sort_symbol);
4681
4682 while (weaks != NULL)
4683 {
4684 struct elf_link_hash_entry *hlook;
4685 asection *slook;
4686 bfd_vma vlook;
4687 long ilook;
4688 size_t i, j, idx;
4689
4690 hlook = weaks;
4691 weaks = hlook->u.weakdef;
4692 hlook->u.weakdef = NULL;
4693
4694 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4695 || hlook->root.type == bfd_link_hash_defweak
4696 || hlook->root.type == bfd_link_hash_common
4697 || hlook->root.type == bfd_link_hash_indirect);
4698 slook = hlook->root.u.def.section;
4699 vlook = hlook->root.u.def.value;
4700
4701 ilook = -1;
4702 i = 0;
4703 j = sym_count;
4704 while (i < j)
4705 {
4706 bfd_signed_vma vdiff;
4707 idx = (i + j) / 2;
4708 h = sorted_sym_hash [idx];
4709 vdiff = vlook - h->root.u.def.value;
4710 if (vdiff < 0)
4711 j = idx;
4712 else if (vdiff > 0)
4713 i = idx + 1;
4714 else
4715 {
4716 long sdiff = slook->id - h->root.u.def.section->id;
4717 if (sdiff < 0)
4718 j = idx;
4719 else if (sdiff > 0)
4720 i = idx + 1;
4721 else
4722 {
4723 ilook = idx;
4724 break;
4725 }
4726 }
4727 }
4728
4729 /* We didn't find a value/section match. */
4730 if (ilook == -1)
4731 continue;
4732
4733 for (i = ilook; i < sym_count; i++)
4734 {
4735 h = sorted_sym_hash [i];
4736
4737 /* Stop if value or section doesn't match. */
4738 if (h->root.u.def.value != vlook
4739 || h->root.u.def.section != slook)
4740 break;
4741 else if (h != hlook)
4742 {
4743 hlook->u.weakdef = h;
4744
4745 /* If the weak definition is in the list of dynamic
4746 symbols, make sure the real definition is put
4747 there as well. */
4748 if (hlook->dynindx != -1 && h->dynindx == -1)
4749 {
4750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4751 {
4752 err_free_sym_hash:
4753 free (sorted_sym_hash);
4754 goto error_return;
4755 }
4756 }
4757
4758 /* If the real definition is in the list of dynamic
4759 symbols, make sure the weak definition is put
4760 there as well. If we don't do this, then the
4761 dynamic loader might not merge the entries for the
4762 real definition and the weak definition. */
4763 if (h->dynindx != -1 && hlook->dynindx == -1)
4764 {
4765 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4766 goto err_free_sym_hash;
4767 }
4768 break;
4769 }
4770 }
4771 }
4772
4773 free (sorted_sym_hash);
4774 }
4775
4776 if (bed->check_directives
4777 && !(*bed->check_directives) (abfd, info))
4778 return FALSE;
4779
4780 /* If this object is the same format as the output object, and it is
4781 not a shared library, then let the backend look through the
4782 relocs.
4783
4784 This is required to build global offset table entries and to
4785 arrange for dynamic relocs. It is not required for the
4786 particular common case of linking non PIC code, even when linking
4787 against shared libraries, but unfortunately there is no way of
4788 knowing whether an object file has been compiled PIC or not.
4789 Looking through the relocs is not particularly time consuming.
4790 The problem is that we must either (1) keep the relocs in memory,
4791 which causes the linker to require additional runtime memory or
4792 (2) read the relocs twice from the input file, which wastes time.
4793 This would be a good case for using mmap.
4794
4795 I have no idea how to handle linking PIC code into a file of a
4796 different format. It probably can't be done. */
4797 if (! dynamic
4798 && is_elf_hash_table (htab)
4799 && bed->check_relocs != NULL
4800 && elf_object_id (abfd) == elf_hash_table_id (htab)
4801 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4802 {
4803 asection *o;
4804
4805 for (o = abfd->sections; o != NULL; o = o->next)
4806 {
4807 Elf_Internal_Rela *internal_relocs;
4808 bfd_boolean ok;
4809
4810 if ((o->flags & SEC_RELOC) == 0
4811 || o->reloc_count == 0
4812 || ((info->strip == strip_all || info->strip == strip_debugger)
4813 && (o->flags & SEC_DEBUGGING) != 0)
4814 || bfd_is_abs_section (o->output_section))
4815 continue;
4816
4817 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4818 info->keep_memory);
4819 if (internal_relocs == NULL)
4820 goto error_return;
4821
4822 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4823
4824 if (elf_section_data (o)->relocs != internal_relocs)
4825 free (internal_relocs);
4826
4827 if (! ok)
4828 goto error_return;
4829 }
4830 }
4831
4832 /* If this is a non-traditional link, try to optimize the handling
4833 of the .stab/.stabstr sections. */
4834 if (! dynamic
4835 && ! info->traditional_format
4836 && is_elf_hash_table (htab)
4837 && (info->strip != strip_all && info->strip != strip_debugger))
4838 {
4839 asection *stabstr;
4840
4841 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4842 if (stabstr != NULL)
4843 {
4844 bfd_size_type string_offset = 0;
4845 asection *stab;
4846
4847 for (stab = abfd->sections; stab; stab = stab->next)
4848 if (CONST_STRNEQ (stab->name, ".stab")
4849 && (!stab->name[5] ||
4850 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4851 && (stab->flags & SEC_MERGE) == 0
4852 && !bfd_is_abs_section (stab->output_section))
4853 {
4854 struct bfd_elf_section_data *secdata;
4855
4856 secdata = elf_section_data (stab);
4857 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4858 stabstr, &secdata->sec_info,
4859 &string_offset))
4860 goto error_return;
4861 if (secdata->sec_info)
4862 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4863 }
4864 }
4865 }
4866
4867 if (is_elf_hash_table (htab) && add_needed)
4868 {
4869 /* Add this bfd to the loaded list. */
4870 struct elf_link_loaded_list *n;
4871
4872 n = (struct elf_link_loaded_list *)
4873 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4874 if (n == NULL)
4875 goto error_return;
4876 n->abfd = abfd;
4877 n->next = htab->loaded;
4878 htab->loaded = n;
4879 }
4880
4881 return TRUE;
4882
4883 error_free_vers:
4884 if (old_tab != NULL)
4885 free (old_tab);
4886 if (nondeflt_vers != NULL)
4887 free (nondeflt_vers);
4888 if (extversym != NULL)
4889 free (extversym);
4890 error_free_sym:
4891 if (isymbuf != NULL)
4892 free (isymbuf);
4893 error_return:
4894 return FALSE;
4895 }
4896
4897 /* Return the linker hash table entry of a symbol that might be
4898 satisfied by an archive symbol. Return -1 on error. */
4899
4900 struct elf_link_hash_entry *
4901 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4902 struct bfd_link_info *info,
4903 const char *name)
4904 {
4905 struct elf_link_hash_entry *h;
4906 char *p, *copy;
4907 size_t len, first;
4908
4909 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4910 if (h != NULL)
4911 return h;
4912
4913 /* If this is a default version (the name contains @@), look up the
4914 symbol again with only one `@' as well as without the version.
4915 The effect is that references to the symbol with and without the
4916 version will be matched by the default symbol in the archive. */
4917
4918 p = strchr (name, ELF_VER_CHR);
4919 if (p == NULL || p[1] != ELF_VER_CHR)
4920 return h;
4921
4922 /* First check with only one `@'. */
4923 len = strlen (name);
4924 copy = (char *) bfd_alloc (abfd, len);
4925 if (copy == NULL)
4926 return (struct elf_link_hash_entry *) 0 - 1;
4927
4928 first = p - name + 1;
4929 memcpy (copy, name, first);
4930 memcpy (copy + first, name + first + 1, len - first);
4931
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4933 if (h == NULL)
4934 {
4935 /* We also need to check references to the symbol without the
4936 version. */
4937 copy[first - 1] = '\0';
4938 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4939 FALSE, FALSE, TRUE);
4940 }
4941
4942 bfd_release (abfd, copy);
4943 return h;
4944 }
4945
4946 /* Add symbols from an ELF archive file to the linker hash table. We
4947 don't use _bfd_generic_link_add_archive_symbols because of a
4948 problem which arises on UnixWare. The UnixWare libc.so is an
4949 archive which includes an entry libc.so.1 which defines a bunch of
4950 symbols. The libc.so archive also includes a number of other
4951 object files, which also define symbols, some of which are the same
4952 as those defined in libc.so.1. Correct linking requires that we
4953 consider each object file in turn, and include it if it defines any
4954 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4955 this; it looks through the list of undefined symbols, and includes
4956 any object file which defines them. When this algorithm is used on
4957 UnixWare, it winds up pulling in libc.so.1 early and defining a
4958 bunch of symbols. This means that some of the other objects in the
4959 archive are not included in the link, which is incorrect since they
4960 precede libc.so.1 in the archive.
4961
4962 Fortunately, ELF archive handling is simpler than that done by
4963 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4964 oddities. In ELF, if we find a symbol in the archive map, and the
4965 symbol is currently undefined, we know that we must pull in that
4966 object file.
4967
4968 Unfortunately, we do have to make multiple passes over the symbol
4969 table until nothing further is resolved. */
4970
4971 static bfd_boolean
4972 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4973 {
4974 symindex c;
4975 bfd_boolean *defined = NULL;
4976 bfd_boolean *included = NULL;
4977 carsym *symdefs;
4978 bfd_boolean loop;
4979 bfd_size_type amt;
4980 const struct elf_backend_data *bed;
4981 struct elf_link_hash_entry * (*archive_symbol_lookup)
4982 (bfd *, struct bfd_link_info *, const char *);
4983
4984 if (! bfd_has_map (abfd))
4985 {
4986 /* An empty archive is a special case. */
4987 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4988 return TRUE;
4989 bfd_set_error (bfd_error_no_armap);
4990 return FALSE;
4991 }
4992
4993 /* Keep track of all symbols we know to be already defined, and all
4994 files we know to be already included. This is to speed up the
4995 second and subsequent passes. */
4996 c = bfd_ardata (abfd)->symdef_count;
4997 if (c == 0)
4998 return TRUE;
4999 amt = c;
5000 amt *= sizeof (bfd_boolean);
5001 defined = (bfd_boolean *) bfd_zmalloc (amt);
5002 included = (bfd_boolean *) bfd_zmalloc (amt);
5003 if (defined == NULL || included == NULL)
5004 goto error_return;
5005
5006 symdefs = bfd_ardata (abfd)->symdefs;
5007 bed = get_elf_backend_data (abfd);
5008 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5009
5010 do
5011 {
5012 file_ptr last;
5013 symindex i;
5014 carsym *symdef;
5015 carsym *symdefend;
5016
5017 loop = FALSE;
5018 last = -1;
5019
5020 symdef = symdefs;
5021 symdefend = symdef + c;
5022 for (i = 0; symdef < symdefend; symdef++, i++)
5023 {
5024 struct elf_link_hash_entry *h;
5025 bfd *element;
5026 struct bfd_link_hash_entry *undefs_tail;
5027 symindex mark;
5028
5029 if (defined[i] || included[i])
5030 continue;
5031 if (symdef->file_offset == last)
5032 {
5033 included[i] = TRUE;
5034 continue;
5035 }
5036
5037 h = archive_symbol_lookup (abfd, info, symdef->name);
5038 if (h == (struct elf_link_hash_entry *) 0 - 1)
5039 goto error_return;
5040
5041 if (h == NULL)
5042 continue;
5043
5044 if (h->root.type == bfd_link_hash_common)
5045 {
5046 /* We currently have a common symbol. The archive map contains
5047 a reference to this symbol, so we may want to include it. We
5048 only want to include it however, if this archive element
5049 contains a definition of the symbol, not just another common
5050 declaration of it.
5051
5052 Unfortunately some archivers (including GNU ar) will put
5053 declarations of common symbols into their archive maps, as
5054 well as real definitions, so we cannot just go by the archive
5055 map alone. Instead we must read in the element's symbol
5056 table and check that to see what kind of symbol definition
5057 this is. */
5058 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5059 continue;
5060 }
5061 else if (h->root.type != bfd_link_hash_undefined)
5062 {
5063 if (h->root.type != bfd_link_hash_undefweak)
5064 defined[i] = TRUE;
5065 continue;
5066 }
5067
5068 /* We need to include this archive member. */
5069 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5070 if (element == NULL)
5071 goto error_return;
5072
5073 if (! bfd_check_format (element, bfd_object))
5074 goto error_return;
5075
5076 /* Doublecheck that we have not included this object
5077 already--it should be impossible, but there may be
5078 something wrong with the archive. */
5079 if (element->archive_pass != 0)
5080 {
5081 bfd_set_error (bfd_error_bad_value);
5082 goto error_return;
5083 }
5084 element->archive_pass = 1;
5085
5086 undefs_tail = info->hash->undefs_tail;
5087
5088 if (!(*info->callbacks
5089 ->add_archive_element) (info, element, symdef->name, &element))
5090 goto error_return;
5091 if (!bfd_link_add_symbols (element, info))
5092 goto error_return;
5093
5094 /* If there are any new undefined symbols, we need to make
5095 another pass through the archive in order to see whether
5096 they can be defined. FIXME: This isn't perfect, because
5097 common symbols wind up on undefs_tail and because an
5098 undefined symbol which is defined later on in this pass
5099 does not require another pass. This isn't a bug, but it
5100 does make the code less efficient than it could be. */
5101 if (undefs_tail != info->hash->undefs_tail)
5102 loop = TRUE;
5103
5104 /* Look backward to mark all symbols from this object file
5105 which we have already seen in this pass. */
5106 mark = i;
5107 do
5108 {
5109 included[mark] = TRUE;
5110 if (mark == 0)
5111 break;
5112 --mark;
5113 }
5114 while (symdefs[mark].file_offset == symdef->file_offset);
5115
5116 /* We mark subsequent symbols from this object file as we go
5117 on through the loop. */
5118 last = symdef->file_offset;
5119 }
5120 }
5121 while (loop);
5122
5123 free (defined);
5124 free (included);
5125
5126 return TRUE;
5127
5128 error_return:
5129 if (defined != NULL)
5130 free (defined);
5131 if (included != NULL)
5132 free (included);
5133 return FALSE;
5134 }
5135
5136 /* Given an ELF BFD, add symbols to the global hash table as
5137 appropriate. */
5138
5139 bfd_boolean
5140 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5141 {
5142 switch (bfd_get_format (abfd))
5143 {
5144 case bfd_object:
5145 return elf_link_add_object_symbols (abfd, info);
5146 case bfd_archive:
5147 return elf_link_add_archive_symbols (abfd, info);
5148 default:
5149 bfd_set_error (bfd_error_wrong_format);
5150 return FALSE;
5151 }
5152 }
5153 \f
5154 struct hash_codes_info
5155 {
5156 unsigned long *hashcodes;
5157 bfd_boolean error;
5158 };
5159
5160 /* This function will be called though elf_link_hash_traverse to store
5161 all hash value of the exported symbols in an array. */
5162
5163 static bfd_boolean
5164 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5165 {
5166 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5167 const char *name;
5168 char *p;
5169 unsigned long ha;
5170 char *alc = NULL;
5171
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h->dynindx == -1)
5174 return TRUE;
5175
5176 name = h->root.root.string;
5177 p = strchr (name, ELF_VER_CHR);
5178 if (p != NULL)
5179 {
5180 alc = (char *) bfd_malloc (p - name + 1);
5181 if (alc == NULL)
5182 {
5183 inf->error = TRUE;
5184 return FALSE;
5185 }
5186 memcpy (alc, name, p - name);
5187 alc[p - name] = '\0';
5188 name = alc;
5189 }
5190
5191 /* Compute the hash value. */
5192 ha = bfd_elf_hash (name);
5193
5194 /* Store the found hash value in the array given as the argument. */
5195 *(inf->hashcodes)++ = ha;
5196
5197 /* And store it in the struct so that we can put it in the hash table
5198 later. */
5199 h->u.elf_hash_value = ha;
5200
5201 if (alc != NULL)
5202 free (alc);
5203
5204 return TRUE;
5205 }
5206
5207 struct collect_gnu_hash_codes
5208 {
5209 bfd *output_bfd;
5210 const struct elf_backend_data *bed;
5211 unsigned long int nsyms;
5212 unsigned long int maskbits;
5213 unsigned long int *hashcodes;
5214 unsigned long int *hashval;
5215 unsigned long int *indx;
5216 unsigned long int *counts;
5217 bfd_vma *bitmask;
5218 bfd_byte *contents;
5219 long int min_dynindx;
5220 unsigned long int bucketcount;
5221 unsigned long int symindx;
5222 long int local_indx;
5223 long int shift1, shift2;
5224 unsigned long int mask;
5225 bfd_boolean error;
5226 };
5227
5228 /* This function will be called though elf_link_hash_traverse to store
5229 all hash value of the exported symbols in an array. */
5230
5231 static bfd_boolean
5232 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5233 {
5234 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5235 const char *name;
5236 char *p;
5237 unsigned long ha;
5238 char *alc = NULL;
5239
5240 /* Ignore indirect symbols. These are added by the versioning code. */
5241 if (h->dynindx == -1)
5242 return TRUE;
5243
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5246 return TRUE;
5247
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5250 if (p != NULL)
5251 {
5252 alc = (char *) bfd_malloc (p - name + 1);
5253 if (alc == NULL)
5254 {
5255 s->error = TRUE;
5256 return FALSE;
5257 }
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5260 name = alc;
5261 }
5262
5263 /* Compute the hash value. */
5264 ha = bfd_elf_gnu_hash (name);
5265
5266 /* Store the found hash value in the array for compute_bucket_count,
5267 and also for .dynsym reordering purposes. */
5268 s->hashcodes[s->nsyms] = ha;
5269 s->hashval[h->dynindx] = ha;
5270 ++s->nsyms;
5271 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5272 s->min_dynindx = h->dynindx;
5273
5274 if (alc != NULL)
5275 free (alc);
5276
5277 return TRUE;
5278 }
5279
5280 /* This function will be called though elf_link_hash_traverse to do
5281 final dynaminc symbol renumbering. */
5282
5283 static bfd_boolean
5284 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 unsigned long int bucket;
5288 unsigned long int val;
5289
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5292 return TRUE;
5293
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5296 {
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5299 return TRUE;
5300 }
5301
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5306 s->bitmask[val]
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5311 val |= 1;
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5316 return TRUE;
5317 }
5318
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5320
5321 bfd_boolean
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5323 {
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5330 }
5331
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5337
5338 static const size_t elf_buckets[] =
5339 {
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 16411, 32771, 0
5342 };
5343
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5352 static size_t
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5356 int gnu_hash)
5357 {
5358 size_t best_size = 0;
5359 unsigned long int i;
5360
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5365 if (info->optimize)
5366 {
5367 size_t minsize;
5368 size_t maxsize;
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5374 bfd_size_type amt;
5375 unsigned int no_improvement_count = 0;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 no_improvement_count = 0;
5461 }
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5465 break;
5466 }
5467
5468 free (counts);
5469 }
5470 else
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5472 {
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5477 {
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5480 break;
5481 }
5482 if (gnu_hash && best_size < 2)
5483 best_size = 2;
5484 }
5485
5486 return best_size;
5487 }
5488
5489 /* Size any SHT_GROUP section for ld -r. */
5490
5491 bfd_boolean
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5493 {
5494 bfd *ibfd;
5495
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 return FALSE;
5500 return TRUE;
5501 }
5502
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5507
5508 bfd_boolean
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5510 const char *soname,
5511 const char *rpath,
5512 const char *filter_shlib,
5513 const char *audit,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr)
5518 {
5519 bfd_size_type soname_indx;
5520 bfd *dynobj;
5521 const struct elf_backend_data *bed;
5522 struct elf_info_failed asvinfo;
5523
5524 *sinterpptr = NULL;
5525
5526 soname_indx = (bfd_size_type) -1;
5527
5528 if (!is_elf_hash_table (info->hash))
5529 return TRUE;
5530
5531 bed = get_elf_backend_data (output_bfd);
5532 if (info->execstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5534 else if (info->noexecstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5536 else
5537 {
5538 bfd *inputobj;
5539 asection *notesec = NULL;
5540 int exec = 0;
5541
5542 for (inputobj = info->input_bfds;
5543 inputobj;
5544 inputobj = inputobj->link_next)
5545 {
5546 asection *s;
5547
5548 if (inputobj->flags
5549 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5550 continue;
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5552 if (s)
5553 {
5554 if (s->flags & SEC_CODE)
5555 exec = PF_X;
5556 notesec = s;
5557 }
5558 else if (bed->default_execstack)
5559 exec = PF_X;
5560 }
5561 if (notesec)
5562 {
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5567 }
5568 }
5569
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5576
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5579 return FALSE;
5580
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5585 return FALSE;
5586
5587 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5588 return FALSE;
5589
5590 dynobj = elf_hash_table (info)->dynobj;
5591
5592 /* If there were no dynamic objects in the link, there is nothing to
5593 do here. */
5594 if (dynobj == NULL)
5595 return TRUE;
5596
5597 if (elf_hash_table (info)->dynamic_sections_created)
5598 {
5599 struct elf_info_failed eif;
5600 struct elf_link_hash_entry *h;
5601 asection *dynstr;
5602 struct bfd_elf_version_tree *t;
5603 struct bfd_elf_version_expr *d;
5604 asection *s;
5605 bfd_boolean all_defined;
5606
5607 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5608 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5609
5610 if (soname != NULL)
5611 {
5612 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5613 soname, TRUE);
5614 if (soname_indx == (bfd_size_type) -1
5615 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5616 return FALSE;
5617 }
5618
5619 if (info->symbolic)
5620 {
5621 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5622 return FALSE;
5623 info->flags |= DF_SYMBOLIC;
5624 }
5625
5626 if (rpath != NULL)
5627 {
5628 bfd_size_type indx;
5629
5630 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5631 TRUE);
5632 if (indx == (bfd_size_type) -1
5633 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5634 return FALSE;
5635
5636 if (info->new_dtags)
5637 {
5638 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5640 return FALSE;
5641 }
5642 }
5643
5644 if (filter_shlib != NULL)
5645 {
5646 bfd_size_type indx;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5652 return FALSE;
5653 }
5654
5655 if (auxiliary_filters != NULL)
5656 {
5657 const char * const *p;
5658
5659 for (p = auxiliary_filters; *p != NULL; p++)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 *p, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5667 return FALSE;
5668 }
5669 }
5670
5671 if (audit != NULL)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5679 return FALSE;
5680 }
5681
5682 if (depaudit != NULL)
5683 {
5684 bfd_size_type indx;
5685
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5687 TRUE);
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5690 return FALSE;
5691 }
5692
5693 eif.info = info;
5694 eif.failed = FALSE;
5695
5696 /* If we are supposed to export all symbols into the dynamic symbol
5697 table (this is not the normal case), then do so. */
5698 if (info->export_dynamic
5699 || (info->executable && info->dynamic))
5700 {
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_export_symbol,
5703 &eif);
5704 if (eif.failed)
5705 return FALSE;
5706 }
5707
5708 /* Make all global versions with definition. */
5709 for (t = info->version_info; t != NULL; t = t->next)
5710 for (d = t->globals.list; d != NULL; d = d->next)
5711 if (!d->symver && d->literal)
5712 {
5713 const char *verstr, *name;
5714 size_t namelen, verlen, newlen;
5715 char *newname, *p, leading_char;
5716 struct elf_link_hash_entry *newh;
5717
5718 leading_char = bfd_get_symbol_leading_char (output_bfd);
5719 name = d->pattern;
5720 namelen = strlen (name) + (leading_char != '\0');
5721 verstr = t->name;
5722 verlen = strlen (verstr);
5723 newlen = namelen + verlen + 3;
5724
5725 newname = (char *) bfd_malloc (newlen);
5726 if (newname == NULL)
5727 return FALSE;
5728 newname[0] = leading_char;
5729 memcpy (newname + (leading_char != '\0'), name, namelen);
5730
5731 /* Check the hidden versioned definition. */
5732 p = newname + namelen;
5733 *p++ = ELF_VER_CHR;
5734 memcpy (p, verstr, verlen + 1);
5735 newh = elf_link_hash_lookup (elf_hash_table (info),
5736 newname, FALSE, FALSE,
5737 FALSE);
5738 if (newh == NULL
5739 || (newh->root.type != bfd_link_hash_defined
5740 && newh->root.type != bfd_link_hash_defweak))
5741 {
5742 /* Check the default versioned definition. */
5743 *p++ = ELF_VER_CHR;
5744 memcpy (p, verstr, verlen + 1);
5745 newh = elf_link_hash_lookup (elf_hash_table (info),
5746 newname, FALSE, FALSE,
5747 FALSE);
5748 }
5749 free (newname);
5750
5751 /* Mark this version if there is a definition and it is
5752 not defined in a shared object. */
5753 if (newh != NULL
5754 && !newh->def_dynamic
5755 && (newh->root.type == bfd_link_hash_defined
5756 || newh->root.type == bfd_link_hash_defweak))
5757 d->symver = 1;
5758 }
5759
5760 /* Attach all the symbols to their version information. */
5761 asvinfo.info = info;
5762 asvinfo.failed = FALSE;
5763
5764 elf_link_hash_traverse (elf_hash_table (info),
5765 _bfd_elf_link_assign_sym_version,
5766 &asvinfo);
5767 if (asvinfo.failed)
5768 return FALSE;
5769
5770 if (!info->allow_undefined_version)
5771 {
5772 /* Check if all global versions have a definition. */
5773 all_defined = TRUE;
5774 for (t = info->version_info; t != NULL; t = t->next)
5775 for (d = t->globals.list; d != NULL; d = d->next)
5776 if (d->literal && !d->symver && !d->script)
5777 {
5778 (*_bfd_error_handler)
5779 (_("%s: undefined version: %s"),
5780 d->pattern, t->name);
5781 all_defined = FALSE;
5782 }
5783
5784 if (!all_defined)
5785 {
5786 bfd_set_error (bfd_error_bad_value);
5787 return FALSE;
5788 }
5789 }
5790
5791 /* Find all symbols which were defined in a dynamic object and make
5792 the backend pick a reasonable value for them. */
5793 elf_link_hash_traverse (elf_hash_table (info),
5794 _bfd_elf_adjust_dynamic_symbol,
5795 &eif);
5796 if (eif.failed)
5797 return FALSE;
5798
5799 /* Add some entries to the .dynamic section. We fill in some of the
5800 values later, in bfd_elf_final_link, but we must add the entries
5801 now so that we know the final size of the .dynamic section. */
5802
5803 /* If there are initialization and/or finalization functions to
5804 call then add the corresponding DT_INIT/DT_FINI entries. */
5805 h = (info->init_function
5806 ? elf_link_hash_lookup (elf_hash_table (info),
5807 info->init_function, FALSE,
5808 FALSE, FALSE)
5809 : NULL);
5810 if (h != NULL
5811 && (h->ref_regular
5812 || h->def_regular))
5813 {
5814 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5815 return FALSE;
5816 }
5817 h = (info->fini_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->fini_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5825 {
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5827 return FALSE;
