]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
Don't re-export common symbols
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (bfd_link_executable (info) && !info->nointerp)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282 elf_hash_table (info)->dynsym = s;
283
284 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288
289 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 /* The special symbol _DYNAMIC is always set to the start of the
295 .dynamic section. We could set _DYNAMIC in a linker script, but we
296 only want to define it if we are, in fact, creating a .dynamic
297 section. We don't want to define it if there is no .dynamic
298 section, since on some ELF platforms the start up code examines it
299 to decide how to initialize the process. */
300 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
301 elf_hash_table (info)->hdynamic = h;
302 if (h == NULL)
303 return FALSE;
304
305 if (info->emit_hash)
306 {
307 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
313 }
314
315 if (info->emit_gnu_hash)
316 {
317 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
318 flags | SEC_READONLY);
319 if (s == NULL
320 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 return FALSE;
322 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
323 4 32-bit words followed by variable count of 64-bit words, then
324 variable count of 32-bit words. */
325 if (bed->s->arch_size == 64)
326 elf_section_data (s)->this_hdr.sh_entsize = 0;
327 else
328 elf_section_data (s)->this_hdr.sh_entsize = 4;
329 }
330
331 /* Let the backend create the rest of the sections. This lets the
332 backend set the right flags. The backend will normally create
333 the .got and .plt sections. */
334 if (bed->elf_backend_create_dynamic_sections == NULL
335 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
336 return FALSE;
337
338 elf_hash_table (info)->dynamic_sections_created = TRUE;
339
340 return TRUE;
341 }
342
343 /* Create dynamic sections when linking against a dynamic object. */
344
345 bfd_boolean
346 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
347 {
348 flagword flags, pltflags;
349 struct elf_link_hash_entry *h;
350 asection *s;
351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
352 struct elf_link_hash_table *htab = elf_hash_table (info);
353
354 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
355 .rel[a].bss sections. */
356 flags = bed->dynamic_sec_flags;
357
358 pltflags = flags;
359 if (bed->plt_not_loaded)
360 /* We do not clear SEC_ALLOC here because we still want the OS to
361 allocate space for the section; it's just that there's nothing
362 to read in from the object file. */
363 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
364 else
365 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
366 if (bed->plt_readonly)
367 pltflags |= SEC_READONLY;
368
369 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
370 if (s == NULL
371 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
372 return FALSE;
373 htab->splt = s;
374
375 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
376 .plt section. */
377 if (bed->want_plt_sym)
378 {
379 h = _bfd_elf_define_linkage_sym (abfd, info, s,
380 "_PROCEDURE_LINKAGE_TABLE_");
381 elf_hash_table (info)->hplt = h;
382 if (h == NULL)
383 return FALSE;
384 }
385
386 s = bfd_make_section_anyway_with_flags (abfd,
387 (bed->rela_plts_and_copies_p
388 ? ".rela.plt" : ".rel.plt"),
389 flags | SEC_READONLY);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 return FALSE;
393 htab->srelplt = s;
394
395 if (! _bfd_elf_create_got_section (abfd, info))
396 return FALSE;
397
398 if (bed->want_dynbss)
399 {
400 /* The .dynbss section is a place to put symbols which are defined
401 by dynamic objects, are referenced by regular objects, and are
402 not functions. We must allocate space for them in the process
403 image and use a R_*_COPY reloc to tell the dynamic linker to
404 initialize them at run time. The linker script puts the .dynbss
405 section into the .bss section of the final image. */
406 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
407 (SEC_ALLOC | SEC_LINKER_CREATED));
408 if (s == NULL)
409 return FALSE;
410
411 /* The .rel[a].bss section holds copy relocs. This section is not
412 normally needed. We need to create it here, though, so that the
413 linker will map it to an output section. We can't just create it
414 only if we need it, because we will not know whether we need it
415 until we have seen all the input files, and the first time the
416 main linker code calls BFD after examining all the input files
417 (size_dynamic_sections) the input sections have already been
418 mapped to the output sections. If the section turns out not to
419 be needed, we can discard it later. We will never need this
420 section when generating a shared object, since they do not use
421 copy relocs. */
422 if (! bfd_link_pic (info))
423 {
424 s = bfd_make_section_anyway_with_flags (abfd,
425 (bed->rela_plts_and_copies_p
426 ? ".rela.bss" : ".rel.bss"),
427 flags | SEC_READONLY);
428 if (s == NULL
429 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
430 return FALSE;
431 }
432 }
433
434 return TRUE;
435 }
436 \f
437 /* Record a new dynamic symbol. We record the dynamic symbols as we
438 read the input files, since we need to have a list of all of them
439 before we can determine the final sizes of the output sections.
440 Note that we may actually call this function even though we are not
441 going to output any dynamic symbols; in some cases we know that a
442 symbol should be in the dynamic symbol table, but only if there is
443 one. */
444
445 bfd_boolean
446 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
447 struct elf_link_hash_entry *h)
448 {
449 if (h->dynindx == -1)
450 {
451 struct elf_strtab_hash *dynstr;
452 char *p;
453 const char *name;
454 bfd_size_type indx;
455
456 /* XXX: The ABI draft says the linker must turn hidden and
457 internal symbols into STB_LOCAL symbols when producing the
458 DSO. However, if ld.so honors st_other in the dynamic table,
459 this would not be necessary. */
460 switch (ELF_ST_VISIBILITY (h->other))
461 {
462 case STV_INTERNAL:
463 case STV_HIDDEN:
464 if (h->root.type != bfd_link_hash_undefined
465 && h->root.type != bfd_link_hash_undefweak)
466 {
467 h->forced_local = 1;
468 if (!elf_hash_table (info)->is_relocatable_executable)
469 return TRUE;
470 }
471
472 default:
473 break;
474 }
475
476 h->dynindx = elf_hash_table (info)->dynsymcount;
477 ++elf_hash_table (info)->dynsymcount;
478
479 dynstr = elf_hash_table (info)->dynstr;
480 if (dynstr == NULL)
481 {
482 /* Create a strtab to hold the dynamic symbol names. */
483 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
484 if (dynstr == NULL)
485 return FALSE;
486 }
487
488 /* We don't put any version information in the dynamic string
489 table. */
490 name = h->root.root.string;
491 p = strchr (name, ELF_VER_CHR);
492 if (p != NULL)
493 /* We know that the p points into writable memory. In fact,
494 there are only a few symbols that have read-only names, being
495 those like _GLOBAL_OFFSET_TABLE_ that are created specially
496 by the backends. Most symbols will have names pointing into
497 an ELF string table read from a file, or to objalloc memory. */
498 *p = 0;
499
500 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
501
502 if (p != NULL)
503 *p = ELF_VER_CHR;
504
505 if (indx == (bfd_size_type) -1)
506 return FALSE;
507 h->dynstr_index = indx;
508 }
509
510 return TRUE;
511 }
512 \f
513 /* Mark a symbol dynamic. */
514
515 static void
516 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
517 struct elf_link_hash_entry *h,
518 Elf_Internal_Sym *sym)
519 {
520 struct bfd_elf_dynamic_list *d = info->dynamic_list;
521
522 /* It may be called more than once on the same H. */
523 if(h->dynamic || bfd_link_relocatable (info))
524 return;
525
526 if ((info->dynamic_data
527 && (h->type == STT_OBJECT
528 || (sym != NULL
529 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
530 || (d != NULL
531 && h->root.type == bfd_link_hash_new
532 && (*d->match) (&d->head, NULL, h->root.root.string)))
533 h->dynamic = 1;
534 }
535
536 /* Record an assignment to a symbol made by a linker script. We need
537 this in case some dynamic object refers to this symbol. */
538
539 bfd_boolean
540 bfd_elf_record_link_assignment (bfd *output_bfd,
541 struct bfd_link_info *info,
542 const char *name,
543 bfd_boolean provide,
544 bfd_boolean hidden)
545 {
546 struct elf_link_hash_entry *h, *hv;
547 struct elf_link_hash_table *htab;
548 const struct elf_backend_data *bed;
549
550 if (!is_elf_hash_table (info->hash))
551 return TRUE;
552
553 htab = elf_hash_table (info);
554 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
555 if (h == NULL)
556 return provide;
557
558 switch (h->root.type)
559 {
560 case bfd_link_hash_defined:
561 case bfd_link_hash_defweak:
562 case bfd_link_hash_common:
563 break;
564 case bfd_link_hash_undefweak:
565 case bfd_link_hash_undefined:
566 /* Since we're defining the symbol, don't let it seem to have not
567 been defined. record_dynamic_symbol and size_dynamic_sections
568 may depend on this. */
569 h->root.type = bfd_link_hash_new;
570 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
571 bfd_link_repair_undef_list (&htab->root);
572 break;
573 case bfd_link_hash_new:
574 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
575 h->non_elf = 0;
576 break;
577 case bfd_link_hash_indirect:
578 /* We had a versioned symbol in a dynamic library. We make the
579 the versioned symbol point to this one. */
580 bed = get_elf_backend_data (output_bfd);
581 hv = h;
582 while (hv->root.type == bfd_link_hash_indirect
583 || hv->root.type == bfd_link_hash_warning)
584 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
585 /* We don't need to update h->root.u since linker will set them
586 later. */
587 h->root.type = bfd_link_hash_undefined;
588 hv->root.type = bfd_link_hash_indirect;
589 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
591 break;
592 case bfd_link_hash_warning:
593 abort ();
594 break;
595 }
596
597 /* If this symbol is being provided by the linker script, and it is
598 currently defined by a dynamic object, but not by a regular
599 object, then mark it as undefined so that the generic linker will
600 force the correct value. */
601 if (provide
602 && h->def_dynamic
603 && !h->def_regular)
604 h->root.type = bfd_link_hash_undefined;
605
606 /* If this symbol is not being provided by the linker script, and it is
607 currently defined by a dynamic object, but not by a regular object,
608 then clear out any version information because the symbol will not be
609 associated with the dynamic object any more. */
610 if (!provide
611 && h->def_dynamic
612 && !h->def_regular)
613 h->verinfo.verdef = NULL;
614
615 h->def_regular = 1;
616
617 if (hidden)
618 {
619 bed = get_elf_backend_data (output_bfd);
620 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
621 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
622 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
623 }
624
625 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
626 and executables. */
627 if (!bfd_link_relocatable (info)
628 && h->dynindx != -1
629 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
630 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
631 h->forced_local = 1;
632
633 if ((h->def_dynamic
634 || h->ref_dynamic
635 || bfd_link_pic (info)
636 || (bfd_link_pde (info)
637 && elf_hash_table (info)->is_relocatable_executable))
638 && h->dynindx == -1)
639 {
640 if (! bfd_elf_link_record_dynamic_symbol (info, h))
641 return FALSE;
642
643 /* If this is a weak defined symbol, and we know a corresponding
644 real symbol from the same dynamic object, make sure the real
645 symbol is also made into a dynamic symbol. */
646 if (h->u.weakdef != NULL
647 && h->u.weakdef->dynindx == -1)
648 {
649 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
650 return FALSE;
651 }
652 }
653
654 return TRUE;
655 }
656
657 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
658 success, and 2 on a failure caused by attempting to record a symbol
659 in a discarded section, eg. a discarded link-once section symbol. */
660
661 int
662 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
663 bfd *input_bfd,
664 long input_indx)
665 {
666 bfd_size_type amt;
667 struct elf_link_local_dynamic_entry *entry;
668 struct elf_link_hash_table *eht;
669 struct elf_strtab_hash *dynstr;
670 unsigned long dynstr_index;
671 char *name;
672 Elf_External_Sym_Shndx eshndx;
673 char esym[sizeof (Elf64_External_Sym)];
674
675 if (! is_elf_hash_table (info->hash))
676 return 0;
677
678 /* See if the entry exists already. */
679 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
680 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
681 return 1;
682
683 amt = sizeof (*entry);
684 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
685 if (entry == NULL)
686 return 0;
687
688 /* Go find the symbol, so that we can find it's name. */
689 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
690 1, input_indx, &entry->isym, esym, &eshndx))
691 {
692 bfd_release (input_bfd, entry);
693 return 0;
694 }
695
696 if (entry->isym.st_shndx != SHN_UNDEF
697 && entry->isym.st_shndx < SHN_LORESERVE)
698 {
699 asection *s;
700
701 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
702 if (s == NULL || bfd_is_abs_section (s->output_section))
703 {
704 /* We can still bfd_release here as nothing has done another
705 bfd_alloc. We can't do this later in this function. */
706 bfd_release (input_bfd, entry);
707 return 2;
708 }
709 }
710
711 name = (bfd_elf_string_from_elf_section
712 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
713 entry->isym.st_name));
714
715 dynstr = elf_hash_table (info)->dynstr;
716 if (dynstr == NULL)
717 {
718 /* Create a strtab to hold the dynamic symbol names. */
719 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
720 if (dynstr == NULL)
721 return 0;
722 }
723
724 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
725 if (dynstr_index == (unsigned long) -1)
726 return 0;
727 entry->isym.st_name = dynstr_index;
728
729 eht = elf_hash_table (info);
730
731 entry->next = eht->dynlocal;
732 eht->dynlocal = entry;
733 entry->input_bfd = input_bfd;
734 entry->input_indx = input_indx;
735 eht->dynsymcount++;
736
737 /* Whatever binding the symbol had before, it's now local. */
738 entry->isym.st_info
739 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
740
741 /* The dynindx will be set at the end of size_dynamic_sections. */
742
743 return 1;
744 }
745
746 /* Return the dynindex of a local dynamic symbol. */
747
748 long
749 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
750 bfd *input_bfd,
751 long input_indx)
752 {
753 struct elf_link_local_dynamic_entry *e;
754
755 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
756 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
757 return e->dynindx;
758 return -1;
759 }
760
761 /* This function is used to renumber the dynamic symbols, if some of
762 them are removed because they are marked as local. This is called
763 via elf_link_hash_traverse. */
764
765 static bfd_boolean
766 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
767 void *data)
768 {
769 size_t *count = (size_t *) data;
770
771 if (h->forced_local)
772 return TRUE;
773
774 if (h->dynindx != -1)
775 h->dynindx = ++(*count);
776
777 return TRUE;
778 }
779
780
781 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
782 STB_LOCAL binding. */
783
784 static bfd_boolean
785 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
786 void *data)
787 {
788 size_t *count = (size_t *) data;
789
790 if (!h->forced_local)
791 return TRUE;
792
793 if (h->dynindx != -1)
794 h->dynindx = ++(*count);
795
796 return TRUE;
797 }
798
799 /* Return true if the dynamic symbol for a given section should be
800 omitted when creating a shared library. */
801 bfd_boolean
802 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
803 struct bfd_link_info *info,
804 asection *p)
805 {
806 struct elf_link_hash_table *htab;
807 asection *ip;
808
809 switch (elf_section_data (p)->this_hdr.sh_type)
810 {
811 case SHT_PROGBITS:
812 case SHT_NOBITS:
813 /* If sh_type is yet undecided, assume it could be
814 SHT_PROGBITS/SHT_NOBITS. */
815 case SHT_NULL:
816 htab = elf_hash_table (info);
817 if (p == htab->tls_sec)
818 return FALSE;
819
820 if (htab->text_index_section != NULL)
821 return p != htab->text_index_section && p != htab->data_index_section;
822
823 return (htab->dynobj != NULL
824 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
825 && ip->output_section == p);
826
827 /* There shouldn't be section relative relocations
828 against any other section. */
829 default:
830 return TRUE;
831 }
832 }
833
834 /* Assign dynsym indices. In a shared library we generate a section
835 symbol for each output section, which come first. Next come symbols
836 which have been forced to local binding. Then all of the back-end
837 allocated local dynamic syms, followed by the rest of the global
838 symbols. */
839
840 static unsigned long
841 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
842 struct bfd_link_info *info,
843 unsigned long *section_sym_count)
844 {
845 unsigned long dynsymcount = 0;
846
847 if (bfd_link_pic (info)
848 || elf_hash_table (info)->is_relocatable_executable)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
851 asection *p;
852 for (p = output_bfd->sections; p ; p = p->next)
853 if ((p->flags & SEC_EXCLUDE) == 0
854 && (p->flags & SEC_ALLOC) != 0
855 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
856 elf_section_data (p)->dynindx = ++dynsymcount;
857 else
858 elf_section_data (p)->dynindx = 0;
859 }
860 *section_sym_count = dynsymcount;
861
862 elf_link_hash_traverse (elf_hash_table (info),
863 elf_link_renumber_local_hash_table_dynsyms,
864 &dynsymcount);
865
866 if (elf_hash_table (info)->dynlocal)
867 {
868 struct elf_link_local_dynamic_entry *p;
869 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
870 p->dynindx = ++dynsymcount;
871 }
872
873 elf_link_hash_traverse (elf_hash_table (info),
874 elf_link_renumber_hash_table_dynsyms,
875 &dynsymcount);
876
877 /* There is an unused NULL entry at the head of the table which
878 we must account for in our count. Unless there weren't any
879 symbols, which means we'll have no table at all. */
880 if (dynsymcount != 0)
881 ++dynsymcount;
882
883 elf_hash_table (info)->dynsymcount = dynsymcount;
884 return dynsymcount;
885 }
886
887 /* Merge st_other field. */
888
889 static void
890 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
891 const Elf_Internal_Sym *isym, asection *sec,
892 bfd_boolean definition, bfd_boolean dynamic)
893 {
894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
895
896 /* If st_other has a processor-specific meaning, specific
897 code might be needed here. */
898 if (bed->elf_backend_merge_symbol_attribute)
899 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
900 dynamic);
901
902 if (!dynamic)
903 {
904 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
905 unsigned hvis = ELF_ST_VISIBILITY (h->other);
906
907 /* Keep the most constraining visibility. Leave the remainder
908 of the st_other field to elf_backend_merge_symbol_attribute. */
909 if (symvis - 1 < hvis - 1)
910 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
911 }
912 else if (definition
913 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
914 && (sec->flags & SEC_READONLY) == 0)
915 h->protected_def = 1;
916 }
917
918 /* This function is called when we want to merge a new symbol with an
919 existing symbol. It handles the various cases which arise when we
920 find a definition in a dynamic object, or when there is already a
921 definition in a dynamic object. The new symbol is described by
922 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
923 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
924 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
925 of an old common symbol. We set OVERRIDE if the old symbol is
926 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
927 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
928 to change. By OK to change, we mean that we shouldn't warn if the
929 type or size does change. */
930
931 static bfd_boolean
932 _bfd_elf_merge_symbol (bfd *abfd,
933 struct bfd_link_info *info,
934 const char *name,
935 Elf_Internal_Sym *sym,
936 asection **psec,
937 bfd_vma *pvalue,
938 struct elf_link_hash_entry **sym_hash,
939 bfd **poldbfd,
940 bfd_boolean *pold_weak,
941 unsigned int *pold_alignment,
942 bfd_boolean *skip,
943 bfd_boolean *override,
944 bfd_boolean *type_change_ok,
945 bfd_boolean *size_change_ok,
946 bfd_boolean *matched)
947 {
948 asection *sec, *oldsec;
949 struct elf_link_hash_entry *h;
950 struct elf_link_hash_entry *hi;
951 struct elf_link_hash_entry *flip;
952 int bind;
953 bfd *oldbfd;
954 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
955 bfd_boolean newweak, oldweak, newfunc, oldfunc;
956 const struct elf_backend_data *bed;
957 char *new_version;
958
959 *skip = FALSE;
960 *override = FALSE;
961
962 sec = *psec;
963 bind = ELF_ST_BIND (sym->st_info);
964
965 if (! bfd_is_und_section (sec))
966 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
967 else
968 h = ((struct elf_link_hash_entry *)
969 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
970 if (h == NULL)
971 return FALSE;
972 *sym_hash = h;
973
974 bed = get_elf_backend_data (abfd);
975
976 /* NEW_VERSION is the symbol version of the new symbol. */
977 if (h->versioned != unversioned)
978 {
979 /* Symbol version is unknown or versioned. */
980 new_version = strrchr (name, ELF_VER_CHR);
981 if (new_version)
982 {
983 if (h->versioned == unknown)
984 {
985 if (new_version > name && new_version[-1] != ELF_VER_CHR)
986 h->versioned = versioned_hidden;
987 else
988 h->versioned = versioned;
989 }
990 new_version += 1;
991 if (new_version[0] == '\0')
992 new_version = NULL;
993 }
994 else
995 h->versioned = unversioned;
996 }
997 else
998 new_version = NULL;
999
1000 /* For merging, we only care about real symbols. But we need to make
1001 sure that indirect symbol dynamic flags are updated. */
1002 hi = h;
1003 while (h->root.type == bfd_link_hash_indirect
1004 || h->root.type == bfd_link_hash_warning)
1005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1006
1007 if (!*matched)
1008 {
1009 if (hi == h || h->root.type == bfd_link_hash_new)
1010 *matched = TRUE;
1011 else
1012 {
1013 /* OLD_HIDDEN is true if the existing symbol is only visibile
1014 to the symbol with the same symbol version. NEW_HIDDEN is
1015 true if the new symbol is only visibile to the symbol with
1016 the same symbol version. */
1017 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1018 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1019 if (!old_hidden && !new_hidden)
1020 /* The new symbol matches the existing symbol if both
1021 aren't hidden. */
1022 *matched = TRUE;
1023 else
1024 {
1025 /* OLD_VERSION is the symbol version of the existing
1026 symbol. */
1027 char *old_version;
1028
1029 if (h->versioned >= versioned)
1030 old_version = strrchr (h->root.root.string,
1031 ELF_VER_CHR) + 1;
1032 else
1033 old_version = NULL;
1034
1035 /* The new symbol matches the existing symbol if they
1036 have the same symbol version. */
1037 *matched = (old_version == new_version
1038 || (old_version != NULL
1039 && new_version != NULL
1040 && strcmp (old_version, new_version) == 0));
1041 }
1042 }
1043 }
1044
1045 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1046 existing symbol. */
1047
1048 oldbfd = NULL;
1049 oldsec = NULL;
1050 switch (h->root.type)
1051 {
1052 default:
1053 break;
1054
1055 case bfd_link_hash_undefined:
1056 case bfd_link_hash_undefweak:
1057 oldbfd = h->root.u.undef.abfd;
1058 break;
1059
1060 case bfd_link_hash_defined:
1061 case bfd_link_hash_defweak:
1062 oldbfd = h->root.u.def.section->owner;
1063 oldsec = h->root.u.def.section;
1064 break;
1065
1066 case bfd_link_hash_common:
1067 oldbfd = h->root.u.c.p->section->owner;
1068 oldsec = h->root.u.c.p->section;
1069 if (pold_alignment)
1070 *pold_alignment = h->root.u.c.p->alignment_power;
1071 break;
1072 }
1073 if (poldbfd && *poldbfd == NULL)
1074 *poldbfd = oldbfd;
1075
1076 /* Differentiate strong and weak symbols. */
1077 newweak = bind == STB_WEAK;
1078 oldweak = (h->root.type == bfd_link_hash_defweak
1079 || h->root.type == bfd_link_hash_undefweak);
1080 if (pold_weak)
1081 *pold_weak = oldweak;
1082
1083 /* This code is for coping with dynamic objects, and is only useful
1084 if we are doing an ELF link. */
1085 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1086 return TRUE;
1087
1088 /* We have to check it for every instance since the first few may be
1089 references and not all compilers emit symbol type for undefined
1090 symbols. */
1091 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1092
1093 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1094 respectively, is from a dynamic object. */
1095
1096 newdyn = (abfd->flags & DYNAMIC) != 0;
1097
1098 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1099 syms and defined syms in dynamic libraries respectively.
1100 ref_dynamic on the other hand can be set for a symbol defined in
1101 a dynamic library, and def_dynamic may not be set; When the
1102 definition in a dynamic lib is overridden by a definition in the
1103 executable use of the symbol in the dynamic lib becomes a
1104 reference to the executable symbol. */
1105 if (newdyn)
1106 {
1107 if (bfd_is_und_section (sec))
1108 {
1109 if (bind != STB_WEAK)
1110 {
1111 h->ref_dynamic_nonweak = 1;
1112 hi->ref_dynamic_nonweak = 1;
1113 }
1114 }
1115 else
1116 {
1117 /* Update the existing symbol only if they match. */
1118 if (*matched)
1119 h->dynamic_def = 1;
1120 hi->dynamic_def = 1;
1121 }
1122 }
1123
1124 /* If we just created the symbol, mark it as being an ELF symbol.
1125 Other than that, there is nothing to do--there is no merge issue
1126 with a newly defined symbol--so we just return. */
1127
1128 if (h->root.type == bfd_link_hash_new)
1129 {
1130 h->non_elf = 0;
1131 return TRUE;
1132 }
1133
1134 /* In cases involving weak versioned symbols, we may wind up trying
1135 to merge a symbol with itself. Catch that here, to avoid the
1136 confusion that results if we try to override a symbol with
1137 itself. The additional tests catch cases like
1138 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1139 dynamic object, which we do want to handle here. */
1140 if (abfd == oldbfd
1141 && (newweak || oldweak)
1142 && ((abfd->flags & DYNAMIC) == 0
1143 || !h->def_regular))
1144 return TRUE;
1145
1146 olddyn = FALSE;
1147 if (oldbfd != NULL)
1148 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1149 else if (oldsec != NULL)
1150 {
1151 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1152 indices used by MIPS ELF. */
1153 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1154 }
1155
1156 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1157 respectively, appear to be a definition rather than reference. */
1158
1159 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1160
1161 olddef = (h->root.type != bfd_link_hash_undefined
1162 && h->root.type != bfd_link_hash_undefweak
1163 && h->root.type != bfd_link_hash_common);
1164
1165 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1166 respectively, appear to be a function. */
1167
1168 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1169 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1170
1171 oldfunc = (h->type != STT_NOTYPE
1172 && bed->is_function_type (h->type));
1173
1174 /* When we try to create a default indirect symbol from the dynamic
1175 definition with the default version, we skip it if its type and
1176 the type of existing regular definition mismatch. */
1177 if (pold_alignment == NULL
1178 && newdyn
1179 && newdef
1180 && !olddyn
1181 && (((olddef || h->root.type == bfd_link_hash_common)
1182 && ELF_ST_TYPE (sym->st_info) != h->type
1183 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1184 && h->type != STT_NOTYPE
1185 && !(newfunc && oldfunc))
1186 || (olddef
1187 && ((h->type == STT_GNU_IFUNC)
1188 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1189 {
1190 *skip = TRUE;
1191 return TRUE;
1192 }
1193
1194 /* Check TLS symbols. We don't check undefined symbols introduced
1195 by "ld -u" which have no type (and oldbfd NULL), and we don't
1196 check symbols from plugins because they also have no type. */
1197 if (oldbfd != NULL
1198 && (oldbfd->flags & BFD_PLUGIN) == 0
1199 && (abfd->flags & BFD_PLUGIN) == 0
1200 && ELF_ST_TYPE (sym->st_info) != h->type
1201 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1202 {
1203 bfd *ntbfd, *tbfd;
1204 bfd_boolean ntdef, tdef;
1205 asection *ntsec, *tsec;
1206
1207 if (h->type == STT_TLS)
1208 {
1209 ntbfd = abfd;
1210 ntsec = sec;
1211 ntdef = newdef;
1212 tbfd = oldbfd;
1213 tsec = oldsec;
1214 tdef = olddef;
1215 }
1216 else
1217 {
1218 ntbfd = oldbfd;
1219 ntsec = oldsec;
1220 ntdef = olddef;
1221 tbfd = abfd;
1222 tsec = sec;
1223 tdef = newdef;
1224 }
1225
1226 if (tdef && ntdef)
1227 (*_bfd_error_handler)
1228 (_("%s: TLS definition in %B section %A "
1229 "mismatches non-TLS definition in %B section %A"),
1230 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1231 else if (!tdef && !ntdef)
1232 (*_bfd_error_handler)
1233 (_("%s: TLS reference in %B "
1234 "mismatches non-TLS reference in %B"),
1235 tbfd, ntbfd, h->root.root.string);
1236 else if (tdef)
1237 (*_bfd_error_handler)
1238 (_("%s: TLS definition in %B section %A "
1239 "mismatches non-TLS reference in %B"),
1240 tbfd, tsec, ntbfd, h->root.root.string);
1241 else
1242 (*_bfd_error_handler)
1243 (_("%s: TLS reference in %B "
1244 "mismatches non-TLS definition in %B section %A"),
1245 tbfd, ntbfd, ntsec, h->root.root.string);
1246
1247 bfd_set_error (bfd_error_bad_value);
1248 return FALSE;
1249 }
1250
1251 /* If the old symbol has non-default visibility, we ignore the new
1252 definition from a dynamic object. */
1253 if (newdyn
1254 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1255 && !bfd_is_und_section (sec))
1256 {
1257 *skip = TRUE;
1258 /* Make sure this symbol is dynamic. */
1259 h->ref_dynamic = 1;
1260 hi->ref_dynamic = 1;
1261 /* A protected symbol has external availability. Make sure it is
1262 recorded as dynamic.
1263
1264 FIXME: Should we check type and size for protected symbol? */
1265 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1266 return bfd_elf_link_record_dynamic_symbol (info, h);
1267 else
1268 return TRUE;
1269 }
1270 else if (!newdyn
1271 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1272 && h->def_dynamic)
1273 {
1274 /* If the new symbol with non-default visibility comes from a
1275 relocatable file and the old definition comes from a dynamic
1276 object, we remove the old definition. */
1277 if (hi->root.type == bfd_link_hash_indirect)
1278 {
1279 /* Handle the case where the old dynamic definition is
1280 default versioned. We need to copy the symbol info from
1281 the symbol with default version to the normal one if it
1282 was referenced before. */
1283 if (h->ref_regular)
1284 {
1285 hi->root.type = h->root.type;
1286 h->root.type = bfd_link_hash_indirect;
1287 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1288
1289 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1290 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1291 {
1292 /* If the new symbol is hidden or internal, completely undo
1293 any dynamic link state. */
1294 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1295 h->forced_local = 0;
1296 h->ref_dynamic = 0;
1297 }
1298 else
1299 h->ref_dynamic = 1;
1300
1301 h->def_dynamic = 0;
1302 /* FIXME: Should we check type and size for protected symbol? */
1303 h->size = 0;
1304 h->type = 0;
1305
1306 h = hi;
1307 }
1308 else
1309 h = hi;
1310 }
1311
1312 /* If the old symbol was undefined before, then it will still be
1313 on the undefs list. If the new symbol is undefined or
1314 common, we can't make it bfd_link_hash_new here, because new
1315 undefined or common symbols will be added to the undefs list
1316 by _bfd_generic_link_add_one_symbol. Symbols may not be
1317 added twice to the undefs list. Also, if the new symbol is
1318 undefweak then we don't want to lose the strong undef. */
1319 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1320 {
1321 h->root.type = bfd_link_hash_undefined;
1322 h->root.u.undef.abfd = abfd;
1323 }
1324 else
1325 {
1326 h->root.type = bfd_link_hash_new;
1327 h->root.u.undef.abfd = NULL;
1328 }
1329
1330 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1331 {
1332 /* If the new symbol is hidden or internal, completely undo
1333 any dynamic link state. */
1334 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1335 h->forced_local = 0;
1336 h->ref_dynamic = 0;
1337 }
1338 else
1339 h->ref_dynamic = 1;
1340 h->def_dynamic = 0;
1341 /* FIXME: Should we check type and size for protected symbol? */
1342 h->size = 0;
1343 h->type = 0;
1344 return TRUE;
1345 }
1346
1347 /* If a new weak symbol definition comes from a regular file and the
1348 old symbol comes from a dynamic library, we treat the new one as
1349 strong. Similarly, an old weak symbol definition from a regular
1350 file is treated as strong when the new symbol comes from a dynamic
1351 library. Further, an old weak symbol from a dynamic library is
1352 treated as strong if the new symbol is from a dynamic library.
1353 This reflects the way glibc's ld.so works.
1354
1355 Do this before setting *type_change_ok or *size_change_ok so that
1356 we warn properly when dynamic library symbols are overridden. */
1357
1358 if (newdef && !newdyn && olddyn)
1359 newweak = FALSE;
1360 if (olddef && newdyn)
1361 oldweak = FALSE;
1362
1363 /* Allow changes between different types of function symbol. */
1364 if (newfunc && oldfunc)
1365 *type_change_ok = TRUE;
1366
1367 /* It's OK to change the type if either the existing symbol or the
1368 new symbol is weak. A type change is also OK if the old symbol
1369 is undefined and the new symbol is defined. */
1370
1371 if (oldweak
1372 || newweak
1373 || (newdef
1374 && h->root.type == bfd_link_hash_undefined))
1375 *type_change_ok = TRUE;
1376
1377 /* It's OK to change the size if either the existing symbol or the
1378 new symbol is weak, or if the old symbol is undefined. */
1379
1380 if (*type_change_ok
1381 || h->root.type == bfd_link_hash_undefined)
1382 *size_change_ok = TRUE;
1383
1384 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1385 symbol, respectively, appears to be a common symbol in a dynamic
1386 object. If a symbol appears in an uninitialized section, and is
1387 not weak, and is not a function, then it may be a common symbol
1388 which was resolved when the dynamic object was created. We want
1389 to treat such symbols specially, because they raise special
1390 considerations when setting the symbol size: if the symbol
1391 appears as a common symbol in a regular object, and the size in
1392 the regular object is larger, we must make sure that we use the
1393 larger size. This problematic case can always be avoided in C,
1394 but it must be handled correctly when using Fortran shared
1395 libraries.
1396
1397 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1398 likewise for OLDDYNCOMMON and OLDDEF.
1399
1400 Note that this test is just a heuristic, and that it is quite
1401 possible to have an uninitialized symbol in a shared object which
1402 is really a definition, rather than a common symbol. This could
1403 lead to some minor confusion when the symbol really is a common
1404 symbol in some regular object. However, I think it will be
1405 harmless. */
1406
1407 if (newdyn
1408 && newdef
1409 && !newweak
1410 && (sec->flags & SEC_ALLOC) != 0
1411 && (sec->flags & SEC_LOAD) == 0
1412 && sym->st_size > 0
1413 && !newfunc)
1414 newdyncommon = TRUE;
1415 else
1416 newdyncommon = FALSE;
1417
1418 if (olddyn
1419 && olddef
1420 && h->root.type == bfd_link_hash_defined
1421 && h->def_dynamic
1422 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1423 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1424 && h->size > 0
1425 && !oldfunc)
1426 olddyncommon = TRUE;
1427 else
1428 olddyncommon = FALSE;
1429
1430 /* We now know everything about the old and new symbols. We ask the
1431 backend to check if we can merge them. */
1432 if (bed->merge_symbol != NULL)
1433 {
1434 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1435 return FALSE;
1436 sec = *psec;
1437 }
1438
1439 /* If both the old and the new symbols look like common symbols in a
1440 dynamic object, set the size of the symbol to the larger of the
1441 two. */
1442
1443 if (olddyncommon
1444 && newdyncommon
1445 && sym->st_size != h->size)
1446 {
1447 /* Since we think we have two common symbols, issue a multiple
1448 common warning if desired. Note that we only warn if the
1449 size is different. If the size is the same, we simply let
1450 the old symbol override the new one as normally happens with
1451 symbols defined in dynamic objects. */
1452
1453 if (! ((*info->callbacks->multiple_common)
1454 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1455 return FALSE;
1456
1457 if (sym->st_size > h->size)
1458 h->size = sym->st_size;
1459
1460 *size_change_ok = TRUE;
1461 }
1462
1463 /* If we are looking at a dynamic object, and we have found a
1464 definition, we need to see if the symbol was already defined by
1465 some other object. If so, we want to use the existing
1466 definition, and we do not want to report a multiple symbol
1467 definition error; we do this by clobbering *PSEC to be
1468 bfd_und_section_ptr.
1469
1470 We treat a common symbol as a definition if the symbol in the
1471 shared library is a function, since common symbols always
1472 represent variables; this can cause confusion in principle, but
1473 any such confusion would seem to indicate an erroneous program or
1474 shared library. We also permit a common symbol in a regular
1475 object to override a weak symbol in a shared object. */
1476
1477 if (newdyn
1478 && newdef
1479 && (olddef
1480 || (h->root.type == bfd_link_hash_common
1481 && (newweak || newfunc))))
1482 {
1483 *override = TRUE;
1484 newdef = FALSE;
1485 newdyncommon = FALSE;
1486
1487 *psec = sec = bfd_und_section_ptr;
1488 *size_change_ok = TRUE;
1489
1490 /* If we get here when the old symbol is a common symbol, then
1491 we are explicitly letting it override a weak symbol or
1492 function in a dynamic object, and we don't want to warn about
1493 a type change. If the old symbol is a defined symbol, a type
1494 change warning may still be appropriate. */
1495
1496 if (h->root.type == bfd_link_hash_common)
1497 *type_change_ok = TRUE;
1498 }
1499
1500 /* Handle the special case of an old common symbol merging with a
1501 new symbol which looks like a common symbol in a shared object.
1502 We change *PSEC and *PVALUE to make the new symbol look like a
1503 common symbol, and let _bfd_generic_link_add_one_symbol do the
1504 right thing. */
1505
1506 if (newdyncommon
1507 && h->root.type == bfd_link_hash_common)
1508 {
1509 *override = TRUE;
1510 newdef = FALSE;
1511 newdyncommon = FALSE;
1512 *pvalue = sym->st_size;
1513 *psec = sec = bed->common_section (oldsec);
1514 *size_change_ok = TRUE;
1515 }
1516
1517 /* Skip weak definitions of symbols that are already defined. */
1518 if (newdef && olddef && newweak)
1519 {
1520 /* Don't skip new non-IR weak syms. */
1521 if (!(oldbfd != NULL
1522 && (oldbfd->flags & BFD_PLUGIN) != 0
1523 && (abfd->flags & BFD_PLUGIN) == 0))
1524 {
1525 newdef = FALSE;
1526 *skip = TRUE;
1527 }
1528
1529 /* Merge st_other. If the symbol already has a dynamic index,
1530 but visibility says it should not be visible, turn it into a
1531 local symbol. */
1532 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1533 if (h->dynindx != -1)
1534 switch (ELF_ST_VISIBILITY (h->other))
1535 {
1536 case STV_INTERNAL:
1537 case STV_HIDDEN:
1538 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1539 break;
1540 }
1541 }
1542
1543 /* If the old symbol is from a dynamic object, and the new symbol is
1544 a definition which is not from a dynamic object, then the new
1545 symbol overrides the old symbol. Symbols from regular files
1546 always take precedence over symbols from dynamic objects, even if
1547 they are defined after the dynamic object in the link.
1548
1549 As above, we again permit a common symbol in a regular object to
1550 override a definition in a shared object if the shared object
1551 symbol is a function or is weak. */
1552
1553 flip = NULL;
1554 if (!newdyn
1555 && (newdef
1556 || (bfd_is_com_section (sec)
1557 && (oldweak || oldfunc)))
1558 && olddyn
1559 && olddef
1560 && h->def_dynamic)
1561 {
1562 /* Change the hash table entry to undefined, and let
1563 _bfd_generic_link_add_one_symbol do the right thing with the
1564 new definition. */
1565
1566 h->root.type = bfd_link_hash_undefined;
1567 h->root.u.undef.abfd = h->root.u.def.section->owner;
1568 *size_change_ok = TRUE;
1569
1570 olddef = FALSE;
1571 olddyncommon = FALSE;
1572
1573 /* We again permit a type change when a common symbol may be
1574 overriding a function. */
1575
1576 if (bfd_is_com_section (sec))
1577 {
1578 if (oldfunc)
1579 {
1580 /* If a common symbol overrides a function, make sure
1581 that it isn't defined dynamically nor has type
1582 function. */
1583 h->def_dynamic = 0;
1584 h->type = STT_NOTYPE;
1585 }
1586 *type_change_ok = TRUE;
1587 }
1588
1589 if (hi->root.type == bfd_link_hash_indirect)
1590 flip = hi;
1591 else
1592 /* This union may have been set to be non-NULL when this symbol
1593 was seen in a dynamic object. We must force the union to be
1594 NULL, so that it is correct for a regular symbol. */
1595 h->verinfo.vertree = NULL;
1596 }
1597
1598 /* Handle the special case of a new common symbol merging with an
1599 old symbol that looks like it might be a common symbol defined in
1600 a shared object. Note that we have already handled the case in
1601 which a new common symbol should simply override the definition
1602 in the shared library. */
1603
1604 if (! newdyn
1605 && bfd_is_com_section (sec)
1606 && olddyncommon)
1607 {
1608 /* It would be best if we could set the hash table entry to a
1609 common symbol, but we don't know what to use for the section
1610 or the alignment. */
1611 if (! ((*info->callbacks->multiple_common)
1612 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1613 return FALSE;
1614
1615 /* If the presumed common symbol in the dynamic object is
1616 larger, pretend that the new symbol has its size. */
1617
1618 if (h->size > *pvalue)
1619 *pvalue = h->size;
1620
1621 /* We need to remember the alignment required by the symbol
1622 in the dynamic object. */
1623 BFD_ASSERT (pold_alignment);
1624 *pold_alignment = h->root.u.def.section->alignment_power;
1625
1626 olddef = FALSE;
1627 olddyncommon = FALSE;
1628
1629 h->root.type = bfd_link_hash_undefined;
1630 h->root.u.undef.abfd = h->root.u.def.section->owner;
1631
1632 *size_change_ok = TRUE;
1633 *type_change_ok = TRUE;
1634
1635 if (hi->root.type == bfd_link_hash_indirect)
1636 flip = hi;
1637 else
1638 h->verinfo.vertree = NULL;
1639 }
1640
1641 if (flip != NULL)
1642 {
1643 /* Handle the case where we had a versioned symbol in a dynamic
1644 library and now find a definition in a normal object. In this
1645 case, we make the versioned symbol point to the normal one. */
1646 flip->root.type = h->root.type;
1647 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1650 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1651 if (h->def_dynamic)
1652 {
1653 h->def_dynamic = 0;
1654 flip->ref_dynamic = 1;
1655 }
1656 }
1657
1658 return TRUE;
1659 }
1660
1661 /* This function is called to create an indirect symbol from the
1662 default for the symbol with the default version if needed. The
1663 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1664 set DYNSYM if the new indirect symbol is dynamic. */
1665
1666 static bfd_boolean
1667 _bfd_elf_add_default_symbol (bfd *abfd,
1668 struct bfd_link_info *info,
1669 struct elf_link_hash_entry *h,
1670 const char *name,
1671 Elf_Internal_Sym *sym,
1672 asection *sec,
1673 bfd_vma value,
1674 bfd **poldbfd,
1675 bfd_boolean *dynsym)
1676 {
1677 bfd_boolean type_change_ok;
1678 bfd_boolean size_change_ok;
1679 bfd_boolean skip;
1680 char *shortname;
1681 struct elf_link_hash_entry *hi;
1682 struct bfd_link_hash_entry *bh;
1683 const struct elf_backend_data *bed;
1684 bfd_boolean collect;
1685 bfd_boolean dynamic;
1686 bfd_boolean override;
1687 char *p;
1688 size_t len, shortlen;
1689 asection *tmp_sec;
1690 bfd_boolean matched;
1691
1692 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1693 return TRUE;
1694
1695 /* If this symbol has a version, and it is the default version, we
1696 create an indirect symbol from the default name to the fully
1697 decorated name. This will cause external references which do not
1698 specify a version to be bound to this version of the symbol. */
1699 p = strchr (name, ELF_VER_CHR);
1700 if (h->versioned == unknown)
1701 {
1702 if (p == NULL)
1703 {
1704 h->versioned = unversioned;
1705 return TRUE;
1706 }
1707 else
1708 {
1709 if (p[1] != ELF_VER_CHR)
1710 {
1711 h->versioned = versioned_hidden;
1712 return TRUE;
1713 }
1714 else
1715 h->versioned = versioned;
1716 }
1717 }
1718
1719 bed = get_elf_backend_data (abfd);
1720 collect = bed->collect;
1721 dynamic = (abfd->flags & DYNAMIC) != 0;
1722
1723 shortlen = p - name;
1724 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1725 if (shortname == NULL)
1726 return FALSE;
1727 memcpy (shortname, name, shortlen);
1728 shortname[shortlen] = '\0';
1729
1730 /* We are going to create a new symbol. Merge it with any existing
1731 symbol with this name. For the purposes of the merge, act as
1732 though we were defining the symbol we just defined, although we
1733 actually going to define an indirect symbol. */
1734 type_change_ok = FALSE;
1735 size_change_ok = FALSE;
1736 matched = TRUE;
1737 tmp_sec = sec;
1738 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1739 &hi, poldbfd, NULL, NULL, &skip, &override,
1740 &type_change_ok, &size_change_ok, &matched))
1741 return FALSE;
1742
1743 if (skip)
1744 goto nondefault;
1745
1746 if (! override)
1747 {
1748 /* Add the default symbol if not performing a relocatable link. */
1749 if (! bfd_link_relocatable (info))
1750 {
1751 bh = &hi->root;
1752 if (! (_bfd_generic_link_add_one_symbol
1753 (info, abfd, shortname, BSF_INDIRECT,
1754 bfd_ind_section_ptr,
1755 0, name, FALSE, collect, &bh)))
1756 return FALSE;
1757 hi = (struct elf_link_hash_entry *) bh;
1758 }
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is overriding the
1763 indirect symbol we want to add. We were planning on making
1764 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1765 is the name without a version. NAME is the fully versioned
1766 name, and it is the default version.
1767
1768 Overriding means that we already saw a definition for the
1769 symbol SHORTNAME in a regular object, and it is overriding
1770 the symbol defined in the dynamic object.
1771
1772 When this happens, we actually want to change NAME, the
1773 symbol we just added, to refer to SHORTNAME. This will cause
1774 references to NAME in the shared object to become references
1775 to SHORTNAME in the regular object. This is what we expect
1776 when we override a function in a shared object: that the
1777 references in the shared object will be mapped to the
1778 definition in the regular object. */
1779
1780 while (hi->root.type == bfd_link_hash_indirect
1781 || hi->root.type == bfd_link_hash_warning)
1782 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1783
1784 h->root.type = bfd_link_hash_indirect;
1785 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1786 if (h->def_dynamic)
1787 {
1788 h->def_dynamic = 0;
1789 hi->ref_dynamic = 1;
1790 if (hi->ref_regular
1791 || hi->def_regular)
1792 {
1793 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1794 return FALSE;
1795 }
1796 }
1797
1798 /* Now set HI to H, so that the following code will set the
1799 other fields correctly. */
1800 hi = h;
1801 }
1802
1803 /* Check if HI is a warning symbol. */
1804 if (hi->root.type == bfd_link_hash_warning)
1805 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1806
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error to
1809 the user in that case. */
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 {
1813 struct elf_link_hash_entry *ht;
1814
1815 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1816 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1817
1818 /* A reference to the SHORTNAME symbol from a dynamic library
1819 will be satisfied by the versioned symbol at runtime. In
1820 effect, we have a reference to the versioned symbol. */
1821 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1822 hi->dynamic_def |= ht->dynamic_def;
1823
1824 /* See if the new flags lead us to realize that the symbol must
1825 be dynamic. */
1826 if (! *dynsym)
1827 {
1828 if (! dynamic)
1829 {
1830 if (! bfd_link_executable (info)
1831 || hi->def_dynamic
1832 || hi->ref_dynamic)
1833 *dynsym = TRUE;
1834 }
1835 else
1836 {
1837 if (hi->ref_regular)
1838 *dynsym = TRUE;
1839 }
1840 }
1841 }
1842
1843 /* We also need to define an indirection from the nondefault version
1844 of the symbol. */
1845
1846 nondefault:
1847 len = strlen (name);
1848 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1849 if (shortname == NULL)
1850 return FALSE;
1851 memcpy (shortname, name, shortlen);
1852 memcpy (shortname + shortlen, p + 1, len - shortlen);
1853
1854 /* Once again, merge with any existing symbol. */
1855 type_change_ok = FALSE;
1856 size_change_ok = FALSE;
1857 tmp_sec = sec;
1858 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1859 &hi, poldbfd, NULL, NULL, &skip, &override,
1860 &type_change_ok, &size_change_ok, &matched))
1861 return FALSE;
1862
1863 if (skip)
1864 return TRUE;
1865
1866 if (override)
1867 {
1868 /* Here SHORTNAME is a versioned name, so we don't expect to see
1869 the type of override we do in the case above unless it is
1870 overridden by a versioned definition. */
1871 if (hi->root.type != bfd_link_hash_defined
1872 && hi->root.type != bfd_link_hash_defweak)
1873 (*_bfd_error_handler)
1874 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1875 abfd, shortname);
1876 }
1877 else
1878 {
1879 bh = &hi->root;
1880 if (! (_bfd_generic_link_add_one_symbol
1881 (info, abfd, shortname, BSF_INDIRECT,
1882 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1883 return FALSE;
1884 hi = (struct elf_link_hash_entry *) bh;
1885
1886 /* If there is a duplicate definition somewhere, then HI may not
1887 point to an indirect symbol. We will have reported an error
1888 to the user in that case. */
1889
1890 if (hi->root.type == bfd_link_hash_indirect)
1891 {
1892 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1893 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1894 hi->dynamic_def |= h->dynamic_def;
1895
1896 /* See if the new flags lead us to realize that the symbol
1897 must be dynamic. */
1898 if (! *dynsym)
1899 {
1900 if (! dynamic)
1901 {
1902 if (! bfd_link_executable (info)
1903 || hi->ref_dynamic)
1904 *dynsym = TRUE;
1905 }
1906 else
1907 {
1908 if (hi->ref_regular)
1909 *dynsym = TRUE;
1910 }
1911 }
1912 }
1913 }
1914
1915 return TRUE;
1916 }
1917 \f
1918 /* This routine is used to export all defined symbols into the dynamic
1919 symbol table. It is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1925
1926 /* Ignore indirect symbols. These are added by the versioning code. */
1927 if (h->root.type == bfd_link_hash_indirect)
1928 return TRUE;
1929
1930 /* Ignore this if we won't export it. */
1931 if (!eif->info->export_dynamic && !h->dynamic)
1932 return TRUE;
1933
1934 if (h->dynindx == -1
1935 && (h->def_regular || h->ref_regular)
1936 && ! bfd_hide_sym_by_version (eif->info->version_info,
1937 h->root.root.string))
1938 {
1939 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1940 {
1941 eif->failed = TRUE;
1942 return FALSE;
1943 }
1944 }
1945
1946 return TRUE;
1947 }
1948 \f
1949 /* Look through the symbols which are defined in other shared
1950 libraries and referenced here. Update the list of version
1951 dependencies. This will be put into the .gnu.version_r section.
