]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
PR26469 UBSAN: elflink.c:8742 shift exponent 6148914691236511722
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #ifdef HAVE_LIMITS_H
36 #include <limits.h>
37 #endif
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 /* This struct is used to pass information to routines called via
43 elf_link_hash_traverse which must return failure. */
44
45 struct elf_info_failed
46 {
47 struct bfd_link_info *info;
48 bfd_boolean failed;
49 };
50
51 /* This structure is used to pass information to
52 _bfd_elf_link_find_version_dependencies. */
53
54 struct elf_find_verdep_info
55 {
56 /* General link information. */
57 struct bfd_link_info *info;
58 /* The number of dependencies. */
59 unsigned int vers;
60 /* Whether we had a failure. */
61 bfd_boolean failed;
62 };
63
64 static bfd_boolean _bfd_elf_fix_symbol_flags
65 (struct elf_link_hash_entry *, struct elf_info_failed *);
66
67 asection *
68 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
69 unsigned long r_symndx,
70 bfd_boolean discard)
71 {
72 if (r_symndx >= cookie->locsymcount
73 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
74 {
75 struct elf_link_hash_entry *h;
76
77 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
78
79 while (h->root.type == bfd_link_hash_indirect
80 || h->root.type == bfd_link_hash_warning)
81 h = (struct elf_link_hash_entry *) h->root.u.i.link;
82
83 if ((h->root.type == bfd_link_hash_defined
84 || h->root.type == bfd_link_hash_defweak)
85 && discarded_section (h->root.u.def.section))
86 return h->root.u.def.section;
87 else
88 return NULL;
89 }
90 else
91 {
92 /* It's not a relocation against a global symbol,
93 but it could be a relocation against a local
94 symbol for a discarded section. */
95 asection *isec;
96 Elf_Internal_Sym *isym;
97
98 /* Need to: get the symbol; get the section. */
99 isym = &cookie->locsyms[r_symndx];
100 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
101 if (isec != NULL
102 && discard ? discarded_section (isec) : 1)
103 return isec;
104 }
105 return NULL;
106 }
107
108 /* Define a symbol in a dynamic linkage section. */
109
110 struct elf_link_hash_entry *
111 _bfd_elf_define_linkage_sym (bfd *abfd,
112 struct bfd_link_info *info,
113 asection *sec,
114 const char *name)
115 {
116 struct elf_link_hash_entry *h;
117 struct bfd_link_hash_entry *bh;
118 const struct elf_backend_data *bed;
119
120 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
121 if (h != NULL)
122 {
123 /* Zap symbol defined in an as-needed lib that wasn't linked.
124 This is a symptom of a larger problem: Absolute symbols
125 defined in shared libraries can't be overridden, because we
126 lose the link to the bfd which is via the symbol section. */
127 h->root.type = bfd_link_hash_new;
128 bh = &h->root;
129 }
130 else
131 bh = NULL;
132
133 bed = get_elf_backend_data (abfd);
134 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
135 sec, 0, NULL, FALSE, bed->collect,
136 &bh))
137 return NULL;
138 h = (struct elf_link_hash_entry *) bh;
139 BFD_ASSERT (h != NULL);
140 h->def_regular = 1;
141 h->non_elf = 0;
142 h->root.linker_def = 1;
143 h->type = STT_OBJECT;
144 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
145 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
146
147 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
148 return h;
149 }
150
151 bfd_boolean
152 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
153 {
154 flagword flags;
155 asection *s;
156 struct elf_link_hash_entry *h;
157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
158 struct elf_link_hash_table *htab = elf_hash_table (info);
159
160 /* This function may be called more than once. */
161 if (htab->sgot != NULL)
162 return TRUE;
163
164 flags = bed->dynamic_sec_flags;
165
166 s = bfd_make_section_anyway_with_flags (abfd,
167 (bed->rela_plts_and_copies_p
168 ? ".rela.got" : ".rel.got"),
169 (bed->dynamic_sec_flags
170 | SEC_READONLY));
171 if (s == NULL
172 || !bfd_set_section_alignment (s, bed->s->log_file_align))
173 return FALSE;
174 htab->srelgot = s;
175
176 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (s, bed->s->log_file_align))
179 return FALSE;
180 htab->sgot = s;
181
182 if (bed->want_got_plt)
183 {
184 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
185 if (s == NULL
186 || !bfd_set_section_alignment (s, bed->s->log_file_align))
187 return FALSE;
188 htab->sgotplt = s;
189 }
190
191 /* The first bit of the global offset table is the header. */
192 s->size += bed->got_header_size;
193
194 if (bed->want_got_sym)
195 {
196 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
197 (or .got.plt) section. We don't do this in the linker script
198 because we don't want to define the symbol if we are not creating
199 a global offset table. */
200 h = _bfd_elf_define_linkage_sym (abfd, info, s,
201 "_GLOBAL_OFFSET_TABLE_");
202 elf_hash_table (info)->hgot = h;
203 if (h == NULL)
204 return FALSE;
205 }
206
207 return TRUE;
208 }
209 \f
210 /* Create a strtab to hold the dynamic symbol names. */
211 static bfd_boolean
212 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
213 {
214 struct elf_link_hash_table *hash_table;
215
216 hash_table = elf_hash_table (info);
217 if (hash_table->dynobj == NULL)
218 {
219 /* We may not set dynobj, an input file holding linker created
220 dynamic sections to abfd, which may be a dynamic object with
221 its own dynamic sections. We need to find a normal input file
222 to hold linker created sections if possible. */
223 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
224 {
225 bfd *ibfd;
226 asection *s;
227 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
228 if ((ibfd->flags
229 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
230 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
231 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
232 && !((s = ibfd->sections) != NULL
233 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
234 {
235 abfd = ibfd;
236 break;
237 }
238 }
239 hash_table->dynobj = abfd;
240 }
241
242 if (hash_table->dynstr == NULL)
243 {
244 hash_table->dynstr = _bfd_elf_strtab_init ();
245 if (hash_table->dynstr == NULL)
246 return FALSE;
247 }
248 return TRUE;
249 }
250
251 /* Create some sections which will be filled in with dynamic linking
252 information. ABFD is an input file which requires dynamic sections
253 to be created. The dynamic sections take up virtual memory space
254 when the final executable is run, so we need to create them before
255 addresses are assigned to the output sections. We work out the
256 actual contents and size of these sections later. */
257
258 bfd_boolean
259 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
260 {
261 flagword flags;
262 asection *s;
263 const struct elf_backend_data *bed;
264 struct elf_link_hash_entry *h;
265
266 if (! is_elf_hash_table (info->hash))
267 return FALSE;
268
269 if (elf_hash_table (info)->dynamic_sections_created)
270 return TRUE;
271
272 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
273 return FALSE;
274
275 abfd = elf_hash_table (info)->dynobj;
276 bed = get_elf_backend_data (abfd);
277
278 flags = bed->dynamic_sec_flags;
279
280 /* A dynamically linked executable has a .interp section, but a
281 shared library does not. */
282 if (bfd_link_executable (info) && !info->nointerp)
283 {
284 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288 }
289
290 /* Create sections to hold version informations. These are removed
291 if they are not needed. */
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || !bfd_set_section_alignment (s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || !bfd_set_section_alignment (s, 1))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || !bfd_set_section_alignment (s, bed->s->log_file_align))
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
311 flags | SEC_READONLY);
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 elf_hash_table (info)->dynsym = s;
316
317 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
318 flags | SEC_READONLY);
319 if (s == NULL)
320 return FALSE;
321
322 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
323 if (s == NULL
324 || !bfd_set_section_alignment (s, bed->s->log_file_align))
325 return FALSE;
326
327 /* The special symbol _DYNAMIC is always set to the start of the
328 .dynamic section. We could set _DYNAMIC in a linker script, but we
329 only want to define it if we are, in fact, creating a .dynamic
330 section. We don't want to define it if there is no .dynamic
331 section, since on some ELF platforms the start up code examines it
332 to decide how to initialize the process. */
333 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
334 elf_hash_table (info)->hdynamic = h;
335 if (h == NULL)
336 return FALSE;
337
338 if (info->emit_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || !bfd_set_section_alignment (s, bed->s->log_file_align))
344 return FALSE;
345 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
346 }
347
348 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
349 {
350 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
351 flags | SEC_READONLY);
352 if (s == NULL
353 || !bfd_set_section_alignment (s, bed->s->log_file_align))
354 return FALSE;
355 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
356 4 32-bit words followed by variable count of 64-bit words, then
357 variable count of 32-bit words. */
358 if (bed->s->arch_size == 64)
359 elf_section_data (s)->this_hdr.sh_entsize = 0;
360 else
361 elf_section_data (s)->this_hdr.sh_entsize = 4;
362 }
363
364 /* Let the backend create the rest of the sections. This lets the
365 backend set the right flags. The backend will normally create
366 the .got and .plt sections. */
367 if (bed->elf_backend_create_dynamic_sections == NULL
368 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
369 return FALSE;
370
371 elf_hash_table (info)->dynamic_sections_created = TRUE;
372
373 return TRUE;
374 }
375
376 /* Create dynamic sections when linking against a dynamic object. */
377
378 bfd_boolean
379 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
380 {
381 flagword flags, pltflags;
382 struct elf_link_hash_entry *h;
383 asection *s;
384 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
385 struct elf_link_hash_table *htab = elf_hash_table (info);
386
387 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
388 .rel[a].bss sections. */
389 flags = bed->dynamic_sec_flags;
390
391 pltflags = flags;
392 if (bed->plt_not_loaded)
393 /* We do not clear SEC_ALLOC here because we still want the OS to
394 allocate space for the section; it's just that there's nothing
395 to read in from the object file. */
396 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
397 else
398 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
399 if (bed->plt_readonly)
400 pltflags |= SEC_READONLY;
401
402 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
403 if (s == NULL
404 || !bfd_set_section_alignment (s, bed->plt_alignment))
405 return FALSE;
406 htab->splt = s;
407
408 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
409 .plt section. */
410 if (bed->want_plt_sym)
411 {
412 h = _bfd_elf_define_linkage_sym (abfd, info, s,
413 "_PROCEDURE_LINKAGE_TABLE_");
414 elf_hash_table (info)->hplt = h;
415 if (h == NULL)
416 return FALSE;
417 }
418
419 s = bfd_make_section_anyway_with_flags (abfd,
420 (bed->rela_plts_and_copies_p
421 ? ".rela.plt" : ".rel.plt"),
422 flags | SEC_READONLY);
423 if (s == NULL
424 || !bfd_set_section_alignment (s, bed->s->log_file_align))
425 return FALSE;
426 htab->srelplt = s;
427
428 if (! _bfd_elf_create_got_section (abfd, info))
429 return FALSE;
430
431 if (bed->want_dynbss)
432 {
433 /* The .dynbss section is a place to put symbols which are defined
434 by dynamic objects, are referenced by regular objects, and are
435 not functions. We must allocate space for them in the process
436 image and use a R_*_COPY reloc to tell the dynamic linker to
437 initialize them at run time. The linker script puts the .dynbss
438 section into the .bss section of the final image. */
439 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
440 SEC_ALLOC | SEC_LINKER_CREATED);
441 if (s == NULL)
442 return FALSE;
443 htab->sdynbss = s;
444
445 if (bed->want_dynrelro)
446 {
447 /* Similarly, but for symbols that were originally in read-only
448 sections. This section doesn't really need to have contents,
449 but make it like other .data.rel.ro sections. */
450 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 flags);
452 if (s == NULL)
453 return FALSE;
454 htab->sdynrelro = s;
455 }
456
457 /* The .rel[a].bss section holds copy relocs. This section is not
458 normally needed. We need to create it here, though, so that the
459 linker will map it to an output section. We can't just create it
460 only if we need it, because we will not know whether we need it
461 until we have seen all the input files, and the first time the
462 main linker code calls BFD after examining all the input files
463 (size_dynamic_sections) the input sections have already been
464 mapped to the output sections. If the section turns out not to
465 be needed, we can discard it later. We will never need this
466 section when generating a shared object, since they do not use
467 copy relocs. */
468 if (bfd_link_executable (info))
469 {
470 s = bfd_make_section_anyway_with_flags (abfd,
471 (bed->rela_plts_and_copies_p
472 ? ".rela.bss" : ".rel.bss"),
473 flags | SEC_READONLY);
474 if (s == NULL
475 || !bfd_set_section_alignment (s, bed->s->log_file_align))
476 return FALSE;
477 htab->srelbss = s;
478
479 if (bed->want_dynrelro)
480 {
481 s = (bfd_make_section_anyway_with_flags
482 (abfd, (bed->rela_plts_and_copies_p
483 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
484 flags | SEC_READONLY));
485 if (s == NULL
486 || !bfd_set_section_alignment (s, bed->s->log_file_align))
487 return FALSE;
488 htab->sreldynrelro = s;
489 }
490 }
491 }
492
493 return TRUE;
494 }
495 \f
496 /* Record a new dynamic symbol. We record the dynamic symbols as we
497 read the input files, since we need to have a list of all of them
498 before we can determine the final sizes of the output sections.
499 Note that we may actually call this function even though we are not
500 going to output any dynamic symbols; in some cases we know that a
501 symbol should be in the dynamic symbol table, but only if there is
502 one. */
503
504 bfd_boolean
505 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
506 struct elf_link_hash_entry *h)
507 {
508 if (h->dynindx == -1)
509 {
510 struct elf_strtab_hash *dynstr;
511 char *p;
512 const char *name;
513 size_t indx;
514
515 if (h->root.type == bfd_link_hash_defined
516 || h->root.type == bfd_link_hash_defweak)
517 {
518 /* An IR symbol should not be made dynamic. */
519 if (h->root.u.def.section != NULL
520 && h->root.u.def.section->owner != NULL
521 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
522 return TRUE;
523 }
524
525 /* XXX: The ABI draft says the linker must turn hidden and
526 internal symbols into STB_LOCAL symbols when producing the
527 DSO. However, if ld.so honors st_other in the dynamic table,
528 this would not be necessary. */
529 switch (ELF_ST_VISIBILITY (h->other))
530 {
531 case STV_INTERNAL:
532 case STV_HIDDEN:
533 if (h->root.type != bfd_link_hash_undefined
534 && h->root.type != bfd_link_hash_undefweak)
535 {
536 h->forced_local = 1;
537 if (!elf_hash_table (info)->is_relocatable_executable)
538 return TRUE;
539 }
540
541 default:
542 break;
543 }
544
545 h->dynindx = elf_hash_table (info)->dynsymcount;
546 ++elf_hash_table (info)->dynsymcount;
547
548 dynstr = elf_hash_table (info)->dynstr;
549 if (dynstr == NULL)
550 {
551 /* Create a strtab to hold the dynamic symbol names. */
552 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
553 if (dynstr == NULL)
554 return FALSE;
555 }
556
557 /* We don't put any version information in the dynamic string
558 table. */
559 name = h->root.root.string;
560 p = strchr (name, ELF_VER_CHR);
561 if (p != NULL)
562 /* We know that the p points into writable memory. In fact,
563 there are only a few symbols that have read-only names, being
564 those like _GLOBAL_OFFSET_TABLE_ that are created specially
565 by the backends. Most symbols will have names pointing into
566 an ELF string table read from a file, or to objalloc memory. */
567 *p = 0;
568
569 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
570
571 if (p != NULL)
572 *p = ELF_VER_CHR;
573
574 if (indx == (size_t) -1)
575 return FALSE;
576 h->dynstr_index = indx;
577 }
578
579 return TRUE;
580 }
581 \f
582 /* Mark a symbol dynamic. */
583
584 static void
585 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
586 struct elf_link_hash_entry *h,
587 Elf_Internal_Sym *sym)
588 {
589 struct bfd_elf_dynamic_list *d = info->dynamic_list;
590
591 /* It may be called more than once on the same H. */
592 if(h->dynamic || bfd_link_relocatable (info))
593 return;
594
595 if ((info->dynamic_data
596 && (h->type == STT_OBJECT
597 || h->type == STT_COMMON
598 || (sym != NULL
599 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
600 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
601 || (d != NULL
602 && h->non_elf
603 && (*d->match) (&d->head, NULL, h->root.root.string)))
604 {
605 h->dynamic = 1;
606 /* NB: If a symbol is made dynamic by --dynamic-list, it has
607 non-IR reference. */
608 h->root.non_ir_ref_dynamic = 1;
609 }
610 }
611
612 /* Record an assignment to a symbol made by a linker script. We need
613 this in case some dynamic object refers to this symbol. */
614
615 bfd_boolean
616 bfd_elf_record_link_assignment (bfd *output_bfd,
617 struct bfd_link_info *info,
618 const char *name,
619 bfd_boolean provide,
620 bfd_boolean hidden)
621 {
622 struct elf_link_hash_entry *h, *hv;
623 struct elf_link_hash_table *htab;
624 const struct elf_backend_data *bed;
625
626 if (!is_elf_hash_table (info->hash))
627 return TRUE;
628
629 htab = elf_hash_table (info);
630 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
631 if (h == NULL)
632 return provide;
633
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
636
637 if (h->versioned == unknown)
638 {
639 /* Set versioned if symbol version is unknown. */
640 char *version = strrchr (name, ELF_VER_CHR);
641 if (version)
642 {
643 if (version > name && version[-1] != ELF_VER_CHR)
644 h->versioned = versioned_hidden;
645 else
646 h->versioned = versioned;
647 }
648 }
649
650 /* Symbols defined in a linker script but not referenced anywhere
651 else will have non_elf set. */
652 if (h->non_elf)
653 {
654 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
655 h->non_elf = 0;
656 }
657
658 switch (h->root.type)
659 {
660 case bfd_link_hash_defined:
661 case bfd_link_hash_defweak:
662 case bfd_link_hash_common:
663 break;
664 case bfd_link_hash_undefweak:
665 case bfd_link_hash_undefined:
666 /* Since we're defining the symbol, don't let it seem to have not
667 been defined. record_dynamic_symbol and size_dynamic_sections
668 may depend on this. */
669 h->root.type = bfd_link_hash_new;
670 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
671 bfd_link_repair_undef_list (&htab->root);
672 break;
673 case bfd_link_hash_new:
674 break;
675 case bfd_link_hash_indirect:
676 /* We had a versioned symbol in a dynamic library. We make the
677 the versioned symbol point to this one. */
678 bed = get_elf_backend_data (output_bfd);
679 hv = h;
680 while (hv->root.type == bfd_link_hash_indirect
681 || hv->root.type == bfd_link_hash_warning)
682 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
683 /* We don't need to update h->root.u since linker will set them
684 later. */
685 h->root.type = bfd_link_hash_undefined;
686 hv->root.type = bfd_link_hash_indirect;
687 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
688 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
689 break;
690 default:
691 BFD_FAIL ();
692 return FALSE;
693 }
694
695 /* If this symbol is being provided by the linker script, and it is
696 currently defined by a dynamic object, but not by a regular
697 object, then mark it as undefined so that the generic linker will
698 force the correct value. */
699 if (provide
700 && h->def_dynamic
701 && !h->def_regular)
702 h->root.type = bfd_link_hash_undefined;
703
704 /* If this symbol is currently defined by a dynamic object, but not
705 by a regular object, then clear out any version information because
706 the symbol will not be associated with the dynamic object any
707 more. */
708 if (h->def_dynamic && !h->def_regular)
709 h->verinfo.verdef = NULL;
710
711 /* Make sure this symbol is not garbage collected. */
712 h->mark = 1;
713
714 h->def_regular = 1;
715
716 if (hidden)
717 {
718 bed = get_elf_backend_data (output_bfd);
719 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
720 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
721 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
722 }
723
724 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
725 and executables. */
726 if (!bfd_link_relocatable (info)
727 && h->dynindx != -1
728 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
729 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
730 h->forced_local = 1;
731
732 if ((h->def_dynamic
733 || h->ref_dynamic
734 || bfd_link_dll (info)
735 || elf_hash_table (info)->is_relocatable_executable)
736 && !h->forced_local
737 && h->dynindx == -1)
738 {
739 if (! bfd_elf_link_record_dynamic_symbol (info, h))
740 return FALSE;
741
742 /* If this is a weak defined symbol, and we know a corresponding
743 real symbol from the same dynamic object, make sure the real
744 symbol is also made into a dynamic symbol. */
745 if (h->is_weakalias)
746 {
747 struct elf_link_hash_entry *def = weakdef (h);
748
749 if (def->dynindx == -1
750 && !bfd_elf_link_record_dynamic_symbol (info, def))
751 return FALSE;
752 }
753 }
754
755 return TRUE;
756 }
757
758 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
759 success, and 2 on a failure caused by attempting to record a symbol
760 in a discarded section, eg. a discarded link-once section symbol. */
761
762 int
763 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
764 bfd *input_bfd,
765 long input_indx)
766 {
767 size_t amt;
768 struct elf_link_local_dynamic_entry *entry;
769 struct elf_link_hash_table *eht;
770 struct elf_strtab_hash *dynstr;
771 size_t dynstr_index;
772 char *name;
773 Elf_External_Sym_Shndx eshndx;
774 char esym[sizeof (Elf64_External_Sym)];
775
776 if (! is_elf_hash_table (info->hash))
777 return 0;
778
779 /* See if the entry exists already. */
780 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
781 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
782 return 1;
783
784 amt = sizeof (*entry);
785 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
786 if (entry == NULL)
787 return 0;
788
789 /* Go find the symbol, so that we can find it's name. */
790 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
791 1, input_indx, &entry->isym, esym, &eshndx))
792 {
793 bfd_release (input_bfd, entry);
794 return 0;
795 }
796
797 if (entry->isym.st_shndx != SHN_UNDEF
798 && entry->isym.st_shndx < SHN_LORESERVE)
799 {
800 asection *s;
801
802 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
803 if (s == NULL || bfd_is_abs_section (s->output_section))
804 {
805 /* We can still bfd_release here as nothing has done another
806 bfd_alloc. We can't do this later in this function. */
807 bfd_release (input_bfd, entry);
808 return 2;
809 }
810 }
811
812 name = (bfd_elf_string_from_elf_section
813 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
814 entry->isym.st_name));
815
816 dynstr = elf_hash_table (info)->dynstr;
817 if (dynstr == NULL)
818 {
819 /* Create a strtab to hold the dynamic symbol names. */
820 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
821 if (dynstr == NULL)
822 return 0;
823 }
824
825 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
826 if (dynstr_index == (size_t) -1)
827 return 0;
828 entry->isym.st_name = dynstr_index;
829
830 eht = elf_hash_table (info);
831
832 entry->next = eht->dynlocal;
833 eht->dynlocal = entry;
834 entry->input_bfd = input_bfd;
835 entry->input_indx = input_indx;
836 eht->dynsymcount++;
837
838 /* Whatever binding the symbol had before, it's now local. */
839 entry->isym.st_info
840 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
841
842 /* The dynindx will be set at the end of size_dynamic_sections. */
843
844 return 1;
845 }
846
847 /* Return the dynindex of a local dynamic symbol. */
848
849 long
850 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
851 bfd *input_bfd,
852 long input_indx)
853 {
854 struct elf_link_local_dynamic_entry *e;
855
856 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
857 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
858 return e->dynindx;
859 return -1;
860 }
861
862 /* This function is used to renumber the dynamic symbols, if some of
863 them are removed because they are marked as local. This is called
864 via elf_link_hash_traverse. */
865
866 static bfd_boolean
867 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
868 void *data)
869 {
870 size_t *count = (size_t *) data;
871
872 if (h->forced_local)
873 return TRUE;
874
875 if (h->dynindx != -1)
876 h->dynindx = ++(*count);
877
878 return TRUE;
879 }
880
881
882 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
883 STB_LOCAL binding. */
884
885 static bfd_boolean
886 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
887 void *data)
888 {
889 size_t *count = (size_t *) data;
890
891 if (!h->forced_local)
892 return TRUE;
893
894 if (h->dynindx != -1)
895 h->dynindx = ++(*count);
896
897 return TRUE;
898 }
899
900 /* Return true if the dynamic symbol for a given section should be
901 omitted when creating a shared library. */
902 bfd_boolean
903 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
904 struct bfd_link_info *info,
905 asection *p)
906 {
907 struct elf_link_hash_table *htab;
908 asection *ip;
909
910 switch (elf_section_data (p)->this_hdr.sh_type)
911 {
912 case SHT_PROGBITS:
913 case SHT_NOBITS:
914 /* If sh_type is yet undecided, assume it could be
915 SHT_PROGBITS/SHT_NOBITS. */
916 case SHT_NULL:
917 htab = elf_hash_table (info);
918 if (htab->text_index_section != NULL)
919 return p != htab->text_index_section && p != htab->data_index_section;
920
921 return (htab->dynobj != NULL
922 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
923 && ip->output_section == p);
924
925 /* There shouldn't be section relative relocations
926 against any other section. */
927 default:
928 return TRUE;
929 }
930 }
931
932 bfd_boolean
933 _bfd_elf_omit_section_dynsym_all
934 (bfd *output_bfd ATTRIBUTE_UNUSED,
935 struct bfd_link_info *info ATTRIBUTE_UNUSED,
936 asection *p ATTRIBUTE_UNUSED)
937 {
938 return TRUE;
939 }
940
941 /* Assign dynsym indices. In a shared library we generate a section
942 symbol for each output section, which come first. Next come symbols
943 which have been forced to local binding. Then all of the back-end
944 allocated local dynamic syms, followed by the rest of the global
945 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
946 (This prevents the early call before elf_backend_init_index_section
947 and strip_excluded_output_sections setting dynindx for sections
948 that are stripped.) */
949
950 static unsigned long
951 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
952 struct bfd_link_info *info,
953 unsigned long *section_sym_count)
954 {
955 unsigned long dynsymcount = 0;
956 bfd_boolean do_sec = section_sym_count != NULL;
957
958 if (bfd_link_pic (info)
959 || elf_hash_table (info)->is_relocatable_executable)
960 {
961 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
962 asection *p;
963 for (p = output_bfd->sections; p ; p = p->next)
964 if ((p->flags & SEC_EXCLUDE) == 0
965 && (p->flags & SEC_ALLOC) != 0
966 && elf_hash_table (info)->dynamic_relocs
967 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
968 {
969 ++dynsymcount;
970 if (do_sec)
971 elf_section_data (p)->dynindx = dynsymcount;
972 }
973 else if (do_sec)
974 elf_section_data (p)->dynindx = 0;
975 }
976 if (do_sec)
977 *section_sym_count = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_local_hash_table_dynsyms,
981 &dynsymcount);
982
983 if (elf_hash_table (info)->dynlocal)
984 {
985 struct elf_link_local_dynamic_entry *p;
986 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
987 p->dynindx = ++dynsymcount;
988 }
989 elf_hash_table (info)->local_dynsymcount = dynsymcount;
990
991 elf_link_hash_traverse (elf_hash_table (info),
992 elf_link_renumber_hash_table_dynsyms,
993 &dynsymcount);
994
995 /* There is an unused NULL entry at the head of the table which we
996 must account for in our count even if the table is empty since it
997 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
998 .dynamic section. */
999 dynsymcount++;
1000
1001 elf_hash_table (info)->dynsymcount = dynsymcount;
1002 return dynsymcount;
1003 }
1004
1005 /* Merge st_other field. */
1006
1007 static void
1008 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1009 const Elf_Internal_Sym *isym, asection *sec,
1010 bfd_boolean definition, bfd_boolean dynamic)
1011 {
1012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1013
1014 /* If st_other has a processor-specific meaning, specific
1015 code might be needed here. */
1016 if (bed->elf_backend_merge_symbol_attribute)
1017 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1018 dynamic);
1019
1020 if (!dynamic)
1021 {
1022 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1023 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1024
1025 /* Keep the most constraining visibility. Leave the remainder
1026 of the st_other field to elf_backend_merge_symbol_attribute. */
1027 if (symvis - 1 < hvis - 1)
1028 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1029 }
1030 else if (definition
1031 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1032 && (sec->flags & SEC_READONLY) == 0)
1033 h->protected_def = 1;
1034 }
1035
1036 /* This function is called when we want to merge a new symbol with an
1037 existing symbol. It handles the various cases which arise when we
1038 find a definition in a dynamic object, or when there is already a
1039 definition in a dynamic object. The new symbol is described by
1040 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1041 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1042 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1043 of an old common symbol. We set OVERRIDE if the old symbol is
1044 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1045 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1046 to change. By OK to change, we mean that we shouldn't warn if the
1047 type or size does change. */
1048
1049 static bfd_boolean
1050 _bfd_elf_merge_symbol (bfd *abfd,
1051 struct bfd_link_info *info,
1052 const char *name,
1053 Elf_Internal_Sym *sym,
1054 asection **psec,
1055 bfd_vma *pvalue,
1056 struct elf_link_hash_entry **sym_hash,
1057 bfd **poldbfd,
1058 bfd_boolean *pold_weak,
1059 unsigned int *pold_alignment,
1060 bfd_boolean *skip,
1061 bfd_boolean *override,
1062 bfd_boolean *type_change_ok,
1063 bfd_boolean *size_change_ok,
1064 bfd_boolean *matched)
1065 {
1066 asection *sec, *oldsec;
1067 struct elf_link_hash_entry *h;
1068 struct elf_link_hash_entry *hi;
1069 struct elf_link_hash_entry *flip;
1070 int bind;
1071 bfd *oldbfd;
1072 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1073 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1074 const struct elf_backend_data *bed;
1075 char *new_version;
1076 bfd_boolean default_sym = *matched;
1077
1078 *skip = FALSE;
1079 *override = FALSE;
1080
1081 sec = *psec;
1082 bind = ELF_ST_BIND (sym->st_info);
1083
1084 if (! bfd_is_und_section (sec))
1085 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1086 else
1087 h = ((struct elf_link_hash_entry *)
1088 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1089 if (h == NULL)
1090 return FALSE;
1091 *sym_hash = h;
1092
1093 bed = get_elf_backend_data (abfd);
1094
1095 /* NEW_VERSION is the symbol version of the new symbol. */
1096 if (h->versioned != unversioned)
1097 {
1098 /* Symbol version is unknown or versioned. */
1099 new_version = strrchr (name, ELF_VER_CHR);
1100 if (new_version)
1101 {
1102 if (h->versioned == unknown)
1103 {
1104 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1105 h->versioned = versioned_hidden;
1106 else
1107 h->versioned = versioned;
1108 }
1109 new_version += 1;
1110 if (new_version[0] == '\0')
1111 new_version = NULL;
1112 }
1113 else
1114 h->versioned = unversioned;
1115 }
1116 else
1117 new_version = NULL;
1118
1119 /* For merging, we only care about real symbols. But we need to make
1120 sure that indirect symbol dynamic flags are updated. */
1121 hi = h;
1122 while (h->root.type == bfd_link_hash_indirect
1123 || h->root.type == bfd_link_hash_warning)
1124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1125
1126 if (!*matched)
1127 {
1128 if (hi == h || h->root.type == bfd_link_hash_new)
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_HIDDEN is true if the existing symbol is only visible
1133 to the symbol with the same symbol version. NEW_HIDDEN is
1134 true if the new symbol is only visible to the symbol with
1135 the same symbol version. */
1136 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1137 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1138 if (!old_hidden && !new_hidden)
1139 /* The new symbol matches the existing symbol if both
1140 aren't hidden. */
1141 *matched = TRUE;
1142 else
1143 {
1144 /* OLD_VERSION is the symbol version of the existing
1145 symbol. */
1146 char *old_version;
1147
1148 if (h->versioned >= versioned)
1149 old_version = strrchr (h->root.root.string,
1150 ELF_VER_CHR) + 1;
1151 else
1152 old_version = NULL;
1153
1154 /* The new symbol matches the existing symbol if they
1155 have the same symbol version. */
1156 *matched = (old_version == new_version
1157 || (old_version != NULL
1158 && new_version != NULL
1159 && strcmp (old_version, new_version) == 0));
1160 }
1161 }
1162 }
1163
1164 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1165 existing symbol. */
1166
1167 oldbfd = NULL;
1168 oldsec = NULL;
1169 switch (h->root.type)
1170 {
1171 default:
1172 break;
1173
1174 case bfd_link_hash_undefined:
1175 case bfd_link_hash_undefweak:
1176 oldbfd = h->root.u.undef.abfd;
1177 break;
1178
1179 case bfd_link_hash_defined:
1180 case bfd_link_hash_defweak:
1181 oldbfd = h->root.u.def.section->owner;
1182 oldsec = h->root.u.def.section;
1183 break;
1184
1185 case bfd_link_hash_common:
1186 oldbfd = h->root.u.c.p->section->owner;
1187 oldsec = h->root.u.c.p->section;
1188 if (pold_alignment)
1189 *pold_alignment = h->root.u.c.p->alignment_power;
1190 break;
1191 }
1192 if (poldbfd && *poldbfd == NULL)
1193 *poldbfd = oldbfd;
1194
1195 /* Differentiate strong and weak symbols. */
1196 newweak = bind == STB_WEAK;
1197 oldweak = (h->root.type == bfd_link_hash_defweak
1198 || h->root.type == bfd_link_hash_undefweak);
1199 if (pold_weak)
1200 *pold_weak = oldweak;
1201
1202 /* We have to check it for every instance since the first few may be
1203 references and not all compilers emit symbol type for undefined
1204 symbols. */
1205 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1206
1207 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1208 respectively, is from a dynamic object. */
1209
1210 newdyn = (abfd->flags & DYNAMIC) != 0;
1211
1212 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1213 syms and defined syms in dynamic libraries respectively.
1214 ref_dynamic on the other hand can be set for a symbol defined in
1215 a dynamic library, and def_dynamic may not be set; When the
1216 definition in a dynamic lib is overridden by a definition in the
1217 executable use of the symbol in the dynamic lib becomes a
1218 reference to the executable symbol. */
1219 if (newdyn)
1220 {
1221 if (bfd_is_und_section (sec))
1222 {
1223 if (bind != STB_WEAK)
1224 {
1225 h->ref_dynamic_nonweak = 1;
1226 hi->ref_dynamic_nonweak = 1;
1227 }
1228 }
1229 else
1230 {
1231 /* Update the existing symbol only if they match. */
1232 if (*matched)
1233 h->dynamic_def = 1;
1234 hi->dynamic_def = 1;
1235 }
1236 }
1237
1238 /* If we just created the symbol, mark it as being an ELF symbol.
1239 Other than that, there is nothing to do--there is no merge issue
1240 with a newly defined symbol--so we just return. */
1241
1242 if (h->root.type == bfd_link_hash_new)
1243 {
1244 h->non_elf = 0;
1245 return TRUE;
1246 }
1247
1248 /* In cases involving weak versioned symbols, we may wind up trying
1249 to merge a symbol with itself. Catch that here, to avoid the
1250 confusion that results if we try to override a symbol with
1251 itself. The additional tests catch cases like
1252 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1253 dynamic object, which we do want to handle here. */
1254 if (abfd == oldbfd
1255 && (newweak || oldweak)
1256 && ((abfd->flags & DYNAMIC) == 0
1257 || !h->def_regular))
1258 return TRUE;
1259
1260 olddyn = FALSE;
1261 if (oldbfd != NULL)
1262 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1263 else if (oldsec != NULL)
1264 {
1265 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1266 indices used by MIPS ELF. */
1267 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1268 }
1269
1270 /* Handle a case where plugin_notice won't be called and thus won't
1271 set the non_ir_ref flags on the first pass over symbols. */
1272 if (oldbfd != NULL
1273 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1274 && newdyn != olddyn)
1275 {
1276 h->root.non_ir_ref_dynamic = TRUE;
1277 hi->root.non_ir_ref_dynamic = TRUE;
1278 }
1279
1280 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1281 respectively, appear to be a definition rather than reference. */
1282
1283 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1284
1285 olddef = (h->root.type != bfd_link_hash_undefined
1286 && h->root.type != bfd_link_hash_undefweak
1287 && h->root.type != bfd_link_hash_common);
1288
1289 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1290 respectively, appear to be a function. */
1291
1292 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1293 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1294
1295 oldfunc = (h->type != STT_NOTYPE
1296 && bed->is_function_type (h->type));
1297
1298 if (!(newfunc && oldfunc)
1299 && ELF_ST_TYPE (sym->st_info) != h->type
1300 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1301 && h->type != STT_NOTYPE
1302 && (newdef || bfd_is_com_section (sec))
1303 && (olddef || h->root.type == bfd_link_hash_common))
1304 {
1305 /* If creating a default indirect symbol ("foo" or "foo@") from
1306 a dynamic versioned definition ("foo@@") skip doing so if
1307 there is an existing regular definition with a different
1308 type. We don't want, for example, a "time" variable in the
1309 executable overriding a "time" function in a shared library. */
1310 if (newdyn
1311 && !olddyn)
1312 {
1313 *skip = TRUE;
1314 return TRUE;
1315 }
1316
1317 /* When adding a symbol from a regular object file after we have
1318 created indirect symbols, undo the indirection and any
1319 dynamic state. */
1320 if (hi != h
1321 && !newdyn
1322 && olddyn)
1323 {
1324 h = hi;
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 h->def_dynamic = 0;
1329 h->dynamic_def = 0;
1330 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1331 {
1332 h->root.type = bfd_link_hash_undefined;
1333 h->root.u.undef.abfd = abfd;
1334 }
1335 else
1336 {
1337 h->root.type = bfd_link_hash_new;
1338 h->root.u.undef.abfd = NULL;
1339 }
1340 return TRUE;
1341 }
1342 }
1343
1344 /* Check TLS symbols. We don't check undefined symbols introduced
1345 by "ld -u" which have no type (and oldbfd NULL), and we don't
1346 check symbols from plugins because they also have no type. */
1347 if (oldbfd != NULL
1348 && (oldbfd->flags & BFD_PLUGIN) == 0
1349 && (abfd->flags & BFD_PLUGIN) == 0
1350 && ELF_ST_TYPE (sym->st_info) != h->type
1351 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1352 {
1353 bfd *ntbfd, *tbfd;
1354 bfd_boolean ntdef, tdef;
1355 asection *ntsec, *tsec;
1356
1357 if (h->type == STT_TLS)
1358 {
1359 ntbfd = abfd;
1360 ntsec = sec;
1361 ntdef = newdef;
1362 tbfd = oldbfd;
1363 tsec = oldsec;
1364 tdef = olddef;
1365 }
1366 else
1367 {
1368 ntbfd = oldbfd;
1369 ntsec = oldsec;
1370 ntdef = olddef;
1371 tbfd = abfd;
1372 tsec = sec;
1373 tdef = newdef;
1374 }
1375
1376 if (tdef && ntdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS definition in %pB section %pA"),
1381 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1382 else if (!tdef && !ntdef)
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS reference in %pB"),
1387 h->root.root.string, tbfd, ntbfd);
1388 else if (tdef)
1389 _bfd_error_handler
1390 /* xgettext:c-format */
1391 (_("%s: TLS definition in %pB section %pA "
1392 "mismatches non-TLS reference in %pB"),
1393 h->root.root.string, tbfd, tsec, ntbfd);
1394 else
1395 _bfd_error_handler
1396 /* xgettext:c-format */
1397 (_("%s: TLS reference in %pB "
1398 "mismatches non-TLS definition in %pB section %pA"),
1399 h->root.root.string, tbfd, ntbfd, ntsec);
1400
1401 bfd_set_error (bfd_error_bad_value);
1402 return FALSE;
1403 }
1404
1405 /* If the old symbol has non-default visibility, we ignore the new
1406 definition from a dynamic object. */
1407 if (newdyn
1408 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1409 && !bfd_is_und_section (sec))
1410 {
1411 *skip = TRUE;
1412 /* Make sure this symbol is dynamic. */
1413 h->ref_dynamic = 1;
1414 hi->ref_dynamic = 1;
1415 /* A protected symbol has external availability. Make sure it is
1416 recorded as dynamic.
1417
1418 FIXME: Should we check type and size for protected symbol? */
1419 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1420 return bfd_elf_link_record_dynamic_symbol (info, h);
1421 else
1422 return TRUE;
1423 }
1424 else if (!newdyn
1425 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1426 && h->def_dynamic)
1427 {
1428 /* If the new symbol with non-default visibility comes from a
1429 relocatable file and the old definition comes from a dynamic
1430 object, we remove the old definition. */
1431 if (hi->root.type == bfd_link_hash_indirect)
1432 {
1433 /* Handle the case where the old dynamic definition is
1434 default versioned. We need to copy the symbol info from
1435 the symbol with default version to the normal one if it
1436 was referenced before. */
1437 if (h->ref_regular)
1438 {
1439 hi->root.type = h->root.type;
1440 h->root.type = bfd_link_hash_indirect;
1441 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1442
1443 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1444 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1445 {
1446 /* If the new symbol is hidden or internal, completely undo
1447 any dynamic link state. */
1448 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1449 h->forced_local = 0;
1450 h->ref_dynamic = 0;
1451 }
1452 else
1453 h->ref_dynamic = 1;
1454
1455 h->def_dynamic = 0;
1456 /* FIXME: Should we check type and size for protected symbol? */
1457 h->size = 0;
1458 h->type = 0;
1459
1460 h = hi;
1461 }
1462 else
1463 h = hi;
1464 }
1465
1466 /* If the old symbol was undefined before, then it will still be
1467 on the undefs list. If the new symbol is undefined or
1468 common, we can't make it bfd_link_hash_new here, because new
1469 undefined or common symbols will be added to the undefs list
1470 by _bfd_generic_link_add_one_symbol. Symbols may not be
1471 added twice to the undefs list. Also, if the new symbol is
1472 undefweak then we don't want to lose the strong undef. */
1473 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1474 {
1475 h->root.type = bfd_link_hash_undefined;
1476 h->root.u.undef.abfd = abfd;
1477 }
1478 else
1479 {
1480 h->root.type = bfd_link_hash_new;
1481 h->root.u.undef.abfd = NULL;
1482 }
1483
1484 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1485 {
1486 /* If the new symbol is hidden or internal, completely undo
1487 any dynamic link state. */
1488 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1489 h->forced_local = 0;
1490 h->ref_dynamic = 0;
1491 }
1492 else
1493 h->ref_dynamic = 1;
1494 h->def_dynamic = 0;
1495 /* FIXME: Should we check type and size for protected symbol? */
1496 h->size = 0;
1497 h->type = 0;
1498 return TRUE;
1499 }
1500
1501 /* If a new weak symbol definition comes from a regular file and the
1502 old symbol comes from a dynamic library, we treat the new one as
1503 strong. Similarly, an old weak symbol definition from a regular
1504 file is treated as strong when the new symbol comes from a dynamic
1505 library. Further, an old weak symbol from a dynamic library is
1506 treated as strong if the new symbol is from a dynamic library.
1507 This reflects the way glibc's ld.so works.
1508
1509 Also allow a weak symbol to override a linker script symbol
1510 defined by an early pass over the script. This is done so the
1511 linker knows the symbol is defined in an object file, for the
1512 DEFINED script function.
1513
1514 Do this before setting *type_change_ok or *size_change_ok so that
1515 we warn properly when dynamic library symbols are overridden. */
1516
1517 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1518 newweak = FALSE;
1519 if (olddef && newdyn)
1520 oldweak = FALSE;
1521
1522 /* Allow changes between different types of function symbol. */
1523 if (newfunc && oldfunc)
1524 *type_change_ok = TRUE;
1525
1526 /* It's OK to change the type if either the existing symbol or the
1527 new symbol is weak. A type change is also OK if the old symbol
1528 is undefined and the new symbol is defined. */
1529
1530 if (oldweak
1531 || newweak
1532 || (newdef
1533 && h->root.type == bfd_link_hash_undefined))
1534 *type_change_ok = TRUE;
1535
1536 /* It's OK to change the size if either the existing symbol or the
1537 new symbol is weak, or if the old symbol is undefined. */
1538
1539 if (*type_change_ok
1540 || h->root.type == bfd_link_hash_undefined)
1541 *size_change_ok = TRUE;
1542
1543 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1544 symbol, respectively, appears to be a common symbol in a dynamic
1545 object. If a symbol appears in an uninitialized section, and is
1546 not weak, and is not a function, then it may be a common symbol
1547 which was resolved when the dynamic object was created. We want
1548 to treat such symbols specially, because they raise special
1549 considerations when setting the symbol size: if the symbol
1550 appears as a common symbol in a regular object, and the size in
1551 the regular object is larger, we must make sure that we use the
1552 larger size. This problematic case can always be avoided in C,
1553 but it must be handled correctly when using Fortran shared
1554 libraries.
1555
1556 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1557 likewise for OLDDYNCOMMON and OLDDEF.
1558
1559 Note that this test is just a heuristic, and that it is quite
1560 possible to have an uninitialized symbol in a shared object which
1561 is really a definition, rather than a common symbol. This could
1562 lead to some minor confusion when the symbol really is a common
1563 symbol in some regular object. However, I think it will be
1564 harmless. */
1565
1566 if (newdyn
1567 && newdef
1568 && !newweak
1569 && (sec->flags & SEC_ALLOC) != 0
1570 && (sec->flags & SEC_LOAD) == 0
1571 && sym->st_size > 0
1572 && !newfunc)
1573 newdyncommon = TRUE;
1574 else
1575 newdyncommon = FALSE;
1576
1577 if (olddyn
1578 && olddef
1579 && h->root.type == bfd_link_hash_defined
1580 && h->def_dynamic
1581 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1582 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1583 && h->size > 0
1584 && !oldfunc)
1585 olddyncommon = TRUE;
1586 else
1587 olddyncommon = FALSE;
1588
1589 /* We now know everything about the old and new symbols. We ask the
1590 backend to check if we can merge them. */
1591 if (bed->merge_symbol != NULL)
1592 {
1593 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1594 return FALSE;
1595 sec = *psec;
1596 }
1597
1598 /* There are multiple definitions of a normal symbol. Skip the
1599 default symbol as well as definition from an IR object. */
1600 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1601 && !default_sym && h->def_regular
1602 && !(oldbfd != NULL
1603 && (oldbfd->flags & BFD_PLUGIN) != 0
1604 && (abfd->flags & BFD_PLUGIN) == 0))
1605 {
1606 /* Handle a multiple definition. */
1607 (*info->callbacks->multiple_definition) (info, &h->root,
1608 abfd, sec, *pvalue);
1609 *skip = TRUE;
1610 return TRUE;
1611 }
1612
1613 /* If both the old and the new symbols look like common symbols in a
1614 dynamic object, set the size of the symbol to the larger of the
1615 two. */
1616
1617 if (olddyncommon
1618 && newdyncommon
1619 && sym->st_size != h->size)
1620 {
1621 /* Since we think we have two common symbols, issue a multiple
1622 common warning if desired. Note that we only warn if the
1623 size is different. If the size is the same, we simply let
1624 the old symbol override the new one as normally happens with
1625 symbols defined in dynamic objects. */
1626
1627 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1628 bfd_link_hash_common, sym->st_size);
1629 if (sym->st_size > h->size)
1630 h->size = sym->st_size;
1631
1632 *size_change_ok = TRUE;
1633 }
1634
1635 /* If we are looking at a dynamic object, and we have found a
1636 definition, we need to see if the symbol was already defined by
1637 some other object. If so, we want to use the existing
1638 definition, and we do not want to report a multiple symbol
1639 definition error; we do this by clobbering *PSEC to be
1640 bfd_und_section_ptr.
1641
1642 We treat a common symbol as a definition if the symbol in the
1643 shared library is a function, since common symbols always
1644 represent variables; this can cause confusion in principle, but
1645 any such confusion would seem to indicate an erroneous program or
1646 shared library. We also permit a common symbol in a regular
1647 object to override a weak symbol in a shared object. */
1648
1649 if (newdyn
1650 && newdef
1651 && (olddef
1652 || (h->root.type == bfd_link_hash_common
1653 && (newweak || newfunc))))
1654 {
1655 *override = TRUE;
1656 newdef = FALSE;
1657 newdyncommon = FALSE;
1658
1659 *psec = sec = bfd_und_section_ptr;
1660 *size_change_ok = TRUE;
1661
1662 /* If we get here when the old symbol is a common symbol, then
1663 we are explicitly letting it override a weak symbol or
1664 function in a dynamic object, and we don't want to warn about
1665 a type change. If the old symbol is a defined symbol, a type
1666 change warning may still be appropriate. */
1667
1668 if (h->root.type == bfd_link_hash_common)
1669 *type_change_ok = TRUE;
1670 }
1671
1672 /* Handle the special case of an old common symbol merging with a
1673 new symbol which looks like a common symbol in a shared object.
1674 We change *PSEC and *PVALUE to make the new symbol look like a
1675 common symbol, and let _bfd_generic_link_add_one_symbol do the
1676 right thing. */
1677
1678 if (newdyncommon
1679 && h->root.type == bfd_link_hash_common)
1680 {
1681 *override = TRUE;
1682 newdef = FALSE;
1683 newdyncommon = FALSE;
1684 *pvalue = sym->st_size;
1685 *psec = sec = bed->common_section (oldsec);
1686 *size_change_ok = TRUE;
1687 }
1688
1689 /* Skip weak definitions of symbols that are already defined. */
1690 if (newdef && olddef && newweak)
1691 {
1692 /* Don't skip new non-IR weak syms. */
1693 if (!(oldbfd != NULL
1694 && (oldbfd->flags & BFD_PLUGIN) != 0
1695 && (abfd->flags & BFD_PLUGIN) == 0))
1696 {
1697 newdef = FALSE;
1698 *skip = TRUE;
1699 }
1700
1701 /* Merge st_other. If the symbol already has a dynamic index,
1702 but visibility says it should not be visible, turn it into a
1703 local symbol. */
1704 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1705 if (h->dynindx != -1)
1706 switch (ELF_ST_VISIBILITY (h->other))
1707 {
1708 case STV_INTERNAL:
1709 case STV_HIDDEN:
1710 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1711 break;
1712 }
1713 }
1714
1715 /* If the old symbol is from a dynamic object, and the new symbol is
1716 a definition which is not from a dynamic object, then the new
1717 symbol overrides the old symbol. Symbols from regular files
1718 always take precedence over symbols from dynamic objects, even if
1719 they are defined after the dynamic object in the link.
1720
1721 As above, we again permit a common symbol in a regular object to
1722 override a definition in a shared object if the shared object
1723 symbol is a function or is weak. */
1724
1725 flip = NULL;
1726 if (!newdyn
1727 && (newdef
1728 || (bfd_is_com_section (sec)
1729 && (oldweak || oldfunc)))
1730 && olddyn
1731 && olddef
1732 && h->def_dynamic)
1733 {
1734 /* Change the hash table entry to undefined, and let
1735 _bfd_generic_link_add_one_symbol do the right thing with the
1736 new definition. */
1737
1738 h->root.type = bfd_link_hash_undefined;
1739 h->root.u.undef.abfd = h->root.u.def.section->owner;
1740 *size_change_ok = TRUE;
1741
1742 olddef = FALSE;
1743 olddyncommon = FALSE;
1744
1745 /* We again permit a type change when a common symbol may be
1746 overriding a function. */
1747
1748 if (bfd_is_com_section (sec))
1749 {
1750 if (oldfunc)
1751 {
1752 /* If a common symbol overrides a function, make sure
1753 that it isn't defined dynamically nor has type
1754 function. */
1755 h->def_dynamic = 0;
1756 h->type = STT_NOTYPE;
1757 }
1758 *type_change_ok = TRUE;
1759 }
1760
1761 if (hi->root.type == bfd_link_hash_indirect)
1762 flip = hi;
1763 else
1764 /* This union may have been set to be non-NULL when this symbol
1765 was seen in a dynamic object. We must force the union to be
1766 NULL, so that it is correct for a regular symbol. */
1767 h->verinfo.vertree = NULL;
1768 }
1769
1770 /* Handle the special case of a new common symbol merging with an
1771 old symbol that looks like it might be a common symbol defined in
1772 a shared object. Note that we have already handled the case in
1773 which a new common symbol should simply override the definition
1774 in the shared library. */
1775
1776 if (! newdyn
1777 && bfd_is_com_section (sec)
1778 && olddyncommon)
1779 {
1780 /* It would be best if we could set the hash table entry to a
1781 common symbol, but we don't know what to use for the section
1782 or the alignment. */
1783 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1784 bfd_link_hash_common, sym->st_size);
1785
1786 /* If the presumed common symbol in the dynamic object is
1787 larger, pretend that the new symbol has its size. */
1788
1789 if (h->size > *pvalue)
1790 *pvalue = h->size;
1791
1792 /* We need to remember the alignment required by the symbol
1793 in the dynamic object. */
1794 BFD_ASSERT (pold_alignment);
1795 *pold_alignment = h->root.u.def.section->alignment_power;
1796
1797 olddef = FALSE;
1798 olddyncommon = FALSE;
1799
1800 h->root.type = bfd_link_hash_undefined;
1801 h->root.u.undef.abfd = h->root.u.def.section->owner;
1802
1803 *size_change_ok = TRUE;
1804 *type_change_ok = TRUE;
1805
1806 if (hi->root.type == bfd_link_hash_indirect)
1807 flip = hi;
1808 else
1809 h->verinfo.vertree = NULL;
1810 }
1811
1812 if (flip != NULL)
1813 {
1814 /* Handle the case where we had a versioned symbol in a dynamic
1815 library and now find a definition in a normal object. In this
1816 case, we make the versioned symbol point to the normal one. */
1817 flip->root.type = h->root.type;
1818 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1819 h->root.type = bfd_link_hash_indirect;
1820 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1821 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1822 if (h->def_dynamic)
1823 {
1824 h->def_dynamic = 0;
1825 flip->ref_dynamic = 1;
1826 }
1827 }
1828
1829 return TRUE;
1830 }
1831
1832 /* This function is called to create an indirect symbol from the
1833 default for the symbol with the default version if needed. The
1834 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1835 set DYNSYM if the new indirect symbol is dynamic. */
1836
1837 static bfd_boolean
1838 _bfd_elf_add_default_symbol (bfd *abfd,
1839 struct bfd_link_info *info,
1840 struct elf_link_hash_entry *h,
1841 const char *name,
1842 Elf_Internal_Sym *sym,
1843 asection *sec,
1844 bfd_vma value,
1845 bfd **poldbfd,
1846 bfd_boolean *dynsym)
1847 {
1848 bfd_boolean type_change_ok;
1849 bfd_boolean size_change_ok;
1850 bfd_boolean skip;
1851 char *shortname;
1852 struct elf_link_hash_entry *hi;
1853 struct bfd_link_hash_entry *bh;
1854 const struct elf_backend_data *bed;
1855 bfd_boolean collect;
1856 bfd_boolean dynamic;
1857 bfd_boolean override;
1858 char *p;
1859 size_t len, shortlen;
1860 asection *tmp_sec;
1861 bfd_boolean matched;
1862
1863 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1864 return TRUE;
1865
1866 /* If this symbol has a version, and it is the default version, we
1867 create an indirect symbol from the default name to the fully
1868 decorated name. This will cause external references which do not
1869 specify a version to be bound to this version of the symbol. */
1870 p = strchr (name, ELF_VER_CHR);
1871 if (h->versioned == unknown)
1872 {
1873 if (p == NULL)
1874 {
1875 h->versioned = unversioned;
1876 return TRUE;
1877 }
1878 else
1879 {
1880 if (p[1] != ELF_VER_CHR)
1881 {
1882 h->versioned = versioned_hidden;
1883 return TRUE;
1884 }
1885 else
1886 h->versioned = versioned;
1887 }
1888 }
1889 else
1890 {
1891 /* PR ld/19073: We may see an unversioned definition after the
1892 default version. */
1893 if (p == NULL)
1894 return TRUE;
1895 }
1896
1897 bed = get_elf_backend_data (abfd);
1898 collect = bed->collect;
1899 dynamic = (abfd->flags & DYNAMIC) != 0;
1900
1901 shortlen = p - name;
1902 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1903 if (shortname == NULL)
1904 return FALSE;
1905 memcpy (shortname, name, shortlen);
1906 shortname[shortlen] = '\0';
1907
1908 /* We are going to create a new symbol. Merge it with any existing
1909 symbol with this name. For the purposes of the merge, act as
1910 though we were defining the symbol we just defined, although we
1911 actually going to define an indirect symbol. */
1912 type_change_ok = FALSE;
1913 size_change_ok = FALSE;
1914 matched = TRUE;
1915 tmp_sec = sec;
1916 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1917 &hi, poldbfd, NULL, NULL, &skip, &override,
1918 &type_change_ok, &size_change_ok, &matched))
1919 return FALSE;
1920
1921 if (skip)
1922 goto nondefault;
1923
1924 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1925 {
1926 /* If the undecorated symbol will have a version added by a
1927 script different to H, then don't indirect to/from the
1928 undecorated symbol. This isn't ideal because we may not yet
1929 have seen symbol versions, if given by a script on the
1930 command line rather than via --version-script. */
1931 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1932 {
1933 bfd_boolean hide;
1934
1935 hi->verinfo.vertree
1936 = bfd_find_version_for_sym (info->version_info,
1937 hi->root.root.string, &hide);
1938 if (hi->verinfo.vertree != NULL && hide)
1939 {
1940 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1941 goto nondefault;
1942 }
1943 }
1944 if (hi->verinfo.vertree != NULL
1945 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1946 goto nondefault;
1947 }
1948
1949 if (! override)
1950 {
1951 /* Add the default symbol if not performing a relocatable link. */
1952 if (! bfd_link_relocatable (info))
1953 {
1954 bh = &hi->root;
1955 if (bh->type == bfd_link_hash_defined
1956 && bh->u.def.section->owner != NULL
1957 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1958 {
1959 /* Mark the previous definition from IR object as
1960 undefined so that the generic linker will override
1961 it. */
1962 bh->type = bfd_link_hash_undefined;
1963 bh->u.undef.abfd = bh->u.def.section->owner;
1964 }
1965 if (! (_bfd_generic_link_add_one_symbol
1966 (info, abfd, shortname, BSF_INDIRECT,
1967 bfd_ind_section_ptr,
1968 0, name, FALSE, collect, &bh)))
1969 return FALSE;
1970 hi = (struct elf_link_hash_entry *) bh;
1971 }
1972 }
1973 else
1974 {
1975 /* In this case the symbol named SHORTNAME is overriding the
1976 indirect symbol we want to add. We were planning on making
1977 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1978 is the name without a version. NAME is the fully versioned
1979 name, and it is the default version.
