]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
elf: Add GNU_PROPERTY_1_NEEDED check
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #include <limits.h>
36 #ifndef CHAR_BIT
37 #define CHAR_BIT 8
38 #endif
39
40 /* This struct is used to pass information to routines called via
41 elf_link_hash_traverse which must return failure. */
42
43 struct elf_info_failed
44 {
45 struct bfd_link_info *info;
46 bool failed;
47 };
48
49 /* This structure is used to pass information to
50 _bfd_elf_link_find_version_dependencies. */
51
52 struct elf_find_verdep_info
53 {
54 /* General link information. */
55 struct bfd_link_info *info;
56 /* The number of dependencies. */
57 unsigned int vers;
58 /* Whether we had a failure. */
59 bool failed;
60 };
61
62 static bool _bfd_elf_fix_symbol_flags
63 (struct elf_link_hash_entry *, struct elf_info_failed *);
64
65 asection *
66 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
67 unsigned long r_symndx,
68 bool discard)
69 {
70 if (r_symndx >= cookie->locsymcount
71 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
72 {
73 struct elf_link_hash_entry *h;
74
75 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
76
77 while (h->root.type == bfd_link_hash_indirect
78 || h->root.type == bfd_link_hash_warning)
79 h = (struct elf_link_hash_entry *) h->root.u.i.link;
80
81 if ((h->root.type == bfd_link_hash_defined
82 || h->root.type == bfd_link_hash_defweak)
83 && discarded_section (h->root.u.def.section))
84 return h->root.u.def.section;
85 else
86 return NULL;
87 }
88 else
89 {
90 /* It's not a relocation against a global symbol,
91 but it could be a relocation against a local
92 symbol for a discarded section. */
93 asection *isec;
94 Elf_Internal_Sym *isym;
95
96 /* Need to: get the symbol; get the section. */
97 isym = &cookie->locsyms[r_symndx];
98 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
99 if (isec != NULL
100 && discard ? discarded_section (isec) : 1)
101 return isec;
102 }
103 return NULL;
104 }
105
106 /* Define a symbol in a dynamic linkage section. */
107
108 struct elf_link_hash_entry *
109 _bfd_elf_define_linkage_sym (bfd *abfd,
110 struct bfd_link_info *info,
111 asection *sec,
112 const char *name)
113 {
114 struct elf_link_hash_entry *h;
115 struct bfd_link_hash_entry *bh;
116 const struct elf_backend_data *bed;
117
118 h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false);
119 if (h != NULL)
120 {
121 /* Zap symbol defined in an as-needed lib that wasn't linked.
122 This is a symptom of a larger problem: Absolute symbols
123 defined in shared libraries can't be overridden, because we
124 lose the link to the bfd which is via the symbol section. */
125 h->root.type = bfd_link_hash_new;
126 bh = &h->root;
127 }
128 else
129 bh = NULL;
130
131 bed = get_elf_backend_data (abfd);
132 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
133 sec, 0, NULL, false, bed->collect,
134 &bh))
135 return NULL;
136 h = (struct elf_link_hash_entry *) bh;
137 BFD_ASSERT (h != NULL);
138 h->def_regular = 1;
139 h->non_elf = 0;
140 h->root.linker_def = 1;
141 h->type = STT_OBJECT;
142 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
143 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
144
145 (*bed->elf_backend_hide_symbol) (info, h, true);
146 return h;
147 }
148
149 bool
150 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
151 {
152 flagword flags;
153 asection *s;
154 struct elf_link_hash_entry *h;
155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
156 struct elf_link_hash_table *htab = elf_hash_table (info);
157
158 /* This function may be called more than once. */
159 if (htab->sgot != NULL)
160 return true;
161
162 flags = bed->dynamic_sec_flags;
163
164 s = bfd_make_section_anyway_with_flags (abfd,
165 (bed->rela_plts_and_copies_p
166 ? ".rela.got" : ".rel.got"),
167 (bed->dynamic_sec_flags
168 | SEC_READONLY));
169 if (s == NULL
170 || !bfd_set_section_alignment (s, bed->s->log_file_align))
171 return false;
172 htab->srelgot = s;
173
174 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
175 if (s == NULL
176 || !bfd_set_section_alignment (s, bed->s->log_file_align))
177 return false;
178 htab->sgot = s;
179
180 if (bed->want_got_plt)
181 {
182 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
183 if (s == NULL
184 || !bfd_set_section_alignment (s, bed->s->log_file_align))
185 return false;
186 htab->sgotplt = s;
187 }
188
189 /* The first bit of the global offset table is the header. */
190 s->size += bed->got_header_size;
191
192 if (bed->want_got_sym)
193 {
194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
195 (or .got.plt) section. We don't do this in the linker script
196 because we don't want to define the symbol if we are not creating
197 a global offset table. */
198 h = _bfd_elf_define_linkage_sym (abfd, info, s,
199 "_GLOBAL_OFFSET_TABLE_");
200 elf_hash_table (info)->hgot = h;
201 if (h == NULL)
202 return false;
203 }
204
205 return true;
206 }
207 \f
208 /* Create a strtab to hold the dynamic symbol names. */
209 static bool
210 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
211 {
212 struct elf_link_hash_table *hash_table;
213
214 hash_table = elf_hash_table (info);
215 if (hash_table->dynobj == NULL)
216 {
217 /* We may not set dynobj, an input file holding linker created
218 dynamic sections to abfd, which may be a dynamic object with
219 its own dynamic sections. We need to find a normal input file
220 to hold linker created sections if possible. */
221 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
222 {
223 bfd *ibfd;
224 asection *s;
225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
226 if ((ibfd->flags
227 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
228 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
229 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
230 && !((s = ibfd->sections) != NULL
231 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
232 {
233 abfd = ibfd;
234 break;
235 }
236 }
237 hash_table->dynobj = abfd;
238 }
239
240 if (hash_table->dynstr == NULL)
241 {
242 hash_table->dynstr = _bfd_elf_strtab_init ();
243 if (hash_table->dynstr == NULL)
244 return false;
245 }
246 return true;
247 }
248
249 /* Create some sections which will be filled in with dynamic linking
250 information. ABFD is an input file which requires dynamic sections
251 to be created. The dynamic sections take up virtual memory space
252 when the final executable is run, so we need to create them before
253 addresses are assigned to the output sections. We work out the
254 actual contents and size of these sections later. */
255
256 bool
257 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
258 {
259 flagword flags;
260 asection *s;
261 const struct elf_backend_data *bed;
262 struct elf_link_hash_entry *h;
263
264 if (! is_elf_hash_table (info->hash))
265 return false;
266
267 if (elf_hash_table (info)->dynamic_sections_created)
268 return true;
269
270 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
271 return false;
272
273 abfd = elf_hash_table (info)->dynobj;
274 bed = get_elf_backend_data (abfd);
275
276 flags = bed->dynamic_sec_flags;
277
278 /* A dynamically linked executable has a .interp section, but a
279 shared library does not. */
280 if (bfd_link_executable (info) && !info->nointerp)
281 {
282 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
283 flags | SEC_READONLY);
284 if (s == NULL)
285 return false;
286 }
287
288 /* Create sections to hold version informations. These are removed
289 if they are not needed. */
290 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
291 flags | SEC_READONLY);
292 if (s == NULL
293 || !bfd_set_section_alignment (s, bed->s->log_file_align))
294 return false;
295
296 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
297 flags | SEC_READONLY);
298 if (s == NULL
299 || !bfd_set_section_alignment (s, 1))
300 return false;
301
302 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
303 flags | SEC_READONLY);
304 if (s == NULL
305 || !bfd_set_section_alignment (s, bed->s->log_file_align))
306 return false;
307
308 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
309 flags | SEC_READONLY);
310 if (s == NULL
311 || !bfd_set_section_alignment (s, bed->s->log_file_align))
312 return false;
313 elf_hash_table (info)->dynsym = s;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
316 flags | SEC_READONLY);
317 if (s == NULL)
318 return false;
319
320 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
321 if (s == NULL
322 || !bfd_set_section_alignment (s, bed->s->log_file_align))
323 return false;
324
325 /* The special symbol _DYNAMIC is always set to the start of the
326 .dynamic section. We could set _DYNAMIC in a linker script, but we
327 only want to define it if we are, in fact, creating a .dynamic
328 section. We don't want to define it if there is no .dynamic
329 section, since on some ELF platforms the start up code examines it
330 to decide how to initialize the process. */
331 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
332 elf_hash_table (info)->hdynamic = h;
333 if (h == NULL)
334 return false;
335
336 if (info->emit_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || !bfd_set_section_alignment (s, bed->s->log_file_align))
342 return false;
343 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
344 }
345
346 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
347 {
348 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
349 flags | SEC_READONLY);
350 if (s == NULL
351 || !bfd_set_section_alignment (s, bed->s->log_file_align))
352 return false;
353 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
354 4 32-bit words followed by variable count of 64-bit words, then
355 variable count of 32-bit words. */
356 if (bed->s->arch_size == 64)
357 elf_section_data (s)->this_hdr.sh_entsize = 0;
358 else
359 elf_section_data (s)->this_hdr.sh_entsize = 4;
360 }
361
362 /* Let the backend create the rest of the sections. This lets the
363 backend set the right flags. The backend will normally create
364 the .got and .plt sections. */
365 if (bed->elf_backend_create_dynamic_sections == NULL
366 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
367 return false;
368
369 elf_hash_table (info)->dynamic_sections_created = true;
370
371 return true;
372 }
373
374 /* Create dynamic sections when linking against a dynamic object. */
375
376 bool
377 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
378 {
379 flagword flags, pltflags;
380 struct elf_link_hash_entry *h;
381 asection *s;
382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
383 struct elf_link_hash_table *htab = elf_hash_table (info);
384
385 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
386 .rel[a].bss sections. */
387 flags = bed->dynamic_sec_flags;
388
389 pltflags = flags;
390 if (bed->plt_not_loaded)
391 /* We do not clear SEC_ALLOC here because we still want the OS to
392 allocate space for the section; it's just that there's nothing
393 to read in from the object file. */
394 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
395 else
396 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
397 if (bed->plt_readonly)
398 pltflags |= SEC_READONLY;
399
400 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
401 if (s == NULL
402 || !bfd_set_section_alignment (s, bed->plt_alignment))
403 return false;
404 htab->splt = s;
405
406 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
407 .plt section. */
408 if (bed->want_plt_sym)
409 {
410 h = _bfd_elf_define_linkage_sym (abfd, info, s,
411 "_PROCEDURE_LINKAGE_TABLE_");
412 elf_hash_table (info)->hplt = h;
413 if (h == NULL)
414 return false;
415 }
416
417 s = bfd_make_section_anyway_with_flags (abfd,
418 (bed->rela_plts_and_copies_p
419 ? ".rela.plt" : ".rel.plt"),
420 flags | SEC_READONLY);
421 if (s == NULL
422 || !bfd_set_section_alignment (s, bed->s->log_file_align))
423 return false;
424 htab->srelplt = s;
425
426 if (! _bfd_elf_create_got_section (abfd, info))
427 return false;
428
429 if (bed->want_dynbss)
430 {
431 /* The .dynbss section is a place to put symbols which are defined
432 by dynamic objects, are referenced by regular objects, and are
433 not functions. We must allocate space for them in the process
434 image and use a R_*_COPY reloc to tell the dynamic linker to
435 initialize them at run time. The linker script puts the .dynbss
436 section into the .bss section of the final image. */
437 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
438 SEC_ALLOC | SEC_LINKER_CREATED);
439 if (s == NULL)
440 return false;
441 htab->sdynbss = s;
442
443 if (bed->want_dynrelro)
444 {
445 /* Similarly, but for symbols that were originally in read-only
446 sections. This section doesn't really need to have contents,
447 but make it like other .data.rel.ro sections. */
448 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
449 flags);
450 if (s == NULL)
451 return false;
452 htab->sdynrelro = s;
453 }
454
455 /* The .rel[a].bss section holds copy relocs. This section is not
456 normally needed. We need to create it here, though, so that the
457 linker will map it to an output section. We can't just create it
458 only if we need it, because we will not know whether we need it
459 until we have seen all the input files, and the first time the
460 main linker code calls BFD after examining all the input files
461 (size_dynamic_sections) the input sections have already been
462 mapped to the output sections. If the section turns out not to
463 be needed, we can discard it later. We will never need this
464 section when generating a shared object, since they do not use
465 copy relocs. */
466 if (bfd_link_executable (info))
467 {
468 s = bfd_make_section_anyway_with_flags (abfd,
469 (bed->rela_plts_and_copies_p
470 ? ".rela.bss" : ".rel.bss"),
471 flags | SEC_READONLY);
472 if (s == NULL
473 || !bfd_set_section_alignment (s, bed->s->log_file_align))
474 return false;
475 htab->srelbss = s;
476
477 if (bed->want_dynrelro)
478 {
479 s = (bfd_make_section_anyway_with_flags
480 (abfd, (bed->rela_plts_and_copies_p
481 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
482 flags | SEC_READONLY));
483 if (s == NULL
484 || !bfd_set_section_alignment (s, bed->s->log_file_align))
485 return false;
486 htab->sreldynrelro = s;
487 }
488 }
489 }
490
491 return true;
492 }
493 \f
494 /* Record a new dynamic symbol. We record the dynamic symbols as we
495 read the input files, since we need to have a list of all of them
496 before we can determine the final sizes of the output sections.
