]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
Dynamic TLS section symbols
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
181 return FALSE;
182 htab->sgotplt = s;
183 }
184
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
187
188 if (bed->want_got_sym)
189 {
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
197 if (h == NULL)
198 return FALSE;
199 }
200
201 return TRUE;
202 }
203 \f
204 /* Create a strtab to hold the dynamic symbol names. */
205 static bfd_boolean
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
207 {
208 struct elf_link_hash_table *hash_table;
209
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
212 {
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
218 {
219 bfd *ibfd;
220 asection *s;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (htab->text_index_section != NULL)
904 return p != htab->text_index_section && p != htab->data_index_section;
905
906 return (htab->dynobj != NULL
907 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
908 && ip->output_section == p);
909
910 /* There shouldn't be section relative relocations
911 against any other section. */
912 default:
913 return TRUE;
914 }
915 }
916
917 bfd_boolean
918 _bfd_elf_omit_section_dynsym_all
919 (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED,
921 asection *p ATTRIBUTE_UNUSED)
922 {
923 return TRUE;
924 }
925
926 /* Assign dynsym indices. In a shared library we generate a section
927 symbol for each output section, which come first. Next come symbols
928 which have been forced to local binding. Then all of the back-end
929 allocated local dynamic syms, followed by the rest of the global
930 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
931 (This prevents the early call before elf_backend_init_index_section
932 and strip_excluded_output_sections setting dynindx for sections
933 that are stripped.) */
934
935 static unsigned long
936 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
937 struct bfd_link_info *info,
938 unsigned long *section_sym_count)
939 {
940 unsigned long dynsymcount = 0;
941 bfd_boolean do_sec = section_sym_count != NULL;
942
943 if (bfd_link_pic (info)
944 || elf_hash_table (info)->is_relocatable_executable)
945 {
946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
947 asection *p;
948 for (p = output_bfd->sections; p ; p = p->next)
949 if ((p->flags & SEC_EXCLUDE) == 0
950 && (p->flags & SEC_ALLOC) != 0
951 && elf_hash_table (info)->dynamic_relocs
952 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
953 {
954 ++dynsymcount;
955 if (do_sec)
956 elf_section_data (p)->dynindx = dynsymcount;
957 }
958 else if (do_sec)
959 elf_section_data (p)->dynindx = 0;
960 }
961 if (do_sec)
962 *section_sym_count = dynsymcount;
963
964 elf_link_hash_traverse (elf_hash_table (info),
965 elf_link_renumber_local_hash_table_dynsyms,
966 &dynsymcount);
967
968 if (elf_hash_table (info)->dynlocal)
969 {
970 struct elf_link_local_dynamic_entry *p;
971 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
972 p->dynindx = ++dynsymcount;
973 }
974 elf_hash_table (info)->local_dynsymcount = dynsymcount;
975
976 elf_link_hash_traverse (elf_hash_table (info),
977 elf_link_renumber_hash_table_dynsyms,
978 &dynsymcount);
979
980 /* There is an unused NULL entry at the head of the table which we
981 must account for in our count even if the table is empty since it
982 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
983 .dynamic section. */
984 dynsymcount++;
985
986 elf_hash_table (info)->dynsymcount = dynsymcount;
987 return dynsymcount;
988 }
989
990 /* Merge st_other field. */
991
992 static void
993 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
994 const Elf_Internal_Sym *isym, asection *sec,
995 bfd_boolean definition, bfd_boolean dynamic)
996 {
997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
998
999 /* If st_other has a processor-specific meaning, specific
1000 code might be needed here. */
1001 if (bed->elf_backend_merge_symbol_attribute)
1002 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1003 dynamic);
1004
1005 if (!dynamic)
1006 {
1007 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1008 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1009
1010 /* Keep the most constraining visibility. Leave the remainder
1011 of the st_other field to elf_backend_merge_symbol_attribute. */
1012 if (symvis - 1 < hvis - 1)
1013 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1014 }
1015 else if (definition
1016 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1017 && (sec->flags & SEC_READONLY) == 0)
1018 h->protected_def = 1;
1019 }
1020
1021 /* This function is called when we want to merge a new symbol with an
1022 existing symbol. It handles the various cases which arise when we
1023 find a definition in a dynamic object, or when there is already a
1024 definition in a dynamic object. The new symbol is described by
1025 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1026 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1027 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1028 of an old common symbol. We set OVERRIDE if the old symbol is
1029 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1030 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1031 to change. By OK to change, we mean that we shouldn't warn if the
1032 type or size does change. */
1033
1034 static bfd_boolean
1035 _bfd_elf_merge_symbol (bfd *abfd,
1036 struct bfd_link_info *info,
1037 const char *name,
1038 Elf_Internal_Sym *sym,
1039 asection **psec,
1040 bfd_vma *pvalue,
1041 struct elf_link_hash_entry **sym_hash,
1042 bfd **poldbfd,
1043 bfd_boolean *pold_weak,
1044 unsigned int *pold_alignment,
1045 bfd_boolean *skip,
1046 bfd_boolean *override,
1047 bfd_boolean *type_change_ok,
1048 bfd_boolean *size_change_ok,
1049 bfd_boolean *matched)
1050 {
1051 asection *sec, *oldsec;
1052 struct elf_link_hash_entry *h;
1053 struct elf_link_hash_entry *hi;
1054 struct elf_link_hash_entry *flip;
1055 int bind;
1056 bfd *oldbfd;
1057 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1058 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1059 const struct elf_backend_data *bed;
1060 char *new_version;
1061 bfd_boolean default_sym = *matched;
1062
1063 *skip = FALSE;
1064 *override = FALSE;
1065
1066 sec = *psec;
1067 bind = ELF_ST_BIND (sym->st_info);
1068
1069 if (! bfd_is_und_section (sec))
1070 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1071 else
1072 h = ((struct elf_link_hash_entry *)
1073 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1074 if (h == NULL)
1075 return FALSE;
1076 *sym_hash = h;
1077
1078 bed = get_elf_backend_data (abfd);
1079
1080 /* NEW_VERSION is the symbol version of the new symbol. */
1081 if (h->versioned != unversioned)
1082 {
1083 /* Symbol version is unknown or versioned. */
1084 new_version = strrchr (name, ELF_VER_CHR);
1085 if (new_version)
1086 {
1087 if (h->versioned == unknown)
1088 {
1089 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1090 h->versioned = versioned_hidden;
1091 else
1092 h->versioned = versioned;
1093 }
1094 new_version += 1;
1095 if (new_version[0] == '\0')
1096 new_version = NULL;
1097 }
1098 else
1099 h->versioned = unversioned;
1100 }
1101 else
1102 new_version = NULL;
1103
1104 /* For merging, we only care about real symbols. But we need to make
1105 sure that indirect symbol dynamic flags are updated. */
1106 hi = h;
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1110
1111 if (!*matched)
1112 {
1113 if (hi == h || h->root.type == bfd_link_hash_new)
1114 *matched = TRUE;
1115 else
1116 {
1117 /* OLD_HIDDEN is true if the existing symbol is only visible
1118 to the symbol with the same symbol version. NEW_HIDDEN is
1119 true if the new symbol is only visible to the symbol with
1120 the same symbol version. */
1121 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1122 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1123 if (!old_hidden && !new_hidden)
1124 /* The new symbol matches the existing symbol if both
1125 aren't hidden. */
1126 *matched = TRUE;
1127 else
1128 {
1129 /* OLD_VERSION is the symbol version of the existing
1130 symbol. */
1131 char *old_version;
1132
1133 if (h->versioned >= versioned)
1134 old_version = strrchr (h->root.root.string,
1135 ELF_VER_CHR) + 1;
1136 else
1137 old_version = NULL;
1138
1139 /* The new symbol matches the existing symbol if they
1140 have the same symbol version. */
1141 *matched = (old_version == new_version
1142 || (old_version != NULL
1143 && new_version != NULL
1144 && strcmp (old_version, new_version) == 0));
1145 }
1146 }
1147 }
1148
1149 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1150 existing symbol. */
1151
1152 oldbfd = NULL;
1153 oldsec = NULL;
1154 switch (h->root.type)
1155 {
1156 default:
1157 break;
1158
1159 case bfd_link_hash_undefined:
1160 case bfd_link_hash_undefweak:
1161 oldbfd = h->root.u.undef.abfd;
1162 break;
1163
1164 case bfd_link_hash_defined:
1165 case bfd_link_hash_defweak:
1166 oldbfd = h->root.u.def.section->owner;
1167 oldsec = h->root.u.def.section;
1168 break;
1169
1170 case bfd_link_hash_common:
1171 oldbfd = h->root.u.c.p->section->owner;
1172 oldsec = h->root.u.c.p->section;
1173 if (pold_alignment)
1174 *pold_alignment = h->root.u.c.p->alignment_power;
1175 break;
1176 }
1177 if (poldbfd && *poldbfd == NULL)
1178 *poldbfd = oldbfd;
1179
1180 /* Differentiate strong and weak symbols. */
1181 newweak = bind == STB_WEAK;
1182 oldweak = (h->root.type == bfd_link_hash_defweak
1183 || h->root.type == bfd_link_hash_undefweak);
1184 if (pold_weak)
1185 *pold_weak = oldweak;
1186
1187 /* We have to check it for every instance since the first few may be
1188 references and not all compilers emit symbol type for undefined
1189 symbols. */
1190 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1191
1192 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1193 respectively, is from a dynamic object. */
1194
1195 newdyn = (abfd->flags & DYNAMIC) != 0;
1196
1197 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1198 syms and defined syms in dynamic libraries respectively.
1199 ref_dynamic on the other hand can be set for a symbol defined in
1200 a dynamic library, and def_dynamic may not be set; When the
1201 definition in a dynamic lib is overridden by a definition in the
1202 executable use of the symbol in the dynamic lib becomes a
1203 reference to the executable symbol. */
1204 if (newdyn)
1205 {
1206 if (bfd_is_und_section (sec))
1207 {
1208 if (bind != STB_WEAK)
1209 {
1210 h->ref_dynamic_nonweak = 1;
1211 hi->ref_dynamic_nonweak = 1;
1212 }
1213 }
1214 else
1215 {
1216 /* Update the existing symbol only if they match. */
1217 if (*matched)
1218 h->dynamic_def = 1;
1219 hi->dynamic_def = 1;
1220 }
1221 }
1222
1223 /* If we just created the symbol, mark it as being an ELF symbol.
1224 Other than that, there is nothing to do--there is no merge issue
1225 with a newly defined symbol--so we just return. */
1226
1227 if (h->root.type == bfd_link_hash_new)
1228 {
1229 h->non_elf = 0;
1230 return TRUE;
1231 }
1232
1233 /* In cases involving weak versioned symbols, we may wind up trying
1234 to merge a symbol with itself. Catch that here, to avoid the
1235 confusion that results if we try to override a symbol with
1236 itself. The additional tests catch cases like
1237 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1238 dynamic object, which we do want to handle here. */
1239 if (abfd == oldbfd
1240 && (newweak || oldweak)
1241 && ((abfd->flags & DYNAMIC) == 0
1242 || !h->def_regular))
1243 return TRUE;
1244
1245 olddyn = FALSE;
1246 if (oldbfd != NULL)
1247 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1248 else if (oldsec != NULL)
1249 {
1250 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1251 indices used by MIPS ELF. */
1252 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1253 }
1254
1255 /* Handle a case where plugin_notice won't be called and thus won't
1256 set the non_ir_ref flags on the first pass over symbols. */
1257 if (oldbfd != NULL
1258 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1259 && newdyn != olddyn)
1260 {
1261 h->root.non_ir_ref_dynamic = TRUE;
1262 hi->root.non_ir_ref_dynamic = TRUE;
1263 }
1264
1265 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1266 respectively, appear to be a definition rather than reference. */
1267
1268 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1269
1270 olddef = (h->root.type != bfd_link_hash_undefined
1271 && h->root.type != bfd_link_hash_undefweak
1272 && h->root.type != bfd_link_hash_common);
1273
1274 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1275 respectively, appear to be a function. */
1276
1277 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1278 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1279
1280 oldfunc = (h->type != STT_NOTYPE
1281 && bed->is_function_type (h->type));
1282
1283 if (!(newfunc && oldfunc)
1284 && ELF_ST_TYPE (sym->st_info) != h->type
1285 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1286 && h->type != STT_NOTYPE
1287 && (newdef || bfd_is_com_section (sec))
1288 && (olddef || h->root.type == bfd_link_hash_common))
1289 {
1290 /* If creating a default indirect symbol ("foo" or "foo@") from
1291 a dynamic versioned definition ("foo@@") skip doing so if
1292 there is an existing regular definition with a different
1293 type. We don't want, for example, a "time" variable in the
1294 executable overriding a "time" function in a shared library. */
1295 if (newdyn
1296 && !olddyn)
1297 {
1298 *skip = TRUE;
1299 return TRUE;
1300 }
1301
1302 /* When adding a symbol from a regular object file after we have
1303 created indirect symbols, undo the indirection and any
1304 dynamic state. */
1305 if (hi != h
1306 && !newdyn
1307 && olddyn)
1308 {
1309 h = hi;
1310 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1311 h->forced_local = 0;
1312 h->ref_dynamic = 0;
1313 h->def_dynamic = 0;
1314 h->dynamic_def = 0;
1315 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1316 {
1317 h->root.type = bfd_link_hash_undefined;
1318 h->root.u.undef.abfd = abfd;
1319 }
1320 else
1321 {
1322 h->root.type = bfd_link_hash_new;
1323 h->root.u.undef.abfd = NULL;
1324 }
1325 return TRUE;
1326 }
1327 }
1328
1329 /* Check TLS symbols. We don't check undefined symbols introduced
1330 by "ld -u" which have no type (and oldbfd NULL), and we don't
1331 check symbols from plugins because they also have no type. */
1332 if (oldbfd != NULL
1333 && (oldbfd->flags & BFD_PLUGIN) == 0
1334 && (abfd->flags & BFD_PLUGIN) == 0
1335 && ELF_ST_TYPE (sym->st_info) != h->type
1336 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1337 {
1338 bfd *ntbfd, *tbfd;
1339 bfd_boolean ntdef, tdef;
1340 asection *ntsec, *tsec;
1341
1342 if (h->type == STT_TLS)
1343 {
1344 ntbfd = abfd;
1345 ntsec = sec;
1346 ntdef = newdef;
1347 tbfd = oldbfd;
1348 tsec = oldsec;
1349 tdef = olddef;
1350 }
1351 else
1352 {
1353 ntbfd = oldbfd;
1354 ntsec = oldsec;
1355 ntdef = olddef;
1356 tbfd = abfd;
1357 tsec = sec;
1358 tdef = newdef;
1359 }
1360
1361 if (tdef && ntdef)
1362 _bfd_error_handler
1363 /* xgettext:c-format */
1364 (_("%s: TLS definition in %pB section %pA "
1365 "mismatches non-TLS definition in %pB section %pA"),
1366 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1367 else if (!tdef && !ntdef)
1368 _bfd_error_handler
1369 /* xgettext:c-format */
1370 (_("%s: TLS reference in %pB "
1371 "mismatches non-TLS reference in %pB"),
1372 h->root.root.string, tbfd, ntbfd);
1373 else if (tdef)
1374 _bfd_error_handler
1375 /* xgettext:c-format */
1376 (_("%s: TLS definition in %pB section %pA "
1377 "mismatches non-TLS reference in %pB"),
1378 h->root.root.string, tbfd, tsec, ntbfd);
1379 else
1380 _bfd_error_handler
1381 /* xgettext:c-format */
1382 (_("%s: TLS reference in %pB "
1383 "mismatches non-TLS definition in %pB section %pA"),
1384 h->root.root.string, tbfd, ntbfd, ntsec);
1385
1386 bfd_set_error (bfd_error_bad_value);
1387 return FALSE;
1388 }
1389
1390 /* If the old symbol has non-default visibility, we ignore the new
1391 definition from a dynamic object. */
1392 if (newdyn
1393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1394 && !bfd_is_und_section (sec))
1395 {
1396 *skip = TRUE;
1397 /* Make sure this symbol is dynamic. */
1398 h->ref_dynamic = 1;
1399 hi->ref_dynamic = 1;
1400 /* A protected symbol has external availability. Make sure it is
1401 recorded as dynamic.
1402
1403 FIXME: Should we check type and size for protected symbol? */
1404 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1405 return bfd_elf_link_record_dynamic_symbol (info, h);
1406 else
1407 return TRUE;
1408 }
1409 else if (!newdyn
1410 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1411 && h->def_dynamic)
1412 {
1413 /* If the new symbol with non-default visibility comes from a
1414 relocatable file and the old definition comes from a dynamic
1415 object, we remove the old definition. */
1416 if (hi->root.type == bfd_link_hash_indirect)
1417 {
1418 /* Handle the case where the old dynamic definition is
1419 default versioned. We need to copy the symbol info from
1420 the symbol with default version to the normal one if it
1421 was referenced before. */
1422 if (h->ref_regular)
1423 {
1424 hi->root.type = h->root.type;
1425 h->root.type = bfd_link_hash_indirect;
1426 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1427
1428 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1429 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1430 {
1431 /* If the new symbol is hidden or internal, completely undo
1432 any dynamic link state. */
1433 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1434 h->forced_local = 0;
1435 h->ref_dynamic = 0;
1436 }
1437 else
1438 h->ref_dynamic = 1;
1439
1440 h->def_dynamic = 0;
1441 /* FIXME: Should we check type and size for protected symbol? */
1442 h->size = 0;
1443 h->type = 0;
1444
1445 h = hi;
1446 }
1447 else
1448 h = hi;
1449 }
1450
1451 /* If the old symbol was undefined before, then it will still be
1452 on the undefs list. If the new symbol is undefined or
1453 common, we can't make it bfd_link_hash_new here, because new
1454 undefined or common symbols will be added to the undefs list
1455 by _bfd_generic_link_add_one_symbol. Symbols may not be
1456 added twice to the undefs list. Also, if the new symbol is
1457 undefweak then we don't want to lose the strong undef. */
1458 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1459 {
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = abfd;
1462 }
1463 else
1464 {
1465 h->root.type = bfd_link_hash_new;
1466 h->root.u.undef.abfd = NULL;
1467 }
1468
1469 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1470 {
1471 /* If the new symbol is hidden or internal, completely undo
1472 any dynamic link state. */
1473 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1474 h->forced_local = 0;
1475 h->ref_dynamic = 0;
1476 }
1477 else
1478 h->ref_dynamic = 1;
1479 h->def_dynamic = 0;
1480 /* FIXME: Should we check type and size for protected symbol? */
1481 h->size = 0;
1482 h->type = 0;
1483 return TRUE;
1484 }
1485
1486 /* If a new weak symbol definition comes from a regular file and the
1487 old symbol comes from a dynamic library, we treat the new one as
1488 strong. Similarly, an old weak symbol definition from a regular
1489 file is treated as strong when the new symbol comes from a dynamic
1490 library. Further, an old weak symbol from a dynamic library is
1491 treated as strong if the new symbol is from a dynamic library.
1492 This reflects the way glibc's ld.so works.
1493
1494 Also allow a weak symbol to override a linker script symbol
1495 defined by an early pass over the script. This is done so the
1496 linker knows the symbol is defined in an object file, for the
1497 DEFINED script function.
1498
1499 Do this before setting *type_change_ok or *size_change_ok so that
1500 we warn properly when dynamic library symbols are overridden. */
1501
1502 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1503 newweak = FALSE;
1504 if (olddef && newdyn)
1505 oldweak = FALSE;
1506
1507 /* Allow changes between different types of function symbol. */
1508 if (newfunc && oldfunc)
1509 *type_change_ok = TRUE;
1510
1511 /* It's OK to change the type if either the existing symbol or the
1512 new symbol is weak. A type change is also OK if the old symbol
1513 is undefined and the new symbol is defined. */
1514
1515 if (oldweak
1516 || newweak
1517 || (newdef
1518 && h->root.type == bfd_link_hash_undefined))
1519 *type_change_ok = TRUE;
1520
1521 /* It's OK to change the size if either the existing symbol or the
1522 new symbol is weak, or if the old symbol is undefined. */
1523
1524 if (*type_change_ok
1525 || h->root.type == bfd_link_hash_undefined)
1526 *size_change_ok = TRUE;
1527
1528 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1529 symbol, respectively, appears to be a common symbol in a dynamic
1530 object. If a symbol appears in an uninitialized section, and is
1531 not weak, and is not a function, then it may be a common symbol
1532 which was resolved when the dynamic object was created. We want
1533 to treat such symbols specially, because they raise special
1534 considerations when setting the symbol size: if the symbol
1535 appears as a common symbol in a regular object, and the size in
1536 the regular object is larger, we must make sure that we use the
1537 larger size. This problematic case can always be avoided in C,
1538 but it must be handled correctly when using Fortran shared
1539 libraries.
1540
1541 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1542 likewise for OLDDYNCOMMON and OLDDEF.
1543
1544 Note that this test is just a heuristic, and that it is quite
1545 possible to have an uninitialized symbol in a shared object which
1546 is really a definition, rather than a common symbol. This could
1547 lead to some minor confusion when the symbol really is a common
1548 symbol in some regular object. However, I think it will be
1549 harmless. */
1550
1551 if (newdyn
1552 && newdef
1553 && !newweak
1554 && (sec->flags & SEC_ALLOC) != 0
1555 && (sec->flags & SEC_LOAD) == 0
1556 && sym->st_size > 0
1557 && !newfunc)
1558 newdyncommon = TRUE;
1559 else
1560 newdyncommon = FALSE;
1561
1562 if (olddyn
1563 && olddef
1564 && h->root.type == bfd_link_hash_defined
1565 && h->def_dynamic
1566 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1567 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1568 && h->size > 0
1569 && !oldfunc)
1570 olddyncommon = TRUE;
1571 else
1572 olddyncommon = FALSE;
1573
1574 /* We now know everything about the old and new symbols. We ask the
1575 backend to check if we can merge them. */
1576 if (bed->merge_symbol != NULL)
1577 {
1578 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1579 return FALSE;
1580 sec = *psec;
1581 }
1582
1583 /* There are multiple definitions of a normal symbol. Skip the
1584 default symbol as well as definition from an IR object. */
1585 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1586 && !default_sym && h->def_regular
1587 && !(oldbfd != NULL
1588 && (oldbfd->flags & BFD_PLUGIN) != 0
1589 && (abfd->flags & BFD_PLUGIN) == 0))
1590 {
1591 /* Handle a multiple definition. */
1592 (*info->callbacks->multiple_definition) (info, &h->root,
1593 abfd, sec, *pvalue);
1594 *skip = TRUE;
1595 return TRUE;
1596 }
1597
1598 /* If both the old and the new symbols look like common symbols in a
1599 dynamic object, set the size of the symbol to the larger of the
1600 two. */
1601
1602 if (olddyncommon
1603 && newdyncommon
1604 && sym->st_size != h->size)
1605 {
1606 /* Since we think we have two common symbols, issue a multiple
1607 common warning if desired. Note that we only warn if the
1608 size is different. If the size is the same, we simply let
1609 the old symbol override the new one as normally happens with
1610 symbols defined in dynamic objects. */
1611
1612 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1613 bfd_link_hash_common, sym->st_size);
1614 if (sym->st_size > h->size)
1615 h->size = sym->st_size;
1616
1617 *size_change_ok = TRUE;
1618 }
1619
1620 /* If we are looking at a dynamic object, and we have found a
1621 definition, we need to see if the symbol was already defined by
1622 some other object. If so, we want to use the existing
1623 definition, and we do not want to report a multiple symbol
1624 definition error; we do this by clobbering *PSEC to be
1625 bfd_und_section_ptr.
1626
1627 We treat a common symbol as a definition if the symbol in the
1628 shared library is a function, since common symbols always
1629 represent variables; this can cause confusion in principle, but
1630 any such confusion would seem to indicate an erroneous program or
1631 shared library. We also permit a common symbol in a regular
1632 object to override a weak symbol in a shared object. */
1633
1634 if (newdyn
1635 && newdef
1636 && (olddef
1637 || (h->root.type == bfd_link_hash_common
1638 && (newweak || newfunc))))
1639 {
1640 *override = TRUE;
1641 newdef = FALSE;
1642 newdyncommon = FALSE;
1643
1644 *psec = sec = bfd_und_section_ptr;
1645 *size_change_ok = TRUE;
1646
1647 /* If we get here when the old symbol is a common symbol, then
1648 we are explicitly letting it override a weak symbol or
1649 function in a dynamic object, and we don't want to warn about
1650 a type change. If the old symbol is a defined symbol, a type
1651 change warning may still be appropriate. */
1652
1653 if (h->root.type == bfd_link_hash_common)
1654 *type_change_ok = TRUE;
1655 }
1656
1657 /* Handle the special case of an old common symbol merging with a
1658 new symbol which looks like a common symbol in a shared object.
1659 We change *PSEC and *PVALUE to make the new symbol look like a
1660 common symbol, and let _bfd_generic_link_add_one_symbol do the
1661 right thing. */
1662
1663 if (newdyncommon
1664 && h->root.type == bfd_link_hash_common)
1665 {
1666 *override = TRUE;
1667 newdef = FALSE;
1668 newdyncommon = FALSE;
1669 *pvalue = sym->st_size;
1670 *psec = sec = bed->common_section (oldsec);
1671 *size_change_ok = TRUE;
1672 }
1673
1674 /* Skip weak definitions of symbols that are already defined. */
1675 if (newdef && olddef && newweak)
1676 {
1677 /* Don't skip new non-IR weak syms. */
1678 if (!(oldbfd != NULL
1679 && (oldbfd->flags & BFD_PLUGIN) != 0
1680 && (abfd->flags & BFD_PLUGIN) == 0))
1681 {
1682 newdef = FALSE;
1683 *skip = TRUE;
1684 }
1685
1686 /* Merge st_other. If the symbol already has a dynamic index,
1687 but visibility says it should not be visible, turn it into a
1688 local symbol. */
1689 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1690 if (h->dynindx != -1)
1691 switch (ELF_ST_VISIBILITY (h->other))
1692 {
1693 case STV_INTERNAL:
1694 case STV_HIDDEN:
1695 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1696 break;
1697 }
1698 }
1699
1700 /* If the old symbol is from a dynamic object, and the new symbol is
1701 a definition which is not from a dynamic object, then the new
1702 symbol overrides the old symbol. Symbols from regular files
1703 always take precedence over symbols from dynamic objects, even if
1704 they are defined after the dynamic object in the link.
1705
1706 As above, we again permit a common symbol in a regular object to
1707 override a definition in a shared object if the shared object
1708 symbol is a function or is weak. */
1709
1710 flip = NULL;
1711 if (!newdyn
1712 && (newdef
1713 || (bfd_is_com_section (sec)
1714 && (oldweak || oldfunc)))
1715 && olddyn
1716 && olddef
1717 && h->def_dynamic)
1718 {
1719 /* Change the hash table entry to undefined, and let
1720 _bfd_generic_link_add_one_symbol do the right thing with the
1721 new definition. */
1722
1723 h->root.type = bfd_link_hash_undefined;
1724 h->root.u.undef.abfd = h->root.u.def.section->owner;
1725 *size_change_ok = TRUE;
1726
1727 olddef = FALSE;
1728 olddyncommon = FALSE;
1729
1730 /* We again permit a type change when a common symbol may be
1731 overriding a function. */
1732
1733 if (bfd_is_com_section (sec))
1734 {
1735 if (oldfunc)
1736 {
1737 /* If a common symbol overrides a function, make sure
1738 that it isn't defined dynamically nor has type
1739 function. */
1740 h->def_dynamic = 0;
1741 h->type = STT_NOTYPE;
1742 }
1743 *type_change_ok = TRUE;
1744 }
1745
1746 if (hi->root.type == bfd_link_hash_indirect)
1747 flip = hi;
1748 else
1749 /* This union may have been set to be non-NULL when this symbol
1750 was seen in a dynamic object. We must force the union to be
1751 NULL, so that it is correct for a regular symbol. */
1752 h->verinfo.vertree = NULL;
1753 }
1754
1755 /* Handle the special case of a new common symbol merging with an
1756 old symbol that looks like it might be a common symbol defined in
1757 a shared object. Note that we have already handled the case in
1758 which a new common symbol should simply override the definition
1759 in the shared library. */
1760
1761 if (! newdyn
1762 && bfd_is_com_section (sec)
1763 && olddyncommon)
1764 {
1765 /* It would be best if we could set the hash table entry to a
1766 common symbol, but we don't know what to use for the section
1767 or the alignment. */
1768 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1769 bfd_link_hash_common, sym->st_size);
1770
1771 /* If the presumed common symbol in the dynamic object is
1772 larger, pretend that the new symbol has its size. */
1773
1774 if (h->size > *pvalue)
1775 *pvalue = h->size;
1776
1777 /* We need to remember the alignment required by the symbol
1778 in the dynamic object. */
1779 BFD_ASSERT (pold_alignment);
1780 *pold_alignment = h->root.u.def.section->alignment_power;
1781
1782 olddef = FALSE;
1783 olddyncommon = FALSE;
1784
1785 h->root.type = bfd_link_hash_undefined;
1786 h->root.u.undef.abfd = h->root.u.def.section->owner;
1787
1788 *size_change_ok = TRUE;
1789 *type_change_ok = TRUE;
1790
1791 if (hi->root.type == bfd_link_hash_indirect)
1792 flip = hi;
1793 else
1794 h->verinfo.vertree = NULL;
1795 }
1796
1797 if (flip != NULL)
1798 {
1799 /* Handle the case where we had a versioned symbol in a dynamic
1800 library and now find a definition in a normal object. In this
1801 case, we make the versioned symbol point to the normal one. */
1802 flip->root.type = h->root.type;
1803 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1804 h->root.type = bfd_link_hash_indirect;
1805 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1806 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1807 if (h->def_dynamic)
1808 {
1809 h->def_dynamic = 0;
1810 flip->ref_dynamic = 1;
1811 }
1812 }
1813
1814 return TRUE;
1815 }
1816
1817 /* This function is called to create an indirect symbol from the
1818 default for the symbol with the default version if needed. The
1819 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1820 set DYNSYM if the new indirect symbol is dynamic. */
1821
1822 static bfd_boolean
1823 _bfd_elf_add_default_symbol (bfd *abfd,
1824 struct bfd_link_info *info,
1825 struct elf_link_hash_entry *h,
1826 const char *name,
1827 Elf_Internal_Sym *sym,
1828 asection *sec,
1829 bfd_vma value,
1830 bfd **poldbfd,
1831 bfd_boolean *dynsym)
1832 {
1833 bfd_boolean type_change_ok;
1834 bfd_boolean size_change_ok;
1835 bfd_boolean skip;
1836 char *shortname;
1837 struct elf_link_hash_entry *hi;
1838 struct bfd_link_hash_entry *bh;
1839 const struct elf_backend_data *bed;
1840 bfd_boolean collect;
1841 bfd_boolean dynamic;
1842 bfd_boolean override;
1843 char *p;
1844 size_t len, shortlen;
1845 asection *tmp_sec;
1846 bfd_boolean matched;
1847
1848 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1849 return TRUE;
1850
1851 /* If this symbol has a version, and it is the default version, we
1852 create an indirect symbol from the default name to the fully
1853 decorated name. This will cause external references which do not
1854 specify a version to be bound to this version of the symbol. */
1855 p = strchr (name, ELF_VER_CHR);
1856 if (h->versioned == unknown)
1857 {
1858 if (p == NULL)
1859 {
1860 h->versioned = unversioned;
1861 return TRUE;
1862 }
1863 else
1864 {
1865 if (p[1] != ELF_VER_CHR)
1866 {
1867 h->versioned = versioned_hidden;
1868 return TRUE;
1869 }
1870 else
1871 h->versioned = versioned;
1872 }
1873 }
1874 else
1875 {
1876 /* PR ld/19073: We may see an unversioned definition after the
1877 default version. */
1878 if (p == NULL)
1879 return TRUE;
1880 }
1881
1882 bed = get_elf_backend_data (abfd);
1883 collect = bed->collect;
1884 dynamic = (abfd->flags & DYNAMIC) != 0;
1885
1886 shortlen = p - name;
1887 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1888 if (shortname == NULL)
1889 return FALSE;
1890 memcpy (shortname, name, shortlen);
1891 shortname[shortlen] = '\0';
1892
1893 /* We are going to create a new symbol. Merge it with any existing
1894 symbol with this name. For the purposes of the merge, act as
1895 though we were defining the symbol we just defined, although we
1896 actually going to define an indirect symbol. */
1897 type_change_ok = FALSE;
1898 size_change_ok = FALSE;
1899 matched = TRUE;
1900 tmp_sec = sec;
1901 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1902 &hi, poldbfd, NULL, NULL, &skip, &override,
1903 &type_change_ok, &size_change_ok, &matched))
1904 return FALSE;
1905
1906 if (skip)
1907 goto nondefault;
1908
1909 if (hi->def_regular)
1910 {
1911 /* If the undecorated symbol will have a version added by a
1912 script different to H, then don't indirect to/from the
1913 undecorated symbol. This isn't ideal because we may not yet
1914 have seen symbol versions, if given by a script on the
1915 command line rather than via --version-script. */
1916 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1917 {
1918 bfd_boolean hide;
1919
1920 hi->verinfo.vertree
1921 = bfd_find_version_for_sym (info->version_info,
1922 hi->root.root.string, &hide);
1923 if (hi->verinfo.vertree != NULL && hide)
1924 {
1925 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1926 goto nondefault;
1927 }
1928 }
1929 if (hi->verinfo.vertree != NULL
1930 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1931 goto nondefault;
1932 }
1933
1934 if (! override)
1935 {
1936 /* Add the default symbol if not performing a relocatable link. */
1937 if (! bfd_link_relocatable (info))
1938 {
1939 bh = &hi->root;
1940 if (bh->type == bfd_link_hash_defined
1941 && bh->u.def.section->owner != NULL
1942 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1943 {
1944 /* Mark the previous definition from IR object as
1945 undefined so that the generic linker will override
1946 it. */
1947 bh->type = bfd_link_hash_undefined;
1948 bh->u.undef.abfd = bh->u.def.section->owner;
1949 }
1950 if (! (_bfd_generic_link_add_one_symbol
1951 (info, abfd, shortname, BSF_INDIRECT,
1952 bfd_ind_section_ptr,
1953 0, name, FALSE, collect, &bh)))
1954 return FALSE;
1955 hi = (struct elf_link_hash_entry *) bh;
1956 }
1957 }
1958 else
1959 {
1960 /* In this case the symbol named SHORTNAME is overriding the
1961 indirect symbol we want to add. We were planning on making
1962 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1963 is the name without a version. NAME is the fully versioned
1964 name, and it is the default version.
1965
1966 Overriding means that we already saw a definition for the
1967 symbol SHORTNAME in a regular object, and it is overriding
1968 the symbol defined in the dynamic object.
1969
1970 When this happens, we actually want to change NAME, the
1971 symbol we just added, to refer to SHORTNAME. This will cause
1972 references to NAME in the shared object to become references
1973 to SHORTNAME in the regular object. This is what we expect
1974 when we override a function in a shared object: that the
1975 references in the shared object will be mapped to the
1976 definition in the regular object. */
1977
1978 while (hi->root.type == bfd_link_hash_indirect
1979 || hi->root.type == bfd_link_hash_warning)
1980 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1981
1982 h->root.type = bfd_link_hash_indirect;
1983 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1984 if (h->def_dynamic)
1985 {
1986 h->def_dynamic = 0;
1987 hi->ref_dynamic = 1;
1988 if (hi->ref_regular
1989 || hi->def_regular)
1990 {
1991 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1992 return FALSE;
1993 }
1994 }
1995
1996 /* Now set HI to H, so that the following code will set the
1997 other fields correctly. */
1998 hi = h;
1999 }
2000
2001 /* Check if HI is a warning symbol. */
2002 if (hi->root.type == bfd_link_hash_warning)
2003 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2004
2005 /* If there is a duplicate definition somewhere, then HI may not
2006 point to an indirect symbol. We will have reported an error to
2007 the user in that case. */
2008
2009 if (hi->root.type == bfd_link_hash_indirect)
2010 {
2011 struct elf_link_hash_entry *ht;
2012
2013 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2014 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2015
2016 /* A reference to the SHORTNAME symbol from a dynamic library
2017 will be satisfied by the versioned symbol at runtime. In
2018 effect, we have a reference to the versioned symbol. */
2019 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2020 hi->dynamic_def |= ht->dynamic_def;
2021
2022 /* See if the new flags lead us to realize that the symbol must
2023 be dynamic. */
2024 if (! *dynsym)
2025 {
2026 if (! dynamic)
2027 {
2028 if (! bfd_link_executable (info)
2029 || hi->def_dynamic
2030 || hi->ref_dynamic)
2031 *dynsym = TRUE;
2032 }
2033 else
2034 {
2035 if (hi->ref_regular)
2036 *dynsym = TRUE;
2037 }
2038 }
2039 }
2040
2041 /* We also need to define an indirection from the nondefault version
2042 of the symbol. */
2043
2044 nondefault:
2045 len = strlen (name);
2046 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2047 if (shortname == NULL)
2048 return FALSE;
2049 memcpy (shortname, name, shortlen);
2050 memcpy (shortname + shortlen, p + 1, len - shortlen);
2051
2052 /* Once again, merge with any existing symbol. */
2053 type_change_ok = FALSE;
2054 size_change_ok = FALSE;
2055 tmp_sec = sec;
2056 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2057 &hi, poldbfd, NULL, NULL, &skip, &override,
2058 &type_change_ok, &size_change_ok, &matched))
2059 return FALSE;
2060
2061 if (skip)
2062 return TRUE;
2063
2064 if (override)
2065 {
2066 /* Here SHORTNAME is a versioned name, so we don't expect to see
2067 the type of override we do in the case above unless it is
2068 overridden by a versioned definition. */
2069 if (hi->root.type != bfd_link_hash_defined
2070 && hi->root.type != bfd_link_hash_defweak)
2071 _bfd_error_handler
2072 /* xgettext:c-format */
2073 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2074 abfd, shortname);
2075 }
2076 else
2077 {
2078 bh = &hi->root;
2079 if (! (_bfd_generic_link_add_one_symbol
2080 (info, abfd, shortname, BSF_INDIRECT,
2081 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2082 return FALSE;
2083 hi = (struct elf_link_hash_entry *) bh;
2084
2085 /* If there is a duplicate definition somewhere, then HI may not
2086 point to an indirect symbol. We will have reported an error
2087 to the user in that case. */
2088
2089 if (hi->root.type == bfd_link_hash_indirect)
2090 {
2091 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2092 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2093 hi->dynamic_def |= h->dynamic_def;
2094
2095 /* See if the new flags lead us to realize that the symbol
2096 must be dynamic. */
2097 if (! *dynsym)
2098 {
2099 if (! dynamic)
2100 {
2101 if (! bfd_link_executable (info)
2102 || hi->ref_dynamic)
2103 *dynsym = TRUE;
2104 }
2105 else
2106 {
2107 if (hi->ref_regular)
2108 *dynsym = TRUE;
2109 }
2110 }
2111 }
2112 }
2113
2114 return TRUE;
2115 }
2116 \f
2117 /* This routine is used to export all defined symbols into the dynamic
2118 symbol table. It is called via elf_link_hash_traverse. */
2119
2120 static bfd_boolean
2121 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2122 {
2123 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2124
2125 /* Ignore indirect symbols. These are added by the versioning code. */
2126 if (h->root.type == bfd_link_hash_indirect)
2127 return TRUE;
2128
2129 /* Ignore this if we won't export it. */
2130 if (!eif->info->export_dynamic && !h->dynamic)
2131 return TRUE;
2132
2133 if (h->dynindx == -1
2134 && (h->def_regular || h->ref_regular)
2135 && ! bfd_hide_sym_by_version (eif->info->version_info,
2136 h->root.root.string))
2137 {
2138 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2139 {
2140 eif->failed = TRUE;
2141 return FALSE;
2142 }
2143 }
2144
2145 return TRUE;
2146 }
2147 \f
2148 /* Look through the symbols which are defined in other shared
2149 libraries and referenced here. Update the list of version
2150 dependencies. This will be put into the .gnu.version_r section.
2151 This function is called via elf_link_hash_traverse. */
2152
2153 static bfd_boolean
2154 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2155 void *data)
2156 {
2157 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2158 Elf_Internal_Verneed *t;
2159 Elf_Internal_Vernaux *a;
2160 bfd_size_type amt;
2161
2162 /* We only care about symbols defined in shared objects with version
2163 information. */
2164 if (!h->def_dynamic
2165 || h->def_regular
2166 || h->dynindx == -1
2167 || h->verinfo.verdef == NULL
2168 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2169 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2170 return TRUE;
2171
2172 /* See if we already know about this version. */
2173 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2174 t != NULL;
2175 t = t->vn_nextref)
2176 {
2177 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2178 continue;
2179
2180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2181 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2182 return TRUE;
2183
2184 break;
2185 }
2186
2187 /* This is a new version. Add it to tree we are building. */
2188
2189 if (t == NULL)
2190 {
2191 amt = sizeof *t;
2192 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2193 if (t == NULL)
2194 {
2195 rinfo->failed = TRUE;
2196 return FALSE;
2197 }
2198
2199 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2200 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2201 elf_tdata (rinfo->info->output_bfd)->verref = t;
2202 }
2203
2204 amt = sizeof *a;
2205 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2206 if (a == NULL)
2207 {
2208 rinfo->failed = TRUE;
2209 return FALSE;
2210 }
2211
2212 /* Note that we are copying a string pointer here, and testing it
2213 above. If bfd_elf_string_from_elf_section is ever changed to
2214 discard the string data when low in memory, this will have to be
2215 fixed. */
2216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2217
2218 a->vna_flags = h->verinfo.verdef->vd_flags;
2219 a->vna_nextptr = t->vn_auxptr;
2220
2221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2222 ++rinfo->vers;
2223
2224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2225
2226 t->vn_auxptr = a;
2227
2228 return TRUE;
2229 }
2230
2231 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2232 hidden. Set *T_P to NULL if there is no match. */
2233
2234 static bfd_boolean
2235 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2236 struct elf_link_hash_entry *h,
2237 const char *version_p,
2238 struct bfd_elf_version_tree **t_p,
2239 bfd_boolean *hide)
2240 {
2241 struct bfd_elf_version_tree *t;
2242
2243 /* Look for the version. If we find it, it is no longer weak. */
2244 for (t = info->version_info; t != NULL; t = t->next)
2245 {
2246 if (strcmp (t->name, version_p) == 0)
2247 {
2248 size_t len;
2249 char *alc;
2250 struct bfd_elf_version_expr *d;
2251
2252 len = version_p - h->root.root.string;
2253 alc = (char *) bfd_malloc (len);
2254 if (alc == NULL)
2255 return FALSE;
2256 memcpy (alc, h->root.root.string, len - 1);
2257 alc[len - 1] = '\0';
2258 if (alc[len - 2] == ELF_VER_CHR)
2259 alc[len - 2] = '\0';
2260
2261 h->verinfo.vertree = t;
2262 t->used = TRUE;
2263 d = NULL;
2264
2265 if (t->globals.list != NULL)
2266 d = (*t->match) (&t->globals, NULL, alc);
2267
2268 /* See if there is anything to force this symbol to
2269 local scope. */
2270 if (d == NULL && t->locals.list != NULL)
2271 {
2272 d = (*t->match) (&t->locals, NULL, alc);
2273 if (d != NULL
2274 && h->dynindx != -1
2275 && ! info->export_dynamic)
2276 *hide = TRUE;
2277 }
2278
2279 free (alc);
2280 break;
2281 }
2282 }
2283
2284 *t_p = t;
2285
2286 return TRUE;
2287 }
2288
2289 /* Return TRUE if the symbol H is hidden by version script. */
2290
2291 bfd_boolean
2292 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2293 struct elf_link_hash_entry *h)
2294 {
2295 const char *p;
2296 bfd_boolean hide = FALSE;
2297 const struct elf_backend_data *bed
2298 = get_elf_backend_data (info->output_bfd);
2299
2300 /* Version script only hides symbols defined in regular objects. */
2301 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2302 return TRUE;
2303
2304 p = strchr (h->root.root.string, ELF_VER_CHR);
2305 if (p != NULL && h->verinfo.vertree == NULL)
2306 {
2307 struct bfd_elf_version_tree *t;
2308
2309 ++p;
2310 if (*p == ELF_VER_CHR)
2311 ++p;
2312
2313 if (*p != '\0'
2314 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2315 && hide)
2316 {
2317 if (hide)
2318 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2319 return TRUE;
2320 }
2321 }
2322
2323 /* If we don't have a version for this symbol, see if we can find
2324 something. */
2325 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2326 {
2327 h->verinfo.vertree
2328 = bfd_find_version_for_sym (info->version_info,
2329 h->root.root.string, &hide);
2330 if (h->verinfo.vertree != NULL && hide)
2331 {
2332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2333 return TRUE;
2334 }
2335 }
2336
2337 return FALSE;
2338 }
2339
2340 /* Figure out appropriate versions for all the symbols. We may not
2341 have the version number script until we have read all of the input
2342 files, so until that point we don't know which symbols should be
2343 local. This function is called via elf_link_hash_traverse. */
2344
2345 static bfd_boolean
2346 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2347 {
2348 struct elf_info_failed *sinfo;
2349 struct bfd_link_info *info;
2350 const struct elf_backend_data *bed;
2351 struct elf_info_failed eif;
2352 char *p;
2353 bfd_boolean hide;
2354
2355 sinfo = (struct elf_info_failed *) data;
2356 info = sinfo->info;
2357
2358 /* Fix the symbol flags. */
2359 eif.failed = FALSE;
2360 eif.info = info;
2361 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2362 {
2363 if (eif.failed)
2364 sinfo->failed = TRUE;
2365 return FALSE;
2366 }
2367
2368 bed = get_elf_backend_data (info->output_bfd);
2369
2370 /* We only need version numbers for symbols defined in regular
2371 objects. */
2372 if (!h->def_regular)
2373 {
2374 /* Hide symbols defined in discarded input sections. */
2375 if ((h->root.type == bfd_link_hash_defined
2376 || h->root.type == bfd_link_hash_defweak)
2377 && discarded_section (h->root.u.def.section))
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2379 return TRUE;
2380 }
2381
2382 hide = FALSE;
2383 p = strchr (h->root.root.string, ELF_VER_CHR);
2384 if (p != NULL && h->verinfo.vertree == NULL)
2385 {
2386 struct bfd_elf_version_tree *t;
2387
2388 ++p;
2389 if (*p == ELF_VER_CHR)
2390 ++p;
2391
2392 /* If there is no version string, we can just return out. */
2393 if (*p == '\0')
2394 return TRUE;
2395
2396 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2397 {
2398 sinfo->failed = TRUE;
2399 return FALSE;
2400 }
2401
2402 if (hide)
2403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2404
2405 /* If we are building an application, we need to create a
2406 version node for this version. */
2407 if (t == NULL && bfd_link_executable (info))
2408 {
2409 struct bfd_elf_version_tree **pp;
2410 int version_index;
2411
2412 /* If we aren't going to export this symbol, we don't need
2413 to worry about it. */
2414 if (h->dynindx == -1)
2415 return TRUE;
2416
2417 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2418 sizeof *t);
2419 if (t == NULL)
2420 {
2421 sinfo->failed = TRUE;
2422 return FALSE;
2423 }
2424
2425 t->name = p;
2426 t->name_indx = (unsigned int) -1;
2427 t->used = TRUE;
2428
2429 version_index = 1;
2430 /* Don't count anonymous version tag. */
2431 if (sinfo->info->version_info != NULL
2432 && sinfo->info->version_info->vernum == 0)
2433 version_index = 0;
2434 for (pp = &sinfo->info->version_info;
2435 *pp != NULL;
2436 pp = &(*pp)->next)
2437 ++version_index;
2438 t->vernum = version_index;
2439
2440 *pp = t;
2441
2442 h->verinfo.vertree = t;
2443 }
2444 else if (t == NULL)
2445 {
2446 /* We could not find the version for a symbol when
2447 generating a shared archive. Return an error. */
2448 _bfd_error_handler
2449 /* xgettext:c-format */
2450 (_("%pB: version node not found for symbol %s"),
2451 info->output_bfd, h->root.root.string);
2452 bfd_set_error (bfd_error_bad_value);
2453 sinfo->failed = TRUE;
2454 return FALSE;
2455 }
2456 }
2457
2458 /* If we don't have a version for this symbol, see if we can find
2459 something. */
2460 if (!hide
2461 && h->verinfo.vertree == NULL
2462 && sinfo->info->version_info != NULL)
2463 {
2464 h->verinfo.vertree
2465 = bfd_find_version_for_sym (sinfo->info->version_info,
2466 h->root.root.string, &hide);
2467 if (h->verinfo.vertree != NULL && hide)
2468 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2469 }
2470
2471 return TRUE;
2472 }
2473 \f
2474 /* Read and swap the relocs from the section indicated by SHDR. This
2475 may be either a REL or a RELA section. The relocations are
2476 translated into RELA relocations and stored in INTERNAL_RELOCS,
2477 which should have already been allocated to contain enough space.
2478 The EXTERNAL_RELOCS are a buffer where the external form of the
2479 relocations should be stored.