5828 }
5829
5830 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5831 if (s != NULL && s->linker_has_input)
5832 {
5833 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5834 if (! info->executable)
5835 {
5836 bfd *sub;
5837 asection *o;
5838
5839 for (sub = info->input_bfds; sub != NULL;
5840 sub = sub->link_next)
5841 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5842 for (o = sub->sections; o != NULL; o = o->next)
5843 if (elf_section_data (o)->this_hdr.sh_type
5844 == SHT_PREINIT_ARRAY)
5845 {
5846 (*_bfd_error_handler)
5847 (_("%B: .preinit_array section is not allowed in DSO"),
5848 sub);
5849 break;
5850 }
5851
5852 bfd_set_error (bfd_error_nonrepresentable_section);
5853 return FALSE;
5854 }
5855
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5858 return FALSE;
5859 }
5860 s = bfd_get_section_by_name (output_bfd, ".init_array");
5861 if (s != NULL && s->linker_has_input)
5862 {
5863 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5864 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5865 return FALSE;
5866 }
5867 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5868 if (s != NULL && s->linker_has_input)
5869 {
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874
5875 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5876 /* If .dynstr is excluded from the link, we don't want any of
5877 these tags. Strictly, we should be checking each section
5878 individually; This quick check covers for the case where
5879 someone does a /DISCARD/ : { *(*) }. */
5880 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5881 {
5882 bfd_size_type strsize;
5883
5884 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5885 if ((info->emit_hash
5886 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5887 || (info->emit_gnu_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5889 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5893 bed->s->sizeof_sym))
5894 return FALSE;
5895 }
5896 }
5897
5898 /* The backend must work out the sizes of all the other dynamic
5899 sections. */
5900 if (bed->elf_backend_size_dynamic_sections
5901 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5902 return FALSE;
5903
5904 if (elf_hash_table (info)->dynamic_sections_created)
5905 {
5906 unsigned long section_sym_count;
5907 struct bfd_elf_version_tree *verdefs;
5908 asection *s;
5909
5910 /* Set up the version definition section. */
5911 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5912 BFD_ASSERT (s != NULL);
5913
5914 /* We may have created additional version definitions if we are
5915 just linking a regular application. */
5916 verdefs = info->version_info;
5917
5918 /* Skip anonymous version tag. */
5919 if (verdefs != NULL && verdefs->vernum == 0)
5920 verdefs = verdefs->next;
5921
5922 if (verdefs == NULL && !info->create_default_symver)
5923 s->flags |= SEC_EXCLUDE;
5924 else
5925 {
5926 unsigned int cdefs;
5927 bfd_size_type size;
5928 struct bfd_elf_version_tree *t;
5929 bfd_byte *p;
5930 Elf_Internal_Verdef def;
5931 Elf_Internal_Verdaux defaux;
5932 struct bfd_link_hash_entry *bh;
5933 struct elf_link_hash_entry *h;
5934 const char *name;
5935
5936 cdefs = 0;
5937 size = 0;
5938
5939 /* Make space for the base version. */
5940 size += sizeof (Elf_External_Verdef);
5941 size += sizeof (Elf_External_Verdaux);
5942 ++cdefs;
5943
5944 /* Make space for the default version. */
5945 if (info->create_default_symver)
5946 {
5947 size += sizeof (Elf_External_Verdef);
5948 ++cdefs;
5949 }
5950
5951 for (t = verdefs; t != NULL; t = t->next)
5952 {
5953 struct bfd_elf_version_deps *n;
5954
5955 /* Don't emit base version twice. */
5956 if (t->vernum == 0)
5957 continue;
5958
5959 size += sizeof (Elf_External_Verdef);
5960 size += sizeof (Elf_External_Verdaux);
5961 ++cdefs;
5962
5963 for (n = t->deps; n != NULL; n = n->next)
5964 size += sizeof (Elf_External_Verdaux);
5965 }
5966
5967 s->size = size;
5968 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5969 if (s->contents == NULL && s->size != 0)
5970 return FALSE;
5971
5972 /* Fill in the version definition section. */
5973
5974 p = s->contents;
5975
5976 def.vd_version = VER_DEF_CURRENT;
5977 def.vd_flags = VER_FLG_BASE;
5978 def.vd_ndx = 1;
5979 def.vd_cnt = 1;
5980 if (info->create_default_symver)
5981 {
5982 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5983 def.vd_next = sizeof (Elf_External_Verdef);
5984 }
5985 else
5986 {
5987 def.vd_aux = sizeof (Elf_External_Verdef);
5988 def.vd_next = (sizeof (Elf_External_Verdef)
5989 + sizeof (Elf_External_Verdaux));
5990 }
5991
5992 if (soname_indx != (bfd_size_type) -1)
5993 {
5994 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5995 soname_indx);
5996 def.vd_hash = bfd_elf_hash (soname);
5997 defaux.vda_name = soname_indx;
5998 name = soname;
5999 }
6000 else
6001 {
6002 bfd_size_type indx;
6003
6004 name = lbasename (output_bfd->filename);
6005 def.vd_hash = bfd_elf_hash (name);
6006 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6007 name, FALSE);
6008 if (indx == (bfd_size_type) -1)
6009 return FALSE;
6010 defaux.vda_name = indx;
6011 }
6012 defaux.vda_next = 0;
6013
6014 _bfd_elf_swap_verdef_out (output_bfd, &def,
6015 (Elf_External_Verdef *) p);
6016 p += sizeof (Elf_External_Verdef);
6017 if (info->create_default_symver)
6018 {
6019 /* Add a symbol representing this version. */
6020 bh = NULL;
6021 if (! (_bfd_generic_link_add_one_symbol
6022 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6023 0, NULL, FALSE,
6024 get_elf_backend_data (dynobj)->collect, &bh)))
6025 return FALSE;
6026 h = (struct elf_link_hash_entry *) bh;
6027 h->non_elf = 0;
6028 h->def_regular = 1;
6029 h->type = STT_OBJECT;
6030 h->verinfo.vertree = NULL;
6031
6032 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6033 return FALSE;
6034
6035 /* Create a duplicate of the base version with the same
6036 aux block, but different flags. */
6037 def.vd_flags = 0;
6038 def.vd_ndx = 2;
6039 def.vd_aux = sizeof (Elf_External_Verdef);
6040 if (verdefs)
6041 def.vd_next = (sizeof (Elf_External_Verdef)
6042 + sizeof (Elf_External_Verdaux));
6043 else
6044 def.vd_next = 0;
6045 _bfd_elf_swap_verdef_out (output_bfd, &def,
6046 (Elf_External_Verdef *) p);
6047 p += sizeof (Elf_External_Verdef);
6048 }
6049 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6050 (Elf_External_Verdaux *) p);
6051 p += sizeof (Elf_External_Verdaux);
6052
6053 for (t = verdefs; t != NULL; t = t->next)
6054 {
6055 unsigned int cdeps;
6056 struct bfd_elf_version_deps *n;
6057
6058 /* Don't emit the base version twice. */
6059 if (t->vernum == 0)
6060 continue;
6061
6062 cdeps = 0;
6063 for (n = t->deps; n != NULL; n = n->next)
6064 ++cdeps;
6065
6066 /* Add a symbol representing this version. */
6067 bh = NULL;
6068 if (! (_bfd_generic_link_add_one_symbol
6069 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6070 0, NULL, FALSE,
6071 get_elf_backend_data (dynobj)->collect, &bh)))
6072 return FALSE;
6073 h = (struct elf_link_hash_entry *) bh;
6074 h->non_elf = 0;
6075 h->def_regular = 1;
6076 h->type = STT_OBJECT;
6077 h->verinfo.vertree = t;
6078
6079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6080 return FALSE;
6081
6082 def.vd_version = VER_DEF_CURRENT;
6083 def.vd_flags = 0;
6084 if (t->globals.list == NULL
6085 && t->locals.list == NULL
6086 && ! t->used)
6087 def.vd_flags |= VER_FLG_WEAK;
6088 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6089 def.vd_cnt = cdeps + 1;
6090 def.vd_hash = bfd_elf_hash (t->name);
6091 def.vd_aux = sizeof (Elf_External_Verdef);
6092 def.vd_next = 0;
6093
6094 /* If a basever node is next, it *must* be the last node in
6095 the chain, otherwise Verdef construction breaks. */
6096 if (t->next != NULL && t->next->vernum == 0)
6097 BFD_ASSERT (t->next->next == NULL);
6098
6099 if (t->next != NULL && t->next->vernum != 0)
6100 def.vd_next = (sizeof (Elf_External_Verdef)
6101 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6102
6103 _bfd_elf_swap_verdef_out (output_bfd, &def,
6104 (Elf_External_Verdef *) p);
6105 p += sizeof (Elf_External_Verdef);
6106
6107 defaux.vda_name = h->dynstr_index;
6108 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6109 h->dynstr_index);
6110 defaux.vda_next = 0;
6111 if (t->deps != NULL)
6112 defaux.vda_next = sizeof (Elf_External_Verdaux);
6113 t->name_indx = defaux.vda_name;
6114
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6118
6119 for (n = t->deps; n != NULL; n = n->next)
6120 {
6121 if (n->version_needed == NULL)
6122 {
6123 /* This can happen if there was an error in the
6124 version script. */
6125 defaux.vda_name = 0;
6126 }
6127 else
6128 {
6129 defaux.vda_name = n->version_needed->name_indx;
6130 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6131 defaux.vda_name);
6132 }
6133 if (n->next == NULL)
6134 defaux.vda_next = 0;
6135 else
6136 defaux.vda_next = sizeof (Elf_External_Verdaux);
6137
6138 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6139 (Elf_External_Verdaux *) p);
6140 p += sizeof (Elf_External_Verdaux);
6141 }
6142 }
6143
6144 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6145 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6146 return FALSE;
6147
6148 elf_tdata (output_bfd)->cverdefs = cdefs;
6149 }
6150
6151 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6152 {
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6154 return FALSE;
6155 }
6156 else if (info->flags & DF_BIND_NOW)
6157 {
6158 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6159 return FALSE;
6160 }
6161
6162 if (info->flags_1)
6163 {
6164 if (info->executable)
6165 info->flags_1 &= ~ (DF_1_INITFIRST
6166 | DF_1_NODELETE
6167 | DF_1_NOOPEN);
6168 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6169 return FALSE;
6170 }
6171
6172 /* Work out the size of the version reference section. */
6173
6174 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6175 BFD_ASSERT (s != NULL);
6176 {
6177 struct elf_find_verdep_info sinfo;
6178
6179 sinfo.info = info;
6180 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6181 if (sinfo.vers == 0)
6182 sinfo.vers = 1;
6183 sinfo.failed = FALSE;
6184
6185 elf_link_hash_traverse (elf_hash_table (info),
6186 _bfd_elf_link_find_version_dependencies,
6187 &sinfo);
6188 if (sinfo.failed)
6189 return FALSE;
6190
6191 if (elf_tdata (output_bfd)->verref == NULL)
6192 s->flags |= SEC_EXCLUDE;
6193 else
6194 {
6195 Elf_Internal_Verneed *t;
6196 unsigned int size;
6197 unsigned int crefs;
6198 bfd_byte *p;
6199
6200 /* Build the version dependency section. */
6201 size = 0;
6202 crefs = 0;
6203 for (t = elf_tdata (output_bfd)->verref;
6204 t != NULL;
6205 t = t->vn_nextref)
6206 {
6207 Elf_Internal_Vernaux *a;
6208
6209 size += sizeof (Elf_External_Verneed);
6210 ++crefs;
6211 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6212 size += sizeof (Elf_External_Vernaux);
6213 }
6214
6215 s->size = size;
6216 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6217 if (s->contents == NULL)
6218 return FALSE;
6219
6220 p = s->contents;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6224 {
6225 unsigned int caux;
6226 Elf_Internal_Vernaux *a;
6227 bfd_size_type indx;
6228
6229 caux = 0;
6230 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6231 ++caux;
6232
6233 t->vn_version = VER_NEED_CURRENT;
6234 t->vn_cnt = caux;
6235 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6236 elf_dt_name (t->vn_bfd) != NULL
6237 ? elf_dt_name (t->vn_bfd)
6238 : lbasename (t->vn_bfd->filename),
6239 FALSE);
6240 if (indx == (bfd_size_type) -1)
6241 return FALSE;
6242 t->vn_file = indx;
6243 t->vn_aux = sizeof (Elf_External_Verneed);
6244 if (t->vn_nextref == NULL)
6245 t->vn_next = 0;
6246 else
6247 t->vn_next = (sizeof (Elf_External_Verneed)
6248 + caux * sizeof (Elf_External_Vernaux));
6249
6250 _bfd_elf_swap_verneed_out (output_bfd, t,
6251 (Elf_External_Verneed *) p);
6252 p += sizeof (Elf_External_Verneed);
6253
6254 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6255 {
6256 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6257 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6258 a->vna_nodename, FALSE);
6259 if (indx == (bfd_size_type) -1)
6260 return FALSE;
6261 a->vna_name = indx;
6262 if (a->vna_nextptr == NULL)
6263 a->vna_next = 0;
6264 else
6265 a->vna_next = sizeof (Elf_External_Vernaux);
6266
6267 _bfd_elf_swap_vernaux_out (output_bfd, a,
6268 (Elf_External_Vernaux *) p);
6269 p += sizeof (Elf_External_Vernaux);
6270 }
6271 }
6272
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6274 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6275 return FALSE;
6276
6277 elf_tdata (output_bfd)->cverrefs = crefs;
6278 }
6279 }
6280
6281 if ((elf_tdata (output_bfd)->cverrefs == 0
6282 && elf_tdata (output_bfd)->cverdefs == 0)
6283 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6284 &section_sym_count) == 0)
6285 {
6286 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6287 s->flags |= SEC_EXCLUDE;
6288 }
6289 }
6290 return TRUE;
6291 }
6292
6293 /* Find the first non-excluded output section. We'll use its
6294 section symbol for some emitted relocs. */
6295 void
6296 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6297 {
6298 asection *s;
6299
6300 for (s = output_bfd->sections; s != NULL; s = s->next)
6301 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6302 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6303 {
6304 elf_hash_table (info)->text_index_section = s;
6305 break;
6306 }
6307 }
6308
6309 /* Find two non-excluded output sections, one for code, one for data.
6310 We'll use their section symbols for some emitted relocs. */
6311 void
6312 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6313 {
6314 asection *s;
6315
6316 /* Data first, since setting text_index_section changes
6317 _bfd_elf_link_omit_section_dynsym. */
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6321 {
6322 elf_hash_table (info)->data_index_section = s;
6323 break;
6324 }
6325
6326 for (s = output_bfd->sections; s != NULL; s = s->next)
6327 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6328 == (SEC_ALLOC | SEC_READONLY))
6329 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6330 {
6331 elf_hash_table (info)->text_index_section = s;
6332 break;
6333 }
6334
6335 if (elf_hash_table (info)->text_index_section == NULL)
6336 elf_hash_table (info)->text_index_section
6337 = elf_hash_table (info)->data_index_section;
6338 }
6339
6340 bfd_boolean
6341 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6342 {
6343 const struct elf_backend_data *bed;
6344
6345 if (!is_elf_hash_table (info->hash))
6346 return TRUE;
6347
6348 bed = get_elf_backend_data (output_bfd);
6349 (*bed->elf_backend_init_index_section) (output_bfd, info);
6350
6351 if (elf_hash_table (info)->dynamic_sections_created)
6352 {
6353 bfd *dynobj;
6354 asection *s;
6355 bfd_size_type dynsymcount;
6356 unsigned long section_sym_count;
6357 unsigned int dtagcount;
6358
6359 dynobj = elf_hash_table (info)->dynobj;
6360
6361 /* Assign dynsym indicies. In a shared library we generate a
6362 section symbol for each output section, which come first.
6363 Next come all of the back-end allocated local dynamic syms,
6364 followed by the rest of the global symbols. */
6365
6366 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6367 &section_sym_count);
6368
6369 /* Work out the size of the symbol version section. */
6370 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6371 BFD_ASSERT (s != NULL);
6372 if (dynsymcount != 0
6373 && (s->flags & SEC_EXCLUDE) == 0)
6374 {
6375 s->size = dynsymcount * sizeof (Elf_External_Versym);
6376 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6377 if (s->contents == NULL)
6378 return FALSE;
6379
6380 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6381 return FALSE;
6382 }
6383
6384 /* Set the size of the .dynsym and .hash sections. We counted
6385 the number of dynamic symbols in elf_link_add_object_symbols.
6386 We will build the contents of .dynsym and .hash when we build
6387 the final symbol table, because until then we do not know the
6388 correct value to give the symbols. We built the .dynstr
6389 section as we went along in elf_link_add_object_symbols. */
6390 s = bfd_get_section_by_name (dynobj, ".dynsym");
6391 BFD_ASSERT (s != NULL);
6392 s->size = dynsymcount * bed->s->sizeof_sym;
6393
6394 if (dynsymcount != 0)
6395 {
6396 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6398 return FALSE;
6399
6400 /* The first entry in .dynsym is a dummy symbol.
6401 Clear all the section syms, in case we don't output them all. */
6402 ++section_sym_count;
6403 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6404 }
6405
6406 elf_hash_table (info)->bucketcount = 0;
6407
6408 /* Compute the size of the hashing table. As a side effect this
6409 computes the hash values for all the names we export. */
6410 if (info->emit_hash)
6411 {
6412 unsigned long int *hashcodes;
6413 struct hash_codes_info hashinf;
6414 bfd_size_type amt;
6415 unsigned long int nsyms;
6416 size_t bucketcount;
6417 size_t hash_entry_size;
6418
6419 /* Compute the hash values for all exported symbols. At the same
6420 time store the values in an array so that we could use them for
6421 optimizations. */
6422 amt = dynsymcount * sizeof (unsigned long int);
6423 hashcodes = (unsigned long int *) bfd_malloc (amt);
6424 if (hashcodes == NULL)
6425 return FALSE;
6426 hashinf.hashcodes = hashcodes;
6427 hashinf.error = FALSE;
6428
6429 /* Put all hash values in HASHCODES. */
6430 elf_link_hash_traverse (elf_hash_table (info),
6431 elf_collect_hash_codes, &hashinf);
6432 if (hashinf.error)
6433 {
6434 free (hashcodes);
6435 return FALSE;
6436 }
6437
6438 nsyms = hashinf.hashcodes - hashcodes;
6439 bucketcount
6440 = compute_bucket_count (info, hashcodes, nsyms, 0);
6441 free (hashcodes);
6442
6443 if (bucketcount == 0)
6444 return FALSE;
6445
6446 elf_hash_table (info)->bucketcount = bucketcount;
6447
6448 s = bfd_get_section_by_name (dynobj, ".hash");
6449 BFD_ASSERT (s != NULL);
6450 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6451 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6452 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6453 if (s->contents == NULL)
6454 return FALSE;
6455
6456 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6457 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6458 s->contents + hash_entry_size);
6459 }
6460
6461 if (info->emit_gnu_hash)
6462 {
6463 size_t i, cnt;
6464 unsigned char *contents;
6465 struct collect_gnu_hash_codes cinfo;
6466 bfd_size_type amt;
6467 size_t bucketcount;
6468
6469 memset (&cinfo, 0, sizeof (cinfo));
6470
6471 /* Compute the hash values for all exported symbols. At the same
6472 time store the values in an array so that we could use them for
6473 optimizations. */
6474 amt = dynsymcount * 2 * sizeof (unsigned long int);
6475 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6476 if (cinfo.hashcodes == NULL)
6477 return FALSE;
6478
6479 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6480 cinfo.min_dynindx = -1;
6481 cinfo.output_bfd = output_bfd;
6482 cinfo.bed = bed;
6483
6484 /* Put all hash values in HASHCODES. */
6485 elf_link_hash_traverse (elf_hash_table (info),
6486 elf_collect_gnu_hash_codes, &cinfo);
6487 if (cinfo.error)
6488 {
6489 free (cinfo.hashcodes);
6490 return FALSE;
6491 }
6492
6493 bucketcount
6494 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6495
6496 if (bucketcount == 0)
6497 {
6498 free (cinfo.hashcodes);
6499 return FALSE;
6500 }
6501
6502 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6503 BFD_ASSERT (s != NULL);
6504
6505 if (cinfo.nsyms == 0)
6506 {
6507 /* Empty .gnu.hash section is special. */
6508 BFD_ASSERT (cinfo.min_dynindx == -1);
6509 free (cinfo.hashcodes);
6510 s->size = 5 * 4 + bed->s->arch_size / 8;
6511 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6512 if (contents == NULL)
6513 return FALSE;
6514 s->contents = contents;
6515 /* 1 empty bucket. */
6516 bfd_put_32 (output_bfd, 1, contents);
6517 /* SYMIDX above the special symbol 0. */
6518 bfd_put_32 (output_bfd, 1, contents + 4);
6519 /* Just one word for bitmask. */
6520 bfd_put_32 (output_bfd, 1, contents + 8);
6521 /* Only hash fn bloom filter. */
6522 bfd_put_32 (output_bfd, 0, contents + 12);
6523 /* No hashes are valid - empty bitmask. */
6524 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6525 /* No hashes in the only bucket. */
6526 bfd_put_32 (output_bfd, 0,
6527 contents + 16 + bed->s->arch_size / 8);
6528 }
6529 else
6530 {
6531 unsigned long int maskwords, maskbitslog2, x;
6532 BFD_ASSERT (cinfo.min_dynindx != -1);
6533
6534 x = cinfo.nsyms;
6535 maskbitslog2 = 1;
6536 while ((x >>= 1) != 0)
6537 ++maskbitslog2;
6538 if (maskbitslog2 < 3)
6539 maskbitslog2 = 5;
6540 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6541 maskbitslog2 = maskbitslog2 + 3;
6542 else
6543 maskbitslog2 = maskbitslog2 + 2;
6544 if (bed->s->arch_size == 64)
6545 {
6546 if (maskbitslog2 == 5)
6547 maskbitslog2 = 6;
6548 cinfo.shift1 = 6;
6549 }
6550 else
6551 cinfo.shift1 = 5;
6552 cinfo.mask = (1 << cinfo.shift1) - 1;
6553 cinfo.shift2 = maskbitslog2;
6554 cinfo.maskbits = 1 << maskbitslog2;
6555 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6556 amt = bucketcount * sizeof (unsigned long int) * 2;
6557 amt += maskwords * sizeof (bfd_vma);
6558 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6559 if (cinfo.bitmask == NULL)
6560 {
6561 free (cinfo.hashcodes);
6562 return FALSE;
6563 }
6564
6565 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6566 cinfo.indx = cinfo.counts + bucketcount;
6567 cinfo.symindx = dynsymcount - cinfo.nsyms;
6568 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6569
6570 /* Determine how often each hash bucket is used. */
6571 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6572 for (i = 0; i < cinfo.nsyms; ++i)
6573 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6574
6575 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6576 if (cinfo.counts[i] != 0)
6577 {
6578 cinfo.indx[i] = cnt;
6579 cnt += cinfo.counts[i];
6580 }
6581 BFD_ASSERT (cnt == dynsymcount);
6582 cinfo.bucketcount = bucketcount;
6583 cinfo.local_indx = cinfo.min_dynindx;
6584
6585 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6586 s->size += cinfo.maskbits / 8;
6587 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6588 if (contents == NULL)
6589 {
6590 free (cinfo.bitmask);
6591 free (cinfo.hashcodes);
6592 return FALSE;
6593 }
6594
6595 s->contents = contents;
6596 bfd_put_32 (output_bfd, bucketcount, contents);
6597 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6598 bfd_put_32 (output_bfd, maskwords, contents + 8);
6599 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6600 contents += 16 + cinfo.maskbits / 8;
6601
6602 for (i = 0; i < bucketcount; ++i)
6603 {
6604 if (cinfo.counts[i] == 0)
6605 bfd_put_32 (output_bfd, 0, contents);
6606 else
6607 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6608 contents += 4;
6609 }
6610
6611 cinfo.contents = contents;
6612
6613 /* Renumber dynamic symbols, populate .gnu.hash section. */
6614 elf_link_hash_traverse (elf_hash_table (info),
6615 elf_renumber_gnu_hash_syms, &cinfo);
6616
6617 contents = s->contents + 16;
6618 for (i = 0; i < maskwords; ++i)
6619 {
6620 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6621 contents);
6622 contents += bed->s->arch_size / 8;
6623 }
6624
6625 free (cinfo.bitmask);
6626 free (cinfo.hashcodes);
6627 }
6628 }
6629
6630 s = bfd_get_section_by_name (dynobj, ".dynstr");
6631 BFD_ASSERT (s != NULL);
6632
6633 elf_finalize_dynstr (output_bfd, info);
6634
6635 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6636
6637 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6639 return FALSE;
6640 }
6641
6642 return TRUE;
6643 }
6644 \f
6645 /* Indicate that we are only retrieving symbol values from this
6646 section. */
6647
6648 void
6649 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6650 {
6651 if (is_elf_hash_table (info->hash))
6652 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6653 _bfd_generic_link_just_syms (sec, info);
6654 }
6655
6656 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6657
6658 static void
6659 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6660 asection *sec)
6661 {
6662 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6663 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6664 }
6665
6666 /* Finish SHF_MERGE section merging. */
6667
6668 bfd_boolean
6669 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6670 {
6671 bfd *ibfd;
6672 asection *sec;
6673
6674 if (!is_elf_hash_table (info->hash))
6675 return FALSE;
6676
6677 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6678 if ((ibfd->flags & DYNAMIC) == 0)
6679 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6680 if ((sec->flags & SEC_MERGE) != 0
6681 && !bfd_is_abs_section (sec->output_section))
6682 {
6683 struct bfd_elf_section_data *secdata;
6684
6685 secdata = elf_section_data (sec);
6686 if (! _bfd_add_merge_section (abfd,
6687 &elf_hash_table (info)->merge_info,
6688 sec, &secdata->sec_info))
6689 return FALSE;
6690 else if (secdata->sec_info)
6691 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6692 }
6693
6694 if (elf_hash_table (info)->merge_info != NULL)
6695 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6696 merge_sections_remove_hook);
6697 return TRUE;
6698 }
6699
6700 /* Create an entry in an ELF linker hash table. */
6701
6702 struct bfd_hash_entry *
6703 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6704 struct bfd_hash_table *table,
6705 const char *string)
6706 {
6707 /* Allocate the structure if it has not already been allocated by a
6708 subclass. */
6709 if (entry == NULL)
6710 {
6711 entry = (struct bfd_hash_entry *)
6712 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6713 if (entry == NULL)
6714 return entry;
6715 }
6716
6717 /* Call the allocation method of the superclass. */
6718 entry = _bfd_link_hash_newfunc (entry, table, string);
6719 if (entry != NULL)
6720 {
6721 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6722 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6723
6724 /* Set local fields. */
6725 ret->indx = -1;
6726 ret->dynindx = -1;
6727 ret->got = htab->init_got_refcount;
6728 ret->plt = htab->init_plt_refcount;
6729 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6730 - offsetof (struct elf_link_hash_entry, size)));
6731 /* Assume that we have been called by a non-ELF symbol reader.
6732 This flag is then reset by the code which reads an ELF input
6733 file. This ensures that a symbol created by a non-ELF symbol
6734 reader will have the flag set correctly. */
6735 ret->non_elf = 1;
6736 }
6737
6738 return entry;
6739 }
6740
6741 /* Copy data from an indirect symbol to its direct symbol, hiding the
6742 old indirect symbol. Also used for copying flags to a weakdef. */
6743
6744 void
6745 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6746 struct elf_link_hash_entry *dir,
6747 struct elf_link_hash_entry *ind)
6748 {
6749 struct elf_link_hash_table *htab;
6750
6751 /* Copy down any references that we may have already seen to the
6752 symbol which just became indirect. */
6753
6754 dir->ref_dynamic |= ind->ref_dynamic;
6755 dir->ref_regular |= ind->ref_regular;
6756 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6757 dir->non_got_ref |= ind->non_got_ref;
6758 dir->needs_plt |= ind->needs_plt;
6759 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6760
6761 if (ind->root.type != bfd_link_hash_indirect)
6762 return;
6763
6764 /* Copy over the global and procedure linkage table refcount entries.
