]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
_bfd_alloc_and_read
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 size_t amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 size_t amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505 otherwise just check whether one already exists. Returns -1 on error,
3506 1 if a DT_NEEDED tag already exists, and 0 on success. */
3507
3508 static int
3509 elf_add_dt_needed_tag (bfd *abfd,
3510 struct bfd_link_info *info,
3511 const char *soname,
3512 bfd_boolean do_it)
3513 {
3514 struct elf_link_hash_table *hash_table;
3515 size_t strindex;
3516
3517 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3518 return -1;
3519
3520 hash_table = elf_hash_table (info);
3521 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3522 if (strindex == (size_t) -1)
3523 return -1;
3524
3525 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3526 {
3527 asection *sdyn;
3528 const struct elf_backend_data *bed;
3529 bfd_byte *extdyn;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 if (sdyn != NULL)
3534 for (extdyn = sdyn->contents;
3535 extdyn < sdyn->contents + sdyn->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3541 if (dyn.d_tag == DT_NEEDED
3542 && dyn.d_un.d_val == strindex)
3543 {
3544 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3545 return 1;
3546 }
3547 }
3548 }
3549
3550 if (do_it)
3551 {
3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3553 return -1;
3554
3555 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 return -1;
3557 }
3558 else
3559 /* We were just checking for existence of the tag. */
3560 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3561
3562 return 0;
3563 }
3564
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566 (or the end of list if STOP is NULL), and needed by a library that
3567 will be loaded. */
3568
3569 static bfd_boolean
3570 on_needed_list (const char *soname,
3571 struct bfd_link_needed_list *needed,
3572 struct bfd_link_needed_list *stop)
3573 {
3574 struct bfd_link_needed_list *look;
3575 for (look = needed; look != stop; look = look->next)
3576 if (strcmp (soname, look->name) == 0
3577 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3578 /* If needed by a library that itself is not directly
3579 needed, recursively check whether that library is
3580 indirectly needed. Since we add DT_NEEDED entries to
3581 the end of the list, library dependencies appear after
3582 the library. Therefore search prior to the current
3583 LOOK, preventing possible infinite recursion. */
3584 || on_needed_list (elf_dt_name (look->by), needed, look)))
3585 return TRUE;
3586
3587 return FALSE;
3588 }
3589
3590 /* Sort symbol by value, section, size, and type. */
3591 static int
3592 elf_sort_symbol (const void *arg1, const void *arg2)
3593 {
3594 const struct elf_link_hash_entry *h1;
3595 const struct elf_link_hash_entry *h2;
3596 bfd_signed_vma vdiff;
3597 int sdiff;
3598 const char *n1;
3599 const char *n2;
3600
3601 h1 = *(const struct elf_link_hash_entry **) arg1;
3602 h2 = *(const struct elf_link_hash_entry **) arg2;
3603 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3604 if (vdiff != 0)
3605 return vdiff > 0 ? 1 : -1;
3606
3607 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3608 if (sdiff != 0)
3609 return sdiff;
3610
3611 /* Sort so that sized symbols are selected over zero size symbols. */
3612 vdiff = h1->size - h2->size;
3613 if (vdiff != 0)
3614 return vdiff > 0 ? 1 : -1;
3615
3616 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3617 if (h1->type != h2->type)
3618 return h1->type - h2->type;
3619
3620 /* If symbols are properly sized and typed, and multiple strong
3621 aliases are not defined in a shared library by the user we
3622 shouldn't get here. Unfortunately linker script symbols like
3623 __bss_start sometimes match a user symbol defined at the start of
3624 .bss without proper size and type. We'd like to preference the
3625 user symbol over reserved system symbols. Sort on leading
3626 underscores. */
3627 n1 = h1->root.root.string;
3628 n2 = h2->root.root.string;
3629 while (*n1 == *n2)
3630 {
3631 if (*n1 == 0)
3632 break;
3633 ++n1;
3634 ++n2;
3635 }
3636 if (*n1 == '_')
3637 return -1;
3638 if (*n2 == '_')
3639 return 1;
3640
3641 /* Final sort on name selects user symbols like '_u' over reserved
3642 system symbols like '_Z' and also will avoid qsort instability. */
3643 return *n1 - *n2;
3644 }
3645
3646 /* This function is used to adjust offsets into .dynstr for
3647 dynamic symbols. This is called via elf_link_hash_traverse. */
3648
3649 static bfd_boolean
3650 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3651 {
3652 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3653
3654 if (h->dynindx != -1)
3655 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3656 return TRUE;
3657 }
3658
3659 /* Assign string offsets in .dynstr, update all structures referencing
3660 them. */
3661
3662 static bfd_boolean
3663 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3664 {
3665 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3666 struct elf_link_local_dynamic_entry *entry;
3667 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3668 bfd *dynobj = hash_table->dynobj;
3669 asection *sdyn;
3670 bfd_size_type size;
3671 const struct elf_backend_data *bed;
3672 bfd_byte *extdyn;
3673
3674 _bfd_elf_strtab_finalize (dynstr);
3675 size = _bfd_elf_strtab_size (dynstr);
3676
3677 bed = get_elf_backend_data (dynobj);
3678 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3679 BFD_ASSERT (sdyn != NULL);
3680
3681 /* Update all .dynamic entries referencing .dynstr strings. */
3682 for (extdyn = sdyn->contents;
3683 extdyn < sdyn->contents + sdyn->size;
3684 extdyn += bed->s->sizeof_dyn)
3685 {
3686 Elf_Internal_Dyn dyn;
3687
3688 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3689 switch (dyn.d_tag)
3690 {
3691 case DT_STRSZ:
3692 dyn.d_un.d_val = size;
3693 break;
3694 case DT_NEEDED:
3695 case DT_SONAME:
3696 case DT_RPATH:
3697 case DT_RUNPATH:
3698 case DT_FILTER:
3699 case DT_AUXILIARY:
3700 case DT_AUDIT:
3701 case DT_DEPAUDIT:
3702 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3703 break;
3704 default:
3705 continue;
3706 }
3707 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3708 }
3709
3710 /* Now update local dynamic symbols. */
3711 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3712 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3713 entry->isym.st_name);
3714
3715 /* And the rest of dynamic symbols. */
3716 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3717
3718 /* Adjust version definitions. */
3719 if (elf_tdata (output_bfd)->cverdefs)
3720 {
3721 asection *s;
3722 bfd_byte *p;
3723 size_t i;
3724 Elf_Internal_Verdef def;
3725 Elf_Internal_Verdaux defaux;
3726
3727 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3728 p = s->contents;
3729 do
3730 {
3731 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3732 &def);
3733 p += sizeof (Elf_External_Verdef);
3734 if (def.vd_aux != sizeof (Elf_External_Verdef))
3735 continue;
3736 for (i = 0; i < def.vd_cnt; ++i)
3737 {
3738 _bfd_elf_swap_verdaux_in (output_bfd,
3739 (Elf_External_Verdaux *) p, &defaux);
3740 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3741 defaux.vda_name);
3742 _bfd_elf_swap_verdaux_out (output_bfd,
3743 &defaux, (Elf_External_Verdaux *) p);
3744 p += sizeof (Elf_External_Verdaux);
3745 }
3746 }
3747 while (def.vd_next);
3748 }
3749
3750 /* Adjust version references. */
3751 if (elf_tdata (output_bfd)->verref)
3752 {
3753 asection *s;
3754 bfd_byte *p;
3755 size_t i;
3756 Elf_Internal_Verneed need;
3757 Elf_Internal_Vernaux needaux;
3758
3759 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3760 p = s->contents;
3761 do
3762 {
3763 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3764 &need);
3765 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3766 _bfd_elf_swap_verneed_out (output_bfd, &need,
3767 (Elf_External_Verneed *) p);
3768 p += sizeof (Elf_External_Verneed);
3769 for (i = 0; i < need.vn_cnt; ++i)
3770 {
3771 _bfd_elf_swap_vernaux_in (output_bfd,
3772 (Elf_External_Vernaux *) p, &needaux);
3773 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3774 needaux.vna_name);
3775 _bfd_elf_swap_vernaux_out (output_bfd,
3776 &needaux,
3777 (Elf_External_Vernaux *) p);
3778 p += sizeof (Elf_External_Vernaux);
3779 }
3780 }
3781 while (need.vn_next);
3782 }
3783
3784 return TRUE;
3785 }
3786 \f
3787 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3788 The default is to only match when the INPUT and OUTPUT are exactly
3789 the same target. */
3790
3791 bfd_boolean
3792 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3793 const bfd_target *output)
3794 {
3795 return input == output;
3796 }
3797
3798 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3799 This version is used when different targets for the same architecture
3800 are virtually identical. */
3801
3802 bfd_boolean
3803 _bfd_elf_relocs_compatible (const bfd_target *input,
3804 const bfd_target *output)
3805 {
3806 const struct elf_backend_data *obed, *ibed;
3807
3808 if (input == output)
3809 return TRUE;
3810
3811 ibed = xvec_get_elf_backend_data (input);
3812 obed = xvec_get_elf_backend_data (output);
3813
3814 if (ibed->arch != obed->arch)
3815 return FALSE;
3816
3817 /* If both backends are using this function, deem them compatible. */
3818 return ibed->relocs_compatible == obed->relocs_compatible;
3819 }
3820
3821 /* Make a special call to the linker "notice" function to tell it that
3822 we are about to handle an as-needed lib, or have finished
3823 processing the lib. */
3824
3825 bfd_boolean
3826 _bfd_elf_notice_as_needed (bfd *ibfd,
3827 struct bfd_link_info *info,
3828 enum notice_asneeded_action act)
3829 {
3830 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3831 }
3832
3833 /* Check relocations an ELF object file. */
3834
3835 bfd_boolean
3836 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3837 {
3838 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3839 struct elf_link_hash_table *htab = elf_hash_table (info);
3840
3841 /* If this object is the same format as the output object, and it is
3842 not a shared library, then let the backend look through the
3843 relocs.
3844
3845 This is required to build global offset table entries and to
3846 arrange for dynamic relocs. It is not required for the
3847 particular common case of linking non PIC code, even when linking
3848 against shared libraries, but unfortunately there is no way of
3849 knowing whether an object file has been compiled PIC or not.
3850 Looking through the relocs is not particularly time consuming.
3851 The problem is that we must either (1) keep the relocs in memory,
3852 which causes the linker to require additional runtime memory or
3853 (2) read the relocs twice from the input file, which wastes time.
3854 This would be a good case for using mmap.
3855
3856 I have no idea how to handle linking PIC code into a file of a
3857 different format. It probably can't be done. */
3858 if ((abfd->flags & DYNAMIC) == 0
3859 && is_elf_hash_table (htab)
3860 && bed->check_relocs != NULL
3861 && elf_object_id (abfd) == elf_hash_table_id (htab)
3862 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3863 {
3864 asection *o;
3865
3866 for (o = abfd->sections; o != NULL; o = o->next)
3867 {
3868 Elf_Internal_Rela *internal_relocs;
3869 bfd_boolean ok;
3870
3871 /* Don't check relocations in excluded sections. */
3872 if ((o->flags & SEC_RELOC) == 0
3873 || (o->flags & SEC_EXCLUDE) != 0
3874 || o->reloc_count == 0
3875 || ((info->strip == strip_all || info->strip == strip_debugger)
3876 && (o->flags & SEC_DEBUGGING) != 0)
3877 || bfd_is_abs_section (o->output_section))
3878 continue;
3879
3880 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3881 info->keep_memory);
3882 if (internal_relocs == NULL)
3883 return FALSE;
3884
3885 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3886
3887 if (elf_section_data (o)->relocs != internal_relocs)
3888 free (internal_relocs);
3889
3890 if (! ok)
3891 return FALSE;
3892 }
3893 }
3894
3895 return TRUE;
3896 }
3897
3898 /* Add symbols from an ELF object file to the linker hash table. */
3899
3900 static bfd_boolean
3901 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3902 {
3903 Elf_Internal_Ehdr *ehdr;
3904 Elf_Internal_Shdr *hdr;
3905 size_t symcount;
3906 size_t extsymcount;
3907 size_t extsymoff;
3908 struct elf_link_hash_entry **sym_hash;
3909 bfd_boolean dynamic;
3910 Elf_External_Versym *extversym = NULL;
3911 Elf_External_Versym *extversym_end = NULL;
3912 Elf_External_Versym *ever;
3913 struct elf_link_hash_entry *weaks;
3914 struct elf_link_hash_entry **nondeflt_vers = NULL;
3915 size_t nondeflt_vers_cnt = 0;
3916 Elf_Internal_Sym *isymbuf = NULL;
3917 Elf_Internal_Sym *isym;
3918 Elf_Internal_Sym *isymend;
3919 const struct elf_backend_data *bed;
3920 bfd_boolean add_needed;
3921 struct elf_link_hash_table *htab;
3922 void *alloc_mark = NULL;
3923 struct bfd_hash_entry **old_table = NULL;
3924 unsigned int old_size = 0;
3925 unsigned int old_count = 0;
3926 void *old_tab = NULL;
3927 void *old_ent;
3928 struct bfd_link_hash_entry *old_undefs = NULL;
3929 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3930 void *old_strtab = NULL;
3931 size_t tabsize = 0;
3932 asection *s;
3933 bfd_boolean just_syms;
3934
3935 htab = elf_hash_table (info);
3936 bed = get_elf_backend_data (abfd);
3937
3938 if ((abfd->flags & DYNAMIC) == 0)
3939 dynamic = FALSE;
3940 else
3941 {
3942 dynamic = TRUE;
3943
3944 /* You can't use -r against a dynamic object. Also, there's no
3945 hope of using a dynamic object which does not exactly match
3946 the format of the output file. */
3947 if (bfd_link_relocatable (info)
3948 || !is_elf_hash_table (htab)
3949 || info->output_bfd->xvec != abfd->xvec)
3950 {
3951 if (bfd_link_relocatable (info))
3952 bfd_set_error (bfd_error_invalid_operation);
3953 else
3954 bfd_set_error (bfd_error_wrong_format);
3955 goto error_return;
3956 }
3957 }
3958
3959 ehdr = elf_elfheader (abfd);
3960 if (info->warn_alternate_em
3961 && bed->elf_machine_code != ehdr->e_machine
3962 && ((bed->elf_machine_alt1 != 0
3963 && ehdr->e_machine == bed->elf_machine_alt1)
3964 || (bed->elf_machine_alt2 != 0
3965 && ehdr->e_machine == bed->elf_machine_alt2)))
3966 _bfd_error_handler
3967 /* xgettext:c-format */
3968 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3969 ehdr->e_machine, abfd, bed->elf_machine_code);
3970
3971 /* As a GNU extension, any input sections which are named
3972 .gnu.warning.SYMBOL are treated as warning symbols for the given
3973 symbol. This differs from .gnu.warning sections, which generate
3974 warnings when they are included in an output file. */
3975 /* PR 12761: Also generate this warning when building shared libraries. */
3976 for (s = abfd->sections; s != NULL; s = s->next)
3977 {
3978 const char *name;
3979
3980 name = bfd_section_name (s);
3981 if (CONST_STRNEQ (name, ".gnu.warning."))
3982 {
3983 char *msg;
3984 bfd_size_type sz;
3985
3986 name += sizeof ".gnu.warning." - 1;
3987
3988 /* If this is a shared object, then look up the symbol
3989 in the hash table. If it is there, and it is already
3990 been defined, then we will not be using the entry
3991 from this shared object, so we don't need to warn.
3992 FIXME: If we see the definition in a regular object
3993 later on, we will warn, but we shouldn't. The only
3994 fix is to keep track of what warnings we are supposed
3995 to emit, and then handle them all at the end of the
3996 link. */
3997 if (dynamic)
3998 {
3999 struct elf_link_hash_entry *h;
4000
4001 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4002
4003 /* FIXME: What about bfd_link_hash_common? */
4004 if (h != NULL
4005 && (h->root.type == bfd_link_hash_defined
4006 || h->root.type == bfd_link_hash_defweak))
4007 continue;
4008 }
4009
4010 sz = s->size;
4011 msg = (char *) bfd_alloc (abfd, sz + 1);
4012 if (msg == NULL)
4013 goto error_return;
4014
4015 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4016 goto error_return;
4017
4018 msg[sz] = '\0';
4019
4020 if (! (_bfd_generic_link_add_one_symbol
4021 (info, abfd, name, BSF_WARNING, s, 0, msg,
4022 FALSE, bed->collect, NULL)))
4023 goto error_return;
4024
4025 if (bfd_link_executable (info))
4026 {
4027 /* Clobber the section size so that the warning does
4028 not get copied into the output file. */
4029 s->size = 0;
4030
4031 /* Also set SEC_EXCLUDE, so that symbols defined in
4032 the warning section don't get copied to the output. */
4033 s->flags |= SEC_EXCLUDE;
4034 }
4035 }
4036 }
4037
4038 just_syms = ((s = abfd->sections) != NULL
4039 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4040
4041 add_needed = TRUE;
4042 if (! dynamic)
4043 {
4044 /* If we are creating a shared library, create all the dynamic
4045 sections immediately. We need to attach them to something,
4046 so we attach them to this BFD, provided it is the right
4047 format and is not from ld --just-symbols. Always create the
4048 dynamic sections for -E/--dynamic-list. FIXME: If there
4049 are no input BFD's of the same format as the output, we can't
4050 make a shared library. */
4051 if (!just_syms
4052 && (bfd_link_pic (info)
4053 || (!bfd_link_relocatable (info)
4054 && info->nointerp
4055 && (info->export_dynamic || info->dynamic)))
4056 && is_elf_hash_table (htab)
4057 && info->output_bfd->xvec == abfd->xvec
4058 && !htab->dynamic_sections_created)
4059 {
4060 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4061 goto error_return;
4062 }
4063 }
4064 else if (!is_elf_hash_table (htab))
4065 goto error_return;
4066 else
4067 {
4068 const char *soname = NULL;
4069 char *audit = NULL;
4070 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4071 const Elf_Internal_Phdr *phdr;
4072 int ret;
4073
4074 /* ld --just-symbols and dynamic objects don't mix very well.
4075 ld shouldn't allow it. */
4076 if (just_syms)
4077 abort ();
4078
4079 /* If this dynamic lib was specified on the command line with
4080 --as-needed in effect, then we don't want to add a DT_NEEDED
4081 tag unless the lib is actually used. Similary for libs brought
4082 in by another lib's DT_NEEDED. When --no-add-needed is used
4083 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4084 any dynamic library in DT_NEEDED tags in the dynamic lib at
4085 all. */
4086 add_needed = (elf_dyn_lib_class (abfd)
4087 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4088 | DYN_NO_NEEDED)) == 0;
4089
4090 s = bfd_get_section_by_name (abfd, ".dynamic");
4091 if (s != NULL)
4092 {
4093 bfd_byte *dynbuf;
4094 bfd_byte *extdyn;
4095 unsigned int elfsec;
4096 unsigned long shlink;
4097
4098 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4099 {
4100 error_free_dyn:
4101 free (dynbuf);
4102 goto error_return;
4103 }
4104
4105 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4106 if (elfsec == SHN_BAD)
4107 goto error_free_dyn;
4108 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4109
4110 for (extdyn = dynbuf;
4111 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4112 extdyn += bed->s->sizeof_dyn)
4113 {
4114 Elf_Internal_Dyn dyn;
4115
4116 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4117 if (dyn.d_tag == DT_SONAME)
4118 {
4119 unsigned int tagv = dyn.d_un.d_val;
4120 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4121 if (soname == NULL)
4122 goto error_free_dyn;
4123 }
4124 if (dyn.d_tag == DT_NEEDED)
4125 {
4126 struct bfd_link_needed_list *n, **pn;
4127 char *fnm, *anm;
4128 unsigned int tagv = dyn.d_un.d_val;
4129 size_t amt = sizeof (struct bfd_link_needed_list);
4130
4131 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4132 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4133 if (n == NULL || fnm == NULL)
4134 goto error_free_dyn;
4135 amt = strlen (fnm) + 1;
4136 anm = (char *) bfd_alloc (abfd, amt);
4137 if (anm == NULL)
4138 goto error_free_dyn;
4139 memcpy (anm, fnm, amt);
4140 n->name = anm;
4141 n->by = abfd;
4142 n->next = NULL;
4143 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4144 ;
4145 *pn = n;
4146 }
4147 if (dyn.d_tag == DT_RUNPATH)
4148 {
4149 struct bfd_link_needed_list *n, **pn;
4150 char *fnm, *anm;
4151 unsigned int tagv = dyn.d_un.d_val;
4152 size_t amt = sizeof (struct bfd_link_needed_list);
4153
4154 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4155 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4156 if (n == NULL || fnm == NULL)
4157 goto error_free_dyn;
4158 amt = strlen (fnm) + 1;
4159 anm = (char *) bfd_alloc (abfd, amt);
4160 if (anm == NULL)
4161 goto error_free_dyn;
4162 memcpy (anm, fnm, amt);
4163 n->name = anm;
4164 n->by = abfd;
4165 n->next = NULL;
4166 for (pn = & runpath;
4167 *pn != NULL;
4168 pn = &(*pn)->next)
4169 ;
4170 *pn = n;
4171 }
4172 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4173 if (!runpath && dyn.d_tag == DT_RPATH)
4174 {
4175 struct bfd_link_needed_list *n, **pn;
4176 char *fnm, *anm;
4177 unsigned int tagv = dyn.d_un.d_val;
4178 size_t amt = sizeof (struct bfd_link_needed_list);
4179
4180 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4181 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4182 if (n == NULL || fnm == NULL)
4183 goto error_free_dyn;
4184 amt = strlen (fnm) + 1;
4185 anm = (char *) bfd_alloc (abfd, amt);
4186 if (anm == NULL)
4187 goto error_free_dyn;
4188 memcpy (anm, fnm, amt);
4189 n->name = anm;
4190 n->by = abfd;
4191 n->next = NULL;
4192 for (pn = & rpath;
4193 *pn != NULL;
4194 pn = &(*pn)->next)
4195 ;
4196 *pn = n;
4197 }
4198 if (dyn.d_tag == DT_AUDIT)
4199 {
4200 unsigned int tagv = dyn.d_un.d_val;
4201 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4202 }
4203 }
4204
4205 free (dynbuf);
4206 }
4207
4208 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4209 frees all more recently bfd_alloc'd blocks as well. */
4210 if (runpath)
4211 rpath = runpath;
4212
4213 if (rpath)
4214 {
4215 struct bfd_link_needed_list **pn;
4216 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4217 ;
4218 *pn = rpath;
4219 }
4220
4221 /* If we have a PT_GNU_RELRO program header, mark as read-only
4222 all sections contained fully therein. This makes relro
4223 shared library sections appear as they will at run-time. */
4224 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4225 while (phdr-- > elf_tdata (abfd)->phdr)
4226 if (phdr->p_type == PT_GNU_RELRO)
4227 {
4228 for (s = abfd->sections; s != NULL; s = s->next)
4229 if ((s->flags & SEC_ALLOC) != 0
4230 && s->vma >= phdr->p_vaddr
4231 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4232 s->flags |= SEC_READONLY;
4233 break;
4234 }
4235
4236 /* We do not want to include any of the sections in a dynamic
4237 object in the output file. We hack by simply clobbering the
4238 list of sections in the BFD. This could be handled more
4239 cleanly by, say, a new section flag; the existing
4240 SEC_NEVER_LOAD flag is not the one we want, because that one
4241 still implies that the section takes up space in the output
4242 file. */
4243 bfd_section_list_clear (abfd);
4244
4245 /* Find the name to use in a DT_NEEDED entry that refers to this
4246 object. If the object has a DT_SONAME entry, we use it.
4247 Otherwise, if the generic linker stuck something in
4248 elf_dt_name, we use that. Otherwise, we just use the file
4249 name. */
4250 if (soname == NULL || *soname == '\0')
4251 {
4252 soname = elf_dt_name (abfd);
4253 if (soname == NULL || *soname == '\0')
4254 soname = bfd_get_filename (abfd);
4255 }
4256
4257 /* Save the SONAME because sometimes the linker emulation code
4258 will need to know it. */
4259 elf_dt_name (abfd) = soname;
4260
4261 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4262 if (ret < 0)
4263 goto error_return;
4264
4265 /* If we have already included this dynamic object in the
4266 link, just ignore it. There is no reason to include a
4267 particular dynamic object more than once. */
4268 if (ret > 0)
4269 return TRUE;
4270
4271 /* Save the DT_AUDIT entry for the linker emulation code. */
4272 elf_dt_audit (abfd) = audit;
4273 }
4274
4275 /* If this is a dynamic object, we always link against the .dynsym
4276 symbol table, not the .symtab symbol table. The dynamic linker
4277 will only see the .dynsym symbol table, so there is no reason to
4278 look at .symtab for a dynamic object. */
4279
4280 if (! dynamic || elf_dynsymtab (abfd) == 0)
4281 hdr = &elf_tdata (abfd)->symtab_hdr;
4282 else
4283 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4284
4285 symcount = hdr->sh_size / bed->s->sizeof_sym;
4286
4287 /* The sh_info field of the symtab header tells us where the
4288 external symbols start. We don't care about the local symbols at
4289 this point. */
4290 if (elf_bad_symtab (abfd))
4291 {
4292 extsymcount = symcount;
4293 extsymoff = 0;
4294 }
4295 else
4296 {
4297 extsymcount = symcount - hdr->sh_info;
4298 extsymoff = hdr->sh_info;
4299 }
4300
4301 sym_hash = elf_sym_hashes (abfd);
4302 if (extsymcount != 0)
4303 {
4304 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4305 NULL, NULL, NULL);
4306 if (isymbuf == NULL)
4307 goto error_return;
4308
4309 if (sym_hash == NULL)
4310 {
4311 /* We store a pointer to the hash table entry for each
4312 external symbol. */
4313 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4314 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4315 if (sym_hash == NULL)
4316 goto error_free_sym;
4317 elf_sym_hashes (abfd) = sym_hash;
4318 }
4319 }
4320
4321 if (dynamic)
4322 {
4323 /* Read in any version definitions. */
4324 if (!_bfd_elf_slurp_version_tables (abfd,
4325 info->default_imported_symver))
4326 goto error_free_sym;
4327
4328 /* Read in the symbol versions, but don't bother to convert them
4329 to internal format. */
4330 if (elf_dynversym (abfd) != 0)
4331 {
4332 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4333 bfd_size_type amt = versymhdr->sh_size;
4334
4335 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4336 goto error_free_sym;
4337 extversym = (Elf_External_Versym *)
4338 _bfd_malloc_and_read (abfd, amt, amt);
4339 if (extversym == NULL)
4340 goto error_free_sym;
4341 extversym_end = extversym + amt / sizeof (*extversym);
4342 }
4343 }
4344
4345 /* If we are loading an as-needed shared lib, save the symbol table
4346 state before we start adding symbols. If the lib turns out
4347 to be unneeded, restore the state. */
4348 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4349 {
4350 unsigned int i;
4351 size_t entsize;
4352
4353 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4354 {
4355 struct bfd_hash_entry *p;
4356 struct elf_link_hash_entry *h;
4357
4358 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4359 {
4360 h = (struct elf_link_hash_entry *) p;
4361 entsize += htab->root.table.entsize;
4362 if (h->root.type == bfd_link_hash_warning)
4363 entsize += htab->root.table.entsize;
4364 }
4365 }
4366
4367 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4368 old_tab = bfd_malloc (tabsize + entsize);
4369 if (old_tab == NULL)
4370 goto error_free_vers;
4371
4372 /* Remember the current objalloc pointer, so that all mem for
4373 symbols added can later be reclaimed. */
4374 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4375 if (alloc_mark == NULL)
4376 goto error_free_vers;
4377
4378 /* Make a special call to the linker "notice" function to
4379 tell it that we are about to handle an as-needed lib. */
4380 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4381 goto error_free_vers;
4382
4383 /* Clone the symbol table. Remember some pointers into the
4384 symbol table, and dynamic symbol count. */
4385 old_ent = (char *) old_tab + tabsize;
4386 memcpy (old_tab, htab->root.table.table, tabsize);
4387 old_undefs = htab->root.undefs;
4388 old_undefs_tail = htab->root.undefs_tail;
4389 old_table = htab->root.table.table;
4390 old_size = htab->root.table.size;
4391 old_count = htab->root.table.count;
4392 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4393 if (old_strtab == NULL)
4394 goto error_free_vers;
4395
4396 for (i = 0; i < htab->root.table.size; i++)
4397 {
4398 struct bfd_hash_entry *p;
4399 struct elf_link_hash_entry *h;
4400
4401 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4402 {
4403 memcpy (old_ent, p, htab->root.table.entsize);
4404 old_ent = (char *) old_ent + htab->root.table.entsize;
4405 h = (struct elf_link_hash_entry *) p;
4406 if (h->root.type == bfd_link_hash_warning)
4407 {
4408 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4409 old_ent = (char *) old_ent + htab->root.table.entsize;
4410 }
4411 }
4412 }
4413 }
4414
4415 weaks = NULL;
4416 if (extversym == NULL)
4417 ever = NULL;
4418 else if (extversym + extsymoff < extversym_end)
4419 ever = extversym + extsymoff;
4420 else
4421 {
4422 /* xgettext:c-format */
4423 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4424 abfd, (long) extsymoff,
4425 (long) (extversym_end - extversym) / sizeof (* extversym));
4426 bfd_set_error (bfd_error_bad_value);
4427 goto error_free_vers;
4428 }
4429
4430 if (!bfd_link_relocatable (info)
4431 && abfd->lto_slim_object)
4432 {
4433 _bfd_error_handler
4434 (_("%pB: plugin needed to handle lto object"), abfd);
4435 }
4436
4437 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4438 isym < isymend;
4439 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4440 {
4441 int bind;
4442 bfd_vma value;
4443 asection *sec, *new_sec;
4444 flagword flags;
4445 const char *name;
4446 struct elf_link_hash_entry *h;
4447 struct elf_link_hash_entry *hi;
4448 bfd_boolean definition;
4449 bfd_boolean size_change_ok;
4450 bfd_boolean type_change_ok;
4451 bfd_boolean new_weak;
4452 bfd_boolean old_weak;
4453 bfd_boolean override;
4454 bfd_boolean common;
4455 bfd_boolean discarded;
4456 unsigned int old_alignment;
4457 unsigned int shindex;
4458 bfd *old_bfd;
4459 bfd_boolean matched;
4460
4461 override = FALSE;
4462
4463 flags = BSF_NO_FLAGS;
4464 sec = NULL;
4465 value = isym->st_value;
4466 common = bed->common_definition (isym);
4467 if (common && info->inhibit_common_definition)
4468 {
4469 /* Treat common symbol as undefined for --no-define-common. */
4470 isym->st_shndx = SHN_UNDEF;
4471 common = FALSE;
4472 }
4473 discarded = FALSE;
4474
4475 bind = ELF_ST_BIND (isym->st_info);
4476 switch (bind)
4477 {
4478 case STB_LOCAL:
4479 /* This should be impossible, since ELF requires that all
4480 global symbols follow all local symbols, and that sh_info
4481 point to the first global symbol. Unfortunately, Irix 5
4482 screws this up. */
4483 if (elf_bad_symtab (abfd))
4484 continue;
4485
4486 /* If we aren't prepared to handle locals within the globals
4487 then we'll likely segfault on a NULL symbol hash if the
4488 symbol is ever referenced in relocations. */
4489 shindex = elf_elfheader (abfd)->e_shstrndx;
4490 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4491 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4492 " (>= sh_info of %lu)"),
4493 abfd, name, (long) (isym - isymbuf + extsymoff),
4494 (long) extsymoff);
4495
4496 /* Dynamic object relocations are not processed by ld, so
4497 ld won't run into the problem mentioned above. */
4498 if (dynamic)
4499 continue;
4500 bfd_set_error (bfd_error_bad_value);
4501 goto error_free_vers;
4502
4503 case STB_GLOBAL:
4504 if (isym->st_shndx != SHN_UNDEF && !common)
4505 flags = BSF_GLOBAL;
4506 break;
4507
4508 case STB_WEAK:
4509 flags = BSF_WEAK;
4510 break;
4511
4512 case STB_GNU_UNIQUE:
4513 flags = BSF_GNU_UNIQUE;
4514 break;
4515
4516 default:
4517 /* Leave it up to the processor backend. */
4518 break;
4519 }
4520
4521 if (isym->st_shndx == SHN_UNDEF)
4522 sec = bfd_und_section_ptr;
4523 else if (isym->st_shndx == SHN_ABS)
4524 sec = bfd_abs_section_ptr;
4525 else if (isym->st_shndx == SHN_COMMON)
4526 {
4527 sec = bfd_com_section_ptr;
4528 /* What ELF calls the size we call the value. What ELF
4529 calls the value we call the alignment. */
4530 value = isym->st_size;
4531 }
4532 else
4533 {
4534 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4535 if (sec == NULL)
4536 sec = bfd_abs_section_ptr;
4537 else if (discarded_section (sec))
4538 {
4539 /* Symbols from discarded section are undefined. We keep
4540 its visibility. */
4541 sec = bfd_und_section_ptr;
4542 discarded = TRUE;
4543 isym->st_shndx = SHN_UNDEF;
4544 }
4545 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4546 value -= sec->vma;
4547 }
4548
4549 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4550 isym->st_name);
4551 if (name == NULL)
4552 goto error_free_vers;
4553
4554 if (isym->st_shndx == SHN_COMMON
4555 && (abfd->flags & BFD_PLUGIN) != 0)
4556 {
4557 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4558
4559 if (xc == NULL)
4560 {
4561 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4562 | SEC_EXCLUDE);
4563 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4564 if (xc == NULL)
4565 goto error_free_vers;
4566 }
4567 sec = xc;
4568 }
4569 else if (isym->st_shndx == SHN_COMMON
4570 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4571 && !bfd_link_relocatable (info))
4572 {
4573 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4574
4575 if (tcomm == NULL)
4576 {
4577 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4578 | SEC_LINKER_CREATED);
4579 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4580 if (tcomm == NULL)
4581 goto error_free_vers;
4582 }
4583 sec = tcomm;
4584 }
4585 else if (bed->elf_add_symbol_hook)
4586 {
4587 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4588 &sec, &value))
4589 goto error_free_vers;
4590
4591 /* The hook function sets the name to NULL if this symbol
4592 should be skipped for some reason. */
4593 if (name == NULL)
4594 continue;
4595 }
4596
4597 /* Sanity check that all possibilities were handled. */
4598 if (sec == NULL)
4599 abort ();
4600
4601 /* Silently discard TLS symbols from --just-syms. There's
4602 no way to combine a static TLS block with a new TLS block
4603 for this executable. */
4604 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4605 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4606 continue;
4607
4608 if (bfd_is_und_section (sec)
4609 || bfd_is_com_section (sec))
4610 definition = FALSE;
4611 else
4612 definition = TRUE;
4613
4614 size_change_ok = FALSE;
4615 type_change_ok = bed->type_change_ok;
4616 old_weak = FALSE;
4617 matched = FALSE;
4618 old_alignment = 0;
4619 old_bfd = NULL;
4620 new_sec = sec;
4621
4622 if (is_elf_hash_table (htab))
4623 {
4624 Elf_Internal_Versym iver;
4625 unsigned int vernum = 0;
4626 bfd_boolean skip;
4627
4628 if (ever == NULL)
4629 {
4630 if (info->default_imported_symver)
4631 /* Use the default symbol version created earlier. */
4632 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4633 else
4634 iver.vs_vers = 0;
4635 }
4636 else if (ever >= extversym_end)
4637 {
4638 /* xgettext:c-format */
4639 _bfd_error_handler (_("%pB: not enough version information"),
4640 abfd);
4641 bfd_set_error (bfd_error_bad_value);
4642 goto error_free_vers;
4643 }
4644 else
4645 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4646
4647 vernum = iver.vs_vers & VERSYM_VERSION;
4648
4649 /* If this is a hidden symbol, or if it is not version
4650 1, we append the version name to the symbol name.
4651 However, we do not modify a non-hidden absolute symbol
4652 if it is not a function, because it might be the version
4653 symbol itself. FIXME: What if it isn't? */
4654 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4655 || (vernum > 1
4656 && (!bfd_is_abs_section (sec)
4657 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4658 {
4659 const char *verstr;
4660 size_t namelen, verlen, newlen;
4661 char *newname, *p;
4662
4663 if (isym->st_shndx != SHN_UNDEF)
4664 {
4665 if (vernum > elf_tdata (abfd)->cverdefs)
4666 verstr = NULL;
4667 else if (vernum > 1)
4668 verstr =
4669 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4670 else
4671 verstr = "";
4672
4673 if (verstr == NULL)
4674 {
4675 _bfd_error_handler
4676 /* xgettext:c-format */
4677 (_("%pB: %s: invalid version %u (max %d)"),
4678 abfd, name, vernum,
4679 elf_tdata (abfd)->cverdefs);
4680 bfd_set_error (bfd_error_bad_value);
4681 goto error_free_vers;
4682 }
4683 }
4684 else
4685 {
4686 /* We cannot simply test for the number of
4687 entries in the VERNEED section since the
4688 numbers for the needed versions do not start
4689 at 0. */
4690 Elf_Internal_Verneed *t;
4691
4692 verstr = NULL;
4693 for (t = elf_tdata (abfd)->verref;
4694 t != NULL;
4695 t = t->vn_nextref)
4696 {
4697 Elf_Internal_Vernaux *a;
4698
4699 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4700 {
4701 if (a->vna_other == vernum)
4702 {
4703 verstr = a->vna_nodename;
4704 break;
4705 }
4706 }
4707 if (a != NULL)
4708 break;
4709 }
4710 if (verstr == NULL)
4711 {
4712 _bfd_error_handler
4713 /* xgettext:c-format */
4714 (_("%pB: %s: invalid needed version %d"),
4715 abfd, name, vernum);
4716 bfd_set_error (bfd_error_bad_value);
4717 goto error_free_vers;
4718 }
4719 }
4720
4721 namelen = strlen (name);
4722 verlen = strlen (verstr);
4723 newlen = namelen + verlen + 2;
4724 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4725 && isym->st_shndx != SHN_UNDEF)
4726 ++newlen;
4727
4728 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4729 if (newname == NULL)
4730 goto error_free_vers;
4731 memcpy (newname, name, namelen);
4732 p = newname + namelen;
4733 *p++ = ELF_VER_CHR;
4734 /* If this is a defined non-hidden version symbol,
4735 we add another @ to the name. This indicates the
4736 default version of the symbol. */
4737 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4738 && isym->st_shndx != SHN_UNDEF)
4739 *p++ = ELF_VER_CHR;
4740 memcpy (p, verstr, verlen + 1);
4741
4742 name = newname;
4743 }
4744
4745 /* If this symbol has default visibility and the user has
4746 requested we not re-export it, then mark it as hidden. */
4747 if (!bfd_is_und_section (sec)
4748 && !dynamic
4749 && abfd->no_export
4750 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4751 isym->st_other = (STV_HIDDEN
4752 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4753
4754 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4755 sym_hash, &old_bfd, &old_weak,
4756 &old_alignment, &skip, &override,
4757 &type_change_ok, &size_change_ok,
4758 &matched))
4759 goto error_free_vers;
4760
4761 if (skip)
4762 continue;
4763
4764 /* Override a definition only if the new symbol matches the
4765 existing one. */
4766 if (override && matched)
4767 definition = FALSE;
4768
4769 h = *sym_hash;
4770 while (h->root.type == bfd_link_hash_indirect
4771 || h->root.type == bfd_link_hash_warning)
4772 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4773
4774 if (elf_tdata (abfd)->verdef != NULL
4775 && vernum > 1
4776 && definition)
4777 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4778 }
4779
4780 if (! (_bfd_generic_link_add_one_symbol
4781 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4782 (struct bfd_link_hash_entry **) sym_hash)))
4783 goto error_free_vers;
4784
4785 h = *sym_hash;
4786 /* We need to make sure that indirect symbol dynamic flags are
4787 updated. */
4788 hi = h;
4789 while (h->root.type == bfd_link_hash_indirect
4790 || h->root.type == bfd_link_hash_warning)
4791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4792
4793 /* Setting the index to -3 tells elf_link_output_extsym that
4794 this symbol is defined in a discarded section. */
4795 if (discarded)
4796 h->indx = -3;
4797
4798 *sym_hash = h;
4799
4800 new_weak = (flags & BSF_WEAK) != 0;
4801 if (dynamic
4802 && definition
4803 && new_weak
4804 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4805 && is_elf_hash_table (htab)
4806 && h->u.alias == NULL)
4807 {
4808 /* Keep a list of all weak defined non function symbols from
4809 a dynamic object, using the alias field. Later in this
4810 function we will set the alias field to the correct
4811 value. We only put non-function symbols from dynamic
4812 objects on this list, because that happens to be the only
4813 time we need to know the normal symbol corresponding to a
4814 weak symbol, and the information is time consuming to
4815 figure out. If the alias field is not already NULL,
4816 then this symbol was already defined by some previous
4817 dynamic object, and we will be using that previous
4818 definition anyhow. */
4819
4820 h->u.alias = weaks;
4821 weaks = h;
4822 }
4823
4824 /* Set the alignment of a common symbol. */
4825 if ((common || bfd_is_com_section (sec))
4826 && h->root.type == bfd_link_hash_common)
4827 {
4828 unsigned int align;
4829
4830 if (common)
4831 align = bfd_log2 (isym->st_value);
4832 else
4833 {
4834 /* The new symbol is a common symbol in a shared object.