497 Note that we may actually call this function even though we are not
498 going to output any dynamic symbols; in some cases we know that a
499 symbol should be in the dynamic symbol table, but only if there is
500 one. */
501
502 bool
503 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
504 struct elf_link_hash_entry *h)
505 {
506 if (h->dynindx == -1)
507 {
508 struct elf_strtab_hash *dynstr;
509 char *p;
510 const char *name;
511 size_t indx;
512
513 if (h->root.type == bfd_link_hash_defined
514 || h->root.type == bfd_link_hash_defweak)
515 {
516 /* An IR symbol should not be made dynamic. */
517 if (h->root.u.def.section != NULL
518 && h->root.u.def.section->owner != NULL
519 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
520 return true;
521 }
522
523 /* XXX: The ABI draft says the linker must turn hidden and
524 internal symbols into STB_LOCAL symbols when producing the
525 DSO. However, if ld.so honors st_other in the dynamic table,
526 this would not be necessary. */
527 switch (ELF_ST_VISIBILITY (h->other))
528 {
529 case STV_INTERNAL:
530 case STV_HIDDEN:
531 if (h->root.type != bfd_link_hash_undefined
532 && h->root.type != bfd_link_hash_undefweak)
533 {
534 h->forced_local = 1;
535 if (!elf_hash_table (info)->is_relocatable_executable
536 || ((h->root.type == bfd_link_hash_defined
537 || h->root.type == bfd_link_hash_defweak)
538 && h->root.u.def.section->owner != NULL
539 && h->root.u.def.section->owner->no_export)
540 || (h->root.type == bfd_link_hash_common
541 && h->root.u.c.p->section->owner != NULL
542 && h->root.u.c.p->section->owner->no_export))
543 return true;
544 }
545
546 default:
547 break;
548 }
549
550 h->dynindx = elf_hash_table (info)->dynsymcount;
551 ++elf_hash_table (info)->dynsymcount;
552
553 dynstr = elf_hash_table (info)->dynstr;
554 if (dynstr == NULL)
555 {
556 /* Create a strtab to hold the dynamic symbol names. */
557 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
558 if (dynstr == NULL)
559 return false;
560 }
561
562 /* We don't put any version information in the dynamic string
563 table. */
564 name = h->root.root.string;
565 p = strchr (name, ELF_VER_CHR);
566 if (p != NULL)
567 /* We know that the p points into writable memory. In fact,
568 there are only a few symbols that have read-only names, being
569 those like _GLOBAL_OFFSET_TABLE_ that are created specially
570 by the backends. Most symbols will have names pointing into
571 an ELF string table read from a file, or to objalloc memory. */
572 *p = 0;
573
574 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
575
576 if (p != NULL)
577 *p = ELF_VER_CHR;
578
579 if (indx == (size_t) -1)
580 return false;
581 h->dynstr_index = indx;
582 }
583
584 return true;
585 }
586 \f
587 /* Mark a symbol dynamic. */
588
589 static void
590 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
591 struct elf_link_hash_entry *h,
592 Elf_Internal_Sym *sym)
593 {
594 struct bfd_elf_dynamic_list *d = info->dynamic_list;
595
596 /* It may be called more than once on the same H. */
597 if(h->dynamic || bfd_link_relocatable (info))
598 return;
599
600 if ((info->dynamic_data
601 && (h->type == STT_OBJECT
602 || h->type == STT_COMMON
603 || (sym != NULL
604 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
605 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
606 || (d != NULL
607 && h->non_elf
608 && (*d->match) (&d->head, NULL, h->root.root.string)))
609 {
610 h->dynamic = 1;
611 /* NB: If a symbol is made dynamic by --dynamic-list, it has
612 non-IR reference. */
613 h->root.non_ir_ref_dynamic = 1;
614 }
615 }
616
617 /* Record an assignment to a symbol made by a linker script. We need
618 this in case some dynamic object refers to this symbol. */
619
620 bool
621 bfd_elf_record_link_assignment (bfd *output_bfd,
622 struct bfd_link_info *info,
623 const char *name,
624 bool provide,
625 bool hidden)
626 {
627 struct elf_link_hash_entry *h, *hv;
628 struct elf_link_hash_table *htab;
629 const struct elf_backend_data *bed;
630
631 if (!is_elf_hash_table (info->hash))
632 return true;
633
634 htab = elf_hash_table (info);
635 h = elf_link_hash_lookup (htab, name, !provide, true, false);
636 if (h == NULL)
637 return provide;
638
639 if (h->root.type == bfd_link_hash_warning)
640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
641
642 if (h->versioned == unknown)
643 {
644 /* Set versioned if symbol version is unknown. */
645 char *version = strrchr (name, ELF_VER_CHR);
646 if (version)
647 {
648 if (version > name && version[-1] != ELF_VER_CHR)
649 h->versioned = versioned_hidden;
650 else
651 h->versioned = versioned;
652 }
653 }
654
655 /* Symbols defined in a linker script but not referenced anywhere
656 else will have non_elf set. */
657 if (h->non_elf)
658 {
659 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
660 h->non_elf = 0;
661 }
662
663 switch (h->root.type)
664 {
665 case bfd_link_hash_defined:
666 case bfd_link_hash_defweak:
667 case bfd_link_hash_common:
668 break;
669 case bfd_link_hash_undefweak:
670 case bfd_link_hash_undefined:
671 /* Since we're defining the symbol, don't let it seem to have not
672 been defined. record_dynamic_symbol and size_dynamic_sections
673 may depend on this. */
674 h->root.type = bfd_link_hash_new;
675 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
676 bfd_link_repair_undef_list (&htab->root);
677 break;
678 case bfd_link_hash_new:
679 break;
680 case bfd_link_hash_indirect:
681 /* We had a versioned symbol in a dynamic library. We make the
682 the versioned symbol point to this one. */
683 bed = get_elf_backend_data (output_bfd);
684 hv = h;
685 while (hv->root.type == bfd_link_hash_indirect
686 || hv->root.type == bfd_link_hash_warning)
687 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
688 /* We don't need to update h->root.u since linker will set them
689 later. */
690 h->root.type = bfd_link_hash_undefined;
691 hv->root.type = bfd_link_hash_indirect;
692 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
693 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
694 break;
695 default:
696 BFD_FAIL ();
697 return false;
698 }
699
700 /* If this symbol is being provided by the linker script, and it is
701 currently defined by a dynamic object, but not by a regular
702 object, then mark it as undefined so that the generic linker will
703 force the correct value. */
704 if (provide
705 && h->def_dynamic
706 && !h->def_regular)
707 h->root.type = bfd_link_hash_undefined;
708
709 /* If this symbol is currently defined by a dynamic object, but not
710 by a regular object, then clear out any version information because
711 the symbol will not be associated with the dynamic object any
712 more. */
713 if (h->def_dynamic && !h->def_regular)
714 h->verinfo.verdef = NULL;
715
716 /* Make sure this symbol is not garbage collected. */
717 h->mark = 1;
718
719 h->def_regular = 1;
720
721 if (hidden)
722 {
723 bed = get_elf_backend_data (output_bfd);
724 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
725 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
726 (*bed->elf_backend_hide_symbol) (info, h, true);
727 }
728
729 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
730 and executables. */
731 if (!bfd_link_relocatable (info)
732 && h->dynindx != -1
733 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
734 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
735 h->forced_local = 1;
736
737 if ((h->def_dynamic
738 || h->ref_dynamic
739 || bfd_link_dll (info)
740 || elf_hash_table (info)->is_relocatable_executable)
741 && !h->forced_local
742 && h->dynindx == -1)
743 {
744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
745 return false;
746
747 /* If this is a weak defined symbol, and we know a corresponding
748 real symbol from the same dynamic object, make sure the real
749 symbol is also made into a dynamic symbol. */
750 if (h->is_weakalias)
751 {
752 struct elf_link_hash_entry *def = weakdef (h);
753
754 if (def->dynindx == -1
755 && !bfd_elf_link_record_dynamic_symbol (info, def))
756 return false;
757 }
758 }
759
760 return true;
761 }
762
763 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
764 success, and 2 on a failure caused by attempting to record a symbol
765 in a discarded section, eg. a discarded link-once section symbol. */
766
767 int
768 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
769 bfd *input_bfd,
770 long input_indx)
771 {
772 size_t amt;
773 struct elf_link_local_dynamic_entry *entry;
774 struct elf_link_hash_table *eht;
775 struct elf_strtab_hash *dynstr;
776 size_t dynstr_index;
777 char *name;
778 Elf_External_Sym_Shndx eshndx;
779 char esym[sizeof (Elf64_External_Sym)];
780
781 if (! is_elf_hash_table (info->hash))
782 return 0;
783
784 /* See if the entry exists already. */
785 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
786 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
787 return 1;
788
789 amt = sizeof (*entry);
790 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
791 if (entry == NULL)
792 return 0;
793
794 /* Go find the symbol, so that we can find it's name. */
795 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
796 1, input_indx, &entry->isym, esym, &eshndx))
797 {
798 bfd_release (input_bfd, entry);
799 return 0;
800 }
801
802 if (entry->isym.st_shndx != SHN_UNDEF
803 && entry->isym.st_shndx < SHN_LORESERVE)
804 {
805 asection *s;
806
807 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
808 if (s == NULL || bfd_is_abs_section (s->output_section))
809 {
810 /* We can still bfd_release here as nothing has done another
811 bfd_alloc. We can't do this later in this function. */
812 bfd_release (input_bfd, entry);
813 return 2;
814 }
815 }
816
817 name = (bfd_elf_string_from_elf_section
818 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
819 entry->isym.st_name));
820
821 dynstr = elf_hash_table (info)->dynstr;
822 if (dynstr == NULL)
823 {
824 /* Create a strtab to hold the dynamic symbol names. */
825 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
826 if (dynstr == NULL)
827 return 0;
828 }
829
830 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
831 if (dynstr_index == (size_t) -1)
832 return 0;
833 entry->isym.st_name = dynstr_index;
834
835 eht = elf_hash_table (info);
836
837 entry->next = eht->dynlocal;
838 eht->dynlocal = entry;
839 entry->input_bfd = input_bfd;
840 entry->input_indx = input_indx;
841 eht->dynsymcount++;
842
843 /* Whatever binding the symbol had before, it's now local. */
844 entry->isym.st_info
845 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
846
847 /* The dynindx will be set at the end of size_dynamic_sections. */
848
849 return 1;
850 }
851
852 /* Return the dynindex of a local dynamic symbol. */
853
854 long
855 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
856 bfd *input_bfd,
857 long input_indx)
858 {
859 struct elf_link_local_dynamic_entry *e;
860
861 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
862 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
863 return e->dynindx;
864 return -1;
865 }
866
867 /* This function is used to renumber the dynamic symbols, if some of
868 them are removed because they are marked as local. This is called
869 via elf_link_hash_traverse. */
870
871 static bool
872 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
873 void *data)
874 {
875 size_t *count = (size_t *) data;
876
877 if (h->forced_local)
878 return true;
879
880 if (h->dynindx != -1)
881 h->dynindx = ++(*count);
882
883 return true;
884 }
885
886
887 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
888 STB_LOCAL binding. */
889
890 static bool
891 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
892 void *data)
893 {
894 size_t *count = (size_t *) data;
895
896 if (!h->forced_local)
897 return true;
898
899 if (h->dynindx != -1)
900 h->dynindx = ++(*count);
901
902 return true;
903 }
904
905 /* Return true if the dynamic symbol for a given section should be
906 omitted when creating a shared library. */
907 bool
908 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
909 struct bfd_link_info *info,
910 asection *p)
911 {
912 struct elf_link_hash_table *htab;
913 asection *ip;
914
915 switch (elf_section_data (p)->this_hdr.sh_type)
916 {
917 case SHT_PROGBITS:
918 case SHT_NOBITS:
919 /* If sh_type is yet undecided, assume it could be
920 SHT_PROGBITS/SHT_NOBITS. */
921 case SHT_NULL:
922 htab = elf_hash_table (info);
923 if (htab->text_index_section != NULL)
924 return p != htab->text_index_section && p != htab->data_index_section;
925
926 return (htab->dynobj != NULL
927 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
928 && ip->output_section == p);
929
930 /* There shouldn't be section relative relocations
931 against any other section. */
932 default:
933 return true;
934 }
935 }
936
937 bool
938 _bfd_elf_omit_section_dynsym_all
939 (bfd *output_bfd ATTRIBUTE_UNUSED,
940 struct bfd_link_info *info ATTRIBUTE_UNUSED,
941 asection *p ATTRIBUTE_UNUSED)
942 {
943 return true;
944 }
945
946 /* Assign dynsym indices. In a shared library we generate a section
947 symbol for each output section, which come first. Next come symbols
948 which have been forced to local binding. Then all of the back-end
949 allocated local dynamic syms, followed by the rest of the global
950 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
951 (This prevents the early call before elf_backend_init_index_section
952 and strip_excluded_output_sections setting dynindx for sections
953 that are stripped.) */
954
955 static unsigned long
956 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
957 struct bfd_link_info *info,
958 unsigned long *section_sym_count)
959 {
960 unsigned long dynsymcount = 0;
961 bool do_sec = section_sym_count != NULL;
962
963 if (bfd_link_pic (info)
964 || elf_hash_table (info)->is_relocatable_executable)
965 {
966 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
967 asection *p;
968 for (p = output_bfd->sections; p ; p = p->next)
969 if ((p->flags & SEC_EXCLUDE) == 0
970 && (p->flags & SEC_ALLOC) != 0
971 && elf_hash_table (info)->dynamic_relocs
972 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
973 {
974 ++dynsymcount;
975 if (do_sec)
976 elf_section_data (p)->dynindx = dynsymcount;
977 }
978 else if (do_sec)
979 elf_section_data (p)->dynindx = 0;
980 }
981 if (do_sec)
982 *section_sym_count = dynsymcount;
983
984 elf_link_hash_traverse (elf_hash_table (info),
985 elf_link_renumber_local_hash_table_dynsyms,
986 &dynsymcount);
987
988 if (elf_hash_table (info)->dynlocal)
989 {
990 struct elf_link_local_dynamic_entry *p;
991 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
992 p->dynindx = ++dynsymcount;
993 }
994 elf_hash_table (info)->local_dynsymcount = dynsymcount;
995
996 elf_link_hash_traverse (elf_hash_table (info),
997 elf_link_renumber_hash_table_dynsyms,
998 &dynsymcount);
999
1000 /* There is an unused NULL entry at the head of the table which we
1001 must account for in our count even if the table is empty since it
1002 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1003 .dynamic section. */
1004 dynsymcount++;
1005
1006 elf_hash_table (info)->dynsymcount = dynsymcount;
1007 return dynsymcount;
1008 }
1009
1010 /* Merge st_other field. */
1011
1012 static void
1013 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1014 unsigned int st_other, asection *sec,
1015 bool definition, bool dynamic)
1016 {
1017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1018
1019 /* If st_other has a processor-specific meaning, specific
1020 code might be needed here. */
1021 if (bed->elf_backend_merge_symbol_attribute)