2480
2481 Returns FALSE if something goes wrong. */
2482
2483 static bfd_boolean
2484 elf_link_read_relocs_from_section (bfd *abfd,
2485 asection *sec,
2486 Elf_Internal_Shdr *shdr,
2487 void *external_relocs,
2488 Elf_Internal_Rela *internal_relocs)
2489 {
2490 const struct elf_backend_data *bed;
2491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2492 const bfd_byte *erela;
2493 const bfd_byte *erelaend;
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Shdr *symtab_hdr;
2496 size_t nsyms;
2497
2498 /* Position ourselves at the start of the section. */
2499 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2500 return FALSE;
2501
2502 /* Read the relocations. */
2503 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2504 return FALSE;
2505
2506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2508
2509 bed = get_elf_backend_data (abfd);
2510
2511 /* Convert the external relocations to the internal format. */
2512 if (shdr->sh_entsize == bed->s->sizeof_rel)
2513 swap_in = bed->s->swap_reloc_in;
2514 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2515 swap_in = bed->s->swap_reloca_in;
2516 else
2517 {
2518 bfd_set_error (bfd_error_wrong_format);
2519 return FALSE;
2520 }
2521
2522 erela = (const bfd_byte *) external_relocs;
2523 /* Setting erelaend like this and comparing with <= handles case of
2524 a fuzzed object with sh_size not a multiple of sh_entsize. */
2525 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2526 irela = internal_relocs;
2527 while (erela <= erelaend)
2528 {
2529 bfd_vma r_symndx;
2530
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2534 r_symndx >>= 24;
2535 if (nsyms > 0)
2536 {
2537 if ((size_t) r_symndx >= nsyms)
2538 {
2539 _bfd_error_handler
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2546 return FALSE;
2547 }
2548 }
2549 else if (r_symndx != STN_UNDEF)
2550 {
2551 _bfd_error_handler
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2559 return FALSE;
2560 }
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2563 }
2564
2565 return TRUE;
2566 }
2567
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2577
2578 Elf_Internal_Rela *
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2580 asection *o,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2584 {
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2590
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2593
2594 if (o->reloc_count == 0)
2595 return NULL;
2596
2597 if (internal_relocs == NULL)
2598 {
2599 bfd_size_type size;
2600
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2602 if (keep_memory)
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2604 else
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2607 goto error_return;
2608 }
2609
2610 if (external_relocs == NULL)
2611 {
2612 bfd_size_type size = 0;
2613
2614 if (esdo->rel.hdr)
2615 size += esdo->rel.hdr->sh_size;
2616 if (esdo->rela.hdr)
2617 size += esdo->rela.hdr->sh_size;
2618
2619 alloc1 = bfd_malloc (size);
2620 if (alloc1 == NULL)
2621 goto error_return;
2622 external_relocs = alloc1;
2623 }
2624
2625 internal_rela_relocs = internal_relocs;
2626 if (esdo->rel.hdr)
2627 {
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2629 external_relocs,
2630 internal_relocs))
2631 goto error_return;
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2636 }
2637
2638 if (esdo->rela.hdr
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2640 external_relocs,
2641 internal_rela_relocs)))
2642 goto error_return;
2643
2644 /* Cache the results for next time, if we can. */
2645 if (keep_memory)
2646 esdo->relocs = internal_relocs;
2647
2648 if (alloc1 != NULL)
2649 free (alloc1);
2650
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2653
2654 return internal_relocs;
2655
2656 error_return:
2657 if (alloc1 != NULL)
2658 free (alloc1);
2659 if (alloc2 != NULL)
2660 {
2661 if (keep_memory)
2662 bfd_release (abfd, alloc2);
2663 else
2664 free (alloc2);
2665 }
2666 return NULL;
2667 }
2668
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2671
2672 static bfd_boolean
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2675 {
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2677
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2680
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2687 return FALSE;
2688
2689 if (reldata->hashes == NULL && reldata->count)
2690 {
2691 struct elf_link_hash_entry **p;
2692
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2695 if (p == NULL)
2696 return FALSE;
2697
2698 reldata->hashes = p;
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2706 OUTPUT_BFD. */
2707
2708 bfd_boolean
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2714 ATTRIBUTE_UNUSED)
2715 {
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2718 bfd_byte *erel;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2724
2725 output_section = input_section->output_section;
2726
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2730 {
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2733 }
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2736 {
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2739 }
2740 else
2741 {
2742 _bfd_error_handler
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2747 return FALSE;
2748 }
2749
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2756 {
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2760 }
2761
2762 /* Bump the counter, so that we know where to add the next set of
2763 relocations. */
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2765
2766 return TRUE;
2767 }
2768 \f
2769 /* Make weak undefined symbols in PIE dynamic. */
2770
2771 bfd_boolean
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2774 {
2775 if (bfd_link_pie (info)
2776 && h->dynindx == -1
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2779
2780 return TRUE;
2781 }
2782
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2788
2789 static bfd_boolean
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2792 {
2793 const struct elf_backend_data *bed;
2794
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2799 if (h->non_elf)
2800 {
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2803
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2806 {
2807 h->ref_regular = 1;
2808 h->ref_regular_nonweak = 1;
2809 }
2810 else
2811 {
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2815 {
2816 h->ref_regular = 1;
2817 h->ref_regular_nonweak = 1;
2818 }
2819 else
2820 h->def_regular = 1;
2821 }
2822
2823 if (h->dynindx == -1
2824 && (h->def_dynamic
2825 || h->ref_dynamic))
2826 {
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2828 {
2829 eif->failed = TRUE;
2830 return FALSE;
2831 }
2832 }
2833 }
2834 else
2835 {
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2844 && !h->def_regular
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2850 h->def_regular = 1;
2851 }
2852
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2857 return FALSE;
2858
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2865 && !h->def_regular
2866 && h->ref_regular
2867 && !h->def_dynamic
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2869 h->def_regular = 1;
2870
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2874
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2880
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2883 exported. */
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2887 && !h->dynamic
2888 && !h->ref_dynamic
2889 && h->def_regular)
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2891
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2903 && h->def_regular)
2904 {
2905 bfd_boolean force_local;
2906
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2910 }
2911
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2916 {
2917 struct elf_link_hash_entry *def = weakdef (h);
2918
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. */
2922 if (def->def_regular)
2923 {
2924 h = def;
2925 while ((h = h->u.alias) != def)
2926 h->is_weakalias = 0;
2927 }
2928 else
2929 {
2930 while (h->root.type == bfd_link_hash_indirect)
2931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2932 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2933 || h->root.type == bfd_link_hash_defweak);
2934 BFD_ASSERT (def->def_dynamic);
2935 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2936 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2937 }
2938 }
2939
2940 return TRUE;
2941 }
2942
2943 /* Make the backend pick a good value for a dynamic symbol. This is
2944 called via elf_link_hash_traverse, and also calls itself
2945 recursively. */
2946
2947 static bfd_boolean
2948 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2949 {
2950 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2951 struct elf_link_hash_table *htab;
2952 const struct elf_backend_data *bed;
2953
2954 if (! is_elf_hash_table (eif->info->hash))
2955 return FALSE;
2956
2957 /* Ignore indirect symbols. These are added by the versioning code. */
2958 if (h->root.type == bfd_link_hash_indirect)
2959 return TRUE;
2960
2961 /* Fix the symbol flags. */
2962 if (! _bfd_elf_fix_symbol_flags (h, eif))
2963 return FALSE;
2964
2965 htab = elf_hash_table (eif->info);
2966 bed = get_elf_backend_data (htab->dynobj);
2967
2968 if (h->root.type == bfd_link_hash_undefweak)
2969 {
2970 if (eif->info->dynamic_undefined_weak == 0)
2971 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2972 else if (eif->info->dynamic_undefined_weak > 0
2973 && h->ref_regular
2974 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2975 && !bfd_hide_sym_by_version (eif->info->version_info,
2976 h->root.root.string))
2977 {
2978 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2979 {
2980 eif->failed = TRUE;
2981 return FALSE;
2982 }
2983 }
2984 }
2985
2986 /* If this symbol does not require a PLT entry, and it is not
2987 defined by a dynamic object, or is not referenced by a regular
2988 object, ignore it. We do have to handle a weak defined symbol,
2989 even if no regular object refers to it, if we decided to add it
2990 to the dynamic symbol table. FIXME: Do we normally need to worry
2991 about symbols which are defined by one dynamic object and
2992 referenced by another one? */
2993 if (!h->needs_plt
2994 && h->type != STT_GNU_IFUNC
2995 && (h->def_regular
2996 || !h->def_dynamic
2997 || (!h->ref_regular
2998 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
2999 {
3000 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3001 return TRUE;
3002 }
3003
3004 /* If we've already adjusted this symbol, don't do it again. This
3005 can happen via a recursive call. */
3006 if (h->dynamic_adjusted)
3007 return TRUE;
3008
3009 /* Don't look at this symbol again. Note that we must set this
3010 after checking the above conditions, because we may look at a
3011 symbol once, decide not to do anything, and then get called
3012 recursively later after REF_REGULAR is set below. */
3013 h->dynamic_adjusted = 1;
3014
3015 /* If this is a weak definition, and we know a real definition, and
3016 the real symbol is not itself defined by a regular object file,
3017 then get a good value for the real definition. We handle the
3018 real symbol first, for the convenience of the backend routine.
3019
3020 Note that there is a confusing case here. If the real definition
3021 is defined by a regular object file, we don't get the real symbol
3022 from the dynamic object, but we do get the weak symbol. If the
3023 processor backend uses a COPY reloc, then if some routine in the
3024 dynamic object changes the real symbol, we will not see that
3025 change in the corresponding weak symbol. This is the way other
3026 ELF linkers work as well, and seems to be a result of the shared
3027 library model.
3028
3029 I will clarify this issue. Most SVR4 shared libraries define the
3030 variable _timezone and define timezone as a weak synonym. The
3031 tzset call changes _timezone. If you write
3032 extern int timezone;
3033 int _timezone = 5;
3034 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3035 you might expect that, since timezone is a synonym for _timezone,
3036 the same number will print both times. However, if the processor
3037 backend uses a COPY reloc, then actually timezone will be copied
3038 into your process image, and, since you define _timezone
3039 yourself, _timezone will not. Thus timezone and _timezone will
3040 wind up at different memory locations. The tzset call will set
3041 _timezone, leaving timezone unchanged. */
3042
3043 if (h->is_weakalias)
3044 {
3045 struct elf_link_hash_entry *def = weakdef (h);
3046
3047 /* If we get to this point, there is an implicit reference to
3048 the alias by a regular object file via the weak symbol H. */
3049 def->ref_regular = 1;
3050
3051 /* Ensure that the backend adjust_dynamic_symbol function sees
3052 the strong alias before H by recursively calling ourselves. */
3053 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3054 return FALSE;
3055 }
3056
3057 /* If a symbol has no type and no size and does not require a PLT
3058 entry, then we are probably about to do the wrong thing here: we
3059 are probably going to create a COPY reloc for an empty object.
3060 This case can arise when a shared object is built with assembly
3061 code, and the assembly code fails to set the symbol type. */
3062 if (h->size == 0
3063 && h->type == STT_NOTYPE
3064 && !h->needs_plt)
3065 _bfd_error_handler
3066 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3067 h->root.root.string);
3068
3069 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3070 {
3071 eif->failed = TRUE;
3072 return FALSE;
3073 }
3074
3075 return TRUE;
3076 }
3077
3078 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3079 DYNBSS. */
3080
3081 bfd_boolean
3082 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3083 struct elf_link_hash_entry *h,
3084 asection *dynbss)
3085 {
3086 unsigned int power_of_two;
3087 bfd_vma mask;
3088 asection *sec = h->root.u.def.section;
3089
3090 /* The section alignment of the definition is the maximum alignment
3091 requirement of symbols defined in the section. Since we don't
3092 know the symbol alignment requirement, we start with the
3093 maximum alignment and check low bits of the symbol address
3094 for the minimum alignment. */
3095 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3096 mask = ((bfd_vma) 1 << power_of_two) - 1;
3097 while ((h->root.u.def.value & mask) != 0)
3098 {
3099 mask >>= 1;
3100 --power_of_two;
3101 }
3102
3103 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3104 dynbss))
3105 {
3106 /* Adjust the section alignment if needed. */
3107 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3108 power_of_two))
3109 return FALSE;
3110 }
3111
3112 /* We make sure that the symbol will be aligned properly. */
3113 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3114
3115 /* Define the symbol as being at this point in DYNBSS. */
3116 h->root.u.def.section = dynbss;
3117 h->root.u.def.value = dynbss->size;
3118
3119 /* Increment the size of DYNBSS to make room for the symbol. */
3120 dynbss->size += h->size;
3121
3122 /* No error if extern_protected_data is true. */
3123 if (h->protected_def
3124 && (!info->extern_protected_data
3125 || (info->extern_protected_data < 0
3126 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3127 info->callbacks->einfo
3128 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3129 h->root.root.string);
3130
3131 return TRUE;
3132 }
3133
3134 /* Adjust all external symbols pointing into SEC_MERGE sections
3135 to reflect the object merging within the sections. */
3136
3137 static bfd_boolean
3138 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3139 {
3140 asection *sec;
3141
3142 if ((h->root.type == bfd_link_hash_defined
3143 || h->root.type == bfd_link_hash_defweak)
3144 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3145 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3146 {
3147 bfd *output_bfd = (bfd *) data;
3148
3149 h->root.u.def.value =
3150 _bfd_merged_section_offset (output_bfd,
3151 &h->root.u.def.section,
3152 elf_section_data (sec)->sec_info,
3153 h->root.u.def.value);
3154 }
3155
3156 return TRUE;
3157 }
3158
3159 /* Returns false if the symbol referred to by H should be considered
3160 to resolve local to the current module, and true if it should be
3161 considered to bind dynamically. */
3162
3163 bfd_boolean
3164 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3165 struct bfd_link_info *info,
3166 bfd_boolean not_local_protected)
3167 {
3168 bfd_boolean binding_stays_local_p;
3169 const struct elf_backend_data *bed;
3170 struct elf_link_hash_table *hash_table;
3171
3172 if (h == NULL)
3173 return FALSE;
3174
3175 while (h->root.type == bfd_link_hash_indirect
3176 || h->root.type == bfd_link_hash_warning)
3177 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3178
3179 /* If it was forced local, then clearly it's not dynamic. */
3180 if (h->dynindx == -1)
3181 return FALSE;
3182 if (h->forced_local)
3183 return FALSE;
3184
3185 /* Identify the cases where name binding rules say that a
3186 visible symbol resolves locally. */
3187 binding_stays_local_p = (bfd_link_executable (info)
3188 || SYMBOLIC_BIND (info, h));
3189
3190 switch (ELF_ST_VISIBILITY (h->other))
3191 {
3192 case STV_INTERNAL:
3193 case STV_HIDDEN:
3194 return FALSE;
3195
3196 case STV_PROTECTED:
3197 hash_table = elf_hash_table (info);
3198 if (!is_elf_hash_table (hash_table))
3199 return FALSE;
3200
3201 bed = get_elf_backend_data (hash_table->dynobj);
3202
3203 /* Proper resolution for function pointer equality may require
3204 that these symbols perhaps be resolved dynamically, even though
3205 we should be resolving them to the current module. */
3206 if (!not_local_protected || !bed->is_function_type (h->type))
3207 binding_stays_local_p = TRUE;
3208 break;
3209
3210 default:
3211 break;
3212 }
3213
3214 /* If it isn't defined locally, then clearly it's dynamic. */
3215 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3216 return TRUE;
3217
3218 /* Otherwise, the symbol is dynamic if binding rules don't tell
3219 us that it remains local. */
3220 return !binding_stays_local_p;
3221 }
3222
3223 /* Return true if the symbol referred to by H should be considered
3224 to resolve local to the current module, and false otherwise. Differs
3225 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3226 undefined symbols. The two functions are virtually identical except
3227 for the place where dynindx == -1 is tested. If that test is true,
3228 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3229 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3230 defined symbols.
3231 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3232 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3233 treatment of undefined weak symbols. For those that do not make
3234 undefined weak symbols dynamic, both functions may return false. */
3235
3236 bfd_boolean
3237 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3238 struct bfd_link_info *info,
3239 bfd_boolean local_protected)
3240 {
3241 const struct elf_backend_data *bed;
3242 struct elf_link_hash_table *hash_table;
3243
3244 /* If it's a local sym, of course we resolve locally. */
3245 if (h == NULL)
3246 return TRUE;
3247
3248 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3249 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3250 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3251 return TRUE;
3252
3253 /* Forced local symbols resolve locally. */
3254 if (h->forced_local)
3255 return TRUE;
3256
3257 /* Common symbols that become definitions don't get the DEF_REGULAR
3258 flag set, so test it first, and don't bail out. */
3259 if (ELF_COMMON_DEF_P (h))
3260 /* Do nothing. */;
3261 /* If we don't have a definition in a regular file, then we can't
3262 resolve locally. The sym is either undefined or dynamic. */
3263 else if (!h->def_regular)
3264 return FALSE;
3265
3266 /* Non-dynamic symbols resolve locally. */
3267 if (h->dynindx == -1)
3268 return TRUE;
3269
3270 /* At this point, we know the symbol is defined and dynamic. In an
3271 executable it must resolve locally, likewise when building symbolic
3272 shared libraries. */
3273 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3274 return TRUE;
3275
3276 /* Now deal with defined dynamic symbols in shared libraries. Ones
3277 with default visibility might not resolve locally. */
3278 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3279 return FALSE;
3280
3281 hash_table = elf_hash_table (info);
3282 if (!is_elf_hash_table (hash_table))
3283 return TRUE;
3284
3285 bed = get_elf_backend_data (hash_table->dynobj);
3286
3287 /* If extern_protected_data is false, STV_PROTECTED non-function
3288 symbols are local. */
3289 if ((!info->extern_protected_data
3290 || (info->extern_protected_data < 0
3291 && !bed->extern_protected_data))
3292 && !bed->is_function_type (h->type))
3293 return TRUE;
3294
3295 /* Function pointer equality tests may require that STV_PROTECTED
3296 symbols be treated as dynamic symbols. If the address of a
3297 function not defined in an executable is set to that function's
3298 plt entry in the executable, then the address of the function in
3299 a shared library must also be the plt entry in the executable. */
3300 return local_protected;
3301 }
3302
3303 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3304 aligned. Returns the first TLS output section. */
3305
3306 struct bfd_section *
3307 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3308 {
3309 struct bfd_section *sec, *tls;
3310 unsigned int align = 0;
3311
3312 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3313 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3314 break;
3315 tls = sec;
3316
3317 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3318 if (sec->alignment_power > align)
3319 align = sec->alignment_power;
3320
3321 elf_hash_table (info)->tls_sec = tls;
3322
3323 /* Ensure the alignment of the first section is the largest alignment,
3324 so that the tls segment starts aligned. */
3325 if (tls != NULL)
3326 tls->alignment_power = align;
3327
3328 return tls;
3329 }
3330
3331 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3332 static bfd_boolean
3333 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3334 Elf_Internal_Sym *sym)
3335 {
3336 const struct elf_backend_data *bed;
3337
3338 /* Local symbols do not count, but target specific ones might. */
3339 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3340 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3341 return FALSE;
3342
3343 bed = get_elf_backend_data (abfd);
3344 /* Function symbols do not count. */
3345 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3346 return FALSE;
3347
3348 /* If the section is undefined, then so is the symbol. */
3349 if (sym->st_shndx == SHN_UNDEF)
3350 return FALSE;
3351
3352 /* If the symbol is defined in the common section, then
3353 it is a common definition and so does not count. */
3354 if (bed->common_definition (sym))
3355 return FALSE;
3356
3357 /* If the symbol is in a target specific section then we
3358 must rely upon the backend to tell us what it is. */
3359 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3360 /* FIXME - this function is not coded yet:
3361
3362 return _bfd_is_global_symbol_definition (abfd, sym);
3363
3364 Instead for now assume that the definition is not global,
3365 Even if this is wrong, at least the linker will behave
3366 in the same way that it used to do. */
3367 return FALSE;
3368
3369 return TRUE;
3370 }
3371
3372 /* Search the symbol table of the archive element of the archive ABFD
3373 whose archive map contains a mention of SYMDEF, and determine if
3374 the symbol is defined in this element. */
3375 static bfd_boolean
3376 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3377 {
3378 Elf_Internal_Shdr * hdr;
3379 size_t symcount;
3380 size_t extsymcount;
3381 size_t extsymoff;
3382 Elf_Internal_Sym *isymbuf;
3383 Elf_Internal_Sym *isym;
3384 Elf_Internal_Sym *isymend;
3385 bfd_boolean result;
3386
3387 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3388 if (abfd == NULL)
3389 return FALSE;
3390
3391 if (! bfd_check_format (abfd, bfd_object))
3392 return FALSE;
3393
3394 /* Select the appropriate symbol table. If we don't know if the
3395 object file is an IR object, give linker LTO plugin a chance to
3396 get the correct symbol table. */
3397 if (abfd->plugin_format == bfd_plugin_yes
3398 #if BFD_SUPPORTS_PLUGINS
3399 || (abfd->plugin_format == bfd_plugin_unknown
3400 && bfd_link_plugin_object_p (abfd))
3401 #endif
3402 )
3403 {
3404 /* Use the IR symbol table if the object has been claimed by
3405 plugin. */
3406 abfd = abfd->plugin_dummy_bfd;
3407 hdr = &elf_tdata (abfd)->symtab_hdr;
3408 }
3409 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 else
3412 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3413
3414 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3415
3416 /* The sh_info field of the symtab header tells us where the
3417 external symbols start. We don't care about the local symbols. */
3418 if (elf_bad_symtab (abfd))
3419 {
3420 extsymcount = symcount;
3421 extsymoff = 0;
3422 }
3423 else
3424 {
3425 extsymcount = symcount - hdr->sh_info;
3426 extsymoff = hdr->sh_info;
3427 }
3428
3429 if (extsymcount == 0)
3430 return FALSE;
3431
3432 /* Read in the symbol table. */
3433 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3434 NULL, NULL, NULL);
3435 if (isymbuf == NULL)
3436 return FALSE;
3437
3438 /* Scan the symbol table looking for SYMDEF. */
3439 result = FALSE;
3440 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3441 {
3442 const char *name;
3443
3444 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3445 isym->st_name);
3446 if (name == NULL)
3447 break;
3448
3449 if (strcmp (name, symdef->name) == 0)
3450 {
3451 result = is_global_data_symbol_definition (abfd, isym);
3452 break;
3453 }
3454 }
3455
3456 free (isymbuf);
3457
3458 return result;
3459 }
3460 \f
3461 /* Add an entry to the .dynamic table. */
3462
3463 bfd_boolean
3464 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3465 bfd_vma tag,
3466 bfd_vma val)
3467 {
3468 struct elf_link_hash_table *hash_table;
3469 const struct elf_backend_data *bed;
3470 asection *s;
3471 bfd_size_type newsize;
3472 bfd_byte *newcontents;
3473 Elf_Internal_Dyn dyn;
3474
3475 hash_table = elf_hash_table (info);
3476 if (! is_elf_hash_table (hash_table))
3477 return FALSE;
3478
3479 if (tag == DT_RELA || tag == DT_REL)
3480 hash_table->dynamic_relocs = TRUE;
3481
3482 bed = get_elf_backend_data (hash_table->dynobj);
3483 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3484 BFD_ASSERT (s != NULL);
3485
3486 newsize = s->size + bed->s->sizeof_dyn;
3487 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3488 if (newcontents == NULL)
3489 return FALSE;
3490
3491 dyn.d_tag = tag;
3492 dyn.d_un.d_val = val;
3493 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3494
3495 s->size = newsize;
3496 s->contents = newcontents;
3497
3498 return TRUE;
3499 }
3500
3501 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3502 otherwise just check whether one already exists. Returns -1 on error,
3503 1 if a DT_NEEDED tag already exists, and 0 on success. */
3504
3505 static int
3506 elf_add_dt_needed_tag (bfd *abfd,
3507 struct bfd_link_info *info,
3508 const char *soname,
3509 bfd_boolean do_it)
3510 {
3511 struct elf_link_hash_table *hash_table;
3512 size_t strindex;
3513
3514 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3515 return -1;
3516
3517 hash_table = elf_hash_table (info);
3518 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3519 if (strindex == (size_t) -1)
3520 return -1;
3521
3522 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3523 {
3524 asection *sdyn;
3525 const struct elf_backend_data *bed;
3526 bfd_byte *extdyn;
3527
3528 bed = get_elf_backend_data (hash_table->dynobj);
3529 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3530 if (sdyn != NULL)
3531 for (extdyn = sdyn->contents;
3532 extdyn < sdyn->contents + sdyn->size;
3533 extdyn += bed->s->sizeof_dyn)
3534 {
3535 Elf_Internal_Dyn dyn;
3536
3537 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3538 if (dyn.d_tag == DT_NEEDED
3539 && dyn.d_un.d_val == strindex)
3540 {
3541 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3542 return 1;
3543 }
3544 }
3545 }
3546
3547 if (do_it)
3548 {
3549 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3550 return -1;
3551
3552 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3553 return -1;
3554 }
3555 else
3556 /* We were just checking for existence of the tag. */
3557 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3558
3559 return 0;
3560 }
3561
3562 /* Return true if SONAME is on the needed list between NEEDED and STOP
3563 (or the end of list if STOP is NULL), and needed by a library that
3564 will be loaded. */
3565
3566 static bfd_boolean
3567 on_needed_list (const char *soname,
3568 struct bfd_link_needed_list *needed,
3569 struct bfd_link_needed_list *stop)
3570 {
3571 struct bfd_link_needed_list *look;
3572 for (look = needed; look != stop; look = look->next)
3573 if (strcmp (soname, look->name) == 0
3574 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3575 /* If needed by a library that itself is not directly
3576 needed, recursively check whether that library is
3577 indirectly needed. Since we add DT_NEEDED entries to
3578 the end of the list, library dependencies appear after
3579 the library. Therefore search prior to the current
3580 LOOK, preventing possible infinite recursion. */
3581 || on_needed_list (elf_dt_name (look->by), needed, look)))
3582 return TRUE;
3583
3584 return FALSE;
3585 }
3586
3587 /* Sort symbol by value, section, and size. */
3588 static int
3589 elf_sort_symbol (const void *arg1, const void *arg2)
3590 {
3591 const struct elf_link_hash_entry *h1;
3592 const struct elf_link_hash_entry *h2;
3593 bfd_signed_vma vdiff;
3594
3595 h1 = *(const struct elf_link_hash_entry **) arg1;
3596 h2 = *(const struct elf_link_hash_entry **) arg2;
3597 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3598 if (vdiff != 0)
3599 return vdiff > 0 ? 1 : -1;
3600 else
3601 {
3602 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3603 if (sdiff != 0)
3604 return sdiff > 0 ? 1 : -1;
3605 }
3606 vdiff = h1->size - h2->size;
3607 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3608 }
3609
3610 /* This function is used to adjust offsets into .dynstr for
3611 dynamic symbols. This is called via elf_link_hash_traverse. */
3612
3613 static bfd_boolean
3614 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3615 {
3616 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3617
3618 if (h->dynindx != -1)
3619 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3620 return TRUE;
3621 }
3622
3623 /* Assign string offsets in .dynstr, update all structures referencing
3624 them. */
3625
3626 static bfd_boolean
3627 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3628 {
3629 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3630 struct elf_link_local_dynamic_entry *entry;
3631 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3632 bfd *dynobj = hash_table->dynobj;
3633 asection *sdyn;
3634 bfd_size_type size;
3635 const struct elf_backend_data *bed;
3636 bfd_byte *extdyn;
3637
3638 _bfd_elf_strtab_finalize (dynstr);
3639 size = _bfd_elf_strtab_size (dynstr);
3640
3641 bed = get_elf_backend_data (dynobj);
3642 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3643 BFD_ASSERT (sdyn != NULL);
3644
3645 /* Update all .dynamic entries referencing .dynstr strings. */
3646 for (extdyn = sdyn->contents;
3647 extdyn < sdyn->contents + sdyn->size;
3648 extdyn += bed->s->sizeof_dyn)
3649 {
3650 Elf_Internal_Dyn dyn;
3651
3652 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3653 switch (dyn.d_tag)
3654 {
3655 case DT_STRSZ:
3656 dyn.d_un.d_val = size;
3657 break;
3658 case DT_NEEDED:
3659 case DT_SONAME:
3660 case DT_RPATH:
3661 case DT_RUNPATH:
3662 case DT_FILTER:
3663 case DT_AUXILIARY:
3664 case DT_AUDIT:
3665 case DT_DEPAUDIT:
3666 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3667 break;
3668 default:
3669 continue;
3670 }
3671 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3672 }
3673
3674 /* Now update local dynamic symbols. */
3675 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3676 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3677 entry->isym.st_name);
3678
3679 /* And the rest of dynamic symbols. */
3680 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3681
3682 /* Adjust version definitions. */
3683 if (elf_tdata (output_bfd)->cverdefs)
3684 {
3685 asection *s;
3686 bfd_byte *p;
3687 size_t i;
3688 Elf_Internal_Verdef def;
3689 Elf_Internal_Verdaux defaux;
3690
3691 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3692 p = s->contents;
3693 do
3694 {
3695 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3696 &def);
3697 p += sizeof (Elf_External_Verdef);
3698 if (def.vd_aux != sizeof (Elf_External_Verdef))
3699 continue;
3700 for (i = 0; i < def.vd_cnt; ++i)
3701 {
3702 _bfd_elf_swap_verdaux_in (output_bfd,
3703 (Elf_External_Verdaux *) p, &defaux);
3704 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3705 defaux.vda_name);
3706 _bfd_elf_swap_verdaux_out (output_bfd,
3707 &defaux, (Elf_External_Verdaux *) p);
3708 p += sizeof (Elf_External_Verdaux);
3709 }
3710 }
3711 while (def.vd_next);
3712 }
3713
3714 /* Adjust version references. */
3715 if (elf_tdata (output_bfd)->verref)
3716 {
3717 asection *s;
3718 bfd_byte *p;
3719 size_t i;
3720 Elf_Internal_Verneed need;
3721 Elf_Internal_Vernaux needaux;
3722
3723 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3724 p = s->contents;
3725 do
3726 {
3727 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3728 &need);
3729 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3730 _bfd_elf_swap_verneed_out (output_bfd, &need,
3731 (Elf_External_Verneed *) p);
3732 p += sizeof (Elf_External_Verneed);
3733 for (i = 0; i < need.vn_cnt; ++i)
3734 {
3735 _bfd_elf_swap_vernaux_in (output_bfd,
3736 (Elf_External_Vernaux *) p, &needaux);
3737 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3738 needaux.vna_name);
3739 _bfd_elf_swap_vernaux_out (output_bfd,
3740 &needaux,
3741 (Elf_External_Vernaux *) p);
3742 p += sizeof (Elf_External_Vernaux);
3743 }
3744 }
3745 while (need.vn_next);
3746 }
3747
3748 return TRUE;
3749 }
3750 \f
3751 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3752 The default is to only match when the INPUT and OUTPUT are exactly
3753 the same target. */
3754
3755 bfd_boolean
3756 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3757 const bfd_target *output)
3758 {
3759 return input == output;
3760 }
3761
3762 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3763 This version is used when different targets for the same architecture
3764 are virtually identical. */
3765
3766 bfd_boolean
3767 _bfd_elf_relocs_compatible (const bfd_target *input,
3768 const bfd_target *output)
3769 {
3770 const struct elf_backend_data *obed, *ibed;
3771
3772 if (input == output)
3773 return TRUE;
3774
3775 ibed = xvec_get_elf_backend_data (input);
3776 obed = xvec_get_elf_backend_data (output);
3777
3778 if (ibed->arch != obed->arch)
3779 return FALSE;
3780
3781 /* If both backends are using this function, deem them compatible. */
3782 return ibed->relocs_compatible == obed->relocs_compatible;
3783 }
3784
3785 /* Make a special call to the linker "notice" function to tell it that
3786 we are about to handle an as-needed lib, or have finished
3787 processing the lib. */
3788
3789 bfd_boolean
3790 _bfd_elf_notice_as_needed (bfd *ibfd,
3791 struct bfd_link_info *info,
3792 enum notice_asneeded_action act)
3793 {
3794 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3795 }
3796
3797 /* Check relocations an ELF object file. */
3798
3799 bfd_boolean
3800 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3801 {
3802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3803 struct elf_link_hash_table *htab = elf_hash_table (info);
3804
3805 /* If this object is the same format as the output object, and it is
3806 not a shared library, then let the backend look through the
3807 relocs.
3808
3809 This is required to build global offset table entries and to
3810 arrange for dynamic relocs. It is not required for the
3811 particular common case of linking non PIC code, even when linking
3812 against shared libraries, but unfortunately there is no way of
3813 knowing whether an object file has been compiled PIC or not.
3814 Looking through the relocs is not particularly time consuming.
3815 The problem is that we must either (1) keep the relocs in memory,
3816 which causes the linker to require additional runtime memory or
3817 (2) read the relocs twice from the input file, which wastes time.
3818 This would be a good case for using mmap.
3819
3820 I have no idea how to handle linking PIC code into a file of a
3821 different format. It probably can't be done. */
3822 if ((abfd->flags & DYNAMIC) == 0
3823 && is_elf_hash_table (htab)
3824 && bed->check_relocs != NULL
3825 && elf_object_id (abfd) == elf_hash_table_id (htab)
3826 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3827 {
3828 asection *o;
3829
3830 for (o = abfd->sections; o != NULL; o = o->next)
3831 {
3832 Elf_Internal_Rela *internal_relocs;
3833 bfd_boolean ok;
3834
3835 /* Don't check relocations in excluded sections. */
3836 if ((o->flags & SEC_RELOC) == 0
3837 || (o->flags & SEC_EXCLUDE) != 0
3838 || o->reloc_count == 0
3839 || ((info->strip == strip_all || info->strip == strip_debugger)
3840 && (o->flags & SEC_DEBUGGING) != 0)
3841 || bfd_is_abs_section (o->output_section))
3842 continue;
3843
3844 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3845 info->keep_memory);
3846 if (internal_relocs == NULL)
3847 return FALSE;
3848
3849 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3850
3851 if (elf_section_data (o)->relocs != internal_relocs)
3852 free (internal_relocs);
3853
3854 if (! ok)
3855 return FALSE;
3856 }
3857 }
3858
3859 return TRUE;
3860 }
3861
3862 /* Add symbols from an ELF object file to the linker hash table. */
3863
3864 static bfd_boolean
3865 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3866 {
3867 Elf_Internal_Ehdr *ehdr;
3868 Elf_Internal_Shdr *hdr;
3869 size_t symcount;
3870 size_t extsymcount;
3871 size_t extsymoff;
3872 struct elf_link_hash_entry **sym_hash;
3873 bfd_boolean dynamic;
3874 Elf_External_Versym *extversym = NULL;
3875 Elf_External_Versym *extversym_end = NULL;
3876 Elf_External_Versym *ever;
3877 struct elf_link_hash_entry *weaks;
3878 struct elf_link_hash_entry **nondeflt_vers = NULL;
3879 size_t nondeflt_vers_cnt = 0;
3880 Elf_Internal_Sym *isymbuf = NULL;
3881 Elf_Internal_Sym *isym;
3882 Elf_Internal_Sym *isymend;
3883 const struct elf_backend_data *bed;
3884 bfd_boolean add_needed;
3885 struct elf_link_hash_table *htab;
3886 bfd_size_type amt;
3887 void *alloc_mark = NULL;
3888 struct bfd_hash_entry **old_table = NULL;
3889 unsigned int old_size = 0;
3890 unsigned int old_count = 0;
3891 void *old_tab = NULL;
3892 void *old_ent;
3893 struct bfd_link_hash_entry *old_undefs = NULL;
3894 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3895 void *old_strtab = NULL;
3896 size_t tabsize = 0;
3897 asection *s;
3898 bfd_boolean just_syms;
3899
3900 htab = elf_hash_table (info);
3901 bed = get_elf_backend_data (abfd);
3902
3903 if ((abfd->flags & DYNAMIC) == 0)
3904 dynamic = FALSE;
3905 else
3906 {
3907 dynamic = TRUE;
3908
3909 /* You can't use -r against a dynamic object. Also, there's no
3910 hope of using a dynamic object which does not exactly match
3911 the format of the output file. */
3912 if (bfd_link_relocatable (info)
3913 || !is_elf_hash_table (htab)
3914 || info->output_bfd->xvec != abfd->xvec)
3915 {
3916 if (bfd_link_relocatable (info))
3917 bfd_set_error (bfd_error_invalid_operation);
3918 else
3919 bfd_set_error (bfd_error_wrong_format);
3920 goto error_return;
3921 }
3922 }
3923
3924 ehdr = elf_elfheader (abfd);
3925 if (info->warn_alternate_em
3926 && bed->elf_machine_code != ehdr->e_machine
3927 && ((bed->elf_machine_alt1 != 0
3928 && ehdr->e_machine == bed->elf_machine_alt1)
3929 || (bed->elf_machine_alt2 != 0
3930 && ehdr->e_machine == bed->elf_machine_alt2)))
3931 _bfd_error_handler
3932 /* xgettext:c-format */
3933 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3934 ehdr->e_machine, abfd, bed->elf_machine_code);
3935
3936 /* As a GNU extension, any input sections which are named
3937 .gnu.warning.SYMBOL are treated as warning symbols for the given
3938 symbol. This differs from .gnu.warning sections, which generate
3939 warnings when they are included in an output file. */
3940 /* PR 12761: Also generate this warning when building shared libraries. */
3941 for (s = abfd->sections; s != NULL; s = s->next)
3942 {
3943 const char *name;
3944
3945 name = bfd_get_section_name (abfd, s);
3946 if (CONST_STRNEQ (name, ".gnu.warning."))
3947 {
3948 char *msg;
3949 bfd_size_type sz;
3950
3951 name += sizeof ".gnu.warning." - 1;
3952
3953 /* If this is a shared object, then look up the symbol
3954 in the hash table. If it is there, and it is already
3955 been defined, then we will not be using the entry
3956 from this shared object, so we don't need to warn.
3957 FIXME: If we see the definition in a regular object
3958 later on, we will warn, but we shouldn't. The only
3959 fix is to keep track of what warnings we are supposed
3960 to emit, and then handle them all at the end of the
3961 link. */
3962 if (dynamic)
3963 {
3964 struct elf_link_hash_entry *h;
3965
3966 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3967
3968 /* FIXME: What about bfd_link_hash_common? */
3969 if (h != NULL
3970 && (h->root.type == bfd_link_hash_defined
3971 || h->root.type == bfd_link_hash_defweak))
3972 continue;
3973 }
3974
3975 sz = s->size;
3976 msg = (char *) bfd_alloc (abfd, sz + 1);
3977 if (msg == NULL)
3978 goto error_return;
3979
3980 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3981 goto error_return;
3982
3983 msg[sz] = '\0';
3984
3985 if (! (_bfd_generic_link_add_one_symbol
3986 (info, abfd, name, BSF_WARNING, s, 0, msg,
3987 FALSE, bed->collect, NULL)))
3988 goto error_return;
3989
3990 if (bfd_link_executable (info))
3991 {
3992 /* Clobber the section size so that the warning does
3993 not get copied into the output file. */
3994 s->size = 0;
3995
3996 /* Also set SEC_EXCLUDE, so that symbols defined in
3997 the warning section don't get copied to the output. */
3998 s->flags |= SEC_EXCLUDE;
3999 }
4000 }
4001 }
4002
4003 just_syms = ((s = abfd->sections) != NULL
4004 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4005
4006 add_needed = TRUE;
4007 if (! dynamic)
4008 {
4009 /* If we are creating a shared library, create all the dynamic
4010 sections immediately. We need to attach them to something,
4011 so we attach them to this BFD, provided it is the right
4012 format and is not from ld --just-symbols. Always create the
4013 dynamic sections for -E/--dynamic-list. FIXME: If there
4014 are no input BFD's of the same format as the output, we can't
4015 make a shared library. */
4016 if (!just_syms
4017 && (bfd_link_pic (info)
4018 || (!bfd_link_relocatable (info)
4019 && info->nointerp
4020 && (info->export_dynamic || info->dynamic)))
4021 && is_elf_hash_table (htab)
4022 && info->output_bfd->xvec == abfd->xvec
4023 && !htab->dynamic_sections_created)
4024 {
4025 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4026 goto error_return;
4027 }
4028 }
4029 else if (!is_elf_hash_table (htab))
4030 goto error_return;
4031 else
4032 {
4033 const char *soname = NULL;
4034 char *audit = NULL;
4035 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4036 const Elf_Internal_Phdr *phdr;
4037 int ret;
4038
4039 /* ld --just-symbols and dynamic objects don't mix very well.
4040 ld shouldn't allow it. */
4041 if (just_syms)
4042 abort ();
4043
4044 /* If this dynamic lib was specified on the command line with
4045 --as-needed in effect, then we don't want to add a DT_NEEDED
4046 tag unless the lib is actually used. Similary for libs brought
4047 in by another lib's DT_NEEDED. When --no-add-needed is used
4048 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4049 any dynamic library in DT_NEEDED tags in the dynamic lib at
4050 all. */
4051 add_needed = (elf_dyn_lib_class (abfd)
4052 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4053 | DYN_NO_NEEDED)) == 0;
4054
4055 s = bfd_get_section_by_name (abfd, ".dynamic");
4056 if (s != NULL)
4057 {
4058 bfd_byte *dynbuf;
4059 bfd_byte *extdyn;
4060 unsigned int elfsec;
4061 unsigned long shlink;
4062
4063 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4064 {
4065 error_free_dyn:
4066 free (dynbuf);
4067 goto error_return;
4068 }
4069
4070 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4071 if (elfsec == SHN_BAD)
4072 goto error_free_dyn;
4073 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4074
4075 for (extdyn = dynbuf;
4076 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4077 extdyn += bed->s->sizeof_dyn)
4078 {
4079 Elf_Internal_Dyn dyn;
4080
4081 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4082 if (dyn.d_tag == DT_SONAME)
4083 {
4084 unsigned int tagv = dyn.d_un.d_val;
4085 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4086 if (soname == NULL)
4087 goto error_free_dyn;
4088 }
4089 if (dyn.d_tag == DT_NEEDED)
4090 {
4091 struct bfd_link_needed_list *n, **pn;
4092 char *fnm, *anm;
4093 unsigned int tagv = dyn.d_un.d_val;
4094
4095 amt = sizeof (struct bfd_link_needed_list);
4096 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4097 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4098 if (n == NULL || fnm == NULL)
4099 goto error_free_dyn;
4100 amt = strlen (fnm) + 1;
4101 anm = (char *) bfd_alloc (abfd, amt);
4102 if (anm == NULL)
4103 goto error_free_dyn;
4104 memcpy (anm, fnm, amt);
4105 n->name = anm;
4106 n->by = abfd;
4107 n->next = NULL;
4108 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4109 ;
4110 *pn = n;
4111 }
4112 if (dyn.d_tag == DT_RUNPATH)
4113 {
4114 struct bfd_link_needed_list *n, **pn;
4115 char *fnm, *anm;
4116 unsigned int tagv = dyn.d_un.d_val;
4117
4118 amt = sizeof (struct bfd_link_needed_list);
4119 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4120 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4121 if (n == NULL || fnm == NULL)
4122 goto error_free_dyn;
4123 amt = strlen (fnm) + 1;
4124 anm = (char *) bfd_alloc (abfd, amt);
4125 if (anm == NULL)
4126 goto error_free_dyn;
4127 memcpy (anm, fnm, amt);
4128 n->name = anm;
4129 n->by = abfd;
4130 n->next = NULL;
4131 for (pn = & runpath;
4132 *pn != NULL;
4133 pn = &(*pn)->next)
4134 ;
4135 *pn = n;
4136 }
4137 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4138 if (!runpath && dyn.d_tag == DT_RPATH)
4139 {
4140 struct bfd_link_needed_list *n, **pn;
4141 char *fnm, *anm;
4142 unsigned int tagv = dyn.d_un.d_val;
4143
4144 amt = sizeof (struct bfd_link_needed_list);
4145 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4146 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4147 if (n == NULL || fnm == NULL)
4148 goto error_free_dyn;
4149 amt = strlen (fnm) + 1;
4150 anm = (char *) bfd_alloc (abfd, amt);
4151 if (anm == NULL)
4152 goto error_free_dyn;
4153 memcpy (anm, fnm, amt);
4154 n->name = anm;
4155 n->by = abfd;
4156 n->next = NULL;
4157 for (pn = & rpath;
4158 *pn != NULL;
4159 pn = &(*pn)->next)
4160 ;
4161 *pn = n;
4162 }
4163 if (dyn.d_tag == DT_AUDIT)
4164 {
4165 unsigned int tagv = dyn.d_un.d_val;
4166 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4167 }
4168 }
4169
4170 free (dynbuf);
4171 }
4172
4173 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4174 frees all more recently bfd_alloc'd blocks as well. */
4175 if (runpath)
4176 rpath = runpath;
4177
4178 if (rpath)
4179 {
4180 struct bfd_link_needed_list **pn;
4181 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4182 ;
4183 *pn = rpath;
4184 }
4185
4186 /* If we have a PT_GNU_RELRO program header, mark as read-only
4187 all sections contained fully therein. This makes relro
4188 shared library sections appear as they will at run-time. */
4189 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4190 while (phdr-- > elf_tdata (abfd)->phdr)
4191 if (phdr->p_type == PT_GNU_RELRO)
4192 {
4193 for (s = abfd->sections; s != NULL; s = s->next)
4194 if ((s->flags & SEC_ALLOC) != 0
4195 && s->vma >= phdr->p_vaddr
4196 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4197 s->flags |= SEC_READONLY;
4198 break;
4199 }
4200
4201 /* We do not want to include any of the sections in a dynamic
4202 object in the output file. We hack by simply clobbering the
4203 list of sections in the BFD. This could be handled more
4204 cleanly by, say, a new section flag; the existing
4205 SEC_NEVER_LOAD flag is not the one we want, because that one
4206 still implies that the section takes up space in the output
4207 file. */
4208 bfd_section_list_clear (abfd);
4209
4210 /* Find the name to use in a DT_NEEDED entry that refers to this
4211 object. If the object has a DT_SONAME entry, we use it.
4212 Otherwise, if the generic linker stuck something in
4213 elf_dt_name, we use that. Otherwise, we just use the file
4214 name. */
4215 if (soname == NULL || *soname == '\0')
4216 {
4217 soname = elf_dt_name (abfd);
4218 if (soname == NULL || *soname == '\0')
4219 soname = bfd_get_filename (abfd);
4220 }
4221
4222 /* Save the SONAME because sometimes the linker emulation code
4223 will need to know it. */
4224 elf_dt_name (abfd) = soname;
4225
4226 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4227 if (ret < 0)
4228 goto error_return;
4229
4230 /* If we have already included this dynamic object in the
4231 link, just ignore it. There is no reason to include a
4232 particular dynamic object more than once. */
4233 if (ret > 0)
4234 return TRUE;
4235
4236 /* Save the DT_AUDIT entry for the linker emulation code. */
4237 elf_dt_audit (abfd) = audit;
4238 }
4239
4240 /* If this is a dynamic object, we always link against the .dynsym
4241 symbol table, not the .symtab symbol table. The dynamic linker
4242 will only see the .dynsym symbol table, so there is no reason to
4243 look at .symtab for a dynamic object. */
4244
4245 if (! dynamic || elf_dynsymtab (abfd) == 0)
4246 hdr = &elf_tdata (abfd)->symtab_hdr;
4247 else
4248 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4249
4250 symcount = hdr->sh_size / bed->s->sizeof_sym;
4251
4252 /* The sh_info field of the symtab header tells us where the
4253 external symbols start. We don't care about the local symbols at
4254 this point. */
4255 if (elf_bad_symtab (abfd))
4256 {
4257 extsymcount = symcount;
4258 extsymoff = 0;
4259 }
4260 else
4261 {
4262 extsymcount = symcount - hdr->sh_info;
4263 extsymoff = hdr->sh_info;
4264 }
4265
4266 sym_hash = elf_sym_hashes (abfd);
4267 if (extsymcount != 0)
4268 {
4269 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4270 NULL, NULL, NULL);
4271 if (isymbuf == NULL)
4272 goto error_return;
4273
4274 if (sym_hash == NULL)
4275 {
4276 /* We store a pointer to the hash table entry for each
4277 external symbol. */
4278 amt = extsymcount;
4279 amt *= sizeof (struct elf_link_hash_entry *);
4280 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4281 if (sym_hash == NULL)
4282 goto error_free_sym;
4283 elf_sym_hashes (abfd) = sym_hash;
4284 }
4285 }
4286
4287 if (dynamic)
4288 {
4289 /* Read in any version definitions. */
4290 if (!_bfd_elf_slurp_version_tables (abfd,
4291 info->default_imported_symver))
4292 goto error_free_sym;
4293
4294 /* Read in the symbol versions, but don't bother to convert them
4295 to internal format. */
4296 if (elf_dynversym (abfd) != 0)
4297 {
4298 Elf_Internal_Shdr *versymhdr;
4299
4300 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4301 amt = versymhdr->sh_size;
4302 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4303 if (extversym == NULL)
4304 goto error_free_sym;
4305 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4306 || bfd_bread (extversym, amt, abfd) != amt)
4307 goto error_free_vers;
4308 extversym_end = extversym + (amt / sizeof (* extversym));
4309 }
4310 }
4311
4312 /* If we are loading an as-needed shared lib, save the symbol table
4313 state before we start adding symbols. If the lib turns out
4314 to be unneeded, restore the state. */
4315 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4316 {
4317 unsigned int i;
4318 size_t entsize;
4319
4320 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4321 {
4322 struct bfd_hash_entry *p;
4323 struct elf_link_hash_entry *h;
4324
4325 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4326 {
4327 h = (struct elf_link_hash_entry *) p;
4328 entsize += htab->root.table.entsize;
4329 if (h->root.type == bfd_link_hash_warning)
4330 entsize += htab->root.table.entsize;
4331 }
4332 }
4333
4334 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4335 old_tab = bfd_malloc (tabsize + entsize);
4336 if (old_tab == NULL)
4337 goto error_free_vers;
4338
4339 /* Remember the current objalloc pointer, so that all mem for
4340 symbols added can later be reclaimed. */
4341 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4342 if (alloc_mark == NULL)
4343 goto error_free_vers;
4344
4345 /* Make a special call to the linker "notice" function to
4346 tell it that we are about to handle an as-needed lib. */
4347 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4348 goto error_free_vers;
4349
4350 /* Clone the symbol table. Remember some pointers into the
4351 symbol table, and dynamic symbol count. */
4352 old_ent = (char *) old_tab + tabsize;
4353 memcpy (old_tab, htab->root.table.table, tabsize);
4354 old_undefs = htab->root.undefs;
4355 old_undefs_tail = htab->root.undefs_tail;
4356 old_table = htab->root.table.table;
4357 old_size = htab->root.table.size;
4358 old_count = htab->root.table.count;
4359 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4360 if (old_strtab == NULL)
4361 goto error_free_vers;
4362
4363 for (i = 0; i < htab->root.table.size; i++)
4364 {
4365 struct bfd_hash_entry *p;
4366 struct elf_link_hash_entry *h;
4367
4368 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4369 {
4370 memcpy (old_ent, p, htab->root.table.entsize);
4371 old_ent = (char *) old_ent + htab->root.table.entsize;
4372 h = (struct elf_link_hash_entry *) p;
4373 if (h->root.type == bfd_link_hash_warning)
4374 {
4375 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4376 old_ent = (char *) old_ent + htab->root.table.entsize;
4377 }
4378 }
4379 }
4380 }
4381
4382 weaks = NULL;
4383 if (extversym == NULL)
4384 ever = NULL;
4385 else if (extversym + extsymoff < extversym_end)
4386 ever = extversym + extsymoff;
4387 else
4388 {
4389 /* xgettext:c-format */
4390 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4391 abfd, (long) extsymoff,
4392 (long) (extversym_end - extversym) / sizeof (* extversym));
4393 bfd_set_error (bfd_error_bad_value);
4394 goto error_free_vers;
4395 }
4396
4397 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4398 isym < isymend;
4399 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4400 {
4401 int bind;
4402 bfd_vma value;
4403 asection *sec, *new_sec;
4404 flagword flags;
4405 const char *name;
4406 struct elf_link_hash_entry *h;
4407 struct elf_link_hash_entry *hi;
4408 bfd_boolean definition;
4409 bfd_boolean size_change_ok;
4410 bfd_boolean type_change_ok;
4411 bfd_boolean new_weak;
4412 bfd_boolean old_weak;
4413 bfd_boolean override;
4414 bfd_boolean common;
4415 bfd_boolean discarded;
4416 unsigned int old_alignment;
4417 bfd *old_bfd;
4418 bfd_boolean matched;
4419
4420 override = FALSE;
4421
4422 flags = BSF_NO_FLAGS;
4423 sec = NULL;
4424 value = isym->st_value;
4425 common = bed->common_definition (isym);
4426 if (common && info->inhibit_common_definition)
4427 {
4428 /* Treat common symbol as undefined for --no-define-common. */
4429 isym->st_shndx = SHN_UNDEF;
4430 common = FALSE;
4431 }
4432 discarded = FALSE;
4433
4434 bind = ELF_ST_BIND (isym->st_info);
4435 switch (bind)
4436 {
4437 case STB_LOCAL:
4438 /* This should be impossible, since ELF requires that all
4439 global symbols follow all local symbols, and that sh_info
4440 point to the first global symbol. Unfortunately, Irix 5
4441 screws this up. */
4442 if (elf_bad_symtab (abfd))
4443 continue;
4444
4445 /* If we aren't prepared to handle locals within the globals
4446 then we'll likely segfault on a NULL section. */
4447 bfd_set_error (bfd_error_bad_value);
4448 goto error_free_vers;
4449
4450 case STB_GLOBAL:
4451 if (isym->st_shndx != SHN_UNDEF && !common)
4452 flags = BSF_GLOBAL;
4453 break;
4454
4455 case STB_WEAK:
4456 flags = BSF_WEAK;
4457 break;
4458
4459 case STB_GNU_UNIQUE:
4460 flags = BSF_GNU_UNIQUE;
4461 break;
4462
4463 default:
4464 /* Leave it up to the processor backend. */
4465 break;
4466 }
4467
4468 if (isym->st_shndx == SHN_UNDEF)
4469 sec = bfd_und_section_ptr;
4470 else if (isym->st_shndx == SHN_ABS)
4471 sec = bfd_abs_section_ptr;
4472 else if (isym->st_shndx == SHN_COMMON)
4473 {
4474 sec = bfd_com_section_ptr;
4475 /* What ELF calls the size we call the value. What ELF
4476 calls the value we call the alignment. */
4477 value = isym->st_size;
4478 }
4479 else
4480 {
4481 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4482 if (sec == NULL)
4483 sec = bfd_abs_section_ptr;
4484 else if (discarded_section (sec))
4485 {
4486 /* Symbols from discarded section are undefined. We keep
4487 its visibility. */
4488 sec = bfd_und_section_ptr;
4489 discarded = TRUE;
4490 isym->st_shndx = SHN_UNDEF;
4491 }
4492 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4493 value -= sec->vma;
4494 }
4495
4496 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4497 isym->st_name);
4498 if (name == NULL)
4499 goto error_free_vers;
4500
4501 if (isym->st_shndx == SHN_COMMON
4502 && (abfd->flags & BFD_PLUGIN) != 0)
4503 {
4504 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4505
4506 if (xc == NULL)
4507 {
4508 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4509 | SEC_EXCLUDE);
4510 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4511 if (xc == NULL)
4512 goto error_free_vers;
4513 }
4514 sec = xc;
4515 }
4516 else if (isym->st_shndx == SHN_COMMON
4517 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4518 && !bfd_link_relocatable (info))
4519 {
4520 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4521
4522 if (tcomm == NULL)
4523 {
4524 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4525 | SEC_LINKER_CREATED);
4526 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4527 if (tcomm == NULL)
4528 goto error_free_vers;
4529 }
4530 sec = tcomm;
4531 }
4532 else if (bed->elf_add_symbol_hook)
4533 {
4534 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4535 &sec, &value))
4536 goto error_free_vers;
4537
4538 /* The hook function sets the name to NULL if this symbol
4539 should be skipped for some reason. */
4540 if (name == NULL)
4541 continue;
4542 }
4543
4544 /* Sanity check that all possibilities were handled. */
4545 if (sec == NULL)
4546 {
4547 bfd_set_error (bfd_error_bad_value);
4548 goto error_free_vers;
4549 }
4550
4551 /* Silently discard TLS symbols from --just-syms. There's
4552 no way to combine a static TLS block with a new TLS block
4553 for this executable. */
4554 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4555 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4556 continue;
4557
4558 if (bfd_is_und_section (sec)
4559 || bfd_is_com_section (sec))
4560 definition = FALSE;
4561 else
4562 definition = TRUE;
4563
4564 size_change_ok = FALSE;
4565 type_change_ok = bed->type_change_ok;
4566 old_weak = FALSE;
4567 matched = FALSE;
4568 old_alignment = 0;
4569 old_bfd = NULL;
4570 new_sec = sec;
4571
4572 if (is_elf_hash_table (htab))
4573 {
4574 Elf_Internal_Versym iver;
4575 unsigned int vernum = 0;
4576 bfd_boolean skip;
4577
4578 if (ever == NULL)
4579 {
4580 if (info->default_imported_symver)
4581 /* Use the default symbol version created earlier. */
4582 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4583 else
4584 iver.vs_vers = 0;
4585 }
4586 else if (ever >= extversym_end)
4587 {
4588 /* xgettext:c-format */
4589 _bfd_error_handler (_("%pB: not enough version information"),
4590 abfd);
4591 bfd_set_error (bfd_error_bad_value);
4592 goto error_free_vers;
4593 }
4594 else
4595 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4596
4597 vernum = iver.vs_vers & VERSYM_VERSION;
4598
4599 /* If this is a hidden symbol, or if it is not version
4600 1, we append the version name to the symbol name.