4835 We need to get the alignment from the section. */
4836 align = new_sec->alignment_power;
4837 }
4838 if (align > old_alignment)
4839 h->root.u.c.p->alignment_power = align;
4840 else
4841 h->root.u.c.p->alignment_power = old_alignment;
4842 }
4843
4844 if (is_elf_hash_table (htab))
4845 {
4846 /* Set a flag in the hash table entry indicating the type of
4847 reference or definition we just found. A dynamic symbol
4848 is one which is referenced or defined by both a regular
4849 object and a shared object. */
4850 bfd_boolean dynsym = FALSE;
4851
4852 /* Plugin symbols aren't normal. Don't set def_regular or
4853 ref_regular for them, or make them dynamic. */
4854 if ((abfd->flags & BFD_PLUGIN) != 0)
4855 ;
4856 else if (! dynamic)
4857 {
4858 if (! definition)
4859 {
4860 h->ref_regular = 1;
4861 if (bind != STB_WEAK)
4862 h->ref_regular_nonweak = 1;
4863 }
4864 else
4865 {
4866 h->def_regular = 1;
4867 if (h->def_dynamic)
4868 {
4869 h->def_dynamic = 0;
4870 h->ref_dynamic = 1;
4871 }
4872 }
4873
4874 /* If the indirect symbol has been forced local, don't
4875 make the real symbol dynamic. */
4876 if ((h == hi || !hi->forced_local)
4877 && (bfd_link_dll (info)
4878 || h->def_dynamic
4879 || h->ref_dynamic))
4880 dynsym = TRUE;
4881 }
4882 else
4883 {
4884 if (! definition)
4885 {
4886 h->ref_dynamic = 1;
4887 hi->ref_dynamic = 1;
4888 }
4889 else
4890 {
4891 h->def_dynamic = 1;
4892 hi->def_dynamic = 1;
4893 }
4894
4895 /* If the indirect symbol has been forced local, don't
4896 make the real symbol dynamic. */
4897 if ((h == hi || !hi->forced_local)
4898 && (h->def_regular
4899 || h->ref_regular
4900 || (h->is_weakalias
4901 && weakdef (h)->dynindx != -1)))
4902 dynsym = TRUE;
4903 }
4904
4905 /* Check to see if we need to add an indirect symbol for
4906 the default name. */
4907 if (definition
4908 || (!override && h->root.type == bfd_link_hash_common))
4909 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4910 sec, value, &old_bfd, &dynsym))
4911 goto error_free_vers;
4912
4913 /* Check the alignment when a common symbol is involved. This
4914 can change when a common symbol is overridden by a normal
4915 definition or a common symbol is ignored due to the old
4916 normal definition. We need to make sure the maximum
4917 alignment is maintained. */
4918 if ((old_alignment || common)
4919 && h->root.type != bfd_link_hash_common)
4920 {
4921 unsigned int common_align;
4922 unsigned int normal_align;
4923 unsigned int symbol_align;
4924 bfd *normal_bfd;
4925 bfd *common_bfd;
4926
4927 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4928 || h->root.type == bfd_link_hash_defweak);
4929
4930 symbol_align = ffs (h->root.u.def.value) - 1;
4931 if (h->root.u.def.section->owner != NULL
4932 && (h->root.u.def.section->owner->flags
4933 & (DYNAMIC | BFD_PLUGIN)) == 0)
4934 {
4935 normal_align = h->root.u.def.section->alignment_power;
4936 if (normal_align > symbol_align)
4937 normal_align = symbol_align;
4938 }
4939 else
4940 normal_align = symbol_align;
4941
4942 if (old_alignment)
4943 {
4944 common_align = old_alignment;
4945 common_bfd = old_bfd;
4946 normal_bfd = abfd;
4947 }
4948 else
4949 {
4950 common_align = bfd_log2 (isym->st_value);
4951 common_bfd = abfd;
4952 normal_bfd = old_bfd;
4953 }
4954
4955 if (normal_align < common_align)
4956 {
4957 /* PR binutils/2735 */
4958 if (normal_bfd == NULL)
4959 _bfd_error_handler
4960 /* xgettext:c-format */
4961 (_("warning: alignment %u of common symbol `%s' in %pB is"
4962 " greater than the alignment (%u) of its section %pA"),
4963 1 << common_align, name, common_bfd,
4964 1 << normal_align, h->root.u.def.section);
4965 else
4966 _bfd_error_handler
4967 /* xgettext:c-format */
4968 (_("warning: alignment %u of symbol `%s' in %pB"
4969 " is smaller than %u in %pB"),
4970 1 << normal_align, name, normal_bfd,
4971 1 << common_align, common_bfd);
4972 }
4973 }
4974
4975 /* Remember the symbol size if it isn't undefined. */
4976 if (isym->st_size != 0
4977 && isym->st_shndx != SHN_UNDEF
4978 && (definition || h->size == 0))
4979 {
4980 if (h->size != 0
4981 && h->size != isym->st_size
4982 && ! size_change_ok)
4983 _bfd_error_handler
4984 /* xgettext:c-format */
4985 (_("warning: size of symbol `%s' changed"
4986 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4987 name, (uint64_t) h->size, old_bfd,
4988 (uint64_t) isym->st_size, abfd);
4989
4990 h->size = isym->st_size;
4991 }
4992
4993 /* If this is a common symbol, then we always want H->SIZE
4994 to be the size of the common symbol. The code just above
4995 won't fix the size if a common symbol becomes larger. We
4996 don't warn about a size change here, because that is
4997 covered by --warn-common. Allow changes between different
4998 function types. */
4999 if (h->root.type == bfd_link_hash_common)
5000 h->size = h->root.u.c.size;
5001
5002 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5003 && ((definition && !new_weak)
5004 || (old_weak && h->root.type == bfd_link_hash_common)
5005 || h->type == STT_NOTYPE))
5006 {
5007 unsigned int type = ELF_ST_TYPE (isym->st_info);
5008
5009 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5010 symbol. */
5011 if (type == STT_GNU_IFUNC
5012 && (abfd->flags & DYNAMIC) != 0)
5013 type = STT_FUNC;
5014
5015 if (h->type != type)
5016 {
5017 if (h->type != STT_NOTYPE && ! type_change_ok)
5018 /* xgettext:c-format */
5019 _bfd_error_handler
5020 (_("warning: type of symbol `%s' changed"
5021 " from %d to %d in %pB"),
5022 name, h->type, type, abfd);
5023
5024 h->type = type;
5025 }
5026 }
5027
5028 /* Merge st_other field. */
5029 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5030
5031 /* We don't want to make debug symbol dynamic. */
5032 if (definition
5033 && (sec->flags & SEC_DEBUGGING)
5034 && !bfd_link_relocatable (info))
5035 dynsym = FALSE;
5036
5037 /* Nor should we make plugin symbols dynamic. */
5038 if ((abfd->flags & BFD_PLUGIN) != 0)
5039 dynsym = FALSE;
5040
5041 if (definition)
5042 {
5043 h->target_internal = isym->st_target_internal;
5044 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5045 }
5046
5047 if (definition && !dynamic)
5048 {
5049 char *p = strchr (name, ELF_VER_CHR);
5050 if (p != NULL && p[1] != ELF_VER_CHR)
5051 {
5052 /* Queue non-default versions so that .symver x, x@FOO
5053 aliases can be checked. */
5054 if (!nondeflt_vers)
5055 {
5056 size_t amt = ((isymend - isym + 1)
5057 * sizeof (struct elf_link_hash_entry *));
5058 nondeflt_vers
5059 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5060 if (!nondeflt_vers)
5061 goto error_free_vers;
5062 }
5063 nondeflt_vers[nondeflt_vers_cnt++] = h;
5064 }
5065 }
5066
5067 if (dynsym && h->dynindx == -1)
5068 {
5069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5070 goto error_free_vers;
5071 if (h->is_weakalias
5072 && weakdef (h)->dynindx == -1)
5073 {
5074 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5075 goto error_free_vers;
5076 }
5077 }
5078 else if (h->dynindx != -1)
5079 /* If the symbol already has a dynamic index, but
5080 visibility says it should not be visible, turn it into
5081 a local symbol. */
5082 switch (ELF_ST_VISIBILITY (h->other))
5083 {
5084 case STV_INTERNAL:
5085 case STV_HIDDEN:
5086 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5087 dynsym = FALSE;
5088 break;
5089 }
5090
5091 /* Don't add DT_NEEDED for references from the dummy bfd nor
5092 for unmatched symbol. */
5093 if (!add_needed
5094 && matched
5095 && definition
5096 && ((dynsym
5097 && h->ref_regular_nonweak
5098 && (old_bfd == NULL
5099 || (old_bfd->flags & BFD_PLUGIN) == 0))
5100 || (h->ref_dynamic_nonweak
5101 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5102 && !on_needed_list (elf_dt_name (abfd),
5103 htab->needed, NULL))))
5104 {
5105 int ret;
5106 const char *soname = elf_dt_name (abfd);
5107
5108 info->callbacks->minfo ("%!", soname, old_bfd,
5109 h->root.root.string);
5110
5111 /* A symbol from a library loaded via DT_NEEDED of some
5112 other library is referenced by a regular object.
5113 Add a DT_NEEDED entry for it. Issue an error if
5114 --no-add-needed is used and the reference was not
5115 a weak one. */
5116 if (old_bfd != NULL
5117 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5118 {
5119 _bfd_error_handler
5120 /* xgettext:c-format */
5121 (_("%pB: undefined reference to symbol '%s'"),
5122 old_bfd, name);
5123 bfd_set_error (bfd_error_missing_dso);
5124 goto error_free_vers;
5125 }
5126
5127 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5128 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5129
5130 add_needed = TRUE;
5131 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5132 if (ret < 0)
5133 goto error_free_vers;
5134
5135 BFD_ASSERT (ret == 0);
5136 }
5137 }
5138 }
5139
5140 if (info->lto_plugin_active
5141 && !bfd_link_relocatable (info)
5142 && (abfd->flags & BFD_PLUGIN) == 0
5143 && !just_syms
5144 && extsymcount)
5145 {
5146 int r_sym_shift;
5147
5148 if (bed->s->arch_size == 32)
5149 r_sym_shift = 8;
5150 else
5151 r_sym_shift = 32;
5152
5153 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5154 referenced in regular objects so that linker plugin will get
5155 the correct symbol resolution. */
5156
5157 sym_hash = elf_sym_hashes (abfd);
5158 for (s = abfd->sections; s != NULL; s = s->next)
5159 {
5160 Elf_Internal_Rela *internal_relocs;
5161 Elf_Internal_Rela *rel, *relend;
5162
5163 /* Don't check relocations in excluded sections. */
5164 if ((s->flags & SEC_RELOC) == 0
5165 || s->reloc_count == 0
5166 || (s->flags & SEC_EXCLUDE) != 0
5167 || ((info->strip == strip_all
5168 || info->strip == strip_debugger)
5169 && (s->flags & SEC_DEBUGGING) != 0))
5170 continue;
5171
5172 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5173 NULL,
5174 info->keep_memory);
5175 if (internal_relocs == NULL)
5176 goto error_free_vers;
5177
5178 rel = internal_relocs;
5179 relend = rel + s->reloc_count;
5180 for ( ; rel < relend; rel++)
5181 {
5182 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5183 struct elf_link_hash_entry *h;
5184
5185 /* Skip local symbols. */
5186 if (r_symndx < extsymoff)
5187 continue;
5188
5189 h = sym_hash[r_symndx - extsymoff];
5190 if (h != NULL)
5191 h->root.non_ir_ref_regular = 1;
5192 }
5193
5194 if (elf_section_data (s)->relocs != internal_relocs)
5195 free (internal_relocs);
5196 }
5197 }
5198
5199 if (extversym != NULL)
5200 {
5201 free (extversym);
5202 extversym = NULL;
5203 }
5204
5205 if (isymbuf != NULL)
5206 {
5207 free (isymbuf);
5208 isymbuf = NULL;
5209 }
5210
5211 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5212 {
5213 unsigned int i;
5214
5215 /* Restore the symbol table. */
5216 old_ent = (char *) old_tab + tabsize;
5217 memset (elf_sym_hashes (abfd), 0,
5218 extsymcount * sizeof (struct elf_link_hash_entry *));
5219 htab->root.table.table = old_table;
5220 htab->root.table.size = old_size;
5221 htab->root.table.count = old_count;
5222 memcpy (htab->root.table.table, old_tab, tabsize);
5223 htab->root.undefs = old_undefs;
5224 htab->root.undefs_tail = old_undefs_tail;
5225 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5226 free (old_strtab);
5227 old_strtab = NULL;
5228 for (i = 0; i < htab->root.table.size; i++)
5229 {
5230 struct bfd_hash_entry *p;
5231 struct elf_link_hash_entry *h;
5232 bfd_size_type size;
5233 unsigned int alignment_power;
5234 unsigned int non_ir_ref_dynamic;
5235
5236 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5237 {
5238 h = (struct elf_link_hash_entry *) p;
5239 if (h->root.type == bfd_link_hash_warning)
5240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5241
5242 /* Preserve the maximum alignment and size for common
5243 symbols even if this dynamic lib isn't on DT_NEEDED
5244 since it can still be loaded at run time by another
5245 dynamic lib. */
5246 if (h->root.type == bfd_link_hash_common)
5247 {
5248 size = h->root.u.c.size;
5249 alignment_power = h->root.u.c.p->alignment_power;
5250 }
5251 else
5252 {
5253 size = 0;
5254 alignment_power = 0;
5255 }
5256 /* Preserve non_ir_ref_dynamic so that this symbol
5257 will be exported when the dynamic lib becomes needed
5258 in the second pass. */
5259 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5260 memcpy (p, old_ent, htab->root.table.entsize);
5261 old_ent = (char *) old_ent + htab->root.table.entsize;
5262 h = (struct elf_link_hash_entry *) p;
5263 if (h->root.type == bfd_link_hash_warning)
5264 {
5265 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5266 old_ent = (char *) old_ent + htab->root.table.entsize;
5267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5268 }
5269 if (h->root.type == bfd_link_hash_common)
5270 {
5271 if (size > h->root.u.c.size)
5272 h->root.u.c.size = size;
5273 if (alignment_power > h->root.u.c.p->alignment_power)
5274 h->root.u.c.p->alignment_power = alignment_power;
5275 }
5276 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5277 }
5278 }
5279
5280 /* Make a special call to the linker "notice" function to
5281 tell it that symbols added for crefs may need to be removed. */
5282 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5283 goto error_free_vers;
5284
5285 free (old_tab);
5286 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5287 alloc_mark);
5288 if (nondeflt_vers != NULL)
5289 free (nondeflt_vers);
5290 return TRUE;
5291 }
5292
5293 if (old_tab != NULL)
5294 {
5295 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5296 goto error_free_vers;
5297 free (old_tab);
5298 old_tab = NULL;
5299 }
5300
5301 /* Now that all the symbols from this input file are created, if
5302 not performing a relocatable link, handle .symver foo, foo@BAR
5303 such that any relocs against foo become foo@BAR. */
5304 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5305 {
5306 size_t cnt, symidx;
5307
5308 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5309 {
5310 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5311 char *shortname, *p;
5312 size_t amt;
5313
5314 p = strchr (h->root.root.string, ELF_VER_CHR);
5315 if (p == NULL
5316 || (h->root.type != bfd_link_hash_defined
5317 && h->root.type != bfd_link_hash_defweak))
5318 continue;
5319
5320 amt = p - h->root.root.string;
5321 shortname = (char *) bfd_malloc (amt + 1);
5322 if (!shortname)
5323 goto error_free_vers;
5324 memcpy (shortname, h->root.root.string, amt);
5325 shortname[amt] = '\0';
5326
5327 hi = (struct elf_link_hash_entry *)
5328 bfd_link_hash_lookup (&htab->root, shortname,
5329 FALSE, FALSE, FALSE);
5330 if (hi != NULL
5331 && hi->root.type == h->root.type
5332 && hi->root.u.def.value == h->root.u.def.value
5333 && hi->root.u.def.section == h->root.u.def.section)
5334 {
5335 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5336 hi->root.type = bfd_link_hash_indirect;
5337 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5338 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5339 sym_hash = elf_sym_hashes (abfd);
5340 if (sym_hash)
5341 for (symidx = 0; symidx < extsymcount; ++symidx)
5342 if (sym_hash[symidx] == hi)
5343 {
5344 sym_hash[symidx] = h;
5345 break;
5346 }
5347 }
5348 free (shortname);
5349 }
5350 free (nondeflt_vers);
5351 nondeflt_vers = NULL;
5352 }
5353
5354 /* Now set the alias field correctly for all the weak defined
5355 symbols we found. The only way to do this is to search all the
5356 symbols. Since we only need the information for non functions in
5357 dynamic objects, that's the only time we actually put anything on
5358 the list WEAKS. We need this information so that if a regular
5359 object refers to a symbol defined weakly in a dynamic object, the
5360 real symbol in the dynamic object is also put in the dynamic
5361 symbols; we also must arrange for both symbols to point to the
5362 same memory location. We could handle the general case of symbol
5363 aliasing, but a general symbol alias can only be generated in
5364 assembler code, handling it correctly would be very time
5365 consuming, and other ELF linkers don't handle general aliasing
5366 either. */
5367 if (weaks != NULL)
5368 {
5369 struct elf_link_hash_entry **hpp;
5370 struct elf_link_hash_entry **hppend;
5371 struct elf_link_hash_entry **sorted_sym_hash;
5372 struct elf_link_hash_entry *h;
5373 size_t sym_count, amt;
5374
5375 /* Since we have to search the whole symbol list for each weak
5376 defined symbol, search time for N weak defined symbols will be
5377 O(N^2). Binary search will cut it down to O(NlogN). */
5378 amt = extsymcount * sizeof (*sorted_sym_hash);
5379 sorted_sym_hash = bfd_malloc (amt);
5380 if (sorted_sym_hash == NULL)
5381 goto error_return;
5382 sym_hash = sorted_sym_hash;
5383 hpp = elf_sym_hashes (abfd);
5384 hppend = hpp + extsymcount;
5385 sym_count = 0;
5386 for (; hpp < hppend; hpp++)
5387 {
5388 h = *hpp;
5389 if (h != NULL
5390 && h->root.type == bfd_link_hash_defined
5391 && !bed->is_function_type (h->type))
5392 {
5393 *sym_hash = h;
5394 sym_hash++;
5395 sym_count++;
5396 }
5397 }
5398
5399 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5400 elf_sort_symbol);
5401
5402 while (weaks != NULL)
5403 {
5404 struct elf_link_hash_entry *hlook;
5405 asection *slook;
5406 bfd_vma vlook;
5407 size_t i, j, idx = 0;
5408
5409 hlook = weaks;
5410 weaks = hlook->u.alias;
5411 hlook->u.alias = NULL;
5412
5413 if (hlook->root.type != bfd_link_hash_defined
5414 && hlook->root.type != bfd_link_hash_defweak)
5415 continue;
5416
5417 slook = hlook->root.u.def.section;
5418 vlook = hlook->root.u.def.value;
5419
5420 i = 0;
5421 j = sym_count;
5422 while (i != j)
5423 {
5424 bfd_signed_vma vdiff;
5425 idx = (i + j) / 2;
5426 h = sorted_sym_hash[idx];
5427 vdiff = vlook - h->root.u.def.value;
5428 if (vdiff < 0)
5429 j = idx;
5430 else if (vdiff > 0)
5431 i = idx + 1;
5432 else
5433 {
5434 int sdiff = slook->id - h->root.u.def.section->id;
5435 if (sdiff < 0)
5436 j = idx;
5437 else if (sdiff > 0)
5438 i = idx + 1;
5439 else
5440 break;
5441 }
5442 }
5443
5444 /* We didn't find a value/section match. */
5445 if (i == j)
5446 continue;
5447
5448 /* With multiple aliases, or when the weak symbol is already
5449 strongly defined, we have multiple matching symbols and
5450 the binary search above may land on any of them. Step
5451 one past the matching symbol(s). */
5452 while (++idx != j)
5453 {
5454 h = sorted_sym_hash[idx];
5455 if (h->root.u.def.section != slook
5456 || h->root.u.def.value != vlook)
5457 break;
5458 }
5459
5460 /* Now look back over the aliases. Since we sorted by size
5461 as well as value and section, we'll choose the one with
5462 the largest size. */
5463 while (idx-- != i)
5464 {
5465 h = sorted_sym_hash[idx];
5466
5467 /* Stop if value or section doesn't match. */
5468 if (h->root.u.def.section != slook
5469 || h->root.u.def.value != vlook)
5470 break;
5471 else if (h != hlook)
5472 {
5473 struct elf_link_hash_entry *t;
5474
5475 hlook->u.alias = h;
5476 hlook->is_weakalias = 1;
5477 t = h;
5478 if (t->u.alias != NULL)
5479 while (t->u.alias != h)
5480 t = t->u.alias;
5481 t->u.alias = hlook;
5482
5483 /* If the weak definition is in the list of dynamic
5484 symbols, make sure the real definition is put
5485 there as well. */
5486 if (hlook->dynindx != -1 && h->dynindx == -1)
5487 {
5488 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5489 {
5490 err_free_sym_hash:
5491 free (sorted_sym_hash);
5492 goto error_return;
5493 }
5494 }
5495
5496 /* If the real definition is in the list of dynamic
5497 symbols, make sure the weak definition is put
5498 there as well. If we don't do this, then the
5499 dynamic loader might not merge the entries for the
5500 real definition and the weak definition. */
5501 if (h->dynindx != -1 && hlook->dynindx == -1)
5502 {
5503 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5504 goto err_free_sym_hash;
5505 }
5506 break;
5507 }
5508 }
5509 }
5510
5511 free (sorted_sym_hash);
5512 }
5513
5514 if (bed->check_directives
5515 && !(*bed->check_directives) (abfd, info))
5516 return FALSE;
5517
5518 /* If this is a non-traditional link, try to optimize the handling
5519 of the .stab/.stabstr sections. */
5520 if (! dynamic
5521 && ! info->traditional_format
5522 && is_elf_hash_table (htab)
5523 && (info->strip != strip_all && info->strip != strip_debugger))
5524 {
5525 asection *stabstr;
5526
5527 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5528 if (stabstr != NULL)
5529 {
5530 bfd_size_type string_offset = 0;
5531 asection *stab;
5532
5533 for (stab = abfd->sections; stab; stab = stab->next)
5534 if (CONST_STRNEQ (stab->name, ".stab")
5535 && (!stab->name[5] ||
5536 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5537 && (stab->flags & SEC_MERGE) == 0
5538 && !bfd_is_abs_section (stab->output_section))
5539 {
5540 struct bfd_elf_section_data *secdata;
5541
5542 secdata = elf_section_data (stab);
5543 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5544 stabstr, &secdata->sec_info,
5545 &string_offset))
5546 goto error_return;
5547 if (secdata->sec_info)
5548 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5549 }
5550 }
5551 }
5552
5553 if (is_elf_hash_table (htab) && add_needed)
5554 {
5555 /* Add this bfd to the loaded list. */
5556 struct elf_link_loaded_list *n;
5557
5558 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5559 if (n == NULL)
5560 goto error_return;
5561 n->abfd = abfd;
5562 n->next = htab->loaded;
5563 htab->loaded = n;
5564 }
5565
5566 return TRUE;
5567
5568 error_free_vers:
5569 if (old_tab != NULL)
5570 free (old_tab);
5571 if (old_strtab != NULL)
5572 free (old_strtab);
5573 if (nondeflt_vers != NULL)
5574 free (nondeflt_vers);
5575 if (extversym != NULL)
5576 free (extversym);
5577 error_free_sym:
5578 if (isymbuf != NULL)
5579 free (isymbuf);
5580 error_return:
5581 return FALSE;
5582 }
5583
5584 /* Return the linker hash table entry of a symbol that might be
5585 satisfied by an archive symbol. Return -1 on error. */
5586
5587 struct elf_link_hash_entry *
5588 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5589 struct bfd_link_info *info,
5590 const char *name)
5591 {
5592 struct elf_link_hash_entry *h;
5593 char *p, *copy;
5594 size_t len, first;
5595
5596 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5597 if (h != NULL)
5598 return h;
5599
5600 /* If this is a default version (the name contains @@), look up the
5601 symbol again with only one `@' as well as without the version.
5602 The effect is that references to the symbol with and without the
5603 version will be matched by the default symbol in the archive. */
5604
5605 p = strchr (name, ELF_VER_CHR);
5606 if (p == NULL || p[1] != ELF_VER_CHR)
5607 return h;
5608
5609 /* First check with only one `@'. */
5610 len = strlen (name);
5611 copy = (char *) bfd_alloc (abfd, len);
5612 if (copy == NULL)
5613 return (struct elf_link_hash_entry *) -1;
5614
5615 first = p - name + 1;
5616 memcpy (copy, name, first);
5617 memcpy (copy + first, name + first + 1, len - first);
5618
5619 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5620 if (h == NULL)
5621 {
5622 /* We also need to check references to the symbol without the
5623 version. */
5624 copy[first - 1] = '\0';
5625 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5626 FALSE, FALSE, TRUE);
5627 }
5628
5629 bfd_release (abfd, copy);
5630 return h;
5631 }
5632
5633 /* Add symbols from an ELF archive file to the linker hash table. We
5634 don't use _bfd_generic_link_add_archive_symbols because we need to
5635 handle versioned symbols.
5636
5637 Fortunately, ELF archive handling is simpler than that done by
5638 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5639 oddities. In ELF, if we find a symbol in the archive map, and the
5640 symbol is currently undefined, we know that we must pull in that
5641 object file.
5642
5643 Unfortunately, we do have to make multiple passes over the symbol
5644 table until nothing further is resolved. */
5645
5646 static bfd_boolean
5647 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5648 {
5649 symindex c;
5650 unsigned char *included = NULL;
5651 carsym *symdefs;
5652 bfd_boolean loop;
5653 size_t amt;
5654 const struct elf_backend_data *bed;
5655 struct elf_link_hash_entry * (*archive_symbol_lookup)
5656 (bfd *, struct bfd_link_info *, const char *);
5657
5658 if (! bfd_has_map (abfd))
5659 {
5660 /* An empty archive is a special case. */
5661 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5662 return TRUE;
5663 bfd_set_error (bfd_error_no_armap);
5664 return FALSE;
5665 }
5666
5667 /* Keep track of all symbols we know to be already defined, and all
5668 files we know to be already included. This is to speed up the
5669 second and subsequent passes. */
5670 c = bfd_ardata (abfd)->symdef_count;
5671 if (c == 0)
5672 return TRUE;
5673 amt = c * sizeof (*included);
5674 included = (unsigned char *) bfd_zmalloc (amt);
5675 if (included == NULL)
5676 return FALSE;
5677
5678 symdefs = bfd_ardata (abfd)->symdefs;
5679 bed = get_elf_backend_data (abfd);
5680 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5681
5682 do
5683 {
5684 file_ptr last;
5685 symindex i;
5686 carsym *symdef;
5687 carsym *symdefend;
5688
5689 loop = FALSE;
5690 last = -1;
5691
5692 symdef = symdefs;
5693 symdefend = symdef + c;
5694 for (i = 0; symdef < symdefend; symdef++, i++)
5695 {
5696 struct elf_link_hash_entry *h;
5697 bfd *element;
5698 struct bfd_link_hash_entry *undefs_tail;
5699 symindex mark;
5700
5701 if (included[i])
5702 continue;
5703 if (symdef->file_offset == last)
5704 {
5705 included[i] = TRUE;
5706 continue;
5707 }
5708
5709 h = archive_symbol_lookup (abfd, info, symdef->name);
5710 if (h == (struct elf_link_hash_entry *) -1)
5711 goto error_return;
5712
5713 if (h == NULL)
5714 continue;
5715
5716 if (h->root.type == bfd_link_hash_common)
5717 {
5718 /* We currently have a common symbol. The archive map contains
5719 a reference to this symbol, so we may want to include it. We
5720 only want to include it however, if this archive element
5721 contains a definition of the symbol, not just another common
5722 declaration of it.
5723
5724 Unfortunately some archivers (including GNU ar) will put
5725 declarations of common symbols into their archive maps, as
5726 well as real definitions, so we cannot just go by the archive
5727 map alone. Instead we must read in the element's symbol
5728 table and check that to see what kind of symbol definition
5729 this is. */
5730 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5731 continue;
5732 }
5733 else if (h->root.type != bfd_link_hash_undefined)
5734 {
5735 if (h->root.type != bfd_link_hash_undefweak)
5736 /* Symbol must be defined. Don't check it again. */
5737 included[i] = TRUE;
5738 continue;
5739 }
5740
5741 /* We need to include this archive member. */
5742 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5743 if (element == NULL)
5744 goto error_return;
5745
5746 if (! bfd_check_format (element, bfd_object))
5747 goto error_return;
5748
5749 undefs_tail = info->hash->undefs_tail;
5750
5751 if (!(*info->callbacks
5752 ->add_archive_element) (info, element, symdef->name, &element))
5753 continue;
5754 if (!bfd_link_add_symbols (element, info))
5755 goto error_return;
5756
5757 /* If there are any new undefined symbols, we need to make
5758 another pass through the archive in order to see whether
5759 they can be defined. FIXME: This isn't perfect, because
5760 common symbols wind up on undefs_tail and because an
5761 undefined symbol which is defined later on in this pass
5762 does not require another pass. This isn't a bug, but it
5763 does make the code less efficient than it could be. */
5764 if (undefs_tail != info->hash->undefs_tail)
5765 loop = TRUE;
5766
5767 /* Look backward to mark all symbols from this object file
5768 which we have already seen in this pass. */
5769 mark = i;
5770 do
5771 {
5772 included[mark] = TRUE;
5773 if (mark == 0)
5774 break;
5775 --mark;
5776 }
5777 while (symdefs[mark].file_offset == symdef->file_offset);
5778
5779 /* We mark subsequent symbols from this object file as we go
5780 on through the loop. */
5781 last = symdef->file_offset;
5782 }
5783 }
5784 while (loop);
5785
5786 free (included);
5787
5788 return TRUE;
5789
5790 error_return:
5791 if (included != NULL)
5792 free (included);
5793 return FALSE;
5794 }
5795
5796 /* Given an ELF BFD, add symbols to the global hash table as
5797 appropriate. */
5798
5799 bfd_boolean
5800 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5801 {
5802 switch (bfd_get_format (abfd))
5803 {
5804 case bfd_object:
5805 return elf_link_add_object_symbols (abfd, info);
5806 case bfd_archive:
5807 return elf_link_add_archive_symbols (abfd, info);
5808 default:
5809 bfd_set_error (bfd_error_wrong_format);
5810 return FALSE;
5811 }
5812 }
5813 \f
5814 struct hash_codes_info
5815 {
5816 unsigned long *hashcodes;
5817 bfd_boolean error;
5818 };
5819
5820 /* This function will be called though elf_link_hash_traverse to store
5821 all hash value of the exported symbols in an array. */
5822
5823 static bfd_boolean
5824 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5825 {
5826 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5827 const char *name;
5828 unsigned long ha;
5829 char *alc = NULL;
5830
5831 /* Ignore indirect symbols. These are added by the versioning code. */
5832 if (h->dynindx == -1)
5833 return TRUE;
5834
5835 name = h->root.root.string;
5836 if (h->versioned >= versioned)
5837 {
5838 char *p = strchr (name, ELF_VER_CHR);
5839 if (p != NULL)
5840 {
5841 alc = (char *) bfd_malloc (p - name + 1);
5842 if (alc == NULL)
5843 {
5844 inf->error = TRUE;
5845 return FALSE;
5846 }
5847 memcpy (alc, name, p - name);
5848 alc[p - name] = '\0';
5849 name = alc;
5850 }
5851 }
5852
5853 /* Compute the hash value. */
5854 ha = bfd_elf_hash (name);
5855
5856 /* Store the found hash value in the array given as the argument. */
5857 *(inf->hashcodes)++ = ha;
5858
5859 /* And store it in the struct so that we can put it in the hash table
5860 later. */
5861 h->u.elf_hash_value = ha;
5862
5863 if (alc != NULL)
5864 free (alc);
5865
5866 return TRUE;
5867 }
5868
5869 struct collect_gnu_hash_codes
5870 {
5871 bfd *output_bfd;
5872 const struct elf_backend_data *bed;
5873 unsigned long int nsyms;
5874 unsigned long int maskbits;
5875 unsigned long int *hashcodes;
5876 unsigned long int *hashval;
5877 unsigned long int *indx;
5878 unsigned long int *counts;
5879 bfd_vma *bitmask;
5880 bfd_byte *contents;
5881 bfd_size_type xlat;
5882 long int min_dynindx;
5883 unsigned long int bucketcount;
5884 unsigned long int symindx;
5885 long int local_indx;
5886 long int shift1, shift2;
5887 unsigned long int mask;
5888 bfd_boolean error;
5889 };
5890
5891 /* This function will be called though elf_link_hash_traverse to store
5892 all hash value of the exported symbols in an array. */
5893
5894 static bfd_boolean
5895 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5896 {
5897 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5898 const char *name;
5899 unsigned long ha;
5900 char *alc = NULL;
5901
5902 /* Ignore indirect symbols. These are added by the versioning code. */
5903 if (h->dynindx == -1)
5904 return TRUE;
5905
5906 /* Ignore also local symbols and undefined symbols. */
5907 if (! (*s->bed->elf_hash_symbol) (h))
5908 return TRUE;
5909
5910 name = h->root.root.string;
5911 if (h->versioned >= versioned)
5912 {
5913 char *p = strchr (name, ELF_VER_CHR);
5914 if (p != NULL)
5915 {
5916 alc = (char *) bfd_malloc (p - name + 1);
5917 if (alc == NULL)
5918 {
5919 s->error = TRUE;
5920 return FALSE;
5921 }
5922 memcpy (alc, name, p - name);
5923 alc[p - name] = '\0';
5924 name = alc;
5925 }
5926 }
5927
5928 /* Compute the hash value. */
5929 ha = bfd_elf_gnu_hash (name);
5930
5931 /* Store the found hash value in the array for compute_bucket_count,
5932 and also for .dynsym reordering purposes. */
5933 s->hashcodes[s->nsyms] = ha;
5934 s->hashval[h->dynindx] = ha;
5935 ++s->nsyms;
5936 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5937 s->min_dynindx = h->dynindx;
5938
5939 if (alc != NULL)
5940 free (alc);
5941
5942 return TRUE;
5943 }
5944
5945 /* This function will be called though elf_link_hash_traverse to do
5946 final dynamic symbol renumbering in case of .gnu.hash.
5947 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5948 to the translation table. */
5949
5950 static bfd_boolean
5951 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5952 {
5953 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5954 unsigned long int bucket;
5955 unsigned long int val;
5956
5957 /* Ignore indirect symbols. */
5958 if (h->dynindx == -1)
5959 return TRUE;
5960
5961 /* Ignore also local symbols and undefined symbols. */
5962 if (! (*s->bed->elf_hash_symbol) (h))
5963 {
5964 if (h->dynindx >= s->min_dynindx)
5965 {
5966 if (s->bed->record_xhash_symbol != NULL)
5967 {
5968 (*s->bed->record_xhash_symbol) (h, 0);
5969 s->local_indx++;
5970 }
5971 else
5972 h->dynindx = s->local_indx++;
5973 }
5974 return TRUE;
5975 }
5976
5977 bucket = s->hashval[h->dynindx] % s->bucketcount;
5978 val = (s->hashval[h->dynindx] >> s->shift1)
5979 & ((s->maskbits >> s->shift1) - 1);
5980 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5981 s->bitmask[val]
5982 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5983 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5984 if (s->counts[bucket] == 1)
5985 /* Last element terminates the chain. */
5986 val |= 1;
5987 bfd_put_32 (s->output_bfd, val,
5988 s->contents + (s->indx[bucket] - s->symindx) * 4);
5989 --s->counts[bucket];
5990 if (s->bed->record_xhash_symbol != NULL)
5991 {
5992 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
5993
5994 (*s->bed->record_xhash_symbol) (h, xlat_loc);
5995 }
5996 else
5997 h->dynindx = s->indx[bucket]++;
5998 return TRUE;
5999 }
6000
6001 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6002
6003 bfd_boolean
6004 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6005 {
6006 return !(h->forced_local
6007 || h->root.type == bfd_link_hash_undefined
6008 || h->root.type == bfd_link_hash_undefweak
6009 || ((h->root.type == bfd_link_hash_defined
6010 || h->root.type == bfd_link_hash_defweak)
6011 && h->root.u.def.section->output_section == NULL));
6012 }
6013
6014 /* Array used to determine the number of hash table buckets to use
6015 based on the number of symbols there are. If there are fewer than
6016 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6017 fewer than 37 we use 17 buckets, and so forth. We never use more
6018 than 32771 buckets. */
6019
6020 static const size_t elf_buckets[] =
6021 {
6022 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6023 16411, 32771, 0
6024 };
6025
6026 /* Compute bucket count for hashing table. We do not use a static set
6027 of possible tables sizes anymore. Instead we determine for all
6028 possible reasonable sizes of the table the outcome (i.e., the
6029 number of collisions etc) and choose the best solution. The
6030 weighting functions are not too simple to allow the table to grow
6031 without bounds. Instead one of the weighting factors is the size.