1952 This function is called via elf_link_hash_traverse. */
1953
1954 static bfd_boolean
1955 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1956 void *data)
1957 {
1958 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1959 Elf_Internal_Verneed *t;
1960 Elf_Internal_Vernaux *a;
1961 bfd_size_type amt;
1962
1963 /* We only care about symbols defined in shared objects with version
1964 information. */
1965 if (!h->def_dynamic
1966 || h->def_regular
1967 || h->dynindx == -1
1968 || h->verinfo.verdef == NULL
1969 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1970 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1971 return TRUE;
1972
1973 /* See if we already know about this version. */
1974 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1975 t != NULL;
1976 t = t->vn_nextref)
1977 {
1978 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1979 continue;
1980
1981 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1982 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1983 return TRUE;
1984
1985 break;
1986 }
1987
1988 /* This is a new version. Add it to tree we are building. */
1989
1990 if (t == NULL)
1991 {
1992 amt = sizeof *t;
1993 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1994 if (t == NULL)
1995 {
1996 rinfo->failed = TRUE;
1997 return FALSE;
1998 }
1999
2000 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2001 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2002 elf_tdata (rinfo->info->output_bfd)->verref = t;
2003 }
2004
2005 amt = sizeof *a;
2006 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2007 if (a == NULL)
2008 {
2009 rinfo->failed = TRUE;
2010 return FALSE;
2011 }
2012
2013 /* Note that we are copying a string pointer here, and testing it
2014 above. If bfd_elf_string_from_elf_section is ever changed to
2015 discard the string data when low in memory, this will have to be
2016 fixed. */
2017 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2018
2019 a->vna_flags = h->verinfo.verdef->vd_flags;
2020 a->vna_nextptr = t->vn_auxptr;
2021
2022 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2023 ++rinfo->vers;
2024
2025 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2026
2027 t->vn_auxptr = a;
2028
2029 return TRUE;
2030 }
2031
2032 /* Figure out appropriate versions for all the symbols. We may not
2033 have the version number script until we have read all of the input
2034 files, so until that point we don't know which symbols should be
2035 local. This function is called via elf_link_hash_traverse. */
2036
2037 static bfd_boolean
2038 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2039 {
2040 struct elf_info_failed *sinfo;
2041 struct bfd_link_info *info;
2042 const struct elf_backend_data *bed;
2043 struct elf_info_failed eif;
2044 char *p;
2045 bfd_size_type amt;
2046
2047 sinfo = (struct elf_info_failed *) data;
2048 info = sinfo->info;
2049
2050 /* Fix the symbol flags. */
2051 eif.failed = FALSE;
2052 eif.info = info;
2053 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2054 {
2055 if (eif.failed)
2056 sinfo->failed = TRUE;
2057 return FALSE;
2058 }
2059
2060 /* We only need version numbers for symbols defined in regular
2061 objects. */
2062 if (!h->def_regular)
2063 return TRUE;
2064
2065 bed = get_elf_backend_data (info->output_bfd);
2066 p = strchr (h->root.root.string, ELF_VER_CHR);
2067 if (p != NULL && h->verinfo.vertree == NULL)
2068 {
2069 struct bfd_elf_version_tree *t;
2070
2071 ++p;
2072 if (*p == ELF_VER_CHR)
2073 ++p;
2074
2075 /* If there is no version string, we can just return out. */
2076 if (*p == '\0')
2077 return TRUE;
2078
2079 /* Look for the version. If we find it, it is no longer weak. */
2080 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2081 {
2082 if (strcmp (t->name, p) == 0)
2083 {
2084 size_t len;
2085 char *alc;
2086 struct bfd_elf_version_expr *d;
2087
2088 len = p - h->root.root.string;
2089 alc = (char *) bfd_malloc (len);
2090 if (alc == NULL)
2091 {
2092 sinfo->failed = TRUE;
2093 return FALSE;
2094 }
2095 memcpy (alc, h->root.root.string, len - 1);
2096 alc[len - 1] = '\0';
2097 if (alc[len - 2] == ELF_VER_CHR)
2098 alc[len - 2] = '\0';
2099
2100 h->verinfo.vertree = t;
2101 t->used = TRUE;
2102 d = NULL;
2103
2104 if (t->globals.list != NULL)
2105 d = (*t->match) (&t->globals, NULL, alc);
2106
2107 /* See if there is anything to force this symbol to
2108 local scope. */
2109 if (d == NULL && t->locals.list != NULL)
2110 {
2111 d = (*t->match) (&t->locals, NULL, alc);
2112 if (d != NULL
2113 && h->dynindx != -1
2114 && ! info->export_dynamic)
2115 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2116 }
2117
2118 free (alc);
2119 break;
2120 }
2121 }
2122
2123 /* If we are building an application, we need to create a
2124 version node for this version. */
2125 if (t == NULL && bfd_link_executable (info))
2126 {
2127 struct bfd_elf_version_tree **pp;
2128 int version_index;
2129
2130 /* If we aren't going to export this symbol, we don't need
2131 to worry about it. */
2132 if (h->dynindx == -1)
2133 return TRUE;
2134
2135 amt = sizeof *t;
2136 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2137 if (t == NULL)
2138 {
2139 sinfo->failed = TRUE;
2140 return FALSE;
2141 }
2142
2143 t->name = p;
2144 t->name_indx = (unsigned int) -1;
2145 t->used = TRUE;
2146
2147 version_index = 1;
2148 /* Don't count anonymous version tag. */
2149 if (sinfo->info->version_info != NULL
2150 && sinfo->info->version_info->vernum == 0)
2151 version_index = 0;
2152 for (pp = &sinfo->info->version_info;
2153 *pp != NULL;
2154 pp = &(*pp)->next)
2155 ++version_index;
2156 t->vernum = version_index;
2157
2158 *pp = t;
2159
2160 h->verinfo.vertree = t;
2161 }
2162 else if (t == NULL)
2163 {
2164 /* We could not find the version for a symbol when
2165 generating a shared archive. Return an error. */
2166 (*_bfd_error_handler)
2167 (_("%B: version node not found for symbol %s"),
2168 info->output_bfd, h->root.root.string);
2169 bfd_set_error (bfd_error_bad_value);
2170 sinfo->failed = TRUE;
2171 return FALSE;
2172 }
2173 }
2174
2175 /* If we don't have a version for this symbol, see if we can find
2176 something. */
2177 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2178 {
2179 bfd_boolean hide;
2180
2181 h->verinfo.vertree
2182 = bfd_find_version_for_sym (sinfo->info->version_info,
2183 h->root.root.string, &hide);
2184 if (h->verinfo.vertree != NULL && hide)
2185 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2186 }
2187
2188 return TRUE;
2189 }
2190 \f
2191 /* Read and swap the relocs from the section indicated by SHDR. This
2192 may be either a REL or a RELA section. The relocations are
2193 translated into RELA relocations and stored in INTERNAL_RELOCS,
2194 which should have already been allocated to contain enough space.
2195 The EXTERNAL_RELOCS are a buffer where the external form of the
2196 relocations should be stored.
2197
2198 Returns FALSE if something goes wrong. */
2199
2200 static bfd_boolean
2201 elf_link_read_relocs_from_section (bfd *abfd,
2202 asection *sec,
2203 Elf_Internal_Shdr *shdr,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs)
2206 {
2207 const struct elf_backend_data *bed;
2208 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2209 const bfd_byte *erela;
2210 const bfd_byte *erelaend;
2211 Elf_Internal_Rela *irela;
2212 Elf_Internal_Shdr *symtab_hdr;
2213 size_t nsyms;
2214
2215 /* Position ourselves at the start of the section. */
2216 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2217 return FALSE;
2218
2219 /* Read the relocations. */
2220 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2221 return FALSE;
2222
2223 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2224 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2225
2226 bed = get_elf_backend_data (abfd);
2227
2228 /* Convert the external relocations to the internal format. */
2229 if (shdr->sh_entsize == bed->s->sizeof_rel)
2230 swap_in = bed->s->swap_reloc_in;
2231 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2232 swap_in = bed->s->swap_reloca_in;
2233 else
2234 {
2235 bfd_set_error (bfd_error_wrong_format);
2236 return FALSE;
2237 }
2238
2239 erela = (const bfd_byte *) external_relocs;
2240 erelaend = erela + shdr->sh_size;
2241 irela = internal_relocs;
2242 while (erela < erelaend)
2243 {
2244 bfd_vma r_symndx;
2245
2246 (*swap_in) (abfd, erela, irela);
2247 r_symndx = ELF32_R_SYM (irela->r_info);
2248 if (bed->s->arch_size == 64)
2249 r_symndx >>= 24;
2250 if (nsyms > 0)
2251 {
2252 if ((size_t) r_symndx >= nsyms)
2253 {
2254 (*_bfd_error_handler)
2255 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2256 " for offset 0x%lx in section `%A'"),
2257 abfd, sec,
2258 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2259 bfd_set_error (bfd_error_bad_value);
2260 return FALSE;
2261 }
2262 }
2263 else if (r_symndx != STN_UNDEF)
2264 {
2265 (*_bfd_error_handler)
2266 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2267 " when the object file has no symbol table"),
2268 abfd, sec,
2269 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2270 bfd_set_error (bfd_error_bad_value);
2271 return FALSE;
2272 }
2273 irela += bed->s->int_rels_per_ext_rel;
2274 erela += shdr->sh_entsize;
2275 }
2276
2277 return TRUE;
2278 }
2279
2280 /* Read and swap the relocs for a section O. They may have been
2281 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2282 not NULL, they are used as buffers to read into. They are known to
2283 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2284 the return value is allocated using either malloc or bfd_alloc,
2285 according to the KEEP_MEMORY argument. If O has two relocation
2286 sections (both REL and RELA relocations), then the REL_HDR
2287 relocations will appear first in INTERNAL_RELOCS, followed by the
2288 RELA_HDR relocations. */
2289
2290 Elf_Internal_Rela *
2291 _bfd_elf_link_read_relocs (bfd *abfd,
2292 asection *o,
2293 void *external_relocs,
2294 Elf_Internal_Rela *internal_relocs,
2295 bfd_boolean keep_memory)
2296 {
2297 void *alloc1 = NULL;
2298 Elf_Internal_Rela *alloc2 = NULL;
2299 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2300 struct bfd_elf_section_data *esdo = elf_section_data (o);
2301 Elf_Internal_Rela *internal_rela_relocs;
2302
2303 if (esdo->relocs != NULL)
2304 return esdo->relocs;
2305
2306 if (o->reloc_count == 0)
2307 return NULL;
2308
2309 if (internal_relocs == NULL)
2310 {
2311 bfd_size_type size;
2312
2313 size = o->reloc_count;
2314 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2315 if (keep_memory)
2316 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2317 else
2318 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2319 if (internal_relocs == NULL)
2320 goto error_return;
2321 }
2322
2323 if (external_relocs == NULL)
2324 {
2325 bfd_size_type size = 0;
2326
2327 if (esdo->rel.hdr)
2328 size += esdo->rel.hdr->sh_size;
2329 if (esdo->rela.hdr)
2330 size += esdo->rela.hdr->sh_size;
2331
2332 alloc1 = bfd_malloc (size);
2333 if (alloc1 == NULL)
2334 goto error_return;
2335 external_relocs = alloc1;
2336 }
2337
2338 internal_rela_relocs = internal_relocs;
2339 if (esdo->rel.hdr)
2340 {
2341 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2342 external_relocs,
2343 internal_relocs))
2344 goto error_return;
2345 external_relocs = (((bfd_byte *) external_relocs)
2346 + esdo->rel.hdr->sh_size);
2347 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2348 * bed->s->int_rels_per_ext_rel);
2349 }
2350
2351 if (esdo->rela.hdr
2352 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2353 external_relocs,
2354 internal_rela_relocs)))
2355 goto error_return;
2356
2357 /* Cache the results for next time, if we can. */
2358 if (keep_memory)
2359 esdo->relocs = internal_relocs;
2360
2361 if (alloc1 != NULL)
2362 free (alloc1);
2363
2364 /* Don't free alloc2, since if it was allocated we are passing it
2365 back (under the name of internal_relocs). */
2366
2367 return internal_relocs;
2368
2369 error_return:
2370 if (alloc1 != NULL)
2371 free (alloc1);
2372 if (alloc2 != NULL)
2373 {
2374 if (keep_memory)
2375 bfd_release (abfd, alloc2);
2376 else
2377 free (alloc2);
2378 }
2379 return NULL;
2380 }
2381
2382 /* Compute the size of, and allocate space for, REL_HDR which is the
2383 section header for a section containing relocations for O. */
2384
2385 static bfd_boolean
2386 _bfd_elf_link_size_reloc_section (bfd *abfd,
2387 struct bfd_elf_section_reloc_data *reldata)
2388 {
2389 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2390
2391 /* That allows us to calculate the size of the section. */
2392 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2393
2394 /* The contents field must last into write_object_contents, so we
2395 allocate it with bfd_alloc rather than malloc. Also since we
2396 cannot be sure that the contents will actually be filled in,
2397 we zero the allocated space. */
2398 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2399 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2400 return FALSE;
2401
2402 if (reldata->hashes == NULL && reldata->count)
2403 {
2404 struct elf_link_hash_entry **p;
2405
2406 p = ((struct elf_link_hash_entry **)
2407 bfd_zmalloc (reldata->count * sizeof (*p)));
2408 if (p == NULL)
2409 return FALSE;
2410
2411 reldata->hashes = p;
2412 }
2413
2414 return TRUE;
2415 }
2416
2417 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2418 originated from the section given by INPUT_REL_HDR) to the
2419 OUTPUT_BFD. */
2420
2421 bfd_boolean
2422 _bfd_elf_link_output_relocs (bfd *output_bfd,
2423 asection *input_section,
2424 Elf_Internal_Shdr *input_rel_hdr,
2425 Elf_Internal_Rela *internal_relocs,
2426 struct elf_link_hash_entry **rel_hash
2427 ATTRIBUTE_UNUSED)
2428 {
2429 Elf_Internal_Rela *irela;
2430 Elf_Internal_Rela *irelaend;
2431 bfd_byte *erel;
2432 struct bfd_elf_section_reloc_data *output_reldata;
2433 asection *output_section;
2434 const struct elf_backend_data *bed;
2435 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2436 struct bfd_elf_section_data *esdo;
2437
2438 output_section = input_section->output_section;
2439
2440 bed = get_elf_backend_data (output_bfd);
2441 esdo = elf_section_data (output_section);
2442 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2443 {
2444 output_reldata = &esdo->rel;
2445 swap_out = bed->s->swap_reloc_out;
2446 }
2447 else if (esdo->rela.hdr
2448 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2449 {
2450 output_reldata = &esdo->rela;
2451 swap_out = bed->s->swap_reloca_out;
2452 }
2453 else
2454 {
2455 (*_bfd_error_handler)
2456 (_("%B: relocation size mismatch in %B section %A"),
2457 output_bfd, input_section->owner, input_section);
2458 bfd_set_error (bfd_error_wrong_format);
2459 return FALSE;
2460 }
2461
2462 erel = output_reldata->hdr->contents;
2463 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2464 irela = internal_relocs;
2465 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2466 * bed->s->int_rels_per_ext_rel);
2467 while (irela < irelaend)
2468 {
2469 (*swap_out) (output_bfd, irela, erel);
2470 irela += bed->s->int_rels_per_ext_rel;
2471 erel += input_rel_hdr->sh_entsize;
2472 }
2473
2474 /* Bump the counter, so that we know where to add the next set of
2475 relocations. */
2476 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2477
2478 return TRUE;
2479 }
2480 \f
2481 /* Make weak undefined symbols in PIE dynamic. */
2482
2483 bfd_boolean
2484 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2485 struct elf_link_hash_entry *h)
2486 {
2487 if (bfd_link_pie (info)
2488 && h->dynindx == -1
2489 && h->root.type == bfd_link_hash_undefweak)
2490 return bfd_elf_link_record_dynamic_symbol (info, h);
2491
2492 return TRUE;
2493 }
2494
2495 /* Fix up the flags for a symbol. This handles various cases which
2496 can only be fixed after all the input files are seen. This is
2497 currently called by both adjust_dynamic_symbol and
2498 assign_sym_version, which is unnecessary but perhaps more robust in
2499 the face of future changes. */
2500
2501 static bfd_boolean
2502 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2503 struct elf_info_failed *eif)
2504 {
2505 const struct elf_backend_data *bed;
2506
2507 /* If this symbol was mentioned in a non-ELF file, try to set
2508 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2509 permit a non-ELF file to correctly refer to a symbol defined in
2510 an ELF dynamic object. */
2511 if (h->non_elf)
2512 {
2513 while (h->root.type == bfd_link_hash_indirect)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2515
2516 if (h->root.type != bfd_link_hash_defined
2517 && h->root.type != bfd_link_hash_defweak)
2518 {
2519 h->ref_regular = 1;
2520 h->ref_regular_nonweak = 1;
2521 }
2522 else
2523 {
2524 if (h->root.u.def.section->owner != NULL
2525 && (bfd_get_flavour (h->root.u.def.section->owner)
2526 == bfd_target_elf_flavour))
2527 {
2528 h->ref_regular = 1;
2529 h->ref_regular_nonweak = 1;
2530 }
2531 else
2532 h->def_regular = 1;
2533 }
2534
2535 if (h->dynindx == -1
2536 && (h->def_dynamic
2537 || h->ref_dynamic))
2538 {
2539 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2540 {
2541 eif->failed = TRUE;
2542 return FALSE;
2543 }
2544 }
2545 }
2546 else
2547 {
2548 /* Unfortunately, NON_ELF is only correct if the symbol
2549 was first seen in a non-ELF file. Fortunately, if the symbol
2550 was first seen in an ELF file, we're probably OK unless the
2551 symbol was defined in a non-ELF file. Catch that case here.
2552 FIXME: We're still in trouble if the symbol was first seen in
2553 a dynamic object, and then later in a non-ELF regular object. */
2554 if ((h->root.type == bfd_link_hash_defined
2555 || h->root.type == bfd_link_hash_defweak)
2556 && !h->def_regular
2557 && (h->root.u.def.section->owner != NULL
2558 ? (bfd_get_flavour (h->root.u.def.section->owner)
2559 != bfd_target_elf_flavour)
2560 : (bfd_is_abs_section (h->root.u.def.section)
2561 && !h->def_dynamic)))
2562 h->def_regular = 1;
2563 }
2564
2565 /* Backend specific symbol fixup. */
2566 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2567 if (bed->elf_backend_fixup_symbol
2568 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2569 return FALSE;
2570
2571 /* If this is a final link, and the symbol was defined as a common
2572 symbol in a regular object file, and there was no definition in
2573 any dynamic object, then the linker will have allocated space for
2574 the symbol in a common section but the DEF_REGULAR
2575 flag will not have been set. */
2576 if (h->root.type == bfd_link_hash_defined
2577 && !h->def_regular
2578 && h->ref_regular
2579 && !h->def_dynamic
2580 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2581 h->def_regular = 1;
2582
2583 /* If -Bsymbolic was used (which means to bind references to global
2584 symbols to the definition within the shared object), and this
2585 symbol was defined in a regular object, then it actually doesn't
2586 need a PLT entry. Likewise, if the symbol has non-default
2587 visibility. If the symbol has hidden or internal visibility, we
2588 will force it local. */
2589 if (h->needs_plt
2590 && bfd_link_pic (eif->info)
2591 && is_elf_hash_table (eif->info->hash)
2592 && (SYMBOLIC_BIND (eif->info, h)
2593 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2594 && h->def_regular)
2595 {
2596 bfd_boolean force_local;
2597
2598 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2599 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2600 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2601 }
2602
2603 /* If a weak undefined symbol has non-default visibility, we also
2604 hide it from the dynamic linker. */
2605 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2606 && h->root.type == bfd_link_hash_undefweak)
2607 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2608
2609 /* If this is a weak defined symbol in a dynamic object, and we know
2610 the real definition in the dynamic object, copy interesting flags
2611 over to the real definition. */
2612 if (h->u.weakdef != NULL)
2613 {
2614 /* If the real definition is defined by a regular object file,
2615 don't do anything special. See the longer description in
2616 _bfd_elf_adjust_dynamic_symbol, below. */
2617 if (h->u.weakdef->def_regular)
2618 h->u.weakdef = NULL;
2619 else
2620 {
2621 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2622
2623 while (h->root.type == bfd_link_hash_indirect)
2624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2625
2626 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2627 || h->root.type == bfd_link_hash_defweak);
2628 BFD_ASSERT (weakdef->def_dynamic);
2629 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2630 || weakdef->root.type == bfd_link_hash_defweak);
2631 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2632 }
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Make the backend pick a good value for a dynamic symbol. This is
2639 called via elf_link_hash_traverse, and also calls itself
2640 recursively. */
2641
2642 static bfd_boolean
2643 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2644 {
2645 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2646 bfd *dynobj;
2647 const struct elf_backend_data *bed;
2648
2649 if (! is_elf_hash_table (eif->info->hash))
2650 return FALSE;
2651
2652 /* Ignore indirect symbols. These are added by the versioning code. */
2653 if (h->root.type == bfd_link_hash_indirect)
2654 return TRUE;
2655
2656 /* Fix the symbol flags. */
2657 if (! _bfd_elf_fix_symbol_flags (h, eif))
2658 return FALSE;
2659
2660 /* If this symbol does not require a PLT entry, and it is not
2661 defined by a dynamic object, or is not referenced by a regular
2662 object, ignore it. We do have to handle a weak defined symbol,
2663 even if no regular object refers to it, if we decided to add it
2664 to the dynamic symbol table. FIXME: Do we normally need to worry
2665 about symbols which are defined by one dynamic object and
2666 referenced by another one? */
2667 if (!h->needs_plt
2668 && h->type != STT_GNU_IFUNC
2669 && (h->def_regular
2670 || !h->def_dynamic
2671 || (!h->ref_regular
2672 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2673 {
2674 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2675 return TRUE;
2676 }
2677
2678 /* If we've already adjusted this symbol, don't do it again. This
2679 can happen via a recursive call. */
2680 if (h->dynamic_adjusted)
2681 return TRUE;
2682
2683 /* Don't look at this symbol again. Note that we must set this
2684 after checking the above conditions, because we may look at a
2685 symbol once, decide not to do anything, and then get called
2686 recursively later after REF_REGULAR is set below. */
2687 h->dynamic_adjusted = 1;
2688
2689 /* If this is a weak definition, and we know a real definition, and
2690 the real symbol is not itself defined by a regular object file,
2691 then get a good value for the real definition. We handle the
2692 real symbol first, for the convenience of the backend routine.
2693
2694 Note that there is a confusing case here. If the real definition
2695 is defined by a regular object file, we don't get the real symbol
2696 from the dynamic object, but we do get the weak symbol. If the
2697 processor backend uses a COPY reloc, then if some routine in the
2698 dynamic object changes the real symbol, we will not see that
2699 change in the corresponding weak symbol. This is the way other
2700 ELF linkers work as well, and seems to be a result of the shared
2701 library model.
2702
2703 I will clarify this issue. Most SVR4 shared libraries define the
2704 variable _timezone and define timezone as a weak synonym. The
2705 tzset call changes _timezone. If you write
2706 extern int timezone;
2707 int _timezone = 5;
2708 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2709 you might expect that, since timezone is a synonym for _timezone,
2710 the same number will print both times. However, if the processor
2711 backend uses a COPY reloc, then actually timezone will be copied
2712 into your process image, and, since you define _timezone
2713 yourself, _timezone will not. Thus timezone and _timezone will
2714 wind up at different memory locations. The tzset call will set
2715 _timezone, leaving timezone unchanged. */
2716
2717 if (h->u.weakdef != NULL)
2718 {
2719 /* If we get to this point, there is an implicit reference to
2720 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2721 h->u.weakdef->ref_regular = 1;
2722
2723 /* Ensure that the backend adjust_dynamic_symbol function sees
2724 H->U.WEAKDEF before H by recursively calling ourselves. */
2725 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2726 return FALSE;
2727 }
2728
2729 /* If a symbol has no type and no size and does not require a PLT
2730 entry, then we are probably about to do the wrong thing here: we
2731 are probably going to create a COPY reloc for an empty object.
2732 This case can arise when a shared object is built with assembly
2733 code, and the assembly code fails to set the symbol type. */
2734 if (h->size == 0
2735 && h->type == STT_NOTYPE
2736 && !h->needs_plt)
2737 (*_bfd_error_handler)
2738 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2739 h->root.root.string);
2740
2741 dynobj = elf_hash_table (eif->info)->dynobj;
2742 bed = get_elf_backend_data (dynobj);
2743
2744 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2745 {
2746 eif->failed = TRUE;
2747 return FALSE;
2748 }
2749
2750 return TRUE;
2751 }
2752
2753 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2754 DYNBSS. */
2755
2756 bfd_boolean
2757 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2758 struct elf_link_hash_entry *h,
2759 asection *dynbss)
2760 {
2761 unsigned int power_of_two;
2762 bfd_vma mask;
2763 asection *sec = h->root.u.def.section;
2764
2765 /* The section aligment of definition is the maximum alignment
2766 requirement of symbols defined in the section. Since we don't
2767 know the symbol alignment requirement, we start with the
2768 maximum alignment and check low bits of the symbol address
2769 for the minimum alignment. */
2770 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2771 mask = ((bfd_vma) 1 << power_of_two) - 1;
2772 while ((h->root.u.def.value & mask) != 0)
2773 {
2774 mask >>= 1;
2775 --power_of_two;
2776 }
2777
2778 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2779 dynbss))
2780 {
2781 /* Adjust the section alignment if needed. */
2782 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2783 power_of_two))
2784 return FALSE;
2785 }
2786
2787 /* We make sure that the symbol will be aligned properly. */
2788 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2789
2790 /* Define the symbol as being at this point in DYNBSS. */
2791 h->root.u.def.section = dynbss;
2792 h->root.u.def.value = dynbss->size;
2793
2794 /* Increment the size of DYNBSS to make room for the symbol. */
2795 dynbss->size += h->size;
2796
2797 /* No error if extern_protected_data is true. */
2798 if (h->protected_def
2799 && (!info->extern_protected_data
2800 || (info->extern_protected_data < 0
2801 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2802 info->callbacks->einfo
2803 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2804 h->root.root.string);
2805
2806 return TRUE;
2807 }
2808
2809 /* Adjust all external symbols pointing into SEC_MERGE sections
2810 to reflect the object merging within the sections. */
2811
2812 static bfd_boolean
2813 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2814 {
2815 asection *sec;
2816
2817 if ((h->root.type == bfd_link_hash_defined
2818 || h->root.type == bfd_link_hash_defweak)
2819 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2820 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2821 {
2822 bfd *output_bfd = (bfd *) data;
2823
2824 h->root.u.def.value =
2825 _bfd_merged_section_offset (output_bfd,
2826 &h->root.u.def.section,
2827 elf_section_data (sec)->sec_info,
2828 h->root.u.def.value);
2829 }
2830
2831 return TRUE;
2832 }
2833
2834 /* Returns false if the symbol referred to by H should be considered
2835 to resolve local to the current module, and true if it should be
2836 considered to bind dynamically. */
2837
2838 bfd_boolean
2839 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2840 struct bfd_link_info *info,
2841 bfd_boolean not_local_protected)
2842 {
2843 bfd_boolean binding_stays_local_p;
2844 const struct elf_backend_data *bed;
2845 struct elf_link_hash_table *hash_table;
2846
2847 if (h == NULL)
2848 return FALSE;
2849
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 /* If it was forced local, then clearly it's not dynamic. */
2855 if (h->dynindx == -1)
2856 return FALSE;
2857 if (h->forced_local)
2858 return FALSE;
2859
2860 /* Identify the cases where name binding rules say that a
2861 visible symbol resolves locally. */
2862 binding_stays_local_p = (bfd_link_executable (info)
2863 || SYMBOLIC_BIND (info, h));
2864
2865 switch (ELF_ST_VISIBILITY (h->other))
2866 {
2867 case STV_INTERNAL:
2868 case STV_HIDDEN:
2869 return FALSE;
2870
2871 case STV_PROTECTED:
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return FALSE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* Proper resolution for function pointer equality may require
2879 that these symbols perhaps be resolved dynamically, even though
2880 we should be resolving them to the current module. */
2881 if (!not_local_protected || !bed->is_function_type (h->type))
2882 binding_stays_local_p = TRUE;
2883 break;
2884
2885 default:
2886 break;
2887 }
2888
2889 /* If it isn't defined locally, then clearly it's dynamic. */
2890 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2891 return TRUE;
2892
2893 /* Otherwise, the symbol is dynamic if binding rules don't tell
2894 us that it remains local. */
2895 return !binding_stays_local_p;
2896 }
2897
2898 /* Return true if the symbol referred to by H should be considered
2899 to resolve local to the current module, and false otherwise. Differs
2900 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2901 undefined symbols. The two functions are virtually identical except
2902 for the place where forced_local and dynindx == -1 are tested. If
2903 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2904 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2905 the symbol is local only for defined symbols.
2906 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2907 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2908 treatment of undefined weak symbols. For those that do not make
2909 undefined weak symbols dynamic, both functions may return false. */
2910
2911 bfd_boolean
2912 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2913 struct bfd_link_info *info,
2914 bfd_boolean local_protected)
2915 {
2916 const struct elf_backend_data *bed;
2917 struct elf_link_hash_table *hash_table;
2918
2919 /* If it's a local sym, of course we resolve locally. */
2920 if (h == NULL)
2921 return TRUE;
2922
2923 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2924 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2925 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2926 return TRUE;
2927
2928 /* Common symbols that become definitions don't get the DEF_REGULAR
2929 flag set, so test it first, and don't bail out. */
2930 if (ELF_COMMON_DEF_P (h))
2931 /* Do nothing. */;
2932 /* If we don't have a definition in a regular file, then we can't
2933 resolve locally. The sym is either undefined or dynamic. */
2934 else if (!h->def_regular)
2935 return FALSE;
2936
2937 /* Forced local symbols resolve locally. */
2938 if (h->forced_local)
2939 return TRUE;
2940
2941 /* As do non-dynamic symbols. */
2942 if (h->dynindx == -1)
2943 return TRUE;
2944
2945 /* At this point, we know the symbol is defined and dynamic. In an
2946 executable it must resolve locally, likewise when building symbolic
2947 shared libraries. */
2948 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2949 return TRUE;
2950
2951 /* Now deal with defined dynamic symbols in shared libraries. Ones
2952 with default visibility might not resolve locally. */
2953 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2954 return FALSE;
2955
2956 hash_table = elf_hash_table (info);
2957 if (!is_elf_hash_table (hash_table))
2958 return TRUE;
2959
2960 bed = get_elf_backend_data (hash_table->dynobj);
2961
2962 /* If extern_protected_data is false, STV_PROTECTED non-function
2963 symbols are local. */
2964 if ((!info->extern_protected_data
2965 || (info->extern_protected_data < 0
2966 && !bed->extern_protected_data))
2967 && !bed->is_function_type (h->type))
2968 return TRUE;
2969
2970 /* Function pointer equality tests may require that STV_PROTECTED
2971 symbols be treated as dynamic symbols. If the address of a
2972 function not defined in an executable is set to that function's
2973 plt entry in the executable, then the address of the function in
2974 a shared library must also be the plt entry in the executable. */
2975 return local_protected;
2976 }
2977
2978 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2979 aligned. Returns the first TLS output section. */
2980
2981 struct bfd_section *
2982 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2983 {
2984 struct bfd_section *sec, *tls;
2985 unsigned int align = 0;
2986
2987 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2988 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2989 break;
2990 tls = sec;
2991
2992 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2993 if (sec->alignment_power > align)
2994 align = sec->alignment_power;
2995
2996 elf_hash_table (info)->tls_sec = tls;
2997
2998 /* Ensure the alignment of the first section is the largest alignment,
2999 so that the tls segment starts aligned. */
3000 if (tls != NULL)
3001 tls->alignment_power = align;
3002
3003 return tls;
3004 }
3005
3006 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3007 static bfd_boolean
3008 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3009 Elf_Internal_Sym *sym)
3010 {
3011 const struct elf_backend_data *bed;
3012
3013 /* Local symbols do not count, but target specific ones might. */
3014 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3015 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3016 return FALSE;
3017
3018 bed = get_elf_backend_data (abfd);
3019 /* Function symbols do not count. */
3020 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3021 return FALSE;
3022
3023 /* If the section is undefined, then so is the symbol. */
3024 if (sym->st_shndx == SHN_UNDEF)
3025 return FALSE;
3026
3027 /* If the symbol is defined in the common section, then
3028 it is a common definition and so does not count. */
3029 if (bed->common_definition (sym))
3030 return FALSE;
3031
3032 /* If the symbol is in a target specific section then we
3033 must rely upon the backend to tell us what it is. */
3034 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3035 /* FIXME - this function is not coded yet:
3036
3037 return _bfd_is_global_symbol_definition (abfd, sym);
3038
3039 Instead for now assume that the definition is not global,
3040 Even if this is wrong, at least the linker will behave
3041 in the same way that it used to do. */
3042 return FALSE;
3043
3044 return TRUE;
3045 }
3046
3047 /* Search the symbol table of the archive element of the archive ABFD
3048 whose archive map contains a mention of SYMDEF, and determine if
3049 the symbol is defined in this element. */
3050 static bfd_boolean
3051 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3052 {
3053 Elf_Internal_Shdr * hdr;
3054 bfd_size_type symcount;
3055 bfd_size_type extsymcount;
3056 bfd_size_type extsymoff;
3057 Elf_Internal_Sym *isymbuf;
3058 Elf_Internal_Sym *isym;
3059 Elf_Internal_Sym *isymend;
3060 bfd_boolean result;
3061
3062 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3063 if (abfd == NULL)
3064 return FALSE;
3065
3066 /* Return FALSE if the object has been claimed by plugin. */
3067 if (abfd->plugin_format == bfd_plugin_yes)
3068 return FALSE;
3069
3070 if (! bfd_check_format (abfd, bfd_object))
3071 return FALSE;
3072
3073 /* Select the appropriate symbol table. */
3074 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3075 hdr = &elf_tdata (abfd)->symtab_hdr;
3076 else
3077 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3078
3079 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3080
3081 /* The sh_info field of the symtab header tells us where the
3082 external symbols start. We don't care about the local symbols. */
3083 if (elf_bad_symtab (abfd))
3084 {
3085 extsymcount = symcount;
3086 extsymoff = 0;
3087 }
3088 else
3089 {
3090 extsymcount = symcount - hdr->sh_info;
3091 extsymoff = hdr->sh_info;
3092 }
3093
3094 if (extsymcount == 0)
3095 return FALSE;
3096
3097 /* Read in the symbol table. */
3098 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3099 NULL, NULL, NULL);
3100 if (isymbuf == NULL)
3101 return FALSE;
3102
3103 /* Scan the symbol table looking for SYMDEF. */
3104 result = FALSE;
3105 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3106 {
3107 const char *name;
3108
3109 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3110 isym->st_name);
3111 if (name == NULL)
3112 break;
3113
3114 if (strcmp (name, symdef->name) == 0)
3115 {
3116 result = is_global_data_symbol_definition (abfd, isym);
3117 break;
3118 }
3119 }
3120
3121 free (isymbuf);
3122
3123 return result;
3124 }
3125 \f
3126 /* Add an entry to the .dynamic table. */
3127
3128 bfd_boolean
3129 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3130 bfd_vma tag,
3131 bfd_vma val)
3132 {
3133 struct elf_link_hash_table *hash_table;
3134 const struct elf_backend_data *bed;
3135 asection *s;
3136 bfd_size_type newsize;
3137 bfd_byte *newcontents;
3138 Elf_Internal_Dyn dyn;
3139
3140 hash_table = elf_hash_table (info);
3141 if (! is_elf_hash_table (hash_table))
3142 return FALSE;
3143
3144 bed = get_elf_backend_data (hash_table->dynobj);
3145 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3146 BFD_ASSERT (s != NULL);
3147
3148 newsize = s->size + bed->s->sizeof_dyn;
3149 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3150 if (newcontents == NULL)
3151 return FALSE;
3152
3153 dyn.d_tag = tag;
3154 dyn.d_un.d_val = val;
3155 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3156
3157 s->size = newsize;
3158 s->contents = newcontents;
3159
3160 return TRUE;
3161 }
3162
3163 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3164 otherwise just check whether one already exists. Returns -1 on error,
3165 1 if a DT_NEEDED tag already exists, and 0 on success. */
3166
3167 static int
3168 elf_add_dt_needed_tag (bfd *abfd,
3169 struct bfd_link_info *info,
3170 const char *soname,
3171 bfd_boolean do_it)
3172 {
3173 struct elf_link_hash_table *hash_table;
3174 bfd_size_type strindex;
3175
3176 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3177 return -1;
3178
3179 hash_table = elf_hash_table (info);
3180 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3181 if (strindex == (bfd_size_type) -1)
3182 return -1;
3183
3184 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3185 {
3186 asection *sdyn;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 bed = get_elf_backend_data (hash_table->dynobj);
3191 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3192 if (sdyn != NULL)
3193 for (extdyn = sdyn->contents;
3194 extdyn < sdyn->contents + sdyn->size;
3195 extdyn += bed->s->sizeof_dyn)
3196 {
3197 Elf_Internal_Dyn dyn;
3198
3199 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3200 if (dyn.d_tag == DT_NEEDED
3201 && dyn.d_un.d_val == strindex)
3202 {
3203 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3204 return 1;
3205 }
3206 }
3207 }
3208
3209 if (do_it)
3210 {
3211 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3212 return -1;
3213
3214 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3215 return -1;
3216 }
3217 else
3218 /* We were just checking for existence of the tag. */
3219 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3220
3221 return 0;
3222 }
3223
3224 static bfd_boolean
3225 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3226 {
3227 for (; needed != NULL; needed = needed->next)
3228 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3229 && strcmp (soname, needed->name) == 0)
3230 return TRUE;
3231
3232 return FALSE;
3233 }
3234
3235 /* Sort symbol by value, section, and size. */
3236 static int
3237 elf_sort_symbol (const void *arg1, const void *arg2)
3238 {
3239 const struct elf_link_hash_entry *h1;
3240 const struct elf_link_hash_entry *h2;
3241 bfd_signed_vma vdiff;
3242
3243 h1 = *(const struct elf_link_hash_entry **) arg1;
3244 h2 = *(const struct elf_link_hash_entry **) arg2;
3245 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3246 if (vdiff != 0)
3247 return vdiff > 0 ? 1 : -1;
3248 else
3249 {
3250 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3251 if (sdiff != 0)
3252 return sdiff > 0 ? 1 : -1;
3253 }
3254 vdiff = h1->size - h2->size;
3255 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3256 }
3257
3258 /* This function is used to adjust offsets into .dynstr for
3259 dynamic symbols. This is called via elf_link_hash_traverse. */
3260
3261 static bfd_boolean
3262 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3263 {
3264 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3265
3266 if (h->dynindx != -1)
3267 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3268 return TRUE;
3269 }
3270
3271 /* Assign string offsets in .dynstr, update all structures referencing
3272 them. */
3273
3274 static bfd_boolean
3275 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3276 {
3277 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3278 struct elf_link_local_dynamic_entry *entry;
3279 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3280 bfd *dynobj = hash_table->dynobj;
3281 asection *sdyn;
3282 bfd_size_type size;
3283 const struct elf_backend_data *bed;
3284 bfd_byte *extdyn;
3285
3286 _bfd_elf_strtab_finalize (dynstr);
3287 size = _bfd_elf_strtab_size (dynstr);
3288
3289 bed = get_elf_backend_data (dynobj);
3290 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3291 BFD_ASSERT (sdyn != NULL);
3292
3293 /* Update all .dynamic entries referencing .dynstr strings. */
3294 for (extdyn = sdyn->contents;
3295 extdyn < sdyn->contents + sdyn->size;
3296 extdyn += bed->s->sizeof_dyn)
3297 {
3298 Elf_Internal_Dyn dyn;
3299
3300 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3301 switch (dyn.d_tag)
3302 {
3303 case DT_STRSZ:
3304 dyn.d_un.d_val = size;
3305 break;
3306 case DT_NEEDED:
3307 case DT_SONAME:
3308 case DT_RPATH:
3309 case DT_RUNPATH:
3310 case DT_FILTER:
3311 case DT_AUXILIARY:
3312 case DT_AUDIT:
3313 case DT_DEPAUDIT:
3314 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3315 break;
3316 default:
3317 continue;
3318 }
3319 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3320 }
3321
3322 /* Now update local dynamic symbols. */
3323 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3324 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3325 entry->isym.st_name);
3326
3327 /* And the rest of dynamic symbols. */
3328 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3329
3330 /* Adjust version definitions. */
3331 if (elf_tdata (output_bfd)->cverdefs)
3332 {
3333 asection *s;
3334 bfd_byte *p;
3335 bfd_size_type i;
3336 Elf_Internal_Verdef def;
3337 Elf_Internal_Verdaux defaux;
3338
3339 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3340 p = s->contents;
3341 do
3342 {
3343 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3344 &def);
3345 p += sizeof (Elf_External_Verdef);
3346 if (def.vd_aux != sizeof (Elf_External_Verdef))
3347 continue;
3348 for (i = 0; i < def.vd_cnt; ++i)
3349 {
3350 _bfd_elf_swap_verdaux_in (output_bfd,
3351 (Elf_External_Verdaux *) p, &defaux);
3352 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3353 defaux.vda_name);
3354 _bfd_elf_swap_verdaux_out (output_bfd,
3355 &defaux, (Elf_External_Verdaux *) p);
3356 p += sizeof (Elf_External_Verdaux);
3357 }
3358 }
3359 while (def.vd_next);
3360 }
3361
3362 /* Adjust version references. */
3363 if (elf_tdata (output_bfd)->verref)
3364 {
3365 asection *s;
3366 bfd_byte *p;
3367 bfd_size_type i;
3368 Elf_Internal_Verneed need;
3369 Elf_Internal_Vernaux needaux;
3370
3371 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3372 p = s->contents;
3373 do
3374 {
3375 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3376 &need);
3377 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3378 _bfd_elf_swap_verneed_out (output_bfd, &need,
3379 (Elf_External_Verneed *) p);
3380 p += sizeof (Elf_External_Verneed);
3381 for (i = 0; i < need.vn_cnt; ++i)
3382 {
3383 _bfd_elf_swap_vernaux_in (output_bfd,
3384 (Elf_External_Vernaux *) p, &needaux);
3385 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3386 needaux.vna_name);
3387 _bfd_elf_swap_vernaux_out (output_bfd,
3388 &needaux,
3389 (Elf_External_Vernaux *) p);
3390 p += sizeof (Elf_External_Vernaux);
3391 }
3392 }
3393 while (need.vn_next);
3394 }
3395
3396 return TRUE;
3397 }
3398 \f
3399 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3400 The default is to only match when the INPUT and OUTPUT are exactly
3401 the same target. */
3402
3403 bfd_boolean
3404 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3405 const bfd_target *output)
3406 {
3407 return input == output;
3408 }
3409
3410 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3411 This version is used when different targets for the same architecture
3412 are virtually identical. */
3413
3414 bfd_boolean
3415 _bfd_elf_relocs_compatible (const bfd_target *input,
3416 const bfd_target *output)
3417 {
3418 const struct elf_backend_data *obed, *ibed;
3419
3420 if (input == output)
3421 return TRUE;
3422
3423 ibed = xvec_get_elf_backend_data (input);
3424 obed = xvec_get_elf_backend_data (output);
3425
3426 if (ibed->arch != obed->arch)
3427 return FALSE;
3428
3429 /* If both backends are using this function, deem them compatible. */
3430 return ibed->relocs_compatible == obed->relocs_compatible;
3431 }
3432
3433 /* Make a special call to the linker "notice" function to tell it that
3434 we are about to handle an as-needed lib, or have finished
3435 processing the lib. */
3436
3437 bfd_boolean
3438 _bfd_elf_notice_as_needed (bfd *ibfd,
3439 struct bfd_link_info *info,
3440 enum notice_asneeded_action act)
3441 {
3442 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3443 }
3444
3445 /* Add symbols from an ELF object file to the linker hash table. */
3446
3447 static bfd_boolean
3448 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3449 {
3450 Elf_Internal_Ehdr *ehdr;
3451 Elf_Internal_Shdr *hdr;
3452 bfd_size_type symcount;
3453 bfd_size_type extsymcount;
3454 bfd_size_type extsymoff;
3455 struct elf_link_hash_entry **sym_hash;
3456 bfd_boolean dynamic;
3457 Elf_External_Versym *extversym = NULL;
3458 Elf_External_Versym *ever;
3459 struct elf_link_hash_entry *weaks;
3460 struct elf_link_hash_entry **nondeflt_vers = NULL;
3461 bfd_size_type nondeflt_vers_cnt = 0;
3462 Elf_Internal_Sym *isymbuf = NULL;
3463 Elf_Internal_Sym *isym;
3464 Elf_Internal_Sym *isymend;
3465 const struct elf_backend_data *bed;
3466 bfd_boolean add_needed;
3467 struct elf_link_hash_table *htab;
3468 bfd_size_type amt;
3469 void *alloc_mark = NULL;
3470 struct bfd_hash_entry **old_table = NULL;
3471 unsigned int old_size = 0;
3472 unsigned int old_count = 0;
3473 void *old_tab = NULL;
3474 void *old_ent;
3475 struct bfd_link_hash_entry *old_undefs = NULL;
3476 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3477 long old_dynsymcount = 0;
3478 bfd_size_type old_dynstr_size = 0;
3479 size_t tabsize = 0;
3480 asection *s;
3481 bfd_boolean just_syms;
3482
3483 htab = elf_hash_table (info);
3484 bed = get_elf_backend_data (abfd);
3485
3486 if ((abfd->flags & DYNAMIC) == 0)
3487 dynamic = FALSE;
3488 else
3489 {
3490 dynamic = TRUE;
3491
3492 /* You can't use -r against a dynamic object. Also, there's no
3493 hope of using a dynamic object which does not exactly match
3494 the format of the output file. */
3495 if (bfd_link_relocatable (info)
3496 || !is_elf_hash_table (htab)
3497 || info->output_bfd->xvec != abfd->xvec)
3498 {
3499 if (bfd_link_relocatable (info))
3500 bfd_set_error (bfd_error_invalid_operation);
3501 else
3502 bfd_set_error (bfd_error_wrong_format);
3503 goto error_return;
3504 }
3505 }
3506
3507 ehdr = elf_elfheader (abfd);
3508 if (info->warn_alternate_em
3509 && bed->elf_machine_code != ehdr->e_machine
3510 && ((bed->elf_machine_alt1 != 0
3511 && ehdr->e_machine == bed->elf_machine_alt1)
3512 || (bed->elf_machine_alt2 != 0
3513 && ehdr->e_machine == bed->elf_machine_alt2)))
3514 info->callbacks->einfo
3515 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3516 ehdr->e_machine, abfd, bed->elf_machine_code);
3517
3518 /* As a GNU extension, any input sections which are named
3519 .gnu.warning.SYMBOL are treated as warning symbols for the given
3520 symbol. This differs from .gnu.warning sections, which generate
3521 warnings when they are included in an output file. */
3522 /* PR 12761: Also generate this warning when building shared libraries. */
3523 for (s = abfd->sections; s != NULL; s = s->next)
3524 {
3525 const char *name;
3526
3527 name = bfd_get_section_name (abfd, s);
3528 if (CONST_STRNEQ (name, ".gnu.warning."))
3529 {
3530 char *msg;
3531 bfd_size_type sz;
3532
3533 name += sizeof ".gnu.warning." - 1;
3534
3535 /* If this is a shared object, then look up the symbol
3536 in the hash table. If it is there, and it is already
3537 been defined, then we will not be using the entry
3538 from this shared object, so we don't need to warn.
3539 FIXME: If we see the definition in a regular object
3540 later on, we will warn, but we shouldn't. The only
3541 fix is to keep track of what warnings we are supposed
3542 to emit, and then handle them all at the end of the
3543 link. */
3544 if (dynamic)
3545 {
3546 struct elf_link_hash_entry *h;
3547
3548 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3549
3550 /* FIXME: What about bfd_link_hash_common? */
3551 if (h != NULL
3552 && (h->root.type == bfd_link_hash_defined
3553 || h->root.type == bfd_link_hash_defweak))
3554 continue;
3555 }
3556
3557 sz = s->size;
3558 msg = (char *) bfd_alloc (abfd, sz + 1);
3559 if (msg == NULL)
3560 goto error_return;
3561
3562 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3563 goto error_return;
3564
3565 msg[sz] = '\0';
3566
3567 if (! (_bfd_generic_link_add_one_symbol
3568 (info, abfd, name, BSF_WARNING, s, 0, msg,
3569 FALSE, bed->collect, NULL)))
3570 goto error_return;
3571
3572 if (bfd_link_executable (info))
3573 {
3574 /* Clobber the section size so that the warning does
3575 not get copied into the output file. */
3576 s->size = 0;
3577
3578 /* Also set SEC_EXCLUDE, so that symbols defined in
3579 the warning section don't get copied to the output. */
3580 s->flags |= SEC_EXCLUDE;
3581 }
3582 }
3583 }
3584
3585 just_syms = ((s = abfd->sections) != NULL
3586 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3587
3588 add_needed = TRUE;
3589 if (! dynamic)
3590 {
3591 /* If we are creating a shared library, create all the dynamic
3592 sections immediately. We need to attach them to something,
3593 so we attach them to this BFD, provided it is the right
3594 format and is not from ld --just-symbols. FIXME: If there
3595 are no input BFD's of the same format as the output, we can't
3596 make a shared library. */
3597 if (!just_syms
3598 && bfd_link_pic (info)
3599 && is_elf_hash_table (htab)
3600 && info->output_bfd->xvec == abfd->xvec
3601 && !htab->dynamic_sections_created)
3602 {
3603 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3604 goto error_return;
3605 }
3606 }
3607 else if (!is_elf_hash_table (htab))
3608 goto error_return;
3609 else
3610 {
3611 const char *soname = NULL;
3612 char *audit = NULL;
3613 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3614 int ret;
3615
3616 /* ld --just-symbols and dynamic objects don't mix very well.