1980
1981 Overriding means that we already saw a definition for the
1982 symbol SHORTNAME in a regular object, and it is overriding
1983 the symbol defined in the dynamic object.
1984
1985 When this happens, we actually want to change NAME, the
1986 symbol we just added, to refer to SHORTNAME. This will cause
1987 references to NAME in the shared object to become references
1988 to SHORTNAME in the regular object. This is what we expect
1989 when we override a function in a shared object: that the
1990 references in the shared object will be mapped to the
1991 definition in the regular object. */
1992
1993 while (hi->root.type == bfd_link_hash_indirect
1994 || hi->root.type == bfd_link_hash_warning)
1995 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1996
1997 h->root.type = bfd_link_hash_indirect;
1998 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1999 if (h->def_dynamic)
2000 {
2001 h->def_dynamic = 0;
2002 hi->ref_dynamic = 1;
2003 if (hi->ref_regular
2004 || hi->def_regular)
2005 {
2006 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2007 return FALSE;
2008 }
2009 }
2010
2011 /* Now set HI to H, so that the following code will set the
2012 other fields correctly. */
2013 hi = h;
2014 }
2015
2016 /* Check if HI is a warning symbol. */
2017 if (hi->root.type == bfd_link_hash_warning)
2018 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2019
2020 /* If there is a duplicate definition somewhere, then HI may not
2021 point to an indirect symbol. We will have reported an error to
2022 the user in that case. */
2023
2024 if (hi->root.type == bfd_link_hash_indirect)
2025 {
2026 struct elf_link_hash_entry *ht;
2027
2028 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2029 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2030
2031 /* A reference to the SHORTNAME symbol from a dynamic library
2032 will be satisfied by the versioned symbol at runtime. In
2033 effect, we have a reference to the versioned symbol. */
2034 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2035 hi->dynamic_def |= ht->dynamic_def;
2036
2037 /* See if the new flags lead us to realize that the symbol must
2038 be dynamic. */
2039 if (! *dynsym)
2040 {
2041 if (! dynamic)
2042 {
2043 if (! bfd_link_executable (info)
2044 || hi->def_dynamic
2045 || hi->ref_dynamic)
2046 *dynsym = TRUE;
2047 }
2048 else
2049 {
2050 if (hi->ref_regular)
2051 *dynsym = TRUE;
2052 }
2053 }
2054 }
2055
2056 /* We also need to define an indirection from the nondefault version
2057 of the symbol. */
2058
2059 nondefault:
2060 len = strlen (name);
2061 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2062 if (shortname == NULL)
2063 return FALSE;
2064 memcpy (shortname, name, shortlen);
2065 memcpy (shortname + shortlen, p + 1, len - shortlen);
2066
2067 /* Once again, merge with any existing symbol. */
2068 type_change_ok = FALSE;
2069 size_change_ok = FALSE;
2070 tmp_sec = sec;
2071 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2072 &hi, poldbfd, NULL, NULL, &skip, &override,
2073 &type_change_ok, &size_change_ok, &matched))
2074 return FALSE;
2075
2076 if (skip)
2077 return TRUE;
2078
2079 if (override)
2080 {
2081 /* Here SHORTNAME is a versioned name, so we don't expect to see
2082 the type of override we do in the case above unless it is
2083 overridden by a versioned definition. */
2084 if (hi->root.type != bfd_link_hash_defined
2085 && hi->root.type != bfd_link_hash_defweak)
2086 _bfd_error_handler
2087 /* xgettext:c-format */
2088 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2089 abfd, shortname);
2090 }
2091 else
2092 {
2093 bh = &hi->root;
2094 if (! (_bfd_generic_link_add_one_symbol
2095 (info, abfd, shortname, BSF_INDIRECT,
2096 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2097 return FALSE;
2098 hi = (struct elf_link_hash_entry *) bh;
2099
2100 /* If there is a duplicate definition somewhere, then HI may not
2101 point to an indirect symbol. We will have reported an error
2102 to the user in that case. */
2103
2104 if (hi->root.type == bfd_link_hash_indirect)
2105 {
2106 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2107 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2108 hi->dynamic_def |= h->dynamic_def;
2109
2110 /* See if the new flags lead us to realize that the symbol
2111 must be dynamic. */
2112 if (! *dynsym)
2113 {
2114 if (! dynamic)
2115 {
2116 if (! bfd_link_executable (info)
2117 || hi->ref_dynamic)
2118 *dynsym = TRUE;
2119 }
2120 else
2121 {
2122 if (hi->ref_regular)
2123 *dynsym = TRUE;
2124 }
2125 }
2126 }
2127 }
2128
2129 return TRUE;
2130 }
2131 \f
2132 /* This routine is used to export all defined symbols into the dynamic
2133 symbol table. It is called via elf_link_hash_traverse. */
2134
2135 static bfd_boolean
2136 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2137 {
2138 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2139
2140 /* Ignore indirect symbols. These are added by the versioning code. */
2141 if (h->root.type == bfd_link_hash_indirect)
2142 return TRUE;
2143
2144 /* Ignore this if we won't export it. */
2145 if (!eif->info->export_dynamic && !h->dynamic)
2146 return TRUE;
2147
2148 if (h->dynindx == -1
2149 && (h->def_regular || h->ref_regular)
2150 && ! bfd_hide_sym_by_version (eif->info->version_info,
2151 h->root.root.string))
2152 {
2153 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2154 {
2155 eif->failed = TRUE;
2156 return FALSE;
2157 }
2158 }
2159
2160 return TRUE;
2161 }
2162 \f
2163 /* Look through the symbols which are defined in other shared
2164 libraries and referenced here. Update the list of version
2165 dependencies. This will be put into the .gnu.version_r section.
2166 This function is called via elf_link_hash_traverse. */
2167
2168 static bfd_boolean
2169 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2170 void *data)
2171 {
2172 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2173 Elf_Internal_Verneed *t;
2174 Elf_Internal_Vernaux *a;
2175 size_t amt;
2176
2177 /* We only care about symbols defined in shared objects with version
2178 information. */
2179 if (!h->def_dynamic
2180 || h->def_regular
2181 || h->dynindx == -1
2182 || h->verinfo.verdef == NULL
2183 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2184 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2185 return TRUE;
2186
2187 /* See if we already know about this version. */
2188 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2189 t != NULL;
2190 t = t->vn_nextref)
2191 {
2192 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2193 continue;
2194
2195 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2196 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2197 return TRUE;
2198
2199 break;
2200 }
2201
2202 /* This is a new version. Add it to tree we are building. */
2203
2204 if (t == NULL)
2205 {
2206 amt = sizeof *t;
2207 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2208 if (t == NULL)
2209 {
2210 rinfo->failed = TRUE;
2211 return FALSE;
2212 }
2213
2214 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2215 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2216 elf_tdata (rinfo->info->output_bfd)->verref = t;
2217 }
2218
2219 amt = sizeof *a;
2220 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2221 if (a == NULL)
2222 {
2223 rinfo->failed = TRUE;
2224 return FALSE;
2225 }
2226
2227 /* Note that we are copying a string pointer here, and testing it
2228 above. If bfd_elf_string_from_elf_section is ever changed to
2229 discard the string data when low in memory, this will have to be
2230 fixed. */
2231 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2232
2233 a->vna_flags = h->verinfo.verdef->vd_flags;
2234 a->vna_nextptr = t->vn_auxptr;
2235
2236 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2237 ++rinfo->vers;
2238
2239 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2240
2241 t->vn_auxptr = a;
2242
2243 return TRUE;
2244 }
2245
2246 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2247 hidden. Set *T_P to NULL if there is no match. */
2248
2249 static bfd_boolean
2250 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2251 struct elf_link_hash_entry *h,
2252 const char *version_p,
2253 struct bfd_elf_version_tree **t_p,
2254 bfd_boolean *hide)
2255 {
2256 struct bfd_elf_version_tree *t;
2257
2258 /* Look for the version. If we find it, it is no longer weak. */
2259 for (t = info->version_info; t != NULL; t = t->next)
2260 {
2261 if (strcmp (t->name, version_p) == 0)
2262 {
2263 size_t len;
2264 char *alc;
2265 struct bfd_elf_version_expr *d;
2266
2267 len = version_p - h->root.root.string;
2268 alc = (char *) bfd_malloc (len);
2269 if (alc == NULL)
2270 return FALSE;
2271 memcpy (alc, h->root.root.string, len - 1);
2272 alc[len - 1] = '\0';
2273 if (alc[len - 2] == ELF_VER_CHR)
2274 alc[len - 2] = '\0';
2275
2276 h->verinfo.vertree = t;
2277 t->used = TRUE;
2278 d = NULL;
2279
2280 if (t->globals.list != NULL)
2281 d = (*t->match) (&t->globals, NULL, alc);
2282
2283 /* See if there is anything to force this symbol to
2284 local scope. */
2285 if (d == NULL && t->locals.list != NULL)
2286 {
2287 d = (*t->match) (&t->locals, NULL, alc);
2288 if (d != NULL
2289 && h->dynindx != -1
2290 && ! info->export_dynamic)
2291 *hide = TRUE;
2292 }
2293
2294 free (alc);
2295 break;
2296 }
2297 }
2298
2299 *t_p = t;
2300
2301 return TRUE;
2302 }
2303
2304 /* Return TRUE if the symbol H is hidden by version script. */
2305
2306 bfd_boolean
2307 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2308 struct elf_link_hash_entry *h)
2309 {
2310 const char *p;
2311 bfd_boolean hide = FALSE;
2312 const struct elf_backend_data *bed
2313 = get_elf_backend_data (info->output_bfd);
2314
2315 /* Version script only hides symbols defined in regular objects. */
2316 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2317 return TRUE;
2318
2319 p = strchr (h->root.root.string, ELF_VER_CHR);
2320 if (p != NULL && h->verinfo.vertree == NULL)
2321 {
2322 struct bfd_elf_version_tree *t;
2323
2324 ++p;
2325 if (*p == ELF_VER_CHR)
2326 ++p;
2327
2328 if (*p != '\0'
2329 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2330 && hide)
2331 {
2332 if (hide)
2333 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2334 return TRUE;
2335 }
2336 }
2337
2338 /* If we don't have a version for this symbol, see if we can find
2339 something. */
2340 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2341 {
2342 h->verinfo.vertree
2343 = bfd_find_version_for_sym (info->version_info,
2344 h->root.root.string, &hide);
2345 if (h->verinfo.vertree != NULL && hide)
2346 {
2347 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2348 return TRUE;
2349 }
2350 }
2351
2352 return FALSE;
2353 }
2354
2355 /* Figure out appropriate versions for all the symbols. We may not
2356 have the version number script until we have read all of the input
2357 files, so until that point we don't know which symbols should be
2358 local. This function is called via elf_link_hash_traverse. */
2359
2360 static bfd_boolean
2361 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2362 {
2363 struct elf_info_failed *sinfo;
2364 struct bfd_link_info *info;
2365 const struct elf_backend_data *bed;
2366 struct elf_info_failed eif;
2367 char *p;
2368 bfd_boolean hide;
2369
2370 sinfo = (struct elf_info_failed *) data;
2371 info = sinfo->info;
2372
2373 /* Fix the symbol flags. */
2374 eif.failed = FALSE;
2375 eif.info = info;
2376 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2377 {
2378 if (eif.failed)
2379 sinfo->failed = TRUE;
2380 return FALSE;
2381 }
2382
2383 bed = get_elf_backend_data (info->output_bfd);
2384
2385 /* We only need version numbers for symbols defined in regular
2386 objects. */
2387 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2388 {
2389 /* Hide symbols defined in discarded input sections. */
2390 if ((h->root.type == bfd_link_hash_defined
2391 || h->root.type == bfd_link_hash_defweak)
2392 && discarded_section (h->root.u.def.section))
2393 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2394 return TRUE;
2395 }
2396
2397 hide = FALSE;
2398 p = strchr (h->root.root.string, ELF_VER_CHR);
2399 if (p != NULL && h->verinfo.vertree == NULL)
2400 {
2401 struct bfd_elf_version_tree *t;
2402
2403 ++p;
2404 if (*p == ELF_VER_CHR)
2405 ++p;
2406
2407 /* If there is no version string, we can just return out. */
2408 if (*p == '\0')
2409 return TRUE;
2410
2411 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2412 {
2413 sinfo->failed = TRUE;
2414 return FALSE;
2415 }
2416
2417 if (hide)
2418 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2419
2420 /* If we are building an application, we need to create a
2421 version node for this version. */
2422 if (t == NULL && bfd_link_executable (info))
2423 {
2424 struct bfd_elf_version_tree **pp;
2425 int version_index;
2426
2427 /* If we aren't going to export this symbol, we don't need
2428 to worry about it. */
2429 if (h->dynindx == -1)
2430 return TRUE;
2431
2432 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2433 sizeof *t);
2434 if (t == NULL)
2435 {
2436 sinfo->failed = TRUE;
2437 return FALSE;
2438 }
2439
2440 t->name = p;
2441 t->name_indx = (unsigned int) -1;
2442 t->used = TRUE;
2443
2444 version_index = 1;
2445 /* Don't count anonymous version tag. */
2446 if (sinfo->info->version_info != NULL
2447 && sinfo->info->version_info->vernum == 0)
2448 version_index = 0;
2449 for (pp = &sinfo->info->version_info;
2450 *pp != NULL;
2451 pp = &(*pp)->next)
2452 ++version_index;
2453 t->vernum = version_index;
2454
2455 *pp = t;
2456
2457 h->verinfo.vertree = t;
2458 }
2459 else if (t == NULL)
2460 {
2461 /* We could not find the version for a symbol when
2462 generating a shared archive. Return an error. */
2463 _bfd_error_handler
2464 /* xgettext:c-format */
2465 (_("%pB: version node not found for symbol %s"),
2466 info->output_bfd, h->root.root.string);
2467 bfd_set_error (bfd_error_bad_value);
2468 sinfo->failed = TRUE;
2469 return FALSE;
2470 }
2471 }
2472
2473 /* If we don't have a version for this symbol, see if we can find
2474 something. */
2475 if (!hide
2476 && h->verinfo.vertree == NULL
2477 && sinfo->info->version_info != NULL)
2478 {
2479 h->verinfo.vertree
2480 = bfd_find_version_for_sym (sinfo->info->version_info,
2481 h->root.root.string, &hide);
2482 if (h->verinfo.vertree != NULL && hide)
2483 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2484 }
2485
2486 return TRUE;
2487 }
2488 \f
2489 /* Read and swap the relocs from the section indicated by SHDR. This
2490 may be either a REL or a RELA section. The relocations are
2491 translated into RELA relocations and stored in INTERNAL_RELOCS,
2492 which should have already been allocated to contain enough space.
2493 The EXTERNAL_RELOCS are a buffer where the external form of the
2494 relocations should be stored.
2495
2496 Returns FALSE if something goes wrong. */
2497
2498 static bfd_boolean
2499 elf_link_read_relocs_from_section (bfd *abfd,
2500 asection *sec,
2501 Elf_Internal_Shdr *shdr,
2502 void *external_relocs,
2503 Elf_Internal_Rela *internal_relocs)
2504 {
2505 const struct elf_backend_data *bed;
2506 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2507 const bfd_byte *erela;
2508 const bfd_byte *erelaend;
2509 Elf_Internal_Rela *irela;
2510 Elf_Internal_Shdr *symtab_hdr;
2511 size_t nsyms;
2512
2513 /* Position ourselves at the start of the section. */
2514 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2515 return FALSE;
2516
2517 /* Read the relocations. */
2518 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2519 return FALSE;
2520
2521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2522 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2523
2524 bed = get_elf_backend_data (abfd);
2525
2526 /* Convert the external relocations to the internal format. */
2527 if (shdr->sh_entsize == bed->s->sizeof_rel)
2528 swap_in = bed->s->swap_reloc_in;
2529 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2530 swap_in = bed->s->swap_reloca_in;
2531 else
2532 {
2533 bfd_set_error (bfd_error_wrong_format);
2534 return FALSE;
2535 }
2536
2537 erela = (const bfd_byte *) external_relocs;
2538 /* Setting erelaend like this and comparing with <= handles case of
2539 a fuzzed object with sh_size not a multiple of sh_entsize. */
2540 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2541 irela = internal_relocs;
2542 while (erela <= erelaend)
2543 {
2544 bfd_vma r_symndx;
2545
2546 (*swap_in) (abfd, erela, irela);
2547 r_symndx = ELF32_R_SYM (irela->r_info);
2548 if (bed->s->arch_size == 64)
2549 r_symndx >>= 24;
2550 if (nsyms > 0)
2551 {
2552 if ((size_t) r_symndx >= nsyms)
2553 {
2554 _bfd_error_handler
2555 /* xgettext:c-format */
2556 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2557 " for offset %#" PRIx64 " in section `%pA'"),
2558 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2559 (uint64_t) irela->r_offset, sec);
2560 bfd_set_error (bfd_error_bad_value);
2561 return FALSE;
2562 }
2563 }
2564 else if (r_symndx != STN_UNDEF)
2565 {
2566 _bfd_error_handler
2567 /* xgettext:c-format */
2568 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2569 " for offset %#" PRIx64 " in section `%pA'"
2570 " when the object file has no symbol table"),
2571 abfd, (uint64_t) r_symndx,
2572 (uint64_t) irela->r_offset, sec);
2573 bfd_set_error (bfd_error_bad_value);
2574 return FALSE;
2575 }
2576 irela += bed->s->int_rels_per_ext_rel;
2577 erela += shdr->sh_entsize;
2578 }
2579
2580 return TRUE;
2581 }
2582
2583 /* Read and swap the relocs for a section O. They may have been
2584 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2585 not NULL, they are used as buffers to read into. They are known to
2586 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2587 the return value is allocated using either malloc or bfd_alloc,
2588 according to the KEEP_MEMORY argument. If O has two relocation
2589 sections (both REL and RELA relocations), then the REL_HDR
2590 relocations will appear first in INTERNAL_RELOCS, followed by the
2591 RELA_HDR relocations. */
2592
2593 Elf_Internal_Rela *
2594 _bfd_elf_link_read_relocs (bfd *abfd,
2595 asection *o,
2596 void *external_relocs,
2597 Elf_Internal_Rela *internal_relocs,
2598 bfd_boolean keep_memory)
2599 {
2600 void *alloc1 = NULL;
2601 Elf_Internal_Rela *alloc2 = NULL;
2602 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2603 struct bfd_elf_section_data *esdo = elf_section_data (o);
2604 Elf_Internal_Rela *internal_rela_relocs;
2605
2606 if (esdo->relocs != NULL)
2607 return esdo->relocs;
2608
2609 if (o->reloc_count == 0)
2610 return NULL;
2611
2612 if (internal_relocs == NULL)
2613 {
2614 bfd_size_type size;
2615
2616 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2617 if (keep_memory)
2618 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2619 else
2620 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2621 if (internal_relocs == NULL)
2622 goto error_return;
2623 }
2624
2625 if (external_relocs == NULL)
2626 {
2627 bfd_size_type size = 0;
2628
2629 if (esdo->rel.hdr)
2630 size += esdo->rel.hdr->sh_size;
2631 if (esdo->rela.hdr)
2632 size += esdo->rela.hdr->sh_size;
2633
2634 alloc1 = bfd_malloc (size);
2635 if (alloc1 == NULL)
2636 goto error_return;
2637 external_relocs = alloc1;
2638 }
2639
2640 internal_rela_relocs = internal_relocs;
2641 if (esdo->rel.hdr)
2642 {
2643 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2644 external_relocs,
2645 internal_relocs))
2646 goto error_return;
2647 external_relocs = (((bfd_byte *) external_relocs)
2648 + esdo->rel.hdr->sh_size);
2649 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2650 * bed->s->int_rels_per_ext_rel);
2651 }
2652
2653 if (esdo->rela.hdr
2654 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2655 external_relocs,
2656 internal_rela_relocs)))
2657 goto error_return;
2658
2659 /* Cache the results for next time, if we can. */
2660 if (keep_memory)
2661 esdo->relocs = internal_relocs;
2662
2663 free (alloc1);
2664
2665 /* Don't free alloc2, since if it was allocated we are passing it
2666 back (under the name of internal_relocs). */
2667
2668 return internal_relocs;
2669
2670 error_return:
2671 free (alloc1);
2672 if (alloc2 != NULL)
2673 {
2674 if (keep_memory)
2675 bfd_release (abfd, alloc2);
2676 else
2677 free (alloc2);
2678 }
2679 return NULL;
2680 }
2681
2682 /* Compute the size of, and allocate space for, REL_HDR which is the
2683 section header for a section containing relocations for O. */
2684
2685 static bfd_boolean
2686 _bfd_elf_link_size_reloc_section (bfd *abfd,
2687 struct bfd_elf_section_reloc_data *reldata)
2688 {
2689 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2690
2691 /* That allows us to calculate the size of the section. */
2692 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2693
2694 /* The contents field must last into write_object_contents, so we
2695 allocate it with bfd_alloc rather than malloc. Also since we
2696 cannot be sure that the contents will actually be filled in,
2697 we zero the allocated space. */
2698 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2699 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2700 return FALSE;
2701
2702 if (reldata->hashes == NULL && reldata->count)
2703 {
2704 struct elf_link_hash_entry **p;
2705
2706 p = ((struct elf_link_hash_entry **)
2707 bfd_zmalloc (reldata->count * sizeof (*p)));
2708 if (p == NULL)
2709 return FALSE;
2710
2711 reldata->hashes = p;
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2718 originated from the section given by INPUT_REL_HDR) to the
2719 OUTPUT_BFD. */
2720
2721 bfd_boolean
2722 _bfd_elf_link_output_relocs (bfd *output_bfd,
2723 asection *input_section,
2724 Elf_Internal_Shdr *input_rel_hdr,
2725 Elf_Internal_Rela *internal_relocs,
2726 struct elf_link_hash_entry **rel_hash
2727 ATTRIBUTE_UNUSED)
2728 {
2729 Elf_Internal_Rela *irela;
2730 Elf_Internal_Rela *irelaend;
2731 bfd_byte *erel;
2732 struct bfd_elf_section_reloc_data *output_reldata;
2733 asection *output_section;
2734 const struct elf_backend_data *bed;
2735 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2736 struct bfd_elf_section_data *esdo;
2737
2738 output_section = input_section->output_section;
2739
2740 bed = get_elf_backend_data (output_bfd);
2741 esdo = elf_section_data (output_section);
2742 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2743 {
2744 output_reldata = &esdo->rel;
2745 swap_out = bed->s->swap_reloc_out;
2746 }
2747 else if (esdo->rela.hdr
2748 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2749 {
2750 output_reldata = &esdo->rela;
2751 swap_out = bed->s->swap_reloca_out;
2752 }
2753 else
2754 {
2755 _bfd_error_handler
2756 /* xgettext:c-format */
2757 (_("%pB: relocation size mismatch in %pB section %pA"),
2758 output_bfd, input_section->owner, input_section);
2759 bfd_set_error (bfd_error_wrong_format);
2760 return FALSE;
2761 }
2762
2763 erel = output_reldata->hdr->contents;
2764 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2765 irela = internal_relocs;
2766 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2767 * bed->s->int_rels_per_ext_rel);
2768 while (irela < irelaend)
2769 {
2770 (*swap_out) (output_bfd, irela, erel);
2771 irela += bed->s->int_rels_per_ext_rel;
2772 erel += input_rel_hdr->sh_entsize;
2773 }
2774
2775 /* Bump the counter, so that we know where to add the next set of
2776 relocations. */
2777 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2778
2779 return TRUE;
2780 }
2781 \f
2782 /* Make weak undefined symbols in PIE dynamic. */
2783
2784 bfd_boolean
2785 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2786 struct elf_link_hash_entry *h)
2787 {
2788 if (bfd_link_pie (info)
2789 && h->dynindx == -1
2790 && h->root.type == bfd_link_hash_undefweak)
2791 return bfd_elf_link_record_dynamic_symbol (info, h);
2792
2793 return TRUE;
2794 }
2795
2796 /* Fix up the flags for a symbol. This handles various cases which
2797 can only be fixed after all the input files are seen. This is
2798 currently called by both adjust_dynamic_symbol and
2799 assign_sym_version, which is unnecessary but perhaps more robust in
2800 the face of future changes. */
2801
2802 static bfd_boolean
2803 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2804 struct elf_info_failed *eif)
2805 {
2806 const struct elf_backend_data *bed;
2807
2808 /* If this symbol was mentioned in a non-ELF file, try to set
2809 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2810 permit a non-ELF file to correctly refer to a symbol defined in
2811 an ELF dynamic object. */
2812 if (h->non_elf)
2813 {
2814 while (h->root.type == bfd_link_hash_indirect)
2815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2816
2817 if (h->root.type != bfd_link_hash_defined
2818 && h->root.type != bfd_link_hash_defweak)
2819 {
2820 h->ref_regular = 1;
2821 h->ref_regular_nonweak = 1;
2822 }
2823 else
2824 {
2825 if (h->root.u.def.section->owner != NULL
2826 && (bfd_get_flavour (h->root.u.def.section->owner)
2827 == bfd_target_elf_flavour))
2828 {
2829 h->ref_regular = 1;
2830 h->ref_regular_nonweak = 1;
2831 }
2832 else
2833 h->def_regular = 1;
2834 }
2835
2836 if (h->dynindx == -1
2837 && (h->def_dynamic
2838 || h->ref_dynamic))
2839 {
2840 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2841 {
2842 eif->failed = TRUE;
2843 return FALSE;
2844 }
2845 }
2846 }
2847 else
2848 {
2849 /* Unfortunately, NON_ELF is only correct if the symbol
2850 was first seen in a non-ELF file. Fortunately, if the symbol
2851 was first seen in an ELF file, we're probably OK unless the
2852 symbol was defined in a non-ELF file. Catch that case here.
2853 FIXME: We're still in trouble if the symbol was first seen in
2854 a dynamic object, and then later in a non-ELF regular object. */
2855 if ((h->root.type == bfd_link_hash_defined
2856 || h->root.type == bfd_link_hash_defweak)
2857 && !h->def_regular
2858 && (h->root.u.def.section->owner != NULL
2859 ? (bfd_get_flavour (h->root.u.def.section->owner)
2860 != bfd_target_elf_flavour)
2861 : (bfd_is_abs_section (h->root.u.def.section)
2862 && !h->def_dynamic)))
2863 h->def_regular = 1;
2864 }
2865
2866 /* Backend specific symbol fixup. */
2867 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2868 if (bed->elf_backend_fixup_symbol
2869 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2870 return FALSE;
2871
2872 /* If this is a final link, and the symbol was defined as a common
2873 symbol in a regular object file, and there was no definition in
2874 any dynamic object, then the linker will have allocated space for
2875 the symbol in a common section but the DEF_REGULAR
2876 flag will not have been set. */
2877 if (h->root.type == bfd_link_hash_defined
2878 && !h->def_regular
2879 && h->ref_regular
2880 && !h->def_dynamic
2881 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2882 h->def_regular = 1;
2883
2884 /* Symbols defined in discarded sections shouldn't be dynamic. */
2885 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2886 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2887
2888 /* If a weak undefined symbol has non-default visibility, we also
2889 hide it from the dynamic linker. */
2890 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2891 && h->root.type == bfd_link_hash_undefweak)
2892 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2893
2894 /* A hidden versioned symbol in executable should be forced local if
2895 it is is locally defined, not referenced by shared library and not
2896 exported. */
2897 else if (bfd_link_executable (eif->info)
2898 && h->versioned == versioned_hidden
2899 && !eif->info->export_dynamic
2900 && !h->dynamic
2901 && !h->ref_dynamic
2902 && h->def_regular)
2903 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2904
2905 /* If -Bsymbolic was used (which means to bind references to global
2906 symbols to the definition within the shared object), and this
2907 symbol was defined in a regular object, then it actually doesn't
2908 need a PLT entry. Likewise, if the symbol has non-default
2909 visibility. If the symbol has hidden or internal visibility, we
2910 will force it local. */
2911 else if (h->needs_plt
2912 && bfd_link_pic (eif->info)
2913 && is_elf_hash_table (eif->info->hash)
2914 && (SYMBOLIC_BIND (eif->info, h)
2915 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2916 && h->def_regular)
2917 {
2918 bfd_boolean force_local;
2919
2920 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2921 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2922 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2923 }
2924
2925 /* If this is a weak defined symbol in a dynamic object, and we know
2926 the real definition in the dynamic object, copy interesting flags
2927 over to the real definition. */
2928 if (h->is_weakalias)
2929 {
2930 struct elf_link_hash_entry *def = weakdef (h);
2931
2932 /* If the real definition is defined by a regular object file,
2933 don't do anything special. See the longer description in
2934 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2935 bfd_link_hash_defined as it was when put on the alias list
2936 then it must have originally been a versioned symbol (for
2937 which a non-versioned indirect symbol is created) and later
2938 a definition for the non-versioned symbol is found. In that
2939 case the indirection is flipped with the versioned symbol
2940 becoming an indirect pointing at the non-versioned symbol.
2941 Thus, not an alias any more. */
2942 if (def->def_regular
2943 || def->root.type != bfd_link_hash_defined)
2944 {
2945 h = def;
2946 while ((h = h->u.alias) != def)
2947 h->is_weakalias = 0;
2948 }
2949 else
2950 {
2951 while (h->root.type == bfd_link_hash_indirect)
2952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2953 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2954 || h->root.type == bfd_link_hash_defweak);
2955 BFD_ASSERT (def->def_dynamic);
2956 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2957 }
2958 }
2959
2960 return TRUE;
2961 }
2962
2963 /* Make the backend pick a good value for a dynamic symbol. This is
2964 called via elf_link_hash_traverse, and also calls itself
2965 recursively. */
2966
2967 static bfd_boolean
2968 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2969 {
2970 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2971 struct elf_link_hash_table *htab;
2972 const struct elf_backend_data *bed;
2973
2974 if (! is_elf_hash_table (eif->info->hash))
2975 return FALSE;
2976
2977 /* Ignore indirect symbols. These are added by the versioning code. */
2978 if (h->root.type == bfd_link_hash_indirect)
2979 return TRUE;
2980
2981 /* Fix the symbol flags. */
2982 if (! _bfd_elf_fix_symbol_flags (h, eif))
2983 return FALSE;
2984
2985 htab = elf_hash_table (eif->info);
2986 bed = get_elf_backend_data (htab->dynobj);
2987
2988 if (h->root.type == bfd_link_hash_undefweak)
2989 {
2990 if (eif->info->dynamic_undefined_weak == 0)
2991 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2992 else if (eif->info->dynamic_undefined_weak > 0
2993 && h->ref_regular
2994 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2995 && !bfd_hide_sym_by_version (eif->info->version_info,
2996 h->root.root.string))
2997 {
2998 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2999 {
3000 eif->failed = TRUE;
3001 return FALSE;
3002 }
3003 }
3004 }
3005
3006 /* If this symbol does not require a PLT entry, and it is not
3007 defined by a dynamic object, or is not referenced by a regular
3008 object, ignore it. We do have to handle a weak defined symbol,
3009 even if no regular object refers to it, if we decided to add it
3010 to the dynamic symbol table. FIXME: Do we normally need to worry
3011 about symbols which are defined by one dynamic object and
3012 referenced by another one? */
3013 if (!h->needs_plt
3014 && h->type != STT_GNU_IFUNC
3015 && (h->def_regular
3016 || !h->def_dynamic
3017 || (!h->ref_regular
3018 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3019 {
3020 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3021 return TRUE;
3022 }
3023
3024 /* If we've already adjusted this symbol, don't do it again. This
3025 can happen via a recursive call. */
3026 if (h->dynamic_adjusted)
3027 return TRUE;
3028
3029 /* Don't look at this symbol again. Note that we must set this
3030 after checking the above conditions, because we may look at a
3031 symbol once, decide not to do anything, and then get called
3032 recursively later after REF_REGULAR is set below. */
3033 h->dynamic_adjusted = 1;
3034
3035 /* If this is a weak definition, and we know a real definition, and
3036 the real symbol is not itself defined by a regular object file,
3037 then get a good value for the real definition. We handle the
3038 real symbol first, for the convenience of the backend routine.
3039
3040 Note that there is a confusing case here. If the real definition
3041 is defined by a regular object file, we don't get the real symbol
3042 from the dynamic object, but we do get the weak symbol. If the
3043 processor backend uses a COPY reloc, then if some routine in the
3044 dynamic object changes the real symbol, we will not see that
3045 change in the corresponding weak symbol. This is the way other
3046 ELF linkers work as well, and seems to be a result of the shared
3047 library model.
3048
3049 I will clarify this issue. Most SVR4 shared libraries define the
3050 variable _timezone and define timezone as a weak synonym. The
3051 tzset call changes _timezone. If you write
3052 extern int timezone;
3053 int _timezone = 5;
3054 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3055 you might expect that, since timezone is a synonym for _timezone,
3056 the same number will print both times. However, if the processor
3057 backend uses a COPY reloc, then actually timezone will be copied
3058 into your process image, and, since you define _timezone
3059 yourself, _timezone will not. Thus timezone and _timezone will
3060 wind up at different memory locations. The tzset call will set
3061 _timezone, leaving timezone unchanged. */
3062
3063 if (h->is_weakalias)
3064 {
3065 struct elf_link_hash_entry *def = weakdef (h);
3066
3067 /* If we get to this point, there is an implicit reference to
3068 the alias by a regular object file via the weak symbol H. */
3069 def->ref_regular = 1;
3070
3071 /* Ensure that the backend adjust_dynamic_symbol function sees
3072 the strong alias before H by recursively calling ourselves. */
3073 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3074 return FALSE;
3075 }
3076
3077 /* If a symbol has no type and no size and does not require a PLT
3078 entry, then we are probably about to do the wrong thing here: we
3079 are probably going to create a COPY reloc for an empty object.
3080 This case can arise when a shared object is built with assembly
3081 code, and the assembly code fails to set the symbol type. */
3082 if (h->size == 0
3083 && h->type == STT_NOTYPE
3084 && !h->needs_plt)
3085 _bfd_error_handler
3086 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3087 h->root.root.string);
3088
3089 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3090 {
3091 eif->failed = TRUE;
3092 return FALSE;
3093 }
3094
3095 return TRUE;
3096 }
3097
3098 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3099 DYNBSS. */
3100
3101 bfd_boolean
3102 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3103 struct elf_link_hash_entry *h,
3104 asection *dynbss)
3105 {
3106 unsigned int power_of_two;
3107 bfd_vma mask;
3108 asection *sec = h->root.u.def.section;
3109
3110 /* The section alignment of the definition is the maximum alignment
3111 requirement of symbols defined in the section. Since we don't
3112 know the symbol alignment requirement, we start with the
3113 maximum alignment and check low bits of the symbol address
3114 for the minimum alignment. */
3115 power_of_two = bfd_section_alignment (sec);
3116 mask = ((bfd_vma) 1 << power_of_two) - 1;
3117 while ((h->root.u.def.value & mask) != 0)
3118 {
3119 mask >>= 1;
3120 --power_of_two;
3121 }
3122
3123 if (power_of_two > bfd_section_alignment (dynbss))
3124 {
3125 /* Adjust the section alignment if needed. */
3126 if (!bfd_set_section_alignment (dynbss, power_of_two))
3127 return FALSE;
3128 }
3129
3130 /* We make sure that the symbol will be aligned properly. */
3131 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3132
3133 /* Define the symbol as being at this point in DYNBSS. */
3134 h->root.u.def.section = dynbss;
3135 h->root.u.def.value = dynbss->size;
3136
3137 /* Increment the size of DYNBSS to make room for the symbol. */
3138 dynbss->size += h->size;
3139
3140 /* No error if extern_protected_data is true. */
3141 if (h->protected_def
3142 && (!info->extern_protected_data
3143 || (info->extern_protected_data < 0
3144 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3145 info->callbacks->einfo
3146 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3147 h->root.root.string);
3148
3149 return TRUE;
3150 }
3151
3152 /* Adjust all external symbols pointing into SEC_MERGE sections
3153 to reflect the object merging within the sections. */
3154
3155 static bfd_boolean
3156 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3157 {
3158 asection *sec;
3159
3160 if ((h->root.type == bfd_link_hash_defined
3161 || h->root.type == bfd_link_hash_defweak)
3162 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3163 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3164 {
3165 bfd *output_bfd = (bfd *) data;
3166
3167 h->root.u.def.value =
3168 _bfd_merged_section_offset (output_bfd,
3169 &h->root.u.def.section,
3170 elf_section_data (sec)->sec_info,
3171 h->root.u.def.value);
3172 }
3173
3174 return TRUE;
3175 }
3176
3177 /* Returns false if the symbol referred to by H should be considered
3178 to resolve local to the current module, and true if it should be
3179 considered to bind dynamically. */
3180
3181 bfd_boolean
3182 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3183 struct bfd_link_info *info,
3184 bfd_boolean not_local_protected)
3185 {
3186 bfd_boolean binding_stays_local_p;
3187 const struct elf_backend_data *bed;
3188 struct elf_link_hash_table *hash_table;
3189
3190 if (h == NULL)
3191 return FALSE;
3192
3193 while (h->root.type == bfd_link_hash_indirect
3194 || h->root.type == bfd_link_hash_warning)
3195 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3196
3197 /* If it was forced local, then clearly it's not dynamic. */
3198 if (h->dynindx == -1)
3199 return FALSE;
3200 if (h->forced_local)
3201 return FALSE;
3202
3203 /* Identify the cases where name binding rules say that a
3204 visible symbol resolves locally. */
3205 binding_stays_local_p = (bfd_link_executable (info)
3206 || SYMBOLIC_BIND (info, h));
3207
3208 switch (ELF_ST_VISIBILITY (h->other))
3209 {
3210 case STV_INTERNAL:
3211 case STV_HIDDEN:
3212 return FALSE;
3213
3214 case STV_PROTECTED:
3215 hash_table = elf_hash_table (info);
3216 if (!is_elf_hash_table (hash_table))
3217 return FALSE;
3218
3219 bed = get_elf_backend_data (hash_table->dynobj);
3220
3221 /* Proper resolution for function pointer equality may require
3222 that these symbols perhaps be resolved dynamically, even though
3223 we should be resolving them to the current module. */
3224 if (!not_local_protected || !bed->is_function_type (h->type))
3225 binding_stays_local_p = TRUE;
3226 break;
3227
3228 default:
3229 break;
3230 }
3231
3232 /* If it isn't defined locally, then clearly it's dynamic. */
3233 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3234 return TRUE;
3235
3236 /* Otherwise, the symbol is dynamic if binding rules don't tell
3237 us that it remains local. */
3238 return !binding_stays_local_p;
3239 }
3240
3241 /* Return true if the symbol referred to by H should be considered
3242 to resolve local to the current module, and false otherwise. Differs
3243 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3244 undefined symbols. The two functions are virtually identical except
3245 for the place where dynindx == -1 is tested. If that test is true,
3246 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3247 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3248 defined symbols.
3249 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3250 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3251 treatment of undefined weak symbols. For those that do not make
3252 undefined weak symbols dynamic, both functions may return false. */
3253
3254 bfd_boolean
3255 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3256 struct bfd_link_info *info,
3257 bfd_boolean local_protected)
3258 {
3259 const struct elf_backend_data *bed;
3260 struct elf_link_hash_table *hash_table;
3261
3262 /* If it's a local sym, of course we resolve locally. */
3263 if (h == NULL)
3264 return TRUE;
3265
3266 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3267 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3268 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3269 return TRUE;
3270
3271 /* Forced local symbols resolve locally. */
3272 if (h->forced_local)
3273 return TRUE;
3274
3275 /* Common symbols that become definitions don't get the DEF_REGULAR
3276 flag set, so test it first, and don't bail out. */
3277 if (ELF_COMMON_DEF_P (h))
3278 /* Do nothing. */;
3279 /* If we don't have a definition in a regular file, then we can't
3280 resolve locally. The sym is either undefined or dynamic. */
3281 else if (!h->def_regular)
3282 return FALSE;
3283
3284 /* Non-dynamic symbols resolve locally. */
3285 if (h->dynindx == -1)
3286 return TRUE;
3287
3288 /* At this point, we know the symbol is defined and dynamic. In an
3289 executable it must resolve locally, likewise when building symbolic
3290 shared libraries. */
3291 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3292 return TRUE;
3293
3294 /* Now deal with defined dynamic symbols in shared libraries. Ones
3295 with default visibility might not resolve locally. */
3296 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3297 return FALSE;
3298
3299 hash_table = elf_hash_table (info);
3300 if (!is_elf_hash_table (hash_table))
3301 return TRUE;
3302
3303 bed = get_elf_backend_data (hash_table->dynobj);
3304
3305 /* If extern_protected_data is false, STV_PROTECTED non-function
3306 symbols are local. */
3307 if ((!info->extern_protected_data
3308 || (info->extern_protected_data < 0
3309 && !bed->extern_protected_data))
3310 && !bed->is_function_type (h->type))
3311 return TRUE;
3312
3313 /* Function pointer equality tests may require that STV_PROTECTED
3314 symbols be treated as dynamic symbols. If the address of a
3315 function not defined in an executable is set to that function's
3316 plt entry in the executable, then the address of the function in
3317 a shared library must also be the plt entry in the executable. */
3318 return local_protected;
3319 }
3320
3321 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3322 aligned. Returns the first TLS output section. */
3323
3324 struct bfd_section *
3325 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3326 {
3327 struct bfd_section *sec, *tls;
3328 unsigned int align = 0;
3329
3330 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3331 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3332 break;
3333 tls = sec;
3334
3335 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3336 if (sec->alignment_power > align)
3337 align = sec->alignment_power;
3338
3339 elf_hash_table (info)->tls_sec = tls;
3340
3341 /* Ensure the alignment of the first section (usually .tdata) is the largest
3342 alignment, so that the tls segment starts aligned. */
3343 if (tls != NULL)
3344 tls->alignment_power = align;
3345
3346 return tls;
3347 }
3348
3349 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3350 static bfd_boolean
3351 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3352 Elf_Internal_Sym *sym)
3353 {
3354 const struct elf_backend_data *bed;
3355
3356 /* Local symbols do not count, but target specific ones might. */
3357 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3358 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3359 return FALSE;
3360
3361 bed = get_elf_backend_data (abfd);
3362 /* Function symbols do not count. */
3363 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3364 return FALSE;
3365
3366 /* If the section is undefined, then so is the symbol. */
3367 if (sym->st_shndx == SHN_UNDEF)
3368 return FALSE;
3369
3370 /* If the symbol is defined in the common section, then
3371 it is a common definition and so does not count. */
3372 if (bed->common_definition (sym))
3373 return FALSE;
3374
3375 /* If the symbol is in a target specific section then we
3376 must rely upon the backend to tell us what it is. */
3377 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3378 /* FIXME - this function is not coded yet:
3379
3380 return _bfd_is_global_symbol_definition (abfd, sym);
3381
3382 Instead for now assume that the definition is not global,
3383 Even if this is wrong, at least the linker will behave
3384 in the same way that it used to do. */
3385 return FALSE;
3386
3387 return TRUE;
3388 }
3389
3390 /* Search the symbol table of the archive element of the archive ABFD
3391 whose archive map contains a mention of SYMDEF, and determine if
3392 the symbol is defined in this element. */
3393 static bfd_boolean
3394 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3395 {
3396 Elf_Internal_Shdr * hdr;
3397 size_t symcount;
3398 size_t extsymcount;
3399 size_t extsymoff;
3400 Elf_Internal_Sym *isymbuf;
3401 Elf_Internal_Sym *isym;
3402 Elf_Internal_Sym *isymend;
3403 bfd_boolean result;
3404
3405 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3406 if (abfd == NULL)
3407 return FALSE;
3408
3409 if (! bfd_check_format (abfd, bfd_object))
3410 return FALSE;
3411
3412 /* Select the appropriate symbol table. If we don't know if the
3413 object file is an IR object, give linker LTO plugin a chance to
3414 get the correct symbol table. */
3415 if (abfd->plugin_format == bfd_plugin_yes
3416 #if BFD_SUPPORTS_PLUGINS
3417 || (abfd->plugin_format == bfd_plugin_unknown
3418 && bfd_link_plugin_object_p (abfd))
3419 #endif
3420 )
3421 {
3422 /* Use the IR symbol table if the object has been claimed by
3423 plugin. */
3424 abfd = abfd->plugin_dummy_bfd;
3425 hdr = &elf_tdata (abfd)->symtab_hdr;
3426 }
3427 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3428 hdr = &elf_tdata (abfd)->symtab_hdr;
3429 else
3430 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3431
3432 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3433
3434 /* The sh_info field of the symtab header tells us where the
3435 external symbols start. We don't care about the local symbols. */
3436 if (elf_bad_symtab (abfd))
3437 {
3438 extsymcount = symcount;
3439 extsymoff = 0;
3440 }
3441 else
3442 {
3443 extsymcount = symcount - hdr->sh_info;
3444 extsymoff = hdr->sh_info;
3445 }
3446
3447 if (extsymcount == 0)
3448 return FALSE;
3449
3450 /* Read in the symbol table. */
3451 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3452 NULL, NULL, NULL);
3453 if (isymbuf == NULL)
3454 return FALSE;
3455
3456 /* Scan the symbol table looking for SYMDEF. */
3457 result = FALSE;
3458 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3459 {
3460 const char *name;
3461
3462 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3463 isym->st_name);
3464 if (name == NULL)
3465 break;
3466
3467 if (strcmp (name, symdef->name) == 0)
3468 {
3469 result = is_global_data_symbol_definition (abfd, isym);
3470 break;
3471 }
3472 }
3473
3474 free (isymbuf);
3475
3476 return result;
3477 }
3478 \f
3479 /* Add an entry to the .dynamic table. */
3480
3481 bfd_boolean
3482 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3483 bfd_vma tag,
3484 bfd_vma val)
3485 {
3486 struct elf_link_hash_table *hash_table;
3487 const struct elf_backend_data *bed;
3488 asection *s;
3489 bfd_size_type newsize;
3490 bfd_byte *newcontents;
3491 Elf_Internal_Dyn dyn;
3492
3493 hash_table = elf_hash_table (info);
3494 if (! is_elf_hash_table (hash_table))
3495 return FALSE;
3496
3497 if (tag == DT_RELA || tag == DT_REL)
3498 hash_table->dynamic_relocs = TRUE;
3499
3500 bed = get_elf_backend_data (hash_table->dynobj);
3501 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3502 BFD_ASSERT (s != NULL);
3503
3504 newsize = s->size + bed->s->sizeof_dyn;
3505 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3506 if (newcontents == NULL)
3507 return FALSE;
3508
3509 dyn.d_tag = tag;
3510 dyn.d_un.d_val = val;
3511 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3512
3513 s->size = newsize;
3514 s->contents = newcontents;
3515
3516 return TRUE;
3517 }
3518
3519 /* Strip zero-sized dynamic sections. */
3520
3521 bfd_boolean
3522 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3523 {
3524 struct elf_link_hash_table *hash_table;
3525 const struct elf_backend_data *bed;
3526 asection *s, *sdynamic, **pp;
3527 asection *rela_dyn, *rel_dyn;
3528 Elf_Internal_Dyn dyn;
3529 bfd_byte *extdyn, *next;
3530 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3531 bfd_boolean strip_zero_sized;
3532 bfd_boolean strip_zero_sized_plt;
3533
3534 if (bfd_link_relocatable (info))
3535 return TRUE;
3536
3537 hash_table = elf_hash_table (info);
3538 if (!is_elf_hash_table (hash_table))
3539 return FALSE;
3540
3541 if (!hash_table->dynobj)
3542 return TRUE;
3543
3544 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3545 if (!sdynamic)
3546 return TRUE;
3547
3548 bed = get_elf_backend_data (hash_table->dynobj);
3549 swap_dyn_in = bed->s->swap_dyn_in;
3550
3551 strip_zero_sized = FALSE;
3552 strip_zero_sized_plt = FALSE;
3553
3554 /* Strip zero-sized dynamic sections. */
3555 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3556 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3557 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3558 if (s->size == 0
3559 && (s == rela_dyn
3560 || s == rel_dyn
3561 || s == hash_table->srelplt->output_section
3562 || s == hash_table->splt->output_section))
3563 {
3564 *pp = s->next;
3565 info->output_bfd->section_count--;
3566 strip_zero_sized = TRUE;
3567 if (s == rela_dyn)
3568 s = rela_dyn;
3569 if (s == rel_dyn)
3570 s = rel_dyn;
3571 else if (s == hash_table->splt->output_section)
3572 {
3573 s = hash_table->splt;
3574 strip_zero_sized_plt = TRUE;
3575 }
3576 else
3577 s = hash_table->srelplt;
3578 s->flags |= SEC_EXCLUDE;
3579 s->output_section = bfd_abs_section_ptr;
3580 }
3581 else
3582 pp = &s->next;
3583
3584 if (strip_zero_sized_plt)
3585 for (extdyn = sdynamic->contents;
3586 extdyn < sdynamic->contents + sdynamic->size;
3587 extdyn = next)
3588 {
3589 next = extdyn + bed->s->sizeof_dyn;
3590 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3591 switch (dyn.d_tag)
3592 {
3593 default:
3594 break;
3595 case DT_JMPREL:
3596 case DT_PLTRELSZ:
3597 case DT_PLTREL:
3598 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3599 the procedure linkage table (the .plt section) has been
3600 removed. */
3601 memmove (extdyn, next,
3602 sdynamic->size - (next - sdynamic->contents));
3603 next = extdyn;
3604 }
3605 }
3606
3607 if (strip_zero_sized)
3608 {
3609 /* Regenerate program headers. */
3610 elf_seg_map (info->output_bfd) = NULL;
3611 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3612 }
3613
3614 return TRUE;
3615 }
3616
3617 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3618 1 if a DT_NEEDED tag already exists, and 0 on success. */
3619
3620 int
3621 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3622 {
3623 struct elf_link_hash_table *hash_table;
3624 size_t strindex;
3625 const char *soname;
3626
3627 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3628 return -1;
3629
3630 hash_table = elf_hash_table (info);
3631 soname = elf_dt_name (abfd);
3632 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3633 if (strindex == (size_t) -1)
3634 return -1;
3635
3636 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3637 {
3638 asection *sdyn;
3639 const struct elf_backend_data *bed;
3640 bfd_byte *extdyn;
3641
3642 bed = get_elf_backend_data (hash_table->dynobj);
3643 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3644 if (sdyn != NULL)
3645 for (extdyn = sdyn->contents;
3646 extdyn < sdyn->contents + sdyn->size;
3647 extdyn += bed->s->sizeof_dyn)
3648 {
3649 Elf_Internal_Dyn dyn;
3650
3651 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3652 if (dyn.d_tag == DT_NEEDED
3653 && dyn.d_un.d_val == strindex)
3654 {
3655 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3656 return 1;
3657 }
3658 }
3659 }
3660
3661 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3662 return -1;
3663
3664 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3665 return -1;
3666
3667 return 0;
3668 }
3669
3670 /* Return true if SONAME is on the needed list between NEEDED and STOP
3671 (or the end of list if STOP is NULL), and needed by a library that
3672 will be loaded. */
3673
3674 static bfd_boolean
3675 on_needed_list (const char *soname,
3676 struct bfd_link_needed_list *needed,
3677 struct bfd_link_needed_list *stop)
3678 {
3679 struct bfd_link_needed_list *look;
3680 for (look = needed; look != stop; look = look->next)
3681 if (strcmp (soname, look->name) == 0
3682 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3683 /* If needed by a library that itself is not directly
3684 needed, recursively check whether that library is
3685 indirectly needed. Since we add DT_NEEDED entries to
3686 the end of the list, library dependencies appear after
3687 the library. Therefore search prior to the current
3688 LOOK, preventing possible infinite recursion. */
3689 || on_needed_list (elf_dt_name (look->by), needed, look)))
3690 return TRUE;
3691
3692 return FALSE;
3693 }
3694
3695 /* Sort symbol by value, section, size, and type. */
3696 static int
3697 elf_sort_symbol (const void *arg1, const void *arg2)
3698 {
3699 const struct elf_link_hash_entry *h1;
3700 const struct elf_link_hash_entry *h2;
3701 bfd_signed_vma vdiff;
3702 int sdiff;
3703 const char *n1;
3704 const char *n2;
3705
3706 h1 = *(const struct elf_link_hash_entry **) arg1;
3707 h2 = *(const struct elf_link_hash_entry **) arg2;
3708 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3709 if (vdiff != 0)
3710 return vdiff > 0 ? 1 : -1;
3711
3712 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3713 if (sdiff != 0)
3714 return sdiff;
3715
3716 /* Sort so that sized symbols are selected over zero size symbols. */
3717 vdiff = h1->size - h2->size;
3718 if (vdiff != 0)
3719 return vdiff > 0 ? 1 : -1;
3720
3721 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3722 if (h1->type != h2->type)
3723 return h1->type - h2->type;
3724
3725 /* If symbols are properly sized and typed, and multiple strong
3726 aliases are not defined in a shared library by the user we
3727 shouldn't get here. Unfortunately linker script symbols like
3728 __bss_start sometimes match a user symbol defined at the start of
3729 .bss without proper size and type. We'd like to preference the
3730 user symbol over reserved system symbols. Sort on leading
3731 underscores. */
3732 n1 = h1->root.root.string;
3733 n2 = h2->root.root.string;
3734 while (*n1 == *n2)
3735 {
3736 if (*n1 == 0)
3737 break;
3738 ++n1;
3739 ++n2;
3740 }
3741 if (*n1 == '_')
3742 return -1;
3743 if (*n2 == '_')
3744 return 1;
3745
3746 /* Final sort on name selects user symbols like '_u' over reserved
3747 system symbols like '_Z' and also will avoid qsort instability. */
3748 return *n1 - *n2;
3749 }
3750
3751 /* This function is used to adjust offsets into .dynstr for
3752 dynamic symbols. This is called via elf_link_hash_traverse. */
3753
3754 static bfd_boolean
3755 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3756 {
3757 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3758
3759 if (h->dynindx != -1)
3760 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3761 return TRUE;
3762 }
3763
3764 /* Assign string offsets in .dynstr, update all structures referencing
3765 them. */
3766
3767 static bfd_boolean
3768 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3769 {
3770 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3771 struct elf_link_local_dynamic_entry *entry;
3772 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3773 bfd *dynobj = hash_table->dynobj;
3774 asection *sdyn;
3775 bfd_size_type size;
3776 const struct elf_backend_data *bed;
3777 bfd_byte *extdyn;
3778
3779 _bfd_elf_strtab_finalize (dynstr);
3780 size = _bfd_elf_strtab_size (dynstr);
3781
3782 bed = get_elf_backend_data (dynobj);
3783 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3784 BFD_ASSERT (sdyn != NULL);
3785
3786 /* Update all .dynamic entries referencing .dynstr strings. */
3787 for (extdyn = sdyn->contents;
3788 extdyn < sdyn->contents + sdyn->size;
3789 extdyn += bed->s->sizeof_dyn)
3790 {
3791 Elf_Internal_Dyn dyn;
3792
3793 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3794 switch (dyn.d_tag)
3795 {
3796 case DT_STRSZ:
3797 dyn.d_un.d_val = size;
3798 break;
3799 case DT_NEEDED:
3800 case DT_SONAME:
3801 case DT_RPATH:
3802 case DT_RUNPATH:
3803 case DT_FILTER:
3804 case DT_AUXILIARY:
3805 case DT_AUDIT:
3806 case DT_DEPAUDIT:
3807 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3808 break;
3809 default:
3810 continue;
3811 }
3812 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3813 }
3814
3815 /* Now update local dynamic symbols. */
3816 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3817 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3818 entry->isym.st_name);
3819
3820 /* And the rest of dynamic symbols. */
3821 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3822
3823 /* Adjust version definitions. */
3824 if (elf_tdata (output_bfd)->cverdefs)
3825 {
3826 asection *s;
3827 bfd_byte *p;
3828 size_t i;
3829 Elf_Internal_Verdef def;
3830 Elf_Internal_Verdaux defaux;
3831
3832 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3833 p = s->contents;
3834 do
3835 {
3836 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3837 &def);
3838 p += sizeof (Elf_External_Verdef);
3839 if (def.vd_aux != sizeof (Elf_External_Verdef))
3840 continue;
3841 for (i = 0; i < def.vd_cnt; ++i)
3842 {
3843 _bfd_elf_swap_verdaux_in (output_bfd,
3844 (Elf_External_Verdaux *) p, &defaux);
3845 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3846 defaux.vda_name);
3847 _bfd_elf_swap_verdaux_out (output_bfd,
3848 &defaux, (Elf_External_Verdaux *) p);
3849 p += sizeof (Elf_External_Verdaux);
3850 }
3851 }
3852 while (def.vd_next);
3853 }
3854
3855 /* Adjust version references. */
3856 if (elf_tdata (output_bfd)->verref)
3857 {
3858 asection *s;
3859 bfd_byte *p;
3860 size_t i;
3861 Elf_Internal_Verneed need;
3862 Elf_Internal_Vernaux needaux;
3863
3864 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3865 p = s->contents;
3866 do
3867 {
3868 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3869 &need);
3870 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3871 _bfd_elf_swap_verneed_out (output_bfd, &need,
3872 (Elf_External_Verneed *) p);
3873 p += sizeof (Elf_External_Verneed);
3874 for (i = 0; i < need.vn_cnt; ++i)
3875 {
3876 _bfd_elf_swap_vernaux_in (output_bfd,
3877 (Elf_External_Vernaux *) p, &needaux);
3878 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3879 needaux.vna_name);
3880 _bfd_elf_swap_vernaux_out (output_bfd,
3881 &needaux,
3882 (Elf_External_Vernaux *) p);
3883 p += sizeof (Elf_External_Vernaux);
3884 }
3885 }
3886 while (need.vn_next);
3887 }
3888
3889 return TRUE;
3890 }
3891 \f
3892 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3893 The default is to only match when the INPUT and OUTPUT are exactly
3894 the same target. */
3895
3896 bfd_boolean
3897 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3898 const bfd_target *output)
3899 {
3900 return input == output;
3901 }
3902
3903 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3904 This version is used when different targets for the same architecture
3905 are virtually identical. */
3906
3907 bfd_boolean
3908 _bfd_elf_relocs_compatible (const bfd_target *input,
3909 const bfd_target *output)
3910 {
3911 const struct elf_backend_data *obed, *ibed;
3912
3913 if (input == output)
3914 return TRUE;
3915
3916 ibed = xvec_get_elf_backend_data (input);
3917 obed = xvec_get_elf_backend_data (output);
3918
3919 if (ibed->arch != obed->arch)
3920 return FALSE;
3921
3922 /* If both backends are using this function, deem them compatible. */
3923 return ibed->relocs_compatible == obed->relocs_compatible;
3924 }
3925
3926 /* Make a special call to the linker "notice" function to tell it that
3927 we are about to handle an as-needed lib, or have finished
3928 processing the lib. */
3929
3930 bfd_boolean
3931 _bfd_elf_notice_as_needed (bfd *ibfd,
3932 struct bfd_link_info *info,
3933 enum notice_asneeded_action act)
3934 {
3935 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3936 }
3937
3938 /* Check relocations an ELF object file. */
3939
3940 bfd_boolean
3941 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3942 {
3943 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3944 struct elf_link_hash_table *htab = elf_hash_table (info);
3945
3946 /* If this object is the same format as the output object, and it is
3947 not a shared library, then let the backend look through the
3948 relocs.