4601 However, we do not modify a non-hidden absolute symbol
4602 if it is not a function, because it might be the version
4603 symbol itself. FIXME: What if it isn't? */
4604 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4605 || (vernum > 1
4606 && (!bfd_is_abs_section (sec)
4607 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4608 {
4609 const char *verstr;
4610 size_t namelen, verlen, newlen;
4611 char *newname, *p;
4612
4613 if (isym->st_shndx != SHN_UNDEF)
4614 {
4615 if (vernum > elf_tdata (abfd)->cverdefs)
4616 verstr = NULL;
4617 else if (vernum > 1)
4618 verstr =
4619 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4620 else
4621 verstr = "";
4622
4623 if (verstr == NULL)
4624 {
4625 _bfd_error_handler
4626 /* xgettext:c-format */
4627 (_("%pB: %s: invalid version %u (max %d)"),
4628 abfd, name, vernum,
4629 elf_tdata (abfd)->cverdefs);
4630 bfd_set_error (bfd_error_bad_value);
4631 goto error_free_vers;
4632 }
4633 }
4634 else
4635 {
4636 /* We cannot simply test for the number of
4637 entries in the VERNEED section since the
4638 numbers for the needed versions do not start
4639 at 0. */
4640 Elf_Internal_Verneed *t;
4641
4642 verstr = NULL;
4643 for (t = elf_tdata (abfd)->verref;
4644 t != NULL;
4645 t = t->vn_nextref)
4646 {
4647 Elf_Internal_Vernaux *a;
4648
4649 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4650 {
4651 if (a->vna_other == vernum)
4652 {
4653 verstr = a->vna_nodename;
4654 break;
4655 }
4656 }
4657 if (a != NULL)
4658 break;
4659 }
4660 if (verstr == NULL)
4661 {
4662 _bfd_error_handler
4663 /* xgettext:c-format */
4664 (_("%pB: %s: invalid needed version %d"),
4665 abfd, name, vernum);
4666 bfd_set_error (bfd_error_bad_value);
4667 goto error_free_vers;
4668 }
4669 }
4670
4671 namelen = strlen (name);
4672 verlen = strlen (verstr);
4673 newlen = namelen + verlen + 2;
4674 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4675 && isym->st_shndx != SHN_UNDEF)
4676 ++newlen;
4677
4678 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4679 if (newname == NULL)
4680 goto error_free_vers;
4681 memcpy (newname, name, namelen);
4682 p = newname + namelen;
4683 *p++ = ELF_VER_CHR;
4684 /* If this is a defined non-hidden version symbol,
4685 we add another @ to the name. This indicates the
4686 default version of the symbol. */
4687 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4688 && isym->st_shndx != SHN_UNDEF)
4689 *p++ = ELF_VER_CHR;
4690 memcpy (p, verstr, verlen + 1);
4691
4692 name = newname;
4693 }
4694
4695 /* If this symbol has default visibility and the user has
4696 requested we not re-export it, then mark it as hidden. */
4697 if (!bfd_is_und_section (sec)
4698 && !dynamic
4699 && abfd->no_export
4700 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4701 isym->st_other = (STV_HIDDEN
4702 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4703
4704 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4705 sym_hash, &old_bfd, &old_weak,
4706 &old_alignment, &skip, &override,
4707 &type_change_ok, &size_change_ok,
4708 &matched))
4709 goto error_free_vers;
4710
4711 if (skip)
4712 continue;
4713
4714 /* Override a definition only if the new symbol matches the
4715 existing one. */
4716 if (override && matched)
4717 definition = FALSE;
4718
4719 h = *sym_hash;
4720 while (h->root.type == bfd_link_hash_indirect
4721 || h->root.type == bfd_link_hash_warning)
4722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4723
4724 if (elf_tdata (abfd)->verdef != NULL
4725 && vernum > 1
4726 && definition)
4727 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4728 }
4729
4730 if (! (_bfd_generic_link_add_one_symbol
4731 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4732 (struct bfd_link_hash_entry **) sym_hash)))
4733 goto error_free_vers;
4734
4735 if ((abfd->flags & DYNAMIC) == 0
4736 && (bfd_get_flavour (info->output_bfd)
4737 == bfd_target_elf_flavour))
4738 {
4739 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4740 elf_tdata (info->output_bfd)->has_gnu_symbols
4741 |= elf_gnu_symbol_ifunc;
4742 if ((flags & BSF_GNU_UNIQUE))
4743 elf_tdata (info->output_bfd)->has_gnu_symbols
4744 |= elf_gnu_symbol_unique;
4745 }
4746
4747 h = *sym_hash;
4748 /* We need to make sure that indirect symbol dynamic flags are
4749 updated. */
4750 hi = h;
4751 while (h->root.type == bfd_link_hash_indirect
4752 || h->root.type == bfd_link_hash_warning)
4753 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4754
4755 /* Setting the index to -3 tells elf_link_output_extsym that
4756 this symbol is defined in a discarded section. */
4757 if (discarded)
4758 h->indx = -3;
4759
4760 *sym_hash = h;
4761
4762 new_weak = (flags & BSF_WEAK) != 0;
4763 if (dynamic
4764 && definition
4765 && new_weak
4766 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4767 && is_elf_hash_table (htab)
4768 && h->u.alias == NULL)
4769 {
4770 /* Keep a list of all weak defined non function symbols from
4771 a dynamic object, using the alias field. Later in this
4772 function we will set the alias field to the correct
4773 value. We only put non-function symbols from dynamic
4774 objects on this list, because that happens to be the only
4775 time we need to know the normal symbol corresponding to a
4776 weak symbol, and the information is time consuming to
4777 figure out. If the alias field is not already NULL,
4778 then this symbol was already defined by some previous
4779 dynamic object, and we will be using that previous
4780 definition anyhow. */
4781
4782 h->u.alias = weaks;
4783 weaks = h;
4784 }
4785
4786 /* Set the alignment of a common symbol. */
4787 if ((common || bfd_is_com_section (sec))
4788 && h->root.type == bfd_link_hash_common)
4789 {
4790 unsigned int align;
4791
4792 if (common)
4793 align = bfd_log2 (isym->st_value);
4794 else
4795 {
4796 /* The new symbol is a common symbol in a shared object.
4797 We need to get the alignment from the section. */
4798 align = new_sec->alignment_power;
4799 }
4800 if (align > old_alignment)
4801 h->root.u.c.p->alignment_power = align;
4802 else
4803 h->root.u.c.p->alignment_power = old_alignment;
4804 }
4805
4806 if (is_elf_hash_table (htab))
4807 {
4808 /* Set a flag in the hash table entry indicating the type of
4809 reference or definition we just found. A dynamic symbol
4810 is one which is referenced or defined by both a regular
4811 object and a shared object. */
4812 bfd_boolean dynsym = FALSE;
4813
4814 /* Plugin symbols aren't normal. Don't set def_regular or
4815 ref_regular for them, or make them dynamic. */
4816 if ((abfd->flags & BFD_PLUGIN) != 0)
4817 ;
4818 else if (! dynamic)
4819 {
4820 if (! definition)
4821 {
4822 h->ref_regular = 1;
4823 if (bind != STB_WEAK)
4824 h->ref_regular_nonweak = 1;
4825 }
4826 else
4827 {
4828 h->def_regular = 1;
4829 if (h->def_dynamic)
4830 {
4831 h->def_dynamic = 0;
4832 h->ref_dynamic = 1;
4833 }
4834 }
4835
4836 /* If the indirect symbol has been forced local, don't
4837 make the real symbol dynamic. */
4838 if ((h == hi || !hi->forced_local)
4839 && (bfd_link_dll (info)
4840 || h->def_dynamic
4841 || h->ref_dynamic))
4842 dynsym = TRUE;
4843 }
4844 else
4845 {
4846 if (! definition)
4847 {
4848 h->ref_dynamic = 1;
4849 hi->ref_dynamic = 1;
4850 }
4851 else
4852 {
4853 h->def_dynamic = 1;
4854 hi->def_dynamic = 1;
4855 }
4856
4857 /* If the indirect symbol has been forced local, don't
4858 make the real symbol dynamic. */
4859 if ((h == hi || !hi->forced_local)
4860 && (h->def_regular
4861 || h->ref_regular
4862 || (h->is_weakalias
4863 && weakdef (h)->dynindx != -1)))
4864 dynsym = TRUE;
4865 }
4866
4867 /* Check to see if we need to add an indirect symbol for
4868 the default name. */
4869 if (definition
4870 || (!override && h->root.type == bfd_link_hash_common))
4871 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4872 sec, value, &old_bfd, &dynsym))
4873 goto error_free_vers;
4874
4875 /* Check the alignment when a common symbol is involved. This
4876 can change when a common symbol is overridden by a normal
4877 definition or a common symbol is ignored due to the old
4878 normal definition. We need to make sure the maximum
4879 alignment is maintained. */
4880 if ((old_alignment || common)
4881 && h->root.type != bfd_link_hash_common)
4882 {
4883 unsigned int common_align;
4884 unsigned int normal_align;
4885 unsigned int symbol_align;
4886 bfd *normal_bfd;
4887 bfd *common_bfd;
4888
4889 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4890 || h->root.type == bfd_link_hash_defweak);
4891
4892 symbol_align = ffs (h->root.u.def.value) - 1;
4893 if (h->root.u.def.section->owner != NULL
4894 && (h->root.u.def.section->owner->flags
4895 & (DYNAMIC | BFD_PLUGIN)) == 0)
4896 {
4897 normal_align = h->root.u.def.section->alignment_power;
4898 if (normal_align > symbol_align)
4899 normal_align = symbol_align;
4900 }
4901 else
4902 normal_align = symbol_align;
4903
4904 if (old_alignment)
4905 {
4906 common_align = old_alignment;
4907 common_bfd = old_bfd;
4908 normal_bfd = abfd;
4909 }
4910 else
4911 {
4912 common_align = bfd_log2 (isym->st_value);
4913 common_bfd = abfd;
4914 normal_bfd = old_bfd;
4915 }
4916
4917 if (normal_align < common_align)
4918 {
4919 /* PR binutils/2735 */
4920 if (normal_bfd == NULL)
4921 _bfd_error_handler
4922 /* xgettext:c-format */
4923 (_("warning: alignment %u of common symbol `%s' in %pB is"
4924 " greater than the alignment (%u) of its section %pA"),
4925 1 << common_align, name, common_bfd,
4926 1 << normal_align, h->root.u.def.section);
4927 else
4928 _bfd_error_handler
4929 /* xgettext:c-format */
4930 (_("warning: alignment %u of symbol `%s' in %pB"
4931 " is smaller than %u in %pB"),
4932 1 << normal_align, name, normal_bfd,
4933 1 << common_align, common_bfd);
4934 }
4935 }
4936
4937 /* Remember the symbol size if it isn't undefined. */
4938 if (isym->st_size != 0
4939 && isym->st_shndx != SHN_UNDEF
4940 && (definition || h->size == 0))
4941 {
4942 if (h->size != 0
4943 && h->size != isym->st_size
4944 && ! size_change_ok)
4945 _bfd_error_handler
4946 /* xgettext:c-format */
4947 (_("warning: size of symbol `%s' changed"
4948 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4949 name, (uint64_t) h->size, old_bfd,
4950 (uint64_t) isym->st_size, abfd);
4951
4952 h->size = isym->st_size;
4953 }
4954
4955 /* If this is a common symbol, then we always want H->SIZE
4956 to be the size of the common symbol. The code just above
4957 won't fix the size if a common symbol becomes larger. We
4958 don't warn about a size change here, because that is
4959 covered by --warn-common. Allow changes between different
4960 function types. */
4961 if (h->root.type == bfd_link_hash_common)
4962 h->size = h->root.u.c.size;
4963
4964 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4965 && ((definition && !new_weak)
4966 || (old_weak && h->root.type == bfd_link_hash_common)
4967 || h->type == STT_NOTYPE))
4968 {
4969 unsigned int type = ELF_ST_TYPE (isym->st_info);
4970
4971 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4972 symbol. */
4973 if (type == STT_GNU_IFUNC
4974 && (abfd->flags & DYNAMIC) != 0)
4975 type = STT_FUNC;
4976
4977 if (h->type != type)
4978 {
4979 if (h->type != STT_NOTYPE && ! type_change_ok)
4980 /* xgettext:c-format */
4981 _bfd_error_handler
4982 (_("warning: type of symbol `%s' changed"
4983 " from %d to %d in %pB"),
4984 name, h->type, type, abfd);
4985
4986 h->type = type;
4987 }
4988 }
4989
4990 /* Merge st_other field. */
4991 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4992
4993 /* We don't want to make debug symbol dynamic. */
4994 if (definition
4995 && (sec->flags & SEC_DEBUGGING)
4996 && !bfd_link_relocatable (info))
4997 dynsym = FALSE;
4998
4999 /* Nor should we make plugin symbols dynamic. */
5000 if ((abfd->flags & BFD_PLUGIN) != 0)
5001 dynsym = FALSE;
5002
5003 if (definition)
5004 {
5005 h->target_internal = isym->st_target_internal;
5006 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5007 }
5008
5009 if (definition && !dynamic)
5010 {
5011 char *p = strchr (name, ELF_VER_CHR);
5012 if (p != NULL && p[1] != ELF_VER_CHR)
5013 {
5014 /* Queue non-default versions so that .symver x, x@FOO
5015 aliases can be checked. */
5016 if (!nondeflt_vers)
5017 {
5018 amt = ((isymend - isym + 1)
5019 * sizeof (struct elf_link_hash_entry *));
5020 nondeflt_vers
5021 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5022 if (!nondeflt_vers)
5023 goto error_free_vers;
5024 }
5025 nondeflt_vers[nondeflt_vers_cnt++] = h;
5026 }
5027 }
5028
5029 if (dynsym && h->dynindx == -1)
5030 {
5031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5032 goto error_free_vers;
5033 if (h->is_weakalias
5034 && weakdef (h)->dynindx == -1)
5035 {
5036 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5037 goto error_free_vers;
5038 }
5039 }
5040 else if (h->dynindx != -1)
5041 /* If the symbol already has a dynamic index, but
5042 visibility says it should not be visible, turn it into
5043 a local symbol. */
5044 switch (ELF_ST_VISIBILITY (h->other))
5045 {
5046 case STV_INTERNAL:
5047 case STV_HIDDEN:
5048 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5049 dynsym = FALSE;
5050 break;
5051 }
5052
5053 /* Don't add DT_NEEDED for references from the dummy bfd nor
5054 for unmatched symbol. */
5055 if (!add_needed
5056 && matched
5057 && definition
5058 && ((dynsym
5059 && h->ref_regular_nonweak
5060 && (old_bfd == NULL
5061 || (old_bfd->flags & BFD_PLUGIN) == 0))
5062 || (h->ref_dynamic_nonweak
5063 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5064 && !on_needed_list (elf_dt_name (abfd),
5065 htab->needed, NULL))))
5066 {
5067 int ret;
5068 const char *soname = elf_dt_name (abfd);
5069
5070 info->callbacks->minfo ("%!", soname, old_bfd,
5071 h->root.root.string);
5072
5073 /* A symbol from a library loaded via DT_NEEDED of some
5074 other library is referenced by a regular object.
5075 Add a DT_NEEDED entry for it. Issue an error if
5076 --no-add-needed is used and the reference was not
5077 a weak one. */
5078 if (old_bfd != NULL
5079 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5080 {
5081 _bfd_error_handler
5082 /* xgettext:c-format */
5083 (_("%pB: undefined reference to symbol '%s'"),
5084 old_bfd, name);
5085 bfd_set_error (bfd_error_missing_dso);
5086 goto error_free_vers;
5087 }
5088
5089 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5090 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5091
5092 add_needed = TRUE;
5093 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5094 if (ret < 0)
5095 goto error_free_vers;
5096
5097 BFD_ASSERT (ret == 0);
5098 }
5099 }
5100 }
5101
5102 if (info->lto_plugin_active
5103 && !bfd_link_relocatable (info)
5104 && (abfd->flags & BFD_PLUGIN) == 0
5105 && !just_syms
5106 && extsymcount)
5107 {
5108 int r_sym_shift;
5109
5110 if (bed->s->arch_size == 32)
5111 r_sym_shift = 8;
5112 else
5113 r_sym_shift = 32;
5114
5115 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5116 referenced in regular objects so that linker plugin will get
5117 the correct symbol resolution. */
5118
5119 sym_hash = elf_sym_hashes (abfd);
5120 for (s = abfd->sections; s != NULL; s = s->next)
5121 {
5122 Elf_Internal_Rela *internal_relocs;
5123 Elf_Internal_Rela *rel, *relend;
5124
5125 /* Don't check relocations in excluded sections. */
5126 if ((s->flags & SEC_RELOC) == 0
5127 || s->reloc_count == 0
5128 || (s->flags & SEC_EXCLUDE) != 0
5129 || ((info->strip == strip_all
5130 || info->strip == strip_debugger)
5131 && (s->flags & SEC_DEBUGGING) != 0))
5132 continue;
5133
5134 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5135 NULL,
5136 info->keep_memory);
5137 if (internal_relocs == NULL)
5138 goto error_free_vers;
5139
5140 rel = internal_relocs;
5141 relend = rel + s->reloc_count;
5142 for ( ; rel < relend; rel++)
5143 {
5144 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5145 struct elf_link_hash_entry *h;
5146
5147 /* Skip local symbols. */
5148 if (r_symndx < extsymoff)
5149 continue;
5150
5151 h = sym_hash[r_symndx - extsymoff];
5152 if (h != NULL)
5153 h->root.non_ir_ref_regular = 1;
5154 }
5155
5156 if (elf_section_data (s)->relocs != internal_relocs)
5157 free (internal_relocs);
5158 }
5159 }
5160
5161 if (extversym != NULL)
5162 {
5163 free (extversym);
5164 extversym = NULL;
5165 }
5166
5167 if (isymbuf != NULL)
5168 {
5169 free (isymbuf);
5170 isymbuf = NULL;
5171 }
5172
5173 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5174 {
5175 unsigned int i;
5176
5177 /* Restore the symbol table. */
5178 old_ent = (char *) old_tab + tabsize;
5179 memset (elf_sym_hashes (abfd), 0,
5180 extsymcount * sizeof (struct elf_link_hash_entry *));
5181 htab->root.table.table = old_table;
5182 htab->root.table.size = old_size;
5183 htab->root.table.count = old_count;
5184 memcpy (htab->root.table.table, old_tab, tabsize);
5185 htab->root.undefs = old_undefs;
5186 htab->root.undefs_tail = old_undefs_tail;
5187 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5188 free (old_strtab);
5189 old_strtab = NULL;
5190 for (i = 0; i < htab->root.table.size; i++)
5191 {
5192 struct bfd_hash_entry *p;
5193 struct elf_link_hash_entry *h;
5194 bfd_size_type size;
5195 unsigned int alignment_power;
5196 unsigned int non_ir_ref_dynamic;
5197
5198 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5199 {
5200 h = (struct elf_link_hash_entry *) p;
5201 if (h->root.type == bfd_link_hash_warning)
5202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5203
5204 /* Preserve the maximum alignment and size for common
5205 symbols even if this dynamic lib isn't on DT_NEEDED
5206 since it can still be loaded at run time by another
5207 dynamic lib. */
5208 if (h->root.type == bfd_link_hash_common)
5209 {
5210 size = h->root.u.c.size;
5211 alignment_power = h->root.u.c.p->alignment_power;
5212 }
5213 else
5214 {
5215 size = 0;
5216 alignment_power = 0;
5217 }
5218 /* Preserve non_ir_ref_dynamic so that this symbol
5219 will be exported when the dynamic lib becomes needed
5220 in the second pass. */
5221 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5222 memcpy (p, old_ent, htab->root.table.entsize);
5223 old_ent = (char *) old_ent + htab->root.table.entsize;
5224 h = (struct elf_link_hash_entry *) p;
5225 if (h->root.type == bfd_link_hash_warning)
5226 {
5227 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5228 old_ent = (char *) old_ent + htab->root.table.entsize;
5229 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5230 }
5231 if (h->root.type == bfd_link_hash_common)
5232 {
5233 if (size > h->root.u.c.size)
5234 h->root.u.c.size = size;
5235 if (alignment_power > h->root.u.c.p->alignment_power)
5236 h->root.u.c.p->alignment_power = alignment_power;
5237 }
5238 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5239 }
5240 }
5241
5242 /* Make a special call to the linker "notice" function to
5243 tell it that symbols added for crefs may need to be removed. */
5244 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5245 goto error_free_vers;
5246
5247 free (old_tab);
5248 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5249 alloc_mark);
5250 if (nondeflt_vers != NULL)
5251 free (nondeflt_vers);
5252 return TRUE;
5253 }
5254
5255 if (old_tab != NULL)
5256 {
5257 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5258 goto error_free_vers;
5259 free (old_tab);
5260 old_tab = NULL;
5261 }
5262
5263 /* Now that all the symbols from this input file are created, if
5264 not performing a relocatable link, handle .symver foo, foo@BAR
5265 such that any relocs against foo become foo@BAR. */
5266 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5267 {
5268 size_t cnt, symidx;
5269
5270 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5271 {
5272 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5273 char *shortname, *p;
5274
5275 p = strchr (h->root.root.string, ELF_VER_CHR);
5276 if (p == NULL
5277 || (h->root.type != bfd_link_hash_defined
5278 && h->root.type != bfd_link_hash_defweak))
5279 continue;
5280
5281 amt = p - h->root.root.string;
5282 shortname = (char *) bfd_malloc (amt + 1);
5283 if (!shortname)
5284 goto error_free_vers;
5285 memcpy (shortname, h->root.root.string, amt);
5286 shortname[amt] = '\0';
5287
5288 hi = (struct elf_link_hash_entry *)
5289 bfd_link_hash_lookup (&htab->root, shortname,
5290 FALSE, FALSE, FALSE);
5291 if (hi != NULL
5292 && hi->root.type == h->root.type
5293 && hi->root.u.def.value == h->root.u.def.value
5294 && hi->root.u.def.section == h->root.u.def.section)
5295 {
5296 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5297 hi->root.type = bfd_link_hash_indirect;
5298 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5299 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5300 sym_hash = elf_sym_hashes (abfd);
5301 if (sym_hash)
5302 for (symidx = 0; symidx < extsymcount; ++symidx)
5303 if (sym_hash[symidx] == hi)
5304 {
5305 sym_hash[symidx] = h;
5306 break;
5307 }
5308 }
5309 free (shortname);
5310 }
5311 free (nondeflt_vers);
5312 nondeflt_vers = NULL;
5313 }
5314
5315 /* Now set the alias field correctly for all the weak defined
5316 symbols we found. The only way to do this is to search all the
5317 symbols. Since we only need the information for non functions in
5318 dynamic objects, that's the only time we actually put anything on
5319 the list WEAKS. We need this information so that if a regular
5320 object refers to a symbol defined weakly in a dynamic object, the
5321 real symbol in the dynamic object is also put in the dynamic
5322 symbols; we also must arrange for both symbols to point to the
5323 same memory location. We could handle the general case of symbol
5324 aliasing, but a general symbol alias can only be generated in
5325 assembler code, handling it correctly would be very time
5326 consuming, and other ELF linkers don't handle general aliasing
5327 either. */
5328 if (weaks != NULL)
5329 {
5330 struct elf_link_hash_entry **hpp;
5331 struct elf_link_hash_entry **hppend;
5332 struct elf_link_hash_entry **sorted_sym_hash;
5333 struct elf_link_hash_entry *h;
5334 size_t sym_count;
5335
5336 /* Since we have to search the whole symbol list for each weak
5337 defined symbol, search time for N weak defined symbols will be
5338 O(N^2). Binary search will cut it down to O(NlogN). */
5339 amt = extsymcount;
5340 amt *= sizeof (struct elf_link_hash_entry *);
5341 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5342 if (sorted_sym_hash == NULL)
5343 goto error_return;
5344 sym_hash = sorted_sym_hash;
5345 hpp = elf_sym_hashes (abfd);
5346 hppend = hpp + extsymcount;
5347 sym_count = 0;
5348 for (; hpp < hppend; hpp++)
5349 {
5350 h = *hpp;
5351 if (h != NULL
5352 && h->root.type == bfd_link_hash_defined
5353 && !bed->is_function_type (h->type))
5354 {
5355 *sym_hash = h;
5356 sym_hash++;
5357 sym_count++;
5358 }
5359 }
5360
5361 qsort (sorted_sym_hash, sym_count,
5362 sizeof (struct elf_link_hash_entry *),
5363 elf_sort_symbol);
5364
5365 while (weaks != NULL)
5366 {
5367 struct elf_link_hash_entry *hlook;
5368 asection *slook;
5369 bfd_vma vlook;
5370 size_t i, j, idx = 0;
5371
5372 hlook = weaks;
5373 weaks = hlook->u.alias;
5374 hlook->u.alias = NULL;
5375
5376 if (hlook->root.type != bfd_link_hash_defined
5377 && hlook->root.type != bfd_link_hash_defweak)
5378 continue;
5379
5380 slook = hlook->root.u.def.section;
5381 vlook = hlook->root.u.def.value;
5382
5383 i = 0;
5384 j = sym_count;
5385 while (i != j)
5386 {
5387 bfd_signed_vma vdiff;
5388 idx = (i + j) / 2;
5389 h = sorted_sym_hash[idx];
5390 vdiff = vlook - h->root.u.def.value;
5391 if (vdiff < 0)
5392 j = idx;
5393 else if (vdiff > 0)
5394 i = idx + 1;
5395 else
5396 {
5397 int sdiff = slook->id - h->root.u.def.section->id;
5398 if (sdiff < 0)
5399 j = idx;
5400 else if (sdiff > 0)
5401 i = idx + 1;
5402 else
5403 break;
5404 }
5405 }
5406
5407 /* We didn't find a value/section match. */
5408 if (i == j)
5409 continue;
5410
5411 /* With multiple aliases, or when the weak symbol is already
5412 strongly defined, we have multiple matching symbols and
5413 the binary search above may land on any of them. Step
5414 one past the matching symbol(s). */
5415 while (++idx != j)
5416 {
5417 h = sorted_sym_hash[idx];
5418 if (h->root.u.def.section != slook
5419 || h->root.u.def.value != vlook)
5420 break;
5421 }
5422
5423 /* Now look back over the aliases. Since we sorted by size
5424 as well as value and section, we'll choose the one with
5425 the largest size. */
5426 while (idx-- != i)
5427 {
5428 h = sorted_sym_hash[idx];
5429
5430 /* Stop if value or section doesn't match. */
5431 if (h->root.u.def.section != slook
5432 || h->root.u.def.value != vlook)
5433 break;
5434 else if (h != hlook)
5435 {
5436 struct elf_link_hash_entry *t;
5437
5438 hlook->u.alias = h;
5439 hlook->is_weakalias = 1;
5440 t = h;
5441 if (t->u.alias != NULL)
5442 while (t->u.alias != h)
5443 t = t->u.alias;
5444 t->u.alias = hlook;
5445
5446 /* If the weak definition is in the list of dynamic
5447 symbols, make sure the real definition is put
5448 there as well. */
5449 if (hlook->dynindx != -1 && h->dynindx == -1)
5450 {
5451 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5452 {
5453 err_free_sym_hash:
5454 free (sorted_sym_hash);
5455 goto error_return;
5456 }
5457 }
5458
5459 /* If the real definition is in the list of dynamic
5460 symbols, make sure the weak definition is put
5461 there as well. If we don't do this, then the
5462 dynamic loader might not merge the entries for the
5463 real definition and the weak definition. */
5464 if (h->dynindx != -1 && hlook->dynindx == -1)
5465 {
5466 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5467 goto err_free_sym_hash;
5468 }
5469 break;
5470 }
5471 }
5472 }
5473
5474 free (sorted_sym_hash);
5475 }
5476
5477 if (bed->check_directives
5478 && !(*bed->check_directives) (abfd, info))
5479 return FALSE;
5480
5481 /* If this is a non-traditional link, try to optimize the handling
5482 of the .stab/.stabstr sections. */
5483 if (! dynamic
5484 && ! info->traditional_format
5485 && is_elf_hash_table (htab)
5486 && (info->strip != strip_all && info->strip != strip_debugger))
5487 {
5488 asection *stabstr;
5489
5490 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5491 if (stabstr != NULL)
5492 {
5493 bfd_size_type string_offset = 0;
5494 asection *stab;
5495
5496 for (stab = abfd->sections; stab; stab = stab->next)
5497 if (CONST_STRNEQ (stab->name, ".stab")
5498 && (!stab->name[5] ||
5499 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5500 && (stab->flags & SEC_MERGE) == 0
5501 && !bfd_is_abs_section (stab->output_section))
5502 {
5503 struct bfd_elf_section_data *secdata;
5504
5505 secdata = elf_section_data (stab);
5506 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5507 stabstr, &secdata->sec_info,
5508 &string_offset))
5509 goto error_return;
5510 if (secdata->sec_info)
5511 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5512 }
5513 }
5514 }
5515
5516 if (is_elf_hash_table (htab) && add_needed)
5517 {
5518 /* Add this bfd to the loaded list. */
5519 struct elf_link_loaded_list *n;
5520
5521 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5522 if (n == NULL)
5523 goto error_return;
5524 n->abfd = abfd;
5525 n->next = htab->loaded;
5526 htab->loaded = n;
5527 }
5528
5529 return TRUE;
5530
5531 error_free_vers:
5532 if (old_tab != NULL)
5533 free (old_tab);
5534 if (old_strtab != NULL)
5535 free (old_strtab);
5536 if (nondeflt_vers != NULL)
5537 free (nondeflt_vers);
5538 if (extversym != NULL)
5539 free (extversym);
5540 error_free_sym:
5541 if (isymbuf != NULL)
5542 free (isymbuf);
5543 error_return:
5544 return FALSE;
5545 }
5546
5547 /* Return the linker hash table entry of a symbol that might be
5548 satisfied by an archive symbol. Return -1 on error. */
5549
5550 struct elf_link_hash_entry *
5551 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5552 struct bfd_link_info *info,
5553 const char *name)
5554 {
5555 struct elf_link_hash_entry *h;
5556 char *p, *copy;
5557 size_t len, first;
5558
5559 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5560 if (h != NULL)
5561 return h;
5562
5563 /* If this is a default version (the name contains @@), look up the
5564 symbol again with only one `@' as well as without the version.
5565 The effect is that references to the symbol with and without the
5566 version will be matched by the default symbol in the archive. */
5567
5568 p = strchr (name, ELF_VER_CHR);
5569 if (p == NULL || p[1] != ELF_VER_CHR)
5570 return h;
5571
5572 /* First check with only one `@'. */
5573 len = strlen (name);
5574 copy = (char *) bfd_alloc (abfd, len);
5575 if (copy == NULL)
5576 return (struct elf_link_hash_entry *) -1;
5577
5578 first = p - name + 1;
5579 memcpy (copy, name, first);
5580 memcpy (copy + first, name + first + 1, len - first);
5581
5582 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5583 if (h == NULL)
5584 {
5585 /* We also need to check references to the symbol without the
5586 version. */
5587 copy[first - 1] = '\0';
5588 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5589 FALSE, FALSE, TRUE);
5590 }
5591
5592 bfd_release (abfd, copy);
5593 return h;
5594 }
5595
5596 /* Add symbols from an ELF archive file to the linker hash table. We
5597 don't use _bfd_generic_link_add_archive_symbols because we need to
5598 handle versioned symbols.
5599
5600 Fortunately, ELF archive handling is simpler than that done by
5601 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5602 oddities. In ELF, if we find a symbol in the archive map, and the
5603 symbol is currently undefined, we know that we must pull in that
5604 object file.
5605
5606 Unfortunately, we do have to make multiple passes over the symbol
5607 table until nothing further is resolved. */
5608
5609 static bfd_boolean
5610 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5611 {
5612 symindex c;
5613 unsigned char *included = NULL;
5614 carsym *symdefs;
5615 bfd_boolean loop;
5616 bfd_size_type amt;
5617 const struct elf_backend_data *bed;
5618 struct elf_link_hash_entry * (*archive_symbol_lookup)
5619 (bfd *, struct bfd_link_info *, const char *);
5620
5621 if (! bfd_has_map (abfd))
5622 {
5623 /* An empty archive is a special case. */
5624 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5625 return TRUE;
5626 bfd_set_error (bfd_error_no_armap);
5627 return FALSE;
5628 }
5629
5630 /* Keep track of all symbols we know to be already defined, and all
5631 files we know to be already included. This is to speed up the
5632 second and subsequent passes. */
5633 c = bfd_ardata (abfd)->symdef_count;
5634 if (c == 0)
5635 return TRUE;
5636 amt = c;
5637 amt *= sizeof (*included);
5638 included = (unsigned char *) bfd_zmalloc (amt);
5639 if (included == NULL)
5640 return FALSE;
5641
5642 symdefs = bfd_ardata (abfd)->symdefs;
5643 bed = get_elf_backend_data (abfd);
5644 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5645
5646 do
5647 {
5648 file_ptr last;
5649 symindex i;
5650 carsym *symdef;
5651 carsym *symdefend;
5652
5653 loop = FALSE;
5654 last = -1;
5655
5656 symdef = symdefs;
5657 symdefend = symdef + c;
5658 for (i = 0; symdef < symdefend; symdef++, i++)
5659 {
5660 struct elf_link_hash_entry *h;
5661 bfd *element;
5662 struct bfd_link_hash_entry *undefs_tail;
5663 symindex mark;
5664
5665 if (included[i])
5666 continue;
5667 if (symdef->file_offset == last)
5668 {
5669 included[i] = TRUE;
5670 continue;
5671 }
5672
5673 h = archive_symbol_lookup (abfd, info, symdef->name);
5674 if (h == (struct elf_link_hash_entry *) -1)
5675 goto error_return;
5676
5677 if (h == NULL)
5678 continue;
5679
5680 if (h->root.type == bfd_link_hash_common)
5681 {
5682 /* We currently have a common symbol. The archive map contains
5683 a reference to this symbol, so we may want to include it. We
5684 only want to include it however, if this archive element
5685 contains a definition of the symbol, not just another common
5686 declaration of it.
5687
5688 Unfortunately some archivers (including GNU ar) will put
5689 declarations of common symbols into their archive maps, as
5690 well as real definitions, so we cannot just go by the archive
5691 map alone. Instead we must read in the element's symbol
5692 table and check that to see what kind of symbol definition
5693 this is. */
5694 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5695 continue;
5696 }
5697 else if (h->root.type != bfd_link_hash_undefined)
5698 {
5699 if (h->root.type != bfd_link_hash_undefweak)
5700 /* Symbol must be defined. Don't check it again. */
5701 included[i] = TRUE;
5702 continue;
5703 }
5704
5705 /* We need to include this archive member. */
5706 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5707 if (element == NULL)
5708 goto error_return;
5709
5710 if (! bfd_check_format (element, bfd_object))
5711 goto error_return;
5712
5713 undefs_tail = info->hash->undefs_tail;
5714
5715 if (!(*info->callbacks
5716 ->add_archive_element) (info, element, symdef->name, &element))
5717 continue;
5718 if (!bfd_link_add_symbols (element, info))
5719 goto error_return;
5720
5721 /* If there are any new undefined symbols, we need to make
5722 another pass through the archive in order to see whether
5723 they can be defined. FIXME: This isn't perfect, because
5724 common symbols wind up on undefs_tail and because an
5725 undefined symbol which is defined later on in this pass
5726 does not require another pass. This isn't a bug, but it
5727 does make the code less efficient than it could be. */
5728 if (undefs_tail != info->hash->undefs_tail)
5729 loop = TRUE;
5730
5731 /* Look backward to mark all symbols from this object file
5732 which we have already seen in this pass. */
5733 mark = i;
5734 do
5735 {
5736 included[mark] = TRUE;
5737 if (mark == 0)
5738 break;
5739 --mark;
5740 }
5741 while (symdefs[mark].file_offset == symdef->file_offset);
5742
5743 /* We mark subsequent symbols from this object file as we go
5744 on through the loop. */
5745 last = symdef->file_offset;
5746 }
5747 }
5748 while (loop);
5749
5750 free (included);
5751
5752 return TRUE;
5753
5754 error_return:
5755 if (included != NULL)
5756 free (included);
5757 return FALSE;
5758 }
5759
5760 /* Given an ELF BFD, add symbols to the global hash table as
5761 appropriate. */
5762
5763 bfd_boolean
5764 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5765 {
5766 switch (bfd_get_format (abfd))
5767 {
5768 case bfd_object:
5769 return elf_link_add_object_symbols (abfd, info);
5770 case bfd_archive:
5771 return elf_link_add_archive_symbols (abfd, info);
5772 default:
5773 bfd_set_error (bfd_error_wrong_format);
5774 return FALSE;
5775 }
5776 }
5777 \f
5778 struct hash_codes_info
5779 {
5780 unsigned long *hashcodes;
5781 bfd_boolean error;
5782 };
5783
5784 /* This function will be called though elf_link_hash_traverse to store
5785 all hash value of the exported symbols in an array. */
5786
5787 static bfd_boolean
5788 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5789 {
5790 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5791 const char *name;
5792 unsigned long ha;
5793 char *alc = NULL;
5794
5795 /* Ignore indirect symbols. These are added by the versioning code. */
5796 if (h->dynindx == -1)
5797 return TRUE;
5798
5799 name = h->root.root.string;
5800 if (h->versioned >= versioned)
5801 {
5802 char *p = strchr (name, ELF_VER_CHR);
5803 if (p != NULL)
5804 {
5805 alc = (char *) bfd_malloc (p - name + 1);
5806 if (alc == NULL)
5807 {
5808 inf->error = TRUE;
5809 return FALSE;
5810 }
5811 memcpy (alc, name, p - name);
5812 alc[p - name] = '\0';
5813 name = alc;
5814 }
5815 }
5816
5817 /* Compute the hash value. */
5818 ha = bfd_elf_hash (name);
5819
5820 /* Store the found hash value in the array given as the argument. */
5821 *(inf->hashcodes)++ = ha;
5822
5823 /* And store it in the struct so that we can put it in the hash table
5824 later. */
5825 h->u.elf_hash_value = ha;
5826
5827 if (alc != NULL)
5828 free (alc);
5829
5830 return TRUE;
5831 }
5832
5833 struct collect_gnu_hash_codes
5834 {
5835 bfd *output_bfd;
5836 const struct elf_backend_data *bed;
5837 unsigned long int nsyms;
5838 unsigned long int maskbits;
5839 unsigned long int *hashcodes;
5840 unsigned long int *hashval;
5841 unsigned long int *indx;
5842 unsigned long int *counts;
5843 bfd_vma *bitmask;
5844 bfd_byte *contents;
5845 long int min_dynindx;
5846 unsigned long int bucketcount;
5847 unsigned long int symindx;
5848 long int local_indx;
5849 long int shift1, shift2;
5850 unsigned long int mask;
5851 bfd_boolean error;
5852 };
5853
5854 /* This function will be called though elf_link_hash_traverse to store
5855 all hash value of the exported symbols in an array. */
5856
5857 static bfd_boolean
5858 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5859 {
5860 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5861 const char *name;
5862 unsigned long ha;
5863 char *alc = NULL;
5864
5865 /* Ignore indirect symbols. These are added by the versioning code. */
5866 if (h->dynindx == -1)
5867 return TRUE;
5868
5869 /* Ignore also local symbols and undefined symbols. */
5870 if (! (*s->bed->elf_hash_symbol) (h))
5871 return TRUE;
5872
5873 name = h->root.root.string;
5874 if (h->versioned >= versioned)
5875 {
5876 char *p = strchr (name, ELF_VER_CHR);
5877 if (p != NULL)
5878 {
5879 alc = (char *) bfd_malloc (p - name + 1);
5880 if (alc == NULL)
5881 {
5882 s->error = TRUE;
5883 return FALSE;
5884 }
5885 memcpy (alc, name, p - name);
5886 alc[p - name] = '\0';
5887 name = alc;
5888 }
5889 }
5890
5891 /* Compute the hash value. */
5892 ha = bfd_elf_gnu_hash (name);
5893
5894 /* Store the found hash value in the array for compute_bucket_count,
5895 and also for .dynsym reordering purposes. */
5896 s->hashcodes[s->nsyms] = ha;
5897 s->hashval[h->dynindx] = ha;
5898 ++s->nsyms;
5899 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5900 s->min_dynindx = h->dynindx;
5901
5902 if (alc != NULL)
5903 free (alc);
5904
5905 return TRUE;
5906 }
5907
5908 /* This function will be called though elf_link_hash_traverse to do
5909 final dynaminc symbol renumbering. */
5910
5911 static bfd_boolean
5912 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5913 {
5914 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5915 unsigned long int bucket;
5916 unsigned long int val;
5917
5918 /* Ignore indirect symbols. */
5919 if (h->dynindx == -1)
5920 return TRUE;
5921
5922 /* Ignore also local symbols and undefined symbols. */
5923 if (! (*s->bed->elf_hash_symbol) (h))
5924 {
5925 if (h->dynindx >= s->min_dynindx)
5926 h->dynindx = s->local_indx++;
5927 return TRUE;
5928 }
5929
5930 bucket = s->hashval[h->dynindx] % s->bucketcount;
5931 val = (s->hashval[h->dynindx] >> s->shift1)
5932 & ((s->maskbits >> s->shift1) - 1);
5933 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5934 s->bitmask[val]
5935 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5936 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5937 if (s->counts[bucket] == 1)
5938 /* Last element terminates the chain. */
5939 val |= 1;
5940 bfd_put_32 (s->output_bfd, val,
5941 s->contents + (s->indx[bucket] - s->symindx) * 4);
5942 --s->counts[bucket];
5943 h->dynindx = s->indx[bucket]++;
5944 return TRUE;
5945 }
5946
5947 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5948
5949 bfd_boolean
5950 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5951 {
5952 return !(h->forced_local
5953 || h->root.type == bfd_link_hash_undefined
5954 || h->root.type == bfd_link_hash_undefweak
5955 || ((h->root.type == bfd_link_hash_defined
5956 || h->root.type == bfd_link_hash_defweak)
5957 && h->root.u.def.section->output_section == NULL));
5958 }
5959
5960 /* Array used to determine the number of hash table buckets to use
5961 based on the number of symbols there are. If there are fewer than
5962 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5963 fewer than 37 we use 17 buckets, and so forth. We never use more
5964 than 32771 buckets. */
5965
5966 static const size_t elf_buckets[] =
5967 {
5968 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5969 16411, 32771, 0
5970 };
5971
5972 /* Compute bucket count for hashing table. We do not use a static set
5973 of possible tables sizes anymore. Instead we determine for all
5974 possible reasonable sizes of the table the outcome (i.e., the
5975 number of collisions etc) and choose the best solution. The
5976 weighting functions are not too simple to allow the table to grow
5977 without bounds. Instead one of the weighting factors is the size.