1022 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1023 dynamic);
1024
1025 if (!dynamic)
1026 {
1027 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1028 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1029
1030 /* Keep the most constraining visibility. Leave the remainder
1031 of the st_other field to elf_backend_merge_symbol_attribute. */
1032 if (symvis - 1 < hvis - 1)
1033 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1034 }
1035 else if (definition
1036 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1037 && (sec->flags & SEC_READONLY) == 0)
1038 h->protected_def = 1;
1039 }
1040
1041 /* This function is called when we want to merge a new symbol with an
1042 existing symbol. It handles the various cases which arise when we
1043 find a definition in a dynamic object, or when there is already a
1044 definition in a dynamic object. The new symbol is described by
1045 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1046 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1047 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1048 of an old common symbol. We set OVERRIDE if the old symbol is
1049 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1050 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1051 to change. By OK to change, we mean that we shouldn't warn if the
1052 type or size does change. */
1053
1054 static bool
1055 _bfd_elf_merge_symbol (bfd *abfd,
1056 struct bfd_link_info *info,
1057 const char *name,
1058 Elf_Internal_Sym *sym,
1059 asection **psec,
1060 bfd_vma *pvalue,
1061 struct elf_link_hash_entry **sym_hash,
1062 bfd **poldbfd,
1063 bool *pold_weak,
1064 unsigned int *pold_alignment,
1065 bool *skip,
1066 bfd **override,
1067 bool *type_change_ok,
1068 bool *size_change_ok,
1069 bool *matched)
1070 {
1071 asection *sec, *oldsec;
1072 struct elf_link_hash_entry *h;
1073 struct elf_link_hash_entry *hi;
1074 struct elf_link_hash_entry *flip;
1075 int bind;
1076 bfd *oldbfd;
1077 bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1078 bool newweak, oldweak, newfunc, oldfunc;
1079 const struct elf_backend_data *bed;
1080 char *new_version;
1081 bool default_sym = *matched;
1082
1083 *skip = false;
1084 *override = NULL;
1085
1086 sec = *psec;
1087 bind = ELF_ST_BIND (sym->st_info);
1088
1089 if (! bfd_is_und_section (sec))
1090 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
1091 else
1092 h = ((struct elf_link_hash_entry *)
1093 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
1094 if (h == NULL)
1095 return false;
1096 *sym_hash = h;
1097
1098 bed = get_elf_backend_data (abfd);
1099
1100 /* NEW_VERSION is the symbol version of the new symbol. */
1101 if (h->versioned != unversioned)
1102 {
1103 /* Symbol version is unknown or versioned. */
1104 new_version = strrchr (name, ELF_VER_CHR);
1105 if (new_version)
1106 {
1107 if (h->versioned == unknown)
1108 {
1109 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1110 h->versioned = versioned_hidden;
1111 else
1112 h->versioned = versioned;
1113 }
1114 new_version += 1;
1115 if (new_version[0] == '\0')
1116 new_version = NULL;
1117 }
1118 else
1119 h->versioned = unversioned;
1120 }
1121 else
1122 new_version = NULL;
1123
1124 /* For merging, we only care about real symbols. But we need to make
1125 sure that indirect symbol dynamic flags are updated. */
1126 hi = h;
1127 while (h->root.type == bfd_link_hash_indirect
1128 || h->root.type == bfd_link_hash_warning)
1129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1130
1131 if (!*matched)
1132 {
1133 if (hi == h || h->root.type == bfd_link_hash_new)
1134 *matched = true;
1135 else
1136 {
1137 /* OLD_HIDDEN is true if the existing symbol is only visible
1138 to the symbol with the same symbol version. NEW_HIDDEN is
1139 true if the new symbol is only visible to the symbol with
1140 the same symbol version. */
1141 bool old_hidden = h->versioned == versioned_hidden;
1142 bool new_hidden = hi->versioned == versioned_hidden;
1143 if (!old_hidden && !new_hidden)
1144 /* The new symbol matches the existing symbol if both
1145 aren't hidden. */
1146 *matched = true;
1147 else
1148 {
1149 /* OLD_VERSION is the symbol version of the existing
1150 symbol. */
1151 char *old_version;
1152
1153 if (h->versioned >= versioned)
1154 old_version = strrchr (h->root.root.string,
1155 ELF_VER_CHR) + 1;
1156 else
1157 old_version = NULL;
1158
1159 /* The new symbol matches the existing symbol if they
1160 have the same symbol version. */
1161 *matched = (old_version == new_version
1162 || (old_version != NULL
1163 && new_version != NULL
1164 && strcmp (old_version, new_version) == 0));
1165 }
1166 }
1167 }
1168
1169 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1170 existing symbol. */
1171
1172 oldbfd = NULL;
1173 oldsec = NULL;
1174 switch (h->root.type)
1175 {
1176 default:
1177 break;
1178
1179 case bfd_link_hash_undefined:
1180 case bfd_link_hash_undefweak:
1181 oldbfd = h->root.u.undef.abfd;
1182 break;
1183
1184 case bfd_link_hash_defined:
1185 case bfd_link_hash_defweak:
1186 oldbfd = h->root.u.def.section->owner;
1187 oldsec = h->root.u.def.section;
1188 break;
1189
1190 case bfd_link_hash_common:
1191 oldbfd = h->root.u.c.p->section->owner;
1192 oldsec = h->root.u.c.p->section;
1193 if (pold_alignment)
1194 *pold_alignment = h->root.u.c.p->alignment_power;
1195 break;
1196 }
1197 if (poldbfd && *poldbfd == NULL)
1198 *poldbfd = oldbfd;
1199
1200 /* Differentiate strong and weak symbols. */
1201 newweak = bind == STB_WEAK;
1202 oldweak = (h->root.type == bfd_link_hash_defweak
1203 || h->root.type == bfd_link_hash_undefweak);
1204 if (pold_weak)
1205 *pold_weak = oldweak;
1206
1207 /* We have to check it for every instance since the first few may be
1208 references and not all compilers emit symbol type for undefined
1209 symbols. */
1210 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1211
1212 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1213 respectively, is from a dynamic object. */
1214
1215 newdyn = (abfd->flags & DYNAMIC) != 0;
1216
1217 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1218 syms and defined syms in dynamic libraries respectively.
1219 ref_dynamic on the other hand can be set for a symbol defined in
1220 a dynamic library, and def_dynamic may not be set; When the
1221 definition in a dynamic lib is overridden by a definition in the
1222 executable use of the symbol in the dynamic lib becomes a
1223 reference to the executable symbol. */
1224 if (newdyn)
1225 {
1226 if (bfd_is_und_section (sec))
1227 {
1228 if (bind != STB_WEAK)
1229 {
1230 h->ref_dynamic_nonweak = 1;
1231 hi->ref_dynamic_nonweak = 1;
1232 }
1233 }
1234 else
1235 {
1236 /* Update the existing symbol only if they match. */
1237 if (*matched)
1238 h->dynamic_def = 1;
1239 hi->dynamic_def = 1;
1240 }
1241 }
1242
1243 /* If we just created the symbol, mark it as being an ELF symbol.
1244 Other than that, there is nothing to do--there is no merge issue
1245 with a newly defined symbol--so we just return. */
1246
1247 if (h->root.type == bfd_link_hash_new)
1248 {
1249 h->non_elf = 0;
1250 return true;
1251 }
1252
1253 /* In cases involving weak versioned symbols, we may wind up trying
1254 to merge a symbol with itself. Catch that here, to avoid the
1255 confusion that results if we try to override a symbol with
1256 itself. The additional tests catch cases like
1257 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1258 dynamic object, which we do want to handle here. */
1259 if (abfd == oldbfd
1260 && (newweak || oldweak)
1261 && ((abfd->flags & DYNAMIC) == 0
1262 || !h->def_regular))
1263 return true;
1264
1265 olddyn = false;
1266 if (oldbfd != NULL)
1267 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1268 else if (oldsec != NULL)
1269 {
1270 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1271 indices used by MIPS ELF. */
1272 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1273 }
1274
1275 /* Handle a case where plugin_notice won't be called and thus won't
1276 set the non_ir_ref flags on the first pass over symbols. */
1277 if (oldbfd != NULL
1278 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1279 && newdyn != olddyn)
1280 {
1281 h->root.non_ir_ref_dynamic = true;
1282 hi->root.non_ir_ref_dynamic = true;
1283 }
1284
1285 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1286 respectively, appear to be a definition rather than reference. */
1287
1288 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1289
1290 olddef = (h->root.type != bfd_link_hash_undefined
1291 && h->root.type != bfd_link_hash_undefweak
1292 && h->root.type != bfd_link_hash_common);
1293
1294 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1295 respectively, appear to be a function. */
1296
1297 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1298 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1299
1300 oldfunc = (h->type != STT_NOTYPE
1301 && bed->is_function_type (h->type));
1302
1303 if (!(newfunc && oldfunc)
1304 && ELF_ST_TYPE (sym->st_info) != h->type
1305 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1306 && h->type != STT_NOTYPE
1307 && (newdef || bfd_is_com_section (sec))
1308 && (olddef || h->root.type == bfd_link_hash_common))
1309 {
1310 /* If creating a default indirect symbol ("foo" or "foo@") from
1311 a dynamic versioned definition ("foo@@") skip doing so if
1312 there is an existing regular definition with a different
1313 type. We don't want, for example, a "time" variable in the
1314 executable overriding a "time" function in a shared library. */
1315 if (newdyn
1316 && !olddyn)
1317 {
1318 *skip = true;
1319 return true;
1320 }
1321
1322 /* When adding a symbol from a regular object file after we have
1323 created indirect symbols, undo the indirection and any
1324 dynamic state. */
1325 if (hi != h
1326 && !newdyn
1327 && olddyn)
1328 {
1329 h = hi;
1330 (*bed->elf_backend_hide_symbol) (info, h, true);
1331 h->forced_local = 0;
1332 h->ref_dynamic = 0;
1333 h->def_dynamic = 0;
1334 h->dynamic_def = 0;
1335 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1336 {
1337 h->root.type = bfd_link_hash_undefined;
1338 h->root.u.undef.abfd = abfd;
1339 }
1340 else
1341 {
1342 h->root.type = bfd_link_hash_new;
1343 h->root.u.undef.abfd = NULL;
1344 }
1345 return true;
1346 }
1347 }
1348
1349 /* Check TLS symbols. We don't check undefined symbols introduced
1350 by "ld -u" which have no type (and oldbfd NULL), and we don't
1351 check symbols from plugins because they also have no type. */
1352 if (oldbfd != NULL
1353 && (oldbfd->flags & BFD_PLUGIN) == 0
1354 && (abfd->flags & BFD_PLUGIN) == 0
1355 && ELF_ST_TYPE (sym->st_info) != h->type
1356 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1357 {
1358 bfd *ntbfd, *tbfd;
1359 bool ntdef, tdef;
1360 asection *ntsec, *tsec;
1361
1362 if (h->type == STT_TLS)
1363 {
1364 ntbfd = abfd;
1365 ntsec = sec;
1366 ntdef = newdef;
1367 tbfd = oldbfd;
1368 tsec = oldsec;
1369 tdef = olddef;
1370 }
1371 else
1372 {
1373 ntbfd = oldbfd;
1374 ntsec = oldsec;
1375 ntdef = olddef;
1376 tbfd = abfd;
1377 tsec = sec;
1378 tdef = newdef;
1379 }
1380
1381 if (tdef && ntdef)
1382 _bfd_error_handler
1383 /* xgettext:c-format */
1384 (_("%s: TLS definition in %pB section %pA "
1385 "mismatches non-TLS definition in %pB section %pA"),
1386 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1387 else if (!tdef && !ntdef)
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%s: TLS reference in %pB "
1391 "mismatches non-TLS reference in %pB"),
1392 h->root.root.string, tbfd, ntbfd);
1393 else if (tdef)
1394 _bfd_error_handler
1395 /* xgettext:c-format */
1396 (_("%s: TLS definition in %pB section %pA "
1397 "mismatches non-TLS reference in %pB"),
1398 h->root.root.string, tbfd, tsec, ntbfd);
1399 else
1400 _bfd_error_handler
1401 /* xgettext:c-format */
1402 (_("%s: TLS reference in %pB "
1403 "mismatches non-TLS definition in %pB section %pA"),
1404 h->root.root.string, tbfd, ntbfd, ntsec);
1405
1406 bfd_set_error (bfd_error_bad_value);
1407 return false;
1408 }
1409
1410 /* If the old symbol has non-default visibility, we ignore the new
1411 definition from a dynamic object. */
1412 if (newdyn
1413 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1414 && !bfd_is_und_section (sec))
1415 {
1416 *skip = true;
1417 /* Make sure this symbol is dynamic. */
1418 h->ref_dynamic = 1;
1419 hi->ref_dynamic = 1;
1420 /* A protected symbol has external availability. Make sure it is
1421 recorded as dynamic.
1422
1423 FIXME: Should we check type and size for protected symbol? */
1424 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1425 return bfd_elf_link_record_dynamic_symbol (info, h);
1426 else
1427 return true;
1428 }
1429 else if (!newdyn
1430 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1431 && h->def_dynamic)
1432 {
1433 /* If the new symbol with non-default visibility comes from a
1434 relocatable file and the old definition comes from a dynamic
1435 object, we remove the old definition. */
1436 if (hi->root.type == bfd_link_hash_indirect)
1437 {
1438 /* Handle the case where the old dynamic definition is
1439 default versioned. We need to copy the symbol info from
1440 the symbol with default version to the normal one if it
1441 was referenced before. */
1442 if (h->ref_regular)
1443 {
1444 hi->root.type = h->root.type;
1445 h->root.type = bfd_link_hash_indirect;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1447
1448 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1449 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1450 {
1451 /* If the new symbol is hidden or internal, completely undo
1452 any dynamic link state. */
1453 (*bed->elf_backend_hide_symbol) (info, h, true);
1454 h->forced_local = 0;
1455 h->ref_dynamic = 0;
1456 }
1457 else
1458 h->ref_dynamic = 1;
1459
1460 h->def_dynamic = 0;
1461 /* FIXME: Should we check type and size for protected symbol? */
1462 h->size = 0;
1463 h->type = 0;
1464
1465 h = hi;
1466 }
1467 else
1468 h = hi;
1469 }
1470
1471 /* If the old symbol was undefined before, then it will still be
1472 on the undefs list. If the new symbol is undefined or
1473 common, we can't make it bfd_link_hash_new here, because new
1474 undefined or common symbols will be added to the undefs list
1475 by _bfd_generic_link_add_one_symbol. Symbols may not be
1476 added twice to the undefs list. Also, if the new symbol is
1477 undefweak then we don't want to lose the strong undef. */
1478 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1479 {
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = abfd;
1482 }
1483 else
1484 {
1485 h->root.type = bfd_link_hash_new;
1486 h->root.u.undef.abfd = NULL;
1487 }
1488
1489 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1490 {
1491 /* If the new symbol is hidden or internal, completely undo
1492 any dynamic link state. */
1493 (*bed->elf_backend_hide_symbol) (info, h, true);
1494 h->forced_local = 0;
1495 h->ref_dynamic = 0;
1496 }
1497 else
1498 h->ref_dynamic = 1;
1499 h->def_dynamic = 0;
1500 /* FIXME: Should we check type and size for protected symbol? */
1501 h->size = 0;
1502 h->type = 0;
1503 return true;
1504 }
1505
1506 /* If a new weak symbol definition comes from a regular file and the
1507 old symbol comes from a dynamic library, we treat the new one as
1508 strong. Similarly, an old weak symbol definition from a regular
1509 file is treated as strong when the new symbol comes from a dynamic
1510 library. Further, an old weak symbol from a dynamic library is
1511 treated as strong if the new symbol is from a dynamic library.