6032 Therefore the result is always a good payoff between few collisions
6033 (= short chain lengths) and table size. */
6034 static size_t
6035 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6036 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6037 unsigned long int nsyms,
6038 int gnu_hash)
6039 {
6040 size_t best_size = 0;
6041 unsigned long int i;
6042
6043 /* We have a problem here. The following code to optimize the table
6044 size requires an integer type with more the 32 bits. If
6045 BFD_HOST_U_64_BIT is set we know about such a type. */
6046 #ifdef BFD_HOST_U_64_BIT
6047 if (info->optimize)
6048 {
6049 size_t minsize;
6050 size_t maxsize;
6051 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6052 bfd *dynobj = elf_hash_table (info)->dynobj;
6053 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6054 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6055 unsigned long int *counts;
6056 bfd_size_type amt;
6057 unsigned int no_improvement_count = 0;
6058
6059 /* Possible optimization parameters: if we have NSYMS symbols we say
6060 that the hashing table must at least have NSYMS/4 and at most
6061 2*NSYMS buckets. */
6062 minsize = nsyms / 4;
6063 if (minsize == 0)
6064 minsize = 1;
6065 best_size = maxsize = nsyms * 2;
6066 if (gnu_hash)
6067 {
6068 if (minsize < 2)
6069 minsize = 2;
6070 if ((best_size & 31) == 0)
6071 ++best_size;
6072 }
6073
6074 /* Create array where we count the collisions in. We must use bfd_malloc
6075 since the size could be large. */
6076 amt = maxsize;
6077 amt *= sizeof (unsigned long int);
6078 counts = (unsigned long int *) bfd_malloc (amt);
6079 if (counts == NULL)
6080 return 0;
6081
6082 /* Compute the "optimal" size for the hash table. The criteria is a
6083 minimal chain length. The minor criteria is (of course) the size
6084 of the table. */
6085 for (i = minsize; i < maxsize; ++i)
6086 {
6087 /* Walk through the array of hashcodes and count the collisions. */
6088 BFD_HOST_U_64_BIT max;
6089 unsigned long int j;
6090 unsigned long int fact;
6091
6092 if (gnu_hash && (i & 31) == 0)
6093 continue;
6094
6095 memset (counts, '\0', i * sizeof (unsigned long int));
6096
6097 /* Determine how often each hash bucket is used. */
6098 for (j = 0; j < nsyms; ++j)
6099 ++counts[hashcodes[j] % i];
6100
6101 /* For the weight function we need some information about the
6102 pagesize on the target. This is information need not be 100%
6103 accurate. Since this information is not available (so far) we
6104 define it here to a reasonable default value. If it is crucial
6105 to have a better value some day simply define this value. */
6106 # ifndef BFD_TARGET_PAGESIZE
6107 # define BFD_TARGET_PAGESIZE (4096)
6108 # endif
6109
6110 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6111 and the chains. */
6112 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6113
6114 # if 1
6115 /* Variant 1: optimize for short chains. We add the squares
6116 of all the chain lengths (which favors many small chain
6117 over a few long chains). */
6118 for (j = 0; j < i; ++j)
6119 max += counts[j] * counts[j];
6120
6121 /* This adds penalties for the overall size of the table. */
6122 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6123 max *= fact * fact;
6124 # else
6125 /* Variant 2: Optimize a lot more for small table. Here we
6126 also add squares of the size but we also add penalties for
6127 empty slots (the +1 term). */
6128 for (j = 0; j < i; ++j)
6129 max += (1 + counts[j]) * (1 + counts[j]);
6130
6131 /* The overall size of the table is considered, but not as
6132 strong as in variant 1, where it is squared. */
6133 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6134 max *= fact;
6135 # endif
6136
6137 /* Compare with current best results. */
6138 if (max < best_chlen)
6139 {
6140 best_chlen = max;
6141 best_size = i;
6142 no_improvement_count = 0;
6143 }
6144 /* PR 11843: Avoid futile long searches for the best bucket size
6145 when there are a large number of symbols. */
6146 else if (++no_improvement_count == 100)
6147 break;
6148 }
6149
6150 free (counts);
6151 }
6152 else
6153 #endif /* defined (BFD_HOST_U_64_BIT) */
6154 {
6155 /* This is the fallback solution if no 64bit type is available or if we
6156 are not supposed to spend much time on optimizations. We select the
6157 bucket count using a fixed set of numbers. */
6158 for (i = 0; elf_buckets[i] != 0; i++)
6159 {
6160 best_size = elf_buckets[i];
6161 if (nsyms < elf_buckets[i + 1])
6162 break;
6163 }
6164 if (gnu_hash && best_size < 2)
6165 best_size = 2;
6166 }
6167
6168 return best_size;
6169 }
6170
6171 /* Size any SHT_GROUP section for ld -r. */
6172
6173 bfd_boolean
6174 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6175 {
6176 bfd *ibfd;
6177 asection *s;
6178
6179 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6180 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6181 && (s = ibfd->sections) != NULL
6182 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6183 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6184 return FALSE;
6185 return TRUE;
6186 }
6187
6188 /* Set a default stack segment size. The value in INFO wins. If it
6189 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6190 undefined it is initialized. */
6191
6192 bfd_boolean
6193 bfd_elf_stack_segment_size (bfd *output_bfd,
6194 struct bfd_link_info *info,
6195 const char *legacy_symbol,
6196 bfd_vma default_size)
6197 {
6198 struct elf_link_hash_entry *h = NULL;
6199
6200 /* Look for legacy symbol. */
6201 if (legacy_symbol)
6202 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6203 FALSE, FALSE, FALSE);
6204 if (h && (h->root.type == bfd_link_hash_defined
6205 || h->root.type == bfd_link_hash_defweak)
6206 && h->def_regular
6207 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6208 {
6209 /* The symbol has no type if specified on the command line. */
6210 h->type = STT_OBJECT;
6211 if (info->stacksize)
6212 /* xgettext:c-format */
6213 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6214 output_bfd, legacy_symbol);
6215 else if (h->root.u.def.section != bfd_abs_section_ptr)
6216 /* xgettext:c-format */
6217 _bfd_error_handler (_("%pB: %s not absolute"),
6218 output_bfd, legacy_symbol);
6219 else
6220 info->stacksize = h->root.u.def.value;
6221 }
6222
6223 if (!info->stacksize)
6224 /* If the user didn't set a size, or explicitly inhibit the
6225 size, set it now. */
6226 info->stacksize = default_size;
6227
6228 /* Provide the legacy symbol, if it is referenced. */
6229 if (h && (h->root.type == bfd_link_hash_undefined
6230 || h->root.type == bfd_link_hash_undefweak))
6231 {
6232 struct bfd_link_hash_entry *bh = NULL;
6233
6234 if (!(_bfd_generic_link_add_one_symbol
6235 (info, output_bfd, legacy_symbol,
6236 BSF_GLOBAL, bfd_abs_section_ptr,
6237 info->stacksize >= 0 ? info->stacksize : 0,
6238 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6239 return FALSE;
6240
6241 h = (struct elf_link_hash_entry *) bh;
6242 h->def_regular = 1;
6243 h->type = STT_OBJECT;
6244 }
6245
6246 return TRUE;
6247 }
6248
6249 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6250
6251 struct elf_gc_sweep_symbol_info
6252 {
6253 struct bfd_link_info *info;
6254 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6255 bfd_boolean);
6256 };
6257
6258 static bfd_boolean
6259 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6260 {
6261 if (!h->mark
6262 && (((h->root.type == bfd_link_hash_defined
6263 || h->root.type == bfd_link_hash_defweak)
6264 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6265 && h->root.u.def.section->gc_mark))
6266 || h->root.type == bfd_link_hash_undefined
6267 || h->root.type == bfd_link_hash_undefweak))
6268 {
6269 struct elf_gc_sweep_symbol_info *inf;
6270
6271 inf = (struct elf_gc_sweep_symbol_info *) data;
6272 (*inf->hide_symbol) (inf->info, h, TRUE);
6273 h->def_regular = 0;
6274 h->ref_regular = 0;
6275 h->ref_regular_nonweak = 0;
6276 }
6277
6278 return TRUE;
6279 }
6280
6281 /* Set up the sizes and contents of the ELF dynamic sections. This is
6282 called by the ELF linker emulation before_allocation routine. We
6283 must set the sizes of the sections before the linker sets the
6284 addresses of the various sections. */
6285
6286 bfd_boolean
6287 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6288 const char *soname,
6289 const char *rpath,
6290 const char *filter_shlib,
6291 const char *audit,
6292 const char *depaudit,
6293 const char * const *auxiliary_filters,
6294 struct bfd_link_info *info,
6295 asection **sinterpptr)
6296 {
6297 bfd *dynobj;
6298 const struct elf_backend_data *bed;
6299
6300 *sinterpptr = NULL;
6301
6302 if (!is_elf_hash_table (info->hash))
6303 return TRUE;
6304
6305 dynobj = elf_hash_table (info)->dynobj;
6306
6307 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6308 {
6309 struct bfd_elf_version_tree *verdefs;
6310 struct elf_info_failed asvinfo;
6311 struct bfd_elf_version_tree *t;
6312 struct bfd_elf_version_expr *d;
6313 asection *s;
6314 size_t soname_indx;
6315
6316 /* If we are supposed to export all symbols into the dynamic symbol
6317 table (this is not the normal case), then do so. */
6318 if (info->export_dynamic
6319 || (bfd_link_executable (info) && info->dynamic))
6320 {
6321 struct elf_info_failed eif;
6322
6323 eif.info = info;
6324 eif.failed = FALSE;
6325 elf_link_hash_traverse (elf_hash_table (info),
6326 _bfd_elf_export_symbol,
6327 &eif);
6328 if (eif.failed)
6329 return FALSE;
6330 }
6331
6332 if (soname != NULL)
6333 {
6334 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6335 soname, TRUE);
6336 if (soname_indx == (size_t) -1
6337 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6338 return FALSE;
6339 }
6340 else
6341 soname_indx = (size_t) -1;
6342
6343 /* Make all global versions with definition. */
6344 for (t = info->version_info; t != NULL; t = t->next)
6345 for (d = t->globals.list; d != NULL; d = d->next)
6346 if (!d->symver && d->literal)
6347 {
6348 const char *verstr, *name;
6349 size_t namelen, verlen, newlen;
6350 char *newname, *p, leading_char;
6351 struct elf_link_hash_entry *newh;
6352
6353 leading_char = bfd_get_symbol_leading_char (output_bfd);
6354 name = d->pattern;
6355 namelen = strlen (name) + (leading_char != '\0');
6356 verstr = t->name;
6357 verlen = strlen (verstr);
6358 newlen = namelen + verlen + 3;
6359
6360 newname = (char *) bfd_malloc (newlen);
6361 if (newname == NULL)
6362 return FALSE;
6363 newname[0] = leading_char;
6364 memcpy (newname + (leading_char != '\0'), name, namelen);
6365
6366 /* Check the hidden versioned definition. */
6367 p = newname + namelen;
6368 *p++ = ELF_VER_CHR;
6369 memcpy (p, verstr, verlen + 1);
6370 newh = elf_link_hash_lookup (elf_hash_table (info),
6371 newname, FALSE, FALSE,
6372 FALSE);
6373 if (newh == NULL
6374 || (newh->root.type != bfd_link_hash_defined
6375 && newh->root.type != bfd_link_hash_defweak))
6376 {
6377 /* Check the default versioned definition. */
6378 *p++ = ELF_VER_CHR;
6379 memcpy (p, verstr, verlen + 1);
6380 newh = elf_link_hash_lookup (elf_hash_table (info),
6381 newname, FALSE, FALSE,
6382 FALSE);
6383 }
6384 free (newname);
6385
6386 /* Mark this version if there is a definition and it is
6387 not defined in a shared object. */
6388 if (newh != NULL
6389 && !newh->def_dynamic
6390 && (newh->root.type == bfd_link_hash_defined
6391 || newh->root.type == bfd_link_hash_defweak))
6392 d->symver = 1;
6393 }
6394
6395 /* Attach all the symbols to their version information. */
6396 asvinfo.info = info;
6397 asvinfo.failed = FALSE;
6398
6399 elf_link_hash_traverse (elf_hash_table (info),
6400 _bfd_elf_link_assign_sym_version,
6401 &asvinfo);
6402 if (asvinfo.failed)
6403 return FALSE;
6404
6405 if (!info->allow_undefined_version)
6406 {
6407 /* Check if all global versions have a definition. */
6408 bfd_boolean all_defined = TRUE;
6409 for (t = info->version_info; t != NULL; t = t->next)
6410 for (d = t->globals.list; d != NULL; d = d->next)
6411 if (d->literal && !d->symver && !d->script)
6412 {
6413 _bfd_error_handler
6414 (_("%s: undefined version: %s"),
6415 d->pattern, t->name);
6416 all_defined = FALSE;
6417 }
6418
6419 if (!all_defined)
6420 {
6421 bfd_set_error (bfd_error_bad_value);
6422 return FALSE;
6423 }
6424 }
6425
6426 /* Set up the version definition section. */
6427 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6428 BFD_ASSERT (s != NULL);
6429
6430 /* We may have created additional version definitions if we are
6431 just linking a regular application. */
6432 verdefs = info->version_info;
6433
6434 /* Skip anonymous version tag. */
6435 if (verdefs != NULL && verdefs->vernum == 0)
6436 verdefs = verdefs->next;
6437
6438 if (verdefs == NULL && !info->create_default_symver)
6439 s->flags |= SEC_EXCLUDE;
6440 else
6441 {
6442 unsigned int cdefs;
6443 bfd_size_type size;
6444 bfd_byte *p;
6445 Elf_Internal_Verdef def;
6446 Elf_Internal_Verdaux defaux;
6447 struct bfd_link_hash_entry *bh;
6448 struct elf_link_hash_entry *h;
6449 const char *name;
6450
6451 cdefs = 0;
6452 size = 0;
6453
6454 /* Make space for the base version. */
6455 size += sizeof (Elf_External_Verdef);
6456 size += sizeof (Elf_External_Verdaux);
6457 ++cdefs;
6458
6459 /* Make space for the default version. */
6460 if (info->create_default_symver)
6461 {
6462 size += sizeof (Elf_External_Verdef);
6463 ++cdefs;
6464 }
6465
6466 for (t = verdefs; t != NULL; t = t->next)
6467 {
6468 struct bfd_elf_version_deps *n;
6469
6470 /* Don't emit base version twice. */
6471 if (t->vernum == 0)
6472 continue;
6473
6474 size += sizeof (Elf_External_Verdef);
6475 size += sizeof (Elf_External_Verdaux);
6476 ++cdefs;
6477
6478 for (n = t->deps; n != NULL; n = n->next)
6479 size += sizeof (Elf_External_Verdaux);
6480 }
6481
6482 s->size = size;
6483 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6484 if (s->contents == NULL && s->size != 0)
6485 return FALSE;
6486
6487 /* Fill in the version definition section. */
6488
6489 p = s->contents;
6490
6491 def.vd_version = VER_DEF_CURRENT;
6492 def.vd_flags = VER_FLG_BASE;
6493 def.vd_ndx = 1;
6494 def.vd_cnt = 1;
6495 if (info->create_default_symver)
6496 {
6497 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6498 def.vd_next = sizeof (Elf_External_Verdef);
6499 }
6500 else
6501 {
6502 def.vd_aux = sizeof (Elf_External_Verdef);
6503 def.vd_next = (sizeof (Elf_External_Verdef)
6504 + sizeof (Elf_External_Verdaux));
6505 }
6506
6507 if (soname_indx != (size_t) -1)
6508 {
6509 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6510 soname_indx);
6511 def.vd_hash = bfd_elf_hash (soname);
6512 defaux.vda_name = soname_indx;
6513 name = soname;
6514 }
6515 else
6516 {
6517 size_t indx;
6518
6519 name = lbasename (output_bfd->filename);
6520 def.vd_hash = bfd_elf_hash (name);
6521 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6522 name, FALSE);
6523 if (indx == (size_t) -1)
6524 return FALSE;
6525 defaux.vda_name = indx;
6526 }
6527 defaux.vda_next = 0;
6528
6529 _bfd_elf_swap_verdef_out (output_bfd, &def,
6530 (Elf_External_Verdef *) p);
6531 p += sizeof (Elf_External_Verdef);
6532 if (info->create_default_symver)
6533 {
6534 /* Add a symbol representing this version. */
6535 bh = NULL;
6536 if (! (_bfd_generic_link_add_one_symbol
6537 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6538 0, NULL, FALSE,
6539 get_elf_backend_data (dynobj)->collect, &bh)))
6540 return FALSE;
6541 h = (struct elf_link_hash_entry *) bh;
6542 h->non_elf = 0;
6543 h->def_regular = 1;
6544 h->type = STT_OBJECT;
6545 h->verinfo.vertree = NULL;
6546
6547 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6548 return FALSE;
6549
6550 /* Create a duplicate of the base version with the same
6551 aux block, but different flags. */
6552 def.vd_flags = 0;
6553 def.vd_ndx = 2;
6554 def.vd_aux = sizeof (Elf_External_Verdef);
6555 if (verdefs)
6556 def.vd_next = (sizeof (Elf_External_Verdef)
6557 + sizeof (Elf_External_Verdaux));
6558 else
6559 def.vd_next = 0;
6560 _bfd_elf_swap_verdef_out (output_bfd, &def,
6561 (Elf_External_Verdef *) p);
6562 p += sizeof (Elf_External_Verdef);
6563 }
6564 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6565 (Elf_External_Verdaux *) p);
6566 p += sizeof (Elf_External_Verdaux);
6567
6568 for (t = verdefs; t != NULL; t = t->next)
6569 {
6570 unsigned int cdeps;
6571 struct bfd_elf_version_deps *n;
6572
6573 /* Don't emit the base version twice. */
6574 if (t->vernum == 0)
6575 continue;
6576
6577 cdeps = 0;
6578 for (n = t->deps; n != NULL; n = n->next)
6579 ++cdeps;
6580
6581 /* Add a symbol representing this version. */
6582 bh = NULL;
6583 if (! (_bfd_generic_link_add_one_symbol
6584 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6585 0, NULL, FALSE,
6586 get_elf_backend_data (dynobj)->collect, &bh)))
6587 return FALSE;
6588 h = (struct elf_link_hash_entry *) bh;
6589 h->non_elf = 0;
6590 h->def_regular = 1;
6591 h->type = STT_OBJECT;
6592 h->verinfo.vertree = t;
6593
6594 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6595 return FALSE;
6596
6597 def.vd_version = VER_DEF_CURRENT;
6598 def.vd_flags = 0;
6599 if (t->globals.list == NULL
6600 && t->locals.list == NULL
6601 && ! t->used)
6602 def.vd_flags |= VER_FLG_WEAK;
6603 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6604 def.vd_cnt = cdeps + 1;
6605 def.vd_hash = bfd_elf_hash (t->name);
6606 def.vd_aux = sizeof (Elf_External_Verdef);
6607 def.vd_next = 0;
6608
6609 /* If a basever node is next, it *must* be the last node in
6610 the chain, otherwise Verdef construction breaks. */
6611 if (t->next != NULL && t->next->vernum == 0)
6612 BFD_ASSERT (t->next->next == NULL);
6613
6614 if (t->next != NULL && t->next->vernum != 0)
6615 def.vd_next = (sizeof (Elf_External_Verdef)
6616 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6617
6618 _bfd_elf_swap_verdef_out (output_bfd, &def,
6619 (Elf_External_Verdef *) p);
6620 p += sizeof (Elf_External_Verdef);
6621
6622 defaux.vda_name = h->dynstr_index;
6623 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6624 h->dynstr_index);
6625 defaux.vda_next = 0;
6626 if (t->deps != NULL)
6627 defaux.vda_next = sizeof (Elf_External_Verdaux);
6628 t->name_indx = defaux.vda_name;
6629
6630 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6631 (Elf_External_Verdaux *) p);
6632 p += sizeof (Elf_External_Verdaux);
6633
6634 for (n = t->deps; n != NULL; n = n->next)
6635 {
6636 if (n->version_needed == NULL)
6637 {
6638 /* This can happen if there was an error in the
6639 version script. */
6640 defaux.vda_name = 0;
6641 }
6642 else
6643 {
6644 defaux.vda_name = n->version_needed->name_indx;
6645 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6646 defaux.vda_name);
6647 }
6648 if (n->next == NULL)
6649 defaux.vda_next = 0;
6650 else
6651 defaux.vda_next = sizeof (Elf_External_Verdaux);
6652
6653 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6654 (Elf_External_Verdaux *) p);
6655 p += sizeof (Elf_External_Verdaux);
6656 }
6657 }
6658
6659 elf_tdata (output_bfd)->cverdefs = cdefs;
6660 }
6661 }
6662
6663 bed = get_elf_backend_data (output_bfd);
6664
6665 if (info->gc_sections && bed->can_gc_sections)
6666 {
6667 struct elf_gc_sweep_symbol_info sweep_info;
6668
6669 /* Remove the symbols that were in the swept sections from the
6670 dynamic symbol table. */
6671 sweep_info.info = info;
6672 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6673 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6674 &sweep_info);
6675 }
6676
6677 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6678 {
6679 asection *s;
6680 struct elf_find_verdep_info sinfo;
6681
6682 /* Work out the size of the version reference section. */
6683
6684 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6685 BFD_ASSERT (s != NULL);
6686
6687 sinfo.info = info;
6688 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6689 if (sinfo.vers == 0)
6690 sinfo.vers = 1;
6691 sinfo.failed = FALSE;
6692
6693 elf_link_hash_traverse (elf_hash_table (info),
6694 _bfd_elf_link_find_version_dependencies,
6695 &sinfo);
6696 if (sinfo.failed)
6697 return FALSE;
6698
6699 if (elf_tdata (output_bfd)->verref == NULL)
6700 s->flags |= SEC_EXCLUDE;
6701 else
6702 {
6703 Elf_Internal_Verneed *vn;
6704 unsigned int size;
6705 unsigned int crefs;
6706 bfd_byte *p;
6707
6708 /* Build the version dependency section. */
6709 size = 0;
6710 crefs = 0;
6711 for (vn = elf_tdata (output_bfd)->verref;
6712 vn != NULL;
6713 vn = vn->vn_nextref)
6714 {
6715 Elf_Internal_Vernaux *a;
6716
6717 size += sizeof (Elf_External_Verneed);
6718 ++crefs;
6719 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6720 size += sizeof (Elf_External_Vernaux);
6721 }
6722
6723 s->size = size;
6724 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6725 if (s->contents == NULL)
6726 return FALSE;
6727
6728 p = s->contents;
6729 for (vn = elf_tdata (output_bfd)->verref;
6730 vn != NULL;
6731 vn = vn->vn_nextref)
6732 {
6733 unsigned int caux;
6734 Elf_Internal_Vernaux *a;
6735 size_t indx;
6736
6737 caux = 0;
6738 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6739 ++caux;
6740
6741 vn->vn_version = VER_NEED_CURRENT;
6742 vn->vn_cnt = caux;
6743 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6744 elf_dt_name (vn->vn_bfd) != NULL
6745 ? elf_dt_name (vn->vn_bfd)
6746 : lbasename (vn->vn_bfd->filename),
6747 FALSE);
6748 if (indx == (size_t) -1)
6749 return FALSE;
6750 vn->vn_file = indx;
6751 vn->vn_aux = sizeof (Elf_External_Verneed);
6752 if (vn->vn_nextref == NULL)
6753 vn->vn_next = 0;
6754 else
6755 vn->vn_next = (sizeof (Elf_External_Verneed)
6756 + caux * sizeof (Elf_External_Vernaux));
6757
6758 _bfd_elf_swap_verneed_out (output_bfd, vn,
6759 (Elf_External_Verneed *) p);
6760 p += sizeof (Elf_External_Verneed);
6761
6762 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6763 {
6764 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6765 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6766 a->vna_nodename, FALSE);
6767 if (indx == (size_t) -1)
6768 return FALSE;
6769 a->vna_name = indx;
6770 if (a->vna_nextptr == NULL)
6771 a->vna_next = 0;
6772 else
6773 a->vna_next = sizeof (Elf_External_Vernaux);
6774
6775 _bfd_elf_swap_vernaux_out (output_bfd, a,
6776 (Elf_External_Vernaux *) p);
6777 p += sizeof (Elf_External_Vernaux);
6778 }
6779 }
6780
6781 elf_tdata (output_bfd)->cverrefs = crefs;
6782 }
6783 }
6784
6785 /* Any syms created from now on start with -1 in
6786 got.refcount/offset and plt.refcount/offset. */
6787 elf_hash_table (info)->init_got_refcount
6788 = elf_hash_table (info)->init_got_offset;
6789 elf_hash_table (info)->init_plt_refcount
6790 = elf_hash_table (info)->init_plt_offset;
6791
6792 if (bfd_link_relocatable (info)
6793 && !_bfd_elf_size_group_sections (info))
6794 return FALSE;
6795
6796 /* The backend may have to create some sections regardless of whether
6797 we're dynamic or not. */
6798 if (bed->elf_backend_always_size_sections
6799 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6800 return FALSE;
6801
6802 /* Determine any GNU_STACK segment requirements, after the backend
6803 has had a chance to set a default segment size. */
6804 if (info->execstack)
6805 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6806 else if (info->noexecstack)
6807 elf_stack_flags (output_bfd) = PF_R | PF_W;
6808 else
6809 {
6810 bfd *inputobj;
6811 asection *notesec = NULL;
6812 int exec = 0;
6813
6814 for (inputobj = info->input_bfds;
6815 inputobj;
6816 inputobj = inputobj->link.next)
6817 {
6818 asection *s;
6819
6820 if (inputobj->flags
6821 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6822 continue;
6823 s = inputobj->sections;
6824 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6825 continue;
6826
6827 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6828 if (s)
6829 {
6830 if (s->flags & SEC_CODE)
6831 exec = PF_X;
6832 notesec = s;
6833 }
6834 else if (bed->default_execstack)
6835 exec = PF_X;
6836 }
6837 if (notesec || info->stacksize > 0)
6838 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6839 if (notesec && exec && bfd_link_relocatable (info)
6840 && notesec->output_section != bfd_abs_section_ptr)
6841 notesec->output_section->flags |= SEC_CODE;
6842 }
6843
6844 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6845 {
6846 struct elf_info_failed eif;
6847 struct elf_link_hash_entry *h;
6848 asection *dynstr;
6849 asection *s;
6850
6851 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6852 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6853
6854 if (info->symbolic)
6855 {
6856 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6857 return FALSE;
6858 info->flags |= DF_SYMBOLIC;
6859 }
6860
6861 if (rpath != NULL)
6862 {
6863 size_t indx;
6864 bfd_vma tag;
6865
6866 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6867 TRUE);
6868 if (indx == (size_t) -1)
6869 return FALSE;
6870
6871 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6872 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6873 return FALSE;
6874 }
6875
6876 if (filter_shlib != NULL)
6877 {
6878 size_t indx;
6879
6880 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6881 filter_shlib, TRUE);
6882 if (indx == (size_t) -1
6883 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6884 return FALSE;
6885 }
6886
6887 if (auxiliary_filters != NULL)
6888 {
6889 const char * const *p;
6890
6891 for (p = auxiliary_filters; *p != NULL; p++)
6892 {
6893 size_t indx;
6894
6895 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6896 *p, TRUE);
6897 if (indx == (size_t) -1
6898 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6899 return FALSE;
6900 }
6901 }
6902
6903 if (audit != NULL)
6904 {
6905 size_t indx;
6906
6907 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6908 TRUE);
6909 if (indx == (size_t) -1
6910 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6911 return FALSE;
6912 }
6913
6914 if (depaudit != NULL)
6915 {
6916 size_t indx;
6917
6918 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6919 TRUE);
6920 if (indx == (size_t) -1
6921 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6922 return FALSE;
6923 }
6924
6925 eif.info = info;
6926 eif.failed = FALSE;
6927
6928 /* Find all symbols which were defined in a dynamic object and make
6929 the backend pick a reasonable value for them. */
6930 elf_link_hash_traverse (elf_hash_table (info),
6931 _bfd_elf_adjust_dynamic_symbol,
6932 &eif);
6933 if (eif.failed)
6934 return FALSE;
6935
6936 /* Add some entries to the .dynamic section. We fill in some of the
6937 values later, in bfd_elf_final_link, but we must add the entries
6938 now so that we know the final size of the .dynamic section. */
6939
6940 /* If there are initialization and/or finalization functions to
6941 call then add the corresponding DT_INIT/DT_FINI entries. */
6942 h = (info->init_function
6943 ? elf_link_hash_lookup (elf_hash_table (info),
6944 info->init_function, FALSE,
6945 FALSE, FALSE)
6946 : NULL);
6947 if (h != NULL
6948 && (h->ref_regular
6949 || h->def_regular))
6950 {
6951 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6952 return FALSE;
6953 }
6954 h = (info->fini_function
6955 ? elf_link_hash_lookup (elf_hash_table (info),
6956 info->fini_function, FALSE,
6957 FALSE, FALSE)
6958 : NULL);
6959 if (h != NULL
6960 && (h->ref_regular
6961 || h->def_regular))
6962 {
6963 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6964 return FALSE;
6965 }
6966
6967 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6968 if (s != NULL && s->linker_has_input)
6969 {
6970 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6971 if (! bfd_link_executable (info))
6972 {
6973 bfd *sub;
6974 asection *o;
6975
6976 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6977 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6978 && (o = sub->sections) != NULL
6979 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6980 for (o = sub->sections; o != NULL; o = o->next)
6981 if (elf_section_data (o)->this_hdr.sh_type
6982 == SHT_PREINIT_ARRAY)
6983 {
6984 _bfd_error_handler
6985 (_("%pB: .preinit_array section is not allowed in DSO"),
6986 sub);
6987 break;
6988 }
6989
6990 bfd_set_error (bfd_error_nonrepresentable_section);
6991 return FALSE;
6992 }
6993
6994 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6995 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6996 return FALSE;
6997 }
6998 s = bfd_get_section_by_name (output_bfd, ".init_array");
6999 if (s != NULL && s->linker_has_input)
7000 {
7001 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7002 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7003 return FALSE;
7004 }
7005 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7006 if (s != NULL && s->linker_has_input)
7007 {
7008 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7009 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7010 return FALSE;
7011 }
7012
7013 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7014 /* If .dynstr is excluded from the link, we don't want any of
7015 these tags. Strictly, we should be checking each section
7016 individually; This quick check covers for the case where
7017 someone does a /DISCARD/ : { *(*) }. */
7018 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7019 {
7020 bfd_size_type strsize;
7021
7022 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7023 if ((info->emit_hash
7024 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7025 || (info->emit_gnu_hash
7026 && (bed->record_xhash_symbol == NULL
7027 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7028 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7029 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7030 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7031 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7032 bed->s->sizeof_sym))
7033 return FALSE;
7034 }
7035 }
7036
7037 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7038 return FALSE;
7039
7040 /* The backend must work out the sizes of all the other dynamic
7041 sections. */
7042 if (dynobj != NULL
7043 && bed->elf_backend_size_dynamic_sections != NULL
7044 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7045 return FALSE;
7046
7047 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7048 {
7049 if (elf_tdata (output_bfd)->cverdefs)
7050 {
7051 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7052
7053 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7054 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7055 return FALSE;
7056 }
7057
7058 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7059 {
7060 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7061 return FALSE;
7062 }
7063 else if (info->flags & DF_BIND_NOW)
7064 {
7065 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7066 return FALSE;
7067 }
7068
7069 if (info->flags_1)
7070 {
7071 if (bfd_link_executable (info))
7072 info->flags_1 &= ~ (DF_1_INITFIRST
7073 | DF_1_NODELETE
7074 | DF_1_NOOPEN);
7075 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7076 return FALSE;
7077 }
7078
7079 if (elf_tdata (output_bfd)->cverrefs)
7080 {
7081 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7082
7083 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7084 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7085 return FALSE;
7086 }
7087
7088 if ((elf_tdata (output_bfd)->cverrefs == 0
7089 && elf_tdata (output_bfd)->cverdefs == 0)
7090 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7091 {
7092 asection *s;
7093
7094 s = bfd_get_linker_section (dynobj, ".gnu.version");
7095 s->flags |= SEC_EXCLUDE;
7096 }
7097 }
7098 return TRUE;
7099 }
7100
7101 /* Find the first non-excluded output section. We'll use its
7102 section symbol for some emitted relocs. */
7103 void
7104 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7105 {
7106 asection *s;
7107 asection *found = NULL;
7108
7109 for (s = output_bfd->sections; s != NULL; s = s->next)
7110 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7111 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7112 {
7113 found = s;
7114 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7115 break;
7116 }
7117 elf_hash_table (info)->text_index_section = found;
7118 }
7119
7120 /* Find two non-excluded output sections, one for code, one for data.
7121 We'll use their section symbols for some emitted relocs. */
7122 void
7123 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7124 {
7125 asection *s;
7126 asection *found = NULL;
7127
7128 /* Data first, since setting text_index_section changes
7129 _bfd_elf_omit_section_dynsym_default. */
7130 for (s = output_bfd->sections; s != NULL; s = s->next)
7131 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7132 && !(s->flags & SEC_READONLY)
7133 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7134 {
7135 found = s;
7136 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7137 break;
7138 }
7139 elf_hash_table (info)->data_index_section = found;
7140
7141 for (s = output_bfd->sections; s != NULL; s = s->next)
7142 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7143 && (s->flags & SEC_READONLY)
7144 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7145 {
7146 found = s;
7147 break;
7148 }
7149 elf_hash_table (info)->text_index_section = found;
7150 }
7151
7152 #define GNU_HASH_SECTION_NAME(bed) \
7153 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7154
7155 bfd_boolean
7156 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7157 {
7158 const struct elf_backend_data *bed;
7159 unsigned long section_sym_count;
7160 bfd_size_type dynsymcount = 0;
7161
7162 if (!is_elf_hash_table (info->hash))
7163 return TRUE;
7164
7165 bed = get_elf_backend_data (output_bfd);
7166 (*bed->elf_backend_init_index_section) (output_bfd, info);
7167
7168 /* Assign dynsym indices. In a shared library we generate a section
7169 symbol for each output section, which come first. Next come all
7170 of the back-end allocated local dynamic syms, followed by the rest
7171 of the global symbols.
7172
7173 This is usually not needed for static binaries, however backends
7174 can request to always do it, e.g. the MIPS backend uses dynamic
7175 symbol counts to lay out GOT, which will be produced in the
7176 presence of GOT relocations even in static binaries (holding fixed
7177 data in that case, to satisfy those relocations). */
7178
7179 if (elf_hash_table (info)->dynamic_sections_created
7180 || bed->always_renumber_dynsyms)
7181 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7182 &section_sym_count);
7183
7184 if (elf_hash_table (info)->dynamic_sections_created)
7185 {
7186 bfd *dynobj;
7187 asection *s;
7188 unsigned int dtagcount;
7189
7190 dynobj = elf_hash_table (info)->dynobj;
7191
7192 /* Work out the size of the symbol version section. */
7193 s = bfd_get_linker_section (dynobj, ".gnu.version");
7194 BFD_ASSERT (s != NULL);
7195 if ((s->flags & SEC_EXCLUDE) == 0)
7196 {
7197 s->size = dynsymcount * sizeof (Elf_External_Versym);
7198 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7199 if (s->contents == NULL)
7200 return FALSE;
7201
7202 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7203 return FALSE;
7204 }
7205
7206 /* Set the size of the .dynsym and .hash sections. We counted
7207 the number of dynamic symbols in elf_link_add_object_symbols.
7208 We will build the contents of .dynsym and .hash when we build
7209 the final symbol table, because until then we do not know the
7210 correct value to give the symbols. We built the .dynstr
7211 section as we went along in elf_link_add_object_symbols. */
7212 s = elf_hash_table (info)->dynsym;
7213 BFD_ASSERT (s != NULL);
7214 s->size = dynsymcount * bed->s->sizeof_sym;
7215
7216 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7217 if (s->contents == NULL)
7218 return FALSE;
7219
7220 /* The first entry in .dynsym is a dummy symbol. Clear all the
7221 section syms, in case we don't output them all. */
7222 ++section_sym_count;
7223 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7224
7225 elf_hash_table (info)->bucketcount = 0;
7226
7227 /* Compute the size of the hashing table. As a side effect this
7228 computes the hash values for all the names we export. */
7229 if (info->emit_hash)
7230 {
7231 unsigned long int *hashcodes;
7232 struct hash_codes_info hashinf;
7233 bfd_size_type amt;
7234 unsigned long int nsyms;
7235 size_t bucketcount;
7236 size_t hash_entry_size;
7237
7238 /* Compute the hash values for all exported symbols. At the same
7239 time store the values in an array so that we could use them for
7240 optimizations. */
7241 amt = dynsymcount * sizeof (unsigned long int);
7242 hashcodes = (unsigned long int *) bfd_malloc (amt);
7243 if (hashcodes == NULL)
7244 return FALSE;
7245 hashinf.hashcodes = hashcodes;
7246 hashinf.error = FALSE;
7247
7248 /* Put all hash values in HASHCODES. */
7249 elf_link_hash_traverse (elf_hash_table (info),
7250 elf_collect_hash_codes, &hashinf);
7251 if (hashinf.error)
7252 {
7253 free (hashcodes);
7254 return FALSE;
7255 }
7256
7257 nsyms = hashinf.hashcodes - hashcodes;
7258 bucketcount
7259 = compute_bucket_count (info, hashcodes, nsyms, 0);
7260 free (hashcodes);
7261
7262 if (bucketcount == 0 && nsyms > 0)
7263 return FALSE;
7264
7265 elf_hash_table (info)->bucketcount = bucketcount;
7266
7267 s = bfd_get_linker_section (dynobj, ".hash");
7268 BFD_ASSERT (s != NULL);
7269 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7270 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7271 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7272 if (s->contents == NULL)
7273 return FALSE;
7274
7275 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7276 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7277 s->contents + hash_entry_size);
7278 }
7279
7280 if (info->emit_gnu_hash)
7281 {
7282 size_t i, cnt;
7283 unsigned char *contents;
7284 struct collect_gnu_hash_codes cinfo;
7285 bfd_size_type amt;
7286 size_t bucketcount;
7287
7288 memset (&cinfo, 0, sizeof (cinfo));
7289
7290 /* Compute the hash values for all exported symbols. At the same
7291 time store the values in an array so that we could use them for
7292 optimizations. */
7293 amt = dynsymcount * 2 * sizeof (unsigned long int);
7294 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7295 if (cinfo.hashcodes == NULL)
7296 return FALSE;
7297
7298 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7299 cinfo.min_dynindx = -1;
7300 cinfo.output_bfd = output_bfd;
7301 cinfo.bed = bed;
7302
7303 /* Put all hash values in HASHCODES. */
7304 elf_link_hash_traverse (elf_hash_table (info),
7305 elf_collect_gnu_hash_codes, &cinfo);
7306 if (cinfo.error)
7307 {
7308 free (cinfo.hashcodes);
7309 return FALSE;
7310 }
7311
7312 bucketcount
7313 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7314
7315 if (bucketcount == 0)
7316 {
7317 free (cinfo.hashcodes);
7318 return FALSE;
7319 }
7320
7321 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7322 BFD_ASSERT (s != NULL);
7323
7324 if (cinfo.nsyms == 0)
7325 {
7326 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7327 BFD_ASSERT (cinfo.min_dynindx == -1);
7328 free (cinfo.hashcodes);
7329 s->size = 5 * 4 + bed->s->arch_size / 8;
7330 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7331 if (contents == NULL)
7332 return FALSE;
7333 s->contents = contents;
7334 /* 1 empty bucket. */
7335 bfd_put_32 (output_bfd, 1, contents);
7336 /* SYMIDX above the special symbol 0. */
7337 bfd_put_32 (output_bfd, 1, contents + 4);
7338 /* Just one word for bitmask. */
7339 bfd_put_32 (output_bfd, 1, contents + 8);
7340 /* Only hash fn bloom filter. */
7341 bfd_put_32 (output_bfd, 0, contents + 12);
7342 /* No hashes are valid - empty bitmask. */
7343 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7344 /* No hashes in the only bucket. */
7345 bfd_put_32 (output_bfd, 0,
7346 contents + 16 + bed->s->arch_size / 8);
7347 }
7348 else
7349 {
7350 unsigned long int maskwords, maskbitslog2, x;
7351 BFD_ASSERT (cinfo.min_dynindx != -1);
7352
7353 x = cinfo.nsyms;
7354 maskbitslog2 = 1;
7355 while ((x >>= 1) != 0)
7356 ++maskbitslog2;
7357 if (maskbitslog2 < 3)
7358 maskbitslog2 = 5;
7359 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7360 maskbitslog2 = maskbitslog2 + 3;
7361 else
7362 maskbitslog2 = maskbitslog2 + 2;
7363 if (bed->s->arch_size == 64)
7364 {
7365 if (maskbitslog2 == 5)
7366 maskbitslog2 = 6;
7367 cinfo.shift1 = 6;
7368 }
7369 else
7370 cinfo.shift1 = 5;
7371 cinfo.mask = (1 << cinfo.shift1) - 1;
7372 cinfo.shift2 = maskbitslog2;
7373 cinfo.maskbits = 1 << maskbitslog2;
7374 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7375 amt = bucketcount * sizeof (unsigned long int) * 2;
7376 amt += maskwords * sizeof (bfd_vma);
7377 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7378 if (cinfo.bitmask == NULL)
7379 {
7380 free (cinfo.hashcodes);
7381 return FALSE;
7382 }
7383
7384 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7385 cinfo.indx = cinfo.counts + bucketcount;
7386 cinfo.symindx = dynsymcount - cinfo.nsyms;
7387 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7388
7389 /* Determine how often each hash bucket is used. */
7390 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7391 for (i = 0; i < cinfo.nsyms; ++i)
7392 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7393
7394 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7395 if (cinfo.counts[i] != 0)
7396 {
7397 cinfo.indx[i] = cnt;
7398 cnt += cinfo.counts[i];
7399 }
7400 BFD_ASSERT (cnt == dynsymcount);
7401 cinfo.bucketcount = bucketcount;
7402 cinfo.local_indx = cinfo.min_dynindx;
7403
7404 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7405 s->size += cinfo.maskbits / 8;
7406 if (bed->record_xhash_symbol != NULL)
7407 s->size += cinfo.nsyms * 4;
7408 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7409 if (contents == NULL)
7410 {
7411 free (cinfo.bitmask);
7412 free (cinfo.hashcodes);
7413 return FALSE;
7414 }
7415
7416 s->contents = contents;
7417 bfd_put_32 (output_bfd, bucketcount, contents);
7418 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7419 bfd_put_32 (output_bfd, maskwords, contents + 8);
7420 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7421 contents += 16 + cinfo.maskbits / 8;
7422
7423 for (i = 0; i < bucketcount; ++i)
7424 {
7425 if (cinfo.counts[i] == 0)
7426 bfd_put_32 (output_bfd, 0, contents);
7427 else
7428 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7429 contents += 4;
7430 }
7431
7432 cinfo.contents = contents;
7433
7434 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7435 /* Renumber dynamic symbols, if populating .gnu.hash section.
7436 If using .MIPS.xhash, populate the translation table. */
7437 elf_link_hash_traverse (elf_hash_table (info),
7438 elf_gnu_hash_process_symidx, &cinfo);
7439
7440 contents = s->contents + 16;
7441 for (i = 0; i < maskwords; ++i)
7442 {
7443 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7444 contents);
7445 contents += bed->s->arch_size / 8;
7446 }
7447
7448 free (cinfo.bitmask);
7449 free (cinfo.hashcodes);
7450 }
7451 }
7452
7453 s = bfd_get_linker_section (dynobj, ".dynstr");
7454 BFD_ASSERT (s != NULL);
7455
7456 elf_finalize_dynstr (output_bfd, info);
7457
7458 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7459
7460 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7461 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7462 return FALSE;
7463 }
7464
7465 return TRUE;
7466 }
7467 \f
7468 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7469
7470 static void
7471 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7472 asection *sec)
7473 {
7474 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7475 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7476 }
7477
7478 /* Finish SHF_MERGE section merging. */
7479
7480 bfd_boolean
7481 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7482 {
7483 bfd *ibfd;
7484 asection *sec;
7485
7486 if (!is_elf_hash_table (info->hash))
7487 return FALSE;
7488
7489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7490 if ((ibfd->flags & DYNAMIC) == 0
7491 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7492 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7493 == get_elf_backend_data (obfd)->s->elfclass))
7494 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7495 if ((sec->flags & SEC_MERGE) != 0
7496 && !bfd_is_abs_section (sec->output_section))
7497 {
7498 struct bfd_elf_section_data *secdata;
7499
7500 secdata = elf_section_data (sec);
7501 if (! _bfd_add_merge_section (obfd,
7502 &elf_hash_table (info)->merge_info,
7503 sec, &secdata->sec_info))
7504 return FALSE;
7505 else if (secdata->sec_info)
7506 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7507 }
7508
7509 if (elf_hash_table (info)->merge_info != NULL)
7510 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7511 merge_sections_remove_hook);
7512 return TRUE;
7513 }
7514
7515 /* Create an entry in an ELF linker hash table. */
7516
7517 struct bfd_hash_entry *
7518 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7519 struct bfd_hash_table *table,
7520 const char *string)
7521 {
7522 /* Allocate the structure if it has not already been allocated by a
7523 subclass. */
7524 if (entry == NULL)
7525 {
7526 entry = (struct bfd_hash_entry *)
7527 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7528 if (entry == NULL)
7529 return entry;
7530 }
7531
7532 /* Call the allocation method of the superclass. */
7533 entry = _bfd_link_hash_newfunc (entry, table, string);
7534 if (entry != NULL)
7535 {
7536 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7537 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7538
7539 /* Set local fields. */
7540 ret->indx = -1;
7541 ret->dynindx = -1;
7542 ret->got = htab->init_got_refcount;
7543 ret->plt = htab->init_plt_refcount;
7544 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7545 - offsetof (struct elf_link_hash_entry, size)));
7546 /* Assume that we have been called by a non-ELF symbol reader.
7547 This flag is then reset by the code which reads an ELF input
7548 file. This ensures that a symbol created by a non-ELF symbol
7549 reader will have the flag set correctly. */
7550 ret->non_elf = 1;
7551 }
7552
7553 return entry;
7554 }
7555
7556 /* Copy data from an indirect symbol to its direct symbol, hiding the
7557 old indirect symbol. Also used for copying flags to a weakdef. */
7558
7559 void
7560 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7561 struct elf_link_hash_entry *dir,
7562 struct elf_link_hash_entry *ind)
7563 {
7564 struct elf_link_hash_table *htab;
7565
7566 /* Copy down any references that we may have already seen to the
7567 symbol which just became indirect. */
7568
7569 if (dir->versioned != versioned_hidden)
7570 dir->ref_dynamic |= ind->ref_dynamic;
7571 dir->ref_regular |= ind->ref_regular;
7572 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7573 dir->non_got_ref |= ind->non_got_ref;
7574 dir->needs_plt |= ind->needs_plt;
7575 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7576
7577 if (ind->root.type != bfd_link_hash_indirect)
7578 return;
7579
7580 /* Copy over the global and procedure linkage table refcount entries.