3617 ld shouldn't allow it. */
3618 if (just_syms)
3619 abort ();
3620
3621 /* If this dynamic lib was specified on the command line with
3622 --as-needed in effect, then we don't want to add a DT_NEEDED
3623 tag unless the lib is actually used. Similary for libs brought
3624 in by another lib's DT_NEEDED. When --no-add-needed is used
3625 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3626 any dynamic library in DT_NEEDED tags in the dynamic lib at
3627 all. */
3628 add_needed = (elf_dyn_lib_class (abfd)
3629 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3630 | DYN_NO_NEEDED)) == 0;
3631
3632 s = bfd_get_section_by_name (abfd, ".dynamic");
3633 if (s != NULL)
3634 {
3635 bfd_byte *dynbuf;
3636 bfd_byte *extdyn;
3637 unsigned int elfsec;
3638 unsigned long shlink;
3639
3640 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3641 {
3642 error_free_dyn:
3643 free (dynbuf);
3644 goto error_return;
3645 }
3646
3647 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3648 if (elfsec == SHN_BAD)
3649 goto error_free_dyn;
3650 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3651
3652 for (extdyn = dynbuf;
3653 extdyn < dynbuf + s->size;
3654 extdyn += bed->s->sizeof_dyn)
3655 {
3656 Elf_Internal_Dyn dyn;
3657
3658 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3659 if (dyn.d_tag == DT_SONAME)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 if (soname == NULL)
3664 goto error_free_dyn;
3665 }
3666 if (dyn.d_tag == DT_NEEDED)
3667 {
3668 struct bfd_link_needed_list *n, **pn;
3669 char *fnm, *anm;
3670 unsigned int tagv = dyn.d_un.d_val;
3671
3672 amt = sizeof (struct bfd_link_needed_list);
3673 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3674 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3675 if (n == NULL || fnm == NULL)
3676 goto error_free_dyn;
3677 amt = strlen (fnm) + 1;
3678 anm = (char *) bfd_alloc (abfd, amt);
3679 if (anm == NULL)
3680 goto error_free_dyn;
3681 memcpy (anm, fnm, amt);
3682 n->name = anm;
3683 n->by = abfd;
3684 n->next = NULL;
3685 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3686 ;
3687 *pn = n;
3688 }
3689 if (dyn.d_tag == DT_RUNPATH)
3690 {
3691 struct bfd_link_needed_list *n, **pn;
3692 char *fnm, *anm;
3693 unsigned int tagv = dyn.d_un.d_val;
3694
3695 amt = sizeof (struct bfd_link_needed_list);
3696 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3697 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3698 if (n == NULL || fnm == NULL)
3699 goto error_free_dyn;
3700 amt = strlen (fnm) + 1;
3701 anm = (char *) bfd_alloc (abfd, amt);
3702 if (anm == NULL)
3703 goto error_free_dyn;
3704 memcpy (anm, fnm, amt);
3705 n->name = anm;
3706 n->by = abfd;
3707 n->next = NULL;
3708 for (pn = & runpath;
3709 *pn != NULL;
3710 pn = &(*pn)->next)
3711 ;
3712 *pn = n;
3713 }
3714 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3715 if (!runpath && dyn.d_tag == DT_RPATH)
3716 {
3717 struct bfd_link_needed_list *n, **pn;
3718 char *fnm, *anm;
3719 unsigned int tagv = dyn.d_un.d_val;
3720
3721 amt = sizeof (struct bfd_link_needed_list);
3722 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3723 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3724 if (n == NULL || fnm == NULL)
3725 goto error_free_dyn;
3726 amt = strlen (fnm) + 1;
3727 anm = (char *) bfd_alloc (abfd, amt);
3728 if (anm == NULL)
3729 goto error_free_dyn;
3730 memcpy (anm, fnm, amt);
3731 n->name = anm;
3732 n->by = abfd;
3733 n->next = NULL;
3734 for (pn = & rpath;
3735 *pn != NULL;
3736 pn = &(*pn)->next)
3737 ;
3738 *pn = n;
3739 }
3740 if (dyn.d_tag == DT_AUDIT)
3741 {
3742 unsigned int tagv = dyn.d_un.d_val;
3743 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3744 }
3745 }
3746
3747 free (dynbuf);
3748 }
3749
3750 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3751 frees all more recently bfd_alloc'd blocks as well. */
3752 if (runpath)
3753 rpath = runpath;
3754
3755 if (rpath)
3756 {
3757 struct bfd_link_needed_list **pn;
3758 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3759 ;
3760 *pn = rpath;
3761 }
3762
3763 /* We do not want to include any of the sections in a dynamic
3764 object in the output file. We hack by simply clobbering the
3765 list of sections in the BFD. This could be handled more
3766 cleanly by, say, a new section flag; the existing
3767 SEC_NEVER_LOAD flag is not the one we want, because that one
3768 still implies that the section takes up space in the output
3769 file. */
3770 bfd_section_list_clear (abfd);
3771
3772 /* Find the name to use in a DT_NEEDED entry that refers to this
3773 object. If the object has a DT_SONAME entry, we use it.
3774 Otherwise, if the generic linker stuck something in
3775 elf_dt_name, we use that. Otherwise, we just use the file
3776 name. */
3777 if (soname == NULL || *soname == '\0')
3778 {
3779 soname = elf_dt_name (abfd);
3780 if (soname == NULL || *soname == '\0')
3781 soname = bfd_get_filename (abfd);
3782 }
3783
3784 /* Save the SONAME because sometimes the linker emulation code
3785 will need to know it. */
3786 elf_dt_name (abfd) = soname;
3787
3788 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3789 if (ret < 0)
3790 goto error_return;
3791
3792 /* If we have already included this dynamic object in the
3793 link, just ignore it. There is no reason to include a
3794 particular dynamic object more than once. */
3795 if (ret > 0)
3796 return TRUE;
3797
3798 /* Save the DT_AUDIT entry for the linker emulation code. */
3799 elf_dt_audit (abfd) = audit;
3800 }
3801
3802 /* If this is a dynamic object, we always link against the .dynsym
3803 symbol table, not the .symtab symbol table. The dynamic linker
3804 will only see the .dynsym symbol table, so there is no reason to
3805 look at .symtab for a dynamic object. */
3806
3807 if (! dynamic || elf_dynsymtab (abfd) == 0)
3808 hdr = &elf_tdata (abfd)->symtab_hdr;
3809 else
3810 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3811
3812 symcount = hdr->sh_size / bed->s->sizeof_sym;
3813
3814 /* The sh_info field of the symtab header tells us where the
3815 external symbols start. We don't care about the local symbols at
3816 this point. */
3817 if (elf_bad_symtab (abfd))
3818 {
3819 extsymcount = symcount;
3820 extsymoff = 0;
3821 }
3822 else
3823 {
3824 extsymcount = symcount - hdr->sh_info;
3825 extsymoff = hdr->sh_info;
3826 }
3827
3828 sym_hash = elf_sym_hashes (abfd);
3829 if (extsymcount != 0)
3830 {
3831 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3832 NULL, NULL, NULL);
3833 if (isymbuf == NULL)
3834 goto error_return;
3835
3836 if (sym_hash == NULL)
3837 {
3838 /* We store a pointer to the hash table entry for each
3839 external symbol. */
3840 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3841 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3842 if (sym_hash == NULL)
3843 goto error_free_sym;
3844 elf_sym_hashes (abfd) = sym_hash;
3845 }
3846 }
3847
3848 if (dynamic)
3849 {
3850 /* Read in any version definitions. */
3851 if (!_bfd_elf_slurp_version_tables (abfd,
3852 info->default_imported_symver))
3853 goto error_free_sym;
3854
3855 /* Read in the symbol versions, but don't bother to convert them
3856 to internal format. */
3857 if (elf_dynversym (abfd) != 0)
3858 {
3859 Elf_Internal_Shdr *versymhdr;
3860
3861 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3862 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3863 if (extversym == NULL)
3864 goto error_free_sym;
3865 amt = versymhdr->sh_size;
3866 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3867 || bfd_bread (extversym, amt, abfd) != amt)
3868 goto error_free_vers;
3869 }
3870 }
3871
3872 /* If we are loading an as-needed shared lib, save the symbol table
3873 state before we start adding symbols. If the lib turns out
3874 to be unneeded, restore the state. */
3875 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3876 {
3877 unsigned int i;
3878 size_t entsize;
3879
3880 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3881 {
3882 struct bfd_hash_entry *p;
3883 struct elf_link_hash_entry *h;
3884
3885 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3886 {
3887 h = (struct elf_link_hash_entry *) p;
3888 entsize += htab->root.table.entsize;
3889 if (h->root.type == bfd_link_hash_warning)
3890 entsize += htab->root.table.entsize;
3891 }
3892 }
3893
3894 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3895 old_tab = bfd_malloc (tabsize + entsize);
3896 if (old_tab == NULL)
3897 goto error_free_vers;
3898
3899 /* Remember the current objalloc pointer, so that all mem for
3900 symbols added can later be reclaimed. */
3901 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3902 if (alloc_mark == NULL)
3903 goto error_free_vers;
3904
3905 /* Make a special call to the linker "notice" function to
3906 tell it that we are about to handle an as-needed lib. */
3907 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3908 goto error_free_vers;
3909
3910 /* Clone the symbol table. Remember some pointers into the
3911 symbol table, and dynamic symbol count. */
3912 old_ent = (char *) old_tab + tabsize;
3913 memcpy (old_tab, htab->root.table.table, tabsize);
3914 old_undefs = htab->root.undefs;
3915 old_undefs_tail = htab->root.undefs_tail;
3916 old_table = htab->root.table.table;
3917 old_size = htab->root.table.size;
3918 old_count = htab->root.table.count;
3919 old_dynsymcount = htab->dynsymcount;
3920 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3921
3922 for (i = 0; i < htab->root.table.size; i++)
3923 {
3924 struct bfd_hash_entry *p;
3925 struct elf_link_hash_entry *h;
3926
3927 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3928 {
3929 memcpy (old_ent, p, htab->root.table.entsize);
3930 old_ent = (char *) old_ent + htab->root.table.entsize;
3931 h = (struct elf_link_hash_entry *) p;
3932 if (h->root.type == bfd_link_hash_warning)
3933 {
3934 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3935 old_ent = (char *) old_ent + htab->root.table.entsize;
3936 }
3937 }
3938 }
3939 }
3940
3941 weaks = NULL;
3942 ever = extversym != NULL ? extversym + extsymoff : NULL;
3943 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3944 isym < isymend;
3945 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3946 {
3947 int bind;
3948 bfd_vma value;
3949 asection *sec, *new_sec;
3950 flagword flags;
3951 const char *name;
3952 struct elf_link_hash_entry *h;
3953 struct elf_link_hash_entry *hi;
3954 bfd_boolean definition;
3955 bfd_boolean size_change_ok;
3956 bfd_boolean type_change_ok;
3957 bfd_boolean new_weakdef;
3958 bfd_boolean new_weak;
3959 bfd_boolean old_weak;
3960 bfd_boolean override;
3961 bfd_boolean common;
3962 unsigned int old_alignment;
3963 bfd *old_bfd;
3964 bfd_boolean matched;
3965
3966 override = FALSE;
3967
3968 flags = BSF_NO_FLAGS;
3969 sec = NULL;
3970 value = isym->st_value;
3971 common = bed->common_definition (isym);
3972
3973 bind = ELF_ST_BIND (isym->st_info);
3974 switch (bind)
3975 {
3976 case STB_LOCAL:
3977 /* This should be impossible, since ELF requires that all
3978 global symbols follow all local symbols, and that sh_info
3979 point to the first global symbol. Unfortunately, Irix 5
3980 screws this up. */
3981 continue;
3982
3983 case STB_GLOBAL:
3984 if (isym->st_shndx != SHN_UNDEF && !common)
3985 flags = BSF_GLOBAL;
3986 break;
3987
3988 case STB_WEAK:
3989 flags = BSF_WEAK;
3990 break;
3991
3992 case STB_GNU_UNIQUE:
3993 flags = BSF_GNU_UNIQUE;
3994 break;
3995
3996 default:
3997 /* Leave it up to the processor backend. */
3998 break;
3999 }
4000
4001 if (isym->st_shndx == SHN_UNDEF)
4002 sec = bfd_und_section_ptr;
4003 else if (isym->st_shndx == SHN_ABS)
4004 sec = bfd_abs_section_ptr;
4005 else if (isym->st_shndx == SHN_COMMON)
4006 {
4007 sec = bfd_com_section_ptr;
4008 /* What ELF calls the size we call the value. What ELF
4009 calls the value we call the alignment. */
4010 value = isym->st_size;
4011 }
4012 else
4013 {
4014 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4015 if (sec == NULL)
4016 sec = bfd_abs_section_ptr;
4017 else if (discarded_section (sec))
4018 {
4019 /* Symbols from discarded section are undefined. We keep
4020 its visibility. */
4021 sec = bfd_und_section_ptr;
4022 isym->st_shndx = SHN_UNDEF;
4023 }
4024 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4025 value -= sec->vma;
4026 }
4027
4028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4029 isym->st_name);
4030 if (name == NULL)
4031 goto error_free_vers;
4032
4033 if (isym->st_shndx == SHN_COMMON
4034 && (abfd->flags & BFD_PLUGIN) != 0)
4035 {
4036 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4037
4038 if (xc == NULL)
4039 {
4040 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4041 | SEC_EXCLUDE);
4042 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4043 if (xc == NULL)
4044 goto error_free_vers;
4045 }
4046 sec = xc;
4047 }
4048 else if (isym->st_shndx == SHN_COMMON
4049 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4050 && !bfd_link_relocatable (info))
4051 {
4052 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4053
4054 if (tcomm == NULL)
4055 {
4056 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4057 | SEC_LINKER_CREATED);
4058 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4059 if (tcomm == NULL)
4060 goto error_free_vers;
4061 }
4062 sec = tcomm;
4063 }
4064 else if (bed->elf_add_symbol_hook)
4065 {
4066 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4067 &sec, &value))
4068 goto error_free_vers;
4069
4070 /* The hook function sets the name to NULL if this symbol
4071 should be skipped for some reason. */
4072 if (name == NULL)
4073 continue;
4074 }
4075
4076 /* Sanity check that all possibilities were handled. */
4077 if (sec == NULL)
4078 {
4079 bfd_set_error (bfd_error_bad_value);
4080 goto error_free_vers;
4081 }
4082
4083 /* Silently discard TLS symbols from --just-syms. There's
4084 no way to combine a static TLS block with a new TLS block
4085 for this executable. */
4086 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4087 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4088 continue;
4089
4090 if (bfd_is_und_section (sec)
4091 || bfd_is_com_section (sec))
4092 definition = FALSE;
4093 else
4094 definition = TRUE;
4095
4096 size_change_ok = FALSE;
4097 type_change_ok = bed->type_change_ok;
4098 old_weak = FALSE;
4099 matched = FALSE;
4100 old_alignment = 0;
4101 old_bfd = NULL;
4102 new_sec = sec;
4103
4104 if (is_elf_hash_table (htab))
4105 {
4106 Elf_Internal_Versym iver;
4107 unsigned int vernum = 0;
4108 bfd_boolean skip;
4109
4110 if (ever == NULL)
4111 {
4112 if (info->default_imported_symver)
4113 /* Use the default symbol version created earlier. */
4114 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4115 else
4116 iver.vs_vers = 0;
4117 }
4118 else
4119 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4120
4121 vernum = iver.vs_vers & VERSYM_VERSION;
4122
4123 /* If this is a hidden symbol, or if it is not version
4124 1, we append the version name to the symbol name.
4125 However, we do not modify a non-hidden absolute symbol
4126 if it is not a function, because it might be the version
4127 symbol itself. FIXME: What if it isn't? */
4128 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4129 || (vernum > 1
4130 && (!bfd_is_abs_section (sec)
4131 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4132 {
4133 const char *verstr;
4134 size_t namelen, verlen, newlen;
4135 char *newname, *p;
4136
4137 if (isym->st_shndx != SHN_UNDEF)
4138 {
4139 if (vernum > elf_tdata (abfd)->cverdefs)
4140 verstr = NULL;
4141 else if (vernum > 1)
4142 verstr =
4143 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4144 else
4145 verstr = "";
4146
4147 if (verstr == NULL)
4148 {
4149 (*_bfd_error_handler)
4150 (_("%B: %s: invalid version %u (max %d)"),
4151 abfd, name, vernum,
4152 elf_tdata (abfd)->cverdefs);
4153 bfd_set_error (bfd_error_bad_value);
4154 goto error_free_vers;
4155 }
4156 }
4157 else
4158 {
4159 /* We cannot simply test for the number of
4160 entries in the VERNEED section since the
4161 numbers for the needed versions do not start
4162 at 0. */
4163 Elf_Internal_Verneed *t;
4164
4165 verstr = NULL;
4166 for (t = elf_tdata (abfd)->verref;
4167 t != NULL;
4168 t = t->vn_nextref)
4169 {
4170 Elf_Internal_Vernaux *a;
4171
4172 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4173 {
4174 if (a->vna_other == vernum)
4175 {
4176 verstr = a->vna_nodename;
4177 break;
4178 }
4179 }
4180 if (a != NULL)
4181 break;
4182 }
4183 if (verstr == NULL)
4184 {
4185 (*_bfd_error_handler)
4186 (_("%B: %s: invalid needed version %d"),
4187 abfd, name, vernum);
4188 bfd_set_error (bfd_error_bad_value);
4189 goto error_free_vers;
4190 }
4191 }
4192
4193 namelen = strlen (name);
4194 verlen = strlen (verstr);
4195 newlen = namelen + verlen + 2;
4196 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4197 && isym->st_shndx != SHN_UNDEF)
4198 ++newlen;
4199
4200 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4201 if (newname == NULL)
4202 goto error_free_vers;
4203 memcpy (newname, name, namelen);
4204 p = newname + namelen;
4205 *p++ = ELF_VER_CHR;
4206 /* If this is a defined non-hidden version symbol,
4207 we add another @ to the name. This indicates the
4208 default version of the symbol. */
4209 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4210 && isym->st_shndx != SHN_UNDEF)
4211 *p++ = ELF_VER_CHR;
4212 memcpy (p, verstr, verlen + 1);
4213
4214 name = newname;
4215 }
4216
4217 /* If this symbol has default visibility and the user has
4218 requested we not re-export it, then mark it as hidden. */
4219 if (!bfd_is_und_section (sec)
4220 && !dynamic
4221 && abfd->no_export
4222 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4223 isym->st_other = (STV_HIDDEN
4224 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4225
4226 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4227 sym_hash, &old_bfd, &old_weak,
4228 &old_alignment, &skip, &override,
4229 &type_change_ok, &size_change_ok,
4230 &matched))
4231 goto error_free_vers;
4232
4233 if (skip)
4234 continue;
4235
4236 /* Override a definition only if the new symbol matches the
4237 existing one. */
4238 if (override && matched)
4239 definition = FALSE;
4240
4241 h = *sym_hash;
4242 while (h->root.type == bfd_link_hash_indirect
4243 || h->root.type == bfd_link_hash_warning)
4244 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4245
4246 if (elf_tdata (abfd)->verdef != NULL
4247 && vernum > 1
4248 && definition)
4249 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4250 }
4251
4252 if (! (_bfd_generic_link_add_one_symbol
4253 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4254 (struct bfd_link_hash_entry **) sym_hash)))
4255 goto error_free_vers;
4256
4257 h = *sym_hash;
4258 /* We need to make sure that indirect symbol dynamic flags are
4259 updated. */
4260 hi = h;
4261 while (h->root.type == bfd_link_hash_indirect
4262 || h->root.type == bfd_link_hash_warning)
4263 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4264
4265 *sym_hash = h;
4266
4267 new_weak = (flags & BSF_WEAK) != 0;
4268 new_weakdef = FALSE;
4269 if (dynamic
4270 && definition
4271 && new_weak
4272 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4273 && is_elf_hash_table (htab)
4274 && h->u.weakdef == NULL)
4275 {
4276 /* Keep a list of all weak defined non function symbols from
4277 a dynamic object, using the weakdef field. Later in this
4278 function we will set the weakdef field to the correct
4279 value. We only put non-function symbols from dynamic
4280 objects on this list, because that happens to be the only
4281 time we need to know the normal symbol corresponding to a
4282 weak symbol, and the information is time consuming to
4283 figure out. If the weakdef field is not already NULL,
4284 then this symbol was already defined by some previous
4285 dynamic object, and we will be using that previous
4286 definition anyhow. */
4287
4288 h->u.weakdef = weaks;
4289 weaks = h;
4290 new_weakdef = TRUE;
4291 }
4292
4293 /* Set the alignment of a common symbol. */
4294 if ((common || bfd_is_com_section (sec))
4295 && h->root.type == bfd_link_hash_common)
4296 {
4297 unsigned int align;
4298
4299 if (common)
4300 align = bfd_log2 (isym->st_value);
4301 else
4302 {
4303 /* The new symbol is a common symbol in a shared object.
4304 We need to get the alignment from the section. */
4305 align = new_sec->alignment_power;
4306 }
4307 if (align > old_alignment)
4308 h->root.u.c.p->alignment_power = align;
4309 else
4310 h->root.u.c.p->alignment_power = old_alignment;
4311 }
4312
4313 if (is_elf_hash_table (htab))
4314 {
4315 /* Set a flag in the hash table entry indicating the type of
4316 reference or definition we just found. A dynamic symbol
4317 is one which is referenced or defined by both a regular
4318 object and a shared object. */
4319 bfd_boolean dynsym = FALSE;
4320
4321 /* Plugin symbols aren't normal. Don't set def_regular or
4322 ref_regular for them, or make them dynamic. */
4323 if ((abfd->flags & BFD_PLUGIN) != 0)
4324 ;
4325 else if (! dynamic)
4326 {
4327 if (! definition)
4328 {
4329 h->ref_regular = 1;
4330 if (bind != STB_WEAK)
4331 h->ref_regular_nonweak = 1;
4332 }
4333 else
4334 {
4335 h->def_regular = 1;
4336 if (h->def_dynamic)
4337 {
4338 h->def_dynamic = 0;
4339 h->ref_dynamic = 1;
4340 }
4341 }
4342
4343 /* If the indirect symbol has been forced local, don't
4344 make the real symbol dynamic. */
4345 if ((h == hi || !hi->forced_local)
4346 && (bfd_link_dll (info)
4347 || h->def_dynamic
4348 || h->ref_dynamic))
4349 dynsym = TRUE;
4350 }
4351 else
4352 {
4353 if (! definition)
4354 {
4355 h->ref_dynamic = 1;
4356 hi->ref_dynamic = 1;
4357 }
4358 else
4359 {
4360 h->def_dynamic = 1;
4361 hi->def_dynamic = 1;
4362 }
4363
4364 /* If the indirect symbol has been forced local, don't
4365 make the real symbol dynamic. */
4366 if ((h == hi || !hi->forced_local)
4367 && (h->def_regular
4368 || h->ref_regular
4369 || (h->u.weakdef != NULL
4370 && ! new_weakdef
4371 && h->u.weakdef->dynindx != -1)))
4372 dynsym = TRUE;
4373 }
4374
4375 /* Check to see if we need to add an indirect symbol for
4376 the default name. */
4377 if (definition
4378 || (!override && h->root.type == bfd_link_hash_common))
4379 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4380 sec, value, &old_bfd, &dynsym))
4381 goto error_free_vers;
4382
4383 /* Check the alignment when a common symbol is involved. This
4384 can change when a common symbol is overridden by a normal
4385 definition or a common symbol is ignored due to the old
4386 normal definition. We need to make sure the maximum
4387 alignment is maintained. */
4388 if ((old_alignment || common)
4389 && h->root.type != bfd_link_hash_common)
4390 {
4391 unsigned int common_align;
4392 unsigned int normal_align;
4393 unsigned int symbol_align;
4394 bfd *normal_bfd;
4395 bfd *common_bfd;
4396
4397 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4398 || h->root.type == bfd_link_hash_defweak);
4399
4400 symbol_align = ffs (h->root.u.def.value) - 1;
4401 if (h->root.u.def.section->owner != NULL
4402 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4403 {
4404 normal_align = h->root.u.def.section->alignment_power;
4405 if (normal_align > symbol_align)
4406 normal_align = symbol_align;
4407 }
4408 else
4409 normal_align = symbol_align;
4410
4411 if (old_alignment)
4412 {
4413 common_align = old_alignment;
4414 common_bfd = old_bfd;
4415 normal_bfd = abfd;
4416 }
4417 else
4418 {
4419 common_align = bfd_log2 (isym->st_value);
4420 common_bfd = abfd;
4421 normal_bfd = old_bfd;
4422 }
4423
4424 if (normal_align < common_align)
4425 {
4426 /* PR binutils/2735 */
4427 if (normal_bfd == NULL)
4428 (*_bfd_error_handler)
4429 (_("Warning: alignment %u of common symbol `%s' in %B is"
4430 " greater than the alignment (%u) of its section %A"),
4431 common_bfd, h->root.u.def.section,
4432 1 << common_align, name, 1 << normal_align);
4433 else
4434 (*_bfd_error_handler)
4435 (_("Warning: alignment %u of symbol `%s' in %B"
4436 " is smaller than %u in %B"),
4437 normal_bfd, common_bfd,
4438 1 << normal_align, name, 1 << common_align);
4439 }
4440 }
4441
4442 /* Remember the symbol size if it isn't undefined. */
4443 if (isym->st_size != 0
4444 && isym->st_shndx != SHN_UNDEF
4445 && (definition || h->size == 0))
4446 {
4447 if (h->size != 0
4448 && h->size != isym->st_size
4449 && ! size_change_ok)
4450 (*_bfd_error_handler)
4451 (_("Warning: size of symbol `%s' changed"
4452 " from %lu in %B to %lu in %B"),
4453 old_bfd, abfd,
4454 name, (unsigned long) h->size,
4455 (unsigned long) isym->st_size);
4456
4457 h->size = isym->st_size;
4458 }
4459
4460 /* If this is a common symbol, then we always want H->SIZE
4461 to be the size of the common symbol. The code just above
4462 won't fix the size if a common symbol becomes larger. We
4463 don't warn about a size change here, because that is
4464 covered by --warn-common. Allow changes between different
4465 function types. */
4466 if (h->root.type == bfd_link_hash_common)
4467 h->size = h->root.u.c.size;
4468
4469 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4470 && ((definition && !new_weak)
4471 || (old_weak && h->root.type == bfd_link_hash_common)
4472 || h->type == STT_NOTYPE))
4473 {
4474 unsigned int type = ELF_ST_TYPE (isym->st_info);
4475
4476 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4477 symbol. */
4478 if (type == STT_GNU_IFUNC
4479 && (abfd->flags & DYNAMIC) != 0)
4480 type = STT_FUNC;
4481
4482 if (h->type != type)
4483 {
4484 if (h->type != STT_NOTYPE && ! type_change_ok)
4485 (*_bfd_error_handler)
4486 (_("Warning: type of symbol `%s' changed"
4487 " from %d to %d in %B"),
4488 abfd, name, h->type, type);
4489
4490 h->type = type;
4491 }
4492 }
4493
4494 /* Merge st_other field. */
4495 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4496
4497 /* We don't want to make debug symbol dynamic. */
4498 if (definition
4499 && (sec->flags & SEC_DEBUGGING)
4500 && !bfd_link_relocatable (info))
4501 dynsym = FALSE;
4502
4503 /* Nor should we make plugin symbols dynamic. */
4504 if ((abfd->flags & BFD_PLUGIN) != 0)
4505 dynsym = FALSE;
4506
4507 if (definition)
4508 {
4509 h->target_internal = isym->st_target_internal;
4510 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4511 }
4512
4513 if (definition && !dynamic)
4514 {
4515 char *p = strchr (name, ELF_VER_CHR);
4516 if (p != NULL && p[1] != ELF_VER_CHR)
4517 {
4518 /* Queue non-default versions so that .symver x, x@FOO
4519 aliases can be checked. */
4520 if (!nondeflt_vers)
4521 {
4522 amt = ((isymend - isym + 1)
4523 * sizeof (struct elf_link_hash_entry *));
4524 nondeflt_vers
4525 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4526 if (!nondeflt_vers)
4527 goto error_free_vers;
4528 }
4529 nondeflt_vers[nondeflt_vers_cnt++] = h;
4530 }
4531 }
4532
4533 if (dynsym && h->dynindx == -1)
4534 {
4535 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4536 goto error_free_vers;
4537 if (h->u.weakdef != NULL
4538 && ! new_weakdef
4539 && h->u.weakdef->dynindx == -1)
4540 {
4541 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4542 goto error_free_vers;
4543 }
4544 }
4545 else if (dynsym && h->dynindx != -1)
4546 /* If the symbol already has a dynamic index, but
4547 visibility says it should not be visible, turn it into
4548 a local symbol. */
4549 switch (ELF_ST_VISIBILITY (h->other))
4550 {
4551 case STV_INTERNAL:
4552 case STV_HIDDEN:
4553 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4554 dynsym = FALSE;
4555 break;
4556 }
4557
4558 /* Don't add DT_NEEDED for references from the dummy bfd. */
4559 if (!add_needed
4560 && definition
4561 && ((dynsym
4562 && h->ref_regular_nonweak
4563 && (old_bfd == NULL
4564 || (old_bfd->flags & BFD_PLUGIN) == 0))
4565 || (h->ref_dynamic_nonweak
4566 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4567 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4568 {
4569 int ret;
4570 const char *soname = elf_dt_name (abfd);
4571
4572 info->callbacks->minfo ("%!", soname, old_bfd,
4573 h->root.root.string);
4574
4575 /* A symbol from a library loaded via DT_NEEDED of some
4576 other library is referenced by a regular object.
4577 Add a DT_NEEDED entry for it. Issue an error if
4578 --no-add-needed is used and the reference was not
4579 a weak one. */
4580 if (old_bfd != NULL
4581 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4582 {
4583 (*_bfd_error_handler)
4584 (_("%B: undefined reference to symbol '%s'"),
4585 old_bfd, name);
4586 bfd_set_error (bfd_error_missing_dso);
4587 goto error_free_vers;
4588 }
4589
4590 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4591 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4592
4593 add_needed = TRUE;
4594 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4595 if (ret < 0)
4596 goto error_free_vers;
4597
4598 BFD_ASSERT (ret == 0);
4599 }
4600 }
4601 }
4602
4603 if (extversym != NULL)
4604 {
4605 free (extversym);
4606 extversym = NULL;
4607 }
4608
4609 if (isymbuf != NULL)
4610 {
4611 free (isymbuf);
4612 isymbuf = NULL;
4613 }
4614
4615 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4616 {
4617 unsigned int i;
4618
4619 /* Restore the symbol table. */
4620 old_ent = (char *) old_tab + tabsize;
4621 memset (elf_sym_hashes (abfd), 0,
4622 extsymcount * sizeof (struct elf_link_hash_entry *));
4623 htab->root.table.table = old_table;
4624 htab->root.table.size = old_size;
4625 htab->root.table.count = old_count;
4626 memcpy (htab->root.table.table, old_tab, tabsize);
4627 htab->root.undefs = old_undefs;
4628 htab->root.undefs_tail = old_undefs_tail;
4629 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4630 for (i = 0; i < htab->root.table.size; i++)
4631 {
4632 struct bfd_hash_entry *p;
4633 struct elf_link_hash_entry *h;
4634 bfd_size_type size;
4635 unsigned int alignment_power;
4636
4637 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4638 {
4639 h = (struct elf_link_hash_entry *) p;
4640 if (h->root.type == bfd_link_hash_warning)
4641 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4642 if (h->dynindx >= old_dynsymcount
4643 && h->dynstr_index < old_dynstr_size)
4644 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4645
4646 /* Preserve the maximum alignment and size for common
4647 symbols even if this dynamic lib isn't on DT_NEEDED
4648 since it can still be loaded at run time by another
4649 dynamic lib. */
4650 if (h->root.type == bfd_link_hash_common)
4651 {
4652 size = h->root.u.c.size;
4653 alignment_power = h->root.u.c.p->alignment_power;
4654 }
4655 else
4656 {
4657 size = 0;
4658 alignment_power = 0;
4659 }
4660 memcpy (p, old_ent, htab->root.table.entsize);
4661 old_ent = (char *) old_ent + htab->root.table.entsize;
4662 h = (struct elf_link_hash_entry *) p;
4663 if (h->root.type == bfd_link_hash_warning)
4664 {
4665 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4666 old_ent = (char *) old_ent + htab->root.table.entsize;
4667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4668 }
4669 if (h->root.type == bfd_link_hash_common)
4670 {
4671 if (size > h->root.u.c.size)
4672 h->root.u.c.size = size;
4673 if (alignment_power > h->root.u.c.p->alignment_power)
4674 h->root.u.c.p->alignment_power = alignment_power;
4675 }
4676 }
4677 }
4678
4679 /* Make a special call to the linker "notice" function to
4680 tell it that symbols added for crefs may need to be removed. */
4681 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4682 goto error_free_vers;
4683
4684 free (old_tab);
4685 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4686 alloc_mark);
4687 if (nondeflt_vers != NULL)
4688 free (nondeflt_vers);
4689 return TRUE;
4690 }
4691
4692 if (old_tab != NULL)
4693 {
4694 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4695 goto error_free_vers;
4696 free (old_tab);
4697 old_tab = NULL;
4698 }
4699
4700 /* Now that all the symbols from this input file are created, if
4701 not performing a relocatable link, handle .symver foo, foo@BAR
4702 such that any relocs against foo become foo@BAR. */
4703 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4704 {
4705 bfd_size_type cnt, symidx;
4706
4707 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4708 {
4709 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4710 char *shortname, *p;
4711
4712 p = strchr (h->root.root.string, ELF_VER_CHR);
4713 if (p == NULL
4714 || (h->root.type != bfd_link_hash_defined
4715 && h->root.type != bfd_link_hash_defweak))
4716 continue;
4717
4718 amt = p - h->root.root.string;
4719 shortname = (char *) bfd_malloc (amt + 1);
4720 if (!shortname)
4721 goto error_free_vers;
4722 memcpy (shortname, h->root.root.string, amt);
4723 shortname[amt] = '\0';
4724
4725 hi = (struct elf_link_hash_entry *)
4726 bfd_link_hash_lookup (&htab->root, shortname,
4727 FALSE, FALSE, FALSE);
4728 if (hi != NULL
4729 && hi->root.type == h->root.type
4730 && hi->root.u.def.value == h->root.u.def.value
4731 && hi->root.u.def.section == h->root.u.def.section)
4732 {
4733 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4734 hi->root.type = bfd_link_hash_indirect;
4735 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4736 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4737 sym_hash = elf_sym_hashes (abfd);
4738 if (sym_hash)
4739 for (symidx = 0; symidx < extsymcount; ++symidx)
4740 if (sym_hash[symidx] == hi)
4741 {
4742 sym_hash[symidx] = h;
4743 break;
4744 }
4745 }
4746 free (shortname);
4747 }
4748 free (nondeflt_vers);
4749 nondeflt_vers = NULL;
4750 }
4751
4752 /* Now set the weakdefs field correctly for all the weak defined
4753 symbols we found. The only way to do this is to search all the
4754 symbols. Since we only need the information for non functions in
4755 dynamic objects, that's the only time we actually put anything on
4756 the list WEAKS. We need this information so that if a regular
4757 object refers to a symbol defined weakly in a dynamic object, the
4758 real symbol in the dynamic object is also put in the dynamic
4759 symbols; we also must arrange for both symbols to point to the
4760 same memory location. We could handle the general case of symbol
4761 aliasing, but a general symbol alias can only be generated in
4762 assembler code, handling it correctly would be very time
4763 consuming, and other ELF linkers don't handle general aliasing
4764 either. */
4765 if (weaks != NULL)
4766 {
4767 struct elf_link_hash_entry **hpp;
4768 struct elf_link_hash_entry **hppend;
4769 struct elf_link_hash_entry **sorted_sym_hash;
4770 struct elf_link_hash_entry *h;
4771 size_t sym_count;
4772
4773 /* Since we have to search the whole symbol list for each weak
4774 defined symbol, search time for N weak defined symbols will be
4775 O(N^2). Binary search will cut it down to O(NlogN). */
4776 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4777 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4778 if (sorted_sym_hash == NULL)
4779 goto error_return;
4780 sym_hash = sorted_sym_hash;
4781 hpp = elf_sym_hashes (abfd);
4782 hppend = hpp + extsymcount;
4783 sym_count = 0;
4784 for (; hpp < hppend; hpp++)
4785 {
4786 h = *hpp;
4787 if (h != NULL
4788 && h->root.type == bfd_link_hash_defined
4789 && !bed->is_function_type (h->type))
4790 {
4791 *sym_hash = h;
4792 sym_hash++;
4793 sym_count++;
4794 }
4795 }
4796
4797 qsort (sorted_sym_hash, sym_count,
4798 sizeof (struct elf_link_hash_entry *),
4799 elf_sort_symbol);
4800
4801 while (weaks != NULL)
4802 {
4803 struct elf_link_hash_entry *hlook;
4804 asection *slook;
4805 bfd_vma vlook;
4806 size_t i, j, idx = 0;
4807
4808 hlook = weaks;
4809 weaks = hlook->u.weakdef;
4810 hlook->u.weakdef = NULL;
4811
4812 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4813 || hlook->root.type == bfd_link_hash_defweak
4814 || hlook->root.type == bfd_link_hash_common
4815 || hlook->root.type == bfd_link_hash_indirect);
4816 slook = hlook->root.u.def.section;
4817 vlook = hlook->root.u.def.value;
4818
4819 i = 0;
4820 j = sym_count;
4821 while (i != j)
4822 {
4823 bfd_signed_vma vdiff;
4824 idx = (i + j) / 2;
4825 h = sorted_sym_hash[idx];
4826 vdiff = vlook - h->root.u.def.value;
4827 if (vdiff < 0)
4828 j = idx;
4829 else if (vdiff > 0)
4830 i = idx + 1;
4831 else
4832 {
4833 int sdiff = slook->id - h->root.u.def.section->id;
4834 if (sdiff < 0)
4835 j = idx;
4836 else if (sdiff > 0)
4837 i = idx + 1;
4838 else
4839 break;
4840 }
4841 }
4842
4843 /* We didn't find a value/section match. */
4844 if (i == j)
4845 continue;
4846
4847 /* With multiple aliases, or when the weak symbol is already
4848 strongly defined, we have multiple matching symbols and
4849 the binary search above may land on any of them. Step
4850 one past the matching symbol(s). */
4851 while (++idx != j)
4852 {
4853 h = sorted_sym_hash[idx];
4854 if (h->root.u.def.section != slook
4855 || h->root.u.def.value != vlook)
4856 break;
4857 }
4858
4859 /* Now look back over the aliases. Since we sorted by size
4860 as well as value and section, we'll choose the one with
4861 the largest size. */
4862 while (idx-- != i)
4863 {
4864 h = sorted_sym_hash[idx];
4865
4866 /* Stop if value or section doesn't match. */
4867 if (h->root.u.def.section != slook
4868 || h->root.u.def.value != vlook)
4869 break;
4870 else if (h != hlook)
4871 {
4872 hlook->u.weakdef = h;
4873
4874 /* If the weak definition is in the list of dynamic
4875 symbols, make sure the real definition is put
4876 there as well. */
4877 if (hlook->dynindx != -1 && h->dynindx == -1)
4878 {
4879 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4880 {
4881 err_free_sym_hash:
4882 free (sorted_sym_hash);
4883 goto error_return;
4884 }
4885 }
4886
4887 /* If the real definition is in the list of dynamic
4888 symbols, make sure the weak definition is put
4889 there as well. If we don't do this, then the
4890 dynamic loader might not merge the entries for the
4891 real definition and the weak definition. */
4892 if (h->dynindx != -1 && hlook->dynindx == -1)
4893 {
4894 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4895 goto err_free_sym_hash;
4896 }
4897 break;
4898 }
4899 }
4900 }
4901
4902 free (sorted_sym_hash);
4903 }
4904
4905 if (bed->check_directives
4906 && !(*bed->check_directives) (abfd, info))
4907 return FALSE;
4908
4909 /* If this object is the same format as the output object, and it is
4910 not a shared library, then let the backend look through the
4911 relocs.
4912
4913 This is required to build global offset table entries and to
4914 arrange for dynamic relocs. It is not required for the
4915 particular common case of linking non PIC code, even when linking
4916 against shared libraries, but unfortunately there is no way of
4917 knowing whether an object file has been compiled PIC or not.
4918 Looking through the relocs is not particularly time consuming.
4919 The problem is that we must either (1) keep the relocs in memory,
4920 which causes the linker to require additional runtime memory or
4921 (2) read the relocs twice from the input file, which wastes time.
4922 This would be a good case for using mmap.
4923
4924 I have no idea how to handle linking PIC code into a file of a
4925 different format. It probably can't be done. */
4926 if (! dynamic
4927 && is_elf_hash_table (htab)
4928 && bed->check_relocs != NULL
4929 && elf_object_id (abfd) == elf_hash_table_id (htab)
4930 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4931 {
4932 asection *o;
4933
4934 for (o = abfd->sections; o != NULL; o = o->next)
4935 {
4936 Elf_Internal_Rela *internal_relocs;
4937 bfd_boolean ok;
4938
4939 if ((o->flags & SEC_RELOC) == 0
4940 || o->reloc_count == 0
4941 || ((info->strip == strip_all || info->strip == strip_debugger)
4942 && (o->flags & SEC_DEBUGGING) != 0)
4943 || bfd_is_abs_section (o->output_section))
4944 continue;
4945
4946 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4947 info->keep_memory);
4948 if (internal_relocs == NULL)
4949 goto error_return;
4950
4951 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4952
4953 if (elf_section_data (o)->relocs != internal_relocs)
4954 free (internal_relocs);
4955
4956 if (! ok)
4957 goto error_return;
4958 }
4959 }
4960
4961 /* If this is a non-traditional link, try to optimize the handling
4962 of the .stab/.stabstr sections. */
4963 if (! dynamic
4964 && ! info->traditional_format
4965 && is_elf_hash_table (htab)
4966 && (info->strip != strip_all && info->strip != strip_debugger))
4967 {
4968 asection *stabstr;
4969
4970 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4971 if (stabstr != NULL)
4972 {
4973 bfd_size_type string_offset = 0;
4974 asection *stab;
4975
4976 for (stab = abfd->sections; stab; stab = stab->next)
4977 if (CONST_STRNEQ (stab->name, ".stab")
4978 && (!stab->name[5] ||
4979 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4980 && (stab->flags & SEC_MERGE) == 0
4981 && !bfd_is_abs_section (stab->output_section))
4982 {
4983 struct bfd_elf_section_data *secdata;
4984
4985 secdata = elf_section_data (stab);
4986 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4987 stabstr, &secdata->sec_info,
4988 &string_offset))
4989 goto error_return;
4990 if (secdata->sec_info)
4991 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4992 }
4993 }
4994 }
4995
4996 if (is_elf_hash_table (htab) && add_needed)
4997 {
4998 /* Add this bfd to the loaded list. */
4999 struct elf_link_loaded_list *n;
5000
5001 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5002 if (n == NULL)
5003 goto error_return;
5004 n->abfd = abfd;
5005 n->next = htab->loaded;
5006 htab->loaded = n;
5007 }
5008
5009 return TRUE;
5010
5011 error_free_vers:
5012 if (old_tab != NULL)
5013 free (old_tab);
5014 if (nondeflt_vers != NULL)
5015 free (nondeflt_vers);
5016 if (extversym != NULL)
5017 free (extversym);
5018 error_free_sym:
5019 if (isymbuf != NULL)
5020 free (isymbuf);
5021 error_return:
5022 return FALSE;
5023 }
5024
5025 /* Return the linker hash table entry of a symbol that might be
5026 satisfied by an archive symbol. Return -1 on error. */
5027
5028 struct elf_link_hash_entry *
5029 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5030 struct bfd_link_info *info,
5031 const char *name)
5032 {
5033 struct elf_link_hash_entry *h;
5034 char *p, *copy;
5035 size_t len, first;
5036
5037 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5038 if (h != NULL)
5039 return h;
5040
5041 /* If this is a default version (the name contains @@), look up the
5042 symbol again with only one `@' as well as without the version.
5043 The effect is that references to the symbol with and without the
5044 version will be matched by the default symbol in the archive. */
5045
5046 p = strchr (name, ELF_VER_CHR);
5047 if (p == NULL || p[1] != ELF_VER_CHR)
5048 return h;
5049
5050 /* First check with only one `@'. */
5051 len = strlen (name);
5052 copy = (char *) bfd_alloc (abfd, len);
5053 if (copy == NULL)
5054 return (struct elf_link_hash_entry *) 0 - 1;
5055
5056 first = p - name + 1;
5057 memcpy (copy, name, first);
5058 memcpy (copy + first, name + first + 1, len - first);
5059
5060 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5061 if (h == NULL)
5062 {
5063 /* We also need to check references to the symbol without the
5064 version. */
5065 copy[first - 1] = '\0';
5066 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5067 FALSE, FALSE, TRUE);
5068 }
5069
5070 bfd_release (abfd, copy);
5071 return h;
5072 }
5073
5074 /* Add symbols from an ELF archive file to the linker hash table. We
5075 don't use _bfd_generic_link_add_archive_symbols because we need to
5076 handle versioned symbols.
5077
5078 Fortunately, ELF archive handling is simpler than that done by
5079 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5080 oddities. In ELF, if we find a symbol in the archive map, and the
5081 symbol is currently undefined, we know that we must pull in that
5082 object file.
5083
5084 Unfortunately, we do have to make multiple passes over the symbol
5085 table until nothing further is resolved. */
5086
5087 static bfd_boolean
5088 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5089 {
5090 symindex c;
5091 unsigned char *included = NULL;
5092 carsym *symdefs;
5093 bfd_boolean loop;
5094 bfd_size_type amt;
5095 const struct elf_backend_data *bed;
5096 struct elf_link_hash_entry * (*archive_symbol_lookup)
5097 (bfd *, struct bfd_link_info *, const char *);
5098
5099 if (! bfd_has_map (abfd))
5100 {
5101 /* An empty archive is a special case. */
5102 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5103 return TRUE;
5104 bfd_set_error (bfd_error_no_armap);
5105 return FALSE;
5106 }
5107
5108 /* Keep track of all symbols we know to be already defined, and all
5109 files we know to be already included. This is to speed up the
5110 second and subsequent passes. */
5111 c = bfd_ardata (abfd)->symdef_count;
5112 if (c == 0)
5113 return TRUE;
5114 amt = c;
5115 amt *= sizeof (*included);
5116 included = (unsigned char *) bfd_zmalloc (amt);
5117 if (included == NULL)
5118 return FALSE;
5119
5120 symdefs = bfd_ardata (abfd)->symdefs;
5121 bed = get_elf_backend_data (abfd);
5122 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5123
5124 do
5125 {
5126 file_ptr last;
5127 symindex i;
5128 carsym *symdef;
5129 carsym *symdefend;
5130
5131 loop = FALSE;
5132 last = -1;
5133
5134 symdef = symdefs;
5135 symdefend = symdef + c;
5136 for (i = 0; symdef < symdefend; symdef++, i++)
5137 {
5138 struct elf_link_hash_entry *h;
5139 bfd *element;
5140 struct bfd_link_hash_entry *undefs_tail;
5141 symindex mark;
5142
5143 if (included[i])
5144 continue;
5145 if (symdef->file_offset == last)
5146 {
5147 included[i] = TRUE;
5148 continue;
5149 }
5150
5151 h = archive_symbol_lookup (abfd, info, symdef->name);
5152 if (h == (struct elf_link_hash_entry *) 0 - 1)
5153 goto error_return;
5154
5155 if (h == NULL)
5156 continue;
5157
5158 if (h->root.type == bfd_link_hash_common)
5159 {
5160 /* We currently have a common symbol. The archive map contains
5161 a reference to this symbol, so we may want to include it. We
5162 only want to include it however, if this archive element
5163 contains a definition of the symbol, not just another common
5164 declaration of it.