1512 This reflects the way glibc's ld.so works.
1513
1514 Also allow a weak symbol to override a linker script symbol
1515 defined by an early pass over the script. This is done so the
1516 linker knows the symbol is defined in an object file, for the
1517 DEFINED script function.
1518
1519 Do this before setting *type_change_ok or *size_change_ok so that
1520 we warn properly when dynamic library symbols are overridden. */
1521
1522 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1523 newweak = false;
1524 if (olddef && newdyn)
1525 oldweak = false;
1526
1527 /* Allow changes between different types of function symbol. */
1528 if (newfunc && oldfunc)
1529 *type_change_ok = true;
1530
1531 /* It's OK to change the type if either the existing symbol or the
1532 new symbol is weak. A type change is also OK if the old symbol
1533 is undefined and the new symbol is defined. */
1534
1535 if (oldweak
1536 || newweak
1537 || (newdef
1538 && h->root.type == bfd_link_hash_undefined))
1539 *type_change_ok = true;
1540
1541 /* It's OK to change the size if either the existing symbol or the
1542 new symbol is weak, or if the old symbol is undefined. */
1543
1544 if (*type_change_ok
1545 || h->root.type == bfd_link_hash_undefined)
1546 *size_change_ok = true;
1547
1548 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1549 symbol, respectively, appears to be a common symbol in a dynamic
1550 object. If a symbol appears in an uninitialized section, and is
1551 not weak, and is not a function, then it may be a common symbol
1552 which was resolved when the dynamic object was created. We want
1553 to treat such symbols specially, because they raise special
1554 considerations when setting the symbol size: if the symbol
1555 appears as a common symbol in a regular object, and the size in
1556 the regular object is larger, we must make sure that we use the
1557 larger size. This problematic case can always be avoided in C,
1558 but it must be handled correctly when using Fortran shared
1559 libraries.
1560
1561 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1562 likewise for OLDDYNCOMMON and OLDDEF.
1563
1564 Note that this test is just a heuristic, and that it is quite
1565 possible to have an uninitialized symbol in a shared object which
1566 is really a definition, rather than a common symbol. This could
1567 lead to some minor confusion when the symbol really is a common
1568 symbol in some regular object. However, I think it will be
1569 harmless. */
1570
1571 if (newdyn
1572 && newdef
1573 && !newweak
1574 && (sec->flags & SEC_ALLOC) != 0
1575 && (sec->flags & SEC_LOAD) == 0
1576 && sym->st_size > 0
1577 && !newfunc)
1578 newdyncommon = true;
1579 else
1580 newdyncommon = false;
1581
1582 if (olddyn
1583 && olddef
1584 && h->root.type == bfd_link_hash_defined
1585 && h->def_dynamic
1586 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1587 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1588 && h->size > 0
1589 && !oldfunc)
1590 olddyncommon = true;
1591 else
1592 olddyncommon = false;
1593
1594 /* We now know everything about the old and new symbols. We ask the
1595 backend to check if we can merge them. */
1596 if (bed->merge_symbol != NULL)
1597 {
1598 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1599 return false;
1600 sec = *psec;
1601 }
1602
1603 /* There are multiple definitions of a normal symbol. Skip the
1604 default symbol as well as definition from an IR object. */
1605 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1606 && !default_sym && h->def_regular
1607 && !(oldbfd != NULL
1608 && (oldbfd->flags & BFD_PLUGIN) != 0
1609 && (abfd->flags & BFD_PLUGIN) == 0))
1610 {
1611 /* Handle a multiple definition. */
1612 (*info->callbacks->multiple_definition) (info, &h->root,
1613 abfd, sec, *pvalue);
1614 *skip = true;
1615 return true;
1616 }
1617
1618 /* If both the old and the new symbols look like common symbols in a
1619 dynamic object, set the size of the symbol to the larger of the
1620 two. */
1621
1622 if (olddyncommon
1623 && newdyncommon
1624 && sym->st_size != h->size)
1625 {
1626 /* Since we think we have two common symbols, issue a multiple
1627 common warning if desired. Note that we only warn if the
1628 size is different. If the size is the same, we simply let
1629 the old symbol override the new one as normally happens with
1630 symbols defined in dynamic objects. */
1631
1632 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1633 bfd_link_hash_common, sym->st_size);
1634 if (sym->st_size > h->size)
1635 h->size = sym->st_size;
1636
1637 *size_change_ok = true;
1638 }
1639
1640 /* If we are looking at a dynamic object, and we have found a
1641 definition, we need to see if the symbol was already defined by
1642 some other object. If so, we want to use the existing
1643 definition, and we do not want to report a multiple symbol
1644 definition error; we do this by clobbering *PSEC to be
1645 bfd_und_section_ptr.
1646
1647 We treat a common symbol as a definition if the symbol in the
1648 shared library is a function, since common symbols always
1649 represent variables; this can cause confusion in principle, but
1650 any such confusion would seem to indicate an erroneous program or
1651 shared library. We also permit a common symbol in a regular
1652 object to override a weak symbol in a shared object. */
1653
1654 if (newdyn
1655 && newdef
1656 && (olddef
1657 || (h->root.type == bfd_link_hash_common
1658 && (newweak || newfunc))))
1659 {
1660 *override = abfd;
1661 newdef = false;
1662 newdyncommon = false;
1663
1664 *psec = sec = bfd_und_section_ptr;
1665 *size_change_ok = true;
1666
1667 /* If we get here when the old symbol is a common symbol, then
1668 we are explicitly letting it override a weak symbol or
1669 function in a dynamic object, and we don't want to warn about
1670 a type change. If the old symbol is a defined symbol, a type
1671 change warning may still be appropriate. */
1672
1673 if (h->root.type == bfd_link_hash_common)
1674 *type_change_ok = true;
1675 }
1676
1677 /* Handle the special case of an old common symbol merging with a
1678 new symbol which looks like a common symbol in a shared object.
1679 We change *PSEC and *PVALUE to make the new symbol look like a
1680 common symbol, and let _bfd_generic_link_add_one_symbol do the
1681 right thing. */
1682
1683 if (newdyncommon
1684 && h->root.type == bfd_link_hash_common)
1685 {
1686 *override = oldbfd;
1687 newdef = false;
1688 newdyncommon = false;
1689 *pvalue = sym->st_size;
1690 *psec = sec = bed->common_section (oldsec);
1691 *size_change_ok = true;
1692 }
1693
1694 /* Skip weak definitions of symbols that are already defined. */
1695 if (newdef && olddef && newweak)
1696 {
1697 /* Don't skip new non-IR weak syms. */
1698 if (!(oldbfd != NULL
1699 && (oldbfd->flags & BFD_PLUGIN) != 0
1700 && (abfd->flags & BFD_PLUGIN) == 0))
1701 {
1702 newdef = false;
1703 *skip = true;
1704 }
1705
1706 /* Merge st_other. If the symbol already has a dynamic index,
1707 but visibility says it should not be visible, turn it into a
1708 local symbol. */
1709 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1710 if (h->dynindx != -1)
1711 switch (ELF_ST_VISIBILITY (h->other))
1712 {
1713 case STV_INTERNAL:
1714 case STV_HIDDEN:
1715 (*bed->elf_backend_hide_symbol) (info, h, true);
1716 break;
1717 }
1718 }
1719
1720 /* If the old symbol is from a dynamic object, and the new symbol is
1721 a definition which is not from a dynamic object, then the new
1722 symbol overrides the old symbol. Symbols from regular files
1723 always take precedence over symbols from dynamic objects, even if
1724 they are defined after the dynamic object in the link.
1725
1726 As above, we again permit a common symbol in a regular object to
1727 override a definition in a shared object if the shared object
1728 symbol is a function or is weak. */
1729
1730 flip = NULL;
1731 if (!newdyn
1732 && (newdef
1733 || (bfd_is_com_section (sec)
1734 && (oldweak || oldfunc)))
1735 && olddyn
1736 && olddef
1737 && h->def_dynamic)
1738 {
1739 /* Change the hash table entry to undefined, and let
1740 _bfd_generic_link_add_one_symbol do the right thing with the
1741 new definition. */
1742
1743 h->root.type = bfd_link_hash_undefined;
1744 h->root.u.undef.abfd = h->root.u.def.section->owner;
1745 *size_change_ok = true;
1746
1747 olddef = false;
1748 olddyncommon = false;
1749
1750 /* We again permit a type change when a common symbol may be
1751 overriding a function. */
1752
1753 if (bfd_is_com_section (sec))
1754 {
1755 if (oldfunc)
1756 {
1757 /* If a common symbol overrides a function, make sure
1758 that it isn't defined dynamically nor has type
1759 function. */
1760 h->def_dynamic = 0;
1761 h->type = STT_NOTYPE;
1762 }
1763 *type_change_ok = true;
1764 }
1765
1766 if (hi->root.type == bfd_link_hash_indirect)
1767 flip = hi;
1768 else
1769 /* This union may have been set to be non-NULL when this symbol
1770 was seen in a dynamic object. We must force the union to be
1771 NULL, so that it is correct for a regular symbol. */
1772 h->verinfo.vertree = NULL;
1773 }
1774
1775 /* Handle the special case of a new common symbol merging with an
1776 old symbol that looks like it might be a common symbol defined in
1777 a shared object. Note that we have already handled the case in
1778 which a new common symbol should simply override the definition
1779 in the shared library. */
1780
1781 if (! newdyn
1782 && bfd_is_com_section (sec)
1783 && olddyncommon)
1784 {
1785 /* It would be best if we could set the hash table entry to a
1786 common symbol, but we don't know what to use for the section
1787 or the alignment. */
1788 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1789 bfd_link_hash_common, sym->st_size);
1790
1791 /* If the presumed common symbol in the dynamic object is
1792 larger, pretend that the new symbol has its size. */
1793
1794 if (h->size > *pvalue)
1795 *pvalue = h->size;
1796
1797 /* We need to remember the alignment required by the symbol
1798 in the dynamic object. */
1799 BFD_ASSERT (pold_alignment);
1800 *pold_alignment = h->root.u.def.section->alignment_power;
1801
1802 olddef = false;
1803 olddyncommon = false;
1804
1805 h->root.type = bfd_link_hash_undefined;
1806 h->root.u.undef.abfd = h->root.u.def.section->owner;
1807
1808 *size_change_ok = true;
1809 *type_change_ok = true;
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 flip = hi;
1813 else
1814 h->verinfo.vertree = NULL;
1815 }
1816
1817 if (flip != NULL)
1818 {
1819 /* Handle the case where we had a versioned symbol in a dynamic
1820 library and now find a definition in a normal object. In this
1821 case, we make the versioned symbol point to the normal one. */
1822 flip->root.type = h->root.type;
1823 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1824 h->root.type = bfd_link_hash_indirect;
1825 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1826 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1827 if (h->def_dynamic)
1828 {
1829 h->def_dynamic = 0;
1830 flip->ref_dynamic = 1;
1831 }
1832 }
1833
1834 return true;
1835 }
1836
1837 /* This function is called to create an indirect symbol from the
1838 default for the symbol with the default version if needed. The
1839 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1840 set DYNSYM if the new indirect symbol is dynamic. */
1841
1842 static bool
1843 _bfd_elf_add_default_symbol (bfd *abfd,
1844 struct bfd_link_info *info,
1845 struct elf_link_hash_entry *h,
1846 const char *name,
1847 Elf_Internal_Sym *sym,
1848 asection *sec,
1849 bfd_vma value,
1850 bfd **poldbfd,
1851 bool *dynsym)
1852 {
1853 bool type_change_ok;
1854 bool size_change_ok;
1855 bool skip;
1856 char *shortname;
1857 struct elf_link_hash_entry *hi;
1858 struct bfd_link_hash_entry *bh;
1859 const struct elf_backend_data *bed;
1860 bool collect;
1861 bool dynamic;
1862 bfd *override;
1863 char *p;
1864 size_t len, shortlen;
1865 asection *tmp_sec;
1866 bool matched;
1867
1868 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1869 return true;
1870
1871 /* If this symbol has a version, and it is the default version, we
1872 create an indirect symbol from the default name to the fully
1873 decorated name. This will cause external references which do not
1874 specify a version to be bound to this version of the symbol. */
1875 p = strchr (name, ELF_VER_CHR);
1876 if (h->versioned == unknown)
1877 {
1878 if (p == NULL)
1879 {
1880 h->versioned = unversioned;
1881 return true;
1882 }
1883 else
1884 {
1885 if (p[1] != ELF_VER_CHR)
1886 {
1887 h->versioned = versioned_hidden;
1888 return true;
1889 }
1890 else
1891 h->versioned = versioned;
1892 }
1893 }
1894 else
1895 {
1896 /* PR ld/19073: We may see an unversioned definition after the
1897 default version. */
1898 if (p == NULL)
1899 return true;
1900 }
1901
1902 bed = get_elf_backend_data (abfd);
1903 collect = bed->collect;
1904 dynamic = (abfd->flags & DYNAMIC) != 0;
1905
1906 shortlen = p - name;
1907 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1908 if (shortname == NULL)
1909 return false;
1910 memcpy (shortname, name, shortlen);
1911 shortname[shortlen] = '\0';
1912
1913 /* We are going to create a new symbol. Merge it with any existing
1914 symbol with this name. For the purposes of the merge, act as
1915 though we were defining the symbol we just defined, although we
1916 actually going to define an indirect symbol. */
1917 type_change_ok = false;
1918 size_change_ok = false;
1919 matched = true;
1920 tmp_sec = sec;
1921 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1922 &hi, poldbfd, NULL, NULL, &skip, &override,
1923 &type_change_ok, &size_change_ok, &matched))
1924 return false;
1925
1926 if (skip)
1927 goto nondefault;
1928
1929 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1930 {
1931 /* If the undecorated symbol will have a version added by a
1932 script different to H, then don't indirect to/from the
1933 undecorated symbol. This isn't ideal because we may not yet
1934 have seen symbol versions, if given by a script on the
1935 command line rather than via --version-script. */
1936 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1937 {
1938 bool hide;
1939
1940 hi->verinfo.vertree
1941 = bfd_find_version_for_sym (info->version_info,
1942 hi->root.root.string, &hide);
1943 if (hi->verinfo.vertree != NULL && hide)
1944 {
1945 (*bed->elf_backend_hide_symbol) (info, hi, true);
1946 goto nondefault;
1947 }
1948 }
1949 if (hi->verinfo.vertree != NULL
1950 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1951 goto nondefault;
1952 }
1953
1954 if (! override)
1955 {
1956 /* Add the default symbol if not performing a relocatable link. */
1957 if (! bfd_link_relocatable (info))
1958 {
1959 bh = &hi->root;
1960 if (bh->type == bfd_link_hash_defined
1961 && bh->u.def.section->owner != NULL
1962 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1963 {
1964 /* Mark the previous definition from IR object as
1965 undefined so that the generic linker will override
1966 it. */
1967 bh->type = bfd_link_hash_undefined;
1968 bh->u.undef.abfd = bh->u.def.section->owner;
1969 }
1970 if (! (_bfd_generic_link_add_one_symbol
1971 (info, abfd, shortname, BSF_INDIRECT,
1972 bfd_ind_section_ptr,
1973 0, name, false, collect, &bh)))
1974 return false;
1975 hi = (struct elf_link_hash_entry *) bh;
1976 }
1977 }
1978 else
1979 {
1980 /* In this case the symbol named SHORTNAME is overriding the
1981 indirect symbol we want to add. We were planning on making
1982 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1983 is the name without a version. NAME is the fully versioned
1984 name, and it is the default version.