3949
3950 This is required to build global offset table entries and to
3951 arrange for dynamic relocs. It is not required for the
3952 particular common case of linking non PIC code, even when linking
3953 against shared libraries, but unfortunately there is no way of
3954 knowing whether an object file has been compiled PIC or not.
3955 Looking through the relocs is not particularly time consuming.
3956 The problem is that we must either (1) keep the relocs in memory,
3957 which causes the linker to require additional runtime memory or
3958 (2) read the relocs twice from the input file, which wastes time.
3959 This would be a good case for using mmap.
3960
3961 I have no idea how to handle linking PIC code into a file of a
3962 different format. It probably can't be done. */
3963 if ((abfd->flags & DYNAMIC) == 0
3964 && is_elf_hash_table (htab)
3965 && bed->check_relocs != NULL
3966 && elf_object_id (abfd) == elf_hash_table_id (htab)
3967 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3968 {
3969 asection *o;
3970
3971 for (o = abfd->sections; o != NULL; o = o->next)
3972 {
3973 Elf_Internal_Rela *internal_relocs;
3974 bfd_boolean ok;
3975
3976 /* Don't check relocations in excluded sections. Don't do
3977 anything special with non-loaded, non-alloced sections.
3978 In particular, any relocs in such sections should not
3979 affect GOT and PLT reference counting (ie. we don't
3980 allow them to create GOT or PLT entries), there's no
3981 possibility or desire to optimize TLS relocs, and
3982 there's not much point in propagating relocs to shared
3983 libs that the dynamic linker won't relocate. */
3984 if ((o->flags & SEC_ALLOC) == 0
3985 || (o->flags & SEC_RELOC) == 0
3986 || (o->flags & SEC_EXCLUDE) != 0
3987 || o->reloc_count == 0
3988 || ((info->strip == strip_all || info->strip == strip_debugger)
3989 && (o->flags & SEC_DEBUGGING) != 0)
3990 || bfd_is_abs_section (o->output_section))
3991 continue;
3992
3993 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3994 info->keep_memory);
3995 if (internal_relocs == NULL)
3996 return FALSE;
3997
3998 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3999
4000 if (elf_section_data (o)->relocs != internal_relocs)
4001 free (internal_relocs);
4002
4003 if (! ok)
4004 return FALSE;
4005 }
4006 }
4007
4008 return TRUE;
4009 }
4010
4011 /* Add symbols from an ELF object file to the linker hash table. */
4012
4013 static bfd_boolean
4014 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4015 {
4016 Elf_Internal_Ehdr *ehdr;
4017 Elf_Internal_Shdr *hdr;
4018 size_t symcount;
4019 size_t extsymcount;
4020 size_t extsymoff;
4021 struct elf_link_hash_entry **sym_hash;
4022 bfd_boolean dynamic;
4023 Elf_External_Versym *extversym = NULL;
4024 Elf_External_Versym *extversym_end = NULL;
4025 Elf_External_Versym *ever;
4026 struct elf_link_hash_entry *weaks;
4027 struct elf_link_hash_entry **nondeflt_vers = NULL;
4028 size_t nondeflt_vers_cnt = 0;
4029 Elf_Internal_Sym *isymbuf = NULL;
4030 Elf_Internal_Sym *isym;
4031 Elf_Internal_Sym *isymend;
4032 const struct elf_backend_data *bed;
4033 bfd_boolean add_needed;
4034 struct elf_link_hash_table *htab;
4035 void *alloc_mark = NULL;
4036 struct bfd_hash_entry **old_table = NULL;
4037 unsigned int old_size = 0;
4038 unsigned int old_count = 0;
4039 void *old_tab = NULL;
4040 void *old_ent;
4041 struct bfd_link_hash_entry *old_undefs = NULL;
4042 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4043 void *old_strtab = NULL;
4044 size_t tabsize = 0;
4045 asection *s;
4046 bfd_boolean just_syms;
4047
4048 htab = elf_hash_table (info);
4049 bed = get_elf_backend_data (abfd);
4050
4051 if ((abfd->flags & DYNAMIC) == 0)
4052 dynamic = FALSE;
4053 else
4054 {
4055 dynamic = TRUE;
4056
4057 /* You can't use -r against a dynamic object. Also, there's no
4058 hope of using a dynamic object which does not exactly match
4059 the format of the output file. */
4060 if (bfd_link_relocatable (info)
4061 || !is_elf_hash_table (htab)
4062 || info->output_bfd->xvec != abfd->xvec)
4063 {
4064 if (bfd_link_relocatable (info))
4065 bfd_set_error (bfd_error_invalid_operation);
4066 else
4067 bfd_set_error (bfd_error_wrong_format);
4068 goto error_return;
4069 }
4070 }
4071
4072 ehdr = elf_elfheader (abfd);
4073 if (info->warn_alternate_em
4074 && bed->elf_machine_code != ehdr->e_machine
4075 && ((bed->elf_machine_alt1 != 0
4076 && ehdr->e_machine == bed->elf_machine_alt1)
4077 || (bed->elf_machine_alt2 != 0
4078 && ehdr->e_machine == bed->elf_machine_alt2)))
4079 _bfd_error_handler
4080 /* xgettext:c-format */
4081 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4082 ehdr->e_machine, abfd, bed->elf_machine_code);
4083
4084 /* As a GNU extension, any input sections which are named
4085 .gnu.warning.SYMBOL are treated as warning symbols for the given
4086 symbol. This differs from .gnu.warning sections, which generate
4087 warnings when they are included in an output file. */
4088 /* PR 12761: Also generate this warning when building shared libraries. */
4089 for (s = abfd->sections; s != NULL; s = s->next)
4090 {
4091 const char *name;
4092
4093 name = bfd_section_name (s);
4094 if (CONST_STRNEQ (name, ".gnu.warning."))
4095 {
4096 char *msg;
4097 bfd_size_type sz;
4098
4099 name += sizeof ".gnu.warning." - 1;
4100
4101 /* If this is a shared object, then look up the symbol
4102 in the hash table. If it is there, and it is already
4103 been defined, then we will not be using the entry
4104 from this shared object, so we don't need to warn.
4105 FIXME: If we see the definition in a regular object
4106 later on, we will warn, but we shouldn't. The only
4107 fix is to keep track of what warnings we are supposed
4108 to emit, and then handle them all at the end of the
4109 link. */
4110 if (dynamic)
4111 {
4112 struct elf_link_hash_entry *h;
4113
4114 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4115
4116 /* FIXME: What about bfd_link_hash_common? */
4117 if (h != NULL
4118 && (h->root.type == bfd_link_hash_defined
4119 || h->root.type == bfd_link_hash_defweak))
4120 continue;
4121 }
4122
4123 sz = s->size;
4124 msg = (char *) bfd_alloc (abfd, sz + 1);
4125 if (msg == NULL)
4126 goto error_return;
4127
4128 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4129 goto error_return;
4130
4131 msg[sz] = '\0';
4132
4133 if (! (_bfd_generic_link_add_one_symbol
4134 (info, abfd, name, BSF_WARNING, s, 0, msg,
4135 FALSE, bed->collect, NULL)))
4136 goto error_return;
4137
4138 if (bfd_link_executable (info))
4139 {
4140 /* Clobber the section size so that the warning does
4141 not get copied into the output file. */
4142 s->size = 0;
4143
4144 /* Also set SEC_EXCLUDE, so that symbols defined in
4145 the warning section don't get copied to the output. */
4146 s->flags |= SEC_EXCLUDE;
4147 }
4148 }
4149 }
4150
4151 just_syms = ((s = abfd->sections) != NULL
4152 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4153
4154 add_needed = TRUE;
4155 if (! dynamic)
4156 {
4157 /* If we are creating a shared library, create all the dynamic
4158 sections immediately. We need to attach them to something,
4159 so we attach them to this BFD, provided it is the right
4160 format and is not from ld --just-symbols. Always create the
4161 dynamic sections for -E/--dynamic-list. FIXME: If there
4162 are no input BFD's of the same format as the output, we can't
4163 make a shared library. */
4164 if (!just_syms
4165 && (bfd_link_pic (info)
4166 || (!bfd_link_relocatable (info)
4167 && info->nointerp
4168 && (info->export_dynamic || info->dynamic)))
4169 && is_elf_hash_table (htab)
4170 && info->output_bfd->xvec == abfd->xvec
4171 && !htab->dynamic_sections_created)
4172 {
4173 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4174 goto error_return;
4175 }
4176 }
4177 else if (!is_elf_hash_table (htab))
4178 goto error_return;
4179 else
4180 {
4181 const char *soname = NULL;
4182 char *audit = NULL;
4183 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4184 const Elf_Internal_Phdr *phdr;
4185 struct elf_link_loaded_list *loaded_lib;
4186
4187 /* ld --just-symbols and dynamic objects don't mix very well.
4188 ld shouldn't allow it. */
4189 if (just_syms)
4190 abort ();
4191
4192 /* If this dynamic lib was specified on the command line with
4193 --as-needed in effect, then we don't want to add a DT_NEEDED
4194 tag unless the lib is actually used. Similary for libs brought
4195 in by another lib's DT_NEEDED. When --no-add-needed is used
4196 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4197 any dynamic library in DT_NEEDED tags in the dynamic lib at
4198 all. */
4199 add_needed = (elf_dyn_lib_class (abfd)
4200 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4201 | DYN_NO_NEEDED)) == 0;
4202
4203 s = bfd_get_section_by_name (abfd, ".dynamic");
4204 if (s != NULL)
4205 {
4206 bfd_byte *dynbuf;
4207 bfd_byte *extdyn;
4208 unsigned int elfsec;
4209 unsigned long shlink;
4210
4211 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4212 {
4213 error_free_dyn:
4214 free (dynbuf);
4215 goto error_return;
4216 }
4217
4218 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4219 if (elfsec == SHN_BAD)
4220 goto error_free_dyn;
4221 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4222
4223 for (extdyn = dynbuf;
4224 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4225 extdyn += bed->s->sizeof_dyn)
4226 {
4227 Elf_Internal_Dyn dyn;
4228
4229 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4230 if (dyn.d_tag == DT_SONAME)
4231 {
4232 unsigned int tagv = dyn.d_un.d_val;
4233 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4234 if (soname == NULL)
4235 goto error_free_dyn;
4236 }
4237 if (dyn.d_tag == DT_NEEDED)
4238 {
4239 struct bfd_link_needed_list *n, **pn;
4240 char *fnm, *anm;
4241 unsigned int tagv = dyn.d_un.d_val;
4242 size_t amt = sizeof (struct bfd_link_needed_list);
4243
4244 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4245 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4246 if (n == NULL || fnm == NULL)
4247 goto error_free_dyn;
4248 amt = strlen (fnm) + 1;
4249 anm = (char *) bfd_alloc (abfd, amt);
4250 if (anm == NULL)
4251 goto error_free_dyn;
4252 memcpy (anm, fnm, amt);
4253 n->name = anm;
4254 n->by = abfd;
4255 n->next = NULL;
4256 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4257 ;
4258 *pn = n;
4259 }
4260 if (dyn.d_tag == DT_RUNPATH)
4261 {
4262 struct bfd_link_needed_list *n, **pn;
4263 char *fnm, *anm;
4264 unsigned int tagv = dyn.d_un.d_val;
4265 size_t amt = sizeof (struct bfd_link_needed_list);
4266
4267 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4268 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4269 if (n == NULL || fnm == NULL)
4270 goto error_free_dyn;
4271 amt = strlen (fnm) + 1;
4272 anm = (char *) bfd_alloc (abfd, amt);
4273 if (anm == NULL)
4274 goto error_free_dyn;
4275 memcpy (anm, fnm, amt);
4276 n->name = anm;
4277 n->by = abfd;
4278 n->next = NULL;
4279 for (pn = & runpath;
4280 *pn != NULL;
4281 pn = &(*pn)->next)
4282 ;
4283 *pn = n;
4284 }
4285 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4286 if (!runpath && dyn.d_tag == DT_RPATH)
4287 {
4288 struct bfd_link_needed_list *n, **pn;
4289 char *fnm, *anm;
4290 unsigned int tagv = dyn.d_un.d_val;
4291 size_t amt = sizeof (struct bfd_link_needed_list);
4292
4293 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4294 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4295 if (n == NULL || fnm == NULL)
4296 goto error_free_dyn;
4297 amt = strlen (fnm) + 1;
4298 anm = (char *) bfd_alloc (abfd, amt);
4299 if (anm == NULL)
4300 goto error_free_dyn;
4301 memcpy (anm, fnm, amt);
4302 n->name = anm;
4303 n->by = abfd;
4304 n->next = NULL;
4305 for (pn = & rpath;
4306 *pn != NULL;
4307 pn = &(*pn)->next)
4308 ;
4309 *pn = n;
4310 }
4311 if (dyn.d_tag == DT_AUDIT)
4312 {
4313 unsigned int tagv = dyn.d_un.d_val;
4314 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4315 }
4316 }
4317
4318 free (dynbuf);
4319 }
4320
4321 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4322 frees all more recently bfd_alloc'd blocks as well. */
4323 if (runpath)
4324 rpath = runpath;
4325
4326 if (rpath)
4327 {
4328 struct bfd_link_needed_list **pn;
4329 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4330 ;
4331 *pn = rpath;
4332 }
4333
4334 /* If we have a PT_GNU_RELRO program header, mark as read-only
4335 all sections contained fully therein. This makes relro
4336 shared library sections appear as they will at run-time. */
4337 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4338 while (phdr-- > elf_tdata (abfd)->phdr)
4339 if (phdr->p_type == PT_GNU_RELRO)
4340 {
4341 for (s = abfd->sections; s != NULL; s = s->next)
4342 {
4343 unsigned int opb = bfd_octets_per_byte (abfd, s);
4344
4345 if ((s->flags & SEC_ALLOC) != 0
4346 && s->vma * opb >= phdr->p_vaddr
4347 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4348 s->flags |= SEC_READONLY;
4349 }
4350 break;
4351 }
4352
4353 /* We do not want to include any of the sections in a dynamic
4354 object in the output file. We hack by simply clobbering the
4355 list of sections in the BFD. This could be handled more
4356 cleanly by, say, a new section flag; the existing
4357 SEC_NEVER_LOAD flag is not the one we want, because that one
4358 still implies that the section takes up space in the output
4359 file. */
4360 bfd_section_list_clear (abfd);
4361
4362 /* Find the name to use in a DT_NEEDED entry that refers to this
4363 object. If the object has a DT_SONAME entry, we use it.
4364 Otherwise, if the generic linker stuck something in
4365 elf_dt_name, we use that. Otherwise, we just use the file
4366 name. */
4367 if (soname == NULL || *soname == '\0')
4368 {
4369 soname = elf_dt_name (abfd);
4370 if (soname == NULL || *soname == '\0')
4371 soname = bfd_get_filename (abfd);
4372 }
4373
4374 /* Save the SONAME because sometimes the linker emulation code
4375 will need to know it. */
4376 elf_dt_name (abfd) = soname;
4377
4378 /* If we have already included this dynamic object in the
4379 link, just ignore it. There is no reason to include a
4380 particular dynamic object more than once. */
4381 for (loaded_lib = htab->dyn_loaded;
4382 loaded_lib != NULL;
4383 loaded_lib = loaded_lib->next)
4384 {
4385 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4386 return TRUE;
4387 }
4388
4389 /* Create dynamic sections for backends that require that be done
4390 before setup_gnu_properties. */
4391 if (add_needed
4392 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4393 return FALSE;
4394
4395 /* Save the DT_AUDIT entry for the linker emulation code. */
4396 elf_dt_audit (abfd) = audit;
4397 }
4398
4399 /* If this is a dynamic object, we always link against the .dynsym
4400 symbol table, not the .symtab symbol table. The dynamic linker
4401 will only see the .dynsym symbol table, so there is no reason to
4402 look at .symtab for a dynamic object. */
4403
4404 if (! dynamic || elf_dynsymtab (abfd) == 0)
4405 hdr = &elf_tdata (abfd)->symtab_hdr;
4406 else
4407 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4408
4409 symcount = hdr->sh_size / bed->s->sizeof_sym;
4410
4411 /* The sh_info field of the symtab header tells us where the
4412 external symbols start. We don't care about the local symbols at
4413 this point. */
4414 if (elf_bad_symtab (abfd))
4415 {
4416 extsymcount = symcount;
4417 extsymoff = 0;
4418 }
4419 else
4420 {
4421 extsymcount = symcount - hdr->sh_info;
4422 extsymoff = hdr->sh_info;
4423 }
4424
4425 sym_hash = elf_sym_hashes (abfd);
4426 if (extsymcount != 0)
4427 {
4428 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4429 NULL, NULL, NULL);
4430 if (isymbuf == NULL)
4431 goto error_return;
4432
4433 if (sym_hash == NULL)
4434 {
4435 /* We store a pointer to the hash table entry for each
4436 external symbol. */
4437 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4438 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4439 if (sym_hash == NULL)
4440 goto error_free_sym;
4441 elf_sym_hashes (abfd) = sym_hash;
4442 }
4443 }
4444
4445 if (dynamic)
4446 {
4447 /* Read in any version definitions. */
4448 if (!_bfd_elf_slurp_version_tables (abfd,
4449 info->default_imported_symver))
4450 goto error_free_sym;
4451
4452 /* Read in the symbol versions, but don't bother to convert them
4453 to internal format. */
4454 if (elf_dynversym (abfd) != 0)
4455 {
4456 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4457 bfd_size_type amt = versymhdr->sh_size;
4458
4459 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4460 goto error_free_sym;
4461 extversym = (Elf_External_Versym *)
4462 _bfd_malloc_and_read (abfd, amt, amt);
4463 if (extversym == NULL)
4464 goto error_free_sym;
4465 extversym_end = extversym + amt / sizeof (*extversym);
4466 }
4467 }
4468
4469 /* If we are loading an as-needed shared lib, save the symbol table
4470 state before we start adding symbols. If the lib turns out
4471 to be unneeded, restore the state. */
4472 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4473 {
4474 unsigned int i;
4475 size_t entsize;
4476
4477 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4478 {
4479 struct bfd_hash_entry *p;
4480 struct elf_link_hash_entry *h;
4481
4482 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4483 {
4484 h = (struct elf_link_hash_entry *) p;
4485 entsize += htab->root.table.entsize;
4486 if (h->root.type == bfd_link_hash_warning)
4487 entsize += htab->root.table.entsize;
4488 }
4489 }
4490
4491 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4492 old_tab = bfd_malloc (tabsize + entsize);
4493 if (old_tab == NULL)
4494 goto error_free_vers;
4495
4496 /* Remember the current objalloc pointer, so that all mem for
4497 symbols added can later be reclaimed. */
4498 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4499 if (alloc_mark == NULL)
4500 goto error_free_vers;
4501
4502 /* Make a special call to the linker "notice" function to
4503 tell it that we are about to handle an as-needed lib. */
4504 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4505 goto error_free_vers;
4506
4507 /* Clone the symbol table. Remember some pointers into the
4508 symbol table, and dynamic symbol count. */
4509 old_ent = (char *) old_tab + tabsize;
4510 memcpy (old_tab, htab->root.table.table, tabsize);
4511 old_undefs = htab->root.undefs;
4512 old_undefs_tail = htab->root.undefs_tail;
4513 old_table = htab->root.table.table;
4514 old_size = htab->root.table.size;
4515 old_count = htab->root.table.count;
4516 old_strtab = NULL;
4517 if (htab->dynstr != NULL)
4518 {
4519 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4520 if (old_strtab == NULL)
4521 goto error_free_vers;
4522 }
4523
4524 for (i = 0; i < htab->root.table.size; i++)
4525 {
4526 struct bfd_hash_entry *p;
4527 struct elf_link_hash_entry *h;
4528
4529 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4530 {
4531 memcpy (old_ent, p, htab->root.table.entsize);
4532 old_ent = (char *) old_ent + htab->root.table.entsize;
4533 h = (struct elf_link_hash_entry *) p;
4534 if (h->root.type == bfd_link_hash_warning)
4535 {
4536 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 }
4539 }
4540 }
4541 }
4542
4543 weaks = NULL;
4544 if (extversym == NULL)
4545 ever = NULL;
4546 else if (extversym + extsymoff < extversym_end)
4547 ever = extversym + extsymoff;
4548 else
4549 {
4550 /* xgettext:c-format */
4551 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4552 abfd, (long) extsymoff,
4553 (long) (extversym_end - extversym) / sizeof (* extversym));
4554 bfd_set_error (bfd_error_bad_value);
4555 goto error_free_vers;
4556 }
4557
4558 if (!bfd_link_relocatable (info)
4559 && abfd->lto_slim_object)
4560 {
4561 _bfd_error_handler
4562 (_("%pB: plugin needed to handle lto object"), abfd);
4563 }
4564
4565 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4566 isym < isymend;
4567 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4568 {
4569 int bind;
4570 bfd_vma value;
4571 asection *sec, *new_sec;
4572 flagword flags;
4573 const char *name;
4574 struct elf_link_hash_entry *h;
4575 struct elf_link_hash_entry *hi;
4576 bfd_boolean definition;
4577 bfd_boolean size_change_ok;
4578 bfd_boolean type_change_ok;
4579 bfd_boolean new_weak;
4580 bfd_boolean old_weak;
4581 bfd_boolean override;
4582 bfd_boolean common;
4583 bfd_boolean discarded;
4584 unsigned int old_alignment;
4585 unsigned int shindex;
4586 bfd *old_bfd;
4587 bfd_boolean matched;
4588
4589 override = FALSE;
4590
4591 flags = BSF_NO_FLAGS;
4592 sec = NULL;
4593 value = isym->st_value;
4594 common = bed->common_definition (isym);
4595 if (common && info->inhibit_common_definition)
4596 {
4597 /* Treat common symbol as undefined for --no-define-common. */
4598 isym->st_shndx = SHN_UNDEF;
4599 common = FALSE;
4600 }
4601 discarded = FALSE;
4602
4603 bind = ELF_ST_BIND (isym->st_info);
4604 switch (bind)
4605 {
4606 case STB_LOCAL:
4607 /* This should be impossible, since ELF requires that all
4608 global symbols follow all local symbols, and that sh_info
4609 point to the first global symbol. Unfortunately, Irix 5
4610 screws this up. */
4611 if (elf_bad_symtab (abfd))
4612 continue;
4613
4614 /* If we aren't prepared to handle locals within the globals
4615 then we'll likely segfault on a NULL symbol hash if the
4616 symbol is ever referenced in relocations. */
4617 shindex = elf_elfheader (abfd)->e_shstrndx;
4618 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4619 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4620 " (>= sh_info of %lu)"),
4621 abfd, name, (long) (isym - isymbuf + extsymoff),
4622 (long) extsymoff);
4623
4624 /* Dynamic object relocations are not processed by ld, so
4625 ld won't run into the problem mentioned above. */
4626 if (dynamic)
4627 continue;
4628 bfd_set_error (bfd_error_bad_value);
4629 goto error_free_vers;
4630
4631 case STB_GLOBAL:
4632 if (isym->st_shndx != SHN_UNDEF && !common)
4633 flags = BSF_GLOBAL;
4634 break;
4635
4636 case STB_WEAK:
4637 flags = BSF_WEAK;
4638 break;
4639
4640 case STB_GNU_UNIQUE:
4641 flags = BSF_GNU_UNIQUE;
4642 break;
4643
4644 default:
4645 /* Leave it up to the processor backend. */
4646 break;
4647 }
4648
4649 if (isym->st_shndx == SHN_UNDEF)
4650 sec = bfd_und_section_ptr;
4651 else if (isym->st_shndx == SHN_ABS)
4652 sec = bfd_abs_section_ptr;
4653 else if (isym->st_shndx == SHN_COMMON)
4654 {
4655 sec = bfd_com_section_ptr;
4656 /* What ELF calls the size we call the value. What ELF
4657 calls the value we call the alignment. */
4658 value = isym->st_size;
4659 }
4660 else
4661 {
4662 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4663 if (sec == NULL)
4664 sec = bfd_abs_section_ptr;
4665 else if (discarded_section (sec))
4666 {
4667 /* Symbols from discarded section are undefined. We keep
4668 its visibility. */
4669 sec = bfd_und_section_ptr;
4670 discarded = TRUE;
4671 isym->st_shndx = SHN_UNDEF;
4672 }
4673 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4674 value -= sec->vma;
4675 }
4676
4677 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4678 isym->st_name);
4679 if (name == NULL)
4680 goto error_free_vers;
4681
4682 if (isym->st_shndx == SHN_COMMON
4683 && (abfd->flags & BFD_PLUGIN) != 0)
4684 {
4685 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4686
4687 if (xc == NULL)
4688 {
4689 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4690 | SEC_EXCLUDE);
4691 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4692 if (xc == NULL)
4693 goto error_free_vers;
4694 }
4695 sec = xc;
4696 }
4697 else if (isym->st_shndx == SHN_COMMON
4698 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4699 && !bfd_link_relocatable (info))
4700 {
4701 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4702
4703 if (tcomm == NULL)
4704 {
4705 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4706 | SEC_LINKER_CREATED);
4707 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4708 if (tcomm == NULL)
4709 goto error_free_vers;
4710 }
4711 sec = tcomm;
4712 }
4713 else if (bed->elf_add_symbol_hook)
4714 {
4715 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4716 &sec, &value))
4717 goto error_free_vers;
4718
4719 /* The hook function sets the name to NULL if this symbol
4720 should be skipped for some reason. */
4721 if (name == NULL)
4722 continue;
4723 }
4724
4725 /* Sanity check that all possibilities were handled. */
4726 if (sec == NULL)
4727 abort ();
4728
4729 /* Silently discard TLS symbols from --just-syms. There's
4730 no way to combine a static TLS block with a new TLS block
4731 for this executable. */
4732 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4733 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4734 continue;
4735
4736 if (bfd_is_und_section (sec)
4737 || bfd_is_com_section (sec))
4738 definition = FALSE;
4739 else
4740 definition = TRUE;
4741
4742 size_change_ok = FALSE;
4743 type_change_ok = bed->type_change_ok;
4744 old_weak = FALSE;
4745 matched = FALSE;
4746 old_alignment = 0;
4747 old_bfd = NULL;
4748 new_sec = sec;
4749
4750 if (is_elf_hash_table (htab))
4751 {
4752 Elf_Internal_Versym iver;
4753 unsigned int vernum = 0;
4754 bfd_boolean skip;
4755
4756 if (ever == NULL)
4757 {
4758 if (info->default_imported_symver)
4759 /* Use the default symbol version created earlier. */
4760 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4761 else
4762 iver.vs_vers = 0;
4763 }
4764 else if (ever >= extversym_end)
4765 {
4766 /* xgettext:c-format */
4767 _bfd_error_handler (_("%pB: not enough version information"),
4768 abfd);
4769 bfd_set_error (bfd_error_bad_value);
4770 goto error_free_vers;
4771 }
4772 else
4773 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4774
4775 vernum = iver.vs_vers & VERSYM_VERSION;
4776
4777 /* If this is a hidden symbol, or if it is not version
4778 1, we append the version name to the symbol name.
4779 However, we do not modify a non-hidden absolute symbol
4780 if it is not a function, because it might be the version
4781 symbol itself. FIXME: What if it isn't? */
4782 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4783 || (vernum > 1
4784 && (!bfd_is_abs_section (sec)
4785 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4786 {
4787 const char *verstr;
4788 size_t namelen, verlen, newlen;
4789 char *newname, *p;
4790
4791 if (isym->st_shndx != SHN_UNDEF)
4792 {
4793 if (vernum > elf_tdata (abfd)->cverdefs)
4794 verstr = NULL;
4795 else if (vernum > 1)
4796 verstr =
4797 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4798 else
4799 verstr = "";
4800
4801 if (verstr == NULL)
4802 {
4803 _bfd_error_handler
4804 /* xgettext:c-format */
4805 (_("%pB: %s: invalid version %u (max %d)"),
4806 abfd, name, vernum,
4807 elf_tdata (abfd)->cverdefs);
4808 bfd_set_error (bfd_error_bad_value);
4809 goto error_free_vers;
4810 }
4811 }
4812 else
4813 {
4814 /* We cannot simply test for the number of
4815 entries in the VERNEED section since the
4816 numbers for the needed versions do not start
4817 at 0. */
4818 Elf_Internal_Verneed *t;
4819
4820 verstr = NULL;
4821 for (t = elf_tdata (abfd)->verref;
4822 t != NULL;
4823 t = t->vn_nextref)
4824 {
4825 Elf_Internal_Vernaux *a;
4826
4827 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4828 {
4829 if (a->vna_other == vernum)
4830 {
4831 verstr = a->vna_nodename;
4832 break;
4833 }
4834 }
4835 if (a != NULL)
4836 break;
4837 }
4838 if (verstr == NULL)
4839 {
4840 _bfd_error_handler
4841 /* xgettext:c-format */
4842 (_("%pB: %s: invalid needed version %d"),
4843 abfd, name, vernum);
4844 bfd_set_error (bfd_error_bad_value);
4845 goto error_free_vers;
4846 }
4847 }
4848
4849 namelen = strlen (name);
4850 verlen = strlen (verstr);
4851 newlen = namelen + verlen + 2;
4852 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4853 && isym->st_shndx != SHN_UNDEF)
4854 ++newlen;
4855
4856 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4857 if (newname == NULL)
4858 goto error_free_vers;
4859 memcpy (newname, name, namelen);
4860 p = newname + namelen;
4861 *p++ = ELF_VER_CHR;
4862 /* If this is a defined non-hidden version symbol,
4863 we add another @ to the name. This indicates the
4864 default version of the symbol. */
4865 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4866 && isym->st_shndx != SHN_UNDEF)
4867 *p++ = ELF_VER_CHR;
4868 memcpy (p, verstr, verlen + 1);
4869
4870 name = newname;
4871 }
4872
4873 /* If this symbol has default visibility and the user has
4874 requested we not re-export it, then mark it as hidden. */
4875 if (!bfd_is_und_section (sec)
4876 && !dynamic
4877 && abfd->no_export
4878 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4879 isym->st_other = (STV_HIDDEN
4880 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4881
4882 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4883 sym_hash, &old_bfd, &old_weak,
4884 &old_alignment, &skip, &override,
4885 &type_change_ok, &size_change_ok,
4886 &matched))
4887 goto error_free_vers;
4888
4889 if (skip)
4890 continue;
4891
4892 /* Override a definition only if the new symbol matches the
4893 existing one. */
4894 if (override && matched)
4895 definition = FALSE;
4896
4897 h = *sym_hash;
4898 while (h->root.type == bfd_link_hash_indirect
4899 || h->root.type == bfd_link_hash_warning)
4900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4901
4902 if (elf_tdata (abfd)->verdef != NULL
4903 && vernum > 1
4904 && definition)
4905 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4906 }
4907
4908 if (! (_bfd_generic_link_add_one_symbol
4909 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4910 (struct bfd_link_hash_entry **) sym_hash)))
4911 goto error_free_vers;
4912
4913 h = *sym_hash;
4914 /* We need to make sure that indirect symbol dynamic flags are
4915 updated. */
4916 hi = h;
4917 while (h->root.type == bfd_link_hash_indirect
4918 || h->root.type == bfd_link_hash_warning)
4919 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4920
4921 /* Setting the index to -3 tells elf_link_output_extsym that
4922 this symbol is defined in a discarded section. */
4923 if (discarded)
4924 h->indx = -3;
4925
4926 *sym_hash = h;
4927
4928 new_weak = (flags & BSF_WEAK) != 0;
4929 if (dynamic
4930 && definition
4931 && new_weak
4932 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4933 && is_elf_hash_table (htab)
4934 && h->u.alias == NULL)
4935 {
4936 /* Keep a list of all weak defined non function symbols from
4937 a dynamic object, using the alias field. Later in this
4938 function we will set the alias field to the correct
4939 value. We only put non-function symbols from dynamic
4940 objects on this list, because that happens to be the only
4941 time we need to know the normal symbol corresponding to a
4942 weak symbol, and the information is time consuming to
4943 figure out. If the alias field is not already NULL,
4944 then this symbol was already defined by some previous
4945 dynamic object, and we will be using that previous
4946 definition anyhow. */
4947
4948 h->u.alias = weaks;
4949 weaks = h;
4950 }
4951
4952 /* Set the alignment of a common symbol. */
4953 if ((common || bfd_is_com_section (sec))
4954 && h->root.type == bfd_link_hash_common)
4955 {
4956 unsigned int align;
4957
4958 if (common)
4959 align = bfd_log2 (isym->st_value);
4960 else
4961 {
4962 /* The new symbol is a common symbol in a shared object.
4963 We need to get the alignment from the section. */
4964 align = new_sec->alignment_power;
4965 }
4966 if (align > old_alignment)
4967 h->root.u.c.p->alignment_power = align;
4968 else
4969 h->root.u.c.p->alignment_power = old_alignment;
4970 }
4971
4972 if (is_elf_hash_table (htab))
4973 {
4974 /* Set a flag in the hash table entry indicating the type of
4975 reference or definition we just found. A dynamic symbol
4976 is one which is referenced or defined by both a regular
4977 object and a shared object. */
4978 bfd_boolean dynsym = FALSE;
4979
4980 /* Plugin symbols aren't normal. Don't set def_regular or
4981 ref_regular for them, or make them dynamic. */
4982 if ((abfd->flags & BFD_PLUGIN) != 0)
4983 ;
4984 else if (! dynamic)
4985 {
4986 if (! definition)
4987 {
4988 h->ref_regular = 1;
4989 if (bind != STB_WEAK)
4990 h->ref_regular_nonweak = 1;
4991 }
4992 else
4993 {
4994 h->def_regular = 1;
4995 if (h->def_dynamic)
4996 {
4997 h->def_dynamic = 0;
4998 h->ref_dynamic = 1;
4999 }
5000 }
5001
5002 /* If the indirect symbol has been forced local, don't
5003 make the real symbol dynamic. */
5004 if ((h == hi || !hi->forced_local)
5005 && (bfd_link_dll (info)
5006 || h->def_dynamic
5007 || h->ref_dynamic))
5008 dynsym = TRUE;
5009 }
5010 else
5011 {
5012 if (! definition)
5013 {
5014 h->ref_dynamic = 1;
5015 hi->ref_dynamic = 1;
5016 }
5017 else
5018 {
5019 h->def_dynamic = 1;
5020 hi->def_dynamic = 1;
5021 }
5022
5023 /* If the indirect symbol has been forced local, don't
5024 make the real symbol dynamic. */
5025 if ((h == hi || !hi->forced_local)
5026 && (h->def_regular
5027 || h->ref_regular
5028 || (h->is_weakalias
5029 && weakdef (h)->dynindx != -1)))
5030 dynsym = TRUE;
5031 }
5032
5033 /* Check to see if we need to add an indirect symbol for
5034 the default name. */
5035 if (definition
5036 || (!override && h->root.type == bfd_link_hash_common))
5037 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5038 sec, value, &old_bfd, &dynsym))
5039 goto error_free_vers;
5040
5041 /* Check the alignment when a common symbol is involved. This
5042 can change when a common symbol is overridden by a normal
5043 definition or a common symbol is ignored due to the old
5044 normal definition. We need to make sure the maximum
5045 alignment is maintained. */
5046 if ((old_alignment || common)
5047 && h->root.type != bfd_link_hash_common)
5048 {
5049 unsigned int common_align;
5050 unsigned int normal_align;
5051 unsigned int symbol_align;
5052 bfd *normal_bfd;
5053 bfd *common_bfd;
5054
5055 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5056 || h->root.type == bfd_link_hash_defweak);
5057
5058 symbol_align = ffs (h->root.u.def.value) - 1;
5059 if (h->root.u.def.section->owner != NULL
5060 && (h->root.u.def.section->owner->flags
5061 & (DYNAMIC | BFD_PLUGIN)) == 0)
5062 {
5063 normal_align = h->root.u.def.section->alignment_power;
5064 if (normal_align > symbol_align)
5065 normal_align = symbol_align;
5066 }
5067 else
5068 normal_align = symbol_align;
5069
5070 if (old_alignment)
5071 {
5072 common_align = old_alignment;
5073 common_bfd = old_bfd;
5074 normal_bfd = abfd;
5075 }
5076 else
5077 {
5078 common_align = bfd_log2 (isym->st_value);
5079 common_bfd = abfd;
5080 normal_bfd = old_bfd;
5081 }
5082
5083 if (normal_align < common_align)
5084 {
5085 /* PR binutils/2735 */
5086 if (normal_bfd == NULL)
5087 _bfd_error_handler
5088 /* xgettext:c-format */
5089 (_("warning: alignment %u of common symbol `%s' in %pB is"
5090 " greater than the alignment (%u) of its section %pA"),
5091 1 << common_align, name, common_bfd,
5092 1 << normal_align, h->root.u.def.section);
5093 else
5094 _bfd_error_handler
5095 /* xgettext:c-format */
5096 (_("warning: alignment %u of symbol `%s' in %pB"
5097 " is smaller than %u in %pB"),
5098 1 << normal_align, name, normal_bfd,
5099 1 << common_align, common_bfd);
5100 }
5101 }
5102
5103 /* Remember the symbol size if it isn't undefined. */
5104 if (isym->st_size != 0
5105 && isym->st_shndx != SHN_UNDEF
5106 && (definition || h->size == 0))
5107 {
5108 if (h->size != 0
5109 && h->size != isym->st_size
5110 && ! size_change_ok)
5111 _bfd_error_handler
5112 /* xgettext:c-format */
5113 (_("warning: size of symbol `%s' changed"
5114 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5115 name, (uint64_t) h->size, old_bfd,
5116 (uint64_t) isym->st_size, abfd);
5117
5118 h->size = isym->st_size;
5119 }
5120
5121 /* If this is a common symbol, then we always want H->SIZE
5122 to be the size of the common symbol. The code just above
5123 won't fix the size if a common symbol becomes larger. We
5124 don't warn about a size change here, because that is
5125 covered by --warn-common. Allow changes between different
5126 function types. */
5127 if (h->root.type == bfd_link_hash_common)
5128 h->size = h->root.u.c.size;
5129
5130 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5131 && ((definition && !new_weak)
5132 || (old_weak && h->root.type == bfd_link_hash_common)
5133 || h->type == STT_NOTYPE))
5134 {
5135 unsigned int type = ELF_ST_TYPE (isym->st_info);
5136
5137 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5138 symbol. */
5139 if (type == STT_GNU_IFUNC
5140 && (abfd->flags & DYNAMIC) != 0)
5141 type = STT_FUNC;
5142
5143 if (h->type != type)
5144 {
5145 if (h->type != STT_NOTYPE && ! type_change_ok)
5146 /* xgettext:c-format */
5147 _bfd_error_handler
5148 (_("warning: type of symbol `%s' changed"
5149 " from %d to %d in %pB"),
5150 name, h->type, type, abfd);
5151
5152 h->type = type;
5153 }
5154 }
5155
5156 /* Merge st_other field. */
5157 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5158
5159 /* We don't want to make debug symbol dynamic. */
5160 if (definition
5161 && (sec->flags & SEC_DEBUGGING)
5162 && !bfd_link_relocatable (info))
5163 dynsym = FALSE;
5164
5165 /* Nor should we make plugin symbols dynamic. */
5166 if ((abfd->flags & BFD_PLUGIN) != 0)
5167 dynsym = FALSE;
5168
5169 if (definition)
5170 {
5171 h->target_internal = isym->st_target_internal;
5172 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5173 }
5174
5175 if (definition && !dynamic)
5176 {
5177 char *p = strchr (name, ELF_VER_CHR);
5178 if (p != NULL && p[1] != ELF_VER_CHR)
5179 {
5180 /* Queue non-default versions so that .symver x, x@FOO
5181 aliases can be checked. */
5182 if (!nondeflt_vers)
5183 {
5184 size_t amt = ((isymend - isym + 1)
5185 * sizeof (struct elf_link_hash_entry *));
5186 nondeflt_vers
5187 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5188 if (!nondeflt_vers)
5189 goto error_free_vers;
5190 }
5191 nondeflt_vers[nondeflt_vers_cnt++] = h;
5192 }
5193 }
5194
5195 if (dynsym && h->dynindx == -1)
5196 {
5197 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5198 goto error_free_vers;
5199 if (h->is_weakalias
5200 && weakdef (h)->dynindx == -1)
5201 {
5202 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5203 goto error_free_vers;
5204 }
5205 }
5206 else if (h->dynindx != -1)
5207 /* If the symbol already has a dynamic index, but
5208 visibility says it should not be visible, turn it into
5209 a local symbol. */
5210 switch (ELF_ST_VISIBILITY (h->other))
5211 {
5212 case STV_INTERNAL:
5213 case STV_HIDDEN:
5214 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5215 dynsym = FALSE;
5216 break;
5217 }
5218
5219 if (!add_needed
5220 && matched
5221 && definition
5222 && ((dynsym
5223 && h->ref_regular_nonweak)
5224 || (h->ref_dynamic_nonweak
5225 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5226 && !on_needed_list (elf_dt_name (abfd),
5227 htab->needed, NULL))))
5228 {
5229 const char *soname = elf_dt_name (abfd);
5230
5231 info->callbacks->minfo ("%!", soname, old_bfd,
5232 h->root.root.string);
5233
5234 /* A symbol from a library loaded via DT_NEEDED of some
5235 other library is referenced by a regular object.
5236 Add a DT_NEEDED entry for it. Issue an error if
5237 --no-add-needed is used and the reference was not
5238 a weak one. */
5239 if (old_bfd != NULL
5240 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5241 {
5242 _bfd_error_handler
5243 /* xgettext:c-format */
5244 (_("%pB: undefined reference to symbol '%s'"),
5245 old_bfd, name);
5246 bfd_set_error (bfd_error_missing_dso);
5247 goto error_free_vers;
5248 }
5249
5250 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5251 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5252
5253 /* Create dynamic sections for backends that require
5254 that be done before setup_gnu_properties. */
5255 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5256 return FALSE;
5257 add_needed = TRUE;
5258 }
5259 }
5260 }
5261
5262 if (info->lto_plugin_active
5263 && !bfd_link_relocatable (info)
5264 && (abfd->flags & BFD_PLUGIN) == 0
5265 && !just_syms
5266 && extsymcount)
5267 {
5268 int r_sym_shift;
5269
5270 if (bed->s->arch_size == 32)
5271 r_sym_shift = 8;
5272 else
5273 r_sym_shift = 32;
5274
5275 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5276 referenced in regular objects so that linker plugin will get
5277 the correct symbol resolution. */
5278
5279 sym_hash = elf_sym_hashes (abfd);
5280 for (s = abfd->sections; s != NULL; s = s->next)
5281 {
5282 Elf_Internal_Rela *internal_relocs;
5283 Elf_Internal_Rela *rel, *relend;
5284
5285 /* Don't check relocations in excluded sections. */
5286 if ((s->flags & SEC_RELOC) == 0
5287 || s->reloc_count == 0
5288 || (s->flags & SEC_EXCLUDE) != 0
5289 || ((info->strip == strip_all
5290 || info->strip == strip_debugger)
5291 && (s->flags & SEC_DEBUGGING) != 0))
5292 continue;
5293
5294 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5295 NULL,
5296 info->keep_memory);
5297 if (internal_relocs == NULL)
5298 goto error_free_vers;
5299
5300 rel = internal_relocs;
5301 relend = rel + s->reloc_count;
5302 for ( ; rel < relend; rel++)
5303 {
5304 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5305 struct elf_link_hash_entry *h;
5306
5307 /* Skip local symbols. */
5308 if (r_symndx < extsymoff)
5309 continue;
5310
5311 h = sym_hash[r_symndx - extsymoff];
5312 if (h != NULL)
5313 h->root.non_ir_ref_regular = 1;
5314 }
5315
5316 if (elf_section_data (s)->relocs != internal_relocs)
5317 free (internal_relocs);
5318 }
5319 }
5320
5321 free (extversym);
5322 extversym = NULL;
5323 free (isymbuf);
5324 isymbuf = NULL;
5325
5326 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5327 {
5328 unsigned int i;
5329
5330 /* Restore the symbol table. */
5331 old_ent = (char *) old_tab + tabsize;
5332 memset (elf_sym_hashes (abfd), 0,
5333 extsymcount * sizeof (struct elf_link_hash_entry *));
5334 htab->root.table.table = old_table;
5335 htab->root.table.size = old_size;
5336 htab->root.table.count = old_count;
5337 memcpy (htab->root.table.table, old_tab, tabsize);
5338 htab->root.undefs = old_undefs;
5339 htab->root.undefs_tail = old_undefs_tail;
5340 if (htab->dynstr != NULL)
5341 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5342 free (old_strtab);
5343 old_strtab = NULL;
5344 for (i = 0; i < htab->root.table.size; i++)
5345 {
5346 struct bfd_hash_entry *p;
5347 struct elf_link_hash_entry *h;
5348 bfd_size_type size;
5349 unsigned int alignment_power;
5350 unsigned int non_ir_ref_dynamic;
5351
5352 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5353 {
5354 h = (struct elf_link_hash_entry *) p;
5355 if (h->root.type == bfd_link_hash_warning)
5356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5357
5358 /* Preserve the maximum alignment and size for common
5359 symbols even if this dynamic lib isn't on DT_NEEDED
5360 since it can still be loaded at run time by another
5361 dynamic lib. */
5362 if (h->root.type == bfd_link_hash_common)
5363 {
5364 size = h->root.u.c.size;
5365 alignment_power = h->root.u.c.p->alignment_power;
5366 }
5367 else
5368 {
5369 size = 0;
5370 alignment_power = 0;
5371 }
5372 /* Preserve non_ir_ref_dynamic so that this symbol
5373 will be exported when the dynamic lib becomes needed
5374 in the second pass. */
5375 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5376 memcpy (p, old_ent, htab->root.table.entsize);
5377 old_ent = (char *) old_ent + htab->root.table.entsize;
5378 h = (struct elf_link_hash_entry *) p;
5379 if (h->root.type == bfd_link_hash_warning)
5380 {
5381 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5382 old_ent = (char *) old_ent + htab->root.table.entsize;
5383 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5384 }
5385 if (h->root.type == bfd_link_hash_common)
5386 {
5387 if (size > h->root.u.c.size)
5388 h->root.u.c.size = size;
5389 if (alignment_power > h->root.u.c.p->alignment_power)
5390 h->root.u.c.p->alignment_power = alignment_power;
5391 }
5392 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5393 }
5394 }
5395
5396 /* Make a special call to the linker "notice" function to
5397 tell it that symbols added for crefs may need to be removed. */
5398 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5399 goto error_free_vers;
5400
5401 free (old_tab);
5402 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5403 alloc_mark);
5404 free (nondeflt_vers);
5405 return TRUE;
5406 }
5407
5408 if (old_tab != NULL)
5409 {
5410 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5411 goto error_free_vers;
5412 free (old_tab);
5413 old_tab = NULL;
5414 }
5415
5416 /* Now that all the symbols from this input file are created, if
5417 not performing a relocatable link, handle .symver foo, foo@BAR
5418 such that any relocs against foo become foo@BAR. */
5419 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5420 {
5421 size_t cnt, symidx;
5422
5423 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5424 {
5425 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5426 char *shortname, *p;
5427 size_t amt;
5428
5429 p = strchr (h->root.root.string, ELF_VER_CHR);
5430 if (p == NULL
5431 || (h->root.type != bfd_link_hash_defined
5432 && h->root.type != bfd_link_hash_defweak))
5433 continue;
5434
5435 amt = p - h->root.root.string;
5436 shortname = (char *) bfd_malloc (amt + 1);
5437 if (!shortname)
5438 goto error_free_vers;
5439 memcpy (shortname, h->root.root.string, amt);
5440 shortname[amt] = '\0';
5441
5442 hi = (struct elf_link_hash_entry *)
5443 bfd_link_hash_lookup (&htab->root, shortname,
5444 FALSE, FALSE, FALSE);
5445 if (hi != NULL
5446 && hi->root.type == h->root.type
5447 && hi->root.u.def.value == h->root.u.def.value
5448 && hi->root.u.def.section == h->root.u.def.section)
5449 {
5450 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5451 hi->root.type = bfd_link_hash_indirect;
5452 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5453 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5454 sym_hash = elf_sym_hashes (abfd);
5455 if (sym_hash)
5456 for (symidx = 0; symidx < extsymcount; ++symidx)
5457 if (sym_hash[symidx] == hi)
5458 {
5459 sym_hash[symidx] = h;
5460 break;
5461 }
5462 }
5463 free (shortname);
5464 }
5465 free (nondeflt_vers);
5466 nondeflt_vers = NULL;
5467 }
5468
5469 /* Now set the alias field correctly for all the weak defined
5470 symbols we found. The only way to do this is to search all the
5471 symbols. Since we only need the information for non functions in
5472 dynamic objects, that's the only time we actually put anything on
5473 the list WEAKS. We need this information so that if a regular
5474 object refers to a symbol defined weakly in a dynamic object, the
5475 real symbol in the dynamic object is also put in the dynamic
5476 symbols; we also must arrange for both symbols to point to the
5477 same memory location. We could handle the general case of symbol
5478 aliasing, but a general symbol alias can only be generated in
5479 assembler code, handling it correctly would be very time
5480 consuming, and other ELF linkers don't handle general aliasing
5481 either. */
5482 if (weaks != NULL)
5483 {
5484 struct elf_link_hash_entry **hpp;
5485 struct elf_link_hash_entry **hppend;
5486 struct elf_link_hash_entry **sorted_sym_hash;
5487 struct elf_link_hash_entry *h;
5488 size_t sym_count, amt;
5489
5490 /* Since we have to search the whole symbol list for each weak
5491 defined symbol, search time for N weak defined symbols will be
5492 O(N^2). Binary search will cut it down to O(NlogN). */
5493 amt = extsymcount * sizeof (*sorted_sym_hash);
5494 sorted_sym_hash = bfd_malloc (amt);
5495 if (sorted_sym_hash == NULL)
5496 goto error_return;
5497 sym_hash = sorted_sym_hash;
5498 hpp = elf_sym_hashes (abfd);
5499 hppend = hpp + extsymcount;
5500 sym_count = 0;
5501 for (; hpp < hppend; hpp++)
5502 {
5503 h = *hpp;
5504 if (h != NULL
5505 && h->root.type == bfd_link_hash_defined
5506 && !bed->is_function_type (h->type))
5507 {
5508 *sym_hash = h;
5509 sym_hash++;
5510 sym_count++;
5511 }
5512 }
5513
5514 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5515 elf_sort_symbol);
5516
5517 while (weaks != NULL)
5518 {
5519 struct elf_link_hash_entry *hlook;
5520 asection *slook;
5521 bfd_vma vlook;
5522 size_t i, j, idx = 0;
5523
5524 hlook = weaks;
5525 weaks = hlook->u.alias;
5526 hlook->u.alias = NULL;
5527
5528 if (hlook->root.type != bfd_link_hash_defined
5529 && hlook->root.type != bfd_link_hash_defweak)
5530 continue;
5531
5532 slook = hlook->root.u.def.section;
5533 vlook = hlook->root.u.def.value;
5534
5535 i = 0;
5536 j = sym_count;
5537 while (i != j)
5538 {
5539 bfd_signed_vma vdiff;
5540 idx = (i + j) / 2;
5541 h = sorted_sym_hash[idx];
5542 vdiff = vlook - h->root.u.def.value;
5543 if (vdiff < 0)
5544 j = idx;
5545 else if (vdiff > 0)
5546 i = idx + 1;
5547 else
5548 {
5549 int sdiff = slook->id - h->root.u.def.section->id;
5550 if (sdiff < 0)
5551 j = idx;
5552 else if (sdiff > 0)
5553 i = idx + 1;
5554 else
5555 break;
5556 }
5557 }
5558
5559 /* We didn't find a value/section match. */
5560 if (i == j)
5561 continue;
5562
5563 /* With multiple aliases, or when the weak symbol is already
5564 strongly defined, we have multiple matching symbols and
5565 the binary search above may land on any of them. Step
5566 one past the matching symbol(s). */
5567 while (++idx != j)
5568 {
5569 h = sorted_sym_hash[idx];
5570 if (h->root.u.def.section != slook
5571 || h->root.u.def.value != vlook)
5572 break;
5573 }
5574
5575 /* Now look back over the aliases. Since we sorted by size
5576 as well as value and section, we'll choose the one with
5577 the largest size. */
5578 while (idx-- != i)
5579 {
5580 h = sorted_sym_hash[idx];
5581
5582 /* Stop if value or section doesn't match. */
5583 if (h->root.u.def.section != slook
5584 || h->root.u.def.value != vlook)
5585 break;
5586 else if (h != hlook)
5587 {
5588 struct elf_link_hash_entry *t;
5589
5590 hlook->u.alias = h;
5591 hlook->is_weakalias = 1;
5592 t = h;
5593 if (t->u.alias != NULL)
5594 while (t->u.alias != h)
5595 t = t->u.alias;
5596 t->u.alias = hlook;
5597
5598 /* If the weak definition is in the list of dynamic
5599 symbols, make sure the real definition is put
5600 there as well. */
5601 if (hlook->dynindx != -1 && h->dynindx == -1)
5602 {
5603 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5604 {
5605 err_free_sym_hash:
5606 free (sorted_sym_hash);
5607 goto error_return;
5608 }
5609 }
5610
5611 /* If the real definition is in the list of dynamic
5612 symbols, make sure the weak definition is put
5613 there as well. If we don't do this, then the
5614 dynamic loader might not merge the entries for the
5615 real definition and the weak definition. */
5616 if (h->dynindx != -1 && hlook->dynindx == -1)
5617 {
5618 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5619 goto err_free_sym_hash;
5620 }
5621 break;
5622 }
5623 }
5624 }
5625
5626 free (sorted_sym_hash);
5627 }
5628
5629 if (bed->check_directives
5630 && !(*bed->check_directives) (abfd, info))
5631 return FALSE;
5632
5633 /* If this is a non-traditional link, try to optimize the handling
5634 of the .stab/.stabstr sections. */
5635 if (! dynamic
5636 && ! info->traditional_format
5637 && is_elf_hash_table (htab)
5638 && (info->strip != strip_all && info->strip != strip_debugger))
5639 {
5640 asection *stabstr;
5641
5642 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5643 if (stabstr != NULL)
5644 {
5645 bfd_size_type string_offset = 0;
5646 asection *stab;
5647
5648 for (stab = abfd->sections; stab; stab = stab->next)
5649 if (CONST_STRNEQ (stab->name, ".stab")
5650 && (!stab->name[5] ||
5651 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5652 && (stab->flags & SEC_MERGE) == 0
5653 && !bfd_is_abs_section (stab->output_section))
5654 {
5655 struct bfd_elf_section_data *secdata;
5656
5657 secdata = elf_section_data (stab);
5658 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5659 stabstr, &secdata->sec_info,
5660 &string_offset))
5661 goto error_return;
5662 if (secdata->sec_info)
5663 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5664 }
5665 }
5666 }
5667
5668 if (dynamic && add_needed)
5669 {
5670 /* Add this bfd to the loaded list. */
5671 struct elf_link_loaded_list *n;
5672
5673 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5674 if (n == NULL)
5675 goto error_return;
5676 n->abfd = abfd;
5677 n->next = htab->dyn_loaded;
5678 htab->dyn_loaded = n;
5679 }
5680 if (dynamic && !add_needed
5681 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5682 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5683
5684 return TRUE;
5685
5686 error_free_vers:
5687 free (old_tab);
5688 free (old_strtab);
5689 free (nondeflt_vers);
5690 free (extversym);
5691 error_free_sym:
5692 free (isymbuf);
5693 error_return:
5694 return FALSE;
5695 }
5696
5697 /* Return the linker hash table entry of a symbol that might be
5698 satisfied by an archive symbol. Return -1 on error. */
5699
5700 struct elf_link_hash_entry *
5701 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5702 struct bfd_link_info *info,
5703 const char *name)
5704 {
5705 struct elf_link_hash_entry *h;
5706 char *p, *copy;
5707 size_t len, first;
5708
5709 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5710 if (h != NULL)
5711 return h;
5712
5713 /* If this is a default version (the name contains @@), look up the
5714 symbol again with only one `@' as well as without the version.