6765 These may have been already set up by a check_relocs routine. */
6766 htab = elf_hash_table (info);
6767 if (ind->got.refcount > htab->init_got_refcount.refcount)
6768 {
6769 if (dir->got.refcount < 0)
6770 dir->got.refcount = 0;
6771 dir->got.refcount += ind->got.refcount;
6772 ind->got.refcount = htab->init_got_refcount.refcount;
6773 }
6774
6775 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6776 {
6777 if (dir->plt.refcount < 0)
6778 dir->plt.refcount = 0;
6779 dir->plt.refcount += ind->plt.refcount;
6780 ind->plt.refcount = htab->init_plt_refcount.refcount;
6781 }
6782
6783 if (ind->dynindx != -1)
6784 {
6785 if (dir->dynindx != -1)
6786 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6787 dir->dynindx = ind->dynindx;
6788 dir->dynstr_index = ind->dynstr_index;
6789 ind->dynindx = -1;
6790 ind->dynstr_index = 0;
6791 }
6792 }
6793
6794 void
6795 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6796 struct elf_link_hash_entry *h,
6797 bfd_boolean force_local)
6798 {
6799 /* STT_GNU_IFUNC symbol must go through PLT. */
6800 if (h->type != STT_GNU_IFUNC)
6801 {
6802 h->plt = elf_hash_table (info)->init_plt_offset;
6803 h->needs_plt = 0;
6804 }
6805 if (force_local)
6806 {
6807 h->forced_local = 1;
6808 if (h->dynindx != -1)
6809 {
6810 h->dynindx = -1;
6811 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6812 h->dynstr_index);
6813 }
6814 }
6815 }
6816
6817 /* Initialize an ELF linker hash table. */
6818
6819 bfd_boolean
6820 _bfd_elf_link_hash_table_init
6821 (struct elf_link_hash_table *table,
6822 bfd *abfd,
6823 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6824 struct bfd_hash_table *,
6825 const char *),
6826 unsigned int entsize,
6827 enum elf_target_id target_id)
6828 {
6829 bfd_boolean ret;
6830 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6831
6832 memset (table, 0, sizeof * table);
6833 table->init_got_refcount.refcount = can_refcount - 1;
6834 table->init_plt_refcount.refcount = can_refcount - 1;
6835 table->init_got_offset.offset = -(bfd_vma) 1;
6836 table->init_plt_offset.offset = -(bfd_vma) 1;
6837 /* The first dynamic symbol is a dummy. */
6838 table->dynsymcount = 1;
6839
6840 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6841
6842 table->root.type = bfd_link_elf_hash_table;
6843 table->hash_table_id = target_id;
6844
6845 return ret;
6846 }
6847
6848 /* Create an ELF linker hash table. */
6849
6850 struct bfd_link_hash_table *
6851 _bfd_elf_link_hash_table_create (bfd *abfd)
6852 {
6853 struct elf_link_hash_table *ret;
6854 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6855
6856 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6857 if (ret == NULL)
6858 return NULL;
6859
6860 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6861 sizeof (struct elf_link_hash_entry),
6862 GENERIC_ELF_DATA))
6863 {
6864 free (ret);
6865 return NULL;
6866 }
6867
6868 return &ret->root;
6869 }
6870
6871 /* This is a hook for the ELF emulation code in the generic linker to
6872 tell the backend linker what file name to use for the DT_NEEDED
6873 entry for a dynamic object. */
6874
6875 void
6876 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6877 {
6878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6879 && bfd_get_format (abfd) == bfd_object)
6880 elf_dt_name (abfd) = name;
6881 }
6882
6883 int
6884 bfd_elf_get_dyn_lib_class (bfd *abfd)
6885 {
6886 int lib_class;
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 lib_class = elf_dyn_lib_class (abfd);
6890 else
6891 lib_class = 0;
6892 return lib_class;
6893 }
6894
6895 void
6896 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6897 {
6898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6899 && bfd_get_format (abfd) == bfd_object)
6900 elf_dyn_lib_class (abfd) = lib_class;
6901 }
6902
6903 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6904 the linker ELF emulation code. */
6905
6906 struct bfd_link_needed_list *
6907 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6908 struct bfd_link_info *info)
6909 {
6910 if (! is_elf_hash_table (info->hash))
6911 return NULL;
6912 return elf_hash_table (info)->needed;
6913 }
6914
6915 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6916 hook for the linker ELF emulation code. */
6917
6918 struct bfd_link_needed_list *
6919 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6920 struct bfd_link_info *info)
6921 {
6922 if (! is_elf_hash_table (info->hash))
6923 return NULL;
6924 return elf_hash_table (info)->runpath;
6925 }
6926
6927 /* Get the name actually used for a dynamic object for a link. This
6928 is the SONAME entry if there is one. Otherwise, it is the string
6929 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6930
6931 const char *
6932 bfd_elf_get_dt_soname (bfd *abfd)
6933 {
6934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6935 && bfd_get_format (abfd) == bfd_object)
6936 return elf_dt_name (abfd);
6937 return NULL;
6938 }
6939
6940 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6941 the ELF linker emulation code. */
6942
6943 bfd_boolean
6944 bfd_elf_get_bfd_needed_list (bfd *abfd,
6945 struct bfd_link_needed_list **pneeded)
6946 {
6947 asection *s;
6948 bfd_byte *dynbuf = NULL;
6949 unsigned int elfsec;
6950 unsigned long shlink;
6951 bfd_byte *extdyn, *extdynend;
6952 size_t extdynsize;
6953 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6954
6955 *pneeded = NULL;
6956
6957 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6958 || bfd_get_format (abfd) != bfd_object)
6959 return TRUE;
6960
6961 s = bfd_get_section_by_name (abfd, ".dynamic");
6962 if (s == NULL || s->size == 0)
6963 return TRUE;
6964
6965 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6966 goto error_return;
6967
6968 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6969 if (elfsec == SHN_BAD)
6970 goto error_return;
6971
6972 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6973
6974 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6975 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6976
6977 extdyn = dynbuf;
6978 extdynend = extdyn + s->size;
6979 for (; extdyn < extdynend; extdyn += extdynsize)
6980 {
6981 Elf_Internal_Dyn dyn;
6982
6983 (*swap_dyn_in) (abfd, extdyn, &dyn);
6984
6985 if (dyn.d_tag == DT_NULL)
6986 break;
6987
6988 if (dyn.d_tag == DT_NEEDED)
6989 {
6990 const char *string;
6991 struct bfd_link_needed_list *l;
6992 unsigned int tagv = dyn.d_un.d_val;
6993 bfd_size_type amt;
6994
6995 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6996 if (string == NULL)
6997 goto error_return;
6998
6999 amt = sizeof *l;
7000 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7001 if (l == NULL)
7002 goto error_return;
7003
7004 l->by = abfd;
7005 l->name = string;
7006 l->next = *pneeded;
7007 *pneeded = l;
7008 }
7009 }
7010
7011 free (dynbuf);
7012
7013 return TRUE;
7014
7015 error_return:
7016 if (dynbuf != NULL)
7017 free (dynbuf);
7018 return FALSE;
7019 }
7020
7021 struct elf_symbuf_symbol
7022 {
7023 unsigned long st_name; /* Symbol name, index in string tbl */
7024 unsigned char st_info; /* Type and binding attributes */
7025 unsigned char st_other; /* Visibilty, and target specific */
7026 };
7027
7028 struct elf_symbuf_head
7029 {
7030 struct elf_symbuf_symbol *ssym;
7031 bfd_size_type count;
7032 unsigned int st_shndx;
7033 };
7034
7035 struct elf_symbol
7036 {
7037 union
7038 {
7039 Elf_Internal_Sym *isym;
7040 struct elf_symbuf_symbol *ssym;
7041 } u;
7042 const char *name;
7043 };
7044
7045 /* Sort references to symbols by ascending section number. */
7046
7047 static int
7048 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7049 {
7050 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7051 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7052
7053 return s1->st_shndx - s2->st_shndx;
7054 }
7055
7056 static int
7057 elf_sym_name_compare (const void *arg1, const void *arg2)
7058 {
7059 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7060 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7061 return strcmp (s1->name, s2->name);
7062 }
7063
7064 static struct elf_symbuf_head *
7065 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7066 {
7067 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7068 struct elf_symbuf_symbol *ssym;
7069 struct elf_symbuf_head *ssymbuf, *ssymhead;
7070 bfd_size_type i, shndx_count, total_size;
7071
7072 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7073 if (indbuf == NULL)
7074 return NULL;
7075
7076 for (ind = indbuf, i = 0; i < symcount; i++)
7077 if (isymbuf[i].st_shndx != SHN_UNDEF)
7078 *ind++ = &isymbuf[i];
7079 indbufend = ind;
7080
7081 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7082 elf_sort_elf_symbol);
7083
7084 shndx_count = 0;
7085 if (indbufend > indbuf)
7086 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7087 if (ind[0]->st_shndx != ind[1]->st_shndx)
7088 shndx_count++;
7089
7090 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7091 + (indbufend - indbuf) * sizeof (*ssym));
7092 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7093 if (ssymbuf == NULL)
7094 {
7095 free (indbuf);
7096 return NULL;
7097 }
7098
7099 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7100 ssymbuf->ssym = NULL;
7101 ssymbuf->count = shndx_count;
7102 ssymbuf->st_shndx = 0;
7103 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7104 {
7105 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7106 {
7107 ssymhead++;
7108 ssymhead->ssym = ssym;
7109 ssymhead->count = 0;
7110 ssymhead->st_shndx = (*ind)->st_shndx;
7111 }
7112 ssym->st_name = (*ind)->st_name;
7113 ssym->st_info = (*ind)->st_info;
7114 ssym->st_other = (*ind)->st_other;
7115 ssymhead->count++;
7116 }
7117 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7118 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7119 == total_size));
7120
7121 free (indbuf);
7122 return ssymbuf;
7123 }
7124
7125 /* Check if 2 sections define the same set of local and global
7126 symbols. */
7127
7128 static bfd_boolean
7129 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7130 struct bfd_link_info *info)
7131 {
7132 bfd *bfd1, *bfd2;
7133 const struct elf_backend_data *bed1, *bed2;
7134 Elf_Internal_Shdr *hdr1, *hdr2;
7135 bfd_size_type symcount1, symcount2;
7136 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7137 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7138 Elf_Internal_Sym *isym, *isymend;
7139 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7140 bfd_size_type count1, count2, i;
7141 unsigned int shndx1, shndx2;
7142 bfd_boolean result;
7143
7144 bfd1 = sec1->owner;
7145 bfd2 = sec2->owner;
7146
7147 /* Both sections have to be in ELF. */
7148 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7149 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7150 return FALSE;
7151
7152 if (elf_section_type (sec1) != elf_section_type (sec2))
7153 return FALSE;
7154
7155 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7156 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7157 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7158 return FALSE;
7159
7160 bed1 = get_elf_backend_data (bfd1);
7161 bed2 = get_elf_backend_data (bfd2);
7162 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7163 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7164 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7165 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7166
7167 if (symcount1 == 0 || symcount2 == 0)
7168 return FALSE;
7169
7170 result = FALSE;
7171 isymbuf1 = NULL;
7172 isymbuf2 = NULL;
7173 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7174 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7175
7176 if (ssymbuf1 == NULL)
7177 {
7178 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7179 NULL, NULL, NULL);
7180 if (isymbuf1 == NULL)
7181 goto done;
7182
7183 if (!info->reduce_memory_overheads)
7184 elf_tdata (bfd1)->symbuf = ssymbuf1
7185 = elf_create_symbuf (symcount1, isymbuf1);
7186 }
7187
7188 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7189 {
7190 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7191 NULL, NULL, NULL);
7192 if (isymbuf2 == NULL)
7193 goto done;
7194
7195 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7196 elf_tdata (bfd2)->symbuf = ssymbuf2
7197 = elf_create_symbuf (symcount2, isymbuf2);
7198 }
7199
7200 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7201 {
7202 /* Optimized faster version. */
7203 bfd_size_type lo, hi, mid;
7204 struct elf_symbol *symp;
7205 struct elf_symbuf_symbol *ssym, *ssymend;
7206
7207 lo = 0;
7208 hi = ssymbuf1->count;
7209 ssymbuf1++;
7210 count1 = 0;
7211 while (lo < hi)
7212 {
7213 mid = (lo + hi) / 2;
7214 if (shndx1 < ssymbuf1[mid].st_shndx)
7215 hi = mid;
7216 else if (shndx1 > ssymbuf1[mid].st_shndx)
7217 lo = mid + 1;
7218 else
7219 {
7220 count1 = ssymbuf1[mid].count;
7221 ssymbuf1 += mid;
7222 break;
7223 }
7224 }
7225
7226 lo = 0;
7227 hi = ssymbuf2->count;
7228 ssymbuf2++;
7229 count2 = 0;
7230 while (lo < hi)
7231 {
7232 mid = (lo + hi) / 2;
7233 if (shndx2 < ssymbuf2[mid].st_shndx)
7234 hi = mid;
7235 else if (shndx2 > ssymbuf2[mid].st_shndx)
7236 lo = mid + 1;
7237 else
7238 {
7239 count2 = ssymbuf2[mid].count;
7240 ssymbuf2 += mid;
7241 break;
7242 }
7243 }
7244
7245 if (count1 == 0 || count2 == 0 || count1 != count2)
7246 goto done;
7247
7248 symtable1 = (struct elf_symbol *)
7249 bfd_malloc (count1 * sizeof (struct elf_symbol));
7250 symtable2 = (struct elf_symbol *)
7251 bfd_malloc (count2 * sizeof (struct elf_symbol));
7252 if (symtable1 == NULL || symtable2 == NULL)
7253 goto done;
7254
7255 symp = symtable1;
7256 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7257 ssym < ssymend; ssym++, symp++)
7258 {
7259 symp->u.ssym = ssym;
7260 symp->name = bfd_elf_string_from_elf_section (bfd1,
7261 hdr1->sh_link,
7262 ssym->st_name);
7263 }
7264
7265 symp = symtable2;
7266 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7267 ssym < ssymend; ssym++, symp++)
7268 {
7269 symp->u.ssym = ssym;
7270 symp->name = bfd_elf_string_from_elf_section (bfd2,
7271 hdr2->sh_link,
7272 ssym->st_name);
7273 }
7274
7275 /* Sort symbol by name. */
7276 qsort (symtable1, count1, sizeof (struct elf_symbol),
7277 elf_sym_name_compare);
7278 qsort (symtable2, count1, sizeof (struct elf_symbol),
7279 elf_sym_name_compare);
7280
7281 for (i = 0; i < count1; i++)
7282 /* Two symbols must have the same binding, type and name. */
7283 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7284 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7285 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7286 goto done;
7287
7288 result = TRUE;
7289 goto done;
7290 }
7291
7292 symtable1 = (struct elf_symbol *)
7293 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7294 symtable2 = (struct elf_symbol *)
7295 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7296 if (symtable1 == NULL || symtable2 == NULL)
7297 goto done;
7298
7299 /* Count definitions in the section. */
7300 count1 = 0;
7301 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7302 if (isym->st_shndx == shndx1)
7303 symtable1[count1++].u.isym = isym;
7304
7305 count2 = 0;
7306 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7307 if (isym->st_shndx == shndx2)
7308 symtable2[count2++].u.isym = isym;
7309
7310 if (count1 == 0 || count2 == 0 || count1 != count2)
7311 goto done;
7312
7313 for (i = 0; i < count1; i++)
7314 symtable1[i].name
7315 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7316 symtable1[i].u.isym->st_name);
7317
7318 for (i = 0; i < count2; i++)
7319 symtable2[i].name
7320 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7321 symtable2[i].u.isym->st_name);
7322
7323 /* Sort symbol by name. */
7324 qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326 qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328
7329 for (i = 0; i < count1; i++)
7330 /* Two symbols must have the same binding, type and name. */
7331 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7332 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7333 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7334 goto done;
7335
7336 result = TRUE;
7337
7338 done:
7339 if (symtable1)
7340 free (symtable1);
7341 if (symtable2)
7342 free (symtable2);
7343 if (isymbuf1)
7344 free (isymbuf1);
7345 if (isymbuf2)
7346 free (isymbuf2);
7347
7348 return result;
7349 }
7350
7351 /* Return TRUE if 2 section types are compatible. */
7352
7353 bfd_boolean
7354 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7355 bfd *bbfd, const asection *bsec)
7356 {
7357 if (asec == NULL
7358 || bsec == NULL
7359 || abfd->xvec->flavour != bfd_target_elf_flavour
7360 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7361 return TRUE;
7362
7363 return elf_section_type (asec) == elf_section_type (bsec);
7364 }
7365 \f
7366 /* Final phase of ELF linker. */
7367
7368 /* A structure we use to avoid passing large numbers of arguments. */
7369
7370 struct elf_final_link_info
7371 {
7372 /* General link information. */
7373 struct bfd_link_info *info;
7374 /* Output BFD. */
7375 bfd *output_bfd;
7376 /* Symbol string table. */
7377 struct bfd_strtab_hash *symstrtab;
7378 /* .dynsym section. */
7379 asection *dynsym_sec;
7380 /* .hash section. */
7381 asection *hash_sec;
7382 /* symbol version section (.gnu.version). */
7383 asection *symver_sec;
7384 /* Buffer large enough to hold contents of any section. */
7385 bfd_byte *contents;
7386 /* Buffer large enough to hold external relocs of any section. */
7387 void *external_relocs;
7388 /* Buffer large enough to hold internal relocs of any section. */
7389 Elf_Internal_Rela *internal_relocs;
7390 /* Buffer large enough to hold external local symbols of any input
7391 BFD. */
7392 bfd_byte *external_syms;
7393 /* And a buffer for symbol section indices. */
7394 Elf_External_Sym_Shndx *locsym_shndx;
7395 /* Buffer large enough to hold internal local symbols of any input
7396 BFD. */
7397 Elf_Internal_Sym *internal_syms;
7398 /* Array large enough to hold a symbol index for each local symbol
7399 of any input BFD. */
7400 long *indices;
7401 /* Array large enough to hold a section pointer for each local
7402 symbol of any input BFD. */
7403 asection **sections;
7404 /* Buffer to hold swapped out symbols. */
7405 bfd_byte *symbuf;
7406 /* And one for symbol section indices. */
7407 Elf_External_Sym_Shndx *symshndxbuf;
7408 /* Number of swapped out symbols in buffer. */
7409 size_t symbuf_count;
7410 /* Number of symbols which fit in symbuf. */
7411 size_t symbuf_size;
7412 /* And same for symshndxbuf. */
7413 size_t shndxbuf_size;
7414 };
7415
7416 /* This struct is used to pass information to elf_link_output_extsym. */
7417
7418 struct elf_outext_info
7419 {
7420 bfd_boolean failed;
7421 bfd_boolean localsyms;
7422 struct elf_final_link_info *finfo;
7423 };
7424
7425
7426 /* Support for evaluating a complex relocation.
7427
7428 Complex relocations are generalized, self-describing relocations. The
7429 implementation of them consists of two parts: complex symbols, and the
7430 relocations themselves.
7431
7432 The relocations are use a reserved elf-wide relocation type code (R_RELC
7433 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7434 information (start bit, end bit, word width, etc) into the addend. This
7435 information is extracted from CGEN-generated operand tables within gas.
7436
7437 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7438 internal) representing prefix-notation expressions, including but not
7439 limited to those sorts of expressions normally encoded as addends in the
7440 addend field. The symbol mangling format is:
7441
7442 <node> := <literal>
7443 | <unary-operator> ':' <node>
7444 | <binary-operator> ':' <node> ':' <node>
7445 ;
7446
7447 <literal> := 's' <digits=N> ':' <N character symbol name>
7448 | 'S' <digits=N> ':' <N character section name>
7449 | '#' <hexdigits>
7450 ;
7451
7452 <binary-operator> := as in C
7453 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7454
7455 static void
7456 set_symbol_value (bfd *bfd_with_globals,
7457 Elf_Internal_Sym *isymbuf,
7458 size_t locsymcount,
7459 size_t symidx,
7460 bfd_vma val)
7461 {
7462 struct elf_link_hash_entry **sym_hashes;
7463 struct elf_link_hash_entry *h;
7464 size_t extsymoff = locsymcount;
7465
7466 if (symidx < locsymcount)
7467 {
7468 Elf_Internal_Sym *sym;
7469
7470 sym = isymbuf + symidx;
7471 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7472 {
7473 /* It is a local symbol: move it to the
7474 "absolute" section and give it a value. */
7475 sym->st_shndx = SHN_ABS;
7476 sym->st_value = val;
7477 return;
7478 }
7479 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7480 extsymoff = 0;
7481 }
7482
7483 /* It is a global symbol: set its link type
7484 to "defined" and give it a value. */
7485
7486 sym_hashes = elf_sym_hashes (bfd_with_globals);
7487 h = sym_hashes [symidx - extsymoff];
7488 while (h->root.type == bfd_link_hash_indirect
7489 || h->root.type == bfd_link_hash_warning)
7490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7491 h->root.type = bfd_link_hash_defined;
7492 h->root.u.def.value = val;
7493 h->root.u.def.section = bfd_abs_section_ptr;
7494 }
7495
7496 static bfd_boolean
7497 resolve_symbol (const char *name,
7498 bfd *input_bfd,
7499 struct elf_final_link_info *finfo,
7500 bfd_vma *result,
7501 Elf_Internal_Sym *isymbuf,
7502 size_t locsymcount)
7503 {
7504 Elf_Internal_Sym *sym;
7505 struct bfd_link_hash_entry *global_entry;
7506 const char *candidate = NULL;
7507 Elf_Internal_Shdr *symtab_hdr;
7508 size_t i;
7509
7510 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7511
7512 for (i = 0; i < locsymcount; ++ i)
7513 {
7514 sym = isymbuf + i;
7515
7516 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7517 continue;
7518
7519 candidate = bfd_elf_string_from_elf_section (input_bfd,
7520 symtab_hdr->sh_link,
7521 sym->st_name);
7522 #ifdef DEBUG
7523 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7524 name, candidate, (unsigned long) sym->st_value);
7525 #endif
7526 if (candidate && strcmp (candidate, name) == 0)
7527 {
7528 asection *sec = finfo->sections [i];
7529
7530 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7531 *result += sec->output_offset + sec->output_section->vma;
7532 #ifdef DEBUG
7533 printf ("Found symbol with value %8.8lx\n",
7534 (unsigned long) *result);
7535 #endif
7536 return TRUE;
7537 }
7538 }
7539
7540 /* Hmm, haven't found it yet. perhaps it is a global. */
7541 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7542 FALSE, FALSE, TRUE);
7543 if (!global_entry)
7544 return FALSE;
7545
7546 if (global_entry->type == bfd_link_hash_defined
7547 || global_entry->type == bfd_link_hash_defweak)
7548 {
7549 *result = (global_entry->u.def.value
7550 + global_entry->u.def.section->output_section->vma
7551 + global_entry->u.def.section->output_offset);
7552 #ifdef DEBUG
7553 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7554 global_entry->root.string, (unsigned long) *result);
7555 #endif
7556 return TRUE;
7557 }
7558
7559 return FALSE;
7560 }
7561
7562 static bfd_boolean
7563 resolve_section (const char *name,
7564 asection *sections,
7565 bfd_vma *result)
7566 {
7567 asection *curr;
7568 unsigned int len;
7569
7570 for (curr = sections; curr; curr = curr->next)
7571 if (strcmp (curr->name, name) == 0)
7572 {
7573 *result = curr->vma;
7574 return TRUE;
7575 }
7576
7577 /* Hmm. still haven't found it. try pseudo-section names. */
7578 for (curr = sections; curr; curr = curr->next)
7579 {
7580 len = strlen (curr->name);
7581 if (len > strlen (name))
7582 continue;
7583
7584 if (strncmp (curr->name, name, len) == 0)
7585 {
7586 if (strncmp (".end", name + len, 4) == 0)
7587 {
7588 *result = curr->vma + curr->size;
7589 return TRUE;
7590 }
7591
7592 /* Insert more pseudo-section names here, if you like. */
7593 }
7594 }
7595
7596 return FALSE;
7597 }
7598
7599 static void
7600 undefined_reference (const char *reftype, const char *name)
7601 {
7602 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7603 reftype, name);
7604 }
7605
7606 static bfd_boolean
7607 eval_symbol (bfd_vma *result,
7608 const char **symp,
7609 bfd *input_bfd,
7610 struct elf_final_link_info *finfo,
7611 bfd_vma dot,
7612 Elf_Internal_Sym *isymbuf,
7613 size_t locsymcount,
7614 int signed_p)
7615 {
7616 size_t len;
7617 size_t symlen;
7618 bfd_vma a;
7619 bfd_vma b;
7620 char symbuf[4096];
7621 const char *sym = *symp;
7622 const char *symend;
7623 bfd_boolean symbol_is_section = FALSE;
7624
7625 len = strlen (sym);
7626 symend = sym + len;
7627
7628 if (len < 1 || len > sizeof (symbuf))
7629 {
7630 bfd_set_error (bfd_error_invalid_operation);
7631 return FALSE;
7632 }
7633
7634 switch (* sym)
7635 {
7636 case '.':
7637 *result = dot;
7638 *symp = sym + 1;
7639 return TRUE;
7640
7641 case '#':
7642 ++sym;
7643 *result = strtoul (sym, (char **) symp, 16);
7644 return TRUE;
7645
7646 case 'S':
7647 symbol_is_section = TRUE;
7648 case 's':
7649 ++sym;
7650 symlen = strtol (sym, (char **) symp, 10);
7651 sym = *symp + 1; /* Skip the trailing ':'. */
7652
7653 if (symend < sym || symlen + 1 > sizeof (symbuf))
7654 {
7655 bfd_set_error (bfd_error_invalid_operation);
7656 return FALSE;
7657 }
7658
7659 memcpy (symbuf, sym, symlen);
7660 symbuf[symlen] = '\0';
7661 *symp = sym + symlen;
7662
7663 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7664 the symbol as a section, or vice-versa. so we're pretty liberal in our
7665 interpretation here; section means "try section first", not "must be a
7666 section", and likewise with symbol. */
7667
7668 if (symbol_is_section)
7669 {
7670 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7671 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7672 isymbuf, locsymcount))
7673 {
7674 undefined_reference ("section", symbuf);
7675 return FALSE;
7676 }
7677 }
7678 else
7679 {
7680 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7681 isymbuf, locsymcount)
7682 && !resolve_section (symbuf, finfo->output_bfd->sections,
7683 result))
7684 {
7685 undefined_reference ("symbol", symbuf);
7686 return FALSE;
7687 }
7688 }
7689
7690 return TRUE;
7691
7692 /* All that remains are operators. */
7693
7694 #define UNARY_OP(op) \
7695 if (strncmp (sym, #op, strlen (#op)) == 0) \
7696 { \
7697 sym += strlen (#op); \
7698 if (*sym == ':') \
7699 ++sym; \
7700 *symp = sym; \
7701 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7702 isymbuf, locsymcount, signed_p)) \
7703 return FALSE; \
7704 if (signed_p) \
7705 *result = op ((bfd_signed_vma) a); \
7706 else \
7707 *result = op a; \
7708 return TRUE; \
7709 }
7710
7711 #define BINARY_OP(op) \
7712 if (strncmp (sym, #op, strlen (#op)) == 0) \
7713 { \
7714 sym += strlen (#op); \
7715 if (*sym == ':') \
7716 ++sym; \
7717 *symp = sym; \
7718 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7719 isymbuf, locsymcount, signed_p)) \
7720 return FALSE; \
7721 ++*symp; \
7722 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7723 isymbuf, locsymcount, signed_p)) \
7724 return FALSE; \
7725 if (signed_p) \
7726 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7727 else \
7728 *result = a op b; \
7729 return TRUE; \
7730 }
7731
7732 default:
7733 UNARY_OP (0-);
7734 BINARY_OP (<<);
7735 BINARY_OP (>>);
7736 BINARY_OP (==);
7737 BINARY_OP (!=);
7738 BINARY_OP (<=);
7739 BINARY_OP (>=);
7740 BINARY_OP (&&);
7741 BINARY_OP (||);
7742 UNARY_OP (~);
7743 UNARY_OP (!);
7744 BINARY_OP (*);
7745 BINARY_OP (/);
7746 BINARY_OP (%);
7747 BINARY_OP (^);
7748 BINARY_OP (|);
7749 BINARY_OP (&);
7750 BINARY_OP (+);
7751 BINARY_OP (-);
7752 BINARY_OP (<);
7753 BINARY_OP (>);
7754 #undef UNARY_OP
7755 #undef BINARY_OP
7756 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7757 bfd_set_error (bfd_error_invalid_operation);
7758 return FALSE;
7759 }
7760 }
7761
7762 static void
7763 put_value (bfd_vma size,
7764 unsigned long chunksz,
7765 bfd *input_bfd,
7766 bfd_vma x,
7767 bfd_byte *location)
7768 {
7769 location += (size - chunksz);
7770
7771 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7772 {
7773 switch (chunksz)
7774 {
7775 default:
7776 case 0:
7777 abort ();
7778 case 1:
7779 bfd_put_8 (input_bfd, x, location);
7780 break;
7781 case 2:
7782 bfd_put_16 (input_bfd, x, location);
7783 break;
7784 case 4:
7785 bfd_put_32 (input_bfd, x, location);
7786 break;
7787 case 8:
7788 #ifdef BFD64
7789 bfd_put_64 (input_bfd, x, location);
7790 #else
7791 abort ();
7792 #endif
7793 break;
7794 }
7795 }
7796 }
7797
7798 static bfd_vma
7799 get_value (bfd_vma size,
7800 unsigned long chunksz,
7801 bfd *input_bfd,
7802 bfd_byte *location)
7803 {
7804 bfd_vma x = 0;
7805
7806 for (; size; size -= chunksz, location += chunksz)
7807 {
7808 switch (chunksz)
7809 {
7810 default:
7811 case 0:
7812 abort ();
7813 case 1:
7814 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7815 break;
7816 case 2:
7817 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7818 break;
7819 case 4:
7820 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7821 break;
7822 case 8:
7823 #ifdef BFD64
7824 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7825 #else
7826 abort ();
7827 #endif
7828 break;
7829 }
7830 }
7831 return x;
7832 }
7833
7834 static void
7835 decode_complex_addend (unsigned long *start, /* in bits */
7836 unsigned long *oplen, /* in bits */
7837 unsigned long *len, /* in bits */
7838 unsigned long *wordsz, /* in bytes */
7839 unsigned long *chunksz, /* in bytes */
7840 unsigned long *lsb0_p,
7841 unsigned long *signed_p,
7842 unsigned long *trunc_p,
7843 unsigned long encoded)
7844 {
7845 * start = encoded & 0x3F;
7846 * len = (encoded >> 6) & 0x3F;
7847 * oplen = (encoded >> 12) & 0x3F;
7848 * wordsz = (encoded >> 18) & 0xF;
7849 * chunksz = (encoded >> 22) & 0xF;
7850 * lsb0_p = (encoded >> 27) & 1;
7851 * signed_p = (encoded >> 28) & 1;
7852 * trunc_p = (encoded >> 29) & 1;
7853 }
7854
7855 bfd_reloc_status_type
7856 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7857 asection *input_section ATTRIBUTE_UNUSED,
7858 bfd_byte *contents,
7859 Elf_Internal_Rela *rel,
7860 bfd_vma relocation)
7861 {
7862 bfd_vma shift, x, mask;
7863 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7864 bfd_reloc_status_type r;
7865
7866 /* Perform this reloc, since it is complex.
7867 (this is not to say that it necessarily refers to a complex
7868 symbol; merely that it is a self-describing CGEN based reloc.