1985
1986 Overriding means that we already saw a definition for the
1987 symbol SHORTNAME in a regular object, and it is overriding
1988 the symbol defined in the dynamic object.
1989
1990 When this happens, we actually want to change NAME, the
1991 symbol we just added, to refer to SHORTNAME. This will cause
1992 references to NAME in the shared object to become references
1993 to SHORTNAME in the regular object. This is what we expect
1994 when we override a function in a shared object: that the
1995 references in the shared object will be mapped to the
1996 definition in the regular object. */
1997
1998 while (hi->root.type == bfd_link_hash_indirect
1999 || hi->root.type == bfd_link_hash_warning)
2000 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2001
2002 h->root.type = bfd_link_hash_indirect;
2003 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2004 if (h->def_dynamic)
2005 {
2006 h->def_dynamic = 0;
2007 hi->ref_dynamic = 1;
2008 if (hi->ref_regular
2009 || hi->def_regular)
2010 {
2011 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2012 return false;
2013 }
2014 }
2015
2016 /* Now set HI to H, so that the following code will set the
2017 other fields correctly. */
2018 hi = h;
2019 }
2020
2021 /* Check if HI is a warning symbol. */
2022 if (hi->root.type == bfd_link_hash_warning)
2023 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2024
2025 /* If there is a duplicate definition somewhere, then HI may not
2026 point to an indirect symbol. We will have reported an error to
2027 the user in that case. */
2028
2029 if (hi->root.type == bfd_link_hash_indirect)
2030 {
2031 struct elf_link_hash_entry *ht;
2032
2033 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2034 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2035
2036 /* If we first saw a reference to SHORTNAME with non-default
2037 visibility, merge that visibility to the @@VER symbol. */
2038 elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic);
2039
2040 /* A reference to the SHORTNAME symbol from a dynamic library
2041 will be satisfied by the versioned symbol at runtime. In
2042 effect, we have a reference to the versioned symbol. */
2043 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2044 hi->dynamic_def |= ht->dynamic_def;
2045
2046 /* See if the new flags lead us to realize that the symbol must
2047 be dynamic. */
2048 if (! *dynsym)
2049 {
2050 if (! dynamic)
2051 {
2052 if (! bfd_link_executable (info)
2053 || hi->def_dynamic
2054 || hi->ref_dynamic)
2055 *dynsym = true;
2056 }
2057 else
2058 {
2059 if (hi->ref_regular)
2060 *dynsym = true;
2061 }
2062 }
2063 }
2064
2065 /* We also need to define an indirection from the nondefault version
2066 of the symbol. */
2067
2068 nondefault:
2069 len = strlen (name);
2070 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2071 if (shortname == NULL)
2072 return false;
2073 memcpy (shortname, name, shortlen);
2074 memcpy (shortname + shortlen, p + 1, len - shortlen);
2075
2076 /* Once again, merge with any existing symbol. */
2077 type_change_ok = false;
2078 size_change_ok = false;
2079 tmp_sec = sec;
2080 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2081 &hi, poldbfd, NULL, NULL, &skip, &override,
2082 &type_change_ok, &size_change_ok, &matched))
2083 return false;
2084
2085 if (skip)
2086 {
2087 if (!dynamic
2088 && h->root.type == bfd_link_hash_defweak
2089 && hi->root.type == bfd_link_hash_defined)
2090 {
2091 /* We are handling a weak sym@@ver and attempting to define
2092 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2093 new weak sym@ver because there is already a strong sym@ver.
2094 However, sym@ver and sym@@ver are really the same symbol.
2095 The existing strong sym@ver ought to override sym@@ver. */
2096 h->root.type = bfd_link_hash_defined;
2097 h->root.u.def.section = hi->root.u.def.section;
2098 h->root.u.def.value = hi->root.u.def.value;
2099 hi->root.type = bfd_link_hash_indirect;
2100 hi->root.u.i.link = &h->root;
2101 }
2102 else
2103 return true;
2104 }
2105 else if (override)
2106 {
2107 /* Here SHORTNAME is a versioned name, so we don't expect to see
2108 the type of override we do in the case above unless it is
2109 overridden by a versioned definition. */
2110 if (hi->root.type != bfd_link_hash_defined
2111 && hi->root.type != bfd_link_hash_defweak)
2112 _bfd_error_handler
2113 /* xgettext:c-format */
2114 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2115 abfd, shortname);
2116 return true;
2117 }
2118 else
2119 {
2120 bh = &hi->root;
2121 if (! (_bfd_generic_link_add_one_symbol
2122 (info, abfd, shortname, BSF_INDIRECT,
2123 bfd_ind_section_ptr, 0, name, false, collect, &bh)))
2124 return false;
2125 hi = (struct elf_link_hash_entry *) bh;
2126 }
2127
2128 /* If there is a duplicate definition somewhere, then HI may not
2129 point to an indirect symbol. We will have reported an error
2130 to the user in that case. */
2131 if (hi->root.type == bfd_link_hash_indirect)
2132 {
2133 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2134 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2135 hi->dynamic_def |= h->dynamic_def;
2136
2137 /* If we first saw a reference to @VER symbol with
2138 non-default visibility, merge that visibility to the
2139 @@VER symbol. */
2140 elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic);
2141
2142 /* See if the new flags lead us to realize that the symbol
2143 must be dynamic. */
2144 if (! *dynsym)
2145 {
2146 if (! dynamic)
2147 {
2148 if (! bfd_link_executable (info)
2149 || hi->ref_dynamic)
2150 *dynsym = true;
2151 }
2152 else
2153 {
2154 if (hi->ref_regular)
2155 *dynsym = true;
2156 }
2157 }
2158 }
2159
2160 return true;
2161 }
2162 \f
2163 /* This routine is used to export all defined symbols into the dynamic
2164 symbol table. It is called via elf_link_hash_traverse. */
2165
2166 static bool
2167 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2168 {
2169 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2170
2171 /* Ignore indirect symbols. These are added by the versioning code. */
2172 if (h->root.type == bfd_link_hash_indirect)
2173 return true;
2174
2175 /* Ignore this if we won't export it. */
2176 if (!eif->info->export_dynamic && !h->dynamic)
2177 return true;
2178
2179 if (h->dynindx == -1
2180 && (h->def_regular || h->ref_regular)
2181 && ! bfd_hide_sym_by_version (eif->info->version_info,
2182 h->root.root.string))
2183 {
2184 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2185 {
2186 eif->failed = true;
2187 return false;
2188 }
2189 }
2190
2191 return true;
2192 }
2193 \f
2194 /* Look through the symbols which are defined in other shared
2195 libraries and referenced here. Update the list of version
2196 dependencies. This will be put into the .gnu.version_r section.
2197 This function is called via elf_link_hash_traverse. */
2198
2199 static bool
2200 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2201 void *data)
2202 {
2203 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2204 Elf_Internal_Verneed *t;
2205 Elf_Internal_Vernaux *a;
2206 size_t amt;
2207
2208 /* We only care about symbols defined in shared objects with version
2209 information. */
2210 if (!h->def_dynamic
2211 || h->def_regular
2212 || h->dynindx == -1
2213 || h->verinfo.verdef == NULL
2214 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2215 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2216 return true;
2217
2218 /* See if we already know about this version. */
2219 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2220 t != NULL;
2221 t = t->vn_nextref)
2222 {
2223 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2224 continue;
2225
2226 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2227 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2228 return true;
2229
2230 break;
2231 }
2232
2233 /* This is a new version. Add it to tree we are building. */
2234
2235 if (t == NULL)
2236 {
2237 amt = sizeof *t;
2238 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2239 if (t == NULL)
2240 {
2241 rinfo->failed = true;
2242 return false;
2243 }
2244
2245 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2246 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2247 elf_tdata (rinfo->info->output_bfd)->verref = t;
2248 }
2249
2250 amt = sizeof *a;
2251 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2252 if (a == NULL)
2253 {
2254 rinfo->failed = true;
2255 return false;
2256 }
2257
2258 /* Note that we are copying a string pointer here, and testing it
2259 above. If bfd_elf_string_from_elf_section is ever changed to
2260 discard the string data when low in memory, this will have to be
2261 fixed. */
2262 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2263
2264 a->vna_flags = h->verinfo.verdef->vd_flags;
2265 a->vna_nextptr = t->vn_auxptr;
2266
2267 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2268 ++rinfo->vers;
2269
2270 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2271
2272 t->vn_auxptr = a;
2273
2274 return true;
2275 }
2276
2277 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2278 hidden. Set *T_P to NULL if there is no match. */
2279
2280 static bool
2281 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2282 struct elf_link_hash_entry *h,
2283 const char *version_p,
2284 struct bfd_elf_version_tree **t_p,
2285 bool *hide)
2286 {
2287 struct bfd_elf_version_tree *t;
2288
2289 /* Look for the version. If we find it, it is no longer weak. */
2290 for (t = info->version_info; t != NULL; t = t->next)
2291 {
2292 if (strcmp (t->name, version_p) == 0)
2293 {
2294 size_t len;
2295 char *alc;
2296 struct bfd_elf_version_expr *d;
2297
2298 len = version_p - h->root.root.string;
2299 alc = (char *) bfd_malloc (len);
2300 if (alc == NULL)
2301 return false;
2302 memcpy (alc, h->root.root.string, len - 1);
2303 alc[len - 1] = '\0';
2304 if (alc[len - 2] == ELF_VER_CHR)
2305 alc[len - 2] = '\0';
2306
2307 h->verinfo.vertree = t;
2308 t->used = true;
2309 d = NULL;
2310
2311 if (t->globals.list != NULL)
2312 d = (*t->match) (&t->globals, NULL, alc);
2313
2314 /* See if there is anything to force this symbol to
2315 local scope. */
2316 if (d == NULL && t->locals.list != NULL)
2317 {
2318 d = (*t->match) (&t->locals, NULL, alc);
2319 if (d != NULL
2320 && h->dynindx != -1
2321 && ! info->export_dynamic)
2322 *hide = true;
2323 }
2324
2325 free (alc);
2326 break;
2327 }
2328 }
2329
2330 *t_p = t;
2331
2332 return true;
2333 }
2334
2335 /* Return TRUE if the symbol H is hidden by version script. */
2336
2337 bool
2338 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2339 struct elf_link_hash_entry *h)
2340 {
2341 const char *p;
2342 bool hide = false;
2343 const struct elf_backend_data *bed
2344 = get_elf_backend_data (info->output_bfd);
2345
2346 /* Version script only hides symbols defined in regular objects. */
2347 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2348 return true;
2349
2350 p = strchr (h->root.root.string, ELF_VER_CHR);
2351 if (p != NULL && h->verinfo.vertree == NULL)
2352 {
2353 struct bfd_elf_version_tree *t;
2354
2355 ++p;
2356 if (*p == ELF_VER_CHR)
2357 ++p;
2358
2359 if (*p != '\0'
2360 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2361 && hide)
2362 {
2363 if (hide)
2364 (*bed->elf_backend_hide_symbol) (info, h, true);
2365 return true;
2366 }
2367 }
2368
2369 /* If we don't have a version for this symbol, see if we can find
2370 something. */
2371 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2372 {
2373 h->verinfo.vertree
2374 = bfd_find_version_for_sym (info->version_info,
2375 h->root.root.string, &hide);
2376 if (h->verinfo.vertree != NULL && hide)
2377 {
2378 (*bed->elf_backend_hide_symbol) (info, h, true);
2379 return true;
2380 }
2381 }
2382
2383 return false;
2384 }
2385
2386 /* Figure out appropriate versions for all the symbols. We may not
2387 have the version number script until we have read all of the input
2388 files, so until that point we don't know which symbols should be
2389 local. This function is called via elf_link_hash_traverse. */
2390
2391 static bool
2392 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2393 {
2394 struct elf_info_failed *sinfo;
2395 struct bfd_link_info *info;
2396 const struct elf_backend_data *bed;
2397 struct elf_info_failed eif;
2398 char *p;
2399 bool hide;
2400
2401 sinfo = (struct elf_info_failed *) data;
2402 info = sinfo->info;
2403
2404 /* Fix the symbol flags. */
2405 eif.failed = false;
2406 eif.info = info;
2407 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2408 {
2409 if (eif.failed)
2410 sinfo->failed = true;
2411 return false;
2412 }
2413
2414 bed = get_elf_backend_data (info->output_bfd);
2415
2416 /* We only need version numbers for symbols defined in regular
2417 objects. */
2418 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2419 {
2420 /* Hide symbols defined in discarded input sections. */
2421 if ((h->root.type == bfd_link_hash_defined
2422 || h->root.type == bfd_link_hash_defweak)
2423 && discarded_section (h->root.u.def.section))
2424 (*bed->elf_backend_hide_symbol) (info, h, true);
2425 return true;
2426 }
2427
2428 hide = false;
2429 p = strchr (h->root.root.string, ELF_VER_CHR);
2430 if (p != NULL && h->verinfo.vertree == NULL)
2431 {
2432 struct bfd_elf_version_tree *t;
2433
2434 ++p;
2435 if (*p == ELF_VER_CHR)
2436 ++p;
2437
2438 /* If there is no version string, we can just return out. */
2439 if (*p == '\0')
2440 return true;
2441
2442 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2443 {
2444 sinfo->failed = true;
2445 return false;
2446 }
2447
2448 if (hide)
2449 (*bed->elf_backend_hide_symbol) (info, h, true);
2450
2451 /* If we are building an application, we need to create a
2452 version node for this version. */
2453 if (t == NULL && bfd_link_executable (info))
2454 {
2455 struct bfd_elf_version_tree **pp;
2456 int version_index;
2457
2458 /* If we aren't going to export this symbol, we don't need
2459 to worry about it. */
2460 if (h->dynindx == -1)
2461 return true;
2462
2463 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2464 sizeof *t);
2465 if (t == NULL)
2466 {
2467 sinfo->failed = true;
2468 return false;
2469 }
2470
2471 t->name = p;
2472 t->name_indx = (unsigned int) -1;
2473 t->used = true;
2474
2475 version_index = 1;
2476 /* Don't count anonymous version tag. */
2477 if (sinfo->info->version_info != NULL
2478 && sinfo->info->version_info->vernum == 0)
2479 version_index = 0;
2480 for (pp = &sinfo->info->version_info;
2481 *pp != NULL;
2482 pp = &(*pp)->next)
2483 ++version_index;
2484 t->vernum = version_index;
2485
2486 *pp = t;
2487
2488 h->verinfo.vertree = t;
2489 }
2490 else if (t == NULL)
2491 {
2492 /* We could not find the version for a symbol when
2493 generating a shared archive. Return an error. */
2494 _bfd_error_handler
2495 /* xgettext:c-format */
2496 (_("%pB: version node not found for symbol %s"),
2497 info->output_bfd, h->root.root.string);
2498 bfd_set_error (bfd_error_bad_value);
2499 sinfo->failed = true;
2500 return false;
2501 }
2502 }
2503
2504 /* If we don't have a version for this symbol, see if we can find
2505 something. */
2506 if (!hide
2507 && h->verinfo.vertree == NULL
2508 && sinfo->info->version_info != NULL)
2509 {
2510 h->verinfo.vertree
2511 = bfd_find_version_for_sym (sinfo->info->version_info,
2512 h->root.root.string, &hide);
2513 if (h->verinfo.vertree != NULL && hide)
2514 (*bed->elf_backend_hide_symbol) (info, h, true);
2515 }
2516
2517 return true;
2518 }
2519 \f
2520 /* Read and swap the relocs from the section indicated by SHDR. This
2521 may be either a REL or a RELA section. The relocations are
2522 translated into RELA relocations and stored in INTERNAL_RELOCS,
2523 which should have already been allocated to contain enough space.