5715 The effect is that references to the symbol with and without the
5716 version will be matched by the default symbol in the archive. */
5717
5718 p = strchr (name, ELF_VER_CHR);
5719 if (p == NULL || p[1] != ELF_VER_CHR)
5720 return h;
5721
5722 /* First check with only one `@'. */
5723 len = strlen (name);
5724 copy = (char *) bfd_alloc (abfd, len);
5725 if (copy == NULL)
5726 return (struct elf_link_hash_entry *) -1;
5727
5728 first = p - name + 1;
5729 memcpy (copy, name, first);
5730 memcpy (copy + first, name + first + 1, len - first);
5731
5732 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5733 if (h == NULL)
5734 {
5735 /* We also need to check references to the symbol without the
5736 version. */
5737 copy[first - 1] = '\0';
5738 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5739 FALSE, FALSE, TRUE);
5740 }
5741
5742 bfd_release (abfd, copy);
5743 return h;
5744 }
5745
5746 /* Add symbols from an ELF archive file to the linker hash table. We
5747 don't use _bfd_generic_link_add_archive_symbols because we need to
5748 handle versioned symbols.
5749
5750 Fortunately, ELF archive handling is simpler than that done by
5751 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5752 oddities. In ELF, if we find a symbol in the archive map, and the
5753 symbol is currently undefined, we know that we must pull in that
5754 object file.
5755
5756 Unfortunately, we do have to make multiple passes over the symbol
5757 table until nothing further is resolved. */
5758
5759 static bfd_boolean
5760 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5761 {
5762 symindex c;
5763 unsigned char *included = NULL;
5764 carsym *symdefs;
5765 bfd_boolean loop;
5766 size_t amt;
5767 const struct elf_backend_data *bed;
5768 struct elf_link_hash_entry * (*archive_symbol_lookup)
5769 (bfd *, struct bfd_link_info *, const char *);
5770
5771 if (! bfd_has_map (abfd))
5772 {
5773 /* An empty archive is a special case. */
5774 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5775 return TRUE;
5776 bfd_set_error (bfd_error_no_armap);
5777 return FALSE;
5778 }
5779
5780 /* Keep track of all symbols we know to be already defined, and all
5781 files we know to be already included. This is to speed up the
5782 second and subsequent passes. */
5783 c = bfd_ardata (abfd)->symdef_count;
5784 if (c == 0)
5785 return TRUE;
5786 amt = c * sizeof (*included);
5787 included = (unsigned char *) bfd_zmalloc (amt);
5788 if (included == NULL)
5789 return FALSE;
5790
5791 symdefs = bfd_ardata (abfd)->symdefs;
5792 bed = get_elf_backend_data (abfd);
5793 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5794
5795 do
5796 {
5797 file_ptr last;
5798 symindex i;
5799 carsym *symdef;
5800 carsym *symdefend;
5801
5802 loop = FALSE;
5803 last = -1;
5804
5805 symdef = symdefs;
5806 symdefend = symdef + c;
5807 for (i = 0; symdef < symdefend; symdef++, i++)
5808 {
5809 struct elf_link_hash_entry *h;
5810 bfd *element;
5811 struct bfd_link_hash_entry *undefs_tail;
5812 symindex mark;
5813
5814 if (included[i])
5815 continue;
5816 if (symdef->file_offset == last)
5817 {
5818 included[i] = TRUE;
5819 continue;
5820 }
5821
5822 h = archive_symbol_lookup (abfd, info, symdef->name);
5823 if (h == (struct elf_link_hash_entry *) -1)
5824 goto error_return;
5825
5826 if (h == NULL)
5827 continue;
5828
5829 if (h->root.type == bfd_link_hash_undefined)
5830 {
5831 /* If the archive element has already been loaded then one
5832 of the symbols defined by that element might have been
5833 made undefined due to being in a discarded section. */
5834 if (h->indx == -3)
5835 continue;
5836 }
5837 else if (h->root.type == bfd_link_hash_common)
5838 {
5839 /* We currently have a common symbol. The archive map contains
5840 a reference to this symbol, so we may want to include it. We
5841 only want to include it however, if this archive element
5842 contains a definition of the symbol, not just another common
5843 declaration of it.
5844
5845 Unfortunately some archivers (including GNU ar) will put
5846 declarations of common symbols into their archive maps, as
5847 well as real definitions, so we cannot just go by the archive
5848 map alone. Instead we must read in the element's symbol
5849 table and check that to see what kind of symbol definition
5850 this is. */
5851 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5852 continue;
5853 }
5854 else
5855 {
5856 if (h->root.type != bfd_link_hash_undefweak)
5857 /* Symbol must be defined. Don't check it again. */
5858 included[i] = TRUE;
5859 continue;
5860 }
5861
5862 /* We need to include this archive member. */
5863 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5864 if (element == NULL)
5865 goto error_return;
5866
5867 if (! bfd_check_format (element, bfd_object))
5868 goto error_return;
5869
5870 undefs_tail = info->hash->undefs_tail;
5871
5872 if (!(*info->callbacks
5873 ->add_archive_element) (info, element, symdef->name, &element))
5874 continue;
5875 if (!bfd_link_add_symbols (element, info))
5876 goto error_return;
5877
5878 /* If there are any new undefined symbols, we need to make
5879 another pass through the archive in order to see whether
5880 they can be defined. FIXME: This isn't perfect, because
5881 common symbols wind up on undefs_tail and because an
5882 undefined symbol which is defined later on in this pass
5883 does not require another pass. This isn't a bug, but it
5884 does make the code less efficient than it could be. */
5885 if (undefs_tail != info->hash->undefs_tail)
5886 loop = TRUE;
5887
5888 /* Look backward to mark all symbols from this object file
5889 which we have already seen in this pass. */
5890 mark = i;
5891 do
5892 {
5893 included[mark] = TRUE;
5894 if (mark == 0)
5895 break;
5896 --mark;
5897 }
5898 while (symdefs[mark].file_offset == symdef->file_offset);
5899
5900 /* We mark subsequent symbols from this object file as we go
5901 on through the loop. */
5902 last = symdef->file_offset;
5903 }
5904 }
5905 while (loop);
5906
5907 free (included);
5908 return TRUE;
5909
5910 error_return:
5911 free (included);
5912 return FALSE;
5913 }
5914
5915 /* Given an ELF BFD, add symbols to the global hash table as
5916 appropriate. */
5917
5918 bfd_boolean
5919 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5920 {
5921 switch (bfd_get_format (abfd))
5922 {
5923 case bfd_object:
5924 return elf_link_add_object_symbols (abfd, info);
5925 case bfd_archive:
5926 return elf_link_add_archive_symbols (abfd, info);
5927 default:
5928 bfd_set_error (bfd_error_wrong_format);
5929 return FALSE;
5930 }
5931 }
5932 \f
5933 struct hash_codes_info
5934 {
5935 unsigned long *hashcodes;
5936 bfd_boolean error;
5937 };
5938
5939 /* This function will be called though elf_link_hash_traverse to store
5940 all hash value of the exported symbols in an array. */
5941
5942 static bfd_boolean
5943 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5944 {
5945 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5946 const char *name;
5947 unsigned long ha;
5948 char *alc = NULL;
5949
5950 /* Ignore indirect symbols. These are added by the versioning code. */
5951 if (h->dynindx == -1)
5952 return TRUE;
5953
5954 name = h->root.root.string;
5955 if (h->versioned >= versioned)
5956 {
5957 char *p = strchr (name, ELF_VER_CHR);
5958 if (p != NULL)
5959 {
5960 alc = (char *) bfd_malloc (p - name + 1);
5961 if (alc == NULL)
5962 {
5963 inf->error = TRUE;
5964 return FALSE;
5965 }
5966 memcpy (alc, name, p - name);
5967 alc[p - name] = '\0';
5968 name = alc;
5969 }
5970 }
5971
5972 /* Compute the hash value. */
5973 ha = bfd_elf_hash (name);
5974
5975 /* Store the found hash value in the array given as the argument. */
5976 *(inf->hashcodes)++ = ha;
5977
5978 /* And store it in the struct so that we can put it in the hash table
5979 later. */
5980 h->u.elf_hash_value = ha;
5981
5982 free (alc);
5983 return TRUE;
5984 }
5985
5986 struct collect_gnu_hash_codes
5987 {
5988 bfd *output_bfd;
5989 const struct elf_backend_data *bed;
5990 unsigned long int nsyms;
5991 unsigned long int maskbits;
5992 unsigned long int *hashcodes;
5993 unsigned long int *hashval;
5994 unsigned long int *indx;
5995 unsigned long int *counts;
5996 bfd_vma *bitmask;
5997 bfd_byte *contents;
5998 bfd_size_type xlat;
5999 long int min_dynindx;
6000 unsigned long int bucketcount;
6001 unsigned long int symindx;
6002 long int local_indx;
6003 long int shift1, shift2;
6004 unsigned long int mask;
6005 bfd_boolean error;
6006 };
6007
6008 /* This function will be called though elf_link_hash_traverse to store
6009 all hash value of the exported symbols in an array. */
6010
6011 static bfd_boolean
6012 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6013 {
6014 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6015 const char *name;
6016 unsigned long ha;
6017 char *alc = NULL;
6018
6019 /* Ignore indirect symbols. These are added by the versioning code. */
6020 if (h->dynindx == -1)
6021 return TRUE;
6022
6023 /* Ignore also local symbols and undefined symbols. */
6024 if (! (*s->bed->elf_hash_symbol) (h))
6025 return TRUE;
6026
6027 name = h->root.root.string;
6028 if (h->versioned >= versioned)
6029 {
6030 char *p = strchr (name, ELF_VER_CHR);
6031 if (p != NULL)
6032 {
6033 alc = (char *) bfd_malloc (p - name + 1);
6034 if (alc == NULL)
6035 {
6036 s->error = TRUE;
6037 return FALSE;
6038 }
6039 memcpy (alc, name, p - name);
6040 alc[p - name] = '\0';
6041 name = alc;
6042 }
6043 }
6044
6045 /* Compute the hash value. */
6046 ha = bfd_elf_gnu_hash (name);
6047
6048 /* Store the found hash value in the array for compute_bucket_count,
6049 and also for .dynsym reordering purposes. */
6050 s->hashcodes[s->nsyms] = ha;
6051 s->hashval[h->dynindx] = ha;
6052 ++s->nsyms;
6053 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6054 s->min_dynindx = h->dynindx;
6055
6056 free (alc);
6057 return TRUE;
6058 }
6059
6060 /* This function will be called though elf_link_hash_traverse to do
6061 final dynamic symbol renumbering in case of .gnu.hash.
6062 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6063 to the translation table. */
6064
6065 static bfd_boolean
6066 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6067 {
6068 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6069 unsigned long int bucket;
6070 unsigned long int val;
6071
6072 /* Ignore indirect symbols. */
6073 if (h->dynindx == -1)
6074 return TRUE;
6075
6076 /* Ignore also local symbols and undefined symbols. */
6077 if (! (*s->bed->elf_hash_symbol) (h))
6078 {
6079 if (h->dynindx >= s->min_dynindx)
6080 {
6081 if (s->bed->record_xhash_symbol != NULL)
6082 {
6083 (*s->bed->record_xhash_symbol) (h, 0);
6084 s->local_indx++;
6085 }
6086 else
6087 h->dynindx = s->local_indx++;
6088 }
6089 return TRUE;
6090 }
6091
6092 bucket = s->hashval[h->dynindx] % s->bucketcount;
6093 val = (s->hashval[h->dynindx] >> s->shift1)
6094 & ((s->maskbits >> s->shift1) - 1);
6095 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6096 s->bitmask[val]
6097 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6098 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6099 if (s->counts[bucket] == 1)
6100 /* Last element terminates the chain. */
6101 val |= 1;
6102 bfd_put_32 (s->output_bfd, val,
6103 s->contents + (s->indx[bucket] - s->symindx) * 4);
6104 --s->counts[bucket];
6105 if (s->bed->record_xhash_symbol != NULL)
6106 {
6107 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6108
6109 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6110 }
6111 else
6112 h->dynindx = s->indx[bucket]++;
6113 return TRUE;
6114 }
6115
6116 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6117
6118 bfd_boolean
6119 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6120 {
6121 return !(h->forced_local
6122 || h->root.type == bfd_link_hash_undefined
6123 || h->root.type == bfd_link_hash_undefweak
6124 || ((h->root.type == bfd_link_hash_defined
6125 || h->root.type == bfd_link_hash_defweak)
6126 && h->root.u.def.section->output_section == NULL));
6127 }
6128
6129 /* Array used to determine the number of hash table buckets to use
6130 based on the number of symbols there are. If there are fewer than
6131 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6132 fewer than 37 we use 17 buckets, and so forth. We never use more
6133 than 32771 buckets. */
6134
6135 static const size_t elf_buckets[] =
6136 {
6137 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6138 16411, 32771, 0
6139 };
6140
6141 /* Compute bucket count for hashing table. We do not use a static set
6142 of possible tables sizes anymore. Instead we determine for all
6143 possible reasonable sizes of the table the outcome (i.e., the
6144 number of collisions etc) and choose the best solution. The
6145 weighting functions are not too simple to allow the table to grow
6146 without bounds. Instead one of the weighting factors is the size.
6147 Therefore the result is always a good payoff between few collisions
6148 (= short chain lengths) and table size. */
6149 static size_t
6150 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6151 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6152 unsigned long int nsyms,
6153 int gnu_hash)
6154 {
6155 size_t best_size = 0;
6156 unsigned long int i;
6157
6158 /* We have a problem here. The following code to optimize the table
6159 size requires an integer type with more the 32 bits. If
6160 BFD_HOST_U_64_BIT is set we know about such a type. */
6161 #ifdef BFD_HOST_U_64_BIT
6162 if (info->optimize)
6163 {
6164 size_t minsize;
6165 size_t maxsize;
6166 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6167 bfd *dynobj = elf_hash_table (info)->dynobj;
6168 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6169 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6170 unsigned long int *counts;
6171 bfd_size_type amt;
6172 unsigned int no_improvement_count = 0;
6173
6174 /* Possible optimization parameters: if we have NSYMS symbols we say
6175 that the hashing table must at least have NSYMS/4 and at most
6176 2*NSYMS buckets. */
6177 minsize = nsyms / 4;
6178 if (minsize == 0)
6179 minsize = 1;
6180 best_size = maxsize = nsyms * 2;
6181 if (gnu_hash)
6182 {
6183 if (minsize < 2)
6184 minsize = 2;
6185 if ((best_size & 31) == 0)
6186 ++best_size;
6187 }
6188
6189 /* Create array where we count the collisions in. We must use bfd_malloc
6190 since the size could be large. */
6191 amt = maxsize;
6192 amt *= sizeof (unsigned long int);
6193 counts = (unsigned long int *) bfd_malloc (amt);
6194 if (counts == NULL)
6195 return 0;
6196
6197 /* Compute the "optimal" size for the hash table. The criteria is a
6198 minimal chain length. The minor criteria is (of course) the size
6199 of the table. */
6200 for (i = minsize; i < maxsize; ++i)
6201 {
6202 /* Walk through the array of hashcodes and count the collisions. */
6203 BFD_HOST_U_64_BIT max;
6204 unsigned long int j;
6205 unsigned long int fact;
6206
6207 if (gnu_hash && (i & 31) == 0)
6208 continue;
6209
6210 memset (counts, '\0', i * sizeof (unsigned long int));
6211
6212 /* Determine how often each hash bucket is used. */
6213 for (j = 0; j < nsyms; ++j)
6214 ++counts[hashcodes[j] % i];
6215
6216 /* For the weight function we need some information about the
6217 pagesize on the target. This is information need not be 100%
6218 accurate. Since this information is not available (so far) we
6219 define it here to a reasonable default value. If it is crucial
6220 to have a better value some day simply define this value. */
6221 # ifndef BFD_TARGET_PAGESIZE
6222 # define BFD_TARGET_PAGESIZE (4096)
6223 # endif
6224
6225 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6226 and the chains. */
6227 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6228
6229 # if 1
6230 /* Variant 1: optimize for short chains. We add the squares
6231 of all the chain lengths (which favors many small chain
6232 over a few long chains). */
6233 for (j = 0; j < i; ++j)
6234 max += counts[j] * counts[j];
6235
6236 /* This adds penalties for the overall size of the table. */
6237 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6238 max *= fact * fact;
6239 # else
6240 /* Variant 2: Optimize a lot more for small table. Here we
6241 also add squares of the size but we also add penalties for
6242 empty slots (the +1 term). */
6243 for (j = 0; j < i; ++j)
6244 max += (1 + counts[j]) * (1 + counts[j]);
6245
6246 /* The overall size of the table is considered, but not as
6247 strong as in variant 1, where it is squared. */
6248 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6249 max *= fact;
6250 # endif
6251
6252 /* Compare with current best results. */
6253 if (max < best_chlen)
6254 {
6255 best_chlen = max;
6256 best_size = i;
6257 no_improvement_count = 0;
6258 }
6259 /* PR 11843: Avoid futile long searches for the best bucket size
6260 when there are a large number of symbols. */
6261 else if (++no_improvement_count == 100)
6262 break;
6263 }
6264
6265 free (counts);
6266 }
6267 else
6268 #endif /* defined (BFD_HOST_U_64_BIT) */
6269 {
6270 /* This is the fallback solution if no 64bit type is available or if we
6271 are not supposed to spend much time on optimizations. We select the
6272 bucket count using a fixed set of numbers. */
6273 for (i = 0; elf_buckets[i] != 0; i++)
6274 {
6275 best_size = elf_buckets[i];
6276 if (nsyms < elf_buckets[i + 1])
6277 break;
6278 }
6279 if (gnu_hash && best_size < 2)
6280 best_size = 2;
6281 }
6282
6283 return best_size;
6284 }
6285
6286 /* Size any SHT_GROUP section for ld -r. */
6287
6288 bfd_boolean
6289 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6290 {
6291 bfd *ibfd;
6292 asection *s;
6293
6294 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6295 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6296 && (s = ibfd->sections) != NULL
6297 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6298 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6299 return FALSE;
6300 return TRUE;
6301 }
6302
6303 /* Set a default stack segment size. The value in INFO wins. If it
6304 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6305 undefined it is initialized. */
6306
6307 bfd_boolean
6308 bfd_elf_stack_segment_size (bfd *output_bfd,
6309 struct bfd_link_info *info,
6310 const char *legacy_symbol,
6311 bfd_vma default_size)
6312 {
6313 struct elf_link_hash_entry *h = NULL;
6314
6315 /* Look for legacy symbol. */
6316 if (legacy_symbol)
6317 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6318 FALSE, FALSE, FALSE);
6319 if (h && (h->root.type == bfd_link_hash_defined
6320 || h->root.type == bfd_link_hash_defweak)
6321 && h->def_regular
6322 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6323 {
6324 /* The symbol has no type if specified on the command line. */
6325 h->type = STT_OBJECT;
6326 if (info->stacksize)
6327 /* xgettext:c-format */
6328 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6329 output_bfd, legacy_symbol);
6330 else if (h->root.u.def.section != bfd_abs_section_ptr)
6331 /* xgettext:c-format */
6332 _bfd_error_handler (_("%pB: %s not absolute"),
6333 output_bfd, legacy_symbol);
6334 else
6335 info->stacksize = h->root.u.def.value;
6336 }
6337
6338 if (!info->stacksize)
6339 /* If the user didn't set a size, or explicitly inhibit the
6340 size, set it now. */
6341 info->stacksize = default_size;
6342
6343 /* Provide the legacy symbol, if it is referenced. */
6344 if (h && (h->root.type == bfd_link_hash_undefined
6345 || h->root.type == bfd_link_hash_undefweak))
6346 {
6347 struct bfd_link_hash_entry *bh = NULL;
6348
6349 if (!(_bfd_generic_link_add_one_symbol
6350 (info, output_bfd, legacy_symbol,
6351 BSF_GLOBAL, bfd_abs_section_ptr,
6352 info->stacksize >= 0 ? info->stacksize : 0,
6353 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6354 return FALSE;
6355
6356 h = (struct elf_link_hash_entry *) bh;
6357 h->def_regular = 1;
6358 h->type = STT_OBJECT;
6359 }
6360
6361 return TRUE;
6362 }
6363
6364 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6365
6366 struct elf_gc_sweep_symbol_info
6367 {
6368 struct bfd_link_info *info;
6369 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6370 bfd_boolean);
6371 };
6372
6373 static bfd_boolean
6374 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6375 {
6376 if (!h->mark
6377 && (((h->root.type == bfd_link_hash_defined
6378 || h->root.type == bfd_link_hash_defweak)
6379 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6380 && h->root.u.def.section->gc_mark))
6381 || h->root.type == bfd_link_hash_undefined
6382 || h->root.type == bfd_link_hash_undefweak))
6383 {
6384 struct elf_gc_sweep_symbol_info *inf;
6385
6386 inf = (struct elf_gc_sweep_symbol_info *) data;
6387 (*inf->hide_symbol) (inf->info, h, TRUE);
6388 h->def_regular = 0;
6389 h->ref_regular = 0;
6390 h->ref_regular_nonweak = 0;
6391 }
6392
6393 return TRUE;
6394 }
6395
6396 /* Set up the sizes and contents of the ELF dynamic sections. This is
6397 called by the ELF linker emulation before_allocation routine. We
6398 must set the sizes of the sections before the linker sets the
6399 addresses of the various sections. */
6400
6401 bfd_boolean
6402 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6403 const char *soname,
6404 const char *rpath,
6405 const char *filter_shlib,
6406 const char *audit,
6407 const char *depaudit,
6408 const char * const *auxiliary_filters,
6409 struct bfd_link_info *info,
6410 asection **sinterpptr)
6411 {
6412 bfd *dynobj;
6413 const struct elf_backend_data *bed;
6414
6415 *sinterpptr = NULL;
6416
6417 if (!is_elf_hash_table (info->hash))
6418 return TRUE;
6419
6420 dynobj = elf_hash_table (info)->dynobj;
6421
6422 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6423 {
6424 struct bfd_elf_version_tree *verdefs;
6425 struct elf_info_failed asvinfo;
6426 struct bfd_elf_version_tree *t;
6427 struct bfd_elf_version_expr *d;
6428 asection *s;
6429 size_t soname_indx;
6430
6431 /* If we are supposed to export all symbols into the dynamic symbol
6432 table (this is not the normal case), then do so. */
6433 if (info->export_dynamic
6434 || (bfd_link_executable (info) && info->dynamic))
6435 {
6436 struct elf_info_failed eif;
6437
6438 eif.info = info;
6439 eif.failed = FALSE;
6440 elf_link_hash_traverse (elf_hash_table (info),
6441 _bfd_elf_export_symbol,
6442 &eif);
6443 if (eif.failed)
6444 return FALSE;
6445 }
6446
6447 if (soname != NULL)
6448 {
6449 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6450 soname, TRUE);
6451 if (soname_indx == (size_t) -1
6452 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6453 return FALSE;
6454 }
6455 else
6456 soname_indx = (size_t) -1;
6457
6458 /* Make all global versions with definition. */
6459 for (t = info->version_info; t != NULL; t = t->next)
6460 for (d = t->globals.list; d != NULL; d = d->next)
6461 if (!d->symver && d->literal)
6462 {
6463 const char *verstr, *name;
6464 size_t namelen, verlen, newlen;
6465 char *newname, *p, leading_char;
6466 struct elf_link_hash_entry *newh;
6467
6468 leading_char = bfd_get_symbol_leading_char (output_bfd);
6469 name = d->pattern;
6470 namelen = strlen (name) + (leading_char != '\0');
6471 verstr = t->name;
6472 verlen = strlen (verstr);
6473 newlen = namelen + verlen + 3;
6474
6475 newname = (char *) bfd_malloc (newlen);
6476 if (newname == NULL)
6477 return FALSE;
6478 newname[0] = leading_char;
6479 memcpy (newname + (leading_char != '\0'), name, namelen);
6480
6481 /* Check the hidden versioned definition. */
6482 p = newname + namelen;
6483 *p++ = ELF_VER_CHR;
6484 memcpy (p, verstr, verlen + 1);
6485 newh = elf_link_hash_lookup (elf_hash_table (info),
6486 newname, FALSE, FALSE,
6487 FALSE);
6488 if (newh == NULL
6489 || (newh->root.type != bfd_link_hash_defined
6490 && newh->root.type != bfd_link_hash_defweak))
6491 {
6492 /* Check the default versioned definition. */
6493 *p++ = ELF_VER_CHR;
6494 memcpy (p, verstr, verlen + 1);
6495 newh = elf_link_hash_lookup (elf_hash_table (info),
6496 newname, FALSE, FALSE,
6497 FALSE);
6498 }
6499 free (newname);
6500
6501 /* Mark this version if there is a definition and it is
6502 not defined in a shared object. */
6503 if (newh != NULL
6504 && !newh->def_dynamic
6505 && (newh->root.type == bfd_link_hash_defined
6506 || newh->root.type == bfd_link_hash_defweak))
6507 d->symver = 1;
6508 }
6509
6510 /* Attach all the symbols to their version information. */
6511 asvinfo.info = info;
6512 asvinfo.failed = FALSE;
6513
6514 elf_link_hash_traverse (elf_hash_table (info),
6515 _bfd_elf_link_assign_sym_version,
6516 &asvinfo);
6517 if (asvinfo.failed)
6518 return FALSE;
6519
6520 if (!info->allow_undefined_version)
6521 {
6522 /* Check if all global versions have a definition. */
6523 bfd_boolean all_defined = TRUE;
6524 for (t = info->version_info; t != NULL; t = t->next)
6525 for (d = t->globals.list; d != NULL; d = d->next)
6526 if (d->literal && !d->symver && !d->script)
6527 {
6528 _bfd_error_handler
6529 (_("%s: undefined version: %s"),
6530 d->pattern, t->name);
6531 all_defined = FALSE;
6532 }
6533
6534 if (!all_defined)
6535 {
6536 bfd_set_error (bfd_error_bad_value);
6537 return FALSE;
6538 }
6539 }
6540
6541 /* Set up the version definition section. */
6542 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6543 BFD_ASSERT (s != NULL);
6544
6545 /* We may have created additional version definitions if we are
6546 just linking a regular application. */
6547 verdefs = info->version_info;
6548
6549 /* Skip anonymous version tag. */
6550 if (verdefs != NULL && verdefs->vernum == 0)
6551 verdefs = verdefs->next;
6552
6553 if (verdefs == NULL && !info->create_default_symver)
6554 s->flags |= SEC_EXCLUDE;
6555 else
6556 {
6557 unsigned int cdefs;
6558 bfd_size_type size;
6559 bfd_byte *p;
6560 Elf_Internal_Verdef def;
6561 Elf_Internal_Verdaux defaux;
6562 struct bfd_link_hash_entry *bh;
6563 struct elf_link_hash_entry *h;
6564 const char *name;
6565
6566 cdefs = 0;
6567 size = 0;
6568
6569 /* Make space for the base version. */
6570 size += sizeof (Elf_External_Verdef);
6571 size += sizeof (Elf_External_Verdaux);
6572 ++cdefs;
6573
6574 /* Make space for the default version. */
6575 if (info->create_default_symver)
6576 {
6577 size += sizeof (Elf_External_Verdef);
6578 ++cdefs;
6579 }
6580
6581 for (t = verdefs; t != NULL; t = t->next)
6582 {
6583 struct bfd_elf_version_deps *n;
6584
6585 /* Don't emit base version twice. */
6586 if (t->vernum == 0)
6587 continue;
6588
6589 size += sizeof (Elf_External_Verdef);
6590 size += sizeof (Elf_External_Verdaux);
6591 ++cdefs;
6592
6593 for (n = t->deps; n != NULL; n = n->next)
6594 size += sizeof (Elf_External_Verdaux);
6595 }
6596
6597 s->size = size;
6598 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6599 if (s->contents == NULL && s->size != 0)
6600 return FALSE;
6601
6602 /* Fill in the version definition section. */
6603
6604 p = s->contents;
6605
6606 def.vd_version = VER_DEF_CURRENT;
6607 def.vd_flags = VER_FLG_BASE;
6608 def.vd_ndx = 1;
6609 def.vd_cnt = 1;
6610 if (info->create_default_symver)
6611 {
6612 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6613 def.vd_next = sizeof (Elf_External_Verdef);
6614 }
6615 else
6616 {
6617 def.vd_aux = sizeof (Elf_External_Verdef);
6618 def.vd_next = (sizeof (Elf_External_Verdef)
6619 + sizeof (Elf_External_Verdaux));
6620 }
6621
6622 if (soname_indx != (size_t) -1)
6623 {
6624 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6625 soname_indx);
6626 def.vd_hash = bfd_elf_hash (soname);
6627 defaux.vda_name = soname_indx;
6628 name = soname;
6629 }
6630 else
6631 {
6632 size_t indx;
6633
6634 name = lbasename (bfd_get_filename (output_bfd));
6635 def.vd_hash = bfd_elf_hash (name);
6636 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6637 name, FALSE);
6638 if (indx == (size_t) -1)
6639 return FALSE;
6640 defaux.vda_name = indx;
6641 }
6642 defaux.vda_next = 0;
6643
6644 _bfd_elf_swap_verdef_out (output_bfd, &def,
6645 (Elf_External_Verdef *) p);
6646 p += sizeof (Elf_External_Verdef);
6647 if (info->create_default_symver)
6648 {
6649 /* Add a symbol representing this version. */
6650 bh = NULL;
6651 if (! (_bfd_generic_link_add_one_symbol
6652 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6653 0, NULL, FALSE,
6654 get_elf_backend_data (dynobj)->collect, &bh)))
6655 return FALSE;
6656 h = (struct elf_link_hash_entry *) bh;
6657 h->non_elf = 0;
6658 h->def_regular = 1;
6659 h->type = STT_OBJECT;
6660 h->verinfo.vertree = NULL;
6661
6662 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6663 return FALSE;
6664
6665 /* Create a duplicate of the base version with the same
6666 aux block, but different flags. */
6667 def.vd_flags = 0;
6668 def.vd_ndx = 2;
6669 def.vd_aux = sizeof (Elf_External_Verdef);
6670 if (verdefs)
6671 def.vd_next = (sizeof (Elf_External_Verdef)
6672 + sizeof (Elf_External_Verdaux));
6673 else
6674 def.vd_next = 0;
6675 _bfd_elf_swap_verdef_out (output_bfd, &def,
6676 (Elf_External_Verdef *) p);
6677 p += sizeof (Elf_External_Verdef);
6678 }
6679 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6680 (Elf_External_Verdaux *) p);
6681 p += sizeof (Elf_External_Verdaux);
6682
6683 for (t = verdefs; t != NULL; t = t->next)
6684 {
6685 unsigned int cdeps;
6686 struct bfd_elf_version_deps *n;
6687
6688 /* Don't emit the base version twice. */
6689 if (t->vernum == 0)
6690 continue;
6691
6692 cdeps = 0;
6693 for (n = t->deps; n != NULL; n = n->next)
6694 ++cdeps;
6695
6696 /* Add a symbol representing this version. */
6697 bh = NULL;
6698 if (! (_bfd_generic_link_add_one_symbol
6699 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6700 0, NULL, FALSE,
6701 get_elf_backend_data (dynobj)->collect, &bh)))
6702 return FALSE;
6703 h = (struct elf_link_hash_entry *) bh;
6704 h->non_elf = 0;
6705 h->def_regular = 1;
6706 h->type = STT_OBJECT;
6707 h->verinfo.vertree = t;
6708
6709 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6710 return FALSE;
6711
6712 def.vd_version = VER_DEF_CURRENT;
6713 def.vd_flags = 0;
6714 if (t->globals.list == NULL
6715 && t->locals.list == NULL
6716 && ! t->used)
6717 def.vd_flags |= VER_FLG_WEAK;
6718 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6719 def.vd_cnt = cdeps + 1;
6720 def.vd_hash = bfd_elf_hash (t->name);
6721 def.vd_aux = sizeof (Elf_External_Verdef);
6722 def.vd_next = 0;
6723
6724 /* If a basever node is next, it *must* be the last node in
6725 the chain, otherwise Verdef construction breaks. */
6726 if (t->next != NULL && t->next->vernum == 0)
6727 BFD_ASSERT (t->next->next == NULL);
6728
6729 if (t->next != NULL && t->next->vernum != 0)
6730 def.vd_next = (sizeof (Elf_External_Verdef)
6731 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6732
6733 _bfd_elf_swap_verdef_out (output_bfd, &def,
6734 (Elf_External_Verdef *) p);
6735 p += sizeof (Elf_External_Verdef);
6736
6737 defaux.vda_name = h->dynstr_index;
6738 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6739 h->dynstr_index);
6740 defaux.vda_next = 0;
6741 if (t->deps != NULL)
6742 defaux.vda_next = sizeof (Elf_External_Verdaux);
6743 t->name_indx = defaux.vda_name;
6744
6745 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6746 (Elf_External_Verdaux *) p);
6747 p += sizeof (Elf_External_Verdaux);
6748
6749 for (n = t->deps; n != NULL; n = n->next)
6750 {
6751 if (n->version_needed == NULL)
6752 {
6753 /* This can happen if there was an error in the
6754 version script. */
6755 defaux.vda_name = 0;
6756 }
6757 else
6758 {
6759 defaux.vda_name = n->version_needed->name_indx;
6760 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6761 defaux.vda_name);
6762 }
6763 if (n->next == NULL)
6764 defaux.vda_next = 0;
6765 else
6766 defaux.vda_next = sizeof (Elf_External_Verdaux);
6767
6768 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6769 (Elf_External_Verdaux *) p);
6770 p += sizeof (Elf_External_Verdaux);
6771 }
6772 }
6773
6774 elf_tdata (output_bfd)->cverdefs = cdefs;
6775 }
6776 }
6777
6778 bed = get_elf_backend_data (output_bfd);
6779
6780 if (info->gc_sections && bed->can_gc_sections)
6781 {
6782 struct elf_gc_sweep_symbol_info sweep_info;
6783
6784 /* Remove the symbols that were in the swept sections from the
6785 dynamic symbol table. */
6786 sweep_info.info = info;
6787 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6788 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6789 &sweep_info);
6790 }
6791
6792 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6793 {
6794 asection *s;
6795 struct elf_find_verdep_info sinfo;
6796
6797 /* Work out the size of the version reference section. */
6798
6799 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6800 BFD_ASSERT (s != NULL);
6801
6802 sinfo.info = info;
6803 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6804 if (sinfo.vers == 0)
6805 sinfo.vers = 1;
6806 sinfo.failed = FALSE;
6807
6808 elf_link_hash_traverse (elf_hash_table (info),
6809 _bfd_elf_link_find_version_dependencies,
6810 &sinfo);
6811 if (sinfo.failed)
6812 return FALSE;
6813
6814 if (elf_tdata (output_bfd)->verref == NULL)
6815 s->flags |= SEC_EXCLUDE;
6816 else
6817 {
6818 Elf_Internal_Verneed *vn;
6819 unsigned int size;
6820 unsigned int crefs;
6821 bfd_byte *p;
6822
6823 /* Build the version dependency section. */
6824 size = 0;
6825 crefs = 0;
6826 for (vn = elf_tdata (output_bfd)->verref;
6827 vn != NULL;
6828 vn = vn->vn_nextref)
6829 {
6830 Elf_Internal_Vernaux *a;
6831
6832 size += sizeof (Elf_External_Verneed);
6833 ++crefs;
6834 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6835 size += sizeof (Elf_External_Vernaux);
6836 }
6837
6838 s->size = size;
6839 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6840 if (s->contents == NULL)
6841 return FALSE;
6842
6843 p = s->contents;
6844 for (vn = elf_tdata (output_bfd)->verref;
6845 vn != NULL;
6846 vn = vn->vn_nextref)
6847 {
6848 unsigned int caux;
6849 Elf_Internal_Vernaux *a;
6850 size_t indx;
6851
6852 caux = 0;
6853 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6854 ++caux;
6855
6856 vn->vn_version = VER_NEED_CURRENT;
6857 vn->vn_cnt = caux;
6858 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6859 elf_dt_name (vn->vn_bfd) != NULL
6860 ? elf_dt_name (vn->vn_bfd)
6861 : lbasename (bfd_get_filename
6862 (vn->vn_bfd)),
6863 FALSE);
6864 if (indx == (size_t) -1)
6865 return FALSE;
6866 vn->vn_file = indx;
6867 vn->vn_aux = sizeof (Elf_External_Verneed);
6868 if (vn->vn_nextref == NULL)
6869 vn->vn_next = 0;
6870 else
6871 vn->vn_next = (sizeof (Elf_External_Verneed)
6872 + caux * sizeof (Elf_External_Vernaux));
6873
6874 _bfd_elf_swap_verneed_out (output_bfd, vn,
6875 (Elf_External_Verneed *) p);
6876 p += sizeof (Elf_External_Verneed);
6877
6878 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6879 {
6880 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6881 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6882 a->vna_nodename, FALSE);
6883 if (indx == (size_t) -1)
6884 return FALSE;
6885 a->vna_name = indx;
6886 if (a->vna_nextptr == NULL)
6887 a->vna_next = 0;
6888 else
6889 a->vna_next = sizeof (Elf_External_Vernaux);
6890
6891 _bfd_elf_swap_vernaux_out (output_bfd, a,
6892 (Elf_External_Vernaux *) p);
6893 p += sizeof (Elf_External_Vernaux);
6894 }
6895 }
6896
6897 elf_tdata (output_bfd)->cverrefs = crefs;
6898 }
6899 }
6900
6901 /* Any syms created from now on start with -1 in
6902 got.refcount/offset and plt.refcount/offset. */
6903 elf_hash_table (info)->init_got_refcount
6904 = elf_hash_table (info)->init_got_offset;
6905 elf_hash_table (info)->init_plt_refcount
6906 = elf_hash_table (info)->init_plt_offset;
6907
6908 if (bfd_link_relocatable (info)
6909 && !_bfd_elf_size_group_sections (info))
6910 return FALSE;
6911
6912 /* The backend may have to create some sections regardless of whether
6913 we're dynamic or not. */
6914 if (bed->elf_backend_always_size_sections
6915 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6916 return FALSE;
6917
6918 /* Determine any GNU_STACK segment requirements, after the backend
6919 has had a chance to set a default segment size. */
6920 if (info->execstack)
6921 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6922 else if (info->noexecstack)
6923 elf_stack_flags (output_bfd) = PF_R | PF_W;
6924 else
6925 {
6926 bfd *inputobj;
6927 asection *notesec = NULL;
6928 int exec = 0;
6929
6930 for (inputobj = info->input_bfds;
6931 inputobj;
6932 inputobj = inputobj->link.next)
6933 {
6934 asection *s;
6935
6936 if (inputobj->flags
6937 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6938 continue;
6939 s = inputobj->sections;
6940 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6941 continue;
6942
6943 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6944 if (s)
6945 {
6946 if (s->flags & SEC_CODE)
6947 exec = PF_X;
6948 notesec = s;
6949 }
6950 else if (bed->default_execstack)
6951 exec = PF_X;
6952 }
6953 if (notesec || info->stacksize > 0)
6954 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6955 if (notesec && exec && bfd_link_relocatable (info)
6956 && notesec->output_section != bfd_abs_section_ptr)
6957 notesec->output_section->flags |= SEC_CODE;
6958 }
6959
6960 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6961 {
6962 struct elf_info_failed eif;
6963 struct elf_link_hash_entry *h;
6964 asection *dynstr;
6965 asection *s;
6966
6967 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6968 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6969
6970 if (info->symbolic)
6971 {
6972 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6973 return FALSE;
6974 info->flags |= DF_SYMBOLIC;
6975 }
6976
6977 if (rpath != NULL)
6978 {
6979 size_t indx;
6980 bfd_vma tag;
6981
6982 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6983 TRUE);
6984 if (indx == (size_t) -1)
6985 return FALSE;
6986
6987 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6988 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6989 return FALSE;
6990 }
6991
6992 if (filter_shlib != NULL)
6993 {
6994 size_t indx;
6995
6996 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6997 filter_shlib, TRUE);
6998 if (indx == (size_t) -1
6999 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7000 return FALSE;
7001 }
7002
7003 if (auxiliary_filters != NULL)
7004 {
7005 const char * const *p;
7006
7007 for (p = auxiliary_filters; *p != NULL; p++)
7008 {
7009 size_t indx;
7010
7011 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7012 *p, TRUE);
7013 if (indx == (size_t) -1
7014 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7015 return FALSE;
7016 }
7017 }
7018
7019 if (audit != NULL)
7020 {
7021 size_t indx;
7022
7023 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7024 TRUE);
7025 if (indx == (size_t) -1
7026 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7027 return FALSE;
7028 }
7029
7030 if (depaudit != NULL)
7031 {
7032 size_t indx;
7033
7034 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7035 TRUE);
7036 if (indx == (size_t) -1
7037 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7038 return FALSE;
7039 }
7040
7041 eif.info = info;
7042 eif.failed = FALSE;
7043
7044 /* Find all symbols which were defined in a dynamic object and make
7045 the backend pick a reasonable value for them. */
7046 elf_link_hash_traverse (elf_hash_table (info),
7047 _bfd_elf_adjust_dynamic_symbol,
7048 &eif);
7049 if (eif.failed)
7050 return FALSE;
7051
7052 /* Add some entries to the .dynamic section. We fill in some of the
7053 values later, in bfd_elf_final_link, but we must add the entries
7054 now so that we know the final size of the .dynamic section. */
7055
7056 /* If there are initialization and/or finalization functions to
7057 call then add the corresponding DT_INIT/DT_FINI entries. */
7058 h = (info->init_function
7059 ? elf_link_hash_lookup (elf_hash_table (info),
7060 info->init_function, FALSE,
7061 FALSE, FALSE)
7062 : NULL);
7063 if (h != NULL
7064 && (h->ref_regular
7065 || h->def_regular))
7066 {
7067 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7068 return FALSE;
7069 }
7070 h = (info->fini_function
7071 ? elf_link_hash_lookup (elf_hash_table (info),
7072 info->fini_function, FALSE,
7073 FALSE, FALSE)
7074 : NULL);
7075 if (h != NULL
7076 && (h->ref_regular
7077 || h->def_regular))
7078 {
7079 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7080 return FALSE;
7081 }
7082
7083 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7084 if (s != NULL && s->linker_has_input)
7085 {
7086 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7087 if (! bfd_link_executable (info))
7088 {
7089 bfd *sub;
7090 asection *o;
7091
7092 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7093 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7094 && (o = sub->sections) != NULL
7095 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7096 for (o = sub->sections; o != NULL; o = o->next)
7097 if (elf_section_data (o)->this_hdr.sh_type
7098 == SHT_PREINIT_ARRAY)
7099 {
7100 _bfd_error_handler
7101 (_("%pB: .preinit_array section is not allowed in DSO"),
7102 sub);
7103 break;
7104 }
7105
7106 bfd_set_error (bfd_error_nonrepresentable_section);
7107 return FALSE;
7108 }
7109
7110 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7111 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7112 return FALSE;
7113 }
7114 s = bfd_get_section_by_name (output_bfd, ".init_array");
7115 if (s != NULL && s->linker_has_input)
7116 {
7117 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7118 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7119 return FALSE;
7120 }
7121 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7122 if (s != NULL && s->linker_has_input)
7123 {
7124 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7125 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7126 return FALSE;
7127 }
7128
7129 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7130 /* If .dynstr is excluded from the link, we don't want any of
7131 these tags. Strictly, we should be checking each section
7132 individually; This quick check covers for the case where
7133 someone does a /DISCARD/ : { *(*) }. */
7134 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7135 {
7136 bfd_size_type strsize;
7137
7138 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7139 if ((info->emit_hash
7140 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7141 || (info->emit_gnu_hash
7142 && (bed->record_xhash_symbol == NULL
7143 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7144 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7145 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7146 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7147 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7148 bed->s->sizeof_sym))
7149 return FALSE;
7150 }
7151 }
7152
7153 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7154 return FALSE;
7155
7156 /* The backend must work out the sizes of all the other dynamic
7157 sections. */
7158 if (dynobj != NULL
7159 && bed->elf_backend_size_dynamic_sections != NULL
7160 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7161 return FALSE;
7162
7163 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7164 {
7165 if (elf_tdata (output_bfd)->cverdefs)
7166 {
7167 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7168
7169 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7170 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7171 return FALSE;
7172 }
7173
7174 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7175 {
7176 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7177 return FALSE;
7178 }
7179 else if (info->flags & DF_BIND_NOW)
7180 {
7181 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7182 return FALSE;
7183 }
7184
7185 if (info->flags_1)
7186 {
7187 if (bfd_link_executable (info))
7188 info->flags_1 &= ~ (DF_1_INITFIRST
7189 | DF_1_NODELETE
7190 | DF_1_NOOPEN);
7191 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7192 return FALSE;
7193 }
7194
7195 if (elf_tdata (output_bfd)->cverrefs)
7196 {
7197 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7198
7199 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7200 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7201 return FALSE;
7202 }
7203
7204 if ((elf_tdata (output_bfd)->cverrefs == 0
7205 && elf_tdata (output_bfd)->cverdefs == 0)
7206 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7207 {
7208 asection *s;
7209
7210 s = bfd_get_linker_section (dynobj, ".gnu.version");
7211 s->flags |= SEC_EXCLUDE;
7212 }
7213 }
7214 return TRUE;
7215 }
7216
7217 /* Find the first non-excluded output section. We'll use its
7218 section symbol for some emitted relocs. */
7219 void
7220 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7221 {
7222 asection *s;
7223 asection *found = NULL;
7224
7225 for (s = output_bfd->sections; s != NULL; s = s->next)
7226 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7227 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7228 {
7229 found = s;
7230 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7231 break;
7232 }
7233 elf_hash_table (info)->text_index_section = found;
7234 }
7235
7236 /* Find two non-excluded output sections, one for code, one for data.
7237 We'll use their section symbols for some emitted relocs. */
7238 void
7239 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7240 {
7241 asection *s;
7242 asection *found = NULL;
7243
7244 /* Data first, since setting text_index_section changes
7245 _bfd_elf_omit_section_dynsym_default. */
7246 for (s = output_bfd->sections; s != NULL; s = s->next)
7247 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7248 && !(s->flags & SEC_READONLY)
7249 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7250 {
7251 found = s;
7252 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7253 break;
7254 }
7255 elf_hash_table (info)->data_index_section = found;
7256
7257 for (s = output_bfd->sections; s != NULL; s = s->next)
7258 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7259 && (s->flags & SEC_READONLY)
7260 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7261 {
7262 found = s;
7263 break;
7264 }
7265 elf_hash_table (info)->text_index_section = found;
7266 }
7267
7268 #define GNU_HASH_SECTION_NAME(bed) \
7269 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7270
7271 bfd_boolean
7272 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7273 {
7274 const struct elf_backend_data *bed;
7275 unsigned long section_sym_count;
7276 bfd_size_type dynsymcount = 0;
7277
7278 if (!is_elf_hash_table (info->hash))
7279 return TRUE;
7280
7281 bed = get_elf_backend_data (output_bfd);
7282 (*bed->elf_backend_init_index_section) (output_bfd, info);
7283
7284 /* Assign dynsym indices. In a shared library we generate a section
7285 symbol for each output section, which come first. Next come all
7286 of the back-end allocated local dynamic syms, followed by the rest
7287 of the global symbols.
7288
7289 This is usually not needed for static binaries, however backends
7290 can request to always do it, e.g. the MIPS backend uses dynamic
7291 symbol counts to lay out GOT, which will be produced in the
7292 presence of GOT relocations even in static binaries (holding fixed
7293 data in that case, to satisfy those relocations). */
7294
7295 if (elf_hash_table (info)->dynamic_sections_created
7296 || bed->always_renumber_dynsyms)
7297 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7298 &section_sym_count);
7299
7300 if (elf_hash_table (info)->dynamic_sections_created)
7301 {
7302 bfd *dynobj;
7303 asection *s;
7304 unsigned int dtagcount;
7305
7306 dynobj = elf_hash_table (info)->dynobj;
7307
7308 /* Work out the size of the symbol version section. */
7309 s = bfd_get_linker_section (dynobj, ".gnu.version");
7310 BFD_ASSERT (s != NULL);
7311 if ((s->flags & SEC_EXCLUDE) == 0)
7312 {
7313 s->size = dynsymcount * sizeof (Elf_External_Versym);
7314 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7315 if (s->contents == NULL)
7316 return FALSE;
7317
7318 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7319 return FALSE;
7320 }
7321
7322 /* Set the size of the .dynsym and .hash sections. We counted
7323 the number of dynamic symbols in elf_link_add_object_symbols.
7324 We will build the contents of .dynsym and .hash when we build
7325 the final symbol table, because until then we do not know the
7326 correct value to give the symbols. We built the .dynstr
7327 section as we went along in elf_link_add_object_symbols. */
7328 s = elf_hash_table (info)->dynsym;
7329 BFD_ASSERT (s != NULL);
7330 s->size = dynsymcount * bed->s->sizeof_sym;
7331
7332 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7333 if (s->contents == NULL)
7334 return FALSE;
7335
7336 /* The first entry in .dynsym is a dummy symbol. Clear all the
7337 section syms, in case we don't output them all. */
7338 ++section_sym_count;
7339 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7340
7341 elf_hash_table (info)->bucketcount = 0;
7342
7343 /* Compute the size of the hashing table. As a side effect this
7344 computes the hash values for all the names we export. */
7345 if (info->emit_hash)
7346 {
7347 unsigned long int *hashcodes;
7348 struct hash_codes_info hashinf;
7349 bfd_size_type amt;
7350 unsigned long int nsyms;
7351 size_t bucketcount;
7352 size_t hash_entry_size;
7353
7354 /* Compute the hash values for all exported symbols. At the same
7355 time store the values in an array so that we could use them for
7356 optimizations. */
7357 amt = dynsymcount * sizeof (unsigned long int);
7358 hashcodes = (unsigned long int *) bfd_malloc (amt);
7359 if (hashcodes == NULL)
7360 return FALSE;
7361 hashinf.hashcodes = hashcodes;
7362 hashinf.error = FALSE;
7363
7364 /* Put all hash values in HASHCODES. */
7365 elf_link_hash_traverse (elf_hash_table (info),
7366 elf_collect_hash_codes, &hashinf);
7367 if (hashinf.error)
7368 {
7369 free (hashcodes);
7370 return FALSE;
7371 }
7372
7373 nsyms = hashinf.hashcodes - hashcodes;
7374 bucketcount
7375 = compute_bucket_count (info, hashcodes, nsyms, 0);
7376 free (hashcodes);
7377
7378 if (bucketcount == 0 && nsyms > 0)
7379 return FALSE;
7380
7381 elf_hash_table (info)->bucketcount = bucketcount;
7382
7383 s = bfd_get_linker_section (dynobj, ".hash");
7384 BFD_ASSERT (s != NULL);
7385 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7386 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7387 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7388 if (s->contents == NULL)
7389 return FALSE;
7390
7391 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7392 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7393 s->contents + hash_entry_size);
7394 }
7395
7396 if (info->emit_gnu_hash)
7397 {
7398 size_t i, cnt;
7399 unsigned char *contents;
7400 struct collect_gnu_hash_codes cinfo;
7401 bfd_size_type amt;
7402 size_t bucketcount;
7403
7404 memset (&cinfo, 0, sizeof (cinfo));
7405
7406 /* Compute the hash values for all exported symbols. At the same
7407 time store the values in an array so that we could use them for
7408 optimizations. */
7409 amt = dynsymcount * 2 * sizeof (unsigned long int);
7410 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7411 if (cinfo.hashcodes == NULL)
7412 return FALSE;
7413
7414 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7415 cinfo.min_dynindx = -1;
7416 cinfo.output_bfd = output_bfd;
7417 cinfo.bed = bed;
7418
7419 /* Put all hash values in HASHCODES. */
7420 elf_link_hash_traverse (elf_hash_table (info),
7421 elf_collect_gnu_hash_codes, &cinfo);
7422 if (cinfo.error)
7423 {
7424 free (cinfo.hashcodes);
7425 return FALSE;
7426 }
7427
7428 bucketcount
7429 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7430
7431 if (bucketcount == 0)
7432 {
7433 free (cinfo.hashcodes);
7434 return FALSE;
7435 }
7436
7437 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7438 BFD_ASSERT (s != NULL);
7439
7440 if (cinfo.nsyms == 0)
7441 {
7442 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7443 BFD_ASSERT (cinfo.min_dynindx == -1);
7444 free (cinfo.hashcodes);
7445 s->size = 5 * 4 + bed->s->arch_size / 8;
7446 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7447 if (contents == NULL)
7448 return FALSE;
7449 s->contents = contents;
7450 /* 1 empty bucket. */
7451 bfd_put_32 (output_bfd, 1, contents);
7452 /* SYMIDX above the special symbol 0. */
7453 bfd_put_32 (output_bfd, 1, contents + 4);
7454 /* Just one word for bitmask. */
7455 bfd_put_32 (output_bfd, 1, contents + 8);
7456 /* Only hash fn bloom filter. */
7457 bfd_put_32 (output_bfd, 0, contents + 12);
7458 /* No hashes are valid - empty bitmask. */
7459 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7460 /* No hashes in the only bucket. */
7461 bfd_put_32 (output_bfd, 0,
7462 contents + 16 + bed->s->arch_size / 8);
7463 }
7464 else
7465 {
7466 unsigned long int maskwords, maskbitslog2, x;
7467 BFD_ASSERT (cinfo.min_dynindx != -1);
7468
7469 x = cinfo.nsyms;
7470 maskbitslog2 = 1;
7471 while ((x >>= 1) != 0)
7472 ++maskbitslog2;
7473 if (maskbitslog2 < 3)
7474 maskbitslog2 = 5;
7475 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7476 maskbitslog2 = maskbitslog2 + 3;
7477 else
7478 maskbitslog2 = maskbitslog2 + 2;
7479 if (bed->s->arch_size == 64)
7480 {
7481 if (maskbitslog2 == 5)
7482 maskbitslog2 = 6;
7483 cinfo.shift1 = 6;
7484 }
7485 else
7486 cinfo.shift1 = 5;
7487 cinfo.mask = (1 << cinfo.shift1) - 1;
7488 cinfo.shift2 = maskbitslog2;
7489 cinfo.maskbits = 1 << maskbitslog2;
7490 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7491 amt = bucketcount * sizeof (unsigned long int) * 2;
7492 amt += maskwords * sizeof (bfd_vma);
7493 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7494 if (cinfo.bitmask == NULL)
7495 {
7496 free (cinfo.hashcodes);
7497 return FALSE;
7498 }
7499
7500 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7501 cinfo.indx = cinfo.counts + bucketcount;
7502 cinfo.symindx = dynsymcount - cinfo.nsyms;
7503 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7504
7505 /* Determine how often each hash bucket is used. */
7506 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7507 for (i = 0; i < cinfo.nsyms; ++i)
7508 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7509
7510 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7511 if (cinfo.counts[i] != 0)
7512 {
7513 cinfo.indx[i] = cnt;
7514 cnt += cinfo.counts[i];
7515 }
7516 BFD_ASSERT (cnt == dynsymcount);
7517 cinfo.bucketcount = bucketcount;
7518 cinfo.local_indx = cinfo.min_dynindx;
7519
7520 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7521 s->size += cinfo.maskbits / 8;
7522 if (bed->record_xhash_symbol != NULL)
7523 s->size += cinfo.nsyms * 4;
7524 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7525 if (contents == NULL)
7526 {
7527 free (cinfo.bitmask);
7528 free (cinfo.hashcodes);
7529 return FALSE;
7530 }
7531
7532 s->contents = contents;
7533 bfd_put_32 (output_bfd, bucketcount, contents);
7534 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7535 bfd_put_32 (output_bfd, maskwords, contents + 8);
7536 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7537 contents += 16 + cinfo.maskbits / 8;
7538
7539 for (i = 0; i < bucketcount; ++i)
7540 {
7541 if (cinfo.counts[i] == 0)
7542 bfd_put_32 (output_bfd, 0, contents);
7543 else
7544 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7545 contents += 4;
7546 }
7547
7548 cinfo.contents = contents;
7549
7550 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7551 /* Renumber dynamic symbols, if populating .gnu.hash section.