7581 These may have been already set up by a check_relocs routine. */
7582 htab = elf_hash_table (info);
7583 if (ind->got.refcount > htab->init_got_refcount.refcount)
7584 {
7585 if (dir->got.refcount < 0)
7586 dir->got.refcount = 0;
7587 dir->got.refcount += ind->got.refcount;
7588 ind->got.refcount = htab->init_got_refcount.refcount;
7589 }
7590
7591 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7592 {
7593 if (dir->plt.refcount < 0)
7594 dir->plt.refcount = 0;
7595 dir->plt.refcount += ind->plt.refcount;
7596 ind->plt.refcount = htab->init_plt_refcount.refcount;
7597 }
7598
7599 if (ind->dynindx != -1)
7600 {
7601 if (dir->dynindx != -1)
7602 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7603 dir->dynindx = ind->dynindx;
7604 dir->dynstr_index = ind->dynstr_index;
7605 ind->dynindx = -1;
7606 ind->dynstr_index = 0;
7607 }
7608 }
7609
7610 void
7611 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7612 struct elf_link_hash_entry *h,
7613 bfd_boolean force_local)
7614 {
7615 /* STT_GNU_IFUNC symbol must go through PLT. */
7616 if (h->type != STT_GNU_IFUNC)
7617 {
7618 h->plt = elf_hash_table (info)->init_plt_offset;
7619 h->needs_plt = 0;
7620 }
7621 if (force_local)
7622 {
7623 h->forced_local = 1;
7624 if (h->dynindx != -1)
7625 {
7626 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7627 h->dynstr_index);
7628 h->dynindx = -1;
7629 h->dynstr_index = 0;
7630 }
7631 }
7632 }
7633
7634 /* Hide a symbol. */
7635
7636 void
7637 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7638 struct bfd_link_info *info,
7639 struct bfd_link_hash_entry *h)
7640 {
7641 if (is_elf_hash_table (info->hash))
7642 {
7643 const struct elf_backend_data *bed
7644 = get_elf_backend_data (output_bfd);
7645 struct elf_link_hash_entry *eh
7646 = (struct elf_link_hash_entry *) h;
7647 bed->elf_backend_hide_symbol (info, eh, TRUE);
7648 eh->def_dynamic = 0;
7649 eh->ref_dynamic = 0;
7650 eh->dynamic_def = 0;
7651 }
7652 }
7653
7654 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7655 caller. */
7656
7657 bfd_boolean
7658 _bfd_elf_link_hash_table_init
7659 (struct elf_link_hash_table *table,
7660 bfd *abfd,
7661 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7662 struct bfd_hash_table *,
7663 const char *),
7664 unsigned int entsize,
7665 enum elf_target_id target_id)
7666 {
7667 bfd_boolean ret;
7668 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7669
7670 table->init_got_refcount.refcount = can_refcount - 1;
7671 table->init_plt_refcount.refcount = can_refcount - 1;
7672 table->init_got_offset.offset = -(bfd_vma) 1;
7673 table->init_plt_offset.offset = -(bfd_vma) 1;
7674 /* The first dynamic symbol is a dummy. */
7675 table->dynsymcount = 1;
7676
7677 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7678
7679 table->root.type = bfd_link_elf_hash_table;
7680 table->hash_table_id = target_id;
7681
7682 return ret;
7683 }
7684
7685 /* Create an ELF linker hash table. */
7686
7687 struct bfd_link_hash_table *
7688 _bfd_elf_link_hash_table_create (bfd *abfd)
7689 {
7690 struct elf_link_hash_table *ret;
7691 size_t amt = sizeof (struct elf_link_hash_table);
7692
7693 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7694 if (ret == NULL)
7695 return NULL;
7696
7697 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7698 sizeof (struct elf_link_hash_entry),
7699 GENERIC_ELF_DATA))
7700 {
7701 free (ret);
7702 return NULL;
7703 }
7704 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7705
7706 return &ret->root;
7707 }
7708
7709 /* Destroy an ELF linker hash table. */
7710
7711 void
7712 _bfd_elf_link_hash_table_free (bfd *obfd)
7713 {
7714 struct elf_link_hash_table *htab;
7715
7716 htab = (struct elf_link_hash_table *) obfd->link.hash;
7717 if (htab->dynstr != NULL)
7718 _bfd_elf_strtab_free (htab->dynstr);
7719 _bfd_merge_sections_free (htab->merge_info);
7720 _bfd_generic_link_hash_table_free (obfd);
7721 }
7722
7723 /* This is a hook for the ELF emulation code in the generic linker to
7724 tell the backend linker what file name to use for the DT_NEEDED
7725 entry for a dynamic object. */
7726
7727 void
7728 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7729 {
7730 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7731 && bfd_get_format (abfd) == bfd_object)
7732 elf_dt_name (abfd) = name;
7733 }
7734
7735 int
7736 bfd_elf_get_dyn_lib_class (bfd *abfd)
7737 {
7738 int lib_class;
7739 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7740 && bfd_get_format (abfd) == bfd_object)
7741 lib_class = elf_dyn_lib_class (abfd);
7742 else
7743 lib_class = 0;
7744 return lib_class;
7745 }
7746
7747 void
7748 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7749 {
7750 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7751 && bfd_get_format (abfd) == bfd_object)
7752 elf_dyn_lib_class (abfd) = lib_class;
7753 }
7754
7755 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7756 the linker ELF emulation code. */
7757
7758 struct bfd_link_needed_list *
7759 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7760 struct bfd_link_info *info)
7761 {
7762 if (! is_elf_hash_table (info->hash))
7763 return NULL;
7764 return elf_hash_table (info)->needed;
7765 }
7766
7767 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7768 hook for the linker ELF emulation code. */
7769
7770 struct bfd_link_needed_list *
7771 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7772 struct bfd_link_info *info)
7773 {
7774 if (! is_elf_hash_table (info->hash))
7775 return NULL;
7776 return elf_hash_table (info)->runpath;
7777 }
7778
7779 /* Get the name actually used for a dynamic object for a link. This
7780 is the SONAME entry if there is one. Otherwise, it is the string
7781 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7782
7783 const char *
7784 bfd_elf_get_dt_soname (bfd *abfd)
7785 {
7786 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7787 && bfd_get_format (abfd) == bfd_object)
7788 return elf_dt_name (abfd);
7789 return NULL;
7790 }
7791
7792 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7793 the ELF linker emulation code. */
7794
7795 bfd_boolean
7796 bfd_elf_get_bfd_needed_list (bfd *abfd,
7797 struct bfd_link_needed_list **pneeded)
7798 {
7799 asection *s;
7800 bfd_byte *dynbuf = NULL;
7801 unsigned int elfsec;
7802 unsigned long shlink;
7803 bfd_byte *extdyn, *extdynend;
7804 size_t extdynsize;
7805 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7806
7807 *pneeded = NULL;
7808
7809 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7810 || bfd_get_format (abfd) != bfd_object)
7811 return TRUE;
7812
7813 s = bfd_get_section_by_name (abfd, ".dynamic");
7814 if (s == NULL || s->size == 0)
7815 return TRUE;
7816
7817 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7818 goto error_return;
7819
7820 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7821 if (elfsec == SHN_BAD)
7822 goto error_return;
7823
7824 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7825
7826 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7827 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7828
7829 extdyn = dynbuf;
7830 extdynend = extdyn + s->size;
7831 for (; extdyn < extdynend; extdyn += extdynsize)
7832 {
7833 Elf_Internal_Dyn dyn;
7834
7835 (*swap_dyn_in) (abfd, extdyn, &dyn);
7836
7837 if (dyn.d_tag == DT_NULL)
7838 break;
7839
7840 if (dyn.d_tag == DT_NEEDED)
7841 {
7842 const char *string;
7843 struct bfd_link_needed_list *l;
7844 unsigned int tagv = dyn.d_un.d_val;
7845 size_t amt;
7846
7847 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7848 if (string == NULL)
7849 goto error_return;
7850
7851 amt = sizeof *l;
7852 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7853 if (l == NULL)
7854 goto error_return;
7855
7856 l->by = abfd;
7857 l->name = string;
7858 l->next = *pneeded;
7859 *pneeded = l;
7860 }
7861 }
7862
7863 free (dynbuf);
7864
7865 return TRUE;
7866
7867 error_return:
7868 if (dynbuf != NULL)
7869 free (dynbuf);
7870 return FALSE;
7871 }
7872
7873 struct elf_symbuf_symbol
7874 {
7875 unsigned long st_name; /* Symbol name, index in string tbl */
7876 unsigned char st_info; /* Type and binding attributes */
7877 unsigned char st_other; /* Visibilty, and target specific */
7878 };
7879
7880 struct elf_symbuf_head
7881 {
7882 struct elf_symbuf_symbol *ssym;
7883 size_t count;
7884 unsigned int st_shndx;
7885 };
7886
7887 struct elf_symbol
7888 {
7889 union
7890 {
7891 Elf_Internal_Sym *isym;
7892 struct elf_symbuf_symbol *ssym;
7893 void *p;
7894 } u;
7895 const char *name;
7896 };
7897
7898 /* Sort references to symbols by ascending section number. */
7899
7900 static int
7901 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7902 {
7903 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7904 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7905
7906 if (s1->st_shndx != s2->st_shndx)
7907 return s1->st_shndx > s2->st_shndx ? 1 : -1;
7908 /* Final sort by the address of the sym in the symbuf ensures
7909 a stable sort. */
7910 if (s1 != s2)
7911 return s1 > s2 ? 1 : -1;
7912 return 0;
7913 }
7914
7915 static int
7916 elf_sym_name_compare (const void *arg1, const void *arg2)
7917 {
7918 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7919 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7920 int ret = strcmp (s1->name, s2->name);
7921 if (ret != 0)
7922 return ret;
7923 if (s1->u.p != s2->u.p)
7924 return s1->u.p > s2->u.p ? 1 : -1;
7925 return 0;
7926 }
7927
7928 static struct elf_symbuf_head *
7929 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7930 {
7931 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7932 struct elf_symbuf_symbol *ssym;
7933 struct elf_symbuf_head *ssymbuf, *ssymhead;
7934 size_t i, shndx_count, total_size, amt;
7935
7936 amt = symcount * sizeof (*indbuf);
7937 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
7938 if (indbuf == NULL)
7939 return NULL;
7940
7941 for (ind = indbuf, i = 0; i < symcount; i++)
7942 if (isymbuf[i].st_shndx != SHN_UNDEF)
7943 *ind++ = &isymbuf[i];
7944 indbufend = ind;
7945
7946 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7947 elf_sort_elf_symbol);
7948
7949 shndx_count = 0;
7950 if (indbufend > indbuf)
7951 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7952 if (ind[0]->st_shndx != ind[1]->st_shndx)
7953 shndx_count++;
7954
7955 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7956 + (indbufend - indbuf) * sizeof (*ssym));
7957 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7958 if (ssymbuf == NULL)
7959 {
7960 free (indbuf);
7961 return NULL;
7962 }
7963
7964 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7965 ssymbuf->ssym = NULL;
7966 ssymbuf->count = shndx_count;
7967 ssymbuf->st_shndx = 0;
7968 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7969 {
7970 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7971 {
7972 ssymhead++;
7973 ssymhead->ssym = ssym;
7974 ssymhead->count = 0;
7975 ssymhead->st_shndx = (*ind)->st_shndx;
7976 }
7977 ssym->st_name = (*ind)->st_name;
7978 ssym->st_info = (*ind)->st_info;
7979 ssym->st_other = (*ind)->st_other;
7980 ssymhead->count++;
7981 }
7982 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7983 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7984 == total_size));
7985
7986 free (indbuf);
7987 return ssymbuf;
7988 }
7989
7990 /* Check if 2 sections define the same set of local and global
7991 symbols. */
7992
7993 static bfd_boolean
7994 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7995 struct bfd_link_info *info)
7996 {
7997 bfd *bfd1, *bfd2;
7998 const struct elf_backend_data *bed1, *bed2;
7999 Elf_Internal_Shdr *hdr1, *hdr2;
8000 size_t symcount1, symcount2;
8001 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8002 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8003 Elf_Internal_Sym *isym, *isymend;
8004 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8005 size_t count1, count2, i;
8006 unsigned int shndx1, shndx2;
8007 bfd_boolean result;
8008
8009 bfd1 = sec1->owner;
8010 bfd2 = sec2->owner;
8011
8012 /* Both sections have to be in ELF. */
8013 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8014 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8015 return FALSE;
8016
8017 if (elf_section_type (sec1) != elf_section_type (sec2))
8018 return FALSE;
8019
8020 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8021 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8022 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8023 return FALSE;
8024
8025 bed1 = get_elf_backend_data (bfd1);
8026 bed2 = get_elf_backend_data (bfd2);
8027 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8028 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8029 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8030 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8031
8032 if (symcount1 == 0 || symcount2 == 0)
8033 return FALSE;
8034
8035 result = FALSE;
8036 isymbuf1 = NULL;
8037 isymbuf2 = NULL;
8038 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8039 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8040
8041 if (ssymbuf1 == NULL)
8042 {
8043 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8044 NULL, NULL, NULL);
8045 if (isymbuf1 == NULL)
8046 goto done;
8047
8048 if (!info->reduce_memory_overheads)
8049 {
8050 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8051 elf_tdata (bfd1)->symbuf = ssymbuf1;
8052 }
8053 }
8054
8055 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8056 {
8057 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8058 NULL, NULL, NULL);
8059 if (isymbuf2 == NULL)
8060 goto done;
8061
8062 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8063 {
8064 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8065 elf_tdata (bfd2)->symbuf = ssymbuf2;
8066 }
8067 }
8068
8069 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8070 {
8071 /* Optimized faster version. */
8072 size_t lo, hi, mid;
8073 struct elf_symbol *symp;
8074 struct elf_symbuf_symbol *ssym, *ssymend;
8075
8076 lo = 0;
8077 hi = ssymbuf1->count;
8078 ssymbuf1++;
8079 count1 = 0;
8080 while (lo < hi)
8081 {
8082 mid = (lo + hi) / 2;
8083 if (shndx1 < ssymbuf1[mid].st_shndx)
8084 hi = mid;
8085 else if (shndx1 > ssymbuf1[mid].st_shndx)
8086 lo = mid + 1;
8087 else
8088 {
8089 count1 = ssymbuf1[mid].count;
8090 ssymbuf1 += mid;
8091 break;
8092 }
8093 }
8094
8095 lo = 0;
8096 hi = ssymbuf2->count;
8097 ssymbuf2++;
8098 count2 = 0;
8099 while (lo < hi)
8100 {
8101 mid = (lo + hi) / 2;
8102 if (shndx2 < ssymbuf2[mid].st_shndx)
8103 hi = mid;
8104 else if (shndx2 > ssymbuf2[mid].st_shndx)
8105 lo = mid + 1;
8106 else
8107 {
8108 count2 = ssymbuf2[mid].count;
8109 ssymbuf2 += mid;
8110 break;
8111 }
8112 }
8113
8114 if (count1 == 0 || count2 == 0 || count1 != count2)
8115 goto done;
8116
8117 symtable1
8118 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8119 symtable2
8120 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8121 if (symtable1 == NULL || symtable2 == NULL)
8122 goto done;
8123
8124 symp = symtable1;
8125 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8126 ssym < ssymend; ssym++, symp++)
8127 {
8128 symp->u.ssym = ssym;
8129 symp->name = bfd_elf_string_from_elf_section (bfd1,
8130 hdr1->sh_link,
8131 ssym->st_name);
8132 }
8133
8134 symp = symtable2;
8135 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8136 ssym < ssymend; ssym++, symp++)
8137 {
8138 symp->u.ssym = ssym;
8139 symp->name = bfd_elf_string_from_elf_section (bfd2,
8140 hdr2->sh_link,
8141 ssym->st_name);
8142 }
8143
8144 /* Sort symbol by name. */
8145 qsort (symtable1, count1, sizeof (struct elf_symbol),
8146 elf_sym_name_compare);
8147 qsort (symtable2, count1, sizeof (struct elf_symbol),
8148 elf_sym_name_compare);
8149
8150 for (i = 0; i < count1; i++)
8151 /* Two symbols must have the same binding, type and name. */
8152 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8153 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8154 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8155 goto done;
8156
8157 result = TRUE;
8158 goto done;
8159 }
8160
8161 symtable1 = (struct elf_symbol *)
8162 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8163 symtable2 = (struct elf_symbol *)
8164 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8165 if (symtable1 == NULL || symtable2 == NULL)
8166 goto done;
8167
8168 /* Count definitions in the section. */
8169 count1 = 0;
8170 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8171 if (isym->st_shndx == shndx1)
8172 symtable1[count1++].u.isym = isym;
8173
8174 count2 = 0;
8175 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8176 if (isym->st_shndx == shndx2)
8177 symtable2[count2++].u.isym = isym;
8178
8179 if (count1 == 0 || count2 == 0 || count1 != count2)
8180 goto done;
8181
8182 for (i = 0; i < count1; i++)
8183 symtable1[i].name
8184 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8185 symtable1[i].u.isym->st_name);
8186
8187 for (i = 0; i < count2; i++)
8188 symtable2[i].name
8189 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8190 symtable2[i].u.isym->st_name);
8191
8192 /* Sort symbol by name. */
8193 qsort (symtable1, count1, sizeof (struct elf_symbol),
8194 elf_sym_name_compare);
8195 qsort (symtable2, count1, sizeof (struct elf_symbol),
8196 elf_sym_name_compare);
8197
8198 for (i = 0; i < count1; i++)
8199 /* Two symbols must have the same binding, type and name. */
8200 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8201 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8202 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8203 goto done;
8204
8205 result = TRUE;
8206
8207 done:
8208 if (symtable1)
8209 free (symtable1);
8210 if (symtable2)
8211 free (symtable2);
8212 if (isymbuf1)
8213 free (isymbuf1);
8214 if (isymbuf2)
8215 free (isymbuf2);
8216
8217 return result;
8218 }
8219
8220 /* Return TRUE if 2 section types are compatible. */
8221
8222 bfd_boolean
8223 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8224 bfd *bbfd, const asection *bsec)
8225 {
8226 if (asec == NULL
8227 || bsec == NULL
8228 || abfd->xvec->flavour != bfd_target_elf_flavour
8229 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8230 return TRUE;
8231
8232 return elf_section_type (asec) == elf_section_type (bsec);
8233 }
8234 \f
8235 /* Final phase of ELF linker. */
8236
8237 /* A structure we use to avoid passing large numbers of arguments. */
8238
8239 struct elf_final_link_info
8240 {
8241 /* General link information. */
8242 struct bfd_link_info *info;
8243 /* Output BFD. */
8244 bfd *output_bfd;
8245 /* Symbol string table. */
8246 struct elf_strtab_hash *symstrtab;
8247 /* .hash section. */
8248 asection *hash_sec;
8249 /* symbol version section (.gnu.version). */
8250 asection *symver_sec;
8251 /* Buffer large enough to hold contents of any section. */
8252 bfd_byte *contents;
8253 /* Buffer large enough to hold external relocs of any section. */
8254 void *external_relocs;
8255 /* Buffer large enough to hold internal relocs of any section. */
8256 Elf_Internal_Rela *internal_relocs;
8257 /* Buffer large enough to hold external local symbols of any input
8258 BFD. */
8259 bfd_byte *external_syms;
8260 /* And a buffer for symbol section indices. */
8261 Elf_External_Sym_Shndx *locsym_shndx;
8262 /* Buffer large enough to hold internal local symbols of any input
8263 BFD. */
8264 Elf_Internal_Sym *internal_syms;
8265 /* Array large enough to hold a symbol index for each local symbol
8266 of any input BFD. */
8267 long *indices;
8268 /* Array large enough to hold a section pointer for each local
8269 symbol of any input BFD. */
8270 asection **sections;
8271 /* Buffer for SHT_SYMTAB_SHNDX section. */
8272 Elf_External_Sym_Shndx *symshndxbuf;
8273 /* Number of STT_FILE syms seen. */
8274 size_t filesym_count;
8275 };
8276
8277 /* This struct is used to pass information to elf_link_output_extsym. */
8278
8279 struct elf_outext_info
8280 {
8281 bfd_boolean failed;
8282 bfd_boolean localsyms;
8283 bfd_boolean file_sym_done;
8284 struct elf_final_link_info *flinfo;
8285 };
8286
8287
8288 /* Support for evaluating a complex relocation.
8289
8290 Complex relocations are generalized, self-describing relocations. The
8291 implementation of them consists of two parts: complex symbols, and the
8292 relocations themselves.
8293
8294 The relocations are use a reserved elf-wide relocation type code (R_RELC
8295 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8296 information (start bit, end bit, word width, etc) into the addend. This
8297 information is extracted from CGEN-generated operand tables within gas.
8298
8299 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8300 internal) representing prefix-notation expressions, including but not
8301 limited to those sorts of expressions normally encoded as addends in the
8302 addend field. The symbol mangling format is:
8303
8304 <node> := <literal>
8305 | <unary-operator> ':' <node>
8306 | <binary-operator> ':' <node> ':' <node>
8307 ;
8308
8309 <literal> := 's' <digits=N> ':' <N character symbol name>
8310 | 'S' <digits=N> ':' <N character section name>
8311 | '#' <hexdigits>
8312 ;
8313
8314 <binary-operator> := as in C
8315 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8316
8317 static void
8318 set_symbol_value (bfd *bfd_with_globals,
8319 Elf_Internal_Sym *isymbuf,
8320 size_t locsymcount,
8321 size_t symidx,
8322 bfd_vma val)
8323 {
8324 struct elf_link_hash_entry **sym_hashes;
8325 struct elf_link_hash_entry *h;
8326 size_t extsymoff = locsymcount;
8327
8328 if (symidx < locsymcount)
8329 {
8330 Elf_Internal_Sym *sym;
8331
8332 sym = isymbuf + symidx;
8333 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8334 {
8335 /* It is a local symbol: move it to the
8336 "absolute" section and give it a value. */
8337 sym->st_shndx = SHN_ABS;
8338 sym->st_value = val;
8339 return;
8340 }
8341 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8342 extsymoff = 0;
8343 }
8344
8345 /* It is a global symbol: set its link type
8346 to "defined" and give it a value. */
8347
8348 sym_hashes = elf_sym_hashes (bfd_with_globals);
8349 h = sym_hashes [symidx - extsymoff];
8350 while (h->root.type == bfd_link_hash_indirect
8351 || h->root.type == bfd_link_hash_warning)
8352 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8353 h->root.type = bfd_link_hash_defined;
8354 h->root.u.def.value = val;
8355 h->root.u.def.section = bfd_abs_section_ptr;
8356 }
8357
8358 static bfd_boolean
8359 resolve_symbol (const char *name,
8360 bfd *input_bfd,
8361 struct elf_final_link_info *flinfo,
8362 bfd_vma *result,
8363 Elf_Internal_Sym *isymbuf,
8364 size_t locsymcount)
8365 {
8366 Elf_Internal_Sym *sym;
8367 struct bfd_link_hash_entry *global_entry;
8368 const char *candidate = NULL;
8369 Elf_Internal_Shdr *symtab_hdr;
8370 size_t i;
8371
8372 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8373
8374 for (i = 0; i < locsymcount; ++ i)
8375 {
8376 sym = isymbuf + i;
8377
8378 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8379 continue;
8380
8381 candidate = bfd_elf_string_from_elf_section (input_bfd,
8382 symtab_hdr->sh_link,
8383 sym->st_name);
8384 #ifdef DEBUG
8385 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8386 name, candidate, (unsigned long) sym->st_value);
8387 #endif
8388 if (candidate && strcmp (candidate, name) == 0)
8389 {
8390 asection *sec = flinfo->sections [i];
8391
8392 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8393 *result += sec->output_offset + sec->output_section->vma;
8394 #ifdef DEBUG
8395 printf ("Found symbol with value %8.8lx\n",
8396 (unsigned long) *result);
8397 #endif
8398 return TRUE;
8399 }
8400 }
8401
8402 /* Hmm, haven't found it yet. perhaps it is a global. */
8403 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8404 FALSE, FALSE, TRUE);
8405 if (!global_entry)
8406 return FALSE;
8407
8408 if (global_entry->type == bfd_link_hash_defined
8409 || global_entry->type == bfd_link_hash_defweak)
8410 {
8411 *result = (global_entry->u.def.value
8412 + global_entry->u.def.section->output_section->vma
8413 + global_entry->u.def.section->output_offset);
8414 #ifdef DEBUG
8415 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8416 global_entry->root.string, (unsigned long) *result);
8417 #endif
8418 return TRUE;
8419 }
8420
8421 return FALSE;
8422 }
8423
8424 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8425 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8426 names like "foo.end" which is the end address of section "foo". */
8427
8428 static bfd_boolean
8429 resolve_section (const char *name,
8430 asection *sections,
8431 bfd_vma *result,
8432 bfd * abfd)
8433 {
8434 asection *curr;
8435 unsigned int len;
8436
8437 for (curr = sections; curr; curr = curr->next)
8438 if (strcmp (curr->name, name) == 0)
8439 {
8440 *result = curr->vma;
8441 return TRUE;
8442 }
8443
8444 /* Hmm. still haven't found it. try pseudo-section names. */
8445 /* FIXME: This could be coded more efficiently... */
8446 for (curr = sections; curr; curr = curr->next)
8447 {
8448 len = strlen (curr->name);
8449 if (len > strlen (name))
8450 continue;
8451
8452 if (strncmp (curr->name, name, len) == 0)
8453 {
8454 if (strncmp (".end", name + len, 4) == 0)
8455 {
8456 *result = (curr->vma
8457 + curr->size / bfd_octets_per_byte (abfd, curr));
8458 return TRUE;
8459 }
8460
8461 /* Insert more pseudo-section names here, if you like. */
8462 }
8463 }
8464
8465 return FALSE;
8466 }
8467
8468 static void
8469 undefined_reference (const char *reftype, const char *name)
8470 {
8471 /* xgettext:c-format */
8472 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8473 reftype, name);
8474 }
8475
8476 static bfd_boolean
8477 eval_symbol (bfd_vma *result,
8478 const char **symp,
8479 bfd *input_bfd,
8480 struct elf_final_link_info *flinfo,
8481 bfd_vma dot,
8482 Elf_Internal_Sym *isymbuf,
8483 size_t locsymcount,
8484 int signed_p)
8485 {
8486 size_t len;
8487 size_t symlen;
8488 bfd_vma a;
8489 bfd_vma b;
8490 char symbuf[4096];
8491 const char *sym = *symp;
8492 const char *symend;
8493 bfd_boolean symbol_is_section = FALSE;
8494
8495 len = strlen (sym);
8496 symend = sym + len;
8497
8498 if (len < 1 || len > sizeof (symbuf))
8499 {
8500 bfd_set_error (bfd_error_invalid_operation);
8501 return FALSE;
8502 }
8503
8504 switch (* sym)
8505 {
8506 case '.':
8507 *result = dot;
8508 *symp = sym + 1;
8509 return TRUE;
8510
8511 case '#':
8512 ++sym;
8513 *result = strtoul (sym, (char **) symp, 16);
8514 return TRUE;
8515
8516 case 'S':
8517 symbol_is_section = TRUE;
8518 /* Fall through. */
8519 case 's':
8520 ++sym;
8521 symlen = strtol (sym, (char **) symp, 10);
8522 sym = *symp + 1; /* Skip the trailing ':'. */
8523
8524 if (symend < sym || symlen + 1 > sizeof (symbuf))
8525 {
8526 bfd_set_error (bfd_error_invalid_operation);
8527 return FALSE;
8528 }
8529
8530 memcpy (symbuf, sym, symlen);
8531 symbuf[symlen] = '\0';
8532 *symp = sym + symlen;
8533
8534 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8535 the symbol as a section, or vice-versa. so we're pretty liberal in our
8536 interpretation here; section means "try section first", not "must be a
8537 section", and likewise with symbol. */
8538
8539 if (symbol_is_section)
8540 {
8541 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8542 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8543 isymbuf, locsymcount))
8544 {
8545 undefined_reference ("section", symbuf);
8546 return FALSE;
8547 }
8548 }
8549 else
8550 {
8551 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8552 isymbuf, locsymcount)
8553 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8554 result, input_bfd))
8555 {
8556 undefined_reference ("symbol", symbuf);
8557 return FALSE;
8558 }
8559 }
8560
8561 return TRUE;
8562
8563 /* All that remains are operators. */
8564
8565 #define UNARY_OP(op) \
8566 if (strncmp (sym, #op, strlen (#op)) == 0) \
8567 { \
8568 sym += strlen (#op); \
8569 if (*sym == ':') \
8570 ++sym; \
8571 *symp = sym; \
8572 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8573 isymbuf, locsymcount, signed_p)) \
8574 return FALSE; \
8575 if (signed_p) \
8576 *result = op ((bfd_signed_vma) a); \
8577 else \
8578 *result = op a; \
8579 return TRUE; \
8580 }
8581
8582 #define BINARY_OP(op) \
8583 if (strncmp (sym, #op, strlen (#op)) == 0) \
8584 { \
8585 sym += strlen (#op); \
8586 if (*sym == ':') \
8587 ++sym; \
8588 *symp = sym; \
8589 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8590 isymbuf, locsymcount, signed_p)) \
8591 return FALSE; \
8592 ++*symp; \
8593 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8594 isymbuf, locsymcount, signed_p)) \
8595 return FALSE; \
8596 if (signed_p) \
8597 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8598 else \
8599 *result = a op b; \
8600 return TRUE; \
8601 }
8602
8603 default:
8604 UNARY_OP (0-);
8605 BINARY_OP (<<);
8606 BINARY_OP (>>);
8607 BINARY_OP (==);
8608 BINARY_OP (!=);
8609 BINARY_OP (<=);
8610 BINARY_OP (>=);
8611 BINARY_OP (&&);
8612 BINARY_OP (||);
8613 UNARY_OP (~);
8614 UNARY_OP (!);
8615 BINARY_OP (*);
8616 BINARY_OP (/);
8617 BINARY_OP (%);
8618 BINARY_OP (^);
8619 BINARY_OP (|);
8620 BINARY_OP (&);
8621 BINARY_OP (+);
8622 BINARY_OP (-);
8623 BINARY_OP (<);
8624 BINARY_OP (>);
8625 #undef UNARY_OP
8626 #undef BINARY_OP
8627 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8628 bfd_set_error (bfd_error_invalid_operation);
8629 return FALSE;
8630 }
8631 }
8632
8633 static void
8634 put_value (bfd_vma size,
8635 unsigned long chunksz,
8636 bfd *input_bfd,
8637 bfd_vma x,
8638 bfd_byte *location)
8639 {
8640 location += (size - chunksz);
8641
8642 for (; size; size -= chunksz, location -= chunksz)
8643 {
8644 switch (chunksz)
8645 {
8646 case 1:
8647 bfd_put_8 (input_bfd, x, location);
8648 x >>= 8;
8649 break;
8650 case 2:
8651 bfd_put_16 (input_bfd, x, location);
8652 x >>= 16;
8653 break;
8654 case 4:
8655 bfd_put_32 (input_bfd, x, location);
8656 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8657 x >>= 16;
8658 x >>= 16;
8659 break;
8660 #ifdef BFD64
8661 case 8:
8662 bfd_put_64 (input_bfd, x, location);
8663 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8664 x >>= 32;
8665 x >>= 32;
8666 break;
8667 #endif
8668 default:
8669 abort ();
8670 break;
8671 }
8672 }
8673 }
8674
8675 static bfd_vma
8676 get_value (bfd_vma size,
8677 unsigned long chunksz,
8678 bfd *input_bfd,
8679 bfd_byte *location)
8680 {
8681 int shift;
8682 bfd_vma x = 0;
8683
8684 /* Sanity checks. */
8685 BFD_ASSERT (chunksz <= sizeof (x)
8686 && size >= chunksz
8687 && chunksz != 0
8688 && (size % chunksz) == 0
8689 && input_bfd != NULL
8690 && location != NULL);
8691
8692 if (chunksz == sizeof (x))
8693 {
8694 BFD_ASSERT (size == chunksz);
8695
8696 /* Make sure that we do not perform an undefined shift operation.
8697 We know that size == chunksz so there will only be one iteration
8698 of the loop below. */
8699 shift = 0;
8700 }
8701 else
8702 shift = 8 * chunksz;
8703
8704 for (; size; size -= chunksz, location += chunksz)
8705 {
8706 switch (chunksz)
8707 {
8708 case 1:
8709 x = (x << shift) | bfd_get_8 (input_bfd, location);
8710 break;
8711 case 2:
8712 x = (x << shift) | bfd_get_16 (input_bfd, location);
8713 break;
8714 case 4:
8715 x = (x << shift) | bfd_get_32 (input_bfd, location);
8716 break;
8717 #ifdef BFD64
8718 case 8:
8719 x = (x << shift) | bfd_get_64 (input_bfd, location);
8720 break;
8721 #endif
8722 default:
8723 abort ();
8724 }
8725 }
8726 return x;
8727 }
8728
8729 static void
8730 decode_complex_addend (unsigned long *start, /* in bits */
8731 unsigned long *oplen, /* in bits */
8732 unsigned long *len, /* in bits */
8733 unsigned long *wordsz, /* in bytes */
8734 unsigned long *chunksz, /* in bytes */
8735 unsigned long *lsb0_p,
8736 unsigned long *signed_p,
8737 unsigned long *trunc_p,
8738 unsigned long encoded)
8739 {
8740 * start = encoded & 0x3F;
8741 * len = (encoded >> 6) & 0x3F;
8742 * oplen = (encoded >> 12) & 0x3F;
8743 * wordsz = (encoded >> 18) & 0xF;
8744 * chunksz = (encoded >> 22) & 0xF;
8745 * lsb0_p = (encoded >> 27) & 1;
8746 * signed_p = (encoded >> 28) & 1;
8747 * trunc_p = (encoded >> 29) & 1;
8748 }
8749
8750 bfd_reloc_status_type
8751 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8752 asection *input_section,
8753 bfd_byte *contents,
8754 Elf_Internal_Rela *rel,
8755 bfd_vma relocation)
8756 {
8757 bfd_vma shift, x, mask;
8758 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8759 bfd_reloc_status_type r;
8760 bfd_size_type octets;
8761
8762 /* Perform this reloc, since it is complex.
8763 (this is not to say that it necessarily refers to a complex
8764 symbol; merely that it is a self-describing CGEN based reloc.
8765 i.e. the addend has the complete reloc information (bit start, end,
8766 word size, etc) encoded within it.). */
8767
8768 decode_complex_addend (&start, &oplen, &len, &wordsz,
8769 &chunksz, &lsb0_p, &signed_p,
8770 &trunc_p, rel->r_addend);
8771
8772 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8773
8774 if (lsb0_p)
8775 shift = (start + 1) - len;
8776 else
8777 shift = (8 * wordsz) - (start + len);
8778
8779 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8780 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8781
8782 #ifdef DEBUG
8783 printf ("Doing complex reloc: "
8784 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8785 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8786 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8787 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8788 oplen, (unsigned long) x, (unsigned long) mask,
8789 (unsigned long) relocation);
8790 #endif
8791
8792 r = bfd_reloc_ok;
8793 if (! trunc_p)
8794 /* Now do an overflow check. */
8795 r = bfd_check_overflow ((signed_p
8796 ? complain_overflow_signed
8797 : complain_overflow_unsigned),
8798 len, 0, (8 * wordsz),
8799 relocation);
8800
8801 /* Do the deed. */
8802 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8803
8804 #ifdef DEBUG
8805 printf (" relocation: %8.8lx\n"
8806 " shifted mask: %8.8lx\n"
8807 " shifted/masked reloc: %8.8lx\n"
8808 " result: %8.8lx\n",
8809 (unsigned long) relocation, (unsigned long) (mask << shift),
8810 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8811 #endif
8812 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8813 return r;
8814 }
8815
8816 /* Functions to read r_offset from external (target order) reloc
8817 entry. Faster than bfd_getl32 et al, because we let the compiler
8818 know the value is aligned. */
8819
8820 static bfd_vma
8821 ext32l_r_offset (const void *p)
8822 {
8823 union aligned32
8824 {
8825 uint32_t v;
8826 unsigned char c[4];
8827 };
8828 const union aligned32 *a
8829 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8830
8831 uint32_t aval = ( (uint32_t) a->c[0]
8832 | (uint32_t) a->c[1] << 8
8833 | (uint32_t) a->c[2] << 16
8834 | (uint32_t) a->c[3] << 24);
8835 return aval;
8836 }
8837
8838 static bfd_vma
8839 ext32b_r_offset (const void *p)
8840 {
8841 union aligned32
8842 {
8843 uint32_t v;
8844 unsigned char c[4];
8845 };
8846 const union aligned32 *a
8847 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8848
8849 uint32_t aval = ( (uint32_t) a->c[0] << 24
8850 | (uint32_t) a->c[1] << 16
8851 | (uint32_t) a->c[2] << 8
8852 | (uint32_t) a->c[3]);
8853 return aval;
8854 }
8855
8856 #ifdef BFD_HOST_64_BIT
8857 static bfd_vma
8858 ext64l_r_offset (const void *p)
8859 {
8860 union aligned64
8861 {
8862 uint64_t v;
8863 unsigned char c[8];
8864 };
8865 const union aligned64 *a
8866 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8867
8868 uint64_t aval = ( (uint64_t) a->c[0]
8869 | (uint64_t) a->c[1] << 8
8870 | (uint64_t) a->c[2] << 16
8871 | (uint64_t) a->c[3] << 24
8872 | (uint64_t) a->c[4] << 32
8873 | (uint64_t) a->c[5] << 40
8874 | (uint64_t) a->c[6] << 48
8875 | (uint64_t) a->c[7] << 56);
8876 return aval;
8877 }
8878
8879 static bfd_vma
8880 ext64b_r_offset (const void *p)
8881 {
8882 union aligned64
8883 {
8884 uint64_t v;
8885 unsigned char c[8];
8886 };
8887 const union aligned64 *a
8888 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8889
8890 uint64_t aval = ( (uint64_t) a->c[0] << 56
8891 | (uint64_t) a->c[1] << 48
8892 | (uint64_t) a->c[2] << 40
8893 | (uint64_t) a->c[3] << 32
8894 | (uint64_t) a->c[4] << 24
8895 | (uint64_t) a->c[5] << 16
8896 | (uint64_t) a->c[6] << 8
8897 | (uint64_t) a->c[7]);
8898 return aval;
8899 }
8900 #endif
8901
8902 /* When performing a relocatable link, the input relocations are
8903 preserved. But, if they reference global symbols, the indices
8904 referenced must be updated. Update all the relocations found in
8905 RELDATA. */
8906
8907 static bfd_boolean
8908 elf_link_adjust_relocs (bfd *abfd,
8909 asection *sec,
8910 struct bfd_elf_section_reloc_data *reldata,
8911 bfd_boolean sort,
8912 struct bfd_link_info *info)
8913 {
8914 unsigned int i;
8915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8916 bfd_byte *erela;
8917 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8918 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8919 bfd_vma r_type_mask;
8920 int r_sym_shift;
8921 unsigned int count = reldata->count;
8922 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8923
8924 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8925 {
8926 swap_in = bed->s->swap_reloc_in;
8927 swap_out = bed->s->swap_reloc_out;
8928 }
8929 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8930 {
8931 swap_in = bed->s->swap_reloca_in;
8932 swap_out = bed->s->swap_reloca_out;
8933 }
8934 else
8935 abort ();
8936
8937 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8938 abort ();
8939
8940 if (bed->s->arch_size == 32)
8941 {
8942 r_type_mask = 0xff;
8943 r_sym_shift = 8;
8944 }
8945 else
8946 {
8947 r_type_mask = 0xffffffff;
8948 r_sym_shift = 32;
8949 }
8950
8951 erela = reldata->hdr->contents;
8952 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8953 {
8954 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8955 unsigned int j;
8956
8957 if (*rel_hash == NULL)
8958 continue;
8959
8960 if ((*rel_hash)->indx == -2
8961 && info->gc_sections
8962 && ! info->gc_keep_exported)
8963 {
8964 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8965 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8966 abfd, sec,
8967 (*rel_hash)->root.root.string);
8968 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8969 abfd, sec);
8970 bfd_set_error (bfd_error_invalid_operation);
8971 return FALSE;
8972 }
8973 BFD_ASSERT ((*rel_hash)->indx >= 0);
8974
8975 (*swap_in) (abfd, erela, irela);
8976 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8977 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8978 | (irela[j].r_info & r_type_mask));
8979 (*swap_out) (abfd, irela, erela);
8980 }
8981
8982 if (bed->elf_backend_update_relocs)
8983 (*bed->elf_backend_update_relocs) (sec, reldata);
8984
8985 if (sort && count != 0)
8986 {
8987 bfd_vma (*ext_r_off) (const void *);
8988 bfd_vma r_off;
8989 size_t elt_size;
8990 bfd_byte *base, *end, *p, *loc;
8991 bfd_byte *buf = NULL;
8992
8993 if (bed->s->arch_size == 32)
8994 {
8995 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8996 ext_r_off = ext32l_r_offset;
8997 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8998 ext_r_off = ext32b_r_offset;
8999 else
9000 abort ();
9001 }
9002 else
9003 {
9004 #ifdef BFD_HOST_64_BIT
9005 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9006 ext_r_off = ext64l_r_offset;
9007 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9008 ext_r_off = ext64b_r_offset;
9009 else
9010 #endif
9011 abort ();
9012 }
9013
9014 /* Must use a stable sort here. A modified insertion sort,
9015 since the relocs are mostly sorted already. */
9016 elt_size = reldata->hdr->sh_entsize;
9017 base = reldata->hdr->contents;
9018 end = base + count * elt_size;
9019 if (elt_size > sizeof (Elf64_External_Rela))
9020 abort ();
9021
9022 /* Ensure the first element is lowest. This acts as a sentinel,
9023 speeding the main loop below. */
9024 r_off = (*ext_r_off) (base);
9025 for (p = loc = base; (p += elt_size) < end; )
9026 {
9027 bfd_vma r_off2 = (*ext_r_off) (p);
9028 if (r_off > r_off2)
9029 {
9030 r_off = r_off2;
9031 loc = p;
9032 }
9033 }
9034 if (loc != base)
9035 {
9036 /* Don't just swap *base and *loc as that changes the order
9037 of the original base[0] and base[1] if they happen to
9038 have the same r_offset. */
9039 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9040 memcpy (onebuf, loc, elt_size);
9041 memmove (base + elt_size, base, loc - base);
9042 memcpy (base, onebuf, elt_size);
9043 }
9044
9045 for (p = base + elt_size; (p += elt_size) < end; )
9046 {
9047 /* base to p is sorted, *p is next to insert. */
9048 r_off = (*ext_r_off) (p);
9049 /* Search the sorted region for location to insert. */
9050 loc = p - elt_size;
9051 while (r_off < (*ext_r_off) (loc))
9052 loc -= elt_size;
9053 loc += elt_size;
9054 if (loc != p)
9055 {
9056 /* Chances are there is a run of relocs to insert here,
9057 from one of more input files. Files are not always
9058 linked in order due to the way elf_link_input_bfd is
9059 called. See pr17666. */
9060 size_t sortlen = p - loc;
9061 bfd_vma r_off2 = (*ext_r_off) (loc);
9062 size_t runlen = elt_size;
9063 size_t buf_size = 96 * 1024;
9064 while (p + runlen < end
9065 && (sortlen <= buf_size
9066 || runlen + elt_size <= buf_size)
9067 && r_off2 > (*ext_r_off) (p + runlen))
9068 runlen += elt_size;
9069 if (buf == NULL)
9070 {
9071 buf = bfd_malloc (buf_size);
9072 if (buf == NULL)
9073 return FALSE;
9074 }
9075 if (runlen < sortlen)
9076 {
9077 memcpy (buf, p, runlen);
9078 memmove (loc + runlen, loc, sortlen);
9079 memcpy (loc, buf, runlen);
9080 }
9081 else
9082 {
9083 memcpy (buf, loc, sortlen);
9084 memmove (loc, p, runlen);
9085 memcpy (loc + runlen, buf, sortlen);
9086 }
9087 p += runlen - elt_size;
9088 }
9089 }
9090 /* Hashes are no longer valid. */
9091 free (reldata->hashes);
9092 reldata->hashes = NULL;
9093 free (buf);
9094 }
9095 return TRUE;
9096 }
9097
9098 struct elf_link_sort_rela
9099 {
9100 union {
9101 bfd_vma offset;
9102 bfd_vma sym_mask;
9103 } u;
9104 enum elf_reloc_type_class type;
9105 /* We use this as an array of size int_rels_per_ext_rel. */
9106 Elf_Internal_Rela rela[1];
9107 };
9108
9109 /* qsort stability here and for cmp2 is only an issue if multiple
9110 dynamic relocations are emitted at the same address. But targets
9111 that apply a series of dynamic relocations each operating on the
9112 result of the prior relocation can't use -z combreloc as
9113 implemented anyway. Such schemes tend to be broken by sorting on
9114 symbol index. That leaves dynamic NONE relocs as the only other
9115 case where ld might emit multiple relocs at the same address, and
9116 those are only emitted due to target bugs. */
9117
9118 static int
9119 elf_link_sort_cmp1 (const void *A, const void *B)
9120 {
9121 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9122 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9123 int relativea, relativeb;
9124
9125 relativea = a->type == reloc_class_relative;
9126 relativeb = b->type == reloc_class_relative;
9127
9128 if (relativea < relativeb)
9129 return 1;
9130 if (relativea > relativeb)
9131 return -1;
9132 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9133 return -1;
9134 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9135 return 1;
9136 if (a->rela->r_offset < b->rela->r_offset)
9137 return -1;
9138 if (a->rela->r_offset > b->rela->r_offset)
9139 return 1;
9140 return 0;
9141 }
9142
9143 static int
9144 elf_link_sort_cmp2 (const void *A, const void *B)
9145 {
9146 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9147 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9148
9149 if (a->type < b->type)
9150 return -1;
9151 if (a->type > b->type)
9152 return 1;
9153 if (a->u.offset < b->u.offset)
9154 return -1;
9155 if (a->u.offset > b->u.offset)
9156 return 1;
9157 if (a->rela->r_offset < b->rela->r_offset)
9158 return -1;
9159 if (a->rela->r_offset > b->rela->r_offset)
9160 return 1;
9161 return 0;
9162 }
9163
9164 static size_t
9165 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9166 {
9167 asection *dynamic_relocs;
9168 asection *rela_dyn;
9169 asection *rel_dyn;
9170 bfd_size_type count, size;
9171 size_t i, ret, sort_elt, ext_size;
9172 bfd_byte *sort, *s_non_relative, *p;
9173 struct elf_link_sort_rela *sq;
9174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9175 int i2e = bed->s->int_rels_per_ext_rel;
9176 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9177 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9178 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9179 struct bfd_link_order *lo;
9180 bfd_vma r_sym_mask;
9181 bfd_boolean use_rela;
9182
9183 /* Find a dynamic reloc section. */
9184 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9185 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9186 if (rela_dyn != NULL && rela_dyn->size > 0
9187 && rel_dyn != NULL && rel_dyn->size > 0)
9188 {
9189 bfd_boolean use_rela_initialised = FALSE;
9190
9191 /* This is just here to stop gcc from complaining.