2524 The EXTERNAL_RELOCS are a buffer where the external form of the
2525 relocations should be stored.
2526
2527 Returns FALSE if something goes wrong. */
2528
2529 static bool
2530 elf_link_read_relocs_from_section (bfd *abfd,
2531 asection *sec,
2532 Elf_Internal_Shdr *shdr,
2533 void *external_relocs,
2534 Elf_Internal_Rela *internal_relocs)
2535 {
2536 const struct elf_backend_data *bed;
2537 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2538 const bfd_byte *erela;
2539 const bfd_byte *erelaend;
2540 Elf_Internal_Rela *irela;
2541 Elf_Internal_Shdr *symtab_hdr;
2542 size_t nsyms;
2543
2544 /* Position ourselves at the start of the section. */
2545 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2546 return false;
2547
2548 /* Read the relocations. */
2549 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2550 return false;
2551
2552 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2553 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2554
2555 bed = get_elf_backend_data (abfd);
2556
2557 /* Convert the external relocations to the internal format. */
2558 if (shdr->sh_entsize == bed->s->sizeof_rel)
2559 swap_in = bed->s->swap_reloc_in;
2560 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2561 swap_in = bed->s->swap_reloca_in;
2562 else
2563 {
2564 bfd_set_error (bfd_error_wrong_format);
2565 return false;
2566 }
2567
2568 erela = (const bfd_byte *) external_relocs;
2569 /* Setting erelaend like this and comparing with <= handles case of
2570 a fuzzed object with sh_size not a multiple of sh_entsize. */
2571 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2572 irela = internal_relocs;
2573 while (erela <= erelaend)
2574 {
2575 bfd_vma r_symndx;
2576
2577 (*swap_in) (abfd, erela, irela);
2578 r_symndx = ELF32_R_SYM (irela->r_info);
2579 if (bed->s->arch_size == 64)
2580 r_symndx >>= 24;
2581 if (nsyms > 0)
2582 {
2583 if ((size_t) r_symndx >= nsyms)
2584 {
2585 _bfd_error_handler
2586 /* xgettext:c-format */
2587 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2588 " for offset %#" PRIx64 " in section `%pA'"),
2589 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2590 (uint64_t) irela->r_offset, sec);
2591 bfd_set_error (bfd_error_bad_value);
2592 return false;
2593 }
2594 }
2595 else if (r_symndx != STN_UNDEF)
2596 {
2597 _bfd_error_handler
2598 /* xgettext:c-format */
2599 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2600 " for offset %#" PRIx64 " in section `%pA'"
2601 " when the object file has no symbol table"),
2602 abfd, (uint64_t) r_symndx,
2603 (uint64_t) irela->r_offset, sec);
2604 bfd_set_error (bfd_error_bad_value);
2605 return false;
2606 }
2607 irela += bed->s->int_rels_per_ext_rel;
2608 erela += shdr->sh_entsize;
2609 }
2610
2611 return true;
2612 }
2613
2614 /* Read and swap the relocs for a section O. They may have been
2615 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2616 not NULL, they are used as buffers to read into. They are known to
2617 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2618 the return value is allocated using either malloc or bfd_alloc,
2619 according to the KEEP_MEMORY argument. If O has two relocation
2620 sections (both REL and RELA relocations), then the REL_HDR
2621 relocations will appear first in INTERNAL_RELOCS, followed by the
2622 RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true,
2623 update cache_size. */
2624
2625 Elf_Internal_Rela *
2626 _bfd_elf_link_info_read_relocs (bfd *abfd,
2627 struct bfd_link_info *info,
2628 asection *o,
2629 void *external_relocs,
2630 Elf_Internal_Rela *internal_relocs,
2631 bool keep_memory)
2632 {
2633 void *alloc1 = NULL;
2634 Elf_Internal_Rela *alloc2 = NULL;
2635 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2636 struct bfd_elf_section_data *esdo = elf_section_data (o);
2637 Elf_Internal_Rela *internal_rela_relocs;
2638
2639 if (esdo->relocs != NULL)
2640 return esdo->relocs;
2641
2642 if (o->reloc_count == 0)
2643 return NULL;
2644
2645 if (internal_relocs == NULL)
2646 {
2647 bfd_size_type size;
2648
2649 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2650 if (keep_memory)
2651 {
2652 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2653 if (info)
2654 info->cache_size += size;
2655 }
2656 else
2657 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2658 if (internal_relocs == NULL)
2659 goto error_return;
2660 }
2661
2662 if (external_relocs == NULL)
2663 {
2664 bfd_size_type size = 0;
2665
2666 if (esdo->rel.hdr)
2667 size += esdo->rel.hdr->sh_size;
2668 if (esdo->rela.hdr)
2669 size += esdo->rela.hdr->sh_size;
2670
2671 alloc1 = bfd_malloc (size);
2672 if (alloc1 == NULL)
2673 goto error_return;
2674 external_relocs = alloc1;
2675 }
2676
2677 internal_rela_relocs = internal_relocs;
2678 if (esdo->rel.hdr)
2679 {
2680 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2681 external_relocs,
2682 internal_relocs))
2683 goto error_return;
2684 external_relocs = (((bfd_byte *) external_relocs)
2685 + esdo->rel.hdr->sh_size);
2686 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2687 * bed->s->int_rels_per_ext_rel);
2688 }
2689
2690 if (esdo->rela.hdr
2691 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2692 external_relocs,
2693 internal_rela_relocs)))
2694 goto error_return;
2695
2696 /* Cache the results for next time, if we can. */
2697 if (keep_memory)
2698 esdo->relocs = internal_relocs;
2699
2700 free (alloc1);
2701
2702 /* Don't free alloc2, since if it was allocated we are passing it
2703 back (under the name of internal_relocs). */
2704
2705 return internal_relocs;
2706
2707 error_return:
2708 free (alloc1);
2709 if (alloc2 != NULL)
2710 {
2711 if (keep_memory)
2712 bfd_release (abfd, alloc2);
2713 else
2714 free (alloc2);
2715 }
2716 return NULL;
2717 }
2718
2719 /* This is similar to _bfd_elf_link_info_read_relocs, except for that
2720 NULL is passed to _bfd_elf_link_info_read_relocs for pointer to
2721 struct bfd_link_info. */
2722
2723 Elf_Internal_Rela *
2724 _bfd_elf_link_read_relocs (bfd *abfd,
2725 asection *o,
2726 void *external_relocs,
2727 Elf_Internal_Rela *internal_relocs,
2728 bool keep_memory)
2729 {
2730 return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs,
2731 internal_relocs, keep_memory);
2732
2733 }
2734
2735 /* Compute the size of, and allocate space for, REL_HDR which is the
2736 section header for a section containing relocations for O. */
2737
2738 static bool
2739 _bfd_elf_link_size_reloc_section (bfd *abfd,
2740 struct bfd_elf_section_reloc_data *reldata)
2741 {
2742 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2743
2744 /* That allows us to calculate the size of the section. */
2745 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2746
2747 /* The contents field must last into write_object_contents, so we
2748 allocate it with bfd_alloc rather than malloc. Also since we
2749 cannot be sure that the contents will actually be filled in,
2750 we zero the allocated space. */
2751 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2752 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2753 return false;
2754
2755 if (reldata->hashes == NULL && reldata->count)
2756 {
2757 struct elf_link_hash_entry **p;
2758
2759 p = ((struct elf_link_hash_entry **)
2760 bfd_zmalloc (reldata->count * sizeof (*p)));
2761 if (p == NULL)
2762 return false;
2763
2764 reldata->hashes = p;
2765 }
2766
2767 return true;
2768 }
2769
2770 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2771 originated from the section given by INPUT_REL_HDR) to the
2772 OUTPUT_BFD. */
2773
2774 bool
2775 _bfd_elf_link_output_relocs (bfd *output_bfd,
2776 asection *input_section,
2777 Elf_Internal_Shdr *input_rel_hdr,
2778 Elf_Internal_Rela *internal_relocs,
2779 struct elf_link_hash_entry **rel_hash
2780 ATTRIBUTE_UNUSED)
2781 {
2782 Elf_Internal_Rela *irela;
2783 Elf_Internal_Rela *irelaend;
2784 bfd_byte *erel;
2785 struct bfd_elf_section_reloc_data *output_reldata;
2786 asection *output_section;
2787 const struct elf_backend_data *bed;
2788 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2789 struct bfd_elf_section_data *esdo;
2790
2791 output_section = input_section->output_section;
2792
2793 bed = get_elf_backend_data (output_bfd);
2794 esdo = elf_section_data (output_section);
2795 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2796 {
2797 output_reldata = &esdo->rel;
2798 swap_out = bed->s->swap_reloc_out;
2799 }
2800 else if (esdo->rela.hdr
2801 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2802 {
2803 output_reldata = &esdo->rela;
2804 swap_out = bed->s->swap_reloca_out;
2805 }
2806 else
2807 {
2808 _bfd_error_handler
2809 /* xgettext:c-format */
2810 (_("%pB: relocation size mismatch in %pB section %pA"),
2811 output_bfd, input_section->owner, input_section);
2812 bfd_set_error (bfd_error_wrong_format);
2813 return false;
2814 }
2815
2816 erel = output_reldata->hdr->contents;
2817 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2818 irela = internal_relocs;
2819 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2820 * bed->s->int_rels_per_ext_rel);
2821 while (irela < irelaend)
2822 {
2823 (*swap_out) (output_bfd, irela, erel);
2824 irela += bed->s->int_rels_per_ext_rel;
2825 erel += input_rel_hdr->sh_entsize;
2826 }
2827
2828 /* Bump the counter, so that we know where to add the next set of
2829 relocations. */
2830 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2831
2832 return true;
2833 }
2834 \f
2835 /* Make weak undefined symbols in PIE dynamic. */
2836
2837 bool
2838 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2839 struct elf_link_hash_entry *h)
2840 {
2841 if (bfd_link_pie (info)
2842 && h->dynindx == -1
2843 && h->root.type == bfd_link_hash_undefweak)
2844 return bfd_elf_link_record_dynamic_symbol (info, h);
2845
2846 return true;
2847 }
2848
2849 /* Fix up the flags for a symbol. This handles various cases which
2850 can only be fixed after all the input files are seen. This is
2851 currently called by both adjust_dynamic_symbol and
2852 assign_sym_version, which is unnecessary but perhaps more robust in
2853 the face of future changes. */
2854
2855 static bool
2856 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2857 struct elf_info_failed *eif)
2858 {
2859 const struct elf_backend_data *bed;
2860
2861 /* If this symbol was mentioned in a non-ELF file, try to set
2862 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2863 permit a non-ELF file to correctly refer to a symbol defined in
2864 an ELF dynamic object. */
2865 if (h->non_elf)
2866 {
2867 while (h->root.type == bfd_link_hash_indirect)
2868 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2869
2870 if (h->root.type != bfd_link_hash_defined
2871 && h->root.type != bfd_link_hash_defweak)
2872 {
2873 h->ref_regular = 1;
2874 h->ref_regular_nonweak = 1;
2875 }
2876 else
2877 {
2878 if (h->root.u.def.section->owner != NULL
2879 && (bfd_get_flavour (h->root.u.def.section->owner)
2880 == bfd_target_elf_flavour))
2881 {
2882 h->ref_regular = 1;
2883 h->ref_regular_nonweak = 1;
2884 }
2885 else
2886 h->def_regular = 1;
2887 }
2888
2889 if (h->dynindx == -1
2890 && (h->def_dynamic
2891 || h->ref_dynamic))
2892 {
2893 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2894 {
2895 eif->failed = true;
2896 return false;
2897 }
2898 }
2899 }
2900 else
2901 {
2902 /* Unfortunately, NON_ELF is only correct if the symbol
2903 was first seen in a non-ELF file. Fortunately, if the symbol
2904 was first seen in an ELF file, we're probably OK unless the
2905 symbol was defined in a non-ELF file. Catch that case here.