7552 If using .MIPS.xhash, populate the translation table. */
7553 elf_link_hash_traverse (elf_hash_table (info),
7554 elf_gnu_hash_process_symidx, &cinfo);
7555
7556 contents = s->contents + 16;
7557 for (i = 0; i < maskwords; ++i)
7558 {
7559 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7560 contents);
7561 contents += bed->s->arch_size / 8;
7562 }
7563
7564 free (cinfo.bitmask);
7565 free (cinfo.hashcodes);
7566 }
7567 }
7568
7569 s = bfd_get_linker_section (dynobj, ".dynstr");
7570 BFD_ASSERT (s != NULL);
7571
7572 elf_finalize_dynstr (output_bfd, info);
7573
7574 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7575
7576 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7577 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7578 return FALSE;
7579 }
7580
7581 return TRUE;
7582 }
7583 \f
7584 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7585
7586 static void
7587 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7588 asection *sec)
7589 {
7590 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7591 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7592 }
7593
7594 /* Finish SHF_MERGE section merging. */
7595
7596 bfd_boolean
7597 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7598 {
7599 bfd *ibfd;
7600 asection *sec;
7601
7602 if (!is_elf_hash_table (info->hash))
7603 return FALSE;
7604
7605 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7606 if ((ibfd->flags & DYNAMIC) == 0
7607 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7608 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7609 == get_elf_backend_data (obfd)->s->elfclass))
7610 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7611 if ((sec->flags & SEC_MERGE) != 0
7612 && !bfd_is_abs_section (sec->output_section))
7613 {
7614 struct bfd_elf_section_data *secdata;
7615
7616 secdata = elf_section_data (sec);
7617 if (! _bfd_add_merge_section (obfd,
7618 &elf_hash_table (info)->merge_info,
7619 sec, &secdata->sec_info))
7620 return FALSE;
7621 else if (secdata->sec_info)
7622 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7623 }
7624
7625 if (elf_hash_table (info)->merge_info != NULL)
7626 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7627 merge_sections_remove_hook);
7628 return TRUE;
7629 }
7630
7631 /* Create an entry in an ELF linker hash table. */
7632
7633 struct bfd_hash_entry *
7634 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7635 struct bfd_hash_table *table,
7636 const char *string)
7637 {
7638 /* Allocate the structure if it has not already been allocated by a
7639 subclass. */
7640 if (entry == NULL)
7641 {
7642 entry = (struct bfd_hash_entry *)
7643 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7644 if (entry == NULL)
7645 return entry;
7646 }
7647
7648 /* Call the allocation method of the superclass. */
7649 entry = _bfd_link_hash_newfunc (entry, table, string);
7650 if (entry != NULL)
7651 {
7652 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7653 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7654
7655 /* Set local fields. */
7656 ret->indx = -1;
7657 ret->dynindx = -1;
7658 ret->got = htab->init_got_refcount;
7659 ret->plt = htab->init_plt_refcount;
7660 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7661 - offsetof (struct elf_link_hash_entry, size)));
7662 /* Assume that we have been called by a non-ELF symbol reader.
7663 This flag is then reset by the code which reads an ELF input
7664 file. This ensures that a symbol created by a non-ELF symbol
7665 reader will have the flag set correctly. */
7666 ret->non_elf = 1;
7667 }
7668
7669 return entry;
7670 }
7671
7672 /* Copy data from an indirect symbol to its direct symbol, hiding the
7673 old indirect symbol. Also used for copying flags to a weakdef. */
7674
7675 void
7676 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7677 struct elf_link_hash_entry *dir,
7678 struct elf_link_hash_entry *ind)
7679 {
7680 struct elf_link_hash_table *htab;
7681
7682 if (ind->dyn_relocs != NULL)
7683 {
7684 if (dir->dyn_relocs != NULL)
7685 {
7686 struct elf_dyn_relocs **pp;
7687 struct elf_dyn_relocs *p;
7688
7689 /* Add reloc counts against the indirect sym to the direct sym
7690 list. Merge any entries against the same section. */
7691 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7692 {
7693 struct elf_dyn_relocs *q;
7694
7695 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7696 if (q->sec == p->sec)
7697 {
7698 q->pc_count += p->pc_count;
7699 q->count += p->count;
7700 *pp = p->next;
7701 break;
7702 }
7703 if (q == NULL)
7704 pp = &p->next;
7705 }
7706 *pp = dir->dyn_relocs;
7707 }
7708
7709 dir->dyn_relocs = ind->dyn_relocs;
7710 ind->dyn_relocs = NULL;
7711 }
7712
7713 /* Copy down any references that we may have already seen to the
7714 symbol which just became indirect. */
7715
7716 if (dir->versioned != versioned_hidden)
7717 dir->ref_dynamic |= ind->ref_dynamic;
7718 dir->ref_regular |= ind->ref_regular;
7719 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7720 dir->non_got_ref |= ind->non_got_ref;
7721 dir->needs_plt |= ind->needs_plt;
7722 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7723
7724 if (ind->root.type != bfd_link_hash_indirect)
7725 return;
7726
7727 /* Copy over the global and procedure linkage table refcount entries.
7728 These may have been already set up by a check_relocs routine. */
7729 htab = elf_hash_table (info);
7730 if (ind->got.refcount > htab->init_got_refcount.refcount)
7731 {
7732 if (dir->got.refcount < 0)
7733 dir->got.refcount = 0;
7734 dir->got.refcount += ind->got.refcount;
7735 ind->got.refcount = htab->init_got_refcount.refcount;
7736 }
7737
7738 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7739 {
7740 if (dir->plt.refcount < 0)
7741 dir->plt.refcount = 0;
7742 dir->plt.refcount += ind->plt.refcount;
7743 ind->plt.refcount = htab->init_plt_refcount.refcount;
7744 }
7745
7746 if (ind->dynindx != -1)
7747 {
7748 if (dir->dynindx != -1)
7749 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7750 dir->dynindx = ind->dynindx;
7751 dir->dynstr_index = ind->dynstr_index;
7752 ind->dynindx = -1;
7753 ind->dynstr_index = 0;
7754 }
7755 }
7756
7757 void
7758 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7759 struct elf_link_hash_entry *h,
7760 bfd_boolean force_local)
7761 {
7762 /* STT_GNU_IFUNC symbol must go through PLT. */
7763 if (h->type != STT_GNU_IFUNC)
7764 {
7765 h->plt = elf_hash_table (info)->init_plt_offset;
7766 h->needs_plt = 0;
7767 }
7768 if (force_local)
7769 {
7770 h->forced_local = 1;
7771 if (h->dynindx != -1)
7772 {
7773 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7774 h->dynstr_index);
7775 h->dynindx = -1;
7776 h->dynstr_index = 0;
7777 }
7778 }
7779 }
7780
7781 /* Hide a symbol. */
7782
7783 void
7784 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7785 struct bfd_link_info *info,
7786 struct bfd_link_hash_entry *h)
7787 {
7788 if (is_elf_hash_table (info->hash))
7789 {
7790 const struct elf_backend_data *bed
7791 = get_elf_backend_data (output_bfd);
7792 struct elf_link_hash_entry *eh
7793 = (struct elf_link_hash_entry *) h;
7794 bed->elf_backend_hide_symbol (info, eh, TRUE);
7795 eh->def_dynamic = 0;
7796 eh->ref_dynamic = 0;
7797 eh->dynamic_def = 0;
7798 }
7799 }
7800
7801 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7802 caller. */
7803
7804 bfd_boolean
7805 _bfd_elf_link_hash_table_init
7806 (struct elf_link_hash_table *table,
7807 bfd *abfd,
7808 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7809 struct bfd_hash_table *,
7810 const char *),
7811 unsigned int entsize,
7812 enum elf_target_id target_id)
7813 {
7814 bfd_boolean ret;
7815 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7816
7817 table->init_got_refcount.refcount = can_refcount - 1;
7818 table->init_plt_refcount.refcount = can_refcount - 1;
7819 table->init_got_offset.offset = -(bfd_vma) 1;
7820 table->init_plt_offset.offset = -(bfd_vma) 1;
7821 /* The first dynamic symbol is a dummy. */
7822 table->dynsymcount = 1;
7823
7824 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7825
7826 table->root.type = bfd_link_elf_hash_table;
7827 table->hash_table_id = target_id;
7828 table->target_os = get_elf_backend_data (abfd)->target_os;
7829
7830 return ret;
7831 }
7832
7833 /* Create an ELF linker hash table. */
7834
7835 struct bfd_link_hash_table *
7836 _bfd_elf_link_hash_table_create (bfd *abfd)
7837 {
7838 struct elf_link_hash_table *ret;
7839 size_t amt = sizeof (struct elf_link_hash_table);
7840
7841 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7842 if (ret == NULL)
7843 return NULL;
7844
7845 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7846 sizeof (struct elf_link_hash_entry),
7847 GENERIC_ELF_DATA))
7848 {
7849 free (ret);
7850 return NULL;
7851 }
7852 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7853
7854 return &ret->root;
7855 }
7856
7857 /* Destroy an ELF linker hash table. */
7858
7859 void
7860 _bfd_elf_link_hash_table_free (bfd *obfd)
7861 {
7862 struct elf_link_hash_table *htab;
7863
7864 htab = (struct elf_link_hash_table *) obfd->link.hash;
7865 if (htab->dynstr != NULL)
7866 _bfd_elf_strtab_free (htab->dynstr);
7867 _bfd_merge_sections_free (htab->merge_info);
7868 _bfd_generic_link_hash_table_free (obfd);
7869 }
7870
7871 /* This is a hook for the ELF emulation code in the generic linker to
7872 tell the backend linker what file name to use for the DT_NEEDED
7873 entry for a dynamic object. */
7874
7875 void
7876 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7877 {
7878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7879 && bfd_get_format (abfd) == bfd_object)
7880 elf_dt_name (abfd) = name;
7881 }
7882
7883 int
7884 bfd_elf_get_dyn_lib_class (bfd *abfd)
7885 {
7886 int lib_class;
7887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7888 && bfd_get_format (abfd) == bfd_object)
7889 lib_class = elf_dyn_lib_class (abfd);
7890 else
7891 lib_class = 0;
7892 return lib_class;
7893 }
7894
7895 void
7896 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7897 {
7898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7899 && bfd_get_format (abfd) == bfd_object)
7900 elf_dyn_lib_class (abfd) = lib_class;
7901 }
7902
7903 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7904 the linker ELF emulation code. */
7905
7906 struct bfd_link_needed_list *
7907 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7908 struct bfd_link_info *info)
7909 {
7910 if (! is_elf_hash_table (info->hash))
7911 return NULL;
7912 return elf_hash_table (info)->needed;
7913 }
7914
7915 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7916 hook for the linker ELF emulation code. */
7917
7918 struct bfd_link_needed_list *
7919 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7920 struct bfd_link_info *info)
7921 {
7922 if (! is_elf_hash_table (info->hash))
7923 return NULL;
7924 return elf_hash_table (info)->runpath;
7925 }
7926
7927 /* Get the name actually used for a dynamic object for a link. This
7928 is the SONAME entry if there is one. Otherwise, it is the string
7929 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7930
7931 const char *
7932 bfd_elf_get_dt_soname (bfd *abfd)
7933 {
7934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7935 && bfd_get_format (abfd) == bfd_object)
7936 return elf_dt_name (abfd);
7937 return NULL;
7938 }
7939
7940 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7941 the ELF linker emulation code. */
7942
7943 bfd_boolean
7944 bfd_elf_get_bfd_needed_list (bfd *abfd,
7945 struct bfd_link_needed_list **pneeded)
7946 {
7947 asection *s;
7948 bfd_byte *dynbuf = NULL;
7949 unsigned int elfsec;
7950 unsigned long shlink;
7951 bfd_byte *extdyn, *extdynend;
7952 size_t extdynsize;
7953 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7954
7955 *pneeded = NULL;
7956
7957 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7958 || bfd_get_format (abfd) != bfd_object)
7959 return TRUE;
7960
7961 s = bfd_get_section_by_name (abfd, ".dynamic");
7962 if (s == NULL || s->size == 0)
7963 return TRUE;
7964
7965 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7966 goto error_return;
7967
7968 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7969 if (elfsec == SHN_BAD)
7970 goto error_return;
7971
7972 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7973
7974 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7975 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7976
7977 extdyn = dynbuf;
7978 extdynend = extdyn + s->size;
7979 for (; extdyn < extdynend; extdyn += extdynsize)
7980 {
7981 Elf_Internal_Dyn dyn;
7982
7983 (*swap_dyn_in) (abfd, extdyn, &dyn);
7984
7985 if (dyn.d_tag == DT_NULL)
7986 break;
7987
7988 if (dyn.d_tag == DT_NEEDED)
7989 {
7990 const char *string;
7991 struct bfd_link_needed_list *l;
7992 unsigned int tagv = dyn.d_un.d_val;
7993 size_t amt;
7994
7995 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7996 if (string == NULL)
7997 goto error_return;
7998
7999 amt = sizeof *l;
8000 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8001 if (l == NULL)
8002 goto error_return;
8003
8004 l->by = abfd;
8005 l->name = string;
8006 l->next = *pneeded;
8007 *pneeded = l;
8008 }
8009 }
8010
8011 free (dynbuf);
8012
8013 return TRUE;
8014
8015 error_return:
8016 free (dynbuf);
8017 return FALSE;
8018 }
8019
8020 struct elf_symbuf_symbol
8021 {
8022 unsigned long st_name; /* Symbol name, index in string tbl */
8023 unsigned char st_info; /* Type and binding attributes */
8024 unsigned char st_other; /* Visibilty, and target specific */
8025 };
8026
8027 struct elf_symbuf_head
8028 {
8029 struct elf_symbuf_symbol *ssym;
8030 size_t count;
8031 unsigned int st_shndx;
8032 };
8033
8034 struct elf_symbol
8035 {
8036 union
8037 {
8038 Elf_Internal_Sym *isym;
8039 struct elf_symbuf_symbol *ssym;
8040 void *p;
8041 } u;
8042 const char *name;
8043 };
8044
8045 /* Sort references to symbols by ascending section number. */
8046
8047 static int
8048 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8049 {
8050 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8051 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8052
8053 if (s1->st_shndx != s2->st_shndx)
8054 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8055 /* Final sort by the address of the sym in the symbuf ensures
8056 a stable sort. */
8057 if (s1 != s2)
8058 return s1 > s2 ? 1 : -1;
8059 return 0;
8060 }
8061
8062 static int
8063 elf_sym_name_compare (const void *arg1, const void *arg2)
8064 {
8065 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8066 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8067 int ret = strcmp (s1->name, s2->name);
8068 if (ret != 0)
8069 return ret;
8070 if (s1->u.p != s2->u.p)
8071 return s1->u.p > s2->u.p ? 1 : -1;
8072 return 0;
8073 }
8074
8075 static struct elf_symbuf_head *
8076 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8077 {
8078 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8079 struct elf_symbuf_symbol *ssym;
8080 struct elf_symbuf_head *ssymbuf, *ssymhead;
8081 size_t i, shndx_count, total_size, amt;
8082
8083 amt = symcount * sizeof (*indbuf);
8084 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8085 if (indbuf == NULL)
8086 return NULL;
8087
8088 for (ind = indbuf, i = 0; i < symcount; i++)
8089 if (isymbuf[i].st_shndx != SHN_UNDEF)
8090 *ind++ = &isymbuf[i];
8091 indbufend = ind;
8092
8093 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8094 elf_sort_elf_symbol);
8095
8096 shndx_count = 0;
8097 if (indbufend > indbuf)
8098 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8099 if (ind[0]->st_shndx != ind[1]->st_shndx)
8100 shndx_count++;
8101
8102 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8103 + (indbufend - indbuf) * sizeof (*ssym));
8104 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8105 if (ssymbuf == NULL)
8106 {
8107 free (indbuf);
8108 return NULL;
8109 }
8110
8111 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8112 ssymbuf->ssym = NULL;
8113 ssymbuf->count = shndx_count;
8114 ssymbuf->st_shndx = 0;
8115 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8116 {
8117 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8118 {
8119 ssymhead++;
8120 ssymhead->ssym = ssym;
8121 ssymhead->count = 0;
8122 ssymhead->st_shndx = (*ind)->st_shndx;
8123 }
8124 ssym->st_name = (*ind)->st_name;
8125 ssym->st_info = (*ind)->st_info;
8126 ssym->st_other = (*ind)->st_other;
8127 ssymhead->count++;
8128 }
8129 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8130 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8131 == total_size));
8132
8133 free (indbuf);
8134 return ssymbuf;
8135 }
8136
8137 /* Check if 2 sections define the same set of local and global
8138 symbols. */
8139
8140 static bfd_boolean
8141 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8142 struct bfd_link_info *info)
8143 {
8144 bfd *bfd1, *bfd2;
8145 const struct elf_backend_data *bed1, *bed2;
8146 Elf_Internal_Shdr *hdr1, *hdr2;
8147 size_t symcount1, symcount2;
8148 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8149 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8150 Elf_Internal_Sym *isym, *isymend;
8151 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8152 size_t count1, count2, i;
8153 unsigned int shndx1, shndx2;
8154 bfd_boolean result;
8155
8156 bfd1 = sec1->owner;
8157 bfd2 = sec2->owner;
8158
8159 /* Both sections have to be in ELF. */
8160 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8161 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8162 return FALSE;
8163
8164 if (elf_section_type (sec1) != elf_section_type (sec2))
8165 return FALSE;
8166
8167 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8168 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8169 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8170 return FALSE;
8171
8172 bed1 = get_elf_backend_data (bfd1);
8173 bed2 = get_elf_backend_data (bfd2);
8174 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8175 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8176 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8177 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8178
8179 if (symcount1 == 0 || symcount2 == 0)
8180 return FALSE;
8181
8182 result = FALSE;
8183 isymbuf1 = NULL;
8184 isymbuf2 = NULL;
8185 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8186 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8187
8188 if (ssymbuf1 == NULL)
8189 {
8190 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8191 NULL, NULL, NULL);
8192 if (isymbuf1 == NULL)
8193 goto done;
8194
8195 if (info != NULL && !info->reduce_memory_overheads)
8196 {
8197 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8198 elf_tdata (bfd1)->symbuf = ssymbuf1;
8199 }
8200 }
8201
8202 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8203 {
8204 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8205 NULL, NULL, NULL);
8206 if (isymbuf2 == NULL)
8207 goto done;
8208
8209 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8210 {
8211 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8212 elf_tdata (bfd2)->symbuf = ssymbuf2;
8213 }
8214 }
8215
8216 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8217 {
8218 /* Optimized faster version. */
8219 size_t lo, hi, mid;
8220 struct elf_symbol *symp;
8221 struct elf_symbuf_symbol *ssym, *ssymend;
8222
8223 lo = 0;
8224 hi = ssymbuf1->count;
8225 ssymbuf1++;
8226 count1 = 0;
8227 while (lo < hi)
8228 {
8229 mid = (lo + hi) / 2;
8230 if (shndx1 < ssymbuf1[mid].st_shndx)
8231 hi = mid;
8232 else if (shndx1 > ssymbuf1[mid].st_shndx)
8233 lo = mid + 1;
8234 else
8235 {
8236 count1 = ssymbuf1[mid].count;
8237 ssymbuf1 += mid;
8238 break;
8239 }
8240 }
8241
8242 lo = 0;
8243 hi = ssymbuf2->count;
8244 ssymbuf2++;
8245 count2 = 0;
8246 while (lo < hi)
8247 {
8248 mid = (lo + hi) / 2;
8249 if (shndx2 < ssymbuf2[mid].st_shndx)
8250 hi = mid;
8251 else if (shndx2 > ssymbuf2[mid].st_shndx)
8252 lo = mid + 1;
8253 else
8254 {
8255 count2 = ssymbuf2[mid].count;
8256 ssymbuf2 += mid;
8257 break;
8258 }
8259 }
8260
8261 if (count1 == 0 || count2 == 0 || count1 != count2)
8262 goto done;
8263
8264 symtable1
8265 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8266 symtable2
8267 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8268 if (symtable1 == NULL || symtable2 == NULL)
8269 goto done;
8270
8271 symp = symtable1;
8272 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8273 ssym < ssymend; ssym++, symp++)
8274 {
8275 symp->u.ssym = ssym;
8276 symp->name = bfd_elf_string_from_elf_section (bfd1,
8277 hdr1->sh_link,
8278 ssym->st_name);
8279 }
8280
8281 symp = symtable2;
8282 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8283 ssym < ssymend; ssym++, symp++)
8284 {
8285 symp->u.ssym = ssym;
8286 symp->name = bfd_elf_string_from_elf_section (bfd2,
8287 hdr2->sh_link,
8288 ssym->st_name);
8289 }
8290
8291 /* Sort symbol by name. */
8292 qsort (symtable1, count1, sizeof (struct elf_symbol),
8293 elf_sym_name_compare);
8294 qsort (symtable2, count1, sizeof (struct elf_symbol),
8295 elf_sym_name_compare);
8296
8297 for (i = 0; i < count1; i++)
8298 /* Two symbols must have the same binding, type and name. */
8299 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8300 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8301 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8302 goto done;
8303
8304 result = TRUE;
8305 goto done;
8306 }
8307
8308 symtable1 = (struct elf_symbol *)
8309 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8310 symtable2 = (struct elf_symbol *)
8311 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8312 if (symtable1 == NULL || symtable2 == NULL)
8313 goto done;
8314
8315 /* Count definitions in the section. */
8316 count1 = 0;
8317 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8318 if (isym->st_shndx == shndx1)
8319 symtable1[count1++].u.isym = isym;
8320
8321 count2 = 0;
8322 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8323 if (isym->st_shndx == shndx2)
8324 symtable2[count2++].u.isym = isym;
8325
8326 if (count1 == 0 || count2 == 0 || count1 != count2)
8327 goto done;
8328
8329 for (i = 0; i < count1; i++)
8330 symtable1[i].name
8331 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8332 symtable1[i].u.isym->st_name);
8333
8334 for (i = 0; i < count2; i++)
8335 symtable2[i].name
8336 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8337 symtable2[i].u.isym->st_name);
8338
8339 /* Sort symbol by name. */
8340 qsort (symtable1, count1, sizeof (struct elf_symbol),
8341 elf_sym_name_compare);
8342 qsort (symtable2, count1, sizeof (struct elf_symbol),
8343 elf_sym_name_compare);
8344
8345 for (i = 0; i < count1; i++)
8346 /* Two symbols must have the same binding, type and name. */
8347 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8348 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8349 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8350 goto done;
8351
8352 result = TRUE;
8353
8354 done:
8355 free (symtable1);
8356 free (symtable2);
8357 free (isymbuf1);
8358 free (isymbuf2);
8359
8360 return result;
8361 }
8362
8363 /* Return TRUE if 2 section types are compatible. */
8364
8365 bfd_boolean
8366 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8367 bfd *bbfd, const asection *bsec)
8368 {
8369 if (asec == NULL
8370 || bsec == NULL
8371 || abfd->xvec->flavour != bfd_target_elf_flavour
8372 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8373 return TRUE;
8374
8375 return elf_section_type (asec) == elf_section_type (bsec);
8376 }
8377 \f
8378 /* Final phase of ELF linker. */
8379
8380 /* A structure we use to avoid passing large numbers of arguments. */
8381
8382 struct elf_final_link_info
8383 {
8384 /* General link information. */
8385 struct bfd_link_info *info;
8386 /* Output BFD. */
8387 bfd *output_bfd;
8388 /* Symbol string table. */
8389 struct elf_strtab_hash *symstrtab;
8390 /* .hash section. */
8391 asection *hash_sec;
8392 /* symbol version section (.gnu.version). */
8393 asection *symver_sec;
8394 /* Buffer large enough to hold contents of any section. */
8395 bfd_byte *contents;
8396 /* Buffer large enough to hold external relocs of any section. */
8397 void *external_relocs;
8398 /* Buffer large enough to hold internal relocs of any section. */
8399 Elf_Internal_Rela *internal_relocs;
8400 /* Buffer large enough to hold external local symbols of any input
8401 BFD. */
8402 bfd_byte *external_syms;
8403 /* And a buffer for symbol section indices. */
8404 Elf_External_Sym_Shndx *locsym_shndx;
8405 /* Buffer large enough to hold internal local symbols of any input
8406 BFD. */
8407 Elf_Internal_Sym *internal_syms;
8408 /* Array large enough to hold a symbol index for each local symbol
8409 of any input BFD. */
8410 long *indices;
8411 /* Array large enough to hold a section pointer for each local
8412 symbol of any input BFD. */
8413 asection **sections;
8414 /* Buffer for SHT_SYMTAB_SHNDX section. */
8415 Elf_External_Sym_Shndx *symshndxbuf;
8416 /* Number of STT_FILE syms seen. */
8417 size_t filesym_count;
8418 };
8419
8420 /* This struct is used to pass information to elf_link_output_extsym. */
8421
8422 struct elf_outext_info
8423 {
8424 bfd_boolean failed;
8425 bfd_boolean localsyms;
8426 bfd_boolean file_sym_done;
8427 struct elf_final_link_info *flinfo;
8428 };
8429
8430
8431 /* Support for evaluating a complex relocation.
8432
8433 Complex relocations are generalized, self-describing relocations. The
8434 implementation of them consists of two parts: complex symbols, and the
8435 relocations themselves.
8436
8437 The relocations use a reserved elf-wide relocation type code (R_RELC
8438 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8439 information (start bit, end bit, word width, etc) into the addend. This
8440 information is extracted from CGEN-generated operand tables within gas.
8441
8442 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8443 internal) representing prefix-notation expressions, including but not
8444 limited to those sorts of expressions normally encoded as addends in the
8445 addend field. The symbol mangling format is:
8446
8447 <node> := <literal>
8448 | <unary-operator> ':' <node>
8449 | <binary-operator> ':' <node> ':' <node>
8450 ;
8451
8452 <literal> := 's' <digits=N> ':' <N character symbol name>
8453 | 'S' <digits=N> ':' <N character section name>
8454 | '#' <hexdigits>
8455 ;
8456
8457 <binary-operator> := as in C
8458 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8459
8460 static void
8461 set_symbol_value (bfd *bfd_with_globals,
8462 Elf_Internal_Sym *isymbuf,
8463 size_t locsymcount,
8464 size_t symidx,
8465 bfd_vma val)
8466 {
8467 struct elf_link_hash_entry **sym_hashes;
8468 struct elf_link_hash_entry *h;
8469 size_t extsymoff = locsymcount;
8470
8471 if (symidx < locsymcount)
8472 {
8473 Elf_Internal_Sym *sym;
8474
8475 sym = isymbuf + symidx;
8476 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8477 {
8478 /* It is a local symbol: move it to the
8479 "absolute" section and give it a value. */
8480 sym->st_shndx = SHN_ABS;
8481 sym->st_value = val;
8482 return;
8483 }
8484 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8485 extsymoff = 0;
8486 }
8487
8488 /* It is a global symbol: set its link type
8489 to "defined" and give it a value. */
8490
8491 sym_hashes = elf_sym_hashes (bfd_with_globals);
8492 h = sym_hashes [symidx - extsymoff];
8493 while (h->root.type == bfd_link_hash_indirect
8494 || h->root.type == bfd_link_hash_warning)
8495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8496 h->root.type = bfd_link_hash_defined;
8497 h->root.u.def.value = val;
8498 h->root.u.def.section = bfd_abs_section_ptr;
8499 }
8500
8501 static bfd_boolean
8502 resolve_symbol (const char *name,
8503 bfd *input_bfd,
8504 struct elf_final_link_info *flinfo,
8505 bfd_vma *result,
8506 Elf_Internal_Sym *isymbuf,
8507 size_t locsymcount)
8508 {
8509 Elf_Internal_Sym *sym;
8510 struct bfd_link_hash_entry *global_entry;
8511 const char *candidate = NULL;
8512 Elf_Internal_Shdr *symtab_hdr;
8513 size_t i;
8514
8515 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8516
8517 for (i = 0; i < locsymcount; ++ i)
8518 {
8519 sym = isymbuf + i;
8520
8521 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8522 continue;
8523
8524 candidate = bfd_elf_string_from_elf_section (input_bfd,
8525 symtab_hdr->sh_link,
8526 sym->st_name);
8527 #ifdef DEBUG
8528 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8529 name, candidate, (unsigned long) sym->st_value);
8530 #endif
8531 if (candidate && strcmp (candidate, name) == 0)
8532 {
8533 asection *sec = flinfo->sections [i];
8534
8535 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8536 *result += sec->output_offset + sec->output_section->vma;
8537 #ifdef DEBUG
8538 printf ("Found symbol with value %8.8lx\n",
8539 (unsigned long) *result);
8540 #endif
8541 return TRUE;
8542 }
8543 }
8544
8545 /* Hmm, haven't found it yet. perhaps it is a global. */
8546 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8547 FALSE, FALSE, TRUE);
8548 if (!global_entry)
8549 return FALSE;
8550
8551 if (global_entry->type == bfd_link_hash_defined
8552 || global_entry->type == bfd_link_hash_defweak)
8553 {
8554 *result = (global_entry->u.def.value
8555 + global_entry->u.def.section->output_section->vma
8556 + global_entry->u.def.section->output_offset);
8557 #ifdef DEBUG
8558 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8559 global_entry->root.string, (unsigned long) *result);
8560 #endif
8561 return TRUE;
8562 }
8563
8564 return FALSE;
8565 }
8566
8567 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8568 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8569 names like "foo.end" which is the end address of section "foo". */
8570
8571 static bfd_boolean
8572 resolve_section (const char *name,
8573 asection *sections,
8574 bfd_vma *result,
8575 bfd * abfd)
8576 {
8577 asection *curr;
8578 unsigned int len;
8579
8580 for (curr = sections; curr; curr = curr->next)
8581 if (strcmp (curr->name, name) == 0)
8582 {
8583 *result = curr->vma;
8584 return TRUE;
8585 }
8586
8587 /* Hmm. still haven't found it. try pseudo-section names. */
8588 /* FIXME: This could be coded more efficiently... */
8589 for (curr = sections; curr; curr = curr->next)
8590 {
8591 len = strlen (curr->name);
8592 if (len > strlen (name))
8593 continue;
8594
8595 if (strncmp (curr->name, name, len) == 0)
8596 {
8597 if (strncmp (".end", name + len, 4) == 0)
8598 {
8599 *result = (curr->vma
8600 + curr->size / bfd_octets_per_byte (abfd, curr));
8601 return TRUE;
8602 }
8603
8604 /* Insert more pseudo-section names here, if you like. */
8605 }
8606 }
8607
8608 return FALSE;
8609 }
8610
8611 static void
8612 undefined_reference (const char *reftype, const char *name)
8613 {
8614 /* xgettext:c-format */
8615 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8616 reftype, name);
8617 bfd_set_error (bfd_error_bad_value);
8618 }
8619
8620 static bfd_boolean
8621 eval_symbol (bfd_vma *result,
8622 const char **symp,
8623 bfd *input_bfd,
8624 struct elf_final_link_info *flinfo,
8625 bfd_vma dot,
8626 Elf_Internal_Sym *isymbuf,
8627 size_t locsymcount,
8628 int signed_p)
8629 {
8630 size_t len;
8631 size_t symlen;
8632 bfd_vma a;
8633 bfd_vma b;
8634 char symbuf[4096];
8635 const char *sym = *symp;
8636 const char *symend;
8637 bfd_boolean symbol_is_section = FALSE;
8638
8639 len = strlen (sym);
8640 symend = sym + len;
8641
8642 if (len < 1 || len > sizeof (symbuf))
8643 {
8644 bfd_set_error (bfd_error_invalid_operation);
8645 return FALSE;
8646 }
8647
8648 switch (* sym)
8649 {
8650 case '.':
8651 *result = dot;
8652 *symp = sym + 1;
8653 return TRUE;
8654
8655 case '#':
8656 ++sym;
8657 *result = strtoul (sym, (char **) symp, 16);
8658 return TRUE;
8659
8660 case 'S':
8661 symbol_is_section = TRUE;
8662 /* Fall through. */
8663 case 's':
8664 ++sym;
8665 symlen = strtol (sym, (char **) symp, 10);
8666 sym = *symp + 1; /* Skip the trailing ':'. */
8667
8668 if (symend < sym || symlen + 1 > sizeof (symbuf))
8669 {
8670 bfd_set_error (bfd_error_invalid_operation);
8671 return FALSE;
8672 }
8673
8674 memcpy (symbuf, sym, symlen);
8675 symbuf[symlen] = '\0';
8676 *symp = sym + symlen;
8677
8678 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8679 the symbol as a section, or vice-versa. so we're pretty liberal in our
8680 interpretation here; section means "try section first", not "must be a
8681 section", and likewise with symbol. */
8682
8683 if (symbol_is_section)
8684 {
8685 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8686 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8687 isymbuf, locsymcount))
8688 {
8689 undefined_reference ("section", symbuf);
8690 return FALSE;
8691 }
8692 }
8693 else
8694 {
8695 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8696 isymbuf, locsymcount)
8697 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8698 result, input_bfd))
8699 {
8700 undefined_reference ("symbol", symbuf);
8701 return FALSE;
8702 }
8703 }
8704
8705 return TRUE;
8706
8707 /* All that remains are operators. */
8708
8709 #define UNARY_OP(op) \
8710 if (strncmp (sym, #op, strlen (#op)) == 0) \
8711 { \
8712 sym += strlen (#op); \
8713 if (*sym == ':') \
8714 ++sym; \
8715 *symp = sym; \
8716 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8717 isymbuf, locsymcount, signed_p)) \
8718 return FALSE; \
8719 if (signed_p) \
8720 *result = op ((bfd_signed_vma) a); \
8721 else \
8722 *result = op a; \
8723 return TRUE; \
8724 }
8725
8726 #define BINARY_OP_HEAD(op) \
8727 if (strncmp (sym, #op, strlen (#op)) == 0) \
8728 { \
8729 sym += strlen (#op); \
8730 if (*sym == ':') \
8731 ++sym; \
8732 *symp = sym; \
8733 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8734 isymbuf, locsymcount, signed_p)) \
8735 return FALSE; \
8736 ++*symp; \
8737 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8738 isymbuf, locsymcount, signed_p)) \
8739 return FALSE;
8740 #define BINARY_OP_TAIL(op) \
8741 if (signed_p) \
8742 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8743 else \
8744 *result = a op b; \
8745 return TRUE; \
8746 }
8747 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8748
8749 default:
8750 UNARY_OP (0-);
8751 BINARY_OP_HEAD (<<);
8752 if (b >= sizeof (a) * CHAR_BIT)
8753 {
8754 *result = 0;
8755 return TRUE;
8756 }
8757 signed_p = 0;
8758 BINARY_OP_TAIL (<<);
8759 BINARY_OP_HEAD (>>);
8760 if (b >= sizeof (a) * CHAR_BIT)
8761 {
8762 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8763 return TRUE;
8764 }
8765 BINARY_OP_TAIL (>>);
8766 BINARY_OP (==);
8767 BINARY_OP (!=);
8768 BINARY_OP (<=);
8769 BINARY_OP (>=);
8770 BINARY_OP (&&);
8771 BINARY_OP (||);
8772 UNARY_OP (~);
8773 UNARY_OP (!);
8774 BINARY_OP (*);
8775 BINARY_OP_HEAD (/);
8776 if (b == 0)
8777 {
8778 _bfd_error_handler (_("division by zero"));
8779 bfd_set_error (bfd_error_bad_value);
8780 return FALSE;
8781 }
8782 BINARY_OP_TAIL (/);
8783 BINARY_OP_HEAD (%);
8784 if (b == 0)
8785 {
8786 _bfd_error_handler (_("division by zero"));
8787 bfd_set_error (bfd_error_bad_value);
8788 return FALSE;
8789 }
8790 BINARY_OP_TAIL (%);
8791 BINARY_OP (^);
8792 BINARY_OP (|);
8793 BINARY_OP (&);
8794 BINARY_OP (+);
8795 BINARY_OP (-);
8796 BINARY_OP (<);
8797 BINARY_OP (>);
8798 #undef UNARY_OP
8799 #undef BINARY_OP
8800 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8801 bfd_set_error (bfd_error_invalid_operation);
8802 return FALSE;
8803 }
8804 }
8805
8806 static void
8807 put_value (bfd_vma size,
8808 unsigned long chunksz,
8809 bfd *input_bfd,
8810 bfd_vma x,
8811 bfd_byte *location)
8812 {
8813 location += (size - chunksz);
8814
8815 for (; size; size -= chunksz, location -= chunksz)
8816 {
8817 switch (chunksz)
8818 {
8819 case 1:
8820 bfd_put_8 (input_bfd, x, location);
8821 x >>= 8;
8822 break;
8823 case 2:
8824 bfd_put_16 (input_bfd, x, location);
8825 x >>= 16;
8826 break;
8827 case 4:
8828 bfd_put_32 (input_bfd, x, location);
8829 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8830 x >>= 16;
8831 x >>= 16;
8832 break;
8833 #ifdef BFD64
8834 case 8:
8835 bfd_put_64 (input_bfd, x, location);
8836 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8837 x >>= 32;
8838 x >>= 32;
8839 break;
8840 #endif
8841 default:
8842 abort ();
8843 break;
8844 }
8845 }
8846 }
8847
8848 static bfd_vma
8849 get_value (bfd_vma size,
8850 unsigned long chunksz,
8851 bfd *input_bfd,
8852 bfd_byte *location)
8853 {
8854 int shift;
8855 bfd_vma x = 0;
8856
8857 /* Sanity checks. */
8858 BFD_ASSERT (chunksz <= sizeof (x)
8859 && size >= chunksz
8860 && chunksz != 0
8861 && (size % chunksz) == 0
8862 && input_bfd != NULL
8863 && location != NULL);
8864
8865 if (chunksz == sizeof (x))
8866 {
8867 BFD_ASSERT (size == chunksz);
8868
8869 /* Make sure that we do not perform an undefined shift operation.
8870 We know that size == chunksz so there will only be one iteration
8871 of the loop below. */
8872 shift = 0;
8873 }
8874 else
8875 shift = 8 * chunksz;
8876
8877 for (; size; size -= chunksz, location += chunksz)
8878 {
8879 switch (chunksz)
8880 {
8881 case 1:
8882 x = (x << shift) | bfd_get_8 (input_bfd, location);
8883 break;
8884 case 2:
8885 x = (x << shift) | bfd_get_16 (input_bfd, location);
8886 break;
8887 case 4:
8888 x = (x << shift) | bfd_get_32 (input_bfd, location);
8889 break;
8890 #ifdef BFD64
8891 case 8:
8892 x = (x << shift) | bfd_get_64 (input_bfd, location);
8893 break;
8894 #endif
8895 default:
8896 abort ();
8897 }
8898 }
8899 return x;
8900 }
8901
8902 static void
8903 decode_complex_addend (unsigned long *start, /* in bits */
8904 unsigned long *oplen, /* in bits */
8905 unsigned long *len, /* in bits */
8906 unsigned long *wordsz, /* in bytes */
8907 unsigned long *chunksz, /* in bytes */
8908 unsigned long *lsb0_p,
8909 unsigned long *signed_p,
8910 unsigned long *trunc_p,
8911 unsigned long encoded)
8912 {
8913 * start = encoded & 0x3F;
8914 * len = (encoded >> 6) & 0x3F;
8915 * oplen = (encoded >> 12) & 0x3F;
8916 * wordsz = (encoded >> 18) & 0xF;
8917 * chunksz = (encoded >> 22) & 0xF;
8918 * lsb0_p = (encoded >> 27) & 1;
8919 * signed_p = (encoded >> 28) & 1;
8920 * trunc_p = (encoded >> 29) & 1;
8921 }
8922
8923 bfd_reloc_status_type
8924 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8925 asection *input_section,
8926 bfd_byte *contents,
8927 Elf_Internal_Rela *rel,
8928 bfd_vma relocation)
8929 {
8930 bfd_vma shift, x, mask;
8931 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8932 bfd_reloc_status_type r;
8933 bfd_size_type octets;
8934
8935 /* Perform this reloc, since it is complex.
8936 (this is not to say that it necessarily refers to a complex
8937 symbol; merely that it is a self-describing CGEN based reloc.
8938 i.e. the addend has the complete reloc information (bit start, end,
8939 word size, etc) encoded within it.). */
8940
8941 decode_complex_addend (&start, &oplen, &len, &wordsz,
8942 &chunksz, &lsb0_p, &signed_p,
8943 &trunc_p, rel->r_addend);
8944
8945 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8946
8947 if (lsb0_p)
8948 shift = (start + 1) - len;
8949 else
8950 shift = (8 * wordsz) - (start + len);
8951
8952 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8953 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8954
8955 #ifdef DEBUG
8956 printf ("Doing complex reloc: "
8957 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8958 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8959 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8960 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8961 oplen, (unsigned long) x, (unsigned long) mask,
8962 (unsigned long) relocation);
8963 #endif
8964
8965 r = bfd_reloc_ok;
8966 if (! trunc_p)
8967 /* Now do an overflow check. */
8968 r = bfd_check_overflow ((signed_p
8969 ? complain_overflow_signed
8970 : complain_overflow_unsigned),
8971 len, 0, (8 * wordsz),
8972 relocation);
8973
8974 /* Do the deed. */
8975 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8976
8977 #ifdef DEBUG
8978 printf (" relocation: %8.8lx\n"
8979 " shifted mask: %8.8lx\n"
8980 " shifted/masked reloc: %8.8lx\n"
8981 " result: %8.8lx\n",
8982 (unsigned long) relocation, (unsigned long) (mask << shift),
8983 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8984 #endif
8985 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8986 return r;
8987 }
8988
8989 /* Functions to read r_offset from external (target order) reloc
8990 entry. Faster than bfd_getl32 et al, because we let the compiler
8991 know the value is aligned. */
8992
8993 static bfd_vma
8994 ext32l_r_offset (const void *p)
8995 {
8996 union aligned32
8997 {
8998 uint32_t v;
8999 unsigned char c[4];
9000 };
9001 const union aligned32 *a
9002 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9003
9004 uint32_t aval = ( (uint32_t) a->c[0]
9005 | (uint32_t) a->c[1] << 8
9006 | (uint32_t) a->c[2] << 16
9007 | (uint32_t) a->c[3] << 24);
9008 return aval;
9009 }
9010
9011 static bfd_vma
9012 ext32b_r_offset (const void *p)
9013 {
9014 union aligned32
9015 {
9016 uint32_t v;
9017 unsigned char c[4];
9018 };
9019 const union aligned32 *a
9020 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9021
9022 uint32_t aval = ( (uint32_t) a->c[0] << 24
9023 | (uint32_t) a->c[1] << 16
9024 | (uint32_t) a->c[2] << 8
9025 | (uint32_t) a->c[3]);
9026 return aval;
9027 }
9028
9029 #ifdef BFD_HOST_64_BIT
9030 static bfd_vma
9031 ext64l_r_offset (const void *p)
9032 {
9033 union aligned64
9034 {
9035 uint64_t v;
9036 unsigned char c[8];
9037 };
9038 const union aligned64 *a
9039 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9040
9041 uint64_t aval = ( (uint64_t) a->c[0]
9042 | (uint64_t) a->c[1] << 8
9043 | (uint64_t) a->c[2] << 16
9044 | (uint64_t) a->c[3] << 24
9045 | (uint64_t) a->c[4] << 32
9046 | (uint64_t) a->c[5] << 40
9047 | (uint64_t) a->c[6] << 48
9048 | (uint64_t) a->c[7] << 56);
9049 return aval;
9050 }
9051
9052 static bfd_vma
9053 ext64b_r_offset (const void *p)
9054 {
9055 union aligned64
9056 {
9057 uint64_t v;
9058 unsigned char c[8];
9059 };
9060 const union aligned64 *a
9061 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9062
9063 uint64_t aval = ( (uint64_t) a->c[0] << 56
9064 | (uint64_t) a->c[1] << 48
9065 | (uint64_t) a->c[2] << 40
9066 | (uint64_t) a->c[3] << 32
9067 | (uint64_t) a->c[4] << 24
9068 | (uint64_t) a->c[5] << 16
9069 | (uint64_t) a->c[6] << 8
9070 | (uint64_t) a->c[7]);
9071 return aval;
9072 }
9073 #endif
9074
9075 /* When performing a relocatable link, the input relocations are
9076 preserved. But, if they reference global symbols, the indices
9077 referenced must be updated. Update all the relocations found in
9078 RELDATA. */
9079
9080 static bfd_boolean
9081 elf_link_adjust_relocs (bfd *abfd,
9082 asection *sec,
9083 struct bfd_elf_section_reloc_data *reldata,
9084 bfd_boolean sort,
9085 struct bfd_link_info *info)
9086 {
9087 unsigned int i;
9088 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9089 bfd_byte *erela;
9090 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9091 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9092 bfd_vma r_type_mask;
9093 int r_sym_shift;
9094 unsigned int count = reldata->count;
9095 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9096
9097 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9098 {
9099 swap_in = bed->s->swap_reloc_in;
9100 swap_out = bed->s->swap_reloc_out;
9101 }
9102 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9103 {
9104 swap_in = bed->s->swap_reloca_in;
9105 swap_out = bed->s->swap_reloca_out;
9106 }
9107 else
9108 abort ();
9109
9110 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9111 abort ();
9112
9113 if (bed->s->arch_size == 32)
9114 {
9115 r_type_mask = 0xff;
9116 r_sym_shift = 8;
9117 }
9118 else
9119 {
9120 r_type_mask = 0xffffffff;
9121 r_sym_shift = 32;
9122 }
9123
9124 erela = reldata->hdr->contents;
9125 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9126 {
9127 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9128 unsigned int j;
9129
9130 if (*rel_hash == NULL)
9131 continue;
9132
9133 if ((*rel_hash)->indx == -2
9134 && info->gc_sections
9135 && ! info->gc_keep_exported)
9136 {
9137 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9138 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9139 abfd, sec,
9140 (*rel_hash)->root.root.string);
9141 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9142 abfd, sec);
9143 bfd_set_error (bfd_error_invalid_operation);
9144 return FALSE;
9145 }
9146 BFD_ASSERT ((*rel_hash)->indx >= 0);
9147
9148 (*swap_in) (abfd, erela, irela);
9149 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9150 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9151 | (irela[j].r_info & r_type_mask));
9152 (*swap_out) (abfd, irela, erela);
9153 }
9154
9155 if (bed->elf_backend_update_relocs)
9156 (*bed->elf_backend_update_relocs) (sec, reldata);
9157
9158 if (sort && count != 0)
9159 {
9160 bfd_vma (*ext_r_off) (const void *);
9161 bfd_vma r_off;
9162 size_t elt_size;
9163 bfd_byte *base, *end, *p, *loc;
9164 bfd_byte *buf = NULL;
9165
9166 if (bed->s->arch_size == 32)
9167 {
9168 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9169 ext_r_off = ext32l_r_offset;
9170 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9171 ext_r_off = ext32b_r_offset;
9172 else
9173 abort ();
9174 }
9175 else
9176 {
9177 #ifdef BFD_HOST_64_BIT
9178 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9179 ext_r_off = ext64l_r_offset;
9180 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9181 ext_r_off = ext64b_r_offset;
9182 else
9183 #endif
9184 abort ();
9185 }
9186
9187 /* Must use a stable sort here. A modified insertion sort,
9188 since the relocs are mostly sorted already. */
9189 elt_size = reldata->hdr->sh_entsize;
9190 base = reldata->hdr->contents;
9191 end = base + count * elt_size;
9192 if (elt_size > sizeof (Elf64_External_Rela))
9193 abort ();
9194
9195 /* Ensure the first element is lowest. This acts as a sentinel,
9196 speeding the main loop below. */
9197 r_off = (*ext_r_off) (base);
9198 for (p = loc = base; (p += elt_size) < end; )
9199 {
9200 bfd_vma r_off2 = (*ext_r_off) (p);
9201 if (r_off > r_off2)
9202 {
9203 r_off = r_off2;
9204 loc = p;
9205 }
9206 }
9207 if (loc != base)
9208 {
9209 /* Don't just swap *base and *loc as that changes the order
9210 of the original base[0] and base[1] if they happen to
9211 have the same r_offset. */
9212 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9213 memcpy (onebuf, loc, elt_size);
9214 memmove (base + elt_size, base, loc - base);
9215 memcpy (base, onebuf, elt_size);
9216 }
9217
9218 for (p = base + elt_size; (p += elt_size) < end; )
9219 {
9220 /* base to p is sorted, *p is next to insert. */
9221 r_off = (*ext_r_off) (p);
9222 /* Search the sorted region for location to insert. */
9223 loc = p - elt_size;
9224 while (r_off < (*ext_r_off) (loc))
9225 loc -= elt_size;
9226 loc += elt_size;
9227 if (loc != p)
9228 {
9229 /* Chances are there is a run of relocs to insert here,
9230 from one of more input files. Files are not always
9231 linked in order due to the way elf_link_input_bfd is
9232 called. See pr17666. */
9233 size_t sortlen = p - loc;
9234 bfd_vma r_off2 = (*ext_r_off) (loc);
9235 size_t runlen = elt_size;
9236 size_t buf_size = 96 * 1024;
9237 while (p + runlen < end
9238 && (sortlen <= buf_size
9239 || runlen + elt_size <= buf_size)
9240 && r_off2 > (*ext_r_off) (p + runlen))
9241 runlen += elt_size;
9242 if (buf == NULL)
9243 {
9244 buf = bfd_malloc (buf_size);
9245 if (buf == NULL)
9246 return FALSE;
9247 }
9248 if (runlen < sortlen)
9249 {
9250 memcpy (buf, p, runlen);
9251 memmove (loc + runlen, loc, sortlen);
9252 memcpy (loc, buf, runlen);
9253 }
9254 else
9255 {
9256 memcpy (buf, loc, sortlen);
9257 memmove (loc, p, runlen);
9258 memcpy (loc + runlen, buf, sortlen);
9259 }
9260 p += runlen - elt_size;
9261 }
9262 }
9263 /* Hashes are no longer valid. */
9264 free (reldata->hashes);
9265 reldata->hashes = NULL;
9266 free (buf);
9267 }
9268 return TRUE;
9269 }
9270
9271 struct elf_link_sort_rela
9272 {
9273 union {
9274 bfd_vma offset;
9275 bfd_vma sym_mask;
9276 } u;
9277 enum elf_reloc_type_class type;
9278 /* We use this as an array of size int_rels_per_ext_rel. */
9279 Elf_Internal_Rela rela[1];
9280 };
9281
9282 /* qsort stability here and for cmp2 is only an issue if multiple
9283 dynamic relocations are emitted at the same address. But targets
9284 that apply a series of dynamic relocations each operating on the
9285 result of the prior relocation can't use -z combreloc as
9286 implemented anyway. Such schemes tend to be broken by sorting on
9287 symbol index. That leaves dynamic NONE relocs as the only other
9288 case where ld might emit multiple relocs at the same address, and
9289 those are only emitted due to target bugs. */
9290
9291 static int
9292 elf_link_sort_cmp1 (const void *A, const void *B)
9293 {
9294 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9295 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9296 int relativea, relativeb;
9297
9298 relativea = a->type == reloc_class_relative;
9299 relativeb = b->type == reloc_class_relative;
9300
9301 if (relativea < relativeb)
9302 return 1;
9303 if (relativea > relativeb)
9304 return -1;
9305 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9306 return -1;
9307 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9308 return 1;
9309 if (a->rela->r_offset < b->rela->r_offset)
9310 return -1;
9311 if (a->rela->r_offset > b->rela->r_offset)
9312 return 1;
9313 return 0;
9314 }
9315
9316 static int
9317 elf_link_sort_cmp2 (const void *A, const void *B)
9318 {
9319 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9320 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9321
9322 if (a->type < b->type)
9323 return -1;
9324 if (a->type > b->type)
9325 return 1;
9326 if (a->u.offset < b->u.offset)
9327 return -1;
9328 if (a->u.offset > b->u.offset)
9329 return 1;
9330 if (a->rela->r_offset < b->rela->r_offset)
9331 return -1;
9332 if (a->rela->r_offset > b->rela->r_offset)
9333 return 1;
9334 return 0;
9335 }
9336
9337 static size_t
9338 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9339 {
9340 asection *dynamic_relocs;
9341 asection *rela_dyn;
9342 asection *rel_dyn;
9343 bfd_size_type count, size;
9344 size_t i, ret, sort_elt, ext_size;
9345 bfd_byte *sort, *s_non_relative, *p;
9346 struct elf_link_sort_rela *sq;
9347 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9348 int i2e = bed->s->int_rels_per_ext_rel;
9349 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9350 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9351 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9352 struct bfd_link_order *lo;
9353 bfd_vma r_sym_mask;
9354 bfd_boolean use_rela;
9355
9356 /* Find a dynamic reloc section. */
9357 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9358 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9359 if (rela_dyn != NULL && rela_dyn->size > 0
9360 && rel_dyn != NULL && rel_dyn->size > 0)
9361 {
9362 bfd_boolean use_rela_initialised = FALSE;
9363
9364 /* This is just here to stop gcc from complaining.
9365 Its initialization checking code is not perfect. */
9366 use_rela = TRUE;
9367
9368 /* Both sections are present. Examine the sizes
9369 of the indirect sections to help us choose. */
9370 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9371 if (lo->type == bfd_indirect_link_order)
9372 {
9373 asection *o = lo->u.indirect.section;
9374
9375 if ((o->size % bed->s->sizeof_rela) == 0)
9376 {
9377 if ((o->size % bed->s->sizeof_rel) == 0)
9378 /* Section size is divisible by both rel and rela sizes.