9192 Its initialization checking code is not perfect. */
9193 use_rela = TRUE;
9194
9195 /* Both sections are present. Examine the sizes
9196 of the indirect sections to help us choose. */
9197 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9198 if (lo->type == bfd_indirect_link_order)
9199 {
9200 asection *o = lo->u.indirect.section;
9201
9202 if ((o->size % bed->s->sizeof_rela) == 0)
9203 {
9204 if ((o->size % bed->s->sizeof_rel) == 0)
9205 /* Section size is divisible by both rel and rela sizes.
9206 It is of no help to us. */
9207 ;
9208 else
9209 {
9210 /* Section size is only divisible by rela. */
9211 if (use_rela_initialised && !use_rela)
9212 {
9213 _bfd_error_handler (_("%pB: unable to sort relocs - "
9214 "they are in more than one size"),
9215 abfd);
9216 bfd_set_error (bfd_error_invalid_operation);
9217 return 0;
9218 }
9219 else
9220 {
9221 use_rela = TRUE;
9222 use_rela_initialised = TRUE;
9223 }
9224 }
9225 }
9226 else if ((o->size % bed->s->sizeof_rel) == 0)
9227 {
9228 /* Section size is only divisible by rel. */
9229 if (use_rela_initialised && use_rela)
9230 {
9231 _bfd_error_handler (_("%pB: unable to sort relocs - "
9232 "they are in more than one size"),
9233 abfd);
9234 bfd_set_error (bfd_error_invalid_operation);
9235 return 0;
9236 }
9237 else
9238 {
9239 use_rela = FALSE;
9240 use_rela_initialised = TRUE;
9241 }
9242 }
9243 else
9244 {
9245 /* The section size is not divisible by either -
9246 something is wrong. */
9247 _bfd_error_handler (_("%pB: unable to sort relocs - "
9248 "they are of an unknown size"), abfd);
9249 bfd_set_error (bfd_error_invalid_operation);
9250 return 0;
9251 }
9252 }
9253
9254 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9255 if (lo->type == bfd_indirect_link_order)
9256 {
9257 asection *o = lo->u.indirect.section;
9258
9259 if ((o->size % bed->s->sizeof_rela) == 0)
9260 {
9261 if ((o->size % bed->s->sizeof_rel) == 0)
9262 /* Section size is divisible by both rel and rela sizes.
9263 It is of no help to us. */
9264 ;
9265 else
9266 {
9267 /* Section size is only divisible by rela. */
9268 if (use_rela_initialised && !use_rela)
9269 {
9270 _bfd_error_handler (_("%pB: unable to sort relocs - "
9271 "they are in more than one size"),
9272 abfd);
9273 bfd_set_error (bfd_error_invalid_operation);
9274 return 0;
9275 }
9276 else
9277 {
9278 use_rela = TRUE;
9279 use_rela_initialised = TRUE;
9280 }
9281 }
9282 }
9283 else if ((o->size % bed->s->sizeof_rel) == 0)
9284 {
9285 /* Section size is only divisible by rel. */
9286 if (use_rela_initialised && use_rela)
9287 {
9288 _bfd_error_handler (_("%pB: unable to sort relocs - "
9289 "they are in more than one size"),
9290 abfd);
9291 bfd_set_error (bfd_error_invalid_operation);
9292 return 0;
9293 }
9294 else
9295 {
9296 use_rela = FALSE;
9297 use_rela_initialised = TRUE;
9298 }
9299 }
9300 else
9301 {
9302 /* The section size is not divisible by either -
9303 something is wrong. */
9304 _bfd_error_handler (_("%pB: unable to sort relocs - "
9305 "they are of an unknown size"), abfd);
9306 bfd_set_error (bfd_error_invalid_operation);
9307 return 0;
9308 }
9309 }
9310
9311 if (! use_rela_initialised)
9312 /* Make a guess. */
9313 use_rela = TRUE;
9314 }
9315 else if (rela_dyn != NULL && rela_dyn->size > 0)
9316 use_rela = TRUE;
9317 else if (rel_dyn != NULL && rel_dyn->size > 0)
9318 use_rela = FALSE;
9319 else
9320 return 0;
9321
9322 if (use_rela)
9323 {
9324 dynamic_relocs = rela_dyn;
9325 ext_size = bed->s->sizeof_rela;
9326 swap_in = bed->s->swap_reloca_in;
9327 swap_out = bed->s->swap_reloca_out;
9328 }
9329 else
9330 {
9331 dynamic_relocs = rel_dyn;
9332 ext_size = bed->s->sizeof_rel;
9333 swap_in = bed->s->swap_reloc_in;
9334 swap_out = bed->s->swap_reloc_out;
9335 }
9336
9337 size = 0;
9338 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9339 if (lo->type == bfd_indirect_link_order)
9340 size += lo->u.indirect.section->size;
9341
9342 if (size != dynamic_relocs->size)
9343 return 0;
9344
9345 sort_elt = (sizeof (struct elf_link_sort_rela)
9346 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9347
9348 count = dynamic_relocs->size / ext_size;
9349 if (count == 0)
9350 return 0;
9351 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9352
9353 if (sort == NULL)
9354 {
9355 (*info->callbacks->warning)
9356 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9357 return 0;
9358 }
9359
9360 if (bed->s->arch_size == 32)
9361 r_sym_mask = ~(bfd_vma) 0xff;
9362 else
9363 r_sym_mask = ~(bfd_vma) 0xffffffff;
9364
9365 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9366 if (lo->type == bfd_indirect_link_order)
9367 {
9368 bfd_byte *erel, *erelend;
9369 asection *o = lo->u.indirect.section;
9370
9371 if (o->contents == NULL && o->size != 0)
9372 {
9373 /* This is a reloc section that is being handled as a normal
9374 section. See bfd_section_from_shdr. We can't combine
9375 relocs in this case. */
9376 free (sort);
9377 return 0;
9378 }
9379 erel = o->contents;
9380 erelend = o->contents + o->size;
9381 p = sort + o->output_offset * opb / ext_size * sort_elt;
9382
9383 while (erel < erelend)
9384 {
9385 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9386
9387 (*swap_in) (abfd, erel, s->rela);
9388 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9389 s->u.sym_mask = r_sym_mask;
9390 p += sort_elt;
9391 erel += ext_size;
9392 }
9393 }
9394
9395 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9396
9397 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9398 {
9399 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9400 if (s->type != reloc_class_relative)
9401 break;
9402 }
9403 ret = i;
9404 s_non_relative = p;
9405
9406 sq = (struct elf_link_sort_rela *) s_non_relative;
9407 for (; i < count; i++, p += sort_elt)
9408 {
9409 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9410 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9411 sq = sp;
9412 sp->u.offset = sq->rela->r_offset;
9413 }
9414
9415 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9416
9417 struct elf_link_hash_table *htab = elf_hash_table (info);
9418 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9419 {
9420 /* We have plt relocs in .rela.dyn. */
9421 sq = (struct elf_link_sort_rela *) sort;
9422 for (i = 0; i < count; i++)
9423 if (sq[count - i - 1].type != reloc_class_plt)
9424 break;
9425 if (i != 0 && htab->srelplt->size == i * ext_size)
9426 {
9427 struct bfd_link_order **plo;
9428 /* Put srelplt link_order last. This is so the output_offset
9429 set in the next loop is correct for DT_JMPREL. */
9430 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9431 if ((*plo)->type == bfd_indirect_link_order
9432 && (*plo)->u.indirect.section == htab->srelplt)
9433 {
9434 lo = *plo;
9435 *plo = lo->next;
9436 }
9437 else
9438 plo = &(*plo)->next;
9439 *plo = lo;
9440 lo->next = NULL;
9441 dynamic_relocs->map_tail.link_order = lo;
9442 }
9443 }
9444
9445 p = sort;
9446 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9447 if (lo->type == bfd_indirect_link_order)
9448 {
9449 bfd_byte *erel, *erelend;
9450 asection *o = lo->u.indirect.section;
9451
9452 erel = o->contents;
9453 erelend = o->contents + o->size;
9454 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9455 while (erel < erelend)
9456 {
9457 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9458 (*swap_out) (abfd, s->rela, erel);
9459 p += sort_elt;
9460 erel += ext_size;
9461 }
9462 }
9463
9464 free (sort);
9465 *psec = dynamic_relocs;
9466 return ret;
9467 }
9468
9469 /* Add a symbol to the output symbol string table. */
9470
9471 static int
9472 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9473 const char *name,
9474 Elf_Internal_Sym *elfsym,
9475 asection *input_sec,
9476 struct elf_link_hash_entry *h)
9477 {
9478 int (*output_symbol_hook)
9479 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9480 struct elf_link_hash_entry *);
9481 struct elf_link_hash_table *hash_table;
9482 const struct elf_backend_data *bed;
9483 bfd_size_type strtabsize;
9484
9485 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9486
9487 bed = get_elf_backend_data (flinfo->output_bfd);
9488 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9489 if (output_symbol_hook != NULL)
9490 {
9491 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9492 if (ret != 1)
9493 return ret;
9494 }
9495
9496 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9497 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9498 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9499 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9500
9501 if (name == NULL
9502 || *name == '\0'
9503 || (input_sec->flags & SEC_EXCLUDE))
9504 elfsym->st_name = (unsigned long) -1;
9505 else
9506 {
9507 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9508 to get the final offset for st_name. */
9509 elfsym->st_name
9510 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9511 name, FALSE);
9512 if (elfsym->st_name == (unsigned long) -1)
9513 return 0;
9514 }
9515
9516 hash_table = elf_hash_table (flinfo->info);
9517 strtabsize = hash_table->strtabsize;
9518 if (strtabsize <= hash_table->strtabcount)
9519 {
9520 strtabsize += strtabsize;
9521 hash_table->strtabsize = strtabsize;
9522 strtabsize *= sizeof (*hash_table->strtab);
9523 hash_table->strtab
9524 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9525 strtabsize);
9526 if (hash_table->strtab == NULL)
9527 return 0;
9528 }
9529 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9530 hash_table->strtab[hash_table->strtabcount].dest_index
9531 = hash_table->strtabcount;
9532 hash_table->strtab[hash_table->strtabcount].destshndx_index
9533 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9534
9535 flinfo->output_bfd->symcount += 1;
9536 hash_table->strtabcount += 1;
9537
9538 return 1;
9539 }
9540
9541 /* Swap symbols out to the symbol table and flush the output symbols to
9542 the file. */
9543
9544 static bfd_boolean
9545 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9546 {
9547 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9548 size_t amt;
9549 size_t i;
9550 const struct elf_backend_data *bed;
9551 bfd_byte *symbuf;
9552 Elf_Internal_Shdr *hdr;
9553 file_ptr pos;
9554 bfd_boolean ret;
9555
9556 if (!hash_table->strtabcount)
9557 return TRUE;
9558
9559 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9560
9561 bed = get_elf_backend_data (flinfo->output_bfd);
9562
9563 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9564 symbuf = (bfd_byte *) bfd_malloc (amt);
9565 if (symbuf == NULL)
9566 return FALSE;
9567
9568 if (flinfo->symshndxbuf)
9569 {
9570 amt = sizeof (Elf_External_Sym_Shndx);
9571 amt *= bfd_get_symcount (flinfo->output_bfd);
9572 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9573 if (flinfo->symshndxbuf == NULL)
9574 {
9575 free (symbuf);
9576 return FALSE;
9577 }
9578 }
9579
9580 for (i = 0; i < hash_table->strtabcount; i++)
9581 {
9582 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9583 if (elfsym->sym.st_name == (unsigned long) -1)
9584 elfsym->sym.st_name = 0;
9585 else
9586 elfsym->sym.st_name
9587 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9588 elfsym->sym.st_name);
9589 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9590 ((bfd_byte *) symbuf
9591 + (elfsym->dest_index
9592 * bed->s->sizeof_sym)),
9593 (flinfo->symshndxbuf
9594 + elfsym->destshndx_index));
9595 }
9596
9597 /* Allow the linker to examine the strtab and symtab now they are
9598 populated. */
9599
9600 if (flinfo->info->callbacks->examine_strtab)
9601 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9602 hash_table->strtabcount,
9603 flinfo->symstrtab);
9604
9605 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9606 pos = hdr->sh_offset + hdr->sh_size;
9607 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9608 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9609 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9610 {
9611 hdr->sh_size += amt;
9612 ret = TRUE;
9613 }
9614 else
9615 ret = FALSE;
9616
9617 free (symbuf);
9618
9619 free (hash_table->strtab);
9620 hash_table->strtab = NULL;
9621
9622 return ret;
9623 }
9624
9625 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9626
9627 static bfd_boolean
9628 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9629 {
9630 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9631 && sym->st_shndx < SHN_LORESERVE)
9632 {
9633 /* The gABI doesn't support dynamic symbols in output sections
9634 beyond 64k. */
9635 _bfd_error_handler
9636 /* xgettext:c-format */
9637 (_("%pB: too many sections: %d (>= %d)"),
9638 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9639 bfd_set_error (bfd_error_nonrepresentable_section);
9640 return FALSE;
9641 }
9642 return TRUE;
9643 }
9644
9645 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9646 allowing an unsatisfied unversioned symbol in the DSO to match a
9647 versioned symbol that would normally require an explicit version.
9648 We also handle the case that a DSO references a hidden symbol
9649 which may be satisfied by a versioned symbol in another DSO. */
9650
9651 static bfd_boolean
9652 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9653 const struct elf_backend_data *bed,
9654 struct elf_link_hash_entry *h)
9655 {
9656 bfd *abfd;
9657 struct elf_link_loaded_list *loaded;
9658
9659 if (!is_elf_hash_table (info->hash))
9660 return FALSE;
9661
9662 /* Check indirect symbol. */
9663 while (h->root.type == bfd_link_hash_indirect)
9664 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9665
9666 switch (h->root.type)
9667 {
9668 default:
9669 abfd = NULL;
9670 break;
9671
9672 case bfd_link_hash_undefined:
9673 case bfd_link_hash_undefweak:
9674 abfd = h->root.u.undef.abfd;
9675 if (abfd == NULL
9676 || (abfd->flags & DYNAMIC) == 0
9677 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9678 return FALSE;
9679 break;
9680
9681 case bfd_link_hash_defined:
9682 case bfd_link_hash_defweak:
9683 abfd = h->root.u.def.section->owner;
9684 break;
9685
9686 case bfd_link_hash_common:
9687 abfd = h->root.u.c.p->section->owner;
9688 break;
9689 }
9690 BFD_ASSERT (abfd != NULL);
9691
9692 for (loaded = elf_hash_table (info)->loaded;
9693 loaded != NULL;
9694 loaded = loaded->next)
9695 {
9696 bfd *input;
9697 Elf_Internal_Shdr *hdr;
9698 size_t symcount;
9699 size_t extsymcount;
9700 size_t extsymoff;
9701 Elf_Internal_Shdr *versymhdr;
9702 Elf_Internal_Sym *isym;
9703 Elf_Internal_Sym *isymend;
9704 Elf_Internal_Sym *isymbuf;
9705 Elf_External_Versym *ever;
9706 Elf_External_Versym *extversym;
9707
9708 input = loaded->abfd;
9709
9710 /* We check each DSO for a possible hidden versioned definition. */
9711 if (input == abfd
9712 || (input->flags & DYNAMIC) == 0
9713 || elf_dynversym (input) == 0)
9714 continue;
9715
9716 hdr = &elf_tdata (input)->dynsymtab_hdr;
9717
9718 symcount = hdr->sh_size / bed->s->sizeof_sym;
9719 if (elf_bad_symtab (input))
9720 {
9721 extsymcount = symcount;
9722 extsymoff = 0;
9723 }
9724 else
9725 {
9726 extsymcount = symcount - hdr->sh_info;
9727 extsymoff = hdr->sh_info;
9728 }
9729
9730 if (extsymcount == 0)
9731 continue;
9732
9733 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9734 NULL, NULL, NULL);
9735 if (isymbuf == NULL)
9736 return FALSE;
9737
9738 /* Read in any version definitions. */
9739 versymhdr = &elf_tdata (input)->dynversym_hdr;
9740 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9741 || (extversym = (Elf_External_Versym *)
9742 _bfd_malloc_and_read (input, versymhdr->sh_size,
9743 versymhdr->sh_size)) == NULL)
9744 {
9745 free (isymbuf);
9746 return FALSE;
9747 }
9748
9749 ever = extversym + extsymoff;
9750 isymend = isymbuf + extsymcount;
9751 for (isym = isymbuf; isym < isymend; isym++, ever++)
9752 {
9753 const char *name;
9754 Elf_Internal_Versym iver;
9755 unsigned short version_index;
9756
9757 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9758 || isym->st_shndx == SHN_UNDEF)
9759 continue;
9760
9761 name = bfd_elf_string_from_elf_section (input,
9762 hdr->sh_link,
9763 isym->st_name);
9764 if (strcmp (name, h->root.root.string) != 0)
9765 continue;
9766
9767 _bfd_elf_swap_versym_in (input, ever, &iver);
9768
9769 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9770 && !(h->def_regular
9771 && h->forced_local))
9772 {
9773 /* If we have a non-hidden versioned sym, then it should
9774 have provided a definition for the undefined sym unless
9775 it is defined in a non-shared object and forced local.
9776 */
9777 abort ();
9778 }
9779
9780 version_index = iver.vs_vers & VERSYM_VERSION;
9781 if (version_index == 1 || version_index == 2)
9782 {
9783 /* This is the base or first version. We can use it. */
9784 free (extversym);
9785 free (isymbuf);
9786 return TRUE;
9787 }
9788 }
9789
9790 free (extversym);
9791 free (isymbuf);
9792 }
9793
9794 return FALSE;
9795 }
9796
9797 /* Convert ELF common symbol TYPE. */
9798
9799 static int
9800 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9801 {
9802 /* Commom symbol can only appear in relocatable link. */
9803 if (!bfd_link_relocatable (info))
9804 abort ();
9805 switch (info->elf_stt_common)
9806 {
9807 case unchanged:
9808 break;
9809 case elf_stt_common:
9810 type = STT_COMMON;
9811 break;
9812 case no_elf_stt_common:
9813 type = STT_OBJECT;
9814 break;
9815 }
9816 return type;
9817 }
9818
9819 /* Add an external symbol to the symbol table. This is called from
9820 the hash table traversal routine. When generating a shared object,
9821 we go through the symbol table twice. The first time we output
9822 anything that might have been forced to local scope in a version
9823 script. The second time we output the symbols that are still
9824 global symbols. */
9825
9826 static bfd_boolean
9827 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9828 {
9829 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9830 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9831 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9832 bfd_boolean strip;
9833 Elf_Internal_Sym sym;
9834 asection *input_sec;
9835 const struct elf_backend_data *bed;
9836 long indx;
9837 int ret;
9838 unsigned int type;
9839
9840 if (h->root.type == bfd_link_hash_warning)
9841 {
9842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9843 if (h->root.type == bfd_link_hash_new)
9844 return TRUE;
9845 }
9846
9847 /* Decide whether to output this symbol in this pass. */
9848 if (eoinfo->localsyms)
9849 {
9850 if (!h->forced_local)
9851 return TRUE;
9852 }
9853 else
9854 {
9855 if (h->forced_local)
9856 return TRUE;
9857 }
9858
9859 bed = get_elf_backend_data (flinfo->output_bfd);
9860
9861 if (h->root.type == bfd_link_hash_undefined)
9862 {
9863 /* If we have an undefined symbol reference here then it must have
9864 come from a shared library that is being linked in. (Undefined
9865 references in regular files have already been handled unless
9866 they are in unreferenced sections which are removed by garbage
9867 collection). */
9868 bfd_boolean ignore_undef = FALSE;
9869
9870 /* Some symbols may be special in that the fact that they're
9871 undefined can be safely ignored - let backend determine that. */
9872 if (bed->elf_backend_ignore_undef_symbol)
9873 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9874
9875 /* If we are reporting errors for this situation then do so now. */
9876 if (!ignore_undef
9877 && h->ref_dynamic_nonweak
9878 && (!h->ref_regular || flinfo->info->gc_sections)
9879 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9880 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9881 (*flinfo->info->callbacks->undefined_symbol)
9882 (flinfo->info, h->root.root.string,
9883 h->ref_regular ? NULL : h->root.u.undef.abfd,
9884 NULL, 0,
9885 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9886
9887 /* Strip a global symbol defined in a discarded section. */
9888 if (h->indx == -3)
9889 return TRUE;
9890 }
9891
9892 /* We should also warn if a forced local symbol is referenced from
9893 shared libraries. */
9894 if (bfd_link_executable (flinfo->info)
9895 && h->forced_local
9896 && h->ref_dynamic
9897 && h->def_regular
9898 && !h->dynamic_def
9899 && h->ref_dynamic_nonweak
9900 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9901 {
9902 bfd *def_bfd;
9903 const char *msg;
9904 struct elf_link_hash_entry *hi = h;
9905
9906 /* Check indirect symbol. */
9907 while (hi->root.type == bfd_link_hash_indirect)
9908 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9909
9910 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9911 /* xgettext:c-format */
9912 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9913 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9914 /* xgettext:c-format */
9915 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9916 else
9917 /* xgettext:c-format */
9918 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9919 def_bfd = flinfo->output_bfd;
9920 if (hi->root.u.def.section != bfd_abs_section_ptr)
9921 def_bfd = hi->root.u.def.section->owner;
9922 _bfd_error_handler (msg, flinfo->output_bfd,
9923 h->root.root.string, def_bfd);
9924 bfd_set_error (bfd_error_bad_value);
9925 eoinfo->failed = TRUE;
9926 return FALSE;
9927 }
9928
9929 /* We don't want to output symbols that have never been mentioned by
9930 a regular file, or that we have been told to strip. However, if
9931 h->indx is set to -2, the symbol is used by a reloc and we must
9932 output it. */
9933 strip = FALSE;
9934 if (h->indx == -2)
9935 ;
9936 else if ((h->def_dynamic
9937 || h->ref_dynamic
9938 || h->root.type == bfd_link_hash_new)
9939 && !h->def_regular
9940 && !h->ref_regular)
9941 strip = TRUE;
9942 else if (flinfo->info->strip == strip_all)
9943 strip = TRUE;
9944 else if (flinfo->info->strip == strip_some
9945 && bfd_hash_lookup (flinfo->info->keep_hash,
9946 h->root.root.string, FALSE, FALSE) == NULL)
9947 strip = TRUE;
9948 else if ((h->root.type == bfd_link_hash_defined
9949 || h->root.type == bfd_link_hash_defweak)
9950 && ((flinfo->info->strip_discarded
9951 && discarded_section (h->root.u.def.section))
9952 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9953 && h->root.u.def.section->owner != NULL
9954 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9955 strip = TRUE;
9956 else if ((h->root.type == bfd_link_hash_undefined
9957 || h->root.type == bfd_link_hash_undefweak)
9958 && h->root.u.undef.abfd != NULL
9959 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9960 strip = TRUE;
9961
9962 type = h->type;
9963
9964 /* If we're stripping it, and it's not a dynamic symbol, there's
9965 nothing else to do. However, if it is a forced local symbol or
9966 an ifunc symbol we need to give the backend finish_dynamic_symbol
9967 function a chance to make it dynamic. */
9968 if (strip
9969 && h->dynindx == -1
9970 && type != STT_GNU_IFUNC
9971 && !h->forced_local)
9972 return TRUE;
9973
9974 sym.st_value = 0;
9975 sym.st_size = h->size;
9976 sym.st_other = h->other;
9977 switch (h->root.type)
9978 {
9979 default:
9980 case bfd_link_hash_new:
9981 case bfd_link_hash_warning:
9982 abort ();
9983 return FALSE;
9984
9985 case bfd_link_hash_undefined:
9986 case bfd_link_hash_undefweak:
9987 input_sec = bfd_und_section_ptr;
9988 sym.st_shndx = SHN_UNDEF;
9989 break;
9990
9991 case bfd_link_hash_defined:
9992 case bfd_link_hash_defweak:
9993 {
9994 input_sec = h->root.u.def.section;
9995 if (input_sec->output_section != NULL)
9996 {
9997 sym.st_shndx =
9998 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9999 input_sec->output_section);
10000 if (sym.st_shndx == SHN_BAD)
10001 {
10002 _bfd_error_handler
10003 /* xgettext:c-format */
10004 (_("%pB: could not find output section %pA for input section %pA"),
10005 flinfo->output_bfd, input_sec->output_section, input_sec);
10006 bfd_set_error (bfd_error_nonrepresentable_section);
10007 eoinfo->failed = TRUE;
10008 return FALSE;
10009 }
10010
10011 /* ELF symbols in relocatable files are section relative,
10012 but in nonrelocatable files they are virtual
10013 addresses. */
10014 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10015 if (!bfd_link_relocatable (flinfo->info))
10016 {
10017 sym.st_value += input_sec->output_section->vma;
10018 if (h->type == STT_TLS)
10019 {
10020 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10021 if (tls_sec != NULL)
10022 sym.st_value -= tls_sec->vma;
10023 }
10024 }
10025 }
10026 else
10027 {
10028 BFD_ASSERT (input_sec->owner == NULL
10029 || (input_sec->owner->flags & DYNAMIC) != 0);
10030 sym.st_shndx = SHN_UNDEF;
10031 input_sec = bfd_und_section_ptr;
10032 }
10033 }
10034 break;
10035
10036 case bfd_link_hash_common:
10037 input_sec = h->root.u.c.p->section;
10038 sym.st_shndx = bed->common_section_index (input_sec);
10039 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10040 break;
10041
10042 case bfd_link_hash_indirect:
10043 /* These symbols are created by symbol versioning. They point
10044 to the decorated version of the name. For example, if the
10045 symbol foo@@GNU_1.2 is the default, which should be used when
10046 foo is used with no version, then we add an indirect symbol
10047 foo which points to foo@@GNU_1.2. We ignore these symbols,
10048 since the indirected symbol is already in the hash table. */
10049 return TRUE;
10050 }
10051
10052 if (type == STT_COMMON || type == STT_OBJECT)
10053 switch (h->root.type)
10054 {
10055 case bfd_link_hash_common:
10056 type = elf_link_convert_common_type (flinfo->info, type);
10057 break;
10058 case bfd_link_hash_defined:
10059 case bfd_link_hash_defweak:
10060 if (bed->common_definition (&sym))
10061 type = elf_link_convert_common_type (flinfo->info, type);
10062 else
10063 type = STT_OBJECT;
10064 break;
10065 case bfd_link_hash_undefined:
10066 case bfd_link_hash_undefweak:
10067 break;
10068 default:
10069 abort ();
10070 }
10071
10072 if (h->forced_local)
10073 {
10074 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10075 /* Turn off visibility on local symbol. */
10076 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10077 }
10078 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10079 else if (h->unique_global && h->def_regular)
10080 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10081 else if (h->root.type == bfd_link_hash_undefweak
10082 || h->root.type == bfd_link_hash_defweak)
10083 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10084 else
10085 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10086 sym.st_target_internal = h->target_internal;
10087
10088 /* Give the processor backend a chance to tweak the symbol value,
10089 and also to finish up anything that needs to be done for this
10090 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10091 forced local syms when non-shared is due to a historical quirk.
10092 STT_GNU_IFUNC symbol must go through PLT. */
10093 if ((h->type == STT_GNU_IFUNC
10094 && h->def_regular
10095 && !bfd_link_relocatable (flinfo->info))
10096 || ((h->dynindx != -1
10097 || h->forced_local)
10098 && ((bfd_link_pic (flinfo->info)
10099 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10100 || h->root.type != bfd_link_hash_undefweak))
10101 || !h->forced_local)
10102 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10103 {
10104 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10105 (flinfo->output_bfd, flinfo->info, h, &sym)))
10106 {
10107 eoinfo->failed = TRUE;
10108 return FALSE;
10109 }
10110 }
10111
10112 /* If we are marking the symbol as undefined, and there are no
10113 non-weak references to this symbol from a regular object, then
10114 mark the symbol as weak undefined; if there are non-weak
10115 references, mark the symbol as strong. We can't do this earlier,
10116 because it might not be marked as undefined until the
10117 finish_dynamic_symbol routine gets through with it. */
10118 if (sym.st_shndx == SHN_UNDEF
10119 && h->ref_regular
10120 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10121 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10122 {
10123 int bindtype;
10124 type = ELF_ST_TYPE (sym.st_info);
10125
10126 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10127 if (type == STT_GNU_IFUNC)
10128 type = STT_FUNC;
10129
10130 if (h->ref_regular_nonweak)
10131 bindtype = STB_GLOBAL;
10132 else
10133 bindtype = STB_WEAK;
10134 sym.st_info = ELF_ST_INFO (bindtype, type);
10135 }
10136
10137 /* If this is a symbol defined in a dynamic library, don't use the
10138 symbol size from the dynamic library. Relinking an executable
10139 against a new library may introduce gratuitous changes in the
10140 executable's symbols if we keep the size. */
10141 if (sym.st_shndx == SHN_UNDEF
10142 && !h->def_regular
10143 && h->def_dynamic)
10144 sym.st_size = 0;
10145
10146 /* If a non-weak symbol with non-default visibility is not defined
10147 locally, it is a fatal error. */
10148 if (!bfd_link_relocatable (flinfo->info)
10149 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10150 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10151 && h->root.type == bfd_link_hash_undefined
10152 && !h->def_regular)
10153 {
10154 const char *msg;
10155
10156 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10157 /* xgettext:c-format */
10158 msg = _("%pB: protected symbol `%s' isn't defined");
10159 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10160 /* xgettext:c-format */
10161 msg = _("%pB: internal symbol `%s' isn't defined");
10162 else
10163 /* xgettext:c-format */
10164 msg = _("%pB: hidden symbol `%s' isn't defined");
10165 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10166 bfd_set_error (bfd_error_bad_value);
10167 eoinfo->failed = TRUE;
10168 return FALSE;
10169 }
10170
10171 /* If this symbol should be put in the .dynsym section, then put it
10172 there now. We already know the symbol index. We also fill in
10173 the entry in the .hash section. */
10174 if (h->dynindx != -1
10175 && elf_hash_table (flinfo->info)->dynamic_sections_created
10176 && elf_hash_table (flinfo->info)->dynsym != NULL
10177 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10178 {
10179 bfd_byte *esym;
10180
10181 /* Since there is no version information in the dynamic string,
10182 if there is no version info in symbol version section, we will
10183 have a run-time problem if not linking executable, referenced
10184 by shared library, or not bound locally. */
10185 if (h->verinfo.verdef == NULL
10186 && (!bfd_link_executable (flinfo->info)
10187 || h->ref_dynamic
10188 || !h->def_regular))
10189 {
10190 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10191
10192 if (p && p [1] != '\0')
10193 {
10194 _bfd_error_handler
10195 /* xgettext:c-format */
10196 (_("%pB: no symbol version section for versioned symbol `%s'"),
10197 flinfo->output_bfd, h->root.root.string);
10198 eoinfo->failed = TRUE;
10199 return FALSE;
10200 }
10201 }
10202
10203 sym.st_name = h->dynstr_index;
10204 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10205 + h->dynindx * bed->s->sizeof_sym);
10206 if (!check_dynsym (flinfo->output_bfd, &sym))
10207 {
10208 eoinfo->failed = TRUE;
10209 return FALSE;
10210 }
10211 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10212
10213 if (flinfo->hash_sec != NULL)
10214 {
10215 size_t hash_entry_size;
10216 bfd_byte *bucketpos;
10217 bfd_vma chain;
10218 size_t bucketcount;
10219 size_t bucket;
10220
10221 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10222 bucket = h->u.elf_hash_value % bucketcount;
10223
10224 hash_entry_size
10225 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10226 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10227 + (bucket + 2) * hash_entry_size);
10228 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10229 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10230 bucketpos);
10231 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10232 ((bfd_byte *) flinfo->hash_sec->contents
10233 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10234 }
10235
10236 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10237 {
10238 Elf_Internal_Versym iversym;
10239 Elf_External_Versym *eversym;
10240
10241 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10242 {
10243 if (h->verinfo.verdef == NULL
10244 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10245 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10246 iversym.vs_vers = 0;
10247 else
10248 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10249 }
10250 else
10251 {
10252 if (h->verinfo.vertree == NULL)
10253 iversym.vs_vers = 1;
10254 else
10255 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10256 if (flinfo->info->create_default_symver)
10257 iversym.vs_vers++;
10258 }
10259
10260 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10261 defined locally. */
10262 if (h->versioned == versioned_hidden && h->def_regular)
10263 iversym.vs_vers |= VERSYM_HIDDEN;
10264
10265 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10266 eversym += h->dynindx;
10267 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10268 }
10269 }
10270
10271 /* If the symbol is undefined, and we didn't output it to .dynsym,
10272 strip it from .symtab too. Obviously we can't do this for
10273 relocatable output or when needed for --emit-relocs. */
10274 else if (input_sec == bfd_und_section_ptr
10275 && h->indx != -2
10276 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10277 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10278 && !bfd_link_relocatable (flinfo->info))
10279 return TRUE;
10280
10281 /* Also strip others that we couldn't earlier due to dynamic symbol
10282 processing. */
10283 if (strip)
10284 return TRUE;
10285 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10286 return TRUE;
10287
10288 /* Output a FILE symbol so that following locals are not associated
10289 with the wrong input file. We need one for forced local symbols
10290 if we've seen more than one FILE symbol or when we have exactly
10291 one FILE symbol but global symbols are present in a file other
10292 than the one with the FILE symbol. We also need one if linker
10293 defined symbols are present. In practice these conditions are
10294 always met, so just emit the FILE symbol unconditionally. */
10295 if (eoinfo->localsyms
10296 && !eoinfo->file_sym_done
10297 && eoinfo->flinfo->filesym_count != 0)
10298 {
10299 Elf_Internal_Sym fsym;
10300
10301 memset (&fsym, 0, sizeof (fsym));
10302 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10303 fsym.st_shndx = SHN_ABS;
10304 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10305 bfd_und_section_ptr, NULL))
10306 return FALSE;
10307
10308 eoinfo->file_sym_done = TRUE;
10309 }
10310
10311 indx = bfd_get_symcount (flinfo->output_bfd);
10312 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10313 input_sec, h);
10314 if (ret == 0)
10315 {
10316 eoinfo->failed = TRUE;
10317 return FALSE;
10318 }
10319 else if (ret == 1)
10320 h->indx = indx;
10321 else if (h->indx == -2)
10322 abort();
10323
10324 return TRUE;
10325 }
10326
10327 /* Return TRUE if special handling is done for relocs in SEC against
10328 symbols defined in discarded sections. */
10329
10330 static bfd_boolean
10331 elf_section_ignore_discarded_relocs (asection *sec)
10332 {
10333 const struct elf_backend_data *bed;
10334
10335 switch (sec->sec_info_type)
10336 {
10337 case SEC_INFO_TYPE_STABS:
10338 case SEC_INFO_TYPE_EH_FRAME:
10339 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10340 return TRUE;
10341 default:
10342 break;
10343 }
10344
10345 bed = get_elf_backend_data (sec->owner);
10346 if (bed->elf_backend_ignore_discarded_relocs != NULL
10347 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10348 return TRUE;
10349
10350 return FALSE;
10351 }
10352
10353 /* Return a mask saying how ld should treat relocations in SEC against
10354 symbols defined in discarded sections. If this function returns
10355 COMPLAIN set, ld will issue a warning message. If this function
10356 returns PRETEND set, and the discarded section was link-once and the
10357 same size as the kept link-once section, ld will pretend that the
10358 symbol was actually defined in the kept section. Otherwise ld will
10359 zero the reloc (at least that is the intent, but some cooperation by
10360 the target dependent code is needed, particularly for REL targets). */
10361
10362 unsigned int
10363 _bfd_elf_default_action_discarded (asection *sec)
10364 {
10365 if (sec->flags & SEC_DEBUGGING)
10366 return PRETEND;
10367
10368 if (strcmp (".eh_frame", sec->name) == 0)
10369 return 0;
10370
10371 if (strcmp (".gcc_except_table", sec->name) == 0)
10372 return 0;
10373
10374 return COMPLAIN | PRETEND;
10375 }
10376
10377 /* Find a match between a section and a member of a section group. */
10378
10379 static asection *
10380 match_group_member (asection *sec, asection *group,
10381 struct bfd_link_info *info)
10382 {
10383 asection *first = elf_next_in_group (group);
10384 asection *s = first;
10385
10386 while (s != NULL)
10387 {
10388 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10389 return s;
10390
10391 s = elf_next_in_group (s);
10392 if (s == first)
10393 break;
10394 }
10395
10396 return NULL;
10397 }
10398
10399 /* Check if the kept section of a discarded section SEC can be used
10400 to replace it. Return the replacement if it is OK. Otherwise return
10401 NULL. */
10402
10403 asection *
10404 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10405 {
10406 asection *kept;
10407
10408 kept = sec->kept_section;
10409 if (kept != NULL)
10410 {
10411 if ((kept->flags & SEC_GROUP) != 0)
10412 kept = match_group_member (sec, kept, info);
10413 if (kept != NULL
10414 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10415 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10416 kept = NULL;
10417 sec->kept_section = kept;
10418 }
10419 return kept;
10420 }
10421
10422 /* Link an input file into the linker output file. This function
10423 handles all the sections and relocations of the input file at once.