2906 FIXME: We're still in trouble if the symbol was first seen in
2907 a dynamic object, and then later in a non-ELF regular object. */
2908 if ((h->root.type == bfd_link_hash_defined
2909 || h->root.type == bfd_link_hash_defweak)
2910 && !h->def_regular
2911 && (h->root.u.def.section->owner != NULL
2912 ? (bfd_get_flavour (h->root.u.def.section->owner)
2913 != bfd_target_elf_flavour)
2914 : (bfd_is_abs_section (h->root.u.def.section)
2915 && !h->def_dynamic)))
2916 h->def_regular = 1;
2917 }
2918
2919 /* Backend specific symbol fixup. */
2920 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2921 if (bed->elf_backend_fixup_symbol
2922 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2923 return false;
2924
2925 /* If this is a final link, and the symbol was defined as a common
2926 symbol in a regular object file, and there was no definition in
2927 any dynamic object, then the linker will have allocated space for
2928 the symbol in a common section but the DEF_REGULAR
2929 flag will not have been set. */
2930 if (h->root.type == bfd_link_hash_defined
2931 && !h->def_regular
2932 && h->ref_regular
2933 && !h->def_dynamic
2934 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2935 h->def_regular = 1;
2936
2937 /* Symbols defined in discarded sections shouldn't be dynamic. */
2938 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2939 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
2940
2941 /* If a weak undefined symbol has non-default visibility, we also
2942 hide it from the dynamic linker. */
2943 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2944 && h->root.type == bfd_link_hash_undefweak)
2945 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
2946
2947 /* A hidden versioned symbol in executable should be forced local if
2948 it is is locally defined, not referenced by shared library and not
2949 exported. */
2950 else if (bfd_link_executable (eif->info)
2951 && h->versioned == versioned_hidden
2952 && !eif->info->export_dynamic
2953 && !h->dynamic
2954 && !h->ref_dynamic
2955 && h->def_regular)
2956 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
2957
2958 /* If -Bsymbolic was used (which means to bind references to global
2959 symbols to the definition within the shared object), and this
2960 symbol was defined in a regular object, then it actually doesn't
2961 need a PLT entry. Likewise, if the symbol has non-default
2962 visibility. If the symbol has hidden or internal visibility, we
2963 will force it local. */
2964 else if (h->needs_plt
2965 && bfd_link_pic (eif->info)
2966 && is_elf_hash_table (eif->info->hash)
2967 && (SYMBOLIC_BIND (eif->info, h)
2968 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2969 && h->def_regular)
2970 {
2971 bool force_local;
2972
2973 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2974 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2975 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2976 }
2977
2978 /* If this is a weak defined symbol in a dynamic object, and we know
2979 the real definition in the dynamic object, copy interesting flags
2980 over to the real definition. */
2981 if (h->is_weakalias)
2982 {
2983 struct elf_link_hash_entry *def = weakdef (h);
2984
2985 /* If the real definition is defined by a regular object file,
2986 don't do anything special. See the longer description in
2987 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2988 bfd_link_hash_defined as it was when put on the alias list
2989 then it must have originally been a versioned symbol (for
2990 which a non-versioned indirect symbol is created) and later
2991 a definition for the non-versioned symbol is found. In that
2992 case the indirection is flipped with the versioned symbol
2993 becoming an indirect pointing at the non-versioned symbol.
2994 Thus, not an alias any more. */
2995 if (def->def_regular
2996 || def->root.type != bfd_link_hash_defined)
2997 {
2998 h = def;
2999 while ((h = h->u.alias) != def)
3000 h->is_weakalias = 0;
3001 }
3002 else
3003 {
3004 while (h->root.type == bfd_link_hash_indirect)
3005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3006 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3007 || h->root.type == bfd_link_hash_defweak);
3008 BFD_ASSERT (def->def_dynamic);
3009 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
3010 }
3011 }
3012
3013 return true;
3014 }
3015
3016 /* Make the backend pick a good value for a dynamic symbol. This is
3017 called via elf_link_hash_traverse, and also calls itself
3018 recursively. */
3019
3020 static bool
3021 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3022 {
3023 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3024 struct elf_link_hash_table *htab;
3025 const struct elf_backend_data *bed;
3026
3027 if (! is_elf_hash_table (eif->info->hash))
3028 return false;
3029
3030 /* Ignore indirect symbols. These are added by the versioning code. */
3031 if (h->root.type == bfd_link_hash_indirect)
3032 return true;
3033
3034 /* Fix the symbol flags. */
3035 if (! _bfd_elf_fix_symbol_flags (h, eif))
3036 return false;
3037
3038 htab = elf_hash_table (eif->info);
3039 bed = get_elf_backend_data (htab->dynobj);
3040
3041 if (h->root.type == bfd_link_hash_undefweak)
3042 {
3043 if (eif->info->dynamic_undefined_weak == 0)
3044 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3045 else if (eif->info->dynamic_undefined_weak > 0
3046 && h->ref_regular
3047 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3048 && !bfd_hide_sym_by_version (eif->info->version_info,
3049 h->root.root.string))
3050 {
3051 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3052 {
3053 eif->failed = true;
3054 return false;
3055 }
3056 }
3057 }
3058
3059 /* If this symbol does not require a PLT entry, and it is not
3060 defined by a dynamic object, or is not referenced by a regular
3061 object, ignore it. We do have to handle a weak defined symbol,
3062 even if no regular object refers to it, if we decided to add it
3063 to the dynamic symbol table. FIXME: Do we normally need to worry
3064 about symbols which are defined by one dynamic object and
3065 referenced by another one? */
3066 if (!h->needs_plt
3067 && h->type != STT_GNU_IFUNC
3068 && (h->def_regular
3069 || !h->def_dynamic
3070 || (!h->ref_regular
3071 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3072 {
3073 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3074 return true;
3075 }
3076
3077 /* If we've already adjusted this symbol, don't do it again. This
3078 can happen via a recursive call. */
3079 if (h->dynamic_adjusted)
3080 return true;
3081
3082 /* Don't look at this symbol again. Note that we must set this
3083 after checking the above conditions, because we may look at a
3084 symbol once, decide not to do anything, and then get called
3085 recursively later after REF_REGULAR is set below. */
3086 h->dynamic_adjusted = 1;
3087
3088 /* If this is a weak definition, and we know a real definition, and
3089 the real symbol is not itself defined by a regular object file,
3090 then get a good value for the real definition. We handle the
3091 real symbol first, for the convenience of the backend routine.
3092
3093 Note that there is a confusing case here. If the real definition
3094 is defined by a regular object file, we don't get the real symbol
3095 from the dynamic object, but we do get the weak symbol. If the
3096 processor backend uses a COPY reloc, then if some routine in the
3097 dynamic object changes the real symbol, we will not see that
3098 change in the corresponding weak symbol. This is the way other
3099 ELF linkers work as well, and seems to be a result of the shared
3100 library model.
3101
3102 I will clarify this issue. Most SVR4 shared libraries define the
3103 variable _timezone and define timezone as a weak synonym. The
3104 tzset call changes _timezone. If you write
3105 extern int timezone;
3106 int _timezone = 5;
3107 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3108 you might expect that, since timezone is a synonym for _timezone,
3109 the same number will print both times. However, if the processor
3110 backend uses a COPY reloc, then actually timezone will be copied
3111 into your process image, and, since you define _timezone
3112 yourself, _timezone will not. Thus timezone and _timezone will
3113 wind up at different memory locations. The tzset call will set
3114 _timezone, leaving timezone unchanged. */
3115
3116 if (h->is_weakalias)
3117 {
3118 struct elf_link_hash_entry *def = weakdef (h);
3119
3120 /* If we get to this point, there is an implicit reference to
3121 the alias by a regular object file via the weak symbol H. */
3122 def->ref_regular = 1;
3123
3124 /* Ensure that the backend adjust_dynamic_symbol function sees
3125 the strong alias before H by recursively calling ourselves. */
3126 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3127 return false;
3128 }
3129
3130 /* If a symbol has no type and no size and does not require a PLT
3131 entry, then we are probably about to do the wrong thing here: we
3132 are probably going to create a COPY reloc for an empty object.
3133 This case can arise when a shared object is built with assembly
3134 code, and the assembly code fails to set the symbol type. */
3135 if (h->size == 0
3136 && h->type == STT_NOTYPE
3137 && !h->needs_plt)
3138 _bfd_error_handler
3139 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3140 h->root.root.string);
3141
3142 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3143 {
3144 eif->failed = true;
3145 return false;
3146 }
3147
3148 return true;
3149 }
3150
3151 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3152 DYNBSS. */
3153
3154 bool
3155 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3156 struct elf_link_hash_entry *h,
3157 asection *dynbss)
3158 {
3159 unsigned int power_of_two;
3160 bfd_vma mask;
3161 asection *sec = h->root.u.def.section;
3162
3163 /* The section alignment of the definition is the maximum alignment
3164 requirement of symbols defined in the section. Since we don't
3165 know the symbol alignment requirement, we start with the
3166 maximum alignment and check low bits of the symbol address
3167 for the minimum alignment. */
3168 power_of_two = bfd_section_alignment (sec);
3169 mask = ((bfd_vma) 1 << power_of_two) - 1;
3170 while ((h->root.u.def.value & mask) != 0)
3171 {
3172 mask >>= 1;
3173 --power_of_two;
3174 }
3175
3176 if (power_of_two > bfd_section_alignment (dynbss))
3177 {
3178 /* Adjust the section alignment if needed. */
3179 if (!bfd_set_section_alignment (dynbss, power_of_two))
3180 return false;
3181 }
3182
3183 /* We make sure that the symbol will be aligned properly. */
3184 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3185
3186 /* Define the symbol as being at this point in DYNBSS. */
3187 h->root.u.def.section = dynbss;
3188 h->root.u.def.value = dynbss->size;
3189
3190 /* Increment the size of DYNBSS to make room for the symbol. */
3191 dynbss->size += h->size;
3192
3193 /* No error if extern_protected_data is true. */
3194 if (h->protected_def
3195 && (!info->extern_protected_data
3196 || (info->extern_protected_data < 0
3197 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3198 info->callbacks->einfo
3199 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3200 h->root.root.string);
3201
3202 return true;
3203 }
3204
3205 /* Adjust all external symbols pointing into SEC_MERGE sections
3206 to reflect the object merging within the sections. */
3207
3208 static bool
3209 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3210 {
3211 asection *sec;
3212
3213 if ((h->root.type == bfd_link_hash_defined
3214 || h->root.type == bfd_link_hash_defweak)
3215 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3216 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3217 {
3218 bfd *output_bfd = (bfd *) data;
3219
3220 h->root.u.def.value =
3221 _bfd_merged_section_offset (output_bfd,
3222 &h->root.u.def.section,
3223 elf_section_data (sec)->sec_info,
3224 h->root.u.def.value);
3225 }
3226
3227 return true;
3228 }
3229
3230 /* Returns false if the symbol referred to by H should be considered
3231 to resolve local to the current module, and true if it should be
3232 considered to bind dynamically. */
3233
3234 bool
3235 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3236 struct bfd_link_info *info,
3237 bool not_local_protected)
3238 {
3239 bool binding_stays_local_p;
3240 const struct elf_backend_data *bed;
3241 struct elf_link_hash_table *hash_table;
3242
3243 if (h == NULL)
3244 return false;
3245
3246 while (h->root.type == bfd_link_hash_indirect
3247 || h->root.type == bfd_link_hash_warning)
3248 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3249
3250 /* If it was forced local, then clearly it's not dynamic. */
3251 if (h->dynindx == -1)
3252 return false;
3253 if (h->forced_local)
3254 return false;
3255
3256 /* Identify the cases where name binding rules say that a
3257 visible symbol resolves locally. */
3258 binding_stays_local_p = (bfd_link_executable (info)
3259 || SYMBOLIC_BIND (info, h));
3260
3261 switch (ELF_ST_VISIBILITY (h->other))
3262 {
3263 case STV_INTERNAL:
3264 case STV_HIDDEN:
3265 return false;
3266
3267 case STV_PROTECTED:
3268 hash_table = elf_hash_table (info);
3269 if (!is_elf_hash_table (&hash_table->root))
3270 return false;
3271
3272 bed = get_elf_backend_data (hash_table->dynobj);
3273
3274 /* Proper resolution for function pointer equality may require
3275 that these symbols perhaps be resolved dynamically, even though
3276 we should be resolving them to the current module. */
3277 if (!not_local_protected || !bed->is_function_type (h->type))
3278 binding_stays_local_p = true;
3279 break;
3280
3281 default:
3282 break;
3283 }
3284
3285 /* If it isn't defined locally, then clearly it's dynamic. */
3286 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3287 return true;
3288
3289 /* Otherwise, the symbol is dynamic if binding rules don't tell
3290 us that it remains local. */
3291 return !binding_stays_local_p;
3292 }
3293
3294 /* Return true if the symbol referred to by H should be considered
3295 to resolve local to the current module, and false otherwise. Differs
3296 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3297 undefined symbols. The two functions are virtually identical except
3298 for the place where dynindx == -1 is tested. If that test is true,
3299 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3300 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3301 defined symbols.