5978 Therefore the result is always a good payoff between few collisions
5979 (= short chain lengths) and table size. */
5980 static size_t
5981 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5982 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5983 unsigned long int nsyms,
5984 int gnu_hash)
5985 {
5986 size_t best_size = 0;
5987 unsigned long int i;
5988
5989 /* We have a problem here. The following code to optimize the table
5990 size requires an integer type with more the 32 bits. If
5991 BFD_HOST_U_64_BIT is set we know about such a type. */
5992 #ifdef BFD_HOST_U_64_BIT
5993 if (info->optimize)
5994 {
5995 size_t minsize;
5996 size_t maxsize;
5997 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5998 bfd *dynobj = elf_hash_table (info)->dynobj;
5999 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6000 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6001 unsigned long int *counts;
6002 bfd_size_type amt;
6003 unsigned int no_improvement_count = 0;
6004
6005 /* Possible optimization parameters: if we have NSYMS symbols we say
6006 that the hashing table must at least have NSYMS/4 and at most
6007 2*NSYMS buckets. */
6008 minsize = nsyms / 4;
6009 if (minsize == 0)
6010 minsize = 1;
6011 best_size = maxsize = nsyms * 2;
6012 if (gnu_hash)
6013 {
6014 if (minsize < 2)
6015 minsize = 2;
6016 if ((best_size & 31) == 0)
6017 ++best_size;
6018 }
6019
6020 /* Create array where we count the collisions in. We must use bfd_malloc
6021 since the size could be large. */
6022 amt = maxsize;
6023 amt *= sizeof (unsigned long int);
6024 counts = (unsigned long int *) bfd_malloc (amt);
6025 if (counts == NULL)
6026 return 0;
6027
6028 /* Compute the "optimal" size for the hash table. The criteria is a
6029 minimal chain length. The minor criteria is (of course) the size
6030 of the table. */
6031 for (i = minsize; i < maxsize; ++i)
6032 {
6033 /* Walk through the array of hashcodes and count the collisions. */
6034 BFD_HOST_U_64_BIT max;
6035 unsigned long int j;
6036 unsigned long int fact;
6037
6038 if (gnu_hash && (i & 31) == 0)
6039 continue;
6040
6041 memset (counts, '\0', i * sizeof (unsigned long int));
6042
6043 /* Determine how often each hash bucket is used. */
6044 for (j = 0; j < nsyms; ++j)
6045 ++counts[hashcodes[j] % i];
6046
6047 /* For the weight function we need some information about the
6048 pagesize on the target. This is information need not be 100%
6049 accurate. Since this information is not available (so far) we
6050 define it here to a reasonable default value. If it is crucial
6051 to have a better value some day simply define this value. */
6052 # ifndef BFD_TARGET_PAGESIZE
6053 # define BFD_TARGET_PAGESIZE (4096)
6054 # endif
6055
6056 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6057 and the chains. */
6058 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6059
6060 # if 1
6061 /* Variant 1: optimize for short chains. We add the squares
6062 of all the chain lengths (which favors many small chain
6063 over a few long chains). */
6064 for (j = 0; j < i; ++j)
6065 max += counts[j] * counts[j];
6066
6067 /* This adds penalties for the overall size of the table. */
6068 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6069 max *= fact * fact;
6070 # else
6071 /* Variant 2: Optimize a lot more for small table. Here we
6072 also add squares of the size but we also add penalties for
6073 empty slots (the +1 term). */
6074 for (j = 0; j < i; ++j)
6075 max += (1 + counts[j]) * (1 + counts[j]);
6076
6077 /* The overall size of the table is considered, but not as
6078 strong as in variant 1, where it is squared. */
6079 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6080 max *= fact;
6081 # endif
6082
6083 /* Compare with current best results. */
6084 if (max < best_chlen)
6085 {
6086 best_chlen = max;
6087 best_size = i;
6088 no_improvement_count = 0;
6089 }
6090 /* PR 11843: Avoid futile long searches for the best bucket size
6091 when there are a large number of symbols. */
6092 else if (++no_improvement_count == 100)
6093 break;
6094 }
6095
6096 free (counts);
6097 }
6098 else
6099 #endif /* defined (BFD_HOST_U_64_BIT) */
6100 {
6101 /* This is the fallback solution if no 64bit type is available or if we
6102 are not supposed to spend much time on optimizations. We select the
6103 bucket count using a fixed set of numbers. */
6104 for (i = 0; elf_buckets[i] != 0; i++)
6105 {
6106 best_size = elf_buckets[i];
6107 if (nsyms < elf_buckets[i + 1])
6108 break;
6109 }
6110 if (gnu_hash && best_size < 2)
6111 best_size = 2;
6112 }
6113
6114 return best_size;
6115 }
6116
6117 /* Size any SHT_GROUP section for ld -r. */
6118
6119 bfd_boolean
6120 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6121 {
6122 bfd *ibfd;
6123 asection *s;
6124
6125 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6126 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6127 && (s = ibfd->sections) != NULL
6128 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6129 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6130 return FALSE;
6131 return TRUE;
6132 }
6133
6134 /* Set a default stack segment size. The value in INFO wins. If it
6135 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6136 undefined it is initialized. */
6137
6138 bfd_boolean
6139 bfd_elf_stack_segment_size (bfd *output_bfd,
6140 struct bfd_link_info *info,
6141 const char *legacy_symbol,
6142 bfd_vma default_size)
6143 {
6144 struct elf_link_hash_entry *h = NULL;
6145
6146 /* Look for legacy symbol. */
6147 if (legacy_symbol)
6148 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6149 FALSE, FALSE, FALSE);
6150 if (h && (h->root.type == bfd_link_hash_defined
6151 || h->root.type == bfd_link_hash_defweak)
6152 && h->def_regular
6153 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6154 {
6155 /* The symbol has no type if specified on the command line. */
6156 h->type = STT_OBJECT;
6157 if (info->stacksize)
6158 /* xgettext:c-format */
6159 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6160 output_bfd, legacy_symbol);
6161 else if (h->root.u.def.section != bfd_abs_section_ptr)
6162 /* xgettext:c-format */
6163 _bfd_error_handler (_("%pB: %s not absolute"),
6164 output_bfd, legacy_symbol);
6165 else
6166 info->stacksize = h->root.u.def.value;
6167 }
6168
6169 if (!info->stacksize)
6170 /* If the user didn't set a size, or explicitly inhibit the
6171 size, set it now. */
6172 info->stacksize = default_size;
6173
6174 /* Provide the legacy symbol, if it is referenced. */
6175 if (h && (h->root.type == bfd_link_hash_undefined
6176 || h->root.type == bfd_link_hash_undefweak))
6177 {
6178 struct bfd_link_hash_entry *bh = NULL;
6179
6180 if (!(_bfd_generic_link_add_one_symbol
6181 (info, output_bfd, legacy_symbol,
6182 BSF_GLOBAL, bfd_abs_section_ptr,
6183 info->stacksize >= 0 ? info->stacksize : 0,
6184 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6185 return FALSE;
6186
6187 h = (struct elf_link_hash_entry *) bh;
6188 h->def_regular = 1;
6189 h->type = STT_OBJECT;
6190 }
6191
6192 return TRUE;
6193 }
6194
6195 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6196
6197 struct elf_gc_sweep_symbol_info
6198 {
6199 struct bfd_link_info *info;
6200 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6201 bfd_boolean);
6202 };
6203
6204 static bfd_boolean
6205 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6206 {
6207 if (!h->mark
6208 && (((h->root.type == bfd_link_hash_defined
6209 || h->root.type == bfd_link_hash_defweak)
6210 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6211 && h->root.u.def.section->gc_mark))
6212 || h->root.type == bfd_link_hash_undefined
6213 || h->root.type == bfd_link_hash_undefweak))
6214 {
6215 struct elf_gc_sweep_symbol_info *inf;
6216
6217 inf = (struct elf_gc_sweep_symbol_info *) data;
6218 (*inf->hide_symbol) (inf->info, h, TRUE);
6219 h->def_regular = 0;
6220 h->ref_regular = 0;
6221 h->ref_regular_nonweak = 0;
6222 }
6223
6224 return TRUE;
6225 }
6226
6227 /* Set up the sizes and contents of the ELF dynamic sections. This is
6228 called by the ELF linker emulation before_allocation routine. We
6229 must set the sizes of the sections before the linker sets the
6230 addresses of the various sections. */
6231
6232 bfd_boolean
6233 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6234 const char *soname,
6235 const char *rpath,
6236 const char *filter_shlib,
6237 const char *audit,
6238 const char *depaudit,
6239 const char * const *auxiliary_filters,
6240 struct bfd_link_info *info,
6241 asection **sinterpptr)
6242 {
6243 bfd *dynobj;
6244 const struct elf_backend_data *bed;
6245
6246 *sinterpptr = NULL;
6247
6248 if (!is_elf_hash_table (info->hash))
6249 return TRUE;
6250
6251 dynobj = elf_hash_table (info)->dynobj;
6252
6253 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6254 {
6255 struct bfd_elf_version_tree *verdefs;
6256 struct elf_info_failed asvinfo;
6257 struct bfd_elf_version_tree *t;
6258 struct bfd_elf_version_expr *d;
6259 asection *s;
6260 size_t soname_indx;
6261
6262 /* If we are supposed to export all symbols into the dynamic symbol
6263 table (this is not the normal case), then do so. */
6264 if (info->export_dynamic
6265 || (bfd_link_executable (info) && info->dynamic))
6266 {
6267 struct elf_info_failed eif;
6268
6269 eif.info = info;
6270 eif.failed = FALSE;
6271 elf_link_hash_traverse (elf_hash_table (info),
6272 _bfd_elf_export_symbol,
6273 &eif);
6274 if (eif.failed)
6275 return FALSE;
6276 }
6277
6278 if (soname != NULL)
6279 {
6280 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6281 soname, TRUE);
6282 if (soname_indx == (size_t) -1
6283 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6284 return FALSE;
6285 }
6286 else
6287 soname_indx = (size_t) -1;
6288
6289 /* Make all global versions with definition. */
6290 for (t = info->version_info; t != NULL; t = t->next)
6291 for (d = t->globals.list; d != NULL; d = d->next)
6292 if (!d->symver && d->literal)
6293 {
6294 const char *verstr, *name;
6295 size_t namelen, verlen, newlen;
6296 char *newname, *p, leading_char;
6297 struct elf_link_hash_entry *newh;
6298
6299 leading_char = bfd_get_symbol_leading_char (output_bfd);
6300 name = d->pattern;
6301 namelen = strlen (name) + (leading_char != '\0');
6302 verstr = t->name;
6303 verlen = strlen (verstr);
6304 newlen = namelen + verlen + 3;
6305
6306 newname = (char *) bfd_malloc (newlen);
6307 if (newname == NULL)
6308 return FALSE;
6309 newname[0] = leading_char;
6310 memcpy (newname + (leading_char != '\0'), name, namelen);
6311
6312 /* Check the hidden versioned definition. */
6313 p = newname + namelen;
6314 *p++ = ELF_VER_CHR;
6315 memcpy (p, verstr, verlen + 1);
6316 newh = elf_link_hash_lookup (elf_hash_table (info),
6317 newname, FALSE, FALSE,
6318 FALSE);
6319 if (newh == NULL
6320 || (newh->root.type != bfd_link_hash_defined
6321 && newh->root.type != bfd_link_hash_defweak))
6322 {
6323 /* Check the default versioned definition. */
6324 *p++ = ELF_VER_CHR;
6325 memcpy (p, verstr, verlen + 1);
6326 newh = elf_link_hash_lookup (elf_hash_table (info),
6327 newname, FALSE, FALSE,
6328 FALSE);
6329 }
6330 free (newname);
6331
6332 /* Mark this version if there is a definition and it is
6333 not defined in a shared object. */
6334 if (newh != NULL
6335 && !newh->def_dynamic
6336 && (newh->root.type == bfd_link_hash_defined
6337 || newh->root.type == bfd_link_hash_defweak))
6338 d->symver = 1;
6339 }
6340
6341 /* Attach all the symbols to their version information. */
6342 asvinfo.info = info;
6343 asvinfo.failed = FALSE;
6344
6345 elf_link_hash_traverse (elf_hash_table (info),
6346 _bfd_elf_link_assign_sym_version,
6347 &asvinfo);
6348 if (asvinfo.failed)
6349 return FALSE;
6350
6351 if (!info->allow_undefined_version)
6352 {
6353 /* Check if all global versions have a definition. */
6354 bfd_boolean all_defined = TRUE;
6355 for (t = info->version_info; t != NULL; t = t->next)
6356 for (d = t->globals.list; d != NULL; d = d->next)
6357 if (d->literal && !d->symver && !d->script)
6358 {
6359 _bfd_error_handler
6360 (_("%s: undefined version: %s"),
6361 d->pattern, t->name);
6362 all_defined = FALSE;
6363 }
6364
6365 if (!all_defined)
6366 {
6367 bfd_set_error (bfd_error_bad_value);
6368 return FALSE;
6369 }
6370 }
6371
6372 /* Set up the version definition section. */
6373 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6374 BFD_ASSERT (s != NULL);
6375
6376 /* We may have created additional version definitions if we are
6377 just linking a regular application. */
6378 verdefs = info->version_info;
6379
6380 /* Skip anonymous version tag. */
6381 if (verdefs != NULL && verdefs->vernum == 0)
6382 verdefs = verdefs->next;
6383
6384 if (verdefs == NULL && !info->create_default_symver)
6385 s->flags |= SEC_EXCLUDE;
6386 else
6387 {
6388 unsigned int cdefs;
6389 bfd_size_type size;
6390 bfd_byte *p;
6391 Elf_Internal_Verdef def;
6392 Elf_Internal_Verdaux defaux;
6393 struct bfd_link_hash_entry *bh;
6394 struct elf_link_hash_entry *h;
6395 const char *name;
6396
6397 cdefs = 0;
6398 size = 0;
6399
6400 /* Make space for the base version. */
6401 size += sizeof (Elf_External_Verdef);
6402 size += sizeof (Elf_External_Verdaux);
6403 ++cdefs;
6404
6405 /* Make space for the default version. */
6406 if (info->create_default_symver)
6407 {
6408 size += sizeof (Elf_External_Verdef);
6409 ++cdefs;
6410 }
6411
6412 for (t = verdefs; t != NULL; t = t->next)
6413 {
6414 struct bfd_elf_version_deps *n;
6415
6416 /* Don't emit base version twice. */
6417 if (t->vernum == 0)
6418 continue;
6419
6420 size += sizeof (Elf_External_Verdef);
6421 size += sizeof (Elf_External_Verdaux);
6422 ++cdefs;
6423
6424 for (n = t->deps; n != NULL; n = n->next)
6425 size += sizeof (Elf_External_Verdaux);
6426 }
6427
6428 s->size = size;
6429 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6430 if (s->contents == NULL && s->size != 0)
6431 return FALSE;
6432
6433 /* Fill in the version definition section. */
6434
6435 p = s->contents;
6436
6437 def.vd_version = VER_DEF_CURRENT;
6438 def.vd_flags = VER_FLG_BASE;
6439 def.vd_ndx = 1;
6440 def.vd_cnt = 1;
6441 if (info->create_default_symver)
6442 {
6443 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6444 def.vd_next = sizeof (Elf_External_Verdef);
6445 }
6446 else
6447 {
6448 def.vd_aux = sizeof (Elf_External_Verdef);
6449 def.vd_next = (sizeof (Elf_External_Verdef)
6450 + sizeof (Elf_External_Verdaux));
6451 }
6452
6453 if (soname_indx != (size_t) -1)
6454 {
6455 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6456 soname_indx);
6457 def.vd_hash = bfd_elf_hash (soname);
6458 defaux.vda_name = soname_indx;
6459 name = soname;
6460 }
6461 else
6462 {
6463 size_t indx;
6464
6465 name = lbasename (output_bfd->filename);
6466 def.vd_hash = bfd_elf_hash (name);
6467 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6468 name, FALSE);
6469 if (indx == (size_t) -1)
6470 return FALSE;
6471 defaux.vda_name = indx;
6472 }
6473 defaux.vda_next = 0;
6474
6475 _bfd_elf_swap_verdef_out (output_bfd, &def,
6476 (Elf_External_Verdef *) p);
6477 p += sizeof (Elf_External_Verdef);
6478 if (info->create_default_symver)
6479 {
6480 /* Add a symbol representing this version. */
6481 bh = NULL;
6482 if (! (_bfd_generic_link_add_one_symbol
6483 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6484 0, NULL, FALSE,
6485 get_elf_backend_data (dynobj)->collect, &bh)))
6486 return FALSE;
6487 h = (struct elf_link_hash_entry *) bh;
6488 h->non_elf = 0;
6489 h->def_regular = 1;
6490 h->type = STT_OBJECT;
6491 h->verinfo.vertree = NULL;
6492
6493 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6494 return FALSE;
6495
6496 /* Create a duplicate of the base version with the same
6497 aux block, but different flags. */
6498 def.vd_flags = 0;
6499 def.vd_ndx = 2;
6500 def.vd_aux = sizeof (Elf_External_Verdef);
6501 if (verdefs)
6502 def.vd_next = (sizeof (Elf_External_Verdef)
6503 + sizeof (Elf_External_Verdaux));
6504 else
6505 def.vd_next = 0;
6506 _bfd_elf_swap_verdef_out (output_bfd, &def,
6507 (Elf_External_Verdef *) p);
6508 p += sizeof (Elf_External_Verdef);
6509 }
6510 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6511 (Elf_External_Verdaux *) p);
6512 p += sizeof (Elf_External_Verdaux);
6513
6514 for (t = verdefs; t != NULL; t = t->next)
6515 {
6516 unsigned int cdeps;
6517 struct bfd_elf_version_deps *n;
6518
6519 /* Don't emit the base version twice. */
6520 if (t->vernum == 0)
6521 continue;
6522
6523 cdeps = 0;
6524 for (n = t->deps; n != NULL; n = n->next)
6525 ++cdeps;
6526
6527 /* Add a symbol representing this version. */
6528 bh = NULL;
6529 if (! (_bfd_generic_link_add_one_symbol
6530 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6531 0, NULL, FALSE,
6532 get_elf_backend_data (dynobj)->collect, &bh)))
6533 return FALSE;
6534 h = (struct elf_link_hash_entry *) bh;
6535 h->non_elf = 0;
6536 h->def_regular = 1;
6537 h->type = STT_OBJECT;
6538 h->verinfo.vertree = t;
6539
6540 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6541 return FALSE;
6542
6543 def.vd_version = VER_DEF_CURRENT;
6544 def.vd_flags = 0;
6545 if (t->globals.list == NULL
6546 && t->locals.list == NULL
6547 && ! t->used)
6548 def.vd_flags |= VER_FLG_WEAK;
6549 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6550 def.vd_cnt = cdeps + 1;
6551 def.vd_hash = bfd_elf_hash (t->name);
6552 def.vd_aux = sizeof (Elf_External_Verdef);
6553 def.vd_next = 0;
6554
6555 /* If a basever node is next, it *must* be the last node in
6556 the chain, otherwise Verdef construction breaks. */
6557 if (t->next != NULL && t->next->vernum == 0)
6558 BFD_ASSERT (t->next->next == NULL);
6559
6560 if (t->next != NULL && t->next->vernum != 0)
6561 def.vd_next = (sizeof (Elf_External_Verdef)
6562 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6563
6564 _bfd_elf_swap_verdef_out (output_bfd, &def,
6565 (Elf_External_Verdef *) p);
6566 p += sizeof (Elf_External_Verdef);
6567
6568 defaux.vda_name = h->dynstr_index;
6569 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6570 h->dynstr_index);
6571 defaux.vda_next = 0;
6572 if (t->deps != NULL)
6573 defaux.vda_next = sizeof (Elf_External_Verdaux);
6574 t->name_indx = defaux.vda_name;
6575
6576 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6577 (Elf_External_Verdaux *) p);
6578 p += sizeof (Elf_External_Verdaux);
6579
6580 for (n = t->deps; n != NULL; n = n->next)
6581 {
6582 if (n->version_needed == NULL)
6583 {
6584 /* This can happen if there was an error in the
6585 version script. */
6586 defaux.vda_name = 0;
6587 }
6588 else
6589 {
6590 defaux.vda_name = n->version_needed->name_indx;
6591 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6592 defaux.vda_name);
6593 }
6594 if (n->next == NULL)
6595 defaux.vda_next = 0;
6596 else
6597 defaux.vda_next = sizeof (Elf_External_Verdaux);
6598
6599 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6600 (Elf_External_Verdaux *) p);
6601 p += sizeof (Elf_External_Verdaux);
6602 }
6603 }
6604
6605 elf_tdata (output_bfd)->cverdefs = cdefs;
6606 }
6607 }
6608
6609 bed = get_elf_backend_data (output_bfd);
6610
6611 if (info->gc_sections && bed->can_gc_sections)
6612 {
6613 struct elf_gc_sweep_symbol_info sweep_info;
6614
6615 /* Remove the symbols that were in the swept sections from the
6616 dynamic symbol table. */
6617 sweep_info.info = info;
6618 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6619 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6620 &sweep_info);
6621 }
6622
6623 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6624 {
6625 asection *s;
6626 struct elf_find_verdep_info sinfo;
6627
6628 /* Work out the size of the version reference section. */
6629
6630 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6631 BFD_ASSERT (s != NULL);
6632
6633 sinfo.info = info;
6634 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6635 if (sinfo.vers == 0)
6636 sinfo.vers = 1;
6637 sinfo.failed = FALSE;
6638
6639 elf_link_hash_traverse (elf_hash_table (info),
6640 _bfd_elf_link_find_version_dependencies,
6641 &sinfo);
6642 if (sinfo.failed)
6643 return FALSE;
6644
6645 if (elf_tdata (output_bfd)->verref == NULL)
6646 s->flags |= SEC_EXCLUDE;
6647 else
6648 {
6649 Elf_Internal_Verneed *vn;
6650 unsigned int size;
6651 unsigned int crefs;
6652 bfd_byte *p;
6653
6654 /* Build the version dependency section. */
6655 size = 0;
6656 crefs = 0;
6657 for (vn = elf_tdata (output_bfd)->verref;
6658 vn != NULL;
6659 vn = vn->vn_nextref)
6660 {
6661 Elf_Internal_Vernaux *a;
6662
6663 size += sizeof (Elf_External_Verneed);
6664 ++crefs;
6665 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6666 size += sizeof (Elf_External_Vernaux);
6667 }
6668
6669 s->size = size;
6670 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6671 if (s->contents == NULL)
6672 return FALSE;
6673
6674 p = s->contents;
6675 for (vn = elf_tdata (output_bfd)->verref;
6676 vn != NULL;
6677 vn = vn->vn_nextref)
6678 {
6679 unsigned int caux;
6680 Elf_Internal_Vernaux *a;
6681 size_t indx;
6682
6683 caux = 0;
6684 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6685 ++caux;
6686
6687 vn->vn_version = VER_NEED_CURRENT;
6688 vn->vn_cnt = caux;
6689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6690 elf_dt_name (vn->vn_bfd) != NULL
6691 ? elf_dt_name (vn->vn_bfd)
6692 : lbasename (vn->vn_bfd->filename),
6693 FALSE);
6694 if (indx == (size_t) -1)
6695 return FALSE;
6696 vn->vn_file = indx;
6697 vn->vn_aux = sizeof (Elf_External_Verneed);
6698 if (vn->vn_nextref == NULL)
6699 vn->vn_next = 0;
6700 else
6701 vn->vn_next = (sizeof (Elf_External_Verneed)
6702 + caux * sizeof (Elf_External_Vernaux));
6703
6704 _bfd_elf_swap_verneed_out (output_bfd, vn,
6705 (Elf_External_Verneed *) p);
6706 p += sizeof (Elf_External_Verneed);
6707
6708 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6709 {
6710 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6711 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6712 a->vna_nodename, FALSE);
6713 if (indx == (size_t) -1)
6714 return FALSE;
6715 a->vna_name = indx;
6716 if (a->vna_nextptr == NULL)
6717 a->vna_next = 0;
6718 else
6719 a->vna_next = sizeof (Elf_External_Vernaux);
6720
6721 _bfd_elf_swap_vernaux_out (output_bfd, a,
6722 (Elf_External_Vernaux *) p);
6723 p += sizeof (Elf_External_Vernaux);
6724 }
6725 }
6726
6727 elf_tdata (output_bfd)->cverrefs = crefs;
6728 }
6729 }
6730
6731 /* Any syms created from now on start with -1 in
6732 got.refcount/offset and plt.refcount/offset. */
6733 elf_hash_table (info)->init_got_refcount
6734 = elf_hash_table (info)->init_got_offset;
6735 elf_hash_table (info)->init_plt_refcount
6736 = elf_hash_table (info)->init_plt_offset;
6737
6738 if (bfd_link_relocatable (info)
6739 && !_bfd_elf_size_group_sections (info))
6740 return FALSE;
6741
6742 /* The backend may have to create some sections regardless of whether
6743 we're dynamic or not. */
6744 if (bed->elf_backend_always_size_sections
6745 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6746 return FALSE;
6747
6748 /* Determine any GNU_STACK segment requirements, after the backend
6749 has had a chance to set a default segment size. */
6750 if (info->execstack)
6751 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6752 else if (info->noexecstack)
6753 elf_stack_flags (output_bfd) = PF_R | PF_W;
6754 else
6755 {
6756 bfd *inputobj;
6757 asection *notesec = NULL;
6758 int exec = 0;
6759
6760 for (inputobj = info->input_bfds;
6761 inputobj;
6762 inputobj = inputobj->link.next)
6763 {
6764 asection *s;
6765
6766 if (inputobj->flags
6767 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6768 continue;
6769 s = inputobj->sections;
6770 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6771 continue;
6772
6773 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6774 if (s)
6775 {
6776 if (s->flags & SEC_CODE)
6777 exec = PF_X;
6778 notesec = s;
6779 }
6780 else if (bed->default_execstack)
6781 exec = PF_X;
6782 }
6783 if (notesec || info->stacksize > 0)
6784 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6785 if (notesec && exec && bfd_link_relocatable (info)
6786 && notesec->output_section != bfd_abs_section_ptr)
6787 notesec->output_section->flags |= SEC_CODE;
6788 }
6789
6790 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6791 {
6792 struct elf_info_failed eif;
6793 struct elf_link_hash_entry *h;
6794 asection *dynstr;
6795 asection *s;
6796
6797 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6798 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6799
6800 if (info->symbolic)
6801 {
6802 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6803 return FALSE;
6804 info->flags |= DF_SYMBOLIC;
6805 }
6806
6807 if (rpath != NULL)
6808 {
6809 size_t indx;
6810 bfd_vma tag;
6811
6812 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6813 TRUE);
6814 if (indx == (size_t) -1)
6815 return FALSE;
6816
6817 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6818 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6819 return FALSE;
6820 }
6821
6822 if (filter_shlib != NULL)
6823 {
6824 size_t indx;
6825
6826 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6827 filter_shlib, TRUE);
6828 if (indx == (size_t) -1
6829 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6830 return FALSE;
6831 }
6832
6833 if (auxiliary_filters != NULL)
6834 {
6835 const char * const *p;
6836
6837 for (p = auxiliary_filters; *p != NULL; p++)
6838 {
6839 size_t indx;
6840
6841 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6842 *p, TRUE);
6843 if (indx == (size_t) -1
6844 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6845 return FALSE;
6846 }
6847 }
6848
6849 if (audit != NULL)
6850 {
6851 size_t indx;
6852
6853 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6854 TRUE);
6855 if (indx == (size_t) -1
6856 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6857 return FALSE;
6858 }
6859
6860 if (depaudit != NULL)
6861 {
6862 size_t indx;
6863
6864 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6865 TRUE);
6866 if (indx == (size_t) -1
6867 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6868 return FALSE;
6869 }
6870
6871 eif.info = info;
6872 eif.failed = FALSE;
6873
6874 /* Find all symbols which were defined in a dynamic object and make
6875 the backend pick a reasonable value for them. */
6876 elf_link_hash_traverse (elf_hash_table (info),
6877 _bfd_elf_adjust_dynamic_symbol,
6878 &eif);
6879 if (eif.failed)
6880 return FALSE;
6881
6882 /* Add some entries to the .dynamic section. We fill in some of the
6883 values later, in bfd_elf_final_link, but we must add the entries
6884 now so that we know the final size of the .dynamic section. */
6885
6886 /* If there are initialization and/or finalization functions to
6887 call then add the corresponding DT_INIT/DT_FINI entries. */
6888 h = (info->init_function
6889 ? elf_link_hash_lookup (elf_hash_table (info),
6890 info->init_function, FALSE,
6891 FALSE, FALSE)
6892 : NULL);
6893 if (h != NULL
6894 && (h->ref_regular
6895 || h->def_regular))
6896 {
6897 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6898 return FALSE;
6899 }
6900 h = (info->fini_function
6901 ? elf_link_hash_lookup (elf_hash_table (info),
6902 info->fini_function, FALSE,
6903 FALSE, FALSE)
6904 : NULL);
6905 if (h != NULL
6906 && (h->ref_regular
6907 || h->def_regular))
6908 {
6909 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6910 return FALSE;
6911 }
6912
6913 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6914 if (s != NULL && s->linker_has_input)
6915 {
6916 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6917 if (! bfd_link_executable (info))
6918 {
6919 bfd *sub;
6920 asection *o;
6921
6922 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6923 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6924 && (o = sub->sections) != NULL
6925 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6926 for (o = sub->sections; o != NULL; o = o->next)
6927 if (elf_section_data (o)->this_hdr.sh_type
6928 == SHT_PREINIT_ARRAY)
6929 {
6930 _bfd_error_handler
6931 (_("%pB: .preinit_array section is not allowed in DSO"),
6932 sub);
6933 break;
6934 }
6935
6936 bfd_set_error (bfd_error_nonrepresentable_section);
6937 return FALSE;
6938 }
6939
6940 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6941 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6942 return FALSE;
6943 }
6944 s = bfd_get_section_by_name (output_bfd, ".init_array");
6945 if (s != NULL && s->linker_has_input)
6946 {
6947 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6948 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6949 return FALSE;
6950 }
6951 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6952 if (s != NULL && s->linker_has_input)
6953 {
6954 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6955 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6956 return FALSE;
6957 }
6958
6959 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6960 /* If .dynstr is excluded from the link, we don't want any of
6961 these tags. Strictly, we should be checking each section
6962 individually; This quick check covers for the case where
6963 someone does a /DISCARD/ : { *(*) }. */
6964 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6965 {
6966 bfd_size_type strsize;
6967
6968 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6969 if ((info->emit_hash
6970 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6971 || (info->emit_gnu_hash
6972 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6973 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6974 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6975 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6976 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6977 bed->s->sizeof_sym))
6978 return FALSE;
6979 }
6980 }
6981
6982 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6983 return FALSE;
6984
6985 /* The backend must work out the sizes of all the other dynamic
6986 sections. */
6987 if (dynobj != NULL
6988 && bed->elf_backend_size_dynamic_sections != NULL
6989 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6990 return FALSE;
6991
6992 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6993 {
6994 if (elf_tdata (output_bfd)->cverdefs)
6995 {
6996 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6997
6998 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6999 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7000 return FALSE;
7001 }
7002
7003 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7004 {
7005 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7006 return FALSE;
7007 }
7008 else if (info->flags & DF_BIND_NOW)
7009 {
7010 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7011 return FALSE;
7012 }
7013
7014 if (info->flags_1)
7015 {
7016 if (bfd_link_executable (info))
7017 info->flags_1 &= ~ (DF_1_INITFIRST
7018 | DF_1_NODELETE
7019 | DF_1_NOOPEN);
7020 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7021 return FALSE;
7022 }
7023
7024 if (elf_tdata (output_bfd)->cverrefs)
7025 {
7026 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7027
7028 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7029 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7030 return FALSE;
7031 }
7032
7033 if ((elf_tdata (output_bfd)->cverrefs == 0
7034 && elf_tdata (output_bfd)->cverdefs == 0)
7035 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7036 {
7037 asection *s;
7038
7039 s = bfd_get_linker_section (dynobj, ".gnu.version");
7040 s->flags |= SEC_EXCLUDE;
7041 }
7042 }
7043 return TRUE;
7044 }
7045
7046 /* Find the first non-excluded output section. We'll use its
7047 section symbol for some emitted relocs. */
7048 void
7049 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7050 {
7051 asection *s;
7052 asection *found = NULL;
7053
7054 for (s = output_bfd->sections; s != NULL; s = s->next)
7055 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7056 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7057 {
7058 found = s;
7059 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7060 break;
7061 }
7062 elf_hash_table (info)->text_index_section = found;
7063 }
7064
7065 /* Find two non-excluded output sections, one for code, one for data.
7066 We'll use their section symbols for some emitted relocs. */
7067 void
7068 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7069 {
7070 asection *s;
7071 asection *found = NULL;
7072
7073 /* Data first, since setting text_index_section changes
7074 _bfd_elf_omit_section_dynsym_default. */
7075 for (s = output_bfd->sections; s != NULL; s = s->next)
7076 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7077 && !(s->flags & SEC_READONLY)
7078 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7079 {
7080 found = s;
7081 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7082 break;
7083 }
7084 elf_hash_table (info)->data_index_section = found;
7085
7086 for (s = output_bfd->sections; s != NULL; s = s->next)
7087 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7088 && (s->flags & SEC_READONLY)
7089 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7090 {
7091 found = s;
7092 break;
7093 }
7094 elf_hash_table (info)->text_index_section = found;
7095 }
7096
7097 bfd_boolean
7098 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7099 {
7100 const struct elf_backend_data *bed;
7101 unsigned long section_sym_count;
7102 bfd_size_type dynsymcount = 0;
7103
7104 if (!is_elf_hash_table (info->hash))
7105 return TRUE;
7106
7107 bed = get_elf_backend_data (output_bfd);
7108 (*bed->elf_backend_init_index_section) (output_bfd, info);
7109
7110 /* Assign dynsym indices. In a shared library we generate a section
7111 symbol for each output section, which come first. Next come all
7112 of the back-end allocated local dynamic syms, followed by the rest
7113 of the global symbols.
7114
7115 This is usually not needed for static binaries, however backends
7116 can request to always do it, e.g. the MIPS backend uses dynamic
7117 symbol counts to lay out GOT, which will be produced in the
7118 presence of GOT relocations even in static binaries (holding fixed
7119 data in that case, to satisfy those relocations). */
7120
7121 if (elf_hash_table (info)->dynamic_sections_created
7122 || bed->always_renumber_dynsyms)
7123 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7124 &section_sym_count);
7125
7126 if (elf_hash_table (info)->dynamic_sections_created)
7127 {
7128 bfd *dynobj;
7129 asection *s;
7130 unsigned int dtagcount;
7131
7132 dynobj = elf_hash_table (info)->dynobj;
7133
7134 /* Work out the size of the symbol version section. */
7135 s = bfd_get_linker_section (dynobj, ".gnu.version");
7136 BFD_ASSERT (s != NULL);
7137 if ((s->flags & SEC_EXCLUDE) == 0)
7138 {
7139 s->size = dynsymcount * sizeof (Elf_External_Versym);
7140 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7141 if (s->contents == NULL)
7142 return FALSE;
7143
7144 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7145 return FALSE;
7146 }
7147
7148 /* Set the size of the .dynsym and .hash sections. We counted
7149 the number of dynamic symbols in elf_link_add_object_symbols.
7150 We will build the contents of .dynsym and .hash when we build
7151 the final symbol table, because until then we do not know the
7152 correct value to give the symbols. We built the .dynstr
7153 section as we went along in elf_link_add_object_symbols. */
7154 s = elf_hash_table (info)->dynsym;
7155 BFD_ASSERT (s != NULL);
7156 s->size = dynsymcount * bed->s->sizeof_sym;
7157
7158 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7159 if (s->contents == NULL)
7160 return FALSE;
7161
7162 /* The first entry in .dynsym is a dummy symbol. Clear all the
7163 section syms, in case we don't output them all. */
7164 ++section_sym_count;
7165 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7166
7167 elf_hash_table (info)->bucketcount = 0;
7168
7169 /* Compute the size of the hashing table. As a side effect this
7170 computes the hash values for all the names we export. */
7171 if (info->emit_hash)
7172 {
7173 unsigned long int *hashcodes;
7174 struct hash_codes_info hashinf;
7175 bfd_size_type amt;
7176 unsigned long int nsyms;
7177 size_t bucketcount;
7178 size_t hash_entry_size;
7179
7180 /* Compute the hash values for all exported symbols. At the same
7181 time store the values in an array so that we could use them for
7182 optimizations. */
7183 amt = dynsymcount * sizeof (unsigned long int);
7184 hashcodes = (unsigned long int *) bfd_malloc (amt);
7185 if (hashcodes == NULL)
7186 return FALSE;
7187 hashinf.hashcodes = hashcodes;
7188 hashinf.error = FALSE;
7189
7190 /* Put all hash values in HASHCODES. */
7191 elf_link_hash_traverse (elf_hash_table (info),
7192 elf_collect_hash_codes, &hashinf);
7193 if (hashinf.error)
7194 {
7195 free (hashcodes);
7196 return FALSE;
7197 }
7198
7199 nsyms = hashinf.hashcodes - hashcodes;
7200 bucketcount
7201 = compute_bucket_count (info, hashcodes, nsyms, 0);
7202 free (hashcodes);
7203
7204 if (bucketcount == 0 && nsyms > 0)
7205 return FALSE;
7206
7207 elf_hash_table (info)->bucketcount = bucketcount;
7208
7209 s = bfd_get_linker_section (dynobj, ".hash");
7210 BFD_ASSERT (s != NULL);
7211 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7212 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7213 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7214 if (s->contents == NULL)
7215 return FALSE;
7216
7217 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7218 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7219 s->contents + hash_entry_size);
7220 }
7221
7222 if (info->emit_gnu_hash)
7223 {
7224 size_t i, cnt;
7225 unsigned char *contents;
7226 struct collect_gnu_hash_codes cinfo;
7227 bfd_size_type amt;
7228 size_t bucketcount;
7229
7230 memset (&cinfo, 0, sizeof (cinfo));
7231
7232 /* Compute the hash values for all exported symbols. At the same
7233 time store the values in an array so that we could use them for
7234 optimizations. */
7235 amt = dynsymcount * 2 * sizeof (unsigned long int);
7236 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7237 if (cinfo.hashcodes == NULL)
7238 return FALSE;
7239
7240 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7241 cinfo.min_dynindx = -1;
7242 cinfo.output_bfd = output_bfd;
7243 cinfo.bed = bed;
7244
7245 /* Put all hash values in HASHCODES. */
7246 elf_link_hash_traverse (elf_hash_table (info),
7247 elf_collect_gnu_hash_codes, &cinfo);
7248 if (cinfo.error)
7249 {
7250 free (cinfo.hashcodes);
7251 return FALSE;
7252 }
7253
7254 bucketcount
7255 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7256
7257 if (bucketcount == 0)
7258 {
7259 free (cinfo.hashcodes);
7260 return FALSE;
7261 }
7262
7263 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7264 BFD_ASSERT (s != NULL);
7265
7266 if (cinfo.nsyms == 0)
7267 {
7268 /* Empty .gnu.hash section is special. */
7269 BFD_ASSERT (cinfo.min_dynindx == -1);
7270 free (cinfo.hashcodes);
7271 s->size = 5 * 4 + bed->s->arch_size / 8;
7272 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7273 if (contents == NULL)
7274 return FALSE;
7275 s->contents = contents;
7276 /* 1 empty bucket. */
7277 bfd_put_32 (output_bfd, 1, contents);
7278 /* SYMIDX above the special symbol 0. */
7279 bfd_put_32 (output_bfd, 1, contents + 4);
7280 /* Just one word for bitmask. */
7281 bfd_put_32 (output_bfd, 1, contents + 8);
7282 /* Only hash fn bloom filter. */
7283 bfd_put_32 (output_bfd, 0, contents + 12);
7284 /* No hashes are valid - empty bitmask. */
7285 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7286 /* No hashes in the only bucket. */
7287 bfd_put_32 (output_bfd, 0,
7288 contents + 16 + bed->s->arch_size / 8);
7289 }
7290 else
7291 {
7292 unsigned long int maskwords, maskbitslog2, x;
7293 BFD_ASSERT (cinfo.min_dynindx != -1);
7294
7295 x = cinfo.nsyms;
7296 maskbitslog2 = 1;
7297 while ((x >>= 1) != 0)
7298 ++maskbitslog2;
7299 if (maskbitslog2 < 3)
7300 maskbitslog2 = 5;
7301 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7302 maskbitslog2 = maskbitslog2 + 3;
7303 else
7304 maskbitslog2 = maskbitslog2 + 2;
7305 if (bed->s->arch_size == 64)
7306 {
7307 if (maskbitslog2 == 5)
7308 maskbitslog2 = 6;
7309 cinfo.shift1 = 6;
7310 }
7311 else
7312 cinfo.shift1 = 5;
7313 cinfo.mask = (1 << cinfo.shift1) - 1;
7314 cinfo.shift2 = maskbitslog2;
7315 cinfo.maskbits = 1 << maskbitslog2;
7316 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7317 amt = bucketcount * sizeof (unsigned long int) * 2;
7318 amt += maskwords * sizeof (bfd_vma);
7319 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7320 if (cinfo.bitmask == NULL)
7321 {
7322 free (cinfo.hashcodes);
7323 return FALSE;
7324 }
7325
7326 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7327 cinfo.indx = cinfo.counts + bucketcount;
7328 cinfo.symindx = dynsymcount - cinfo.nsyms;
7329 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7330
7331 /* Determine how often each hash bucket is used. */
7332 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7333 for (i = 0; i < cinfo.nsyms; ++i)
7334 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7335
7336 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7337 if (cinfo.counts[i] != 0)
7338 {
7339 cinfo.indx[i] = cnt;
7340 cnt += cinfo.counts[i];
7341 }
7342 BFD_ASSERT (cnt == dynsymcount);
7343 cinfo.bucketcount = bucketcount;
7344 cinfo.local_indx = cinfo.min_dynindx;
7345
7346 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7347 s->size += cinfo.maskbits / 8;
7348 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7349 if (contents == NULL)
7350 {
7351 free (cinfo.bitmask);
7352 free (cinfo.hashcodes);
7353 return FALSE;
7354 }
7355
7356 s->contents = contents;
7357 bfd_put_32 (output_bfd, bucketcount, contents);
7358 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7359 bfd_put_32 (output_bfd, maskwords, contents + 8);
7360 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7361 contents += 16 + cinfo.maskbits / 8;
7362
7363 for (i = 0; i < bucketcount; ++i)
7364 {
7365 if (cinfo.counts[i] == 0)
7366 bfd_put_32 (output_bfd, 0, contents);
7367 else
7368 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7369 contents += 4;
7370 }
7371
7372 cinfo.contents = contents;
7373
7374 /* Renumber dynamic symbols, populate .gnu.hash section. */
7375 elf_link_hash_traverse (elf_hash_table (info),
7376 elf_renumber_gnu_hash_syms, &cinfo);
7377
7378 contents = s->contents + 16;
7379 for (i = 0; i < maskwords; ++i)
7380 {
7381 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7382 contents);
7383 contents += bed->s->arch_size / 8;
7384 }
7385
7386 free (cinfo.bitmask);
7387 free (cinfo.hashcodes);
7388 }
7389 }
7390
7391 s = bfd_get_linker_section (dynobj, ".dynstr");
7392 BFD_ASSERT (s != NULL);
7393
7394 elf_finalize_dynstr (output_bfd, info);
7395
7396 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7397
7398 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7399 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7400 return FALSE;
7401 }
7402
7403 return TRUE;
7404 }
7405 \f
7406 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7407
7408 static void
7409 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7410 asection *sec)
7411 {
7412 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7413 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7414 }
7415
7416 /* Finish SHF_MERGE section merging. */
7417
7418 bfd_boolean
7419 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7420 {
7421 bfd *ibfd;
7422 asection *sec;
7423
7424 if (!is_elf_hash_table (info->hash))
7425 return FALSE;
7426
7427 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7428 if ((ibfd->flags & DYNAMIC) == 0
7429 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7430 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7431 == get_elf_backend_data (obfd)->s->elfclass))
7432 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7433 if ((sec->flags & SEC_MERGE) != 0
7434 && !bfd_is_abs_section (sec->output_section))
7435 {
7436 struct bfd_elf_section_data *secdata;
7437
7438 secdata = elf_section_data (sec);
7439 if (! _bfd_add_merge_section (obfd,
7440 &elf_hash_table (info)->merge_info,
7441 sec, &secdata->sec_info))
7442 return FALSE;
7443 else if (secdata->sec_info)
7444 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7445 }
7446
7447 if (elf_hash_table (info)->merge_info != NULL)
7448 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7449 merge_sections_remove_hook);
7450 return TRUE;
7451 }
7452
7453 /* Create an entry in an ELF linker hash table. */
7454
7455 struct bfd_hash_entry *
7456 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7457 struct bfd_hash_table *table,
7458 const char *string)
7459 {
7460 /* Allocate the structure if it has not already been allocated by a
7461 subclass. */
7462 if (entry == NULL)
7463 {
7464 entry = (struct bfd_hash_entry *)
7465 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7466 if (entry == NULL)
7467 return entry;
7468 }
7469
7470 /* Call the allocation method of the superclass. */
7471 entry = _bfd_link_hash_newfunc (entry, table, string);
7472 if (entry != NULL)
7473 {
7474 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7475 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7476
7477 /* Set local fields. */
7478 ret->indx = -1;
7479 ret->dynindx = -1;
7480 ret->got = htab->init_got_refcount;
7481 ret->plt = htab->init_plt_refcount;
7482 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7483 - offsetof (struct elf_link_hash_entry, size)));
7484 /* Assume that we have been called by a non-ELF symbol reader.
7485 This flag is then reset by the code which reads an ELF input
7486 file. This ensures that a symbol created by a non-ELF symbol
7487 reader will have the flag set correctly. */
7488 ret->non_elf = 1;
7489 }
7490
7491 return entry;
7492 }
7493
7494 /* Copy data from an indirect symbol to its direct symbol, hiding the
7495 old indirect symbol. Also used for copying flags to a weakdef. */
7496
7497 void
7498 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7499 struct elf_link_hash_entry *dir,
7500 struct elf_link_hash_entry *ind)
7501 {
7502 struct elf_link_hash_table *htab;
7503
7504 /* Copy down any references that we may have already seen to the
7505 symbol which just became indirect. */
7506
7507 if (dir->versioned != versioned_hidden)
7508 dir->ref_dynamic |= ind->ref_dynamic;
7509 dir->ref_regular |= ind->ref_regular;
7510 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7511 dir->non_got_ref |= ind->non_got_ref;
7512 dir->needs_plt |= ind->needs_plt;
7513 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7514
7515 if (ind->root.type != bfd_link_hash_indirect)
7516 return;
7517
7518 /* Copy over the global and procedure linkage table refcount entries.