5165
5166 Unfortunately some archivers (including GNU ar) will put
5167 declarations of common symbols into their archive maps, as
5168 well as real definitions, so we cannot just go by the archive
5169 map alone. Instead we must read in the element's symbol
5170 table and check that to see what kind of symbol definition
5171 this is. */
5172 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5173 continue;
5174 }
5175 else if (h->root.type != bfd_link_hash_undefined)
5176 {
5177 if (h->root.type != bfd_link_hash_undefweak)
5178 /* Symbol must be defined. Don't check it again. */
5179 included[i] = TRUE;
5180 continue;
5181 }
5182
5183 /* We need to include this archive member. */
5184 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5185 if (element == NULL)
5186 goto error_return;
5187
5188 if (! bfd_check_format (element, bfd_object))
5189 goto error_return;
5190
5191 undefs_tail = info->hash->undefs_tail;
5192
5193 if (!(*info->callbacks
5194 ->add_archive_element) (info, element, symdef->name, &element))
5195 goto error_return;
5196 if (!bfd_link_add_symbols (element, info))
5197 goto error_return;
5198
5199 /* If there are any new undefined symbols, we need to make
5200 another pass through the archive in order to see whether
5201 they can be defined. FIXME: This isn't perfect, because
5202 common symbols wind up on undefs_tail and because an
5203 undefined symbol which is defined later on in this pass
5204 does not require another pass. This isn't a bug, but it
5205 does make the code less efficient than it could be. */
5206 if (undefs_tail != info->hash->undefs_tail)
5207 loop = TRUE;
5208
5209 /* Look backward to mark all symbols from this object file
5210 which we have already seen in this pass. */
5211 mark = i;
5212 do
5213 {
5214 included[mark] = TRUE;
5215 if (mark == 0)
5216 break;
5217 --mark;
5218 }
5219 while (symdefs[mark].file_offset == symdef->file_offset);
5220
5221 /* We mark subsequent symbols from this object file as we go
5222 on through the loop. */
5223 last = symdef->file_offset;
5224 }
5225 }
5226 while (loop);
5227
5228 free (included);
5229
5230 return TRUE;
5231
5232 error_return:
5233 if (included != NULL)
5234 free (included);
5235 return FALSE;
5236 }
5237
5238 /* Given an ELF BFD, add symbols to the global hash table as
5239 appropriate. */
5240
5241 bfd_boolean
5242 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5243 {
5244 switch (bfd_get_format (abfd))
5245 {
5246 case bfd_object:
5247 return elf_link_add_object_symbols (abfd, info);
5248 case bfd_archive:
5249 return elf_link_add_archive_symbols (abfd, info);
5250 default:
5251 bfd_set_error (bfd_error_wrong_format);
5252 return FALSE;
5253 }
5254 }
5255 \f
5256 struct hash_codes_info
5257 {
5258 unsigned long *hashcodes;
5259 bfd_boolean error;
5260 };
5261
5262 /* This function will be called though elf_link_hash_traverse to store
5263 all hash value of the exported symbols in an array. */
5264
5265 static bfd_boolean
5266 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5267 {
5268 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5269 const char *name;
5270 unsigned long ha;
5271 char *alc = NULL;
5272
5273 /* Ignore indirect symbols. These are added by the versioning code. */
5274 if (h->dynindx == -1)
5275 return TRUE;
5276
5277 name = h->root.root.string;
5278 if (h->versioned >= versioned)
5279 {
5280 char *p = strchr (name, ELF_VER_CHR);
5281 if (p != NULL)
5282 {
5283 alc = (char *) bfd_malloc (p - name + 1);
5284 if (alc == NULL)
5285 {
5286 inf->error = TRUE;
5287 return FALSE;
5288 }
5289 memcpy (alc, name, p - name);
5290 alc[p - name] = '\0';
5291 name = alc;
5292 }
5293 }
5294
5295 /* Compute the hash value. */
5296 ha = bfd_elf_hash (name);
5297
5298 /* Store the found hash value in the array given as the argument. */
5299 *(inf->hashcodes)++ = ha;
5300
5301 /* And store it in the struct so that we can put it in the hash table
5302 later. */
5303 h->u.elf_hash_value = ha;
5304
5305 if (alc != NULL)
5306 free (alc);
5307
5308 return TRUE;
5309 }
5310
5311 struct collect_gnu_hash_codes
5312 {
5313 bfd *output_bfd;
5314 const struct elf_backend_data *bed;
5315 unsigned long int nsyms;
5316 unsigned long int maskbits;
5317 unsigned long int *hashcodes;
5318 unsigned long int *hashval;
5319 unsigned long int *indx;
5320 unsigned long int *counts;
5321 bfd_vma *bitmask;
5322 bfd_byte *contents;
5323 long int min_dynindx;
5324 unsigned long int bucketcount;
5325 unsigned long int symindx;
5326 long int local_indx;
5327 long int shift1, shift2;
5328 unsigned long int mask;
5329 bfd_boolean error;
5330 };
5331
5332 /* This function will be called though elf_link_hash_traverse to store
5333 all hash value of the exported symbols in an array. */
5334
5335 static bfd_boolean
5336 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5337 {
5338 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5339 const char *name;
5340 unsigned long ha;
5341 char *alc = NULL;
5342
5343 /* Ignore indirect symbols. These are added by the versioning code. */
5344 if (h->dynindx == -1)
5345 return TRUE;
5346
5347 /* Ignore also local symbols and undefined symbols. */
5348 if (! (*s->bed->elf_hash_symbol) (h))
5349 return TRUE;
5350
5351 name = h->root.root.string;
5352 if (h->versioned >= versioned)
5353 {
5354 char *p = strchr (name, ELF_VER_CHR);
5355 if (p != NULL)
5356 {
5357 alc = (char *) bfd_malloc (p - name + 1);
5358 if (alc == NULL)
5359 {
5360 s->error = TRUE;
5361 return FALSE;
5362 }
5363 memcpy (alc, name, p - name);
5364 alc[p - name] = '\0';
5365 name = alc;
5366 }
5367 }
5368
5369 /* Compute the hash value. */
5370 ha = bfd_elf_gnu_hash (name);
5371
5372 /* Store the found hash value in the array for compute_bucket_count,
5373 and also for .dynsym reordering purposes. */
5374 s->hashcodes[s->nsyms] = ha;
5375 s->hashval[h->dynindx] = ha;
5376 ++s->nsyms;
5377 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5378 s->min_dynindx = h->dynindx;
5379
5380 if (alc != NULL)
5381 free (alc);
5382
5383 return TRUE;
5384 }
5385
5386 /* This function will be called though elf_link_hash_traverse to do
5387 final dynaminc symbol renumbering. */
5388
5389 static bfd_boolean
5390 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5391 {
5392 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5393 unsigned long int bucket;
5394 unsigned long int val;
5395
5396 /* Ignore indirect symbols. */
5397 if (h->dynindx == -1)
5398 return TRUE;
5399
5400 /* Ignore also local symbols and undefined symbols. */
5401 if (! (*s->bed->elf_hash_symbol) (h))
5402 {
5403 if (h->dynindx >= s->min_dynindx)
5404 h->dynindx = s->local_indx++;
5405 return TRUE;
5406 }
5407
5408 bucket = s->hashval[h->dynindx] % s->bucketcount;
5409 val = (s->hashval[h->dynindx] >> s->shift1)
5410 & ((s->maskbits >> s->shift1) - 1);
5411 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5412 s->bitmask[val]
5413 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5414 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5415 if (s->counts[bucket] == 1)
5416 /* Last element terminates the chain. */
5417 val |= 1;
5418 bfd_put_32 (s->output_bfd, val,
5419 s->contents + (s->indx[bucket] - s->symindx) * 4);
5420 --s->counts[bucket];
5421 h->dynindx = s->indx[bucket]++;
5422 return TRUE;
5423 }
5424
5425 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5426
5427 bfd_boolean
5428 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5429 {
5430 return !(h->forced_local
5431 || h->root.type == bfd_link_hash_undefined
5432 || h->root.type == bfd_link_hash_undefweak
5433 || ((h->root.type == bfd_link_hash_defined
5434 || h->root.type == bfd_link_hash_defweak)
5435 && h->root.u.def.section->output_section == NULL));
5436 }
5437
5438 /* Array used to determine the number of hash table buckets to use
5439 based on the number of symbols there are. If there are fewer than
5440 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5441 fewer than 37 we use 17 buckets, and so forth. We never use more
5442 than 32771 buckets. */
5443
5444 static const size_t elf_buckets[] =
5445 {
5446 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5447 16411, 32771, 0
5448 };
5449
5450 /* Compute bucket count for hashing table. We do not use a static set
5451 of possible tables sizes anymore. Instead we determine for all
5452 possible reasonable sizes of the table the outcome (i.e., the
5453 number of collisions etc) and choose the best solution. The
5454 weighting functions are not too simple to allow the table to grow
5455 without bounds. Instead one of the weighting factors is the size.
5456 Therefore the result is always a good payoff between few collisions
5457 (= short chain lengths) and table size. */
5458 static size_t
5459 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5460 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5461 unsigned long int nsyms,
5462 int gnu_hash)
5463 {
5464 size_t best_size = 0;
5465 unsigned long int i;
5466
5467 /* We have a problem here. The following code to optimize the table
5468 size requires an integer type with more the 32 bits. If
5469 BFD_HOST_U_64_BIT is set we know about such a type. */
5470 #ifdef BFD_HOST_U_64_BIT
5471 if (info->optimize)
5472 {
5473 size_t minsize;
5474 size_t maxsize;
5475 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5476 bfd *dynobj = elf_hash_table (info)->dynobj;
5477 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5478 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5479 unsigned long int *counts;
5480 bfd_size_type amt;
5481 unsigned int no_improvement_count = 0;
5482
5483 /* Possible optimization parameters: if we have NSYMS symbols we say
5484 that the hashing table must at least have NSYMS/4 and at most
5485 2*NSYMS buckets. */
5486 minsize = nsyms / 4;
5487 if (minsize == 0)
5488 minsize = 1;
5489 best_size = maxsize = nsyms * 2;
5490 if (gnu_hash)
5491 {
5492 if (minsize < 2)
5493 minsize = 2;
5494 if ((best_size & 31) == 0)
5495 ++best_size;
5496 }
5497
5498 /* Create array where we count the collisions in. We must use bfd_malloc
5499 since the size could be large. */
5500 amt = maxsize;
5501 amt *= sizeof (unsigned long int);
5502 counts = (unsigned long int *) bfd_malloc (amt);
5503 if (counts == NULL)
5504 return 0;
5505
5506 /* Compute the "optimal" size for the hash table. The criteria is a
5507 minimal chain length. The minor criteria is (of course) the size
5508 of the table. */
5509 for (i = minsize; i < maxsize; ++i)
5510 {
5511 /* Walk through the array of hashcodes and count the collisions. */
5512 BFD_HOST_U_64_BIT max;
5513 unsigned long int j;
5514 unsigned long int fact;
5515
5516 if (gnu_hash && (i & 31) == 0)
5517 continue;
5518
5519 memset (counts, '\0', i * sizeof (unsigned long int));
5520
5521 /* Determine how often each hash bucket is used. */
5522 for (j = 0; j < nsyms; ++j)
5523 ++counts[hashcodes[j] % i];
5524
5525 /* For the weight function we need some information about the
5526 pagesize on the target. This is information need not be 100%
5527 accurate. Since this information is not available (so far) we
5528 define it here to a reasonable default value. If it is crucial
5529 to have a better value some day simply define this value. */
5530 # ifndef BFD_TARGET_PAGESIZE
5531 # define BFD_TARGET_PAGESIZE (4096)
5532 # endif
5533
5534 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5535 and the chains. */
5536 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5537
5538 # if 1
5539 /* Variant 1: optimize for short chains. We add the squares
5540 of all the chain lengths (which favors many small chain
5541 over a few long chains). */
5542 for (j = 0; j < i; ++j)
5543 max += counts[j] * counts[j];
5544
5545 /* This adds penalties for the overall size of the table. */
5546 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5547 max *= fact * fact;
5548 # else
5549 /* Variant 2: Optimize a lot more for small table. Here we
5550 also add squares of the size but we also add penalties for
5551 empty slots (the +1 term). */
5552 for (j = 0; j < i; ++j)
5553 max += (1 + counts[j]) * (1 + counts[j]);
5554
5555 /* The overall size of the table is considered, but not as
5556 strong as in variant 1, where it is squared. */
5557 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5558 max *= fact;
5559 # endif
5560
5561 /* Compare with current best results. */
5562 if (max < best_chlen)
5563 {
5564 best_chlen = max;
5565 best_size = i;
5566 no_improvement_count = 0;
5567 }
5568 /* PR 11843: Avoid futile long searches for the best bucket size
5569 when there are a large number of symbols. */
5570 else if (++no_improvement_count == 100)
5571 break;
5572 }
5573
5574 free (counts);
5575 }
5576 else
5577 #endif /* defined (BFD_HOST_U_64_BIT) */
5578 {
5579 /* This is the fallback solution if no 64bit type is available or if we
5580 are not supposed to spend much time on optimizations. We select the
5581 bucket count using a fixed set of numbers. */
5582 for (i = 0; elf_buckets[i] != 0; i++)
5583 {
5584 best_size = elf_buckets[i];
5585 if (nsyms < elf_buckets[i + 1])
5586 break;
5587 }
5588 if (gnu_hash && best_size < 2)
5589 best_size = 2;
5590 }
5591
5592 return best_size;
5593 }
5594
5595 /* Size any SHT_GROUP section for ld -r. */
5596
5597 bfd_boolean
5598 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5599 {
5600 bfd *ibfd;
5601
5602 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5603 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5604 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5605 return FALSE;
5606 return TRUE;
5607 }
5608
5609 /* Set a default stack segment size. The value in INFO wins. If it
5610 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5611 undefined it is initialized. */
5612
5613 bfd_boolean
5614 bfd_elf_stack_segment_size (bfd *output_bfd,
5615 struct bfd_link_info *info,
5616 const char *legacy_symbol,
5617 bfd_vma default_size)
5618 {
5619 struct elf_link_hash_entry *h = NULL;
5620
5621 /* Look for legacy symbol. */
5622 if (legacy_symbol)
5623 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5624 FALSE, FALSE, FALSE);
5625 if (h && (h->root.type == bfd_link_hash_defined
5626 || h->root.type == bfd_link_hash_defweak)
5627 && h->def_regular
5628 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5629 {
5630 /* The symbol has no type if specified on the command line. */
5631 h->type = STT_OBJECT;
5632 if (info->stacksize)
5633 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5634 output_bfd, legacy_symbol);
5635 else if (h->root.u.def.section != bfd_abs_section_ptr)
5636 (*_bfd_error_handler) (_("%B: %s not absolute"),
5637 output_bfd, legacy_symbol);
5638 else
5639 info->stacksize = h->root.u.def.value;
5640 }
5641
5642 if (!info->stacksize)
5643 /* If the user didn't set a size, or explicitly inhibit the
5644 size, set it now. */
5645 info->stacksize = default_size;
5646
5647 /* Provide the legacy symbol, if it is referenced. */
5648 if (h && (h->root.type == bfd_link_hash_undefined
5649 || h->root.type == bfd_link_hash_undefweak))
5650 {
5651 struct bfd_link_hash_entry *bh = NULL;
5652
5653 if (!(_bfd_generic_link_add_one_symbol
5654 (info, output_bfd, legacy_symbol,
5655 BSF_GLOBAL, bfd_abs_section_ptr,
5656 info->stacksize >= 0 ? info->stacksize : 0,
5657 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5658 return FALSE;
5659
5660 h = (struct elf_link_hash_entry *) bh;
5661 h->def_regular = 1;
5662 h->type = STT_OBJECT;
5663 }
5664
5665 return TRUE;
5666 }
5667
5668 /* Set up the sizes and contents of the ELF dynamic sections. This is
5669 called by the ELF linker emulation before_allocation routine. We
5670 must set the sizes of the sections before the linker sets the
5671 addresses of the various sections. */
5672
5673 bfd_boolean
5674 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5675 const char *soname,
5676 const char *rpath,
5677 const char *filter_shlib,
5678 const char *audit,
5679 const char *depaudit,
5680 const char * const *auxiliary_filters,
5681 struct bfd_link_info *info,
5682 asection **sinterpptr)
5683 {
5684 bfd_size_type soname_indx;
5685 bfd *dynobj;
5686 const struct elf_backend_data *bed;
5687 struct elf_info_failed asvinfo;
5688
5689 *sinterpptr = NULL;
5690
5691 soname_indx = (bfd_size_type) -1;
5692
5693 if (!is_elf_hash_table (info->hash))
5694 return TRUE;
5695
5696 bed = get_elf_backend_data (output_bfd);
5697
5698 /* Any syms created from now on start with -1 in
5699 got.refcount/offset and plt.refcount/offset. */
5700 elf_hash_table (info)->init_got_refcount
5701 = elf_hash_table (info)->init_got_offset;
5702 elf_hash_table (info)->init_plt_refcount
5703 = elf_hash_table (info)->init_plt_offset;
5704
5705 if (bfd_link_relocatable (info)
5706 && !_bfd_elf_size_group_sections (info))
5707 return FALSE;
5708
5709 /* The backend may have to create some sections regardless of whether
5710 we're dynamic or not. */
5711 if (bed->elf_backend_always_size_sections
5712 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5713 return FALSE;
5714
5715 /* Determine any GNU_STACK segment requirements, after the backend
5716 has had a chance to set a default segment size. */
5717 if (info->execstack)
5718 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5719 else if (info->noexecstack)
5720 elf_stack_flags (output_bfd) = PF_R | PF_W;
5721 else
5722 {
5723 bfd *inputobj;
5724 asection *notesec = NULL;
5725 int exec = 0;
5726
5727 for (inputobj = info->input_bfds;
5728 inputobj;
5729 inputobj = inputobj->link.next)
5730 {
5731 asection *s;
5732
5733 if (inputobj->flags
5734 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5735 continue;
5736 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5737 if (s)
5738 {
5739 if (s->flags & SEC_CODE)
5740 exec = PF_X;
5741 notesec = s;
5742 }
5743 else if (bed->default_execstack)
5744 exec = PF_X;
5745 }
5746 if (notesec || info->stacksize > 0)
5747 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5748 if (notesec && exec && bfd_link_relocatable (info)
5749 && notesec->output_section != bfd_abs_section_ptr)
5750 notesec->output_section->flags |= SEC_CODE;
5751 }
5752
5753 dynobj = elf_hash_table (info)->dynobj;
5754
5755 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5756 {
5757 struct elf_info_failed eif;
5758 struct elf_link_hash_entry *h;
5759 asection *dynstr;
5760 struct bfd_elf_version_tree *t;
5761 struct bfd_elf_version_expr *d;
5762 asection *s;
5763 bfd_boolean all_defined;
5764
5765 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5766 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5767
5768 if (soname != NULL)
5769 {
5770 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5771 soname, TRUE);
5772 if (soname_indx == (bfd_size_type) -1
5773 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5774 return FALSE;
5775 }
5776
5777 if (info->symbolic)
5778 {
5779 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5780 return FALSE;
5781 info->flags |= DF_SYMBOLIC;
5782 }
5783
5784 if (rpath != NULL)
5785 {
5786 bfd_size_type indx;
5787 bfd_vma tag;
5788
5789 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5790 TRUE);
5791 if (indx == (bfd_size_type) -1)
5792 return FALSE;
5793
5794 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5795 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5796 return FALSE;
5797 }
5798
5799 if (filter_shlib != NULL)
5800 {
5801 bfd_size_type indx;
5802
5803 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5804 filter_shlib, TRUE);
5805 if (indx == (bfd_size_type) -1
5806 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5807 return FALSE;
5808 }
5809
5810 if (auxiliary_filters != NULL)
5811 {
5812 const char * const *p;
5813
5814 for (p = auxiliary_filters; *p != NULL; p++)
5815 {
5816 bfd_size_type indx;
5817
5818 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5819 *p, TRUE);
5820 if (indx == (bfd_size_type) -1
5821 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5822 return FALSE;
5823 }
5824 }
5825
5826 if (audit != NULL)
5827 {
5828 bfd_size_type indx;
5829
5830 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5831 TRUE);
5832 if (indx == (bfd_size_type) -1
5833 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5834 return FALSE;
5835 }
5836
5837 if (depaudit != NULL)
5838 {
5839 bfd_size_type indx;
5840
5841 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5842 TRUE);
5843 if (indx == (bfd_size_type) -1
5844 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5845 return FALSE;
5846 }
5847
5848 eif.info = info;
5849 eif.failed = FALSE;
5850
5851 /* If we are supposed to export all symbols into the dynamic symbol
5852 table (this is not the normal case), then do so. */
5853 if (info->export_dynamic
5854 || (bfd_link_executable (info) && info->dynamic))
5855 {
5856 elf_link_hash_traverse (elf_hash_table (info),
5857 _bfd_elf_export_symbol,
5858 &eif);
5859 if (eif.failed)
5860 return FALSE;
5861 }
5862
5863 /* Make all global versions with definition. */
5864 for (t = info->version_info; t != NULL; t = t->next)
5865 for (d = t->globals.list; d != NULL; d = d->next)
5866 if (!d->symver && d->literal)
5867 {
5868 const char *verstr, *name;
5869 size_t namelen, verlen, newlen;
5870 char *newname, *p, leading_char;
5871 struct elf_link_hash_entry *newh;
5872
5873 leading_char = bfd_get_symbol_leading_char (output_bfd);
5874 name = d->pattern;
5875 namelen = strlen (name) + (leading_char != '\0');
5876 verstr = t->name;
5877 verlen = strlen (verstr);
5878 newlen = namelen + verlen + 3;
5879
5880 newname = (char *) bfd_malloc (newlen);
5881 if (newname == NULL)
5882 return FALSE;
5883 newname[0] = leading_char;
5884 memcpy (newname + (leading_char != '\0'), name, namelen);
5885
5886 /* Check the hidden versioned definition. */
5887 p = newname + namelen;
5888 *p++ = ELF_VER_CHR;
5889 memcpy (p, verstr, verlen + 1);
5890 newh = elf_link_hash_lookup (elf_hash_table (info),
5891 newname, FALSE, FALSE,
5892 FALSE);
5893 if (newh == NULL
5894 || (newh->root.type != bfd_link_hash_defined
5895 && newh->root.type != bfd_link_hash_defweak))
5896 {
5897 /* Check the default versioned definition. */
5898 *p++ = ELF_VER_CHR;
5899 memcpy (p, verstr, verlen + 1);
5900 newh = elf_link_hash_lookup (elf_hash_table (info),
5901 newname, FALSE, FALSE,
5902 FALSE);
5903 }
5904 free (newname);
5905
5906 /* Mark this version if there is a definition and it is
5907 not defined in a shared object. */
5908 if (newh != NULL
5909 && !newh->def_dynamic
5910 && (newh->root.type == bfd_link_hash_defined
5911 || newh->root.type == bfd_link_hash_defweak))
5912 d->symver = 1;
5913 }
5914
5915 /* Attach all the symbols to their version information. */
5916 asvinfo.info = info;
5917 asvinfo.failed = FALSE;
5918
5919 elf_link_hash_traverse (elf_hash_table (info),
5920 _bfd_elf_link_assign_sym_version,
5921 &asvinfo);
5922 if (asvinfo.failed)
5923 return FALSE;
5924
5925 if (!info->allow_undefined_version)
5926 {
5927 /* Check if all global versions have a definition. */
5928 all_defined = TRUE;
5929 for (t = info->version_info; t != NULL; t = t->next)
5930 for (d = t->globals.list; d != NULL; d = d->next)
5931 if (d->literal && !d->symver && !d->script)
5932 {
5933 (*_bfd_error_handler)
5934 (_("%s: undefined version: %s"),
5935 d->pattern, t->name);
5936 all_defined = FALSE;
5937 }
5938
5939 if (!all_defined)
5940 {
5941 bfd_set_error (bfd_error_bad_value);
5942 return FALSE;
5943 }
5944 }
5945
5946 /* Find all symbols which were defined in a dynamic object and make
5947 the backend pick a reasonable value for them. */
5948 elf_link_hash_traverse (elf_hash_table (info),
5949 _bfd_elf_adjust_dynamic_symbol,
5950 &eif);
5951 if (eif.failed)
5952 return FALSE;
5953
5954 /* Add some entries to the .dynamic section. We fill in some of the
5955 values later, in bfd_elf_final_link, but we must add the entries
5956 now so that we know the final size of the .dynamic section. */
5957
5958 /* If there are initialization and/or finalization functions to
5959 call then add the corresponding DT_INIT/DT_FINI entries. */
5960 h = (info->init_function
5961 ? elf_link_hash_lookup (elf_hash_table (info),
5962 info->init_function, FALSE,
5963 FALSE, FALSE)
5964 : NULL);
5965 if (h != NULL
5966 && (h->ref_regular
5967 || h->def_regular))
5968 {
5969 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5970 return FALSE;
5971 }
5972 h = (info->fini_function
5973 ? elf_link_hash_lookup (elf_hash_table (info),
5974 info->fini_function, FALSE,
5975 FALSE, FALSE)
5976 : NULL);
5977 if (h != NULL
5978 && (h->ref_regular
5979 || h->def_regular))
5980 {
5981 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5982 return FALSE;
5983 }
5984
5985 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5986 if (s != NULL && s->linker_has_input)
5987 {
5988 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5989 if (! bfd_link_executable (info))
5990 {
5991 bfd *sub;
5992 asection *o;
5993
5994 for (sub = info->input_bfds; sub != NULL;
5995 sub = sub->link.next)
5996 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5997 for (o = sub->sections; o != NULL; o = o->next)
5998 if (elf_section_data (o)->this_hdr.sh_type
5999 == SHT_PREINIT_ARRAY)
6000 {
6001 (*_bfd_error_handler)
6002 (_("%B: .preinit_array section is not allowed in DSO"),
6003 sub);
6004 break;
6005 }
6006
6007 bfd_set_error (bfd_error_nonrepresentable_section);
6008 return FALSE;
6009 }
6010
6011 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6012 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6013 return FALSE;
6014 }
6015 s = bfd_get_section_by_name (output_bfd, ".init_array");
6016 if (s != NULL && s->linker_has_input)
6017 {
6018 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6019 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6020 return FALSE;
6021 }
6022 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6023 if (s != NULL && s->linker_has_input)
6024 {
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6026 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6027 return FALSE;
6028 }
6029
6030 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6031 /* If .dynstr is excluded from the link, we don't want any of
6032 these tags. Strictly, we should be checking each section
6033 individually; This quick check covers for the case where
6034 someone does a /DISCARD/ : { *(*) }. */
6035 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6036 {
6037 bfd_size_type strsize;
6038
6039 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6040 if ((info->emit_hash
6041 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6042 || (info->emit_gnu_hash
6043 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6044 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6045 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6046 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6047 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6048 bed->s->sizeof_sym))
6049 return FALSE;
6050 }
6051 }
6052
6053 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6054 return FALSE;
6055
6056 /* The backend must work out the sizes of all the other dynamic
6057 sections. */
6058 if (dynobj != NULL
6059 && bed->elf_backend_size_dynamic_sections != NULL
6060 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6061 return FALSE;
6062
6063 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6064 {
6065 unsigned long section_sym_count;
6066 struct bfd_elf_version_tree *verdefs;
6067 asection *s;
6068
6069 /* Set up the version definition section. */
6070 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6071 BFD_ASSERT (s != NULL);
6072
6073 /* We may have created additional version definitions if we are
6074 just linking a regular application. */
6075 verdefs = info->version_info;
6076
6077 /* Skip anonymous version tag. */
6078 if (verdefs != NULL && verdefs->vernum == 0)
6079 verdefs = verdefs->next;
6080
6081 if (verdefs == NULL && !info->create_default_symver)
6082 s->flags |= SEC_EXCLUDE;
6083 else
6084 {
6085 unsigned int cdefs;
6086 bfd_size_type size;
6087 struct bfd_elf_version_tree *t;
6088 bfd_byte *p;
6089 Elf_Internal_Verdef def;
6090 Elf_Internal_Verdaux defaux;
6091 struct bfd_link_hash_entry *bh;
6092 struct elf_link_hash_entry *h;
6093 const char *name;
6094
6095 cdefs = 0;
6096 size = 0;
6097
6098 /* Make space for the base version. */
6099 size += sizeof (Elf_External_Verdef);
6100 size += sizeof (Elf_External_Verdaux);
6101 ++cdefs;
6102
6103 /* Make space for the default version. */
6104 if (info->create_default_symver)
6105 {
6106 size += sizeof (Elf_External_Verdef);
6107 ++cdefs;
6108 }
6109
6110 for (t = verdefs; t != NULL; t = t->next)
6111 {
6112 struct bfd_elf_version_deps *n;
6113
6114 /* Don't emit base version twice. */
6115 if (t->vernum == 0)
6116 continue;
6117
6118 size += sizeof (Elf_External_Verdef);
6119 size += sizeof (Elf_External_Verdaux);
6120 ++cdefs;
6121
6122 for (n = t->deps; n != NULL; n = n->next)
6123 size += sizeof (Elf_External_Verdaux);
6124 }
6125
6126 s->size = size;
6127 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6128 if (s->contents == NULL && s->size != 0)
6129 return FALSE;
6130
6131 /* Fill in the version definition section. */
6132
6133 p = s->contents;
6134
6135 def.vd_version = VER_DEF_CURRENT;
6136 def.vd_flags = VER_FLG_BASE;
6137 def.vd_ndx = 1;
6138 def.vd_cnt = 1;
6139 if (info->create_default_symver)
6140 {
6141 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6142 def.vd_next = sizeof (Elf_External_Verdef);
6143 }
6144 else
6145 {
6146 def.vd_aux = sizeof (Elf_External_Verdef);
6147 def.vd_next = (sizeof (Elf_External_Verdef)
6148 + sizeof (Elf_External_Verdaux));
6149 }
6150
6151 if (soname_indx != (bfd_size_type) -1)
6152 {
6153 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6154 soname_indx);
6155 def.vd_hash = bfd_elf_hash (soname);
6156 defaux.vda_name = soname_indx;
6157 name = soname;
6158 }
6159 else
6160 {
6161 bfd_size_type indx;
6162
6163 name = lbasename (output_bfd->filename);
6164 def.vd_hash = bfd_elf_hash (name);
6165 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6166 name, FALSE);
6167 if (indx == (bfd_size_type) -1)
6168 return FALSE;
6169 defaux.vda_name = indx;
6170 }
6171 defaux.vda_next = 0;
6172
6173 _bfd_elf_swap_verdef_out (output_bfd, &def,
6174 (Elf_External_Verdef *) p);
6175 p += sizeof (Elf_External_Verdef);
6176 if (info->create_default_symver)
6177 {
6178 /* Add a symbol representing this version. */
6179 bh = NULL;
6180 if (! (_bfd_generic_link_add_one_symbol
6181 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6182 0, NULL, FALSE,
6183 get_elf_backend_data (dynobj)->collect, &bh)))
6184 return FALSE;
6185 h = (struct elf_link_hash_entry *) bh;
6186 h->non_elf = 0;
6187 h->def_regular = 1;
6188 h->type = STT_OBJECT;
6189 h->verinfo.vertree = NULL;
6190
6191 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6192 return FALSE;
6193
6194 /* Create a duplicate of the base version with the same
6195 aux block, but different flags. */
6196 def.vd_flags = 0;
6197 def.vd_ndx = 2;
6198 def.vd_aux = sizeof (Elf_External_Verdef);
6199 if (verdefs)
6200 def.vd_next = (sizeof (Elf_External_Verdef)
6201 + sizeof (Elf_External_Verdaux));
6202 else
6203 def.vd_next = 0;
6204 _bfd_elf_swap_verdef_out (output_bfd, &def,
6205 (Elf_External_Verdef *) p);
6206 p += sizeof (Elf_External_Verdef);
6207 }
6208 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6209 (Elf_External_Verdaux *) p);
6210 p += sizeof (Elf_External_Verdaux);
6211
6212 for (t = verdefs; t != NULL; t = t->next)
6213 {
6214 unsigned int cdeps;
6215 struct bfd_elf_version_deps *n;
6216
6217 /* Don't emit the base version twice. */
6218 if (t->vernum == 0)
6219 continue;
6220
6221 cdeps = 0;
6222 for (n = t->deps; n != NULL; n = n->next)
6223 ++cdeps;
6224
6225 /* Add a symbol representing this version. */
6226 bh = NULL;
6227 if (! (_bfd_generic_link_add_one_symbol
6228 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6229 0, NULL, FALSE,
6230 get_elf_backend_data (dynobj)->collect, &bh)))
6231 return FALSE;
6232 h = (struct elf_link_hash_entry *) bh;
6233 h->non_elf = 0;
6234 h->def_regular = 1;
6235 h->type = STT_OBJECT;
6236 h->verinfo.vertree = t;
6237
6238 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6239 return FALSE;
6240
6241 def.vd_version = VER_DEF_CURRENT;
6242 def.vd_flags = 0;
6243 if (t->globals.list == NULL
6244 && t->locals.list == NULL
6245 && ! t->used)
6246 def.vd_flags |= VER_FLG_WEAK;
6247 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6248 def.vd_cnt = cdeps + 1;
6249 def.vd_hash = bfd_elf_hash (t->name);
6250 def.vd_aux = sizeof (Elf_External_Verdef);
6251 def.vd_next = 0;
6252
6253 /* If a basever node is next, it *must* be the last node in
6254 the chain, otherwise Verdef construction breaks. */
6255 if (t->next != NULL && t->next->vernum == 0)
6256 BFD_ASSERT (t->next->next == NULL);
6257
6258 if (t->next != NULL && t->next->vernum != 0)
6259 def.vd_next = (sizeof (Elf_External_Verdef)
6260 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6261
6262 _bfd_elf_swap_verdef_out (output_bfd, &def,
6263 (Elf_External_Verdef *) p);
6264 p += sizeof (Elf_External_Verdef);
6265
6266 defaux.vda_name = h->dynstr_index;
6267 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6268 h->dynstr_index);
6269 defaux.vda_next = 0;
6270 if (t->deps != NULL)
6271 defaux.vda_next = sizeof (Elf_External_Verdaux);
6272 t->name_indx = defaux.vda_name;
6273
6274 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6275 (Elf_External_Verdaux *) p);
6276 p += sizeof (Elf_External_Verdaux);
6277
6278 for (n = t->deps; n != NULL; n = n->next)
6279 {
6280 if (n->version_needed == NULL)
6281 {
6282 /* This can happen if there was an error in the
6283 version script. */
6284 defaux.vda_name = 0;
6285 }
6286 else
6287 {
6288 defaux.vda_name = n->version_needed->name_indx;
6289 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6290 defaux.vda_name);
6291 }
6292 if (n->next == NULL)
6293 defaux.vda_next = 0;
6294 else
6295 defaux.vda_next = sizeof (Elf_External_Verdaux);
6296
6297 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6298 (Elf_External_Verdaux *) p);
6299 p += sizeof (Elf_External_Verdaux);
6300 }
6301 }
6302
6303 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6304 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6305 return FALSE;
6306
6307 elf_tdata (output_bfd)->cverdefs = cdefs;
6308 }
6309
6310 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6311 {
6312 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6313 return FALSE;
6314 }
6315 else if (info->flags & DF_BIND_NOW)
6316 {
6317 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6318 return FALSE;
6319 }
6320
6321 if (info->flags_1)
6322 {
6323 if (bfd_link_executable (info))
6324 info->flags_1 &= ~ (DF_1_INITFIRST
6325 | DF_1_NODELETE
6326 | DF_1_NOOPEN);
6327 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6328 return FALSE;
6329 }
6330
6331 /* Work out the size of the version reference section. */
6332
6333 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6334 BFD_ASSERT (s != NULL);
6335 {
6336 struct elf_find_verdep_info sinfo;
6337
6338 sinfo.info = info;
6339 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6340 if (sinfo.vers == 0)
6341 sinfo.vers = 1;
6342 sinfo.failed = FALSE;
6343
6344 elf_link_hash_traverse (elf_hash_table (info),
6345 _bfd_elf_link_find_version_dependencies,
6346 &sinfo);
6347 if (sinfo.failed)
6348 return FALSE;
6349
6350 if (elf_tdata (output_bfd)->verref == NULL)
6351 s->flags |= SEC_EXCLUDE;
6352 else
6353 {
6354 Elf_Internal_Verneed *t;
6355 unsigned int size;
6356 unsigned int crefs;
6357 bfd_byte *p;
6358
6359 /* Build the version dependency section. */
6360 size = 0;
6361 crefs = 0;
6362 for (t = elf_tdata (output_bfd)->verref;
6363 t != NULL;
6364 t = t->vn_nextref)
6365 {
6366 Elf_Internal_Vernaux *a;
6367
6368 size += sizeof (Elf_External_Verneed);
6369 ++crefs;
6370 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6371 size += sizeof (Elf_External_Vernaux);
6372 }
6373
6374 s->size = size;
6375 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6376 if (s->contents == NULL)
6377 return FALSE;
6378
6379 p = s->contents;
6380 for (t = elf_tdata (output_bfd)->verref;
6381 t != NULL;
6382 t = t->vn_nextref)
6383 {
6384 unsigned int caux;
6385 Elf_Internal_Vernaux *a;
6386 bfd_size_type indx;
6387
6388 caux = 0;
6389 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6390 ++caux;
6391
6392 t->vn_version = VER_NEED_CURRENT;
6393 t->vn_cnt = caux;
6394 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6395 elf_dt_name (t->vn_bfd) != NULL
6396 ? elf_dt_name (t->vn_bfd)
6397 : lbasename (t->vn_bfd->filename),
6398 FALSE);
6399 if (indx == (bfd_size_type) -1)
6400 return FALSE;
6401 t->vn_file = indx;
6402 t->vn_aux = sizeof (Elf_External_Verneed);
6403 if (t->vn_nextref == NULL)
6404 t->vn_next = 0;
6405 else
6406 t->vn_next = (sizeof (Elf_External_Verneed)
6407 + caux * sizeof (Elf_External_Vernaux));
6408
6409 _bfd_elf_swap_verneed_out (output_bfd, t,
6410 (Elf_External_Verneed *) p);
6411 p += sizeof (Elf_External_Verneed);
6412
6413 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6414 {
6415 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6416 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6417 a->vna_nodename, FALSE);
6418 if (indx == (bfd_size_type) -1)
6419 return FALSE;
6420 a->vna_name = indx;
6421 if (a->vna_nextptr == NULL)
6422 a->vna_next = 0;
6423 else
6424 a->vna_next = sizeof (Elf_External_Vernaux);
6425
6426 _bfd_elf_swap_vernaux_out (output_bfd, a,
6427 (Elf_External_Vernaux *) p);
6428 p += sizeof (Elf_External_Vernaux);
6429 }
6430 }
6431
6432 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6433 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6434 return FALSE;
6435
6436 elf_tdata (output_bfd)->cverrefs = crefs;
6437 }
6438 }
6439
6440 if ((elf_tdata (output_bfd)->cverrefs == 0
6441 && elf_tdata (output_bfd)->cverdefs == 0)
6442 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6443 &section_sym_count) == 0)
6444 {
6445 s = bfd_get_linker_section (dynobj, ".gnu.version");
6446 s->flags |= SEC_EXCLUDE;
6447 }
6448 }
6449 return TRUE;
6450 }
6451
6452 /* Find the first non-excluded output section. We'll use its
6453 section symbol for some emitted relocs. */
6454 void
6455 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6456 {
6457 asection *s;
6458
6459 for (s = output_bfd->sections; s != NULL; s = s->next)
6460 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6461 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6462 {
6463 elf_hash_table (info)->text_index_section = s;
6464 break;
6465 }
6466 }
6467
6468 /* Find two non-excluded output sections, one for code, one for data.
6469 We'll use their section symbols for some emitted relocs. */
6470 void
6471 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6472 {
6473 asection *s;
6474
6475 /* Data first, since setting text_index_section changes
6476 _bfd_elf_link_omit_section_dynsym. */
6477 for (s = output_bfd->sections; s != NULL; s = s->next)
6478 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6479 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6480 {
6481 elf_hash_table (info)->data_index_section = s;
6482 break;
6483 }
6484
6485 for (s = output_bfd->sections; s != NULL; s = s->next)
6486 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6487 == (SEC_ALLOC | SEC_READONLY))
6488 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6489 {
6490 elf_hash_table (info)->text_index_section = s;
6491 break;
6492 }
6493
6494 if (elf_hash_table (info)->text_index_section == NULL)
6495 elf_hash_table (info)->text_index_section
6496 = elf_hash_table (info)->data_index_section;
6497 }
6498
6499 bfd_boolean
6500 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6501 {
6502 const struct elf_backend_data *bed;
6503
6504 if (!is_elf_hash_table (info->hash))
6505 return TRUE;
6506
6507 bed = get_elf_backend_data (output_bfd);
6508 (*bed->elf_backend_init_index_section) (output_bfd, info);
6509
6510 if (elf_hash_table (info)->dynamic_sections_created)
6511 {
6512 bfd *dynobj;
6513 asection *s;
6514 bfd_size_type dynsymcount;
6515 unsigned long section_sym_count;
6516 unsigned int dtagcount;
6517
6518 dynobj = elf_hash_table (info)->dynobj;
6519
6520 /* Assign dynsym indicies. In a shared library we generate a
6521 section symbol for each output section, which come first.
6522 Next come all of the back-end allocated local dynamic syms,
6523 followed by the rest of the global symbols. */
6524
6525 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6526 &section_sym_count);
6527
6528 /* Work out the size of the symbol version section. */
6529 s = bfd_get_linker_section (dynobj, ".gnu.version");
6530 BFD_ASSERT (s != NULL);
6531 if (dynsymcount != 0
6532 && (s->flags & SEC_EXCLUDE) == 0)
6533 {
6534 s->size = dynsymcount * sizeof (Elf_External_Versym);
6535 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6536 if (s->contents == NULL)
6537 return FALSE;
6538
6539 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6540 return FALSE;
6541 }
6542
6543 /* Set the size of the .dynsym and .hash sections. We counted
6544 the number of dynamic symbols in elf_link_add_object_symbols.
6545 We will build the contents of .dynsym and .hash when we build
6546 the final symbol table, because until then we do not know the
6547 correct value to give the symbols. We built the .dynstr
6548 section as we went along in elf_link_add_object_symbols. */
6549 s = elf_hash_table (info)->dynsym;
6550 BFD_ASSERT (s != NULL);
6551 s->size = dynsymcount * bed->s->sizeof_sym;
6552
6553 if (dynsymcount != 0)
6554 {
6555 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6556 if (s->contents == NULL)
6557 return FALSE;
6558
6559 /* The first entry in .dynsym is a dummy symbol.
6560 Clear all the section syms, in case we don't output them all. */
6561 ++section_sym_count;
6562 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6563 }
6564
6565 elf_hash_table (info)->bucketcount = 0;
6566
6567 /* Compute the size of the hashing table. As a side effect this
6568 computes the hash values for all the names we export. */
6569 if (info->emit_hash)
6570 {
6571 unsigned long int *hashcodes;
6572 struct hash_codes_info hashinf;
6573 bfd_size_type amt;
6574 unsigned long int nsyms;
6575 size_t bucketcount;
6576 size_t hash_entry_size;
6577
6578 /* Compute the hash values for all exported symbols. At the same
6579 time store the values in an array so that we could use them for
6580 optimizations. */
6581 amt = dynsymcount * sizeof (unsigned long int);
6582 hashcodes = (unsigned long int *) bfd_malloc (amt);
6583 if (hashcodes == NULL)
6584 return FALSE;
6585 hashinf.hashcodes = hashcodes;
6586 hashinf.error = FALSE;
6587
6588 /* Put all hash values in HASHCODES. */
6589 elf_link_hash_traverse (elf_hash_table (info),
6590 elf_collect_hash_codes, &hashinf);
6591 if (hashinf.error)
6592 {
6593 free (hashcodes);
6594 return FALSE;
6595 }
6596
6597 nsyms = hashinf.hashcodes - hashcodes;
6598 bucketcount
6599 = compute_bucket_count (info, hashcodes, nsyms, 0);
6600 free (hashcodes);
6601
6602 if (bucketcount == 0)
6603 return FALSE;
6604
6605 elf_hash_table (info)->bucketcount = bucketcount;
6606
6607 s = bfd_get_linker_section (dynobj, ".hash");
6608 BFD_ASSERT (s != NULL);
6609 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6610 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6611 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6612 if (s->contents == NULL)
6613 return FALSE;
6614
6615 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6616 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6617 s->contents + hash_entry_size);
6618 }
6619
6620 if (info->emit_gnu_hash)
6621 {
6622 size_t i, cnt;
6623 unsigned char *contents;
6624 struct collect_gnu_hash_codes cinfo;
6625 bfd_size_type amt;
6626 size_t bucketcount;
6627
6628 memset (&cinfo, 0, sizeof (cinfo));
6629
6630 /* Compute the hash values for all exported symbols. At the same
6631 time store the values in an array so that we could use them for
6632 optimizations. */
6633 amt = dynsymcount * 2 * sizeof (unsigned long int);
6634 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6635 if (cinfo.hashcodes == NULL)
6636 return FALSE;
6637
6638 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6639 cinfo.min_dynindx = -1;
6640 cinfo.output_bfd = output_bfd;
6641 cinfo.bed = bed;
6642
6643 /* Put all hash values in HASHCODES. */
6644 elf_link_hash_traverse (elf_hash_table (info),
6645 elf_collect_gnu_hash_codes, &cinfo);
6646 if (cinfo.error)
6647 {
6648 free (cinfo.hashcodes);
6649 return FALSE;
6650 }
6651
6652 bucketcount
6653 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6654
6655 if (bucketcount == 0)
6656 {
6657 free (cinfo.hashcodes);
6658 return FALSE;
6659 }
6660
6661 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6662 BFD_ASSERT (s != NULL);
6663
6664 if (cinfo.nsyms == 0)
6665 {
6666 /* Empty .gnu.hash section is special. */
6667 BFD_ASSERT (cinfo.min_dynindx == -1);
6668 free (cinfo.hashcodes);
6669 s->size = 5 * 4 + bed->s->arch_size / 8;
6670 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6671 if (contents == NULL)
6672 return FALSE;
6673 s->contents = contents;
6674 /* 1 empty bucket. */
6675 bfd_put_32 (output_bfd, 1, contents);
6676 /* SYMIDX above the special symbol 0. */
6677 bfd_put_32 (output_bfd, 1, contents + 4);
6678 /* Just one word for bitmask. */
6679 bfd_put_32 (output_bfd, 1, contents + 8);
6680 /* Only hash fn bloom filter. */
6681 bfd_put_32 (output_bfd, 0, contents + 12);
6682 /* No hashes are valid - empty bitmask. */
6683 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6684 /* No hashes in the only bucket. */
6685 bfd_put_32 (output_bfd, 0,
6686 contents + 16 + bed->s->arch_size / 8);
6687 }
6688 else
6689 {
6690 unsigned long int maskwords, maskbitslog2, x;
6691 BFD_ASSERT (cinfo.min_dynindx != -1);
6692
6693 x = cinfo.nsyms;
6694 maskbitslog2 = 1;
6695 while ((x >>= 1) != 0)
6696 ++maskbitslog2;
6697 if (maskbitslog2 < 3)
6698 maskbitslog2 = 5;
6699 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6700 maskbitslog2 = maskbitslog2 + 3;
6701 else
6702 maskbitslog2 = maskbitslog2 + 2;
6703 if (bed->s->arch_size == 64)
6704 {
6705 if (maskbitslog2 == 5)
6706 maskbitslog2 = 6;
6707 cinfo.shift1 = 6;
6708 }
6709 else
6710 cinfo.shift1 = 5;
6711 cinfo.mask = (1 << cinfo.shift1) - 1;
6712 cinfo.shift2 = maskbitslog2;
6713 cinfo.maskbits = 1 << maskbitslog2;
6714 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6715 amt = bucketcount * sizeof (unsigned long int) * 2;
6716 amt += maskwords * sizeof (bfd_vma);
6717 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6718 if (cinfo.bitmask == NULL)
6719 {
6720 free (cinfo.hashcodes);
6721 return FALSE;
6722 }
6723
6724 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6725 cinfo.indx = cinfo.counts + bucketcount;
6726 cinfo.symindx = dynsymcount - cinfo.nsyms;
6727 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6728
6729 /* Determine how often each hash bucket is used. */
6730 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6731 for (i = 0; i < cinfo.nsyms; ++i)
6732 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6733
6734 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6735 if (cinfo.counts[i] != 0)
6736 {
6737 cinfo.indx[i] = cnt;
6738 cnt += cinfo.counts[i];
6739 }
6740 BFD_ASSERT (cnt == dynsymcount);
6741 cinfo.bucketcount = bucketcount;
6742 cinfo.local_indx = cinfo.min_dynindx;
6743
6744 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6745 s->size += cinfo.maskbits / 8;
6746 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6747 if (contents == NULL)
6748 {
6749 free (cinfo.bitmask);
6750 free (cinfo.hashcodes);
6751 return FALSE;
6752 }
6753
6754 s->contents = contents;
6755 bfd_put_32 (output_bfd, bucketcount, contents);
6756 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6757 bfd_put_32 (output_bfd, maskwords, contents + 8);
6758 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6759 contents += 16 + cinfo.maskbits / 8;
6760
6761 for (i = 0; i < bucketcount; ++i)
6762 {
6763 if (cinfo.counts[i] == 0)
6764 bfd_put_32 (output_bfd, 0, contents);
6765 else
6766 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6767 contents += 4;
6768 }
6769
6770 cinfo.contents = contents;
6771
6772 /* Renumber dynamic symbols, populate .gnu.hash section. */
6773 elf_link_hash_traverse (elf_hash_table (info),
6774 elf_renumber_gnu_hash_syms, &cinfo);
6775
6776 contents = s->contents + 16;
6777 for (i = 0; i < maskwords; ++i)
6778 {
6779 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6780 contents);
6781 contents += bed->s->arch_size / 8;
6782 }
6783
6784 free (cinfo.bitmask);
6785 free (cinfo.hashcodes);
6786 }
6787 }
6788
6789 s = bfd_get_linker_section (dynobj, ".dynstr");
6790 BFD_ASSERT (s != NULL);
6791
6792 elf_finalize_dynstr (output_bfd, info);
6793
6794 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6795
6796 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6797 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6798 return FALSE;
6799 }
6800
6801 return TRUE;
6802 }
6803 \f
6804 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6805
6806 static void
6807 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6808 asection *sec)
6809 {
6810 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6811 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6812 }
6813
6814 /* Finish SHF_MERGE section merging. */
6815
6816 bfd_boolean
6817 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6818 {
6819 bfd *ibfd;
6820 asection *sec;
6821
6822 if (!is_elf_hash_table (info->hash))
6823 return FALSE;
6824
6825 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6826 if ((ibfd->flags & DYNAMIC) == 0
6827 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6828 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6829 == get_elf_backend_data (obfd)->s->elfclass))
6830 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6831 if ((sec->flags & SEC_MERGE) != 0
6832 && !bfd_is_abs_section (sec->output_section))
6833 {
6834 struct bfd_elf_section_data *secdata;
6835
6836 secdata = elf_section_data (sec);
6837 if (! _bfd_add_merge_section (obfd,
6838 &elf_hash_table (info)->merge_info,
6839 sec, &secdata->sec_info))
6840 return FALSE;
6841 else if (secdata->sec_info)
6842 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6843 }
6844
6845 if (elf_hash_table (info)->merge_info != NULL)
6846 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6847 merge_sections_remove_hook);
6848 return TRUE;
6849 }
6850
6851 /* Create an entry in an ELF linker hash table. */
6852
6853 struct bfd_hash_entry *
6854 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6855 struct bfd_hash_table *table,
6856 const char *string)
6857 {
6858 /* Allocate the structure if it has not already been allocated by a
6859 subclass. */
6860 if (entry == NULL)
6861 {
6862 entry = (struct bfd_hash_entry *)
6863 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6864 if (entry == NULL)
6865 return entry;
6866 }
6867
6868 /* Call the allocation method of the superclass. */
6869 entry = _bfd_link_hash_newfunc (entry, table, string);
6870 if (entry != NULL)
6871 {
6872 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6873 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6874
6875 /* Set local fields. */
6876 ret->indx = -1;
6877 ret->dynindx = -1;
6878 ret->got = htab->init_got_refcount;
6879 ret->plt = htab->init_plt_refcount;
6880 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6881 - offsetof (struct elf_link_hash_entry, size)));
6882 /* Assume that we have been called by a non-ELF symbol reader.