10424 This is so that we only have to read the local symbols once, and
10425 don't have to keep them in memory. */
10426
10427 static bfd_boolean
10428 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10429 {
10430 int (*relocate_section)
10431 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10432 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10433 bfd *output_bfd;
10434 Elf_Internal_Shdr *symtab_hdr;
10435 size_t locsymcount;
10436 size_t extsymoff;
10437 Elf_Internal_Sym *isymbuf;
10438 Elf_Internal_Sym *isym;
10439 Elf_Internal_Sym *isymend;
10440 long *pindex;
10441 asection **ppsection;
10442 asection *o;
10443 const struct elf_backend_data *bed;
10444 struct elf_link_hash_entry **sym_hashes;
10445 bfd_size_type address_size;
10446 bfd_vma r_type_mask;
10447 int r_sym_shift;
10448 bfd_boolean have_file_sym = FALSE;
10449
10450 output_bfd = flinfo->output_bfd;
10451 bed = get_elf_backend_data (output_bfd);
10452 relocate_section = bed->elf_backend_relocate_section;
10453
10454 /* If this is a dynamic object, we don't want to do anything here:
10455 we don't want the local symbols, and we don't want the section
10456 contents. */
10457 if ((input_bfd->flags & DYNAMIC) != 0)
10458 return TRUE;
10459
10460 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10461 if (elf_bad_symtab (input_bfd))
10462 {
10463 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10464 extsymoff = 0;
10465 }
10466 else
10467 {
10468 locsymcount = symtab_hdr->sh_info;
10469 extsymoff = symtab_hdr->sh_info;
10470 }
10471
10472 /* Read the local symbols. */
10473 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10474 if (isymbuf == NULL && locsymcount != 0)
10475 {
10476 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10477 flinfo->internal_syms,
10478 flinfo->external_syms,
10479 flinfo->locsym_shndx);
10480 if (isymbuf == NULL)
10481 return FALSE;
10482 }
10483
10484 /* Find local symbol sections and adjust values of symbols in
10485 SEC_MERGE sections. Write out those local symbols we know are
10486 going into the output file. */
10487 isymend = isymbuf + locsymcount;
10488 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10489 isym < isymend;
10490 isym++, pindex++, ppsection++)
10491 {
10492 asection *isec;
10493 const char *name;
10494 Elf_Internal_Sym osym;
10495 long indx;
10496 int ret;
10497
10498 *pindex = -1;
10499
10500 if (elf_bad_symtab (input_bfd))
10501 {
10502 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10503 {
10504 *ppsection = NULL;
10505 continue;
10506 }
10507 }
10508
10509 if (isym->st_shndx == SHN_UNDEF)
10510 isec = bfd_und_section_ptr;
10511 else if (isym->st_shndx == SHN_ABS)
10512 isec = bfd_abs_section_ptr;
10513 else if (isym->st_shndx == SHN_COMMON)
10514 isec = bfd_com_section_ptr;
10515 else
10516 {
10517 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10518 if (isec == NULL)
10519 {
10520 /* Don't attempt to output symbols with st_shnx in the
10521 reserved range other than SHN_ABS and SHN_COMMON. */
10522 isec = bfd_und_section_ptr;
10523 }
10524 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10525 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10526 isym->st_value =
10527 _bfd_merged_section_offset (output_bfd, &isec,
10528 elf_section_data (isec)->sec_info,
10529 isym->st_value);
10530 }
10531
10532 *ppsection = isec;
10533
10534 /* Don't output the first, undefined, symbol. In fact, don't
10535 output any undefined local symbol. */
10536 if (isec == bfd_und_section_ptr)
10537 continue;
10538
10539 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10540 {
10541 /* We never output section symbols. Instead, we use the
10542 section symbol of the corresponding section in the output
10543 file. */
10544 continue;
10545 }
10546
10547 /* If we are stripping all symbols, we don't want to output this
10548 one. */
10549 if (flinfo->info->strip == strip_all)
10550 continue;
10551
10552 /* If we are discarding all local symbols, we don't want to
10553 output this one. If we are generating a relocatable output
10554 file, then some of the local symbols may be required by
10555 relocs; we output them below as we discover that they are
10556 needed. */
10557 if (flinfo->info->discard == discard_all)
10558 continue;
10559
10560 /* If this symbol is defined in a section which we are
10561 discarding, we don't need to keep it. */
10562 if (isym->st_shndx != SHN_UNDEF
10563 && isym->st_shndx < SHN_LORESERVE
10564 && bfd_section_removed_from_list (output_bfd,
10565 isec->output_section))
10566 continue;
10567
10568 /* Get the name of the symbol. */
10569 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10570 isym->st_name);
10571 if (name == NULL)
10572 return FALSE;
10573
10574 /* See if we are discarding symbols with this name. */
10575 if ((flinfo->info->strip == strip_some
10576 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10577 == NULL))
10578 || (((flinfo->info->discard == discard_sec_merge
10579 && (isec->flags & SEC_MERGE)
10580 && !bfd_link_relocatable (flinfo->info))
10581 || flinfo->info->discard == discard_l)
10582 && bfd_is_local_label_name (input_bfd, name)))
10583 continue;
10584
10585 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10586 {
10587 if (input_bfd->lto_output)
10588 /* -flto puts a temp file name here. This means builds
10589 are not reproducible. Discard the symbol. */
10590 continue;
10591 have_file_sym = TRUE;
10592 flinfo->filesym_count += 1;
10593 }
10594 if (!have_file_sym)
10595 {
10596 /* In the absence of debug info, bfd_find_nearest_line uses
10597 FILE symbols to determine the source file for local
10598 function symbols. Provide a FILE symbol here if input
10599 files lack such, so that their symbols won't be
10600 associated with a previous input file. It's not the
10601 source file, but the best we can do. */
10602 have_file_sym = TRUE;
10603 flinfo->filesym_count += 1;
10604 memset (&osym, 0, sizeof (osym));
10605 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10606 osym.st_shndx = SHN_ABS;
10607 if (!elf_link_output_symstrtab (flinfo,
10608 (input_bfd->lto_output ? NULL
10609 : input_bfd->filename),
10610 &osym, bfd_abs_section_ptr,
10611 NULL))
10612 return FALSE;
10613 }
10614
10615 osym = *isym;
10616
10617 /* Adjust the section index for the output file. */
10618 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10619 isec->output_section);
10620 if (osym.st_shndx == SHN_BAD)
10621 return FALSE;
10622
10623 /* ELF symbols in relocatable files are section relative, but
10624 in executable files they are virtual addresses. Note that
10625 this code assumes that all ELF sections have an associated
10626 BFD section with a reasonable value for output_offset; below
10627 we assume that they also have a reasonable value for
10628 output_section. Any special sections must be set up to meet
10629 these requirements. */
10630 osym.st_value += isec->output_offset;
10631 if (!bfd_link_relocatable (flinfo->info))
10632 {
10633 osym.st_value += isec->output_section->vma;
10634 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10635 {
10636 /* STT_TLS symbols are relative to PT_TLS segment base. */
10637 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10638 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10639 else
10640 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10641 STT_NOTYPE);
10642 }
10643 }
10644
10645 indx = bfd_get_symcount (output_bfd);
10646 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10647 if (ret == 0)
10648 return FALSE;
10649 else if (ret == 1)
10650 *pindex = indx;
10651 }
10652
10653 if (bed->s->arch_size == 32)
10654 {
10655 r_type_mask = 0xff;
10656 r_sym_shift = 8;
10657 address_size = 4;
10658 }
10659 else
10660 {
10661 r_type_mask = 0xffffffff;
10662 r_sym_shift = 32;
10663 address_size = 8;
10664 }
10665
10666 /* Relocate the contents of each section. */
10667 sym_hashes = elf_sym_hashes (input_bfd);
10668 for (o = input_bfd->sections; o != NULL; o = o->next)
10669 {
10670 bfd_byte *contents;
10671
10672 if (! o->linker_mark)
10673 {
10674 /* This section was omitted from the link. */
10675 continue;
10676 }
10677
10678 if (!flinfo->info->resolve_section_groups
10679 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10680 {
10681 /* Deal with the group signature symbol. */
10682 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10683 unsigned long symndx = sec_data->this_hdr.sh_info;
10684 asection *osec = o->output_section;
10685
10686 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10687 if (symndx >= locsymcount
10688 || (elf_bad_symtab (input_bfd)
10689 && flinfo->sections[symndx] == NULL))
10690 {
10691 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10692 while (h->root.type == bfd_link_hash_indirect
10693 || h->root.type == bfd_link_hash_warning)
10694 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10695 /* Arrange for symbol to be output. */
10696 h->indx = -2;
10697 elf_section_data (osec)->this_hdr.sh_info = -2;
10698 }
10699 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10700 {
10701 /* We'll use the output section target_index. */
10702 asection *sec = flinfo->sections[symndx]->output_section;
10703 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10704 }
10705 else
10706 {
10707 if (flinfo->indices[symndx] == -1)
10708 {
10709 /* Otherwise output the local symbol now. */
10710 Elf_Internal_Sym sym = isymbuf[symndx];
10711 asection *sec = flinfo->sections[symndx]->output_section;
10712 const char *name;
10713 long indx;
10714 int ret;
10715
10716 name = bfd_elf_string_from_elf_section (input_bfd,
10717 symtab_hdr->sh_link,
10718 sym.st_name);
10719 if (name == NULL)
10720 return FALSE;
10721
10722 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10723 sec);
10724 if (sym.st_shndx == SHN_BAD)
10725 return FALSE;
10726
10727 sym.st_value += o->output_offset;
10728
10729 indx = bfd_get_symcount (output_bfd);
10730 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10731 NULL);
10732 if (ret == 0)
10733 return FALSE;
10734 else if (ret == 1)
10735 flinfo->indices[symndx] = indx;
10736 else
10737 abort ();
10738 }
10739 elf_section_data (osec)->this_hdr.sh_info
10740 = flinfo->indices[symndx];
10741 }
10742 }
10743
10744 if ((o->flags & SEC_HAS_CONTENTS) == 0
10745 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10746 continue;
10747
10748 if ((o->flags & SEC_LINKER_CREATED) != 0)
10749 {
10750 /* Section was created by _bfd_elf_link_create_dynamic_sections
10751 or somesuch. */
10752 continue;
10753 }
10754
10755 /* Get the contents of the section. They have been cached by a
10756 relaxation routine. Note that o is a section in an input
10757 file, so the contents field will not have been set by any of
10758 the routines which work on output files. */
10759 if (elf_section_data (o)->this_hdr.contents != NULL)
10760 {
10761 contents = elf_section_data (o)->this_hdr.contents;
10762 if (bed->caches_rawsize
10763 && o->rawsize != 0
10764 && o->rawsize < o->size)
10765 {
10766 memcpy (flinfo->contents, contents, o->rawsize);
10767 contents = flinfo->contents;
10768 }
10769 }
10770 else
10771 {
10772 contents = flinfo->contents;
10773 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10774 return FALSE;
10775 }
10776
10777 if ((o->flags & SEC_RELOC) != 0)
10778 {
10779 Elf_Internal_Rela *internal_relocs;
10780 Elf_Internal_Rela *rel, *relend;
10781 int action_discarded;
10782 int ret;
10783
10784 /* Get the swapped relocs. */
10785 internal_relocs
10786 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10787 flinfo->internal_relocs, FALSE);
10788 if (internal_relocs == NULL
10789 && o->reloc_count > 0)
10790 return FALSE;
10791
10792 /* We need to reverse-copy input .ctors/.dtors sections if
10793 they are placed in .init_array/.finit_array for output. */
10794 if (o->size > address_size
10795 && ((strncmp (o->name, ".ctors", 6) == 0
10796 && strcmp (o->output_section->name,
10797 ".init_array") == 0)
10798 || (strncmp (o->name, ".dtors", 6) == 0
10799 && strcmp (o->output_section->name,
10800 ".fini_array") == 0))
10801 && (o->name[6] == 0 || o->name[6] == '.'))
10802 {
10803 if (o->size * bed->s->int_rels_per_ext_rel
10804 != o->reloc_count * address_size)
10805 {
10806 _bfd_error_handler
10807 /* xgettext:c-format */
10808 (_("error: %pB: size of section %pA is not "
10809 "multiple of address size"),
10810 input_bfd, o);
10811 bfd_set_error (bfd_error_bad_value);
10812 return FALSE;
10813 }
10814 o->flags |= SEC_ELF_REVERSE_COPY;
10815 }
10816
10817 action_discarded = -1;
10818 if (!elf_section_ignore_discarded_relocs (o))
10819 action_discarded = (*bed->action_discarded) (o);
10820
10821 /* Run through the relocs evaluating complex reloc symbols and
10822 looking for relocs against symbols from discarded sections
10823 or section symbols from removed link-once sections.
10824 Complain about relocs against discarded sections. Zero
10825 relocs against removed link-once sections. */
10826
10827 rel = internal_relocs;
10828 relend = rel + o->reloc_count;
10829 for ( ; rel < relend; rel++)
10830 {
10831 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10832 unsigned int s_type;
10833 asection **ps, *sec;
10834 struct elf_link_hash_entry *h = NULL;
10835 const char *sym_name;
10836
10837 if (r_symndx == STN_UNDEF)
10838 continue;
10839
10840 if (r_symndx >= locsymcount
10841 || (elf_bad_symtab (input_bfd)
10842 && flinfo->sections[r_symndx] == NULL))
10843 {
10844 h = sym_hashes[r_symndx - extsymoff];
10845
10846 /* Badly formatted input files can contain relocs that
10847 reference non-existant symbols. Check here so that
10848 we do not seg fault. */
10849 if (h == NULL)
10850 {
10851 _bfd_error_handler
10852 /* xgettext:c-format */
10853 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10854 "that references a non-existent global symbol"),
10855 input_bfd, (uint64_t) rel->r_info, o);
10856 bfd_set_error (bfd_error_bad_value);
10857 return FALSE;
10858 }
10859
10860 while (h->root.type == bfd_link_hash_indirect
10861 || h->root.type == bfd_link_hash_warning)
10862 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10863
10864 s_type = h->type;
10865
10866 /* If a plugin symbol is referenced from a non-IR file,
10867 mark the symbol as undefined. Note that the
10868 linker may attach linker created dynamic sections
10869 to the plugin bfd. Symbols defined in linker
10870 created sections are not plugin symbols. */
10871 if ((h->root.non_ir_ref_regular
10872 || h->root.non_ir_ref_dynamic)
10873 && (h->root.type == bfd_link_hash_defined
10874 || h->root.type == bfd_link_hash_defweak)
10875 && (h->root.u.def.section->flags
10876 & SEC_LINKER_CREATED) == 0
10877 && h->root.u.def.section->owner != NULL
10878 && (h->root.u.def.section->owner->flags
10879 & BFD_PLUGIN) != 0)
10880 {
10881 h->root.type = bfd_link_hash_undefined;
10882 h->root.u.undef.abfd = h->root.u.def.section->owner;
10883 }
10884
10885 ps = NULL;
10886 if (h->root.type == bfd_link_hash_defined
10887 || h->root.type == bfd_link_hash_defweak)
10888 ps = &h->root.u.def.section;
10889
10890 sym_name = h->root.root.string;
10891 }
10892 else
10893 {
10894 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10895
10896 s_type = ELF_ST_TYPE (sym->st_info);
10897 ps = &flinfo->sections[r_symndx];
10898 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10899 sym, *ps);
10900 }
10901
10902 if ((s_type == STT_RELC || s_type == STT_SRELC)
10903 && !bfd_link_relocatable (flinfo->info))
10904 {
10905 bfd_vma val;
10906 bfd_vma dot = (rel->r_offset
10907 + o->output_offset + o->output_section->vma);
10908 #ifdef DEBUG
10909 printf ("Encountered a complex symbol!");
10910 printf (" (input_bfd %s, section %s, reloc %ld\n",
10911 input_bfd->filename, o->name,
10912 (long) (rel - internal_relocs));
10913 printf (" symbol: idx %8.8lx, name %s\n",
10914 r_symndx, sym_name);
10915 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10916 (unsigned long) rel->r_info,
10917 (unsigned long) rel->r_offset);
10918 #endif
10919 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10920 isymbuf, locsymcount, s_type == STT_SRELC))
10921 return FALSE;
10922
10923 /* Symbol evaluated OK. Update to absolute value. */
10924 set_symbol_value (input_bfd, isymbuf, locsymcount,
10925 r_symndx, val);
10926 continue;
10927 }
10928
10929 if (action_discarded != -1 && ps != NULL)
10930 {
10931 /* Complain if the definition comes from a
10932 discarded section. */
10933 if ((sec = *ps) != NULL && discarded_section (sec))
10934 {
10935 BFD_ASSERT (r_symndx != STN_UNDEF);
10936 if (action_discarded & COMPLAIN)
10937 (*flinfo->info->callbacks->einfo)
10938 /* xgettext:c-format */
10939 (_("%X`%s' referenced in section `%pA' of %pB: "
10940 "defined in discarded section `%pA' of %pB\n"),
10941 sym_name, o, input_bfd, sec, sec->owner);
10942
10943 /* Try to do the best we can to support buggy old
10944 versions of gcc. Pretend that the symbol is
10945 really defined in the kept linkonce section.
10946 FIXME: This is quite broken. Modifying the
10947 symbol here means we will be changing all later
10948 uses of the symbol, not just in this section. */
10949 if (action_discarded & PRETEND)
10950 {
10951 asection *kept;
10952
10953 kept = _bfd_elf_check_kept_section (sec,
10954 flinfo->info);
10955 if (kept != NULL)
10956 {
10957 *ps = kept;
10958 continue;
10959 }
10960 }
10961 }
10962 }
10963 }
10964
10965 /* Relocate the section by invoking a back end routine.
10966
10967 The back end routine is responsible for adjusting the
10968 section contents as necessary, and (if using Rela relocs
10969 and generating a relocatable output file) adjusting the
10970 reloc addend as necessary.
10971
10972 The back end routine does not have to worry about setting
10973 the reloc address or the reloc symbol index.
10974
10975 The back end routine is given a pointer to the swapped in
10976 internal symbols, and can access the hash table entries
10977 for the external symbols via elf_sym_hashes (input_bfd).
10978
10979 When generating relocatable output, the back end routine
10980 must handle STB_LOCAL/STT_SECTION symbols specially. The
10981 output symbol is going to be a section symbol
10982 corresponding to the output section, which will require
10983 the addend to be adjusted. */
10984
10985 ret = (*relocate_section) (output_bfd, flinfo->info,
10986 input_bfd, o, contents,
10987 internal_relocs,
10988 isymbuf,
10989 flinfo->sections);
10990 if (!ret)
10991 return FALSE;
10992
10993 if (ret == 2
10994 || bfd_link_relocatable (flinfo->info)
10995 || flinfo->info->emitrelocations)
10996 {
10997 Elf_Internal_Rela *irela;
10998 Elf_Internal_Rela *irelaend, *irelamid;
10999 bfd_vma last_offset;
11000 struct elf_link_hash_entry **rel_hash;
11001 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11002 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11003 unsigned int next_erel;
11004 bfd_boolean rela_normal;
11005 struct bfd_elf_section_data *esdi, *esdo;
11006
11007 esdi = elf_section_data (o);
11008 esdo = elf_section_data (o->output_section);
11009 rela_normal = FALSE;
11010
11011 /* Adjust the reloc addresses and symbol indices. */
11012
11013 irela = internal_relocs;
11014 irelaend = irela + o->reloc_count;
11015 rel_hash = esdo->rel.hashes + esdo->rel.count;
11016 /* We start processing the REL relocs, if any. When we reach
11017 IRELAMID in the loop, we switch to the RELA relocs. */
11018 irelamid = irela;
11019 if (esdi->rel.hdr != NULL)
11020 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11021 * bed->s->int_rels_per_ext_rel);
11022 rel_hash_list = rel_hash;
11023 rela_hash_list = NULL;
11024 last_offset = o->output_offset;
11025 if (!bfd_link_relocatable (flinfo->info))
11026 last_offset += o->output_section->vma;
11027 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11028 {
11029 unsigned long r_symndx;
11030 asection *sec;
11031 Elf_Internal_Sym sym;
11032
11033 if (next_erel == bed->s->int_rels_per_ext_rel)
11034 {
11035 rel_hash++;
11036 next_erel = 0;
11037 }
11038
11039 if (irela == irelamid)
11040 {
11041 rel_hash = esdo->rela.hashes + esdo->rela.count;
11042 rela_hash_list = rel_hash;
11043 rela_normal = bed->rela_normal;
11044 }
11045
11046 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11047 flinfo->info, o,
11048 irela->r_offset);
11049 if (irela->r_offset >= (bfd_vma) -2)
11050 {
11051 /* This is a reloc for a deleted entry or somesuch.
11052 Turn it into an R_*_NONE reloc, at the same
11053 offset as the last reloc. elf_eh_frame.c and
11054 bfd_elf_discard_info rely on reloc offsets
11055 being ordered. */
11056 irela->r_offset = last_offset;
11057 irela->r_info = 0;
11058 irela->r_addend = 0;
11059 continue;
11060 }
11061
11062 irela->r_offset += o->output_offset;
11063
11064 /* Relocs in an executable have to be virtual addresses. */
11065 if (!bfd_link_relocatable (flinfo->info))
11066 irela->r_offset += o->output_section->vma;
11067
11068 last_offset = irela->r_offset;
11069
11070 r_symndx = irela->r_info >> r_sym_shift;
11071 if (r_symndx == STN_UNDEF)
11072 continue;
11073
11074 if (r_symndx >= locsymcount
11075 || (elf_bad_symtab (input_bfd)
11076 && flinfo->sections[r_symndx] == NULL))
11077 {
11078 struct elf_link_hash_entry *rh;
11079 unsigned long indx;
11080
11081 /* This is a reloc against a global symbol. We
11082 have not yet output all the local symbols, so
11083 we do not know the symbol index of any global
11084 symbol. We set the rel_hash entry for this
11085 reloc to point to the global hash table entry
11086 for this symbol. The symbol index is then
11087 set at the end of bfd_elf_final_link. */
11088 indx = r_symndx - extsymoff;
11089 rh = elf_sym_hashes (input_bfd)[indx];
11090 while (rh->root.type == bfd_link_hash_indirect
11091 || rh->root.type == bfd_link_hash_warning)
11092 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11093
11094 /* Setting the index to -2 tells
11095 elf_link_output_extsym that this symbol is
11096 used by a reloc. */
11097 BFD_ASSERT (rh->indx < 0);
11098 rh->indx = -2;
11099 *rel_hash = rh;
11100
11101 continue;
11102 }
11103
11104 /* This is a reloc against a local symbol. */
11105
11106 *rel_hash = NULL;
11107 sym = isymbuf[r_symndx];
11108 sec = flinfo->sections[r_symndx];
11109 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11110 {
11111 /* I suppose the backend ought to fill in the
11112 section of any STT_SECTION symbol against a
11113 processor specific section. */
11114 r_symndx = STN_UNDEF;
11115 if (bfd_is_abs_section (sec))
11116 ;
11117 else if (sec == NULL || sec->owner == NULL)
11118 {
11119 bfd_set_error (bfd_error_bad_value);
11120 return FALSE;
11121 }
11122 else
11123 {
11124 asection *osec = sec->output_section;
11125
11126 /* If we have discarded a section, the output
11127 section will be the absolute section. In
11128 case of discarded SEC_MERGE sections, use
11129 the kept section. relocate_section should
11130 have already handled discarded linkonce
11131 sections. */
11132 if (bfd_is_abs_section (osec)
11133 && sec->kept_section != NULL
11134 && sec->kept_section->output_section != NULL)
11135 {
11136 osec = sec->kept_section->output_section;
11137 irela->r_addend -= osec->vma;
11138 }
11139
11140 if (!bfd_is_abs_section (osec))
11141 {
11142 r_symndx = osec->target_index;
11143 if (r_symndx == STN_UNDEF)
11144 {
11145 irela->r_addend += osec->vma;
11146 osec = _bfd_nearby_section (output_bfd, osec,
11147 osec->vma);
11148 irela->r_addend -= osec->vma;
11149 r_symndx = osec->target_index;
11150 }
11151 }
11152 }
11153
11154 /* Adjust the addend according to where the
11155 section winds up in the output section. */
11156 if (rela_normal)
11157 irela->r_addend += sec->output_offset;
11158 }
11159 else
11160 {
11161 if (flinfo->indices[r_symndx] == -1)
11162 {
11163 unsigned long shlink;
11164 const char *name;
11165 asection *osec;
11166 long indx;
11167
11168 if (flinfo->info->strip == strip_all)
11169 {
11170 /* You can't do ld -r -s. */
11171 bfd_set_error (bfd_error_invalid_operation);
11172 return FALSE;
11173 }
11174
11175 /* This symbol was skipped earlier, but
11176 since it is needed by a reloc, we
11177 must output it now. */
11178 shlink = symtab_hdr->sh_link;
11179 name = (bfd_elf_string_from_elf_section
11180 (input_bfd, shlink, sym.st_name));
11181 if (name == NULL)
11182 return FALSE;
11183
11184 osec = sec->output_section;
11185 sym.st_shndx =
11186 _bfd_elf_section_from_bfd_section (output_bfd,
11187 osec);
11188 if (sym.st_shndx == SHN_BAD)
11189 return FALSE;
11190
11191 sym.st_value += sec->output_offset;
11192 if (!bfd_link_relocatable (flinfo->info))
11193 {
11194 sym.st_value += osec->vma;
11195 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11196 {
11197 struct elf_link_hash_table *htab
11198 = elf_hash_table (flinfo->info);
11199
11200 /* STT_TLS symbols are relative to PT_TLS
11201 segment base. */
11202 if (htab->tls_sec != NULL)
11203 sym.st_value -= htab->tls_sec->vma;
11204 else
11205 sym.st_info
11206 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11207 STT_NOTYPE);
11208 }
11209 }
11210
11211 indx = bfd_get_symcount (output_bfd);
11212 ret = elf_link_output_symstrtab (flinfo, name,
11213 &sym, sec,
11214 NULL);
11215 if (ret == 0)
11216 return FALSE;
11217 else if (ret == 1)
11218 flinfo->indices[r_symndx] = indx;
11219 else
11220 abort ();
11221 }
11222
11223 r_symndx = flinfo->indices[r_symndx];
11224 }
11225
11226 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11227 | (irela->r_info & r_type_mask));
11228 }
11229
11230 /* Swap out the relocs. */
11231 input_rel_hdr = esdi->rel.hdr;
11232 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11233 {
11234 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11235 input_rel_hdr,
11236 internal_relocs,
11237 rel_hash_list))
11238 return FALSE;
11239 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11240 * bed->s->int_rels_per_ext_rel);
11241 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11242 }
11243
11244 input_rela_hdr = esdi->rela.hdr;
11245 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11246 {
11247 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11248 input_rela_hdr,
11249 internal_relocs,
11250 rela_hash_list))
11251 return FALSE;
11252 }
11253 }
11254 }
11255
11256 /* Write out the modified section contents. */
11257 if (bed->elf_backend_write_section
11258 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11259 contents))
11260 {
11261 /* Section written out. */
11262 }
11263 else switch (o->sec_info_type)
11264 {
11265 case SEC_INFO_TYPE_STABS:
11266 if (! (_bfd_write_section_stabs
11267 (output_bfd,
11268 &elf_hash_table (flinfo->info)->stab_info,
11269 o, &elf_section_data (o)->sec_info, contents)))
11270 return FALSE;
11271 break;
11272 case SEC_INFO_TYPE_MERGE:
11273 if (! _bfd_write_merged_section (output_bfd, o,
11274 elf_section_data (o)->sec_info))
11275 return FALSE;
11276 break;
11277 case SEC_INFO_TYPE_EH_FRAME:
11278 {
11279 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11280 o, contents))
11281 return FALSE;
11282 }
11283 break;
11284 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11285 {
11286 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11287 flinfo->info,
11288 o, contents))
11289 return FALSE;
11290 }
11291 break;
11292 default:
11293 {
11294 if (! (o->flags & SEC_EXCLUDE))
11295 {
11296 file_ptr offset = (file_ptr) o->output_offset;
11297 bfd_size_type todo = o->size;
11298
11299 offset *= bfd_octets_per_byte (output_bfd, o);
11300
11301 if ((o->flags & SEC_ELF_REVERSE_COPY))
11302 {
11303 /* Reverse-copy input section to output. */
11304 do
11305 {
11306 todo -= address_size;
11307 if (! bfd_set_section_contents (output_bfd,
11308 o->output_section,
11309 contents + todo,
11310 offset,
11311 address_size))
11312 return FALSE;
11313 if (todo == 0)
11314 break;
11315 offset += address_size;
11316 }
11317 while (1);
11318 }
11319 else if (! bfd_set_section_contents (output_bfd,
11320 o->output_section,
11321 contents,
11322 offset, todo))
11323 return FALSE;
11324 }
11325 }
11326 break;
11327 }
11328 }
11329
11330 return TRUE;
11331 }
11332
11333 /* Generate a reloc when linking an ELF file. This is a reloc
11334 requested by the linker, and does not come from any input file. This
11335 is used to build constructor and destructor tables when linking
11336 with -Ur. */
11337
11338 static bfd_boolean
11339 elf_reloc_link_order (bfd *output_bfd,
11340 struct bfd_link_info *info,
11341 asection *output_section,
11342 struct bfd_link_order *link_order)
11343 {
11344 reloc_howto_type *howto;
11345 long indx;
11346 bfd_vma offset;
11347 bfd_vma addend;
11348 struct bfd_elf_section_reloc_data *reldata;
11349 struct elf_link_hash_entry **rel_hash_ptr;
11350 Elf_Internal_Shdr *rel_hdr;
11351 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11352 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11353 bfd_byte *erel;
11354 unsigned int i;
11355 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11356
11357 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11358 if (howto == NULL)
11359 {
11360 bfd_set_error (bfd_error_bad_value);
11361 return FALSE;
11362 }
11363
11364 addend = link_order->u.reloc.p->addend;
11365
11366 if (esdo->rel.hdr)
11367 reldata = &esdo->rel;
11368 else if (esdo->rela.hdr)
11369 reldata = &esdo->rela;
11370 else
11371 {
11372 reldata = NULL;
11373 BFD_ASSERT (0);
11374 }
11375
11376 /* Figure out the symbol index. */
11377 rel_hash_ptr = reldata->hashes + reldata->count;
11378 if (link_order->type == bfd_section_reloc_link_order)
11379 {
11380 indx = link_order->u.reloc.p->u.section->target_index;
11381 BFD_ASSERT (indx != 0);
11382 *rel_hash_ptr = NULL;
11383 }
11384 else
11385 {
11386 struct elf_link_hash_entry *h;
11387
11388 /* Treat a reloc against a defined symbol as though it were
11389 actually against the section. */
11390 h = ((struct elf_link_hash_entry *)
11391 bfd_wrapped_link_hash_lookup (output_bfd, info,
11392 link_order->u.reloc.p->u.name,
11393 FALSE, FALSE, TRUE));
11394 if (h != NULL
11395 && (h->root.type == bfd_link_hash_defined
11396 || h->root.type == bfd_link_hash_defweak))
11397 {
11398 asection *section;
11399
11400 section = h->root.u.def.section;
11401 indx = section->output_section->target_index;
11402 *rel_hash_ptr = NULL;
11403 /* It seems that we ought to add the symbol value to the
11404 addend here, but in practice it has already been added
11405 because it was passed to constructor_callback. */
11406 addend += section->output_section->vma + section->output_offset;
11407 }
11408 else if (h != NULL)
11409 {
11410 /* Setting the index to -2 tells elf_link_output_extsym that
11411 this symbol is used by a reloc. */
11412 h->indx = -2;
11413 *rel_hash_ptr = h;
11414 indx = 0;
11415 }
11416 else
11417 {
11418 (*info->callbacks->unattached_reloc)
11419 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11420 indx = 0;
11421 }
11422 }
11423
11424 /* If this is an inplace reloc, we must write the addend into the
11425 object file. */
11426 if (howto->partial_inplace && addend != 0)
11427 {
11428 bfd_size_type size;
11429 bfd_reloc_status_type rstat;
11430 bfd_byte *buf;
11431 bfd_boolean ok;
11432 const char *sym_name;
11433 bfd_size_type octets;
11434
11435 size = (bfd_size_type) bfd_get_reloc_size (howto);
11436 buf = (bfd_byte *) bfd_zmalloc (size);
11437 if (buf == NULL && size != 0)
11438 return FALSE;
11439 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11440 switch (rstat)
11441 {
11442 case bfd_reloc_ok:
11443 break;
11444
11445 default:
11446 case bfd_reloc_outofrange:
11447 abort ();
11448
11449 case bfd_reloc_overflow:
11450 if (link_order->type == bfd_section_reloc_link_order)
11451 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11452 else
11453 sym_name = link_order->u.reloc.p->u.name;
11454 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11455 howto->name, addend, NULL, NULL,
11456 (bfd_vma) 0);
11457 break;
11458 }
11459
11460 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11461 output_section);
11462 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11463 octets, size);
11464 free (buf);
11465 if (! ok)
11466 return FALSE;
11467 }
11468
11469 /* The address of a reloc is relative to the section in a
11470 relocatable file, and is a virtual address in an executable
11471 file. */
11472 offset = link_order->offset;
11473 if (! bfd_link_relocatable (info))
11474 offset += output_section->vma;
11475
11476 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11477 {
11478 irel[i].r_offset = offset;
11479 irel[i].r_info = 0;
11480 irel[i].r_addend = 0;
11481 }
11482 if (bed->s->arch_size == 32)
11483 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11484 else
11485 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11486
11487 rel_hdr = reldata->hdr;
11488 erel = rel_hdr->contents;
11489 if (rel_hdr->sh_type == SHT_REL)
11490 {
11491 erel += reldata->count * bed->s->sizeof_rel;
11492 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11493 }
11494 else
11495 {
11496 irel[0].r_addend = addend;
11497 erel += reldata->count * bed->s->sizeof_rela;
11498 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11499 }
11500
11501 ++reldata->count;
11502
11503 return TRUE;
11504 }
11505
11506
11507 /* Compare two sections based on the locations of the sections they are
11508 linked to. Used by elf_fixup_link_order. */
11509
11510 static int
11511 compare_link_order (const void *a, const void *b)
11512 {
11513 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11514 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11515 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11516 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11517 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11518 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11519
11520 if (apos < bpos)
11521 return -1;
11522 if (apos > bpos)
11523 return 1;
11524
11525 /* The only way we should get matching LMAs is when the first of two
11526 sections has zero size. */
11527 if (asec->size < bsec->size)
11528 return -1;
11529 if (asec->size > bsec->size)
11530 return 1;
11531
11532 /* If they are both zero size then they almost certainly have the same
11533 VMA and thus are not ordered with respect to each other. Test VMA
11534 anyway, and fall back to id to make the result reproducible across
11535 qsort implementations. */
11536 apos = asec->output_section->vma + asec->output_offset;
11537 bpos = bsec->output_section->vma + bsec->output_offset;
11538 if (apos < bpos)
11539 return -1;
11540 if (apos > bpos)
11541 return 1;
11542
11543 return asec->id - bsec->id;
11544 }
11545
11546
11547 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11548 order as their linked sections. Returns false if this could not be done
11549 because an output section includes both ordered and unordered
11550 sections. Ideally we'd do this in the linker proper. */
11551
11552 static bfd_boolean
11553 elf_fixup_link_order (bfd *abfd, asection *o)
11554 {
11555 size_t seen_linkorder;
11556 size_t seen_other;
11557 size_t n;
11558 struct bfd_link_order *p;
11559 bfd *sub;
11560 struct bfd_link_order **sections;
11561 asection *s, *other_sec, *linkorder_sec;
11562 bfd_vma offset;
11563
11564 other_sec = NULL;
11565 linkorder_sec = NULL;
11566 seen_other = 0;
11567 seen_linkorder = 0;
11568 for (p = o->map_head.link_order; p != NULL; p = p->next)
11569 {
11570 if (p->type == bfd_indirect_link_order)
11571 {
11572 s = p->u.indirect.section;
11573 sub = s->owner;
11574 if ((s->flags & SEC_LINKER_CREATED) == 0
11575 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11576 && elf_section_data (s) != NULL
11577 && elf_linked_to_section (s) != NULL)
11578 {
11579 seen_linkorder++;
11580 linkorder_sec = s;
11581 }
11582 else
11583 {
11584 seen_other++;
11585 other_sec = s;
11586 }
11587 }
11588 else
11589 seen_other++;
11590
11591 if (seen_other && seen_linkorder)
11592 {
11593 if (other_sec && linkorder_sec)
11594 _bfd_error_handler
11595 /* xgettext:c-format */
11596 (_("%pA has both ordered [`%pA' in %pB] "
11597 "and unordered [`%pA' in %pB] sections"),
11598 o, linkorder_sec, linkorder_sec->owner,
11599 other_sec, other_sec->owner);
11600 else
11601 _bfd_error_handler
11602 (_("%pA has both ordered and unordered sections"), o);
11603 bfd_set_error (bfd_error_bad_value);
11604 return FALSE;
11605 }
11606 }
11607
11608 if (!seen_linkorder)
11609 return TRUE;
11610
11611 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11612 if (sections == NULL)
11613 return FALSE;
11614
11615 seen_linkorder = 0;
11616 for (p = o->map_head.link_order; p != NULL; p = p->next)
11617 sections[seen_linkorder++] = p;
11618
11619 /* Sort the input sections in the order of their linked section. */
11620 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11621
11622 /* Change the offsets of the sections. */
11623 offset = 0;
11624 for (n = 0; n < seen_linkorder; n++)
11625 {
11626 bfd_vma mask;
11627 s = sections[n]->u.indirect.section;
11628 mask = ~(bfd_vma) 0 << s->alignment_power;
11629 offset = (offset + ~mask) & mask;
11630 s->output_offset = offset / bfd_octets_per_byte (abfd, s);
11631 sections[n]->offset = offset;
11632 offset += sections[n]->size;
11633 }
11634
11635 free (sections);
11636 return TRUE;
11637 }
11638
11639 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11640 Returns TRUE upon success, FALSE otherwise. */
11641
11642 static bfd_boolean
11643 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11644 {
11645 bfd_boolean ret = FALSE;
11646 bfd *implib_bfd;
11647 const struct elf_backend_data *bed;
11648 flagword flags;
11649 enum bfd_architecture arch;
11650 unsigned int mach;
11651 asymbol **sympp = NULL;
11652 long symsize;
11653 long symcount;
11654 long src_count;
11655 elf_symbol_type *osymbuf;
11656 size_t amt;
11657
11658 implib_bfd = info->out_implib_bfd;
11659 bed = get_elf_backend_data (abfd);
11660
11661 if (!bfd_set_format (implib_bfd, bfd_object))
11662 return FALSE;
11663
11664 /* Use flag from executable but make it a relocatable object. */
11665 flags = bfd_get_file_flags (abfd);
11666 flags &= ~HAS_RELOC;
11667 if (!bfd_set_start_address (implib_bfd, 0)
11668 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11669 return FALSE;
11670
11671 /* Copy architecture of output file to import library file. */
11672 arch = bfd_get_arch (abfd);
11673 mach = bfd_get_mach (abfd);
11674 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11675 && (abfd->target_defaulted
11676 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11677 return FALSE;
11678
11679 /* Get symbol table size. */
11680 symsize = bfd_get_symtab_upper_bound (abfd);
11681 if (symsize < 0)
11682 return FALSE;
11683
11684 /* Read in the symbol table. */
11685 sympp = (asymbol **) bfd_malloc (symsize);
11686 if (sympp == NULL)
11687 return FALSE;
11688
11689 symcount = bfd_canonicalize_symtab (abfd, sympp);
11690 if (symcount < 0)
11691 goto free_sym_buf;
11692
11693 /* Allow the BFD backend to copy any private header data it
11694 understands from the output BFD to the import library BFD. */
11695 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11696 goto free_sym_buf;
11697
11698 /* Filter symbols to appear in the import library. */
11699 if (bed->elf_backend_filter_implib_symbols)
11700 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11701 symcount);
11702 else
11703 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11704 if (symcount == 0)
11705 {
11706 bfd_set_error (bfd_error_no_symbols);
11707 _bfd_error_handler (_("%pB: no symbol found for import library"),
11708 implib_bfd);
11709 goto free_sym_buf;
11710 }
11711
11712
11713 /* Make symbols absolute. */
11714 amt = symcount * sizeof (*osymbuf);
11715 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11716 if (osymbuf == NULL)
11717 goto free_sym_buf;
11718
11719 for (src_count = 0; src_count < symcount; src_count++)
11720 {
11721 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11722 sizeof (*osymbuf));
11723 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11724 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11725 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11726 osymbuf[src_count].internal_elf_sym.st_value =
11727 osymbuf[src_count].symbol.value;
11728 sympp[src_count] = &osymbuf[src_count].symbol;
11729 }
11730
11731 bfd_set_symtab (implib_bfd, sympp, symcount);
11732
11733 /* Allow the BFD backend to copy any private data it understands
11734 from the output BFD to the import library BFD. This is done last
11735 to permit the routine to look at the filtered symbol table. */
11736 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11737 goto free_sym_buf;
11738
11739 if (!bfd_close (implib_bfd))
11740 goto free_sym_buf;
11741
11742 ret = TRUE;
11743
11744 free_sym_buf:
11745 free (sympp);
11746 return ret;
11747 }
11748
11749 static void
11750 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11751 {
11752 asection *o;
11753
11754 if (flinfo->symstrtab != NULL)
11755 _bfd_elf_strtab_free (flinfo->symstrtab);
11756 if (flinfo->contents != NULL)
11757 free (flinfo->contents);
11758 if (flinfo->external_relocs != NULL)
11759 free (flinfo->external_relocs);
11760 if (flinfo->internal_relocs != NULL)
11761 free (flinfo->internal_relocs);
11762 if (flinfo->external_syms != NULL)
11763 free (flinfo->external_syms);
11764 if (flinfo->locsym_shndx != NULL)
11765 free (flinfo->locsym_shndx);
11766 if (flinfo->internal_syms != NULL)
11767 free (flinfo->internal_syms);
11768 if (flinfo->indices != NULL)
11769 free (flinfo->indices);
11770 if (flinfo->sections != NULL)
11771 free (flinfo->sections);
11772 if (flinfo->symshndxbuf != NULL
11773 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11774 free (flinfo->symshndxbuf);
11775 for (o = obfd->sections; o != NULL; o = o->next)
11776 {
11777 struct bfd_elf_section_data *esdo = elf_section_data (o);
11778 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11779 free (esdo->rel.hashes);
11780 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11781 free (esdo->rela.hashes);
11782 }
11783 }
11784
11785 /* Do the final step of an ELF link. */
11786
11787 bfd_boolean
11788 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11789 {
11790 bfd_boolean dynamic;
11791 bfd_boolean emit_relocs;
11792 bfd *dynobj;
11793 struct elf_final_link_info flinfo;
11794 asection *o;
11795 struct bfd_link_order *p;
11796 bfd *sub;
11797 bfd_size_type max_contents_size;
11798 bfd_size_type max_external_reloc_size;
11799 bfd_size_type max_internal_reloc_count;
11800 bfd_size_type max_sym_count;
11801 bfd_size_type max_sym_shndx_count;
11802 Elf_Internal_Sym elfsym;
11803 unsigned int i;
11804 Elf_Internal_Shdr *symtab_hdr;
11805 Elf_Internal_Shdr *symtab_shndx_hdr;
11806 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11807 struct elf_outext_info eoinfo;
11808 bfd_boolean merged;
11809 size_t relativecount = 0;
11810 asection *reldyn = 0;
11811 bfd_size_type amt;
11812 asection *attr_section = NULL;
11813 bfd_vma attr_size = 0;
11814 const char *std_attrs_section;
11815 struct elf_link_hash_table *htab = elf_hash_table (info);
11816 bfd_boolean sections_removed;
11817
11818 if (!is_elf_hash_table (htab))
11819 return FALSE;
11820
11821 if (bfd_link_pic (info))
11822 abfd->flags |= DYNAMIC;
11823
11824 dynamic = htab->dynamic_sections_created;
11825 dynobj = htab->dynobj;
11826
11827 emit_relocs = (bfd_link_relocatable (info)
11828 || info->emitrelocations);
11829
11830 flinfo.info = info;
11831 flinfo.output_bfd = abfd;
11832 flinfo.symstrtab = _bfd_elf_strtab_init ();
11833 if (flinfo.symstrtab == NULL)
11834 return FALSE;
11835
11836 if (! dynamic)
11837 {
11838 flinfo.hash_sec = NULL;
11839 flinfo.symver_sec = NULL;
11840 }
11841 else
11842 {
11843 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11844 /* Note that dynsym_sec can be NULL (on VMS). */
11845 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11846 /* Note that it is OK if symver_sec is NULL. */
11847 }
11848
11849 flinfo.contents = NULL;
11850 flinfo.external_relocs = NULL;
11851 flinfo.internal_relocs = NULL;
11852 flinfo.external_syms = NULL;
11853 flinfo.locsym_shndx = NULL;
11854 flinfo.internal_syms = NULL;
11855 flinfo.indices = NULL;
11856 flinfo.sections = NULL;
11857 flinfo.symshndxbuf = NULL;
11858 flinfo.filesym_count = 0;
11859
11860 /* The object attributes have been merged. Remove the input
11861 sections from the link, and set the contents of the output
11862 section. */
11863 sections_removed = FALSE;
11864 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11865 for (o = abfd->sections; o != NULL; o = o->next)
11866 {
11867 bfd_boolean remove_section = FALSE;
11868
11869 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11870 || strcmp (o->name, ".gnu.attributes") == 0)
11871 {
11872 for (p = o->map_head.link_order; p != NULL; p = p->next)
11873 {
11874 asection *input_section;
11875
11876 if (p->type != bfd_indirect_link_order)
11877 continue;
11878 input_section = p->u.indirect.section;
11879 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11880 elf_link_input_bfd ignores this section. */
11881 input_section->flags &= ~SEC_HAS_CONTENTS;
11882 }
11883
11884 attr_size = bfd_elf_obj_attr_size (abfd);
11885 bfd_set_section_size (o, attr_size);
11886 /* Skip this section later on. */
11887 o->map_head.link_order = NULL;
11888 if (attr_size)
11889 attr_section = o;
11890 else
11891 remove_section = TRUE;
11892 }
11893 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11894 {
11895 /* Remove empty group section from linker output. */
11896 remove_section = TRUE;
11897 }
11898 if (remove_section)
11899 {
11900 o->flags |= SEC_EXCLUDE;
11901 bfd_section_list_remove (abfd, o);
11902 abfd->section_count--;
11903 sections_removed = TRUE;
11904 }
11905 }
11906 if (sections_removed)
11907 _bfd_fix_excluded_sec_syms (abfd, info);
11908
11909 /* Count up the number of relocations we will output for each output
11910 section, so that we know the sizes of the reloc sections. We
11911 also figure out some maximum sizes. */
11912 max_contents_size = 0;
11913 max_external_reloc_size = 0;
11914 max_internal_reloc_count = 0;
11915 max_sym_count = 0;
11916 max_sym_shndx_count = 0;
11917 merged = FALSE;
11918 for (o = abfd->sections; o != NULL; o = o->next)
11919 {
11920 struct bfd_elf_section_data *esdo = elf_section_data (o);
11921 o->reloc_count = 0;
11922
11923 for (p = o->map_head.link_order; p != NULL; p = p->next)
11924 {
11925 unsigned int reloc_count = 0;
11926 unsigned int additional_reloc_count = 0;
11927 struct bfd_elf_section_data *esdi = NULL;
11928
11929 if (p->type == bfd_section_reloc_link_order
11930 || p->type == bfd_symbol_reloc_link_order)
11931 reloc_count = 1;
11932 else if (p->type == bfd_indirect_link_order)
11933 {
11934 asection *sec;
11935
11936 sec = p->u.indirect.section;
11937
11938 /* Mark all sections which are to be included in the
11939 link. This will normally be every section. We need
11940 to do this so that we can identify any sections which
11941 the linker has decided to not include. */
11942 sec->linker_mark = TRUE;
11943
11944 if (sec->flags & SEC_MERGE)
11945 merged = TRUE;
11946
11947 if (sec->rawsize > max_contents_size)
11948 max_contents_size = sec->rawsize;
11949 if (sec->size > max_contents_size)
11950 max_contents_size = sec->size;
11951
11952 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11953 && (sec->owner->flags & DYNAMIC) == 0)
11954 {
11955 size_t sym_count;
11956
11957 /* We are interested in just local symbols, not all
11958 symbols. */
11959 if (elf_bad_symtab (sec->owner))
11960 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11961 / bed->s->sizeof_sym);
11962 else
11963 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11964
11965 if (sym_count > max_sym_count)
11966 max_sym_count = sym_count;
11967
11968 if (sym_count > max_sym_shndx_count
11969 && elf_symtab_shndx_list (sec->owner) != NULL)
11970 max_sym_shndx_count = sym_count;
11971
11972 if (esdo->this_hdr.sh_type == SHT_REL
11973 || esdo->this_hdr.sh_type == SHT_RELA)
11974 /* Some backends use reloc_count in relocation sections
11975 to count particular types of relocs. Of course,
11976 reloc sections themselves can't have relocations. */
11977 ;
11978 else if (emit_relocs)
11979 {
11980 reloc_count = sec->reloc_count;
11981 if (bed->elf_backend_count_additional_relocs)
11982 {
11983 int c;
11984 c = (*bed->elf_backend_count_additional_relocs) (sec);
11985 additional_reloc_count += c;
11986 }
11987 }
11988 else if (bed->elf_backend_count_relocs)
11989 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11990
11991 esdi = elf_section_data (sec);
11992
11993 if ((sec->flags & SEC_RELOC) != 0)
11994 {
11995 size_t ext_size = 0;
11996
11997 if (esdi->rel.hdr != NULL)
11998 ext_size = esdi->rel.hdr->sh_size;
11999 if (esdi->rela.hdr != NULL)
12000 ext_size += esdi->rela.hdr->sh_size;
12001
12002 if (ext_size > max_external_reloc_size)
12003 max_external_reloc_size = ext_size;
12004 if (sec->reloc_count > max_internal_reloc_count)
12005 max_internal_reloc_count = sec->reloc_count;
12006 }
12007 }
12008 }
12009
12010 if (reloc_count == 0)
12011 continue;
12012
12013 reloc_count += additional_reloc_count;
12014 o->reloc_count += reloc_count;
12015
12016 if (p->type == bfd_indirect_link_order && emit_relocs)
12017 {
12018 if (esdi->rel.hdr)
12019 {
12020 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12021 esdo->rel.count += additional_reloc_count;
12022 }
12023 if (esdi->rela.hdr)
12024 {
12025 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12026 esdo->rela.count += additional_reloc_count;
12027 }
12028 }
12029 else
12030 {
12031 if (o->use_rela_p)
12032 esdo->rela.count += reloc_count;
12033 else
12034 esdo->rel.count += reloc_count;
12035 }
12036 }
12037
12038 if (o->reloc_count > 0)
12039 o->flags |= SEC_RELOC;
12040 else
12041 {
12042 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12043 set it (this is probably a bug) and if it is set
12044 assign_section_numbers will create a reloc section. */
12045 o->flags &=~ SEC_RELOC;
12046 }
12047
12048 /* If the SEC_ALLOC flag is not set, force the section VMA to
12049 zero. This is done in elf_fake_sections as well, but forcing
12050 the VMA to 0 here will ensure that relocs against these
12051 sections are handled correctly. */
12052 if ((o->flags & SEC_ALLOC) == 0
12053 && ! o->user_set_vma)
12054 o->vma = 0;
12055 }
12056
12057 if (! bfd_link_relocatable (info) && merged)
12058 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12059
12060 /* Figure out the file positions for everything but the symbol table
12061 and the relocs. We set symcount to force assign_section_numbers
12062 to create a symbol table. */
12063 abfd->symcount = info->strip != strip_all || emit_relocs;
12064 BFD_ASSERT (! abfd->output_has_begun);
12065 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12066 goto error_return;
12067
12068 /* Set sizes, and assign file positions for reloc sections. */
12069 for (o = abfd->sections; o != NULL; o = o->next)
12070 {
12071 struct bfd_elf_section_data *esdo = elf_section_data (o);
12072 if ((o->flags & SEC_RELOC) != 0)
12073 {
12074 if (esdo->rel.hdr
12075 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12076 goto error_return;
12077
12078 if (esdo->rela.hdr
12079 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12080 goto error_return;
12081 }
12082
12083 /* _bfd_elf_compute_section_file_positions makes temporary use
12084 of target_index. Reset it. */
12085 o->target_index = 0;
12086
12087 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12088 to count upwards while actually outputting the relocations. */
12089 esdo->rel.count = 0;
12090 esdo->rela.count = 0;
12091
12092 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12093 && !bfd_section_is_ctf (o))
12094 {
12095 /* Cache the section contents so that they can be compressed
12096 later. Use bfd_malloc since it will be freed by
12097 bfd_compress_section_contents. */
12098 unsigned char *contents = esdo->this_hdr.contents;
12099 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12100 abort ();
12101 contents
12102 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12103 if (contents == NULL)
12104 goto error_return;
12105 esdo->this_hdr.contents = contents;
12106 }
12107 }
12108
12109 /* We have now assigned file positions for all the sections except .symtab,
12110 .strtab, and non-loaded reloc and compressed debugging sections. We start
12111 the .symtab section at the current file position, and write directly to it.