7869 i.e. the addend has the complete reloc information (bit start, end,
7870 word size, etc) encoded within it.). */
7871
7872 decode_complex_addend (&start, &oplen, &len, &wordsz,
7873 &chunksz, &lsb0_p, &signed_p,
7874 &trunc_p, rel->r_addend);
7875
7876 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7877
7878 if (lsb0_p)
7879 shift = (start + 1) - len;
7880 else
7881 shift = (8 * wordsz) - (start + len);
7882
7883 /* FIXME: octets_per_byte. */
7884 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7885
7886 #ifdef DEBUG
7887 printf ("Doing complex reloc: "
7888 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7889 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7890 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7891 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7892 oplen, (unsigned long) x, (unsigned long) mask,
7893 (unsigned long) relocation);
7894 #endif
7895
7896 r = bfd_reloc_ok;
7897 if (! trunc_p)
7898 /* Now do an overflow check. */
7899 r = bfd_check_overflow ((signed_p
7900 ? complain_overflow_signed
7901 : complain_overflow_unsigned),
7902 len, 0, (8 * wordsz),
7903 relocation);
7904
7905 /* Do the deed. */
7906 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7907
7908 #ifdef DEBUG
7909 printf (" relocation: %8.8lx\n"
7910 " shifted mask: %8.8lx\n"
7911 " shifted/masked reloc: %8.8lx\n"
7912 " result: %8.8lx\n",
7913 (unsigned long) relocation, (unsigned long) (mask << shift),
7914 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7915 #endif
7916 /* FIXME: octets_per_byte. */
7917 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7918 return r;
7919 }
7920
7921 /* When performing a relocatable link, the input relocations are
7922 preserved. But, if they reference global symbols, the indices
7923 referenced must be updated. Update all the relocations found in
7924 RELDATA. */
7925
7926 static void
7927 elf_link_adjust_relocs (bfd *abfd,
7928 struct bfd_elf_section_reloc_data *reldata)
7929 {
7930 unsigned int i;
7931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7932 bfd_byte *erela;
7933 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7934 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7935 bfd_vma r_type_mask;
7936 int r_sym_shift;
7937 unsigned int count = reldata->count;
7938 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7939
7940 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7941 {
7942 swap_in = bed->s->swap_reloc_in;
7943 swap_out = bed->s->swap_reloc_out;
7944 }
7945 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7946 {
7947 swap_in = bed->s->swap_reloca_in;
7948 swap_out = bed->s->swap_reloca_out;
7949 }
7950 else
7951 abort ();
7952
7953 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7954 abort ();
7955
7956 if (bed->s->arch_size == 32)
7957 {
7958 r_type_mask = 0xff;
7959 r_sym_shift = 8;
7960 }
7961 else
7962 {
7963 r_type_mask = 0xffffffff;
7964 r_sym_shift = 32;
7965 }
7966
7967 erela = reldata->hdr->contents;
7968 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7969 {
7970 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7971 unsigned int j;
7972
7973 if (*rel_hash == NULL)
7974 continue;
7975
7976 BFD_ASSERT ((*rel_hash)->indx >= 0);
7977
7978 (*swap_in) (abfd, erela, irela);
7979 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7980 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7981 | (irela[j].r_info & r_type_mask));
7982 (*swap_out) (abfd, irela, erela);
7983 }
7984 }
7985
7986 struct elf_link_sort_rela
7987 {
7988 union {
7989 bfd_vma offset;
7990 bfd_vma sym_mask;
7991 } u;
7992 enum elf_reloc_type_class type;
7993 /* We use this as an array of size int_rels_per_ext_rel. */
7994 Elf_Internal_Rela rela[1];
7995 };
7996
7997 static int
7998 elf_link_sort_cmp1 (const void *A, const void *B)
7999 {
8000 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8001 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8002 int relativea, relativeb;
8003
8004 relativea = a->type == reloc_class_relative;
8005 relativeb = b->type == reloc_class_relative;
8006
8007 if (relativea < relativeb)
8008 return 1;
8009 if (relativea > relativeb)
8010 return -1;
8011 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8012 return -1;
8013 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8014 return 1;
8015 if (a->rela->r_offset < b->rela->r_offset)
8016 return -1;
8017 if (a->rela->r_offset > b->rela->r_offset)
8018 return 1;
8019 return 0;
8020 }
8021
8022 static int
8023 elf_link_sort_cmp2 (const void *A, const void *B)
8024 {
8025 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8026 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8027 int copya, copyb;
8028
8029 if (a->u.offset < b->u.offset)
8030 return -1;
8031 if (a->u.offset > b->u.offset)
8032 return 1;
8033 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8034 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8035 if (copya < copyb)
8036 return -1;
8037 if (copya > copyb)
8038 return 1;
8039 if (a->rela->r_offset < b->rela->r_offset)
8040 return -1;
8041 if (a->rela->r_offset > b->rela->r_offset)
8042 return 1;
8043 return 0;
8044 }
8045
8046 static size_t
8047 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8048 {
8049 asection *dynamic_relocs;
8050 asection *rela_dyn;
8051 asection *rel_dyn;
8052 bfd_size_type count, size;
8053 size_t i, ret, sort_elt, ext_size;
8054 bfd_byte *sort, *s_non_relative, *p;
8055 struct elf_link_sort_rela *sq;
8056 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8057 int i2e = bed->s->int_rels_per_ext_rel;
8058 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8059 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8060 struct bfd_link_order *lo;
8061 bfd_vma r_sym_mask;
8062 bfd_boolean use_rela;
8063
8064 /* Find a dynamic reloc section. */
8065 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8066 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8067 if (rela_dyn != NULL && rela_dyn->size > 0
8068 && rel_dyn != NULL && rel_dyn->size > 0)
8069 {
8070 bfd_boolean use_rela_initialised = FALSE;
8071
8072 /* This is just here to stop gcc from complaining.
8073 It's initialization checking code is not perfect. */
8074 use_rela = TRUE;
8075
8076 /* Both sections are present. Examine the sizes
8077 of the indirect sections to help us choose. */
8078 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8079 if (lo->type == bfd_indirect_link_order)
8080 {
8081 asection *o = lo->u.indirect.section;
8082
8083 if ((o->size % bed->s->sizeof_rela) == 0)
8084 {
8085 if ((o->size % bed->s->sizeof_rel) == 0)
8086 /* Section size is divisible by both rel and rela sizes.
8087 It is of no help to us. */
8088 ;
8089 else
8090 {
8091 /* Section size is only divisible by rela. */
8092 if (use_rela_initialised && (use_rela == FALSE))
8093 {
8094 _bfd_error_handler
8095 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8096 bfd_set_error (bfd_error_invalid_operation);
8097 return 0;
8098 }
8099 else
8100 {
8101 use_rela = TRUE;
8102 use_rela_initialised = TRUE;
8103 }
8104 }
8105 }
8106 else if ((o->size % bed->s->sizeof_rel) == 0)
8107 {
8108 /* Section size is only divisible by rel. */
8109 if (use_rela_initialised && (use_rela == TRUE))
8110 {
8111 _bfd_error_handler
8112 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8113 bfd_set_error (bfd_error_invalid_operation);
8114 return 0;
8115 }
8116 else
8117 {
8118 use_rela = FALSE;
8119 use_rela_initialised = TRUE;
8120 }
8121 }
8122 else
8123 {
8124 /* The section size is not divisible by either - something is wrong. */
8125 _bfd_error_handler
8126 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8127 bfd_set_error (bfd_error_invalid_operation);
8128 return 0;
8129 }
8130 }
8131
8132 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8133 if (lo->type == bfd_indirect_link_order)
8134 {
8135 asection *o = lo->u.indirect.section;
8136
8137 if ((o->size % bed->s->sizeof_rela) == 0)
8138 {
8139 if ((o->size % bed->s->sizeof_rel) == 0)
8140 /* Section size is divisible by both rel and rela sizes.
8141 It is of no help to us. */
8142 ;
8143 else
8144 {
8145 /* Section size is only divisible by rela. */
8146 if (use_rela_initialised && (use_rela == FALSE))
8147 {
8148 _bfd_error_handler
8149 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8150 bfd_set_error (bfd_error_invalid_operation);
8151 return 0;
8152 }
8153 else
8154 {
8155 use_rela = TRUE;
8156 use_rela_initialised = TRUE;
8157 }
8158 }
8159 }
8160 else if ((o->size % bed->s->sizeof_rel) == 0)
8161 {
8162 /* Section size is only divisible by rel. */
8163 if (use_rela_initialised && (use_rela == TRUE))
8164 {
8165 _bfd_error_handler
8166 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8167 bfd_set_error (bfd_error_invalid_operation);
8168 return 0;
8169 }
8170 else
8171 {
8172 use_rela = FALSE;
8173 use_rela_initialised = TRUE;
8174 }
8175 }
8176 else
8177 {
8178 /* The section size is not divisible by either - something is wrong. */
8179 _bfd_error_handler
8180 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8181 bfd_set_error (bfd_error_invalid_operation);
8182 return 0;
8183 }
8184 }
8185
8186 if (! use_rela_initialised)
8187 /* Make a guess. */
8188 use_rela = TRUE;
8189 }
8190 else if (rela_dyn != NULL && rela_dyn->size > 0)
8191 use_rela = TRUE;
8192 else if (rel_dyn != NULL && rel_dyn->size > 0)
8193 use_rela = FALSE;
8194 else
8195 return 0;
8196
8197 if (use_rela)
8198 {
8199 dynamic_relocs = rela_dyn;
8200 ext_size = bed->s->sizeof_rela;
8201 swap_in = bed->s->swap_reloca_in;
8202 swap_out = bed->s->swap_reloca_out;
8203 }
8204 else
8205 {
8206 dynamic_relocs = rel_dyn;
8207 ext_size = bed->s->sizeof_rel;
8208 swap_in = bed->s->swap_reloc_in;
8209 swap_out = bed->s->swap_reloc_out;
8210 }
8211
8212 size = 0;
8213 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8214 if (lo->type == bfd_indirect_link_order)
8215 size += lo->u.indirect.section->size;
8216
8217 if (size != dynamic_relocs->size)
8218 return 0;
8219
8220 sort_elt = (sizeof (struct elf_link_sort_rela)
8221 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8222
8223 count = dynamic_relocs->size / ext_size;
8224 if (count == 0)
8225 return 0;
8226 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8227
8228 if (sort == NULL)
8229 {
8230 (*info->callbacks->warning)
8231 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8232 return 0;
8233 }
8234
8235 if (bed->s->arch_size == 32)
8236 r_sym_mask = ~(bfd_vma) 0xff;
8237 else
8238 r_sym_mask = ~(bfd_vma) 0xffffffff;
8239
8240 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8241 if (lo->type == bfd_indirect_link_order)
8242 {
8243 bfd_byte *erel, *erelend;
8244 asection *o = lo->u.indirect.section;
8245
8246 if (o->contents == NULL && o->size != 0)
8247 {
8248 /* This is a reloc section that is being handled as a normal
8249 section. See bfd_section_from_shdr. We can't combine
8250 relocs in this case. */
8251 free (sort);
8252 return 0;
8253 }
8254 erel = o->contents;
8255 erelend = o->contents + o->size;
8256 /* FIXME: octets_per_byte. */
8257 p = sort + o->output_offset / ext_size * sort_elt;
8258
8259 while (erel < erelend)
8260 {
8261 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8262
8263 (*swap_in) (abfd, erel, s->rela);
8264 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8265 s->u.sym_mask = r_sym_mask;
8266 p += sort_elt;
8267 erel += ext_size;
8268 }
8269 }
8270
8271 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8272
8273 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8274 {
8275 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8276 if (s->type != reloc_class_relative)
8277 break;
8278 }
8279 ret = i;
8280 s_non_relative = p;
8281
8282 sq = (struct elf_link_sort_rela *) s_non_relative;
8283 for (; i < count; i++, p += sort_elt)
8284 {
8285 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8286 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8287 sq = sp;
8288 sp->u.offset = sq->rela->r_offset;
8289 }
8290
8291 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8292
8293 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8294 if (lo->type == bfd_indirect_link_order)
8295 {
8296 bfd_byte *erel, *erelend;
8297 asection *o = lo->u.indirect.section;
8298
8299 erel = o->contents;
8300 erelend = o->contents + o->size;
8301 /* FIXME: octets_per_byte. */
8302 p = sort + o->output_offset / ext_size * sort_elt;
8303 while (erel < erelend)
8304 {
8305 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8306 (*swap_out) (abfd, s->rela, erel);
8307 p += sort_elt;
8308 erel += ext_size;
8309 }
8310 }
8311
8312 free (sort);
8313 *psec = dynamic_relocs;
8314 return ret;
8315 }
8316
8317 /* Flush the output symbols to the file. */
8318
8319 static bfd_boolean
8320 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8321 const struct elf_backend_data *bed)
8322 {
8323 if (finfo->symbuf_count > 0)
8324 {
8325 Elf_Internal_Shdr *hdr;
8326 file_ptr pos;
8327 bfd_size_type amt;
8328
8329 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8330 pos = hdr->sh_offset + hdr->sh_size;
8331 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8332 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8333 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8334 return FALSE;
8335
8336 hdr->sh_size += amt;
8337 finfo->symbuf_count = 0;
8338 }
8339
8340 return TRUE;
8341 }
8342
8343 /* Add a symbol to the output symbol table. */
8344
8345 static int
8346 elf_link_output_sym (struct elf_final_link_info *finfo,
8347 const char *name,
8348 Elf_Internal_Sym *elfsym,
8349 asection *input_sec,
8350 struct elf_link_hash_entry *h)
8351 {
8352 bfd_byte *dest;
8353 Elf_External_Sym_Shndx *destshndx;
8354 int (*output_symbol_hook)
8355 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8356 struct elf_link_hash_entry *);
8357 const struct elf_backend_data *bed;
8358
8359 bed = get_elf_backend_data (finfo->output_bfd);
8360 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8361 if (output_symbol_hook != NULL)
8362 {
8363 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8364 if (ret != 1)
8365 return ret;
8366 }
8367
8368 if (name == NULL || *name == '\0')
8369 elfsym->st_name = 0;
8370 else if (input_sec->flags & SEC_EXCLUDE)
8371 elfsym->st_name = 0;
8372 else
8373 {
8374 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8375 name, TRUE, FALSE);
8376 if (elfsym->st_name == (unsigned long) -1)
8377 return 0;
8378 }
8379
8380 if (finfo->symbuf_count >= finfo->symbuf_size)
8381 {
8382 if (! elf_link_flush_output_syms (finfo, bed))
8383 return 0;
8384 }
8385
8386 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8387 destshndx = finfo->symshndxbuf;
8388 if (destshndx != NULL)
8389 {
8390 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8391 {
8392 bfd_size_type amt;
8393
8394 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8395 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8396 amt * 2);
8397 if (destshndx == NULL)
8398 return 0;
8399 finfo->symshndxbuf = destshndx;
8400 memset ((char *) destshndx + amt, 0, amt);
8401 finfo->shndxbuf_size *= 2;
8402 }
8403 destshndx += bfd_get_symcount (finfo->output_bfd);
8404 }
8405
8406 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8407 finfo->symbuf_count += 1;
8408 bfd_get_symcount (finfo->output_bfd) += 1;
8409
8410 return 1;
8411 }
8412
8413 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8414
8415 static bfd_boolean
8416 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8417 {
8418 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8419 && sym->st_shndx < SHN_LORESERVE)
8420 {
8421 /* The gABI doesn't support dynamic symbols in output sections
8422 beyond 64k. */
8423 (*_bfd_error_handler)
8424 (_("%B: Too many sections: %d (>= %d)"),
8425 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8426 bfd_set_error (bfd_error_nonrepresentable_section);
8427 return FALSE;
8428 }
8429 return TRUE;
8430 }
8431
8432 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8433 allowing an unsatisfied unversioned symbol in the DSO to match a
8434 versioned symbol that would normally require an explicit version.
8435 We also handle the case that a DSO references a hidden symbol
8436 which may be satisfied by a versioned symbol in another DSO. */
8437
8438 static bfd_boolean
8439 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8440 const struct elf_backend_data *bed,
8441 struct elf_link_hash_entry *h)
8442 {
8443 bfd *abfd;
8444 struct elf_link_loaded_list *loaded;
8445
8446 if (!is_elf_hash_table (info->hash))
8447 return FALSE;
8448
8449 switch (h->root.type)
8450 {
8451 default:
8452 abfd = NULL;
8453 break;
8454
8455 case bfd_link_hash_undefined:
8456 case bfd_link_hash_undefweak:
8457 abfd = h->root.u.undef.abfd;
8458 if ((abfd->flags & DYNAMIC) == 0
8459 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8460 return FALSE;
8461 break;
8462
8463 case bfd_link_hash_defined:
8464 case bfd_link_hash_defweak:
8465 abfd = h->root.u.def.section->owner;
8466 break;
8467
8468 case bfd_link_hash_common:
8469 abfd = h->root.u.c.p->section->owner;
8470 break;
8471 }
8472 BFD_ASSERT (abfd != NULL);
8473
8474 for (loaded = elf_hash_table (info)->loaded;
8475 loaded != NULL;
8476 loaded = loaded->next)
8477 {
8478 bfd *input;
8479 Elf_Internal_Shdr *hdr;
8480 bfd_size_type symcount;
8481 bfd_size_type extsymcount;
8482 bfd_size_type extsymoff;
8483 Elf_Internal_Shdr *versymhdr;
8484 Elf_Internal_Sym *isym;
8485 Elf_Internal_Sym *isymend;
8486 Elf_Internal_Sym *isymbuf;
8487 Elf_External_Versym *ever;
8488 Elf_External_Versym *extversym;
8489
8490 input = loaded->abfd;
8491
8492 /* We check each DSO for a possible hidden versioned definition. */
8493 if (input == abfd
8494 || (input->flags & DYNAMIC) == 0
8495 || elf_dynversym (input) == 0)
8496 continue;
8497
8498 hdr = &elf_tdata (input)->dynsymtab_hdr;
8499
8500 symcount = hdr->sh_size / bed->s->sizeof_sym;
8501 if (elf_bad_symtab (input))
8502 {
8503 extsymcount = symcount;
8504 extsymoff = 0;
8505 }
8506 else
8507 {
8508 extsymcount = symcount - hdr->sh_info;
8509 extsymoff = hdr->sh_info;
8510 }
8511
8512 if (extsymcount == 0)
8513 continue;
8514
8515 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8516 NULL, NULL, NULL);
8517 if (isymbuf == NULL)
8518 return FALSE;
8519
8520 /* Read in any version definitions. */
8521 versymhdr = &elf_tdata (input)->dynversym_hdr;
8522 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8523 if (extversym == NULL)
8524 goto error_ret;
8525
8526 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8527 || (bfd_bread (extversym, versymhdr->sh_size, input)
8528 != versymhdr->sh_size))
8529 {
8530 free (extversym);
8531 error_ret:
8532 free (isymbuf);
8533 return FALSE;
8534 }
8535
8536 ever = extversym + extsymoff;
8537 isymend = isymbuf + extsymcount;
8538 for (isym = isymbuf; isym < isymend; isym++, ever++)
8539 {
8540 const char *name;
8541 Elf_Internal_Versym iver;
8542 unsigned short version_index;
8543
8544 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8545 || isym->st_shndx == SHN_UNDEF)
8546 continue;
8547
8548 name = bfd_elf_string_from_elf_section (input,
8549 hdr->sh_link,
8550 isym->st_name);
8551 if (strcmp (name, h->root.root.string) != 0)
8552 continue;
8553
8554 _bfd_elf_swap_versym_in (input, ever, &iver);
8555
8556 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8557 && !(h->def_regular
8558 && h->forced_local))
8559 {
8560 /* If we have a non-hidden versioned sym, then it should
8561 have provided a definition for the undefined sym unless
8562 it is defined in a non-shared object and forced local.
8563 */
8564 abort ();
8565 }
8566
8567 version_index = iver.vs_vers & VERSYM_VERSION;
8568 if (version_index == 1 || version_index == 2)
8569 {
8570 /* This is the base or first version. We can use it. */
8571 free (extversym);
8572 free (isymbuf);
8573 return TRUE;
8574 }
8575 }
8576
8577 free (extversym);
8578 free (isymbuf);
8579 }
8580
8581 return FALSE;
8582 }
8583
8584 /* Add an external symbol to the symbol table. This is called from
8585 the hash table traversal routine. When generating a shared object,
8586 we go through the symbol table twice. The first time we output
8587 anything that might have been forced to local scope in a version
8588 script. The second time we output the symbols that are still
8589 global symbols. */
8590
8591 static bfd_boolean
8592 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8593 {
8594 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8595 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8596 struct elf_final_link_info *finfo = eoinfo->finfo;
8597 bfd_boolean strip;
8598 Elf_Internal_Sym sym;
8599 asection *input_sec;
8600 const struct elf_backend_data *bed;
8601 long indx;
8602 int ret;
8603
8604 if (h->root.type == bfd_link_hash_warning)
8605 {
8606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8607 if (h->root.type == bfd_link_hash_new)
8608 return TRUE;
8609 }
8610
8611 /* Decide whether to output this symbol in this pass. */
8612 if (eoinfo->localsyms)
8613 {
8614 if (!h->forced_local)
8615 return TRUE;
8616 }
8617 else
8618 {
8619 if (h->forced_local)
8620 return TRUE;
8621 }
8622
8623 bed = get_elf_backend_data (finfo->output_bfd);
8624
8625 if (h->root.type == bfd_link_hash_undefined)
8626 {
8627 /* If we have an undefined symbol reference here then it must have
8628 come from a shared library that is being linked in. (Undefined
8629 references in regular files have already been handled unless
8630 they are in unreferenced sections which are removed by garbage
8631 collection). */
8632 bfd_boolean ignore_undef = FALSE;
8633
8634 /* Some symbols may be special in that the fact that they're
8635 undefined can be safely ignored - let backend determine that. */
8636 if (bed->elf_backend_ignore_undef_symbol)
8637 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8638
8639 /* If we are reporting errors for this situation then do so now. */
8640 if (!ignore_undef
8641 && h->ref_dynamic
8642 && (!h->ref_regular || finfo->info->gc_sections)
8643 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8644 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8645 {
8646 if (! (finfo->info->callbacks->undefined_symbol
8647 (finfo->info, h->root.root.string,
8648 h->ref_regular ? NULL : h->root.u.undef.abfd,
8649 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8650 {
8651 bfd_set_error (bfd_error_bad_value);
8652 eoinfo->failed = TRUE;
8653 return FALSE;
8654 }
8655 }
8656 }
8657
8658 /* We should also warn if a forced local symbol is referenced from
8659 shared libraries. */
8660 if (!finfo->info->relocatable
8661 && finfo->info->executable
8662 && h->forced_local
8663 && h->ref_dynamic
8664 && h->def_regular
8665 && !h->dynamic_def
8666 && !h->dynamic_weak
8667 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8668 {
8669 bfd *def_bfd;
8670 const char *msg;
8671
8672 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8673 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8674 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8675 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8676 else
8677 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8678 def_bfd = finfo->output_bfd;
8679 if (h->root.u.def.section != bfd_abs_section_ptr)
8680 def_bfd = h->root.u.def.section->owner;
8681 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8682 h->root.root.string);
8683 bfd_set_error (bfd_error_bad_value);
8684 eoinfo->failed = TRUE;
8685 return FALSE;
8686 }
8687
8688 /* We don't want to output symbols that have never been mentioned by
8689 a regular file, or that we have been told to strip. However, if
8690 h->indx is set to -2, the symbol is used by a reloc and we must
8691 output it. */
8692 if (h->indx == -2)
8693 strip = FALSE;
8694 else if ((h->def_dynamic
8695 || h->ref_dynamic
8696 || h->root.type == bfd_link_hash_new)
8697 && !h->def_regular
8698 && !h->ref_regular)
8699 strip = TRUE;
8700 else if (finfo->info->strip == strip_all)
8701 strip = TRUE;
8702 else if (finfo->info->strip == strip_some
8703 && bfd_hash_lookup (finfo->info->keep_hash,
8704 h->root.root.string, FALSE, FALSE) == NULL)
8705 strip = TRUE;
8706 else if ((h->root.type == bfd_link_hash_defined
8707 || h->root.type == bfd_link_hash_defweak)
8708 && ((finfo->info->strip_discarded
8709 && elf_discarded_section (h->root.u.def.section))
8710 || (h->root.u.def.section->owner != NULL
8711 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8712 strip = TRUE;
8713 else if ((h->root.type == bfd_link_hash_undefined
8714 || h->root.type == bfd_link_hash_undefweak)
8715 && h->root.u.undef.abfd != NULL
8716 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8717 strip = TRUE;
8718 else
8719 strip = FALSE;
8720
8721 /* If we're stripping it, and it's not a dynamic symbol, there's
8722 nothing else to do unless it is a forced local symbol or a
8723 STT_GNU_IFUNC symbol. */
8724 if (strip
8725 && h->dynindx == -1
8726 && h->type != STT_GNU_IFUNC
8727 && !h->forced_local)
8728 return TRUE;
8729
8730 sym.st_value = 0;
8731 sym.st_size = h->size;
8732 sym.st_other = h->other;
8733 if (h->forced_local)
8734 {
8735 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8736 /* Turn off visibility on local symbol. */
8737 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8738 }
8739 else if (h->unique_global)
8740 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8741 else if (h->root.type == bfd_link_hash_undefweak
8742 || h->root.type == bfd_link_hash_defweak)
8743 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8744 else
8745 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8746 sym.st_target_internal = h->target_internal;
8747
8748 switch (h->root.type)
8749 {
8750 default:
8751 case bfd_link_hash_new:
8752 case bfd_link_hash_warning:
8753 abort ();
8754 return FALSE;
8755
8756 case bfd_link_hash_undefined:
8757 case bfd_link_hash_undefweak:
8758 input_sec = bfd_und_section_ptr;
8759 sym.st_shndx = SHN_UNDEF;
8760 break;
8761
8762 case bfd_link_hash_defined:
8763 case bfd_link_hash_defweak:
8764 {
8765 input_sec = h->root.u.def.section;
8766 if (input_sec->output_section != NULL)
8767 {
8768 sym.st_shndx =
8769 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8770 input_sec->output_section);
8771 if (sym.st_shndx == SHN_BAD)
8772 {
8773 (*_bfd_error_handler)
8774 (_("%B: could not find output section %A for input section %A"),
8775 finfo->output_bfd, input_sec->output_section, input_sec);
8776 bfd_set_error (bfd_error_nonrepresentable_section);
8777 eoinfo->failed = TRUE;
8778 return FALSE;
8779 }
8780
8781 /* ELF symbols in relocatable files are section relative,
8782 but in nonrelocatable files they are virtual
8783 addresses. */
8784 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8785 if (! finfo->info->relocatable)
8786 {
8787 sym.st_value += input_sec->output_section->vma;
8788 if (h->type == STT_TLS)
8789 {
8790 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8791 if (tls_sec != NULL)
8792 sym.st_value -= tls_sec->vma;
8793 else
8794 {
8795 /* The TLS section may have been garbage collected. */
8796 BFD_ASSERT (finfo->info->gc_sections
8797 && !input_sec->gc_mark);
8798 }
8799 }
8800 }
8801 }
8802 else
8803 {
8804 BFD_ASSERT (input_sec->owner == NULL
8805 || (input_sec->owner->flags & DYNAMIC) != 0);
8806 sym.st_shndx = SHN_UNDEF;
8807 input_sec = bfd_und_section_ptr;
8808 }
8809 }
8810 break;
8811
8812 case bfd_link_hash_common:
8813 input_sec = h->root.u.c.p->section;
8814 sym.st_shndx = bed->common_section_index (input_sec);
8815 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8816 break;
8817
8818 case bfd_link_hash_indirect:
8819 /* These symbols are created by symbol versioning. They point
8820 to the decorated version of the name. For example, if the
8821 symbol foo@@GNU_1.2 is the default, which should be used when
8822 foo is used with no version, then we add an indirect symbol
8823 foo which points to foo@@GNU_1.2. We ignore these symbols,
8824 since the indirected symbol is already in the hash table. */
8825 return TRUE;
8826 }
8827
8828 /* Give the processor backend a chance to tweak the symbol value,
8829 and also to finish up anything that needs to be done for this
8830 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8831 forced local syms when non-shared is due to a historical quirk.