6883 This flag is then reset by the code which reads an ELF input
6884 file. This ensures that a symbol created by a non-ELF symbol
6885 reader will have the flag set correctly. */
6886 ret->non_elf = 1;
6887 }
6888
6889 return entry;
6890 }
6891
6892 /* Copy data from an indirect symbol to its direct symbol, hiding the
6893 old indirect symbol. Also used for copying flags to a weakdef. */
6894
6895 void
6896 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6897 struct elf_link_hash_entry *dir,
6898 struct elf_link_hash_entry *ind)
6899 {
6900 struct elf_link_hash_table *htab;
6901
6902 /* Copy down any references that we may have already seen to the
6903 symbol which just became indirect if DIR isn't a hidden versioned
6904 symbol. */
6905
6906 if (dir->versioned != versioned_hidden)
6907 {
6908 dir->ref_dynamic |= ind->ref_dynamic;
6909 dir->ref_regular |= ind->ref_regular;
6910 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6911 dir->non_got_ref |= ind->non_got_ref;
6912 dir->needs_plt |= ind->needs_plt;
6913 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6914 }
6915
6916 if (ind->root.type != bfd_link_hash_indirect)
6917 return;
6918
6919 /* Copy over the global and procedure linkage table refcount entries.
6920 These may have been already set up by a check_relocs routine. */
6921 htab = elf_hash_table (info);
6922 if (ind->got.refcount > htab->init_got_refcount.refcount)
6923 {
6924 if (dir->got.refcount < 0)
6925 dir->got.refcount = 0;
6926 dir->got.refcount += ind->got.refcount;
6927 ind->got.refcount = htab->init_got_refcount.refcount;
6928 }
6929
6930 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6931 {
6932 if (dir->plt.refcount < 0)
6933 dir->plt.refcount = 0;
6934 dir->plt.refcount += ind->plt.refcount;
6935 ind->plt.refcount = htab->init_plt_refcount.refcount;
6936 }
6937
6938 if (ind->dynindx != -1)
6939 {
6940 if (dir->dynindx != -1)
6941 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6942 dir->dynindx = ind->dynindx;
6943 dir->dynstr_index = ind->dynstr_index;
6944 ind->dynindx = -1;
6945 ind->dynstr_index = 0;
6946 }
6947 }
6948
6949 void
6950 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6951 struct elf_link_hash_entry *h,
6952 bfd_boolean force_local)
6953 {
6954 /* STT_GNU_IFUNC symbol must go through PLT. */
6955 if (h->type != STT_GNU_IFUNC)
6956 {
6957 h->plt = elf_hash_table (info)->init_plt_offset;
6958 h->needs_plt = 0;
6959 }
6960 if (force_local)
6961 {
6962 h->forced_local = 1;
6963 if (h->dynindx != -1)
6964 {
6965 h->dynindx = -1;
6966 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6967 h->dynstr_index);
6968 }
6969 }
6970 }
6971
6972 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6973 caller. */
6974
6975 bfd_boolean
6976 _bfd_elf_link_hash_table_init
6977 (struct elf_link_hash_table *table,
6978 bfd *abfd,
6979 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6980 struct bfd_hash_table *,
6981 const char *),
6982 unsigned int entsize,
6983 enum elf_target_id target_id)
6984 {
6985 bfd_boolean ret;
6986 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6987
6988 table->init_got_refcount.refcount = can_refcount - 1;
6989 table->init_plt_refcount.refcount = can_refcount - 1;
6990 table->init_got_offset.offset = -(bfd_vma) 1;
6991 table->init_plt_offset.offset = -(bfd_vma) 1;
6992 /* The first dynamic symbol is a dummy. */
6993 table->dynsymcount = 1;
6994
6995 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6996
6997 table->root.type = bfd_link_elf_hash_table;
6998 table->hash_table_id = target_id;
6999
7000 return ret;
7001 }
7002
7003 /* Create an ELF linker hash table. */
7004
7005 struct bfd_link_hash_table *
7006 _bfd_elf_link_hash_table_create (bfd *abfd)
7007 {
7008 struct elf_link_hash_table *ret;
7009 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7010
7011 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7012 if (ret == NULL)
7013 return NULL;
7014
7015 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7016 sizeof (struct elf_link_hash_entry),
7017 GENERIC_ELF_DATA))
7018 {
7019 free (ret);
7020 return NULL;
7021 }
7022 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7023
7024 return &ret->root;
7025 }
7026
7027 /* Destroy an ELF linker hash table. */
7028
7029 void
7030 _bfd_elf_link_hash_table_free (bfd *obfd)
7031 {
7032 struct elf_link_hash_table *htab;
7033
7034 htab = (struct elf_link_hash_table *) obfd->link.hash;
7035 if (htab->dynstr != NULL)
7036 _bfd_elf_strtab_free (htab->dynstr);
7037 _bfd_merge_sections_free (htab->merge_info);
7038 _bfd_generic_link_hash_table_free (obfd);
7039 }
7040
7041 /* This is a hook for the ELF emulation code in the generic linker to
7042 tell the backend linker what file name to use for the DT_NEEDED
7043 entry for a dynamic object. */
7044
7045 void
7046 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7047 {
7048 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7049 && bfd_get_format (abfd) == bfd_object)
7050 elf_dt_name (abfd) = name;
7051 }
7052
7053 int
7054 bfd_elf_get_dyn_lib_class (bfd *abfd)
7055 {
7056 int lib_class;
7057 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7058 && bfd_get_format (abfd) == bfd_object)
7059 lib_class = elf_dyn_lib_class (abfd);
7060 else
7061 lib_class = 0;
7062 return lib_class;
7063 }
7064
7065 void
7066 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7067 {
7068 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7069 && bfd_get_format (abfd) == bfd_object)
7070 elf_dyn_lib_class (abfd) = lib_class;
7071 }
7072
7073 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7074 the linker ELF emulation code. */
7075
7076 struct bfd_link_needed_list *
7077 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7078 struct bfd_link_info *info)
7079 {
7080 if (! is_elf_hash_table (info->hash))
7081 return NULL;
7082 return elf_hash_table (info)->needed;
7083 }
7084
7085 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7086 hook for the linker ELF emulation code. */
7087
7088 struct bfd_link_needed_list *
7089 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7090 struct bfd_link_info *info)
7091 {
7092 if (! is_elf_hash_table (info->hash))
7093 return NULL;
7094 return elf_hash_table (info)->runpath;
7095 }
7096
7097 /* Get the name actually used for a dynamic object for a link. This
7098 is the SONAME entry if there is one. Otherwise, it is the string
7099 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7100
7101 const char *
7102 bfd_elf_get_dt_soname (bfd *abfd)
7103 {
7104 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7105 && bfd_get_format (abfd) == bfd_object)
7106 return elf_dt_name (abfd);
7107 return NULL;
7108 }
7109
7110 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7111 the ELF linker emulation code. */
7112
7113 bfd_boolean
7114 bfd_elf_get_bfd_needed_list (bfd *abfd,
7115 struct bfd_link_needed_list **pneeded)
7116 {
7117 asection *s;
7118 bfd_byte *dynbuf = NULL;
7119 unsigned int elfsec;
7120 unsigned long shlink;
7121 bfd_byte *extdyn, *extdynend;
7122 size_t extdynsize;
7123 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7124
7125 *pneeded = NULL;
7126
7127 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7128 || bfd_get_format (abfd) != bfd_object)
7129 return TRUE;
7130
7131 s = bfd_get_section_by_name (abfd, ".dynamic");
7132 if (s == NULL || s->size == 0)
7133 return TRUE;
7134
7135 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7136 goto error_return;
7137
7138 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7139 if (elfsec == SHN_BAD)
7140 goto error_return;
7141
7142 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7143
7144 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7145 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7146
7147 extdyn = dynbuf;
7148 extdynend = extdyn + s->size;
7149 for (; extdyn < extdynend; extdyn += extdynsize)
7150 {
7151 Elf_Internal_Dyn dyn;
7152
7153 (*swap_dyn_in) (abfd, extdyn, &dyn);
7154
7155 if (dyn.d_tag == DT_NULL)
7156 break;
7157
7158 if (dyn.d_tag == DT_NEEDED)
7159 {
7160 const char *string;
7161 struct bfd_link_needed_list *l;
7162 unsigned int tagv = dyn.d_un.d_val;
7163 bfd_size_type amt;
7164
7165 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7166 if (string == NULL)
7167 goto error_return;
7168
7169 amt = sizeof *l;
7170 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7171 if (l == NULL)
7172 goto error_return;
7173
7174 l->by = abfd;
7175 l->name = string;
7176 l->next = *pneeded;
7177 *pneeded = l;
7178 }
7179 }
7180
7181 free (dynbuf);
7182
7183 return TRUE;
7184
7185 error_return:
7186 if (dynbuf != NULL)
7187 free (dynbuf);
7188 return FALSE;
7189 }
7190
7191 struct elf_symbuf_symbol
7192 {
7193 unsigned long st_name; /* Symbol name, index in string tbl */
7194 unsigned char st_info; /* Type and binding attributes */
7195 unsigned char st_other; /* Visibilty, and target specific */
7196 };
7197
7198 struct elf_symbuf_head
7199 {
7200 struct elf_symbuf_symbol *ssym;
7201 bfd_size_type count;
7202 unsigned int st_shndx;
7203 };
7204
7205 struct elf_symbol
7206 {
7207 union
7208 {
7209 Elf_Internal_Sym *isym;
7210 struct elf_symbuf_symbol *ssym;
7211 } u;
7212 const char *name;
7213 };
7214
7215 /* Sort references to symbols by ascending section number. */
7216
7217 static int
7218 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7219 {
7220 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7221 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7222
7223 return s1->st_shndx - s2->st_shndx;
7224 }
7225
7226 static int
7227 elf_sym_name_compare (const void *arg1, const void *arg2)
7228 {
7229 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7230 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7231 return strcmp (s1->name, s2->name);
7232 }
7233
7234 static struct elf_symbuf_head *
7235 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7236 {
7237 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7238 struct elf_symbuf_symbol *ssym;
7239 struct elf_symbuf_head *ssymbuf, *ssymhead;
7240 bfd_size_type i, shndx_count, total_size;
7241
7242 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7243 if (indbuf == NULL)
7244 return NULL;
7245
7246 for (ind = indbuf, i = 0; i < symcount; i++)
7247 if (isymbuf[i].st_shndx != SHN_UNDEF)
7248 *ind++ = &isymbuf[i];
7249 indbufend = ind;
7250
7251 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7252 elf_sort_elf_symbol);
7253
7254 shndx_count = 0;
7255 if (indbufend > indbuf)
7256 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7257 if (ind[0]->st_shndx != ind[1]->st_shndx)
7258 shndx_count++;
7259
7260 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7261 + (indbufend - indbuf) * sizeof (*ssym));
7262 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7263 if (ssymbuf == NULL)
7264 {
7265 free (indbuf);
7266 return NULL;
7267 }
7268
7269 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7270 ssymbuf->ssym = NULL;
7271 ssymbuf->count = shndx_count;
7272 ssymbuf->st_shndx = 0;
7273 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7274 {
7275 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7276 {
7277 ssymhead++;
7278 ssymhead->ssym = ssym;
7279 ssymhead->count = 0;
7280 ssymhead->st_shndx = (*ind)->st_shndx;
7281 }
7282 ssym->st_name = (*ind)->st_name;
7283 ssym->st_info = (*ind)->st_info;
7284 ssym->st_other = (*ind)->st_other;
7285 ssymhead->count++;
7286 }
7287 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7288 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7289 == total_size));
7290
7291 free (indbuf);
7292 return ssymbuf;
7293 }
7294
7295 /* Check if 2 sections define the same set of local and global
7296 symbols. */
7297
7298 static bfd_boolean
7299 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7300 struct bfd_link_info *info)
7301 {
7302 bfd *bfd1, *bfd2;
7303 const struct elf_backend_data *bed1, *bed2;
7304 Elf_Internal_Shdr *hdr1, *hdr2;
7305 bfd_size_type symcount1, symcount2;
7306 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7307 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7308 Elf_Internal_Sym *isym, *isymend;
7309 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7310 bfd_size_type count1, count2, i;
7311 unsigned int shndx1, shndx2;
7312 bfd_boolean result;
7313
7314 bfd1 = sec1->owner;
7315 bfd2 = sec2->owner;
7316
7317 /* Both sections have to be in ELF. */
7318 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7319 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7320 return FALSE;
7321
7322 if (elf_section_type (sec1) != elf_section_type (sec2))
7323 return FALSE;
7324
7325 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7326 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7327 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7328 return FALSE;
7329
7330 bed1 = get_elf_backend_data (bfd1);
7331 bed2 = get_elf_backend_data (bfd2);
7332 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7333 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7334 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7335 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7336
7337 if (symcount1 == 0 || symcount2 == 0)
7338 return FALSE;
7339
7340 result = FALSE;
7341 isymbuf1 = NULL;
7342 isymbuf2 = NULL;
7343 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7344 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7345
7346 if (ssymbuf1 == NULL)
7347 {
7348 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7349 NULL, NULL, NULL);
7350 if (isymbuf1 == NULL)
7351 goto done;
7352
7353 if (!info->reduce_memory_overheads)
7354 elf_tdata (bfd1)->symbuf = ssymbuf1
7355 = elf_create_symbuf (symcount1, isymbuf1);
7356 }
7357
7358 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7359 {
7360 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7361 NULL, NULL, NULL);
7362 if (isymbuf2 == NULL)
7363 goto done;
7364
7365 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7366 elf_tdata (bfd2)->symbuf = ssymbuf2
7367 = elf_create_symbuf (symcount2, isymbuf2);
7368 }
7369
7370 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7371 {
7372 /* Optimized faster version. */
7373 bfd_size_type lo, hi, mid;
7374 struct elf_symbol *symp;
7375 struct elf_symbuf_symbol *ssym, *ssymend;
7376
7377 lo = 0;
7378 hi = ssymbuf1->count;
7379 ssymbuf1++;
7380 count1 = 0;
7381 while (lo < hi)
7382 {
7383 mid = (lo + hi) / 2;
7384 if (shndx1 < ssymbuf1[mid].st_shndx)
7385 hi = mid;
7386 else if (shndx1 > ssymbuf1[mid].st_shndx)
7387 lo = mid + 1;
7388 else
7389 {
7390 count1 = ssymbuf1[mid].count;
7391 ssymbuf1 += mid;
7392 break;
7393 }
7394 }
7395
7396 lo = 0;
7397 hi = ssymbuf2->count;
7398 ssymbuf2++;
7399 count2 = 0;
7400 while (lo < hi)
7401 {
7402 mid = (lo + hi) / 2;
7403 if (shndx2 < ssymbuf2[mid].st_shndx)
7404 hi = mid;
7405 else if (shndx2 > ssymbuf2[mid].st_shndx)
7406 lo = mid + 1;
7407 else
7408 {
7409 count2 = ssymbuf2[mid].count;
7410 ssymbuf2 += mid;
7411 break;
7412 }
7413 }
7414
7415 if (count1 == 0 || count2 == 0 || count1 != count2)
7416 goto done;
7417
7418 symtable1
7419 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7420 symtable2
7421 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7422 if (symtable1 == NULL || symtable2 == NULL)
7423 goto done;
7424
7425 symp = symtable1;
7426 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7427 ssym < ssymend; ssym++, symp++)
7428 {
7429 symp->u.ssym = ssym;
7430 symp->name = bfd_elf_string_from_elf_section (bfd1,
7431 hdr1->sh_link,
7432 ssym->st_name);
7433 }
7434
7435 symp = symtable2;
7436 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7437 ssym < ssymend; ssym++, symp++)
7438 {
7439 symp->u.ssym = ssym;
7440 symp->name = bfd_elf_string_from_elf_section (bfd2,
7441 hdr2->sh_link,
7442 ssym->st_name);
7443 }
7444
7445 /* Sort symbol by name. */
7446 qsort (symtable1, count1, sizeof (struct elf_symbol),
7447 elf_sym_name_compare);
7448 qsort (symtable2, count1, sizeof (struct elf_symbol),
7449 elf_sym_name_compare);
7450
7451 for (i = 0; i < count1; i++)
7452 /* Two symbols must have the same binding, type and name. */
7453 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7454 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7455 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7456 goto done;
7457
7458 result = TRUE;
7459 goto done;
7460 }
7461
7462 symtable1 = (struct elf_symbol *)
7463 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7464 symtable2 = (struct elf_symbol *)
7465 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7466 if (symtable1 == NULL || symtable2 == NULL)
7467 goto done;
7468
7469 /* Count definitions in the section. */
7470 count1 = 0;
7471 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7472 if (isym->st_shndx == shndx1)
7473 symtable1[count1++].u.isym = isym;
7474
7475 count2 = 0;
7476 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7477 if (isym->st_shndx == shndx2)
7478 symtable2[count2++].u.isym = isym;
7479
7480 if (count1 == 0 || count2 == 0 || count1 != count2)
7481 goto done;
7482
7483 for (i = 0; i < count1; i++)
7484 symtable1[i].name
7485 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7486 symtable1[i].u.isym->st_name);
7487
7488 for (i = 0; i < count2; i++)
7489 symtable2[i].name
7490 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7491 symtable2[i].u.isym->st_name);
7492
7493 /* Sort symbol by name. */
7494 qsort (symtable1, count1, sizeof (struct elf_symbol),
7495 elf_sym_name_compare);
7496 qsort (symtable2, count1, sizeof (struct elf_symbol),
7497 elf_sym_name_compare);
7498
7499 for (i = 0; i < count1; i++)
7500 /* Two symbols must have the same binding, type and name. */
7501 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7502 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7503 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7504 goto done;
7505
7506 result = TRUE;
7507
7508 done:
7509 if (symtable1)
7510 free (symtable1);
7511 if (symtable2)
7512 free (symtable2);
7513 if (isymbuf1)
7514 free (isymbuf1);
7515 if (isymbuf2)
7516 free (isymbuf2);
7517
7518 return result;
7519 }
7520
7521 /* Return TRUE if 2 section types are compatible. */
7522
7523 bfd_boolean
7524 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7525 bfd *bbfd, const asection *bsec)
7526 {
7527 if (asec == NULL
7528 || bsec == NULL
7529 || abfd->xvec->flavour != bfd_target_elf_flavour
7530 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7531 return TRUE;
7532
7533 return elf_section_type (asec) == elf_section_type (bsec);
7534 }
7535 \f
7536 /* Final phase of ELF linker. */
7537
7538 /* A structure we use to avoid passing large numbers of arguments. */
7539
7540 struct elf_final_link_info
7541 {
7542 /* General link information. */
7543 struct bfd_link_info *info;
7544 /* Output BFD. */
7545 bfd *output_bfd;
7546 /* Symbol string table. */
7547 struct elf_strtab_hash *symstrtab;
7548 /* .hash section. */
7549 asection *hash_sec;
7550 /* symbol version section (.gnu.version). */
7551 asection *symver_sec;
7552 /* Buffer large enough to hold contents of any section. */
7553 bfd_byte *contents;
7554 /* Buffer large enough to hold external relocs of any section. */
7555 void *external_relocs;
7556 /* Buffer large enough to hold internal relocs of any section. */
7557 Elf_Internal_Rela *internal_relocs;
7558 /* Buffer large enough to hold external local symbols of any input
7559 BFD. */
7560 bfd_byte *external_syms;
7561 /* And a buffer for symbol section indices. */
7562 Elf_External_Sym_Shndx *locsym_shndx;
7563 /* Buffer large enough to hold internal local symbols of any input
7564 BFD. */
7565 Elf_Internal_Sym *internal_syms;
7566 /* Array large enough to hold a symbol index for each local symbol
7567 of any input BFD. */
7568 long *indices;
7569 /* Array large enough to hold a section pointer for each local
7570 symbol of any input BFD. */
7571 asection **sections;
7572 /* Buffer for SHT_SYMTAB_SHNDX section. */
7573 Elf_External_Sym_Shndx *symshndxbuf;
7574 /* Number of STT_FILE syms seen. */
7575 size_t filesym_count;
7576 };
7577
7578 /* This struct is used to pass information to elf_link_output_extsym. */
7579
7580 struct elf_outext_info
7581 {
7582 bfd_boolean failed;
7583 bfd_boolean localsyms;
7584 bfd_boolean file_sym_done;
7585 struct elf_final_link_info *flinfo;
7586 };
7587
7588
7589 /* Support for evaluating a complex relocation.
7590
7591 Complex relocations are generalized, self-describing relocations. The
7592 implementation of them consists of two parts: complex symbols, and the
7593 relocations themselves.
7594
7595 The relocations are use a reserved elf-wide relocation type code (R_RELC
7596 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7597 information (start bit, end bit, word width, etc) into the addend. This
7598 information is extracted from CGEN-generated operand tables within gas.
7599
7600 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7601 internal) representing prefix-notation expressions, including but not
7602 limited to those sorts of expressions normally encoded as addends in the
7603 addend field. The symbol mangling format is:
7604
7605 <node> := <literal>
7606 | <unary-operator> ':' <node>
7607 | <binary-operator> ':' <node> ':' <node>
7608 ;
7609
7610 <literal> := 's' <digits=N> ':' <N character symbol name>
7611 | 'S' <digits=N> ':' <N character section name>
7612 | '#' <hexdigits>
7613 ;
7614
7615 <binary-operator> := as in C
7616 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7617
7618 static void
7619 set_symbol_value (bfd *bfd_with_globals,
7620 Elf_Internal_Sym *isymbuf,
7621 size_t locsymcount,
7622 size_t symidx,
7623 bfd_vma val)
7624 {
7625 struct elf_link_hash_entry **sym_hashes;
7626 struct elf_link_hash_entry *h;
7627 size_t extsymoff = locsymcount;
7628
7629 if (symidx < locsymcount)
7630 {
7631 Elf_Internal_Sym *sym;
7632
7633 sym = isymbuf + symidx;
7634 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7635 {
7636 /* It is a local symbol: move it to the
7637 "absolute" section and give it a value. */
7638 sym->st_shndx = SHN_ABS;
7639 sym->st_value = val;
7640 return;
7641 }
7642 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7643 extsymoff = 0;
7644 }
7645
7646 /* It is a global symbol: set its link type
7647 to "defined" and give it a value. */
7648
7649 sym_hashes = elf_sym_hashes (bfd_with_globals);
7650 h = sym_hashes [symidx - extsymoff];
7651 while (h->root.type == bfd_link_hash_indirect
7652 || h->root.type == bfd_link_hash_warning)
7653 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7654 h->root.type = bfd_link_hash_defined;
7655 h->root.u.def.value = val;
7656 h->root.u.def.section = bfd_abs_section_ptr;
7657 }
7658
7659 static bfd_boolean
7660 resolve_symbol (const char *name,
7661 bfd *input_bfd,
7662 struct elf_final_link_info *flinfo,
7663 bfd_vma *result,
7664 Elf_Internal_Sym *isymbuf,
7665 size_t locsymcount)
7666 {
7667 Elf_Internal_Sym *sym;
7668 struct bfd_link_hash_entry *global_entry;
7669 const char *candidate = NULL;
7670 Elf_Internal_Shdr *symtab_hdr;
7671 size_t i;
7672
7673 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7674
7675 for (i = 0; i < locsymcount; ++ i)
7676 {
7677 sym = isymbuf + i;
7678
7679 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7680 continue;
7681
7682 candidate = bfd_elf_string_from_elf_section (input_bfd,
7683 symtab_hdr->sh_link,
7684 sym->st_name);
7685 #ifdef DEBUG
7686 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7687 name, candidate, (unsigned long) sym->st_value);
7688 #endif
7689 if (candidate && strcmp (candidate, name) == 0)
7690 {
7691 asection *sec = flinfo->sections [i];
7692
7693 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7694 *result += sec->output_offset + sec->output_section->vma;
7695 #ifdef DEBUG
7696 printf ("Found symbol with value %8.8lx\n",
7697 (unsigned long) *result);
7698 #endif
7699 return TRUE;
7700 }
7701 }
7702
7703 /* Hmm, haven't found it yet. perhaps it is a global. */
7704 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7705 FALSE, FALSE, TRUE);
7706 if (!global_entry)
7707 return FALSE;
7708
7709 if (global_entry->type == bfd_link_hash_defined
7710 || global_entry->type == bfd_link_hash_defweak)
7711 {
7712 *result = (global_entry->u.def.value
7713 + global_entry->u.def.section->output_section->vma
7714 + global_entry->u.def.section->output_offset);
7715 #ifdef DEBUG
7716 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7717 global_entry->root.string, (unsigned long) *result);
7718 #endif
7719 return TRUE;
7720 }
7721
7722 return FALSE;
7723 }
7724
7725 static bfd_boolean
7726 resolve_section (const char *name,
7727 asection *sections,
7728 bfd_vma *result)
7729 {
7730 asection *curr;
7731 unsigned int len;
7732
7733 for (curr = sections; curr; curr = curr->next)
7734 if (strcmp (curr->name, name) == 0)
7735 {
7736 *result = curr->vma;
7737 return TRUE;
7738 }
7739
7740 /* Hmm. still haven't found it. try pseudo-section names. */
7741 for (curr = sections; curr; curr = curr->next)
7742 {
7743 len = strlen (curr->name);
7744 if (len > strlen (name))
7745 continue;
7746
7747 if (strncmp (curr->name, name, len) == 0)
7748 {
7749 if (strncmp (".end", name + len, 4) == 0)
7750 {
7751 *result = curr->vma + curr->size;
7752 return TRUE;
7753 }
7754
7755 /* Insert more pseudo-section names here, if you like. */
7756 }
7757 }
7758
7759 return FALSE;
7760 }
7761
7762 static void
7763 undefined_reference (const char *reftype, const char *name)
7764 {
7765 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7766 reftype, name);
7767 }
7768
7769 static bfd_boolean
7770 eval_symbol (bfd_vma *result,
7771 const char **symp,
7772 bfd *input_bfd,
7773 struct elf_final_link_info *flinfo,
7774 bfd_vma dot,
7775 Elf_Internal_Sym *isymbuf,
7776 size_t locsymcount,
7777 int signed_p)
7778 {
7779 size_t len;
7780 size_t symlen;
7781 bfd_vma a;
7782 bfd_vma b;
7783 char symbuf[4096];
7784 const char *sym = *symp;
7785 const char *symend;
7786 bfd_boolean symbol_is_section = FALSE;
7787
7788 len = strlen (sym);
7789 symend = sym + len;
7790
7791 if (len < 1 || len > sizeof (symbuf))
7792 {
7793 bfd_set_error (bfd_error_invalid_operation);
7794 return FALSE;
7795 }
7796
7797 switch (* sym)
7798 {
7799 case '.':
7800 *result = dot;
7801 *symp = sym + 1;
7802 return TRUE;
7803
7804 case '#':
7805 ++sym;
7806 *result = strtoul (sym, (char **) symp, 16);
7807 return TRUE;
7808
7809 case 'S':
7810 symbol_is_section = TRUE;
7811 case 's':
7812 ++sym;
7813 symlen = strtol (sym, (char **) symp, 10);
7814 sym = *symp + 1; /* Skip the trailing ':'. */
7815
7816 if (symend < sym || symlen + 1 > sizeof (symbuf))
7817 {
7818 bfd_set_error (bfd_error_invalid_operation);
7819 return FALSE;
7820 }
7821
7822 memcpy (symbuf, sym, symlen);
7823 symbuf[symlen] = '\0';
7824 *symp = sym + symlen;
7825
7826 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7827 the symbol as a section, or vice-versa. so we're pretty liberal in our
7828 interpretation here; section means "try section first", not "must be a
7829 section", and likewise with symbol. */
7830
7831 if (symbol_is_section)
7832 {
7833 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7834 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7835 isymbuf, locsymcount))
7836 {
7837 undefined_reference ("section", symbuf);
7838 return FALSE;
7839 }
7840 }
7841 else
7842 {
7843 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7844 isymbuf, locsymcount)
7845 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7846 result))
7847 {
7848 undefined_reference ("symbol", symbuf);
7849 return FALSE;
7850 }
7851 }
7852
7853 return TRUE;
7854
7855 /* All that remains are operators. */
7856
7857 #define UNARY_OP(op) \
7858 if (strncmp (sym, #op, strlen (#op)) == 0) \
7859 { \
7860 sym += strlen (#op); \
7861 if (*sym == ':') \
7862 ++sym; \
7863 *symp = sym; \
7864 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7865 isymbuf, locsymcount, signed_p)) \
7866 return FALSE; \
7867 if (signed_p) \
7868 *result = op ((bfd_signed_vma) a); \
7869 else \
7870 *result = op a; \
7871 return TRUE; \
7872 }
7873
7874 #define BINARY_OP(op) \
7875 if (strncmp (sym, #op, strlen (#op)) == 0) \
7876 { \
7877 sym += strlen (#op); \
7878 if (*sym == ':') \
7879 ++sym; \
7880 *symp = sym; \
7881 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7882 isymbuf, locsymcount, signed_p)) \
7883 return FALSE; \
7884 ++*symp; \
7885 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7886 isymbuf, locsymcount, signed_p)) \
7887 return FALSE; \
7888 if (signed_p) \
7889 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7890 else \
7891 *result = a op b; \
7892 return TRUE; \
7893 }
7894
7895 default:
7896 UNARY_OP (0-);
7897 BINARY_OP (<<);
7898 BINARY_OP (>>);
7899 BINARY_OP (==);
7900 BINARY_OP (!=);
7901 BINARY_OP (<=);
7902 BINARY_OP (>=);
7903 BINARY_OP (&&);
7904 BINARY_OP (||);
7905 UNARY_OP (~);
7906 UNARY_OP (!);
7907 BINARY_OP (*);
7908 BINARY_OP (/);
7909 BINARY_OP (%);
7910 BINARY_OP (^);
7911 BINARY_OP (|);
7912 BINARY_OP (&);
7913 BINARY_OP (+);
7914 BINARY_OP (-);
7915 BINARY_OP (<);
7916 BINARY_OP (>);
7917 #undef UNARY_OP
7918 #undef BINARY_OP
7919 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7920 bfd_set_error (bfd_error_invalid_operation);
7921 return FALSE;
7922 }
7923 }
7924
7925 static void
7926 put_value (bfd_vma size,
7927 unsigned long chunksz,
7928 bfd *input_bfd,
7929 bfd_vma x,
7930 bfd_byte *location)
7931 {
7932 location += (size - chunksz);
7933
7934 for (; size; size -= chunksz, location -= chunksz)
7935 {
7936 switch (chunksz)
7937 {
7938 case 1:
7939 bfd_put_8 (input_bfd, x, location);
7940 x >>= 8;
7941 break;
7942 case 2:
7943 bfd_put_16 (input_bfd, x, location);
7944 x >>= 16;
7945 break;
7946 case 4:
7947 bfd_put_32 (input_bfd, x, location);
7948 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7949 x >>= 16;
7950 x >>= 16;
7951 break;
7952 #ifdef BFD64
7953 case 8:
7954 bfd_put_64 (input_bfd, x, location);
7955 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7956 x >>= 32;
7957 x >>= 32;
7958 break;
7959 #endif
7960 default:
7961 abort ();
7962 break;
7963 }
7964 }
7965 }
7966
7967 static bfd_vma
7968 get_value (bfd_vma size,
7969 unsigned long chunksz,
7970 bfd *input_bfd,
7971 bfd_byte *location)
7972 {
7973 int shift;
7974 bfd_vma x = 0;
7975
7976 /* Sanity checks. */
7977 BFD_ASSERT (chunksz <= sizeof (x)
7978 && size >= chunksz
7979 && chunksz != 0
7980 && (size % chunksz) == 0
7981 && input_bfd != NULL
7982 && location != NULL);
7983
7984 if (chunksz == sizeof (x))
7985 {
7986 BFD_ASSERT (size == chunksz);
7987
7988 /* Make sure that we do not perform an undefined shift operation.
7989 We know that size == chunksz so there will only be one iteration
7990 of the loop below. */
7991 shift = 0;
7992 }
7993 else
7994 shift = 8 * chunksz;
7995
7996 for (; size; size -= chunksz, location += chunksz)
7997 {
7998 switch (chunksz)
7999 {
8000 case 1:
8001 x = (x << shift) | bfd_get_8 (input_bfd, location);
8002 break;
8003 case 2:
8004 x = (x << shift) | bfd_get_16 (input_bfd, location);
8005 break;
8006 case 4:
8007 x = (x << shift) | bfd_get_32 (input_bfd, location);
8008 break;
8009 #ifdef BFD64
8010 case 8:
8011 x = (x << shift) | bfd_get_64 (input_bfd, location);
8012 break;
8013 #endif
8014 default:
8015 abort ();
8016 }
8017 }
8018 return x;
8019 }
8020
8021 static void
8022 decode_complex_addend (unsigned long *start, /* in bits */
8023 unsigned long *oplen, /* in bits */
8024 unsigned long *len, /* in bits */
8025 unsigned long *wordsz, /* in bytes */
8026 unsigned long *chunksz, /* in bytes */
8027 unsigned long *lsb0_p,
8028 unsigned long *signed_p,
8029 unsigned long *trunc_p,
8030 unsigned long encoded)
8031 {
8032 * start = encoded & 0x3F;
8033 * len = (encoded >> 6) & 0x3F;
8034 * oplen = (encoded >> 12) & 0x3F;
8035 * wordsz = (encoded >> 18) & 0xF;
8036 * chunksz = (encoded >> 22) & 0xF;
8037 * lsb0_p = (encoded >> 27) & 1;
8038 * signed_p = (encoded >> 28) & 1;
8039 * trunc_p = (encoded >> 29) & 1;
8040 }
8041
8042 bfd_reloc_status_type
8043 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8044 asection *input_section ATTRIBUTE_UNUSED,
8045 bfd_byte *contents,
8046 Elf_Internal_Rela *rel,
8047 bfd_vma relocation)
8048 {
8049 bfd_vma shift, x, mask;
8050 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8051 bfd_reloc_status_type r;
8052
8053 /* Perform this reloc, since it is complex.
8054 (this is not to say that it necessarily refers to a complex
8055 symbol; merely that it is a self-describing CGEN based reloc.
8056 i.e. the addend has the complete reloc information (bit start, end,
8057 word size, etc) encoded within it.). */
8058
8059 decode_complex_addend (&start, &oplen, &len, &wordsz,
8060 &chunksz, &lsb0_p, &signed_p,
8061 &trunc_p, rel->r_addend);
8062
8063 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8064
8065 if (lsb0_p)
8066 shift = (start + 1) - len;
8067 else
8068 shift = (8 * wordsz) - (start + len);
8069
8070 /* FIXME: octets_per_byte. */
8071 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8072
8073 #ifdef DEBUG
8074 printf ("Doing complex reloc: "
8075 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8076 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8077 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8078 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8079 oplen, (unsigned long) x, (unsigned long) mask,
8080 (unsigned long) relocation);
8081 #endif
8082
8083 r = bfd_reloc_ok;
8084 if (! trunc_p)
8085 /* Now do an overflow check. */
8086 r = bfd_check_overflow ((signed_p
8087 ? complain_overflow_signed
8088 : complain_overflow_unsigned),
8089 len, 0, (8 * wordsz),
8090 relocation);
8091
8092 /* Do the deed. */
8093 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8094
8095 #ifdef DEBUG
8096 printf (" relocation: %8.8lx\n"
8097 " shifted mask: %8.8lx\n"
8098 " shifted/masked reloc: %8.8lx\n"
8099 " result: %8.8lx\n",
8100 (unsigned long) relocation, (unsigned long) (mask << shift),
8101 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8102 #endif
8103 /* FIXME: octets_per_byte. */
8104 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8105 return r;
8106 }
8107
8108 /* Functions to read r_offset from external (target order) reloc
8109 entry. Faster than bfd_getl32 et al, because we let the compiler
8110 know the value is aligned. */
8111
8112 static bfd_vma
8113 ext32l_r_offset (const void *p)
8114 {
8115 union aligned32
8116 {
8117 uint32_t v;
8118 unsigned char c[4];
8119 };
8120 const union aligned32 *a
8121 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8122
8123 uint32_t aval = ( (uint32_t) a->c[0]
8124 | (uint32_t) a->c[1] << 8
8125 | (uint32_t) a->c[2] << 16
8126 | (uint32_t) a->c[3] << 24);
8127 return aval;
8128 }
8129
8130 static bfd_vma
8131 ext32b_r_offset (const void *p)
8132 {
8133 union aligned32
8134 {
8135 uint32_t v;
8136 unsigned char c[4];
8137 };
8138 const union aligned32 *a
8139 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8140
8141 uint32_t aval = ( (uint32_t) a->c[0] << 24
8142 | (uint32_t) a->c[1] << 16
8143 | (uint32_t) a->c[2] << 8
8144 | (uint32_t) a->c[3]);
8145 return aval;
8146 }
8147
8148 #ifdef BFD_HOST_64_BIT
8149 static bfd_vma
8150 ext64l_r_offset (const void *p)
8151 {
8152 union aligned64
8153 {
8154 uint64_t v;
8155 unsigned char c[8];
8156 };
8157 const union aligned64 *a
8158 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8159
8160 uint64_t aval = ( (uint64_t) a->c[0]
8161 | (uint64_t) a->c[1] << 8
8162 | (uint64_t) a->c[2] << 16
8163 | (uint64_t) a->c[3] << 24
8164 | (uint64_t) a->c[4] << 32
8165 | (uint64_t) a->c[5] << 40
8166 | (uint64_t) a->c[6] << 48
8167 | (uint64_t) a->c[7] << 56);
8168 return aval;
8169 }
8170
8171 static bfd_vma
8172 ext64b_r_offset (const void *p)
8173 {
8174 union aligned64
8175 {
8176 uint64_t v;
8177 unsigned char c[8];
8178 };
8179 const union aligned64 *a
8180 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8181
8182 uint64_t aval = ( (uint64_t) a->c[0] << 56
8183 | (uint64_t) a->c[1] << 48
8184 | (uint64_t) a->c[2] << 40
8185 | (uint64_t) a->c[3] << 32
8186 | (uint64_t) a->c[4] << 24
8187 | (uint64_t) a->c[5] << 16
8188 | (uint64_t) a->c[6] << 8
8189 | (uint64_t) a->c[7]);
8190 return aval;
8191 }
8192 #endif
8193
8194 /* When performing a relocatable link, the input relocations are
8195 preserved. But, if they reference global symbols, the indices
8196 referenced must be updated. Update all the relocations found in
8197 RELDATA. */
8198
8199 static bfd_boolean
8200 elf_link_adjust_relocs (bfd *abfd,
8201 struct bfd_elf_section_reloc_data *reldata,
8202 bfd_boolean sort)
8203 {
8204 unsigned int i;
8205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8206 bfd_byte *erela;
8207 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8208 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8209 bfd_vma r_type_mask;
8210 int r_sym_shift;
8211 unsigned int count = reldata->count;
8212 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8213
8214 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8215 {
8216 swap_in = bed->s->swap_reloc_in;
8217 swap_out = bed->s->swap_reloc_out;
8218 }
8219 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8220 {
8221 swap_in = bed->s->swap_reloca_in;
8222 swap_out = bed->s->swap_reloca_out;
8223 }
8224 else
8225 abort ();
8226
8227 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8228 abort ();
8229
8230 if (bed->s->arch_size == 32)
8231 {
8232 r_type_mask = 0xff;
8233 r_sym_shift = 8;
8234 }
8235 else
8236 {
8237 r_type_mask = 0xffffffff;
8238 r_sym_shift = 32;
8239 }
8240
8241 erela = reldata->hdr->contents;
8242 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8243 {
8244 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8245 unsigned int j;
8246
8247 if (*rel_hash == NULL)
8248 continue;
8249
8250 BFD_ASSERT ((*rel_hash)->indx >= 0);
8251
8252 (*swap_in) (abfd, erela, irela);
8253 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8254 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8255 | (irela[j].r_info & r_type_mask));
8256 (*swap_out) (abfd, irela, erela);
8257 }
8258
8259 if (sort && count != 0)
8260 {
8261 bfd_vma (*ext_r_off) (const void *);
8262 bfd_vma r_off;
8263 size_t elt_size;
8264 bfd_byte *base, *end, *p, *loc;
8265 bfd_byte *buf = NULL;
8266
8267 if (bed->s->arch_size == 32)
8268 {
8269 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8270 ext_r_off = ext32l_r_offset;
8271 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8272 ext_r_off = ext32b_r_offset;
8273 else
8274 abort ();
8275 }
8276 else
8277 {
8278 #ifdef BFD_HOST_64_BIT
8279 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8280 ext_r_off = ext64l_r_offset;
8281 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8282 ext_r_off = ext64b_r_offset;
8283 else
8284 #endif
8285 abort ();
8286 }
8287
8288 /* Must use a stable sort here. A modified insertion sort,
8289 since the relocs are mostly sorted already. */
8290 elt_size = reldata->hdr->sh_entsize;
8291 base = reldata->hdr->contents;
8292 end = base + count * elt_size;
8293 if (elt_size > sizeof (Elf64_External_Rela))
8294 abort ();
8295
8296 /* Ensure the first element is lowest. This acts as a sentinel,
8297 speeding the main loop below. */
8298 r_off = (*ext_r_off) (base);
8299 for (p = loc = base; (p += elt_size) < end; )
8300 {
8301 bfd_vma r_off2 = (*ext_r_off) (p);
8302 if (r_off > r_off2)
8303 {
8304 r_off = r_off2;
8305 loc = p;
8306 }
8307 }
8308 if (loc != base)
8309 {
8310 /* Don't just swap *base and *loc as that changes the order
8311 of the original base[0] and base[1] if they happen to
8312 have the same r_offset. */
8313 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8314 memcpy (onebuf, loc, elt_size);
8315 memmove (base + elt_size, base, loc - base);
8316 memcpy (base, onebuf, elt_size);
8317 }
8318
8319 for (p = base + elt_size; (p += elt_size) < end; )
8320 {
8321 /* base to p is sorted, *p is next to insert. */
8322 r_off = (*ext_r_off) (p);
8323 /* Search the sorted region for location to insert. */
8324 loc = p - elt_size;
8325 while (r_off < (*ext_r_off) (loc))
8326 loc -= elt_size;
8327 loc += elt_size;
8328 if (loc != p)
8329 {
8330 /* Chances are there is a run of relocs to insert here,
8331 from one of more input files. Files are not always
8332 linked in order due to the way elf_link_input_bfd is
8333 called. See pr17666. */
8334 size_t sortlen = p - loc;
8335 bfd_vma r_off2 = (*ext_r_off) (loc);
8336 size_t runlen = elt_size;
8337 size_t buf_size = 96 * 1024;
8338 while (p + runlen < end
8339 && (sortlen <= buf_size
8340 || runlen + elt_size <= buf_size)
8341 && r_off2 > (*ext_r_off) (p + runlen))
8342 runlen += elt_size;
8343 if (buf == NULL)
8344 {
8345 buf = bfd_malloc (buf_size);
8346 if (buf == NULL)
8347 return FALSE;
8348 }
8349 if (runlen < sortlen)
8350 {
8351 memcpy (buf, p, runlen);
8352 memmove (loc + runlen, loc, sortlen);
8353 memcpy (loc, buf, runlen);
8354 }
8355 else
8356 {
8357 memcpy (buf, loc, sortlen);
8358 memmove (loc, p, runlen);
8359 memcpy (loc + runlen, buf, sortlen);
8360 }
8361 p += runlen - elt_size;
8362 }
8363 }
8364 /* Hashes are no longer valid. */
8365 free (reldata->hashes);
8366 reldata->hashes = NULL;
8367 free (buf);
8368 }
8369 return TRUE;
8370 }
8371
8372 struct elf_link_sort_rela
8373 {
8374 union {
8375 bfd_vma offset;
8376 bfd_vma sym_mask;
8377 } u;
8378 enum elf_reloc_type_class type;
8379 /* We use this as an array of size int_rels_per_ext_rel. */
8380 Elf_Internal_Rela rela[1];
8381 };
8382
8383 static int
8384 elf_link_sort_cmp1 (const void *A, const void *B)
8385 {
8386 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8387 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8388 int relativea, relativeb;
8389
8390 relativea = a->type == reloc_class_relative;
8391 relativeb = b->type == reloc_class_relative;
8392
8393 if (relativea < relativeb)
8394 return 1;
8395 if (relativea > relativeb)
8396 return -1;
8397 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8398 return -1;
8399 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8400 return 1;
8401 if (a->rela->r_offset < b->rela->r_offset)
8402 return -1;
8403 if (a->rela->r_offset > b->rela->r_offset)
8404 return 1;
8405 return 0;
8406 }
8407
8408 static int
8409 elf_link_sort_cmp2 (const void *A, const void *B)
8410 {
8411 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8412 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8413
8414 if (a->type < b->type)
8415 return -1;
8416 if (a->type > b->type)
8417 return 1;
8418 if (a->u.offset < b->u.offset)
8419 return -1;
8420 if (a->u.offset > b->u.offset)
8421 return 1;
8422 if (a->rela->r_offset < b->rela->r_offset)
8423 return -1;
8424 if (a->rela->r_offset > b->rela->r_offset)
8425 return 1;
8426 return 0;
8427 }
8428
8429 static size_t
8430 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8431 {
8432 asection *dynamic_relocs;
8433 asection *rela_dyn;
8434 asection *rel_dyn;
8435 bfd_size_type count, size;
8436 size_t i, ret, sort_elt, ext_size;
8437 bfd_byte *sort, *s_non_relative, *p;
8438 struct elf_link_sort_rela *sq;
8439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8440 int i2e = bed->s->int_rels_per_ext_rel;
8441 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8442 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8443 struct bfd_link_order *lo;
8444 bfd_vma r_sym_mask;
8445 bfd_boolean use_rela;
8446
8447 /* Find a dynamic reloc section. */
8448 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8449 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8450 if (rela_dyn != NULL && rela_dyn->size > 0
8451 && rel_dyn != NULL && rel_dyn->size > 0)
8452 {
8453 bfd_boolean use_rela_initialised = FALSE;
8454
8455 /* This is just here to stop gcc from complaining.
8456 It's initialization checking code is not perfect. */
8457 use_rela = TRUE;
8458
8459 /* Both sections are present. Examine the sizes
8460 of the indirect sections to help us choose. */
8461 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8462 if (lo->type == bfd_indirect_link_order)
8463 {
8464 asection *o = lo->u.indirect.section;
8465
8466 if ((o->size % bed->s->sizeof_rela) == 0)
8467 {
8468 if ((o->size % bed->s->sizeof_rel) == 0)
8469 /* Section size is divisible by both rel and rela sizes.
8470 It is of no help to us. */
8471 ;
8472 else
8473 {
8474 /* Section size is only divisible by rela. */
8475 if (use_rela_initialised && (use_rela == FALSE))
8476 {
8477 _bfd_error_handler
8478 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8479 bfd_set_error (bfd_error_invalid_operation);
8480 return 0;
8481 }
8482 else
8483 {
8484 use_rela = TRUE;
8485 use_rela_initialised = TRUE;
8486 }
8487 }
8488 }
8489 else if ((o->size % bed->s->sizeof_rel) == 0)
8490 {
8491 /* Section size is only divisible by rel. */
8492 if (use_rela_initialised && (use_rela == TRUE))
8493 {
8494 _bfd_error_handler
8495 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8496 bfd_set_error (bfd_error_invalid_operation);
8497 return 0;
8498 }
8499 else
8500 {
8501 use_rela = FALSE;
8502 use_rela_initialised = TRUE;
8503 }
8504 }
8505 else
8506 {
8507 /* The section size is not divisible by either - something is wrong. */
8508 _bfd_error_handler
8509 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8510 bfd_set_error (bfd_error_invalid_operation);
8511 return 0;
8512 }
8513 }
8514
8515 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8516 if (lo->type == bfd_indirect_link_order)
8517 {
8518 asection *o = lo->u.indirect.section;
8519
8520 if ((o->size % bed->s->sizeof_rela) == 0)
8521 {
8522 if ((o->size % bed->s->sizeof_rel) == 0)
8523 /* Section size is divisible by both rel and rela sizes.