9379 It is of no help to us. */
9380 ;
9381 else
9382 {
9383 /* Section size is only divisible by rela. */
9384 if (use_rela_initialised && !use_rela)
9385 {
9386 _bfd_error_handler (_("%pB: unable to sort relocs - "
9387 "they are in more than one size"),
9388 abfd);
9389 bfd_set_error (bfd_error_invalid_operation);
9390 return 0;
9391 }
9392 else
9393 {
9394 use_rela = TRUE;
9395 use_rela_initialised = TRUE;
9396 }
9397 }
9398 }
9399 else if ((o->size % bed->s->sizeof_rel) == 0)
9400 {
9401 /* Section size is only divisible by rel. */
9402 if (use_rela_initialised && use_rela)
9403 {
9404 _bfd_error_handler (_("%pB: unable to sort relocs - "
9405 "they are in more than one size"),
9406 abfd);
9407 bfd_set_error (bfd_error_invalid_operation);
9408 return 0;
9409 }
9410 else
9411 {
9412 use_rela = FALSE;
9413 use_rela_initialised = TRUE;
9414 }
9415 }
9416 else
9417 {
9418 /* The section size is not divisible by either -
9419 something is wrong. */
9420 _bfd_error_handler (_("%pB: unable to sort relocs - "
9421 "they are of an unknown size"), abfd);
9422 bfd_set_error (bfd_error_invalid_operation);
9423 return 0;
9424 }
9425 }
9426
9427 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9428 if (lo->type == bfd_indirect_link_order)
9429 {
9430 asection *o = lo->u.indirect.section;
9431
9432 if ((o->size % bed->s->sizeof_rela) == 0)
9433 {
9434 if ((o->size % bed->s->sizeof_rel) == 0)
9435 /* Section size is divisible by both rel and rela sizes.
9436 It is of no help to us. */
9437 ;
9438 else
9439 {
9440 /* Section size is only divisible by rela. */
9441 if (use_rela_initialised && !use_rela)
9442 {
9443 _bfd_error_handler (_("%pB: unable to sort relocs - "
9444 "they are in more than one size"),
9445 abfd);
9446 bfd_set_error (bfd_error_invalid_operation);
9447 return 0;
9448 }
9449 else
9450 {
9451 use_rela = TRUE;
9452 use_rela_initialised = TRUE;
9453 }
9454 }
9455 }
9456 else if ((o->size % bed->s->sizeof_rel) == 0)
9457 {
9458 /* Section size is only divisible by rel. */
9459 if (use_rela_initialised && use_rela)
9460 {
9461 _bfd_error_handler (_("%pB: unable to sort relocs - "
9462 "they are in more than one size"),
9463 abfd);
9464 bfd_set_error (bfd_error_invalid_operation);
9465 return 0;
9466 }
9467 else
9468 {
9469 use_rela = FALSE;
9470 use_rela_initialised = TRUE;
9471 }
9472 }
9473 else
9474 {
9475 /* The section size is not divisible by either -
9476 something is wrong. */
9477 _bfd_error_handler (_("%pB: unable to sort relocs - "
9478 "they are of an unknown size"), abfd);
9479 bfd_set_error (bfd_error_invalid_operation);
9480 return 0;
9481 }
9482 }
9483
9484 if (! use_rela_initialised)
9485 /* Make a guess. */
9486 use_rela = TRUE;
9487 }
9488 else if (rela_dyn != NULL && rela_dyn->size > 0)
9489 use_rela = TRUE;
9490 else if (rel_dyn != NULL && rel_dyn->size > 0)
9491 use_rela = FALSE;
9492 else
9493 return 0;
9494
9495 if (use_rela)
9496 {
9497 dynamic_relocs = rela_dyn;
9498 ext_size = bed->s->sizeof_rela;
9499 swap_in = bed->s->swap_reloca_in;
9500 swap_out = bed->s->swap_reloca_out;
9501 }
9502 else
9503 {
9504 dynamic_relocs = rel_dyn;
9505 ext_size = bed->s->sizeof_rel;
9506 swap_in = bed->s->swap_reloc_in;
9507 swap_out = bed->s->swap_reloc_out;
9508 }
9509
9510 size = 0;
9511 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9512 if (lo->type == bfd_indirect_link_order)
9513 size += lo->u.indirect.section->size;
9514
9515 if (size != dynamic_relocs->size)
9516 return 0;
9517
9518 sort_elt = (sizeof (struct elf_link_sort_rela)
9519 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9520
9521 count = dynamic_relocs->size / ext_size;
9522 if (count == 0)
9523 return 0;
9524 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9525
9526 if (sort == NULL)
9527 {
9528 (*info->callbacks->warning)
9529 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9530 return 0;
9531 }
9532
9533 if (bed->s->arch_size == 32)
9534 r_sym_mask = ~(bfd_vma) 0xff;
9535 else
9536 r_sym_mask = ~(bfd_vma) 0xffffffff;
9537
9538 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9539 if (lo->type == bfd_indirect_link_order)
9540 {
9541 bfd_byte *erel, *erelend;
9542 asection *o = lo->u.indirect.section;
9543
9544 if (o->contents == NULL && o->size != 0)
9545 {
9546 /* This is a reloc section that is being handled as a normal
9547 section. See bfd_section_from_shdr. We can't combine
9548 relocs in this case. */
9549 free (sort);
9550 return 0;
9551 }
9552 erel = o->contents;
9553 erelend = o->contents + o->size;
9554 p = sort + o->output_offset * opb / ext_size * sort_elt;
9555
9556 while (erel < erelend)
9557 {
9558 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9559
9560 (*swap_in) (abfd, erel, s->rela);
9561 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9562 s->u.sym_mask = r_sym_mask;
9563 p += sort_elt;
9564 erel += ext_size;
9565 }
9566 }
9567
9568 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9569
9570 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9571 {
9572 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9573 if (s->type != reloc_class_relative)
9574 break;
9575 }
9576 ret = i;
9577 s_non_relative = p;
9578
9579 sq = (struct elf_link_sort_rela *) s_non_relative;
9580 for (; i < count; i++, p += sort_elt)
9581 {
9582 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9583 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9584 sq = sp;
9585 sp->u.offset = sq->rela->r_offset;
9586 }
9587
9588 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9589
9590 struct elf_link_hash_table *htab = elf_hash_table (info);
9591 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9592 {
9593 /* We have plt relocs in .rela.dyn. */
9594 sq = (struct elf_link_sort_rela *) sort;
9595 for (i = 0; i < count; i++)
9596 if (sq[count - i - 1].type != reloc_class_plt)
9597 break;
9598 if (i != 0 && htab->srelplt->size == i * ext_size)
9599 {
9600 struct bfd_link_order **plo;
9601 /* Put srelplt link_order last. This is so the output_offset
9602 set in the next loop is correct for DT_JMPREL. */
9603 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9604 if ((*plo)->type == bfd_indirect_link_order
9605 && (*plo)->u.indirect.section == htab->srelplt)
9606 {
9607 lo = *plo;
9608 *plo = lo->next;
9609 }
9610 else
9611 plo = &(*plo)->next;
9612 *plo = lo;
9613 lo->next = NULL;
9614 dynamic_relocs->map_tail.link_order = lo;
9615 }
9616 }
9617
9618 p = sort;
9619 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9620 if (lo->type == bfd_indirect_link_order)
9621 {
9622 bfd_byte *erel, *erelend;
9623 asection *o = lo->u.indirect.section;
9624
9625 erel = o->contents;
9626 erelend = o->contents + o->size;
9627 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9628 while (erel < erelend)
9629 {
9630 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9631 (*swap_out) (abfd, s->rela, erel);
9632 p += sort_elt;
9633 erel += ext_size;
9634 }
9635 }
9636
9637 free (sort);
9638 *psec = dynamic_relocs;
9639 return ret;
9640 }
9641
9642 /* Add a symbol to the output symbol string table. */
9643
9644 static int
9645 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9646 const char *name,
9647 Elf_Internal_Sym *elfsym,
9648 asection *input_sec,
9649 struct elf_link_hash_entry *h)
9650 {
9651 int (*output_symbol_hook)
9652 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9653 struct elf_link_hash_entry *);
9654 struct elf_link_hash_table *hash_table;
9655 const struct elf_backend_data *bed;
9656 bfd_size_type strtabsize;
9657
9658 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9659
9660 bed = get_elf_backend_data (flinfo->output_bfd);
9661 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9662 if (output_symbol_hook != NULL)
9663 {
9664 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9665 if (ret != 1)
9666 return ret;
9667 }
9668
9669 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9670 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9671 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9672 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9673
9674 if (name == NULL
9675 || *name == '\0'
9676 || (input_sec->flags & SEC_EXCLUDE))
9677 elfsym->st_name = (unsigned long) -1;
9678 else
9679 {
9680 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9681 to get the final offset for st_name. */
9682 char *versioned_name = (char *) name;
9683 if (h != NULL && h->versioned == versioned && h->def_dynamic)
9684 {
9685 /* Keep only one '@' for versioned symbols defined in shared
9686 objects. */
9687 char *version = strrchr (name, ELF_VER_CHR);
9688 char *base_end = strchr (name, ELF_VER_CHR);
9689 if (version != base_end)
9690 {
9691 size_t base_len;
9692 size_t len = strlen (name);
9693 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9694 if (versioned_name == NULL)
9695 return 0;
9696 base_len = base_end - name;
9697 memcpy (versioned_name, name, base_len);
9698 memcpy (versioned_name + base_len, version,
9699 len - base_len);
9700 }
9701 }
9702 elfsym->st_name
9703 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9704 versioned_name, FALSE);
9705 if (elfsym->st_name == (unsigned long) -1)
9706 return 0;
9707 }
9708
9709 hash_table = elf_hash_table (flinfo->info);
9710 strtabsize = hash_table->strtabsize;
9711 if (strtabsize <= hash_table->strtabcount)
9712 {
9713 strtabsize += strtabsize;
9714 hash_table->strtabsize = strtabsize;
9715 strtabsize *= sizeof (*hash_table->strtab);
9716 hash_table->strtab
9717 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9718 strtabsize);
9719 if (hash_table->strtab == NULL)
9720 return 0;
9721 }
9722 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9723 hash_table->strtab[hash_table->strtabcount].dest_index
9724 = hash_table->strtabcount;
9725 hash_table->strtab[hash_table->strtabcount].destshndx_index
9726 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9727
9728 flinfo->output_bfd->symcount += 1;
9729 hash_table->strtabcount += 1;
9730
9731 return 1;
9732 }
9733
9734 /* Swap symbols out to the symbol table and flush the output symbols to
9735 the file. */
9736
9737 static bfd_boolean
9738 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9739 {
9740 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9741 size_t amt;
9742 size_t i;
9743 const struct elf_backend_data *bed;
9744 bfd_byte *symbuf;
9745 Elf_Internal_Shdr *hdr;
9746 file_ptr pos;
9747 bfd_boolean ret;
9748
9749 if (!hash_table->strtabcount)
9750 return TRUE;
9751
9752 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9753
9754 bed = get_elf_backend_data (flinfo->output_bfd);
9755
9756 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9757 symbuf = (bfd_byte *) bfd_malloc (amt);
9758 if (symbuf == NULL)
9759 return FALSE;
9760
9761 if (flinfo->symshndxbuf)
9762 {
9763 amt = sizeof (Elf_External_Sym_Shndx);
9764 amt *= bfd_get_symcount (flinfo->output_bfd);
9765 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9766 if (flinfo->symshndxbuf == NULL)
9767 {
9768 free (symbuf);
9769 return FALSE;
9770 }
9771 }
9772
9773 for (i = 0; i < hash_table->strtabcount; i++)
9774 {
9775 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9776 if (elfsym->sym.st_name == (unsigned long) -1)
9777 elfsym->sym.st_name = 0;
9778 else
9779 elfsym->sym.st_name
9780 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9781 elfsym->sym.st_name);
9782 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9783 ((bfd_byte *) symbuf
9784 + (elfsym->dest_index
9785 * bed->s->sizeof_sym)),
9786 (flinfo->symshndxbuf
9787 + elfsym->destshndx_index));
9788 }
9789
9790 /* Allow the linker to examine the strtab and symtab now they are
9791 populated. */
9792
9793 if (flinfo->info->callbacks->examine_strtab)
9794 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9795 hash_table->strtabcount,
9796 flinfo->symstrtab);
9797
9798 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9799 pos = hdr->sh_offset + hdr->sh_size;
9800 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9801 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9802 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9803 {
9804 hdr->sh_size += amt;
9805 ret = TRUE;
9806 }
9807 else
9808 ret = FALSE;
9809
9810 free (symbuf);
9811
9812 free (hash_table->strtab);
9813 hash_table->strtab = NULL;
9814
9815 return ret;
9816 }
9817
9818 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9819
9820 static bfd_boolean
9821 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9822 {
9823 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9824 && sym->st_shndx < SHN_LORESERVE)
9825 {
9826 /* The gABI doesn't support dynamic symbols in output sections
9827 beyond 64k. */
9828 _bfd_error_handler
9829 /* xgettext:c-format */
9830 (_("%pB: too many sections: %d (>= %d)"),
9831 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9832 bfd_set_error (bfd_error_nonrepresentable_section);
9833 return FALSE;
9834 }
9835 return TRUE;
9836 }
9837
9838 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9839 allowing an unsatisfied unversioned symbol in the DSO to match a
9840 versioned symbol that would normally require an explicit version.
9841 We also handle the case that a DSO references a hidden symbol
9842 which may be satisfied by a versioned symbol in another DSO. */
9843
9844 static bfd_boolean
9845 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9846 const struct elf_backend_data *bed,
9847 struct elf_link_hash_entry *h)
9848 {
9849 bfd *abfd;
9850 struct elf_link_loaded_list *loaded;
9851
9852 if (!is_elf_hash_table (info->hash))
9853 return FALSE;
9854
9855 /* Check indirect symbol. */
9856 while (h->root.type == bfd_link_hash_indirect)
9857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9858
9859 switch (h->root.type)
9860 {
9861 default:
9862 abfd = NULL;
9863 break;
9864
9865 case bfd_link_hash_undefined:
9866 case bfd_link_hash_undefweak:
9867 abfd = h->root.u.undef.abfd;
9868 if (abfd == NULL
9869 || (abfd->flags & DYNAMIC) == 0
9870 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9871 return FALSE;
9872 break;
9873
9874 case bfd_link_hash_defined:
9875 case bfd_link_hash_defweak:
9876 abfd = h->root.u.def.section->owner;
9877 break;
9878
9879 case bfd_link_hash_common:
9880 abfd = h->root.u.c.p->section->owner;
9881 break;
9882 }
9883 BFD_ASSERT (abfd != NULL);
9884
9885 for (loaded = elf_hash_table (info)->dyn_loaded;
9886 loaded != NULL;
9887 loaded = loaded->next)
9888 {
9889 bfd *input;
9890 Elf_Internal_Shdr *hdr;
9891 size_t symcount;
9892 size_t extsymcount;
9893 size_t extsymoff;
9894 Elf_Internal_Shdr *versymhdr;
9895 Elf_Internal_Sym *isym;
9896 Elf_Internal_Sym *isymend;
9897 Elf_Internal_Sym *isymbuf;
9898 Elf_External_Versym *ever;
9899 Elf_External_Versym *extversym;
9900
9901 input = loaded->abfd;
9902
9903 /* We check each DSO for a possible hidden versioned definition. */
9904 if (input == abfd
9905 || elf_dynversym (input) == 0)
9906 continue;
9907
9908 hdr = &elf_tdata (input)->dynsymtab_hdr;
9909
9910 symcount = hdr->sh_size / bed->s->sizeof_sym;
9911 if (elf_bad_symtab (input))
9912 {
9913 extsymcount = symcount;
9914 extsymoff = 0;
9915 }
9916 else
9917 {
9918 extsymcount = symcount - hdr->sh_info;
9919 extsymoff = hdr->sh_info;
9920 }
9921
9922 if (extsymcount == 0)
9923 continue;
9924
9925 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9926 NULL, NULL, NULL);
9927 if (isymbuf == NULL)
9928 return FALSE;
9929
9930 /* Read in any version definitions. */
9931 versymhdr = &elf_tdata (input)->dynversym_hdr;
9932 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9933 || (extversym = (Elf_External_Versym *)
9934 _bfd_malloc_and_read (input, versymhdr->sh_size,
9935 versymhdr->sh_size)) == NULL)
9936 {
9937 free (isymbuf);
9938 return FALSE;
9939 }
9940
9941 ever = extversym + extsymoff;
9942 isymend = isymbuf + extsymcount;
9943 for (isym = isymbuf; isym < isymend; isym++, ever++)
9944 {
9945 const char *name;
9946 Elf_Internal_Versym iver;
9947 unsigned short version_index;
9948
9949 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9950 || isym->st_shndx == SHN_UNDEF)
9951 continue;
9952
9953 name = bfd_elf_string_from_elf_section (input,
9954 hdr->sh_link,
9955 isym->st_name);
9956 if (strcmp (name, h->root.root.string) != 0)
9957 continue;
9958
9959 _bfd_elf_swap_versym_in (input, ever, &iver);
9960
9961 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9962 && !(h->def_regular
9963 && h->forced_local))
9964 {
9965 /* If we have a non-hidden versioned sym, then it should
9966 have provided a definition for the undefined sym unless
9967 it is defined in a non-shared object and forced local.
9968 */
9969 abort ();
9970 }
9971
9972 version_index = iver.vs_vers & VERSYM_VERSION;
9973 if (version_index == 1 || version_index == 2)
9974 {
9975 /* This is the base or first version. We can use it. */
9976 free (extversym);
9977 free (isymbuf);
9978 return TRUE;
9979 }
9980 }
9981
9982 free (extversym);
9983 free (isymbuf);
9984 }
9985
9986 return FALSE;
9987 }
9988
9989 /* Convert ELF common symbol TYPE. */
9990
9991 static int
9992 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9993 {
9994 /* Commom symbol can only appear in relocatable link. */
9995 if (!bfd_link_relocatable (info))
9996 abort ();
9997 switch (info->elf_stt_common)
9998 {
9999 case unchanged:
10000 break;
10001 case elf_stt_common:
10002 type = STT_COMMON;
10003 break;
10004 case no_elf_stt_common:
10005 type = STT_OBJECT;
10006 break;
10007 }
10008 return type;
10009 }
10010
10011 /* Add an external symbol to the symbol table. This is called from
10012 the hash table traversal routine. When generating a shared object,
10013 we go through the symbol table twice. The first time we output
10014 anything that might have been forced to local scope in a version
10015 script. The second time we output the symbols that are still
10016 global symbols. */
10017
10018 static bfd_boolean
10019 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10020 {
10021 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10022 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10023 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10024 bfd_boolean strip;
10025 Elf_Internal_Sym sym;
10026 asection *input_sec;
10027 const struct elf_backend_data *bed;
10028 long indx;
10029 int ret;
10030 unsigned int type;
10031
10032 if (h->root.type == bfd_link_hash_warning)
10033 {
10034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10035 if (h->root.type == bfd_link_hash_new)
10036 return TRUE;
10037 }
10038
10039 /* Decide whether to output this symbol in this pass. */
10040 if (eoinfo->localsyms)
10041 {
10042 if (!h->forced_local)
10043 return TRUE;
10044 }
10045 else
10046 {
10047 if (h->forced_local)
10048 return TRUE;
10049 }
10050
10051 bed = get_elf_backend_data (flinfo->output_bfd);
10052
10053 if (h->root.type == bfd_link_hash_undefined)
10054 {
10055 /* If we have an undefined symbol reference here then it must have
10056 come from a shared library that is being linked in. (Undefined
10057 references in regular files have already been handled unless
10058 they are in unreferenced sections which are removed by garbage
10059 collection). */
10060 bfd_boolean ignore_undef = FALSE;
10061
10062 /* Some symbols may be special in that the fact that they're
10063 undefined can be safely ignored - let backend determine that. */
10064 if (bed->elf_backend_ignore_undef_symbol)
10065 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10066
10067 /* If we are reporting errors for this situation then do so now. */
10068 if (!ignore_undef
10069 && h->ref_dynamic_nonweak
10070 && (!h->ref_regular || flinfo->info->gc_sections)
10071 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10072 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10073 {
10074 flinfo->info->callbacks->undefined_symbol
10075 (flinfo->info, h->root.root.string,
10076 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10077 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10078 && !flinfo->info->warn_unresolved_syms);
10079 }
10080
10081 /* Strip a global symbol defined in a discarded section. */
10082 if (h->indx == -3)
10083 return TRUE;
10084 }
10085
10086 /* We should also warn if a forced local symbol is referenced from
10087 shared libraries. */
10088 if (bfd_link_executable (flinfo->info)
10089 && h->forced_local
10090 && h->ref_dynamic
10091 && h->def_regular
10092 && !h->dynamic_def
10093 && h->ref_dynamic_nonweak
10094 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10095 {
10096 bfd *def_bfd;
10097 const char *msg;
10098 struct elf_link_hash_entry *hi = h;
10099
10100 /* Check indirect symbol. */
10101 while (hi->root.type == bfd_link_hash_indirect)
10102 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10103
10104 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10105 /* xgettext:c-format */
10106 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10107 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10108 /* xgettext:c-format */
10109 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10110 else
10111 /* xgettext:c-format */
10112 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10113 def_bfd = flinfo->output_bfd;
10114 if (hi->root.u.def.section != bfd_abs_section_ptr)
10115 def_bfd = hi->root.u.def.section->owner;
10116 _bfd_error_handler (msg, flinfo->output_bfd,
10117 h->root.root.string, def_bfd);
10118 bfd_set_error (bfd_error_bad_value);
10119 eoinfo->failed = TRUE;
10120 return FALSE;
10121 }
10122
10123 /* We don't want to output symbols that have never been mentioned by
10124 a regular file, or that we have been told to strip. However, if
10125 h->indx is set to -2, the symbol is used by a reloc and we must
10126 output it. */
10127 strip = FALSE;
10128 if (h->indx == -2)
10129 ;
10130 else if ((h->def_dynamic
10131 || h->ref_dynamic
10132 || h->root.type == bfd_link_hash_new)
10133 && !h->def_regular
10134 && !h->ref_regular)
10135 strip = TRUE;
10136 else if (flinfo->info->strip == strip_all)
10137 strip = TRUE;
10138 else if (flinfo->info->strip == strip_some
10139 && bfd_hash_lookup (flinfo->info->keep_hash,
10140 h->root.root.string, FALSE, FALSE) == NULL)
10141 strip = TRUE;
10142 else if ((h->root.type == bfd_link_hash_defined
10143 || h->root.type == bfd_link_hash_defweak)
10144 && ((flinfo->info->strip_discarded
10145 && discarded_section (h->root.u.def.section))
10146 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10147 && h->root.u.def.section->owner != NULL
10148 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10149 strip = TRUE;
10150 else if ((h->root.type == bfd_link_hash_undefined
10151 || h->root.type == bfd_link_hash_undefweak)
10152 && h->root.u.undef.abfd != NULL
10153 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10154 strip = TRUE;
10155
10156 type = h->type;
10157
10158 /* If we're stripping it, and it's not a dynamic symbol, there's
10159 nothing else to do. However, if it is a forced local symbol or
10160 an ifunc symbol we need to give the backend finish_dynamic_symbol
10161 function a chance to make it dynamic. */
10162 if (strip
10163 && h->dynindx == -1
10164 && type != STT_GNU_IFUNC
10165 && !h->forced_local)
10166 return TRUE;
10167
10168 sym.st_value = 0;
10169 sym.st_size = h->size;
10170 sym.st_other = h->other;
10171 switch (h->root.type)
10172 {
10173 default:
10174 case bfd_link_hash_new:
10175 case bfd_link_hash_warning:
10176 abort ();
10177 return FALSE;
10178
10179 case bfd_link_hash_undefined:
10180 case bfd_link_hash_undefweak:
10181 input_sec = bfd_und_section_ptr;
10182 sym.st_shndx = SHN_UNDEF;
10183 break;
10184
10185 case bfd_link_hash_defined:
10186 case bfd_link_hash_defweak:
10187 {
10188 input_sec = h->root.u.def.section;
10189 if (input_sec->output_section != NULL)
10190 {
10191 sym.st_shndx =
10192 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10193 input_sec->output_section);
10194 if (sym.st_shndx == SHN_BAD)
10195 {
10196 _bfd_error_handler
10197 /* xgettext:c-format */
10198 (_("%pB: could not find output section %pA for input section %pA"),
10199 flinfo->output_bfd, input_sec->output_section, input_sec);
10200 bfd_set_error (bfd_error_nonrepresentable_section);
10201 eoinfo->failed = TRUE;
10202 return FALSE;
10203 }
10204
10205 /* ELF symbols in relocatable files are section relative,
10206 but in nonrelocatable files they are virtual
10207 addresses. */
10208 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10209 if (!bfd_link_relocatable (flinfo->info))
10210 {
10211 sym.st_value += input_sec->output_section->vma;
10212 if (h->type == STT_TLS)
10213 {
10214 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10215 if (tls_sec != NULL)
10216 sym.st_value -= tls_sec->vma;
10217 }
10218 }
10219 }
10220 else
10221 {
10222 BFD_ASSERT (input_sec->owner == NULL
10223 || (input_sec->owner->flags & DYNAMIC) != 0);
10224 sym.st_shndx = SHN_UNDEF;
10225 input_sec = bfd_und_section_ptr;
10226 }
10227 }
10228 break;
10229
10230 case bfd_link_hash_common:
10231 input_sec = h->root.u.c.p->section;
10232 sym.st_shndx = bed->common_section_index (input_sec);
10233 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10234 break;
10235
10236 case bfd_link_hash_indirect:
10237 /* These symbols are created by symbol versioning. They point
10238 to the decorated version of the name. For example, if the
10239 symbol foo@@GNU_1.2 is the default, which should be used when
10240 foo is used with no version, then we add an indirect symbol
10241 foo which points to foo@@GNU_1.2. We ignore these symbols,
10242 since the indirected symbol is already in the hash table. */
10243 return TRUE;
10244 }
10245
10246 if (type == STT_COMMON || type == STT_OBJECT)
10247 switch (h->root.type)
10248 {
10249 case bfd_link_hash_common:
10250 type = elf_link_convert_common_type (flinfo->info, type);
10251 break;
10252 case bfd_link_hash_defined:
10253 case bfd_link_hash_defweak:
10254 if (bed->common_definition (&sym))
10255 type = elf_link_convert_common_type (flinfo->info, type);
10256 else
10257 type = STT_OBJECT;
10258 break;
10259 case bfd_link_hash_undefined:
10260 case bfd_link_hash_undefweak:
10261 break;
10262 default:
10263 abort ();
10264 }
10265
10266 if (h->forced_local)
10267 {
10268 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10269 /* Turn off visibility on local symbol. */
10270 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10271 }
10272 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10273 else if (h->unique_global && h->def_regular)
10274 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10275 else if (h->root.type == bfd_link_hash_undefweak
10276 || h->root.type == bfd_link_hash_defweak)
10277 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10278 else
10279 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10280 sym.st_target_internal = h->target_internal;
10281
10282 /* Give the processor backend a chance to tweak the symbol value,
10283 and also to finish up anything that needs to be done for this
10284 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10285 forced local syms when non-shared is due to a historical quirk.
10286 STT_GNU_IFUNC symbol must go through PLT. */
10287 if ((h->type == STT_GNU_IFUNC
10288 && h->def_regular
10289 && !bfd_link_relocatable (flinfo->info))
10290 || ((h->dynindx != -1
10291 || h->forced_local)
10292 && ((bfd_link_pic (flinfo->info)
10293 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10294 || h->root.type != bfd_link_hash_undefweak))
10295 || !h->forced_local)
10296 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10297 {
10298 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10299 (flinfo->output_bfd, flinfo->info, h, &sym)))
10300 {
10301 eoinfo->failed = TRUE;
10302 return FALSE;
10303 }
10304 }
10305
10306 /* If we are marking the symbol as undefined, and there are no
10307 non-weak references to this symbol from a regular object, then
10308 mark the symbol as weak undefined; if there are non-weak
10309 references, mark the symbol as strong. We can't do this earlier,
10310 because it might not be marked as undefined until the
10311 finish_dynamic_symbol routine gets through with it. */
10312 if (sym.st_shndx == SHN_UNDEF
10313 && h->ref_regular
10314 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10315 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10316 {
10317 int bindtype;
10318 type = ELF_ST_TYPE (sym.st_info);
10319
10320 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10321 if (type == STT_GNU_IFUNC)
10322 type = STT_FUNC;
10323
10324 if (h->ref_regular_nonweak)
10325 bindtype = STB_GLOBAL;
10326 else
10327 bindtype = STB_WEAK;
10328 sym.st_info = ELF_ST_INFO (bindtype, type);
10329 }
10330
10331 /* If this is a symbol defined in a dynamic library, don't use the
10332 symbol size from the dynamic library. Relinking an executable
10333 against a new library may introduce gratuitous changes in the
10334 executable's symbols if we keep the size. */
10335 if (sym.st_shndx == SHN_UNDEF
10336 && !h->def_regular
10337 && h->def_dynamic)
10338 sym.st_size = 0;
10339
10340 /* If a non-weak symbol with non-default visibility is not defined
10341 locally, it is a fatal error. */
10342 if (!bfd_link_relocatable (flinfo->info)
10343 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10344 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10345 && h->root.type == bfd_link_hash_undefined
10346 && !h->def_regular)
10347 {
10348 const char *msg;
10349
10350 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10351 /* xgettext:c-format */
10352 msg = _("%pB: protected symbol `%s' isn't defined");
10353 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10354 /* xgettext:c-format */
10355 msg = _("%pB: internal symbol `%s' isn't defined");
10356 else
10357 /* xgettext:c-format */
10358 msg = _("%pB: hidden symbol `%s' isn't defined");
10359 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10360 bfd_set_error (bfd_error_bad_value);
10361 eoinfo->failed = TRUE;
10362 return FALSE;
10363 }
10364
10365 /* If this symbol should be put in the .dynsym section, then put it
10366 there now. We already know the symbol index. We also fill in
10367 the entry in the .hash section. */
10368 if (h->dynindx != -1
10369 && elf_hash_table (flinfo->info)->dynamic_sections_created
10370 && elf_hash_table (flinfo->info)->dynsym != NULL
10371 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10372 {
10373 bfd_byte *esym;
10374
10375 /* Since there is no version information in the dynamic string,
10376 if there is no version info in symbol version section, we will
10377 have a run-time problem if not linking executable, referenced
10378 by shared library, or not bound locally. */
10379 if (h->verinfo.verdef == NULL
10380 && (!bfd_link_executable (flinfo->info)
10381 || h->ref_dynamic
10382 || !h->def_regular))
10383 {
10384 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10385
10386 if (p && p [1] != '\0')
10387 {
10388 _bfd_error_handler
10389 /* xgettext:c-format */
10390 (_("%pB: no symbol version section for versioned symbol `%s'"),
10391 flinfo->output_bfd, h->root.root.string);
10392 eoinfo->failed = TRUE;
10393 return FALSE;
10394 }
10395 }
10396
10397 sym.st_name = h->dynstr_index;
10398 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10399 + h->dynindx * bed->s->sizeof_sym);
10400 if (!check_dynsym (flinfo->output_bfd, &sym))
10401 {
10402 eoinfo->failed = TRUE;
10403 return FALSE;
10404 }
10405 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10406
10407 if (flinfo->hash_sec != NULL)
10408 {
10409 size_t hash_entry_size;
10410 bfd_byte *bucketpos;
10411 bfd_vma chain;
10412 size_t bucketcount;
10413 size_t bucket;
10414
10415 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10416 bucket = h->u.elf_hash_value % bucketcount;
10417
10418 hash_entry_size
10419 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10420 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10421 + (bucket + 2) * hash_entry_size);
10422 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10423 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10424 bucketpos);
10425 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10426 ((bfd_byte *) flinfo->hash_sec->contents
10427 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10428 }
10429
10430 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10431 {
10432 Elf_Internal_Versym iversym;
10433 Elf_External_Versym *eversym;
10434
10435 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10436 {
10437 if (h->verinfo.verdef == NULL
10438 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10439 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10440 iversym.vs_vers = 0;
10441 else
10442 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10443 }
10444 else
10445 {
10446 if (h->verinfo.vertree == NULL)
10447 iversym.vs_vers = 1;
10448 else
10449 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10450 if (flinfo->info->create_default_symver)
10451 iversym.vs_vers++;
10452 }
10453
10454 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10455 defined locally. */
10456 if (h->versioned == versioned_hidden && h->def_regular)
10457 iversym.vs_vers |= VERSYM_HIDDEN;
10458
10459 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10460 eversym += h->dynindx;
10461 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10462 }
10463 }
10464
10465 /* If the symbol is undefined, and we didn't output it to .dynsym,
10466 strip it from .symtab too. Obviously we can't do this for
10467 relocatable output or when needed for --emit-relocs. */
10468 else if (input_sec == bfd_und_section_ptr
10469 && h->indx != -2
10470 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10471 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10472 && !bfd_link_relocatable (flinfo->info))
10473 return TRUE;
10474
10475 /* Also strip others that we couldn't earlier due to dynamic symbol
10476 processing. */
10477 if (strip)
10478 return TRUE;
10479 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10480 return TRUE;
10481
10482 /* Output a FILE symbol so that following locals are not associated
10483 with the wrong input file. We need one for forced local symbols
10484 if we've seen more than one FILE symbol or when we have exactly
10485 one FILE symbol but global symbols are present in a file other
10486 than the one with the FILE symbol. We also need one if linker
10487 defined symbols are present. In practice these conditions are
10488 always met, so just emit the FILE symbol unconditionally. */
10489 if (eoinfo->localsyms
10490 && !eoinfo->file_sym_done
10491 && eoinfo->flinfo->filesym_count != 0)
10492 {
10493 Elf_Internal_Sym fsym;
10494
10495 memset (&fsym, 0, sizeof (fsym));
10496 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10497 fsym.st_shndx = SHN_ABS;
10498 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10499 bfd_und_section_ptr, NULL))
10500 return FALSE;
10501
10502 eoinfo->file_sym_done = TRUE;
10503 }
10504
10505 indx = bfd_get_symcount (flinfo->output_bfd);
10506 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10507 input_sec, h);
10508 if (ret == 0)
10509 {
10510 eoinfo->failed = TRUE;
10511 return FALSE;
10512 }
10513 else if (ret == 1)
10514 h->indx = indx;
10515 else if (h->indx == -2)
10516 abort();
10517
10518 return TRUE;
10519 }
10520
10521 /* Return TRUE if special handling is done for relocs in SEC against
10522 symbols defined in discarded sections. */
10523
10524 static bfd_boolean
10525 elf_section_ignore_discarded_relocs (asection *sec)
10526 {
10527 const struct elf_backend_data *bed;
10528
10529 switch (sec->sec_info_type)
10530 {
10531 case SEC_INFO_TYPE_STABS:
10532 case SEC_INFO_TYPE_EH_FRAME:
10533 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10534 return TRUE;
10535 default:
10536 break;
10537 }
10538
10539 bed = get_elf_backend_data (sec->owner);
10540 if (bed->elf_backend_ignore_discarded_relocs != NULL
10541 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10542 return TRUE;
10543
10544 return FALSE;
10545 }
10546
10547 /* Return a mask saying how ld should treat relocations in SEC against
10548 symbols defined in discarded sections. If this function returns
10549 COMPLAIN set, ld will issue a warning message. If this function
10550 returns PRETEND set, and the discarded section was link-once and the
10551 same size as the kept link-once section, ld will pretend that the
10552 symbol was actually defined in the kept section. Otherwise ld will
10553 zero the reloc (at least that is the intent, but some cooperation by
10554 the target dependent code is needed, particularly for REL targets). */
10555
10556 unsigned int
10557 _bfd_elf_default_action_discarded (asection *sec)
10558 {
10559 if (sec->flags & SEC_DEBUGGING)
10560 return PRETEND;
10561
10562 if (strcmp (".eh_frame", sec->name) == 0)
10563 return 0;
10564
10565 if (strcmp (".gcc_except_table", sec->name) == 0)
10566 return 0;
10567
10568 return COMPLAIN | PRETEND;
10569 }
10570
10571 /* Find a match between a section and a member of a section group. */
10572
10573 static asection *
10574 match_group_member (asection *sec, asection *group,
10575 struct bfd_link_info *info)
10576 {
10577 asection *first = elf_next_in_group (group);
10578 asection *s = first;
10579
10580 while (s != NULL)
10581 {
10582 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10583 return s;
10584
10585 s = elf_next_in_group (s);
10586 if (s == first)
10587 break;
10588 }
10589
10590 return NULL;
10591 }
10592
10593 /* Check if the kept section of a discarded section SEC can be used
10594 to replace it. Return the replacement if it is OK. Otherwise return
10595 NULL. */
10596
10597 asection *
10598 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10599 {
10600 asection *kept;
10601
10602 kept = sec->kept_section;
10603 if (kept != NULL)
10604 {
10605 if ((kept->flags & SEC_GROUP) != 0)
10606 kept = match_group_member (sec, kept, info);
10607 if (kept != NULL
10608 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10609 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10610 kept = NULL;
10611 sec->kept_section = kept;
10612 }
10613 return kept;
10614 }
10615
10616 /* Link an input file into the linker output file. This function
10617 handles all the sections and relocations of the input file at once.
10618 This is so that we only have to read the local symbols once, and
10619 don't have to keep them in memory. */
10620
10621 static bfd_boolean
10622 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10623 {
10624 int (*relocate_section)
10625 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10626 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10627 bfd *output_bfd;
10628 Elf_Internal_Shdr *symtab_hdr;
10629 size_t locsymcount;
10630 size_t extsymoff;
10631 Elf_Internal_Sym *isymbuf;
10632 Elf_Internal_Sym *isym;
10633 Elf_Internal_Sym *isymend;
10634 long *pindex;
10635 asection **ppsection;
10636 asection *o;
10637 const struct elf_backend_data *bed;
10638 struct elf_link_hash_entry **sym_hashes;
10639 bfd_size_type address_size;
10640 bfd_vma r_type_mask;
10641 int r_sym_shift;
10642 bfd_boolean have_file_sym = FALSE;
10643
10644 output_bfd = flinfo->output_bfd;
10645 bed = get_elf_backend_data (output_bfd);
10646 relocate_section = bed->elf_backend_relocate_section;
10647
10648 /* If this is a dynamic object, we don't want to do anything here:
10649 we don't want the local symbols, and we don't want the section
10650 contents. */
10651 if ((input_bfd->flags & DYNAMIC) != 0)
10652 return TRUE;
10653
10654 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10655 if (elf_bad_symtab (input_bfd))
10656 {
10657 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10658 extsymoff = 0;
10659 }
10660 else
10661 {
10662 locsymcount = symtab_hdr->sh_info;
10663 extsymoff = symtab_hdr->sh_info;
10664 }
10665
10666 /* Read the local symbols. */
10667 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10668 if (isymbuf == NULL && locsymcount != 0)
10669 {
10670 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10671 flinfo->internal_syms,
10672 flinfo->external_syms,
10673 flinfo->locsym_shndx);
10674 if (isymbuf == NULL)
10675 return FALSE;
10676 }
10677
10678 /* Find local symbol sections and adjust values of symbols in
10679 SEC_MERGE sections. Write out those local symbols we know are
10680 going into the output file. */
10681 isymend = isymbuf + locsymcount;
10682 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10683 isym < isymend;
10684 isym++, pindex++, ppsection++)
10685 {
10686 asection *isec;
10687 const char *name;
10688 Elf_Internal_Sym osym;
10689 long indx;
10690 int ret;
10691
10692 *pindex = -1;
10693
10694 if (elf_bad_symtab (input_bfd))
10695 {
10696 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10697 {
10698 *ppsection = NULL;
10699 continue;
10700 }
10701 }
10702
10703 if (isym->st_shndx == SHN_UNDEF)
10704 isec = bfd_und_section_ptr;
10705 else if (isym->st_shndx == SHN_ABS)
10706 isec = bfd_abs_section_ptr;
10707 else if (isym->st_shndx == SHN_COMMON)
10708 isec = bfd_com_section_ptr;
10709 else
10710 {
10711 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10712 if (isec == NULL)
10713 {
10714 /* Don't attempt to output symbols with st_shnx in the
10715 reserved range other than SHN_ABS and SHN_COMMON. */
10716 isec = bfd_und_section_ptr;
10717 }
10718 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10719 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10720 isym->st_value =
10721 _bfd_merged_section_offset (output_bfd, &isec,
10722 elf_section_data (isec)->sec_info,
10723 isym->st_value);
10724 }
10725
10726 *ppsection = isec;
10727
10728 /* Don't output the first, undefined, symbol. In fact, don't
10729 output any undefined local symbol. */
10730 if (isec == bfd_und_section_ptr)
10731 continue;
10732
10733 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10734 {
10735 /* We never output section symbols. Instead, we use the
10736 section symbol of the corresponding section in the output
10737 file. */
10738 continue;
10739 }
10740
10741 /* If we are stripping all symbols, we don't want to output this
10742 one. */
10743 if (flinfo->info->strip == strip_all)
10744 continue;
10745
10746 /* If we are discarding all local symbols, we don't want to
10747 output this one. If we are generating a relocatable output
10748 file, then some of the local symbols may be required by
10749 relocs; we output them below as we discover that they are
10750 needed. */
10751 if (flinfo->info->discard == discard_all)
10752 continue;
10753
10754 /* If this symbol is defined in a section which we are
10755 discarding, we don't need to keep it. */
10756 if (isym->st_shndx != SHN_UNDEF
10757 && isym->st_shndx < SHN_LORESERVE
10758 && isec->output_section == NULL
10759 && flinfo->info->non_contiguous_regions
10760 && flinfo->info->non_contiguous_regions_warnings)
10761 {
10762 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10763 "discards section `%s' from '%s'\n"),
10764 isec->name, bfd_get_filename (isec->owner));
10765 continue;
10766 }
10767
10768 if (isym->st_shndx != SHN_UNDEF
10769 && isym->st_shndx < SHN_LORESERVE
10770 && bfd_section_removed_from_list (output_bfd,
10771 isec->output_section))
10772 continue;
10773
10774 /* Get the name of the symbol. */
10775 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10776 isym->st_name);
10777 if (name == NULL)
10778 return FALSE;
10779
10780 /* See if we are discarding symbols with this name. */
10781 if ((flinfo->info->strip == strip_some
10782 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10783 == NULL))
10784 || (((flinfo->info->discard == discard_sec_merge
10785 && (isec->flags & SEC_MERGE)
10786 && !bfd_link_relocatable (flinfo->info))
10787 || flinfo->info->discard == discard_l)
10788 && bfd_is_local_label_name (input_bfd, name)))
10789 continue;
10790
10791 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10792 {
10793 if (input_bfd->lto_output)
10794 /* -flto puts a temp file name here. This means builds
10795 are not reproducible. Discard the symbol. */
10796 continue;
10797 have_file_sym = TRUE;
10798 flinfo->filesym_count += 1;
10799 }
10800 if (!have_file_sym)
10801 {
10802 /* In the absence of debug info, bfd_find_nearest_line uses
10803 FILE symbols to determine the source file for local
10804 function symbols. Provide a FILE symbol here if input
10805 files lack such, so that their symbols won't be
10806 associated with a previous input file. It's not the
10807 source file, but the best we can do. */
10808 have_file_sym = TRUE;
10809 flinfo->filesym_count += 1;
10810 memset (&osym, 0, sizeof (osym));
10811 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10812 osym.st_shndx = SHN_ABS;
10813 if (!elf_link_output_symstrtab (flinfo,
10814 (input_bfd->lto_output ? NULL
10815 : bfd_get_filename (input_bfd)),
10816 &osym, bfd_abs_section_ptr,
10817 NULL))
10818 return FALSE;
10819 }
10820
10821 osym = *isym;
10822
10823 /* Adjust the section index for the output file. */
10824 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10825 isec->output_section);
10826 if (osym.st_shndx == SHN_BAD)
10827 return FALSE;
10828
10829 /* ELF symbols in relocatable files are section relative, but
10830 in executable files they are virtual addresses. Note that
10831 this code assumes that all ELF sections have an associated
10832 BFD section with a reasonable value for output_offset; below
10833 we assume that they also have a reasonable value for
10834 output_section. Any special sections must be set up to meet
10835 these requirements. */
10836 osym.st_value += isec->output_offset;
10837 if (!bfd_link_relocatable (flinfo->info))
10838 {
10839 osym.st_value += isec->output_section->vma;
10840 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10841 {
10842 /* STT_TLS symbols are relative to PT_TLS segment base. */
10843 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10844 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10845 else
10846 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10847 STT_NOTYPE);
10848 }
10849 }
10850
10851 indx = bfd_get_symcount (output_bfd);
10852 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10853 if (ret == 0)
10854 return FALSE;
10855 else if (ret == 1)
10856 *pindex = indx;
10857 }
10858
10859 if (bed->s->arch_size == 32)
10860 {
10861 r_type_mask = 0xff;
10862 r_sym_shift = 8;
10863 address_size = 4;
10864 }
10865 else
10866 {
10867 r_type_mask = 0xffffffff;
10868 r_sym_shift = 32;
10869 address_size = 8;
10870 }
10871
10872 /* Relocate the contents of each section. */
10873 sym_hashes = elf_sym_hashes (input_bfd);
10874 for (o = input_bfd->sections; o != NULL; o = o->next)
10875 {
10876 bfd_byte *contents;
10877
10878 if (! o->linker_mark)
10879 {
10880 /* This section was omitted from the link. */
10881 continue;
10882 }
10883
10884 if (!flinfo->info->resolve_section_groups
10885 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10886 {
10887 /* Deal with the group signature symbol. */
10888 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10889 unsigned long symndx = sec_data->this_hdr.sh_info;
10890 asection *osec = o->output_section;
10891
10892 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10893 if (symndx >= locsymcount
10894 || (elf_bad_symtab (input_bfd)
10895 && flinfo->sections[symndx] == NULL))
10896 {
10897 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10898 while (h->root.type == bfd_link_hash_indirect
10899 || h->root.type == bfd_link_hash_warning)
10900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10901 /* Arrange for symbol to be output. */
10902 h->indx = -2;
10903 elf_section_data (osec)->this_hdr.sh_info = -2;
10904 }
10905 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10906 {
10907 /* We'll use the output section target_index. */
10908 asection *sec = flinfo->sections[symndx]->output_section;
10909 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10910 }
10911 else
10912 {
10913 if (flinfo->indices[symndx] == -1)
10914 {
10915 /* Otherwise output the local symbol now. */
10916 Elf_Internal_Sym sym = isymbuf[symndx];
10917 asection *sec = flinfo->sections[symndx]->output_section;
10918 const char *name;
10919 long indx;
10920 int ret;
10921
10922 name = bfd_elf_string_from_elf_section (input_bfd,
10923 symtab_hdr->sh_link,
10924 sym.st_name);
10925 if (name == NULL)
10926 return FALSE;
10927
10928 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10929 sec);
10930 if (sym.st_shndx == SHN_BAD)
10931 return FALSE;
10932
10933 sym.st_value += o->output_offset;
10934
10935 indx = bfd_get_symcount (output_bfd);
10936 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10937 NULL);
10938 if (ret == 0)
10939 return FALSE;
10940 else if (ret == 1)
10941 flinfo->indices[symndx] = indx;
10942 else
10943 abort ();
10944 }
10945 elf_section_data (osec)->this_hdr.sh_info
10946 = flinfo->indices[symndx];
10947 }
10948 }
10949
10950 if ((o->flags & SEC_HAS_CONTENTS) == 0
10951 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10952 continue;
10953
10954 if ((o->flags & SEC_LINKER_CREATED) != 0)
10955 {
10956 /* Section was created by _bfd_elf_link_create_dynamic_sections
10957 or somesuch. */
10958 continue;
10959 }
10960
10961 /* Get the contents of the section. They have been cached by a
10962 relaxation routine. Note that o is a section in an input
10963 file, so the contents field will not have been set by any of
10964 the routines which work on output files. */
10965 if (elf_section_data (o)->this_hdr.contents != NULL)
10966 {
10967 contents = elf_section_data (o)->this_hdr.contents;
10968 if (bed->caches_rawsize
10969 && o->rawsize != 0
10970 && o->rawsize < o->size)
10971 {
10972 memcpy (flinfo->contents, contents, o->rawsize);
10973 contents = flinfo->contents;
10974 }
10975 }
10976 else
10977 {
10978 contents = flinfo->contents;
10979 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10980 return FALSE;
10981 }
10982
10983 if ((o->flags & SEC_RELOC) != 0)
10984 {
10985 Elf_Internal_Rela *internal_relocs;
10986 Elf_Internal_Rela *rel, *relend;
10987 int action_discarded;
10988 int ret;
10989
10990 /* Get the swapped relocs. */
10991 internal_relocs
10992 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10993 flinfo->internal_relocs, FALSE);
10994 if (internal_relocs == NULL
10995 && o->reloc_count > 0)
10996 return FALSE;
10997
10998 /* We need to reverse-copy input .ctors/.dtors sections if
10999 they are placed in .init_array/.finit_array for output. */
11000 if (o->size > address_size
11001 && ((strncmp (o->name, ".ctors", 6) == 0
11002 && strcmp (o->output_section->name,
11003 ".init_array") == 0)
11004 || (strncmp (o->name, ".dtors", 6) == 0
11005 && strcmp (o->output_section->name,
11006 ".fini_array") == 0))
11007 && (o->name[6] == 0 || o->name[6] == '.'))
11008 {
11009 if (o->size * bed->s->int_rels_per_ext_rel
11010 != o->reloc_count * address_size)
11011 {
11012 _bfd_error_handler
11013 /* xgettext:c-format */
11014 (_("error: %pB: size of section %pA is not "
11015 "multiple of address size"),
11016 input_bfd, o);
11017 bfd_set_error (bfd_error_bad_value);
11018 return FALSE;
11019 }
11020 o->flags |= SEC_ELF_REVERSE_COPY;
11021 }
11022
11023 action_discarded = -1;
11024 if (!elf_section_ignore_discarded_relocs (o))
11025 action_discarded = (*bed->action_discarded) (o);
11026
11027 /* Run through the relocs evaluating complex reloc symbols and
11028 looking for relocs against symbols from discarded sections
11029 or section symbols from removed link-once sections.
11030 Complain about relocs against discarded sections. Zero
11031 relocs against removed link-once sections. */
11032
11033 rel = internal_relocs;
11034 relend = rel + o->reloc_count;
11035 for ( ; rel < relend; rel++)
11036 {
11037 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11038 unsigned int s_type;
11039 asection **ps, *sec;
11040 struct elf_link_hash_entry *h = NULL;
11041 const char *sym_name;
11042
11043 if (r_symndx == STN_UNDEF)
11044 continue;
11045
11046 if (r_symndx >= locsymcount
11047 || (elf_bad_symtab (input_bfd)
11048 && flinfo->sections[r_symndx] == NULL))
11049 {
11050 h = sym_hashes[r_symndx - extsymoff];
11051
11052 /* Badly formatted input files can contain relocs that
11053 reference non-existant symbols. Check here so that
11054 we do not seg fault. */
11055 if (h == NULL)
11056 {
11057 _bfd_error_handler
11058 /* xgettext:c-format */
11059 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11060 "that references a non-existent global symbol"),
11061 input_bfd, (uint64_t) rel->r_info, o);
11062 bfd_set_error (bfd_error_bad_value);
11063 return FALSE;
11064 }
11065
11066 while (h->root.type == bfd_link_hash_indirect
11067 || h->root.type == bfd_link_hash_warning)
11068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11069
11070 s_type = h->type;
11071
11072 /* If a plugin symbol is referenced from a non-IR file,
11073 mark the symbol as undefined. Note that the
11074 linker may attach linker created dynamic sections
11075 to the plugin bfd. Symbols defined in linker
11076 created sections are not plugin symbols. */
11077 if ((h->root.non_ir_ref_regular
11078 || h->root.non_ir_ref_dynamic)
11079 && (h->root.type == bfd_link_hash_defined
11080 || h->root.type == bfd_link_hash_defweak)
11081 && (h->root.u.def.section->flags
11082 & SEC_LINKER_CREATED) == 0
11083 && h->root.u.def.section->owner != NULL
11084 && (h->root.u.def.section->owner->flags
11085 & BFD_PLUGIN) != 0)
11086 {
11087 h->root.type = bfd_link_hash_undefined;
11088 h->root.u.undef.abfd = h->root.u.def.section->owner;
11089 }
11090
11091 ps = NULL;
11092 if (h->root.type == bfd_link_hash_defined
11093 || h->root.type == bfd_link_hash_defweak)
11094 ps = &h->root.u.def.section;
11095
11096 sym_name = h->root.root.string;
11097 }
11098 else
11099 {
11100 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11101
11102 s_type = ELF_ST_TYPE (sym->st_info);
11103 ps = &flinfo->sections[r_symndx];
11104 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11105 sym, *ps);
11106 }
11107
11108 if ((s_type == STT_RELC || s_type == STT_SRELC)
11109 && !bfd_link_relocatable (flinfo->info))
11110 {
11111 bfd_vma val;
11112 bfd_vma dot = (rel->r_offset
11113 + o->output_offset + o->output_section->vma);
11114 #ifdef DEBUG
11115 printf ("Encountered a complex symbol!");
11116 printf (" (input_bfd %s, section %s, reloc %ld\n",
11117 bfd_get_filename (input_bfd), o->name,
11118 (long) (rel - internal_relocs));
11119 printf (" symbol: idx %8.8lx, name %s\n",
11120 r_symndx, sym_name);
11121 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11122 (unsigned long) rel->r_info,
11123 (unsigned long) rel->r_offset);
11124 #endif
11125 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11126 isymbuf, locsymcount, s_type == STT_SRELC))
11127 return FALSE;
11128
11129 /* Symbol evaluated OK. Update to absolute value. */
11130 set_symbol_value (input_bfd, isymbuf, locsymcount,
11131 r_symndx, val);
11132 continue;
11133 }
11134
11135 if (action_discarded != -1 && ps != NULL)
11136 {
11137 /* Complain if the definition comes from a
11138 discarded section. */
11139 if ((sec = *ps) != NULL && discarded_section (sec))
11140 {
11141 BFD_ASSERT (r_symndx != STN_UNDEF);
11142 if (action_discarded & COMPLAIN)
11143 (*flinfo->info->callbacks->einfo)
11144 /* xgettext:c-format */
11145 (_("%X`%s' referenced in section `%pA' of %pB: "
11146 "defined in discarded section `%pA' of %pB\n"),
11147 sym_name, o, input_bfd, sec, sec->owner);
11148
11149 /* Try to do the best we can to support buggy old
11150 versions of gcc. Pretend that the symbol is
11151 really defined in the kept linkonce section.
11152 FIXME: This is quite broken. Modifying the
11153 symbol here means we will be changing all later
11154 uses of the symbol, not just in this section. */
11155 if (action_discarded & PRETEND)
11156 {
11157 asection *kept;
11158
11159 kept = _bfd_elf_check_kept_section (sec,
11160 flinfo->info);
11161 if (kept != NULL)
11162 {
11163 *ps = kept;
11164 continue;
11165 }
11166 }
11167 }
11168 }
11169 }
11170
11171 /* Relocate the section by invoking a back end routine.
11172
11173 The back end routine is responsible for adjusting the
11174 section contents as necessary, and (if using Rela relocs
11175 and generating a relocatable output file) adjusting the
11176 reloc addend as necessary.
11177
11178 The back end routine does not have to worry about setting
11179 the reloc address or the reloc symbol index.
11180
11181 The back end routine is given a pointer to the swapped in
11182 internal symbols, and can access the hash table entries
11183 for the external symbols via elf_sym_hashes (input_bfd).
11184
11185 When generating relocatable output, the back end routine
11186 must handle STB_LOCAL/STT_SECTION symbols specially. The
11187 output symbol is going to be a section symbol
11188 corresponding to the output section, which will require
11189 the addend to be adjusted. */
11190
11191 ret = (*relocate_section) (output_bfd, flinfo->info,
11192 input_bfd, o, contents,
11193 internal_relocs,
11194 isymbuf,
11195 flinfo->sections);
11196 if (!ret)
11197 return FALSE;
11198
11199 if (ret == 2
11200 || bfd_link_relocatable (flinfo->info)
11201 || flinfo->info->emitrelocations)
11202 {
11203 Elf_Internal_Rela *irela;
11204 Elf_Internal_Rela *irelaend, *irelamid;
11205 bfd_vma last_offset;
11206 struct elf_link_hash_entry **rel_hash;
11207 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11208 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11209 unsigned int next_erel;
11210 bfd_boolean rela_normal;
11211 struct bfd_elf_section_data *esdi, *esdo;
11212
11213 esdi = elf_section_data (o);
11214 esdo = elf_section_data (o->output_section);
11215 rela_normal = FALSE;
11216
11217 /* Adjust the reloc addresses and symbol indices. */
11218
11219 irela = internal_relocs;
11220 irelaend = irela + o->reloc_count;
11221 rel_hash = esdo->rel.hashes + esdo->rel.count;
11222 /* We start processing the REL relocs, if any. When we reach
11223 IRELAMID in the loop, we switch to the RELA relocs. */
11224 irelamid = irela;
11225 if (esdi->rel.hdr != NULL)
11226 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11227 * bed->s->int_rels_per_ext_rel);
11228 rel_hash_list = rel_hash;
11229 rela_hash_list = NULL;
11230 last_offset = o->output_offset;
11231 if (!bfd_link_relocatable (flinfo->info))
11232 last_offset += o->output_section->vma;
11233 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11234 {
11235 unsigned long r_symndx;
11236 asection *sec;
11237 Elf_Internal_Sym sym;
11238
11239 if (next_erel == bed->s->int_rels_per_ext_rel)
11240 {
11241 rel_hash++;
11242 next_erel = 0;
11243 }
11244
11245 if (irela == irelamid)
11246 {
11247 rel_hash = esdo->rela.hashes + esdo->rela.count;
11248 rela_hash_list = rel_hash;
11249 rela_normal = bed->rela_normal;
11250 }
11251
11252 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11253 flinfo->info, o,
11254 irela->r_offset);
11255 if (irela->r_offset >= (bfd_vma) -2)
11256 {
11257 /* This is a reloc for a deleted entry or somesuch.