7519 These may have been already set up by a check_relocs routine. */
7520 htab = elf_hash_table (info);
7521 if (ind->got.refcount > htab->init_got_refcount.refcount)
7522 {
7523 if (dir->got.refcount < 0)
7524 dir->got.refcount = 0;
7525 dir->got.refcount += ind->got.refcount;
7526 ind->got.refcount = htab->init_got_refcount.refcount;
7527 }
7528
7529 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7530 {
7531 if (dir->plt.refcount < 0)
7532 dir->plt.refcount = 0;
7533 dir->plt.refcount += ind->plt.refcount;
7534 ind->plt.refcount = htab->init_plt_refcount.refcount;
7535 }
7536
7537 if (ind->dynindx != -1)
7538 {
7539 if (dir->dynindx != -1)
7540 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7541 dir->dynindx = ind->dynindx;
7542 dir->dynstr_index = ind->dynstr_index;
7543 ind->dynindx = -1;
7544 ind->dynstr_index = 0;
7545 }
7546 }
7547
7548 void
7549 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7550 struct elf_link_hash_entry *h,
7551 bfd_boolean force_local)
7552 {
7553 /* STT_GNU_IFUNC symbol must go through PLT. */
7554 if (h->type != STT_GNU_IFUNC)
7555 {
7556 h->plt = elf_hash_table (info)->init_plt_offset;
7557 h->needs_plt = 0;
7558 }
7559 if (force_local)
7560 {
7561 h->forced_local = 1;
7562 if (h->dynindx != -1)
7563 {
7564 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7565 h->dynstr_index);
7566 h->dynindx = -1;
7567 h->dynstr_index = 0;
7568 }
7569 }
7570 }
7571
7572 /* Hide a symbol. */
7573
7574 void
7575 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7576 struct bfd_link_info *info,
7577 struct bfd_link_hash_entry *h)
7578 {
7579 if (is_elf_hash_table (info->hash))
7580 {
7581 const struct elf_backend_data *bed
7582 = get_elf_backend_data (output_bfd);
7583 struct elf_link_hash_entry *eh
7584 = (struct elf_link_hash_entry *) h;
7585 bed->elf_backend_hide_symbol (info, eh, TRUE);
7586 eh->def_dynamic = 0;
7587 eh->ref_dynamic = 0;
7588 eh->dynamic_def = 0;
7589 }
7590 }
7591
7592 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7593 caller. */
7594
7595 bfd_boolean
7596 _bfd_elf_link_hash_table_init
7597 (struct elf_link_hash_table *table,
7598 bfd *abfd,
7599 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7600 struct bfd_hash_table *,
7601 const char *),
7602 unsigned int entsize,
7603 enum elf_target_id target_id)
7604 {
7605 bfd_boolean ret;
7606 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7607
7608 table->init_got_refcount.refcount = can_refcount - 1;
7609 table->init_plt_refcount.refcount = can_refcount - 1;
7610 table->init_got_offset.offset = -(bfd_vma) 1;
7611 table->init_plt_offset.offset = -(bfd_vma) 1;
7612 /* The first dynamic symbol is a dummy. */
7613 table->dynsymcount = 1;
7614
7615 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7616
7617 table->root.type = bfd_link_elf_hash_table;
7618 table->hash_table_id = target_id;
7619
7620 return ret;
7621 }
7622
7623 /* Create an ELF linker hash table. */
7624
7625 struct bfd_link_hash_table *
7626 _bfd_elf_link_hash_table_create (bfd *abfd)
7627 {
7628 struct elf_link_hash_table *ret;
7629 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7630
7631 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7632 if (ret == NULL)
7633 return NULL;
7634
7635 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7636 sizeof (struct elf_link_hash_entry),
7637 GENERIC_ELF_DATA))
7638 {
7639 free (ret);
7640 return NULL;
7641 }
7642 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7643
7644 return &ret->root;
7645 }
7646
7647 /* Destroy an ELF linker hash table. */
7648
7649 void
7650 _bfd_elf_link_hash_table_free (bfd *obfd)
7651 {
7652 struct elf_link_hash_table *htab;
7653
7654 htab = (struct elf_link_hash_table *) obfd->link.hash;
7655 if (htab->dynstr != NULL)
7656 _bfd_elf_strtab_free (htab->dynstr);
7657 _bfd_merge_sections_free (htab->merge_info);
7658 _bfd_generic_link_hash_table_free (obfd);
7659 }
7660
7661 /* This is a hook for the ELF emulation code in the generic linker to
7662 tell the backend linker what file name to use for the DT_NEEDED
7663 entry for a dynamic object. */
7664
7665 void
7666 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7667 {
7668 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7669 && bfd_get_format (abfd) == bfd_object)
7670 elf_dt_name (abfd) = name;
7671 }
7672
7673 int
7674 bfd_elf_get_dyn_lib_class (bfd *abfd)
7675 {
7676 int lib_class;
7677 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7678 && bfd_get_format (abfd) == bfd_object)
7679 lib_class = elf_dyn_lib_class (abfd);
7680 else
7681 lib_class = 0;
7682 return lib_class;
7683 }
7684
7685 void
7686 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7687 {
7688 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7689 && bfd_get_format (abfd) == bfd_object)
7690 elf_dyn_lib_class (abfd) = lib_class;
7691 }
7692
7693 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7694 the linker ELF emulation code. */
7695
7696 struct bfd_link_needed_list *
7697 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7698 struct bfd_link_info *info)
7699 {
7700 if (! is_elf_hash_table (info->hash))
7701 return NULL;
7702 return elf_hash_table (info)->needed;
7703 }
7704
7705 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7706 hook for the linker ELF emulation code. */
7707
7708 struct bfd_link_needed_list *
7709 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7710 struct bfd_link_info *info)
7711 {
7712 if (! is_elf_hash_table (info->hash))
7713 return NULL;
7714 return elf_hash_table (info)->runpath;
7715 }
7716
7717 /* Get the name actually used for a dynamic object for a link. This
7718 is the SONAME entry if there is one. Otherwise, it is the string
7719 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7720
7721 const char *
7722 bfd_elf_get_dt_soname (bfd *abfd)
7723 {
7724 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7725 && bfd_get_format (abfd) == bfd_object)
7726 return elf_dt_name (abfd);
7727 return NULL;
7728 }
7729
7730 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7731 the ELF linker emulation code. */
7732
7733 bfd_boolean
7734 bfd_elf_get_bfd_needed_list (bfd *abfd,
7735 struct bfd_link_needed_list **pneeded)
7736 {
7737 asection *s;
7738 bfd_byte *dynbuf = NULL;
7739 unsigned int elfsec;
7740 unsigned long shlink;
7741 bfd_byte *extdyn, *extdynend;
7742 size_t extdynsize;
7743 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7744
7745 *pneeded = NULL;
7746
7747 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7748 || bfd_get_format (abfd) != bfd_object)
7749 return TRUE;
7750
7751 s = bfd_get_section_by_name (abfd, ".dynamic");
7752 if (s == NULL || s->size == 0)
7753 return TRUE;
7754
7755 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7756 goto error_return;
7757
7758 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7759 if (elfsec == SHN_BAD)
7760 goto error_return;
7761
7762 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7763
7764 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7765 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7766
7767 extdyn = dynbuf;
7768 extdynend = extdyn + s->size;
7769 for (; extdyn < extdynend; extdyn += extdynsize)
7770 {
7771 Elf_Internal_Dyn dyn;
7772
7773 (*swap_dyn_in) (abfd, extdyn, &dyn);
7774
7775 if (dyn.d_tag == DT_NULL)
7776 break;
7777
7778 if (dyn.d_tag == DT_NEEDED)
7779 {
7780 const char *string;
7781 struct bfd_link_needed_list *l;
7782 unsigned int tagv = dyn.d_un.d_val;
7783 bfd_size_type amt;
7784
7785 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7786 if (string == NULL)
7787 goto error_return;
7788
7789 amt = sizeof *l;
7790 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7791 if (l == NULL)
7792 goto error_return;
7793
7794 l->by = abfd;
7795 l->name = string;
7796 l->next = *pneeded;
7797 *pneeded = l;
7798 }
7799 }
7800
7801 free (dynbuf);
7802
7803 return TRUE;
7804
7805 error_return:
7806 if (dynbuf != NULL)
7807 free (dynbuf);
7808 return FALSE;
7809 }
7810
7811 struct elf_symbuf_symbol
7812 {
7813 unsigned long st_name; /* Symbol name, index in string tbl */
7814 unsigned char st_info; /* Type and binding attributes */
7815 unsigned char st_other; /* Visibilty, and target specific */
7816 };
7817
7818 struct elf_symbuf_head
7819 {
7820 struct elf_symbuf_symbol *ssym;
7821 size_t count;
7822 unsigned int st_shndx;
7823 };
7824
7825 struct elf_symbol
7826 {
7827 union
7828 {
7829 Elf_Internal_Sym *isym;
7830 struct elf_symbuf_symbol *ssym;
7831 } u;
7832 const char *name;
7833 };
7834
7835 /* Sort references to symbols by ascending section number. */
7836
7837 static int
7838 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7839 {
7840 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7841 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7842
7843 return s1->st_shndx - s2->st_shndx;
7844 }
7845
7846 static int
7847 elf_sym_name_compare (const void *arg1, const void *arg2)
7848 {
7849 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7850 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7851 return strcmp (s1->name, s2->name);
7852 }
7853
7854 static struct elf_symbuf_head *
7855 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7856 {
7857 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7858 struct elf_symbuf_symbol *ssym;
7859 struct elf_symbuf_head *ssymbuf, *ssymhead;
7860 size_t i, shndx_count, total_size;
7861
7862 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7863 if (indbuf == NULL)
7864 return NULL;
7865
7866 for (ind = indbuf, i = 0; i < symcount; i++)
7867 if (isymbuf[i].st_shndx != SHN_UNDEF)
7868 *ind++ = &isymbuf[i];
7869 indbufend = ind;
7870
7871 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7872 elf_sort_elf_symbol);
7873
7874 shndx_count = 0;
7875 if (indbufend > indbuf)
7876 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7877 if (ind[0]->st_shndx != ind[1]->st_shndx)
7878 shndx_count++;
7879
7880 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7881 + (indbufend - indbuf) * sizeof (*ssym));
7882 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7883 if (ssymbuf == NULL)
7884 {
7885 free (indbuf);
7886 return NULL;
7887 }
7888
7889 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7890 ssymbuf->ssym = NULL;
7891 ssymbuf->count = shndx_count;
7892 ssymbuf->st_shndx = 0;
7893 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7894 {
7895 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7896 {
7897 ssymhead++;
7898 ssymhead->ssym = ssym;
7899 ssymhead->count = 0;
7900 ssymhead->st_shndx = (*ind)->st_shndx;
7901 }
7902 ssym->st_name = (*ind)->st_name;
7903 ssym->st_info = (*ind)->st_info;
7904 ssym->st_other = (*ind)->st_other;
7905 ssymhead->count++;
7906 }
7907 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7908 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7909 == total_size));
7910
7911 free (indbuf);
7912 return ssymbuf;
7913 }
7914
7915 /* Check if 2 sections define the same set of local and global
7916 symbols. */
7917
7918 static bfd_boolean
7919 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7920 struct bfd_link_info *info)
7921 {
7922 bfd *bfd1, *bfd2;
7923 const struct elf_backend_data *bed1, *bed2;
7924 Elf_Internal_Shdr *hdr1, *hdr2;
7925 size_t symcount1, symcount2;
7926 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7927 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7928 Elf_Internal_Sym *isym, *isymend;
7929 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7930 size_t count1, count2, i;
7931 unsigned int shndx1, shndx2;
7932 bfd_boolean result;
7933
7934 bfd1 = sec1->owner;
7935 bfd2 = sec2->owner;
7936
7937 /* Both sections have to be in ELF. */
7938 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7939 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7940 return FALSE;
7941
7942 if (elf_section_type (sec1) != elf_section_type (sec2))
7943 return FALSE;
7944
7945 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7946 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7947 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7948 return FALSE;
7949
7950 bed1 = get_elf_backend_data (bfd1);
7951 bed2 = get_elf_backend_data (bfd2);
7952 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7953 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7954 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7955 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7956
7957 if (symcount1 == 0 || symcount2 == 0)
7958 return FALSE;
7959
7960 result = FALSE;
7961 isymbuf1 = NULL;
7962 isymbuf2 = NULL;
7963 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7964 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7965
7966 if (ssymbuf1 == NULL)
7967 {
7968 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7969 NULL, NULL, NULL);
7970 if (isymbuf1 == NULL)
7971 goto done;
7972
7973 if (!info->reduce_memory_overheads)
7974 elf_tdata (bfd1)->symbuf = ssymbuf1
7975 = elf_create_symbuf (symcount1, isymbuf1);
7976 }
7977
7978 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7979 {
7980 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7981 NULL, NULL, NULL);
7982 if (isymbuf2 == NULL)
7983 goto done;
7984
7985 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7986 elf_tdata (bfd2)->symbuf = ssymbuf2
7987 = elf_create_symbuf (symcount2, isymbuf2);
7988 }
7989
7990 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7991 {
7992 /* Optimized faster version. */
7993 size_t lo, hi, mid;
7994 struct elf_symbol *symp;
7995 struct elf_symbuf_symbol *ssym, *ssymend;
7996
7997 lo = 0;
7998 hi = ssymbuf1->count;
7999 ssymbuf1++;
8000 count1 = 0;
8001 while (lo < hi)
8002 {
8003 mid = (lo + hi) / 2;
8004 if (shndx1 < ssymbuf1[mid].st_shndx)
8005 hi = mid;
8006 else if (shndx1 > ssymbuf1[mid].st_shndx)
8007 lo = mid + 1;
8008 else
8009 {
8010 count1 = ssymbuf1[mid].count;
8011 ssymbuf1 += mid;
8012 break;
8013 }
8014 }
8015
8016 lo = 0;
8017 hi = ssymbuf2->count;
8018 ssymbuf2++;
8019 count2 = 0;
8020 while (lo < hi)
8021 {
8022 mid = (lo + hi) / 2;
8023 if (shndx2 < ssymbuf2[mid].st_shndx)
8024 hi = mid;
8025 else if (shndx2 > ssymbuf2[mid].st_shndx)
8026 lo = mid + 1;
8027 else
8028 {
8029 count2 = ssymbuf2[mid].count;
8030 ssymbuf2 += mid;
8031 break;
8032 }
8033 }
8034
8035 if (count1 == 0 || count2 == 0 || count1 != count2)
8036 goto done;
8037
8038 symtable1
8039 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8040 symtable2
8041 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8042 if (symtable1 == NULL || symtable2 == NULL)
8043 goto done;
8044
8045 symp = symtable1;
8046 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8047 ssym < ssymend; ssym++, symp++)
8048 {
8049 symp->u.ssym = ssym;
8050 symp->name = bfd_elf_string_from_elf_section (bfd1,
8051 hdr1->sh_link,
8052 ssym->st_name);
8053 }
8054
8055 symp = symtable2;
8056 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8057 ssym < ssymend; ssym++, symp++)
8058 {
8059 symp->u.ssym = ssym;
8060 symp->name = bfd_elf_string_from_elf_section (bfd2,
8061 hdr2->sh_link,
8062 ssym->st_name);
8063 }
8064
8065 /* Sort symbol by name. */
8066 qsort (symtable1, count1, sizeof (struct elf_symbol),
8067 elf_sym_name_compare);
8068 qsort (symtable2, count1, sizeof (struct elf_symbol),
8069 elf_sym_name_compare);
8070
8071 for (i = 0; i < count1; i++)
8072 /* Two symbols must have the same binding, type and name. */
8073 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8074 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8075 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8076 goto done;
8077
8078 result = TRUE;
8079 goto done;
8080 }
8081
8082 symtable1 = (struct elf_symbol *)
8083 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8084 symtable2 = (struct elf_symbol *)
8085 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8086 if (symtable1 == NULL || symtable2 == NULL)
8087 goto done;
8088
8089 /* Count definitions in the section. */
8090 count1 = 0;
8091 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8092 if (isym->st_shndx == shndx1)
8093 symtable1[count1++].u.isym = isym;
8094
8095 count2 = 0;
8096 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8097 if (isym->st_shndx == shndx2)
8098 symtable2[count2++].u.isym = isym;
8099
8100 if (count1 == 0 || count2 == 0 || count1 != count2)
8101 goto done;
8102
8103 for (i = 0; i < count1; i++)
8104 symtable1[i].name
8105 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8106 symtable1[i].u.isym->st_name);
8107
8108 for (i = 0; i < count2; i++)
8109 symtable2[i].name
8110 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8111 symtable2[i].u.isym->st_name);
8112
8113 /* Sort symbol by name. */
8114 qsort (symtable1, count1, sizeof (struct elf_symbol),
8115 elf_sym_name_compare);
8116 qsort (symtable2, count1, sizeof (struct elf_symbol),
8117 elf_sym_name_compare);
8118
8119 for (i = 0; i < count1; i++)
8120 /* Two symbols must have the same binding, type and name. */
8121 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8122 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8123 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8124 goto done;
8125
8126 result = TRUE;
8127
8128 done:
8129 if (symtable1)
8130 free (symtable1);
8131 if (symtable2)
8132 free (symtable2);
8133 if (isymbuf1)
8134 free (isymbuf1);
8135 if (isymbuf2)
8136 free (isymbuf2);
8137
8138 return result;
8139 }
8140
8141 /* Return TRUE if 2 section types are compatible. */
8142
8143 bfd_boolean
8144 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8145 bfd *bbfd, const asection *bsec)
8146 {
8147 if (asec == NULL
8148 || bsec == NULL
8149 || abfd->xvec->flavour != bfd_target_elf_flavour
8150 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8151 return TRUE;
8152
8153 return elf_section_type (asec) == elf_section_type (bsec);
8154 }
8155 \f
8156 /* Final phase of ELF linker. */
8157
8158 /* A structure we use to avoid passing large numbers of arguments. */
8159
8160 struct elf_final_link_info
8161 {
8162 /* General link information. */
8163 struct bfd_link_info *info;
8164 /* Output BFD. */
8165 bfd *output_bfd;
8166 /* Symbol string table. */
8167 struct elf_strtab_hash *symstrtab;
8168 /* .hash section. */
8169 asection *hash_sec;
8170 /* symbol version section (.gnu.version). */
8171 asection *symver_sec;
8172 /* Buffer large enough to hold contents of any section. */
8173 bfd_byte *contents;
8174 /* Buffer large enough to hold external relocs of any section. */
8175 void *external_relocs;
8176 /* Buffer large enough to hold internal relocs of any section. */
8177 Elf_Internal_Rela *internal_relocs;
8178 /* Buffer large enough to hold external local symbols of any input
8179 BFD. */
8180 bfd_byte *external_syms;
8181 /* And a buffer for symbol section indices. */
8182 Elf_External_Sym_Shndx *locsym_shndx;
8183 /* Buffer large enough to hold internal local symbols of any input
8184 BFD. */
8185 Elf_Internal_Sym *internal_syms;
8186 /* Array large enough to hold a symbol index for each local symbol
8187 of any input BFD. */
8188 long *indices;
8189 /* Array large enough to hold a section pointer for each local
8190 symbol of any input BFD. */
8191 asection **sections;
8192 /* Buffer for SHT_SYMTAB_SHNDX section. */
8193 Elf_External_Sym_Shndx *symshndxbuf;
8194 /* Number of STT_FILE syms seen. */
8195 size_t filesym_count;
8196 };
8197
8198 /* This struct is used to pass information to elf_link_output_extsym. */
8199
8200 struct elf_outext_info
8201 {
8202 bfd_boolean failed;
8203 bfd_boolean localsyms;
8204 bfd_boolean file_sym_done;
8205 struct elf_final_link_info *flinfo;
8206 };
8207
8208
8209 /* Support for evaluating a complex relocation.
8210
8211 Complex relocations are generalized, self-describing relocations. The
8212 implementation of them consists of two parts: complex symbols, and the
8213 relocations themselves.
8214
8215 The relocations are use a reserved elf-wide relocation type code (R_RELC
8216 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8217 information (start bit, end bit, word width, etc) into the addend. This
8218 information is extracted from CGEN-generated operand tables within gas.
8219
8220 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8221 internal) representing prefix-notation expressions, including but not
8222 limited to those sorts of expressions normally encoded as addends in the
8223 addend field. The symbol mangling format is:
8224
8225 <node> := <literal>
8226 | <unary-operator> ':' <node>
8227 | <binary-operator> ':' <node> ':' <node>
8228 ;
8229
8230 <literal> := 's' <digits=N> ':' <N character symbol name>
8231 | 'S' <digits=N> ':' <N character section name>
8232 | '#' <hexdigits>
8233 ;
8234
8235 <binary-operator> := as in C
8236 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8237
8238 static void
8239 set_symbol_value (bfd *bfd_with_globals,
8240 Elf_Internal_Sym *isymbuf,
8241 size_t locsymcount,
8242 size_t symidx,
8243 bfd_vma val)
8244 {
8245 struct elf_link_hash_entry **sym_hashes;
8246 struct elf_link_hash_entry *h;
8247 size_t extsymoff = locsymcount;
8248
8249 if (symidx < locsymcount)
8250 {
8251 Elf_Internal_Sym *sym;
8252
8253 sym = isymbuf + symidx;
8254 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8255 {
8256 /* It is a local symbol: move it to the
8257 "absolute" section and give it a value. */
8258 sym->st_shndx = SHN_ABS;
8259 sym->st_value = val;
8260 return;
8261 }
8262 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8263 extsymoff = 0;
8264 }
8265
8266 /* It is a global symbol: set its link type
8267 to "defined" and give it a value. */
8268
8269 sym_hashes = elf_sym_hashes (bfd_with_globals);
8270 h = sym_hashes [symidx - extsymoff];
8271 while (h->root.type == bfd_link_hash_indirect
8272 || h->root.type == bfd_link_hash_warning)
8273 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8274 h->root.type = bfd_link_hash_defined;
8275 h->root.u.def.value = val;
8276 h->root.u.def.section = bfd_abs_section_ptr;
8277 }
8278
8279 static bfd_boolean
8280 resolve_symbol (const char *name,
8281 bfd *input_bfd,
8282 struct elf_final_link_info *flinfo,
8283 bfd_vma *result,
8284 Elf_Internal_Sym *isymbuf,
8285 size_t locsymcount)
8286 {
8287 Elf_Internal_Sym *sym;
8288 struct bfd_link_hash_entry *global_entry;
8289 const char *candidate = NULL;
8290 Elf_Internal_Shdr *symtab_hdr;
8291 size_t i;
8292
8293 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8294
8295 for (i = 0; i < locsymcount; ++ i)
8296 {
8297 sym = isymbuf + i;
8298
8299 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8300 continue;
8301
8302 candidate = bfd_elf_string_from_elf_section (input_bfd,
8303 symtab_hdr->sh_link,
8304 sym->st_name);
8305 #ifdef DEBUG
8306 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8307 name, candidate, (unsigned long) sym->st_value);
8308 #endif
8309 if (candidate && strcmp (candidate, name) == 0)
8310 {
8311 asection *sec = flinfo->sections [i];
8312
8313 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8314 *result += sec->output_offset + sec->output_section->vma;
8315 #ifdef DEBUG
8316 printf ("Found symbol with value %8.8lx\n",
8317 (unsigned long) *result);
8318 #endif
8319 return TRUE;
8320 }
8321 }
8322
8323 /* Hmm, haven't found it yet. perhaps it is a global. */
8324 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8325 FALSE, FALSE, TRUE);
8326 if (!global_entry)
8327 return FALSE;
8328
8329 if (global_entry->type == bfd_link_hash_defined
8330 || global_entry->type == bfd_link_hash_defweak)
8331 {
8332 *result = (global_entry->u.def.value
8333 + global_entry->u.def.section->output_section->vma
8334 + global_entry->u.def.section->output_offset);
8335 #ifdef DEBUG
8336 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8337 global_entry->root.string, (unsigned long) *result);
8338 #endif
8339 return TRUE;
8340 }
8341
8342 return FALSE;
8343 }
8344
8345 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8346 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8347 names like "foo.end" which is the end address of section "foo". */
8348
8349 static bfd_boolean
8350 resolve_section (const char *name,
8351 asection *sections,
8352 bfd_vma *result,
8353 bfd * abfd)
8354 {
8355 asection *curr;
8356 unsigned int len;
8357
8358 for (curr = sections; curr; curr = curr->next)
8359 if (strcmp (curr->name, name) == 0)
8360 {
8361 *result = curr->vma;
8362 return TRUE;
8363 }
8364
8365 /* Hmm. still haven't found it. try pseudo-section names. */
8366 /* FIXME: This could be coded more efficiently... */
8367 for (curr = sections; curr; curr = curr->next)
8368 {
8369 len = strlen (curr->name);
8370 if (len > strlen (name))
8371 continue;
8372
8373 if (strncmp (curr->name, name, len) == 0)
8374 {
8375 if (strncmp (".end", name + len, 4) == 0)
8376 {
8377 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8378 return TRUE;
8379 }
8380
8381 /* Insert more pseudo-section names here, if you like. */
8382 }
8383 }
8384
8385 return FALSE;
8386 }
8387
8388 static void
8389 undefined_reference (const char *reftype, const char *name)
8390 {
8391 /* xgettext:c-format */
8392 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8393 reftype, name);
8394 }
8395
8396 static bfd_boolean
8397 eval_symbol (bfd_vma *result,
8398 const char **symp,
8399 bfd *input_bfd,
8400 struct elf_final_link_info *flinfo,
8401 bfd_vma dot,
8402 Elf_Internal_Sym *isymbuf,
8403 size_t locsymcount,
8404 int signed_p)
8405 {
8406 size_t len;
8407 size_t symlen;
8408 bfd_vma a;
8409 bfd_vma b;
8410 char symbuf[4096];
8411 const char *sym = *symp;
8412 const char *symend;
8413 bfd_boolean symbol_is_section = FALSE;
8414
8415 len = strlen (sym);
8416 symend = sym + len;
8417
8418 if (len < 1 || len > sizeof (symbuf))
8419 {
8420 bfd_set_error (bfd_error_invalid_operation);
8421 return FALSE;
8422 }
8423
8424 switch (* sym)
8425 {
8426 case '.':
8427 *result = dot;
8428 *symp = sym + 1;
8429 return TRUE;
8430
8431 case '#':
8432 ++sym;
8433 *result = strtoul (sym, (char **) symp, 16);
8434 return TRUE;
8435
8436 case 'S':
8437 symbol_is_section = TRUE;
8438 /* Fall through. */
8439 case 's':
8440 ++sym;
8441 symlen = strtol (sym, (char **) symp, 10);
8442 sym = *symp + 1; /* Skip the trailing ':'. */
8443
8444 if (symend < sym || symlen + 1 > sizeof (symbuf))
8445 {
8446 bfd_set_error (bfd_error_invalid_operation);
8447 return FALSE;
8448 }
8449
8450 memcpy (symbuf, sym, symlen);
8451 symbuf[symlen] = '\0';
8452 *symp = sym + symlen;
8453
8454 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8455 the symbol as a section, or vice-versa. so we're pretty liberal in our
8456 interpretation here; section means "try section first", not "must be a
8457 section", and likewise with symbol. */
8458
8459 if (symbol_is_section)
8460 {
8461 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8462 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8463 isymbuf, locsymcount))
8464 {
8465 undefined_reference ("section", symbuf);
8466 return FALSE;
8467 }
8468 }
8469 else
8470 {
8471 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8472 isymbuf, locsymcount)
8473 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8474 result, input_bfd))
8475 {
8476 undefined_reference ("symbol", symbuf);
8477 return FALSE;
8478 }
8479 }
8480
8481 return TRUE;
8482
8483 /* All that remains are operators. */
8484
8485 #define UNARY_OP(op) \
8486 if (strncmp (sym, #op, strlen (#op)) == 0) \
8487 { \
8488 sym += strlen (#op); \
8489 if (*sym == ':') \
8490 ++sym; \
8491 *symp = sym; \
8492 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8493 isymbuf, locsymcount, signed_p)) \
8494 return FALSE; \
8495 if (signed_p) \
8496 *result = op ((bfd_signed_vma) a); \
8497 else \
8498 *result = op a; \
8499 return TRUE; \
8500 }
8501
8502 #define BINARY_OP(op) \
8503 if (strncmp (sym, #op, strlen (#op)) == 0) \
8504 { \
8505 sym += strlen (#op); \
8506 if (*sym == ':') \
8507 ++sym; \
8508 *symp = sym; \
8509 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8510 isymbuf, locsymcount, signed_p)) \
8511 return FALSE; \
8512 ++*symp; \
8513 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8514 isymbuf, locsymcount, signed_p)) \
8515 return FALSE; \
8516 if (signed_p) \
8517 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8518 else \
8519 *result = a op b; \
8520 return TRUE; \
8521 }
8522
8523 default:
8524 UNARY_OP (0-);
8525 BINARY_OP (<<);
8526 BINARY_OP (>>);
8527 BINARY_OP (==);
8528 BINARY_OP (!=);
8529 BINARY_OP (<=);
8530 BINARY_OP (>=);
8531 BINARY_OP (&&);
8532 BINARY_OP (||);
8533 UNARY_OP (~);
8534 UNARY_OP (!);
8535 BINARY_OP (*);
8536 BINARY_OP (/);
8537 BINARY_OP (%);
8538 BINARY_OP (^);
8539 BINARY_OP (|);
8540 BINARY_OP (&);
8541 BINARY_OP (+);
8542 BINARY_OP (-);
8543 BINARY_OP (<);
8544 BINARY_OP (>);
8545 #undef UNARY_OP
8546 #undef BINARY_OP
8547 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8548 bfd_set_error (bfd_error_invalid_operation);
8549 return FALSE;
8550 }
8551 }
8552
8553 static void
8554 put_value (bfd_vma size,
8555 unsigned long chunksz,
8556 bfd *input_bfd,
8557 bfd_vma x,
8558 bfd_byte *location)
8559 {
8560 location += (size - chunksz);
8561
8562 for (; size; size -= chunksz, location -= chunksz)
8563 {
8564 switch (chunksz)
8565 {
8566 case 1:
8567 bfd_put_8 (input_bfd, x, location);
8568 x >>= 8;
8569 break;
8570 case 2:
8571 bfd_put_16 (input_bfd, x, location);
8572 x >>= 16;
8573 break;
8574 case 4:
8575 bfd_put_32 (input_bfd, x, location);
8576 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8577 x >>= 16;
8578 x >>= 16;
8579 break;
8580 #ifdef BFD64
8581 case 8:
8582 bfd_put_64 (input_bfd, x, location);
8583 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8584 x >>= 32;
8585 x >>= 32;
8586 break;
8587 #endif
8588 default:
8589 abort ();
8590 break;
8591 }
8592 }
8593 }
8594
8595 static bfd_vma
8596 get_value (bfd_vma size,
8597 unsigned long chunksz,
8598 bfd *input_bfd,
8599 bfd_byte *location)
8600 {
8601 int shift;
8602 bfd_vma x = 0;
8603
8604 /* Sanity checks. */
8605 BFD_ASSERT (chunksz <= sizeof (x)
8606 && size >= chunksz
8607 && chunksz != 0
8608 && (size % chunksz) == 0
8609 && input_bfd != NULL
8610 && location != NULL);
8611
8612 if (chunksz == sizeof (x))
8613 {
8614 BFD_ASSERT (size == chunksz);
8615
8616 /* Make sure that we do not perform an undefined shift operation.
8617 We know that size == chunksz so there will only be one iteration
8618 of the loop below. */
8619 shift = 0;
8620 }
8621 else
8622 shift = 8 * chunksz;
8623
8624 for (; size; size -= chunksz, location += chunksz)
8625 {
8626 switch (chunksz)
8627 {
8628 case 1:
8629 x = (x << shift) | bfd_get_8 (input_bfd, location);
8630 break;
8631 case 2:
8632 x = (x << shift) | bfd_get_16 (input_bfd, location);
8633 break;
8634 case 4:
8635 x = (x << shift) | bfd_get_32 (input_bfd, location);
8636 break;
8637 #ifdef BFD64
8638 case 8:
8639 x = (x << shift) | bfd_get_64 (input_bfd, location);
8640 break;
8641 #endif
8642 default:
8643 abort ();
8644 }
8645 }
8646 return x;
8647 }
8648
8649 static void
8650 decode_complex_addend (unsigned long *start, /* in bits */
8651 unsigned long *oplen, /* in bits */
8652 unsigned long *len, /* in bits */
8653 unsigned long *wordsz, /* in bytes */
8654 unsigned long *chunksz, /* in bytes */
8655 unsigned long *lsb0_p,
8656 unsigned long *signed_p,
8657 unsigned long *trunc_p,
8658 unsigned long encoded)
8659 {
8660 * start = encoded & 0x3F;
8661 * len = (encoded >> 6) & 0x3F;
8662 * oplen = (encoded >> 12) & 0x3F;
8663 * wordsz = (encoded >> 18) & 0xF;
8664 * chunksz = (encoded >> 22) & 0xF;
8665 * lsb0_p = (encoded >> 27) & 1;
8666 * signed_p = (encoded >> 28) & 1;
8667 * trunc_p = (encoded >> 29) & 1;
8668 }
8669
8670 bfd_reloc_status_type
8671 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8672 asection *input_section ATTRIBUTE_UNUSED,
8673 bfd_byte *contents,
8674 Elf_Internal_Rela *rel,
8675 bfd_vma relocation)
8676 {
8677 bfd_vma shift, x, mask;
8678 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8679 bfd_reloc_status_type r;
8680
8681 /* Perform this reloc, since it is complex.
8682 (this is not to say that it necessarily refers to a complex
8683 symbol; merely that it is a self-describing CGEN based reloc.
8684 i.e. the addend has the complete reloc information (bit start, end,
8685 word size, etc) encoded within it.). */
8686
8687 decode_complex_addend (&start, &oplen, &len, &wordsz,
8688 &chunksz, &lsb0_p, &signed_p,
8689 &trunc_p, rel->r_addend);
8690
8691 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8692
8693 if (lsb0_p)
8694 shift = (start + 1) - len;
8695 else
8696 shift = (8 * wordsz) - (start + len);
8697
8698 x = get_value (wordsz, chunksz, input_bfd,
8699 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8700
8701 #ifdef DEBUG
8702 printf ("Doing complex reloc: "
8703 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8704 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8705 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8706 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8707 oplen, (unsigned long) x, (unsigned long) mask,
8708 (unsigned long) relocation);
8709 #endif
8710
8711 r = bfd_reloc_ok;
8712 if (! trunc_p)
8713 /* Now do an overflow check. */
8714 r = bfd_check_overflow ((signed_p
8715 ? complain_overflow_signed
8716 : complain_overflow_unsigned),
8717 len, 0, (8 * wordsz),
8718 relocation);
8719
8720 /* Do the deed. */
8721 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8722
8723 #ifdef DEBUG
8724 printf (" relocation: %8.8lx\n"
8725 " shifted mask: %8.8lx\n"
8726 " shifted/masked reloc: %8.8lx\n"
8727 " result: %8.8lx\n",
8728 (unsigned long) relocation, (unsigned long) (mask << shift),
8729 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8730 #endif
8731 put_value (wordsz, chunksz, input_bfd, x,
8732 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8733 return r;
8734 }
8735
8736 /* Functions to read r_offset from external (target order) reloc
8737 entry. Faster than bfd_getl32 et al, because we let the compiler
8738 know the value is aligned. */
8739
8740 static bfd_vma
8741 ext32l_r_offset (const void *p)
8742 {
8743 union aligned32
8744 {
8745 uint32_t v;
8746 unsigned char c[4];
8747 };
8748 const union aligned32 *a
8749 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8750
8751 uint32_t aval = ( (uint32_t) a->c[0]
8752 | (uint32_t) a->c[1] << 8
8753 | (uint32_t) a->c[2] << 16
8754 | (uint32_t) a->c[3] << 24);
8755 return aval;
8756 }
8757
8758 static bfd_vma
8759 ext32b_r_offset (const void *p)
8760 {
8761 union aligned32
8762 {
8763 uint32_t v;
8764 unsigned char c[4];
8765 };
8766 const union aligned32 *a
8767 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8768
8769 uint32_t aval = ( (uint32_t) a->c[0] << 24
8770 | (uint32_t) a->c[1] << 16
8771 | (uint32_t) a->c[2] << 8
8772 | (uint32_t) a->c[3]);
8773 return aval;
8774 }
8775
8776 #ifdef BFD_HOST_64_BIT
8777 static bfd_vma
8778 ext64l_r_offset (const void *p)
8779 {
8780 union aligned64
8781 {
8782 uint64_t v;
8783 unsigned char c[8];
8784 };
8785 const union aligned64 *a
8786 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8787
8788 uint64_t aval = ( (uint64_t) a->c[0]
8789 | (uint64_t) a->c[1] << 8
8790 | (uint64_t) a->c[2] << 16
8791 | (uint64_t) a->c[3] << 24
8792 | (uint64_t) a->c[4] << 32
8793 | (uint64_t) a->c[5] << 40
8794 | (uint64_t) a->c[6] << 48
8795 | (uint64_t) a->c[7] << 56);
8796 return aval;
8797 }
8798
8799 static bfd_vma
8800 ext64b_r_offset (const void *p)
8801 {
8802 union aligned64
8803 {
8804 uint64_t v;
8805 unsigned char c[8];
8806 };
8807 const union aligned64 *a
8808 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8809
8810 uint64_t aval = ( (uint64_t) a->c[0] << 56
8811 | (uint64_t) a->c[1] << 48
8812 | (uint64_t) a->c[2] << 40
8813 | (uint64_t) a->c[3] << 32
8814 | (uint64_t) a->c[4] << 24
8815 | (uint64_t) a->c[5] << 16
8816 | (uint64_t) a->c[6] << 8
8817 | (uint64_t) a->c[7]);
8818 return aval;
8819 }
8820 #endif
8821
8822 /* When performing a relocatable link, the input relocations are
8823 preserved. But, if they reference global symbols, the indices
8824 referenced must be updated. Update all the relocations found in
8825 RELDATA. */
8826
8827 static bfd_boolean
8828 elf_link_adjust_relocs (bfd *abfd,
8829 asection *sec,
8830 struct bfd_elf_section_reloc_data *reldata,
8831 bfd_boolean sort,
8832 struct bfd_link_info *info)
8833 {
8834 unsigned int i;
8835 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8836 bfd_byte *erela;
8837 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8838 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8839 bfd_vma r_type_mask;
8840 int r_sym_shift;
8841 unsigned int count = reldata->count;
8842 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8843
8844 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8845 {
8846 swap_in = bed->s->swap_reloc_in;
8847 swap_out = bed->s->swap_reloc_out;
8848 }
8849 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8850 {
8851 swap_in = bed->s->swap_reloca_in;
8852 swap_out = bed->s->swap_reloca_out;
8853 }
8854 else
8855 abort ();
8856
8857 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8858 abort ();
8859
8860 if (bed->s->arch_size == 32)
8861 {
8862 r_type_mask = 0xff;
8863 r_sym_shift = 8;
8864 }
8865 else
8866 {
8867 r_type_mask = 0xffffffff;
8868 r_sym_shift = 32;
8869 }
8870
8871 erela = reldata->hdr->contents;
8872 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8873 {
8874 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8875 unsigned int j;
8876
8877 if (*rel_hash == NULL)
8878 continue;
8879
8880 if ((*rel_hash)->indx == -2
8881 && info->gc_sections
8882 && ! info->gc_keep_exported)
8883 {
8884 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8885 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8886 abfd, sec,
8887 (*rel_hash)->root.root.string);
8888 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8889 abfd, sec);
8890 bfd_set_error (bfd_error_invalid_operation);
8891 return FALSE;
8892 }
8893 BFD_ASSERT ((*rel_hash)->indx >= 0);
8894
8895 (*swap_in) (abfd, erela, irela);
8896 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8897 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8898 | (irela[j].r_info & r_type_mask));
8899 (*swap_out) (abfd, irela, erela);
8900 }
8901
8902 if (bed->elf_backend_update_relocs)
8903 (*bed->elf_backend_update_relocs) (sec, reldata);
8904
8905 if (sort && count != 0)
8906 {
8907 bfd_vma (*ext_r_off) (const void *);
8908 bfd_vma r_off;
8909 size_t elt_size;
8910 bfd_byte *base, *end, *p, *loc;
8911 bfd_byte *buf = NULL;
8912
8913 if (bed->s->arch_size == 32)
8914 {
8915 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8916 ext_r_off = ext32l_r_offset;
8917 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8918 ext_r_off = ext32b_r_offset;
8919 else
8920 abort ();
8921 }
8922 else
8923 {
8924 #ifdef BFD_HOST_64_BIT
8925 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8926 ext_r_off = ext64l_r_offset;
8927 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8928 ext_r_off = ext64b_r_offset;
8929 else
8930 #endif
8931 abort ();
8932 }
8933
8934 /* Must use a stable sort here. A modified insertion sort,
8935 since the relocs are mostly sorted already. */
8936 elt_size = reldata->hdr->sh_entsize;
8937 base = reldata->hdr->contents;
8938 end = base + count * elt_size;
8939 if (elt_size > sizeof (Elf64_External_Rela))
8940 abort ();
8941
8942 /* Ensure the first element is lowest. This acts as a sentinel,
8943 speeding the main loop below. */
8944 r_off = (*ext_r_off) (base);
8945 for (p = loc = base; (p += elt_size) < end; )
8946 {
8947 bfd_vma r_off2 = (*ext_r_off) (p);
8948 if (r_off > r_off2)
8949 {
8950 r_off = r_off2;
8951 loc = p;
8952 }
8953 }
8954 if (loc != base)
8955 {
8956 /* Don't just swap *base and *loc as that changes the order
8957 of the original base[0] and base[1] if they happen to
8958 have the same r_offset. */
8959 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8960 memcpy (onebuf, loc, elt_size);
8961 memmove (base + elt_size, base, loc - base);
8962 memcpy (base, onebuf, elt_size);
8963 }
8964
8965 for (p = base + elt_size; (p += elt_size) < end; )
8966 {
8967 /* base to p is sorted, *p is next to insert. */
8968 r_off = (*ext_r_off) (p);
8969 /* Search the sorted region for location to insert. */
8970 loc = p - elt_size;
8971 while (r_off < (*ext_r_off) (loc))
8972 loc -= elt_size;
8973 loc += elt_size;
8974 if (loc != p)
8975 {
8976 /* Chances are there is a run of relocs to insert here,
8977 from one of more input files. Files are not always
8978 linked in order due to the way elf_link_input_bfd is
8979 called. See pr17666. */
8980 size_t sortlen = p - loc;
8981 bfd_vma r_off2 = (*ext_r_off) (loc);
8982 size_t runlen = elt_size;
8983 size_t buf_size = 96 * 1024;
8984 while (p + runlen < end
8985 && (sortlen <= buf_size
8986 || runlen + elt_size <= buf_size)
8987 && r_off2 > (*ext_r_off) (p + runlen))
8988 runlen += elt_size;
8989 if (buf == NULL)
8990 {
8991 buf = bfd_malloc (buf_size);
8992 if (buf == NULL)
8993 return FALSE;
8994 }
8995 if (runlen < sortlen)
8996 {
8997 memcpy (buf, p, runlen);
8998 memmove (loc + runlen, loc, sortlen);
8999 memcpy (loc, buf, runlen);
9000 }
9001 else
9002 {
9003 memcpy (buf, loc, sortlen);
9004 memmove (loc, p, runlen);
9005 memcpy (loc + runlen, buf, sortlen);
9006 }
9007 p += runlen - elt_size;
9008 }
9009 }
9010 /* Hashes are no longer valid. */
9011 free (reldata->hashes);
9012 reldata->hashes = NULL;
9013 free (buf);
9014 }
9015 return TRUE;
9016 }
9017
9018 struct elf_link_sort_rela
9019 {
9020 union {
9021 bfd_vma offset;
9022 bfd_vma sym_mask;
9023 } u;
9024 enum elf_reloc_type_class type;
9025 /* We use this as an array of size int_rels_per_ext_rel. */
9026 Elf_Internal_Rela rela[1];
9027 };
9028
9029 static int
9030 elf_link_sort_cmp1 (const void *A, const void *B)
9031 {
9032 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9033 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9034 int relativea, relativeb;
9035
9036 relativea = a->type == reloc_class_relative;
9037 relativeb = b->type == reloc_class_relative;
9038
9039 if (relativea < relativeb)
9040 return 1;
9041 if (relativea > relativeb)
9042 return -1;
9043 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9044 return -1;
9045 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9046 return 1;
9047 if (a->rela->r_offset < b->rela->r_offset)
9048 return -1;
9049 if (a->rela->r_offset > b->rela->r_offset)
9050 return 1;
9051 return 0;
9052 }
9053
9054 static int
9055 elf_link_sort_cmp2 (const void *A, const void *B)
9056 {
9057 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9058 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9059
9060 if (a->type < b->type)
9061 return -1;
9062 if (a->type > b->type)
9063 return 1;
9064 if (a->u.offset < b->u.offset)
9065 return -1;
9066 if (a->u.offset > b->u.offset)
9067 return 1;
9068 if (a->rela->r_offset < b->rela->r_offset)
9069 return -1;
9070 if (a->rela->r_offset > b->rela->r_offset)
9071 return 1;
9072 return 0;
9073 }
9074
9075 static size_t
9076 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9077 {
9078 asection *dynamic_relocs;
9079 asection *rela_dyn;
9080 asection *rel_dyn;
9081 bfd_size_type count, size;
9082 size_t i, ret, sort_elt, ext_size;
9083 bfd_byte *sort, *s_non_relative, *p;
9084 struct elf_link_sort_rela *sq;
9085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9086 int i2e = bed->s->int_rels_per_ext_rel;
9087 unsigned int opb = bfd_octets_per_byte (abfd);
9088 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9089 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9090 struct bfd_link_order *lo;
9091 bfd_vma r_sym_mask;
9092 bfd_boolean use_rela;
9093
9094 /* Find a dynamic reloc section. */
9095 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9096 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9097 if (rela_dyn != NULL && rela_dyn->size > 0
9098 && rel_dyn != NULL && rel_dyn->size > 0)
9099 {
9100 bfd_boolean use_rela_initialised = FALSE;
9101
9102 /* This is just here to stop gcc from complaining.
9103 Its initialization checking code is not perfect. */
9104 use_rela = TRUE;
9105
9106 /* Both sections are present. Examine the sizes
9107 of the indirect sections to help us choose. */
9108 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9109 if (lo->type == bfd_indirect_link_order)
9110 {
9111 asection *o = lo->u.indirect.section;
9112
9113 if ((o->size % bed->s->sizeof_rela) == 0)
9114 {
9115 if ((o->size % bed->s->sizeof_rel) == 0)
9116 /* Section size is divisible by both rel and rela sizes.
9117 It is of no help to us. */
9118 ;
9119 else
9120 {
9121 /* Section size is only divisible by rela. */
9122 if (use_rela_initialised && !use_rela)
9123 {
9124 _bfd_error_handler (_("%pB: unable to sort relocs - "
9125 "they are in more than one size"),
9126 abfd);
9127 bfd_set_error (bfd_error_invalid_operation);
9128 return 0;
9129 }
9130 else
9131 {
9132 use_rela = TRUE;
9133 use_rela_initialised = TRUE;
9134 }
9135 }
9136 }
9137 else if ((o->size % bed->s->sizeof_rel) == 0)
9138 {
9139 /* Section size is only divisible by rel. */
9140 if (use_rela_initialised && use_rela)
9141 {
9142 _bfd_error_handler (_("%pB: unable to sort relocs - "
9143 "they are in more than one size"),
9144 abfd);
9145 bfd_set_error (bfd_error_invalid_operation);
9146 return 0;
9147 }
9148 else
9149 {
9150 use_rela = FALSE;
9151 use_rela_initialised = TRUE;
9152 }
9153 }
9154 else
9155 {
9156 /* The section size is not divisible by either -
9157 something is wrong. */
9158 _bfd_error_handler (_("%pB: unable to sort relocs - "
9159 "they are of an unknown size"), abfd);
9160 bfd_set_error (bfd_error_invalid_operation);
9161 return 0;
9162 }
9163 }
9164
9165 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9166 if (lo->type == bfd_indirect_link_order)
9167 {
9168 asection *o = lo->u.indirect.section;
9169
9170 if ((o->size % bed->s->sizeof_rela) == 0)
9171 {
9172 if ((o->size % bed->s->sizeof_rel) == 0)
9173 /* Section size is divisible by both rel and rela sizes.
9174 It is of no help to us. */
9175 ;
9176 else
9177 {
9178 /* Section size is only divisible by rela. */
9179 if (use_rela_initialised && !use_rela)
9180 {
9181 _bfd_error_handler (_("%pB: unable to sort relocs - "
9182 "they are in more than one size"),
9183 abfd);
9184 bfd_set_error (bfd_error_invalid_operation);
9185 return 0;
9186 }
9187 else
9188 {
9189 use_rela = TRUE;
9190 use_rela_initialised = TRUE;
9191 }
9192 }
9193 }
9194 else if ((o->size % bed->s->sizeof_rel) == 0)
9195 {
9196 /* Section size is only divisible by rel. */
9197 if (use_rela_initialised && use_rela)
9198 {
9199 _bfd_error_handler (_("%pB: unable to sort relocs - "
9200 "they are in more than one size"),
9201 abfd);
9202 bfd_set_error (bfd_error_invalid_operation);
9203 return 0;
9204 }
9205 else
9206 {
9207 use_rela = FALSE;
9208 use_rela_initialised = TRUE;
9209 }
9210 }
9211 else
9212 {
9213 /* The section size is not divisible by either -
9214 something is wrong. */
9215 _bfd_error_handler (_("%pB: unable to sort relocs - "
9216 "they are of an unknown size"), abfd);
9217 bfd_set_error (bfd_error_invalid_operation);
9218 return 0;
9219 }
9220 }
9221
9222 if (! use_rela_initialised)
9223 /* Make a guess. */
9224 use_rela = TRUE;
9225 }
9226 else if (rela_dyn != NULL && rela_dyn->size > 0)
9227 use_rela = TRUE;
9228 else if (rel_dyn != NULL && rel_dyn->size > 0)
9229 use_rela = FALSE;
9230 else
9231 return 0;
9232
9233 if (use_rela)
9234 {
9235 dynamic_relocs = rela_dyn;
9236 ext_size = bed->s->sizeof_rela;
9237 swap_in = bed->s->swap_reloca_in;
9238 swap_out = bed->s->swap_reloca_out;
9239 }
9240 else
9241 {
9242 dynamic_relocs = rel_dyn;
9243 ext_size = bed->s->sizeof_rel;
9244 swap_in = bed->s->swap_reloc_in;
9245 swap_out = bed->s->swap_reloc_out;
9246 }
9247
9248 size = 0;
9249 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9250 if (lo->type == bfd_indirect_link_order)
9251 size += lo->u.indirect.section->size;
9252
9253 if (size != dynamic_relocs->size)
9254 return 0;
9255
9256 sort_elt = (sizeof (struct elf_link_sort_rela)
9257 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9258
9259 count = dynamic_relocs->size / ext_size;
9260 if (count == 0)
9261 return 0;
9262 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9263
9264 if (sort == NULL)
9265 {
9266 (*info->callbacks->warning)
9267 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9268 return 0;
9269 }
9270
9271 if (bed->s->arch_size == 32)
9272 r_sym_mask = ~(bfd_vma) 0xff;
9273 else
9274 r_sym_mask = ~(bfd_vma) 0xffffffff;
9275
9276 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9277 if (lo->type == bfd_indirect_link_order)
9278 {
9279 bfd_byte *erel, *erelend;
9280 asection *o = lo->u.indirect.section;
9281
9282 if (o->contents == NULL && o->size != 0)
9283 {
9284 /* This is a reloc section that is being handled as a normal
9285 section. See bfd_section_from_shdr. We can't combine
9286 relocs in this case. */
9287 free (sort);
9288 return 0;
9289 }
9290 erel = o->contents;
9291 erelend = o->contents + o->size;
9292 p = sort + o->output_offset * opb / ext_size * sort_elt;
9293
9294 while (erel < erelend)
9295 {
9296 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9297
9298 (*swap_in) (abfd, erel, s->rela);
9299 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9300 s->u.sym_mask = r_sym_mask;
9301 p += sort_elt;
9302 erel += ext_size;
9303 }
9304 }
9305
9306 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9307
9308 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9309 {
9310 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9311 if (s->type != reloc_class_relative)
9312 break;
9313 }
9314 ret = i;
9315 s_non_relative = p;
9316
9317 sq = (struct elf_link_sort_rela *) s_non_relative;
9318 for (; i < count; i++, p += sort_elt)
9319 {
9320 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9321 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9322 sq = sp;
9323 sp->u.offset = sq->rela->r_offset;
9324 }
9325
9326 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9327
9328 struct elf_link_hash_table *htab = elf_hash_table (info);
9329 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9330 {
9331 /* We have plt relocs in .rela.dyn. */
9332 sq = (struct elf_link_sort_rela *) sort;
9333 for (i = 0; i < count; i++)
9334 if (sq[count - i - 1].type != reloc_class_plt)
9335 break;
9336 if (i != 0 && htab->srelplt->size == i * ext_size)
9337 {
9338 struct bfd_link_order **plo;
9339 /* Put srelplt link_order last. This is so the output_offset
9340 set in the next loop is correct for DT_JMPREL. */
9341 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9342 if ((*plo)->type == bfd_indirect_link_order
9343 && (*plo)->u.indirect.section == htab->srelplt)
9344 {
9345 lo = *plo;
9346 *plo = lo->next;
9347 }
9348 else
9349 plo = &(*plo)->next;
9350 *plo = lo;
9351 lo->next = NULL;
9352 dynamic_relocs->map_tail.link_order = lo;
9353 }
9354 }
9355
9356 p = sort;
9357 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9358 if (lo->type == bfd_indirect_link_order)
9359 {
9360 bfd_byte *erel, *erelend;
9361 asection *o = lo->u.indirect.section;
9362
9363 erel = o->contents;
9364 erelend = o->contents + o->size;
9365 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9366 while (erel < erelend)
9367 {
9368 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9369 (*swap_out) (abfd, s->rela, erel);
9370 p += sort_elt;
9371 erel += ext_size;
9372 }
9373 }
9374
9375 free (sort);
9376 *psec = dynamic_relocs;
9377 return ret;
9378 }
9379
9380 /* Add a symbol to the output symbol string table. */
9381
9382 static int
9383 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9384 const char *name,
9385 Elf_Internal_Sym *elfsym,
9386 asection *input_sec,
9387 struct elf_link_hash_entry *h)
9388 {
9389 int (*output_symbol_hook)
9390 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9391 struct elf_link_hash_entry *);
9392 struct elf_link_hash_table *hash_table;
9393 const struct elf_backend_data *bed;
9394 bfd_size_type strtabsize;
9395
9396 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9397
9398 bed = get_elf_backend_data (flinfo->output_bfd);
9399 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9400 if (output_symbol_hook != NULL)
9401 {
9402 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9403 if (ret != 1)
9404 return ret;
9405 }
9406
9407 if (name == NULL
9408 || *name == '\0'
9409 || (input_sec->flags & SEC_EXCLUDE))
9410 elfsym->st_name = (unsigned long) -1;
9411 else
9412 {
9413 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9414 to get the final offset for st_name. */
9415 elfsym->st_name
9416 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9417 name, FALSE);
9418 if (elfsym->st_name == (unsigned long) -1)
9419 return 0;
9420 }
9421
9422 hash_table = elf_hash_table (flinfo->info);
9423 strtabsize = hash_table->strtabsize;
9424 if (strtabsize <= hash_table->strtabcount)
9425 {
9426 strtabsize += strtabsize;
9427 hash_table->strtabsize = strtabsize;
9428 strtabsize *= sizeof (*hash_table->strtab);
9429 hash_table->strtab
9430 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9431 strtabsize);
9432 if (hash_table->strtab == NULL)
9433 return 0;
9434 }
9435 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9436 hash_table->strtab[hash_table->strtabcount].dest_index
9437 = hash_table->strtabcount;
9438 hash_table->strtab[hash_table->strtabcount].destshndx_index
9439 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9440
9441 bfd_get_symcount (flinfo->output_bfd) += 1;
9442 hash_table->strtabcount += 1;
9443
9444 return 1;
9445 }
9446
9447 /* Swap symbols out to the symbol table and flush the output symbols to
9448 the file. */
9449
9450 static bfd_boolean
9451 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9452 {
9453 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9454 bfd_size_type amt;
9455 size_t i;
9456 const struct elf_backend_data *bed;
9457 bfd_byte *symbuf;
9458 Elf_Internal_Shdr *hdr;
9459 file_ptr pos;
9460 bfd_boolean ret;
9461
9462 if (!hash_table->strtabcount)
9463 return TRUE;
9464
9465 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9466
9467 bed = get_elf_backend_data (flinfo->output_bfd);
9468
9469 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9470 symbuf = (bfd_byte *) bfd_malloc (amt);
9471 if (symbuf == NULL)
9472 return FALSE;
9473
9474 if (flinfo->symshndxbuf)
9475 {
9476 amt = sizeof (Elf_External_Sym_Shndx);
9477 amt *= bfd_get_symcount (flinfo->output_bfd);
9478 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9479 if (flinfo->symshndxbuf == NULL)
9480 {
9481 free (symbuf);
9482 return FALSE;
9483 }
9484 }
9485
9486 for (i = 0; i < hash_table->strtabcount; i++)
9487 {
9488 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9489 if (elfsym->sym.st_name == (unsigned long) -1)
9490 elfsym->sym.st_name = 0;
9491 else
9492 elfsym->sym.st_name
9493 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9494 elfsym->sym.st_name);
9495 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9496 ((bfd_byte *) symbuf
9497 + (elfsym->dest_index
9498 * bed->s->sizeof_sym)),
9499 (flinfo->symshndxbuf
9500 + elfsym->destshndx_index));
9501 }
9502
9503 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9504 pos = hdr->sh_offset + hdr->sh_size;
9505 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9506 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9507 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9508 {
9509 hdr->sh_size += amt;
9510 ret = TRUE;
9511 }
9512 else
9513 ret = FALSE;
9514
9515 free (symbuf);
9516
9517 free (hash_table->strtab);
9518 hash_table->strtab = NULL;
9519
9520 return ret;
9521 }
9522
9523 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9524
9525 static bfd_boolean
9526 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9527 {
9528 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9529 && sym->st_shndx < SHN_LORESERVE)
9530 {
9531 /* The gABI doesn't support dynamic symbols in output sections
9532 beyond 64k. */
9533 _bfd_error_handler
9534 /* xgettext:c-format */
9535 (_("%pB: too many sections: %d (>= %d)"),
9536 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9537 bfd_set_error (bfd_error_nonrepresentable_section);
9538 return FALSE;
9539 }
9540 return TRUE;
9541 }
9542
9543 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9544 allowing an unsatisfied unversioned symbol in the DSO to match a
9545 versioned symbol that would normally require an explicit version.