8832 STT_GNU_IFUNC symbol must go through PLT. */
8833 if ((h->type == STT_GNU_IFUNC
8834 && h->def_regular
8835 && !finfo->info->relocatable)
8836 || ((h->dynindx != -1
8837 || h->forced_local)
8838 && ((finfo->info->shared
8839 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8840 || h->root.type != bfd_link_hash_undefweak))
8841 || !h->forced_local)
8842 && elf_hash_table (finfo->info)->dynamic_sections_created))
8843 {
8844 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8845 (finfo->output_bfd, finfo->info, h, &sym)))
8846 {
8847 eoinfo->failed = TRUE;
8848 return FALSE;
8849 }
8850 }
8851
8852 /* If we are marking the symbol as undefined, and there are no
8853 non-weak references to this symbol from a regular object, then
8854 mark the symbol as weak undefined; if there are non-weak
8855 references, mark the symbol as strong. We can't do this earlier,
8856 because it might not be marked as undefined until the
8857 finish_dynamic_symbol routine gets through with it. */
8858 if (sym.st_shndx == SHN_UNDEF
8859 && h->ref_regular
8860 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8861 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8862 {
8863 int bindtype;
8864 unsigned int type = ELF_ST_TYPE (sym.st_info);
8865
8866 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8867 if (type == STT_GNU_IFUNC)
8868 type = STT_FUNC;
8869
8870 if (h->ref_regular_nonweak)
8871 bindtype = STB_GLOBAL;
8872 else
8873 bindtype = STB_WEAK;
8874 sym.st_info = ELF_ST_INFO (bindtype, type);
8875 }
8876
8877 /* If this is a symbol defined in a dynamic library, don't use the
8878 symbol size from the dynamic library. Relinking an executable
8879 against a new library may introduce gratuitous changes in the
8880 executable's symbols if we keep the size. */
8881 if (sym.st_shndx == SHN_UNDEF
8882 && !h->def_regular
8883 && h->def_dynamic)
8884 sym.st_size = 0;
8885
8886 /* If a non-weak symbol with non-default visibility is not defined
8887 locally, it is a fatal error. */
8888 if (! finfo->info->relocatable
8889 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8890 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8891 && h->root.type == bfd_link_hash_undefined
8892 && !h->def_regular)
8893 {
8894 const char *msg;
8895
8896 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8897 msg = _("%B: protected symbol `%s' isn't defined");
8898 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8899 msg = _("%B: internal symbol `%s' isn't defined");
8900 else
8901 msg = _("%B: hidden symbol `%s' isn't defined");
8902 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8903 bfd_set_error (bfd_error_bad_value);
8904 eoinfo->failed = TRUE;
8905 return FALSE;
8906 }
8907
8908 /* If this symbol should be put in the .dynsym section, then put it
8909 there now. We already know the symbol index. We also fill in
8910 the entry in the .hash section. */
8911 if (finfo->dynsym_sec != NULL
8912 && h->dynindx != -1
8913 && elf_hash_table (finfo->info)->dynamic_sections_created)
8914 {
8915 bfd_byte *esym;
8916
8917 sym.st_name = h->dynstr_index;
8918 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8919 if (! check_dynsym (finfo->output_bfd, &sym))
8920 {
8921 eoinfo->failed = TRUE;
8922 return FALSE;
8923 }
8924 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8925
8926 if (finfo->hash_sec != NULL)
8927 {
8928 size_t hash_entry_size;
8929 bfd_byte *bucketpos;
8930 bfd_vma chain;
8931 size_t bucketcount;
8932 size_t bucket;
8933
8934 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8935 bucket = h->u.elf_hash_value % bucketcount;
8936
8937 hash_entry_size
8938 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8939 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8940 + (bucket + 2) * hash_entry_size);
8941 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8942 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8943 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8944 ((bfd_byte *) finfo->hash_sec->contents
8945 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8946 }
8947
8948 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8949 {
8950 Elf_Internal_Versym iversym;
8951 Elf_External_Versym *eversym;
8952
8953 if (!h->def_regular)
8954 {
8955 if (h->verinfo.verdef == NULL)
8956 iversym.vs_vers = 0;
8957 else
8958 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8959 }
8960 else
8961 {
8962 if (h->verinfo.vertree == NULL)
8963 iversym.vs_vers = 1;
8964 else
8965 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8966 if (finfo->info->create_default_symver)
8967 iversym.vs_vers++;
8968 }
8969
8970 if (h->hidden)
8971 iversym.vs_vers |= VERSYM_HIDDEN;
8972
8973 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8974 eversym += h->dynindx;
8975 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8976 }
8977 }
8978
8979 /* If we're stripping it, then it was just a dynamic symbol, and
8980 there's nothing else to do. */
8981 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8982 return TRUE;
8983
8984 indx = bfd_get_symcount (finfo->output_bfd);
8985 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8986 if (ret == 0)
8987 {
8988 eoinfo->failed = TRUE;
8989 return FALSE;
8990 }
8991 else if (ret == 1)
8992 h->indx = indx;
8993 else if (h->indx == -2)
8994 abort();
8995
8996 return TRUE;
8997 }
8998
8999 /* Return TRUE if special handling is done for relocs in SEC against
9000 symbols defined in discarded sections. */
9001
9002 static bfd_boolean
9003 elf_section_ignore_discarded_relocs (asection *sec)
9004 {
9005 const struct elf_backend_data *bed;
9006
9007 switch (sec->sec_info_type)
9008 {
9009 case ELF_INFO_TYPE_STABS:
9010 case ELF_INFO_TYPE_EH_FRAME:
9011 return TRUE;
9012 default:
9013 break;
9014 }
9015
9016 bed = get_elf_backend_data (sec->owner);
9017 if (bed->elf_backend_ignore_discarded_relocs != NULL
9018 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9019 return TRUE;
9020
9021 return FALSE;
9022 }
9023
9024 /* Return a mask saying how ld should treat relocations in SEC against
9025 symbols defined in discarded sections. If this function returns
9026 COMPLAIN set, ld will issue a warning message. If this function
9027 returns PRETEND set, and the discarded section was link-once and the
9028 same size as the kept link-once section, ld will pretend that the
9029 symbol was actually defined in the kept section. Otherwise ld will
9030 zero the reloc (at least that is the intent, but some cooperation by
9031 the target dependent code is needed, particularly for REL targets). */
9032
9033 unsigned int
9034 _bfd_elf_default_action_discarded (asection *sec)
9035 {
9036 if (sec->flags & SEC_DEBUGGING)
9037 return PRETEND;
9038
9039 if (strcmp (".eh_frame", sec->name) == 0)
9040 return 0;
9041
9042 if (strcmp (".gcc_except_table", sec->name) == 0)
9043 return 0;
9044
9045 return COMPLAIN | PRETEND;
9046 }
9047
9048 /* Find a match between a section and a member of a section group. */
9049
9050 static asection *
9051 match_group_member (asection *sec, asection *group,
9052 struct bfd_link_info *info)
9053 {
9054 asection *first = elf_next_in_group (group);
9055 asection *s = first;
9056
9057 while (s != NULL)
9058 {
9059 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9060 return s;
9061
9062 s = elf_next_in_group (s);
9063 if (s == first)
9064 break;
9065 }
9066
9067 return NULL;
9068 }
9069
9070 /* Check if the kept section of a discarded section SEC can be used
9071 to replace it. Return the replacement if it is OK. Otherwise return
9072 NULL. */
9073
9074 asection *
9075 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9076 {
9077 asection *kept;
9078
9079 kept = sec->kept_section;
9080 if (kept != NULL)
9081 {
9082 if ((kept->flags & SEC_GROUP) != 0)
9083 kept = match_group_member (sec, kept, info);
9084 if (kept != NULL
9085 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9086 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9087 kept = NULL;
9088 sec->kept_section = kept;
9089 }
9090 return kept;
9091 }
9092
9093 /* Link an input file into the linker output file. This function
9094 handles all the sections and relocations of the input file at once.
9095 This is so that we only have to read the local symbols once, and
9096 don't have to keep them in memory. */
9097
9098 static bfd_boolean
9099 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9100 {
9101 int (*relocate_section)
9102 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9103 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9104 bfd *output_bfd;
9105 Elf_Internal_Shdr *symtab_hdr;
9106 size_t locsymcount;
9107 size_t extsymoff;
9108 Elf_Internal_Sym *isymbuf;
9109 Elf_Internal_Sym *isym;
9110 Elf_Internal_Sym *isymend;
9111 long *pindex;
9112 asection **ppsection;
9113 asection *o;
9114 const struct elf_backend_data *bed;
9115 struct elf_link_hash_entry **sym_hashes;
9116 bfd_size_type address_size;
9117 bfd_vma r_type_mask;
9118 int r_sym_shift;
9119
9120 output_bfd = finfo->output_bfd;
9121 bed = get_elf_backend_data (output_bfd);
9122 relocate_section = bed->elf_backend_relocate_section;
9123
9124 /* If this is a dynamic object, we don't want to do anything here:
9125 we don't want the local symbols, and we don't want the section
9126 contents. */
9127 if ((input_bfd->flags & DYNAMIC) != 0)
9128 return TRUE;
9129
9130 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9131 if (elf_bad_symtab (input_bfd))
9132 {
9133 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9134 extsymoff = 0;
9135 }
9136 else
9137 {
9138 locsymcount = symtab_hdr->sh_info;
9139 extsymoff = symtab_hdr->sh_info;
9140 }
9141
9142 /* Read the local symbols. */
9143 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9144 if (isymbuf == NULL && locsymcount != 0)
9145 {
9146 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9147 finfo->internal_syms,
9148 finfo->external_syms,
9149 finfo->locsym_shndx);
9150 if (isymbuf == NULL)
9151 return FALSE;
9152 }
9153
9154 /* Find local symbol sections and adjust values of symbols in
9155 SEC_MERGE sections. Write out those local symbols we know are
9156 going into the output file. */
9157 isymend = isymbuf + locsymcount;
9158 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9159 isym < isymend;
9160 isym++, pindex++, ppsection++)
9161 {
9162 asection *isec;
9163 const char *name;
9164 Elf_Internal_Sym osym;
9165 long indx;
9166 int ret;
9167
9168 *pindex = -1;
9169
9170 if (elf_bad_symtab (input_bfd))
9171 {
9172 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9173 {
9174 *ppsection = NULL;
9175 continue;
9176 }
9177 }
9178
9179 if (isym->st_shndx == SHN_UNDEF)
9180 isec = bfd_und_section_ptr;
9181 else if (isym->st_shndx == SHN_ABS)
9182 isec = bfd_abs_section_ptr;
9183 else if (isym->st_shndx == SHN_COMMON)
9184 isec = bfd_com_section_ptr;
9185 else
9186 {
9187 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9188 if (isec == NULL)
9189 {
9190 /* Don't attempt to output symbols with st_shnx in the
9191 reserved range other than SHN_ABS and SHN_COMMON. */
9192 *ppsection = NULL;
9193 continue;
9194 }
9195 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9196 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9197 isym->st_value =
9198 _bfd_merged_section_offset (output_bfd, &isec,
9199 elf_section_data (isec)->sec_info,
9200 isym->st_value);
9201 }
9202
9203 *ppsection = isec;
9204
9205 /* Don't output the first, undefined, symbol. */
9206 if (ppsection == finfo->sections)
9207 continue;
9208
9209 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9210 {
9211 /* We never output section symbols. Instead, we use the
9212 section symbol of the corresponding section in the output
9213 file. */
9214 continue;
9215 }
9216
9217 /* If we are stripping all symbols, we don't want to output this
9218 one. */
9219 if (finfo->info->strip == strip_all)
9220 continue;
9221
9222 /* If we are discarding all local symbols, we don't want to
9223 output this one. If we are generating a relocatable output
9224 file, then some of the local symbols may be required by
9225 relocs; we output them below as we discover that they are
9226 needed. */
9227 if (finfo->info->discard == discard_all)
9228 continue;
9229
9230 /* If this symbol is defined in a section which we are
9231 discarding, we don't need to keep it. */
9232 if (isym->st_shndx != SHN_UNDEF
9233 && isym->st_shndx < SHN_LORESERVE
9234 && bfd_section_removed_from_list (output_bfd,
9235 isec->output_section))
9236 continue;
9237
9238 /* Get the name of the symbol. */
9239 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9240 isym->st_name);
9241 if (name == NULL)
9242 return FALSE;
9243
9244 /* See if we are discarding symbols with this name. */
9245 if ((finfo->info->strip == strip_some
9246 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9247 == NULL))
9248 || (((finfo->info->discard == discard_sec_merge
9249 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9250 || finfo->info->discard == discard_l)
9251 && bfd_is_local_label_name (input_bfd, name)))
9252 continue;
9253
9254 osym = *isym;
9255
9256 /* Adjust the section index for the output file. */
9257 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9258 isec->output_section);
9259 if (osym.st_shndx == SHN_BAD)
9260 return FALSE;
9261
9262 /* ELF symbols in relocatable files are section relative, but
9263 in executable files they are virtual addresses. Note that
9264 this code assumes that all ELF sections have an associated
9265 BFD section with a reasonable value for output_offset; below
9266 we assume that they also have a reasonable value for
9267 output_section. Any special sections must be set up to meet
9268 these requirements. */
9269 osym.st_value += isec->output_offset;
9270 if (! finfo->info->relocatable)
9271 {
9272 osym.st_value += isec->output_section->vma;
9273 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9274 {
9275 /* STT_TLS symbols are relative to PT_TLS segment base. */
9276 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9277 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9278 }
9279 }
9280
9281 indx = bfd_get_symcount (output_bfd);
9282 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9283 if (ret == 0)
9284 return FALSE;
9285 else if (ret == 1)
9286 *pindex = indx;
9287 }
9288
9289 if (bed->s->arch_size == 32)
9290 {
9291 r_type_mask = 0xff;
9292 r_sym_shift = 8;
9293 address_size = 4;
9294 }
9295 else
9296 {
9297 r_type_mask = 0xffffffff;
9298 r_sym_shift = 32;
9299 address_size = 8;
9300 }
9301
9302 /* Relocate the contents of each section. */
9303 sym_hashes = elf_sym_hashes (input_bfd);
9304 for (o = input_bfd->sections; o != NULL; o = o->next)
9305 {
9306 bfd_byte *contents;
9307
9308 if (! o->linker_mark)
9309 {
9310 /* This section was omitted from the link. */
9311 continue;
9312 }
9313
9314 if (finfo->info->relocatable
9315 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9316 {
9317 /* Deal with the group signature symbol. */
9318 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9319 unsigned long symndx = sec_data->this_hdr.sh_info;
9320 asection *osec = o->output_section;
9321
9322 if (symndx >= locsymcount
9323 || (elf_bad_symtab (input_bfd)
9324 && finfo->sections[symndx] == NULL))
9325 {
9326 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9327 while (h->root.type == bfd_link_hash_indirect
9328 || h->root.type == bfd_link_hash_warning)
9329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9330 /* Arrange for symbol to be output. */
9331 h->indx = -2;
9332 elf_section_data (osec)->this_hdr.sh_info = -2;
9333 }
9334 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9335 {
9336 /* We'll use the output section target_index. */
9337 asection *sec = finfo->sections[symndx]->output_section;
9338 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9339 }
9340 else
9341 {
9342 if (finfo->indices[symndx] == -1)
9343 {
9344 /* Otherwise output the local symbol now. */
9345 Elf_Internal_Sym sym = isymbuf[symndx];
9346 asection *sec = finfo->sections[symndx]->output_section;
9347 const char *name;
9348 long indx;
9349 int ret;
9350
9351 name = bfd_elf_string_from_elf_section (input_bfd,
9352 symtab_hdr->sh_link,
9353 sym.st_name);
9354 if (name == NULL)
9355 return FALSE;
9356
9357 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9358 sec);
9359 if (sym.st_shndx == SHN_BAD)
9360 return FALSE;
9361
9362 sym.st_value += o->output_offset;
9363
9364 indx = bfd_get_symcount (output_bfd);
9365 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9366 if (ret == 0)
9367 return FALSE;
9368 else if (ret == 1)
9369 finfo->indices[symndx] = indx;
9370 else
9371 abort ();
9372 }
9373 elf_section_data (osec)->this_hdr.sh_info
9374 = finfo->indices[symndx];
9375 }
9376 }
9377
9378 if ((o->flags & SEC_HAS_CONTENTS) == 0
9379 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9380 continue;
9381
9382 if ((o->flags & SEC_LINKER_CREATED) != 0)
9383 {
9384 /* Section was created by _bfd_elf_link_create_dynamic_sections
9385 or somesuch. */
9386 continue;
9387 }
9388
9389 /* Get the contents of the section. They have been cached by a
9390 relaxation routine. Note that o is a section in an input
9391 file, so the contents field will not have been set by any of
9392 the routines which work on output files. */
9393 if (elf_section_data (o)->this_hdr.contents != NULL)
9394 contents = elf_section_data (o)->this_hdr.contents;
9395 else
9396 {
9397 contents = finfo->contents;
9398 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9399 return FALSE;
9400 }
9401
9402 if ((o->flags & SEC_RELOC) != 0)
9403 {
9404 Elf_Internal_Rela *internal_relocs;
9405 Elf_Internal_Rela *rel, *relend;
9406 int action_discarded;
9407 int ret;
9408
9409 /* Get the swapped relocs. */
9410 internal_relocs
9411 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9412 finfo->internal_relocs, FALSE);
9413 if (internal_relocs == NULL
9414 && o->reloc_count > 0)
9415 return FALSE;
9416
9417 /* We need to reverse-copy input .ctors/.dtors sections if
9418 they are placed in .init_array/.finit_array for output. */
9419 if (o->size > address_size
9420 && ((strncmp (o->name, ".ctors", 6) == 0
9421 && strcmp (o->output_section->name,
9422 ".init_array") == 0)
9423 || (strncmp (o->name, ".dtors", 6) == 0
9424 && strcmp (o->output_section->name,
9425 ".fini_array") == 0))
9426 && (o->name[6] == 0 || o->name[6] == '.'))
9427 {
9428 if (o->size != o->reloc_count * address_size)
9429 {
9430 (*_bfd_error_handler)
9431 (_("error: %B: size of section %A is not "
9432 "multiple of address size"),
9433 input_bfd, o);
9434 bfd_set_error (bfd_error_on_input);
9435 return FALSE;
9436 }
9437 o->flags |= SEC_ELF_REVERSE_COPY;
9438 }
9439
9440 action_discarded = -1;
9441 if (!elf_section_ignore_discarded_relocs (o))
9442 action_discarded = (*bed->action_discarded) (o);
9443
9444 /* Run through the relocs evaluating complex reloc symbols and
9445 looking for relocs against symbols from discarded sections
9446 or section symbols from removed link-once sections.
9447 Complain about relocs against discarded sections. Zero
9448 relocs against removed link-once sections. */
9449
9450 rel = internal_relocs;
9451 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9452 for ( ; rel < relend; rel++)
9453 {
9454 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9455 unsigned int s_type;
9456 asection **ps, *sec;
9457 struct elf_link_hash_entry *h = NULL;
9458 const char *sym_name;
9459
9460 if (r_symndx == STN_UNDEF)
9461 continue;
9462
9463 if (r_symndx >= locsymcount
9464 || (elf_bad_symtab (input_bfd)
9465 && finfo->sections[r_symndx] == NULL))
9466 {
9467 h = sym_hashes[r_symndx - extsymoff];
9468
9469 /* Badly formatted input files can contain relocs that
9470 reference non-existant symbols. Check here so that
9471 we do not seg fault. */
9472 if (h == NULL)
9473 {
9474 char buffer [32];
9475
9476 sprintf_vma (buffer, rel->r_info);
9477 (*_bfd_error_handler)
9478 (_("error: %B contains a reloc (0x%s) for section %A "
9479 "that references a non-existent global symbol"),
9480 input_bfd, o, buffer);
9481 bfd_set_error (bfd_error_bad_value);
9482 return FALSE;
9483 }
9484
9485 while (h->root.type == bfd_link_hash_indirect
9486 || h->root.type == bfd_link_hash_warning)
9487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9488
9489 s_type = h->type;
9490
9491 ps = NULL;
9492 if (h->root.type == bfd_link_hash_defined
9493 || h->root.type == bfd_link_hash_defweak)
9494 ps = &h->root.u.def.section;
9495
9496 sym_name = h->root.root.string;
9497 }
9498 else
9499 {
9500 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9501
9502 s_type = ELF_ST_TYPE (sym->st_info);
9503 ps = &finfo->sections[r_symndx];
9504 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9505 sym, *ps);
9506 }
9507
9508 if ((s_type == STT_RELC || s_type == STT_SRELC)
9509 && !finfo->info->relocatable)
9510 {
9511 bfd_vma val;
9512 bfd_vma dot = (rel->r_offset
9513 + o->output_offset + o->output_section->vma);
9514 #ifdef DEBUG
9515 printf ("Encountered a complex symbol!");
9516 printf (" (input_bfd %s, section %s, reloc %ld\n",
9517 input_bfd->filename, o->name,
9518 (long) (rel - internal_relocs));
9519 printf (" symbol: idx %8.8lx, name %s\n",
9520 r_symndx, sym_name);
9521 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9522 (unsigned long) rel->r_info,
9523 (unsigned long) rel->r_offset);
9524 #endif
9525 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9526 isymbuf, locsymcount, s_type == STT_SRELC))
9527 return FALSE;
9528
9529 /* Symbol evaluated OK. Update to absolute value. */
9530 set_symbol_value (input_bfd, isymbuf, locsymcount,
9531 r_symndx, val);
9532 continue;
9533 }
9534
9535 if (action_discarded != -1 && ps != NULL)
9536 {
9537 /* Complain if the definition comes from a
9538 discarded section. */
9539 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9540 {
9541 BFD_ASSERT (r_symndx != STN_UNDEF);
9542 if (action_discarded & COMPLAIN)
9543 (*finfo->info->callbacks->einfo)
9544 (_("%X`%s' referenced in section `%A' of %B: "
9545 "defined in discarded section `%A' of %B\n"),
9546 sym_name, o, input_bfd, sec, sec->owner);
9547
9548 /* Try to do the best we can to support buggy old
9549 versions of gcc. Pretend that the symbol is
9550 really defined in the kept linkonce section.
9551 FIXME: This is quite broken. Modifying the
9552 symbol here means we will be changing all later
9553 uses of the symbol, not just in this section. */
9554 if (action_discarded & PRETEND)
9555 {
9556 asection *kept;
9557
9558 kept = _bfd_elf_check_kept_section (sec,
9559 finfo->info);
9560 if (kept != NULL)
9561 {
9562 *ps = kept;
9563 continue;
9564 }
9565 }
9566 }
9567 }
9568 }
9569
9570 /* Relocate the section by invoking a back end routine.
9571
9572 The back end routine is responsible for adjusting the
9573 section contents as necessary, and (if using Rela relocs
9574 and generating a relocatable output file) adjusting the
9575 reloc addend as necessary.
9576
9577 The back end routine does not have to worry about setting
9578 the reloc address or the reloc symbol index.
9579
9580 The back end routine is given a pointer to the swapped in
9581 internal symbols, and can access the hash table entries
9582 for the external symbols via elf_sym_hashes (input_bfd).
9583
9584 When generating relocatable output, the back end routine
9585 must handle STB_LOCAL/STT_SECTION symbols specially. The
9586 output symbol is going to be a section symbol
9587 corresponding to the output section, which will require
9588 the addend to be adjusted. */
9589
9590 ret = (*relocate_section) (output_bfd, finfo->info,
9591 input_bfd, o, contents,
9592 internal_relocs,
9593 isymbuf,
9594 finfo->sections);
9595 if (!ret)
9596 return FALSE;
9597
9598 if (ret == 2
9599 || finfo->info->relocatable
9600 || finfo->info->emitrelocations)
9601 {
9602 Elf_Internal_Rela *irela;
9603 Elf_Internal_Rela *irelaend, *irelamid;
9604 bfd_vma last_offset;
9605 struct elf_link_hash_entry **rel_hash;
9606 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9607 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9608 unsigned int next_erel;
9609 bfd_boolean rela_normal;
9610 struct bfd_elf_section_data *esdi, *esdo;
9611
9612 esdi = elf_section_data (o);
9613 esdo = elf_section_data (o->output_section);
9614 rela_normal = FALSE;
9615
9616 /* Adjust the reloc addresses and symbol indices. */
9617
9618 irela = internal_relocs;
9619 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9620 rel_hash = esdo->rel.hashes + esdo->rel.count;
9621 /* We start processing the REL relocs, if any. When we reach
9622 IRELAMID in the loop, we switch to the RELA relocs. */
9623 irelamid = irela;
9624 if (esdi->rel.hdr != NULL)
9625 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9626 * bed->s->int_rels_per_ext_rel);
9627 rel_hash_list = rel_hash;
9628 rela_hash_list = NULL;
9629 last_offset = o->output_offset;
9630 if (!finfo->info->relocatable)
9631 last_offset += o->output_section->vma;
9632 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9633 {
9634 unsigned long r_symndx;
9635 asection *sec;
9636 Elf_Internal_Sym sym;
9637
9638 if (next_erel == bed->s->int_rels_per_ext_rel)
9639 {
9640 rel_hash++;
9641 next_erel = 0;
9642 }
9643
9644 if (irela == irelamid)
9645 {
9646 rel_hash = esdo->rela.hashes + esdo->rela.count;
9647 rela_hash_list = rel_hash;
9648 rela_normal = bed->rela_normal;
9649 }
9650
9651 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9652 finfo->info, o,
9653 irela->r_offset);
9654 if (irela->r_offset >= (bfd_vma) -2)
9655 {
9656 /* This is a reloc for a deleted entry or somesuch.