8524 It is of no help to us. */
8525 ;
8526 else
8527 {
8528 /* Section size is only divisible by rela. */
8529 if (use_rela_initialised && (use_rela == FALSE))
8530 {
8531 _bfd_error_handler
8532 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8533 bfd_set_error (bfd_error_invalid_operation);
8534 return 0;
8535 }
8536 else
8537 {
8538 use_rela = TRUE;
8539 use_rela_initialised = TRUE;
8540 }
8541 }
8542 }
8543 else if ((o->size % bed->s->sizeof_rel) == 0)
8544 {
8545 /* Section size is only divisible by rel. */
8546 if (use_rela_initialised && (use_rela == TRUE))
8547 {
8548 _bfd_error_handler
8549 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8550 bfd_set_error (bfd_error_invalid_operation);
8551 return 0;
8552 }
8553 else
8554 {
8555 use_rela = FALSE;
8556 use_rela_initialised = TRUE;
8557 }
8558 }
8559 else
8560 {
8561 /* The section size is not divisible by either - something is wrong. */
8562 _bfd_error_handler
8563 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8564 bfd_set_error (bfd_error_invalid_operation);
8565 return 0;
8566 }
8567 }
8568
8569 if (! use_rela_initialised)
8570 /* Make a guess. */
8571 use_rela = TRUE;
8572 }
8573 else if (rela_dyn != NULL && rela_dyn->size > 0)
8574 use_rela = TRUE;
8575 else if (rel_dyn != NULL && rel_dyn->size > 0)
8576 use_rela = FALSE;
8577 else
8578 return 0;
8579
8580 if (use_rela)
8581 {
8582 dynamic_relocs = rela_dyn;
8583 ext_size = bed->s->sizeof_rela;
8584 swap_in = bed->s->swap_reloca_in;
8585 swap_out = bed->s->swap_reloca_out;
8586 }
8587 else
8588 {
8589 dynamic_relocs = rel_dyn;
8590 ext_size = bed->s->sizeof_rel;
8591 swap_in = bed->s->swap_reloc_in;
8592 swap_out = bed->s->swap_reloc_out;
8593 }
8594
8595 size = 0;
8596 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8597 if (lo->type == bfd_indirect_link_order)
8598 size += lo->u.indirect.section->size;
8599
8600 if (size != dynamic_relocs->size)
8601 return 0;
8602
8603 sort_elt = (sizeof (struct elf_link_sort_rela)
8604 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8605
8606 count = dynamic_relocs->size / ext_size;
8607 if (count == 0)
8608 return 0;
8609 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8610
8611 if (sort == NULL)
8612 {
8613 (*info->callbacks->warning)
8614 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8615 return 0;
8616 }
8617
8618 if (bed->s->arch_size == 32)
8619 r_sym_mask = ~(bfd_vma) 0xff;
8620 else
8621 r_sym_mask = ~(bfd_vma) 0xffffffff;
8622
8623 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8624 if (lo->type == bfd_indirect_link_order)
8625 {
8626 bfd_byte *erel, *erelend;
8627 asection *o = lo->u.indirect.section;
8628
8629 if (o->contents == NULL && o->size != 0)
8630 {
8631 /* This is a reloc section that is being handled as a normal
8632 section. See bfd_section_from_shdr. We can't combine
8633 relocs in this case. */
8634 free (sort);
8635 return 0;
8636 }
8637 erel = o->contents;
8638 erelend = o->contents + o->size;
8639 /* FIXME: octets_per_byte. */
8640 p = sort + o->output_offset / ext_size * sort_elt;
8641
8642 while (erel < erelend)
8643 {
8644 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8645
8646 (*swap_in) (abfd, erel, s->rela);
8647 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8648 s->u.sym_mask = r_sym_mask;
8649 p += sort_elt;
8650 erel += ext_size;
8651 }
8652 }
8653
8654 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8655
8656 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8657 {
8658 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8659 if (s->type != reloc_class_relative)
8660 break;
8661 }
8662 ret = i;
8663 s_non_relative = p;
8664
8665 sq = (struct elf_link_sort_rela *) s_non_relative;
8666 for (; i < count; i++, p += sort_elt)
8667 {
8668 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8669 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8670 sq = sp;
8671 sp->u.offset = sq->rela->r_offset;
8672 }
8673
8674 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8675
8676 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8677 if (lo->type == bfd_indirect_link_order)
8678 {
8679 bfd_byte *erel, *erelend;
8680 asection *o = lo->u.indirect.section;
8681
8682 erel = o->contents;
8683 erelend = o->contents + o->size;
8684 /* FIXME: octets_per_byte. */
8685 p = sort + o->output_offset / ext_size * sort_elt;
8686 while (erel < erelend)
8687 {
8688 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8689 (*swap_out) (abfd, s->rela, erel);
8690 p += sort_elt;
8691 erel += ext_size;
8692 }
8693 }
8694
8695 free (sort);
8696 *psec = dynamic_relocs;
8697 return ret;
8698 }
8699
8700 /* Add a symbol to the output symbol string table. */
8701
8702 static int
8703 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8704 const char *name,
8705 Elf_Internal_Sym *elfsym,
8706 asection *input_sec,
8707 struct elf_link_hash_entry *h)
8708 {
8709 int (*output_symbol_hook)
8710 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8711 struct elf_link_hash_entry *);
8712 struct elf_link_hash_table *hash_table;
8713 const struct elf_backend_data *bed;
8714 bfd_size_type strtabsize;
8715
8716 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8717
8718 bed = get_elf_backend_data (flinfo->output_bfd);
8719 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8720 if (output_symbol_hook != NULL)
8721 {
8722 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8723 if (ret != 1)
8724 return ret;
8725 }
8726
8727 if (name == NULL
8728 || *name == '\0'
8729 || (input_sec->flags & SEC_EXCLUDE))
8730 elfsym->st_name = (unsigned long) -1;
8731 else
8732 {
8733 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8734 to get the final offset for st_name. */
8735 elfsym->st_name
8736 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8737 name, FALSE);
8738 if (elfsym->st_name == (unsigned long) -1)
8739 return 0;
8740 }
8741
8742 hash_table = elf_hash_table (flinfo->info);
8743 strtabsize = hash_table->strtabsize;
8744 if (strtabsize <= hash_table->strtabcount)
8745 {
8746 strtabsize += strtabsize;
8747 hash_table->strtabsize = strtabsize;
8748 strtabsize *= sizeof (*hash_table->strtab);
8749 hash_table->strtab
8750 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8751 strtabsize);
8752 if (hash_table->strtab == NULL)
8753 return 0;
8754 }
8755 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8756 hash_table->strtab[hash_table->strtabcount].dest_index
8757 = hash_table->strtabcount;
8758 hash_table->strtab[hash_table->strtabcount].destshndx_index
8759 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8760
8761 bfd_get_symcount (flinfo->output_bfd) += 1;
8762 hash_table->strtabcount += 1;
8763
8764 return 1;
8765 }
8766
8767 /* Swap symbols out to the symbol table and flush the output symbols to
8768 the file. */
8769
8770 static bfd_boolean
8771 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8772 {
8773 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8774 bfd_size_type amt, i;
8775 const struct elf_backend_data *bed;
8776 bfd_byte *symbuf;
8777 Elf_Internal_Shdr *hdr;
8778 file_ptr pos;
8779 bfd_boolean ret;
8780
8781 if (!hash_table->strtabcount)
8782 return TRUE;
8783
8784 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8785
8786 bed = get_elf_backend_data (flinfo->output_bfd);
8787
8788 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8789 symbuf = (bfd_byte *) bfd_malloc (amt);
8790 if (symbuf == NULL)
8791 return FALSE;
8792
8793 if (flinfo->symshndxbuf)
8794 {
8795 amt = (sizeof (Elf_External_Sym_Shndx)
8796 * (bfd_get_symcount (flinfo->output_bfd)));
8797 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8798 if (flinfo->symshndxbuf == NULL)
8799 {
8800 free (symbuf);
8801 return FALSE;
8802 }
8803 }
8804
8805 for (i = 0; i < hash_table->strtabcount; i++)
8806 {
8807 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8808 if (elfsym->sym.st_name == (unsigned long) -1)
8809 elfsym->sym.st_name = 0;
8810 else
8811 elfsym->sym.st_name
8812 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8813 elfsym->sym.st_name);
8814 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8815 ((bfd_byte *) symbuf
8816 + (elfsym->dest_index
8817 * bed->s->sizeof_sym)),
8818 (flinfo->symshndxbuf
8819 + elfsym->destshndx_index));
8820 }
8821
8822 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8823 pos = hdr->sh_offset + hdr->sh_size;
8824 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8825 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8826 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8827 {
8828 hdr->sh_size += amt;
8829 ret = TRUE;
8830 }
8831 else
8832 ret = FALSE;
8833
8834 free (symbuf);
8835
8836 free (hash_table->strtab);
8837 hash_table->strtab = NULL;
8838
8839 return ret;
8840 }
8841
8842 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8843
8844 static bfd_boolean
8845 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8846 {
8847 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8848 && sym->st_shndx < SHN_LORESERVE)
8849 {
8850 /* The gABI doesn't support dynamic symbols in output sections
8851 beyond 64k. */
8852 (*_bfd_error_handler)
8853 (_("%B: Too many sections: %d (>= %d)"),
8854 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8855 bfd_set_error (bfd_error_nonrepresentable_section);
8856 return FALSE;
8857 }
8858 return TRUE;
8859 }
8860
8861 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8862 allowing an unsatisfied unversioned symbol in the DSO to match a
8863 versioned symbol that would normally require an explicit version.
8864 We also handle the case that a DSO references a hidden symbol
8865 which may be satisfied by a versioned symbol in another DSO. */
8866
8867 static bfd_boolean
8868 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8869 const struct elf_backend_data *bed,
8870 struct elf_link_hash_entry *h)
8871 {
8872 bfd *abfd;
8873 struct elf_link_loaded_list *loaded;
8874
8875 if (!is_elf_hash_table (info->hash))
8876 return FALSE;
8877
8878 /* Check indirect symbol. */
8879 while (h->root.type == bfd_link_hash_indirect)
8880 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8881
8882 switch (h->root.type)
8883 {
8884 default:
8885 abfd = NULL;
8886 break;
8887
8888 case bfd_link_hash_undefined:
8889 case bfd_link_hash_undefweak:
8890 abfd = h->root.u.undef.abfd;
8891 if ((abfd->flags & DYNAMIC) == 0
8892 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8893 return FALSE;
8894 break;
8895
8896 case bfd_link_hash_defined:
8897 case bfd_link_hash_defweak:
8898 abfd = h->root.u.def.section->owner;
8899 break;
8900
8901 case bfd_link_hash_common:
8902 abfd = h->root.u.c.p->section->owner;
8903 break;
8904 }
8905 BFD_ASSERT (abfd != NULL);
8906
8907 for (loaded = elf_hash_table (info)->loaded;
8908 loaded != NULL;
8909 loaded = loaded->next)
8910 {
8911 bfd *input;
8912 Elf_Internal_Shdr *hdr;
8913 bfd_size_type symcount;
8914 bfd_size_type extsymcount;
8915 bfd_size_type extsymoff;
8916 Elf_Internal_Shdr *versymhdr;
8917 Elf_Internal_Sym *isym;
8918 Elf_Internal_Sym *isymend;
8919 Elf_Internal_Sym *isymbuf;
8920 Elf_External_Versym *ever;
8921 Elf_External_Versym *extversym;
8922
8923 input = loaded->abfd;
8924
8925 /* We check each DSO for a possible hidden versioned definition. */
8926 if (input == abfd
8927 || (input->flags & DYNAMIC) == 0
8928 || elf_dynversym (input) == 0)
8929 continue;
8930
8931 hdr = &elf_tdata (input)->dynsymtab_hdr;
8932
8933 symcount = hdr->sh_size / bed->s->sizeof_sym;
8934 if (elf_bad_symtab (input))
8935 {
8936 extsymcount = symcount;
8937 extsymoff = 0;
8938 }
8939 else
8940 {
8941 extsymcount = symcount - hdr->sh_info;
8942 extsymoff = hdr->sh_info;
8943 }
8944
8945 if (extsymcount == 0)
8946 continue;
8947
8948 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8949 NULL, NULL, NULL);
8950 if (isymbuf == NULL)
8951 return FALSE;
8952
8953 /* Read in any version definitions. */
8954 versymhdr = &elf_tdata (input)->dynversym_hdr;
8955 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8956 if (extversym == NULL)
8957 goto error_ret;
8958
8959 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8960 || (bfd_bread (extversym, versymhdr->sh_size, input)
8961 != versymhdr->sh_size))
8962 {
8963 free (extversym);
8964 error_ret:
8965 free (isymbuf);
8966 return FALSE;
8967 }
8968
8969 ever = extversym + extsymoff;
8970 isymend = isymbuf + extsymcount;
8971 for (isym = isymbuf; isym < isymend; isym++, ever++)
8972 {
8973 const char *name;
8974 Elf_Internal_Versym iver;
8975 unsigned short version_index;
8976
8977 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8978 || isym->st_shndx == SHN_UNDEF)
8979 continue;
8980
8981 name = bfd_elf_string_from_elf_section (input,
8982 hdr->sh_link,
8983 isym->st_name);
8984 if (strcmp (name, h->root.root.string) != 0)
8985 continue;
8986
8987 _bfd_elf_swap_versym_in (input, ever, &iver);
8988
8989 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8990 && !(h->def_regular
8991 && h->forced_local))
8992 {
8993 /* If we have a non-hidden versioned sym, then it should
8994 have provided a definition for the undefined sym unless
8995 it is defined in a non-shared object and forced local.
8996 */
8997 abort ();
8998 }
8999
9000 version_index = iver.vs_vers & VERSYM_VERSION;
9001 if (version_index == 1 || version_index == 2)
9002 {
9003 /* This is the base or first version. We can use it. */
9004 free (extversym);
9005 free (isymbuf);
9006 return TRUE;
9007 }
9008 }
9009
9010 free (extversym);
9011 free (isymbuf);
9012 }
9013
9014 return FALSE;
9015 }
9016
9017 /* Add an external symbol to the symbol table. This is called from
9018 the hash table traversal routine. When generating a shared object,
9019 we go through the symbol table twice. The first time we output
9020 anything that might have been forced to local scope in a version
9021 script. The second time we output the symbols that are still
9022 global symbols. */
9023
9024 static bfd_boolean
9025 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9026 {
9027 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9028 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9029 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9030 bfd_boolean strip;
9031 Elf_Internal_Sym sym;
9032 asection *input_sec;
9033 const struct elf_backend_data *bed;
9034 long indx;
9035 int ret;
9036 /* A symbol is bound locally if it is forced local or it is locally
9037 defined, hidden versioned, not referenced by shared library and
9038 not exported when linking executable. */
9039 bfd_boolean local_bind = (h->forced_local
9040 || (bfd_link_executable (flinfo->info)
9041 && !flinfo->info->export_dynamic
9042 && !h->dynamic
9043 && !h->ref_dynamic
9044 && h->def_regular
9045 && h->versioned == versioned_hidden));
9046
9047 if (h->root.type == bfd_link_hash_warning)
9048 {
9049 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9050 if (h->root.type == bfd_link_hash_new)
9051 return TRUE;
9052 }
9053
9054 /* Decide whether to output this symbol in this pass. */
9055 if (eoinfo->localsyms)
9056 {
9057 if (!local_bind)
9058 return TRUE;
9059 }
9060 else
9061 {
9062 if (local_bind)
9063 return TRUE;
9064 }
9065
9066 bed = get_elf_backend_data (flinfo->output_bfd);
9067
9068 if (h->root.type == bfd_link_hash_undefined)
9069 {
9070 /* If we have an undefined symbol reference here then it must have
9071 come from a shared library that is being linked in. (Undefined
9072 references in regular files have already been handled unless
9073 they are in unreferenced sections which are removed by garbage
9074 collection). */
9075 bfd_boolean ignore_undef = FALSE;
9076
9077 /* Some symbols may be special in that the fact that they're
9078 undefined can be safely ignored - let backend determine that. */
9079 if (bed->elf_backend_ignore_undef_symbol)
9080 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9081
9082 /* If we are reporting errors for this situation then do so now. */
9083 if (!ignore_undef
9084 && h->ref_dynamic
9085 && (!h->ref_regular || flinfo->info->gc_sections)
9086 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9087 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9088 {
9089 if (!(flinfo->info->callbacks->undefined_symbol
9090 (flinfo->info, h->root.root.string,
9091 h->ref_regular ? NULL : h->root.u.undef.abfd,
9092 NULL, 0,
9093 (flinfo->info->unresolved_syms_in_shared_libs
9094 == RM_GENERATE_ERROR))))
9095 {
9096 bfd_set_error (bfd_error_bad_value);
9097 eoinfo->failed = TRUE;
9098 return FALSE;
9099 }
9100 }
9101 }
9102
9103 /* We should also warn if a forced local symbol is referenced from
9104 shared libraries. */
9105 if (bfd_link_executable (flinfo->info)
9106 && h->forced_local
9107 && h->ref_dynamic
9108 && h->def_regular
9109 && !h->dynamic_def
9110 && h->ref_dynamic_nonweak
9111 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9112 {
9113 bfd *def_bfd;
9114 const char *msg;
9115 struct elf_link_hash_entry *hi = h;
9116
9117 /* Check indirect symbol. */
9118 while (hi->root.type == bfd_link_hash_indirect)
9119 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9120
9121 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9122 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9123 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9124 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9125 else
9126 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9127 def_bfd = flinfo->output_bfd;
9128 if (hi->root.u.def.section != bfd_abs_section_ptr)
9129 def_bfd = hi->root.u.def.section->owner;
9130 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9131 h->root.root.string);
9132 bfd_set_error (bfd_error_bad_value);
9133 eoinfo->failed = TRUE;
9134 return FALSE;
9135 }
9136
9137 /* We don't want to output symbols that have never been mentioned by
9138 a regular file, or that we have been told to strip. However, if
9139 h->indx is set to -2, the symbol is used by a reloc and we must
9140 output it. */
9141 strip = FALSE;
9142 if (h->indx == -2)
9143 ;
9144 else if ((h->def_dynamic
9145 || h->ref_dynamic
9146 || h->root.type == bfd_link_hash_new)
9147 && !h->def_regular
9148 && !h->ref_regular)
9149 strip = TRUE;
9150 else if (flinfo->info->strip == strip_all)
9151 strip = TRUE;
9152 else if (flinfo->info->strip == strip_some
9153 && bfd_hash_lookup (flinfo->info->keep_hash,
9154 h->root.root.string, FALSE, FALSE) == NULL)
9155 strip = TRUE;
9156 else if ((h->root.type == bfd_link_hash_defined
9157 || h->root.type == bfd_link_hash_defweak)
9158 && ((flinfo->info->strip_discarded
9159 && discarded_section (h->root.u.def.section))
9160 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9161 && h->root.u.def.section->owner != NULL
9162 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9163 strip = TRUE;
9164 else if ((h->root.type == bfd_link_hash_undefined
9165 || h->root.type == bfd_link_hash_undefweak)
9166 && h->root.u.undef.abfd != NULL
9167 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9168 strip = TRUE;
9169
9170 /* If we're stripping it, and it's not a dynamic symbol, there's
9171 nothing else to do. However, if it is a forced local symbol or
9172 an ifunc symbol we need to give the backend finish_dynamic_symbol
9173 function a chance to make it dynamic. */
9174 if (strip
9175 && h->dynindx == -1
9176 && h->type != STT_GNU_IFUNC
9177 && !h->forced_local)
9178 return TRUE;
9179
9180 sym.st_value = 0;
9181 sym.st_size = h->size;
9182 sym.st_other = h->other;
9183 if (local_bind)
9184 {
9185 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9186 /* Turn off visibility on local symbol. */
9187 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9188 }
9189 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9190 else if (h->unique_global && h->def_regular)
9191 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9192 else if (h->root.type == bfd_link_hash_undefweak
9193 || h->root.type == bfd_link_hash_defweak)
9194 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9195 else
9196 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9197 sym.st_target_internal = h->target_internal;
9198
9199 switch (h->root.type)
9200 {
9201 default:
9202 case bfd_link_hash_new:
9203 case bfd_link_hash_warning:
9204 abort ();
9205 return FALSE;
9206
9207 case bfd_link_hash_undefined:
9208 case bfd_link_hash_undefweak:
9209 input_sec = bfd_und_section_ptr;
9210 sym.st_shndx = SHN_UNDEF;
9211 break;
9212
9213 case bfd_link_hash_defined:
9214 case bfd_link_hash_defweak:
9215 {
9216 input_sec = h->root.u.def.section;
9217 if (input_sec->output_section != NULL)
9218 {
9219 sym.st_shndx =
9220 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9221 input_sec->output_section);
9222 if (sym.st_shndx == SHN_BAD)
9223 {
9224 (*_bfd_error_handler)
9225 (_("%B: could not find output section %A for input section %A"),
9226 flinfo->output_bfd, input_sec->output_section, input_sec);
9227 bfd_set_error (bfd_error_nonrepresentable_section);
9228 eoinfo->failed = TRUE;
9229 return FALSE;
9230 }
9231
9232 /* ELF symbols in relocatable files are section relative,
9233 but in nonrelocatable files they are virtual
9234 addresses. */
9235 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9236 if (!bfd_link_relocatable (flinfo->info))
9237 {
9238 sym.st_value += input_sec->output_section->vma;
9239 if (h->type == STT_TLS)
9240 {
9241 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9242 if (tls_sec != NULL)
9243 sym.st_value -= tls_sec->vma;
9244 }
9245 }
9246 }
9247 else
9248 {
9249 BFD_ASSERT (input_sec->owner == NULL
9250 || (input_sec->owner->flags & DYNAMIC) != 0);
9251 sym.st_shndx = SHN_UNDEF;
9252 input_sec = bfd_und_section_ptr;
9253 }
9254 }
9255 break;
9256
9257 case bfd_link_hash_common:
9258 input_sec = h->root.u.c.p->section;
9259 sym.st_shndx = bed->common_section_index (input_sec);
9260 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9261 break;
9262
9263 case bfd_link_hash_indirect:
9264 /* These symbols are created by symbol versioning. They point
9265 to the decorated version of the name. For example, if the
9266 symbol foo@@GNU_1.2 is the default, which should be used when
9267 foo is used with no version, then we add an indirect symbol
9268 foo which points to foo@@GNU_1.2. We ignore these symbols,
9269 since the indirected symbol is already in the hash table. */
9270 return TRUE;
9271 }
9272
9273 /* Give the processor backend a chance to tweak the symbol value,
9274 and also to finish up anything that needs to be done for this
9275 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9276 forced local syms when non-shared is due to a historical quirk.
9277 STT_GNU_IFUNC symbol must go through PLT. */
9278 if ((h->type == STT_GNU_IFUNC
9279 && h->def_regular
9280 && !bfd_link_relocatable (flinfo->info))
9281 || ((h->dynindx != -1
9282 || h->forced_local)
9283 && ((bfd_link_pic (flinfo->info)
9284 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9285 || h->root.type != bfd_link_hash_undefweak))
9286 || !h->forced_local)
9287 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9288 {
9289 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9290 (flinfo->output_bfd, flinfo->info, h, &sym)))
9291 {
9292 eoinfo->failed = TRUE;
9293 return FALSE;
9294 }
9295 }
9296
9297 /* If we are marking the symbol as undefined, and there are no
9298 non-weak references to this symbol from a regular object, then
9299 mark the symbol as weak undefined; if there are non-weak
9300 references, mark the symbol as strong. We can't do this earlier,
9301 because it might not be marked as undefined until the
9302 finish_dynamic_symbol routine gets through with it. */
9303 if (sym.st_shndx == SHN_UNDEF
9304 && h->ref_regular
9305 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9306 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9307 {
9308 int bindtype;
9309 unsigned int type = ELF_ST_TYPE (sym.st_info);
9310
9311 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9312 if (type == STT_GNU_IFUNC)
9313 type = STT_FUNC;
9314
9315 if (h->ref_regular_nonweak)
9316 bindtype = STB_GLOBAL;
9317 else
9318 bindtype = STB_WEAK;
9319 sym.st_info = ELF_ST_INFO (bindtype, type);
9320 }
9321
9322 /* If this is a symbol defined in a dynamic library, don't use the
9323 symbol size from the dynamic library. Relinking an executable
9324 against a new library may introduce gratuitous changes in the
9325 executable's symbols if we keep the size. */
9326 if (sym.st_shndx == SHN_UNDEF
9327 && !h->def_regular
9328 && h->def_dynamic)
9329 sym.st_size = 0;
9330
9331 /* If a non-weak symbol with non-default visibility is not defined
9332 locally, it is a fatal error. */
9333 if (!bfd_link_relocatable (flinfo->info)
9334 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9335 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9336 && h->root.type == bfd_link_hash_undefined
9337 && !h->def_regular)
9338 {
9339 const char *msg;
9340
9341 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9342 msg = _("%B: protected symbol `%s' isn't defined");
9343 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9344 msg = _("%B: internal symbol `%s' isn't defined");
9345 else
9346 msg = _("%B: hidden symbol `%s' isn't defined");
9347 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9348 bfd_set_error (bfd_error_bad_value);
9349 eoinfo->failed = TRUE;
9350 return FALSE;
9351 }
9352
9353 /* If this symbol should be put in the .dynsym section, then put it
9354 there now. We already know the symbol index. We also fill in
9355 the entry in the .hash section. */
9356 if (elf_hash_table (flinfo->info)->dynsym != NULL
9357 && h->dynindx != -1
9358 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9359 {
9360 bfd_byte *esym;
9361
9362 /* Since there is no version information in the dynamic string,
9363 if there is no version info in symbol version section, we will
9364 have a run-time problem if not linking executable, referenced
9365 by shared library, not locally defined, or not bound locally.
9366 */
9367 if (h->verinfo.verdef == NULL
9368 && !local_bind
9369 && (!bfd_link_executable (flinfo->info)
9370 || h->ref_dynamic
9371 || !h->def_regular))
9372 {
9373 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9374
9375 if (p && p [1] != '\0')
9376 {
9377 (*_bfd_error_handler)
9378 (_("%B: No symbol version section for versioned symbol `%s'"),
9379 flinfo->output_bfd, h->root.root.string);
9380 eoinfo->failed = TRUE;
9381 return FALSE;
9382 }
9383 }
9384
9385 sym.st_name = h->dynstr_index;
9386 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9387 + h->dynindx * bed->s->sizeof_sym);
9388 if (!check_dynsym (flinfo->output_bfd, &sym))
9389 {
9390 eoinfo->failed = TRUE;
9391 return FALSE;
9392 }
9393 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9394
9395 if (flinfo->hash_sec != NULL)
9396 {
9397 size_t hash_entry_size;
9398 bfd_byte *bucketpos;
9399 bfd_vma chain;
9400 size_t bucketcount;
9401 size_t bucket;
9402
9403 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9404 bucket = h->u.elf_hash_value % bucketcount;
9405
9406 hash_entry_size
9407 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9408 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9409 + (bucket + 2) * hash_entry_size);
9410 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9411 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9412 bucketpos);
9413 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9414 ((bfd_byte *) flinfo->hash_sec->contents
9415 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9416 }
9417
9418 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9419 {
9420 Elf_Internal_Versym iversym;
9421 Elf_External_Versym *eversym;
9422
9423 if (!h->def_regular)
9424 {
9425 if (h->verinfo.verdef == NULL
9426 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9427 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9428 iversym.vs_vers = 0;
9429 else
9430 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9431 }
9432 else
9433 {
9434 if (h->verinfo.vertree == NULL)
9435 iversym.vs_vers = 1;
9436 else
9437 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9438 if (flinfo->info->create_default_symver)
9439 iversym.vs_vers++;
9440 }
9441
9442 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9443 defined locally. */
9444 if (h->versioned == versioned_hidden && h->def_regular)
9445 iversym.vs_vers |= VERSYM_HIDDEN;
9446
9447 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9448 eversym += h->dynindx;
9449 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9450 }
9451 }
9452
9453 /* If the symbol is undefined, and we didn't output it to .dynsym,
9454 strip it from .symtab too. Obviously we can't do this for
9455 relocatable output or when needed for --emit-relocs. */
9456 else if (input_sec == bfd_und_section_ptr
9457 && h->indx != -2
9458 && !bfd_link_relocatable (flinfo->info))
9459 return TRUE;
9460 /* Also strip others that we couldn't earlier due to dynamic symbol
9461 processing. */
9462 if (strip)
9463 return TRUE;
9464 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9465 return TRUE;
9466
9467 /* Output a FILE symbol so that following locals are not associated
9468 with the wrong input file. We need one for forced local symbols
9469 if we've seen more than one FILE symbol or when we have exactly
9470 one FILE symbol but global symbols are present in a file other
9471 than the one with the FILE symbol. We also need one if linker
9472 defined symbols are present. In practice these conditions are
9473 always met, so just emit the FILE symbol unconditionally. */
9474 if (eoinfo->localsyms
9475 && !eoinfo->file_sym_done
9476 && eoinfo->flinfo->filesym_count != 0)
9477 {
9478 Elf_Internal_Sym fsym;
9479
9480 memset (&fsym, 0, sizeof (fsym));
9481 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9482 fsym.st_shndx = SHN_ABS;
9483 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9484 bfd_und_section_ptr, NULL))
9485 return FALSE;
9486
9487 eoinfo->file_sym_done = TRUE;
9488 }
9489
9490 indx = bfd_get_symcount (flinfo->output_bfd);
9491 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9492 input_sec, h);
9493 if (ret == 0)
9494 {
9495 eoinfo->failed = TRUE;
9496 return FALSE;
9497 }
9498 else if (ret == 1)
9499 h->indx = indx;
9500 else if (h->indx == -2)
9501 abort();
9502
9503 return TRUE;
9504 }
9505
9506 /* Return TRUE if special handling is done for relocs in SEC against
9507 symbols defined in discarded sections. */
9508
9509 static bfd_boolean
9510 elf_section_ignore_discarded_relocs (asection *sec)
9511 {
9512 const struct elf_backend_data *bed;
9513
9514 switch (sec->sec_info_type)
9515 {
9516 case SEC_INFO_TYPE_STABS:
9517 case SEC_INFO_TYPE_EH_FRAME:
9518 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9519 return TRUE;
9520 default:
9521 break;
9522 }
9523
9524 bed = get_elf_backend_data (sec->owner);
9525 if (bed->elf_backend_ignore_discarded_relocs != NULL
9526 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9527 return TRUE;
9528
9529 return FALSE;
9530 }
9531
9532 /* Return a mask saying how ld should treat relocations in SEC against
9533 symbols defined in discarded sections. If this function returns
9534 COMPLAIN set, ld will issue a warning message. If this function
9535 returns PRETEND set, and the discarded section was link-once and the
9536 same size as the kept link-once section, ld will pretend that the
9537 symbol was actually defined in the kept section. Otherwise ld will
9538 zero the reloc (at least that is the intent, but some cooperation by
9539 the target dependent code is needed, particularly for REL targets). */
9540
9541 unsigned int
9542 _bfd_elf_default_action_discarded (asection *sec)
9543 {
9544 if (sec->flags & SEC_DEBUGGING)
9545 return PRETEND;
9546
9547 if (strcmp (".eh_frame", sec->name) == 0)
9548 return 0;
9549
9550 if (strcmp (".gcc_except_table", sec->name) == 0)
9551 return 0;
9552
9553 return COMPLAIN | PRETEND;
9554 }
9555
9556 /* Find a match between a section and a member of a section group. */
9557
9558 static asection *
9559 match_group_member (asection *sec, asection *group,
9560 struct bfd_link_info *info)
9561 {
9562 asection *first = elf_next_in_group (group);
9563 asection *s = first;
9564
9565 while (s != NULL)
9566 {
9567 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9568 return s;
9569
9570 s = elf_next_in_group (s);
9571 if (s == first)
9572 break;
9573 }
9574
9575 return NULL;
9576 }
9577
9578 /* Check if the kept section of a discarded section SEC can be used
9579 to replace it. Return the replacement if it is OK. Otherwise return
9580 NULL. */
9581
9582 asection *
9583 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9584 {
9585 asection *kept;
9586
9587 kept = sec->kept_section;
9588 if (kept != NULL)
9589 {
9590 if ((kept->flags & SEC_GROUP) != 0)
9591 kept = match_group_member (sec, kept, info);
9592 if (kept != NULL
9593 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9594 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9595 kept = NULL;
9596 sec->kept_section = kept;
9597 }
9598 return kept;
9599 }
9600
9601 /* Link an input file into the linker output file. This function
9602 handles all the sections and relocations of the input file at once.
9603 This is so that we only have to read the local symbols once, and
9604 don't have to keep them in memory. */
9605
9606 static bfd_boolean
9607 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9608 {
9609 int (*relocate_section)
9610 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9611 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9612 bfd *output_bfd;
9613 Elf_Internal_Shdr *symtab_hdr;
9614 size_t locsymcount;
9615 size_t extsymoff;
9616 Elf_Internal_Sym *isymbuf;
9617 Elf_Internal_Sym *isym;
9618 Elf_Internal_Sym *isymend;
9619 long *pindex;
9620 asection **ppsection;
9621 asection *o;
9622 const struct elf_backend_data *bed;
9623 struct elf_link_hash_entry **sym_hashes;
9624 bfd_size_type address_size;
9625 bfd_vma r_type_mask;
9626 int r_sym_shift;
9627 bfd_boolean have_file_sym = FALSE;
9628
9629 output_bfd = flinfo->output_bfd;
9630 bed = get_elf_backend_data (output_bfd);
9631 relocate_section = bed->elf_backend_relocate_section;
9632
9633 /* If this is a dynamic object, we don't want to do anything here:
9634 we don't want the local symbols, and we don't want the section
9635 contents. */
9636 if ((input_bfd->flags & DYNAMIC) != 0)
9637 return TRUE;
9638
9639 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9640 if (elf_bad_symtab (input_bfd))
9641 {
9642 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9643 extsymoff = 0;
9644 }
9645 else
9646 {
9647 locsymcount = symtab_hdr->sh_info;
9648 extsymoff = symtab_hdr->sh_info;
9649 }
9650
9651 /* Read the local symbols. */
9652 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9653 if (isymbuf == NULL && locsymcount != 0)
9654 {
9655 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9656 flinfo->internal_syms,
9657 flinfo->external_syms,
9658 flinfo->locsym_shndx);
9659 if (isymbuf == NULL)
9660 return FALSE;
9661 }
9662
9663 /* Find local symbol sections and adjust values of symbols in
9664 SEC_MERGE sections. Write out those local symbols we know are
9665 going into the output file. */
9666 isymend = isymbuf + locsymcount;
9667 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9668 isym < isymend;
9669 isym++, pindex++, ppsection++)
9670 {
9671 asection *isec;
9672 const char *name;
9673 Elf_Internal_Sym osym;
9674 long indx;
9675 int ret;
9676
9677 *pindex = -1;
9678
9679 if (elf_bad_symtab (input_bfd))
9680 {
9681 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9682 {
9683 *ppsection = NULL;
9684 continue;
9685 }
9686 }
9687
9688 if (isym->st_shndx == SHN_UNDEF)
9689 isec = bfd_und_section_ptr;
9690 else if (isym->st_shndx == SHN_ABS)
9691 isec = bfd_abs_section_ptr;
9692 else if (isym->st_shndx == SHN_COMMON)
9693 isec = bfd_com_section_ptr;
9694 else
9695 {
9696 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9697 if (isec == NULL)
9698 {
9699 /* Don't attempt to output symbols with st_shnx in the
9700 reserved range other than SHN_ABS and SHN_COMMON. */
9701 *ppsection = NULL;
9702 continue;
9703 }
9704 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9705 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9706 isym->st_value =
9707 _bfd_merged_section_offset (output_bfd, &isec,
9708 elf_section_data (isec)->sec_info,
9709 isym->st_value);
9710 }
9711
9712 *ppsection = isec;
9713
9714 /* Don't output the first, undefined, symbol. In fact, don't
9715 output any undefined local symbol. */
9716 if (isec == bfd_und_section_ptr)
9717 continue;
9718
9719 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9720 {
9721 /* We never output section symbols. Instead, we use the
9722 section symbol of the corresponding section in the output
9723 file. */
9724 continue;
9725 }
9726
9727 /* If we are stripping all symbols, we don't want to output this
9728 one. */
9729 if (flinfo->info->strip == strip_all)
9730 continue;
9731
9732 /* If we are discarding all local symbols, we don't want to
9733 output this one. If we are generating a relocatable output
9734 file, then some of the local symbols may be required by
9735 relocs; we output them below as we discover that they are
9736 needed. */
9737 if (flinfo->info->discard == discard_all)
9738 continue;
9739
9740 /* If this symbol is defined in a section which we are
9741 discarding, we don't need to keep it. */
9742 if (isym->st_shndx != SHN_UNDEF
9743 && isym->st_shndx < SHN_LORESERVE
9744 && bfd_section_removed_from_list (output_bfd,
9745 isec->output_section))
9746 continue;
9747
9748 /* Get the name of the symbol. */
9749 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9750 isym->st_name);
9751 if (name == NULL)
9752 return FALSE;
9753
9754 /* See if we are discarding symbols with this name. */
9755 if ((flinfo->info->strip == strip_some
9756 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9757 == NULL))
9758 || (((flinfo->info->discard == discard_sec_merge
9759 && (isec->flags & SEC_MERGE)
9760 && !bfd_link_relocatable (flinfo->info))
9761 || flinfo->info->discard == discard_l)
9762 && bfd_is_local_label_name (input_bfd, name)))
9763 continue;
9764
9765 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9766 {
9767 if (input_bfd->lto_output)
9768 /* -flto puts a temp file name here. This means builds
9769 are not reproducible. Discard the symbol. */
9770 continue;
9771 have_file_sym = TRUE;
9772 flinfo->filesym_count += 1;
9773 }
9774 if (!have_file_sym)
9775 {
9776 /* In the absence of debug info, bfd_find_nearest_line uses
9777 FILE symbols to determine the source file for local
9778 function symbols. Provide a FILE symbol here if input
9779 files lack such, so that their symbols won't be
9780 associated with a previous input file. It's not the
9781 source file, but the best we can do. */
9782 have_file_sym = TRUE;
9783 flinfo->filesym_count += 1;
9784 memset (&osym, 0, sizeof (osym));
9785 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9786 osym.st_shndx = SHN_ABS;
9787 if (!elf_link_output_symstrtab (flinfo,
9788 (input_bfd->lto_output ? NULL
9789 : input_bfd->filename),
9790 &osym, bfd_abs_section_ptr,
9791 NULL))
9792 return FALSE;
9793 }
9794
9795 osym = *isym;
9796
9797 /* Adjust the section index for the output file. */
9798 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9799 isec->output_section);
9800 if (osym.st_shndx == SHN_BAD)
9801 return FALSE;
9802
9803 /* ELF symbols in relocatable files are section relative, but
9804 in executable files they are virtual addresses. Note that
9805 this code assumes that all ELF sections have an associated
9806 BFD section with a reasonable value for output_offset; below
9807 we assume that they also have a reasonable value for
9808 output_section. Any special sections must be set up to meet
9809 these requirements. */
9810 osym.st_value += isec->output_offset;
9811 if (!bfd_link_relocatable (flinfo->info))
9812 {
9813 osym.st_value += isec->output_section->vma;
9814 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9815 {
9816 /* STT_TLS symbols are relative to PT_TLS segment base. */
9817 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9818 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9819 }
9820 }
9821
9822 indx = bfd_get_symcount (output_bfd);
9823 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9824 if (ret == 0)
9825 return FALSE;
9826 else if (ret == 1)
9827 *pindex = indx;
9828 }
9829
9830 if (bed->s->arch_size == 32)
9831 {
9832 r_type_mask = 0xff;
9833 r_sym_shift = 8;
9834 address_size = 4;
9835 }
9836 else
9837 {
9838 r_type_mask = 0xffffffff;
9839 r_sym_shift = 32;
9840 address_size = 8;
9841 }
9842
9843 /* Relocate the contents of each section. */
9844 sym_hashes = elf_sym_hashes (input_bfd);
9845 for (o = input_bfd->sections; o != NULL; o = o->next)
9846 {
9847 bfd_byte *contents;
9848
9849 if (! o->linker_mark)
9850 {
9851 /* This section was omitted from the link. */
9852 continue;
9853 }
9854
9855 if (bfd_link_relocatable (flinfo->info)
9856 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9857 {
9858 /* Deal with the group signature symbol. */
9859 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9860 unsigned long symndx = sec_data->this_hdr.sh_info;
9861 asection *osec = o->output_section;
9862
9863 if (symndx >= locsymcount
9864 || (elf_bad_symtab (input_bfd)
9865 && flinfo->sections[symndx] == NULL))
9866 {
9867 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9868 while (h->root.type == bfd_link_hash_indirect
9869 || h->root.type == bfd_link_hash_warning)
9870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9871 /* Arrange for symbol to be output. */
9872 h->indx = -2;
9873 elf_section_data (osec)->this_hdr.sh_info = -2;
9874 }
9875 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9876 {
9877 /* We'll use the output section target_index. */
9878 asection *sec = flinfo->sections[symndx]->output_section;
9879 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9880 }
9881 else
9882 {
9883 if (flinfo->indices[symndx] == -1)
9884 {
9885 /* Otherwise output the local symbol now. */
9886 Elf_Internal_Sym sym = isymbuf[symndx];
9887 asection *sec = flinfo->sections[symndx]->output_section;
9888 const char *name;
9889 long indx;
9890 int ret;
9891
9892 name = bfd_elf_string_from_elf_section (input_bfd,
9893 symtab_hdr->sh_link,
9894 sym.st_name);
9895 if (name == NULL)
9896 return FALSE;
9897
9898 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9899 sec);
9900 if (sym.st_shndx == SHN_BAD)
9901 return FALSE;
9902
9903 sym.st_value += o->output_offset;
9904
9905 indx = bfd_get_symcount (output_bfd);
9906 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9907 NULL);
9908 if (ret == 0)
9909 return FALSE;
9910 else if (ret == 1)
9911 flinfo->indices[symndx] = indx;
9912 else
9913 abort ();
9914 }
9915 elf_section_data (osec)->this_hdr.sh_info
9916 = flinfo->indices[symndx];
9917 }
9918 }
9919
9920 if ((o->flags & SEC_HAS_CONTENTS) == 0
9921 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9922 continue;
9923
9924 if ((o->flags & SEC_LINKER_CREATED) != 0)
9925 {
9926 /* Section was created by _bfd_elf_link_create_dynamic_sections
9927 or somesuch. */
9928 continue;
9929 }
9930
9931 /* Get the contents of the section. They have been cached by a
9932 relaxation routine. Note that o is a section in an input
9933 file, so the contents field will not have been set by any of
9934 the routines which work on output files. */
9935 if (elf_section_data (o)->this_hdr.contents != NULL)
9936 {
9937 contents = elf_section_data (o)->this_hdr.contents;
9938 if (bed->caches_rawsize
9939 && o->rawsize != 0
9940 && o->rawsize < o->size)
9941 {
9942 memcpy (flinfo->contents, contents, o->rawsize);
9943 contents = flinfo->contents;
9944 }
9945 }
9946 else
9947 {
9948 contents = flinfo->contents;
9949 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9950 return FALSE;
9951 }
9952
9953 if ((o->flags & SEC_RELOC) != 0)
9954 {
9955 Elf_Internal_Rela *internal_relocs;
9956 Elf_Internal_Rela *rel, *relend;
9957 int action_discarded;
9958 int ret;
9959
9960 /* Get the swapped relocs. */
9961 internal_relocs
9962 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9963 flinfo->internal_relocs, FALSE);
9964 if (internal_relocs == NULL
9965 && o->reloc_count > 0)
9966 return FALSE;
9967
9968 /* We need to reverse-copy input .ctors/.dtors sections if
9969 they are placed in .init_array/.finit_array for output. */
9970 if (o->size > address_size
9971 && ((strncmp (o->name, ".ctors", 6) == 0
9972 && strcmp (o->output_section->name,
9973 ".init_array") == 0)
9974 || (strncmp (o->name, ".dtors", 6) == 0
9975 && strcmp (o->output_section->name,
9976 ".fini_array") == 0))
9977 && (o->name[6] == 0 || o->name[6] == '.'))
9978 {
9979 if (o->size != o->reloc_count * address_size)
9980 {
9981 (*_bfd_error_handler)
9982 (_("error: %B: size of section %A is not "
9983 "multiple of address size"),
9984 input_bfd, o);
9985 bfd_set_error (bfd_error_on_input);
9986 return FALSE;
9987 }
9988 o->flags |= SEC_ELF_REVERSE_COPY;
9989 }
9990
9991 action_discarded = -1;
9992 if (!elf_section_ignore_discarded_relocs (o))
9993 action_discarded = (*bed->action_discarded) (o);
9994
9995 /* Run through the relocs evaluating complex reloc symbols and
9996 looking for relocs against symbols from discarded sections
9997 or section symbols from removed link-once sections.
9998 Complain about relocs against discarded sections. Zero
9999 relocs against removed link-once sections. */
10000
10001 rel = internal_relocs;
10002 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10003 for ( ; rel < relend; rel++)
10004 {
10005 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10006 unsigned int s_type;
10007 asection **ps, *sec;
10008 struct elf_link_hash_entry *h = NULL;
10009 const char *sym_name;
10010
10011 if (r_symndx == STN_UNDEF)
10012 continue;
10013
10014 if (r_symndx >= locsymcount
10015 || (elf_bad_symtab (input_bfd)
10016 && flinfo->sections[r_symndx] == NULL))
10017 {
10018 h = sym_hashes[r_symndx - extsymoff];
10019
10020 /* Badly formatted input files can contain relocs that
10021 reference non-existant symbols. Check here so that
10022 we do not seg fault. */
10023 if (h == NULL)
10024 {
10025 char buffer [32];
10026
10027 sprintf_vma (buffer, rel->r_info);
10028 (*_bfd_error_handler)
10029 (_("error: %B contains a reloc (0x%s) for section %A "
10030 "that references a non-existent global symbol"),
10031 input_bfd, o, buffer);
10032 bfd_set_error (bfd_error_bad_value);
10033 return FALSE;
10034 }
10035
10036 while (h->root.type == bfd_link_hash_indirect
10037 || h->root.type == bfd_link_hash_warning)
10038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10039
10040 s_type = h->type;
10041
10042 /* If a plugin symbol is referenced from a non-IR file,
10043 mark the symbol as undefined. Note that the
10044 linker may attach linker created dynamic sections
10045 to the plugin bfd. Symbols defined in linker
10046 created sections are not plugin symbols. */
10047 if (h->root.non_ir_ref
10048 && (h->root.type == bfd_link_hash_defined
10049 || h->root.type == bfd_link_hash_defweak)
10050 && (h->root.u.def.section->flags
10051 & SEC_LINKER_CREATED) == 0
10052 && h->root.u.def.section->owner != NULL
10053 && (h->root.u.def.section->owner->flags
10054 & BFD_PLUGIN) != 0)
10055 {
10056 h->root.type = bfd_link_hash_undefined;
10057 h->root.u.undef.abfd = h->root.u.def.section->owner;
10058 }
10059
10060 ps = NULL;
10061 if (h->root.type == bfd_link_hash_defined
10062 || h->root.type == bfd_link_hash_defweak)
10063 ps = &h->root.u.def.section;
10064
10065 sym_name = h->root.root.string;
10066 }
10067 else
10068 {
10069 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10070
10071 s_type = ELF_ST_TYPE (sym->st_info);
10072 ps = &flinfo->sections[r_symndx];
10073 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10074 sym, *ps);
10075 }
10076
10077 if ((s_type == STT_RELC || s_type == STT_SRELC)
10078 && !bfd_link_relocatable (flinfo->info))
10079 {
10080 bfd_vma val;
10081 bfd_vma dot = (rel->r_offset
10082 + o->output_offset + o->output_section->vma);
10083 #ifdef DEBUG
10084 printf ("Encountered a complex symbol!");
10085 printf (" (input_bfd %s, section %s, reloc %ld\n",
10086 input_bfd->filename, o->name,
10087 (long) (rel - internal_relocs));
10088 printf (" symbol: idx %8.8lx, name %s\n",
10089 r_symndx, sym_name);
10090 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10091 (unsigned long) rel->r_info,
10092 (unsigned long) rel->r_offset);
10093 #endif
10094 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10095 isymbuf, locsymcount, s_type == STT_SRELC))
10096 return FALSE;
10097
10098 /* Symbol evaluated OK. Update to absolute value. */
10099 set_symbol_value (input_bfd, isymbuf, locsymcount,
10100 r_symndx, val);
10101 continue;
10102 }
10103
10104 if (action_discarded != -1 && ps != NULL)
10105 {
10106 /* Complain if the definition comes from a
10107 discarded section. */
10108 if ((sec = *ps) != NULL && discarded_section (sec))
10109 {
10110 BFD_ASSERT (r_symndx != STN_UNDEF);
10111 if (action_discarded & COMPLAIN)
10112 (*flinfo->info->callbacks->einfo)
10113 (_("%X`%s' referenced in section `%A' of %B: "
10114 "defined in discarded section `%A' of %B\n"),
10115 sym_name, o, input_bfd, sec, sec->owner);
10116
10117 /* Try to do the best we can to support buggy old
10118 versions of gcc. Pretend that the symbol is
10119 really defined in the kept linkonce section.
10120 FIXME: This is quite broken. Modifying the
10121 symbol here means we will be changing all later
10122 uses of the symbol, not just in this section. */
10123 if (action_discarded & PRETEND)
10124 {
10125 asection *kept;
10126
10127 kept = _bfd_elf_check_kept_section (sec,
10128 flinfo->info);
10129 if (kept != NULL)
10130 {
10131 *ps = kept;
10132 continue;
10133 }
10134 }
10135 }
10136 }
10137 }
10138
10139 /* Relocate the section by invoking a back end routine.
10140
10141 The back end routine is responsible for adjusting the
10142 section contents as necessary, and (if using Rela relocs
10143 and generating a relocatable output file) adjusting the
10144 reloc addend as necessary.
10145
10146 The back end routine does not have to worry about setting
10147 the reloc address or the reloc symbol index.
10148
10149 The back end routine is given a pointer to the swapped in
10150 internal symbols, and can access the hash table entries
10151 for the external symbols via elf_sym_hashes (input_bfd).
10152
10153 When generating relocatable output, the back end routine
10154 must handle STB_LOCAL/STT_SECTION symbols specially. The
10155 output symbol is going to be a section symbol
10156 corresponding to the output section, which will require
10157 the addend to be adjusted. */
10158
10159 ret = (*relocate_section) (output_bfd, flinfo->info,
10160 input_bfd, o, contents,
10161 internal_relocs,
10162 isymbuf,
10163 flinfo->sections);
10164 if (!ret)
10165 return FALSE;
10166
10167 if (ret == 2
10168 || bfd_link_relocatable (flinfo->info)
10169 || flinfo->info->emitrelocations)
10170 {
10171 Elf_Internal_Rela *irela;
10172 Elf_Internal_Rela *irelaend, *irelamid;
10173 bfd_vma last_offset;
10174 struct elf_link_hash_entry **rel_hash;
10175 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10176 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10177 unsigned int next_erel;
10178 bfd_boolean rela_normal;
10179 struct bfd_elf_section_data *esdi, *esdo;
10180
10181 esdi = elf_section_data (o);
10182 esdo = elf_section_data (o->output_section);
10183 rela_normal = FALSE;
10184
10185 /* Adjust the reloc addresses and symbol indices. */
10186
10187 irela = internal_relocs;
10188 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10189 rel_hash = esdo->rel.hashes + esdo->rel.count;
10190 /* We start processing the REL relocs, if any. When we reach
10191 IRELAMID in the loop, we switch to the RELA relocs. */
10192 irelamid = irela;
10193 if (esdi->rel.hdr != NULL)
10194 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10195 * bed->s->int_rels_per_ext_rel);
10196 rel_hash_list = rel_hash;
10197 rela_hash_list = NULL;
10198 last_offset = o->output_offset;
10199 if (!bfd_link_relocatable (flinfo->info))
10200 last_offset += o->output_section->vma;
10201 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10202 {
10203 unsigned long r_symndx;
10204 asection *sec;
10205 Elf_Internal_Sym sym;
10206
10207 if (next_erel == bed->s->int_rels_per_ext_rel)
10208 {
10209 rel_hash++;
10210 next_erel = 0;
10211 }
10212
10213 if (irela == irelamid)
10214 {
10215 rel_hash = esdo->rela.hashes + esdo->rela.count;
10216 rela_hash_list = rel_hash;
10217 rela_normal = bed->rela_normal;
10218 }
10219
10220 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10221 flinfo->info, o,
10222 irela->r_offset);
10223 if (irela->r_offset >= (bfd_vma) -2)
10224 {
10225 /* This is a reloc for a deleted entry or somesuch.