12112 We build the .strtab section in memory. */
12113 abfd->symcount = 0;
12114 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12115 /* sh_name is set in prep_headers. */
12116 symtab_hdr->sh_type = SHT_SYMTAB;
12117 /* sh_flags, sh_addr and sh_size all start off zero. */
12118 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12119 /* sh_link is set in assign_section_numbers. */
12120 /* sh_info is set below. */
12121 /* sh_offset is set just below. */
12122 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12123
12124 if (max_sym_count < 20)
12125 max_sym_count = 20;
12126 htab->strtabsize = max_sym_count;
12127 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12128 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12129 if (htab->strtab == NULL)
12130 goto error_return;
12131 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12132 flinfo.symshndxbuf
12133 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12134 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12135
12136 if (info->strip != strip_all || emit_relocs)
12137 {
12138 file_ptr off = elf_next_file_pos (abfd);
12139
12140 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12141
12142 /* Note that at this point elf_next_file_pos (abfd) is
12143 incorrect. We do not yet know the size of the .symtab section.
12144 We correct next_file_pos below, after we do know the size. */
12145
12146 /* Start writing out the symbol table. The first symbol is always a
12147 dummy symbol. */
12148 elfsym.st_value = 0;
12149 elfsym.st_size = 0;
12150 elfsym.st_info = 0;
12151 elfsym.st_other = 0;
12152 elfsym.st_shndx = SHN_UNDEF;
12153 elfsym.st_target_internal = 0;
12154 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12155 bfd_und_section_ptr, NULL) != 1)
12156 goto error_return;
12157
12158 /* Output a symbol for each section. We output these even if we are
12159 discarding local symbols, since they are used for relocs. These
12160 symbols have no names. We store the index of each one in the
12161 index field of the section, so that we can find it again when
12162 outputting relocs. */
12163
12164 elfsym.st_size = 0;
12165 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12166 elfsym.st_other = 0;
12167 elfsym.st_value = 0;
12168 elfsym.st_target_internal = 0;
12169 for (i = 1; i < elf_numsections (abfd); i++)
12170 {
12171 o = bfd_section_from_elf_index (abfd, i);
12172 if (o != NULL)
12173 {
12174 o->target_index = bfd_get_symcount (abfd);
12175 elfsym.st_shndx = i;
12176 if (!bfd_link_relocatable (info))
12177 elfsym.st_value = o->vma;
12178 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12179 NULL) != 1)
12180 goto error_return;
12181 }
12182 }
12183 }
12184
12185 /* Allocate some memory to hold information read in from the input
12186 files. */
12187 if (max_contents_size != 0)
12188 {
12189 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12190 if (flinfo.contents == NULL)
12191 goto error_return;
12192 }
12193
12194 if (max_external_reloc_size != 0)
12195 {
12196 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12197 if (flinfo.external_relocs == NULL)
12198 goto error_return;
12199 }
12200
12201 if (max_internal_reloc_count != 0)
12202 {
12203 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12204 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12205 if (flinfo.internal_relocs == NULL)
12206 goto error_return;
12207 }
12208
12209 if (max_sym_count != 0)
12210 {
12211 amt = max_sym_count * bed->s->sizeof_sym;
12212 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12213 if (flinfo.external_syms == NULL)
12214 goto error_return;
12215
12216 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12217 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12218 if (flinfo.internal_syms == NULL)
12219 goto error_return;
12220
12221 amt = max_sym_count * sizeof (long);
12222 flinfo.indices = (long int *) bfd_malloc (amt);
12223 if (flinfo.indices == NULL)
12224 goto error_return;
12225
12226 amt = max_sym_count * sizeof (asection *);
12227 flinfo.sections = (asection **) bfd_malloc (amt);
12228 if (flinfo.sections == NULL)
12229 goto error_return;
12230 }
12231
12232 if (max_sym_shndx_count != 0)
12233 {
12234 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12235 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12236 if (flinfo.locsym_shndx == NULL)
12237 goto error_return;
12238 }
12239
12240 if (htab->tls_sec)
12241 {
12242 bfd_vma base, end = 0;
12243 asection *sec;
12244
12245 for (sec = htab->tls_sec;
12246 sec && (sec->flags & SEC_THREAD_LOCAL);
12247 sec = sec->next)
12248 {
12249 bfd_size_type size = sec->size;
12250
12251 if (size == 0
12252 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12253 {
12254 struct bfd_link_order *ord = sec->map_tail.link_order;
12255
12256 if (ord != NULL)
12257 size = ord->offset + ord->size;
12258 }
12259 end = sec->vma + size;
12260 }
12261 base = htab->tls_sec->vma;
12262 /* Only align end of TLS section if static TLS doesn't have special
12263 alignment requirements. */
12264 if (bed->static_tls_alignment == 1)
12265 end = align_power (end, htab->tls_sec->alignment_power);
12266 htab->tls_size = end - base;
12267 }
12268
12269 /* Reorder SHF_LINK_ORDER sections. */
12270 for (o = abfd->sections; o != NULL; o = o->next)
12271 {
12272 if (!elf_fixup_link_order (abfd, o))
12273 return FALSE;
12274 }
12275
12276 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12277 return FALSE;
12278
12279 /* Since ELF permits relocations to be against local symbols, we
12280 must have the local symbols available when we do the relocations.
12281 Since we would rather only read the local symbols once, and we
12282 would rather not keep them in memory, we handle all the
12283 relocations for a single input file at the same time.
12284
12285 Unfortunately, there is no way to know the total number of local
12286 symbols until we have seen all of them, and the local symbol
12287 indices precede the global symbol indices. This means that when
12288 we are generating relocatable output, and we see a reloc against
12289 a global symbol, we can not know the symbol index until we have
12290 finished examining all the local symbols to see which ones we are
12291 going to output. To deal with this, we keep the relocations in
12292 memory, and don't output them until the end of the link. This is
12293 an unfortunate waste of memory, but I don't see a good way around
12294 it. Fortunately, it only happens when performing a relocatable
12295 link, which is not the common case. FIXME: If keep_memory is set
12296 we could write the relocs out and then read them again; I don't
12297 know how bad the memory loss will be. */
12298
12299 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12300 sub->output_has_begun = FALSE;
12301 for (o = abfd->sections; o != NULL; o = o->next)
12302 {
12303 for (p = o->map_head.link_order; p != NULL; p = p->next)
12304 {
12305 if (p->type == bfd_indirect_link_order
12306 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12307 == bfd_target_elf_flavour)
12308 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12309 {
12310 if (! sub->output_has_begun)
12311 {
12312 if (! elf_link_input_bfd (&flinfo, sub))
12313 goto error_return;
12314 sub->output_has_begun = TRUE;
12315 }
12316 }
12317 else if (p->type == bfd_section_reloc_link_order
12318 || p->type == bfd_symbol_reloc_link_order)
12319 {
12320 if (! elf_reloc_link_order (abfd, info, o, p))
12321 goto error_return;
12322 }
12323 else
12324 {
12325 if (! _bfd_default_link_order (abfd, info, o, p))
12326 {
12327 if (p->type == bfd_indirect_link_order
12328 && (bfd_get_flavour (sub)
12329 == bfd_target_elf_flavour)
12330 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12331 != bed->s->elfclass))
12332 {
12333 const char *iclass, *oclass;
12334
12335 switch (bed->s->elfclass)
12336 {
12337 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12338 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12339 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12340 default: abort ();
12341 }
12342
12343 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12344 {
12345 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12346 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12347 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12348 default: abort ();
12349 }
12350
12351 bfd_set_error (bfd_error_wrong_format);
12352 _bfd_error_handler
12353 /* xgettext:c-format */
12354 (_("%pB: file class %s incompatible with %s"),
12355 sub, iclass, oclass);
12356 }
12357
12358 goto error_return;
12359 }
12360 }
12361 }
12362 }
12363
12364 /* Free symbol buffer if needed. */
12365 if (!info->reduce_memory_overheads)
12366 {
12367 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12368 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12369 && elf_tdata (sub)->symbuf)
12370 {
12371 free (elf_tdata (sub)->symbuf);
12372 elf_tdata (sub)->symbuf = NULL;
12373 }
12374 }
12375
12376 /* Output any global symbols that got converted to local in a
12377 version script or due to symbol visibility. We do this in a
12378 separate step since ELF requires all local symbols to appear
12379 prior to any global symbols. FIXME: We should only do this if
12380 some global symbols were, in fact, converted to become local.
12381 FIXME: Will this work correctly with the Irix 5 linker? */
12382 eoinfo.failed = FALSE;
12383 eoinfo.flinfo = &flinfo;
12384 eoinfo.localsyms = TRUE;
12385 eoinfo.file_sym_done = FALSE;
12386 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12387 if (eoinfo.failed)
12388 return FALSE;
12389
12390 /* If backend needs to output some local symbols not present in the hash
12391 table, do it now. */
12392 if (bed->elf_backend_output_arch_local_syms
12393 && (info->strip != strip_all || emit_relocs))
12394 {
12395 typedef int (*out_sym_func)
12396 (void *, const char *, Elf_Internal_Sym *, asection *,
12397 struct elf_link_hash_entry *);
12398
12399 if (! ((*bed->elf_backend_output_arch_local_syms)
12400 (abfd, info, &flinfo,
12401 (out_sym_func) elf_link_output_symstrtab)))
12402 return FALSE;
12403 }
12404
12405 /* That wrote out all the local symbols. Finish up the symbol table
12406 with the global symbols. Even if we want to strip everything we
12407 can, we still need to deal with those global symbols that got
12408 converted to local in a version script. */
12409
12410 /* The sh_info field records the index of the first non local symbol. */
12411 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12412
12413 if (dynamic
12414 && htab->dynsym != NULL
12415 && htab->dynsym->output_section != bfd_abs_section_ptr)
12416 {
12417 Elf_Internal_Sym sym;
12418 bfd_byte *dynsym = htab->dynsym->contents;
12419
12420 o = htab->dynsym->output_section;
12421 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12422
12423 /* Write out the section symbols for the output sections. */
12424 if (bfd_link_pic (info)
12425 || htab->is_relocatable_executable)
12426 {
12427 asection *s;
12428
12429 sym.st_size = 0;
12430 sym.st_name = 0;
12431 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12432 sym.st_other = 0;
12433 sym.st_target_internal = 0;
12434
12435 for (s = abfd->sections; s != NULL; s = s->next)
12436 {
12437 int indx;
12438 bfd_byte *dest;
12439 long dynindx;
12440
12441 dynindx = elf_section_data (s)->dynindx;
12442 if (dynindx <= 0)
12443 continue;
12444 indx = elf_section_data (s)->this_idx;
12445 BFD_ASSERT (indx > 0);
12446 sym.st_shndx = indx;
12447 if (! check_dynsym (abfd, &sym))
12448 return FALSE;
12449 sym.st_value = s->vma;
12450 dest = dynsym + dynindx * bed->s->sizeof_sym;
12451 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12452 }
12453 }
12454
12455 /* Write out the local dynsyms. */
12456 if (htab->dynlocal)
12457 {
12458 struct elf_link_local_dynamic_entry *e;
12459 for (e = htab->dynlocal; e ; e = e->next)
12460 {
12461 asection *s;
12462 bfd_byte *dest;
12463
12464 /* Copy the internal symbol and turn off visibility.
12465 Note that we saved a word of storage and overwrote
12466 the original st_name with the dynstr_index. */
12467 sym = e->isym;
12468 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12469
12470 s = bfd_section_from_elf_index (e->input_bfd,
12471 e->isym.st_shndx);
12472 if (s != NULL)
12473 {
12474 sym.st_shndx =
12475 elf_section_data (s->output_section)->this_idx;
12476 if (! check_dynsym (abfd, &sym))
12477 return FALSE;
12478 sym.st_value = (s->output_section->vma
12479 + s->output_offset
12480 + e->isym.st_value);
12481 }
12482
12483 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12484 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12485 }
12486 }
12487 }
12488
12489 /* We get the global symbols from the hash table. */
12490 eoinfo.failed = FALSE;
12491 eoinfo.localsyms = FALSE;
12492 eoinfo.flinfo = &flinfo;
12493 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12494 if (eoinfo.failed)
12495 return FALSE;
12496
12497 /* If backend needs to output some symbols not present in the hash
12498 table, do it now. */
12499 if (bed->elf_backend_output_arch_syms
12500 && (info->strip != strip_all || emit_relocs))
12501 {
12502 typedef int (*out_sym_func)
12503 (void *, const char *, Elf_Internal_Sym *, asection *,
12504 struct elf_link_hash_entry *);
12505
12506 if (! ((*bed->elf_backend_output_arch_syms)
12507 (abfd, info, &flinfo,
12508 (out_sym_func) elf_link_output_symstrtab)))
12509 return FALSE;
12510 }
12511
12512 /* Finalize the .strtab section. */
12513 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12514
12515 /* Swap out the .strtab section. */
12516 if (!elf_link_swap_symbols_out (&flinfo))
12517 return FALSE;
12518
12519 /* Now we know the size of the symtab section. */
12520 if (bfd_get_symcount (abfd) > 0)
12521 {
12522 /* Finish up and write out the symbol string table (.strtab)
12523 section. */
12524 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12525 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12526
12527 if (elf_symtab_shndx_list (abfd))
12528 {
12529 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12530
12531 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12532 {
12533 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12534 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12535 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12536 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12537 symtab_shndx_hdr->sh_size = amt;
12538
12539 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12540 off, TRUE);
12541
12542 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12543 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12544 return FALSE;
12545 }
12546 }
12547
12548 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12549 /* sh_name was set in prep_headers. */
12550 symstrtab_hdr->sh_type = SHT_STRTAB;
12551 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12552 symstrtab_hdr->sh_addr = 0;
12553 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12554 symstrtab_hdr->sh_entsize = 0;
12555 symstrtab_hdr->sh_link = 0;
12556 symstrtab_hdr->sh_info = 0;
12557 /* sh_offset is set just below. */
12558 symstrtab_hdr->sh_addralign = 1;
12559
12560 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12561 off, TRUE);
12562 elf_next_file_pos (abfd) = off;
12563
12564 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12565 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12566 return FALSE;
12567 }
12568
12569 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12570 {
12571 _bfd_error_handler (_("%pB: failed to generate import library"),
12572 info->out_implib_bfd);
12573 return FALSE;
12574 }
12575
12576 /* Adjust the relocs to have the correct symbol indices. */
12577 for (o = abfd->sections; o != NULL; o = o->next)
12578 {
12579 struct bfd_elf_section_data *esdo = elf_section_data (o);
12580 bfd_boolean sort;
12581
12582 if ((o->flags & SEC_RELOC) == 0)
12583 continue;
12584
12585 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12586 if (esdo->rel.hdr != NULL
12587 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12588 return FALSE;
12589 if (esdo->rela.hdr != NULL
12590 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12591 return FALSE;
12592
12593 /* Set the reloc_count field to 0 to prevent write_relocs from
12594 trying to swap the relocs out itself. */
12595 o->reloc_count = 0;
12596 }
12597
12598 if (dynamic && info->combreloc && dynobj != NULL)
12599 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12600
12601 /* If we are linking against a dynamic object, or generating a
12602 shared library, finish up the dynamic linking information. */
12603 if (dynamic)
12604 {
12605 bfd_byte *dyncon, *dynconend;
12606
12607 /* Fix up .dynamic entries. */
12608 o = bfd_get_linker_section (dynobj, ".dynamic");
12609 BFD_ASSERT (o != NULL);
12610
12611 dyncon = o->contents;
12612 dynconend = o->contents + o->size;
12613 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12614 {
12615 Elf_Internal_Dyn dyn;
12616 const char *name;
12617 unsigned int type;
12618 bfd_size_type sh_size;
12619 bfd_vma sh_addr;
12620
12621 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12622
12623 switch (dyn.d_tag)
12624 {
12625 default:
12626 continue;
12627 case DT_NULL:
12628 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12629 {
12630 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12631 {
12632 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12633 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12634 default: continue;
12635 }
12636 dyn.d_un.d_val = relativecount;
12637 relativecount = 0;
12638 break;
12639 }
12640 continue;
12641
12642 case DT_INIT:
12643 name = info->init_function;
12644 goto get_sym;
12645 case DT_FINI:
12646 name = info->fini_function;
12647 get_sym:
12648 {
12649 struct elf_link_hash_entry *h;
12650
12651 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12652 if (h != NULL
12653 && (h->root.type == bfd_link_hash_defined
12654 || h->root.type == bfd_link_hash_defweak))
12655 {
12656 dyn.d_un.d_ptr = h->root.u.def.value;
12657 o = h->root.u.def.section;
12658 if (o->output_section != NULL)
12659 dyn.d_un.d_ptr += (o->output_section->vma
12660 + o->output_offset);
12661 else
12662 {
12663 /* The symbol is imported from another shared
12664 library and does not apply to this one. */
12665 dyn.d_un.d_ptr = 0;
12666 }
12667 break;
12668 }
12669 }
12670 continue;
12671
12672 case DT_PREINIT_ARRAYSZ:
12673 name = ".preinit_array";
12674 goto get_out_size;
12675 case DT_INIT_ARRAYSZ:
12676 name = ".init_array";
12677 goto get_out_size;
12678 case DT_FINI_ARRAYSZ:
12679 name = ".fini_array";
12680 get_out_size:
12681 o = bfd_get_section_by_name (abfd, name);
12682 if (o == NULL)
12683 {
12684 _bfd_error_handler
12685 (_("could not find section %s"), name);
12686 goto error_return;
12687 }
12688 if (o->size == 0)
12689 _bfd_error_handler
12690 (_("warning: %s section has zero size"), name);
12691 dyn.d_un.d_val = o->size;
12692 break;
12693
12694 case DT_PREINIT_ARRAY:
12695 name = ".preinit_array";
12696 goto get_out_vma;
12697 case DT_INIT_ARRAY:
12698 name = ".init_array";
12699 goto get_out_vma;
12700 case DT_FINI_ARRAY:
12701 name = ".fini_array";
12702 get_out_vma:
12703 o = bfd_get_section_by_name (abfd, name);
12704 goto do_vma;
12705
12706 case DT_HASH:
12707 name = ".hash";
12708 goto get_vma;
12709 case DT_GNU_HASH:
12710 name = ".gnu.hash";
12711 goto get_vma;
12712 case DT_STRTAB:
12713 name = ".dynstr";
12714 goto get_vma;
12715 case DT_SYMTAB:
12716 name = ".dynsym";
12717 goto get_vma;
12718 case DT_VERDEF:
12719 name = ".gnu.version_d";
12720 goto get_vma;
12721 case DT_VERNEED:
12722 name = ".gnu.version_r";
12723 goto get_vma;
12724 case DT_VERSYM:
12725 name = ".gnu.version";
12726 get_vma:
12727 o = bfd_get_linker_section (dynobj, name);
12728 do_vma:
12729 if (o == NULL || bfd_is_abs_section (o->output_section))
12730 {
12731 _bfd_error_handler
12732 (_("could not find section %s"), name);
12733 goto error_return;
12734 }
12735 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12736 {
12737 _bfd_error_handler
12738 (_("warning: section '%s' is being made into a note"), name);
12739 bfd_set_error (bfd_error_nonrepresentable_section);
12740 goto error_return;
12741 }
12742 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12743 break;
12744
12745 case DT_REL:
12746 case DT_RELA:
12747 case DT_RELSZ:
12748 case DT_RELASZ:
12749 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12750 type = SHT_REL;
12751 else
12752 type = SHT_RELA;
12753 sh_size = 0;
12754 sh_addr = 0;
12755 for (i = 1; i < elf_numsections (abfd); i++)
12756 {
12757 Elf_Internal_Shdr *hdr;
12758
12759 hdr = elf_elfsections (abfd)[i];
12760 if (hdr->sh_type == type
12761 && (hdr->sh_flags & SHF_ALLOC) != 0)
12762 {
12763 sh_size += hdr->sh_size;
12764 if (sh_addr == 0
12765 || sh_addr > hdr->sh_addr)
12766 sh_addr = hdr->sh_addr;
12767 }
12768 }
12769
12770 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12771 {
12772 /* Don't count procedure linkage table relocs in the
12773 overall reloc count. */
12774 sh_size -= htab->srelplt->size;
12775 if (sh_size == 0)
12776 /* If the size is zero, make the address zero too.
12777 This is to avoid a glibc bug. If the backend
12778 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12779 zero, then we'll put DT_RELA at the end of
12780 DT_JMPREL. glibc will interpret the end of
12781 DT_RELA matching the end of DT_JMPREL as the
12782 case where DT_RELA includes DT_JMPREL, and for
12783 LD_BIND_NOW will decide that processing DT_RELA
12784 will process the PLT relocs too. Net result:
12785 No PLT relocs applied. */
12786 sh_addr = 0;
12787
12788 /* If .rela.plt is the first .rela section, exclude
12789 it from DT_RELA. */
12790 else if (sh_addr == (htab->srelplt->output_section->vma
12791 + htab->srelplt->output_offset))
12792 sh_addr += htab->srelplt->size;
12793 }
12794
12795 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12796 dyn.d_un.d_val = sh_size;
12797 else
12798 dyn.d_un.d_ptr = sh_addr;
12799 break;
12800 }
12801 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12802 }
12803 }
12804
12805 /* If we have created any dynamic sections, then output them. */
12806 if (dynobj != NULL)
12807 {
12808 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12809 goto error_return;
12810
12811 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12812 if (((info->warn_shared_textrel && bfd_link_pic (info))
12813 || info->error_textrel)
12814 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12815 {
12816 bfd_byte *dyncon, *dynconend;
12817
12818 dyncon = o->contents;
12819 dynconend = o->contents + o->size;
12820 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12821 {
12822 Elf_Internal_Dyn dyn;
12823
12824 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12825
12826 if (dyn.d_tag == DT_TEXTREL)
12827 {
12828 if (info->error_textrel)
12829 info->callbacks->einfo
12830 (_("%P%X: read-only segment has dynamic relocations\n"));
12831 else
12832 info->callbacks->einfo
12833 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12834 break;
12835 }
12836 }
12837 }
12838
12839 for (o = dynobj->sections; o != NULL; o = o->next)
12840 {
12841 if ((o->flags & SEC_HAS_CONTENTS) == 0
12842 || o->size == 0
12843 || o->output_section == bfd_abs_section_ptr)
12844 continue;
12845 if ((o->flags & SEC_LINKER_CREATED) == 0)
12846 {
12847 /* At this point, we are only interested in sections
12848 created by _bfd_elf_link_create_dynamic_sections. */
12849 continue;
12850 }
12851 if (htab->stab_info.stabstr == o)
12852 continue;
12853 if (htab->eh_info.hdr_sec == o)
12854 continue;
12855 if (strcmp (o->name, ".dynstr") != 0)
12856 {
12857 bfd_size_type octets = ((file_ptr) o->output_offset
12858 * bfd_octets_per_byte (abfd, o));
12859 if (!bfd_set_section_contents (abfd, o->output_section,
12860 o->contents, octets, o->size))
12861 goto error_return;
12862 }
12863 else
12864 {
12865 /* The contents of the .dynstr section are actually in a
12866 stringtab. */
12867 file_ptr off;
12868
12869 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12870 if (bfd_seek (abfd, off, SEEK_SET) != 0
12871 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12872 goto error_return;
12873 }
12874 }
12875 }
12876
12877 if (!info->resolve_section_groups)
12878 {
12879 bfd_boolean failed = FALSE;
12880
12881 BFD_ASSERT (bfd_link_relocatable (info));
12882 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12883 if (failed)
12884 goto error_return;
12885 }
12886
12887 /* If we have optimized stabs strings, output them. */
12888 if (htab->stab_info.stabstr != NULL)
12889 {
12890 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12891 goto error_return;
12892 }
12893
12894 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12895 goto error_return;
12896
12897 if (info->callbacks->emit_ctf)
12898 info->callbacks->emit_ctf ();
12899
12900 elf_final_link_free (abfd, &flinfo);
12901
12902 if (attr_section)
12903 {
12904 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12905 if (contents == NULL)
12906 return FALSE; /* Bail out and fail. */
12907 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12908 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12909 free (contents);
12910 }
12911
12912 return TRUE;
12913
12914 error_return:
12915 elf_final_link_free (abfd, &flinfo);
12916 return FALSE;
12917 }
12918 \f
12919 /* Initialize COOKIE for input bfd ABFD. */
12920
12921 static bfd_boolean
12922 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12923 struct bfd_link_info *info, bfd *abfd)
12924 {
12925 Elf_Internal_Shdr *symtab_hdr;
12926 const struct elf_backend_data *bed;
12927
12928 bed = get_elf_backend_data (abfd);
12929 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12930
12931 cookie->abfd = abfd;
12932 cookie->sym_hashes = elf_sym_hashes (abfd);
12933 cookie->bad_symtab = elf_bad_symtab (abfd);
12934 if (cookie->bad_symtab)
12935 {
12936 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12937 cookie->extsymoff = 0;
12938 }
12939 else
12940 {
12941 cookie->locsymcount = symtab_hdr->sh_info;
12942 cookie->extsymoff = symtab_hdr->sh_info;
12943 }
12944
12945 if (bed->s->arch_size == 32)
12946 cookie->r_sym_shift = 8;
12947 else
12948 cookie->r_sym_shift = 32;
12949
12950 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12951 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12952 {
12953 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12954 cookie->locsymcount, 0,
12955 NULL, NULL, NULL);
12956 if (cookie->locsyms == NULL)
12957 {
12958 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12959 return FALSE;
12960 }
12961 if (info->keep_memory)
12962 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12963 }
12964 return TRUE;
12965 }
12966
12967 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12968
12969 static void
12970 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12971 {
12972 Elf_Internal_Shdr *symtab_hdr;
12973
12974 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12975 if (cookie->locsyms != NULL
12976 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12977 free (cookie->locsyms);
12978 }
12979
12980 /* Initialize the relocation information in COOKIE for input section SEC
12981 of input bfd ABFD. */
12982
12983 static bfd_boolean
12984 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12985 struct bfd_link_info *info, bfd *abfd,
12986 asection *sec)
12987 {
12988 if (sec->reloc_count == 0)
12989 {
12990 cookie->rels = NULL;
12991 cookie->relend = NULL;
12992 }
12993 else
12994 {
12995 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12996 info->keep_memory);
12997 if (cookie->rels == NULL)
12998 return FALSE;
12999 cookie->rel = cookie->rels;
13000 cookie->relend = cookie->rels + sec->reloc_count;
13001 }
13002 cookie->rel = cookie->rels;
13003 return TRUE;
13004 }
13005
13006 /* Free the memory allocated by init_reloc_cookie_rels,
13007 if appropriate. */
13008
13009 static void
13010 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13011 asection *sec)
13012 {
13013 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13014 free (cookie->rels);
13015 }
13016
13017 /* Initialize the whole of COOKIE for input section SEC. */
13018
13019 static bfd_boolean
13020 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13021 struct bfd_link_info *info,
13022 asection *sec)
13023 {
13024 if (!init_reloc_cookie (cookie, info, sec->owner))
13025 goto error1;
13026 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13027 goto error2;
13028 return TRUE;
13029
13030 error2:
13031 fini_reloc_cookie (cookie, sec->owner);
13032 error1:
13033 return FALSE;
13034 }
13035
13036 /* Free the memory allocated by init_reloc_cookie_for_section,
13037 if appropriate. */
13038
13039 static void
13040 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13041 asection *sec)
13042 {
13043 fini_reloc_cookie_rels (cookie, sec);
13044 fini_reloc_cookie (cookie, sec->owner);
13045 }
13046 \f
13047 /* Garbage collect unused sections. */
13048
13049 /* Default gc_mark_hook. */
13050
13051 asection *
13052 _bfd_elf_gc_mark_hook (asection *sec,
13053 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13054 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13055 struct elf_link_hash_entry *h,
13056 Elf_Internal_Sym *sym)
13057 {
13058 if (h != NULL)
13059 {
13060 switch (h->root.type)
13061 {
13062 case bfd_link_hash_defined:
13063 case bfd_link_hash_defweak:
13064 return h->root.u.def.section;
13065
13066 case bfd_link_hash_common:
13067 return h->root.u.c.p->section;
13068
13069 default:
13070 break;
13071 }
13072 }
13073 else
13074 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13075
13076 return NULL;
13077 }
13078
13079 /* Return the debug definition section. */
13080
13081 static asection *
13082 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13083 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13084 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13085 struct elf_link_hash_entry *h,
13086 Elf_Internal_Sym *sym)
13087 {
13088 if (h != NULL)
13089 {
13090 /* Return the global debug definition section. */
13091 if ((h->root.type == bfd_link_hash_defined
13092 || h->root.type == bfd_link_hash_defweak)
13093 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13094 return h->root.u.def.section;
13095 }
13096 else
13097 {
13098 /* Return the local debug definition section. */
13099 asection *isec = bfd_section_from_elf_index (sec->owner,
13100 sym->st_shndx);
13101 if ((isec->flags & SEC_DEBUGGING) != 0)
13102 return isec;
13103 }
13104
13105 return NULL;
13106 }
13107
13108 /* COOKIE->rel describes a relocation against section SEC, which is
13109 a section we've decided to keep. Return the section that contains
13110 the relocation symbol, or NULL if no section contains it. */
13111
13112 asection *
13113 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13114 elf_gc_mark_hook_fn gc_mark_hook,
13115 struct elf_reloc_cookie *cookie,
13116 bfd_boolean *start_stop)
13117 {
13118 unsigned long r_symndx;
13119 struct elf_link_hash_entry *h, *hw;
13120
13121 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13122 if (r_symndx == STN_UNDEF)
13123 return NULL;
13124
13125 if (r_symndx >= cookie->locsymcount
13126 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13127 {
13128 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13129 if (h == NULL)
13130 {
13131 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13132 sec->owner);
13133 return NULL;
13134 }
13135 while (h->root.type == bfd_link_hash_indirect
13136 || h->root.type == bfd_link_hash_warning)
13137 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13138 h->mark = 1;
13139 /* Keep all aliases of the symbol too. If an object symbol
13140 needs to be copied into .dynbss then all of its aliases
13141 should be present as dynamic symbols, not just the one used
13142 on the copy relocation. */
13143 hw = h;
13144 while (hw->is_weakalias)
13145 {
13146 hw = hw->u.alias;
13147 hw->mark = 1;
13148 }
13149
13150 if (start_stop != NULL)
13151 {
13152 /* To work around a glibc bug, mark XXX input sections
13153 when there is a reference to __start_XXX or __stop_XXX
13154 symbols. */
13155 if (h->start_stop)
13156 {
13157 asection *s = h->u2.start_stop_section;
13158 *start_stop = !s->gc_mark;
13159 return s;
13160 }
13161 }
13162
13163 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13164 }
13165
13166 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13167 &cookie->locsyms[r_symndx]);
13168 }
13169
13170 /* COOKIE->rel describes a relocation against section SEC, which is
13171 a section we've decided to keep. Mark the section that contains
13172 the relocation symbol. */
13173
13174 bfd_boolean
13175 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13176 asection *sec,
13177 elf_gc_mark_hook_fn gc_mark_hook,
13178 struct elf_reloc_cookie *cookie)
13179 {
13180 asection *rsec;
13181 bfd_boolean start_stop = FALSE;
13182
13183 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13184 while (rsec != NULL)
13185 {
13186 if (!rsec->gc_mark)
13187 {
13188 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13189 || (rsec->owner->flags & DYNAMIC) != 0)
13190 rsec->gc_mark = 1;
13191 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13192 return FALSE;
13193 }
13194 if (!start_stop)
13195 break;
13196 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13197 }
13198 return TRUE;
13199 }
13200
13201 /* The mark phase of garbage collection. For a given section, mark
13202 it and any sections in this section's group, and all the sections
13203 which define symbols to which it refers. */
13204
13205 bfd_boolean
13206 _bfd_elf_gc_mark (struct bfd_link_info *info,
13207 asection *sec,
13208 elf_gc_mark_hook_fn gc_mark_hook)
13209 {
13210 bfd_boolean ret;
13211 asection *group_sec, *eh_frame;
13212
13213 sec->gc_mark = 1;
13214
13215 /* Mark all the sections in the group. */
13216 group_sec = elf_section_data (sec)->next_in_group;
13217 if (group_sec && !group_sec->gc_mark)
13218 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13219 return FALSE;
13220
13221 /* Look through the section relocs. */
13222 ret = TRUE;
13223 eh_frame = elf_eh_frame_section (sec->owner);
13224 if ((sec->flags & SEC_RELOC) != 0
13225 && sec->reloc_count > 0
13226 && sec != eh_frame)
13227 {
13228 struct elf_reloc_cookie cookie;
13229
13230 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13231 ret = FALSE;
13232 else
13233 {
13234 for (; cookie.rel < cookie.relend; cookie.rel++)
13235 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13236 {
13237 ret = FALSE;
13238 break;
13239 }
13240 fini_reloc_cookie_for_section (&cookie, sec);
13241 }
13242 }
13243
13244 if (ret && eh_frame && elf_fde_list (sec))
13245 {
13246 struct elf_reloc_cookie cookie;
13247
13248 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13249 ret = FALSE;
13250 else
13251 {
13252 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13253 gc_mark_hook, &cookie))
13254 ret = FALSE;
13255 fini_reloc_cookie_for_section (&cookie, eh_frame);
13256 }
13257 }
13258
13259 eh_frame = elf_section_eh_frame_entry (sec);
13260 if (ret && eh_frame && !eh_frame->gc_mark)
13261 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13262 ret = FALSE;
13263
13264 return ret;
13265 }
13266
13267 /* Scan and mark sections in a special or debug section group. */
13268
13269 static void
13270 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13271 {
13272 /* Point to first section of section group. */
13273 asection *ssec;
13274 /* Used to iterate the section group. */
13275 asection *msec;
13276
13277 bfd_boolean is_special_grp = TRUE;
13278 bfd_boolean is_debug_grp = TRUE;
13279
13280 /* First scan to see if group contains any section other than debug
13281 and special section. */
13282 ssec = msec = elf_next_in_group (grp);
13283 do
13284 {
13285 if ((msec->flags & SEC_DEBUGGING) == 0)
13286 is_debug_grp = FALSE;
13287
13288 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13289 is_special_grp = FALSE;
13290
13291 msec = elf_next_in_group (msec);
13292 }
13293 while (msec != ssec);
13294
13295 /* If this is a pure debug section group or pure special section group,
13296 keep all sections in this group. */
13297 if (is_debug_grp || is_special_grp)
13298 {
13299 do
13300 {
13301 msec->gc_mark = 1;
13302 msec = elf_next_in_group (msec);
13303 }
13304 while (msec != ssec);
13305 }
13306 }
13307
13308 /* Keep debug and special sections. */
13309
13310 bfd_boolean
13311 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13312 elf_gc_mark_hook_fn mark_hook)
13313 {
13314 bfd *ibfd;
13315
13316 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13317 {
13318 asection *isec;
13319 bfd_boolean some_kept;
13320 bfd_boolean debug_frag_seen;
13321 bfd_boolean has_kept_debug_info;
13322
13323 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13324 continue;
13325 isec = ibfd->sections;
13326 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13327 continue;
13328
13329 /* Ensure all linker created sections are kept,
13330 see if any other section is already marked,
13331 and note if we have any fragmented debug sections. */
13332 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13333 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13334 {
13335 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13336 isec->gc_mark = 1;
13337 else if (isec->gc_mark
13338 && (isec->flags & SEC_ALLOC) != 0
13339 && elf_section_type (isec) != SHT_NOTE)
13340 some_kept = TRUE;
13341 else
13342 {
13343 /* Since all sections, except for backend specific ones,
13344 have been garbage collected, call mark_hook on this
13345 section if any of its linked-to sections is marked. */
13346 asection *linked_to_sec = elf_linked_to_section (isec);
13347 for (; linked_to_sec != NULL;
13348 linked_to_sec = elf_linked_to_section (linked_to_sec))
13349 if (linked_to_sec->gc_mark)
13350 {
13351 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13352 return FALSE;
13353 break;
13354 }
13355 }
13356
13357 if (!debug_frag_seen
13358 && (isec->flags & SEC_DEBUGGING)
13359 && CONST_STRNEQ (isec->name, ".debug_line."))