9546 We also handle the case that a DSO references a hidden symbol
9547 which may be satisfied by a versioned symbol in another DSO. */
9548
9549 static bfd_boolean
9550 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9551 const struct elf_backend_data *bed,
9552 struct elf_link_hash_entry *h)
9553 {
9554 bfd *abfd;
9555 struct elf_link_loaded_list *loaded;
9556
9557 if (!is_elf_hash_table (info->hash))
9558 return FALSE;
9559
9560 /* Check indirect symbol. */
9561 while (h->root.type == bfd_link_hash_indirect)
9562 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9563
9564 switch (h->root.type)
9565 {
9566 default:
9567 abfd = NULL;
9568 break;
9569
9570 case bfd_link_hash_undefined:
9571 case bfd_link_hash_undefweak:
9572 abfd = h->root.u.undef.abfd;
9573 if (abfd == NULL
9574 || (abfd->flags & DYNAMIC) == 0
9575 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9576 return FALSE;
9577 break;
9578
9579 case bfd_link_hash_defined:
9580 case bfd_link_hash_defweak:
9581 abfd = h->root.u.def.section->owner;
9582 break;
9583
9584 case bfd_link_hash_common:
9585 abfd = h->root.u.c.p->section->owner;
9586 break;
9587 }
9588 BFD_ASSERT (abfd != NULL);
9589
9590 for (loaded = elf_hash_table (info)->loaded;
9591 loaded != NULL;
9592 loaded = loaded->next)
9593 {
9594 bfd *input;
9595 Elf_Internal_Shdr *hdr;
9596 size_t symcount;
9597 size_t extsymcount;
9598 size_t extsymoff;
9599 Elf_Internal_Shdr *versymhdr;
9600 Elf_Internal_Sym *isym;
9601 Elf_Internal_Sym *isymend;
9602 Elf_Internal_Sym *isymbuf;
9603 Elf_External_Versym *ever;
9604 Elf_External_Versym *extversym;
9605
9606 input = loaded->abfd;
9607
9608 /* We check each DSO for a possible hidden versioned definition. */
9609 if (input == abfd
9610 || (input->flags & DYNAMIC) == 0
9611 || elf_dynversym (input) == 0)
9612 continue;
9613
9614 hdr = &elf_tdata (input)->dynsymtab_hdr;
9615
9616 symcount = hdr->sh_size / bed->s->sizeof_sym;
9617 if (elf_bad_symtab (input))
9618 {
9619 extsymcount = symcount;
9620 extsymoff = 0;
9621 }
9622 else
9623 {
9624 extsymcount = symcount - hdr->sh_info;
9625 extsymoff = hdr->sh_info;
9626 }
9627
9628 if (extsymcount == 0)
9629 continue;
9630
9631 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9632 NULL, NULL, NULL);
9633 if (isymbuf == NULL)
9634 return FALSE;
9635
9636 /* Read in any version definitions. */
9637 versymhdr = &elf_tdata (input)->dynversym_hdr;
9638 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9639 if (extversym == NULL)
9640 goto error_ret;
9641
9642 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9643 || (bfd_bread (extversym, versymhdr->sh_size, input)
9644 != versymhdr->sh_size))
9645 {
9646 free (extversym);
9647 error_ret:
9648 free (isymbuf);
9649 return FALSE;
9650 }
9651
9652 ever = extversym + extsymoff;
9653 isymend = isymbuf + extsymcount;
9654 for (isym = isymbuf; isym < isymend; isym++, ever++)
9655 {
9656 const char *name;
9657 Elf_Internal_Versym iver;
9658 unsigned short version_index;
9659
9660 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9661 || isym->st_shndx == SHN_UNDEF)
9662 continue;
9663
9664 name = bfd_elf_string_from_elf_section (input,
9665 hdr->sh_link,
9666 isym->st_name);
9667 if (strcmp (name, h->root.root.string) != 0)
9668 continue;
9669
9670 _bfd_elf_swap_versym_in (input, ever, &iver);
9671
9672 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9673 && !(h->def_regular
9674 && h->forced_local))
9675 {
9676 /* If we have a non-hidden versioned sym, then it should
9677 have provided a definition for the undefined sym unless
9678 it is defined in a non-shared object and forced local.
9679 */
9680 abort ();
9681 }
9682
9683 version_index = iver.vs_vers & VERSYM_VERSION;
9684 if (version_index == 1 || version_index == 2)
9685 {
9686 /* This is the base or first version. We can use it. */
9687 free (extversym);
9688 free (isymbuf);
9689 return TRUE;
9690 }
9691 }
9692
9693 free (extversym);
9694 free (isymbuf);
9695 }
9696
9697 return FALSE;
9698 }
9699
9700 /* Convert ELF common symbol TYPE. */
9701
9702 static int
9703 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9704 {
9705 /* Commom symbol can only appear in relocatable link. */
9706 if (!bfd_link_relocatable (info))
9707 abort ();
9708 switch (info->elf_stt_common)
9709 {
9710 case unchanged:
9711 break;
9712 case elf_stt_common:
9713 type = STT_COMMON;
9714 break;
9715 case no_elf_stt_common:
9716 type = STT_OBJECT;
9717 break;
9718 }
9719 return type;
9720 }
9721
9722 /* Add an external symbol to the symbol table. This is called from
9723 the hash table traversal routine. When generating a shared object,
9724 we go through the symbol table twice. The first time we output
9725 anything that might have been forced to local scope in a version
9726 script. The second time we output the symbols that are still
9727 global symbols. */
9728
9729 static bfd_boolean
9730 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9731 {
9732 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9733 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9734 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9735 bfd_boolean strip;
9736 Elf_Internal_Sym sym;
9737 asection *input_sec;
9738 const struct elf_backend_data *bed;
9739 long indx;
9740 int ret;
9741 unsigned int type;
9742
9743 if (h->root.type == bfd_link_hash_warning)
9744 {
9745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9746 if (h->root.type == bfd_link_hash_new)
9747 return TRUE;
9748 }
9749
9750 /* Decide whether to output this symbol in this pass. */
9751 if (eoinfo->localsyms)
9752 {
9753 if (!h->forced_local)
9754 return TRUE;
9755 }
9756 else
9757 {
9758 if (h->forced_local)
9759 return TRUE;
9760 }
9761
9762 bed = get_elf_backend_data (flinfo->output_bfd);
9763
9764 if (h->root.type == bfd_link_hash_undefined)
9765 {
9766 /* If we have an undefined symbol reference here then it must have
9767 come from a shared library that is being linked in. (Undefined
9768 references in regular files have already been handled unless
9769 they are in unreferenced sections which are removed by garbage
9770 collection). */
9771 bfd_boolean ignore_undef = FALSE;
9772
9773 /* Some symbols may be special in that the fact that they're
9774 undefined can be safely ignored - let backend determine that. */
9775 if (bed->elf_backend_ignore_undef_symbol)
9776 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9777
9778 /* If we are reporting errors for this situation then do so now. */
9779 if (!ignore_undef
9780 && h->ref_dynamic_nonweak
9781 && (!h->ref_regular || flinfo->info->gc_sections)
9782 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9783 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9784 (*flinfo->info->callbacks->undefined_symbol)
9785 (flinfo->info, h->root.root.string,
9786 h->ref_regular ? NULL : h->root.u.undef.abfd,
9787 NULL, 0,
9788 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9789
9790 /* Strip a global symbol defined in a discarded section. */
9791 if (h->indx == -3)
9792 return TRUE;
9793 }
9794
9795 /* We should also warn if a forced local symbol is referenced from
9796 shared libraries. */
9797 if (bfd_link_executable (flinfo->info)
9798 && h->forced_local
9799 && h->ref_dynamic
9800 && h->def_regular
9801 && !h->dynamic_def
9802 && h->ref_dynamic_nonweak
9803 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9804 {
9805 bfd *def_bfd;
9806 const char *msg;
9807 struct elf_link_hash_entry *hi = h;
9808
9809 /* Check indirect symbol. */
9810 while (hi->root.type == bfd_link_hash_indirect)
9811 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9812
9813 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9814 /* xgettext:c-format */
9815 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9816 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9817 /* xgettext:c-format */
9818 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9819 else
9820 /* xgettext:c-format */
9821 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9822 def_bfd = flinfo->output_bfd;
9823 if (hi->root.u.def.section != bfd_abs_section_ptr)
9824 def_bfd = hi->root.u.def.section->owner;
9825 _bfd_error_handler (msg, flinfo->output_bfd,
9826 h->root.root.string, def_bfd);
9827 bfd_set_error (bfd_error_bad_value);
9828 eoinfo->failed = TRUE;
9829 return FALSE;
9830 }
9831
9832 /* We don't want to output symbols that have never been mentioned by
9833 a regular file, or that we have been told to strip. However, if
9834 h->indx is set to -2, the symbol is used by a reloc and we must
9835 output it. */
9836 strip = FALSE;
9837 if (h->indx == -2)
9838 ;
9839 else if ((h->def_dynamic
9840 || h->ref_dynamic
9841 || h->root.type == bfd_link_hash_new)
9842 && !h->def_regular
9843 && !h->ref_regular)
9844 strip = TRUE;
9845 else if (flinfo->info->strip == strip_all)
9846 strip = TRUE;
9847 else if (flinfo->info->strip == strip_some
9848 && bfd_hash_lookup (flinfo->info->keep_hash,
9849 h->root.root.string, FALSE, FALSE) == NULL)
9850 strip = TRUE;
9851 else if ((h->root.type == bfd_link_hash_defined
9852 || h->root.type == bfd_link_hash_defweak)
9853 && ((flinfo->info->strip_discarded
9854 && discarded_section (h->root.u.def.section))
9855 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9856 && h->root.u.def.section->owner != NULL
9857 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9858 strip = TRUE;
9859 else if ((h->root.type == bfd_link_hash_undefined
9860 || h->root.type == bfd_link_hash_undefweak)
9861 && h->root.u.undef.abfd != NULL
9862 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9863 strip = TRUE;
9864
9865 type = h->type;
9866
9867 /* If we're stripping it, and it's not a dynamic symbol, there's
9868 nothing else to do. However, if it is a forced local symbol or
9869 an ifunc symbol we need to give the backend finish_dynamic_symbol
9870 function a chance to make it dynamic. */
9871 if (strip
9872 && h->dynindx == -1
9873 && type != STT_GNU_IFUNC
9874 && !h->forced_local)
9875 return TRUE;
9876
9877 sym.st_value = 0;
9878 sym.st_size = h->size;
9879 sym.st_other = h->other;
9880 switch (h->root.type)
9881 {
9882 default:
9883 case bfd_link_hash_new:
9884 case bfd_link_hash_warning:
9885 abort ();
9886 return FALSE;
9887
9888 case bfd_link_hash_undefined:
9889 case bfd_link_hash_undefweak:
9890 input_sec = bfd_und_section_ptr;
9891 sym.st_shndx = SHN_UNDEF;
9892 break;
9893
9894 case bfd_link_hash_defined:
9895 case bfd_link_hash_defweak:
9896 {
9897 input_sec = h->root.u.def.section;
9898 if (input_sec->output_section != NULL)
9899 {
9900 sym.st_shndx =
9901 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9902 input_sec->output_section);
9903 if (sym.st_shndx == SHN_BAD)
9904 {
9905 _bfd_error_handler
9906 /* xgettext:c-format */
9907 (_("%pB: could not find output section %pA for input section %pA"),
9908 flinfo->output_bfd, input_sec->output_section, input_sec);
9909 bfd_set_error (bfd_error_nonrepresentable_section);
9910 eoinfo->failed = TRUE;
9911 return FALSE;
9912 }
9913
9914 /* ELF symbols in relocatable files are section relative,
9915 but in nonrelocatable files they are virtual
9916 addresses. */
9917 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9918 if (!bfd_link_relocatable (flinfo->info))
9919 {
9920 sym.st_value += input_sec->output_section->vma;
9921 if (h->type == STT_TLS)
9922 {
9923 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9924 if (tls_sec != NULL)
9925 sym.st_value -= tls_sec->vma;
9926 }
9927 }
9928 }
9929 else
9930 {
9931 BFD_ASSERT (input_sec->owner == NULL
9932 || (input_sec->owner->flags & DYNAMIC) != 0);
9933 sym.st_shndx = SHN_UNDEF;
9934 input_sec = bfd_und_section_ptr;
9935 }
9936 }
9937 break;
9938
9939 case bfd_link_hash_common:
9940 input_sec = h->root.u.c.p->section;
9941 sym.st_shndx = bed->common_section_index (input_sec);
9942 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9943 break;
9944
9945 case bfd_link_hash_indirect:
9946 /* These symbols are created by symbol versioning. They point
9947 to the decorated version of the name. For example, if the
9948 symbol foo@@GNU_1.2 is the default, which should be used when
9949 foo is used with no version, then we add an indirect symbol
9950 foo which points to foo@@GNU_1.2. We ignore these symbols,
9951 since the indirected symbol is already in the hash table. */
9952 return TRUE;
9953 }
9954
9955 if (type == STT_COMMON || type == STT_OBJECT)
9956 switch (h->root.type)
9957 {
9958 case bfd_link_hash_common:
9959 type = elf_link_convert_common_type (flinfo->info, type);
9960 break;
9961 case bfd_link_hash_defined:
9962 case bfd_link_hash_defweak:
9963 if (bed->common_definition (&sym))
9964 type = elf_link_convert_common_type (flinfo->info, type);
9965 else
9966 type = STT_OBJECT;
9967 break;
9968 case bfd_link_hash_undefined:
9969 case bfd_link_hash_undefweak:
9970 break;
9971 default:
9972 abort ();
9973 }
9974
9975 if (h->forced_local)
9976 {
9977 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9978 /* Turn off visibility on local symbol. */
9979 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9980 }
9981 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9982 else if (h->unique_global && h->def_regular)
9983 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9984 else if (h->root.type == bfd_link_hash_undefweak
9985 || h->root.type == bfd_link_hash_defweak)
9986 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9987 else
9988 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9989 sym.st_target_internal = h->target_internal;
9990
9991 /* Give the processor backend a chance to tweak the symbol value,
9992 and also to finish up anything that needs to be done for this
9993 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9994 forced local syms when non-shared is due to a historical quirk.
9995 STT_GNU_IFUNC symbol must go through PLT. */
9996 if ((h->type == STT_GNU_IFUNC
9997 && h->def_regular
9998 && !bfd_link_relocatable (flinfo->info))
9999 || ((h->dynindx != -1
10000 || h->forced_local)
10001 && ((bfd_link_pic (flinfo->info)
10002 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10003 || h->root.type != bfd_link_hash_undefweak))
10004 || !h->forced_local)
10005 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10006 {
10007 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10008 (flinfo->output_bfd, flinfo->info, h, &sym)))
10009 {
10010 eoinfo->failed = TRUE;
10011 return FALSE;
10012 }
10013 }
10014
10015 /* If we are marking the symbol as undefined, and there are no
10016 non-weak references to this symbol from a regular object, then
10017 mark the symbol as weak undefined; if there are non-weak
10018 references, mark the symbol as strong. We can't do this earlier,
10019 because it might not be marked as undefined until the
10020 finish_dynamic_symbol routine gets through with it. */
10021 if (sym.st_shndx == SHN_UNDEF
10022 && h->ref_regular
10023 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10024 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10025 {
10026 int bindtype;
10027 type = ELF_ST_TYPE (sym.st_info);
10028
10029 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10030 if (type == STT_GNU_IFUNC)
10031 type = STT_FUNC;
10032
10033 if (h->ref_regular_nonweak)
10034 bindtype = STB_GLOBAL;
10035 else
10036 bindtype = STB_WEAK;
10037 sym.st_info = ELF_ST_INFO (bindtype, type);
10038 }
10039
10040 /* If this is a symbol defined in a dynamic library, don't use the
10041 symbol size from the dynamic library. Relinking an executable
10042 against a new library may introduce gratuitous changes in the
10043 executable's symbols if we keep the size. */
10044 if (sym.st_shndx == SHN_UNDEF
10045 && !h->def_regular
10046 && h->def_dynamic)
10047 sym.st_size = 0;
10048
10049 /* If a non-weak symbol with non-default visibility is not defined
10050 locally, it is a fatal error. */
10051 if (!bfd_link_relocatable (flinfo->info)
10052 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10053 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10054 && h->root.type == bfd_link_hash_undefined
10055 && !h->def_regular)
10056 {
10057 const char *msg;
10058
10059 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10060 /* xgettext:c-format */
10061 msg = _("%pB: protected symbol `%s' isn't defined");
10062 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10063 /* xgettext:c-format */
10064 msg = _("%pB: internal symbol `%s' isn't defined");
10065 else
10066 /* xgettext:c-format */
10067 msg = _("%pB: hidden symbol `%s' isn't defined");
10068 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10069 bfd_set_error (bfd_error_bad_value);
10070 eoinfo->failed = TRUE;
10071 return FALSE;
10072 }
10073
10074 /* If this symbol should be put in the .dynsym section, then put it
10075 there now. We already know the symbol index. We also fill in
10076 the entry in the .hash section. */
10077 if (h->dynindx != -1
10078 && elf_hash_table (flinfo->info)->dynamic_sections_created
10079 && elf_hash_table (flinfo->info)->dynsym != NULL
10080 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10081 {
10082 bfd_byte *esym;
10083
10084 /* Since there is no version information in the dynamic string,
10085 if there is no version info in symbol version section, we will
10086 have a run-time problem if not linking executable, referenced
10087 by shared library, or not bound locally. */
10088 if (h->verinfo.verdef == NULL
10089 && (!bfd_link_executable (flinfo->info)
10090 || h->ref_dynamic
10091 || !h->def_regular))
10092 {
10093 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10094
10095 if (p && p [1] != '\0')
10096 {
10097 _bfd_error_handler
10098 /* xgettext:c-format */
10099 (_("%pB: no symbol version section for versioned symbol `%s'"),
10100 flinfo->output_bfd, h->root.root.string);
10101 eoinfo->failed = TRUE;
10102 return FALSE;
10103 }
10104 }
10105
10106 sym.st_name = h->dynstr_index;
10107 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10108 + h->dynindx * bed->s->sizeof_sym);
10109 if (!check_dynsym (flinfo->output_bfd, &sym))
10110 {
10111 eoinfo->failed = TRUE;
10112 return FALSE;
10113 }
10114 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10115
10116 if (flinfo->hash_sec != NULL)
10117 {
10118 size_t hash_entry_size;
10119 bfd_byte *bucketpos;
10120 bfd_vma chain;
10121 size_t bucketcount;
10122 size_t bucket;
10123
10124 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10125 bucket = h->u.elf_hash_value % bucketcount;
10126
10127 hash_entry_size
10128 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10129 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10130 + (bucket + 2) * hash_entry_size);
10131 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10132 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10133 bucketpos);
10134 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10135 ((bfd_byte *) flinfo->hash_sec->contents
10136 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10137 }
10138
10139 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10140 {
10141 Elf_Internal_Versym iversym;
10142 Elf_External_Versym *eversym;
10143
10144 if (!h->def_regular)
10145 {
10146 if (h->verinfo.verdef == NULL
10147 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10148 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10149 iversym.vs_vers = 0;
10150 else
10151 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10152 }
10153 else
10154 {
10155 if (h->verinfo.vertree == NULL)
10156 iversym.vs_vers = 1;
10157 else
10158 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10159 if (flinfo->info->create_default_symver)
10160 iversym.vs_vers++;
10161 }
10162
10163 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10164 defined locally. */
10165 if (h->versioned == versioned_hidden && h->def_regular)
10166 iversym.vs_vers |= VERSYM_HIDDEN;
10167
10168 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10169 eversym += h->dynindx;
10170 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10171 }
10172 }
10173
10174 /* If the symbol is undefined, and we didn't output it to .dynsym,
10175 strip it from .symtab too. Obviously we can't do this for
10176 relocatable output or when needed for --emit-relocs. */
10177 else if (input_sec == bfd_und_section_ptr
10178 && h->indx != -2
10179 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10180 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10181 && !bfd_link_relocatable (flinfo->info))
10182 return TRUE;
10183
10184 /* Also strip others that we couldn't earlier due to dynamic symbol
10185 processing. */
10186 if (strip)
10187 return TRUE;
10188 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10189 return TRUE;
10190
10191 /* Output a FILE symbol so that following locals are not associated
10192 with the wrong input file. We need one for forced local symbols
10193 if we've seen more than one FILE symbol or when we have exactly
10194 one FILE symbol but global symbols are present in a file other
10195 than the one with the FILE symbol. We also need one if linker
10196 defined symbols are present. In practice these conditions are
10197 always met, so just emit the FILE symbol unconditionally. */
10198 if (eoinfo->localsyms
10199 && !eoinfo->file_sym_done
10200 && eoinfo->flinfo->filesym_count != 0)
10201 {
10202 Elf_Internal_Sym fsym;
10203
10204 memset (&fsym, 0, sizeof (fsym));
10205 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10206 fsym.st_shndx = SHN_ABS;
10207 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10208 bfd_und_section_ptr, NULL))
10209 return FALSE;
10210
10211 eoinfo->file_sym_done = TRUE;
10212 }
10213
10214 indx = bfd_get_symcount (flinfo->output_bfd);
10215 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10216 input_sec, h);
10217 if (ret == 0)
10218 {
10219 eoinfo->failed = TRUE;
10220 return FALSE;
10221 }
10222 else if (ret == 1)
10223 h->indx = indx;
10224 else if (h->indx == -2)
10225 abort();
10226
10227 return TRUE;
10228 }
10229
10230 /* Return TRUE if special handling is done for relocs in SEC against
10231 symbols defined in discarded sections. */
10232
10233 static bfd_boolean
10234 elf_section_ignore_discarded_relocs (asection *sec)
10235 {
10236 const struct elf_backend_data *bed;
10237
10238 switch (sec->sec_info_type)
10239 {
10240 case SEC_INFO_TYPE_STABS:
10241 case SEC_INFO_TYPE_EH_FRAME:
10242 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10243 return TRUE;
10244 default:
10245 break;
10246 }
10247
10248 bed = get_elf_backend_data (sec->owner);
10249 if (bed->elf_backend_ignore_discarded_relocs != NULL
10250 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10251 return TRUE;
10252
10253 return FALSE;
10254 }
10255
10256 /* Return a mask saying how ld should treat relocations in SEC against
10257 symbols defined in discarded sections. If this function returns
10258 COMPLAIN set, ld will issue a warning message. If this function
10259 returns PRETEND set, and the discarded section was link-once and the
10260 same size as the kept link-once section, ld will pretend that the
10261 symbol was actually defined in the kept section. Otherwise ld will
10262 zero the reloc (at least that is the intent, but some cooperation by
10263 the target dependent code is needed, particularly for REL targets). */
10264
10265 unsigned int
10266 _bfd_elf_default_action_discarded (asection *sec)
10267 {
10268 if (sec->flags & SEC_DEBUGGING)
10269 return PRETEND;
10270
10271 if (strcmp (".eh_frame", sec->name) == 0)
10272 return 0;
10273
10274 if (strcmp (".gcc_except_table", sec->name) == 0)
10275 return 0;
10276
10277 return COMPLAIN | PRETEND;
10278 }
10279
10280 /* Find a match between a section and a member of a section group. */
10281
10282 static asection *
10283 match_group_member (asection *sec, asection *group,
10284 struct bfd_link_info *info)
10285 {
10286 asection *first = elf_next_in_group (group);
10287 asection *s = first;
10288
10289 while (s != NULL)
10290 {
10291 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10292 return s;
10293
10294 s = elf_next_in_group (s);
10295 if (s == first)
10296 break;
10297 }
10298
10299 return NULL;
10300 }
10301
10302 /* Check if the kept section of a discarded section SEC can be used
10303 to replace it. Return the replacement if it is OK. Otherwise return
10304 NULL. */
10305
10306 asection *
10307 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10308 {
10309 asection *kept;
10310
10311 kept = sec->kept_section;
10312 if (kept != NULL)
10313 {
10314 if ((kept->flags & SEC_GROUP) != 0)
10315 kept = match_group_member (sec, kept, info);
10316 if (kept != NULL
10317 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10318 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10319 kept = NULL;
10320 sec->kept_section = kept;
10321 }
10322 return kept;
10323 }
10324
10325 /* Link an input file into the linker output file. This function
10326 handles all the sections and relocations of the input file at once.
10327 This is so that we only have to read the local symbols once, and
10328 don't have to keep them in memory. */
10329
10330 static bfd_boolean
10331 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10332 {
10333 int (*relocate_section)
10334 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10335 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10336 bfd *output_bfd;
10337 Elf_Internal_Shdr *symtab_hdr;
10338 size_t locsymcount;
10339 size_t extsymoff;
10340 Elf_Internal_Sym *isymbuf;
10341 Elf_Internal_Sym *isym;
10342 Elf_Internal_Sym *isymend;
10343 long *pindex;
10344 asection **ppsection;
10345 asection *o;
10346 const struct elf_backend_data *bed;
10347 struct elf_link_hash_entry **sym_hashes;
10348 bfd_size_type address_size;
10349 bfd_vma r_type_mask;
10350 int r_sym_shift;
10351 bfd_boolean have_file_sym = FALSE;
10352
10353 output_bfd = flinfo->output_bfd;
10354 bed = get_elf_backend_data (output_bfd);
10355 relocate_section = bed->elf_backend_relocate_section;
10356
10357 /* If this is a dynamic object, we don't want to do anything here:
10358 we don't want the local symbols, and we don't want the section
10359 contents. */
10360 if ((input_bfd->flags & DYNAMIC) != 0)
10361 return TRUE;
10362
10363 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10364 if (elf_bad_symtab (input_bfd))
10365 {
10366 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10367 extsymoff = 0;
10368 }
10369 else
10370 {
10371 locsymcount = symtab_hdr->sh_info;
10372 extsymoff = symtab_hdr->sh_info;
10373 }
10374
10375 /* Read the local symbols. */
10376 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10377 if (isymbuf == NULL && locsymcount != 0)
10378 {
10379 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10380 flinfo->internal_syms,
10381 flinfo->external_syms,
10382 flinfo->locsym_shndx);
10383 if (isymbuf == NULL)
10384 return FALSE;
10385 }
10386
10387 /* Find local symbol sections and adjust values of symbols in
10388 SEC_MERGE sections. Write out those local symbols we know are
10389 going into the output file. */
10390 isymend = isymbuf + locsymcount;
10391 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10392 isym < isymend;
10393 isym++, pindex++, ppsection++)
10394 {
10395 asection *isec;
10396 const char *name;
10397 Elf_Internal_Sym osym;
10398 long indx;
10399 int ret;
10400
10401 *pindex = -1;
10402
10403 if (elf_bad_symtab (input_bfd))
10404 {
10405 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10406 {
10407 *ppsection = NULL;
10408 continue;
10409 }
10410 }
10411
10412 if (isym->st_shndx == SHN_UNDEF)
10413 isec = bfd_und_section_ptr;
10414 else if (isym->st_shndx == SHN_ABS)
10415 isec = bfd_abs_section_ptr;
10416 else if (isym->st_shndx == SHN_COMMON)
10417 isec = bfd_com_section_ptr;
10418 else
10419 {
10420 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10421 if (isec == NULL)
10422 {
10423 /* Don't attempt to output symbols with st_shnx in the
10424 reserved range other than SHN_ABS and SHN_COMMON. */
10425 isec = bfd_und_section_ptr;
10426 }
10427 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10428 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10429 isym->st_value =
10430 _bfd_merged_section_offset (output_bfd, &isec,
10431 elf_section_data (isec)->sec_info,
10432 isym->st_value);
10433 }
10434
10435 *ppsection = isec;
10436
10437 /* Don't output the first, undefined, symbol. In fact, don't
10438 output any undefined local symbol. */
10439 if (isec == bfd_und_section_ptr)
10440 continue;
10441
10442 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10443 {
10444 /* We never output section symbols. Instead, we use the
10445 section symbol of the corresponding section in the output
10446 file. */
10447 continue;
10448 }
10449
10450 /* If we are stripping all symbols, we don't want to output this
10451 one. */
10452 if (flinfo->info->strip == strip_all)
10453 continue;
10454
10455 /* If we are discarding all local symbols, we don't want to
10456 output this one. If we are generating a relocatable output
10457 file, then some of the local symbols may be required by
10458 relocs; we output them below as we discover that they are
10459 needed. */
10460 if (flinfo->info->discard == discard_all)
10461 continue;
10462
10463 /* If this symbol is defined in a section which we are
10464 discarding, we don't need to keep it. */
10465 if (isym->st_shndx != SHN_UNDEF
10466 && isym->st_shndx < SHN_LORESERVE
10467 && bfd_section_removed_from_list (output_bfd,
10468 isec->output_section))
10469 continue;
10470
10471 /* Get the name of the symbol. */
10472 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10473 isym->st_name);
10474 if (name == NULL)
10475 return FALSE;
10476
10477 /* See if we are discarding symbols with this name. */
10478 if ((flinfo->info->strip == strip_some
10479 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10480 == NULL))
10481 || (((flinfo->info->discard == discard_sec_merge
10482 && (isec->flags & SEC_MERGE)
10483 && !bfd_link_relocatable (flinfo->info))
10484 || flinfo->info->discard == discard_l)
10485 && bfd_is_local_label_name (input_bfd, name)))
10486 continue;
10487
10488 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10489 {
10490 if (input_bfd->lto_output)
10491 /* -flto puts a temp file name here. This means builds
10492 are not reproducible. Discard the symbol. */
10493 continue;
10494 have_file_sym = TRUE;
10495 flinfo->filesym_count += 1;
10496 }
10497 if (!have_file_sym)
10498 {
10499 /* In the absence of debug info, bfd_find_nearest_line uses
10500 FILE symbols to determine the source file for local
10501 function symbols. Provide a FILE symbol here if input
10502 files lack such, so that their symbols won't be
10503 associated with a previous input file. It's not the
10504 source file, but the best we can do. */
10505 have_file_sym = TRUE;
10506 flinfo->filesym_count += 1;
10507 memset (&osym, 0, sizeof (osym));
10508 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10509 osym.st_shndx = SHN_ABS;
10510 if (!elf_link_output_symstrtab (flinfo,
10511 (input_bfd->lto_output ? NULL
10512 : input_bfd->filename),
10513 &osym, bfd_abs_section_ptr,
10514 NULL))
10515 return FALSE;
10516 }
10517
10518 osym = *isym;
10519
10520 /* Adjust the section index for the output file. */
10521 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10522 isec->output_section);
10523 if (osym.st_shndx == SHN_BAD)
10524 return FALSE;
10525
10526 /* ELF symbols in relocatable files are section relative, but
10527 in executable files they are virtual addresses. Note that
10528 this code assumes that all ELF sections have an associated
10529 BFD section with a reasonable value for output_offset; below
10530 we assume that they also have a reasonable value for
10531 output_section. Any special sections must be set up to meet
10532 these requirements. */
10533 osym.st_value += isec->output_offset;
10534 if (!bfd_link_relocatable (flinfo->info))
10535 {
10536 osym.st_value += isec->output_section->vma;
10537 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10538 {
10539 /* STT_TLS symbols are relative to PT_TLS segment base. */
10540 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10541 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10542 else
10543 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10544 STT_NOTYPE);
10545 }
10546 }
10547
10548 indx = bfd_get_symcount (output_bfd);
10549 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10550 if (ret == 0)
10551 return FALSE;
10552 else if (ret == 1)
10553 *pindex = indx;
10554 }
10555
10556 if (bed->s->arch_size == 32)
10557 {
10558 r_type_mask = 0xff;
10559 r_sym_shift = 8;
10560 address_size = 4;
10561 }
10562 else
10563 {
10564 r_type_mask = 0xffffffff;
10565 r_sym_shift = 32;
10566 address_size = 8;
10567 }
10568
10569 /* Relocate the contents of each section. */
10570 sym_hashes = elf_sym_hashes (input_bfd);
10571 for (o = input_bfd->sections; o != NULL; o = o->next)
10572 {
10573 bfd_byte *contents;
10574
10575 if (! o->linker_mark)
10576 {
10577 /* This section was omitted from the link. */
10578 continue;
10579 }
10580
10581 if (!flinfo->info->resolve_section_groups
10582 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10583 {
10584 /* Deal with the group signature symbol. */
10585 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10586 unsigned long symndx = sec_data->this_hdr.sh_info;
10587 asection *osec = o->output_section;
10588
10589 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10590 if (symndx >= locsymcount
10591 || (elf_bad_symtab (input_bfd)
10592 && flinfo->sections[symndx] == NULL))
10593 {
10594 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10595 while (h->root.type == bfd_link_hash_indirect
10596 || h->root.type == bfd_link_hash_warning)
10597 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10598 /* Arrange for symbol to be output. */
10599 h->indx = -2;
10600 elf_section_data (osec)->this_hdr.sh_info = -2;
10601 }
10602 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10603 {
10604 /* We'll use the output section target_index. */
10605 asection *sec = flinfo->sections[symndx]->output_section;
10606 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10607 }
10608 else
10609 {
10610 if (flinfo->indices[symndx] == -1)
10611 {
10612 /* Otherwise output the local symbol now. */
10613 Elf_Internal_Sym sym = isymbuf[symndx];
10614 asection *sec = flinfo->sections[symndx]->output_section;
10615 const char *name;
10616 long indx;
10617 int ret;
10618
10619 name = bfd_elf_string_from_elf_section (input_bfd,
10620 symtab_hdr->sh_link,
10621 sym.st_name);
10622 if (name == NULL)
10623 return FALSE;
10624
10625 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10626 sec);
10627 if (sym.st_shndx == SHN_BAD)
10628 return FALSE;
10629
10630 sym.st_value += o->output_offset;
10631
10632 indx = bfd_get_symcount (output_bfd);
10633 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10634 NULL);
10635 if (ret == 0)
10636 return FALSE;
10637 else if (ret == 1)
10638 flinfo->indices[symndx] = indx;
10639 else
10640 abort ();
10641 }
10642 elf_section_data (osec)->this_hdr.sh_info
10643 = flinfo->indices[symndx];
10644 }
10645 }
10646
10647 if ((o->flags & SEC_HAS_CONTENTS) == 0
10648 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10649 continue;
10650
10651 if ((o->flags & SEC_LINKER_CREATED) != 0)
10652 {
10653 /* Section was created by _bfd_elf_link_create_dynamic_sections
10654 or somesuch. */
10655 continue;
10656 }
10657
10658 /* Get the contents of the section. They have been cached by a
10659 relaxation routine. Note that o is a section in an input
10660 file, so the contents field will not have been set by any of
10661 the routines which work on output files. */
10662 if (elf_section_data (o)->this_hdr.contents != NULL)
10663 {
10664 contents = elf_section_data (o)->this_hdr.contents;
10665 if (bed->caches_rawsize
10666 && o->rawsize != 0
10667 && o->rawsize < o->size)
10668 {
10669 memcpy (flinfo->contents, contents, o->rawsize);
10670 contents = flinfo->contents;
10671 }
10672 }
10673 else
10674 {
10675 contents = flinfo->contents;
10676 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10677 return FALSE;
10678 }
10679
10680 if ((o->flags & SEC_RELOC) != 0)
10681 {
10682 Elf_Internal_Rela *internal_relocs;
10683 Elf_Internal_Rela *rel, *relend;
10684 int action_discarded;
10685 int ret;
10686
10687 /* Get the swapped relocs. */
10688 internal_relocs
10689 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10690 flinfo->internal_relocs, FALSE);
10691 if (internal_relocs == NULL
10692 && o->reloc_count > 0)
10693 return FALSE;
10694
10695 /* We need to reverse-copy input .ctors/.dtors sections if
10696 they are placed in .init_array/.finit_array for output. */
10697 if (o->size > address_size
10698 && ((strncmp (o->name, ".ctors", 6) == 0
10699 && strcmp (o->output_section->name,
10700 ".init_array") == 0)
10701 || (strncmp (o->name, ".dtors", 6) == 0
10702 && strcmp (o->output_section->name,
10703 ".fini_array") == 0))
10704 && (o->name[6] == 0 || o->name[6] == '.'))
10705 {
10706 if (o->size * bed->s->int_rels_per_ext_rel
10707 != o->reloc_count * address_size)
10708 {
10709 _bfd_error_handler
10710 /* xgettext:c-format */
10711 (_("error: %pB: size of section %pA is not "
10712 "multiple of address size"),
10713 input_bfd, o);
10714 bfd_set_error (bfd_error_bad_value);
10715 return FALSE;
10716 }
10717 o->flags |= SEC_ELF_REVERSE_COPY;
10718 }
10719
10720 action_discarded = -1;
10721 if (!elf_section_ignore_discarded_relocs (o))
10722 action_discarded = (*bed->action_discarded) (o);
10723
10724 /* Run through the relocs evaluating complex reloc symbols and
10725 looking for relocs against symbols from discarded sections
10726 or section symbols from removed link-once sections.
10727 Complain about relocs against discarded sections. Zero
10728 relocs against removed link-once sections. */
10729
10730 rel = internal_relocs;
10731 relend = rel + o->reloc_count;
10732 for ( ; rel < relend; rel++)
10733 {
10734 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10735 unsigned int s_type;
10736 asection **ps, *sec;
10737 struct elf_link_hash_entry *h = NULL;
10738 const char *sym_name;
10739
10740 if (r_symndx == STN_UNDEF)
10741 continue;
10742
10743 if (r_symndx >= locsymcount
10744 || (elf_bad_symtab (input_bfd)
10745 && flinfo->sections[r_symndx] == NULL))
10746 {
10747 h = sym_hashes[r_symndx - extsymoff];
10748
10749 /* Badly formatted input files can contain relocs that
10750 reference non-existant symbols. Check here so that
10751 we do not seg fault. */
10752 if (h == NULL)
10753 {
10754 _bfd_error_handler
10755 /* xgettext:c-format */
10756 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10757 "that references a non-existent global symbol"),
10758 input_bfd, (uint64_t) rel->r_info, o);
10759 bfd_set_error (bfd_error_bad_value);
10760 return FALSE;
10761 }
10762
10763 while (h->root.type == bfd_link_hash_indirect
10764 || h->root.type == bfd_link_hash_warning)
10765 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10766
10767 s_type = h->type;
10768
10769 /* If a plugin symbol is referenced from a non-IR file,
10770 mark the symbol as undefined. Note that the
10771 linker may attach linker created dynamic sections
10772 to the plugin bfd. Symbols defined in linker
10773 created sections are not plugin symbols. */
10774 if ((h->root.non_ir_ref_regular
10775 || h->root.non_ir_ref_dynamic)
10776 && (h->root.type == bfd_link_hash_defined
10777 || h->root.type == bfd_link_hash_defweak)
10778 && (h->root.u.def.section->flags
10779 & SEC_LINKER_CREATED) == 0
10780 && h->root.u.def.section->owner != NULL
10781 && (h->root.u.def.section->owner->flags
10782 & BFD_PLUGIN) != 0)
10783 {
10784 h->root.type = bfd_link_hash_undefined;
10785 h->root.u.undef.abfd = h->root.u.def.section->owner;
10786 }
10787
10788 ps = NULL;
10789 if (h->root.type == bfd_link_hash_defined
10790 || h->root.type == bfd_link_hash_defweak)
10791 ps = &h->root.u.def.section;
10792
10793 sym_name = h->root.root.string;
10794 }
10795 else
10796 {
10797 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10798
10799 s_type = ELF_ST_TYPE (sym->st_info);
10800 ps = &flinfo->sections[r_symndx];
10801 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10802 sym, *ps);
10803 }
10804
10805 if ((s_type == STT_RELC || s_type == STT_SRELC)
10806 && !bfd_link_relocatable (flinfo->info))
10807 {
10808 bfd_vma val;
10809 bfd_vma dot = (rel->r_offset
10810 + o->output_offset + o->output_section->vma);
10811 #ifdef DEBUG
10812 printf ("Encountered a complex symbol!");
10813 printf (" (input_bfd %s, section %s, reloc %ld\n",
10814 input_bfd->filename, o->name,
10815 (long) (rel - internal_relocs));
10816 printf (" symbol: idx %8.8lx, name %s\n",
10817 r_symndx, sym_name);
10818 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10819 (unsigned long) rel->r_info,
10820 (unsigned long) rel->r_offset);
10821 #endif
10822 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10823 isymbuf, locsymcount, s_type == STT_SRELC))
10824 return FALSE;
10825
10826 /* Symbol evaluated OK. Update to absolute value. */
10827 set_symbol_value (input_bfd, isymbuf, locsymcount,
10828 r_symndx, val);
10829 continue;
10830 }
10831
10832 if (action_discarded != -1 && ps != NULL)
10833 {
10834 /* Complain if the definition comes from a
10835 discarded section. */
10836 if ((sec = *ps) != NULL && discarded_section (sec))
10837 {
10838 BFD_ASSERT (r_symndx != STN_UNDEF);
10839 if (action_discarded & COMPLAIN)
10840 (*flinfo->info->callbacks->einfo)
10841 /* xgettext:c-format */
10842 (_("%X`%s' referenced in section `%pA' of %pB: "
10843 "defined in discarded section `%pA' of %pB\n"),
10844 sym_name, o, input_bfd, sec, sec->owner);
10845
10846 /* Try to do the best we can to support buggy old
10847 versions of gcc. Pretend that the symbol is
10848 really defined in the kept linkonce section.
10849 FIXME: This is quite broken. Modifying the
10850 symbol here means we will be changing all later
10851 uses of the symbol, not just in this section. */
10852 if (action_discarded & PRETEND)
10853 {
10854 asection *kept;
10855
10856 kept = _bfd_elf_check_kept_section (sec,
10857 flinfo->info);
10858 if (kept != NULL)
10859 {
10860 *ps = kept;
10861 continue;
10862 }
10863 }
10864 }
10865 }
10866 }
10867
10868 /* Relocate the section by invoking a back end routine.
10869
10870 The back end routine is responsible for adjusting the
10871 section contents as necessary, and (if using Rela relocs
10872 and generating a relocatable output file) adjusting the
10873 reloc addend as necessary.
10874
10875 The back end routine does not have to worry about setting
10876 the reloc address or the reloc symbol index.
10877
10878 The back end routine is given a pointer to the swapped in
10879 internal symbols, and can access the hash table entries
10880 for the external symbols via elf_sym_hashes (input_bfd).
10881
10882 When generating relocatable output, the back end routine
10883 must handle STB_LOCAL/STT_SECTION symbols specially. The
10884 output symbol is going to be a section symbol
10885 corresponding to the output section, which will require
10886 the addend to be adjusted. */
10887
10888 ret = (*relocate_section) (output_bfd, flinfo->info,
10889 input_bfd, o, contents,
10890 internal_relocs,
10891 isymbuf,
10892 flinfo->sections);
10893 if (!ret)
10894 return FALSE;
10895
10896 if (ret == 2
10897 || bfd_link_relocatable (flinfo->info)
10898 || flinfo->info->emitrelocations)
10899 {
10900 Elf_Internal_Rela *irela;
10901 Elf_Internal_Rela *irelaend, *irelamid;
10902 bfd_vma last_offset;
10903 struct elf_link_hash_entry **rel_hash;
10904 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10905 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10906 unsigned int next_erel;
10907 bfd_boolean rela_normal;
10908 struct bfd_elf_section_data *esdi, *esdo;
10909
10910 esdi = elf_section_data (o);
10911 esdo = elf_section_data (o->output_section);
10912 rela_normal = FALSE;
10913
10914 /* Adjust the reloc addresses and symbol indices. */
10915
10916 irela = internal_relocs;
10917 irelaend = irela + o->reloc_count;
10918 rel_hash = esdo->rel.hashes + esdo->rel.count;
10919 /* We start processing the REL relocs, if any. When we reach
10920 IRELAMID in the loop, we switch to the RELA relocs. */
10921 irelamid = irela;
10922 if (esdi->rel.hdr != NULL)
10923 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10924 * bed->s->int_rels_per_ext_rel);
10925 rel_hash_list = rel_hash;
10926 rela_hash_list = NULL;
10927 last_offset = o->output_offset;
10928 if (!bfd_link_relocatable (flinfo->info))
10929 last_offset += o->output_section->vma;
10930 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10931 {
10932 unsigned long r_symndx;
10933 asection *sec;
10934 Elf_Internal_Sym sym;
10935
10936 if (next_erel == bed->s->int_rels_per_ext_rel)
10937 {
10938 rel_hash++;
10939 next_erel = 0;
10940 }
10941
10942 if (irela == irelamid)
10943 {
10944 rel_hash = esdo->rela.hashes + esdo->rela.count;
10945 rela_hash_list = rel_hash;
10946 rela_normal = bed->rela_normal;
10947 }
10948
10949 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10950 flinfo->info, o,
10951 irela->r_offset);
10952 if (irela->r_offset >= (bfd_vma) -2)
10953 {
10954 /* This is a reloc for a deleted entry or somesuch.