9657 Turn it into an R_*_NONE reloc, at the same
9658 offset as the last reloc. elf_eh_frame.c and
9659 bfd_elf_discard_info rely on reloc offsets
9660 being ordered. */
9661 irela->r_offset = last_offset;
9662 irela->r_info = 0;
9663 irela->r_addend = 0;
9664 continue;
9665 }
9666
9667 irela->r_offset += o->output_offset;
9668
9669 /* Relocs in an executable have to be virtual addresses. */
9670 if (!finfo->info->relocatable)
9671 irela->r_offset += o->output_section->vma;
9672
9673 last_offset = irela->r_offset;
9674
9675 r_symndx = irela->r_info >> r_sym_shift;
9676 if (r_symndx == STN_UNDEF)
9677 continue;
9678
9679 if (r_symndx >= locsymcount
9680 || (elf_bad_symtab (input_bfd)
9681 && finfo->sections[r_symndx] == NULL))
9682 {
9683 struct elf_link_hash_entry *rh;
9684 unsigned long indx;
9685
9686 /* This is a reloc against a global symbol. We
9687 have not yet output all the local symbols, so
9688 we do not know the symbol index of any global
9689 symbol. We set the rel_hash entry for this
9690 reloc to point to the global hash table entry
9691 for this symbol. The symbol index is then
9692 set at the end of bfd_elf_final_link. */
9693 indx = r_symndx - extsymoff;
9694 rh = elf_sym_hashes (input_bfd)[indx];
9695 while (rh->root.type == bfd_link_hash_indirect
9696 || rh->root.type == bfd_link_hash_warning)
9697 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9698
9699 /* Setting the index to -2 tells
9700 elf_link_output_extsym that this symbol is
9701 used by a reloc. */
9702 BFD_ASSERT (rh->indx < 0);
9703 rh->indx = -2;
9704
9705 *rel_hash = rh;
9706
9707 continue;
9708 }
9709
9710 /* This is a reloc against a local symbol. */
9711
9712 *rel_hash = NULL;
9713 sym = isymbuf[r_symndx];
9714 sec = finfo->sections[r_symndx];
9715 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9716 {
9717 /* I suppose the backend ought to fill in the
9718 section of any STT_SECTION symbol against a
9719 processor specific section. */
9720 r_symndx = STN_UNDEF;
9721 if (bfd_is_abs_section (sec))
9722 ;
9723 else if (sec == NULL || sec->owner == NULL)
9724 {
9725 bfd_set_error (bfd_error_bad_value);
9726 return FALSE;
9727 }
9728 else
9729 {
9730 asection *osec = sec->output_section;
9731
9732 /* If we have discarded a section, the output
9733 section will be the absolute section. In
9734 case of discarded SEC_MERGE sections, use
9735 the kept section. relocate_section should
9736 have already handled discarded linkonce
9737 sections. */
9738 if (bfd_is_abs_section (osec)
9739 && sec->kept_section != NULL
9740 && sec->kept_section->output_section != NULL)
9741 {
9742 osec = sec->kept_section->output_section;
9743 irela->r_addend -= osec->vma;
9744 }
9745
9746 if (!bfd_is_abs_section (osec))
9747 {
9748 r_symndx = osec->target_index;
9749 if (r_symndx == STN_UNDEF)
9750 {
9751 irela->r_addend += osec->vma;
9752 osec = _bfd_nearby_section (output_bfd, osec,
9753 osec->vma);
9754 irela->r_addend -= osec->vma;
9755 r_symndx = osec->target_index;
9756 }
9757 }
9758 }
9759
9760 /* Adjust the addend according to where the
9761 section winds up in the output section. */
9762 if (rela_normal)
9763 irela->r_addend += sec->output_offset;
9764 }
9765 else
9766 {
9767 if (finfo->indices[r_symndx] == -1)
9768 {
9769 unsigned long shlink;
9770 const char *name;
9771 asection *osec;
9772 long indx;
9773
9774 if (finfo->info->strip == strip_all)
9775 {
9776 /* You can't do ld -r -s. */
9777 bfd_set_error (bfd_error_invalid_operation);
9778 return FALSE;
9779 }
9780
9781 /* This symbol was skipped earlier, but
9782 since it is needed by a reloc, we
9783 must output it now. */
9784 shlink = symtab_hdr->sh_link;
9785 name = (bfd_elf_string_from_elf_section
9786 (input_bfd, shlink, sym.st_name));
9787 if (name == NULL)
9788 return FALSE;
9789
9790 osec = sec->output_section;
9791 sym.st_shndx =
9792 _bfd_elf_section_from_bfd_section (output_bfd,
9793 osec);
9794 if (sym.st_shndx == SHN_BAD)
9795 return FALSE;
9796
9797 sym.st_value += sec->output_offset;
9798 if (! finfo->info->relocatable)
9799 {
9800 sym.st_value += osec->vma;
9801 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9802 {
9803 /* STT_TLS symbols are relative to PT_TLS
9804 segment base. */
9805 BFD_ASSERT (elf_hash_table (finfo->info)
9806 ->tls_sec != NULL);
9807 sym.st_value -= (elf_hash_table (finfo->info)
9808 ->tls_sec->vma);
9809 }
9810 }
9811
9812 indx = bfd_get_symcount (output_bfd);
9813 ret = elf_link_output_sym (finfo, name, &sym, sec,
9814 NULL);
9815 if (ret == 0)
9816 return FALSE;
9817 else if (ret == 1)
9818 finfo->indices[r_symndx] = indx;
9819 else
9820 abort ();
9821 }
9822
9823 r_symndx = finfo->indices[r_symndx];
9824 }
9825
9826 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9827 | (irela->r_info & r_type_mask));
9828 }
9829
9830 /* Swap out the relocs. */
9831 input_rel_hdr = esdi->rel.hdr;
9832 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9833 {
9834 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9835 input_rel_hdr,
9836 internal_relocs,
9837 rel_hash_list))
9838 return FALSE;
9839 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9840 * bed->s->int_rels_per_ext_rel);
9841 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9842 }
9843
9844 input_rela_hdr = esdi->rela.hdr;
9845 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9846 {
9847 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9848 input_rela_hdr,
9849 internal_relocs,
9850 rela_hash_list))
9851 return FALSE;
9852 }
9853 }
9854 }
9855
9856 /* Write out the modified section contents. */
9857 if (bed->elf_backend_write_section
9858 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9859 contents))
9860 {
9861 /* Section written out. */
9862 }
9863 else switch (o->sec_info_type)
9864 {
9865 case ELF_INFO_TYPE_STABS:
9866 if (! (_bfd_write_section_stabs
9867 (output_bfd,
9868 &elf_hash_table (finfo->info)->stab_info,
9869 o, &elf_section_data (o)->sec_info, contents)))
9870 return FALSE;
9871 break;
9872 case ELF_INFO_TYPE_MERGE:
9873 if (! _bfd_write_merged_section (output_bfd, o,
9874 elf_section_data (o)->sec_info))
9875 return FALSE;
9876 break;
9877 case ELF_INFO_TYPE_EH_FRAME:
9878 {
9879 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9880 o, contents))
9881 return FALSE;
9882 }
9883 break;
9884 default:
9885 {
9886 /* FIXME: octets_per_byte. */
9887 if (! (o->flags & SEC_EXCLUDE))
9888 {
9889 file_ptr offset = (file_ptr) o->output_offset;
9890 bfd_size_type todo = o->size;
9891 if ((o->flags & SEC_ELF_REVERSE_COPY))
9892 {
9893 /* Reverse-copy input section to output. */
9894 do
9895 {
9896 todo -= address_size;
9897 if (! bfd_set_section_contents (output_bfd,
9898 o->output_section,
9899 contents + todo,
9900 offset,
9901 address_size))
9902 return FALSE;
9903 if (todo == 0)
9904 break;
9905 offset += address_size;
9906 }
9907 while (1);
9908 }
9909 else if (! bfd_set_section_contents (output_bfd,
9910 o->output_section,
9911 contents,
9912 offset, todo))
9913 return FALSE;
9914 }
9915 }
9916 break;
9917 }
9918 }
9919
9920 return TRUE;
9921 }
9922
9923 /* Generate a reloc when linking an ELF file. This is a reloc
9924 requested by the linker, and does not come from any input file. This
9925 is used to build constructor and destructor tables when linking
9926 with -Ur. */
9927
9928 static bfd_boolean
9929 elf_reloc_link_order (bfd *output_bfd,
9930 struct bfd_link_info *info,
9931 asection *output_section,
9932 struct bfd_link_order *link_order)
9933 {
9934 reloc_howto_type *howto;
9935 long indx;
9936 bfd_vma offset;
9937 bfd_vma addend;
9938 struct bfd_elf_section_reloc_data *reldata;
9939 struct elf_link_hash_entry **rel_hash_ptr;
9940 Elf_Internal_Shdr *rel_hdr;
9941 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9942 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9943 bfd_byte *erel;
9944 unsigned int i;
9945 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9946
9947 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9948 if (howto == NULL)
9949 {
9950 bfd_set_error (bfd_error_bad_value);
9951 return FALSE;
9952 }
9953
9954 addend = link_order->u.reloc.p->addend;
9955
9956 if (esdo->rel.hdr)
9957 reldata = &esdo->rel;
9958 else if (esdo->rela.hdr)
9959 reldata = &esdo->rela;
9960 else
9961 {
9962 reldata = NULL;
9963 BFD_ASSERT (0);
9964 }
9965
9966 /* Figure out the symbol index. */
9967 rel_hash_ptr = reldata->hashes + reldata->count;
9968 if (link_order->type == bfd_section_reloc_link_order)
9969 {
9970 indx = link_order->u.reloc.p->u.section->target_index;
9971 BFD_ASSERT (indx != 0);
9972 *rel_hash_ptr = NULL;
9973 }
9974 else
9975 {
9976 struct elf_link_hash_entry *h;
9977
9978 /* Treat a reloc against a defined symbol as though it were
9979 actually against the section. */
9980 h = ((struct elf_link_hash_entry *)
9981 bfd_wrapped_link_hash_lookup (output_bfd, info,
9982 link_order->u.reloc.p->u.name,
9983 FALSE, FALSE, TRUE));
9984 if (h != NULL
9985 && (h->root.type == bfd_link_hash_defined
9986 || h->root.type == bfd_link_hash_defweak))
9987 {
9988 asection *section;
9989
9990 section = h->root.u.def.section;
9991 indx = section->output_section->target_index;
9992 *rel_hash_ptr = NULL;
9993 /* It seems that we ought to add the symbol value to the
9994 addend here, but in practice it has already been added
9995 because it was passed to constructor_callback. */
9996 addend += section->output_section->vma + section->output_offset;
9997 }
9998 else if (h != NULL)
9999 {
10000 /* Setting the index to -2 tells elf_link_output_extsym that
10001 this symbol is used by a reloc. */
10002 h->indx = -2;
10003 *rel_hash_ptr = h;
10004 indx = 0;
10005 }
10006 else
10007 {
10008 if (! ((*info->callbacks->unattached_reloc)
10009 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10010 return FALSE;
10011 indx = 0;
10012 }
10013 }
10014
10015 /* If this is an inplace reloc, we must write the addend into the
10016 object file. */
10017 if (howto->partial_inplace && addend != 0)
10018 {
10019 bfd_size_type size;
10020 bfd_reloc_status_type rstat;
10021 bfd_byte *buf;
10022 bfd_boolean ok;
10023 const char *sym_name;
10024
10025 size = (bfd_size_type) bfd_get_reloc_size (howto);
10026 buf = (bfd_byte *) bfd_zmalloc (size);
10027 if (buf == NULL)
10028 return FALSE;
10029 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10030 switch (rstat)
10031 {
10032 case bfd_reloc_ok:
10033 break;
10034
10035 default:
10036 case bfd_reloc_outofrange:
10037 abort ();
10038
10039 case bfd_reloc_overflow:
10040 if (link_order->type == bfd_section_reloc_link_order)
10041 sym_name = bfd_section_name (output_bfd,
10042 link_order->u.reloc.p->u.section);
10043 else
10044 sym_name = link_order->u.reloc.p->u.name;
10045 if (! ((*info->callbacks->reloc_overflow)
10046 (info, NULL, sym_name, howto->name, addend, NULL,
10047 NULL, (bfd_vma) 0)))
10048 {
10049 free (buf);
10050 return FALSE;
10051 }
10052 break;
10053 }
10054 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10055 link_order->offset, size);
10056 free (buf);
10057 if (! ok)
10058 return FALSE;
10059 }
10060
10061 /* The address of a reloc is relative to the section in a
10062 relocatable file, and is a virtual address in an executable
10063 file. */
10064 offset = link_order->offset;
10065 if (! info->relocatable)
10066 offset += output_section->vma;
10067
10068 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10069 {
10070 irel[i].r_offset = offset;
10071 irel[i].r_info = 0;
10072 irel[i].r_addend = 0;
10073 }
10074 if (bed->s->arch_size == 32)
10075 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10076 else
10077 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10078
10079 rel_hdr = reldata->hdr;
10080 erel = rel_hdr->contents;
10081 if (rel_hdr->sh_type == SHT_REL)
10082 {
10083 erel += reldata->count * bed->s->sizeof_rel;
10084 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10085 }
10086 else
10087 {
10088 irel[0].r_addend = addend;
10089 erel += reldata->count * bed->s->sizeof_rela;
10090 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10091 }
10092
10093 ++reldata->count;
10094
10095 return TRUE;
10096 }
10097
10098
10099 /* Get the output vma of the section pointed to by the sh_link field. */
10100
10101 static bfd_vma
10102 elf_get_linked_section_vma (struct bfd_link_order *p)
10103 {
10104 Elf_Internal_Shdr **elf_shdrp;
10105 asection *s;
10106 int elfsec;
10107
10108 s = p->u.indirect.section;
10109 elf_shdrp = elf_elfsections (s->owner);
10110 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10111 elfsec = elf_shdrp[elfsec]->sh_link;
10112 /* PR 290:
10113 The Intel C compiler generates SHT_IA_64_UNWIND with
10114 SHF_LINK_ORDER. But it doesn't set the sh_link or
10115 sh_info fields. Hence we could get the situation
10116 where elfsec is 0. */
10117 if (elfsec == 0)
10118 {
10119 const struct elf_backend_data *bed
10120 = get_elf_backend_data (s->owner);
10121 if (bed->link_order_error_handler)
10122 bed->link_order_error_handler
10123 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10124 return 0;
10125 }
10126 else
10127 {
10128 s = elf_shdrp[elfsec]->bfd_section;
10129 return s->output_section->vma + s->output_offset;
10130 }
10131 }
10132
10133
10134 /* Compare two sections based on the locations of the sections they are
10135 linked to. Used by elf_fixup_link_order. */
10136
10137 static int
10138 compare_link_order (const void * a, const void * b)
10139 {
10140 bfd_vma apos;
10141 bfd_vma bpos;
10142
10143 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10144 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10145 if (apos < bpos)
10146 return -1;
10147 return apos > bpos;
10148 }
10149
10150
10151 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10152 order as their linked sections. Returns false if this could not be done
10153 because an output section includes both ordered and unordered
10154 sections. Ideally we'd do this in the linker proper. */
10155
10156 static bfd_boolean
10157 elf_fixup_link_order (bfd *abfd, asection *o)
10158 {
10159 int seen_linkorder;
10160 int seen_other;
10161 int n;
10162 struct bfd_link_order *p;
10163 bfd *sub;
10164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10165 unsigned elfsec;
10166 struct bfd_link_order **sections;
10167 asection *s, *other_sec, *linkorder_sec;
10168 bfd_vma offset;
10169
10170 other_sec = NULL;
10171 linkorder_sec = NULL;
10172 seen_other = 0;
10173 seen_linkorder = 0;
10174 for (p = o->map_head.link_order; p != NULL; p = p->next)
10175 {
10176 if (p->type == bfd_indirect_link_order)
10177 {
10178 s = p->u.indirect.section;
10179 sub = s->owner;
10180 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10181 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10182 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10183 && elfsec < elf_numsections (sub)
10184 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10185 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10186 {
10187 seen_linkorder++;
10188 linkorder_sec = s;
10189 }
10190 else
10191 {
10192 seen_other++;
10193 other_sec = s;
10194 }
10195 }
10196 else
10197 seen_other++;
10198
10199 if (seen_other && seen_linkorder)
10200 {
10201 if (other_sec && linkorder_sec)
10202 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10203 o, linkorder_sec,
10204 linkorder_sec->owner, other_sec,
10205 other_sec->owner);
10206 else
10207 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10208 o);
10209 bfd_set_error (bfd_error_bad_value);
10210 return FALSE;
10211 }
10212 }
10213
10214 if (!seen_linkorder)
10215 return TRUE;
10216
10217 sections = (struct bfd_link_order **)
10218 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10219 if (sections == NULL)
10220 return FALSE;
10221 seen_linkorder = 0;
10222
10223 for (p = o->map_head.link_order; p != NULL; p = p->next)
10224 {
10225 sections[seen_linkorder++] = p;
10226 }
10227 /* Sort the input sections in the order of their linked section. */
10228 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10229 compare_link_order);
10230
10231 /* Change the offsets of the sections. */
10232 offset = 0;
10233 for (n = 0; n < seen_linkorder; n++)
10234 {
10235 s = sections[n]->u.indirect.section;
10236 offset &= ~(bfd_vma) 0 << s->alignment_power;
10237 s->output_offset = offset;
10238 sections[n]->offset = offset;
10239 /* FIXME: octets_per_byte. */
10240 offset += sections[n]->size;
10241 }
10242
10243 free (sections);
10244 return TRUE;
10245 }
10246
10247
10248 /* Do the final step of an ELF link. */
10249
10250 bfd_boolean
10251 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10252 {
10253 bfd_boolean dynamic;
10254 bfd_boolean emit_relocs;
10255 bfd *dynobj;
10256 struct elf_final_link_info finfo;
10257 asection *o;
10258 struct bfd_link_order *p;
10259 bfd *sub;
10260 bfd_size_type max_contents_size;
10261 bfd_size_type max_external_reloc_size;
10262 bfd_size_type max_internal_reloc_count;
10263 bfd_size_type max_sym_count;
10264 bfd_size_type max_sym_shndx_count;
10265 file_ptr off;
10266 Elf_Internal_Sym elfsym;
10267 unsigned int i;
10268 Elf_Internal_Shdr *symtab_hdr;
10269 Elf_Internal_Shdr *symtab_shndx_hdr;
10270 Elf_Internal_Shdr *symstrtab_hdr;
10271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10272 struct elf_outext_info eoinfo;
10273 bfd_boolean merged;
10274 size_t relativecount = 0;
10275 asection *reldyn = 0;
10276 bfd_size_type amt;
10277 asection *attr_section = NULL;
10278 bfd_vma attr_size = 0;
10279 const char *std_attrs_section;
10280
10281 if (! is_elf_hash_table (info->hash))
10282 return FALSE;
10283
10284 if (info->shared)
10285 abfd->flags |= DYNAMIC;
10286
10287 dynamic = elf_hash_table (info)->dynamic_sections_created;
10288 dynobj = elf_hash_table (info)->dynobj;
10289
10290 emit_relocs = (info->relocatable
10291 || info->emitrelocations);
10292
10293 finfo.info = info;
10294 finfo.output_bfd = abfd;
10295 finfo.symstrtab = _bfd_elf_stringtab_init ();
10296 if (finfo.symstrtab == NULL)
10297 return FALSE;
10298
10299 if (! dynamic)
10300 {
10301 finfo.dynsym_sec = NULL;
10302 finfo.hash_sec = NULL;
10303 finfo.symver_sec = NULL;
10304 }
10305 else
10306 {
10307 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10308 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10309 /* Note that dynsym_sec can be NULL (on VMS). */
10310 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10311 /* Note that it is OK if symver_sec is NULL. */
10312 }
10313
10314 finfo.contents = NULL;
10315 finfo.external_relocs = NULL;
10316 finfo.internal_relocs = NULL;
10317 finfo.external_syms = NULL;
10318 finfo.locsym_shndx = NULL;
10319 finfo.internal_syms = NULL;
10320 finfo.indices = NULL;
10321 finfo.sections = NULL;
10322 finfo.symbuf = NULL;
10323 finfo.symshndxbuf = NULL;
10324 finfo.symbuf_count = 0;
10325 finfo.shndxbuf_size = 0;
10326
10327 /* The object attributes have been merged. Remove the input
10328 sections from the link, and set the contents of the output
10329 secton. */
10330 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10331 for (o = abfd->sections; o != NULL; o = o->next)
10332 {
10333 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10334 || strcmp (o->name, ".gnu.attributes") == 0)
10335 {
10336 for (p = o->map_head.link_order; p != NULL; p = p->next)
10337 {
10338 asection *input_section;
10339
10340 if (p->type != bfd_indirect_link_order)
10341 continue;
10342 input_section = p->u.indirect.section;
10343 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10344 elf_link_input_bfd ignores this section. */
10345 input_section->flags &= ~SEC_HAS_CONTENTS;
10346 }
10347
10348 attr_size = bfd_elf_obj_attr_size (abfd);
10349 if (attr_size)
10350 {
10351 bfd_set_section_size (abfd, o, attr_size);
10352 attr_section = o;
10353 /* Skip this section later on. */
10354 o->map_head.link_order = NULL;
10355 }
10356 else
10357 o->flags |= SEC_EXCLUDE;
10358 }
10359 }
10360
10361 /* Count up the number of relocations we will output for each output
10362 section, so that we know the sizes of the reloc sections. We
10363 also figure out some maximum sizes. */
10364 max_contents_size = 0;
10365 max_external_reloc_size = 0;
10366 max_internal_reloc_count = 0;
10367 max_sym_count = 0;
10368 max_sym_shndx_count = 0;
10369 merged = FALSE;
10370 for (o = abfd->sections; o != NULL; o = o->next)
10371 {
10372 struct bfd_elf_section_data *esdo = elf_section_data (o);
10373 o->reloc_count = 0;
10374
10375 for (p = o->map_head.link_order; p != NULL; p = p->next)
10376 {
10377 unsigned int reloc_count = 0;
10378 struct bfd_elf_section_data *esdi = NULL;
10379
10380 if (p->type == bfd_section_reloc_link_order
10381 || p->type == bfd_symbol_reloc_link_order)
10382 reloc_count = 1;
10383 else if (p->type == bfd_indirect_link_order)
10384 {
10385 asection *sec;
10386
10387 sec = p->u.indirect.section;
10388 esdi = elf_section_data (sec);
10389
10390 /* Mark all sections which are to be included in the
10391 link. This will normally be every section. We need
10392 to do this so that we can identify any sections which
10393 the linker has decided to not include. */
10394 sec->linker_mark = TRUE;
10395
10396 if (sec->flags & SEC_MERGE)
10397 merged = TRUE;
10398
10399 if (info->relocatable || info->emitrelocations)
10400 reloc_count = sec->reloc_count;
10401 else if (bed->elf_backend_count_relocs)
10402 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10403
10404 if (sec->rawsize > max_contents_size)
10405 max_contents_size = sec->rawsize;
10406 if (sec->size > max_contents_size)
10407 max_contents_size = sec->size;
10408
10409 /* We are interested in just local symbols, not all
10410 symbols. */
10411 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10412 && (sec->owner->flags & DYNAMIC) == 0)
10413 {
10414 size_t sym_count;
10415
10416 if (elf_bad_symtab (sec->owner))
10417 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10418 / bed->s->sizeof_sym);
10419 else
10420 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10421
10422 if (sym_count > max_sym_count)
10423 max_sym_count = sym_count;
10424
10425 if (sym_count > max_sym_shndx_count
10426 && elf_symtab_shndx (sec->owner) != 0)
10427 max_sym_shndx_count = sym_count;
10428
10429 if ((sec->flags & SEC_RELOC) != 0)
10430 {
10431 size_t ext_size = 0;
10432
10433 if (esdi->rel.hdr != NULL)
10434 ext_size = esdi->rel.hdr->sh_size;
10435 if (esdi->rela.hdr != NULL)
10436 ext_size += esdi->rela.hdr->sh_size;
10437
10438 if (ext_size > max_external_reloc_size)
10439 max_external_reloc_size = ext_size;
10440 if (sec->reloc_count > max_internal_reloc_count)
10441 max_internal_reloc_count = sec->reloc_count;
10442 }
10443 }
10444 }
10445
10446 if (reloc_count == 0)
10447 continue;
10448
10449 o->reloc_count += reloc_count;
10450
10451 if (p->type == bfd_indirect_link_order
10452 && (info->relocatable || info->emitrelocations))
10453 {
10454 if (esdi->rel.hdr)
10455 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10456 if (esdi->rela.hdr)
10457 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10458 }
10459 else
10460 {
10461 if (o->use_rela_p)
10462 esdo->rela.count += reloc_count;
10463 else
10464 esdo->rel.count += reloc_count;
10465 }
10466 }
10467
10468 if (o->reloc_count > 0)
10469 o->flags |= SEC_RELOC;
10470 else
10471 {
10472 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10473 set it (this is probably a bug) and if it is set
10474 assign_section_numbers will create a reloc section. */
10475 o->flags &=~ SEC_RELOC;
10476 }
10477
10478 /* If the SEC_ALLOC flag is not set, force the section VMA to
10479 zero. This is done in elf_fake_sections as well, but forcing
10480 the VMA to 0 here will ensure that relocs against these
10481 sections are handled correctly. */
10482 if ((o->flags & SEC_ALLOC) == 0
10483 && ! o->user_set_vma)
10484 o->vma = 0;
10485 }
10486
10487 if (! info->relocatable && merged)
10488 elf_link_hash_traverse (elf_hash_table (info),
10489 _bfd_elf_link_sec_merge_syms, abfd);
10490
10491 /* Figure out the file positions for everything but the symbol table
10492 and the relocs. We set symcount to force assign_section_numbers
10493 to create a symbol table. */
10494 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10495 BFD_ASSERT (! abfd->output_has_begun);
10496 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10497 goto error_return;
10498
10499 /* Set sizes, and assign file positions for reloc sections. */
10500 for (o = abfd->sections; o != NULL; o = o->next)
10501 {
10502 struct bfd_elf_section_data *esdo = elf_section_data (o);
10503 if ((o->flags & SEC_RELOC) != 0)
10504 {
10505 if (esdo->rel.hdr
10506 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10507 goto error_return;
10508
10509 if (esdo->rela.hdr
10510 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10511 goto error_return;
10512 }
10513
10514 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10515 to count upwards while actually outputting the relocations. */
10516 esdo->rel.count = 0;
10517 esdo->rela.count = 0;
10518 }
10519
10520 _bfd_elf_assign_file_positions_for_relocs (abfd);
10521
10522 /* We have now assigned file positions for all the sections except
10523 .symtab and .strtab. We start the .symtab section at the current
10524 file position, and write directly to it. We build the .strtab
10525 section in memory. */
10526 bfd_get_symcount (abfd) = 0;
10527 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10528 /* sh_name is set in prep_headers. */
10529 symtab_hdr->sh_type = SHT_SYMTAB;
10530 /* sh_flags, sh_addr and sh_size all start off zero. */
10531 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10532 /* sh_link is set in assign_section_numbers. */
10533 /* sh_info is set below. */
10534 /* sh_offset is set just below. */
10535 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10536
10537 off = elf_tdata (abfd)->next_file_pos;
10538 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10539
10540 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10541 incorrect. We do not yet know the size of the .symtab section.
10542 We correct next_file_pos below, after we do know the size. */
10543
10544 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10545 continuously seeking to the right position in the file. */
10546 if (! info->keep_memory || max_sym_count < 20)
10547 finfo.symbuf_size = 20;
10548 else
10549 finfo.symbuf_size = max_sym_count;
10550 amt = finfo.symbuf_size;
10551 amt *= bed->s->sizeof_sym;
10552 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10553 if (finfo.symbuf == NULL)
10554 goto error_return;
10555 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10556 {
10557 /* Wild guess at number of output symbols. realloc'd as needed. */
10558 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10559 finfo.shndxbuf_size = amt;
10560 amt *= sizeof (Elf_External_Sym_Shndx);
10561 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10562 if (finfo.symshndxbuf == NULL)
10563 goto error_return;
10564 }
10565
10566 /* Start writing out the symbol table. The first symbol is always a
10567 dummy symbol. */
10568 if (info->strip != strip_all
10569 || emit_relocs)
10570 {
10571 elfsym.st_value = 0;
10572 elfsym.st_size = 0;
10573 elfsym.st_info = 0;
10574 elfsym.st_other = 0;
10575 elfsym.st_shndx = SHN_UNDEF;
10576 elfsym.st_target_internal = 0;
10577 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10578 NULL) != 1)
10579 goto error_return;
10580 }
10581
10582 /* Output a symbol for each section. We output these even if we are
10583 discarding local symbols, since they are used for relocs. These
10584 symbols have no names. We store the index of each one in the
10585 index field of the section, so that we can find it again when
10586 outputting relocs. */
10587 if (info->strip != strip_all
10588 || emit_relocs)
10589 {
10590 elfsym.st_size = 0;
10591 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10592 elfsym.st_other = 0;
10593 elfsym.st_value = 0;
10594 elfsym.st_target_internal = 0;
10595 for (i = 1; i < elf_numsections (abfd); i++)
10596 {
10597 o = bfd_section_from_elf_index (abfd, i);
10598 if (o != NULL)
10599 {
10600 o->target_index = bfd_get_symcount (abfd);
10601 elfsym.st_shndx = i;
10602 if (!info->relocatable)
10603 elfsym.st_value = o->vma;
10604 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10605 goto error_return;
10606 }
10607 }
10608 }
10609
10610 /* Allocate some memory to hold information read in from the input
10611 files. */
10612 if (max_contents_size != 0)
10613 {
10614 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10615 if (finfo.contents == NULL)
10616 goto error_return;
10617 }
10618
10619 if (max_external_reloc_size != 0)
10620 {
10621 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10622 if (finfo.external_relocs == NULL)
10623 goto error_return;
10624 }
10625
10626 if (max_internal_reloc_count != 0)
10627 {
10628 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10629 amt *= sizeof (Elf_Internal_Rela);
10630 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10631 if (finfo.internal_relocs == NULL)
10632 goto error_return;
10633 }
10634
10635 if (max_sym_count != 0)
10636 {
10637 amt = max_sym_count * bed->s->sizeof_sym;
10638 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10639 if (finfo.external_syms == NULL)
10640 goto error_return;
10641
10642 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10643 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10644 if (finfo.internal_syms == NULL)
10645 goto error_return;
10646
10647 amt = max_sym_count * sizeof (long);
10648 finfo.indices = (long int *) bfd_malloc (amt);
10649 if (finfo.indices == NULL)
10650 goto error_return;
10651
10652 amt = max_sym_count * sizeof (asection *);
10653 finfo.sections = (asection **) bfd_malloc (amt);
10654 if (finfo.sections == NULL)
10655 goto error_return;
10656 }
10657
10658 if (max_sym_shndx_count != 0)
10659 {
10660 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10661 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10662 if (finfo.locsym_shndx == NULL)
10663 goto error_return;
10664 }
10665
10666 if (elf_hash_table (info)->tls_sec)
10667 {
10668 bfd_vma base, end = 0;
10669 asection *sec;
10670
10671 for (sec = elf_hash_table (info)->tls_sec;
10672 sec && (sec->flags & SEC_THREAD_LOCAL);
10673 sec = sec->next)
10674 {
10675 bfd_size_type size = sec->size;
10676
10677 if (size == 0
10678 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10679 {
10680 struct bfd_link_order *ord = sec->map_tail.link_order;
10681
10682 if (ord != NULL)
10683 size = ord->offset + ord->size;
10684 }
10685 end = sec->vma + size;
10686 }
10687 base = elf_hash_table (info)->tls_sec->vma;
10688 /* Only align end of TLS section if static TLS doesn't have special
10689 alignment requirements. */
10690 if (bed->static_tls_alignment == 1)
10691 end = align_power (end,
10692 elf_hash_table (info)->tls_sec->alignment_power);
10693 elf_hash_table (info)->tls_size = end - base;
10694 }
10695
10696 /* Reorder SHF_LINK_ORDER sections. */
10697 for (o = abfd->sections; o != NULL; o = o->next)
10698 {
10699 if (!elf_fixup_link_order (abfd, o))
10700 return FALSE;
10701 }
10702
10703 /* Since ELF permits relocations to be against local symbols, we
10704 must have the local symbols available when we do the relocations.
10705 Since we would rather only read the local symbols once, and we
10706 would rather not keep them in memory, we handle all the
10707 relocations for a single input file at the same time.
10708
10709 Unfortunately, there is no way to know the total number of local
10710 symbols until we have seen all of them, and the local symbol
10711 indices precede the global symbol indices. This means that when
10712 we are generating relocatable output, and we see a reloc against
10713 a global symbol, we can not know the symbol index until we have
10714 finished examining all the local symbols to see which ones we are
10715 going to output. To deal with this, we keep the relocations in
10716 memory, and don't output them until the end of the link. This is
10717 an unfortunate waste of memory, but I don't see a good way around
10718 it. Fortunately, it only happens when performing a relocatable
10719 link, which is not the common case. FIXME: If keep_memory is set
10720 we could write the relocs out and then read them again; I don't
10721 know how bad the memory loss will be. */
10722
10723 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10724 sub->output_has_begun = FALSE;
10725 for (o = abfd->sections; o != NULL; o = o->next)
10726 {
10727 for (p = o->map_head.link_order; p != NULL; p = p->next)
10728 {
10729 if (p->type == bfd_indirect_link_order
10730 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10731 == bfd_target_elf_flavour)
10732 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10733 {
10734 if (! sub->output_has_begun)
10735 {
10736 if (! elf_link_input_bfd (&finfo, sub))
10737 goto error_return;
10738 sub->output_has_begun = TRUE;
10739 }
10740 }
10741 else if (p->type == bfd_section_reloc_link_order
10742 || p->type == bfd_symbol_reloc_link_order)
10743 {
10744 if (! elf_reloc_link_order (abfd, info, o, p))
10745 goto error_return;
10746 }
10747 else
10748 {
10749 if (! _bfd_default_link_order (abfd, info, o, p))
10750 {
10751 if (p->type == bfd_indirect_link_order
10752 && (bfd_get_flavour (sub)
10753 == bfd_target_elf_flavour)
10754 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10755 != bed->s->elfclass))
10756 {
10757 const char *iclass, *oclass;
10758
10759 if (bed->s->elfclass == ELFCLASS64)
10760 {
10761 iclass = "ELFCLASS32";
10762 oclass = "ELFCLASS64";
10763 }
10764 else
10765 {
10766 iclass = "ELFCLASS64";
10767 oclass = "ELFCLASS32";
10768 }
10769
10770 bfd_set_error (bfd_error_wrong_format);
10771 (*_bfd_error_handler)
10772 (_("%B: file class %s incompatible with %s"),
10773 sub, iclass, oclass);
10774 }
10775
10776 goto error_return;
10777 }
10778 }
10779 }
10780 }
10781
10782 /* Free symbol buffer if needed. */
10783 if (!info->reduce_memory_overheads)
10784 {
10785 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10786 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10787 && elf_tdata (sub)->symbuf)
10788 {
10789 free (elf_tdata (sub)->symbuf);
10790 elf_tdata (sub)->symbuf = NULL;
10791 }
10792 }
10793
10794 /* Output any global symbols that got converted to local in a
10795 version script or due to symbol visibility. We do this in a
10796 separate step since ELF requires all local symbols to appear
10797 prior to any global symbols. FIXME: We should only do this if
10798 some global symbols were, in fact, converted to become local.