10226 Turn it into an R_*_NONE reloc, at the same
10227 offset as the last reloc. elf_eh_frame.c and
10228 bfd_elf_discard_info rely on reloc offsets
10229 being ordered. */
10230 irela->r_offset = last_offset;
10231 irela->r_info = 0;
10232 irela->r_addend = 0;
10233 continue;
10234 }
10235
10236 irela->r_offset += o->output_offset;
10237
10238 /* Relocs in an executable have to be virtual addresses. */
10239 if (!bfd_link_relocatable (flinfo->info))
10240 irela->r_offset += o->output_section->vma;
10241
10242 last_offset = irela->r_offset;
10243
10244 r_symndx = irela->r_info >> r_sym_shift;
10245 if (r_symndx == STN_UNDEF)
10246 continue;
10247
10248 if (r_symndx >= locsymcount
10249 || (elf_bad_symtab (input_bfd)
10250 && flinfo->sections[r_symndx] == NULL))
10251 {
10252 struct elf_link_hash_entry *rh;
10253 unsigned long indx;
10254
10255 /* This is a reloc against a global symbol. We
10256 have not yet output all the local symbols, so
10257 we do not know the symbol index of any global
10258 symbol. We set the rel_hash entry for this
10259 reloc to point to the global hash table entry
10260 for this symbol. The symbol index is then
10261 set at the end of bfd_elf_final_link. */
10262 indx = r_symndx - extsymoff;
10263 rh = elf_sym_hashes (input_bfd)[indx];
10264 while (rh->root.type == bfd_link_hash_indirect
10265 || rh->root.type == bfd_link_hash_warning)
10266 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10267
10268 /* Setting the index to -2 tells
10269 elf_link_output_extsym that this symbol is
10270 used by a reloc. */
10271 BFD_ASSERT (rh->indx < 0);
10272 rh->indx = -2;
10273
10274 *rel_hash = rh;
10275
10276 continue;
10277 }
10278
10279 /* This is a reloc against a local symbol. */
10280
10281 *rel_hash = NULL;
10282 sym = isymbuf[r_symndx];
10283 sec = flinfo->sections[r_symndx];
10284 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10285 {
10286 /* I suppose the backend ought to fill in the
10287 section of any STT_SECTION symbol against a
10288 processor specific section. */
10289 r_symndx = STN_UNDEF;
10290 if (bfd_is_abs_section (sec))
10291 ;
10292 else if (sec == NULL || sec->owner == NULL)
10293 {
10294 bfd_set_error (bfd_error_bad_value);
10295 return FALSE;
10296 }
10297 else
10298 {
10299 asection *osec = sec->output_section;
10300
10301 /* If we have discarded a section, the output
10302 section will be the absolute section. In
10303 case of discarded SEC_MERGE sections, use
10304 the kept section. relocate_section should
10305 have already handled discarded linkonce
10306 sections. */
10307 if (bfd_is_abs_section (osec)
10308 && sec->kept_section != NULL
10309 && sec->kept_section->output_section != NULL)
10310 {
10311 osec = sec->kept_section->output_section;
10312 irela->r_addend -= osec->vma;
10313 }
10314
10315 if (!bfd_is_abs_section (osec))
10316 {
10317 r_symndx = osec->target_index;
10318 if (r_symndx == STN_UNDEF)
10319 {
10320 irela->r_addend += osec->vma;
10321 osec = _bfd_nearby_section (output_bfd, osec,
10322 osec->vma);
10323 irela->r_addend -= osec->vma;
10324 r_symndx = osec->target_index;
10325 }
10326 }
10327 }
10328
10329 /* Adjust the addend according to where the
10330 section winds up in the output section. */
10331 if (rela_normal)
10332 irela->r_addend += sec->output_offset;
10333 }
10334 else
10335 {
10336 if (flinfo->indices[r_symndx] == -1)
10337 {
10338 unsigned long shlink;
10339 const char *name;
10340 asection *osec;
10341 long indx;
10342
10343 if (flinfo->info->strip == strip_all)
10344 {
10345 /* You can't do ld -r -s. */
10346 bfd_set_error (bfd_error_invalid_operation);
10347 return FALSE;
10348 }
10349
10350 /* This symbol was skipped earlier, but
10351 since it is needed by a reloc, we
10352 must output it now. */
10353 shlink = symtab_hdr->sh_link;
10354 name = (bfd_elf_string_from_elf_section
10355 (input_bfd, shlink, sym.st_name));
10356 if (name == NULL)
10357 return FALSE;
10358
10359 osec = sec->output_section;
10360 sym.st_shndx =
10361 _bfd_elf_section_from_bfd_section (output_bfd,
10362 osec);
10363 if (sym.st_shndx == SHN_BAD)
10364 return FALSE;
10365
10366 sym.st_value += sec->output_offset;
10367 if (!bfd_link_relocatable (flinfo->info))
10368 {
10369 sym.st_value += osec->vma;
10370 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10371 {
10372 /* STT_TLS symbols are relative to PT_TLS
10373 segment base. */
10374 BFD_ASSERT (elf_hash_table (flinfo->info)
10375 ->tls_sec != NULL);
10376 sym.st_value -= (elf_hash_table (flinfo->info)
10377 ->tls_sec->vma);
10378 }
10379 }
10380
10381 indx = bfd_get_symcount (output_bfd);
10382 ret = elf_link_output_symstrtab (flinfo, name,
10383 &sym, sec,
10384 NULL);
10385 if (ret == 0)
10386 return FALSE;
10387 else if (ret == 1)
10388 flinfo->indices[r_symndx] = indx;
10389 else
10390 abort ();
10391 }
10392
10393 r_symndx = flinfo->indices[r_symndx];
10394 }
10395
10396 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10397 | (irela->r_info & r_type_mask));
10398 }
10399
10400 /* Swap out the relocs. */
10401 input_rel_hdr = esdi->rel.hdr;
10402 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10403 {
10404 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10405 input_rel_hdr,
10406 internal_relocs,
10407 rel_hash_list))
10408 return FALSE;
10409 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10410 * bed->s->int_rels_per_ext_rel);
10411 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10412 }
10413
10414 input_rela_hdr = esdi->rela.hdr;
10415 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10416 {
10417 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10418 input_rela_hdr,
10419 internal_relocs,
10420 rela_hash_list))
10421 return FALSE;
10422 }
10423 }
10424 }
10425
10426 /* Write out the modified section contents. */
10427 if (bed->elf_backend_write_section
10428 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10429 contents))
10430 {
10431 /* Section written out. */
10432 }
10433 else switch (o->sec_info_type)
10434 {
10435 case SEC_INFO_TYPE_STABS:
10436 if (! (_bfd_write_section_stabs
10437 (output_bfd,
10438 &elf_hash_table (flinfo->info)->stab_info,
10439 o, &elf_section_data (o)->sec_info, contents)))
10440 return FALSE;
10441 break;
10442 case SEC_INFO_TYPE_MERGE:
10443 if (! _bfd_write_merged_section (output_bfd, o,
10444 elf_section_data (o)->sec_info))
10445 return FALSE;
10446 break;
10447 case SEC_INFO_TYPE_EH_FRAME:
10448 {
10449 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10450 o, contents))
10451 return FALSE;
10452 }
10453 break;
10454 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10455 {
10456 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10457 flinfo->info,
10458 o, contents))
10459 return FALSE;
10460 }
10461 break;
10462 default:
10463 {
10464 /* FIXME: octets_per_byte. */
10465 if (! (o->flags & SEC_EXCLUDE))
10466 {
10467 file_ptr offset = (file_ptr) o->output_offset;
10468 bfd_size_type todo = o->size;
10469 if ((o->flags & SEC_ELF_REVERSE_COPY))
10470 {
10471 /* Reverse-copy input section to output. */
10472 do
10473 {
10474 todo -= address_size;
10475 if (! bfd_set_section_contents (output_bfd,
10476 o->output_section,
10477 contents + todo,
10478 offset,
10479 address_size))
10480 return FALSE;
10481 if (todo == 0)
10482 break;
10483 offset += address_size;
10484 }
10485 while (1);
10486 }
10487 else if (! bfd_set_section_contents (output_bfd,
10488 o->output_section,
10489 contents,
10490 offset, todo))
10491 return FALSE;
10492 }
10493 }
10494 break;
10495 }
10496 }
10497
10498 return TRUE;
10499 }
10500
10501 /* Generate a reloc when linking an ELF file. This is a reloc
10502 requested by the linker, and does not come from any input file. This
10503 is used to build constructor and destructor tables when linking
10504 with -Ur. */
10505
10506 static bfd_boolean
10507 elf_reloc_link_order (bfd *output_bfd,
10508 struct bfd_link_info *info,
10509 asection *output_section,
10510 struct bfd_link_order *link_order)
10511 {
10512 reloc_howto_type *howto;
10513 long indx;
10514 bfd_vma offset;
10515 bfd_vma addend;
10516 struct bfd_elf_section_reloc_data *reldata;
10517 struct elf_link_hash_entry **rel_hash_ptr;
10518 Elf_Internal_Shdr *rel_hdr;
10519 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10520 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10521 bfd_byte *erel;
10522 unsigned int i;
10523 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10524
10525 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10526 if (howto == NULL)
10527 {
10528 bfd_set_error (bfd_error_bad_value);
10529 return FALSE;
10530 }
10531
10532 addend = link_order->u.reloc.p->addend;
10533
10534 if (esdo->rel.hdr)
10535 reldata = &esdo->rel;
10536 else if (esdo->rela.hdr)
10537 reldata = &esdo->rela;
10538 else
10539 {
10540 reldata = NULL;
10541 BFD_ASSERT (0);
10542 }
10543
10544 /* Figure out the symbol index. */
10545 rel_hash_ptr = reldata->hashes + reldata->count;
10546 if (link_order->type == bfd_section_reloc_link_order)
10547 {
10548 indx = link_order->u.reloc.p->u.section->target_index;
10549 BFD_ASSERT (indx != 0);
10550 *rel_hash_ptr = NULL;
10551 }
10552 else
10553 {
10554 struct elf_link_hash_entry *h;
10555
10556 /* Treat a reloc against a defined symbol as though it were
10557 actually against the section. */
10558 h = ((struct elf_link_hash_entry *)
10559 bfd_wrapped_link_hash_lookup (output_bfd, info,
10560 link_order->u.reloc.p->u.name,
10561 FALSE, FALSE, TRUE));
10562 if (h != NULL
10563 && (h->root.type == bfd_link_hash_defined
10564 || h->root.type == bfd_link_hash_defweak))
10565 {
10566 asection *section;
10567
10568 section = h->root.u.def.section;
10569 indx = section->output_section->target_index;
10570 *rel_hash_ptr = NULL;
10571 /* It seems that we ought to add the symbol value to the
10572 addend here, but in practice it has already been added
10573 because it was passed to constructor_callback. */
10574 addend += section->output_section->vma + section->output_offset;
10575 }
10576 else if (h != NULL)
10577 {
10578 /* Setting the index to -2 tells elf_link_output_extsym that
10579 this symbol is used by a reloc. */
10580 h->indx = -2;
10581 *rel_hash_ptr = h;
10582 indx = 0;
10583 }
10584 else
10585 {
10586 if (! ((*info->callbacks->unattached_reloc)
10587 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10588 return FALSE;
10589 indx = 0;
10590 }
10591 }
10592
10593 /* If this is an inplace reloc, we must write the addend into the
10594 object file. */
10595 if (howto->partial_inplace && addend != 0)
10596 {
10597 bfd_size_type size;
10598 bfd_reloc_status_type rstat;
10599 bfd_byte *buf;
10600 bfd_boolean ok;
10601 const char *sym_name;
10602
10603 size = (bfd_size_type) bfd_get_reloc_size (howto);
10604 buf = (bfd_byte *) bfd_zmalloc (size);
10605 if (buf == NULL && size != 0)
10606 return FALSE;
10607 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10608 switch (rstat)
10609 {
10610 case bfd_reloc_ok:
10611 break;
10612
10613 default:
10614 case bfd_reloc_outofrange:
10615 abort ();
10616
10617 case bfd_reloc_overflow:
10618 if (link_order->type == bfd_section_reloc_link_order)
10619 sym_name = bfd_section_name (output_bfd,
10620 link_order->u.reloc.p->u.section);
10621 else
10622 sym_name = link_order->u.reloc.p->u.name;
10623 if (! ((*info->callbacks->reloc_overflow)
10624 (info, NULL, sym_name, howto->name, addend, NULL,
10625 NULL, (bfd_vma) 0)))
10626 {
10627 free (buf);
10628 return FALSE;
10629 }
10630 break;
10631 }
10632 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10633 link_order->offset, size);
10634 free (buf);
10635 if (! ok)
10636 return FALSE;
10637 }
10638
10639 /* The address of a reloc is relative to the section in a
10640 relocatable file, and is a virtual address in an executable
10641 file. */
10642 offset = link_order->offset;
10643 if (! bfd_link_relocatable (info))
10644 offset += output_section->vma;
10645
10646 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10647 {
10648 irel[i].r_offset = offset;
10649 irel[i].r_info = 0;
10650 irel[i].r_addend = 0;
10651 }
10652 if (bed->s->arch_size == 32)
10653 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10654 else
10655 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10656
10657 rel_hdr = reldata->hdr;
10658 erel = rel_hdr->contents;
10659 if (rel_hdr->sh_type == SHT_REL)
10660 {
10661 erel += reldata->count * bed->s->sizeof_rel;
10662 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10663 }
10664 else
10665 {
10666 irel[0].r_addend = addend;
10667 erel += reldata->count * bed->s->sizeof_rela;
10668 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10669 }
10670
10671 ++reldata->count;
10672
10673 return TRUE;
10674 }
10675
10676
10677 /* Get the output vma of the section pointed to by the sh_link field. */
10678
10679 static bfd_vma
10680 elf_get_linked_section_vma (struct bfd_link_order *p)
10681 {
10682 Elf_Internal_Shdr **elf_shdrp;
10683 asection *s;
10684 int elfsec;
10685
10686 s = p->u.indirect.section;
10687 elf_shdrp = elf_elfsections (s->owner);
10688 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10689 elfsec = elf_shdrp[elfsec]->sh_link;
10690 /* PR 290:
10691 The Intel C compiler generates SHT_IA_64_UNWIND with
10692 SHF_LINK_ORDER. But it doesn't set the sh_link or
10693 sh_info fields. Hence we could get the situation
10694 where elfsec is 0. */
10695 if (elfsec == 0)
10696 {
10697 const struct elf_backend_data *bed
10698 = get_elf_backend_data (s->owner);
10699 if (bed->link_order_error_handler)
10700 bed->link_order_error_handler
10701 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10702 return 0;
10703 }
10704 else
10705 {
10706 s = elf_shdrp[elfsec]->bfd_section;
10707 return s->output_section->vma + s->output_offset;
10708 }
10709 }
10710
10711
10712 /* Compare two sections based on the locations of the sections they are
10713 linked to. Used by elf_fixup_link_order. */
10714
10715 static int
10716 compare_link_order (const void * a, const void * b)
10717 {
10718 bfd_vma apos;
10719 bfd_vma bpos;
10720
10721 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10722 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10723 if (apos < bpos)
10724 return -1;
10725 return apos > bpos;
10726 }
10727
10728
10729 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10730 order as their linked sections. Returns false if this could not be done
10731 because an output section includes both ordered and unordered
10732 sections. Ideally we'd do this in the linker proper. */
10733
10734 static bfd_boolean
10735 elf_fixup_link_order (bfd *abfd, asection *o)
10736 {
10737 int seen_linkorder;
10738 int seen_other;
10739 int n;
10740 struct bfd_link_order *p;
10741 bfd *sub;
10742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10743 unsigned elfsec;
10744 struct bfd_link_order **sections;
10745 asection *s, *other_sec, *linkorder_sec;
10746 bfd_vma offset;
10747
10748 other_sec = NULL;
10749 linkorder_sec = NULL;
10750 seen_other = 0;
10751 seen_linkorder = 0;
10752 for (p = o->map_head.link_order; p != NULL; p = p->next)
10753 {
10754 if (p->type == bfd_indirect_link_order)
10755 {
10756 s = p->u.indirect.section;
10757 sub = s->owner;
10758 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10759 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10760 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10761 && elfsec < elf_numsections (sub)
10762 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10763 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10764 {
10765 seen_linkorder++;
10766 linkorder_sec = s;
10767 }
10768 else
10769 {
10770 seen_other++;
10771 other_sec = s;
10772 }
10773 }
10774 else
10775 seen_other++;
10776
10777 if (seen_other && seen_linkorder)
10778 {
10779 if (other_sec && linkorder_sec)
10780 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10781 o, linkorder_sec,
10782 linkorder_sec->owner, other_sec,
10783 other_sec->owner);
10784 else
10785 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10786 o);
10787 bfd_set_error (bfd_error_bad_value);
10788 return FALSE;
10789 }
10790 }
10791
10792 if (!seen_linkorder)
10793 return TRUE;
10794
10795 sections = (struct bfd_link_order **)
10796 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10797 if (sections == NULL)
10798 return FALSE;
10799 seen_linkorder = 0;
10800
10801 for (p = o->map_head.link_order; p != NULL; p = p->next)
10802 {
10803 sections[seen_linkorder++] = p;
10804 }
10805 /* Sort the input sections in the order of their linked section. */
10806 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10807 compare_link_order);
10808
10809 /* Change the offsets of the sections. */
10810 offset = 0;
10811 for (n = 0; n < seen_linkorder; n++)
10812 {
10813 s = sections[n]->u.indirect.section;
10814 offset &= ~(bfd_vma) 0 << s->alignment_power;
10815 s->output_offset = offset;
10816 sections[n]->offset = offset;
10817 /* FIXME: octets_per_byte. */
10818 offset += sections[n]->size;
10819 }
10820
10821 free (sections);
10822 return TRUE;
10823 }
10824
10825 static void
10826 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10827 {
10828 asection *o;
10829
10830 if (flinfo->symstrtab != NULL)
10831 _bfd_elf_strtab_free (flinfo->symstrtab);
10832 if (flinfo->contents != NULL)
10833 free (flinfo->contents);
10834 if (flinfo->external_relocs != NULL)
10835 free (flinfo->external_relocs);
10836 if (flinfo->internal_relocs != NULL)
10837 free (flinfo->internal_relocs);
10838 if (flinfo->external_syms != NULL)
10839 free (flinfo->external_syms);
10840 if (flinfo->locsym_shndx != NULL)
10841 free (flinfo->locsym_shndx);
10842 if (flinfo->internal_syms != NULL)
10843 free (flinfo->internal_syms);
10844 if (flinfo->indices != NULL)
10845 free (flinfo->indices);
10846 if (flinfo->sections != NULL)
10847 free (flinfo->sections);
10848 if (flinfo->symshndxbuf != NULL)
10849 free (flinfo->symshndxbuf);
10850 for (o = obfd->sections; o != NULL; o = o->next)
10851 {
10852 struct bfd_elf_section_data *esdo = elf_section_data (o);
10853 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10854 free (esdo->rel.hashes);
10855 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10856 free (esdo->rela.hashes);
10857 }
10858 }
10859
10860 /* Do the final step of an ELF link. */
10861
10862 bfd_boolean
10863 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10864 {
10865 bfd_boolean dynamic;
10866 bfd_boolean emit_relocs;
10867 bfd *dynobj;
10868 struct elf_final_link_info flinfo;
10869 asection *o;
10870 struct bfd_link_order *p;
10871 bfd *sub;
10872 bfd_size_type max_contents_size;
10873 bfd_size_type max_external_reloc_size;
10874 bfd_size_type max_internal_reloc_count;
10875 bfd_size_type max_sym_count;
10876 bfd_size_type max_sym_shndx_count;
10877 Elf_Internal_Sym elfsym;
10878 unsigned int i;
10879 Elf_Internal_Shdr *symtab_hdr;
10880 Elf_Internal_Shdr *symtab_shndx_hdr;
10881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10882 struct elf_outext_info eoinfo;
10883 bfd_boolean merged;
10884 size_t relativecount = 0;
10885 asection *reldyn = 0;
10886 bfd_size_type amt;
10887 asection *attr_section = NULL;
10888 bfd_vma attr_size = 0;
10889 const char *std_attrs_section;
10890
10891 if (! is_elf_hash_table (info->hash))
10892 return FALSE;
10893
10894 if (bfd_link_pic (info))
10895 abfd->flags |= DYNAMIC;
10896
10897 dynamic = elf_hash_table (info)->dynamic_sections_created;
10898 dynobj = elf_hash_table (info)->dynobj;
10899
10900 emit_relocs = (bfd_link_relocatable (info)
10901 || info->emitrelocations);
10902
10903 flinfo.info = info;
10904 flinfo.output_bfd = abfd;
10905 flinfo.symstrtab = _bfd_elf_strtab_init ();
10906 if (flinfo.symstrtab == NULL)
10907 return FALSE;
10908
10909 if (! dynamic)
10910 {
10911 flinfo.hash_sec = NULL;
10912 flinfo.symver_sec = NULL;
10913 }
10914 else
10915 {
10916 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10917 /* Note that dynsym_sec can be NULL (on VMS). */
10918 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10919 /* Note that it is OK if symver_sec is NULL. */
10920 }
10921
10922 flinfo.contents = NULL;
10923 flinfo.external_relocs = NULL;
10924 flinfo.internal_relocs = NULL;
10925 flinfo.external_syms = NULL;
10926 flinfo.locsym_shndx = NULL;
10927 flinfo.internal_syms = NULL;
10928 flinfo.indices = NULL;
10929 flinfo.sections = NULL;
10930 flinfo.symshndxbuf = NULL;
10931 flinfo.filesym_count = 0;
10932
10933 /* The object attributes have been merged. Remove the input
10934 sections from the link, and set the contents of the output
10935 secton. */
10936 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10937 for (o = abfd->sections; o != NULL; o = o->next)
10938 {
10939 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10940 || strcmp (o->name, ".gnu.attributes") == 0)
10941 {
10942 for (p = o->map_head.link_order; p != NULL; p = p->next)
10943 {
10944 asection *input_section;
10945
10946 if (p->type != bfd_indirect_link_order)
10947 continue;
10948 input_section = p->u.indirect.section;
10949 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10950 elf_link_input_bfd ignores this section. */
10951 input_section->flags &= ~SEC_HAS_CONTENTS;
10952 }
10953
10954 attr_size = bfd_elf_obj_attr_size (abfd);
10955 if (attr_size)
10956 {
10957 bfd_set_section_size (abfd, o, attr_size);
10958 attr_section = o;
10959 /* Skip this section later on. */
10960 o->map_head.link_order = NULL;
10961 }
10962 else
10963 o->flags |= SEC_EXCLUDE;
10964 }
10965 }
10966
10967 /* Count up the number of relocations we will output for each output
10968 section, so that we know the sizes of the reloc sections. We
10969 also figure out some maximum sizes. */
10970 max_contents_size = 0;
10971 max_external_reloc_size = 0;
10972 max_internal_reloc_count = 0;
10973 max_sym_count = 0;
10974 max_sym_shndx_count = 0;
10975 merged = FALSE;
10976 for (o = abfd->sections; o != NULL; o = o->next)
10977 {
10978 struct bfd_elf_section_data *esdo = elf_section_data (o);
10979 o->reloc_count = 0;
10980
10981 for (p = o->map_head.link_order; p != NULL; p = p->next)
10982 {
10983 unsigned int reloc_count = 0;
10984 struct bfd_elf_section_data *esdi = NULL;
10985
10986 if (p->type == bfd_section_reloc_link_order
10987 || p->type == bfd_symbol_reloc_link_order)
10988 reloc_count = 1;
10989 else if (p->type == bfd_indirect_link_order)
10990 {
10991 asection *sec;
10992
10993 sec = p->u.indirect.section;
10994 esdi = elf_section_data (sec);
10995
10996 /* Mark all sections which are to be included in the
10997 link. This will normally be every section. We need
10998 to do this so that we can identify any sections which
10999 the linker has decided to not include. */
11000 sec->linker_mark = TRUE;
11001
11002 if (sec->flags & SEC_MERGE)
11003 merged = TRUE;
11004
11005 if (esdo->this_hdr.sh_type == SHT_REL
11006 || esdo->this_hdr.sh_type == SHT_RELA)
11007 /* Some backends use reloc_count in relocation sections
11008 to count particular types of relocs. Of course,
11009 reloc sections themselves can't have relocations. */
11010 reloc_count = 0;
11011 else if (emit_relocs)
11012 reloc_count = sec->reloc_count;
11013 else if (bed->elf_backend_count_relocs)
11014 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11015
11016 if (sec->rawsize > max_contents_size)
11017 max_contents_size = sec->rawsize;
11018 if (sec->size > max_contents_size)
11019 max_contents_size = sec->size;
11020
11021 /* We are interested in just local symbols, not all
11022 symbols. */
11023 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11024 && (sec->owner->flags & DYNAMIC) == 0)
11025 {
11026 size_t sym_count;
11027
11028 if (elf_bad_symtab (sec->owner))
11029 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11030 / bed->s->sizeof_sym);
11031 else
11032 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11033
11034 if (sym_count > max_sym_count)
11035 max_sym_count = sym_count;
11036
11037 if (sym_count > max_sym_shndx_count
11038 && elf_symtab_shndx_list (sec->owner) != NULL)
11039 max_sym_shndx_count = sym_count;
11040
11041 if ((sec->flags & SEC_RELOC) != 0)
11042 {
11043 size_t ext_size = 0;
11044
11045 if (esdi->rel.hdr != NULL)
11046 ext_size = esdi->rel.hdr->sh_size;
11047 if (esdi->rela.hdr != NULL)
11048 ext_size += esdi->rela.hdr->sh_size;
11049
11050 if (ext_size > max_external_reloc_size)
11051 max_external_reloc_size = ext_size;
11052 if (sec->reloc_count > max_internal_reloc_count)
11053 max_internal_reloc_count = sec->reloc_count;
11054 }
11055 }
11056 }
11057
11058 if (reloc_count == 0)
11059 continue;
11060
11061 o->reloc_count += reloc_count;
11062
11063 if (p->type == bfd_indirect_link_order && emit_relocs)
11064 {
11065 if (esdi->rel.hdr)
11066 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11067 if (esdi->rela.hdr)
11068 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11069 }
11070 else
11071 {
11072 if (o->use_rela_p)
11073 esdo->rela.count += reloc_count;
11074 else
11075 esdo->rel.count += reloc_count;
11076 }
11077 }
11078
11079 if (o->reloc_count > 0)
11080 o->flags |= SEC_RELOC;
11081 else
11082 {
11083 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11084 set it (this is probably a bug) and if it is set
11085 assign_section_numbers will create a reloc section. */
11086 o->flags &=~ SEC_RELOC;
11087 }
11088
11089 /* If the SEC_ALLOC flag is not set, force the section VMA to
11090 zero. This is done in elf_fake_sections as well, but forcing
11091 the VMA to 0 here will ensure that relocs against these
11092 sections are handled correctly. */
11093 if ((o->flags & SEC_ALLOC) == 0
11094 && ! o->user_set_vma)
11095 o->vma = 0;
11096 }
11097
11098 if (! bfd_link_relocatable (info) && merged)
11099 elf_link_hash_traverse (elf_hash_table (info),
11100 _bfd_elf_link_sec_merge_syms, abfd);
11101
11102 /* Figure out the file positions for everything but the symbol table
11103 and the relocs. We set symcount to force assign_section_numbers
11104 to create a symbol table. */
11105 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11106 BFD_ASSERT (! abfd->output_has_begun);
11107 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11108 goto error_return;
11109
11110 /* Set sizes, and assign file positions for reloc sections. */
11111 for (o = abfd->sections; o != NULL; o = o->next)
11112 {
11113 struct bfd_elf_section_data *esdo = elf_section_data (o);
11114 if ((o->flags & SEC_RELOC) != 0)
11115 {
11116 if (esdo->rel.hdr
11117 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11118 goto error_return;
11119
11120 if (esdo->rela.hdr
11121 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11122 goto error_return;
11123 }
11124
11125 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11126 to count upwards while actually outputting the relocations. */
11127 esdo->rel.count = 0;
11128 esdo->rela.count = 0;
11129
11130 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11131 {
11132 /* Cache the section contents so that they can be compressed
11133 later. Use bfd_malloc since it will be freed by
11134 bfd_compress_section_contents. */
11135 unsigned char *contents = esdo->this_hdr.contents;
11136 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11137 abort ();
11138 contents
11139 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11140 if (contents == NULL)
11141 goto error_return;
11142 esdo->this_hdr.contents = contents;
11143 }
11144 }
11145
11146 /* We have now assigned file positions for all the sections except
11147 .symtab, .strtab, and non-loaded reloc sections. We start the
11148 .symtab section at the current file position, and write directly
11149 to it. We build the .strtab section in memory. */
11150 bfd_get_symcount (abfd) = 0;
11151 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11152 /* sh_name is set in prep_headers. */
11153 symtab_hdr->sh_type = SHT_SYMTAB;
11154 /* sh_flags, sh_addr and sh_size all start off zero. */
11155 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11156 /* sh_link is set in assign_section_numbers. */
11157 /* sh_info is set below. */
11158 /* sh_offset is set just below. */
11159 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11160
11161 if (max_sym_count < 20)
11162 max_sym_count = 20;
11163 elf_hash_table (info)->strtabsize = max_sym_count;
11164 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11165 elf_hash_table (info)->strtab
11166 = (struct elf_sym_strtab *) bfd_malloc (amt);
11167 if (elf_hash_table (info)->strtab == NULL)
11168 goto error_return;
11169 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11170 flinfo.symshndxbuf
11171 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11172 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11173
11174 if (info->strip != strip_all || emit_relocs)
11175 {
11176 file_ptr off = elf_next_file_pos (abfd);
11177
11178 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11179
11180 /* Note that at this point elf_next_file_pos (abfd) is
11181 incorrect. We do not yet know the size of the .symtab section.
11182 We correct next_file_pos below, after we do know the size. */
11183
11184 /* Start writing out the symbol table. The first symbol is always a
11185 dummy symbol. */
11186 elfsym.st_value = 0;
11187 elfsym.st_size = 0;
11188 elfsym.st_info = 0;
11189 elfsym.st_other = 0;
11190 elfsym.st_shndx = SHN_UNDEF;
11191 elfsym.st_target_internal = 0;
11192 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11193 bfd_und_section_ptr, NULL) != 1)
11194 goto error_return;
11195
11196 /* Output a symbol for each section. We output these even if we are
11197 discarding local symbols, since they are used for relocs. These
11198 symbols have no names. We store the index of each one in the
11199 index field of the section, so that we can find it again when
11200 outputting relocs. */
11201
11202 elfsym.st_size = 0;
11203 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11204 elfsym.st_other = 0;
11205 elfsym.st_value = 0;
11206 elfsym.st_target_internal = 0;
11207 for (i = 1; i < elf_numsections (abfd); i++)
11208 {
11209 o = bfd_section_from_elf_index (abfd, i);
11210 if (o != NULL)
11211 {
11212 o->target_index = bfd_get_symcount (abfd);
11213 elfsym.st_shndx = i;
11214 if (!bfd_link_relocatable (info))
11215 elfsym.st_value = o->vma;
11216 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11217 NULL) != 1)
11218 goto error_return;
11219 }
11220 }
11221 }
11222
11223 /* Allocate some memory to hold information read in from the input
11224 files. */
11225 if (max_contents_size != 0)
11226 {
11227 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11228 if (flinfo.contents == NULL)
11229 goto error_return;
11230 }
11231
11232 if (max_external_reloc_size != 0)
11233 {
11234 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11235 if (flinfo.external_relocs == NULL)
11236 goto error_return;
11237 }
11238
11239 if (max_internal_reloc_count != 0)
11240 {
11241 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11242 amt *= sizeof (Elf_Internal_Rela);
11243 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11244 if (flinfo.internal_relocs == NULL)
11245 goto error_return;
11246 }
11247
11248 if (max_sym_count != 0)
11249 {
11250 amt = max_sym_count * bed->s->sizeof_sym;
11251 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11252 if (flinfo.external_syms == NULL)
11253 goto error_return;
11254
11255 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11256 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11257 if (flinfo.internal_syms == NULL)
11258 goto error_return;
11259
11260 amt = max_sym_count * sizeof (long);
11261 flinfo.indices = (long int *) bfd_malloc (amt);
11262 if (flinfo.indices == NULL)
11263 goto error_return;
11264
11265 amt = max_sym_count * sizeof (asection *);
11266 flinfo.sections = (asection **) bfd_malloc (amt);
11267 if (flinfo.sections == NULL)
11268 goto error_return;
11269 }
11270
11271 if (max_sym_shndx_count != 0)
11272 {
11273 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11274 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11275 if (flinfo.locsym_shndx == NULL)
11276 goto error_return;
11277 }
11278
11279 if (elf_hash_table (info)->tls_sec)
11280 {
11281 bfd_vma base, end = 0;
11282 asection *sec;
11283
11284 for (sec = elf_hash_table (info)->tls_sec;
11285 sec && (sec->flags & SEC_THREAD_LOCAL);
11286 sec = sec->next)
11287 {
11288 bfd_size_type size = sec->size;
11289
11290 if (size == 0
11291 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11292 {
11293 struct bfd_link_order *ord = sec->map_tail.link_order;
11294
11295 if (ord != NULL)
11296 size = ord->offset + ord->size;
11297 }
11298 end = sec->vma + size;
11299 }
11300 base = elf_hash_table (info)->tls_sec->vma;
11301 /* Only align end of TLS section if static TLS doesn't have special
11302 alignment requirements. */
11303 if (bed->static_tls_alignment == 1)
11304 end = align_power (end,
11305 elf_hash_table (info)->tls_sec->alignment_power);
11306 elf_hash_table (info)->tls_size = end - base;
11307 }
11308
11309 /* Reorder SHF_LINK_ORDER sections. */
11310 for (o = abfd->sections; o != NULL; o = o->next)
11311 {
11312 if (!elf_fixup_link_order (abfd, o))
11313 return FALSE;
11314 }
11315
11316 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11317 return FALSE;
11318
11319 /* Since ELF permits relocations to be against local symbols, we
11320 must have the local symbols available when we do the relocations.
11321 Since we would rather only read the local symbols once, and we
11322 would rather not keep them in memory, we handle all the
11323 relocations for a single input file at the same time.
11324
11325 Unfortunately, there is no way to know the total number of local
11326 symbols until we have seen all of them, and the local symbol
11327 indices precede the global symbol indices. This means that when
11328 we are generating relocatable output, and we see a reloc against
11329 a global symbol, we can not know the symbol index until we have
11330 finished examining all the local symbols to see which ones we are
11331 going to output. To deal with this, we keep the relocations in
11332 memory, and don't output them until the end of the link. This is
11333 an unfortunate waste of memory, but I don't see a good way around
11334 it. Fortunately, it only happens when performing a relocatable
11335 link, which is not the common case. FIXME: If keep_memory is set
11336 we could write the relocs out and then read them again; I don't
11337 know how bad the memory loss will be. */
11338
11339 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11340 sub->output_has_begun = FALSE;
11341 for (o = abfd->sections; o != NULL; o = o->next)
11342 {
11343 for (p = o->map_head.link_order; p != NULL; p = p->next)
11344 {
11345 if (p->type == bfd_indirect_link_order
11346 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11347 == bfd_target_elf_flavour)
11348 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11349 {
11350 if (! sub->output_has_begun)
11351 {
11352 if (! elf_link_input_bfd (&flinfo, sub))
11353 goto error_return;
11354 sub->output_has_begun = TRUE;
11355 }
11356 }
11357 else if (p->type == bfd_section_reloc_link_order
11358 || p->type == bfd_symbol_reloc_link_order)
11359 {
11360 if (! elf_reloc_link_order (abfd, info, o, p))
11361 goto error_return;
11362 }
11363 else
11364 {
11365 if (! _bfd_default_link_order (abfd, info, o, p))
11366 {
11367 if (p->type == bfd_indirect_link_order
11368 && (bfd_get_flavour (sub)
11369 == bfd_target_elf_flavour)
11370 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11371 != bed->s->elfclass))
11372 {
11373 const char *iclass, *oclass;
11374
11375 if (bed->s->elfclass == ELFCLASS64)
11376 {
11377 iclass = "ELFCLASS32";
11378 oclass = "ELFCLASS64";
11379 }
11380 else
11381 {
11382 iclass = "ELFCLASS64";
11383 oclass = "ELFCLASS32";
11384 }
11385
11386 bfd_set_error (bfd_error_wrong_format);
11387 (*_bfd_error_handler)
11388 (_("%B: file class %s incompatible with %s"),
11389 sub, iclass, oclass);
11390 }
11391
11392 goto error_return;
11393 }
11394 }
11395 }
11396 }
11397
11398 /* Free symbol buffer if needed. */
11399 if (!info->reduce_memory_overheads)
11400 {
11401 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11402 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11403 && elf_tdata (sub)->symbuf)
11404 {
11405 free (elf_tdata (sub)->symbuf);
11406 elf_tdata (sub)->symbuf = NULL;
11407 }
11408 }
11409
11410 /* Output any global symbols that got converted to local in a
11411 version script or due to symbol visibility. We do this in a
11412 separate step since ELF requires all local symbols to appear
11413 prior to any global symbols. FIXME: We should only do this if
11414 some global symbols were, in fact, converted to become local.
11415 FIXME: Will this work correctly with the Irix 5 linker? */
11416 eoinfo.failed = FALSE;
11417 eoinfo.flinfo = &flinfo;
11418 eoinfo.localsyms = TRUE;
11419 eoinfo.file_sym_done = FALSE;
11420 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11421 if (eoinfo.failed)
11422 return FALSE;
11423
11424 /* If backend needs to output some local symbols not present in the hash
11425 table, do it now. */
11426 if (bed->elf_backend_output_arch_local_syms
11427 && (info->strip != strip_all || emit_relocs))
11428 {
11429 typedef int (*out_sym_func)
11430 (void *, const char *, Elf_Internal_Sym *, asection *,
11431 struct elf_link_hash_entry *);
11432
11433 if (! ((*bed->elf_backend_output_arch_local_syms)
11434 (abfd, info, &flinfo,
11435 (out_sym_func) elf_link_output_symstrtab)))
11436 return FALSE;
11437 }
11438
11439 /* That wrote out all the local symbols. Finish up the symbol table
11440 with the global symbols. Even if we want to strip everything we
11441 can, we still need to deal with those global symbols that got
11442 converted to local in a version script. */
11443
11444 /* The sh_info field records the index of the first non local symbol. */
11445 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11446
11447 if (dynamic
11448 && elf_hash_table (info)->dynsym != NULL
11449 && (elf_hash_table (info)->dynsym->output_section
11450 != bfd_abs_section_ptr))
11451 {
11452 Elf_Internal_Sym sym;
11453 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11454 long last_local = 0;
11455
11456 /* Write out the section symbols for the output sections. */
11457 if (bfd_link_pic (info)
11458 || elf_hash_table (info)->is_relocatable_executable)
11459 {
11460 asection *s;
11461
11462 sym.st_size = 0;
11463 sym.st_name = 0;
11464 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11465 sym.st_other = 0;
11466 sym.st_target_internal = 0;
11467
11468 for (s = abfd->sections; s != NULL; s = s->next)
11469 {
11470 int indx;
11471 bfd_byte *dest;
11472 long dynindx;
11473
11474 dynindx = elf_section_data (s)->dynindx;
11475 if (dynindx <= 0)
11476 continue;
11477 indx = elf_section_data (s)->this_idx;
11478 BFD_ASSERT (indx > 0);
11479 sym.st_shndx = indx;
11480 if (! check_dynsym (abfd, &sym))
11481 return FALSE;
11482 sym.st_value = s->vma;
11483 dest = dynsym + dynindx * bed->s->sizeof_sym;
11484 if (last_local < dynindx)
11485 last_local = dynindx;
11486 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11487 }
11488 }
11489
11490 /* Write out the local dynsyms. */
11491 if (elf_hash_table (info)->dynlocal)
11492 {
11493 struct elf_link_local_dynamic_entry *e;
11494 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11495 {
11496 asection *s;
11497 bfd_byte *dest;
11498
11499 /* Copy the internal symbol and turn off visibility.