10955 Turn it into an R_*_NONE reloc, at the same
10956 offset as the last reloc. elf_eh_frame.c and
10957 bfd_elf_discard_info rely on reloc offsets
10958 being ordered. */
10959 irela->r_offset = last_offset;
10960 irela->r_info = 0;
10961 irela->r_addend = 0;
10962 continue;
10963 }
10964
10965 irela->r_offset += o->output_offset;
10966
10967 /* Relocs in an executable have to be virtual addresses. */
10968 if (!bfd_link_relocatable (flinfo->info))
10969 irela->r_offset += o->output_section->vma;
10970
10971 last_offset = irela->r_offset;
10972
10973 r_symndx = irela->r_info >> r_sym_shift;
10974 if (r_symndx == STN_UNDEF)
10975 continue;
10976
10977 if (r_symndx >= locsymcount
10978 || (elf_bad_symtab (input_bfd)
10979 && flinfo->sections[r_symndx] == NULL))
10980 {
10981 struct elf_link_hash_entry *rh;
10982 unsigned long indx;
10983
10984 /* This is a reloc against a global symbol. We
10985 have not yet output all the local symbols, so
10986 we do not know the symbol index of any global
10987 symbol. We set the rel_hash entry for this
10988 reloc to point to the global hash table entry
10989 for this symbol. The symbol index is then
10990 set at the end of bfd_elf_final_link. */
10991 indx = r_symndx - extsymoff;
10992 rh = elf_sym_hashes (input_bfd)[indx];
10993 while (rh->root.type == bfd_link_hash_indirect
10994 || rh->root.type == bfd_link_hash_warning)
10995 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10996
10997 /* Setting the index to -2 tells
10998 elf_link_output_extsym that this symbol is
10999 used by a reloc. */
11000 BFD_ASSERT (rh->indx < 0);
11001 rh->indx = -2;
11002 *rel_hash = rh;
11003
11004 continue;
11005 }
11006
11007 /* This is a reloc against a local symbol. */
11008
11009 *rel_hash = NULL;
11010 sym = isymbuf[r_symndx];
11011 sec = flinfo->sections[r_symndx];
11012 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11013 {
11014 /* I suppose the backend ought to fill in the
11015 section of any STT_SECTION symbol against a
11016 processor specific section. */
11017 r_symndx = STN_UNDEF;
11018 if (bfd_is_abs_section (sec))
11019 ;
11020 else if (sec == NULL || sec->owner == NULL)
11021 {
11022 bfd_set_error (bfd_error_bad_value);
11023 return FALSE;
11024 }
11025 else
11026 {
11027 asection *osec = sec->output_section;
11028
11029 /* If we have discarded a section, the output
11030 section will be the absolute section. In
11031 case of discarded SEC_MERGE sections, use
11032 the kept section. relocate_section should
11033 have already handled discarded linkonce
11034 sections. */
11035 if (bfd_is_abs_section (osec)
11036 && sec->kept_section != NULL
11037 && sec->kept_section->output_section != NULL)
11038 {
11039 osec = sec->kept_section->output_section;
11040 irela->r_addend -= osec->vma;
11041 }
11042
11043 if (!bfd_is_abs_section (osec))
11044 {
11045 r_symndx = osec->target_index;
11046 if (r_symndx == STN_UNDEF)
11047 {
11048 irela->r_addend += osec->vma;
11049 osec = _bfd_nearby_section (output_bfd, osec,
11050 osec->vma);
11051 irela->r_addend -= osec->vma;
11052 r_symndx = osec->target_index;
11053 }
11054 }
11055 }
11056
11057 /* Adjust the addend according to where the
11058 section winds up in the output section. */
11059 if (rela_normal)
11060 irela->r_addend += sec->output_offset;
11061 }
11062 else
11063 {
11064 if (flinfo->indices[r_symndx] == -1)
11065 {
11066 unsigned long shlink;
11067 const char *name;
11068 asection *osec;
11069 long indx;
11070
11071 if (flinfo->info->strip == strip_all)
11072 {
11073 /* You can't do ld -r -s. */
11074 bfd_set_error (bfd_error_invalid_operation);
11075 return FALSE;
11076 }
11077
11078 /* This symbol was skipped earlier, but
11079 since it is needed by a reloc, we
11080 must output it now. */
11081 shlink = symtab_hdr->sh_link;
11082 name = (bfd_elf_string_from_elf_section
11083 (input_bfd, shlink, sym.st_name));
11084 if (name == NULL)
11085 return FALSE;
11086
11087 osec = sec->output_section;
11088 sym.st_shndx =
11089 _bfd_elf_section_from_bfd_section (output_bfd,
11090 osec);
11091 if (sym.st_shndx == SHN_BAD)
11092 return FALSE;
11093
11094 sym.st_value += sec->output_offset;
11095 if (!bfd_link_relocatable (flinfo->info))
11096 {
11097 sym.st_value += osec->vma;
11098 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11099 {
11100 struct elf_link_hash_table *htab
11101 = elf_hash_table (flinfo->info);
11102
11103 /* STT_TLS symbols are relative to PT_TLS
11104 segment base. */
11105 if (htab->tls_sec != NULL)
11106 sym.st_value -= htab->tls_sec->vma;
11107 else
11108 sym.st_info
11109 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11110 STT_NOTYPE);
11111 }
11112 }
11113
11114 indx = bfd_get_symcount (output_bfd);
11115 ret = elf_link_output_symstrtab (flinfo, name,
11116 &sym, sec,
11117 NULL);
11118 if (ret == 0)
11119 return FALSE;
11120 else if (ret == 1)
11121 flinfo->indices[r_symndx] = indx;
11122 else
11123 abort ();
11124 }
11125
11126 r_symndx = flinfo->indices[r_symndx];
11127 }
11128
11129 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11130 | (irela->r_info & r_type_mask));
11131 }
11132
11133 /* Swap out the relocs. */
11134 input_rel_hdr = esdi->rel.hdr;
11135 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11136 {
11137 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11138 input_rel_hdr,
11139 internal_relocs,
11140 rel_hash_list))
11141 return FALSE;
11142 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11143 * bed->s->int_rels_per_ext_rel);
11144 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11145 }
11146
11147 input_rela_hdr = esdi->rela.hdr;
11148 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11149 {
11150 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11151 input_rela_hdr,
11152 internal_relocs,
11153 rela_hash_list))
11154 return FALSE;
11155 }
11156 }
11157 }
11158
11159 /* Write out the modified section contents. */
11160 if (bed->elf_backend_write_section
11161 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11162 contents))
11163 {
11164 /* Section written out. */
11165 }
11166 else switch (o->sec_info_type)
11167 {
11168 case SEC_INFO_TYPE_STABS:
11169 if (! (_bfd_write_section_stabs
11170 (output_bfd,
11171 &elf_hash_table (flinfo->info)->stab_info,
11172 o, &elf_section_data (o)->sec_info, contents)))
11173 return FALSE;
11174 break;
11175 case SEC_INFO_TYPE_MERGE:
11176 if (! _bfd_write_merged_section (output_bfd, o,
11177 elf_section_data (o)->sec_info))
11178 return FALSE;
11179 break;
11180 case SEC_INFO_TYPE_EH_FRAME:
11181 {
11182 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11183 o, contents))
11184 return FALSE;
11185 }
11186 break;
11187 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11188 {
11189 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11190 flinfo->info,
11191 o, contents))
11192 return FALSE;
11193 }
11194 break;
11195 default:
11196 {
11197 if (! (o->flags & SEC_EXCLUDE))
11198 {
11199 file_ptr offset = (file_ptr) o->output_offset;
11200 bfd_size_type todo = o->size;
11201
11202 offset *= bfd_octets_per_byte (output_bfd);
11203
11204 if ((o->flags & SEC_ELF_REVERSE_COPY))
11205 {
11206 /* Reverse-copy input section to output. */
11207 do
11208 {
11209 todo -= address_size;
11210 if (! bfd_set_section_contents (output_bfd,
11211 o->output_section,
11212 contents + todo,
11213 offset,
11214 address_size))
11215 return FALSE;
11216 if (todo == 0)
11217 break;
11218 offset += address_size;
11219 }
11220 while (1);
11221 }
11222 else if (! bfd_set_section_contents (output_bfd,
11223 o->output_section,
11224 contents,
11225 offset, todo))
11226 return FALSE;
11227 }
11228 }
11229 break;
11230 }
11231 }
11232
11233 return TRUE;
11234 }
11235
11236 /* Generate a reloc when linking an ELF file. This is a reloc
11237 requested by the linker, and does not come from any input file. This
11238 is used to build constructor and destructor tables when linking
11239 with -Ur. */
11240
11241 static bfd_boolean
11242 elf_reloc_link_order (bfd *output_bfd,
11243 struct bfd_link_info *info,
11244 asection *output_section,
11245 struct bfd_link_order *link_order)
11246 {
11247 reloc_howto_type *howto;
11248 long indx;
11249 bfd_vma offset;
11250 bfd_vma addend;
11251 struct bfd_elf_section_reloc_data *reldata;
11252 struct elf_link_hash_entry **rel_hash_ptr;
11253 Elf_Internal_Shdr *rel_hdr;
11254 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11255 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11256 bfd_byte *erel;
11257 unsigned int i;
11258 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11259
11260 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11261 if (howto == NULL)
11262 {
11263 bfd_set_error (bfd_error_bad_value);
11264 return FALSE;
11265 }
11266
11267 addend = link_order->u.reloc.p->addend;
11268
11269 if (esdo->rel.hdr)
11270 reldata = &esdo->rel;
11271 else if (esdo->rela.hdr)
11272 reldata = &esdo->rela;
11273 else
11274 {
11275 reldata = NULL;
11276 BFD_ASSERT (0);
11277 }
11278
11279 /* Figure out the symbol index. */
11280 rel_hash_ptr = reldata->hashes + reldata->count;
11281 if (link_order->type == bfd_section_reloc_link_order)
11282 {
11283 indx = link_order->u.reloc.p->u.section->target_index;
11284 BFD_ASSERT (indx != 0);
11285 *rel_hash_ptr = NULL;
11286 }
11287 else
11288 {
11289 struct elf_link_hash_entry *h;
11290
11291 /* Treat a reloc against a defined symbol as though it were
11292 actually against the section. */
11293 h = ((struct elf_link_hash_entry *)
11294 bfd_wrapped_link_hash_lookup (output_bfd, info,
11295 link_order->u.reloc.p->u.name,
11296 FALSE, FALSE, TRUE));
11297 if (h != NULL
11298 && (h->root.type == bfd_link_hash_defined
11299 || h->root.type == bfd_link_hash_defweak))
11300 {
11301 asection *section;
11302
11303 section = h->root.u.def.section;
11304 indx = section->output_section->target_index;
11305 *rel_hash_ptr = NULL;
11306 /* It seems that we ought to add the symbol value to the
11307 addend here, but in practice it has already been added
11308 because it was passed to constructor_callback. */
11309 addend += section->output_section->vma + section->output_offset;
11310 }
11311 else if (h != NULL)
11312 {
11313 /* Setting the index to -2 tells elf_link_output_extsym that
11314 this symbol is used by a reloc. */
11315 h->indx = -2;
11316 *rel_hash_ptr = h;
11317 indx = 0;
11318 }
11319 else
11320 {
11321 (*info->callbacks->unattached_reloc)
11322 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11323 indx = 0;
11324 }
11325 }
11326
11327 /* If this is an inplace reloc, we must write the addend into the
11328 object file. */
11329 if (howto->partial_inplace && addend != 0)
11330 {
11331 bfd_size_type size;
11332 bfd_reloc_status_type rstat;
11333 bfd_byte *buf;
11334 bfd_boolean ok;
11335 const char *sym_name;
11336
11337 size = (bfd_size_type) bfd_get_reloc_size (howto);
11338 buf = (bfd_byte *) bfd_zmalloc (size);
11339 if (buf == NULL && size != 0)
11340 return FALSE;
11341 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11342 switch (rstat)
11343 {
11344 case bfd_reloc_ok:
11345 break;
11346
11347 default:
11348 case bfd_reloc_outofrange:
11349 abort ();
11350
11351 case bfd_reloc_overflow:
11352 if (link_order->type == bfd_section_reloc_link_order)
11353 sym_name = bfd_section_name (output_bfd,
11354 link_order->u.reloc.p->u.section);
11355 else
11356 sym_name = link_order->u.reloc.p->u.name;
11357 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11358 howto->name, addend, NULL, NULL,
11359 (bfd_vma) 0);
11360 break;
11361 }
11362
11363 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11364 link_order->offset
11365 * bfd_octets_per_byte (output_bfd),
11366 size);
11367 free (buf);
11368 if (! ok)
11369 return FALSE;
11370 }
11371
11372 /* The address of a reloc is relative to the section in a
11373 relocatable file, and is a virtual address in an executable
11374 file. */
11375 offset = link_order->offset;
11376 if (! bfd_link_relocatable (info))
11377 offset += output_section->vma;
11378
11379 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11380 {
11381 irel[i].r_offset = offset;
11382 irel[i].r_info = 0;
11383 irel[i].r_addend = 0;
11384 }
11385 if (bed->s->arch_size == 32)
11386 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11387 else
11388 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11389
11390 rel_hdr = reldata->hdr;
11391 erel = rel_hdr->contents;
11392 if (rel_hdr->sh_type == SHT_REL)
11393 {
11394 erel += reldata->count * bed->s->sizeof_rel;
11395 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11396 }
11397 else
11398 {
11399 irel[0].r_addend = addend;
11400 erel += reldata->count * bed->s->sizeof_rela;
11401 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11402 }
11403
11404 ++reldata->count;
11405
11406 return TRUE;
11407 }
11408
11409
11410 /* Get the output vma of the section pointed to by the sh_link field. */
11411
11412 static bfd_vma
11413 elf_get_linked_section_vma (struct bfd_link_order *p)
11414 {
11415 Elf_Internal_Shdr **elf_shdrp;
11416 asection *s;
11417 int elfsec;
11418
11419 s = p->u.indirect.section;
11420 elf_shdrp = elf_elfsections (s->owner);
11421 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11422 elfsec = elf_shdrp[elfsec]->sh_link;
11423 /* PR 290:
11424 The Intel C compiler generates SHT_IA_64_UNWIND with
11425 SHF_LINK_ORDER. But it doesn't set the sh_link or
11426 sh_info fields. Hence we could get the situation
11427 where elfsec is 0. */
11428 if (elfsec == 0)
11429 {
11430 const struct elf_backend_data *bed
11431 = get_elf_backend_data (s->owner);
11432 if (bed->link_order_error_handler)
11433 bed->link_order_error_handler
11434 /* xgettext:c-format */
11435 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11436 return 0;
11437 }
11438 else
11439 {
11440 s = elf_shdrp[elfsec]->bfd_section;
11441 return s->output_section->vma + s->output_offset;
11442 }
11443 }
11444
11445
11446 /* Compare two sections based on the locations of the sections they are
11447 linked to. Used by elf_fixup_link_order. */
11448
11449 static int
11450 compare_link_order (const void * a, const void * b)
11451 {
11452 bfd_vma apos;
11453 bfd_vma bpos;
11454
11455 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11456 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11457 if (apos < bpos)
11458 return -1;
11459 return apos > bpos;
11460 }
11461
11462
11463 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11464 order as their linked sections. Returns false if this could not be done
11465 because an output section includes both ordered and unordered
11466 sections. Ideally we'd do this in the linker proper. */
11467
11468 static bfd_boolean
11469 elf_fixup_link_order (bfd *abfd, asection *o)
11470 {
11471 int seen_linkorder;
11472 int seen_other;
11473 int n;
11474 struct bfd_link_order *p;
11475 bfd *sub;
11476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11477 unsigned elfsec;
11478 struct bfd_link_order **sections;
11479 asection *s, *other_sec, *linkorder_sec;
11480 bfd_vma offset;
11481
11482 other_sec = NULL;
11483 linkorder_sec = NULL;
11484 seen_other = 0;
11485 seen_linkorder = 0;
11486 for (p = o->map_head.link_order; p != NULL; p = p->next)
11487 {
11488 if (p->type == bfd_indirect_link_order)
11489 {
11490 s = p->u.indirect.section;
11491 sub = s->owner;
11492 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11493 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11494 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11495 && elfsec < elf_numsections (sub)
11496 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11497 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11498 {
11499 seen_linkorder++;
11500 linkorder_sec = s;
11501 }
11502 else
11503 {
11504 seen_other++;
11505 other_sec = s;
11506 }
11507 }
11508 else
11509 seen_other++;
11510
11511 if (seen_other && seen_linkorder)
11512 {
11513 if (other_sec && linkorder_sec)
11514 _bfd_error_handler
11515 /* xgettext:c-format */
11516 (_("%pA has both ordered [`%pA' in %pB] "
11517 "and unordered [`%pA' in %pB] sections"),
11518 o, linkorder_sec, linkorder_sec->owner,
11519 other_sec, other_sec->owner);
11520 else
11521 _bfd_error_handler
11522 (_("%pA has both ordered and unordered sections"), o);
11523 bfd_set_error (bfd_error_bad_value);
11524 return FALSE;
11525 }
11526 }
11527
11528 if (!seen_linkorder)
11529 return TRUE;
11530
11531 sections = (struct bfd_link_order **)
11532 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11533 if (sections == NULL)
11534 return FALSE;
11535 seen_linkorder = 0;
11536
11537 for (p = o->map_head.link_order; p != NULL; p = p->next)
11538 {
11539 sections[seen_linkorder++] = p;
11540 }
11541 /* Sort the input sections in the order of their linked section. */
11542 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11543 compare_link_order);
11544
11545 /* Change the offsets of the sections. */
11546 offset = 0;
11547 for (n = 0; n < seen_linkorder; n++)
11548 {
11549 s = sections[n]->u.indirect.section;
11550 offset &= ~(bfd_vma) 0 << s->alignment_power;
11551 s->output_offset = offset / bfd_octets_per_byte (abfd);
11552 sections[n]->offset = offset;
11553 offset += sections[n]->size;
11554 }
11555
11556 free (sections);
11557 return TRUE;
11558 }
11559
11560 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11561 Returns TRUE upon success, FALSE otherwise. */
11562
11563 static bfd_boolean
11564 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11565 {
11566 bfd_boolean ret = FALSE;
11567 bfd *implib_bfd;
11568 const struct elf_backend_data *bed;
11569 flagword flags;
11570 enum bfd_architecture arch;
11571 unsigned int mach;
11572 asymbol **sympp = NULL;
11573 long symsize;
11574 long symcount;
11575 long src_count;
11576 elf_symbol_type *osymbuf;
11577
11578 implib_bfd = info->out_implib_bfd;
11579 bed = get_elf_backend_data (abfd);
11580
11581 if (!bfd_set_format (implib_bfd, bfd_object))
11582 return FALSE;
11583
11584 /* Use flag from executable but make it a relocatable object. */
11585 flags = bfd_get_file_flags (abfd);
11586 flags &= ~HAS_RELOC;
11587 if (!bfd_set_start_address (implib_bfd, 0)
11588 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11589 return FALSE;
11590
11591 /* Copy architecture of output file to import library file. */
11592 arch = bfd_get_arch (abfd);
11593 mach = bfd_get_mach (abfd);
11594 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11595 && (abfd->target_defaulted
11596 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11597 return FALSE;
11598
11599 /* Get symbol table size. */
11600 symsize = bfd_get_symtab_upper_bound (abfd);
11601 if (symsize < 0)
11602 return FALSE;
11603
11604 /* Read in the symbol table. */
11605 sympp = (asymbol **) xmalloc (symsize);
11606 symcount = bfd_canonicalize_symtab (abfd, sympp);
11607 if (symcount < 0)
11608 goto free_sym_buf;
11609
11610 /* Allow the BFD backend to copy any private header data it
11611 understands from the output BFD to the import library BFD. */
11612 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11613 goto free_sym_buf;
11614
11615 /* Filter symbols to appear in the import library. */
11616 if (bed->elf_backend_filter_implib_symbols)
11617 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11618 symcount);
11619 else
11620 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11621 if (symcount == 0)
11622 {
11623 bfd_set_error (bfd_error_no_symbols);
11624 _bfd_error_handler (_("%pB: no symbol found for import library"),
11625 implib_bfd);
11626 goto free_sym_buf;
11627 }
11628
11629
11630 /* Make symbols absolute. */
11631 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11632 sizeof (*osymbuf));
11633 for (src_count = 0; src_count < symcount; src_count++)
11634 {
11635 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11636 sizeof (*osymbuf));
11637 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11638 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11639 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11640 osymbuf[src_count].internal_elf_sym.st_value =
11641 osymbuf[src_count].symbol.value;
11642 sympp[src_count] = &osymbuf[src_count].symbol;
11643 }
11644
11645 bfd_set_symtab (implib_bfd, sympp, symcount);
11646
11647 /* Allow the BFD backend to copy any private data it understands
11648 from the output BFD to the import library BFD. This is done last
11649 to permit the routine to look at the filtered symbol table. */
11650 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11651 goto free_sym_buf;
11652
11653 if (!bfd_close (implib_bfd))
11654 goto free_sym_buf;
11655
11656 ret = TRUE;
11657
11658 free_sym_buf:
11659 free (sympp);
11660 return ret;
11661 }
11662
11663 static void
11664 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11665 {
11666 asection *o;
11667
11668 if (flinfo->symstrtab != NULL)
11669 _bfd_elf_strtab_free (flinfo->symstrtab);
11670 if (flinfo->contents != NULL)
11671 free (flinfo->contents);
11672 if (flinfo->external_relocs != NULL)
11673 free (flinfo->external_relocs);
11674 if (flinfo->internal_relocs != NULL)
11675 free (flinfo->internal_relocs);
11676 if (flinfo->external_syms != NULL)
11677 free (flinfo->external_syms);
11678 if (flinfo->locsym_shndx != NULL)
11679 free (flinfo->locsym_shndx);
11680 if (flinfo->internal_syms != NULL)
11681 free (flinfo->internal_syms);
11682 if (flinfo->indices != NULL)
11683 free (flinfo->indices);
11684 if (flinfo->sections != NULL)
11685 free (flinfo->sections);
11686 if (flinfo->symshndxbuf != NULL
11687 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11688 free (flinfo->symshndxbuf);
11689 for (o = obfd->sections; o != NULL; o = o->next)
11690 {
11691 struct bfd_elf_section_data *esdo = elf_section_data (o);
11692 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11693 free (esdo->rel.hashes);
11694 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11695 free (esdo->rela.hashes);
11696 }
11697 }
11698
11699 /* Do the final step of an ELF link. */
11700
11701 bfd_boolean
11702 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11703 {
11704 bfd_boolean dynamic;
11705 bfd_boolean emit_relocs;
11706 bfd *dynobj;
11707 struct elf_final_link_info flinfo;
11708 asection *o;
11709 struct bfd_link_order *p;
11710 bfd *sub;
11711 bfd_size_type max_contents_size;
11712 bfd_size_type max_external_reloc_size;
11713 bfd_size_type max_internal_reloc_count;
11714 bfd_size_type max_sym_count;
11715 bfd_size_type max_sym_shndx_count;
11716 Elf_Internal_Sym elfsym;
11717 unsigned int i;
11718 Elf_Internal_Shdr *symtab_hdr;
11719 Elf_Internal_Shdr *symtab_shndx_hdr;
11720 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11721 struct elf_outext_info eoinfo;
11722 bfd_boolean merged;
11723 size_t relativecount = 0;
11724 asection *reldyn = 0;
11725 bfd_size_type amt;
11726 asection *attr_section = NULL;
11727 bfd_vma attr_size = 0;
11728 const char *std_attrs_section;
11729 struct elf_link_hash_table *htab = elf_hash_table (info);
11730
11731 if (!is_elf_hash_table (htab))
11732 return FALSE;
11733
11734 if (bfd_link_pic (info))
11735 abfd->flags |= DYNAMIC;
11736
11737 dynamic = htab->dynamic_sections_created;
11738 dynobj = htab->dynobj;
11739
11740 emit_relocs = (bfd_link_relocatable (info)
11741 || info->emitrelocations);
11742
11743 flinfo.info = info;
11744 flinfo.output_bfd = abfd;
11745 flinfo.symstrtab = _bfd_elf_strtab_init ();
11746 if (flinfo.symstrtab == NULL)
11747 return FALSE;
11748
11749 if (! dynamic)
11750 {
11751 flinfo.hash_sec = NULL;
11752 flinfo.symver_sec = NULL;
11753 }
11754 else
11755 {
11756 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11757 /* Note that dynsym_sec can be NULL (on VMS). */
11758 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11759 /* Note that it is OK if symver_sec is NULL. */
11760 }
11761
11762 flinfo.contents = NULL;
11763 flinfo.external_relocs = NULL;
11764 flinfo.internal_relocs = NULL;
11765 flinfo.external_syms = NULL;
11766 flinfo.locsym_shndx = NULL;
11767 flinfo.internal_syms = NULL;
11768 flinfo.indices = NULL;
11769 flinfo.sections = NULL;
11770 flinfo.symshndxbuf = NULL;
11771 flinfo.filesym_count = 0;
11772
11773 /* The object attributes have been merged. Remove the input
11774 sections from the link, and set the contents of the output
11775 secton. */
11776 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11777 for (o = abfd->sections; o != NULL; o = o->next)
11778 {
11779 bfd_boolean remove_section = FALSE;
11780
11781 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11782 || strcmp (o->name, ".gnu.attributes") == 0)
11783 {
11784 for (p = o->map_head.link_order; p != NULL; p = p->next)
11785 {
11786 asection *input_section;
11787
11788 if (p->type != bfd_indirect_link_order)
11789 continue;
11790 input_section = p->u.indirect.section;
11791 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11792 elf_link_input_bfd ignores this section. */
11793 input_section->flags &= ~SEC_HAS_CONTENTS;
11794 }
11795
11796 attr_size = bfd_elf_obj_attr_size (abfd);
11797 bfd_set_section_size (abfd, o, attr_size);
11798 /* Skip this section later on. */
11799 o->map_head.link_order = NULL;
11800 if (attr_size)
11801 attr_section = o;
11802 else
11803 remove_section = TRUE;
11804 }
11805 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11806 {
11807 /* Remove empty group section from linker output. */
11808 remove_section = TRUE;
11809 }
11810 if (remove_section)
11811 {
11812 o->flags |= SEC_EXCLUDE;
11813 bfd_section_list_remove (abfd, o);
11814 abfd->section_count--;
11815 }
11816 }
11817
11818 /* Count up the number of relocations we will output for each output
11819 section, so that we know the sizes of the reloc sections. We
11820 also figure out some maximum sizes. */
11821 max_contents_size = 0;
11822 max_external_reloc_size = 0;
11823 max_internal_reloc_count = 0;
11824 max_sym_count = 0;
11825 max_sym_shndx_count = 0;
11826 merged = FALSE;
11827 for (o = abfd->sections; o != NULL; o = o->next)
11828 {
11829 struct bfd_elf_section_data *esdo = elf_section_data (o);
11830 o->reloc_count = 0;
11831
11832 for (p = o->map_head.link_order; p != NULL; p = p->next)
11833 {
11834 unsigned int reloc_count = 0;
11835 unsigned int additional_reloc_count = 0;
11836 struct bfd_elf_section_data *esdi = NULL;
11837
11838 if (p->type == bfd_section_reloc_link_order
11839 || p->type == bfd_symbol_reloc_link_order)
11840 reloc_count = 1;
11841 else if (p->type == bfd_indirect_link_order)
11842 {
11843 asection *sec;
11844
11845 sec = p->u.indirect.section;
11846
11847 /* Mark all sections which are to be included in the
11848 link. This will normally be every section. We need
11849 to do this so that we can identify any sections which
11850 the linker has decided to not include. */
11851 sec->linker_mark = TRUE;
11852
11853 if (sec->flags & SEC_MERGE)
11854 merged = TRUE;
11855
11856 if (sec->rawsize > max_contents_size)
11857 max_contents_size = sec->rawsize;
11858 if (sec->size > max_contents_size)
11859 max_contents_size = sec->size;
11860
11861 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11862 && (sec->owner->flags & DYNAMIC) == 0)
11863 {
11864 size_t sym_count;
11865
11866 /* We are interested in just local symbols, not all
11867 symbols. */
11868 if (elf_bad_symtab (sec->owner))
11869 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11870 / bed->s->sizeof_sym);
11871 else
11872 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11873
11874 if (sym_count > max_sym_count)
11875 max_sym_count = sym_count;
11876
11877 if (sym_count > max_sym_shndx_count
11878 && elf_symtab_shndx_list (sec->owner) != NULL)
11879 max_sym_shndx_count = sym_count;
11880
11881 if (esdo->this_hdr.sh_type == SHT_REL
11882 || esdo->this_hdr.sh_type == SHT_RELA)
11883 /* Some backends use reloc_count in relocation sections
11884 to count particular types of relocs. Of course,
11885 reloc sections themselves can't have relocations. */
11886 ;
11887 else if (emit_relocs)
11888 {
11889 reloc_count = sec->reloc_count;
11890 if (bed->elf_backend_count_additional_relocs)
11891 {
11892 int c;
11893 c = (*bed->elf_backend_count_additional_relocs) (sec);
11894 additional_reloc_count += c;
11895 }
11896 }
11897 else if (bed->elf_backend_count_relocs)
11898 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11899
11900 esdi = elf_section_data (sec);
11901
11902 if ((sec->flags & SEC_RELOC) != 0)
11903 {
11904 size_t ext_size = 0;
11905
11906 if (esdi->rel.hdr != NULL)
11907 ext_size = esdi->rel.hdr->sh_size;
11908 if (esdi->rela.hdr != NULL)
11909 ext_size += esdi->rela.hdr->sh_size;
11910
11911 if (ext_size > max_external_reloc_size)
11912 max_external_reloc_size = ext_size;
11913 if (sec->reloc_count > max_internal_reloc_count)
11914 max_internal_reloc_count = sec->reloc_count;
11915 }
11916 }
11917 }
11918
11919 if (reloc_count == 0)
11920 continue;
11921
11922 reloc_count += additional_reloc_count;
11923 o->reloc_count += reloc_count;
11924
11925 if (p->type == bfd_indirect_link_order && emit_relocs)
11926 {
11927 if (esdi->rel.hdr)
11928 {
11929 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11930 esdo->rel.count += additional_reloc_count;
11931 }
11932 if (esdi->rela.hdr)
11933 {
11934 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11935 esdo->rela.count += additional_reloc_count;
11936 }
11937 }
11938 else
11939 {
11940 if (o->use_rela_p)
11941 esdo->rela.count += reloc_count;
11942 else
11943 esdo->rel.count += reloc_count;
11944 }
11945 }
11946
11947 if (o->reloc_count > 0)
11948 o->flags |= SEC_RELOC;
11949 else
11950 {
11951 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11952 set it (this is probably a bug) and if it is set
11953 assign_section_numbers will create a reloc section. */
11954 o->flags &=~ SEC_RELOC;
11955 }
11956
11957 /* If the SEC_ALLOC flag is not set, force the section VMA to
11958 zero. This is done in elf_fake_sections as well, but forcing
11959 the VMA to 0 here will ensure that relocs against these
11960 sections are handled correctly. */
11961 if ((o->flags & SEC_ALLOC) == 0
11962 && ! o->user_set_vma)
11963 o->vma = 0;
11964 }
11965
11966 if (! bfd_link_relocatable (info) && merged)
11967 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11968
11969 /* Figure out the file positions for everything but the symbol table
11970 and the relocs. We set symcount to force assign_section_numbers
11971 to create a symbol table. */
11972 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11973 BFD_ASSERT (! abfd->output_has_begun);
11974 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11975 goto error_return;
11976
11977 /* Set sizes, and assign file positions for reloc sections. */
11978 for (o = abfd->sections; o != NULL; o = o->next)
11979 {
11980 struct bfd_elf_section_data *esdo = elf_section_data (o);
11981 if ((o->flags & SEC_RELOC) != 0)
11982 {
11983 if (esdo->rel.hdr
11984 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11985 goto error_return;
11986
11987 if (esdo->rela.hdr
11988 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11989 goto error_return;
11990 }
11991
11992 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11993 to count upwards while actually outputting the relocations. */
11994 esdo->rel.count = 0;
11995 esdo->rela.count = 0;
11996
11997 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11998 {
11999 /* Cache the section contents so that they can be compressed
12000 later. Use bfd_malloc since it will be freed by
12001 bfd_compress_section_contents. */
12002 unsigned char *contents = esdo->this_hdr.contents;
12003 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12004 abort ();
12005 contents
12006 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12007 if (contents == NULL)
12008 goto error_return;
12009 esdo->this_hdr.contents = contents;
12010 }
12011 }
12012
12013 /* We have now assigned file positions for all the sections except
12014 .symtab, .strtab, and non-loaded reloc sections. We start the
12015 .symtab section at the current file position, and write directly
12016 to it. We build the .strtab section in memory. */
12017 bfd_get_symcount (abfd) = 0;
12018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12019 /* sh_name is set in prep_headers. */
12020 symtab_hdr->sh_type = SHT_SYMTAB;
12021 /* sh_flags, sh_addr and sh_size all start off zero. */
12022 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12023 /* sh_link is set in assign_section_numbers. */
12024 /* sh_info is set below. */
12025 /* sh_offset is set just below. */
12026 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12027
12028 if (max_sym_count < 20)
12029 max_sym_count = 20;
12030 htab->strtabsize = max_sym_count;
12031 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12032 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12033 if (htab->strtab == NULL)
12034 goto error_return;
12035 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12036 flinfo.symshndxbuf
12037 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12038 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12039
12040 if (info->strip != strip_all || emit_relocs)
12041 {
12042 file_ptr off = elf_next_file_pos (abfd);
12043
12044 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12045
12046 /* Note that at this point elf_next_file_pos (abfd) is
12047 incorrect. We do not yet know the size of the .symtab section.
12048 We correct next_file_pos below, after we do know the size. */
12049
12050 /* Start writing out the symbol table. The first symbol is always a
12051 dummy symbol. */
12052 elfsym.st_value = 0;
12053 elfsym.st_size = 0;
12054 elfsym.st_info = 0;
12055 elfsym.st_other = 0;
12056 elfsym.st_shndx = SHN_UNDEF;
12057 elfsym.st_target_internal = 0;
12058 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12059 bfd_und_section_ptr, NULL) != 1)
12060 goto error_return;
12061
12062 /* Output a symbol for each section. We output these even if we are
12063 discarding local symbols, since they are used for relocs. These
12064 symbols have no names. We store the index of each one in the
12065 index field of the section, so that we can find it again when
12066 outputting relocs. */
12067
12068 elfsym.st_size = 0;
12069 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12070 elfsym.st_other = 0;
12071 elfsym.st_value = 0;
12072 elfsym.st_target_internal = 0;
12073 for (i = 1; i < elf_numsections (abfd); i++)
12074 {
12075 o = bfd_section_from_elf_index (abfd, i);
12076 if (o != NULL)
12077 {
12078 o->target_index = bfd_get_symcount (abfd);
12079 elfsym.st_shndx = i;
12080 if (!bfd_link_relocatable (info))
12081 elfsym.st_value = o->vma;
12082 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12083 NULL) != 1)
12084 goto error_return;
12085 }
12086 }
12087 }
12088
12089 /* Allocate some memory to hold information read in from the input
12090 files. */
12091 if (max_contents_size != 0)
12092 {
12093 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12094 if (flinfo.contents == NULL)
12095 goto error_return;
12096 }
12097
12098 if (max_external_reloc_size != 0)
12099 {
12100 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12101 if (flinfo.external_relocs == NULL)
12102 goto error_return;
12103 }
12104
12105 if (max_internal_reloc_count != 0)
12106 {
12107 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12108 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12109 if (flinfo.internal_relocs == NULL)
12110 goto error_return;
12111 }
12112
12113 if (max_sym_count != 0)
12114 {
12115 amt = max_sym_count * bed->s->sizeof_sym;
12116 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12117 if (flinfo.external_syms == NULL)
12118 goto error_return;
12119
12120 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12121 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12122 if (flinfo.internal_syms == NULL)
12123 goto error_return;
12124
12125 amt = max_sym_count * sizeof (long);
12126 flinfo.indices = (long int *) bfd_malloc (amt);
12127 if (flinfo.indices == NULL)
12128 goto error_return;
12129
12130 amt = max_sym_count * sizeof (asection *);
12131 flinfo.sections = (asection **) bfd_malloc (amt);
12132 if (flinfo.sections == NULL)
12133 goto error_return;
12134 }
12135
12136 if (max_sym_shndx_count != 0)
12137 {
12138 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12139 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12140 if (flinfo.locsym_shndx == NULL)
12141 goto error_return;
12142 }
12143
12144 if (htab->tls_sec)
12145 {
12146 bfd_vma base, end = 0;
12147 asection *sec;
12148
12149 for (sec = htab->tls_sec;
12150 sec && (sec->flags & SEC_THREAD_LOCAL);
12151 sec = sec->next)
12152 {
12153 bfd_size_type size = sec->size;
12154
12155 if (size == 0
12156 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12157 {
12158 struct bfd_link_order *ord = sec->map_tail.link_order;
12159
12160 if (ord != NULL)
12161 size = ord->offset + ord->size;
12162 }
12163 end = sec->vma + size;
12164 }
12165 base = htab->tls_sec->vma;
12166 /* Only align end of TLS section if static TLS doesn't have special
12167 alignment requirements. */
12168 if (bed->static_tls_alignment == 1)
12169 end = align_power (end, htab->tls_sec->alignment_power);
12170 htab->tls_size = end - base;
12171 }
12172
12173 /* Reorder SHF_LINK_ORDER sections. */
12174 for (o = abfd->sections; o != NULL; o = o->next)
12175 {
12176 if (!elf_fixup_link_order (abfd, o))
12177 return FALSE;
12178 }
12179
12180 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12181 return FALSE;
12182
12183 /* Since ELF permits relocations to be against local symbols, we
12184 must have the local symbols available when we do the relocations.
12185 Since we would rather only read the local symbols once, and we
12186 would rather not keep them in memory, we handle all the
12187 relocations for a single input file at the same time.
12188
12189 Unfortunately, there is no way to know the total number of local
12190 symbols until we have seen all of them, and the local symbol
12191 indices precede the global symbol indices. This means that when
12192 we are generating relocatable output, and we see a reloc against
12193 a global symbol, we can not know the symbol index until we have
12194 finished examining all the local symbols to see which ones we are
12195 going to output. To deal with this, we keep the relocations in
12196 memory, and don't output them until the end of the link. This is
12197 an unfortunate waste of memory, but I don't see a good way around
12198 it. Fortunately, it only happens when performing a relocatable
12199 link, which is not the common case. FIXME: If keep_memory is set
12200 we could write the relocs out and then read them again; I don't
12201 know how bad the memory loss will be. */
12202
12203 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12204 sub->output_has_begun = FALSE;
12205 for (o = abfd->sections; o != NULL; o = o->next)
12206 {
12207 for (p = o->map_head.link_order; p != NULL; p = p->next)
12208 {
12209 if (p->type == bfd_indirect_link_order
12210 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12211 == bfd_target_elf_flavour)
12212 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12213 {
12214 if (! sub->output_has_begun)
12215 {
12216 if (! elf_link_input_bfd (&flinfo, sub))
12217 goto error_return;
12218 sub->output_has_begun = TRUE;
12219 }
12220 }
12221 else if (p->type == bfd_section_reloc_link_order
12222 || p->type == bfd_symbol_reloc_link_order)
12223 {
12224 if (! elf_reloc_link_order (abfd, info, o, p))
12225 goto error_return;
12226 }
12227 else
12228 {
12229 if (! _bfd_default_link_order (abfd, info, o, p))
12230 {
12231 if (p->type == bfd_indirect_link_order
12232 && (bfd_get_flavour (sub)
12233 == bfd_target_elf_flavour)
12234 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12235 != bed->s->elfclass))
12236 {
12237 const char *iclass, *oclass;
12238
12239 switch (bed->s->elfclass)
12240 {
12241 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12242 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12243 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12244 default: abort ();
12245 }
12246
12247 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12248 {
12249 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12250 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12251 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12252 default: abort ();
12253 }
12254
12255 bfd_set_error (bfd_error_wrong_format);
12256 _bfd_error_handler
12257 /* xgettext:c-format */
12258 (_("%pB: file class %s incompatible with %s"),
12259 sub, iclass, oclass);
12260 }
12261
12262 goto error_return;
12263 }
12264 }
12265 }
12266 }
12267
12268 /* Free symbol buffer if needed. */
12269 if (!info->reduce_memory_overheads)
12270 {
12271 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12272 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12273 && elf_tdata (sub)->symbuf)
12274 {
12275 free (elf_tdata (sub)->symbuf);
12276 elf_tdata (sub)->symbuf = NULL;
12277 }
12278 }
12279
12280 /* Output any global symbols that got converted to local in a
12281 version script or due to symbol visibility. We do this in a
12282 separate step since ELF requires all local symbols to appear
12283 prior to any global symbols. FIXME: We should only do this if
12284 some global symbols were, in fact, converted to become local.
12285 FIXME: Will this work correctly with the Irix 5 linker? */
12286 eoinfo.failed = FALSE;
12287 eoinfo.flinfo = &flinfo;
12288 eoinfo.localsyms = TRUE;
12289 eoinfo.file_sym_done = FALSE;
12290 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12291 if (eoinfo.failed)
12292 return FALSE;
12293
12294 /* If backend needs to output some local symbols not present in the hash
12295 table, do it now. */
12296 if (bed->elf_backend_output_arch_local_syms
12297 && (info->strip != strip_all || emit_relocs))
12298 {
12299 typedef int (*out_sym_func)
12300 (void *, const char *, Elf_Internal_Sym *, asection *,
12301 struct elf_link_hash_entry *);
12302
12303 if (! ((*bed->elf_backend_output_arch_local_syms)
12304 (abfd, info, &flinfo,
12305 (out_sym_func) elf_link_output_symstrtab)))
12306 return FALSE;
12307 }
12308
12309 /* That wrote out all the local symbols. Finish up the symbol table
12310 with the global symbols. Even if we want to strip everything we
12311 can, we still need to deal with those global symbols that got
12312 converted to local in a version script. */
12313
12314 /* The sh_info field records the index of the first non local symbol. */
12315 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12316
12317 if (dynamic
12318 && htab->dynsym != NULL
12319 && htab->dynsym->output_section != bfd_abs_section_ptr)
12320 {
12321 Elf_Internal_Sym sym;
12322 bfd_byte *dynsym = htab->dynsym->contents;
12323
12324 o = htab->dynsym->output_section;
12325 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12326
12327 /* Write out the section symbols for the output sections. */
12328 if (bfd_link_pic (info)
12329 || htab->is_relocatable_executable)
12330 {
12331 asection *s;
12332
12333 sym.st_size = 0;
12334 sym.st_name = 0;
12335 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12336 sym.st_other = 0;
12337 sym.st_target_internal = 0;
12338
12339 for (s = abfd->sections; s != NULL; s = s->next)
12340 {
12341 int indx;
12342 bfd_byte *dest;
12343 long dynindx;
12344
12345 dynindx = elf_section_data (s)->dynindx;
12346 if (dynindx <= 0)
12347 continue;
12348 indx = elf_section_data (s)->this_idx;
12349 BFD_ASSERT (indx > 0);
12350 sym.st_shndx = indx;
12351 if (! check_dynsym (abfd, &sym))
12352 return FALSE;
12353 sym.st_value = s->vma;
12354 dest = dynsym + dynindx * bed->s->sizeof_sym;
12355 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12356 }
12357 }
12358
12359 /* Write out the local dynsyms. */
12360 if (htab->dynlocal)
12361 {
12362 struct elf_link_local_dynamic_entry *e;
12363 for (e = htab->dynlocal; e ; e = e->next)
12364 {
12365 asection *s;
12366 bfd_byte *dest;
12367
12368 /* Copy the internal symbol and turn off visibility.
12369 Note that we saved a word of storage and overwrote
12370 the original st_name with the dynstr_index. */
12371 sym = e->isym;
12372 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12373
12374 s = bfd_section_from_elf_index (e->input_bfd,
12375 e->isym.st_shndx);
12376 if (s != NULL)
12377 {
12378 sym.st_shndx =
12379 elf_section_data (s->output_section)->this_idx;
12380 if (! check_dynsym (abfd, &sym))
12381 return FALSE;
12382 sym.st_value = (s->output_section->vma
12383 + s->output_offset
12384 + e->isym.st_value);
12385 }
12386
12387 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12388 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12389 }
12390 }
12391 }
12392
12393 /* We get the global symbols from the hash table. */
12394 eoinfo.failed = FALSE;
12395 eoinfo.localsyms = FALSE;
12396 eoinfo.flinfo = &flinfo;
12397 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12398 if (eoinfo.failed)
12399 return FALSE;
12400
12401 /* If backend needs to output some symbols not present in the hash
12402 table, do it now. */
12403 if (bed->elf_backend_output_arch_syms
12404 && (info->strip != strip_all || emit_relocs))
12405 {
12406 typedef int (*out_sym_func)
12407 (void *, const char *, Elf_Internal_Sym *, asection *,
12408 struct elf_link_hash_entry *);
12409
12410 if (! ((*bed->elf_backend_output_arch_syms)
12411 (abfd, info, &flinfo,
12412 (out_sym_func) elf_link_output_symstrtab)))
12413 return FALSE;
12414 }
12415
12416 /* Finalize the .strtab section. */
12417 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12418
12419 /* Swap out the .strtab section. */
12420 if (!elf_link_swap_symbols_out (&flinfo))
12421 return FALSE;
12422
12423 /* Now we know the size of the symtab section. */
12424 if (bfd_get_symcount (abfd) > 0)
12425 {
12426 /* Finish up and write out the symbol string table (.strtab)
12427 section. */
12428 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12429 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12430
12431 if (elf_symtab_shndx_list (abfd))
12432 {
12433 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12434
12435 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12436 {
12437 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12438 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12439 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12440 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12441 symtab_shndx_hdr->sh_size = amt;
12442
12443 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12444 off, TRUE);
12445
12446 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12447 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12448 return FALSE;
12449 }
12450 }
12451
12452 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12453 /* sh_name was set in prep_headers. */
12454 symstrtab_hdr->sh_type = SHT_STRTAB;
12455 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12456 symstrtab_hdr->sh_addr = 0;
12457 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12458 symstrtab_hdr->sh_entsize = 0;
12459 symstrtab_hdr->sh_link = 0;
12460 symstrtab_hdr->sh_info = 0;
12461 /* sh_offset is set just below. */
12462 symstrtab_hdr->sh_addralign = 1;
12463
12464 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12465 off, TRUE);
12466 elf_next_file_pos (abfd) = off;
12467
12468 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12469 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12470 return FALSE;
12471 }
12472
12473 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12474 {
12475 _bfd_error_handler (_("%pB: failed to generate import library"),
12476 info->out_implib_bfd);
12477 return FALSE;
12478 }
12479
12480 /* Adjust the relocs to have the correct symbol indices. */
12481 for (o = abfd->sections; o != NULL; o = o->next)
12482 {
12483 struct bfd_elf_section_data *esdo = elf_section_data (o);
12484 bfd_boolean sort;
12485
12486 if ((o->flags & SEC_RELOC) == 0)
12487 continue;
12488
12489 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12490 if (esdo->rel.hdr != NULL
12491 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12492 return FALSE;
12493 if (esdo->rela.hdr != NULL
12494 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12495 return FALSE;
12496
12497 /* Set the reloc_count field to 0 to prevent write_relocs from
12498 trying to swap the relocs out itself. */
12499 o->reloc_count = 0;
12500 }
12501
12502 if (dynamic && info->combreloc && dynobj != NULL)
12503 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12504
12505 /* If we are linking against a dynamic object, or generating a
12506 shared library, finish up the dynamic linking information. */
12507 if (dynamic)
12508 {
12509 bfd_byte *dyncon, *dynconend;
12510
12511 /* Fix up .dynamic entries. */
12512 o = bfd_get_linker_section (dynobj, ".dynamic");
12513 BFD_ASSERT (o != NULL);
12514
12515 dyncon = o->contents;
12516 dynconend = o->contents + o->size;
12517 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12518 {
12519 Elf_Internal_Dyn dyn;
12520 const char *name;
12521 unsigned int type;
12522 bfd_size_type sh_size;
12523 bfd_vma sh_addr;
12524
12525 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12526
12527 switch (dyn.d_tag)
12528 {
12529 default:
12530 continue;
12531 case DT_NULL:
12532 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12533 {
12534 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12535 {
12536 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12537 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12538 default: continue;
12539 }
12540 dyn.d_un.d_val = relativecount;
12541 relativecount = 0;
12542 break;
12543 }
12544 continue;
12545
12546 case DT_INIT:
12547 name = info->init_function;
12548 goto get_sym;
12549 case DT_FINI:
12550 name = info->fini_function;
12551 get_sym:
12552 {
12553 struct elf_link_hash_entry *h;
12554
12555 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12556 if (h != NULL
12557 && (h->root.type == bfd_link_hash_defined
12558 || h->root.type == bfd_link_hash_defweak))
12559 {
12560 dyn.d_un.d_ptr = h->root.u.def.value;
12561 o = h->root.u.def.section;
12562 if (o->output_section != NULL)
12563 dyn.d_un.d_ptr += (o->output_section->vma
12564 + o->output_offset);
12565 else
12566 {
12567 /* The symbol is imported from another shared
12568 library and does not apply to this one. */
12569 dyn.d_un.d_ptr = 0;
12570 }
12571 break;
12572 }
12573 }
12574 continue;
12575
12576 case DT_PREINIT_ARRAYSZ:
12577 name = ".preinit_array";
12578 goto get_out_size;
12579 case DT_INIT_ARRAYSZ:
12580 name = ".init_array";
12581 goto get_out_size;
12582 case DT_FINI_ARRAYSZ:
12583 name = ".fini_array";
12584 get_out_size:
12585 o = bfd_get_section_by_name (abfd, name);
12586 if (o == NULL)
12587 {
12588 _bfd_error_handler
12589 (_("could not find section %s"), name);
12590 goto error_return;
12591 }
12592 if (o->size == 0)
12593 _bfd_error_handler
12594 (_("warning: %s section has zero size"), name);
12595 dyn.d_un.d_val = o->size;
12596 break;
12597
12598 case DT_PREINIT_ARRAY:
12599 name = ".preinit_array";
12600 goto get_out_vma;
12601 case DT_INIT_ARRAY:
12602 name = ".init_array";
12603 goto get_out_vma;
12604 case DT_FINI_ARRAY:
12605 name = ".fini_array";
12606 get_out_vma:
12607 o = bfd_get_section_by_name (abfd, name);
12608 goto do_vma;
12609
12610 case DT_HASH:
12611 name = ".hash";
12612 goto get_vma;
12613 case DT_GNU_HASH:
12614 name = ".gnu.hash";
12615 goto get_vma;
12616 case DT_STRTAB:
12617 name = ".dynstr";
12618 goto get_vma;
12619 case DT_SYMTAB:
12620 name = ".dynsym";
12621 goto get_vma;
12622 case DT_VERDEF:
12623 name = ".gnu.version_d";
12624 goto get_vma;
12625 case DT_VERNEED:
12626 name = ".gnu.version_r";
12627 goto get_vma;
12628 case DT_VERSYM:
12629 name = ".gnu.version";
12630 get_vma:
12631 o = bfd_get_linker_section (dynobj, name);
12632 do_vma:
12633 if (o == NULL || bfd_is_abs_section (o->output_section))
12634 {
12635 _bfd_error_handler
12636 (_("could not find section %s"), name);
12637 goto error_return;
12638 }
12639 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12640 {
12641 _bfd_error_handler
12642 (_("warning: section '%s' is being made into a note"), name);
12643 bfd_set_error (bfd_error_nonrepresentable_section);
12644 goto error_return;
12645 }
12646 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12647 break;
12648
12649 case DT_REL:
12650 case DT_RELA:
12651 case DT_RELSZ:
12652 case DT_RELASZ:
12653 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12654 type = SHT_REL;
12655 else
12656 type = SHT_RELA;
12657 sh_size = 0;
12658 sh_addr = 0;
12659 for (i = 1; i < elf_numsections (abfd); i++)
12660 {
12661 Elf_Internal_Shdr *hdr;
12662
12663 hdr = elf_elfsections (abfd)[i];
12664 if (hdr->sh_type == type
12665 && (hdr->sh_flags & SHF_ALLOC) != 0)
12666 {
12667 sh_size += hdr->sh_size;
12668 if (sh_addr == 0
12669 || sh_addr > hdr->sh_addr)
12670 sh_addr = hdr->sh_addr;
12671 }
12672 }
12673
12674 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12675 {
12676 /* Don't count procedure linkage table relocs in the
12677 overall reloc count. */
12678 sh_size -= htab->srelplt->size;
12679 if (sh_size == 0)
12680 /* If the size is zero, make the address zero too.