11258 Turn it into an R_*_NONE reloc, at the same
11259 offset as the last reloc. elf_eh_frame.c and
11260 bfd_elf_discard_info rely on reloc offsets
11261 being ordered. */
11262 irela->r_offset = last_offset;
11263 irela->r_info = 0;
11264 irela->r_addend = 0;
11265 continue;
11266 }
11267
11268 irela->r_offset += o->output_offset;
11269
11270 /* Relocs in an executable have to be virtual addresses. */
11271 if (!bfd_link_relocatable (flinfo->info))
11272 irela->r_offset += o->output_section->vma;
11273
11274 last_offset = irela->r_offset;
11275
11276 r_symndx = irela->r_info >> r_sym_shift;
11277 if (r_symndx == STN_UNDEF)
11278 continue;
11279
11280 if (r_symndx >= locsymcount
11281 || (elf_bad_symtab (input_bfd)
11282 && flinfo->sections[r_symndx] == NULL))
11283 {
11284 struct elf_link_hash_entry *rh;
11285 unsigned long indx;
11286
11287 /* This is a reloc against a global symbol. We
11288 have not yet output all the local symbols, so
11289 we do not know the symbol index of any global
11290 symbol. We set the rel_hash entry for this
11291 reloc to point to the global hash table entry
11292 for this symbol. The symbol index is then
11293 set at the end of bfd_elf_final_link. */
11294 indx = r_symndx - extsymoff;
11295 rh = elf_sym_hashes (input_bfd)[indx];
11296 while (rh->root.type == bfd_link_hash_indirect
11297 || rh->root.type == bfd_link_hash_warning)
11298 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11299
11300 /* Setting the index to -2 tells
11301 elf_link_output_extsym that this symbol is
11302 used by a reloc. */
11303 BFD_ASSERT (rh->indx < 0);
11304 rh->indx = -2;
11305 *rel_hash = rh;
11306
11307 continue;
11308 }
11309
11310 /* This is a reloc against a local symbol. */
11311
11312 *rel_hash = NULL;
11313 sym = isymbuf[r_symndx];
11314 sec = flinfo->sections[r_symndx];
11315 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11316 {
11317 /* I suppose the backend ought to fill in the
11318 section of any STT_SECTION symbol against a
11319 processor specific section. */
11320 r_symndx = STN_UNDEF;
11321 if (bfd_is_abs_section (sec))
11322 ;
11323 else if (sec == NULL || sec->owner == NULL)
11324 {
11325 bfd_set_error (bfd_error_bad_value);
11326 return FALSE;
11327 }
11328 else
11329 {
11330 asection *osec = sec->output_section;
11331
11332 /* If we have discarded a section, the output
11333 section will be the absolute section. In
11334 case of discarded SEC_MERGE sections, use
11335 the kept section. relocate_section should
11336 have already handled discarded linkonce
11337 sections. */
11338 if (bfd_is_abs_section (osec)
11339 && sec->kept_section != NULL
11340 && sec->kept_section->output_section != NULL)
11341 {
11342 osec = sec->kept_section->output_section;
11343 irela->r_addend -= osec->vma;
11344 }
11345
11346 if (!bfd_is_abs_section (osec))
11347 {
11348 r_symndx = osec->target_index;
11349 if (r_symndx == STN_UNDEF)
11350 {
11351 irela->r_addend += osec->vma;
11352 osec = _bfd_nearby_section (output_bfd, osec,
11353 osec->vma);
11354 irela->r_addend -= osec->vma;
11355 r_symndx = osec->target_index;
11356 }
11357 }
11358 }
11359
11360 /* Adjust the addend according to where the
11361 section winds up in the output section. */
11362 if (rela_normal)
11363 irela->r_addend += sec->output_offset;
11364 }
11365 else
11366 {
11367 if (flinfo->indices[r_symndx] == -1)
11368 {
11369 unsigned long shlink;
11370 const char *name;
11371 asection *osec;
11372 long indx;
11373
11374 if (flinfo->info->strip == strip_all)
11375 {
11376 /* You can't do ld -r -s. */
11377 bfd_set_error (bfd_error_invalid_operation);
11378 return FALSE;
11379 }
11380
11381 /* This symbol was skipped earlier, but
11382 since it is needed by a reloc, we
11383 must output it now. */
11384 shlink = symtab_hdr->sh_link;
11385 name = (bfd_elf_string_from_elf_section
11386 (input_bfd, shlink, sym.st_name));
11387 if (name == NULL)
11388 return FALSE;
11389
11390 osec = sec->output_section;
11391 sym.st_shndx =
11392 _bfd_elf_section_from_bfd_section (output_bfd,
11393 osec);
11394 if (sym.st_shndx == SHN_BAD)
11395 return FALSE;
11396
11397 sym.st_value += sec->output_offset;
11398 if (!bfd_link_relocatable (flinfo->info))
11399 {
11400 sym.st_value += osec->vma;
11401 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11402 {
11403 struct elf_link_hash_table *htab
11404 = elf_hash_table (flinfo->info);
11405
11406 /* STT_TLS symbols are relative to PT_TLS
11407 segment base. */
11408 if (htab->tls_sec != NULL)
11409 sym.st_value -= htab->tls_sec->vma;
11410 else
11411 sym.st_info
11412 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11413 STT_NOTYPE);
11414 }
11415 }
11416
11417 indx = bfd_get_symcount (output_bfd);
11418 ret = elf_link_output_symstrtab (flinfo, name,
11419 &sym, sec,
11420 NULL);
11421 if (ret == 0)
11422 return FALSE;
11423 else if (ret == 1)
11424 flinfo->indices[r_symndx] = indx;
11425 else
11426 abort ();
11427 }
11428
11429 r_symndx = flinfo->indices[r_symndx];
11430 }
11431
11432 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11433 | (irela->r_info & r_type_mask));
11434 }
11435
11436 /* Swap out the relocs. */
11437 input_rel_hdr = esdi->rel.hdr;
11438 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11439 {
11440 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11441 input_rel_hdr,
11442 internal_relocs,
11443 rel_hash_list))
11444 return FALSE;
11445 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11446 * bed->s->int_rels_per_ext_rel);
11447 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11448 }
11449
11450 input_rela_hdr = esdi->rela.hdr;
11451 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11452 {
11453 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11454 input_rela_hdr,
11455 internal_relocs,
11456 rela_hash_list))
11457 return FALSE;
11458 }
11459 }
11460 }
11461
11462 /* Write out the modified section contents. */
11463 if (bed->elf_backend_write_section
11464 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11465 contents))
11466 {
11467 /* Section written out. */
11468 }
11469 else switch (o->sec_info_type)
11470 {
11471 case SEC_INFO_TYPE_STABS:
11472 if (! (_bfd_write_section_stabs
11473 (output_bfd,
11474 &elf_hash_table (flinfo->info)->stab_info,
11475 o, &elf_section_data (o)->sec_info, contents)))
11476 return FALSE;
11477 break;
11478 case SEC_INFO_TYPE_MERGE:
11479 if (! _bfd_write_merged_section (output_bfd, o,
11480 elf_section_data (o)->sec_info))
11481 return FALSE;
11482 break;
11483 case SEC_INFO_TYPE_EH_FRAME:
11484 {
11485 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11486 o, contents))
11487 return FALSE;
11488 }
11489 break;
11490 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11491 {
11492 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11493 flinfo->info,
11494 o, contents))
11495 return FALSE;
11496 }
11497 break;
11498 default:
11499 {
11500 if (! (o->flags & SEC_EXCLUDE))
11501 {
11502 file_ptr offset = (file_ptr) o->output_offset;
11503 bfd_size_type todo = o->size;
11504
11505 offset *= bfd_octets_per_byte (output_bfd, o);
11506
11507 if ((o->flags & SEC_ELF_REVERSE_COPY))
11508 {
11509 /* Reverse-copy input section to output. */
11510 do
11511 {
11512 todo -= address_size;
11513 if (! bfd_set_section_contents (output_bfd,
11514 o->output_section,
11515 contents + todo,
11516 offset,
11517 address_size))
11518 return FALSE;
11519 if (todo == 0)
11520 break;
11521 offset += address_size;
11522 }
11523 while (1);
11524 }
11525 else if (! bfd_set_section_contents (output_bfd,
11526 o->output_section,
11527 contents,
11528 offset, todo))
11529 return FALSE;
11530 }
11531 }
11532 break;
11533 }
11534 }
11535
11536 return TRUE;
11537 }
11538
11539 /* Generate a reloc when linking an ELF file. This is a reloc
11540 requested by the linker, and does not come from any input file. This
11541 is used to build constructor and destructor tables when linking
11542 with -Ur. */
11543
11544 static bfd_boolean
11545 elf_reloc_link_order (bfd *output_bfd,
11546 struct bfd_link_info *info,
11547 asection *output_section,
11548 struct bfd_link_order *link_order)
11549 {
11550 reloc_howto_type *howto;
11551 long indx;
11552 bfd_vma offset;
11553 bfd_vma addend;
11554 struct bfd_elf_section_reloc_data *reldata;
11555 struct elf_link_hash_entry **rel_hash_ptr;
11556 Elf_Internal_Shdr *rel_hdr;
11557 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11558 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11559 bfd_byte *erel;
11560 unsigned int i;
11561 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11562
11563 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11564 if (howto == NULL)
11565 {
11566 bfd_set_error (bfd_error_bad_value);
11567 return FALSE;
11568 }
11569
11570 addend = link_order->u.reloc.p->addend;
11571
11572 if (esdo->rel.hdr)
11573 reldata = &esdo->rel;
11574 else if (esdo->rela.hdr)
11575 reldata = &esdo->rela;
11576 else
11577 {
11578 reldata = NULL;
11579 BFD_ASSERT (0);
11580 }
11581
11582 /* Figure out the symbol index. */
11583 rel_hash_ptr = reldata->hashes + reldata->count;
11584 if (link_order->type == bfd_section_reloc_link_order)
11585 {
11586 indx = link_order->u.reloc.p->u.section->target_index;
11587 BFD_ASSERT (indx != 0);
11588 *rel_hash_ptr = NULL;
11589 }
11590 else
11591 {
11592 struct elf_link_hash_entry *h;
11593
11594 /* Treat a reloc against a defined symbol as though it were
11595 actually against the section. */
11596 h = ((struct elf_link_hash_entry *)
11597 bfd_wrapped_link_hash_lookup (output_bfd, info,
11598 link_order->u.reloc.p->u.name,
11599 FALSE, FALSE, TRUE));
11600 if (h != NULL
11601 && (h->root.type == bfd_link_hash_defined
11602 || h->root.type == bfd_link_hash_defweak))
11603 {
11604 asection *section;
11605
11606 section = h->root.u.def.section;
11607 indx = section->output_section->target_index;
11608 *rel_hash_ptr = NULL;
11609 /* It seems that we ought to add the symbol value to the
11610 addend here, but in practice it has already been added
11611 because it was passed to constructor_callback. */
11612 addend += section->output_section->vma + section->output_offset;
11613 }
11614 else if (h != NULL)
11615 {
11616 /* Setting the index to -2 tells elf_link_output_extsym that
11617 this symbol is used by a reloc. */
11618 h->indx = -2;
11619 *rel_hash_ptr = h;
11620 indx = 0;
11621 }
11622 else
11623 {
11624 (*info->callbacks->unattached_reloc)
11625 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11626 indx = 0;
11627 }
11628 }
11629
11630 /* If this is an inplace reloc, we must write the addend into the
11631 object file. */
11632 if (howto->partial_inplace && addend != 0)
11633 {
11634 bfd_size_type size;
11635 bfd_reloc_status_type rstat;
11636 bfd_byte *buf;
11637 bfd_boolean ok;
11638 const char *sym_name;
11639 bfd_size_type octets;
11640
11641 size = (bfd_size_type) bfd_get_reloc_size (howto);
11642 buf = (bfd_byte *) bfd_zmalloc (size);
11643 if (buf == NULL && size != 0)
11644 return FALSE;
11645 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11646 switch (rstat)
11647 {
11648 case bfd_reloc_ok:
11649 break;
11650
11651 default:
11652 case bfd_reloc_outofrange:
11653 abort ();
11654
11655 case bfd_reloc_overflow:
11656 if (link_order->type == bfd_section_reloc_link_order)
11657 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11658 else
11659 sym_name = link_order->u.reloc.p->u.name;
11660 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11661 howto->name, addend, NULL, NULL,
11662 (bfd_vma) 0);
11663 break;
11664 }
11665
11666 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11667 output_section);
11668 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11669 octets, size);
11670 free (buf);
11671 if (! ok)
11672 return FALSE;
11673 }
11674
11675 /* The address of a reloc is relative to the section in a
11676 relocatable file, and is a virtual address in an executable
11677 file. */
11678 offset = link_order->offset;
11679 if (! bfd_link_relocatable (info))
11680 offset += output_section->vma;
11681
11682 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11683 {
11684 irel[i].r_offset = offset;
11685 irel[i].r_info = 0;
11686 irel[i].r_addend = 0;
11687 }
11688 if (bed->s->arch_size == 32)
11689 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11690 else
11691 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11692
11693 rel_hdr = reldata->hdr;
11694 erel = rel_hdr->contents;
11695 if (rel_hdr->sh_type == SHT_REL)
11696 {
11697 erel += reldata->count * bed->s->sizeof_rel;
11698 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11699 }
11700 else
11701 {
11702 irel[0].r_addend = addend;
11703 erel += reldata->count * bed->s->sizeof_rela;
11704 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11705 }
11706
11707 ++reldata->count;
11708
11709 return TRUE;
11710 }
11711
11712
11713 /* Compare two sections based on the locations of the sections they are
11714 linked to. Used by elf_fixup_link_order. */
11715
11716 static int
11717 compare_link_order (const void *a, const void *b)
11718 {
11719 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11720 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11721 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11722 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11723 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11724 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11725
11726 if (apos < bpos)
11727 return -1;
11728 if (apos > bpos)
11729 return 1;
11730
11731 /* The only way we should get matching LMAs is when the first of two
11732 sections has zero size. */
11733 if (asec->size < bsec->size)
11734 return -1;
11735 if (asec->size > bsec->size)
11736 return 1;
11737
11738 /* If they are both zero size then they almost certainly have the same
11739 VMA and thus are not ordered with respect to each other. Test VMA
11740 anyway, and fall back to id to make the result reproducible across
11741 qsort implementations. */
11742 apos = asec->output_section->vma + asec->output_offset;
11743 bpos = bsec->output_section->vma + bsec->output_offset;
11744 if (apos < bpos)
11745 return -1;
11746 if (apos > bpos)
11747 return 1;
11748
11749 return asec->id - bsec->id;
11750 }
11751
11752
11753 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11754 order as their linked sections. Returns false if this could not be done
11755 because an output section includes both ordered and unordered
11756 sections. Ideally we'd do this in the linker proper. */
11757
11758 static bfd_boolean
11759 elf_fixup_link_order (bfd *abfd, asection *o)
11760 {
11761 size_t seen_linkorder;
11762 size_t seen_other;
11763 size_t n;
11764 struct bfd_link_order *p;
11765 bfd *sub;
11766 struct bfd_link_order **sections;
11767 asection *other_sec, *linkorder_sec;
11768 bfd_vma offset; /* Octets. */
11769
11770 other_sec = NULL;
11771 linkorder_sec = NULL;
11772 seen_other = 0;
11773 seen_linkorder = 0;
11774 for (p = o->map_head.link_order; p != NULL; p = p->next)
11775 {
11776 if (p->type == bfd_indirect_link_order)
11777 {
11778 asection *s = p->u.indirect.section;
11779 sub = s->owner;
11780 if ((s->flags & SEC_LINKER_CREATED) == 0
11781 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11782 && elf_section_data (s) != NULL
11783 && elf_linked_to_section (s) != NULL)
11784 {
11785 seen_linkorder++;
11786 linkorder_sec = s;
11787 }
11788 else
11789 {
11790 seen_other++;
11791 other_sec = s;
11792 }
11793 }
11794 else
11795 seen_other++;
11796
11797 if (seen_other && seen_linkorder)
11798 {
11799 if (other_sec && linkorder_sec)
11800 _bfd_error_handler
11801 /* xgettext:c-format */
11802 (_("%pA has both ordered [`%pA' in %pB] "
11803 "and unordered [`%pA' in %pB] sections"),
11804 o, linkorder_sec, linkorder_sec->owner,
11805 other_sec, other_sec->owner);
11806 else
11807 _bfd_error_handler
11808 (_("%pA has both ordered and unordered sections"), o);
11809 bfd_set_error (bfd_error_bad_value);
11810 return FALSE;
11811 }
11812 }
11813
11814 if (!seen_linkorder)
11815 return TRUE;
11816
11817 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11818 if (sections == NULL)
11819 return FALSE;
11820
11821 seen_linkorder = 0;
11822 for (p = o->map_head.link_order; p != NULL; p = p->next)
11823 sections[seen_linkorder++] = p;
11824
11825 /* Sort the input sections in the order of their linked section. */
11826 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11827
11828 /* Change the offsets of the sections. */
11829 offset = 0;
11830 for (n = 0; n < seen_linkorder; n++)
11831 {
11832 bfd_vma mask;
11833 asection *s = sections[n]->u.indirect.section;
11834 unsigned int opb = bfd_octets_per_byte (abfd, s);
11835
11836 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11837 offset = (offset + ~mask) & mask;
11838 sections[n]->offset = s->output_offset = offset / opb;
11839 offset += sections[n]->size;
11840 }
11841
11842 free (sections);
11843 return TRUE;
11844 }
11845
11846 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11847 Returns TRUE upon success, FALSE otherwise. */
11848
11849 static bfd_boolean
11850 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11851 {
11852 bfd_boolean ret = FALSE;
11853 bfd *implib_bfd;
11854 const struct elf_backend_data *bed;
11855 flagword flags;
11856 enum bfd_architecture arch;
11857 unsigned int mach;
11858 asymbol **sympp = NULL;
11859 long symsize;
11860 long symcount;
11861 long src_count;
11862 elf_symbol_type *osymbuf;
11863 size_t amt;
11864
11865 implib_bfd = info->out_implib_bfd;
11866 bed = get_elf_backend_data (abfd);
11867
11868 if (!bfd_set_format (implib_bfd, bfd_object))
11869 return FALSE;
11870
11871 /* Use flag from executable but make it a relocatable object. */
11872 flags = bfd_get_file_flags (abfd);
11873 flags &= ~HAS_RELOC;
11874 if (!bfd_set_start_address (implib_bfd, 0)
11875 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11876 return FALSE;
11877
11878 /* Copy architecture of output file to import library file. */
11879 arch = bfd_get_arch (abfd);
11880 mach = bfd_get_mach (abfd);
11881 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11882 && (abfd->target_defaulted
11883 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11884 return FALSE;
11885
11886 /* Get symbol table size. */
11887 symsize = bfd_get_symtab_upper_bound (abfd);
11888 if (symsize < 0)
11889 return FALSE;
11890
11891 /* Read in the symbol table. */
11892 sympp = (asymbol **) bfd_malloc (symsize);
11893 if (sympp == NULL)
11894 return FALSE;
11895
11896 symcount = bfd_canonicalize_symtab (abfd, sympp);
11897 if (symcount < 0)
11898 goto free_sym_buf;
11899
11900 /* Allow the BFD backend to copy any private header data it
11901 understands from the output BFD to the import library BFD. */
11902 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11903 goto free_sym_buf;
11904
11905 /* Filter symbols to appear in the import library. */
11906 if (bed->elf_backend_filter_implib_symbols)
11907 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11908 symcount);
11909 else
11910 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11911 if (symcount == 0)
11912 {
11913 bfd_set_error (bfd_error_no_symbols);
11914 _bfd_error_handler (_("%pB: no symbol found for import library"),
11915 implib_bfd);
11916 goto free_sym_buf;
11917 }
11918
11919
11920 /* Make symbols absolute. */
11921 amt = symcount * sizeof (*osymbuf);
11922 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11923 if (osymbuf == NULL)
11924 goto free_sym_buf;
11925
11926 for (src_count = 0; src_count < symcount; src_count++)
11927 {
11928 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11929 sizeof (*osymbuf));
11930 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11931 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11932 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11933 osymbuf[src_count].internal_elf_sym.st_value =
11934 osymbuf[src_count].symbol.value;
11935 sympp[src_count] = &osymbuf[src_count].symbol;
11936 }
11937
11938 bfd_set_symtab (implib_bfd, sympp, symcount);
11939
11940 /* Allow the BFD backend to copy any private data it understands
11941 from the output BFD to the import library BFD. This is done last
11942 to permit the routine to look at the filtered symbol table. */
11943 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11944 goto free_sym_buf;
11945
11946 if (!bfd_close (implib_bfd))
11947 goto free_sym_buf;
11948
11949 ret = TRUE;
11950
11951 free_sym_buf:
11952 free (sympp);
11953 return ret;
11954 }
11955
11956 static void
11957 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11958 {
11959 asection *o;
11960
11961 if (flinfo->symstrtab != NULL)
11962 _bfd_elf_strtab_free (flinfo->symstrtab);
11963 free (flinfo->contents);
11964 free (flinfo->external_relocs);
11965 free (flinfo->internal_relocs);
11966 free (flinfo->external_syms);
11967 free (flinfo->locsym_shndx);
11968 free (flinfo->internal_syms);
11969 free (flinfo->indices);
11970 free (flinfo->sections);
11971 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11972 free (flinfo->symshndxbuf);
11973 for (o = obfd->sections; o != NULL; o = o->next)
11974 {
11975 struct bfd_elf_section_data *esdo = elf_section_data (o);
11976 free (esdo->rel.hashes);
11977 free (esdo->rela.hashes);
11978 }
11979 }
11980
11981 /* Do the final step of an ELF link. */
11982
11983 bfd_boolean
11984 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11985 {
11986 bfd_boolean dynamic;
11987 bfd_boolean emit_relocs;
11988 bfd *dynobj;
11989 struct elf_final_link_info flinfo;
11990 asection *o;
11991 struct bfd_link_order *p;
11992 bfd *sub;
11993 bfd_size_type max_contents_size;
11994 bfd_size_type max_external_reloc_size;
11995 bfd_size_type max_internal_reloc_count;
11996 bfd_size_type max_sym_count;
11997 bfd_size_type max_sym_shndx_count;
11998 Elf_Internal_Sym elfsym;
11999 unsigned int i;
12000 Elf_Internal_Shdr *symtab_hdr;
12001 Elf_Internal_Shdr *symtab_shndx_hdr;
12002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12003 struct elf_outext_info eoinfo;
12004 bfd_boolean merged;
12005 size_t relativecount = 0;
12006 asection *reldyn = 0;
12007 bfd_size_type amt;
12008 asection *attr_section = NULL;
12009 bfd_vma attr_size = 0;
12010 const char *std_attrs_section;
12011 struct elf_link_hash_table *htab = elf_hash_table (info);
12012 bfd_boolean sections_removed;
12013
12014 if (!is_elf_hash_table (htab))
12015 return FALSE;
12016
12017 if (bfd_link_pic (info))
12018 abfd->flags |= DYNAMIC;
12019
12020 dynamic = htab->dynamic_sections_created;
12021 dynobj = htab->dynobj;
12022
12023 emit_relocs = (bfd_link_relocatable (info)
12024 || info->emitrelocations);
12025
12026 flinfo.info = info;
12027 flinfo.output_bfd = abfd;
12028 flinfo.symstrtab = _bfd_elf_strtab_init ();
12029 if (flinfo.symstrtab == NULL)
12030 return FALSE;
12031
12032 if (! dynamic)
12033 {
12034 flinfo.hash_sec = NULL;
12035 flinfo.symver_sec = NULL;
12036 }
12037 else
12038 {
12039 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12040 /* Note that dynsym_sec can be NULL (on VMS). */
12041 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12042 /* Note that it is OK if symver_sec is NULL. */
12043 }
12044
12045 flinfo.contents = NULL;
12046 flinfo.external_relocs = NULL;
12047 flinfo.internal_relocs = NULL;
12048 flinfo.external_syms = NULL;
12049 flinfo.locsym_shndx = NULL;
12050 flinfo.internal_syms = NULL;
12051 flinfo.indices = NULL;
12052 flinfo.sections = NULL;
12053 flinfo.symshndxbuf = NULL;
12054 flinfo.filesym_count = 0;
12055
12056 /* The object attributes have been merged. Remove the input
12057 sections from the link, and set the contents of the output
12058 section. */
12059 sections_removed = FALSE;
12060 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12061 for (o = abfd->sections; o != NULL; o = o->next)
12062 {
12063 bfd_boolean remove_section = FALSE;
12064
12065 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12066 || strcmp (o->name, ".gnu.attributes") == 0)
12067 {
12068 for (p = o->map_head.link_order; p != NULL; p = p->next)
12069 {
12070 asection *input_section;
12071
12072 if (p->type != bfd_indirect_link_order)
12073 continue;
12074 input_section = p->u.indirect.section;
12075 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12076 elf_link_input_bfd ignores this section. */
12077 input_section->flags &= ~SEC_HAS_CONTENTS;
12078 }
12079
12080 attr_size = bfd_elf_obj_attr_size (abfd);
12081 bfd_set_section_size (o, attr_size);
12082 /* Skip this section later on. */
12083 o->map_head.link_order = NULL;
12084 if (attr_size)
12085 attr_section = o;
12086 else
12087 remove_section = TRUE;
12088 }
12089 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12090 {
12091 /* Remove empty group section from linker output. */
12092 remove_section = TRUE;
12093 }
12094 if (remove_section)
12095 {
12096 o->flags |= SEC_EXCLUDE;
12097 bfd_section_list_remove (abfd, o);
12098 abfd->section_count--;
12099 sections_removed = TRUE;
12100 }
12101 }
12102 if (sections_removed)
12103 _bfd_fix_excluded_sec_syms (abfd, info);
12104
12105 /* Count up the number of relocations we will output for each output
12106 section, so that we know the sizes of the reloc sections. We
12107 also figure out some maximum sizes. */
12108 max_contents_size = 0;
12109 max_external_reloc_size = 0;
12110 max_internal_reloc_count = 0;
12111 max_sym_count = 0;
12112 max_sym_shndx_count = 0;
12113 merged = FALSE;
12114 for (o = abfd->sections; o != NULL; o = o->next)
12115 {
12116 struct bfd_elf_section_data *esdo = elf_section_data (o);
12117 o->reloc_count = 0;
12118
12119 for (p = o->map_head.link_order; p != NULL; p = p->next)
12120 {
12121 unsigned int reloc_count = 0;
12122 unsigned int additional_reloc_count = 0;
12123 struct bfd_elf_section_data *esdi = NULL;
12124
12125 if (p->type == bfd_section_reloc_link_order
12126 || p->type == bfd_symbol_reloc_link_order)
12127 reloc_count = 1;
12128 else if (p->type == bfd_indirect_link_order)
12129 {
12130 asection *sec;
12131
12132 sec = p->u.indirect.section;
12133
12134 /* Mark all sections which are to be included in the
12135 link. This will normally be every section. We need
12136 to do this so that we can identify any sections which
12137 the linker has decided to not include. */
12138 sec->linker_mark = TRUE;
12139
12140 if (sec->flags & SEC_MERGE)
12141 merged = TRUE;
12142
12143 if (sec->rawsize > max_contents_size)
12144 max_contents_size = sec->rawsize;
12145 if (sec->size > max_contents_size)
12146 max_contents_size = sec->size;
12147
12148 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12149 && (sec->owner->flags & DYNAMIC) == 0)
12150 {
12151 size_t sym_count;
12152
12153 /* We are interested in just local symbols, not all
12154 symbols. */
12155 if (elf_bad_symtab (sec->owner))
12156 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12157 / bed->s->sizeof_sym);
12158 else
12159 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12160
12161 if (sym_count > max_sym_count)
12162 max_sym_count = sym_count;
12163
12164 if (sym_count > max_sym_shndx_count
12165 && elf_symtab_shndx_list (sec->owner) != NULL)
12166 max_sym_shndx_count = sym_count;
12167
12168 if (esdo->this_hdr.sh_type == SHT_REL
12169 || esdo->this_hdr.sh_type == SHT_RELA)
12170 /* Some backends use reloc_count in relocation sections
12171 to count particular types of relocs. Of course,
12172 reloc sections themselves can't have relocations. */
12173 ;
12174 else if (emit_relocs)
12175 {
12176 reloc_count = sec->reloc_count;
12177 if (bed->elf_backend_count_additional_relocs)
12178 {
12179 int c;
12180 c = (*bed->elf_backend_count_additional_relocs) (sec);
12181 additional_reloc_count += c;
12182 }
12183 }
12184 else if (bed->elf_backend_count_relocs)
12185 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12186
12187 esdi = elf_section_data (sec);
12188
12189 if ((sec->flags & SEC_RELOC) != 0)
12190 {
12191 size_t ext_size = 0;
12192
12193 if (esdi->rel.hdr != NULL)
12194 ext_size = esdi->rel.hdr->sh_size;
12195 if (esdi->rela.hdr != NULL)
12196 ext_size += esdi->rela.hdr->sh_size;
12197
12198 if (ext_size > max_external_reloc_size)
12199 max_external_reloc_size = ext_size;
12200 if (sec->reloc_count > max_internal_reloc_count)
12201 max_internal_reloc_count = sec->reloc_count;
12202 }
12203 }
12204 }
12205
12206 if (reloc_count == 0)
12207 continue;
12208
12209 reloc_count += additional_reloc_count;
12210 o->reloc_count += reloc_count;
12211
12212 if (p->type == bfd_indirect_link_order && emit_relocs)
12213 {
12214 if (esdi->rel.hdr)
12215 {
12216 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12217 esdo->rel.count += additional_reloc_count;
12218 }
12219 if (esdi->rela.hdr)
12220 {
12221 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12222 esdo->rela.count += additional_reloc_count;
12223 }
12224 }
12225 else
12226 {
12227 if (o->use_rela_p)
12228 esdo->rela.count += reloc_count;
12229 else
12230 esdo->rel.count += reloc_count;
12231 }
12232 }
12233
12234 if (o->reloc_count > 0)
12235 o->flags |= SEC_RELOC;
12236 else
12237 {
12238 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12239 set it (this is probably a bug) and if it is set
12240 assign_section_numbers will create a reloc section. */
12241 o->flags &=~ SEC_RELOC;
12242 }
12243
12244 /* If the SEC_ALLOC flag is not set, force the section VMA to
12245 zero. This is done in elf_fake_sections as well, but forcing
12246 the VMA to 0 here will ensure that relocs against these
12247 sections are handled correctly. */
12248 if ((o->flags & SEC_ALLOC) == 0
12249 && ! o->user_set_vma)
12250 o->vma = 0;
12251 }
12252
12253 if (! bfd_link_relocatable (info) && merged)
12254 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12255
12256 /* Figure out the file positions for everything but the symbol table
12257 and the relocs. We set symcount to force assign_section_numbers
12258 to create a symbol table. */
12259 abfd->symcount = info->strip != strip_all || emit_relocs;
12260 BFD_ASSERT (! abfd->output_has_begun);
12261 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12262 goto error_return;
12263
12264 /* Set sizes, and assign file positions for reloc sections. */
12265 for (o = abfd->sections; o != NULL; o = o->next)
12266 {
12267 struct bfd_elf_section_data *esdo = elf_section_data (o);
12268 if ((o->flags & SEC_RELOC) != 0)
12269 {
12270 if (esdo->rel.hdr
12271 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12272 goto error_return;
12273
12274 if (esdo->rela.hdr
12275 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12276 goto error_return;
12277 }
12278
12279 /* _bfd_elf_compute_section_file_positions makes temporary use
12280 of target_index. Reset it. */
12281 o->target_index = 0;
12282
12283 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12284 to count upwards while actually outputting the relocations. */
12285 esdo->rel.count = 0;
12286 esdo->rela.count = 0;
12287
12288 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12289 && !bfd_section_is_ctf (o))
12290 {
12291 /* Cache the section contents so that they can be compressed
12292 later. Use bfd_malloc since it will be freed by
12293 bfd_compress_section_contents. */
12294 unsigned char *contents = esdo->this_hdr.contents;
12295 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12296 abort ();
12297 contents
12298 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12299 if (contents == NULL)
12300 goto error_return;
12301 esdo->this_hdr.contents = contents;
12302 }
12303 }
12304
12305 /* We have now assigned file positions for all the sections except .symtab,
12306 .strtab, and non-loaded reloc and compressed debugging sections. We start
12307 the .symtab section at the current file position, and write directly to it.
12308 We build the .strtab section in memory. */
12309 abfd->symcount = 0;
12310 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12311 /* sh_name is set in prep_headers. */
12312 symtab_hdr->sh_type = SHT_SYMTAB;
12313 /* sh_flags, sh_addr and sh_size all start off zero. */
12314 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12315 /* sh_link is set in assign_section_numbers. */
12316 /* sh_info is set below. */
12317 /* sh_offset is set just below. */
12318 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12319
12320 if (max_sym_count < 20)
12321 max_sym_count = 20;
12322 htab->strtabsize = max_sym_count;
12323 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12324 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12325 if (htab->strtab == NULL)
12326 goto error_return;
12327 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12328 flinfo.symshndxbuf
12329 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12330 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12331
12332 if (info->strip != strip_all || emit_relocs)
12333 {
12334 bfd_boolean name_local_sections;
12335 const char *name;
12336
12337 file_ptr off = elf_next_file_pos (abfd);
12338
12339 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12340
12341 /* Note that at this point elf_next_file_pos (abfd) is
12342 incorrect. We do not yet know the size of the .symtab section.
12343 We correct next_file_pos below, after we do know the size. */
12344
12345 /* Start writing out the symbol table. The first symbol is always a
12346 dummy symbol. */
12347 elfsym.st_value = 0;
12348 elfsym.st_size = 0;
12349 elfsym.st_info = 0;
12350 elfsym.st_other = 0;
12351 elfsym.st_shndx = SHN_UNDEF;
12352 elfsym.st_target_internal = 0;
12353 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12354 bfd_und_section_ptr, NULL) != 1)
12355 goto error_return;
12356
12357 /* Output a symbol for each section. We output these even if we are
12358 discarding local symbols, since they are used for relocs. These
12359 symbols usually have no names. We store the index of each one in
12360 the index field of the section, so that we can find it again when
12361 outputting relocs. */
12362
12363 name_local_sections
12364 = (bed->elf_backend_name_local_section_symbols
12365 && bed->elf_backend_name_local_section_symbols (abfd));
12366
12367 name = NULL;
12368 elfsym.st_size = 0;
12369 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12370 elfsym.st_other = 0;
12371 elfsym.st_value = 0;
12372 elfsym.st_target_internal = 0;
12373 for (i = 1; i < elf_numsections (abfd); i++)
12374 {
12375 o = bfd_section_from_elf_index (abfd, i);
12376 if (o != NULL)
12377 {
12378 o->target_index = bfd_get_symcount (abfd);
12379 elfsym.st_shndx = i;
12380 if (!bfd_link_relocatable (info))
12381 elfsym.st_value = o->vma;
12382 if (name_local_sections)
12383 name = o->name;
12384 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12385 NULL) != 1)
12386 goto error_return;
12387 }
12388 }
12389 }
12390
12391 /* On some targets like Irix 5 the symbol split between local and global
12392 ones recorded in the sh_info field needs to be done between section
12393 and all other symbols. */
12394 if (bed->elf_backend_elfsym_local_is_section
12395 && bed->elf_backend_elfsym_local_is_section (abfd))
12396 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12397
12398 /* Allocate some memory to hold information read in from the input
12399 files. */
12400 if (max_contents_size != 0)
12401 {
12402 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12403 if (flinfo.contents == NULL)
12404 goto error_return;
12405 }
12406
12407 if (max_external_reloc_size != 0)
12408 {
12409 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12410 if (flinfo.external_relocs == NULL)
12411 goto error_return;
12412 }
12413
12414 if (max_internal_reloc_count != 0)
12415 {
12416 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12417 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12418 if (flinfo.internal_relocs == NULL)
12419 goto error_return;
12420 }
12421
12422 if (max_sym_count != 0)
12423 {
12424 amt = max_sym_count * bed->s->sizeof_sym;
12425 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12426 if (flinfo.external_syms == NULL)
12427 goto error_return;
12428
12429 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12430 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12431 if (flinfo.internal_syms == NULL)
12432 goto error_return;
12433
12434 amt = max_sym_count * sizeof (long);
12435 flinfo.indices = (long int *) bfd_malloc (amt);
12436 if (flinfo.indices == NULL)
12437 goto error_return;
12438
12439 amt = max_sym_count * sizeof (asection *);
12440 flinfo.sections = (asection **) bfd_malloc (amt);
12441 if (flinfo.sections == NULL)
12442 goto error_return;
12443 }
12444
12445 if (max_sym_shndx_count != 0)
12446 {
12447 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12448 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12449 if (flinfo.locsym_shndx == NULL)
12450 goto error_return;
12451 }
12452
12453 if (htab->tls_sec)
12454 {
12455 bfd_vma base, end = 0; /* Both bytes. */
12456 asection *sec;
12457
12458 for (sec = htab->tls_sec;
12459 sec && (sec->flags & SEC_THREAD_LOCAL);
12460 sec = sec->next)
12461 {
12462 bfd_size_type size = sec->size;
12463 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12464
12465 if (size == 0
12466 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12467 {
12468 struct bfd_link_order *ord = sec->map_tail.link_order;
12469
12470 if (ord != NULL)
12471 size = ord->offset * opb + ord->size;
12472 }
12473 end = sec->vma + size / opb;
12474 }
12475 base = htab->tls_sec->vma;
12476 /* Only align end of TLS section if static TLS doesn't have special
12477 alignment requirements. */
12478 if (bed->static_tls_alignment == 1)
12479 end = align_power (end, htab->tls_sec->alignment_power);
12480 htab->tls_size = end - base;
12481 }
12482
12483 /* Reorder SHF_LINK_ORDER sections. */
12484 for (o = abfd->sections; o != NULL; o = o->next)
12485 {
12486 if (!elf_fixup_link_order (abfd, o))
12487 return FALSE;
12488 }
12489
12490 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12491 return FALSE;
12492
12493 /* Since ELF permits relocations to be against local symbols, we
12494 must have the local symbols available when we do the relocations.
12495 Since we would rather only read the local symbols once, and we
12496 would rather not keep them in memory, we handle all the
12497 relocations for a single input file at the same time.
12498
12499 Unfortunately, there is no way to know the total number of local
12500 symbols until we have seen all of them, and the local symbol
12501 indices precede the global symbol indices. This means that when
12502 we are generating relocatable output, and we see a reloc against
12503 a global symbol, we can not know the symbol index until we have
12504 finished examining all the local symbols to see which ones we are
12505 going to output. To deal with this, we keep the relocations in
12506 memory, and don't output them until the end of the link. This is
12507 an unfortunate waste of memory, but I don't see a good way around
12508 it. Fortunately, it only happens when performing a relocatable
12509 link, which is not the common case. FIXME: If keep_memory is set
12510 we could write the relocs out and then read them again; I don't
12511 know how bad the memory loss will be. */
12512
12513 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12514 sub->output_has_begun = FALSE;
12515 for (o = abfd->sections; o != NULL; o = o->next)
12516 {
12517 for (p = o->map_head.link_order; p != NULL; p = p->next)
12518 {
12519 if (p->type == bfd_indirect_link_order
12520 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12521 == bfd_target_elf_flavour)
12522 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12523 {
12524 if (! sub->output_has_begun)
12525 {
12526 if (! elf_link_input_bfd (&flinfo, sub))
12527 goto error_return;
12528 sub->output_has_begun = TRUE;
12529 }
12530 }
12531 else if (p->type == bfd_section_reloc_link_order
12532 || p->type == bfd_symbol_reloc_link_order)
12533 {
12534 if (! elf_reloc_link_order (abfd, info, o, p))
12535 goto error_return;
12536 }
12537 else
12538 {
12539 if (! _bfd_default_link_order (abfd, info, o, p))
12540 {
12541 if (p->type == bfd_indirect_link_order
12542 && (bfd_get_flavour (sub)
12543 == bfd_target_elf_flavour)
12544 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12545 != bed->s->elfclass))
12546 {
12547 const char *iclass, *oclass;
12548
12549 switch (bed->s->elfclass)
12550 {
12551 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12552 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12553 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12554 default: abort ();
12555 }
12556
12557 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12558 {
12559 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12560 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12561 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12562 default: abort ();
12563 }
12564
12565 bfd_set_error (bfd_error_wrong_format);
12566 _bfd_error_handler
12567 /* xgettext:c-format */
12568 (_("%pB: file class %s incompatible with %s"),
12569 sub, iclass, oclass);
12570 }
12571
12572 goto error_return;
12573 }
12574 }
12575 }
12576 }
12577
12578 /* Free symbol buffer if needed. */
12579 if (!info->reduce_memory_overheads)
12580 {
12581 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12582 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12583 {
12584 free (elf_tdata (sub)->symbuf);
12585 elf_tdata (sub)->symbuf = NULL;
12586 }
12587 }
12588
12589 /* Output any global symbols that got converted to local in a
12590 version script or due to symbol visibility. We do this in a
12591 separate step since ELF requires all local symbols to appear
12592 prior to any global symbols. FIXME: We should only do this if
12593 some global symbols were, in fact, converted to become local.
12594 FIXME: Will this work correctly with the Irix 5 linker? */
12595 eoinfo.failed = FALSE;
12596 eoinfo.flinfo = &flinfo;
12597 eoinfo.localsyms = TRUE;
12598 eoinfo.file_sym_done = FALSE;
12599 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12600 if (eoinfo.failed)
12601 return FALSE;
12602
12603 /* If backend needs to output some local symbols not present in the hash
12604 table, do it now. */
12605 if (bed->elf_backend_output_arch_local_syms
12606 && (info->strip != strip_all || emit_relocs))
12607 {
12608 typedef int (*out_sym_func)
12609 (void *, const char *, Elf_Internal_Sym *, asection *,
12610 struct elf_link_hash_entry *);
12611
12612 if (! ((*bed->elf_backend_output_arch_local_syms)
12613 (abfd, info, &flinfo,
12614 (out_sym_func) elf_link_output_symstrtab)))
12615 return FALSE;
12616 }
12617
12618 /* That wrote out all the local symbols. Finish up the symbol table
12619 with the global symbols. Even if we want to strip everything we
12620 can, we still need to deal with those global symbols that got
12621 converted to local in a version script. */
12622
12623 /* The sh_info field records the index of the first non local symbol. */
12624 if (!symtab_hdr->sh_info)
12625 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12626
12627 if (dynamic
12628 && htab->dynsym != NULL
12629 && htab->dynsym->output_section != bfd_abs_section_ptr)
12630 {
12631 Elf_Internal_Sym sym;
12632 bfd_byte *dynsym = htab->dynsym->contents;
12633
12634 o = htab->dynsym->output_section;
12635 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12636
12637 /* Write out the section symbols for the output sections. */
12638 if (bfd_link_pic (info)
12639 || htab->is_relocatable_executable)
12640 {
12641 asection *s;
12642
12643 sym.st_size = 0;
12644 sym.st_name = 0;
12645 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12646 sym.st_other = 0;
12647 sym.st_target_internal = 0;
12648
12649 for (s = abfd->sections; s != NULL; s = s->next)
12650 {
12651 int indx;
12652 bfd_byte *dest;
12653 long dynindx;
12654
12655 dynindx = elf_section_data (s)->dynindx;
12656 if (dynindx <= 0)
12657 continue;
12658 indx = elf_section_data (s)->this_idx;
12659 BFD_ASSERT (indx > 0);
12660 sym.st_shndx = indx;
12661 if (! check_dynsym (abfd, &sym))
12662 return FALSE;
12663 sym.st_value = s->vma;
12664 dest = dynsym + dynindx * bed->s->sizeof_sym;
12665 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12666 }
12667 }
12668
12669 /* Write out the local dynsyms. */
12670 if (htab->dynlocal)
12671 {
12672 struct elf_link_local_dynamic_entry *e;
12673 for (e = htab->dynlocal; e ; e = e->next)
12674 {
12675 asection *s;
12676 bfd_byte *dest;
12677
12678 /* Copy the internal symbol and turn off visibility.
12679 Note that we saved a word of storage and overwrote
12680 the original st_name with the dynstr_index. */
12681 sym = e->isym;
12682 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12683 sym.st_shndx = SHN_UNDEF;
12684
12685 s = bfd_section_from_elf_index (e->input_bfd,
12686 e->isym.st_shndx);
12687 if (s != NULL
12688 && s->output_section != NULL
12689 && elf_section_data (s->output_section) != NULL)
12690 {
12691 sym.st_shndx =
12692 elf_section_data (s->output_section)->this_idx;
12693 if (! check_dynsym (abfd, &sym))
12694 return FALSE;
12695 sym.st_value = (s->output_section->vma
12696 + s->output_offset
12697 + e->isym.st_value);
12698 }
12699
12700 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12701 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12702 }
12703 }
12704 }
12705
12706 /* We get the global symbols from the hash table. */
12707 eoinfo.failed = FALSE;
12708 eoinfo.localsyms = FALSE;
12709 eoinfo.flinfo = &flinfo;
12710 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12711 if (eoinfo.failed)
12712 return FALSE;
12713
12714 /* If backend needs to output some symbols not present in the hash
12715 table, do it now. */
12716 if (bed->elf_backend_output_arch_syms
12717 && (info->strip != strip_all || emit_relocs))
12718 {
12719 typedef int (*out_sym_func)
12720 (void *, const char *, Elf_Internal_Sym *, asection *,
12721 struct elf_link_hash_entry *);
12722
12723 if (! ((*bed->elf_backend_output_arch_syms)
12724 (abfd, info, &flinfo,
12725 (out_sym_func) elf_link_output_symstrtab)))
12726 return FALSE;
12727 }
12728
12729 /* Finalize the .strtab section. */
12730 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12731
12732 /* Swap out the .strtab section. */
12733 if (!elf_link_swap_symbols_out (&flinfo))
12734 return FALSE;
12735
12736 /* Now we know the size of the symtab section. */
12737 if (bfd_get_symcount (abfd) > 0)
12738 {
12739 /* Finish up and write out the symbol string table (.strtab)
12740 section. */
12741 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12742 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12743
12744 if (elf_symtab_shndx_list (abfd))
12745 {
12746 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12747
12748 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12749 {
12750 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12751 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12752 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12753 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12754 symtab_shndx_hdr->sh_size = amt;
12755
12756 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12757 off, TRUE);
12758
12759 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12760 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12761 return FALSE;
12762 }
12763 }
12764
12765 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12766 /* sh_name was set in prep_headers. */
12767 symstrtab_hdr->sh_type = SHT_STRTAB;
12768 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12769 symstrtab_hdr->sh_addr = 0;
12770 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12771 symstrtab_hdr->sh_entsize = 0;
12772 symstrtab_hdr->sh_link = 0;
12773 symstrtab_hdr->sh_info = 0;
12774 /* sh_offset is set just below. */
12775 symstrtab_hdr->sh_addralign = 1;
12776
12777 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12778 off, TRUE);
12779 elf_next_file_pos (abfd) = off;
12780
12781 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12782 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12783 return FALSE;
12784 }
12785
12786 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12787 {
12788 _bfd_error_handler (_("%pB: failed to generate import library"),
12789 info->out_implib_bfd);
12790 return FALSE;
12791 }
12792
12793 /* Adjust the relocs to have the correct symbol indices. */
12794 for (o = abfd->sections; o != NULL; o = o->next)
12795 {
12796 struct bfd_elf_section_data *esdo = elf_section_data (o);
12797 bfd_boolean sort;
12798
12799 if ((o->flags & SEC_RELOC) == 0)
12800 continue;
12801
12802 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12803 if (esdo->rel.hdr != NULL
12804 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12805 return FALSE;
12806 if (esdo->rela.hdr != NULL
12807 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12808 return FALSE;
12809
12810 /* Set the reloc_count field to 0 to prevent write_relocs from
12811 trying to swap the relocs out itself. */
12812 o->reloc_count = 0;
12813 }
12814
12815 if (dynamic && info->combreloc && dynobj != NULL)
12816 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12817
12818 /* If we are linking against a dynamic object, or generating a
12819 shared library, finish up the dynamic linking information. */
12820 if (dynamic)
12821 {
12822 bfd_byte *dyncon, *dynconend;
12823
12824 /* Fix up .dynamic entries. */
12825 o = bfd_get_linker_section (dynobj, ".dynamic");
12826 BFD_ASSERT (o != NULL);
12827
12828 dyncon = o->contents;
12829 dynconend = o->contents + o->size;
12830 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12831 {
12832 Elf_Internal_Dyn dyn;
12833 const char *name;
12834 unsigned int type;
12835 bfd_size_type sh_size;
12836 bfd_vma sh_addr;
12837
12838 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12839
12840 switch (dyn.d_tag)
12841 {
12842 default:
12843 continue;
12844 case DT_NULL:
12845 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12846 {
12847 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12848 {
12849 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12850 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12851 default: continue;
12852 }
12853 dyn.d_un.d_val = relativecount;
12854 relativecount = 0;
12855 break;
12856 }
12857 continue;
12858
12859 case DT_INIT:
12860 name = info->init_function;
12861 goto get_sym;
12862 case DT_FINI:
12863 name = info->fini_function;
12864 get_sym:
12865 {
12866 struct elf_link_hash_entry *h;
12867
12868 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12869 if (h != NULL
12870 && (h->root.type == bfd_link_hash_defined
12871 || h->root.type == bfd_link_hash_defweak))
12872 {
12873 dyn.d_un.d_ptr = h->root.u.def.value;
12874 o = h->root.u.def.section;
12875 if (o->output_section != NULL)
12876 dyn.d_un.d_ptr += (o->output_section->vma
12877 + o->output_offset);
12878 else
12879 {
12880 /* The symbol is imported from another shared
12881 library and does not apply to this one. */
12882 dyn.d_un.d_ptr = 0;
12883 }
12884 break;
12885 }
12886 }
12887 continue;
12888
12889 case DT_PREINIT_ARRAYSZ:
12890 name = ".preinit_array";
12891 goto get_out_size;
12892 case DT_INIT_ARRAYSZ:
12893 name = ".init_array";
12894 goto get_out_size;
12895 case DT_FINI_ARRAYSZ:
12896 name = ".fini_array";
12897 get_out_size:
12898 o = bfd_get_section_by_name (abfd, name);
12899 if (o == NULL)
12900 {
12901 _bfd_error_handler
12902 (_("could not find section %s"), name);
12903 goto error_return;
12904 }
12905 if (o->size == 0)
12906 _bfd_error_handler
12907 (_("warning: %s section has zero size"), name);
12908 dyn.d_un.d_val = o->size;
12909 break;
12910
12911 case DT_PREINIT_ARRAY:
12912 name = ".preinit_array";
12913 goto get_out_vma;
12914 case DT_INIT_ARRAY:
12915 name = ".init_array";
12916 goto get_out_vma;
12917 case DT_FINI_ARRAY:
12918 name = ".fini_array";
12919 get_out_vma:
12920 o = bfd_get_section_by_name (abfd, name);
12921 goto do_vma;
12922
12923 case DT_HASH:
12924 name = ".hash";
12925 goto get_vma;
12926 case DT_GNU_HASH:
12927 name = ".gnu.hash";
12928 goto get_vma;
12929 case DT_STRTAB:
12930 name = ".dynstr";
12931 goto get_vma;
12932 case DT_SYMTAB:
12933 name = ".dynsym";
12934 goto get_vma;
12935 case DT_VERDEF:
12936 name = ".gnu.version_d";
12937 goto get_vma;
12938 case DT_VERNEED:
12939 name = ".gnu.version_r";
12940 goto get_vma;
12941 case DT_VERSYM:
12942 name = ".gnu.version";
12943 get_vma:
12944 o = bfd_get_linker_section (dynobj, name);
12945 do_vma:
12946 if (o == NULL || bfd_is_abs_section (o->output_section))
12947 {
12948 _bfd_error_handler
12949 (_("could not find section %s"), name);
12950 goto error_return;
12951 }
12952 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12953 {
12954 _bfd_error_handler
12955 (_("warning: section '%s' is being made into a note"), name);
12956 bfd_set_error (bfd_error_nonrepresentable_section);
12957 goto error_return;
12958 }
12959 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12960 break;
12961
12962 case DT_REL:
12963 case DT_RELA:
12964 case DT_RELSZ:
12965 case DT_RELASZ:
12966 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12967 type = SHT_REL;
12968 else
12969 type = SHT_RELA;
12970 sh_size = 0;
12971 sh_addr = 0;
12972 for (i = 1; i < elf_numsections (abfd); i++)
12973 {
12974 Elf_Internal_Shdr *hdr;
12975
12976 hdr = elf_elfsections (abfd)[i];
12977 if (hdr->sh_type == type
12978 && (hdr->sh_flags & SHF_ALLOC) != 0)
12979 {
12980 sh_size += hdr->sh_size;
12981 if (sh_addr == 0
12982 || sh_addr > hdr->sh_addr)
12983 sh_addr = hdr->sh_addr;
12984 }
12985 }
12986
12987 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12988 {
12989 unsigned int opb = bfd_octets_per_byte (abfd, o);
12990
12991 /* Don't count procedure linkage table relocs in the
12992 overall reloc count. */
12993 sh_size -= htab->srelplt->size;
12994 if (sh_size == 0)
12995 /* If the size is zero, make the address zero too.