11500 Note that we saved a word of storage and overwrote
11501 the original st_name with the dynstr_index. */
11502 sym = e->isym;
11503 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11504
11505 s = bfd_section_from_elf_index (e->input_bfd,
11506 e->isym.st_shndx);
11507 if (s != NULL)
11508 {
11509 sym.st_shndx =
11510 elf_section_data (s->output_section)->this_idx;
11511 if (! check_dynsym (abfd, &sym))
11512 return FALSE;
11513 sym.st_value = (s->output_section->vma
11514 + s->output_offset
11515 + e->isym.st_value);
11516 }
11517
11518 if (last_local < e->dynindx)
11519 last_local = e->dynindx;
11520
11521 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11522 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11523 }
11524 }
11525
11526 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11527 last_local + 1;
11528 }
11529
11530 /* We get the global symbols from the hash table. */
11531 eoinfo.failed = FALSE;
11532 eoinfo.localsyms = FALSE;
11533 eoinfo.flinfo = &flinfo;
11534 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11535 if (eoinfo.failed)
11536 return FALSE;
11537
11538 /* If backend needs to output some symbols not present in the hash
11539 table, do it now. */
11540 if (bed->elf_backend_output_arch_syms
11541 && (info->strip != strip_all || emit_relocs))
11542 {
11543 typedef int (*out_sym_func)
11544 (void *, const char *, Elf_Internal_Sym *, asection *,
11545 struct elf_link_hash_entry *);
11546
11547 if (! ((*bed->elf_backend_output_arch_syms)
11548 (abfd, info, &flinfo,
11549 (out_sym_func) elf_link_output_symstrtab)))
11550 return FALSE;
11551 }
11552
11553 /* Finalize the .strtab section. */
11554 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11555
11556 /* Swap out the .strtab section. */
11557 if (!elf_link_swap_symbols_out (&flinfo))
11558 return FALSE;
11559
11560 /* Now we know the size of the symtab section. */
11561 if (bfd_get_symcount (abfd) > 0)
11562 {
11563 /* Finish up and write out the symbol string table (.strtab)
11564 section. */
11565 Elf_Internal_Shdr *symstrtab_hdr;
11566 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11567
11568 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11569 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11570 {
11571 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11572 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11573 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11574 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11575 symtab_shndx_hdr->sh_size = amt;
11576
11577 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11578 off, TRUE);
11579
11580 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11581 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11582 return FALSE;
11583 }
11584
11585 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11586 /* sh_name was set in prep_headers. */
11587 symstrtab_hdr->sh_type = SHT_STRTAB;
11588 symstrtab_hdr->sh_flags = 0;
11589 symstrtab_hdr->sh_addr = 0;
11590 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11591 symstrtab_hdr->sh_entsize = 0;
11592 symstrtab_hdr->sh_link = 0;
11593 symstrtab_hdr->sh_info = 0;
11594 /* sh_offset is set just below. */
11595 symstrtab_hdr->sh_addralign = 1;
11596
11597 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11598 off, TRUE);
11599 elf_next_file_pos (abfd) = off;
11600
11601 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11602 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11603 return FALSE;
11604 }
11605
11606 /* Adjust the relocs to have the correct symbol indices. */
11607 for (o = abfd->sections; o != NULL; o = o->next)
11608 {
11609 struct bfd_elf_section_data *esdo = elf_section_data (o);
11610 bfd_boolean sort;
11611 if ((o->flags & SEC_RELOC) == 0)
11612 continue;
11613
11614 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11615 if (esdo->rel.hdr != NULL
11616 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11617 return FALSE;
11618 if (esdo->rela.hdr != NULL
11619 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11620 return FALSE;
11621
11622 /* Set the reloc_count field to 0 to prevent write_relocs from
11623 trying to swap the relocs out itself. */
11624 o->reloc_count = 0;
11625 }
11626
11627 if (dynamic && info->combreloc && dynobj != NULL)
11628 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11629
11630 /* If we are linking against a dynamic object, or generating a
11631 shared library, finish up the dynamic linking information. */
11632 if (dynamic)
11633 {
11634 bfd_byte *dyncon, *dynconend;
11635
11636 /* Fix up .dynamic entries. */
11637 o = bfd_get_linker_section (dynobj, ".dynamic");
11638 BFD_ASSERT (o != NULL);
11639
11640 dyncon = o->contents;
11641 dynconend = o->contents + o->size;
11642 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11643 {
11644 Elf_Internal_Dyn dyn;
11645 const char *name;
11646 unsigned int type;
11647
11648 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11649
11650 switch (dyn.d_tag)
11651 {
11652 default:
11653 continue;
11654 case DT_NULL:
11655 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11656 {
11657 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11658 {
11659 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11660 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11661 default: continue;
11662 }
11663 dyn.d_un.d_val = relativecount;
11664 relativecount = 0;
11665 break;
11666 }
11667 continue;
11668
11669 case DT_INIT:
11670 name = info->init_function;
11671 goto get_sym;
11672 case DT_FINI:
11673 name = info->fini_function;
11674 get_sym:
11675 {
11676 struct elf_link_hash_entry *h;
11677
11678 h = elf_link_hash_lookup (elf_hash_table (info), name,
11679 FALSE, FALSE, TRUE);
11680 if (h != NULL
11681 && (h->root.type == bfd_link_hash_defined
11682 || h->root.type == bfd_link_hash_defweak))
11683 {
11684 dyn.d_un.d_ptr = h->root.u.def.value;
11685 o = h->root.u.def.section;
11686 if (o->output_section != NULL)
11687 dyn.d_un.d_ptr += (o->output_section->vma
11688 + o->output_offset);
11689 else
11690 {
11691 /* The symbol is imported from another shared
11692 library and does not apply to this one. */
11693 dyn.d_un.d_ptr = 0;
11694 }
11695 break;
11696 }
11697 }
11698 continue;
11699
11700 case DT_PREINIT_ARRAYSZ:
11701 name = ".preinit_array";
11702 goto get_size;
11703 case DT_INIT_ARRAYSZ:
11704 name = ".init_array";
11705 goto get_size;
11706 case DT_FINI_ARRAYSZ:
11707 name = ".fini_array";
11708 get_size:
11709 o = bfd_get_section_by_name (abfd, name);
11710 if (o == NULL)
11711 {
11712 (*_bfd_error_handler)
11713 (_("%B: could not find output section %s"), abfd, name);
11714 goto error_return;
11715 }
11716 if (o->size == 0)
11717 (*_bfd_error_handler)
11718 (_("warning: %s section has zero size"), name);
11719 dyn.d_un.d_val = o->size;
11720 break;
11721
11722 case DT_PREINIT_ARRAY:
11723 name = ".preinit_array";
11724 goto get_vma;
11725 case DT_INIT_ARRAY:
11726 name = ".init_array";
11727 goto get_vma;
11728 case DT_FINI_ARRAY:
11729 name = ".fini_array";
11730 goto get_vma;
11731
11732 case DT_HASH:
11733 name = ".hash";
11734 goto get_vma;
11735 case DT_GNU_HASH:
11736 name = ".gnu.hash";
11737 goto get_vma;
11738 case DT_STRTAB:
11739 name = ".dynstr";
11740 goto get_vma;
11741 case DT_SYMTAB:
11742 name = ".dynsym";
11743 goto get_vma;
11744 case DT_VERDEF:
11745 name = ".gnu.version_d";
11746 goto get_vma;
11747 case DT_VERNEED:
11748 name = ".gnu.version_r";
11749 goto get_vma;
11750 case DT_VERSYM:
11751 name = ".gnu.version";
11752 get_vma:
11753 o = bfd_get_section_by_name (abfd, name);
11754 if (o == NULL)
11755 {
11756 (*_bfd_error_handler)
11757 (_("%B: could not find output section %s"), abfd, name);
11758 goto error_return;
11759 }
11760 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11761 {
11762 (*_bfd_error_handler)
11763 (_("warning: section '%s' is being made into a note"), name);
11764 bfd_set_error (bfd_error_nonrepresentable_section);
11765 goto error_return;
11766 }
11767 dyn.d_un.d_ptr = o->vma;
11768 break;
11769
11770 case DT_REL:
11771 case DT_RELA:
11772 case DT_RELSZ:
11773 case DT_RELASZ:
11774 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11775 type = SHT_REL;
11776 else
11777 type = SHT_RELA;
11778 dyn.d_un.d_val = 0;
11779 dyn.d_un.d_ptr = 0;
11780 for (i = 1; i < elf_numsections (abfd); i++)
11781 {
11782 Elf_Internal_Shdr *hdr;
11783
11784 hdr = elf_elfsections (abfd)[i];
11785 if (hdr->sh_type == type
11786 && (hdr->sh_flags & SHF_ALLOC) != 0)
11787 {
11788 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11789 dyn.d_un.d_val += hdr->sh_size;
11790 else
11791 {
11792 if (dyn.d_un.d_ptr == 0
11793 || hdr->sh_addr < dyn.d_un.d_ptr)
11794 dyn.d_un.d_ptr = hdr->sh_addr;
11795 }
11796 }
11797 }
11798 break;
11799 }
11800 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11801 }
11802 }
11803
11804 /* If we have created any dynamic sections, then output them. */
11805 if (dynobj != NULL)
11806 {
11807 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11808 goto error_return;
11809
11810 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11811 if (((info->warn_shared_textrel && bfd_link_pic (info))
11812 || info->error_textrel)
11813 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11814 {
11815 bfd_byte *dyncon, *dynconend;
11816
11817 dyncon = o->contents;
11818 dynconend = o->contents + o->size;
11819 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11820 {
11821 Elf_Internal_Dyn dyn;
11822
11823 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11824
11825 if (dyn.d_tag == DT_TEXTREL)
11826 {
11827 if (info->error_textrel)
11828 info->callbacks->einfo
11829 (_("%P%X: read-only segment has dynamic relocations.\n"));
11830 else
11831 info->callbacks->einfo
11832 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11833 break;
11834 }
11835 }
11836 }
11837
11838 for (o = dynobj->sections; o != NULL; o = o->next)
11839 {
11840 if ((o->flags & SEC_HAS_CONTENTS) == 0
11841 || o->size == 0
11842 || o->output_section == bfd_abs_section_ptr)
11843 continue;
11844 if ((o->flags & SEC_LINKER_CREATED) == 0)
11845 {
11846 /* At this point, we are only interested in sections
11847 created by _bfd_elf_link_create_dynamic_sections. */
11848 continue;
11849 }
11850 if (elf_hash_table (info)->stab_info.stabstr == o)
11851 continue;
11852 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11853 continue;
11854 if (strcmp (o->name, ".dynstr") != 0)
11855 {
11856 /* FIXME: octets_per_byte. */
11857 if (! bfd_set_section_contents (abfd, o->output_section,
11858 o->contents,
11859 (file_ptr) o->output_offset,
11860 o->size))
11861 goto error_return;
11862 }
11863 else
11864 {
11865 /* The contents of the .dynstr section are actually in a
11866 stringtab. */
11867 file_ptr off;
11868
11869 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11870 if (bfd_seek (abfd, off, SEEK_SET) != 0
11871 || ! _bfd_elf_strtab_emit (abfd,
11872 elf_hash_table (info)->dynstr))
11873 goto error_return;
11874 }
11875 }
11876 }
11877
11878 if (bfd_link_relocatable (info))
11879 {
11880 bfd_boolean failed = FALSE;
11881
11882 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11883 if (failed)
11884 goto error_return;
11885 }
11886
11887 /* If we have optimized stabs strings, output them. */
11888 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11889 {
11890 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11891 goto error_return;
11892 }
11893
11894 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11895 goto error_return;
11896
11897 elf_final_link_free (abfd, &flinfo);
11898
11899 elf_linker (abfd) = TRUE;
11900
11901 if (attr_section)
11902 {
11903 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11904 if (contents == NULL)
11905 return FALSE; /* Bail out and fail. */
11906 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11907 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11908 free (contents);
11909 }
11910
11911 return TRUE;
11912
11913 error_return:
11914 elf_final_link_free (abfd, &flinfo);
11915 return FALSE;
11916 }
11917 \f
11918 /* Initialize COOKIE for input bfd ABFD. */
11919
11920 static bfd_boolean
11921 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11922 struct bfd_link_info *info, bfd *abfd)
11923 {
11924 Elf_Internal_Shdr *symtab_hdr;
11925 const struct elf_backend_data *bed;
11926
11927 bed = get_elf_backend_data (abfd);
11928 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11929
11930 cookie->abfd = abfd;
11931 cookie->sym_hashes = elf_sym_hashes (abfd);
11932 cookie->bad_symtab = elf_bad_symtab (abfd);
11933 if (cookie->bad_symtab)
11934 {
11935 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11936 cookie->extsymoff = 0;
11937 }
11938 else
11939 {
11940 cookie->locsymcount = symtab_hdr->sh_info;
11941 cookie->extsymoff = symtab_hdr->sh_info;
11942 }
11943
11944 if (bed->s->arch_size == 32)
11945 cookie->r_sym_shift = 8;
11946 else
11947 cookie->r_sym_shift = 32;
11948
11949 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11950 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11951 {
11952 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11953 cookie->locsymcount, 0,
11954 NULL, NULL, NULL);
11955 if (cookie->locsyms == NULL)
11956 {
11957 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11958 return FALSE;
11959 }
11960 if (info->keep_memory)
11961 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11962 }
11963 return TRUE;
11964 }
11965
11966 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11967
11968 static void
11969 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11970 {
11971 Elf_Internal_Shdr *symtab_hdr;
11972
11973 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11974 if (cookie->locsyms != NULL
11975 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11976 free (cookie->locsyms);
11977 }
11978
11979 /* Initialize the relocation information in COOKIE for input section SEC
11980 of input bfd ABFD. */
11981
11982 static bfd_boolean
11983 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11984 struct bfd_link_info *info, bfd *abfd,
11985 asection *sec)
11986 {
11987 const struct elf_backend_data *bed;
11988
11989 if (sec->reloc_count == 0)
11990 {
11991 cookie->rels = NULL;
11992 cookie->relend = NULL;
11993 }
11994 else
11995 {
11996 bed = get_elf_backend_data (abfd);
11997
11998 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11999 info->keep_memory);
12000 if (cookie->rels == NULL)
12001 return FALSE;
12002 cookie->rel = cookie->rels;
12003 cookie->relend = (cookie->rels
12004 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12005 }
12006 cookie->rel = cookie->rels;
12007 return TRUE;
12008 }
12009
12010 /* Free the memory allocated by init_reloc_cookie_rels,
12011 if appropriate. */
12012
12013 static void
12014 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12015 asection *sec)
12016 {
12017 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12018 free (cookie->rels);
12019 }
12020
12021 /* Initialize the whole of COOKIE for input section SEC. */
12022
12023 static bfd_boolean
12024 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12025 struct bfd_link_info *info,
12026 asection *sec)
12027 {
12028 if (!init_reloc_cookie (cookie, info, sec->owner))
12029 goto error1;
12030 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12031 goto error2;
12032 return TRUE;
12033
12034 error2:
12035 fini_reloc_cookie (cookie, sec->owner);
12036 error1:
12037 return FALSE;
12038 }
12039
12040 /* Free the memory allocated by init_reloc_cookie_for_section,
12041 if appropriate. */
12042
12043 static void
12044 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12045 asection *sec)
12046 {
12047 fini_reloc_cookie_rels (cookie, sec);
12048 fini_reloc_cookie (cookie, sec->owner);
12049 }
12050 \f
12051 /* Garbage collect unused sections. */
12052
12053 /* Default gc_mark_hook. */
12054
12055 asection *
12056 _bfd_elf_gc_mark_hook (asection *sec,
12057 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12058 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12059 struct elf_link_hash_entry *h,
12060 Elf_Internal_Sym *sym)
12061 {
12062 const char *sec_name;
12063
12064 if (h != NULL)
12065 {
12066 switch (h->root.type)
12067 {
12068 case bfd_link_hash_defined:
12069 case bfd_link_hash_defweak:
12070 return h->root.u.def.section;
12071
12072 case bfd_link_hash_common:
12073 return h->root.u.c.p->section;
12074
12075 case bfd_link_hash_undefined:
12076 case bfd_link_hash_undefweak:
12077 /* To work around a glibc bug, keep all XXX input sections
12078 when there is an as yet undefined reference to __start_XXX
12079 or __stop_XXX symbols. The linker will later define such
12080 symbols for orphan input sections that have a name
12081 representable as a C identifier. */
12082 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12083 sec_name = h->root.root.string + 8;
12084 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12085 sec_name = h->root.root.string + 7;
12086 else
12087 sec_name = NULL;
12088
12089 if (sec_name && *sec_name != '\0')
12090 {
12091 bfd *i;
12092
12093 for (i = info->input_bfds; i; i = i->link.next)
12094 {
12095 sec = bfd_get_section_by_name (i, sec_name);
12096 if (sec)
12097 sec->flags |= SEC_KEEP;
12098 }
12099 }
12100 break;
12101
12102 default:
12103 break;
12104 }
12105 }
12106 else
12107 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12108
12109 return NULL;
12110 }
12111
12112 /* COOKIE->rel describes a relocation against section SEC, which is
12113 a section we've decided to keep. Return the section that contains
12114 the relocation symbol, or NULL if no section contains it. */
12115
12116 asection *
12117 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12118 elf_gc_mark_hook_fn gc_mark_hook,
12119 struct elf_reloc_cookie *cookie)
12120 {
12121 unsigned long r_symndx;
12122 struct elf_link_hash_entry *h;
12123
12124 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12125 if (r_symndx == STN_UNDEF)
12126 return NULL;
12127
12128 if (r_symndx >= cookie->locsymcount
12129 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12130 {
12131 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12132 if (h == NULL)
12133 {
12134 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12135 sec->owner);
12136 return NULL;
12137 }
12138 while (h->root.type == bfd_link_hash_indirect
12139 || h->root.type == bfd_link_hash_warning)
12140 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12141 h->mark = 1;
12142 /* If this symbol is weak and there is a non-weak definition, we
12143 keep the non-weak definition because many backends put
12144 dynamic reloc info on the non-weak definition for code
12145 handling copy relocs. */
12146 if (h->u.weakdef != NULL)
12147 h->u.weakdef->mark = 1;
12148 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12149 }
12150
12151 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12152 &cookie->locsyms[r_symndx]);
12153 }
12154
12155 /* COOKIE->rel describes a relocation against section SEC, which is
12156 a section we've decided to keep. Mark the section that contains
12157 the relocation symbol. */
12158
12159 bfd_boolean
12160 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12161 asection *sec,
12162 elf_gc_mark_hook_fn gc_mark_hook,
12163 struct elf_reloc_cookie *cookie)
12164 {
12165 asection *rsec;
12166
12167 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
12168 if (rsec && !rsec->gc_mark)
12169 {
12170 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12171 || (rsec->owner->flags & DYNAMIC) != 0)
12172 rsec->gc_mark = 1;
12173 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12174 return FALSE;
12175 }
12176 return TRUE;
12177 }
12178
12179 /* The mark phase of garbage collection. For a given section, mark
12180 it and any sections in this section's group, and all the sections
12181 which define symbols to which it refers. */
12182
12183 bfd_boolean
12184 _bfd_elf_gc_mark (struct bfd_link_info *info,
12185 asection *sec,
12186 elf_gc_mark_hook_fn gc_mark_hook)
12187 {
12188 bfd_boolean ret;
12189 asection *group_sec, *eh_frame;
12190
12191 sec->gc_mark = 1;
12192
12193 /* Mark all the sections in the group. */
12194 group_sec = elf_section_data (sec)->next_in_group;
12195 if (group_sec && !group_sec->gc_mark)
12196 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12197 return FALSE;
12198
12199 /* Look through the section relocs. */
12200 ret = TRUE;
12201 eh_frame = elf_eh_frame_section (sec->owner);
12202 if ((sec->flags & SEC_RELOC) != 0
12203 && sec->reloc_count > 0
12204 && sec != eh_frame)
12205 {
12206 struct elf_reloc_cookie cookie;
12207
12208 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12209 ret = FALSE;
12210 else
12211 {
12212 for (; cookie.rel < cookie.relend; cookie.rel++)
12213 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12214 {
12215 ret = FALSE;
12216 break;
12217 }
12218 fini_reloc_cookie_for_section (&cookie, sec);
12219 }
12220 }
12221
12222 if (ret && eh_frame && elf_fde_list (sec))
12223 {
12224 struct elf_reloc_cookie cookie;
12225
12226 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12227 ret = FALSE;
12228 else
12229 {
12230 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12231 gc_mark_hook, &cookie))
12232 ret = FALSE;
12233 fini_reloc_cookie_for_section (&cookie, eh_frame);
12234 }
12235 }
12236
12237 eh_frame = elf_section_eh_frame_entry (sec);
12238 if (ret && eh_frame && !eh_frame->gc_mark)
12239 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12240 ret = FALSE;
12241
12242 return ret;
12243 }
12244
12245 /* Scan and mark sections in a special or debug section group. */
12246
12247 static void
12248 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12249 {
12250 /* Point to first section of section group. */
12251 asection *ssec;
12252 /* Used to iterate the section group. */
12253 asection *msec;
12254
12255 bfd_boolean is_special_grp = TRUE;
12256 bfd_boolean is_debug_grp = TRUE;
12257
12258 /* First scan to see if group contains any section other than debug
12259 and special section. */
12260 ssec = msec = elf_next_in_group (grp);
12261 do
12262 {
12263 if ((msec->flags & SEC_DEBUGGING) == 0)
12264 is_debug_grp = FALSE;
12265
12266 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12267 is_special_grp = FALSE;
12268
12269 msec = elf_next_in_group (msec);
12270 }
12271 while (msec != ssec);
12272
12273 /* If this is a pure debug section group or pure special section group,
12274 keep all sections in this group. */
12275 if (is_debug_grp || is_special_grp)
12276 {
12277 do
12278 {
12279 msec->gc_mark = 1;
12280 msec = elf_next_in_group (msec);
12281 }
12282 while (msec != ssec);
12283 }
12284 }
12285
12286 /* Keep debug and special sections. */
12287
12288 bfd_boolean
12289 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12290 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12291 {
12292 bfd *ibfd;
12293
12294 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12295 {
12296 asection *isec;
12297 bfd_boolean some_kept;
12298 bfd_boolean debug_frag_seen;
12299
12300 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12301 continue;
12302
12303 /* Ensure all linker created sections are kept,
12304 see if any other section is already marked,
12305 and note if we have any fragmented debug sections. */
12306 debug_frag_seen = some_kept = FALSE;
12307 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12308 {
12309 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12310 isec->gc_mark = 1;
12311 else if (isec->gc_mark)
12312 some_kept = TRUE;
12313
12314 if (debug_frag_seen == FALSE
12315 && (isec->flags & SEC_DEBUGGING)
12316 && CONST_STRNEQ (isec->name, ".debug_line."))
12317 debug_frag_seen = TRUE;
12318 }
12319
12320 /* If no section in this file will be kept, then we can
12321 toss out the debug and special sections. */
12322 if (!some_kept)
12323 continue;
12324
12325 /* Keep debug and special sections like .comment when they are
12326 not part of a group. Also keep section groups that contain
12327 just debug sections or special sections. */
12328 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12329 {
12330 if ((isec->flags & SEC_GROUP) != 0)
12331 _bfd_elf_gc_mark_debug_special_section_group (isec);
12332 else if (((isec->flags & SEC_DEBUGGING) != 0
12333 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12334 && elf_next_in_group (isec) == NULL)
12335 isec->gc_mark = 1;
12336 }
12337
12338 if (! debug_frag_seen)
12339 continue;
12340
12341 /* Look for CODE sections which are going to be discarded,
12342 and find and discard any fragmented debug sections which
12343 are associated with that code section. */
12344 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12345 if ((isec->flags & SEC_CODE) != 0
12346 && isec->gc_mark == 0)
12347 {
12348 unsigned int ilen;
12349 asection *dsec;
12350
12351 ilen = strlen (isec->name);
12352
12353 /* Association is determined by the name of the debug section
12354 containing the name of the code section as a suffix. For
12355 example .debug_line.text.foo is a debug section associated
12356 with .text.foo. */
12357 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12358 {
12359 unsigned int dlen;
12360
12361 if (dsec->gc_mark == 0
12362 || (dsec->flags & SEC_DEBUGGING) == 0)
12363 continue;
12364
12365 dlen = strlen (dsec->name);
12366
12367 if (dlen > ilen
12368 && strncmp (dsec->name + (dlen - ilen),
12369 isec->name, ilen) == 0)
12370 {
12371 dsec->gc_mark = 0;
12372 }
12373 }
12374 }
12375 }
12376 return TRUE;
12377 }
12378
12379 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12380
12381 struct elf_gc_sweep_symbol_info
12382 {
12383 struct bfd_link_info *info;
12384 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12385 bfd_boolean);
12386 };
12387
12388 static bfd_boolean
12389 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12390 {
12391 if (!h->mark
12392 && (((h->root.type == bfd_link_hash_defined
12393 || h->root.type == bfd_link_hash_defweak)
12394 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12395 && h->root.u.def.section->gc_mark))
12396 || h->root.type == bfd_link_hash_undefined
12397 || h->root.type == bfd_link_hash_undefweak))
12398 {
12399 struct elf_gc_sweep_symbol_info *inf;
12400
12401 inf = (struct elf_gc_sweep_symbol_info *) data;
12402 (*inf->hide_symbol) (inf->info, h, TRUE);
12403 h->def_regular = 0;
12404 h->ref_regular = 0;
12405 h->ref_regular_nonweak = 0;
12406 }
12407
12408 return TRUE;
12409 }
12410
12411 /* The sweep phase of garbage collection. Remove all garbage sections. */
12412
12413 typedef bfd_boolean (*gc_sweep_hook_fn)
12414 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12415
12416 static bfd_boolean
12417 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12418 {
12419 bfd *sub;
12420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12421 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12422 unsigned long section_sym_count;
12423 struct elf_gc_sweep_symbol_info sweep_info;
12424
12425 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12426 {
12427 asection *o;
12428
12429 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12430 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12431 continue;
12432
12433 for (o = sub->sections; o != NULL; o = o->next)
12434 {
12435 /* When any section in a section group is kept, we keep all
12436 sections in the section group. If the first member of
12437 the section group is excluded, we will also exclude the
12438 group section. */
12439 if (o->flags & SEC_GROUP)
12440 {
12441 asection *first = elf_next_in_group (o);
12442 o->gc_mark = first->gc_mark;
12443 }
12444
12445 if (o->gc_mark)
12446 continue;
12447
12448 /* Skip sweeping sections already excluded. */
12449 if (o->flags & SEC_EXCLUDE)
12450 continue;
12451
12452 /* Since this is early in the link process, it is simple
12453 to remove a section from the output. */
12454 o->flags |= SEC_EXCLUDE;
12455
12456 if (info->print_gc_sections && o->size != 0)
12457 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12458
12459 /* But we also have to update some of the relocation
12460 info we collected before. */
12461 if (gc_sweep_hook
12462 && (o->flags & SEC_RELOC) != 0
12463 && o->reloc_count != 0
12464 && !((info->strip == strip_all || info->strip == strip_debugger)
12465 && (o->flags & SEC_DEBUGGING) != 0)
12466 && !bfd_is_abs_section (o->output_section))
12467 {
12468 Elf_Internal_Rela *internal_relocs;
12469 bfd_boolean r;
12470
12471 internal_relocs
12472 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12473 info->keep_memory);
12474 if (internal_relocs == NULL)
12475 return FALSE;
12476
12477 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12478
12479 if (elf_section_data (o)->relocs != internal_relocs)
12480 free (internal_relocs);
12481
12482 if (!r)
12483 return FALSE;
12484 }
12485 }
12486 }
12487
12488 /* Remove the symbols that were in the swept sections from the dynamic
12489 symbol table. GCFIXME: Anyone know how to get them out of the
12490 static symbol table as well? */
12491 sweep_info.info = info;
12492 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12493 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12494 &sweep_info);
12495
12496 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12497 return TRUE;
12498 }
12499
12500 /* Propagate collected vtable information. This is called through
12501 elf_link_hash_traverse. */
12502
12503 static bfd_boolean
12504 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12505 {
12506 /* Those that are not vtables. */
12507 if (h->vtable == NULL || h->vtable->parent == NULL)
12508 return TRUE;
12509
12510 /* Those vtables that do not have parents, we cannot merge. */
12511 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12512 return TRUE;
12513
12514 /* If we've already been done, exit. */
12515 if (h->vtable->used && h->vtable->used[-1])
12516 return TRUE;
12517
12518 /* Make sure the parent's table is up to date. */
12519 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12520
12521 if (h->vtable->used == NULL)
12522 {
12523 /* None of this table's entries were referenced. Re-use the
12524 parent's table. */
12525 h->vtable->used = h->vtable->parent->vtable->used;
12526 h->vtable->size = h->vtable->parent->vtable->size;
12527 }
12528 else
12529 {
12530 size_t n;
12531 bfd_boolean *cu, *pu;
12532
12533 /* Or the parent's entries into ours. */
12534 cu = h->vtable->used;
12535 cu[-1] = TRUE;
12536 pu = h->vtable->parent->vtable->used;
12537 if (pu != NULL)
12538 {
12539 const struct elf_backend_data *bed;
12540 unsigned int log_file_align;
12541
12542 bed = get_elf_backend_data (h->root.u.def.section->owner);
12543 log_file_align = bed->s->log_file_align;
12544 n = h->vtable->parent->vtable->size >> log_file_align;
12545 while (n--)
12546 {
12547 if (*pu)
12548 *cu = TRUE;
12549 pu++;
12550 cu++;
12551 }
12552 }
12553 }
12554
12555 return TRUE;
12556 }
12557
12558 static bfd_boolean
12559 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12560 {
12561 asection *sec;
12562 bfd_vma hstart, hend;
12563 Elf_Internal_Rela *relstart, *relend, *rel;
12564 const struct elf_backend_data *bed;
12565 unsigned int log_file_align;
12566
12567 /* Take care of both those symbols that do not describe vtables as
12568 well as those that are not loaded. */
12569 if (h->vtable == NULL || h->vtable->parent == NULL)
12570 return TRUE;
12571
12572 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12573 || h->root.type == bfd_link_hash_defweak);
12574
12575 sec = h->root.u.def.section;
12576 hstart = h->root.u.def.value;
12577 hend = hstart + h->size;
12578
12579 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12580 if (!relstart)
12581 return *(bfd_boolean *) okp = FALSE;
12582 bed = get_elf_backend_data (sec->owner);
12583 log_file_align = bed->s->log_file_align;
12584
12585 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12586
12587 for (rel = relstart; rel < relend; ++rel)
12588 if (rel->r_offset >= hstart && rel->r_offset < hend)
12589 {
12590 /* If the entry is in use, do nothing. */
12591 if (h->vtable->used
12592 && (rel->r_offset - hstart) < h->vtable->size)
12593 {
12594 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12595 if (h->vtable->used[entry])
12596 continue;
12597 }
12598 /* Otherwise, kill it. */
12599 rel->r_offset = rel->r_info = rel->r_addend = 0;
12600 }
12601
12602 return TRUE;
12603 }
12604
12605 /* Mark sections containing dynamically referenced symbols. When
12606 building shared libraries, we must assume that any visible symbol is
12607 referenced. */
12608
12609 bfd_boolean
12610 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12611 {
12612 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12613 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12614
12615 if ((h->root.type == bfd_link_hash_defined
12616 || h->root.type == bfd_link_hash_defweak)
12617 && (h->ref_dynamic
12618 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12619 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12620 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12621 && (!bfd_link_executable (info)
12622 || info->export_dynamic
12623 || (h->dynamic
12624 && d != NULL
12625 && (*d->match) (&d->head, NULL, h->root.root.string)))
12626 && (h->versioned >= versioned
12627 || !bfd_hide_sym_by_version (info->version_info,
12628 h->root.root.string)))))
12629 h->root.u.def.section->flags |= SEC_KEEP;
12630
12631 return TRUE;
12632 }
12633
12634 /* Keep all sections containing symbols undefined on the command-line,
12635 and the section containing the entry symbol. */
12636
12637 void
12638 _bfd_elf_gc_keep (struct bfd_link_info *info)
12639 {
12640 struct bfd_sym_chain *sym;
12641
12642 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12643 {
12644 struct elf_link_hash_entry *h;
12645
12646 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12647 FALSE, FALSE, FALSE);
12648
12649 if (h != NULL
12650 && (h->root.type == bfd_link_hash_defined
12651 || h->root.type == bfd_link_hash_defweak)
12652 && !bfd_is_abs_section (h->root.u.def.section))
12653 h->root.u.def.section->flags |= SEC_KEEP;
12654 }
12655 }
12656
12657 bfd_boolean
12658 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12659 struct bfd_link_info *info)
12660 {
12661 bfd *ibfd = info->input_bfds;
12662
12663 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12664 {
12665 asection *sec;
12666 struct elf_reloc_cookie cookie;
12667
12668 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12669 continue;
12670
12671 if (!init_reloc_cookie (&cookie, info, ibfd))
12672 return FALSE;
12673
12674 for (sec = ibfd->sections; sec; sec = sec->next)
12675 {
12676 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12677 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12678 {
12679 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12680 fini_reloc_cookie_rels (&cookie, sec);
12681 }
12682 }
12683 }
12684 return TRUE;
12685 }
12686
12687 /* Do mark and sweep of unused sections. */
12688
12689 bfd_boolean
12690 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12691 {
12692 bfd_boolean ok = TRUE;
12693 bfd *sub;
12694 elf_gc_mark_hook_fn gc_mark_hook;
12695 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12696 struct elf_link_hash_table *htab;
12697
12698 if (!bed->can_gc_sections
12699 || !is_elf_hash_table (info->hash))
12700 {
12701 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12702 return TRUE;
12703 }
12704
12705 bed->gc_keep (info);
12706 htab = elf_hash_table (info);
12707
12708 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12709 at the .eh_frame section if we can mark the FDEs individually. */
12710 for (sub = info->input_bfds;
12711 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12712 sub = sub->link.next)
12713 {
12714 asection *sec;
12715 struct elf_reloc_cookie cookie;
12716
12717 sec = bfd_get_section_by_name (sub, ".eh_frame");
12718 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12719 {
12720 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12721 if (elf_section_data (sec)->sec_info
12722 && (sec->flags & SEC_LINKER_CREATED) == 0)
12723 elf_eh_frame_section (sub) = sec;
12724 fini_reloc_cookie_for_section (&cookie, sec);
12725 sec = bfd_get_next_section_by_name (sec);
12726 }
12727 }
12728
12729 /* Apply transitive closure to the vtable entry usage info. */
12730 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12731 if (!ok)
12732 return FALSE;
12733
12734 /* Kill the vtable relocations that were not used. */
12735 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12736 if (!ok)
12737 return FALSE;
12738
12739 /* Mark dynamically referenced symbols. */
12740 if (htab->dynamic_sections_created)
12741 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12742
12743 /* Grovel through relocs to find out who stays ... */
12744 gc_mark_hook = bed->gc_mark_hook;
12745 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12746 {
12747 asection *o;
12748
12749 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12750 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12751 continue;
12752
12753 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12754 Also treat note sections as a root, if the section is not part
12755 of a group. */
12756 for (o = sub->sections; o != NULL; o = o->next)
12757 if (!o->gc_mark
12758 && (o->flags & SEC_EXCLUDE) == 0
12759 && ((o->flags & SEC_KEEP) != 0
12760 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12761 && elf_next_in_group (o) == NULL )))
12762 {
12763 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12764 return FALSE;
12765 }
12766 }
12767
12768 /* Allow the backend to mark additional target specific sections. */
12769 bed->gc_mark_extra_sections (info, gc_mark_hook);
12770
12771 /* ... and mark SEC_EXCLUDE for those that go. */
12772 return elf_gc_sweep (abfd, info);
12773 }
12774 \f
12775 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12776
12777 bfd_boolean
12778 bfd_elf_gc_record_vtinherit (bfd *abfd,
12779 asection *sec,
12780 struct elf_link_hash_entry *h,
12781 bfd_vma offset)
12782 {
12783 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12784 struct elf_link_hash_entry **search, *child;
12785 bfd_size_type extsymcount;
12786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12787
12788 /* The sh_info field of the symtab header tells us where the
12789 external symbols start. We don't care about the local symbols at
12790 this point. */
12791 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12792 if (!elf_bad_symtab (abfd))
12793 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12794
12795 sym_hashes = elf_sym_hashes (abfd);
12796 sym_hashes_end = sym_hashes + extsymcount;
12797
12798 /* Hunt down the child symbol, which is in this section at the same
12799 offset as the relocation. */
12800 for (search = sym_hashes; search != sym_hashes_end; ++search)
12801 {
12802 if ((child = *search) != NULL
12803 && (child->root.type == bfd_link_hash_defined
12804 || child->root.type == bfd_link_hash_defweak)
12805 && child->root.u.def.section == sec
12806 && child->root.u.def.value == offset)
12807 goto win;
12808 }
12809
12810 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12811 abfd, sec, (unsigned long) offset);
12812 bfd_set_error (bfd_error_invalid_operation);
12813 return FALSE;
12814
12815 win:
12816 if (!child->vtable)
12817 {
12818 child->vtable = ((struct elf_link_virtual_table_entry *)
12819 bfd_zalloc (abfd, sizeof (*child->vtable)));
12820 if (!child->vtable)
12821 return FALSE;
12822 }
12823 if (!h)
12824 {
12825 /* This *should* only be the absolute section. It could potentially
12826 be that someone has defined a non-global vtable though, which
12827 would be bad. It isn't worth paging in the local symbols to be
12828 sure though; that case should simply be handled by the assembler. */
12829
12830 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12831 }
12832 else
12833 child->vtable->parent = h;
12834
12835 return TRUE;
12836 }
12837
12838 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12839
12840 bfd_boolean
12841 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12842 asection *sec ATTRIBUTE_UNUSED,
12843 struct elf_link_hash_entry *h,
12844 bfd_vma addend)
12845 {
12846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12847 unsigned int log_file_align = bed->s->log_file_align;
12848
12849 if (!h->vtable)
12850 {
12851 h->vtable = ((struct elf_link_virtual_table_entry *)
12852 bfd_zalloc (abfd, sizeof (*h->vtable)));
12853 if (!h->vtable)
12854 return FALSE;
12855 }
12856
12857 if (addend >= h->vtable->size)
12858 {
12859 size_t size, bytes, file_align;
12860 bfd_boolean *ptr = h->vtable->used;
12861
12862 /* While the symbol is undefined, we have to be prepared to handle
12863 a zero size. */
12864 file_align = 1 << log_file_align;
12865 if (h->root.type == bfd_link_hash_undefined)
12866 size = addend + file_align;
12867 else
12868 {
12869 size = h->size;
12870 if (addend >= size)
12871 {
12872 /* Oops! We've got a reference past the defined end of
12873 the table. This is probably a bug -- shall we warn? */
12874 size = addend + file_align;
12875 }
12876 }
12877 size = (size + file_align - 1) & -file_align;
12878
12879 /* Allocate one extra entry for use as a "done" flag for the
12880 consolidation pass. */
12881 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12882
12883 if (ptr)
12884 {
12885 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12886
12887 if (ptr != NULL)
12888 {
12889 size_t oldbytes;
12890
12891 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12892 * sizeof (bfd_boolean));
12893 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12894 }
12895 }
12896 else
12897 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12898
12899 if (ptr == NULL)
12900 return FALSE;
12901
12902 /* And arrange for that done flag to be at index -1. */
12903 h->vtable->used = ptr + 1;
12904 h->vtable->size = size;
12905 }
12906
12907 h->vtable->used[addend >> log_file_align] = TRUE;
12908
12909 return TRUE;
12910 }
12911
12912 /* Map an ELF section header flag to its corresponding string. */
12913 typedef struct
12914 {
12915 char *flag_name;
12916 flagword flag_value;
12917 } elf_flags_to_name_table;
12918
12919 static elf_flags_to_name_table elf_flags_to_names [] =
12920 {
12921 { "SHF_WRITE", SHF_WRITE },
12922 { "SHF_ALLOC", SHF_ALLOC },
12923 { "SHF_EXECINSTR", SHF_EXECINSTR },
12924 { "SHF_MERGE", SHF_MERGE },
12925 { "SHF_STRINGS", SHF_STRINGS },
12926 { "SHF_INFO_LINK", SHF_INFO_LINK},
12927 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12928 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12929 { "SHF_GROUP", SHF_GROUP },
12930 { "SHF_TLS", SHF_TLS },
12931 { "SHF_MASKOS", SHF_MASKOS },
12932 { "SHF_EXCLUDE", SHF_EXCLUDE },
12933 };
12934
12935 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12936 bfd_boolean
12937 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12938 struct flag_info *flaginfo,
12939 asection *section)
12940 {
12941 const bfd_vma sh_flags = elf_section_flags (section);
12942
12943 if (!flaginfo->flags_initialized)
12944 {
12945 bfd *obfd = info->output_bfd;
12946 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12947 struct flag_info_list *tf = flaginfo->flag_list;
12948 int with_hex = 0;
12949 int without_hex = 0;
12950
12951 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12952 {
12953 unsigned i;
12954 flagword (*lookup) (char *);
12955
12956 lookup = bed->elf_backend_lookup_section_flags_hook;
12957 if (lookup != NULL)
12958 {
12959 flagword hexval = (*lookup) ((char *) tf->name);
12960
12961 if (hexval != 0)
12962 {
12963 if (tf->with == with_flags)
12964 with_hex |= hexval;
12965 else if (tf->with == without_flags)
12966 without_hex |= hexval;
12967 tf->valid = TRUE;
12968 continue;
12969 }
12970 }
12971 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12972 {
12973 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12974 {
12975 if (tf->with == with_flags)
12976 with_hex |= elf_flags_to_names[i].flag_value;
12977 else if (tf->with == without_flags)
12978 without_hex |= elf_flags_to_names[i].flag_value;
12979 tf->valid = TRUE;
12980 break;
12981 }
12982 }
12983 if (!tf->valid)
12984 {
12985 info->callbacks->einfo
12986 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12987 return FALSE;
12988 }
12989 }
12990 flaginfo->flags_initialized = TRUE;
12991 flaginfo->only_with_flags |= with_hex;
12992 flaginfo->not_with_flags |= without_hex;
12993 }
12994
12995 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12996 return FALSE;
12997
12998 if ((flaginfo->not_with_flags & sh_flags) != 0)
12999 return FALSE;
13000
13001 return TRUE;
13002 }
13003
13004 struct alloc_got_off_arg {
13005 bfd_vma gotoff;
13006 struct bfd_link_info *info;
13007 };
13008
13009 /* We need a special top-level link routine to convert got reference counts
13010 to real got offsets. */
13011
13012 static bfd_boolean
13013 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13014 {
13015 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13016 bfd *obfd = gofarg->info->output_bfd;
13017 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13018
13019 if (h->got.refcount > 0)
13020 {
13021 h->got.offset = gofarg->gotoff;
13022 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13023 }
13024 else
13025 h->got.offset = (bfd_vma) -1;
13026
13027 return TRUE;
13028 }
13029
13030 /* And an accompanying bit to work out final got entry offsets once
13031 we're done. Should be called from final_link. */
13032
13033 bfd_boolean
13034 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13035 struct bfd_link_info *info)
13036 {
13037 bfd *i;
13038 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13039 bfd_vma gotoff;
13040 struct alloc_got_off_arg gofarg;
13041
13042 BFD_ASSERT (abfd == info->output_bfd);
13043
13044 if (! is_elf_hash_table (info->hash))
13045 return FALSE;
13046
13047 /* The GOT offset is relative to the .got section, but the GOT header is
13048 put into the .got.plt section, if the backend uses it. */
13049 if (bed->want_got_plt)
13050 gotoff = 0;
13051 else
13052 gotoff = bed->got_header_size;
13053
13054 /* Do the local .got entries first. */
13055 for (i = info->input_bfds; i; i = i->link.next)
13056 {
13057 bfd_signed_vma *local_got;
13058 bfd_size_type j, locsymcount;
13059 Elf_Internal_Shdr *symtab_hdr;
13060
13061 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13062 continue;
13063
13064 local_got = elf_local_got_refcounts (i);
13065 if (!local_got)
13066 continue;
13067
13068 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13069 if (elf_bad_symtab (i))
13070 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13071 else
13072 locsymcount = symtab_hdr->sh_info;
13073
13074 for (j = 0; j < locsymcount; ++j)
13075 {
13076 if (local_got[j] > 0)
13077 {
13078 local_got[j] = gotoff;
13079 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13080 }
13081 else
13082 local_got[j] = (bfd_vma) -1;
13083 }
13084 }
13085
13086 /* Then the global .got entries. .plt refcounts are handled by
13087 adjust_dynamic_symbol */
13088 gofarg.gotoff = gotoff;
13089 gofarg.info = info;
13090 elf_link_hash_traverse (elf_hash_table (info),
13091 elf_gc_allocate_got_offsets,
13092 &gofarg);
13093 return TRUE;
13094 }
13095
13096 /* Many folk need no more in the way of final link than this, once
13097 got entry reference counting is enabled. */
13098
13099 bfd_boolean
13100 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13101 {
13102 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13103 return FALSE;
13104
13105 /* Invoke the regular ELF backend linker to do all the work. */
13106 return bfd_elf_final_link (abfd, info);
13107 }
13108
13109 bfd_boolean
13110 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13111 {
13112 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13113
13114 if (rcookie->bad_symtab)
13115 rcookie->rel = rcookie->rels;
13116
13117 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13118 {
13119 unsigned long r_symndx;
13120
13121 if (! rcookie->bad_symtab)
13122 if (rcookie->rel->r_offset > offset)
13123 return FALSE;
13124 if (rcookie->rel->r_offset != offset)
13125 continue;
13126
13127 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13128 if (r_symndx == STN_UNDEF)
13129 return TRUE;
13130
13131 if (r_symndx >= rcookie->locsymcount
13132 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13133 {
13134 struct elf_link_hash_entry *h;
13135
13136 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13137
13138 while (h->root.type == bfd_link_hash_indirect
13139 || h->root.type == bfd_link_hash_warning)
13140 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13141
13142 if ((h->root.type == bfd_link_hash_defined
13143 || h->root.type == bfd_link_hash_defweak)
13144 && (h->root.u.def.section->owner != rcookie->abfd
13145 || h->root.u.def.section->kept_section != NULL
13146 || discarded_section (h->root.u.def.section)))
13147 return TRUE;
13148 }
13149 else
13150 {
13151 /* It's not a relocation against a global symbol,
13152 but it could be a relocation against a local
13153 symbol for a discarded section. */
13154 asection *isec;
13155 Elf_Internal_Sym *isym;
13156
13157 /* Need to: get the symbol; get the section. */
13158 isym = &rcookie->locsyms[r_symndx];
13159 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13160 if (isec != NULL
13161 && (isec->kept_section != NULL
13162 || discarded_section (isec)))
13163 return TRUE;
13164 }
13165 return FALSE;
13166 }
13167 return FALSE;
13168 }
13169
13170 /* Discard unneeded references to discarded sections.
13171 Returns -1 on error, 1 if any section's size was changed, 0 if
13172 nothing changed. This function assumes that the relocations are in
13173 sorted order, which is true for all known assemblers. */
13174
13175 int
13176 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13177 {
13178 struct elf_reloc_cookie cookie;
13179 asection *o;
13180 bfd *abfd;
13181 int changed = 0;
13182
13183 if (info->traditional_format
13184 || !is_elf_hash_table (info->hash))
13185 return 0;
13186
13187 o = bfd_get_section_by_name (output_bfd, ".stab");
13188 if (o != NULL)
13189 {
13190 asection *i;
13191
13192 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13193 {
13194 if (i->size == 0
13195 || i->reloc_count == 0
13196 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13197 continue;
13198
13199 abfd = i->owner;
13200 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13201 continue;
13202
13203 if (!init_reloc_cookie_for_section (&cookie, info, i))
13204 return -1;
13205
13206 if (_bfd_discard_section_stabs (abfd, i,
13207 elf_section_data (i)->sec_info,
13208 bfd_elf_reloc_symbol_deleted_p,
13209 &cookie))
13210 changed = 1;
13211
13212 fini_reloc_cookie_for_section (&cookie, i);
13213 }
13214 }
13215
13216 o = NULL;
13217 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13218 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13219 if (o != NULL)
13220 {
13221 asection *i;
13222
13223 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13224 {
13225 if (i->size == 0)
13226 continue;
13227
13228 abfd = i->owner;
13229 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13230 continue;
13231
13232 if (!init_reloc_cookie_for_section (&cookie, info, i))
13233 return -1;
13234
13235 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13236 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13237 bfd_elf_reloc_symbol_deleted_p,
13238 &cookie))
13239 changed = 1;
13240
13241 fini_reloc_cookie_for_section (&cookie, i);
13242 }
13243 }
13244
13245 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13246 {
13247 const struct elf_backend_data *bed;
13248
13249 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13250 continue;
13251
13252 bed = get_elf_backend_data (abfd);
13253
13254 if (bed->elf_backend_discard_info != NULL)
13255 {
13256 if (!init_reloc_cookie (&cookie, info, abfd))
13257 return -1;
13258
13259 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13260 changed = 1;
13261
13262 fini_reloc_cookie (&cookie, abfd);
13263 }
13264 }
13265
13266 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13267 _bfd_elf_end_eh_frame_parsing (info);
13268
13269 if (info->eh_frame_hdr_type
13270 && !bfd_link_relocatable (info)
13271 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13272 changed = 1;
13273
13274 return changed;
13275 }
13276
13277 bfd_boolean
13278 _bfd_elf_section_already_linked (bfd *abfd,
13279 asection *sec,
13280 struct bfd_link_info *info)
13281 {
13282 flagword flags;
13283 const char *name, *key;
13284 struct bfd_section_already_linked *l;
13285 struct bfd_section_already_linked_hash_entry *already_linked_list;
13286
13287 if (sec->output_section == bfd_abs_section_ptr)
13288 return FALSE;
13289
13290 flags = sec->flags;
13291
13292 /* Return if it isn't a linkonce section. A comdat group section
13293 also has SEC_LINK_ONCE set. */
13294 if ((flags & SEC_LINK_ONCE) == 0)
13295 return FALSE;
13296
13297 /* Don't put group member sections on our list of already linked
13298 sections. They are handled as a group via their group section. */
13299 if (elf_sec_group (sec) != NULL)
13300 return FALSE;
13301
13302 /* For a SHT_GROUP section, use the group signature as the key. */
13303 name = sec->name;
13304 if ((flags & SEC_GROUP) != 0
13305 && elf_next_in_group (sec) != NULL
13306 && elf_group_name (elf_next_in_group (sec)) != NULL)
13307 key = elf_group_name (elf_next_in_group (sec));
13308 else
13309 {
13310 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13311 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13312 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13313 key++;
13314 else
13315 /* Must be a user linkonce section that doesn't follow gcc's
13316 naming convention. In this case we won't be matching
13317 single member groups. */
13318 key = name;
13319 }
13320
13321 already_linked_list = bfd_section_already_linked_table_lookup (key);
13322
13323 for (l = already_linked_list->entry; l != NULL; l = l->next)
13324 {
13325 /* We may have 2 different types of sections on the list: group
13326 sections with a signature of <key> (<key> is some string),
13327 and linkonce sections named .gnu.linkonce.<type>.<key>.
13328 Match like sections. LTO plugin sections are an exception.
13329 They are always named .gnu.linkonce.t.<key> and match either
13330 type of section. */
13331 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13332 && ((flags & SEC_GROUP) != 0
13333 || strcmp (name, l->sec->name) == 0))
13334 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13335 {
13336 /* The section has already been linked. See if we should
13337 issue a warning. */
13338 if (!_bfd_handle_already_linked (sec, l, info))
13339 return FALSE;
13340
13341 if (flags & SEC_GROUP)
13342 {
13343 asection *first = elf_next_in_group (sec);
13344 asection *s = first;
13345
13346 while (s != NULL)
13347 {
13348 s->output_section = bfd_abs_section_ptr;
13349 /* Record which group discards it. */
13350 s->kept_section = l->sec;
13351 s = elf_next_in_group (s);
13352 /* These lists are circular. */
13353 if (s == first)
13354 break;
13355 }
13356 }
13357
13358 return TRUE;
13359 }
13360 }
13361
13362 /* A single member comdat group section may be discarded by a
13363 linkonce section and vice versa. */
13364 if ((flags & SEC_GROUP) != 0)
13365 {
13366 asection *first = elf_next_in_group (sec);
13367
13368 if (first != NULL && elf_next_in_group (first) == first)
13369 /* Check this single member group against linkonce sections. */
13370 for (l = already_linked_list->entry; l != NULL; l = l->next)
13371 if ((l->sec->flags & SEC_GROUP) == 0
13372 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13373 {
13374 first->output_section = bfd_abs_section_ptr;
13375 first->kept_section = l->sec;
13376 sec->output_section = bfd_abs_section_ptr;
13377 break;
13378 }
13379 }
13380 else
13381 /* Check this linkonce section against single member groups. */
13382 for (l = already_linked_list->entry; l != NULL; l = l->next)
13383 if (l->sec->flags & SEC_GROUP)
13384 {
13385 asection *first = elf_next_in_group (l->sec);
13386
13387 if (first != NULL
13388 && elf_next_in_group (first) == first
13389 && bfd_elf_match_symbols_in_sections (first, sec, info))
13390 {
13391 sec->output_section = bfd_abs_section_ptr;
13392 sec->kept_section = first;
13393 break;
13394 }
13395 }
13396
13397 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13398 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13399 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13400 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13401 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13402 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13403 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13404 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13405 The reverse order cannot happen as there is never a bfd with only the
13406 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13407 matter as here were are looking only for cross-bfd sections. */
13408
13409 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13410 for (l = already_linked_list->entry; l != NULL; l = l->next)
13411 if ((l->sec->flags & SEC_GROUP) == 0
13412 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13413 {
13414 if (abfd != l->sec->owner)
13415 sec->output_section = bfd_abs_section_ptr;
13416 break;
13417 }
13418
13419 /* This is the first section with this name. Record it. */
13420 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13421 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13422 return sec->output_section == bfd_abs_section_ptr;
13423 }
13424
13425 bfd_boolean
13426 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13427 {
13428 return sym->st_shndx == SHN_COMMON;
13429 }
13430
13431 unsigned int
13432 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13433 {
13434 return SHN_COMMON;
13435 }
13436
13437 asection *
13438 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13439 {
13440 return bfd_com_section_ptr;
13441 }
13442
13443 bfd_vma
13444 _bfd_elf_default_got_elt_size (bfd *abfd,
13445 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13446 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13447 bfd *ibfd ATTRIBUTE_UNUSED,
13448 unsigned long symndx ATTRIBUTE_UNUSED)
13449 {
13450 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13451 return bed->s->arch_size / 8;
13452 }
13453
13454 /* Routines to support the creation of dynamic relocs. */
13455
13456 /* Returns the name of the dynamic reloc section associated with SEC. */
13457
13458 static const char *
13459 get_dynamic_reloc_section_name (bfd * abfd,
13460 asection * sec,
13461 bfd_boolean is_rela)
13462 {
13463 char *name;
13464 const char *old_name = bfd_get_section_name (NULL, sec);
13465 const char *prefix = is_rela ? ".rela" : ".rel";
13466
13467 if (old_name == NULL)
13468 return NULL;
13469
13470 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13471 sprintf (name, "%s%s", prefix, old_name);
13472
13473 return name;
13474 }
13475
13476 /* Returns the dynamic reloc section associated with SEC.
13477 If necessary compute the name of the dynamic reloc section based
13478 on SEC's name (looked up in ABFD's string table) and the setting
13479 of IS_RELA. */
13480
13481 asection *
13482 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13483 asection * sec,
13484 bfd_boolean is_rela)
13485 {
13486 asection * reloc_sec = elf_section_data (sec)->sreloc;
13487
13488 if (reloc_sec == NULL)
13489 {
13490 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13491
13492 if (name != NULL)
13493 {
13494 reloc_sec = bfd_get_linker_section (abfd, name);
13495
13496 if (reloc_sec != NULL)
13497 elf_section_data (sec)->sreloc = reloc_sec;
13498 }
13499 }
13500
13501 return reloc_sec;
13502 }
13503
13504 /* Returns the dynamic reloc section associated with SEC. If the
13505 section does not exist it is created and attached to the DYNOBJ
13506 bfd and stored in the SRELOC field of SEC's elf_section_data
13507 structure.
13508
13509 ALIGNMENT is the alignment for the newly created section and
13510 IS_RELA defines whether the name should be .rela.<SEC's name>
13511 or .rel.<SEC's name>. The section name is looked up in the
13512 string table associated with ABFD. */
13513
13514 asection *
13515 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13516 bfd *dynobj,
13517 unsigned int alignment,
13518 bfd *abfd,
13519 bfd_boolean is_rela)
13520 {
13521 asection * reloc_sec = elf_section_data (sec)->sreloc;
13522
13523 if (reloc_sec == NULL)
13524 {
13525 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13526
13527 if (name == NULL)
13528 return NULL;
13529
13530 reloc_sec = bfd_get_linker_section (dynobj, name);
13531
13532 if (reloc_sec == NULL)
13533 {
13534 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13535 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13536 if ((sec->flags & SEC_ALLOC) != 0)
13537 flags |= SEC_ALLOC | SEC_LOAD;
13538
13539 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13540 if (reloc_sec != NULL)
13541 {
13542 /* _bfd_elf_get_sec_type_attr chooses a section type by
13543 name. Override as it may be wrong, eg. for a user
13544 section named "auto" we'll get ".relauto" which is
13545 seen to be a .rela section. */
13546 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13547 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13548 reloc_sec = NULL;
13549 }
13550 }
13551
13552 elf_section_data (sec)->sreloc = reloc_sec;
13553 }
13554
13555 return reloc_sec;
13556 }
13557
13558 /* Copy the ELF symbol type and other attributes for a linker script
13559 assignment from HSRC to HDEST. Generally this should be treated as
13560 if we found a strong non-dynamic definition for HDEST (except that
13561 ld ignores multiple definition errors). */
13562 void
13563 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13564 struct bfd_link_hash_entry *hdest,
13565 struct bfd_link_hash_entry *hsrc)
13566 {
13567 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13568 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13569 Elf_Internal_Sym isym;
13570
13571 ehdest->type = ehsrc->type;
13572 ehdest->target_internal = ehsrc->target_internal;
13573
13574 isym.st_other = ehsrc->other;
13575 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13576 }
13577
13578 /* Append a RELA relocation REL to section S in BFD. */
13579
13580 void
13581 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13582 {
13583 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13584 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13585 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13586 bed->s->swap_reloca_out (abfd, rel, loc);
13587 }
13588
13589 /* Append a REL relocation REL to section S in BFD. */
13590
13591 void
13592 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13593 {
13594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13595 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13596 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13597 bed->s->swap_reloc_out (abfd, rel, loc);
13598 }