13360 debug_frag_seen = TRUE;
13361 else if (strcmp (bfd_section_name (isec),
13362 "__patchable_function_entries") == 0
13363 && elf_linked_to_section (isec) == NULL)
13364 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13365 "need linked-to section "
13366 "for --gc-sections\n"),
13367 isec->owner, isec);
13368 }
13369
13370 /* If no non-note alloc section in this file will be kept, then
13371 we can toss out the debug and special sections. */
13372 if (!some_kept)
13373 continue;
13374
13375 /* Keep debug and special sections like .comment when they are
13376 not part of a group. Also keep section groups that contain
13377 just debug sections or special sections. NB: Sections with
13378 linked-to section has been handled above. */
13379 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13380 {
13381 if ((isec->flags & SEC_GROUP) != 0)
13382 _bfd_elf_gc_mark_debug_special_section_group (isec);
13383 else if (((isec->flags & SEC_DEBUGGING) != 0
13384 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13385 && elf_next_in_group (isec) == NULL
13386 && elf_linked_to_section (isec) == NULL)
13387 isec->gc_mark = 1;
13388 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13389 has_kept_debug_info = TRUE;
13390 }
13391
13392 /* Look for CODE sections which are going to be discarded,
13393 and find and discard any fragmented debug sections which
13394 are associated with that code section. */
13395 if (debug_frag_seen)
13396 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13397 if ((isec->flags & SEC_CODE) != 0
13398 && isec->gc_mark == 0)
13399 {
13400 unsigned int ilen;
13401 asection *dsec;
13402
13403 ilen = strlen (isec->name);
13404
13405 /* Association is determined by the name of the debug
13406 section containing the name of the code section as
13407 a suffix. For example .debug_line.text.foo is a
13408 debug section associated with .text.foo. */
13409 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13410 {
13411 unsigned int dlen;
13412
13413 if (dsec->gc_mark == 0
13414 || (dsec->flags & SEC_DEBUGGING) == 0)
13415 continue;
13416
13417 dlen = strlen (dsec->name);
13418
13419 if (dlen > ilen
13420 && strncmp (dsec->name + (dlen - ilen),
13421 isec->name, ilen) == 0)
13422 dsec->gc_mark = 0;
13423 }
13424 }
13425
13426 /* Mark debug sections referenced by kept debug sections. */
13427 if (has_kept_debug_info)
13428 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13429 if (isec->gc_mark
13430 && (isec->flags & SEC_DEBUGGING) != 0)
13431 if (!_bfd_elf_gc_mark (info, isec,
13432 elf_gc_mark_debug_section))
13433 return FALSE;
13434 }
13435 return TRUE;
13436 }
13437
13438 static bfd_boolean
13439 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13440 {
13441 bfd *sub;
13442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13443
13444 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13445 {
13446 asection *o;
13447
13448 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13449 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13450 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13451 continue;
13452 o = sub->sections;
13453 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13454 continue;
13455
13456 for (o = sub->sections; o != NULL; o = o->next)
13457 {
13458 /* When any section in a section group is kept, we keep all
13459 sections in the section group. If the first member of
13460 the section group is excluded, we will also exclude the
13461 group section. */
13462 if (o->flags & SEC_GROUP)
13463 {
13464 asection *first = elf_next_in_group (o);
13465 o->gc_mark = first->gc_mark;
13466 }
13467
13468 if (o->gc_mark)
13469 continue;
13470
13471 /* Skip sweeping sections already excluded. */
13472 if (o->flags & SEC_EXCLUDE)
13473 continue;
13474
13475 /* Since this is early in the link process, it is simple
13476 to remove a section from the output. */
13477 o->flags |= SEC_EXCLUDE;
13478
13479 if (info->print_gc_sections && o->size != 0)
13480 /* xgettext:c-format */
13481 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13482 o, sub);
13483 }
13484 }
13485
13486 return TRUE;
13487 }
13488
13489 /* Propagate collected vtable information. This is called through
13490 elf_link_hash_traverse. */
13491
13492 static bfd_boolean
13493 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13494 {
13495 /* Those that are not vtables. */
13496 if (h->start_stop
13497 || h->u2.vtable == NULL
13498 || h->u2.vtable->parent == NULL)
13499 return TRUE;
13500
13501 /* Those vtables that do not have parents, we cannot merge. */
13502 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13503 return TRUE;
13504
13505 /* If we've already been done, exit. */
13506 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13507 return TRUE;
13508
13509 /* Make sure the parent's table is up to date. */
13510 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13511
13512 if (h->u2.vtable->used == NULL)
13513 {
13514 /* None of this table's entries were referenced. Re-use the
13515 parent's table. */
13516 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13517 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13518 }
13519 else
13520 {
13521 size_t n;
13522 bfd_boolean *cu, *pu;
13523
13524 /* Or the parent's entries into ours. */
13525 cu = h->u2.vtable->used;
13526 cu[-1] = TRUE;
13527 pu = h->u2.vtable->parent->u2.vtable->used;
13528 if (pu != NULL)
13529 {
13530 const struct elf_backend_data *bed;
13531 unsigned int log_file_align;
13532
13533 bed = get_elf_backend_data (h->root.u.def.section->owner);
13534 log_file_align = bed->s->log_file_align;
13535 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13536 while (n--)
13537 {
13538 if (*pu)
13539 *cu = TRUE;
13540 pu++;
13541 cu++;
13542 }
13543 }
13544 }
13545
13546 return TRUE;
13547 }
13548
13549 static bfd_boolean
13550 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13551 {
13552 asection *sec;
13553 bfd_vma hstart, hend;
13554 Elf_Internal_Rela *relstart, *relend, *rel;
13555 const struct elf_backend_data *bed;
13556 unsigned int log_file_align;
13557
13558 /* Take care of both those symbols that do not describe vtables as
13559 well as those that are not loaded. */
13560 if (h->start_stop
13561 || h->u2.vtable == NULL
13562 || h->u2.vtable->parent == NULL)
13563 return TRUE;
13564
13565 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13566 || h->root.type == bfd_link_hash_defweak);
13567
13568 sec = h->root.u.def.section;
13569 hstart = h->root.u.def.value;
13570 hend = hstart + h->size;
13571
13572 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13573 if (!relstart)
13574 return *(bfd_boolean *) okp = FALSE;
13575 bed = get_elf_backend_data (sec->owner);
13576 log_file_align = bed->s->log_file_align;
13577
13578 relend = relstart + sec->reloc_count;
13579
13580 for (rel = relstart; rel < relend; ++rel)
13581 if (rel->r_offset >= hstart && rel->r_offset < hend)
13582 {
13583 /* If the entry is in use, do nothing. */
13584 if (h->u2.vtable->used
13585 && (rel->r_offset - hstart) < h->u2.vtable->size)
13586 {
13587 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13588 if (h->u2.vtable->used[entry])
13589 continue;
13590 }
13591 /* Otherwise, kill it. */
13592 rel->r_offset = rel->r_info = rel->r_addend = 0;
13593 }
13594
13595 return TRUE;
13596 }
13597
13598 /* Mark sections containing dynamically referenced symbols. When
13599 building shared libraries, we must assume that any visible symbol is
13600 referenced. */
13601
13602 bfd_boolean
13603 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13604 {
13605 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13606 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13607
13608 if ((h->root.type == bfd_link_hash_defined
13609 || h->root.type == bfd_link_hash_defweak)
13610 && ((h->ref_dynamic && !h->forced_local)
13611 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13612 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13613 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13614 && (!bfd_link_executable (info)
13615 || info->gc_keep_exported
13616 || info->export_dynamic
13617 || (h->dynamic
13618 && d != NULL
13619 && (*d->match) (&d->head, NULL, h->root.root.string)))
13620 && (h->versioned >= versioned
13621 || !bfd_hide_sym_by_version (info->version_info,
13622 h->root.root.string)))))
13623 h->root.u.def.section->flags |= SEC_KEEP;
13624
13625 return TRUE;
13626 }
13627
13628 /* Keep all sections containing symbols undefined on the command-line,
13629 and the section containing the entry symbol. */
13630
13631 void
13632 _bfd_elf_gc_keep (struct bfd_link_info *info)
13633 {
13634 struct bfd_sym_chain *sym;
13635
13636 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13637 {
13638 struct elf_link_hash_entry *h;
13639
13640 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13641 FALSE, FALSE, FALSE);
13642
13643 if (h != NULL
13644 && (h->root.type == bfd_link_hash_defined
13645 || h->root.type == bfd_link_hash_defweak)
13646 && !bfd_is_abs_section (h->root.u.def.section)
13647 && !bfd_is_und_section (h->root.u.def.section))
13648 h->root.u.def.section->flags |= SEC_KEEP;
13649 }
13650 }
13651
13652 bfd_boolean
13653 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13654 struct bfd_link_info *info)
13655 {
13656 bfd *ibfd = info->input_bfds;
13657
13658 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13659 {
13660 asection *sec;
13661 struct elf_reloc_cookie cookie;
13662
13663 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13664 continue;
13665 sec = ibfd->sections;
13666 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13667 continue;
13668
13669 if (!init_reloc_cookie (&cookie, info, ibfd))
13670 return FALSE;
13671
13672 for (sec = ibfd->sections; sec; sec = sec->next)
13673 {
13674 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13675 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13676 {
13677 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13678 fini_reloc_cookie_rels (&cookie, sec);
13679 }
13680 }
13681 }
13682 return TRUE;
13683 }
13684
13685 /* Do mark and sweep of unused sections. */
13686
13687 bfd_boolean
13688 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13689 {
13690 bfd_boolean ok = TRUE;
13691 bfd *sub;
13692 elf_gc_mark_hook_fn gc_mark_hook;
13693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13694 struct elf_link_hash_table *htab;
13695
13696 if (!bed->can_gc_sections
13697 || !is_elf_hash_table (info->hash))
13698 {
13699 _bfd_error_handler(_("warning: gc-sections option ignored"));
13700 return TRUE;
13701 }
13702
13703 bed->gc_keep (info);
13704 htab = elf_hash_table (info);
13705
13706 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13707 at the .eh_frame section if we can mark the FDEs individually. */
13708 for (sub = info->input_bfds;
13709 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13710 sub = sub->link.next)
13711 {
13712 asection *sec;
13713 struct elf_reloc_cookie cookie;
13714
13715 sec = sub->sections;
13716 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13717 continue;
13718 sec = bfd_get_section_by_name (sub, ".eh_frame");
13719 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13720 {
13721 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13722 if (elf_section_data (sec)->sec_info
13723 && (sec->flags & SEC_LINKER_CREATED) == 0)
13724 elf_eh_frame_section (sub) = sec;
13725 fini_reloc_cookie_for_section (&cookie, sec);
13726 sec = bfd_get_next_section_by_name (NULL, sec);
13727 }
13728 }
13729
13730 /* Apply transitive closure to the vtable entry usage info. */
13731 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13732 if (!ok)
13733 return FALSE;
13734
13735 /* Kill the vtable relocations that were not used. */
13736 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13737 if (!ok)
13738 return FALSE;
13739
13740 /* Mark dynamically referenced symbols. */
13741 if (htab->dynamic_sections_created || info->gc_keep_exported)
13742 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13743
13744 /* Grovel through relocs to find out who stays ... */
13745 gc_mark_hook = bed->gc_mark_hook;
13746 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13747 {
13748 asection *o;
13749
13750 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13751 || elf_object_id (sub) != elf_hash_table_id (htab)
13752 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13753 continue;
13754
13755 o = sub->sections;
13756 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13757 continue;
13758
13759 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13760 Also treat note sections as a root, if the section is not part
13761 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13762 well as FINI_ARRAY sections for ld -r. */
13763 for (o = sub->sections; o != NULL; o = o->next)
13764 if (!o->gc_mark
13765 && (o->flags & SEC_EXCLUDE) == 0
13766 && ((o->flags & SEC_KEEP) != 0
13767 || (bfd_link_relocatable (info)
13768 && ((elf_section_data (o)->this_hdr.sh_type
13769 == SHT_PREINIT_ARRAY)
13770 || (elf_section_data (o)->this_hdr.sh_type
13771 == SHT_INIT_ARRAY)
13772 || (elf_section_data (o)->this_hdr.sh_type
13773 == SHT_FINI_ARRAY)))
13774 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13775 && elf_next_in_group (o) == NULL )))
13776 {
13777 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13778 return FALSE;
13779 }
13780 }
13781
13782 /* Allow the backend to mark additional target specific sections. */
13783 bed->gc_mark_extra_sections (info, gc_mark_hook);
13784
13785 /* ... and mark SEC_EXCLUDE for those that go. */
13786 return elf_gc_sweep (abfd, info);
13787 }
13788 \f
13789 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13790
13791 bfd_boolean
13792 bfd_elf_gc_record_vtinherit (bfd *abfd,
13793 asection *sec,
13794 struct elf_link_hash_entry *h,
13795 bfd_vma offset)
13796 {
13797 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13798 struct elf_link_hash_entry **search, *child;
13799 size_t extsymcount;
13800 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13801
13802 /* The sh_info field of the symtab header tells us where the
13803 external symbols start. We don't care about the local symbols at
13804 this point. */
13805 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13806 if (!elf_bad_symtab (abfd))
13807 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13808
13809 sym_hashes = elf_sym_hashes (abfd);
13810 sym_hashes_end = sym_hashes + extsymcount;
13811
13812 /* Hunt down the child symbol, which is in this section at the same
13813 offset as the relocation. */
13814 for (search = sym_hashes; search != sym_hashes_end; ++search)
13815 {
13816 if ((child = *search) != NULL
13817 && (child->root.type == bfd_link_hash_defined
13818 || child->root.type == bfd_link_hash_defweak)
13819 && child->root.u.def.section == sec
13820 && child->root.u.def.value == offset)
13821 goto win;
13822 }
13823
13824 /* xgettext:c-format */
13825 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13826 abfd, sec, (uint64_t) offset);
13827 bfd_set_error (bfd_error_invalid_operation);
13828 return FALSE;
13829
13830 win:
13831 if (!child->u2.vtable)
13832 {
13833 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13834 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13835 if (!child->u2.vtable)
13836 return FALSE;
13837 }
13838 if (!h)
13839 {
13840 /* This *should* only be the absolute section. It could potentially
13841 be that someone has defined a non-global vtable though, which
13842 would be bad. It isn't worth paging in the local symbols to be
13843 sure though; that case should simply be handled by the assembler. */
13844
13845 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13846 }
13847 else
13848 child->u2.vtable->parent = h;
13849
13850 return TRUE;
13851 }
13852
13853 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13854
13855 bfd_boolean
13856 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13857 struct elf_link_hash_entry *h,
13858 bfd_vma addend)
13859 {
13860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13861 unsigned int log_file_align = bed->s->log_file_align;
13862
13863 if (!h)
13864 {
13865 /* xgettext:c-format */
13866 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13867 abfd, sec);
13868 bfd_set_error (bfd_error_bad_value);
13869 return FALSE;
13870 }
13871
13872 if (!h->u2.vtable)
13873 {
13874 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13875 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13876 if (!h->u2.vtable)
13877 return FALSE;
13878 }
13879
13880 if (addend >= h->u2.vtable->size)
13881 {
13882 size_t size, bytes, file_align;
13883 bfd_boolean *ptr = h->u2.vtable->used;
13884
13885 /* While the symbol is undefined, we have to be prepared to handle
13886 a zero size. */
13887 file_align = 1 << log_file_align;
13888 if (h->root.type == bfd_link_hash_undefined)
13889 size = addend + file_align;
13890 else
13891 {
13892 size = h->size;
13893 if (addend >= size)
13894 {
13895 /* Oops! We've got a reference past the defined end of
13896 the table. This is probably a bug -- shall we warn? */
13897 size = addend + file_align;
13898 }
13899 }
13900 size = (size + file_align - 1) & -file_align;
13901
13902 /* Allocate one extra entry for use as a "done" flag for the
13903 consolidation pass. */
13904 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13905
13906 if (ptr)
13907 {
13908 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13909
13910 if (ptr != NULL)
13911 {
13912 size_t oldbytes;
13913
13914 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13915 * sizeof (bfd_boolean));
13916 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13917 }
13918 }
13919 else
13920 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13921
13922 if (ptr == NULL)
13923 return FALSE;
13924
13925 /* And arrange for that done flag to be at index -1. */
13926 h->u2.vtable->used = ptr + 1;
13927 h->u2.vtable->size = size;
13928 }
13929
13930 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13931
13932 return TRUE;
13933 }
13934
13935 /* Map an ELF section header flag to its corresponding string. */
13936 typedef struct
13937 {
13938 char *flag_name;
13939 flagword flag_value;
13940 } elf_flags_to_name_table;
13941
13942 static elf_flags_to_name_table elf_flags_to_names [] =
13943 {
13944 { "SHF_WRITE", SHF_WRITE },
13945 { "SHF_ALLOC", SHF_ALLOC },
13946 { "SHF_EXECINSTR", SHF_EXECINSTR },
13947 { "SHF_MERGE", SHF_MERGE },
13948 { "SHF_STRINGS", SHF_STRINGS },
13949 { "SHF_INFO_LINK", SHF_INFO_LINK},
13950 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13951 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13952 { "SHF_GROUP", SHF_GROUP },
13953 { "SHF_TLS", SHF_TLS },
13954 { "SHF_MASKOS", SHF_MASKOS },
13955 { "SHF_EXCLUDE", SHF_EXCLUDE },
13956 };
13957
13958 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13959 bfd_boolean
13960 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13961 struct flag_info *flaginfo,
13962 asection *section)
13963 {
13964 const bfd_vma sh_flags = elf_section_flags (section);
13965
13966 if (!flaginfo->flags_initialized)
13967 {
13968 bfd *obfd = info->output_bfd;
13969 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13970 struct flag_info_list *tf = flaginfo->flag_list;
13971 int with_hex = 0;
13972 int without_hex = 0;
13973
13974 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13975 {
13976 unsigned i;
13977 flagword (*lookup) (char *);
13978
13979 lookup = bed->elf_backend_lookup_section_flags_hook;
13980 if (lookup != NULL)
13981 {
13982 flagword hexval = (*lookup) ((char *) tf->name);
13983
13984 if (hexval != 0)
13985 {
13986 if (tf->with == with_flags)
13987 with_hex |= hexval;
13988 else if (tf->with == without_flags)
13989 without_hex |= hexval;
13990 tf->valid = TRUE;
13991 continue;
13992 }
13993 }
13994 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13995 {
13996 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13997 {
13998 if (tf->with == with_flags)
13999 with_hex |= elf_flags_to_names[i].flag_value;
14000 else if (tf->with == without_flags)
14001 without_hex |= elf_flags_to_names[i].flag_value;
14002 tf->valid = TRUE;
14003 break;
14004 }
14005 }
14006 if (!tf->valid)
14007 {
14008 info->callbacks->einfo
14009 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14010 return FALSE;
14011 }
14012 }
14013 flaginfo->flags_initialized = TRUE;
14014 flaginfo->only_with_flags |= with_hex;
14015 flaginfo->not_with_flags |= without_hex;
14016 }
14017
14018 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14019 return FALSE;
14020
14021 if ((flaginfo->not_with_flags & sh_flags) != 0)
14022 return FALSE;
14023
14024 return TRUE;
14025 }
14026
14027 struct alloc_got_off_arg {
14028 bfd_vma gotoff;
14029 struct bfd_link_info *info;
14030 };
14031
14032 /* We need a special top-level link routine to convert got reference counts
14033 to real got offsets. */
14034
14035 static bfd_boolean
14036 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14037 {
14038 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14039 bfd *obfd = gofarg->info->output_bfd;
14040 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14041
14042 if (h->got.refcount > 0)
14043 {
14044 h->got.offset = gofarg->gotoff;
14045 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14046 }
14047 else
14048 h->got.offset = (bfd_vma) -1;
14049
14050 return TRUE;
14051 }
14052
14053 /* And an accompanying bit to work out final got entry offsets once
14054 we're done. Should be called from final_link. */
14055
14056 bfd_boolean
14057 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14058 struct bfd_link_info *info)
14059 {
14060 bfd *i;
14061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14062 bfd_vma gotoff;
14063 struct alloc_got_off_arg gofarg;
14064
14065 BFD_ASSERT (abfd == info->output_bfd);
14066
14067 if (! is_elf_hash_table (info->hash))
14068 return FALSE;
14069
14070 /* The GOT offset is relative to the .got section, but the GOT header is
14071 put into the .got.plt section, if the backend uses it. */
14072 if (bed->want_got_plt)
14073 gotoff = 0;
14074 else
14075 gotoff = bed->got_header_size;
14076
14077 /* Do the local .got entries first. */
14078 for (i = info->input_bfds; i; i = i->link.next)
14079 {
14080 bfd_signed_vma *local_got;
14081 size_t j, locsymcount;
14082 Elf_Internal_Shdr *symtab_hdr;
14083
14084 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14085 continue;
14086
14087 local_got = elf_local_got_refcounts (i);
14088 if (!local_got)
14089 continue;
14090
14091 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14092 if (elf_bad_symtab (i))
14093 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14094 else
14095 locsymcount = symtab_hdr->sh_info;
14096
14097 for (j = 0; j < locsymcount; ++j)
14098 {
14099 if (local_got[j] > 0)
14100 {
14101 local_got[j] = gotoff;
14102 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14103 }
14104 else
14105 local_got[j] = (bfd_vma) -1;
14106 }
14107 }
14108
14109 /* Then the global .got entries. .plt refcounts are handled by
14110 adjust_dynamic_symbol */
14111 gofarg.gotoff = gotoff;
14112 gofarg.info = info;
14113 elf_link_hash_traverse (elf_hash_table (info),
14114 elf_gc_allocate_got_offsets,
14115 &gofarg);
14116 return TRUE;
14117 }
14118
14119 /* Many folk need no more in the way of final link than this, once
14120 got entry reference counting is enabled. */
14121
14122 bfd_boolean
14123 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14124 {
14125 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14126 return FALSE;
14127
14128 /* Invoke the regular ELF backend linker to do all the work. */
14129 return bfd_elf_final_link (abfd, info);
14130 }
14131
14132 bfd_boolean
14133 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14134 {
14135 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14136
14137 if (rcookie->bad_symtab)
14138 rcookie->rel = rcookie->rels;
14139
14140 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14141 {
14142 unsigned long r_symndx;
14143
14144 if (! rcookie->bad_symtab)
14145 if (rcookie->rel->r_offset > offset)
14146 return FALSE;
14147 if (rcookie->rel->r_offset != offset)
14148 continue;
14149
14150 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14151 if (r_symndx == STN_UNDEF)
14152 return TRUE;
14153
14154 if (r_symndx >= rcookie->locsymcount
14155 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14156 {
14157 struct elf_link_hash_entry *h;
14158
14159 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14160
14161 while (h->root.type == bfd_link_hash_indirect
14162 || h->root.type == bfd_link_hash_warning)
14163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14164
14165 if ((h->root.type == bfd_link_hash_defined
14166 || h->root.type == bfd_link_hash_defweak)
14167 && (h->root.u.def.section->owner != rcookie->abfd
14168 || h->root.u.def.section->kept_section != NULL
14169 || discarded_section (h->root.u.def.section)))
14170 return TRUE;
14171 }
14172 else
14173 {
14174 /* It's not a relocation against a global symbol,
14175 but it could be a relocation against a local
14176 symbol for a discarded section. */
14177 asection *isec;
14178 Elf_Internal_Sym *isym;
14179
14180 /* Need to: get the symbol; get the section. */
14181 isym = &rcookie->locsyms[r_symndx];
14182 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14183 if (isec != NULL
14184 && (isec->kept_section != NULL
14185 || discarded_section (isec)))
14186 return TRUE;
14187 }
14188 return FALSE;
14189 }
14190 return FALSE;
14191 }
14192
14193 /* Discard unneeded references to discarded sections.
14194 Returns -1 on error, 1 if any section's size was changed, 0 if
14195 nothing changed. This function assumes that the relocations are in
14196 sorted order, which is true for all known assemblers. */
14197
14198 int
14199 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14200 {
14201 struct elf_reloc_cookie cookie;
14202 asection *o;
14203 bfd *abfd;
14204 int changed = 0;
14205
14206 if (info->traditional_format
14207 || !is_elf_hash_table (info->hash))
14208 return 0;
14209
14210 o = bfd_get_section_by_name (output_bfd, ".stab");
14211 if (o != NULL)
14212 {
14213 asection *i;
14214
14215 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14216 {
14217 if (i->size == 0
14218 || i->reloc_count == 0
14219 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14220 continue;
14221
14222 abfd = i->owner;
14223 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14224 continue;
14225
14226 if (!init_reloc_cookie_for_section (&cookie, info, i))
14227 return -1;
14228
14229 if (_bfd_discard_section_stabs (abfd, i,
14230 elf_section_data (i)->sec_info,
14231 bfd_elf_reloc_symbol_deleted_p,
14232 &cookie))
14233 changed = 1;
14234
14235 fini_reloc_cookie_for_section (&cookie, i);
14236 }
14237 }
14238
14239 o = NULL;
14240 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14241 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14242 if (o != NULL)
14243 {
14244 asection *i;
14245 int eh_changed = 0;
14246 unsigned int eh_alignment;
14247
14248 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14249 {
14250 if (i->size == 0)
14251 continue;
14252
14253 abfd = i->owner;
14254 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14255 continue;
14256
14257 if (!init_reloc_cookie_for_section (&cookie, info, i))
14258 return -1;
14259
14260 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14261 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14262 bfd_elf_reloc_symbol_deleted_p,
14263 &cookie))
14264 {
14265 eh_changed = 1;
14266 if (i->size != i->rawsize)
14267 changed = 1;
14268 }
14269
14270 fini_reloc_cookie_for_section (&cookie, i);
14271 }
14272
14273 eh_alignment = 1 << o->alignment_power;
14274 /* Skip over zero terminator, and prevent empty sections from
14275 adding alignment padding at the end. */
14276 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14277 if (i->size == 0)
14278 i->flags |= SEC_EXCLUDE;
14279 else if (i->size > 4)
14280 break;
14281 /* The last non-empty eh_frame section doesn't need padding. */
14282 if (i != NULL)
14283 i = i->map_tail.s;
14284 /* Any prior sections must pad the last FDE out to the output
14285 section alignment. Otherwise we might have zero padding
14286 between sections, which would be seen as a terminator. */
14287 for (; i != NULL; i = i->map_tail.s)
14288 if (i->size == 4)
14289 /* All but the last zero terminator should have been removed. */
14290 BFD_FAIL ();
14291 else
14292 {
14293 bfd_size_type size
14294 = (i->size + eh_alignment - 1) & -eh_alignment;
14295 if (i->size != size)
14296 {
14297 i->size = size;
14298 changed = 1;
14299 eh_changed = 1;
14300 }
14301 }
14302 if (eh_changed)
14303 elf_link_hash_traverse (elf_hash_table (info),
14304 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14305 }
14306
14307 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14308 {
14309 const struct elf_backend_data *bed;
14310 asection *s;
14311
14312 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14313 continue;
14314 s = abfd->sections;
14315 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14316 continue;
14317
14318 bed = get_elf_backend_data (abfd);
14319
14320 if (bed->elf_backend_discard_info != NULL)
14321 {
14322 if (!init_reloc_cookie (&cookie, info, abfd))
14323 return -1;
14324
14325 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14326 changed = 1;
14327
14328 fini_reloc_cookie (&cookie, abfd);
14329 }
14330 }
14331
14332 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14333 _bfd_elf_end_eh_frame_parsing (info);
14334
14335 if (info->eh_frame_hdr_type
14336 && !bfd_link_relocatable (info)
14337 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14338 changed = 1;
14339
14340 return changed;
14341 }
14342
14343 bfd_boolean
14344 _bfd_elf_section_already_linked (bfd *abfd,
14345 asection *sec,
14346 struct bfd_link_info *info)
14347 {
14348 flagword flags;
14349 const char *name, *key;
14350 struct bfd_section_already_linked *l;
14351 struct bfd_section_already_linked_hash_entry *already_linked_list;
14352
14353 if (sec->output_section == bfd_abs_section_ptr)
14354 return FALSE;
14355
14356 flags = sec->flags;
14357
14358 /* Return if it isn't a linkonce section. A comdat group section
14359 also has SEC_LINK_ONCE set. */
14360 if ((flags & SEC_LINK_ONCE) == 0)
14361 return FALSE;
14362
14363 /* Don't put group member sections on our list of already linked
14364 sections. They are handled as a group via their group section. */
14365 if (elf_sec_group (sec) != NULL)
14366 return FALSE;
14367
14368 /* For a SHT_GROUP section, use the group signature as the key. */
14369 name = sec->name;
14370 if ((flags & SEC_GROUP) != 0
14371 && elf_next_in_group (sec) != NULL
14372 && elf_group_name (elf_next_in_group (sec)) != NULL)
14373 key = elf_group_name (elf_next_in_group (sec));
14374 else
14375 {
14376 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14377 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14378 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14379 key++;
14380 else
14381 /* Must be a user linkonce section that doesn't follow gcc's
14382 naming convention. In this case we won't be matching
14383 single member groups. */
14384 key = name;
14385 }
14386
14387 already_linked_list = bfd_section_already_linked_table_lookup (key);
14388
14389 for (l = already_linked_list->entry; l != NULL; l = l->next)
14390 {
14391 /* We may have 2 different types of sections on the list: group
14392 sections with a signature of <key> (<key> is some string),
14393 and linkonce sections named .gnu.linkonce.<type>.<key>.
14394 Match like sections. LTO plugin sections are an exception.
14395 They are always named .gnu.linkonce.t.<key> and match either
14396 type of section. */
14397 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14398 && ((flags & SEC_GROUP) != 0
14399 || strcmp (name, l->sec->name) == 0))
14400 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14401 {
14402 /* The section has already been linked. See if we should
14403 issue a warning. */
14404 if (!_bfd_handle_already_linked (sec, l, info))
14405 return FALSE;
14406
14407 if (flags & SEC_GROUP)
14408 {
14409 asection *first = elf_next_in_group (sec);
14410 asection *s = first;
14411
14412 while (s != NULL)
14413 {
14414 s->output_section = bfd_abs_section_ptr;
14415 /* Record which group discards it. */
14416 s->kept_section = l->sec;
14417 s = elf_next_in_group (s);
14418 /* These lists are circular. */
14419 if (s == first)
14420 break;
14421 }
14422 }
14423
14424 return TRUE;
14425 }
14426 }
14427
14428 /* A single member comdat group section may be discarded by a
14429 linkonce section and vice versa. */
14430 if ((flags & SEC_GROUP) != 0)
14431 {
14432 asection *first = elf_next_in_group (sec);
14433
14434 if (first != NULL && elf_next_in_group (first) == first)
14435 /* Check this single member group against linkonce sections. */
14436 for (l = already_linked_list->entry; l != NULL; l = l->next)
14437 if ((l->sec->flags & SEC_GROUP) == 0
14438 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14439 {
14440 first->output_section = bfd_abs_section_ptr;
14441 first->kept_section = l->sec;
14442 sec->output_section = bfd_abs_section_ptr;
14443 break;
14444 }
14445 }
14446 else
14447 /* Check this linkonce section against single member groups. */
14448 for (l = already_linked_list->entry; l != NULL; l = l->next)
14449 if (l->sec->flags & SEC_GROUP)
14450 {
14451 asection *first = elf_next_in_group (l->sec);
14452
14453 if (first != NULL
14454 && elf_next_in_group (first) == first
14455 && bfd_elf_match_symbols_in_sections (first, sec, info))
14456 {
14457 sec->output_section = bfd_abs_section_ptr;
14458 sec->kept_section = first;
14459 break;
14460 }
14461 }
14462
14463 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14464 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14465 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14466 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14467 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14468 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14469 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14470 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14471 The reverse order cannot happen as there is never a bfd with only the
14472 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14473 matter as here were are looking only for cross-bfd sections. */
14474
14475 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14476 for (l = already_linked_list->entry; l != NULL; l = l->next)
14477 if ((l->sec->flags & SEC_GROUP) == 0
14478 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14479 {
14480 if (abfd != l->sec->owner)
14481 sec->output_section = bfd_abs_section_ptr;
14482 break;
14483 }
14484
14485 /* This is the first section with this name. Record it. */
14486 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14487 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14488 return sec->output_section == bfd_abs_section_ptr;
14489 }
14490
14491 bfd_boolean
14492 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14493 {
14494 return sym->st_shndx == SHN_COMMON;
14495 }
14496
14497 unsigned int
14498 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14499 {
14500 return SHN_COMMON;
14501 }
14502
14503 asection *
14504 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14505 {
14506 return bfd_com_section_ptr;
14507 }
14508
14509 bfd_vma
14510 _bfd_elf_default_got_elt_size (bfd *abfd,
14511 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14512 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14513 bfd *ibfd ATTRIBUTE_UNUSED,
14514 unsigned long symndx ATTRIBUTE_UNUSED)
14515 {
14516 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14517 return bed->s->arch_size / 8;
14518 }
14519
14520 /* Routines to support the creation of dynamic relocs. */
14521
14522 /* Returns the name of the dynamic reloc section associated with SEC. */
14523
14524 static const char *
14525 get_dynamic_reloc_section_name (bfd * abfd,
14526 asection * sec,
14527 bfd_boolean is_rela)
14528 {
14529 char *name;
14530 const char *old_name = bfd_section_name (sec);
14531 const char *prefix = is_rela ? ".rela" : ".rel";
14532
14533 if (old_name == NULL)
14534 return NULL;
14535
14536 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14537 sprintf (name, "%s%s", prefix, old_name);
14538
14539 return name;
14540 }
14541
14542 /* Returns the dynamic reloc section associated with SEC.
14543 If necessary compute the name of the dynamic reloc section based
14544 on SEC's name (looked up in ABFD's string table) and the setting
14545 of IS_RELA. */
14546
14547 asection *
14548 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14549 asection * sec,
14550 bfd_boolean is_rela)
14551 {
14552 asection * reloc_sec = elf_section_data (sec)->sreloc;
14553
14554 if (reloc_sec == NULL)
14555 {
14556 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14557
14558 if (name != NULL)
14559 {
14560 reloc_sec = bfd_get_linker_section (abfd, name);
14561
14562 if (reloc_sec != NULL)
14563 elf_section_data (sec)->sreloc = reloc_sec;
14564 }
14565 }
14566
14567 return reloc_sec;
14568 }
14569
14570 /* Returns the dynamic reloc section associated with SEC. If the
14571 section does not exist it is created and attached to the DYNOBJ
14572 bfd and stored in the SRELOC field of SEC's elf_section_data
14573 structure.
14574
14575 ALIGNMENT is the alignment for the newly created section and
14576 IS_RELA defines whether the name should be .rela.<SEC's name>
14577 or .rel.<SEC's name>. The section name is looked up in the
14578 string table associated with ABFD. */
14579
14580 asection *
14581 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14582 bfd *dynobj,
14583 unsigned int alignment,
14584 bfd *abfd,
14585 bfd_boolean is_rela)
14586 {
14587 asection * reloc_sec = elf_section_data (sec)->sreloc;
14588
14589 if (reloc_sec == NULL)
14590 {
14591 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14592
14593 if (name == NULL)
14594 return NULL;
14595
14596 reloc_sec = bfd_get_linker_section (dynobj, name);
14597
14598 if (reloc_sec == NULL)
14599 {
14600 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14601 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14602 if ((sec->flags & SEC_ALLOC) != 0)
14603 flags |= SEC_ALLOC | SEC_LOAD;
14604
14605 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14606 if (reloc_sec != NULL)
14607 {
14608 /* _bfd_elf_get_sec_type_attr chooses a section type by
14609 name. Override as it may be wrong, eg. for a user
14610 section named "auto" we'll get ".relauto" which is
14611 seen to be a .rela section. */
14612 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14613 if (!bfd_set_section_alignment (reloc_sec, alignment))
14614 reloc_sec = NULL;
14615 }
14616 }
14617
14618 elf_section_data (sec)->sreloc = reloc_sec;
14619 }
14620
14621 return reloc_sec;
14622 }
14623
14624 /* Copy the ELF symbol type and other attributes for a linker script
14625 assignment from HSRC to HDEST. Generally this should be treated as
14626 if we found a strong non-dynamic definition for HDEST (except that
14627 ld ignores multiple definition errors). */
14628 void
14629 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14630 struct bfd_link_hash_entry *hdest,
14631 struct bfd_link_hash_entry *hsrc)
14632 {
14633 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14634 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14635 Elf_Internal_Sym isym;
14636
14637 ehdest->type = ehsrc->type;
14638 ehdest->target_internal = ehsrc->target_internal;
14639
14640 isym.st_other = ehsrc->other;
14641 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14642 }
14643
14644 /* Append a RELA relocation REL to section S in BFD. */
14645
14646 void
14647 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14648 {
14649 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14650 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14651 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14652 bed->s->swap_reloca_out (abfd, rel, loc);
14653 }
14654
14655 /* Append a REL relocation REL to section S in BFD. */
14656
14657 void
14658 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14659 {
14660 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14661 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14662 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14663 bed->s->swap_reloc_out (abfd, rel, loc);
14664 }
14665
14666 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14667
14668 struct bfd_link_hash_entry *
14669 bfd_elf_define_start_stop (struct bfd_link_info *info,
14670 const char *symbol, asection *sec)
14671 {
14672 struct elf_link_hash_entry *h;
14673
14674 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14675 FALSE, FALSE, TRUE);
14676 if (h != NULL
14677 && (h->root.type == bfd_link_hash_undefined
14678 || h->root.type == bfd_link_hash_undefweak
14679 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14680 {
14681 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14682 h->root.type = bfd_link_hash_defined;
14683 h->root.u.def.section = sec;
14684 h->root.u.def.value = 0;
14685 h->def_regular = 1;
14686 h->def_dynamic = 0;
14687 h->start_stop = 1;
14688 h->u2.start_stop_section = sec;
14689 if (symbol[0] == '.')
14690 {
14691 /* .startof. and .sizeof. symbols are local. */
14692 const struct elf_backend_data *bed;
14693 bed = get_elf_backend_data (info->output_bfd);
14694 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14695 }
14696 else
14697 {
14698 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14699 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14700 if (was_dynamic)
14701 bfd_elf_link_record_dynamic_symbol (info, h);
14702 }
14703 return &h->root;
14704 }
14705 return NULL;
14706 }