10799 FIXME: Will this work correctly with the Irix 5 linker? */
10800 eoinfo.failed = FALSE;
10801 eoinfo.finfo = &finfo;
10802 eoinfo.localsyms = TRUE;
10803 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10804 if (eoinfo.failed)
10805 return FALSE;
10806
10807 /* If backend needs to output some local symbols not present in the hash
10808 table, do it now. */
10809 if (bed->elf_backend_output_arch_local_syms)
10810 {
10811 typedef int (*out_sym_func)
10812 (void *, const char *, Elf_Internal_Sym *, asection *,
10813 struct elf_link_hash_entry *);
10814
10815 if (! ((*bed->elf_backend_output_arch_local_syms)
10816 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10817 return FALSE;
10818 }
10819
10820 /* That wrote out all the local symbols. Finish up the symbol table
10821 with the global symbols. Even if we want to strip everything we
10822 can, we still need to deal with those global symbols that got
10823 converted to local in a version script. */
10824
10825 /* The sh_info field records the index of the first non local symbol. */
10826 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10827
10828 if (dynamic
10829 && finfo.dynsym_sec != NULL
10830 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10831 {
10832 Elf_Internal_Sym sym;
10833 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10834 long last_local = 0;
10835
10836 /* Write out the section symbols for the output sections. */
10837 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10838 {
10839 asection *s;
10840
10841 sym.st_size = 0;
10842 sym.st_name = 0;
10843 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10844 sym.st_other = 0;
10845 sym.st_target_internal = 0;
10846
10847 for (s = abfd->sections; s != NULL; s = s->next)
10848 {
10849 int indx;
10850 bfd_byte *dest;
10851 long dynindx;
10852
10853 dynindx = elf_section_data (s)->dynindx;
10854 if (dynindx <= 0)
10855 continue;
10856 indx = elf_section_data (s)->this_idx;
10857 BFD_ASSERT (indx > 0);
10858 sym.st_shndx = indx;
10859 if (! check_dynsym (abfd, &sym))
10860 return FALSE;
10861 sym.st_value = s->vma;
10862 dest = dynsym + dynindx * bed->s->sizeof_sym;
10863 if (last_local < dynindx)
10864 last_local = dynindx;
10865 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10866 }
10867 }
10868
10869 /* Write out the local dynsyms. */
10870 if (elf_hash_table (info)->dynlocal)
10871 {
10872 struct elf_link_local_dynamic_entry *e;
10873 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10874 {
10875 asection *s;
10876 bfd_byte *dest;
10877
10878 /* Copy the internal symbol and turn off visibility.
10879 Note that we saved a word of storage and overwrote
10880 the original st_name with the dynstr_index. */
10881 sym = e->isym;
10882 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10883
10884 s = bfd_section_from_elf_index (e->input_bfd,
10885 e->isym.st_shndx);
10886 if (s != NULL)
10887 {
10888 sym.st_shndx =
10889 elf_section_data (s->output_section)->this_idx;
10890 if (! check_dynsym (abfd, &sym))
10891 return FALSE;
10892 sym.st_value = (s->output_section->vma
10893 + s->output_offset
10894 + e->isym.st_value);
10895 }
10896
10897 if (last_local < e->dynindx)
10898 last_local = e->dynindx;
10899
10900 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10901 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10902 }
10903 }
10904
10905 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10906 last_local + 1;
10907 }
10908
10909 /* We get the global symbols from the hash table. */
10910 eoinfo.failed = FALSE;
10911 eoinfo.localsyms = FALSE;
10912 eoinfo.finfo = &finfo;
10913 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10914 if (eoinfo.failed)
10915 return FALSE;
10916
10917 /* If backend needs to output some symbols not present in the hash
10918 table, do it now. */
10919 if (bed->elf_backend_output_arch_syms)
10920 {
10921 typedef int (*out_sym_func)
10922 (void *, const char *, Elf_Internal_Sym *, asection *,
10923 struct elf_link_hash_entry *);
10924
10925 if (! ((*bed->elf_backend_output_arch_syms)
10926 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10927 return FALSE;
10928 }
10929
10930 /* Flush all symbols to the file. */
10931 if (! elf_link_flush_output_syms (&finfo, bed))
10932 return FALSE;
10933
10934 /* Now we know the size of the symtab section. */
10935 off += symtab_hdr->sh_size;
10936
10937 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10938 if (symtab_shndx_hdr->sh_name != 0)
10939 {
10940 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10941 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10942 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10943 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10944 symtab_shndx_hdr->sh_size = amt;
10945
10946 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10947 off, TRUE);
10948
10949 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10950 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10951 return FALSE;
10952 }
10953
10954
10955 /* Finish up and write out the symbol string table (.strtab)
10956 section. */
10957 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10958 /* sh_name was set in prep_headers. */
10959 symstrtab_hdr->sh_type = SHT_STRTAB;
10960 symstrtab_hdr->sh_flags = 0;
10961 symstrtab_hdr->sh_addr = 0;
10962 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10963 symstrtab_hdr->sh_entsize = 0;
10964 symstrtab_hdr->sh_link = 0;
10965 symstrtab_hdr->sh_info = 0;
10966 /* sh_offset is set just below. */
10967 symstrtab_hdr->sh_addralign = 1;
10968
10969 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10970 elf_tdata (abfd)->next_file_pos = off;
10971
10972 if (bfd_get_symcount (abfd) > 0)
10973 {
10974 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10975 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10976 return FALSE;
10977 }
10978
10979 /* Adjust the relocs to have the correct symbol indices. */
10980 for (o = abfd->sections; o != NULL; o = o->next)
10981 {
10982 struct bfd_elf_section_data *esdo = elf_section_data (o);
10983 if ((o->flags & SEC_RELOC) == 0)
10984 continue;
10985
10986 if (esdo->rel.hdr != NULL)
10987 elf_link_adjust_relocs (abfd, &esdo->rel);
10988 if (esdo->rela.hdr != NULL)
10989 elf_link_adjust_relocs (abfd, &esdo->rela);
10990
10991 /* Set the reloc_count field to 0 to prevent write_relocs from
10992 trying to swap the relocs out itself. */
10993 o->reloc_count = 0;
10994 }
10995
10996 if (dynamic && info->combreloc && dynobj != NULL)
10997 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10998
10999 /* If we are linking against a dynamic object, or generating a
11000 shared library, finish up the dynamic linking information. */
11001 if (dynamic)
11002 {
11003 bfd_byte *dyncon, *dynconend;
11004
11005 /* Fix up .dynamic entries. */
11006 o = bfd_get_section_by_name (dynobj, ".dynamic");
11007 BFD_ASSERT (o != NULL);
11008
11009 dyncon = o->contents;
11010 dynconend = o->contents + o->size;
11011 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11012 {
11013 Elf_Internal_Dyn dyn;
11014 const char *name;
11015 unsigned int type;
11016
11017 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11018
11019 switch (dyn.d_tag)
11020 {
11021 default:
11022 continue;
11023 case DT_NULL:
11024 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11025 {
11026 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11027 {
11028 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11029 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11030 default: continue;
11031 }
11032 dyn.d_un.d_val = relativecount;
11033 relativecount = 0;
11034 break;
11035 }
11036 continue;
11037
11038 case DT_INIT:
11039 name = info->init_function;
11040 goto get_sym;
11041 case DT_FINI:
11042 name = info->fini_function;
11043 get_sym:
11044 {
11045 struct elf_link_hash_entry *h;
11046
11047 h = elf_link_hash_lookup (elf_hash_table (info), name,
11048 FALSE, FALSE, TRUE);
11049 if (h != NULL
11050 && (h->root.type == bfd_link_hash_defined
11051 || h->root.type == bfd_link_hash_defweak))
11052 {
11053 dyn.d_un.d_ptr = h->root.u.def.value;
11054 o = h->root.u.def.section;
11055 if (o->output_section != NULL)
11056 dyn.d_un.d_ptr += (o->output_section->vma
11057 + o->output_offset);
11058 else
11059 {
11060 /* The symbol is imported from another shared
11061 library and does not apply to this one. */
11062 dyn.d_un.d_ptr = 0;
11063 }
11064 break;
11065 }
11066 }
11067 continue;
11068
11069 case DT_PREINIT_ARRAYSZ:
11070 name = ".preinit_array";
11071 goto get_size;
11072 case DT_INIT_ARRAYSZ:
11073 name = ".init_array";
11074 goto get_size;
11075 case DT_FINI_ARRAYSZ:
11076 name = ".fini_array";
11077 get_size:
11078 o = bfd_get_section_by_name (abfd, name);
11079 if (o == NULL)
11080 {
11081 (*_bfd_error_handler)
11082 (_("%B: could not find output section %s"), abfd, name);
11083 goto error_return;
11084 }
11085 if (o->size == 0)
11086 (*_bfd_error_handler)
11087 (_("warning: %s section has zero size"), name);
11088 dyn.d_un.d_val = o->size;
11089 break;
11090
11091 case DT_PREINIT_ARRAY:
11092 name = ".preinit_array";
11093 goto get_vma;
11094 case DT_INIT_ARRAY:
11095 name = ".init_array";
11096 goto get_vma;
11097 case DT_FINI_ARRAY:
11098 name = ".fini_array";
11099 goto get_vma;
11100
11101 case DT_HASH:
11102 name = ".hash";
11103 goto get_vma;
11104 case DT_GNU_HASH:
11105 name = ".gnu.hash";
11106 goto get_vma;
11107 case DT_STRTAB:
11108 name = ".dynstr";
11109 goto get_vma;
11110 case DT_SYMTAB:
11111 name = ".dynsym";
11112 goto get_vma;
11113 case DT_VERDEF:
11114 name = ".gnu.version_d";
11115 goto get_vma;
11116 case DT_VERNEED:
11117 name = ".gnu.version_r";
11118 goto get_vma;
11119 case DT_VERSYM:
11120 name = ".gnu.version";
11121 get_vma:
11122 o = bfd_get_section_by_name (abfd, name);
11123 if (o == NULL)
11124 {
11125 (*_bfd_error_handler)
11126 (_("%B: could not find output section %s"), abfd, name);
11127 goto error_return;
11128 }
11129 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11130 {
11131 (*_bfd_error_handler)
11132 (_("warning: section '%s' is being made into a note"), name);
11133 bfd_set_error (bfd_error_nonrepresentable_section);
11134 goto error_return;
11135 }
11136 dyn.d_un.d_ptr = o->vma;
11137 break;
11138
11139 case DT_REL:
11140 case DT_RELA:
11141 case DT_RELSZ:
11142 case DT_RELASZ:
11143 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11144 type = SHT_REL;
11145 else
11146 type = SHT_RELA;
11147 dyn.d_un.d_val = 0;
11148 dyn.d_un.d_ptr = 0;
11149 for (i = 1; i < elf_numsections (abfd); i++)
11150 {
11151 Elf_Internal_Shdr *hdr;
11152
11153 hdr = elf_elfsections (abfd)[i];
11154 if (hdr->sh_type == type
11155 && (hdr->sh_flags & SHF_ALLOC) != 0)
11156 {
11157 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11158 dyn.d_un.d_val += hdr->sh_size;
11159 else
11160 {
11161 if (dyn.d_un.d_ptr == 0
11162 || hdr->sh_addr < dyn.d_un.d_ptr)
11163 dyn.d_un.d_ptr = hdr->sh_addr;
11164 }
11165 }
11166 }
11167 break;
11168 }
11169 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11170 }
11171 }
11172
11173 /* If we have created any dynamic sections, then output them. */
11174 if (dynobj != NULL)
11175 {
11176 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11177 goto error_return;
11178
11179 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11180 if (((info->warn_shared_textrel && info->shared)
11181 || info->error_textrel)
11182 && (o = bfd_get_section_by_name (dynobj, ".dynamic")) != NULL)
11183 {
11184 bfd_byte *dyncon, *dynconend;
11185
11186 dyncon = o->contents;
11187 dynconend = o->contents + o->size;
11188 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11189 {
11190 Elf_Internal_Dyn dyn;
11191
11192 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11193
11194 if (dyn.d_tag == DT_TEXTREL)
11195 {
11196 if (info->error_textrel)
11197 info->callbacks->einfo
11198 (_("%P%X: read-only segment has dynamic relocations.\n"));
11199 else
11200 info->callbacks->einfo
11201 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11202 break;
11203 }
11204 }
11205 }
11206
11207 for (o = dynobj->sections; o != NULL; o = o->next)
11208 {
11209 if ((o->flags & SEC_HAS_CONTENTS) == 0
11210 || o->size == 0
11211 || o->output_section == bfd_abs_section_ptr)
11212 continue;
11213 if ((o->flags & SEC_LINKER_CREATED) == 0)
11214 {
11215 /* At this point, we are only interested in sections
11216 created by _bfd_elf_link_create_dynamic_sections. */
11217 continue;
11218 }
11219 if (elf_hash_table (info)->stab_info.stabstr == o)
11220 continue;
11221 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11222 continue;
11223 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11224 != SHT_STRTAB)
11225 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11226 {
11227 /* FIXME: octets_per_byte. */
11228 if (! bfd_set_section_contents (abfd, o->output_section,
11229 o->contents,
11230 (file_ptr) o->output_offset,
11231 o->size))
11232 goto error_return;
11233 }
11234 else
11235 {
11236 /* The contents of the .dynstr section are actually in a
11237 stringtab. */
11238 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11239 if (bfd_seek (abfd, off, SEEK_SET) != 0
11240 || ! _bfd_elf_strtab_emit (abfd,
11241 elf_hash_table (info)->dynstr))
11242 goto error_return;
11243 }
11244 }
11245 }
11246
11247 if (info->relocatable)
11248 {
11249 bfd_boolean failed = FALSE;
11250
11251 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11252 if (failed)
11253 goto error_return;
11254 }
11255
11256 /* If we have optimized stabs strings, output them. */
11257 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11258 {
11259 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11260 goto error_return;
11261 }
11262
11263 if (info->eh_frame_hdr)
11264 {
11265 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11266 goto error_return;
11267 }
11268
11269 if (finfo.symstrtab != NULL)
11270 _bfd_stringtab_free (finfo.symstrtab);
11271 if (finfo.contents != NULL)
11272 free (finfo.contents);
11273 if (finfo.external_relocs != NULL)
11274 free (finfo.external_relocs);
11275 if (finfo.internal_relocs != NULL)
11276 free (finfo.internal_relocs);
11277 if (finfo.external_syms != NULL)
11278 free (finfo.external_syms);
11279 if (finfo.locsym_shndx != NULL)
11280 free (finfo.locsym_shndx);
11281 if (finfo.internal_syms != NULL)
11282 free (finfo.internal_syms);
11283 if (finfo.indices != NULL)
11284 free (finfo.indices);
11285 if (finfo.sections != NULL)
11286 free (finfo.sections);
11287 if (finfo.symbuf != NULL)
11288 free (finfo.symbuf);
11289 if (finfo.symshndxbuf != NULL)
11290 free (finfo.symshndxbuf);
11291 for (o = abfd->sections; o != NULL; o = o->next)
11292 {
11293 struct bfd_elf_section_data *esdo = elf_section_data (o);
11294 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11295 free (esdo->rel.hashes);
11296 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11297 free (esdo->rela.hashes);
11298 }
11299
11300 elf_tdata (abfd)->linker = TRUE;
11301
11302 if (attr_section)
11303 {
11304 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11305 if (contents == NULL)
11306 return FALSE; /* Bail out and fail. */
11307 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11308 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11309 free (contents);
11310 }
11311
11312 return TRUE;
11313
11314 error_return:
11315 if (finfo.symstrtab != NULL)
11316 _bfd_stringtab_free (finfo.symstrtab);
11317 if (finfo.contents != NULL)
11318 free (finfo.contents);
11319 if (finfo.external_relocs != NULL)
11320 free (finfo.external_relocs);
11321 if (finfo.internal_relocs != NULL)
11322 free (finfo.internal_relocs);
11323 if (finfo.external_syms != NULL)
11324 free (finfo.external_syms);
11325 if (finfo.locsym_shndx != NULL)
11326 free (finfo.locsym_shndx);
11327 if (finfo.internal_syms != NULL)
11328 free (finfo.internal_syms);
11329 if (finfo.indices != NULL)
11330 free (finfo.indices);
11331 if (finfo.sections != NULL)
11332 free (finfo.sections);
11333 if (finfo.symbuf != NULL)
11334 free (finfo.symbuf);
11335 if (finfo.symshndxbuf != NULL)
11336 free (finfo.symshndxbuf);
11337 for (o = abfd->sections; o != NULL; o = o->next)
11338 {
11339 struct bfd_elf_section_data *esdo = elf_section_data (o);
11340 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11341 free (esdo->rel.hashes);
11342 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11343 free (esdo->rela.hashes);
11344 }
11345
11346 return FALSE;
11347 }
11348 \f
11349 /* Initialize COOKIE for input bfd ABFD. */
11350
11351 static bfd_boolean
11352 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11353 struct bfd_link_info *info, bfd *abfd)
11354 {
11355 Elf_Internal_Shdr *symtab_hdr;
11356 const struct elf_backend_data *bed;
11357
11358 bed = get_elf_backend_data (abfd);
11359 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11360
11361 cookie->abfd = abfd;
11362 cookie->sym_hashes = elf_sym_hashes (abfd);
11363 cookie->bad_symtab = elf_bad_symtab (abfd);
11364 if (cookie->bad_symtab)
11365 {
11366 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11367 cookie->extsymoff = 0;
11368 }
11369 else
11370 {
11371 cookie->locsymcount = symtab_hdr->sh_info;
11372 cookie->extsymoff = symtab_hdr->sh_info;
11373 }
11374
11375 if (bed->s->arch_size == 32)
11376 cookie->r_sym_shift = 8;
11377 else
11378 cookie->r_sym_shift = 32;
11379
11380 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11381 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11382 {
11383 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11384 cookie->locsymcount, 0,
11385 NULL, NULL, NULL);
11386 if (cookie->locsyms == NULL)
11387 {
11388 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11389 return FALSE;
11390 }
11391 if (info->keep_memory)
11392 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11393 }
11394 return TRUE;
11395 }
11396
11397 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11398
11399 static void
11400 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11401 {
11402 Elf_Internal_Shdr *symtab_hdr;
11403
11404 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11405 if (cookie->locsyms != NULL
11406 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11407 free (cookie->locsyms);
11408 }
11409
11410 /* Initialize the relocation information in COOKIE for input section SEC
11411 of input bfd ABFD. */
11412
11413 static bfd_boolean
11414 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11415 struct bfd_link_info *info, bfd *abfd,
11416 asection *sec)
11417 {
11418 const struct elf_backend_data *bed;
11419
11420 if (sec->reloc_count == 0)
11421 {
11422 cookie->rels = NULL;
11423 cookie->relend = NULL;
11424 }
11425 else
11426 {
11427 bed = get_elf_backend_data (abfd);
11428
11429 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11430 info->keep_memory);
11431 if (cookie->rels == NULL)
11432 return FALSE;
11433 cookie->rel = cookie->rels;
11434 cookie->relend = (cookie->rels
11435 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11436 }
11437 cookie->rel = cookie->rels;
11438 return TRUE;
11439 }
11440
11441 /* Free the memory allocated by init_reloc_cookie_rels,
11442 if appropriate. */
11443
11444 static void
11445 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11446 asection *sec)
11447 {
11448 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11449 free (cookie->rels);
11450 }
11451
11452 /* Initialize the whole of COOKIE for input section SEC. */
11453
11454 static bfd_boolean
11455 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11456 struct bfd_link_info *info,
11457 asection *sec)
11458 {
11459 if (!init_reloc_cookie (cookie, info, sec->owner))
11460 goto error1;
11461 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11462 goto error2;
11463 return TRUE;
11464
11465 error2:
11466 fini_reloc_cookie (cookie, sec->owner);
11467 error1:
11468 return FALSE;
11469 }
11470
11471 /* Free the memory allocated by init_reloc_cookie_for_section,
11472 if appropriate. */
11473
11474 static void
11475 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11476 asection *sec)
11477 {
11478 fini_reloc_cookie_rels (cookie, sec);
11479 fini_reloc_cookie (cookie, sec->owner);
11480 }
11481 \f
11482 /* Garbage collect unused sections. */
11483
11484 /* Default gc_mark_hook. */
11485
11486 asection *
11487 _bfd_elf_gc_mark_hook (asection *sec,
11488 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11489 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11490 struct elf_link_hash_entry *h,
11491 Elf_Internal_Sym *sym)
11492 {
11493 const char *sec_name;
11494
11495 if (h != NULL)
11496 {
11497 switch (h->root.type)
11498 {
11499 case bfd_link_hash_defined:
11500 case bfd_link_hash_defweak:
11501 return h->root.u.def.section;
11502
11503 case bfd_link_hash_common:
11504 return h->root.u.c.p->section;
11505
11506 case bfd_link_hash_undefined:
11507 case bfd_link_hash_undefweak:
11508 /* To work around a glibc bug, keep all XXX input sections
11509 when there is an as yet undefined reference to __start_XXX
11510 or __stop_XXX symbols. The linker will later define such
11511 symbols for orphan input sections that have a name
11512 representable as a C identifier. */
11513 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11514 sec_name = h->root.root.string + 8;
11515 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11516 sec_name = h->root.root.string + 7;
11517 else
11518 sec_name = NULL;
11519
11520 if (sec_name && *sec_name != '\0')
11521 {
11522 bfd *i;
11523
11524 for (i = info->input_bfds; i; i = i->link_next)
11525 {
11526 sec = bfd_get_section_by_name (i, sec_name);
11527 if (sec)
11528 sec->flags |= SEC_KEEP;
11529 }
11530 }
11531 break;
11532
11533 default:
11534 break;
11535 }
11536 }
11537 else
11538 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11539
11540 return NULL;
11541 }
11542
11543 /* COOKIE->rel describes a relocation against section SEC, which is
11544 a section we've decided to keep. Return the section that contains
11545 the relocation symbol, or NULL if no section contains it. */
11546
11547 asection *
11548 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11549 elf_gc_mark_hook_fn gc_mark_hook,
11550 struct elf_reloc_cookie *cookie)
11551 {
11552 unsigned long r_symndx;
11553 struct elf_link_hash_entry *h;
11554
11555 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11556 if (r_symndx == STN_UNDEF)
11557 return NULL;
11558
11559 if (r_symndx >= cookie->locsymcount
11560 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11561 {
11562 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11563 while (h->root.type == bfd_link_hash_indirect
11564 || h->root.type == bfd_link_hash_warning)
11565 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11566 h->mark = 1;
11567 /* If this symbol is weak and there is a non-weak definition, we
11568 keep the non-weak definition because many backends put
11569 dynamic reloc info on the non-weak definition for code
11570 handling copy relocs. */
11571 if (h->u.weakdef != NULL)
11572 h->u.weakdef->mark = 1;
11573 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11574 }
11575
11576 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11577 &cookie->locsyms[r_symndx]);
11578 }
11579
11580 /* COOKIE->rel describes a relocation against section SEC, which is
11581 a section we've decided to keep. Mark the section that contains
11582 the relocation symbol. */
11583
11584 bfd_boolean
11585 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11586 asection *sec,
11587 elf_gc_mark_hook_fn gc_mark_hook,
11588 struct elf_reloc_cookie *cookie)
11589 {
11590 asection *rsec;
11591
11592 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11593 if (rsec && !rsec->gc_mark)
11594 {
11595 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11596 || (rsec->owner->flags & DYNAMIC) != 0)
11597 rsec->gc_mark = 1;
11598 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11599 return FALSE;
11600 }
11601 return TRUE;
11602 }
11603
11604 /* The mark phase of garbage collection. For a given section, mark
11605 it and any sections in this section's group, and all the sections
11606 which define symbols to which it refers. */
11607
11608 bfd_boolean
11609 _bfd_elf_gc_mark (struct bfd_link_info *info,
11610 asection *sec,
11611 elf_gc_mark_hook_fn gc_mark_hook)
11612 {
11613 bfd_boolean ret;
11614 asection *group_sec, *eh_frame;
11615
11616 sec->gc_mark = 1;
11617
11618 /* Mark all the sections in the group. */
11619 group_sec = elf_section_data (sec)->next_in_group;
11620 if (group_sec && !group_sec->gc_mark)
11621 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11622 return FALSE;
11623
11624 /* Look through the section relocs. */
11625 ret = TRUE;
11626 eh_frame = elf_eh_frame_section (sec->owner);
11627 if ((sec->flags & SEC_RELOC) != 0
11628 && sec->reloc_count > 0
11629 && sec != eh_frame)
11630 {
11631 struct elf_reloc_cookie cookie;
11632
11633 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11634 ret = FALSE;
11635 else
11636 {
11637 for (; cookie.rel < cookie.relend; cookie.rel++)
11638 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11639 {
11640 ret = FALSE;
11641 break;
11642 }
11643 fini_reloc_cookie_for_section (&cookie, sec);
11644 }
11645 }
11646
11647 if (ret && eh_frame && elf_fde_list (sec))
11648 {
11649 struct elf_reloc_cookie cookie;
11650
11651 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11652 ret = FALSE;
11653 else
11654 {
11655 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11656 gc_mark_hook, &cookie))
11657 ret = FALSE;
11658 fini_reloc_cookie_for_section (&cookie, eh_frame);
11659 }
11660 }
11661
11662 return ret;
11663 }
11664
11665 /* Keep debug and special sections. */
11666
11667 bfd_boolean
11668 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11669 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11670 {
11671 bfd *ibfd;
11672
11673 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11674 {
11675 asection *isec;
11676 bfd_boolean some_kept;
11677
11678 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11679 continue;
11680
11681 /* Ensure all linker created sections are kept, and see whether
11682 any other section is already marked. */
11683 some_kept = FALSE;
11684 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11685 {
11686 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11687 isec->gc_mark = 1;
11688 else if (isec->gc_mark)
11689 some_kept = TRUE;
11690 }
11691
11692 /* If no section in this file will be kept, then we can
11693 toss out debug sections. */
11694 if (!some_kept)
11695 continue;
11696
11697 /* Keep debug and special sections like .comment when they are
11698 not part of a group, or when we have single-member groups. */
11699 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11700 if ((elf_next_in_group (isec) == NULL
11701 || elf_next_in_group (isec) == isec)
11702 && ((isec->flags & SEC_DEBUGGING) != 0
11703 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11704 isec->gc_mark = 1;
11705 }
11706 return TRUE;
11707 }
11708
11709 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11710
11711 struct elf_gc_sweep_symbol_info
11712 {
11713 struct bfd_link_info *info;
11714 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11715 bfd_boolean);
11716 };
11717
11718 static bfd_boolean
11719 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11720 {
11721 if (!h->mark
11722 && (((h->root.type == bfd_link_hash_defined
11723 || h->root.type == bfd_link_hash_defweak)
11724 && !(h->def_regular
11725 && h->root.u.def.section->gc_mark))
11726 || h->root.type == bfd_link_hash_undefined
11727 || h->root.type == bfd_link_hash_undefweak))
11728 {
11729 struct elf_gc_sweep_symbol_info *inf;
11730
11731 inf = (struct elf_gc_sweep_symbol_info *) data;
11732 (*inf->hide_symbol) (inf->info, h, TRUE);
11733 h->def_regular = 0;
11734 h->ref_regular = 0;
11735 h->ref_regular_nonweak = 0;
11736 }
11737
11738 return TRUE;
11739 }
11740
11741 /* The sweep phase of garbage collection. Remove all garbage sections. */
11742
11743 typedef bfd_boolean (*gc_sweep_hook_fn)
11744 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11745
11746 static bfd_boolean
11747 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11748 {
11749 bfd *sub;
11750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11751 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11752 unsigned long section_sym_count;
11753 struct elf_gc_sweep_symbol_info sweep_info;
11754
11755 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11756 {
11757 asection *o;
11758
11759 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11760 continue;
11761
11762 for (o = sub->sections; o != NULL; o = o->next)
11763 {
11764 /* When any section in a section group is kept, we keep all
11765 sections in the section group. If the first member of
11766 the section group is excluded, we will also exclude the
11767 group section. */
11768 if (o->flags & SEC_GROUP)
11769 {
11770 asection *first = elf_next_in_group (o);
11771 o->gc_mark = first->gc_mark;
11772 }
11773
11774 if (o->gc_mark)
11775 continue;
11776
11777 /* Skip sweeping sections already excluded. */
11778 if (o->flags & SEC_EXCLUDE)
11779 continue;
11780
11781 /* Since this is early in the link process, it is simple
11782 to remove a section from the output. */
11783 o->flags |= SEC_EXCLUDE;
11784
11785 if (info->print_gc_sections && o->size != 0)
11786 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11787
11788 /* But we also have to update some of the relocation
11789 info we collected before. */
11790 if (gc_sweep_hook
11791 && (o->flags & SEC_RELOC) != 0
11792 && o->reloc_count > 0
11793 && !bfd_is_abs_section (o->output_section))
11794 {
11795 Elf_Internal_Rela *internal_relocs;
11796 bfd_boolean r;
11797
11798 internal_relocs
11799 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11800 info->keep_memory);
11801 if (internal_relocs == NULL)
11802 return FALSE;
11803
11804 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11805
11806 if (elf_section_data (o)->relocs != internal_relocs)
11807 free (internal_relocs);
11808
11809 if (!r)
11810 return FALSE;
11811 }
11812 }
11813 }
11814
11815 /* Remove the symbols that were in the swept sections from the dynamic
11816 symbol table. GCFIXME: Anyone know how to get them out of the
11817 static symbol table as well? */
11818 sweep_info.info = info;
11819 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11820 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11821 &sweep_info);
11822
11823 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11824 return TRUE;
11825 }
11826
11827 /* Propagate collected vtable information. This is called through
11828 elf_link_hash_traverse. */
11829
11830 static bfd_boolean
11831 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11832 {
11833 /* Those that are not vtables. */
11834 if (h->vtable == NULL || h->vtable->parent == NULL)
11835 return TRUE;
11836
11837 /* Those vtables that do not have parents, we cannot merge. */