12996 This is to avoid a glibc bug. If the backend
12997 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12998 zero, then we'll put DT_RELA at the end of
12999 DT_JMPREL. glibc will interpret the end of
13000 DT_RELA matching the end of DT_JMPREL as the
13001 case where DT_RELA includes DT_JMPREL, and for
13002 LD_BIND_NOW will decide that processing DT_RELA
13003 will process the PLT relocs too. Net result:
13004 No PLT relocs applied. */
13005 sh_addr = 0;
13006
13007 /* If .rela.plt is the first .rela section, exclude
13008 it from DT_RELA. */
13009 else if (sh_addr == (htab->srelplt->output_section->vma
13010 + htab->srelplt->output_offset) * opb)
13011 sh_addr += htab->srelplt->size;
13012 }
13013
13014 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13015 dyn.d_un.d_val = sh_size;
13016 else
13017 dyn.d_un.d_ptr = sh_addr;
13018 break;
13019 }
13020 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13021 }
13022 }
13023
13024 /* If we have created any dynamic sections, then output them. */
13025 if (dynobj != NULL)
13026 {
13027 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13028 goto error_return;
13029
13030 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13031 if (bfd_link_textrel_check (info)
13032 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13033 {
13034 bfd_byte *dyncon, *dynconend;
13035
13036 dyncon = o->contents;
13037 dynconend = o->contents + o->size;
13038 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13039 {
13040 Elf_Internal_Dyn dyn;
13041
13042 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13043
13044 if (dyn.d_tag == DT_TEXTREL)
13045 {
13046 if (info->textrel_check == textrel_check_error)
13047 info->callbacks->einfo
13048 (_("%P%X: read-only segment has dynamic relocations\n"));
13049 else if (bfd_link_dll (info))
13050 info->callbacks->einfo
13051 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13052 else
13053 info->callbacks->einfo
13054 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13055 break;
13056 }
13057 }
13058 }
13059
13060 for (o = dynobj->sections; o != NULL; o = o->next)
13061 {
13062 if ((o->flags & SEC_HAS_CONTENTS) == 0
13063 || o->size == 0
13064 || o->output_section == bfd_abs_section_ptr)
13065 continue;
13066 if ((o->flags & SEC_LINKER_CREATED) == 0)
13067 {
13068 /* At this point, we are only interested in sections
13069 created by _bfd_elf_link_create_dynamic_sections. */
13070 continue;
13071 }
13072 if (htab->stab_info.stabstr == o)
13073 continue;
13074 if (htab->eh_info.hdr_sec == o)
13075 continue;
13076 if (strcmp (o->name, ".dynstr") != 0)
13077 {
13078 bfd_size_type octets = ((file_ptr) o->output_offset
13079 * bfd_octets_per_byte (abfd, o));
13080 if (!bfd_set_section_contents (abfd, o->output_section,
13081 o->contents, octets, o->size))
13082 goto error_return;
13083 }
13084 else
13085 {
13086 /* The contents of the .dynstr section are actually in a
13087 stringtab. */
13088 file_ptr off;
13089
13090 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13091 if (bfd_seek (abfd, off, SEEK_SET) != 0
13092 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13093 goto error_return;
13094 }
13095 }
13096 }
13097
13098 if (!info->resolve_section_groups)
13099 {
13100 bfd_boolean failed = FALSE;
13101
13102 BFD_ASSERT (bfd_link_relocatable (info));
13103 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13104 if (failed)
13105 goto error_return;
13106 }
13107
13108 /* If we have optimized stabs strings, output them. */
13109 if (htab->stab_info.stabstr != NULL)
13110 {
13111 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13112 goto error_return;
13113 }
13114
13115 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13116 goto error_return;
13117
13118 if (info->callbacks->emit_ctf)
13119 info->callbacks->emit_ctf ();
13120
13121 elf_final_link_free (abfd, &flinfo);
13122
13123 if (attr_section)
13124 {
13125 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13126 if (contents == NULL)
13127 return FALSE; /* Bail out and fail. */
13128 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13129 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13130 free (contents);
13131 }
13132
13133 return TRUE;
13134
13135 error_return:
13136 elf_final_link_free (abfd, &flinfo);
13137 return FALSE;
13138 }
13139 \f
13140 /* Initialize COOKIE for input bfd ABFD. */
13141
13142 static bfd_boolean
13143 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13144 struct bfd_link_info *info, bfd *abfd)
13145 {
13146 Elf_Internal_Shdr *symtab_hdr;
13147 const struct elf_backend_data *bed;
13148
13149 bed = get_elf_backend_data (abfd);
13150 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13151
13152 cookie->abfd = abfd;
13153 cookie->sym_hashes = elf_sym_hashes (abfd);
13154 cookie->bad_symtab = elf_bad_symtab (abfd);
13155 if (cookie->bad_symtab)
13156 {
13157 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13158 cookie->extsymoff = 0;
13159 }
13160 else
13161 {
13162 cookie->locsymcount = symtab_hdr->sh_info;
13163 cookie->extsymoff = symtab_hdr->sh_info;
13164 }
13165
13166 if (bed->s->arch_size == 32)
13167 cookie->r_sym_shift = 8;
13168 else
13169 cookie->r_sym_shift = 32;
13170
13171 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13172 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13173 {
13174 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13175 cookie->locsymcount, 0,
13176 NULL, NULL, NULL);
13177 if (cookie->locsyms == NULL)
13178 {
13179 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13180 return FALSE;
13181 }
13182 if (info->keep_memory)
13183 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13184 }
13185 return TRUE;
13186 }
13187
13188 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13189
13190 static void
13191 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13192 {
13193 Elf_Internal_Shdr *symtab_hdr;
13194
13195 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13196 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13197 free (cookie->locsyms);
13198 }
13199
13200 /* Initialize the relocation information in COOKIE for input section SEC
13201 of input bfd ABFD. */
13202
13203 static bfd_boolean
13204 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13205 struct bfd_link_info *info, bfd *abfd,
13206 asection *sec)
13207 {
13208 if (sec->reloc_count == 0)
13209 {
13210 cookie->rels = NULL;
13211 cookie->relend = NULL;
13212 }
13213 else
13214 {
13215 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13216 info->keep_memory);
13217 if (cookie->rels == NULL)
13218 return FALSE;
13219 cookie->rel = cookie->rels;
13220 cookie->relend = cookie->rels + sec->reloc_count;
13221 }
13222 cookie->rel = cookie->rels;
13223 return TRUE;
13224 }
13225
13226 /* Free the memory allocated by init_reloc_cookie_rels,
13227 if appropriate. */
13228
13229 static void
13230 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13231 asection *sec)
13232 {
13233 if (elf_section_data (sec)->relocs != cookie->rels)
13234 free (cookie->rels);
13235 }
13236
13237 /* Initialize the whole of COOKIE for input section SEC. */
13238
13239 static bfd_boolean
13240 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13241 struct bfd_link_info *info,
13242 asection *sec)
13243 {
13244 if (!init_reloc_cookie (cookie, info, sec->owner))
13245 goto error1;
13246 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13247 goto error2;
13248 return TRUE;
13249
13250 error2:
13251 fini_reloc_cookie (cookie, sec->owner);
13252 error1:
13253 return FALSE;
13254 }
13255
13256 /* Free the memory allocated by init_reloc_cookie_for_section,
13257 if appropriate. */
13258
13259 static void
13260 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13261 asection *sec)
13262 {
13263 fini_reloc_cookie_rels (cookie, sec);
13264 fini_reloc_cookie (cookie, sec->owner);
13265 }
13266 \f
13267 /* Garbage collect unused sections. */
13268
13269 /* Default gc_mark_hook. */
13270
13271 asection *
13272 _bfd_elf_gc_mark_hook (asection *sec,
13273 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13274 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13275 struct elf_link_hash_entry *h,
13276 Elf_Internal_Sym *sym)
13277 {
13278 if (h != NULL)
13279 {
13280 switch (h->root.type)
13281 {
13282 case bfd_link_hash_defined:
13283 case bfd_link_hash_defweak:
13284 return h->root.u.def.section;
13285
13286 case bfd_link_hash_common:
13287 return h->root.u.c.p->section;
13288
13289 default:
13290 break;
13291 }
13292 }
13293 else
13294 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13295
13296 return NULL;
13297 }
13298
13299 /* Return the debug definition section. */
13300
13301 static asection *
13302 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13303 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13304 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13305 struct elf_link_hash_entry *h,
13306 Elf_Internal_Sym *sym)
13307 {
13308 if (h != NULL)
13309 {
13310 /* Return the global debug definition section. */
13311 if ((h->root.type == bfd_link_hash_defined
13312 || h->root.type == bfd_link_hash_defweak)
13313 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13314 return h->root.u.def.section;
13315 }
13316 else
13317 {
13318 /* Return the local debug definition section. */
13319 asection *isec = bfd_section_from_elf_index (sec->owner,
13320 sym->st_shndx);
13321 if ((isec->flags & SEC_DEBUGGING) != 0)
13322 return isec;
13323 }
13324
13325 return NULL;
13326 }
13327
13328 /* COOKIE->rel describes a relocation against section SEC, which is
13329 a section we've decided to keep. Return the section that contains
13330 the relocation symbol, or NULL if no section contains it. */
13331
13332 asection *
13333 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13334 elf_gc_mark_hook_fn gc_mark_hook,
13335 struct elf_reloc_cookie *cookie,
13336 bfd_boolean *start_stop)
13337 {
13338 unsigned long r_symndx;
13339 struct elf_link_hash_entry *h, *hw;
13340
13341 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13342 if (r_symndx == STN_UNDEF)
13343 return NULL;
13344
13345 if (r_symndx >= cookie->locsymcount
13346 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13347 {
13348 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13349 if (h == NULL)
13350 {
13351 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13352 sec->owner);
13353 return NULL;
13354 }
13355 while (h->root.type == bfd_link_hash_indirect
13356 || h->root.type == bfd_link_hash_warning)
13357 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13358 h->mark = 1;
13359 /* Keep all aliases of the symbol too. If an object symbol
13360 needs to be copied into .dynbss then all of its aliases
13361 should be present as dynamic symbols, not just the one used
13362 on the copy relocation. */
13363 hw = h;
13364 while (hw->is_weakalias)
13365 {
13366 hw = hw->u.alias;
13367 hw->mark = 1;
13368 }
13369
13370 if (start_stop != NULL)
13371 {
13372 /* To work around a glibc bug, mark XXX input sections
13373 when there is a reference to __start_XXX or __stop_XXX
13374 symbols. */
13375 if (h->start_stop)
13376 {
13377 asection *s = h->u2.start_stop_section;
13378 *start_stop = !s->gc_mark;
13379 return s;
13380 }
13381 }
13382
13383 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13384 }
13385
13386 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13387 &cookie->locsyms[r_symndx]);
13388 }
13389
13390 /* COOKIE->rel describes a relocation against section SEC, which is
13391 a section we've decided to keep. Mark the section that contains
13392 the relocation symbol. */
13393
13394 bfd_boolean
13395 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13396 asection *sec,
13397 elf_gc_mark_hook_fn gc_mark_hook,
13398 struct elf_reloc_cookie *cookie)
13399 {
13400 asection *rsec;
13401 bfd_boolean start_stop = FALSE;
13402
13403 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13404 while (rsec != NULL)
13405 {
13406 if (!rsec->gc_mark)
13407 {
13408 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13409 || (rsec->owner->flags & DYNAMIC) != 0)
13410 rsec->gc_mark = 1;
13411 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13412 return FALSE;
13413 }
13414 if (!start_stop)
13415 break;
13416 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13417 }
13418 return TRUE;
13419 }
13420
13421 /* The mark phase of garbage collection. For a given section, mark
13422 it and any sections in this section's group, and all the sections
13423 which define symbols to which it refers. */
13424
13425 bfd_boolean
13426 _bfd_elf_gc_mark (struct bfd_link_info *info,
13427 asection *sec,
13428 elf_gc_mark_hook_fn gc_mark_hook)
13429 {
13430 bfd_boolean ret;
13431 asection *group_sec, *eh_frame;
13432
13433 sec->gc_mark = 1;
13434
13435 /* Mark all the sections in the group. */
13436 group_sec = elf_section_data (sec)->next_in_group;
13437 if (group_sec && !group_sec->gc_mark)
13438 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13439 return FALSE;
13440
13441 /* Look through the section relocs. */
13442 ret = TRUE;
13443 eh_frame = elf_eh_frame_section (sec->owner);
13444 if ((sec->flags & SEC_RELOC) != 0
13445 && sec->reloc_count > 0
13446 && sec != eh_frame)
13447 {
13448 struct elf_reloc_cookie cookie;
13449
13450 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13451 ret = FALSE;
13452 else
13453 {
13454 for (; cookie.rel < cookie.relend; cookie.rel++)
13455 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13456 {
13457 ret = FALSE;
13458 break;
13459 }
13460 fini_reloc_cookie_for_section (&cookie, sec);
13461 }
13462 }
13463
13464 if (ret && eh_frame && elf_fde_list (sec))
13465 {
13466 struct elf_reloc_cookie cookie;
13467
13468 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13469 ret = FALSE;
13470 else
13471 {
13472 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13473 gc_mark_hook, &cookie))
13474 ret = FALSE;
13475 fini_reloc_cookie_for_section (&cookie, eh_frame);
13476 }
13477 }
13478
13479 eh_frame = elf_section_eh_frame_entry (sec);
13480 if (ret && eh_frame && !eh_frame->gc_mark)
13481 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13482 ret = FALSE;
13483
13484 return ret;
13485 }
13486
13487 /* Scan and mark sections in a special or debug section group. */
13488
13489 static void
13490 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13491 {
13492 /* Point to first section of section group. */
13493 asection *ssec;
13494 /* Used to iterate the section group. */
13495 asection *msec;
13496
13497 bfd_boolean is_special_grp = TRUE;
13498 bfd_boolean is_debug_grp = TRUE;
13499
13500 /* First scan to see if group contains any section other than debug
13501 and special section. */
13502 ssec = msec = elf_next_in_group (grp);
13503 do
13504 {
13505 if ((msec->flags & SEC_DEBUGGING) == 0)
13506 is_debug_grp = FALSE;
13507
13508 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13509 is_special_grp = FALSE;
13510
13511 msec = elf_next_in_group (msec);
13512 }
13513 while (msec != ssec);
13514
13515 /* If this is a pure debug section group or pure special section group,
13516 keep all sections in this group. */
13517 if (is_debug_grp || is_special_grp)
13518 {
13519 do
13520 {
13521 msec->gc_mark = 1;
13522 msec = elf_next_in_group (msec);
13523 }
13524 while (msec != ssec);
13525 }
13526 }
13527
13528 /* Keep debug and special sections. */
13529
13530 bfd_boolean
13531 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13532 elf_gc_mark_hook_fn mark_hook)
13533 {
13534 bfd *ibfd;
13535
13536 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13537 {
13538 asection *isec;
13539 bfd_boolean some_kept;
13540 bfd_boolean debug_frag_seen;
13541 bfd_boolean has_kept_debug_info;
13542
13543 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13544 continue;
13545 isec = ibfd->sections;
13546 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13547 continue;
13548
13549 /* Ensure all linker created sections are kept,
13550 see if any other section is already marked,
13551 and note if we have any fragmented debug sections. */
13552 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13553 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13554 {
13555 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13556 isec->gc_mark = 1;
13557 else if (isec->gc_mark
13558 && (isec->flags & SEC_ALLOC) != 0
13559 && elf_section_type (isec) != SHT_NOTE)
13560 some_kept = TRUE;
13561 else
13562 {
13563 /* Since all sections, except for backend specific ones,
13564 have been garbage collected, call mark_hook on this
13565 section if any of its linked-to sections is marked. */
13566 asection *linked_to_sec = elf_linked_to_section (isec);
13567 for (; linked_to_sec != NULL;
13568 linked_to_sec = elf_linked_to_section (linked_to_sec))
13569 if (linked_to_sec->gc_mark)
13570 {
13571 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13572 return FALSE;
13573 break;
13574 }
13575 }
13576
13577 if (!debug_frag_seen
13578 && (isec->flags & SEC_DEBUGGING)
13579 && CONST_STRNEQ (isec->name, ".debug_line."))
13580 debug_frag_seen = TRUE;
13581 else if (strcmp (bfd_section_name (isec),
13582 "__patchable_function_entries") == 0
13583 && elf_linked_to_section (isec) == NULL)
13584 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13585 "need linked-to section "
13586 "for --gc-sections\n"),
13587 isec->owner, isec);
13588 }
13589
13590 /* If no non-note alloc section in this file will be kept, then
13591 we can toss out the debug and special sections. */
13592 if (!some_kept)
13593 continue;
13594
13595 /* Keep debug and special sections like .comment when they are
13596 not part of a group. Also keep section groups that contain
13597 just debug sections or special sections. NB: Sections with
13598 linked-to section has been handled above. */
13599 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13600 {
13601 if ((isec->flags & SEC_GROUP) != 0)
13602 _bfd_elf_gc_mark_debug_special_section_group (isec);
13603 else if (((isec->flags & SEC_DEBUGGING) != 0
13604 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13605 && elf_next_in_group (isec) == NULL
13606 && elf_linked_to_section (isec) == NULL)
13607 isec->gc_mark = 1;
13608 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13609 has_kept_debug_info = TRUE;
13610 }
13611
13612 /* Look for CODE sections which are going to be discarded,
13613 and find and discard any fragmented debug sections which
13614 are associated with that code section. */
13615 if (debug_frag_seen)
13616 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13617 if ((isec->flags & SEC_CODE) != 0
13618 && isec->gc_mark == 0)
13619 {
13620 unsigned int ilen;
13621 asection *dsec;
13622
13623 ilen = strlen (isec->name);
13624
13625 /* Association is determined by the name of the debug
13626 section containing the name of the code section as
13627 a suffix. For example .debug_line.text.foo is a
13628 debug section associated with .text.foo. */
13629 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13630 {
13631 unsigned int dlen;
13632
13633 if (dsec->gc_mark == 0
13634 || (dsec->flags & SEC_DEBUGGING) == 0)
13635 continue;
13636
13637 dlen = strlen (dsec->name);
13638
13639 if (dlen > ilen
13640 && strncmp (dsec->name + (dlen - ilen),
13641 isec->name, ilen) == 0)
13642 dsec->gc_mark = 0;
13643 }
13644 }
13645
13646 /* Mark debug sections referenced by kept debug sections. */
13647 if (has_kept_debug_info)
13648 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13649 if (isec->gc_mark
13650 && (isec->flags & SEC_DEBUGGING) != 0)
13651 if (!_bfd_elf_gc_mark (info, isec,
13652 elf_gc_mark_debug_section))
13653 return FALSE;
13654 }
13655 return TRUE;
13656 }
13657
13658 static bfd_boolean
13659 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13660 {
13661 bfd *sub;
13662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13663
13664 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13665 {
13666 asection *o;
13667
13668 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13669 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13670 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13671 continue;
13672 o = sub->sections;
13673 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13674 continue;
13675
13676 for (o = sub->sections; o != NULL; o = o->next)
13677 {
13678 /* When any section in a section group is kept, we keep all
13679 sections in the section group. If the first member of
13680 the section group is excluded, we will also exclude the
13681 group section. */
13682 if (o->flags & SEC_GROUP)
13683 {
13684 asection *first = elf_next_in_group (o);
13685 o->gc_mark = first->gc_mark;
13686 }
13687
13688 if (o->gc_mark)
13689 continue;
13690
13691 /* Skip sweeping sections already excluded. */
13692 if (o->flags & SEC_EXCLUDE)
13693 continue;
13694
13695 /* Since this is early in the link process, it is simple
13696 to remove a section from the output. */
13697 o->flags |= SEC_EXCLUDE;
13698
13699 if (info->print_gc_sections && o->size != 0)
13700 /* xgettext:c-format */
13701 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13702 o, sub);
13703 }
13704 }
13705
13706 return TRUE;
13707 }
13708
13709 /* Propagate collected vtable information. This is called through
13710 elf_link_hash_traverse. */
13711
13712 static bfd_boolean
13713 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13714 {
13715 /* Those that are not vtables. */
13716 if (h->start_stop
13717 || h->u2.vtable == NULL
13718 || h->u2.vtable->parent == NULL)
13719 return TRUE;
13720
13721 /* Those vtables that do not have parents, we cannot merge. */
13722 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13723 return TRUE;
13724
13725 /* If we've already been done, exit. */
13726 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13727 return TRUE;
13728
13729 /* Make sure the parent's table is up to date. */
13730 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13731
13732 if (h->u2.vtable->used == NULL)
13733 {
13734 /* None of this table's entries were referenced. Re-use the
13735 parent's table. */
13736 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13737 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13738 }
13739 else
13740 {
13741 size_t n;
13742 bfd_boolean *cu, *pu;
13743
13744 /* Or the parent's entries into ours. */
13745 cu = h->u2.vtable->used;
13746 cu[-1] = TRUE;
13747 pu = h->u2.vtable->parent->u2.vtable->used;
13748 if (pu != NULL)
13749 {
13750 const struct elf_backend_data *bed;
13751 unsigned int log_file_align;
13752
13753 bed = get_elf_backend_data (h->root.u.def.section->owner);
13754 log_file_align = bed->s->log_file_align;
13755 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13756 while (n--)
13757 {
13758 if (*pu)
13759 *cu = TRUE;
13760 pu++;
13761 cu++;
13762 }
13763 }
13764 }
13765
13766 return TRUE;
13767 }
13768
13769 static bfd_boolean
13770 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13771 {
13772 asection *sec;
13773 bfd_vma hstart, hend;
13774 Elf_Internal_Rela *relstart, *relend, *rel;
13775 const struct elf_backend_data *bed;
13776 unsigned int log_file_align;
13777
13778 /* Take care of both those symbols that do not describe vtables as
13779 well as those that are not loaded. */
13780 if (h->start_stop
13781 || h->u2.vtable == NULL
13782 || h->u2.vtable->parent == NULL)
13783 return TRUE;
13784
13785 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13786 || h->root.type == bfd_link_hash_defweak);
13787
13788 sec = h->root.u.def.section;
13789 hstart = h->root.u.def.value;
13790 hend = hstart + h->size;
13791
13792 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13793 if (!relstart)
13794 return *(bfd_boolean *) okp = FALSE;
13795 bed = get_elf_backend_data (sec->owner);
13796 log_file_align = bed->s->log_file_align;
13797
13798 relend = relstart + sec->reloc_count;
13799
13800 for (rel = relstart; rel < relend; ++rel)
13801 if (rel->r_offset >= hstart && rel->r_offset < hend)
13802 {
13803 /* If the entry is in use, do nothing. */
13804 if (h->u2.vtable->used
13805 && (rel->r_offset - hstart) < h->u2.vtable->size)
13806 {
13807 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13808 if (h->u2.vtable->used[entry])
13809 continue;
13810 }
13811 /* Otherwise, kill it. */
13812 rel->r_offset = rel->r_info = rel->r_addend = 0;
13813 }
13814
13815 return TRUE;
13816 }
13817
13818 /* Mark sections containing dynamically referenced symbols. When
13819 building shared libraries, we must assume that any visible symbol is
13820 referenced. */
13821
13822 bfd_boolean
13823 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13824 {
13825 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13826 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13827
13828 if ((h->root.type == bfd_link_hash_defined
13829 || h->root.type == bfd_link_hash_defweak)
13830 && ((h->ref_dynamic && !h->forced_local)
13831 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13832 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13833 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13834 && (!bfd_link_executable (info)
13835 || info->gc_keep_exported
13836 || info->export_dynamic
13837 || (h->dynamic
13838 && d != NULL
13839 && (*d->match) (&d->head, NULL, h->root.root.string)))
13840 && (h->versioned >= versioned
13841 || !bfd_hide_sym_by_version (info->version_info,
13842 h->root.root.string)))))
13843 h->root.u.def.section->flags |= SEC_KEEP;
13844
13845 return TRUE;
13846 }
13847
13848 /* Keep all sections containing symbols undefined on the command-line,
13849 and the section containing the entry symbol. */
13850
13851 void
13852 _bfd_elf_gc_keep (struct bfd_link_info *info)
13853 {
13854 struct bfd_sym_chain *sym;
13855
13856 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13857 {
13858 struct elf_link_hash_entry *h;
13859
13860 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13861 FALSE, FALSE, FALSE);
13862
13863 if (h != NULL
13864 && (h->root.type == bfd_link_hash_defined
13865 || h->root.type == bfd_link_hash_defweak)
13866 && !bfd_is_const_section (h->root.u.def.section))
13867 h->root.u.def.section->flags |= SEC_KEEP;
13868 }
13869 }
13870
13871 bfd_boolean
13872 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13873 struct bfd_link_info *info)
13874 {
13875 bfd *ibfd = info->input_bfds;
13876
13877 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13878 {
13879 asection *sec;
13880 struct elf_reloc_cookie cookie;
13881
13882 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13883 continue;
13884 sec = ibfd->sections;
13885 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13886 continue;
13887
13888 if (!init_reloc_cookie (&cookie, info, ibfd))
13889 return FALSE;
13890
13891 for (sec = ibfd->sections; sec; sec = sec->next)
13892 {
13893 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13894 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13895 {
13896 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13897 fini_reloc_cookie_rels (&cookie, sec);
13898 }
13899 }
13900 }
13901 return TRUE;
13902 }
13903
13904 /* Do mark and sweep of unused sections. */
13905
13906 bfd_boolean
13907 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13908 {
13909 bfd_boolean ok = TRUE;
13910 bfd *sub;
13911 elf_gc_mark_hook_fn gc_mark_hook;
13912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13913 struct elf_link_hash_table *htab;
13914
13915 if (!bed->can_gc_sections
13916 || !is_elf_hash_table (info->hash))
13917 {
13918 _bfd_error_handler(_("warning: gc-sections option ignored"));
13919 return TRUE;
13920 }
13921
13922 bed->gc_keep (info);
13923 htab = elf_hash_table (info);
13924
13925 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13926 at the .eh_frame section if we can mark the FDEs individually. */
13927 for (sub = info->input_bfds;
13928 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13929 sub = sub->link.next)
13930 {
13931 asection *sec;
13932 struct elf_reloc_cookie cookie;
13933
13934 sec = sub->sections;
13935 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13936 continue;
13937 sec = bfd_get_section_by_name (sub, ".eh_frame");
13938 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13939 {
13940 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13941 if (elf_section_data (sec)->sec_info
13942 && (sec->flags & SEC_LINKER_CREATED) == 0)
13943 elf_eh_frame_section (sub) = sec;
13944 fini_reloc_cookie_for_section (&cookie, sec);
13945 sec = bfd_get_next_section_by_name (NULL, sec);
13946 }
13947 }
13948
13949 /* Apply transitive closure to the vtable entry usage info. */
13950 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13951 if (!ok)
13952 return FALSE;
13953
13954 /* Kill the vtable relocations that were not used. */
13955 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13956 if (!ok)
13957 return FALSE;
13958
13959 /* Mark dynamically referenced symbols. */
13960 if (htab->dynamic_sections_created || info->gc_keep_exported)
13961 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13962
13963 /* Grovel through relocs to find out who stays ... */
13964 gc_mark_hook = bed->gc_mark_hook;
13965 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13966 {
13967 asection *o;
13968
13969 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13970 || elf_object_id (sub) != elf_hash_table_id (htab)
13971 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13972 continue;
13973
13974 o = sub->sections;
13975 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13976 continue;
13977
13978 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13979 Also treat note sections as a root, if the section is not part
13980 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13981 well as FINI_ARRAY sections for ld -r. */
13982 for (o = sub->sections; o != NULL; o = o->next)
13983 if (!o->gc_mark
13984 && (o->flags & SEC_EXCLUDE) == 0
13985 && ((o->flags & SEC_KEEP) != 0
13986 || (bfd_link_relocatable (info)
13987 && ((elf_section_data (o)->this_hdr.sh_type
13988 == SHT_PREINIT_ARRAY)
13989 || (elf_section_data (o)->this_hdr.sh_type
13990 == SHT_INIT_ARRAY)
13991 || (elf_section_data (o)->this_hdr.sh_type
13992 == SHT_FINI_ARRAY)))
13993 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13994 && elf_next_in_group (o) == NULL )))
13995 {
13996 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13997 return FALSE;
13998 }
13999 }
14000
14001 /* Allow the backend to mark additional target specific sections. */
14002 bed->gc_mark_extra_sections (info, gc_mark_hook);
14003
14004 /* ... and mark SEC_EXCLUDE for those that go. */
14005 return elf_gc_sweep (abfd, info);
14006 }
14007 \f
14008 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14009
14010 bfd_boolean
14011 bfd_elf_gc_record_vtinherit (bfd *abfd,
14012 asection *sec,
14013 struct elf_link_hash_entry *h,
14014 bfd_vma offset)
14015 {
14016 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14017 struct elf_link_hash_entry **search, *child;
14018 size_t extsymcount;
14019 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14020
14021 /* The sh_info field of the symtab header tells us where the
14022 external symbols start. We don't care about the local symbols at
14023 this point. */
14024 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14025 if (!elf_bad_symtab (abfd))
14026 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14027
14028 sym_hashes = elf_sym_hashes (abfd);
14029 sym_hashes_end = sym_hashes + extsymcount;
14030
14031 /* Hunt down the child symbol, which is in this section at the same
14032 offset as the relocation. */
14033 for (search = sym_hashes; search != sym_hashes_end; ++search)
14034 {
14035 if ((child = *search) != NULL
14036 && (child->root.type == bfd_link_hash_defined
14037 || child->root.type == bfd_link_hash_defweak)
14038 && child->root.u.def.section == sec
14039 && child->root.u.def.value == offset)
14040 goto win;
14041 }
14042
14043 /* xgettext:c-format */
14044 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14045 abfd, sec, (uint64_t) offset);
14046 bfd_set_error (bfd_error_invalid_operation);
14047 return FALSE;
14048
14049 win:
14050 if (!child->u2.vtable)
14051 {
14052 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14053 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14054 if (!child->u2.vtable)
14055 return FALSE;
14056 }
14057 if (!h)
14058 {
14059 /* This *should* only be the absolute section. It could potentially
14060 be that someone has defined a non-global vtable though, which
14061 would be bad. It isn't worth paging in the local symbols to be
14062 sure though; that case should simply be handled by the assembler. */
14063
14064 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14065 }
14066 else
14067 child->u2.vtable->parent = h;
14068
14069 return TRUE;
14070 }
14071
14072 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14073
14074 bfd_boolean
14075 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14076 struct elf_link_hash_entry *h,
14077 bfd_vma addend)
14078 {
14079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14080 unsigned int log_file_align = bed->s->log_file_align;
14081
14082 if (!h)
14083 {
14084 /* xgettext:c-format */
14085 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14086 abfd, sec);
14087 bfd_set_error (bfd_error_bad_value);
14088 return FALSE;
14089 }
14090
14091 if (!h->u2.vtable)
14092 {
14093 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14094 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14095 if (!h->u2.vtable)
14096 return FALSE;
14097 }
14098
14099 if (addend >= h->u2.vtable->size)
14100 {
14101 size_t size, bytes, file_align;
14102 bfd_boolean *ptr = h->u2.vtable->used;
14103
14104 /* While the symbol is undefined, we have to be prepared to handle
14105 a zero size. */
14106 file_align = 1 << log_file_align;
14107 if (h->root.type == bfd_link_hash_undefined)
14108 size = addend + file_align;
14109 else
14110 {
14111 size = h->size;
14112 if (addend >= size)
14113 {
14114 /* Oops! We've got a reference past the defined end of
14115 the table. This is probably a bug -- shall we warn? */
14116 size = addend + file_align;
14117 }
14118 }
14119 size = (size + file_align - 1) & -file_align;
14120
14121 /* Allocate one extra entry for use as a "done" flag for the
14122 consolidation pass. */
14123 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14124
14125 if (ptr)
14126 {
14127 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14128
14129 if (ptr != NULL)
14130 {
14131 size_t oldbytes;
14132
14133 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14134 * sizeof (bfd_boolean));
14135 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14136 }
14137 }
14138 else
14139 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14140
14141 if (ptr == NULL)
14142 return FALSE;
14143
14144 /* And arrange for that done flag to be at index -1. */
14145 h->u2.vtable->used = ptr + 1;
14146 h->u2.vtable->size = size;
14147 }
14148
14149 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14150
14151 return TRUE;
14152 }
14153
14154 /* Map an ELF section header flag to its corresponding string. */
14155 typedef struct
14156 {
14157 char *flag_name;
14158 flagword flag_value;
14159 } elf_flags_to_name_table;
14160
14161 static elf_flags_to_name_table elf_flags_to_names [] =
14162 {
14163 { "SHF_WRITE", SHF_WRITE },
14164 { "SHF_ALLOC", SHF_ALLOC },
14165 { "SHF_EXECINSTR", SHF_EXECINSTR },
14166 { "SHF_MERGE", SHF_MERGE },
14167 { "SHF_STRINGS", SHF_STRINGS },
14168 { "SHF_INFO_LINK", SHF_INFO_LINK},
14169 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14170 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14171 { "SHF_GROUP", SHF_GROUP },
14172 { "SHF_TLS", SHF_TLS },
14173 { "SHF_MASKOS", SHF_MASKOS },
14174 { "SHF_EXCLUDE", SHF_EXCLUDE },
14175 };
14176
14177 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14178 bfd_boolean
14179 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14180 struct flag_info *flaginfo,
14181 asection *section)
14182 {
14183 const bfd_vma sh_flags = elf_section_flags (section);
14184
14185 if (!flaginfo->flags_initialized)
14186 {
14187 bfd *obfd = info->output_bfd;
14188 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14189 struct flag_info_list *tf = flaginfo->flag_list;
14190 int with_hex = 0;
14191 int without_hex = 0;
14192
14193 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14194 {
14195 unsigned i;
14196 flagword (*lookup) (char *);
14197
14198 lookup = bed->elf_backend_lookup_section_flags_hook;
14199 if (lookup != NULL)
14200 {
14201 flagword hexval = (*lookup) ((char *) tf->name);
14202
14203 if (hexval != 0)
14204 {
14205 if (tf->with == with_flags)
14206 with_hex |= hexval;
14207 else if (tf->with == without_flags)
14208 without_hex |= hexval;
14209 tf->valid = TRUE;
14210 continue;
14211 }
14212 }
14213 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14214 {
14215 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14216 {
14217 if (tf->with == with_flags)
14218 with_hex |= elf_flags_to_names[i].flag_value;
14219 else if (tf->with == without_flags)
14220 without_hex |= elf_flags_to_names[i].flag_value;
14221 tf->valid = TRUE;
14222 break;
14223 }
14224 }
14225 if (!tf->valid)
14226 {
14227 info->callbacks->einfo
14228 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14229 return FALSE;
14230 }
14231 }
14232 flaginfo->flags_initialized = TRUE;
14233 flaginfo->only_with_flags |= with_hex;
14234 flaginfo->not_with_flags |= without_hex;
14235 }
14236
14237 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14238 return FALSE;
14239
14240 if ((flaginfo->not_with_flags & sh_flags) != 0)
14241 return FALSE;
14242
14243 return TRUE;
14244 }
14245
14246 struct alloc_got_off_arg {
14247 bfd_vma gotoff;
14248 struct bfd_link_info *info;
14249 };
14250
14251 /* We need a special top-level link routine to convert got reference counts
14252 to real got offsets. */
14253
14254 static bfd_boolean
14255 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14256 {
14257 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14258 bfd *obfd = gofarg->info->output_bfd;
14259 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14260
14261 if (h->got.refcount > 0)
14262 {
14263 h->got.offset = gofarg->gotoff;
14264 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14265 }
14266 else
14267 h->got.offset = (bfd_vma) -1;
14268
14269 return TRUE;
14270 }
14271
14272 /* And an accompanying bit to work out final got entry offsets once
14273 we're done. Should be called from final_link. */
14274
14275 bfd_boolean
14276 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14277 struct bfd_link_info *info)
14278 {
14279 bfd *i;
14280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14281 bfd_vma gotoff;
14282 struct alloc_got_off_arg gofarg;
14283
14284 BFD_ASSERT (abfd == info->output_bfd);
14285
14286 if (! is_elf_hash_table (info->hash))
14287 return FALSE;
14288
14289 /* The GOT offset is relative to the .got section, but the GOT header is
14290 put into the .got.plt section, if the backend uses it. */
14291 if (bed->want_got_plt)
14292 gotoff = 0;
14293 else
14294 gotoff = bed->got_header_size;
14295
14296 /* Do the local .got entries first. */
14297 for (i = info->input_bfds; i; i = i->link.next)
14298 {
14299 bfd_signed_vma *local_got;
14300 size_t j, locsymcount;
14301 Elf_Internal_Shdr *symtab_hdr;
14302
14303 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14304 continue;
14305
14306 local_got = elf_local_got_refcounts (i);
14307 if (!local_got)
14308 continue;
14309
14310 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14311 if (elf_bad_symtab (i))
14312 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14313 else
14314 locsymcount = symtab_hdr->sh_info;
14315
14316 for (j = 0; j < locsymcount; ++j)
14317 {
14318 if (local_got[j] > 0)
14319 {
14320 local_got[j] = gotoff;
14321 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14322 }
14323 else
14324 local_got[j] = (bfd_vma) -1;
14325 }
14326 }
14327
14328 /* Then the global .got entries. .plt refcounts are handled by
14329 adjust_dynamic_symbol */
14330 gofarg.gotoff = gotoff;
14331 gofarg.info = info;
14332 elf_link_hash_traverse (elf_hash_table (info),
14333 elf_gc_allocate_got_offsets,
14334 &gofarg);
14335 return TRUE;
14336 }
14337
14338 /* Many folk need no more in the way of final link than this, once
14339 got entry reference counting is enabled. */
14340
14341 bfd_boolean
14342 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14343 {
14344 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14345 return FALSE;
14346
14347 /* Invoke the regular ELF backend linker to do all the work. */
14348 return bfd_elf_final_link (abfd, info);
14349 }
14350
14351 bfd_boolean
14352 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14353 {
14354 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14355
14356 if (rcookie->bad_symtab)
14357 rcookie->rel = rcookie->rels;
14358
14359 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14360 {
14361 unsigned long r_symndx;
14362
14363 if (! rcookie->bad_symtab)
14364 if (rcookie->rel->r_offset > offset)
14365 return FALSE;
14366 if (rcookie->rel->r_offset != offset)
14367 continue;
14368
14369 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14370 if (r_symndx == STN_UNDEF)
14371 return TRUE;
14372
14373 if (r_symndx >= rcookie->locsymcount
14374 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14375 {
14376 struct elf_link_hash_entry *h;
14377
14378 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14379
14380 while (h->root.type == bfd_link_hash_indirect
14381 || h->root.type == bfd_link_hash_warning)
14382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14383
14384 if ((h->root.type == bfd_link_hash_defined
14385 || h->root.type == bfd_link_hash_defweak)
14386 && (h->root.u.def.section->owner != rcookie->abfd
14387 || h->root.u.def.section->kept_section != NULL
14388 || discarded_section (h->root.u.def.section)))
14389 return TRUE;
14390 }
14391 else
14392 {
14393 /* It's not a relocation against a global symbol,
14394 but it could be a relocation against a local
14395 symbol for a discarded section. */
14396 asection *isec;
14397 Elf_Internal_Sym *isym;
14398
14399 /* Need to: get the symbol; get the section. */
14400 isym = &rcookie->locsyms[r_symndx];
14401 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14402 if (isec != NULL
14403 && (isec->kept_section != NULL
14404 || discarded_section (isec)))
14405 return TRUE;
14406 }
14407 return FALSE;
14408 }
14409 return FALSE;
14410 }
14411
14412 /* Discard unneeded references to discarded sections.
14413 Returns -1 on error, 1 if any section's size was changed, 0 if
14414 nothing changed. This function assumes that the relocations are in
14415 sorted order, which is true for all known assemblers. */
14416
14417 int
14418 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14419 {
14420 struct elf_reloc_cookie cookie;
14421 asection *o;
14422 bfd *abfd;
14423 int changed = 0;
14424
14425 if (info->traditional_format
14426 || !is_elf_hash_table (info->hash))
14427 return 0;
14428
14429 o = bfd_get_section_by_name (output_bfd, ".stab");
14430 if (o != NULL)
14431 {
14432 asection *i;
14433
14434 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14435 {
14436 if (i->size == 0
14437 || i->reloc_count == 0
14438 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14439 continue;
14440
14441 abfd = i->owner;
14442 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14443 continue;
14444
14445 if (!init_reloc_cookie_for_section (&cookie, info, i))
14446 return -1;
14447
14448 if (_bfd_discard_section_stabs (abfd, i,
14449 elf_section_data (i)->sec_info,
14450 bfd_elf_reloc_symbol_deleted_p,
14451 &cookie))
14452 changed = 1;
14453
14454 fini_reloc_cookie_for_section (&cookie, i);
14455 }
14456 }
14457
14458 o = NULL;
14459 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14460 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14461 if (o != NULL)
14462 {
14463 asection *i;
14464 int eh_changed = 0;
14465 unsigned int eh_alignment; /* Octets. */
14466
14467 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14468 {
14469 if (i->size == 0)
14470 continue;
14471
14472 abfd = i->owner;
14473 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14474 continue;
14475
14476 if (!init_reloc_cookie_for_section (&cookie, info, i))
14477 return -1;
14478
14479 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14480 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14481 bfd_elf_reloc_symbol_deleted_p,
14482 &cookie))
14483 {
14484 eh_changed = 1;
14485 if (i->size != i->rawsize)
14486 changed = 1;
14487 }
14488
14489 fini_reloc_cookie_for_section (&cookie, i);
14490 }
14491
14492 eh_alignment = ((1 << o->alignment_power)
14493 * bfd_octets_per_byte (output_bfd, o));
14494 /* Skip over zero terminator, and prevent empty sections from
14495 adding alignment padding at the end. */
14496 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14497 if (i->size == 0)
14498 i->flags |= SEC_EXCLUDE;
14499 else if (i->size > 4)
14500 break;
14501 /* The last non-empty eh_frame section doesn't need padding. */
14502 if (i != NULL)
14503 i = i->map_tail.s;
14504 /* Any prior sections must pad the last FDE out to the output
14505 section alignment. Otherwise we might have zero padding
14506 between sections, which would be seen as a terminator. */
14507 for (; i != NULL; i = i->map_tail.s)
14508 if (i->size == 4)
14509 /* All but the last zero terminator should have been removed. */
14510 BFD_FAIL ();
14511 else
14512 {
14513 bfd_size_type size
14514 = (i->size + eh_alignment - 1) & -eh_alignment;
14515 if (i->size != size)
14516 {
14517 i->size = size;
14518 changed = 1;
14519 eh_changed = 1;
14520 }
14521 }
14522 if (eh_changed)
14523 elf_link_hash_traverse (elf_hash_table (info),
14524 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14525 }
14526
14527 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14528 {
14529 const struct elf_backend_data *bed;
14530 asection *s;
14531
14532 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14533 continue;
14534 s = abfd->sections;
14535 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14536 continue;
14537
14538 bed = get_elf_backend_data (abfd);
14539
14540 if (bed->elf_backend_discard_info != NULL)
14541 {
14542 if (!init_reloc_cookie (&cookie, info, abfd))
14543 return -1;
14544
14545 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14546 changed = 1;
14547
14548 fini_reloc_cookie (&cookie, abfd);
14549 }
14550 }
14551
14552 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14553 _bfd_elf_end_eh_frame_parsing (info);
14554
14555 if (info->eh_frame_hdr_type
14556 && !bfd_link_relocatable (info)
14557 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14558 changed = 1;
14559
14560 return changed;
14561 }
14562
14563 bfd_boolean
14564 _bfd_elf_section_already_linked (bfd *abfd,
14565 asection *sec,
14566 struct bfd_link_info *info)
14567 {
14568 flagword flags;
14569 const char *name, *key;
14570 struct bfd_section_already_linked *l;
14571 struct bfd_section_already_linked_hash_entry *already_linked_list;
14572
14573 if (sec->output_section == bfd_abs_section_ptr)
14574 return FALSE;
14575
14576 flags = sec->flags;
14577
14578 /* Return if it isn't a linkonce section. A comdat group section
14579 also has SEC_LINK_ONCE set. */
14580 if ((flags & SEC_LINK_ONCE) == 0)
14581 return FALSE;
14582
14583 /* Don't put group member sections on our list of already linked
14584 sections. They are handled as a group via their group section. */
14585 if (elf_sec_group (sec) != NULL)
14586 return FALSE;
14587
14588 /* For a SHT_GROUP section, use the group signature as the key. */
14589 name = sec->name;
14590 if ((flags & SEC_GROUP) != 0
14591 && elf_next_in_group (sec) != NULL
14592 && elf_group_name (elf_next_in_group (sec)) != NULL)
14593 key = elf_group_name (elf_next_in_group (sec));
14594 else
14595 {
14596 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14597 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14598 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14599 key++;
14600 else
14601 /* Must be a user linkonce section that doesn't follow gcc's
14602 naming convention. In this case we won't be matching
14603 single member groups. */
14604 key = name;
14605 }
14606
14607 already_linked_list = bfd_section_already_linked_table_lookup (key);
14608
14609 for (l = already_linked_list->entry; l != NULL; l = l->next)
14610 {
14611 /* We may have 2 different types of sections on the list: group
14612 sections with a signature of <key> (<key> is some string),
14613 and linkonce sections named .gnu.linkonce.<type>.<key>.
14614 Match like sections. LTO plugin sections are an exception.
14615 They are always named .gnu.linkonce.t.<key> and match either
14616 type of section. */
14617 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14618 && ((flags & SEC_GROUP) != 0
14619 || strcmp (name, l->sec->name) == 0))
14620 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14621 || (sec->owner->flags & BFD_PLUGIN) != 0)
14622 {
14623 /* The section has already been linked. See if we should
14624 issue a warning. */
14625 if (!_bfd_handle_already_linked (sec, l, info))
14626 return FALSE;
14627
14628 if (flags & SEC_GROUP)
14629 {
14630 asection *first = elf_next_in_group (sec);
14631 asection *s = first;
14632
14633 while (s != NULL)
14634 {
14635 s->output_section = bfd_abs_section_ptr;
14636 /* Record which group discards it. */
14637 s->kept_section = l->sec;
14638 s = elf_next_in_group (s);
14639 /* These lists are circular. */
14640 if (s == first)
14641 break;
14642 }
14643 }
14644
14645 return TRUE;
14646 }
14647 }
14648
14649 /* A single member comdat group section may be discarded by a
14650 linkonce section and vice versa. */
14651 if ((flags & SEC_GROUP) != 0)
14652 {
14653 asection *first = elf_next_in_group (sec);
14654
14655 if (first != NULL && elf_next_in_group (first) == first)
14656 /* Check this single member group against linkonce sections. */
14657 for (l = already_linked_list->entry; l != NULL; l = l->next)
14658 if ((l->sec->flags & SEC_GROUP) == 0
14659 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14660 {
14661 first->output_section = bfd_abs_section_ptr;
14662 first->kept_section = l->sec;
14663 sec->output_section = bfd_abs_section_ptr;
14664 break;
14665 }
14666 }
14667 else
14668 /* Check this linkonce section against single member groups. */
14669 for (l = already_linked_list->entry; l != NULL; l = l->next)
14670 if (l->sec->flags & SEC_GROUP)
14671 {
14672 asection *first = elf_next_in_group (l->sec);
14673
14674 if (first != NULL
14675 && elf_next_in_group (first) == first
14676 && bfd_elf_match_symbols_in_sections (first, sec, info))
14677 {
14678 sec->output_section = bfd_abs_section_ptr;
14679 sec->kept_section = first;
14680 break;
14681 }
14682 }
14683
14684 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14685 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14686 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14687 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14688 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14689 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14690 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14691 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14692 The reverse order cannot happen as there is never a bfd with only the
14693 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14694 matter as here were are looking only for cross-bfd sections. */
14695
14696 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14697 for (l = already_linked_list->entry; l != NULL; l = l->next)
14698 if ((l->sec->flags & SEC_GROUP) == 0
14699 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14700 {
14701 if (abfd != l->sec->owner)
14702 sec->output_section = bfd_abs_section_ptr;
14703 break;
14704 }
14705
14706 /* This is the first section with this name. Record it. */
14707 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14708 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14709 return sec->output_section == bfd_abs_section_ptr;
14710 }
14711
14712 bfd_boolean
14713 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14714 {
14715 return sym->st_shndx == SHN_COMMON;
14716 }
14717
14718 unsigned int
14719 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14720 {
14721 return SHN_COMMON;
14722 }
14723
14724 asection *
14725 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14726 {
14727 return bfd_com_section_ptr;
14728 }
14729
14730 bfd_vma
14731 _bfd_elf_default_got_elt_size (bfd *abfd,
14732 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14733 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14734 bfd *ibfd ATTRIBUTE_UNUSED,
14735 unsigned long symndx ATTRIBUTE_UNUSED)
14736 {
14737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14738 return bed->s->arch_size / 8;
14739 }
14740
14741 /* Routines to support the creation of dynamic relocs. */
14742
14743 /* Returns the name of the dynamic reloc section associated with SEC. */
14744
14745 static const char *
14746 get_dynamic_reloc_section_name (bfd * abfd,
14747 asection * sec,
14748 bfd_boolean is_rela)
14749 {
14750 char *name;
14751 const char *old_name = bfd_section_name (sec);
14752 const char *prefix = is_rela ? ".rela" : ".rel";
14753
14754 if (old_name == NULL)
14755 return NULL;
14756
14757 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14758 sprintf (name, "%s%s", prefix, old_name);
14759
14760 return name;
14761 }
14762
14763 /* Returns the dynamic reloc section associated with SEC.
14764 If necessary compute the name of the dynamic reloc section based
14765 on SEC's name (looked up in ABFD's string table) and the setting
14766 of IS_RELA. */
14767
14768 asection *
14769 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14770 asection * sec,
14771 bfd_boolean is_rela)
14772 {
14773 asection * reloc_sec = elf_section_data (sec)->sreloc;
14774
14775 if (reloc_sec == NULL)
14776 {
14777 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14778
14779 if (name != NULL)
14780 {
14781 reloc_sec = bfd_get_linker_section (abfd, name);
14782
14783 if (reloc_sec != NULL)
14784 elf_section_data (sec)->sreloc = reloc_sec;
14785 }
14786 }
14787
14788 return reloc_sec;
14789 }
14790
14791 /* Returns the dynamic reloc section associated with SEC. If the
14792 section does not exist it is created and attached to the DYNOBJ
14793 bfd and stored in the SRELOC field of SEC's elf_section_data
14794 structure.
14795
14796 ALIGNMENT is the alignment for the newly created section and
14797 IS_RELA defines whether the name should be .rela.<SEC's name>
14798 or .rel.<SEC's name>. The section name is looked up in the
14799 string table associated with ABFD. */
14800
14801 asection *
14802 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14803 bfd *dynobj,
14804 unsigned int alignment,
14805 bfd *abfd,
14806 bfd_boolean is_rela)
14807 {
14808 asection * reloc_sec = elf_section_data (sec)->sreloc;
14809
14810 if (reloc_sec == NULL)
14811 {
14812 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14813
14814 if (name == NULL)
14815 return NULL;
14816
14817 reloc_sec = bfd_get_linker_section (dynobj, name);
14818
14819 if (reloc_sec == NULL)
14820 {
14821 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14822 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14823 if ((sec->flags & SEC_ALLOC) != 0)
14824 flags |= SEC_ALLOC | SEC_LOAD;
14825
14826 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14827 if (reloc_sec != NULL)
14828 {
14829 /* _bfd_elf_get_sec_type_attr chooses a section type by
14830 name. Override as it may be wrong, eg. for a user
14831 section named "auto" we'll get ".relauto" which is
14832 seen to be a .rela section. */
14833 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14834 if (!bfd_set_section_alignment (reloc_sec, alignment))
14835 reloc_sec = NULL;
14836 }
14837 }
14838
14839 elf_section_data (sec)->sreloc = reloc_sec;
14840 }
14841
14842 return reloc_sec;
14843 }
14844
14845 /* Copy the ELF symbol type and other attributes for a linker script
14846 assignment from HSRC to HDEST. Generally this should be treated as
14847 if we found a strong non-dynamic definition for HDEST (except that
14848 ld ignores multiple definition errors). */
14849 void
14850 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14851 struct bfd_link_hash_entry *hdest,
14852 struct bfd_link_hash_entry *hsrc)
14853 {
14854 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14855 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14856 Elf_Internal_Sym isym;
14857
14858 ehdest->type = ehsrc->type;
14859 ehdest->target_internal = ehsrc->target_internal;
14860
14861 isym.st_other = ehsrc->other;
14862 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14863 }
14864
14865 /* Append a RELA relocation REL to section S in BFD. */
14866
14867 void
14868 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14869 {
14870 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14871 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14872 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14873 bed->s->swap_reloca_out (abfd, rel, loc);
14874 }
14875
14876 /* Append a REL relocation REL to section S in BFD. */
14877
14878 void
14879 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14880 {
14881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14882 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14883 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14884 bed->s->swap_reloc_out (abfd, rel, loc);
14885 }
14886
14887 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14888
14889 struct bfd_link_hash_entry *
14890 bfd_elf_define_start_stop (struct bfd_link_info *info,
14891 const char *symbol, asection *sec)
14892 {
14893 struct elf_link_hash_entry *h;
14894
14895 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14896 FALSE, FALSE, TRUE);
14897 /* NB: Common symbols will be turned into definition later. */
14898 if (h != NULL
14899 && (h->root.type == bfd_link_hash_undefined
14900 || h->root.type == bfd_link_hash_undefweak
14901 || ((h->ref_regular || h->def_dynamic)
14902 && !h->def_regular
14903 && h->root.type != bfd_link_hash_common)))
14904 {
14905 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14906 h->verinfo.verdef = NULL;
14907 h->root.type = bfd_link_hash_defined;
14908 h->root.u.def.section = sec;
14909 h->root.u.def.value = 0;
14910 h->def_regular = 1;
14911 h->def_dynamic = 0;
14912 h->start_stop = 1;
14913 h->u2.start_stop_section = sec;
14914 if (symbol[0] == '.')
14915 {
14916 /* .startof. and .sizeof. symbols are local. */
14917 const struct elf_backend_data *bed;
14918 bed = get_elf_backend_data (info->output_bfd);
14919 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14920 }
14921 else
14922 {
14923 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14924 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
14925 | info->start_stop_visibility);
14926 if (was_dynamic)
14927 bfd_elf_link_record_dynamic_symbol (info, h);
14928 }
14929 return &h->root;
14930 }
14931 return NULL;
14932 }
14933
14934 /* Find dynamic relocs for H that apply to read-only sections. */
14935
14936 asection *
14937 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
14938 {
14939 struct elf_dyn_relocs *p;
14940
14941 for (p = h->dyn_relocs; p != NULL; p = p->next)
14942 {
14943 asection *s = p->sec->output_section;
14944
14945 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14946 return p->sec;
14947 }
14948 return NULL;
14949 }
14950
14951 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
14952 read-only sections. */
14953
14954 bfd_boolean
14955 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
14956 {
14957 asection *sec;
14958
14959 if (h->root.type == bfd_link_hash_indirect)
14960 return TRUE;
14961
14962 sec = _bfd_elf_readonly_dynrelocs (h);
14963 if (sec != NULL)
14964 {
14965 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14966
14967 info->flags |= DF_TEXTREL;
14968 /* xgettext:c-format */
14969 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
14970 "in read-only section `%pA'\n"),
14971 sec->owner, h->root.root.string, sec);
14972
14973 if (bfd_link_textrel_check (info))
14974 /* xgettext:c-format */
14975 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
14976 "in read-only section `%pA'\n"),
14977 sec->owner, h->root.root.string, sec);
14978
14979 /* Not an error, just cut short the traversal. */
14980 return FALSE;
14981 }
14982 return TRUE;
14983 }
14984
14985 /* Add dynamic tags. */
14986
14987 bfd_boolean
14988 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
14989 bfd_boolean need_dynamic_reloc)
14990 {
14991 struct elf_link_hash_table *htab = elf_hash_table (info);
14992
14993 if (htab->dynamic_sections_created)
14994 {
14995 /* Add some entries to the .dynamic section. We fill in the
14996 values later, in finish_dynamic_sections, but we must add
14997 the entries now so that we get the correct size for the
14998 .dynamic section. The DT_DEBUG entry is filled in by the
14999 dynamic linker and used by the debugger. */
15000 #define add_dynamic_entry(TAG, VAL) \
15001 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15002
15003 const struct elf_backend_data *bed
15004 = get_elf_backend_data (output_bfd);
15005
15006 if (bfd_link_executable (info))
15007 {
15008 if (!add_dynamic_entry (DT_DEBUG, 0))
15009 return FALSE;
15010 }
15011
15012 if (htab->dt_pltgot_required || htab->splt->size != 0)
15013 {
15014 /* DT_PLTGOT is used by prelink even if there is no PLT
15015 relocation. */
15016 if (!add_dynamic_entry (DT_PLTGOT, 0))
15017 return FALSE;
15018 }
15019
15020 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15021 {
15022 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15023 || !add_dynamic_entry (DT_PLTREL,
15024 (bed->rela_plts_and_copies_p
15025 ? DT_RELA : DT_REL))
15026 || !add_dynamic_entry (DT_JMPREL, 0))
15027 return FALSE;
15028 }
15029
15030 if (htab->tlsdesc_plt
15031 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15032 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15033 return FALSE;
15034
15035 if (need_dynamic_reloc)
15036 {
15037 if (bed->rela_plts_and_copies_p)
15038 {
15039 if (!add_dynamic_entry (DT_RELA, 0)
15040 || !add_dynamic_entry (DT_RELASZ, 0)
15041 || !add_dynamic_entry (DT_RELAENT,
15042 bed->s->sizeof_rela))
15043 return FALSE;
15044 }
15045 else
15046 {
15047 if (!add_dynamic_entry (DT_REL, 0)
15048 || !add_dynamic_entry (DT_RELSZ, 0)
15049 || !add_dynamic_entry (DT_RELENT,
15050 bed->s->sizeof_rel))
15051 return FALSE;
15052 }
15053
15054 /* If any dynamic relocs apply to a read-only section,
15055 then we need a DT_TEXTREL entry. */
15056 if ((info->flags & DF_TEXTREL) == 0)
15057 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15058 info);
15059
15060 if ((info->flags & DF_TEXTREL) != 0)
15061 {
15062 if (htab->ifunc_resolvers)
15063 info->callbacks->einfo
15064 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15065 "may result in a segfault at runtime; recompile with %s\n"),
15066 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15067
15068 if (!add_dynamic_entry (DT_TEXTREL, 0))
15069 return FALSE;
15070 }
15071 }
15072 }
15073 #undef add_dynamic_entry
15074
15075 return TRUE;
15076 }