12681 This is to avoid a glibc bug. If the backend
12682 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12683 zero, then we'll put DT_RELA at the end of
12684 DT_JMPREL. glibc will interpret the end of
12685 DT_RELA matching the end of DT_JMPREL as the
12686 case where DT_RELA includes DT_JMPREL, and for
12687 LD_BIND_NOW will decide that processing DT_RELA
12688 will process the PLT relocs too. Net result:
12689 No PLT relocs applied. */
12690 sh_addr = 0;
12691
12692 /* If .rela.plt is the first .rela section, exclude
12693 it from DT_RELA. */
12694 else if (sh_addr == (htab->srelplt->output_section->vma
12695 + htab->srelplt->output_offset))
12696 sh_addr += htab->srelplt->size;
12697 }
12698
12699 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12700 dyn.d_un.d_val = sh_size;
12701 else
12702 dyn.d_un.d_ptr = sh_addr;
12703 break;
12704 }
12705 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12706 }
12707 }
12708
12709 /* If we have created any dynamic sections, then output them. */
12710 if (dynobj != NULL)
12711 {
12712 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12713 goto error_return;
12714
12715 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12716 if (((info->warn_shared_textrel && bfd_link_pic (info))
12717 || info->error_textrel)
12718 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12719 {
12720 bfd_byte *dyncon, *dynconend;
12721
12722 dyncon = o->contents;
12723 dynconend = o->contents + o->size;
12724 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12725 {
12726 Elf_Internal_Dyn dyn;
12727
12728 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12729
12730 if (dyn.d_tag == DT_TEXTREL)
12731 {
12732 if (info->error_textrel)
12733 info->callbacks->einfo
12734 (_("%P%X: read-only segment has dynamic relocations\n"));
12735 else
12736 info->callbacks->einfo
12737 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12738 break;
12739 }
12740 }
12741 }
12742
12743 for (o = dynobj->sections; o != NULL; o = o->next)
12744 {
12745 if ((o->flags & SEC_HAS_CONTENTS) == 0
12746 || o->size == 0
12747 || o->output_section == bfd_abs_section_ptr)
12748 continue;
12749 if ((o->flags & SEC_LINKER_CREATED) == 0)
12750 {
12751 /* At this point, we are only interested in sections
12752 created by _bfd_elf_link_create_dynamic_sections. */
12753 continue;
12754 }
12755 if (htab->stab_info.stabstr == o)
12756 continue;
12757 if (htab->eh_info.hdr_sec == o)
12758 continue;
12759 if (strcmp (o->name, ".dynstr") != 0)
12760 {
12761 if (! bfd_set_section_contents (abfd, o->output_section,
12762 o->contents,
12763 (file_ptr) o->output_offset
12764 * bfd_octets_per_byte (abfd),
12765 o->size))
12766 goto error_return;
12767 }
12768 else
12769 {
12770 /* The contents of the .dynstr section are actually in a
12771 stringtab. */
12772 file_ptr off;
12773
12774 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12775 if (bfd_seek (abfd, off, SEEK_SET) != 0
12776 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12777 goto error_return;
12778 }
12779 }
12780 }
12781
12782 if (!info->resolve_section_groups)
12783 {
12784 bfd_boolean failed = FALSE;
12785
12786 BFD_ASSERT (bfd_link_relocatable (info));
12787 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12788 if (failed)
12789 goto error_return;
12790 }
12791
12792 /* If we have optimized stabs strings, output them. */
12793 if (htab->stab_info.stabstr != NULL)
12794 {
12795 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12796 goto error_return;
12797 }
12798
12799 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12800 goto error_return;
12801
12802 elf_final_link_free (abfd, &flinfo);
12803
12804 elf_linker (abfd) = TRUE;
12805
12806 if (attr_section)
12807 {
12808 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12809 if (contents == NULL)
12810 return FALSE; /* Bail out and fail. */
12811 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12812 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12813 free (contents);
12814 }
12815
12816 return TRUE;
12817
12818 error_return:
12819 elf_final_link_free (abfd, &flinfo);
12820 return FALSE;
12821 }
12822 \f
12823 /* Initialize COOKIE for input bfd ABFD. */
12824
12825 static bfd_boolean
12826 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12827 struct bfd_link_info *info, bfd *abfd)
12828 {
12829 Elf_Internal_Shdr *symtab_hdr;
12830 const struct elf_backend_data *bed;
12831
12832 bed = get_elf_backend_data (abfd);
12833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12834
12835 cookie->abfd = abfd;
12836 cookie->sym_hashes = elf_sym_hashes (abfd);
12837 cookie->bad_symtab = elf_bad_symtab (abfd);
12838 if (cookie->bad_symtab)
12839 {
12840 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12841 cookie->extsymoff = 0;
12842 }
12843 else
12844 {
12845 cookie->locsymcount = symtab_hdr->sh_info;
12846 cookie->extsymoff = symtab_hdr->sh_info;
12847 }
12848
12849 if (bed->s->arch_size == 32)
12850 cookie->r_sym_shift = 8;
12851 else
12852 cookie->r_sym_shift = 32;
12853
12854 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12855 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12856 {
12857 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12858 cookie->locsymcount, 0,
12859 NULL, NULL, NULL);
12860 if (cookie->locsyms == NULL)
12861 {
12862 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12863 return FALSE;
12864 }
12865 if (info->keep_memory)
12866 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12867 }
12868 return TRUE;
12869 }
12870
12871 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12872
12873 static void
12874 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12875 {
12876 Elf_Internal_Shdr *symtab_hdr;
12877
12878 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12879 if (cookie->locsyms != NULL
12880 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12881 free (cookie->locsyms);
12882 }
12883
12884 /* Initialize the relocation information in COOKIE for input section SEC
12885 of input bfd ABFD. */
12886
12887 static bfd_boolean
12888 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12889 struct bfd_link_info *info, bfd *abfd,
12890 asection *sec)
12891 {
12892 if (sec->reloc_count == 0)
12893 {
12894 cookie->rels = NULL;
12895 cookie->relend = NULL;
12896 }
12897 else
12898 {
12899 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12900 info->keep_memory);
12901 if (cookie->rels == NULL)
12902 return FALSE;
12903 cookie->rel = cookie->rels;
12904 cookie->relend = cookie->rels + sec->reloc_count;
12905 }
12906 cookie->rel = cookie->rels;
12907 return TRUE;
12908 }
12909
12910 /* Free the memory allocated by init_reloc_cookie_rels,
12911 if appropriate. */
12912
12913 static void
12914 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12915 asection *sec)
12916 {
12917 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12918 free (cookie->rels);
12919 }
12920
12921 /* Initialize the whole of COOKIE for input section SEC. */
12922
12923 static bfd_boolean
12924 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12925 struct bfd_link_info *info,
12926 asection *sec)
12927 {
12928 if (!init_reloc_cookie (cookie, info, sec->owner))
12929 goto error1;
12930 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12931 goto error2;
12932 return TRUE;
12933
12934 error2:
12935 fini_reloc_cookie (cookie, sec->owner);
12936 error1:
12937 return FALSE;
12938 }
12939
12940 /* Free the memory allocated by init_reloc_cookie_for_section,
12941 if appropriate. */
12942
12943 static void
12944 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12945 asection *sec)
12946 {
12947 fini_reloc_cookie_rels (cookie, sec);
12948 fini_reloc_cookie (cookie, sec->owner);
12949 }
12950 \f
12951 /* Garbage collect unused sections. */
12952
12953 /* Default gc_mark_hook. */
12954
12955 asection *
12956 _bfd_elf_gc_mark_hook (asection *sec,
12957 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12958 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12959 struct elf_link_hash_entry *h,
12960 Elf_Internal_Sym *sym)
12961 {
12962 if (h != NULL)
12963 {
12964 switch (h->root.type)
12965 {
12966 case bfd_link_hash_defined:
12967 case bfd_link_hash_defweak:
12968 return h->root.u.def.section;
12969
12970 case bfd_link_hash_common:
12971 return h->root.u.c.p->section;
12972
12973 default:
12974 break;
12975 }
12976 }
12977 else
12978 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12979
12980 return NULL;
12981 }
12982
12983 /* Return the debug definition section. */
12984
12985 static asection *
12986 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12987 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12988 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12989 struct elf_link_hash_entry *h,
12990 Elf_Internal_Sym *sym)
12991 {
12992 if (h != NULL)
12993 {
12994 /* Return the global debug definition section. */
12995 if ((h->root.type == bfd_link_hash_defined
12996 || h->root.type == bfd_link_hash_defweak)
12997 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12998 return h->root.u.def.section;
12999 }
13000 else
13001 {
13002 /* Return the local debug definition section. */
13003 asection *isec = bfd_section_from_elf_index (sec->owner,
13004 sym->st_shndx);
13005 if ((isec->flags & SEC_DEBUGGING) != 0)
13006 return isec;
13007 }
13008
13009 return NULL;
13010 }
13011
13012 /* COOKIE->rel describes a relocation against section SEC, which is
13013 a section we've decided to keep. Return the section that contains
13014 the relocation symbol, or NULL if no section contains it. */
13015
13016 asection *
13017 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13018 elf_gc_mark_hook_fn gc_mark_hook,
13019 struct elf_reloc_cookie *cookie,
13020 bfd_boolean *start_stop)
13021 {
13022 unsigned long r_symndx;
13023 struct elf_link_hash_entry *h;
13024
13025 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13026 if (r_symndx == STN_UNDEF)
13027 return NULL;
13028
13029 if (r_symndx >= cookie->locsymcount
13030 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13031 {
13032 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13033 if (h == NULL)
13034 {
13035 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13036 sec->owner);
13037 return NULL;
13038 }
13039 while (h->root.type == bfd_link_hash_indirect
13040 || h->root.type == bfd_link_hash_warning)
13041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13042 h->mark = 1;
13043 /* If this symbol is weak and there is a non-weak definition, we
13044 keep the non-weak definition because many backends put
13045 dynamic reloc info on the non-weak definition for code
13046 handling copy relocs. */
13047 if (h->is_weakalias)
13048 weakdef (h)->mark = 1;
13049
13050 if (start_stop != NULL)
13051 {
13052 /* To work around a glibc bug, mark XXX input sections
13053 when there is a reference to __start_XXX or __stop_XXX
13054 symbols. */
13055 if (h->start_stop)
13056 {
13057 asection *s = h->u2.start_stop_section;
13058 *start_stop = !s->gc_mark;
13059 return s;
13060 }
13061 }
13062
13063 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13064 }
13065
13066 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13067 &cookie->locsyms[r_symndx]);
13068 }
13069
13070 /* COOKIE->rel describes a relocation against section SEC, which is
13071 a section we've decided to keep. Mark the section that contains
13072 the relocation symbol. */
13073
13074 bfd_boolean
13075 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13076 asection *sec,
13077 elf_gc_mark_hook_fn gc_mark_hook,
13078 struct elf_reloc_cookie *cookie)
13079 {
13080 asection *rsec;
13081 bfd_boolean start_stop = FALSE;
13082
13083 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13084 while (rsec != NULL)
13085 {
13086 if (!rsec->gc_mark)
13087 {
13088 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13089 || (rsec->owner->flags & DYNAMIC) != 0)
13090 rsec->gc_mark = 1;
13091 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13092 return FALSE;
13093 }
13094 if (!start_stop)
13095 break;
13096 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13097 }
13098 return TRUE;
13099 }
13100
13101 /* The mark phase of garbage collection. For a given section, mark
13102 it and any sections in this section's group, and all the sections
13103 which define symbols to which it refers. */
13104
13105 bfd_boolean
13106 _bfd_elf_gc_mark (struct bfd_link_info *info,
13107 asection *sec,
13108 elf_gc_mark_hook_fn gc_mark_hook)
13109 {
13110 bfd_boolean ret;
13111 asection *group_sec, *eh_frame;
13112
13113 sec->gc_mark = 1;
13114
13115 /* Mark all the sections in the group. */
13116 group_sec = elf_section_data (sec)->next_in_group;
13117 if (group_sec && !group_sec->gc_mark)
13118 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13119 return FALSE;
13120
13121 /* Look through the section relocs. */
13122 ret = TRUE;
13123 eh_frame = elf_eh_frame_section (sec->owner);
13124 if ((sec->flags & SEC_RELOC) != 0
13125 && sec->reloc_count > 0
13126 && sec != eh_frame)
13127 {
13128 struct elf_reloc_cookie cookie;
13129
13130 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13131 ret = FALSE;
13132 else
13133 {
13134 for (; cookie.rel < cookie.relend; cookie.rel++)
13135 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13136 {
13137 ret = FALSE;
13138 break;
13139 }
13140 fini_reloc_cookie_for_section (&cookie, sec);
13141 }
13142 }
13143
13144 if (ret && eh_frame && elf_fde_list (sec))
13145 {
13146 struct elf_reloc_cookie cookie;
13147
13148 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13149 ret = FALSE;
13150 else
13151 {
13152 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13153 gc_mark_hook, &cookie))
13154 ret = FALSE;
13155 fini_reloc_cookie_for_section (&cookie, eh_frame);
13156 }
13157 }
13158
13159 eh_frame = elf_section_eh_frame_entry (sec);
13160 if (ret && eh_frame && !eh_frame->gc_mark)
13161 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13162 ret = FALSE;
13163
13164 return ret;
13165 }
13166
13167 /* Scan and mark sections in a special or debug section group. */
13168
13169 static void
13170 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13171 {
13172 /* Point to first section of section group. */
13173 asection *ssec;
13174 /* Used to iterate the section group. */
13175 asection *msec;
13176
13177 bfd_boolean is_special_grp = TRUE;
13178 bfd_boolean is_debug_grp = TRUE;
13179
13180 /* First scan to see if group contains any section other than debug
13181 and special section. */
13182 ssec = msec = elf_next_in_group (grp);
13183 do
13184 {
13185 if ((msec->flags & SEC_DEBUGGING) == 0)
13186 is_debug_grp = FALSE;
13187
13188 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13189 is_special_grp = FALSE;
13190
13191 msec = elf_next_in_group (msec);
13192 }
13193 while (msec != ssec);
13194
13195 /* If this is a pure debug section group or pure special section group,
13196 keep all sections in this group. */
13197 if (is_debug_grp || is_special_grp)
13198 {
13199 do
13200 {
13201 msec->gc_mark = 1;
13202 msec = elf_next_in_group (msec);
13203 }
13204 while (msec != ssec);
13205 }
13206 }
13207
13208 /* Keep debug and special sections. */
13209
13210 bfd_boolean
13211 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13212 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13213 {
13214 bfd *ibfd;
13215
13216 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13217 {
13218 asection *isec;
13219 bfd_boolean some_kept;
13220 bfd_boolean debug_frag_seen;
13221 bfd_boolean has_kept_debug_info;
13222
13223 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13224 continue;
13225 isec = ibfd->sections;
13226 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13227 continue;
13228
13229 /* Ensure all linker created sections are kept,
13230 see if any other section is already marked,
13231 and note if we have any fragmented debug sections. */
13232 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13233 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13234 {
13235 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13236 isec->gc_mark = 1;
13237 else if (isec->gc_mark
13238 && (isec->flags & SEC_ALLOC) != 0
13239 && elf_section_type (isec) != SHT_NOTE)
13240 some_kept = TRUE;
13241
13242 if (!debug_frag_seen
13243 && (isec->flags & SEC_DEBUGGING)
13244 && CONST_STRNEQ (isec->name, ".debug_line."))
13245 debug_frag_seen = TRUE;
13246 }
13247
13248 /* If no non-note alloc section in this file will be kept, then
13249 we can toss out the debug and special sections. */
13250 if (!some_kept)
13251 continue;
13252
13253 /* Keep debug and special sections like .comment when they are
13254 not part of a group. Also keep section groups that contain
13255 just debug sections or special sections. */
13256 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13257 {
13258 if ((isec->flags & SEC_GROUP) != 0)
13259 _bfd_elf_gc_mark_debug_special_section_group (isec);
13260 else if (((isec->flags & SEC_DEBUGGING) != 0
13261 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13262 && elf_next_in_group (isec) == NULL)
13263 isec->gc_mark = 1;
13264 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13265 has_kept_debug_info = TRUE;
13266 }
13267
13268 /* Look for CODE sections which are going to be discarded,
13269 and find and discard any fragmented debug sections which
13270 are associated with that code section. */
13271 if (debug_frag_seen)
13272 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13273 if ((isec->flags & SEC_CODE) != 0
13274 && isec->gc_mark == 0)
13275 {
13276 unsigned int ilen;
13277 asection *dsec;
13278
13279 ilen = strlen (isec->name);
13280
13281 /* Association is determined by the name of the debug
13282 section containing the name of the code section as
13283 a suffix. For example .debug_line.text.foo is a
13284 debug section associated with .text.foo. */
13285 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13286 {
13287 unsigned int dlen;
13288
13289 if (dsec->gc_mark == 0
13290 || (dsec->flags & SEC_DEBUGGING) == 0)
13291 continue;
13292
13293 dlen = strlen (dsec->name);
13294
13295 if (dlen > ilen
13296 && strncmp (dsec->name + (dlen - ilen),
13297 isec->name, ilen) == 0)
13298 dsec->gc_mark = 0;
13299 }
13300 }
13301
13302 /* Mark debug sections referenced by kept debug sections. */
13303 if (has_kept_debug_info)
13304 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13305 if (isec->gc_mark
13306 && (isec->flags & SEC_DEBUGGING) != 0)
13307 if (!_bfd_elf_gc_mark (info, isec,
13308 elf_gc_mark_debug_section))
13309 return FALSE;
13310 }
13311 return TRUE;
13312 }
13313
13314 static bfd_boolean
13315 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13316 {
13317 bfd *sub;
13318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13319
13320 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13321 {
13322 asection *o;
13323
13324 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13325 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13326 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13327 continue;
13328 o = sub->sections;
13329 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13330 continue;
13331
13332 for (o = sub->sections; o != NULL; o = o->next)
13333 {
13334 /* When any section in a section group is kept, we keep all
13335 sections in the section group. If the first member of
13336 the section group is excluded, we will also exclude the
13337 group section. */
13338 if (o->flags & SEC_GROUP)
13339 {
13340 asection *first = elf_next_in_group (o);
13341 o->gc_mark = first->gc_mark;
13342 }
13343
13344 if (o->gc_mark)
13345 continue;
13346
13347 /* Skip sweeping sections already excluded. */
13348 if (o->flags & SEC_EXCLUDE)
13349 continue;
13350
13351 /* Since this is early in the link process, it is simple
13352 to remove a section from the output. */
13353 o->flags |= SEC_EXCLUDE;
13354
13355 if (info->print_gc_sections && o->size != 0)
13356 /* xgettext:c-format */
13357 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13358 o, sub);
13359 }
13360 }
13361
13362 return TRUE;
13363 }
13364
13365 /* Propagate collected vtable information. This is called through
13366 elf_link_hash_traverse. */
13367
13368 static bfd_boolean
13369 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13370 {
13371 /* Those that are not vtables. */
13372 if (h->start_stop
13373 || h->u2.vtable == NULL
13374 || h->u2.vtable->parent == NULL)
13375 return TRUE;
13376
13377 /* Those vtables that do not have parents, we cannot merge. */
13378 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13379 return TRUE;
13380
13381 /* If we've already been done, exit. */
13382 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13383 return TRUE;
13384
13385 /* Make sure the parent's table is up to date. */
13386 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13387
13388 if (h->u2.vtable->used == NULL)
13389 {
13390 /* None of this table's entries were referenced. Re-use the
13391 parent's table. */
13392 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13393 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13394 }
13395 else
13396 {
13397 size_t n;
13398 bfd_boolean *cu, *pu;
13399
13400 /* Or the parent's entries into ours. */
13401 cu = h->u2.vtable->used;
13402 cu[-1] = TRUE;
13403 pu = h->u2.vtable->parent->u2.vtable->used;
13404 if (pu != NULL)
13405 {
13406 const struct elf_backend_data *bed;
13407 unsigned int log_file_align;
13408
13409 bed = get_elf_backend_data (h->root.u.def.section->owner);
13410 log_file_align = bed->s->log_file_align;
13411 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13412 while (n--)
13413 {
13414 if (*pu)
13415 *cu = TRUE;
13416 pu++;
13417 cu++;
13418 }
13419 }
13420 }
13421
13422 return TRUE;
13423 }
13424
13425 static bfd_boolean
13426 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13427 {
13428 asection *sec;
13429 bfd_vma hstart, hend;
13430 Elf_Internal_Rela *relstart, *relend, *rel;
13431 const struct elf_backend_data *bed;
13432 unsigned int log_file_align;
13433
13434 /* Take care of both those symbols that do not describe vtables as
13435 well as those that are not loaded. */
13436 if (h->start_stop
13437 || h->u2.vtable == NULL
13438 || h->u2.vtable->parent == NULL)
13439 return TRUE;
13440
13441 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13442 || h->root.type == bfd_link_hash_defweak);
13443
13444 sec = h->root.u.def.section;
13445 hstart = h->root.u.def.value;
13446 hend = hstart + h->size;
13447
13448 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13449 if (!relstart)
13450 return *(bfd_boolean *) okp = FALSE;
13451 bed = get_elf_backend_data (sec->owner);
13452 log_file_align = bed->s->log_file_align;
13453
13454 relend = relstart + sec->reloc_count;
13455
13456 for (rel = relstart; rel < relend; ++rel)
13457 if (rel->r_offset >= hstart && rel->r_offset < hend)
13458 {
13459 /* If the entry is in use, do nothing. */
13460 if (h->u2.vtable->used
13461 && (rel->r_offset - hstart) < h->u2.vtable->size)
13462 {
13463 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13464 if (h->u2.vtable->used[entry])
13465 continue;
13466 }
13467 /* Otherwise, kill it. */
13468 rel->r_offset = rel->r_info = rel->r_addend = 0;
13469 }
13470
13471 return TRUE;
13472 }
13473
13474 /* Mark sections containing dynamically referenced symbols. When
13475 building shared libraries, we must assume that any visible symbol is
13476 referenced. */
13477
13478 bfd_boolean
13479 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13480 {
13481 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13482 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13483
13484 if ((h->root.type == bfd_link_hash_defined
13485 || h->root.type == bfd_link_hash_defweak)
13486 && ((h->ref_dynamic && !h->forced_local)
13487 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13488 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13489 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13490 && (!bfd_link_executable (info)
13491 || info->gc_keep_exported
13492 || info->export_dynamic
13493 || (h->dynamic
13494 && d != NULL
13495 && (*d->match) (&d->head, NULL, h->root.root.string)))
13496 && (h->versioned >= versioned
13497 || !bfd_hide_sym_by_version (info->version_info,
13498 h->root.root.string)))))
13499 h->root.u.def.section->flags |= SEC_KEEP;
13500
13501 return TRUE;
13502 }
13503
13504 /* Keep all sections containing symbols undefined on the command-line,
13505 and the section containing the entry symbol. */
13506
13507 void
13508 _bfd_elf_gc_keep (struct bfd_link_info *info)
13509 {
13510 struct bfd_sym_chain *sym;
13511
13512 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13513 {
13514 struct elf_link_hash_entry *h;
13515
13516 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13517 FALSE, FALSE, FALSE);
13518
13519 if (h != NULL
13520 && (h->root.type == bfd_link_hash_defined
13521 || h->root.type == bfd_link_hash_defweak)
13522 && !bfd_is_abs_section (h->root.u.def.section)
13523 && !bfd_is_und_section (h->root.u.def.section))
13524 h->root.u.def.section->flags |= SEC_KEEP;
13525 }
13526 }
13527
13528 bfd_boolean
13529 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13530 struct bfd_link_info *info)
13531 {
13532 bfd *ibfd = info->input_bfds;
13533
13534 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13535 {
13536 asection *sec;
13537 struct elf_reloc_cookie cookie;
13538
13539 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13540 continue;
13541 sec = ibfd->sections;
13542 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13543 continue;
13544
13545 if (!init_reloc_cookie (&cookie, info, ibfd))
13546 return FALSE;
13547
13548 for (sec = ibfd->sections; sec; sec = sec->next)
13549 {
13550 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13551 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13552 {
13553 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13554 fini_reloc_cookie_rels (&cookie, sec);
13555 }
13556 }
13557 }
13558 return TRUE;
13559 }
13560
13561 /* Do mark and sweep of unused sections. */
13562
13563 bfd_boolean
13564 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13565 {
13566 bfd_boolean ok = TRUE;
13567 bfd *sub;
13568 elf_gc_mark_hook_fn gc_mark_hook;
13569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13570 struct elf_link_hash_table *htab;
13571
13572 if (!bed->can_gc_sections
13573 || !is_elf_hash_table (info->hash))
13574 {
13575 _bfd_error_handler(_("warning: gc-sections option ignored"));
13576 return TRUE;
13577 }
13578
13579 bed->gc_keep (info);
13580 htab = elf_hash_table (info);
13581
13582 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13583 at the .eh_frame section if we can mark the FDEs individually. */
13584 for (sub = info->input_bfds;
13585 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13586 sub = sub->link.next)
13587 {
13588 asection *sec;
13589 struct elf_reloc_cookie cookie;
13590
13591 sec = sub->sections;
13592 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13593 continue;
13594 sec = bfd_get_section_by_name (sub, ".eh_frame");
13595 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13596 {
13597 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13598 if (elf_section_data (sec)->sec_info
13599 && (sec->flags & SEC_LINKER_CREATED) == 0)
13600 elf_eh_frame_section (sub) = sec;
13601 fini_reloc_cookie_for_section (&cookie, sec);
13602 sec = bfd_get_next_section_by_name (NULL, sec);
13603 }
13604 }
13605
13606 /* Apply transitive closure to the vtable entry usage info. */
13607 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13608 if (!ok)
13609 return FALSE;
13610
13611 /* Kill the vtable relocations that were not used. */
13612 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13613 if (!ok)
13614 return FALSE;
13615
13616 /* Mark dynamically referenced symbols. */
13617 if (htab->dynamic_sections_created || info->gc_keep_exported)
13618 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13619
13620 /* Grovel through relocs to find out who stays ... */
13621 gc_mark_hook = bed->gc_mark_hook;
13622 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13623 {
13624 asection *o;
13625
13626 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13627 || elf_object_id (sub) != elf_hash_table_id (htab)
13628 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13629 continue;
13630
13631 o = sub->sections;
13632 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13633 continue;
13634
13635 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13636 Also treat note sections as a root, if the section is not part
13637 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13638 well as FINI_ARRAY sections for ld -r. */
13639 for (o = sub->sections; o != NULL; o = o->next)
13640 if (!o->gc_mark
13641 && (o->flags & SEC_EXCLUDE) == 0
13642 && ((o->flags & SEC_KEEP) != 0
13643 || (bfd_link_relocatable (info)
13644 && ((elf_section_data (o)->this_hdr.sh_type
13645 == SHT_PREINIT_ARRAY)
13646 || (elf_section_data (o)->this_hdr.sh_type
13647 == SHT_INIT_ARRAY)
13648 || (elf_section_data (o)->this_hdr.sh_type
13649 == SHT_FINI_ARRAY)))
13650 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13651 && elf_next_in_group (o) == NULL )))
13652 {
13653 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13654 return FALSE;
13655 }
13656 }
13657
13658 /* Allow the backend to mark additional target specific sections. */
13659 bed->gc_mark_extra_sections (info, gc_mark_hook);
13660
13661 /* ... and mark SEC_EXCLUDE for those that go. */
13662 return elf_gc_sweep (abfd, info);
13663 }
13664 \f
13665 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13666
13667 bfd_boolean
13668 bfd_elf_gc_record_vtinherit (bfd *abfd,
13669 asection *sec,
13670 struct elf_link_hash_entry *h,
13671 bfd_vma offset)
13672 {
13673 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13674 struct elf_link_hash_entry **search, *child;
13675 size_t extsymcount;
13676 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13677
13678 /* The sh_info field of the symtab header tells us where the
13679 external symbols start. We don't care about the local symbols at
13680 this point. */
13681 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13682 if (!elf_bad_symtab (abfd))
13683 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13684
13685 sym_hashes = elf_sym_hashes (abfd);
13686 sym_hashes_end = sym_hashes + extsymcount;
13687
13688 /* Hunt down the child symbol, which is in this section at the same
13689 offset as the relocation. */
13690 for (search = sym_hashes; search != sym_hashes_end; ++search)
13691 {
13692 if ((child = *search) != NULL
13693 && (child->root.type == bfd_link_hash_defined
13694 || child->root.type == bfd_link_hash_defweak)
13695 && child->root.u.def.section == sec
13696 && child->root.u.def.value == offset)
13697 goto win;
13698 }
13699
13700 /* xgettext:c-format */
13701 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13702 abfd, sec, (uint64_t) offset);
13703 bfd_set_error (bfd_error_invalid_operation);
13704 return FALSE;
13705
13706 win:
13707 if (!child->u2.vtable)
13708 {
13709 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13710 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13711 if (!child->u2.vtable)
13712 return FALSE;
13713 }
13714 if (!h)
13715 {
13716 /* This *should* only be the absolute section. It could potentially
13717 be that someone has defined a non-global vtable though, which
13718 would be bad. It isn't worth paging in the local symbols to be
13719 sure though; that case should simply be handled by the assembler. */
13720
13721 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13722 }
13723 else
13724 child->u2.vtable->parent = h;
13725
13726 return TRUE;
13727 }
13728
13729 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13730
13731 bfd_boolean
13732 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13733 struct elf_link_hash_entry *h,
13734 bfd_vma addend)
13735 {
13736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13737 unsigned int log_file_align = bed->s->log_file_align;
13738
13739 if (!h)
13740 {
13741 /* xgettext:c-format */
13742 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13743 abfd, sec);
13744 bfd_set_error (bfd_error_bad_value);
13745 return FALSE;
13746 }
13747
13748 if (!h->u2.vtable)
13749 {
13750 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13751 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13752 if (!h->u2.vtable)
13753 return FALSE;
13754 }
13755
13756 if (addend >= h->u2.vtable->size)
13757 {
13758 size_t size, bytes, file_align;
13759 bfd_boolean *ptr = h->u2.vtable->used;
13760
13761 /* While the symbol is undefined, we have to be prepared to handle
13762 a zero size. */
13763 file_align = 1 << log_file_align;
13764 if (h->root.type == bfd_link_hash_undefined)
13765 size = addend + file_align;
13766 else
13767 {
13768 size = h->size;
13769 if (addend >= size)
13770 {
13771 /* Oops! We've got a reference past the defined end of
13772 the table. This is probably a bug -- shall we warn? */
13773 size = addend + file_align;
13774 }
13775 }
13776 size = (size + file_align - 1) & -file_align;
13777
13778 /* Allocate one extra entry for use as a "done" flag for the
13779 consolidation pass. */
13780 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13781
13782 if (ptr)
13783 {
13784 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13785
13786 if (ptr != NULL)
13787 {
13788 size_t oldbytes;
13789
13790 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13791 * sizeof (bfd_boolean));
13792 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13793 }
13794 }
13795 else
13796 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13797
13798 if (ptr == NULL)
13799 return FALSE;
13800
13801 /* And arrange for that done flag to be at index -1. */
13802 h->u2.vtable->used = ptr + 1;
13803 h->u2.vtable->size = size;
13804 }
13805
13806 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13807
13808 return TRUE;
13809 }
13810
13811 /* Map an ELF section header flag to its corresponding string. */
13812 typedef struct
13813 {
13814 char *flag_name;
13815 flagword flag_value;
13816 } elf_flags_to_name_table;
13817
13818 static elf_flags_to_name_table elf_flags_to_names [] =
13819 {
13820 { "SHF_WRITE", SHF_WRITE },
13821 { "SHF_ALLOC", SHF_ALLOC },
13822 { "SHF_EXECINSTR", SHF_EXECINSTR },
13823 { "SHF_MERGE", SHF_MERGE },
13824 { "SHF_STRINGS", SHF_STRINGS },
13825 { "SHF_INFO_LINK", SHF_INFO_LINK},
13826 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13827 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13828 { "SHF_GROUP", SHF_GROUP },
13829 { "SHF_TLS", SHF_TLS },
13830 { "SHF_MASKOS", SHF_MASKOS },
13831 { "SHF_EXCLUDE", SHF_EXCLUDE },
13832 };
13833
13834 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13835 bfd_boolean
13836 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13837 struct flag_info *flaginfo,
13838 asection *section)
13839 {
13840 const bfd_vma sh_flags = elf_section_flags (section);
13841
13842 if (!flaginfo->flags_initialized)
13843 {
13844 bfd *obfd = info->output_bfd;
13845 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13846 struct flag_info_list *tf = flaginfo->flag_list;
13847 int with_hex = 0;
13848 int without_hex = 0;
13849
13850 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13851 {
13852 unsigned i;
13853 flagword (*lookup) (char *);
13854
13855 lookup = bed->elf_backend_lookup_section_flags_hook;
13856 if (lookup != NULL)
13857 {
13858 flagword hexval = (*lookup) ((char *) tf->name);
13859
13860 if (hexval != 0)
13861 {
13862 if (tf->with == with_flags)
13863 with_hex |= hexval;
13864 else if (tf->with == without_flags)
13865 without_hex |= hexval;
13866 tf->valid = TRUE;
13867 continue;
13868 }
13869 }
13870 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13871 {
13872 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13873 {
13874 if (tf->with == with_flags)
13875 with_hex |= elf_flags_to_names[i].flag_value;
13876 else if (tf->with == without_flags)
13877 without_hex |= elf_flags_to_names[i].flag_value;
13878 tf->valid = TRUE;
13879 break;
13880 }
13881 }
13882 if (!tf->valid)
13883 {
13884 info->callbacks->einfo
13885 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13886 return FALSE;
13887 }
13888 }
13889 flaginfo->flags_initialized = TRUE;
13890 flaginfo->only_with_flags |= with_hex;
13891 flaginfo->not_with_flags |= without_hex;
13892 }
13893
13894 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13895 return FALSE;
13896
13897 if ((flaginfo->not_with_flags & sh_flags) != 0)
13898 return FALSE;
13899
13900 return TRUE;
13901 }
13902
13903 struct alloc_got_off_arg {
13904 bfd_vma gotoff;
13905 struct bfd_link_info *info;
13906 };
13907
13908 /* We need a special top-level link routine to convert got reference counts
13909 to real got offsets. */
13910
13911 static bfd_boolean
13912 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13913 {
13914 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13915 bfd *obfd = gofarg->info->output_bfd;
13916 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13917
13918 if (h->got.refcount > 0)
13919 {
13920 h->got.offset = gofarg->gotoff;
13921 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13922 }
13923 else
13924 h->got.offset = (bfd_vma) -1;
13925
13926 return TRUE;
13927 }
13928
13929 /* And an accompanying bit to work out final got entry offsets once
13930 we're done. Should be called from final_link. */
13931
13932 bfd_boolean
13933 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13934 struct bfd_link_info *info)
13935 {
13936 bfd *i;
13937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13938 bfd_vma gotoff;
13939 struct alloc_got_off_arg gofarg;
13940
13941 BFD_ASSERT (abfd == info->output_bfd);
13942
13943 if (! is_elf_hash_table (info->hash))
13944 return FALSE;
13945
13946 /* The GOT offset is relative to the .got section, but the GOT header is
13947 put into the .got.plt section, if the backend uses it. */
13948 if (bed->want_got_plt)
13949 gotoff = 0;
13950 else
13951 gotoff = bed->got_header_size;
13952
13953 /* Do the local .got entries first. */
13954 for (i = info->input_bfds; i; i = i->link.next)
13955 {
13956 bfd_signed_vma *local_got;
13957 size_t j, locsymcount;
13958 Elf_Internal_Shdr *symtab_hdr;
13959
13960 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13961 continue;
13962
13963 local_got = elf_local_got_refcounts (i);
13964 if (!local_got)
13965 continue;
13966
13967 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13968 if (elf_bad_symtab (i))
13969 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13970 else
13971 locsymcount = symtab_hdr->sh_info;
13972
13973 for (j = 0; j < locsymcount; ++j)
13974 {
13975 if (local_got[j] > 0)
13976 {
13977 local_got[j] = gotoff;
13978 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13979 }
13980 else
13981 local_got[j] = (bfd_vma) -1;
13982 }
13983 }
13984
13985 /* Then the global .got entries. .plt refcounts are handled by
13986 adjust_dynamic_symbol */
13987 gofarg.gotoff = gotoff;
13988 gofarg.info = info;
13989 elf_link_hash_traverse (elf_hash_table (info),
13990 elf_gc_allocate_got_offsets,
13991 &gofarg);
13992 return TRUE;
13993 }
13994
13995 /* Many folk need no more in the way of final link than this, once
13996 got entry reference counting is enabled. */
13997
13998 bfd_boolean
13999 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14000 {
14001 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14002 return FALSE;
14003
14004 /* Invoke the regular ELF backend linker to do all the work. */
14005 return bfd_elf_final_link (abfd, info);
14006 }
14007
14008 bfd_boolean
14009 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14010 {
14011 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14012
14013 if (rcookie->bad_symtab)
14014 rcookie->rel = rcookie->rels;
14015
14016 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14017 {
14018 unsigned long r_symndx;
14019
14020 if (! rcookie->bad_symtab)
14021 if (rcookie->rel->r_offset > offset)
14022 return FALSE;
14023 if (rcookie->rel->r_offset != offset)
14024 continue;
14025
14026 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14027 if (r_symndx == STN_UNDEF)
14028 return TRUE;
14029
14030 if (r_symndx >= rcookie->locsymcount
14031 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14032 {
14033 struct elf_link_hash_entry *h;
14034
14035 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14036
14037 while (h->root.type == bfd_link_hash_indirect
14038 || h->root.type == bfd_link_hash_warning)
14039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14040
14041 if ((h->root.type == bfd_link_hash_defined
14042 || h->root.type == bfd_link_hash_defweak)
14043 && (h->root.u.def.section->owner != rcookie->abfd
14044 || h->root.u.def.section->kept_section != NULL
14045 || discarded_section (h->root.u.def.section)))
14046 return TRUE;
14047 }
14048 else
14049 {
14050 /* It's not a relocation against a global symbol,
14051 but it could be a relocation against a local
14052 symbol for a discarded section. */
14053 asection *isec;
14054 Elf_Internal_Sym *isym;
14055
14056 /* Need to: get the symbol; get the section. */
14057 isym = &rcookie->locsyms[r_symndx];
14058 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14059 if (isec != NULL
14060 && (isec->kept_section != NULL
14061 || discarded_section (isec)))
14062 return TRUE;
14063 }
14064 return FALSE;
14065 }
14066 return FALSE;
14067 }
14068
14069 /* Discard unneeded references to discarded sections.
14070 Returns -1 on error, 1 if any section's size was changed, 0 if
14071 nothing changed. This function assumes that the relocations are in
14072 sorted order, which is true for all known assemblers. */
14073
14074 int
14075 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14076 {
14077 struct elf_reloc_cookie cookie;
14078 asection *o;
14079 bfd *abfd;
14080 int changed = 0;
14081
14082 if (info->traditional_format
14083 || !is_elf_hash_table (info->hash))
14084 return 0;
14085
14086 o = bfd_get_section_by_name (output_bfd, ".stab");
14087 if (o != NULL)
14088 {
14089 asection *i;
14090
14091 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14092 {
14093 if (i->size == 0
14094 || i->reloc_count == 0
14095 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14096 continue;
14097
14098 abfd = i->owner;
14099 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14100 continue;
14101
14102 if (!init_reloc_cookie_for_section (&cookie, info, i))
14103 return -1;
14104
14105 if (_bfd_discard_section_stabs (abfd, i,
14106 elf_section_data (i)->sec_info,
14107 bfd_elf_reloc_symbol_deleted_p,
14108 &cookie))
14109 changed = 1;
14110
14111 fini_reloc_cookie_for_section (&cookie, i);
14112 }
14113 }
14114
14115 o = NULL;
14116 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14117 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14118 if (o != NULL)
14119 {
14120 asection *i;
14121 int eh_changed = 0;
14122 unsigned int eh_alignment;
14123
14124 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14125 {
14126 if (i->size == 0)
14127 continue;
14128
14129 abfd = i->owner;
14130 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14131 continue;
14132
14133 if (!init_reloc_cookie_for_section (&cookie, info, i))
14134 return -1;
14135
14136 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14137 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14138 bfd_elf_reloc_symbol_deleted_p,
14139 &cookie))
14140 {
14141 eh_changed = 1;
14142 if (i->size != i->rawsize)
14143 changed = 1;
14144 }
14145
14146 fini_reloc_cookie_for_section (&cookie, i);
14147 }
14148
14149 eh_alignment = 1 << o->alignment_power;
14150 /* Skip over zero terminator, and prevent empty sections from
14151 adding alignment padding at the end. */
14152 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14153 if (i->size == 0)
14154 i->flags |= SEC_EXCLUDE;
14155 else if (i->size > 4)
14156 break;
14157 /* The last non-empty eh_frame section doesn't need padding. */
14158 if (i != NULL)
14159 i = i->map_tail.s;
14160 /* Any prior sections must pad the last FDE out to the output
14161 section alignment. Otherwise we might have zero padding
14162 between sections, which would be seen as a terminator. */
14163 for (; i != NULL; i = i->map_tail.s)
14164 if (i->size == 4)
14165 /* All but the last zero terminator should have been removed. */
14166 BFD_FAIL ();
14167 else
14168 {
14169 bfd_size_type size
14170 = (i->size + eh_alignment - 1) & -eh_alignment;
14171 if (i->size != size)
14172 {
14173 i->size = size;
14174 changed = 1;
14175 eh_changed = 1;
14176 }
14177 }
14178 if (eh_changed)
14179 elf_link_hash_traverse (elf_hash_table (info),
14180 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14181 }
14182
14183 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14184 {
14185 const struct elf_backend_data *bed;
14186 asection *s;
14187
14188 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14189 continue;
14190 s = abfd->sections;
14191 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14192 continue;
14193
14194 bed = get_elf_backend_data (abfd);
14195
14196 if (bed->elf_backend_discard_info != NULL)
14197 {
14198 if (!init_reloc_cookie (&cookie, info, abfd))
14199 return -1;
14200
14201 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14202 changed = 1;
14203
14204 fini_reloc_cookie (&cookie, abfd);
14205 }
14206 }
14207
14208 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14209 _bfd_elf_end_eh_frame_parsing (info);
14210
14211 if (info->eh_frame_hdr_type
14212 && !bfd_link_relocatable (info)
14213 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14214 changed = 1;
14215
14216 return changed;
14217 }
14218
14219 bfd_boolean
14220 _bfd_elf_section_already_linked (bfd *abfd,
14221 asection *sec,
14222 struct bfd_link_info *info)
14223 {
14224 flagword flags;
14225 const char *name, *key;
14226 struct bfd_section_already_linked *l;
14227 struct bfd_section_already_linked_hash_entry *already_linked_list;
14228
14229 if (sec->output_section == bfd_abs_section_ptr)
14230 return FALSE;
14231
14232 flags = sec->flags;
14233
14234 /* Return if it isn't a linkonce section. A comdat group section
14235 also has SEC_LINK_ONCE set. */
14236 if ((flags & SEC_LINK_ONCE) == 0)
14237 return FALSE;
14238
14239 /* Don't put group member sections on our list of already linked
14240 sections. They are handled as a group via their group section. */
14241 if (elf_sec_group (sec) != NULL)
14242 return FALSE;
14243
14244 /* For a SHT_GROUP section, use the group signature as the key. */
14245 name = sec->name;
14246 if ((flags & SEC_GROUP) != 0
14247 && elf_next_in_group (sec) != NULL
14248 && elf_group_name (elf_next_in_group (sec)) != NULL)
14249 key = elf_group_name (elf_next_in_group (sec));
14250 else
14251 {
14252 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14253 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14254 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14255 key++;
14256 else
14257 /* Must be a user linkonce section that doesn't follow gcc's
14258 naming convention. In this case we won't be matching
14259 single member groups. */
14260 key = name;
14261 }
14262
14263 already_linked_list = bfd_section_already_linked_table_lookup (key);
14264
14265 for (l = already_linked_list->entry; l != NULL; l = l->next)
14266 {
14267 /* We may have 2 different types of sections on the list: group
14268 sections with a signature of <key> (<key> is some string),
14269 and linkonce sections named .gnu.linkonce.<type>.<key>.
14270 Match like sections. LTO plugin sections are an exception.
14271 They are always named .gnu.linkonce.t.<key> and match either
14272 type of section. */
14273 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14274 && ((flags & SEC_GROUP) != 0
14275 || strcmp (name, l->sec->name) == 0))
14276 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14277 {
14278 /* The section has already been linked. See if we should
14279 issue a warning. */
14280 if (!_bfd_handle_already_linked (sec, l, info))
14281 return FALSE;
14282
14283 if (flags & SEC_GROUP)
14284 {
14285 asection *first = elf_next_in_group (sec);
14286 asection *s = first;
14287
14288 while (s != NULL)
14289 {
14290 s->output_section = bfd_abs_section_ptr;
14291 /* Record which group discards it. */
14292 s->kept_section = l->sec;
14293 s = elf_next_in_group (s);
14294 /* These lists are circular. */
14295 if (s == first)
14296 break;
14297 }
14298 }
14299
14300 return TRUE;
14301 }
14302 }
14303
14304 /* A single member comdat group section may be discarded by a
14305 linkonce section and vice versa. */
14306 if ((flags & SEC_GROUP) != 0)
14307 {
14308 asection *first = elf_next_in_group (sec);
14309
14310 if (first != NULL && elf_next_in_group (first) == first)
14311 /* Check this single member group against linkonce sections. */
14312 for (l = already_linked_list->entry; l != NULL; l = l->next)
14313 if ((l->sec->flags & SEC_GROUP) == 0
14314 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14315 {
14316 first->output_section = bfd_abs_section_ptr;
14317 first->kept_section = l->sec;
14318 sec->output_section = bfd_abs_section_ptr;
14319 break;
14320 }
14321 }
14322 else
14323 /* Check this linkonce section against single member groups. */
14324 for (l = already_linked_list->entry; l != NULL; l = l->next)
14325 if (l->sec->flags & SEC_GROUP)
14326 {
14327 asection *first = elf_next_in_group (l->sec);
14328
14329 if (first != NULL
14330 && elf_next_in_group (first) == first
14331 && bfd_elf_match_symbols_in_sections (first, sec, info))
14332 {
14333 sec->output_section = bfd_abs_section_ptr;
14334 sec->kept_section = first;
14335 break;
14336 }
14337 }
14338
14339 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14340 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14341 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14342 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14343 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14344 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14345 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14346 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14347 The reverse order cannot happen as there is never a bfd with only the
14348 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14349 matter as here were are looking only for cross-bfd sections. */
14350
14351 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14352 for (l = already_linked_list->entry; l != NULL; l = l->next)
14353 if ((l->sec->flags & SEC_GROUP) == 0
14354 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14355 {
14356 if (abfd != l->sec->owner)
14357 sec->output_section = bfd_abs_section_ptr;
14358 break;
14359 }
14360
14361 /* This is the first section with this name. Record it. */
14362 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14363 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14364 return sec->output_section == bfd_abs_section_ptr;
14365 }
14366
14367 bfd_boolean
14368 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14369 {
14370 return sym->st_shndx == SHN_COMMON;
14371 }
14372
14373 unsigned int
14374 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14375 {
14376 return SHN_COMMON;
14377 }
14378
14379 asection *
14380 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14381 {
14382 return bfd_com_section_ptr;
14383 }
14384
14385 bfd_vma
14386 _bfd_elf_default_got_elt_size (bfd *abfd,
14387 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14388 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14389 bfd *ibfd ATTRIBUTE_UNUSED,
14390 unsigned long symndx ATTRIBUTE_UNUSED)
14391 {
14392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14393 return bed->s->arch_size / 8;
14394 }
14395
14396 /* Routines to support the creation of dynamic relocs. */
14397
14398 /* Returns the name of the dynamic reloc section associated with SEC. */
14399
14400 static const char *
14401 get_dynamic_reloc_section_name (bfd * abfd,
14402 asection * sec,
14403 bfd_boolean is_rela)
14404 {
14405 char *name;
14406 const char *old_name = bfd_get_section_name (NULL, sec);
14407 const char *prefix = is_rela ? ".rela" : ".rel";
14408
14409 if (old_name == NULL)
14410 return NULL;
14411
14412 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14413 sprintf (name, "%s%s", prefix, old_name);
14414
14415 return name;
14416 }
14417
14418 /* Returns the dynamic reloc section associated with SEC.
14419 If necessary compute the name of the dynamic reloc section based
14420 on SEC's name (looked up in ABFD's string table) and the setting
14421 of IS_RELA. */
14422
14423 asection *
14424 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14425 asection * sec,
14426 bfd_boolean is_rela)
14427 {
14428 asection * reloc_sec = elf_section_data (sec)->sreloc;
14429
14430 if (reloc_sec == NULL)
14431 {
14432 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14433
14434 if (name != NULL)
14435 {
14436 reloc_sec = bfd_get_linker_section (abfd, name);
14437
14438 if (reloc_sec != NULL)
14439 elf_section_data (sec)->sreloc = reloc_sec;
14440 }
14441 }
14442
14443 return reloc_sec;
14444 }
14445
14446 /* Returns the dynamic reloc section associated with SEC. If the
14447 section does not exist it is created and attached to the DYNOBJ
14448 bfd and stored in the SRELOC field of SEC's elf_section_data
14449 structure.
14450
14451 ALIGNMENT is the alignment for the newly created section and
14452 IS_RELA defines whether the name should be .rela.<SEC's name>
14453 or .rel.<SEC's name>. The section name is looked up in the
14454 string table associated with ABFD. */
14455
14456 asection *
14457 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14458 bfd *dynobj,
14459 unsigned int alignment,
14460 bfd *abfd,
14461 bfd_boolean is_rela)
14462 {
14463 asection * reloc_sec = elf_section_data (sec)->sreloc;
14464
14465 if (reloc_sec == NULL)
14466 {
14467 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14468
14469 if (name == NULL)
14470 return NULL;
14471
14472 reloc_sec = bfd_get_linker_section (dynobj, name);
14473
14474 if (reloc_sec == NULL)
14475 {
14476 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14477 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14478 if ((sec->flags & SEC_ALLOC) != 0)
14479 flags |= SEC_ALLOC | SEC_LOAD;
14480
14481 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14482 if (reloc_sec != NULL)
14483 {
14484 /* _bfd_elf_get_sec_type_attr chooses a section type by
14485 name. Override as it may be wrong, eg. for a user
14486 section named "auto" we'll get ".relauto" which is
14487 seen to be a .rela section. */
14488 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14489 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14490 reloc_sec = NULL;
14491 }
14492 }
14493
14494 elf_section_data (sec)->sreloc = reloc_sec;
14495 }
14496
14497 return reloc_sec;
14498 }
14499
14500 /* Copy the ELF symbol type and other attributes for a linker script
14501 assignment from HSRC to HDEST. Generally this should be treated as
14502 if we found a strong non-dynamic definition for HDEST (except that
14503 ld ignores multiple definition errors). */
14504 void
14505 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14506 struct bfd_link_hash_entry *hdest,
14507 struct bfd_link_hash_entry *hsrc)
14508 {
14509 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14510 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14511 Elf_Internal_Sym isym;
14512
14513 ehdest->type = ehsrc->type;
14514 ehdest->target_internal = ehsrc->target_internal;
14515
14516 isym.st_other = ehsrc->other;
14517 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14518 }
14519
14520 /* Append a RELA relocation REL to section S in BFD. */
14521
14522 void
14523 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14524 {
14525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14526 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14527 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14528 bed->s->swap_reloca_out (abfd, rel, loc);
14529 }
14530
14531 /* Append a REL relocation REL to section S in BFD. */
14532
14533 void
14534 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14535 {
14536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14537 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14538 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14539 bed->s->swap_reloc_out (abfd, rel, loc);
14540 }
14541
14542 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14543
14544 struct bfd_link_hash_entry *
14545 bfd_elf_define_start_stop (struct bfd_link_info *info,
14546 const char *symbol, asection *sec)
14547 {
14548 struct elf_link_hash_entry *h;
14549
14550 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14551 FALSE, FALSE, TRUE);
14552 if (h != NULL
14553 && (h->root.type == bfd_link_hash_undefined
14554 || h->root.type == bfd_link_hash_undefweak
14555 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14556 {
14557 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14558 h->root.type = bfd_link_hash_defined;
14559 h->root.u.def.section = sec;
14560 h->root.u.def.value = 0;
14561 h->def_regular = 1;
14562 h->def_dynamic = 0;
14563 h->start_stop = 1;
14564 h->u2.start_stop_section = sec;
14565 if (symbol[0] == '.')
14566 {
14567 /* .startof. and .sizeof. symbols are local. */
14568 const struct elf_backend_data *bed;
14569 bed = get_elf_backend_data (info->output_bfd);
14570 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14571 }
14572 else
14573 {
14574 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14576 if (was_dynamic)
14577 bfd_elf_link_record_dynamic_symbol (info, h);
14578 }
14579 return &h->root;
14580 }
14581 return NULL;
14582 }