11838 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11839 return TRUE;
11840
11841 /* If we've already been done, exit. */
11842 if (h->vtable->used && h->vtable->used[-1])
11843 return TRUE;
11844
11845 /* Make sure the parent's table is up to date. */
11846 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11847
11848 if (h->vtable->used == NULL)
11849 {
11850 /* None of this table's entries were referenced. Re-use the
11851 parent's table. */
11852 h->vtable->used = h->vtable->parent->vtable->used;
11853 h->vtable->size = h->vtable->parent->vtable->size;
11854 }
11855 else
11856 {
11857 size_t n;
11858 bfd_boolean *cu, *pu;
11859
11860 /* Or the parent's entries into ours. */
11861 cu = h->vtable->used;
11862 cu[-1] = TRUE;
11863 pu = h->vtable->parent->vtable->used;
11864 if (pu != NULL)
11865 {
11866 const struct elf_backend_data *bed;
11867 unsigned int log_file_align;
11868
11869 bed = get_elf_backend_data (h->root.u.def.section->owner);
11870 log_file_align = bed->s->log_file_align;
11871 n = h->vtable->parent->vtable->size >> log_file_align;
11872 while (n--)
11873 {
11874 if (*pu)
11875 *cu = TRUE;
11876 pu++;
11877 cu++;
11878 }
11879 }
11880 }
11881
11882 return TRUE;
11883 }
11884
11885 static bfd_boolean
11886 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11887 {
11888 asection *sec;
11889 bfd_vma hstart, hend;
11890 Elf_Internal_Rela *relstart, *relend, *rel;
11891 const struct elf_backend_data *bed;
11892 unsigned int log_file_align;
11893
11894 /* Take care of both those symbols that do not describe vtables as
11895 well as those that are not loaded. */
11896 if (h->vtable == NULL || h->vtable->parent == NULL)
11897 return TRUE;
11898
11899 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11900 || h->root.type == bfd_link_hash_defweak);
11901
11902 sec = h->root.u.def.section;
11903 hstart = h->root.u.def.value;
11904 hend = hstart + h->size;
11905
11906 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11907 if (!relstart)
11908 return *(bfd_boolean *) okp = FALSE;
11909 bed = get_elf_backend_data (sec->owner);
11910 log_file_align = bed->s->log_file_align;
11911
11912 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11913
11914 for (rel = relstart; rel < relend; ++rel)
11915 if (rel->r_offset >= hstart && rel->r_offset < hend)
11916 {
11917 /* If the entry is in use, do nothing. */
11918 if (h->vtable->used
11919 && (rel->r_offset - hstart) < h->vtable->size)
11920 {
11921 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11922 if (h->vtable->used[entry])
11923 continue;
11924 }
11925 /* Otherwise, kill it. */
11926 rel->r_offset = rel->r_info = rel->r_addend = 0;
11927 }
11928
11929 return TRUE;
11930 }
11931
11932 /* Mark sections containing dynamically referenced symbols. When
11933 building shared libraries, we must assume that any visible symbol is
11934 referenced. */
11935
11936 bfd_boolean
11937 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11938 {
11939 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11940
11941 if ((h->root.type == bfd_link_hash_defined
11942 || h->root.type == bfd_link_hash_defweak)
11943 && (h->ref_dynamic
11944 || ((!info->executable || info->export_dynamic)
11945 && h->def_regular
11946 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11947 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11948 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11949 || !bfd_hide_sym_by_version (info->version_info,
11950 h->root.root.string)))))
11951 h->root.u.def.section->flags |= SEC_KEEP;
11952
11953 return TRUE;
11954 }
11955
11956 /* Keep all sections containing symbols undefined on the command-line,
11957 and the section containing the entry symbol. */
11958
11959 void
11960 _bfd_elf_gc_keep (struct bfd_link_info *info)
11961 {
11962 struct bfd_sym_chain *sym;
11963
11964 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11965 {
11966 struct elf_link_hash_entry *h;
11967
11968 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11969 FALSE, FALSE, FALSE);
11970
11971 if (h != NULL
11972 && (h->root.type == bfd_link_hash_defined
11973 || h->root.type == bfd_link_hash_defweak)
11974 && !bfd_is_abs_section (h->root.u.def.section))
11975 h->root.u.def.section->flags |= SEC_KEEP;
11976 }
11977 }
11978
11979 /* Do mark and sweep of unused sections. */
11980
11981 bfd_boolean
11982 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11983 {
11984 bfd_boolean ok = TRUE;
11985 bfd *sub;
11986 elf_gc_mark_hook_fn gc_mark_hook;
11987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11988
11989 if (!bed->can_gc_sections
11990 || !is_elf_hash_table (info->hash))
11991 {
11992 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11993 return TRUE;
11994 }
11995
11996 bed->gc_keep (info);
11997
11998 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11999 at the .eh_frame section if we can mark the FDEs individually. */
12000 _bfd_elf_begin_eh_frame_parsing (info);
12001 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12002 {
12003 asection *sec;
12004 struct elf_reloc_cookie cookie;
12005
12006 sec = bfd_get_section_by_name (sub, ".eh_frame");
12007 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12008 {
12009 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12010 if (elf_section_data (sec)->sec_info)
12011 elf_eh_frame_section (sub) = sec;
12012 fini_reloc_cookie_for_section (&cookie, sec);
12013 }
12014 }
12015 _bfd_elf_end_eh_frame_parsing (info);
12016
12017 /* Apply transitive closure to the vtable entry usage info. */
12018 elf_link_hash_traverse (elf_hash_table (info),
12019 elf_gc_propagate_vtable_entries_used,
12020 &ok);
12021 if (!ok)
12022 return FALSE;
12023
12024 /* Kill the vtable relocations that were not used. */
12025 elf_link_hash_traverse (elf_hash_table (info),
12026 elf_gc_smash_unused_vtentry_relocs,
12027 &ok);
12028 if (!ok)
12029 return FALSE;
12030
12031 /* Mark dynamically referenced symbols. */
12032 if (elf_hash_table (info)->dynamic_sections_created)
12033 elf_link_hash_traverse (elf_hash_table (info),
12034 bed->gc_mark_dynamic_ref,
12035 info);
12036
12037 /* Grovel through relocs to find out who stays ... */
12038 gc_mark_hook = bed->gc_mark_hook;
12039 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12040 {
12041 asection *o;
12042
12043 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12044 continue;
12045
12046 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12047 Also treat note sections as a root, if the section is not part
12048 of a group. */
12049 for (o = sub->sections; o != NULL; o = o->next)
12050 if (!o->gc_mark
12051 && (o->flags & SEC_EXCLUDE) == 0
12052 && ((o->flags & SEC_KEEP) != 0
12053 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12054 && elf_next_in_group (o) == NULL )))
12055 {
12056 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12057 return FALSE;
12058 }
12059 }
12060
12061 /* Allow the backend to mark additional target specific sections. */
12062 bed->gc_mark_extra_sections (info, gc_mark_hook);
12063
12064 /* ... and mark SEC_EXCLUDE for those that go. */
12065 return elf_gc_sweep (abfd, info);
12066 }
12067 \f
12068 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12069
12070 bfd_boolean
12071 bfd_elf_gc_record_vtinherit (bfd *abfd,
12072 asection *sec,
12073 struct elf_link_hash_entry *h,
12074 bfd_vma offset)
12075 {
12076 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12077 struct elf_link_hash_entry **search, *child;
12078 bfd_size_type extsymcount;
12079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12080
12081 /* The sh_info field of the symtab header tells us where the
12082 external symbols start. We don't care about the local symbols at
12083 this point. */
12084 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12085 if (!elf_bad_symtab (abfd))
12086 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12087
12088 sym_hashes = elf_sym_hashes (abfd);
12089 sym_hashes_end = sym_hashes + extsymcount;
12090
12091 /* Hunt down the child symbol, which is in this section at the same
12092 offset as the relocation. */
12093 for (search = sym_hashes; search != sym_hashes_end; ++search)
12094 {
12095 if ((child = *search) != NULL
12096 && (child->root.type == bfd_link_hash_defined
12097 || child->root.type == bfd_link_hash_defweak)
12098 && child->root.u.def.section == sec
12099 && child->root.u.def.value == offset)
12100 goto win;
12101 }
12102
12103 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12104 abfd, sec, (unsigned long) offset);
12105 bfd_set_error (bfd_error_invalid_operation);
12106 return FALSE;
12107
12108 win:
12109 if (!child->vtable)
12110 {
12111 child->vtable = (struct elf_link_virtual_table_entry *)
12112 bfd_zalloc (abfd, sizeof (*child->vtable));
12113 if (!child->vtable)
12114 return FALSE;
12115 }
12116 if (!h)
12117 {
12118 /* This *should* only be the absolute section. It could potentially
12119 be that someone has defined a non-global vtable though, which
12120 would be bad. It isn't worth paging in the local symbols to be
12121 sure though; that case should simply be handled by the assembler. */
12122
12123 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12124 }
12125 else
12126 child->vtable->parent = h;
12127
12128 return TRUE;
12129 }
12130
12131 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12132
12133 bfd_boolean
12134 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12135 asection *sec ATTRIBUTE_UNUSED,
12136 struct elf_link_hash_entry *h,
12137 bfd_vma addend)
12138 {
12139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12140 unsigned int log_file_align = bed->s->log_file_align;
12141
12142 if (!h->vtable)
12143 {
12144 h->vtable = (struct elf_link_virtual_table_entry *)
12145 bfd_zalloc (abfd, sizeof (*h->vtable));
12146 if (!h->vtable)
12147 return FALSE;
12148 }
12149
12150 if (addend >= h->vtable->size)
12151 {
12152 size_t size, bytes, file_align;
12153 bfd_boolean *ptr = h->vtable->used;
12154
12155 /* While the symbol is undefined, we have to be prepared to handle
12156 a zero size. */
12157 file_align = 1 << log_file_align;
12158 if (h->root.type == bfd_link_hash_undefined)
12159 size = addend + file_align;
12160 else
12161 {
12162 size = h->size;
12163 if (addend >= size)
12164 {
12165 /* Oops! We've got a reference past the defined end of
12166 the table. This is probably a bug -- shall we warn? */
12167 size = addend + file_align;
12168 }
12169 }
12170 size = (size + file_align - 1) & -file_align;
12171
12172 /* Allocate one extra entry for use as a "done" flag for the
12173 consolidation pass. */
12174 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12175
12176 if (ptr)
12177 {
12178 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12179
12180 if (ptr != NULL)
12181 {
12182 size_t oldbytes;
12183
12184 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12185 * sizeof (bfd_boolean));
12186 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12187 }
12188 }
12189 else
12190 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12191
12192 if (ptr == NULL)
12193 return FALSE;
12194
12195 /* And arrange for that done flag to be at index -1. */
12196 h->vtable->used = ptr + 1;
12197 h->vtable->size = size;
12198 }
12199
12200 h->vtable->used[addend >> log_file_align] = TRUE;
12201
12202 return TRUE;
12203 }
12204
12205 /* Map an ELF section header flag to its corresponding string. */
12206 typedef struct
12207 {
12208 char *flag_name;
12209 flagword flag_value;
12210 } elf_flags_to_name_table;
12211
12212 static elf_flags_to_name_table elf_flags_to_names [] =
12213 {
12214 { "SHF_WRITE", SHF_WRITE },
12215 { "SHF_ALLOC", SHF_ALLOC },
12216 { "SHF_EXECINSTR", SHF_EXECINSTR },
12217 { "SHF_MERGE", SHF_MERGE },
12218 { "SHF_STRINGS", SHF_STRINGS },
12219 { "SHF_INFO_LINK", SHF_INFO_LINK},
12220 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12221 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12222 { "SHF_GROUP", SHF_GROUP },
12223 { "SHF_TLS", SHF_TLS },
12224 { "SHF_MASKOS", SHF_MASKOS },
12225 { "SHF_EXCLUDE", SHF_EXCLUDE },
12226 };
12227
12228 void
12229 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12230 struct flag_info *finfo)
12231 {
12232 bfd *output_bfd = info->output_bfd;
12233 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12234 struct flag_info_list *tf = finfo->flag_list;
12235 int with_hex = 0;
12236 int without_hex = 0;
12237
12238 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12239 {
12240 int i;
12241 if (bed->elf_backend_lookup_section_flags_hook)
12242 {
12243 flagword hexval =
12244 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12245
12246 if (hexval != 0)
12247 {
12248 if (tf->with == with_flags)
12249 with_hex |= hexval;
12250 else if (tf->with == without_flags)
12251 without_hex |= hexval;
12252 tf->valid = TRUE;
12253 continue;
12254 }
12255 }
12256 for (i = 0; i < 12; i++)
12257 {
12258 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12259 {
12260 if (tf->with == with_flags)
12261 with_hex |= elf_flags_to_names[i].flag_value;
12262 else if (tf->with == without_flags)
12263 without_hex |= elf_flags_to_names[i].flag_value;
12264 tf->valid = TRUE;
12265 continue;
12266 }
12267 }
12268 if (tf->valid == FALSE)
12269 {
12270 info->callbacks->einfo
12271 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12272 return;
12273 }
12274 }
12275 finfo->flags_initialized = TRUE;
12276 finfo->only_with_flags |= with_hex;
12277 finfo->not_with_flags |= without_hex;
12278
12279 return;
12280 }
12281
12282 struct alloc_got_off_arg {
12283 bfd_vma gotoff;
12284 struct bfd_link_info *info;
12285 };
12286
12287 /* We need a special top-level link routine to convert got reference counts
12288 to real got offsets. */
12289
12290 static bfd_boolean
12291 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12292 {
12293 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12294 bfd *obfd = gofarg->info->output_bfd;
12295 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12296
12297 if (h->got.refcount > 0)
12298 {
12299 h->got.offset = gofarg->gotoff;
12300 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12301 }
12302 else
12303 h->got.offset = (bfd_vma) -1;
12304
12305 return TRUE;
12306 }
12307
12308 /* And an accompanying bit to work out final got entry offsets once
12309 we're done. Should be called from final_link. */
12310
12311 bfd_boolean
12312 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12313 struct bfd_link_info *info)
12314 {
12315 bfd *i;
12316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12317 bfd_vma gotoff;
12318 struct alloc_got_off_arg gofarg;
12319
12320 BFD_ASSERT (abfd == info->output_bfd);
12321
12322 if (! is_elf_hash_table (info->hash))
12323 return FALSE;
12324
12325 /* The GOT offset is relative to the .got section, but the GOT header is
12326 put into the .got.plt section, if the backend uses it. */
12327 if (bed->want_got_plt)
12328 gotoff = 0;
12329 else
12330 gotoff = bed->got_header_size;
12331
12332 /* Do the local .got entries first. */
12333 for (i = info->input_bfds; i; i = i->link_next)
12334 {
12335 bfd_signed_vma *local_got;
12336 bfd_size_type j, locsymcount;
12337 Elf_Internal_Shdr *symtab_hdr;
12338
12339 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12340 continue;
12341
12342 local_got = elf_local_got_refcounts (i);
12343 if (!local_got)
12344 continue;
12345
12346 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12347 if (elf_bad_symtab (i))
12348 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12349 else
12350 locsymcount = symtab_hdr->sh_info;
12351
12352 for (j = 0; j < locsymcount; ++j)
12353 {
12354 if (local_got[j] > 0)
12355 {
12356 local_got[j] = gotoff;
12357 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12358 }
12359 else
12360 local_got[j] = (bfd_vma) -1;
12361 }
12362 }
12363
12364 /* Then the global .got entries. .plt refcounts are handled by
12365 adjust_dynamic_symbol */
12366 gofarg.gotoff = gotoff;
12367 gofarg.info = info;
12368 elf_link_hash_traverse (elf_hash_table (info),
12369 elf_gc_allocate_got_offsets,
12370 &gofarg);
12371 return TRUE;
12372 }
12373
12374 /* Many folk need no more in the way of final link than this, once
12375 got entry reference counting is enabled. */
12376
12377 bfd_boolean
12378 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12379 {
12380 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12381 return FALSE;
12382
12383 /* Invoke the regular ELF backend linker to do all the work. */
12384 return bfd_elf_final_link (abfd, info);
12385 }
12386
12387 bfd_boolean
12388 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12389 {
12390 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12391
12392 if (rcookie->bad_symtab)
12393 rcookie->rel = rcookie->rels;
12394
12395 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12396 {
12397 unsigned long r_symndx;
12398
12399 if (! rcookie->bad_symtab)
12400 if (rcookie->rel->r_offset > offset)
12401 return FALSE;
12402 if (rcookie->rel->r_offset != offset)
12403 continue;
12404
12405 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12406 if (r_symndx == STN_UNDEF)
12407 return TRUE;
12408
12409 if (r_symndx >= rcookie->locsymcount
12410 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12411 {
12412 struct elf_link_hash_entry *h;
12413
12414 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12415
12416 while (h->root.type == bfd_link_hash_indirect
12417 || h->root.type == bfd_link_hash_warning)
12418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12419
12420 if ((h->root.type == bfd_link_hash_defined
12421 || h->root.type == bfd_link_hash_defweak)
12422 && elf_discarded_section (h->root.u.def.section))
12423 return TRUE;
12424 else
12425 return FALSE;
12426 }
12427 else
12428 {
12429 /* It's not a relocation against a global symbol,
12430 but it could be a relocation against a local
12431 symbol for a discarded section. */
12432 asection *isec;
12433 Elf_Internal_Sym *isym;
12434
12435 /* Need to: get the symbol; get the section. */
12436 isym = &rcookie->locsyms[r_symndx];
12437 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12438 if (isec != NULL && elf_discarded_section (isec))
12439 return TRUE;
12440 }
12441 return FALSE;
12442 }
12443 return FALSE;
12444 }
12445
12446 /* Discard unneeded references to discarded sections.
12447 Returns TRUE if any section's size was changed. */
12448 /* This function assumes that the relocations are in sorted order,
12449 which is true for all known assemblers. */
12450
12451 bfd_boolean
12452 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12453 {
12454 struct elf_reloc_cookie cookie;
12455 asection *stab, *eh;
12456 const struct elf_backend_data *bed;
12457 bfd *abfd;
12458 bfd_boolean ret = FALSE;
12459
12460 if (info->traditional_format
12461 || !is_elf_hash_table (info->hash))
12462 return FALSE;
12463
12464 _bfd_elf_begin_eh_frame_parsing (info);
12465 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12466 {
12467 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12468 continue;
12469
12470 bed = get_elf_backend_data (abfd);
12471
12472 if ((abfd->flags & DYNAMIC) != 0)
12473 continue;
12474
12475 eh = NULL;
12476 if (!info->relocatable)
12477 {
12478 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12479 if (eh != NULL
12480 && (eh->size == 0
12481 || bfd_is_abs_section (eh->output_section)))
12482 eh = NULL;
12483 }
12484
12485 stab = bfd_get_section_by_name (abfd, ".stab");
12486 if (stab != NULL
12487 && (stab->size == 0
12488 || bfd_is_abs_section (stab->output_section)
12489 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12490 stab = NULL;
12491
12492 if (stab == NULL
12493 && eh == NULL
12494 && bed->elf_backend_discard_info == NULL)
12495 continue;
12496
12497 if (!init_reloc_cookie (&cookie, info, abfd))
12498 return FALSE;
12499
12500 if (stab != NULL
12501 && stab->reloc_count > 0
12502 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12503 {
12504 if (_bfd_discard_section_stabs (abfd, stab,
12505 elf_section_data (stab)->sec_info,
12506 bfd_elf_reloc_symbol_deleted_p,
12507 &cookie))
12508 ret = TRUE;
12509 fini_reloc_cookie_rels (&cookie, stab);
12510 }
12511
12512 if (eh != NULL
12513 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12514 {
12515 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12516 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12517 bfd_elf_reloc_symbol_deleted_p,
12518 &cookie))
12519 ret = TRUE;
12520 fini_reloc_cookie_rels (&cookie, eh);
12521 }
12522
12523 if (bed->elf_backend_discard_info != NULL
12524 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12525 ret = TRUE;
12526
12527 fini_reloc_cookie (&cookie, abfd);
12528 }
12529 _bfd_elf_end_eh_frame_parsing (info);
12530
12531 if (info->eh_frame_hdr
12532 && !info->relocatable
12533 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12534 ret = TRUE;
12535
12536 return ret;
12537 }
12538
12539 bfd_boolean
12540 _bfd_elf_section_already_linked (bfd *abfd,
12541 asection *sec,
12542 struct bfd_link_info *info)
12543 {
12544 flagword flags;
12545 const char *name, *key;
12546 struct bfd_section_already_linked *l;
12547 struct bfd_section_already_linked_hash_entry *already_linked_list;
12548
12549 if (sec->output_section == bfd_abs_section_ptr)
12550 return FALSE;
12551
12552 flags = sec->flags;
12553
12554 /* Return if it isn't a linkonce section. A comdat group section
12555 also has SEC_LINK_ONCE set. */
12556 if ((flags & SEC_LINK_ONCE) == 0)
12557 return FALSE;
12558
12559 /* Don't put group member sections on our list of already linked
12560 sections. They are handled as a group via their group section. */
12561 if (elf_sec_group (sec) != NULL)
12562 return FALSE;
12563
12564 /* For a SHT_GROUP section, use the group signature as the key. */
12565 name = sec->name;
12566 if ((flags & SEC_GROUP) != 0
12567 && elf_next_in_group (sec) != NULL
12568 && elf_group_name (elf_next_in_group (sec)) != NULL)
12569 key = elf_group_name (elf_next_in_group (sec));
12570 else
12571 {
12572 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12573 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12574 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12575 key++;
12576 else
12577 /* Must be a user linkonce section that doesn't follow gcc's
12578 naming convention. In this case we won't be matching
12579 single member groups. */
12580 key = name;
12581 }
12582
12583 already_linked_list = bfd_section_already_linked_table_lookup (key);
12584
12585 for (l = already_linked_list->entry; l != NULL; l = l->next)
12586 {
12587 /* We may have 2 different types of sections on the list: group
12588 sections with a signature of <key> (<key> is some string),
12589 and linkonce sections named .gnu.linkonce.<type>.<key>.
12590 Match like sections. LTO plugin sections are an exception.
12591 They are always named .gnu.linkonce.t.<key> and match either
12592 type of section. */
12593 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12594 && ((flags & SEC_GROUP) != 0
12595 || strcmp (name, l->sec->name) == 0))
12596 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12597 {
12598 /* The section has already been linked. See if we should
12599 issue a warning. */
12600 if (!_bfd_handle_already_linked (sec, l, info))
12601 return FALSE;
12602
12603 if (flags & SEC_GROUP)
12604 {
12605 asection *first = elf_next_in_group (sec);
12606 asection *s = first;
12607
12608 while (s != NULL)
12609 {
12610 s->output_section = bfd_abs_section_ptr;
12611 /* Record which group discards it. */
12612 s->kept_section = l->sec;
12613 s = elf_next_in_group (s);
12614 /* These lists are circular. */
12615 if (s == first)
12616 break;
12617 }
12618 }
12619
12620 return TRUE;
12621 }
12622 }
12623
12624 /* A single member comdat group section may be discarded by a
12625 linkonce section and vice versa. */
12626 if ((flags & SEC_GROUP) != 0)
12627 {
12628 asection *first = elf_next_in_group (sec);
12629
12630 if (first != NULL && elf_next_in_group (first) == first)
12631 /* Check this single member group against linkonce sections. */
12632 for (l = already_linked_list->entry; l != NULL; l = l->next)
12633 if ((l->sec->flags & SEC_GROUP) == 0
12634 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12635 {
12636 first->output_section = bfd_abs_section_ptr;
12637 first->kept_section = l->sec;
12638 sec->output_section = bfd_abs_section_ptr;
12639 break;
12640 }
12641 }
12642 else
12643 /* Check this linkonce section against single member groups. */
12644 for (l = already_linked_list->entry; l != NULL; l = l->next)
12645 if (l->sec->flags & SEC_GROUP)
12646 {
12647 asection *first = elf_next_in_group (l->sec);
12648
12649 if (first != NULL
12650 && elf_next_in_group (first) == first
12651 && bfd_elf_match_symbols_in_sections (first, sec, info))
12652 {
12653 sec->output_section = bfd_abs_section_ptr;
12654 sec->kept_section = first;
12655 break;
12656 }
12657 }
12658
12659 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12660 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12661 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12662 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12663 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12664 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12665 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12666 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12667 The reverse order cannot happen as there is never a bfd with only the
12668 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12669 matter as here were are looking only for cross-bfd sections. */
12670
12671 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12672 for (l = already_linked_list->entry; l != NULL; l = l->next)
12673 if ((l->sec->flags & SEC_GROUP) == 0
12674 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12675 {
12676 if (abfd != l->sec->owner)
12677 sec->output_section = bfd_abs_section_ptr;
12678 break;
12679 }
12680
12681 /* This is the first section with this name. Record it. */
12682 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12683 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12684 return sec->output_section == bfd_abs_section_ptr;
12685 }
12686
12687 bfd_boolean
12688 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12689 {
12690 return sym->st_shndx == SHN_COMMON;
12691 }
12692
12693 unsigned int
12694 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12695 {
12696 return SHN_COMMON;
12697 }
12698
12699 asection *
12700 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12701 {
12702 return bfd_com_section_ptr;
12703 }
12704
12705 bfd_vma
12706 _bfd_elf_default_got_elt_size (bfd *abfd,
12707 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12708 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12709 bfd *ibfd ATTRIBUTE_UNUSED,
12710 unsigned long symndx ATTRIBUTE_UNUSED)
12711 {
12712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12713 return bed->s->arch_size / 8;
12714 }
12715
12716 /* Routines to support the creation of dynamic relocs. */
12717
12718 /* Returns the name of the dynamic reloc section associated with SEC. */
12719
12720 static const char *
12721 get_dynamic_reloc_section_name (bfd * abfd,
12722 asection * sec,
12723 bfd_boolean is_rela)
12724 {
12725 char *name;
12726 const char *old_name = bfd_get_section_name (NULL, sec);
12727 const char *prefix = is_rela ? ".rela" : ".rel";
12728
12729 if (old_name == NULL)
12730 return NULL;
12731
12732 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12733 sprintf (name, "%s%s", prefix, old_name);
12734
12735 return name;
12736 }
12737
12738 /* Returns the dynamic reloc section associated with SEC.
12739 If necessary compute the name of the dynamic reloc section based
12740 on SEC's name (looked up in ABFD's string table) and the setting
12741 of IS_RELA. */
12742
12743 asection *
12744 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12745 asection * sec,
12746 bfd_boolean is_rela)
12747 {
12748 asection * reloc_sec = elf_section_data (sec)->sreloc;
12749
12750 if (reloc_sec == NULL)
12751 {
12752 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12753
12754 if (name != NULL)
12755 {
12756 reloc_sec = bfd_get_section_by_name (abfd, name);
12757
12758 if (reloc_sec != NULL)
12759 elf_section_data (sec)->sreloc = reloc_sec;
12760 }
12761 }
12762
12763 return reloc_sec;
12764 }
12765
12766 /* Returns the dynamic reloc section associated with SEC. If the
12767 section does not exist it is created and attached to the DYNOBJ
12768 bfd and stored in the SRELOC field of SEC's elf_section_data
12769 structure.
12770
12771 ALIGNMENT is the alignment for the newly created section and
12772 IS_RELA defines whether the name should be .rela.<SEC's name>
12773 or .rel.<SEC's name>. The section name is looked up in the
12774 string table associated with ABFD. */
12775
12776 asection *
12777 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12778 bfd * dynobj,
12779 unsigned int alignment,
12780 bfd * abfd,
12781 bfd_boolean is_rela)
12782 {
12783 asection * reloc_sec = elf_section_data (sec)->sreloc;
12784
12785 if (reloc_sec == NULL)
12786 {
12787 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12788
12789 if (name == NULL)
12790 return NULL;
12791
12792 reloc_sec = bfd_get_section_by_name (dynobj, name);
12793
12794 if (reloc_sec == NULL)
12795 {
12796 flagword flags;
12797
12798 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12799 if ((sec->flags & SEC_ALLOC) != 0)
12800 flags |= SEC_ALLOC | SEC_LOAD;
12801
12802 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12803 if (reloc_sec != NULL)
12804 {
12805 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12806 reloc_sec = NULL;
12807 }
12808 }
12809
12810 elf_section_data (sec)->sreloc = reloc_sec;
12811 }
12812
12813 return reloc_sec;
12814 }
12815
12816 /* Copy the ELF symbol type associated with a linker hash entry. */
12817 void
12818 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12819 struct bfd_link_hash_entry * hdest,
12820 struct bfd_link_hash_entry * hsrc)
12821 {
12822 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12823 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12824
12825 ehdest->type = ehsrc->type;
12826 ehdest->target_internal = ehsrc->target_internal;
12827 }
12828
12829 /* Append a RELA relocation REL to section S in BFD. */
12830
12831 void
12832 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12833 {
12834 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12835 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12836 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12837 bed->s->swap_reloca_out (abfd, rel, loc);
12838 }
12839
12840 /* Append a REL relocation REL to section S in BFD. */
12841
12842 void
12843 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12844 {
12845 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12846 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12847 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12848 bed->s->swap_reloca_out (abfd, rel, loc);
12849 }