3302 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3303 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3304 treatment of undefined weak symbols. For those that do not make
3305 undefined weak symbols dynamic, both functions may return false. */
3306
3307 bool
3308 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3309 struct bfd_link_info *info,
3310 bool local_protected)
3311 {
3312 const struct elf_backend_data *bed;
3313 struct elf_link_hash_table *hash_table;
3314
3315 /* If it's a local sym, of course we resolve locally. */
3316 if (h == NULL)
3317 return true;
3318
3319 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3320 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3321 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3322 return true;
3323
3324 /* Forced local symbols resolve locally. */
3325 if (h->forced_local)
3326 return true;
3327
3328 /* Common symbols that become definitions don't get the DEF_REGULAR
3329 flag set, so test it first, and don't bail out. */
3330 if (ELF_COMMON_DEF_P (h))
3331 /* Do nothing. */;
3332 /* If we don't have a definition in a regular file, then we can't
3333 resolve locally. The sym is either undefined or dynamic. */
3334 else if (!h->def_regular)
3335 return false;
3336
3337 /* Non-dynamic symbols resolve locally. */
3338 if (h->dynindx == -1)
3339 return true;
3340
3341 /* At this point, we know the symbol is defined and dynamic. In an
3342 executable it must resolve locally, likewise when building symbolic
3343 shared libraries. */
3344 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3345 return true;
3346
3347 /* Now deal with defined dynamic symbols in shared libraries. Ones
3348 with default visibility might not resolve locally. */
3349 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3350 return false;
3351
3352 hash_table = elf_hash_table (info);
3353 if (!is_elf_hash_table (&hash_table->root))
3354 return true;
3355
3356 /* STV_PROTECTED symbols with indirect external access are local. */
3357 if (info->indirect_extern_access > 0)
3358 return true;
3359
3360 bed = get_elf_backend_data (hash_table->dynobj);
3361
3362 /* If extern_protected_data is false, STV_PROTECTED non-function
3363 symbols are local. */
3364 if ((!info->extern_protected_data
3365 || (info->extern_protected_data < 0
3366 && !bed->extern_protected_data))
3367 && !bed->is_function_type (h->type))
3368 return true;
3369
3370 /* Function pointer equality tests may require that STV_PROTECTED
3371 symbols be treated as dynamic symbols. If the address of a
3372 function not defined in an executable is set to that function's
3373 plt entry in the executable, then the address of the function in
3374 a shared library must also be the plt entry in the executable. */
3375 return local_protected;
3376 }
3377
3378 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3379 aligned. Returns the first TLS output section. */
3380
3381 struct bfd_section *
3382 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3383 {
3384 struct bfd_section *sec, *tls;
3385 unsigned int align = 0;
3386
3387 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3388 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3389 break;
3390 tls = sec;
3391
3392 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3393 if (sec->alignment_power > align)
3394 align = sec->alignment_power;
3395
3396 elf_hash_table (info)->tls_sec = tls;
3397
3398 /* Ensure the alignment of the first section (usually .tdata) is the largest
3399 alignment, so that the tls segment starts aligned. */
3400 if (tls != NULL)
3401 tls->alignment_power = align;
3402
3403 return tls;
3404 }
3405
3406 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3407 static bool
3408 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3409 Elf_Internal_Sym *sym)
3410 {
3411 const struct elf_backend_data *bed;
3412
3413 /* Local symbols do not count, but target specific ones might. */
3414 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3415 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3416 return false;
3417
3418 bed = get_elf_backend_data (abfd);
3419 /* Function symbols do not count. */
3420 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3421 return false;
3422
3423 /* If the section is undefined, then so is the symbol. */
3424 if (sym->st_shndx == SHN_UNDEF)
3425 return false;
3426
3427 /* If the symbol is defined in the common section, then
3428 it is a common definition and so does not count. */
3429 if (bed->common_definition (sym))
3430 return false;
3431
3432 /* If the symbol is in a target specific section then we
3433 must rely upon the backend to tell us what it is. */
3434 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3435 /* FIXME - this function is not coded yet:
3436
3437 return _bfd_is_global_symbol_definition (abfd, sym);
3438
3439 Instead for now assume that the definition is not global,
3440 Even if this is wrong, at least the linker will behave
3441 in the same way that it used to do. */
3442 return false;
3443
3444 return true;
3445 }
3446
3447 /* Search the symbol table of the archive element of the archive ABFD
3448 whose archive map contains a mention of SYMDEF, and determine if
3449 the symbol is defined in this element. */
3450 static bool
3451 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3452 {
3453 Elf_Internal_Shdr * hdr;
3454 size_t symcount;
3455 size_t extsymcount;
3456 size_t extsymoff;
3457 Elf_Internal_Sym *isymbuf;
3458 Elf_Internal_Sym *isym;
3459 Elf_Internal_Sym *isymend;
3460 bool result;
3461
3462 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3463 if (abfd == NULL)
3464 return false;
3465
3466 if (! bfd_check_format (abfd, bfd_object))
3467 return false;
3468
3469 /* Select the appropriate symbol table. If we don't know if the
3470 object file is an IR object, give linker LTO plugin a chance to
3471 get the correct symbol table. */
3472 if (abfd->plugin_format == bfd_plugin_yes
3473 #if BFD_SUPPORTS_PLUGINS
3474 || (abfd->plugin_format == bfd_plugin_unknown
3475 && bfd_link_plugin_object_p (abfd))
3476 #endif
3477 )
3478 {
3479 /* Use the IR symbol table if the object has been claimed by
3480 plugin. */
3481 abfd = abfd->plugin_dummy_bfd;
3482 hdr = &elf_tdata (abfd)->symtab_hdr;
3483 }
3484 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3485 hdr = &elf_tdata (abfd)->symtab_hdr;
3486 else
3487 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3488
3489 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3490
3491 /* The sh_info field of the symtab header tells us where the
3492 external symbols start. We don't care about the local symbols. */
3493 if (elf_bad_symtab (abfd))
3494 {
3495 extsymcount = symcount;
3496 extsymoff = 0;
3497 }
3498 else
3499 {
3500 extsymcount = symcount - hdr->sh_info;
3501 extsymoff = hdr->sh_info;
3502 }
3503
3504 if (extsymcount == 0)
3505 return false;
3506
3507 /* Read in the symbol table. */
3508 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3509 NULL, NULL, NULL);
3510 if (isymbuf == NULL)
3511 return false;
3512
3513 /* Scan the symbol table looking for SYMDEF. */
3514 result = false;
3515 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3516 {
3517 const char *name;
3518
3519 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3520 isym->st_name);
3521 if (name == NULL)
3522 break;
3523
3524 if (strcmp (name, symdef->name) == 0)
3525 {
3526 result = is_global_data_symbol_definition (abfd, isym);
3527 break;
3528 }
3529 }
3530
3531 free (isymbuf);
3532
3533 return result;
3534 }
3535 \f
3536 /* Add an entry to the .dynamic table. */
3537
3538 bool
3539 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3540 bfd_vma tag,
3541 bfd_vma val)
3542 {
3543 struct elf_link_hash_table *hash_table;
3544 const struct elf_backend_data *bed;
3545 asection *s;
3546 bfd_size_type newsize;
3547 bfd_byte *newcontents;
3548 Elf_Internal_Dyn dyn;
3549
3550 hash_table = elf_hash_table (info);
3551 if (! is_elf_hash_table (&hash_table->root))
3552 return false;
3553
3554 if (tag == DT_RELA || tag == DT_REL)
3555 hash_table->dynamic_relocs = true;
3556
3557 bed = get_elf_backend_data (hash_table->dynobj);
3558 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3559 BFD_ASSERT (s != NULL);
3560
3561 newsize = s->size + bed->s->sizeof_dyn;
3562 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3563 if (newcontents == NULL)
3564 return false;
3565
3566 dyn.d_tag = tag;
3567 dyn.d_un.d_val = val;
3568 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3569
3570 s->size = newsize;
3571 s->contents = newcontents;
3572
3573 return true;
3574 }
3575
3576 /* Strip zero-sized dynamic sections. */
3577
3578 bool
3579 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3580 {
3581 struct elf_link_hash_table *hash_table;
3582 const struct elf_backend_data *bed;
3583 asection *s, *sdynamic, **pp;
3584 asection *rela_dyn, *rel_dyn;
3585 Elf_Internal_Dyn dyn;
3586 bfd_byte *extdyn, *next;
3587 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3588 bool strip_zero_sized;
3589 bool strip_zero_sized_plt;
3590
3591 if (bfd_link_relocatable (info))
3592 return true;
3593
3594 hash_table = elf_hash_table (info);
3595 if (!is_elf_hash_table (&hash_table->root))
3596 return false;
3597
3598 if (!hash_table->dynobj)
3599 return true;
3600
3601 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3602 if (!sdynamic)
3603 return true;
3604
3605 bed = get_elf_backend_data (hash_table->dynobj);
3606 swap_dyn_in = bed->s->swap_dyn_in;
3607
3608 strip_zero_sized = false;
3609 strip_zero_sized_plt = false;
3610
3611 /* Strip zero-sized dynamic sections. */
3612 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3613 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3614 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3615 if (s->size == 0
3616 && (s == rela_dyn
3617 || s == rel_dyn
3618 || s == hash_table->srelplt->output_section
3619 || s == hash_table->splt->output_section))
3620 {
3621 *pp = s->next;
3622 info->output_bfd->section_count--;
3623 strip_zero_sized = true;
3624 if (s == rela_dyn)
3625 s = rela_dyn;
3626 if (s == rel_dyn)
3627 s = rel_dyn;
3628 else if (s == hash_table->splt->output_section)
3629 {
3630 s = hash_table->splt;
3631 strip_zero_sized_plt = true;
3632 }
3633 else
3634 s = hash_table->srelplt;
3635 s->flags |= SEC_EXCLUDE;
3636 s->output_section = bfd_abs_section_ptr;
3637 }
3638 else
3639 pp = &s->next;
3640
3641 if (strip_zero_sized_plt)
3642 for (extdyn = sdynamic->contents;
3643 extdyn < sdynamic->contents + sdynamic->size;
3644 extdyn = next)
3645 {
3646 next = extdyn + bed->s->sizeof_dyn;
3647 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3648 switch (dyn.d_tag)
3649 {
3650 default:
3651 break;
3652 case DT_JMPREL:
3653 case DT_PLTRELSZ:
3654 case DT_PLTREL:
3655 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3656 the procedure linkage table (the .plt section) has been
3657 removed. */
3658 memmove (extdyn, next,
3659 sdynamic->size - (next - sdynamic->contents));
3660 next = extdyn;
3661 }
3662 }
3663
3664 if (strip_zero_sized)
3665 {
3666 /* Regenerate program headers. */
3667 elf_seg_map (info->output_bfd) = NULL;
3668 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3669 }
3670
3671 return true;
3672 }
3673
3674 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3675 1 if a DT_NEEDED tag already exists, and 0 on success. */
3676
3677 int
3678 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3679 {
3680 struct elf_link_hash_table *hash_table;
3681 size_t strindex;
3682 const char *soname;
3683
3684 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3685 return -1;
3686
3687 hash_table = elf_hash_table (info);
3688 soname = elf_dt_name (abfd);
3689 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false);
3690 if (strindex == (size_t) -1)
3691 return -1;
3692
3693 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3694 {
3695 asection *sdyn;
3696 const struct elf_backend_data *bed;
3697 bfd_byte *extdyn;
3698
3699 bed = get_elf_backend_data (hash_table->dynobj);
3700 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3701 if (sdyn != NULL)
3702 for (extdyn = sdyn->contents;
3703 extdyn < sdyn->contents + sdyn->size;
3704 extdyn += bed->s->sizeof_dyn)
3705 {
3706 Elf_Internal_Dyn dyn;
3707
3708 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3709 if (dyn.d_tag == DT_NEEDED
3710 && dyn.d_un.d_val == strindex)
3711 {
3712 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3713 return 1;
3714 }
3715 }
3716 }
3717
3718 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3719 return -1;
3720
3721 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3722 return -1;
3723
3724 return 0;
3725 }
3726
3727 /* Return true if SONAME is on the needed list between NEEDED and STOP
3728 (or the end of list if STOP is NULL), and needed by a library that
3729 will be loaded. */
3730
3731 static bool
3732 on_needed_list (const char *soname,
3733 struct bfd_link_needed_list *needed,
3734 struct bfd_link_needed_list *stop)
3735 {
3736 struct bfd_link_needed_list *look;
3737 for (look = needed; look != stop; look = look->next)
3738 if (strcmp (soname, look->name) == 0
3739 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3740 /* If needed by a library that itself is not directly
3741 needed, recursively check whether that library is
3742 indirectly needed. Since we add DT_NEEDED entries to
3743 the end of the list, library dependencies appear after
3744 the library. Therefore search prior to the current
3745 LOOK, preventing possible infinite recursion. */
3746 || on_needed_list (elf_dt_name (look->by), needed, look)))
3747 return true;
3748
3749 return false;
3750 }
3751
3752 /* Sort symbol by value, section, size, and type. */
3753 static int
3754 elf_sort_symbol (const void *arg1, const void *arg2)
3755 {
3756 const struct elf_link_hash_entry *h1;
3757 const struct elf_link_hash_entry *h2;
3758 bfd_signed_vma vdiff;
3759 int sdiff;
3760 const char *n1;
3761 const char *n2;
3762
3763 h1 = *(const struct elf_link_hash_entry **) arg1;
3764 h2 = *(const struct elf_link_hash_entry **) arg2;
3765 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3766 if (vdiff != 0)
3767 return vdiff > 0 ? 1 : -1;
3768
3769 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3770 if (sdiff != 0)
3771 return sdiff;
3772
3773 /* Sort so that sized symbols are selected over zero size symbols. */
3774 vdiff = h1->size - h2->size;
3775 if (vdiff != 0)
3776 return vdiff > 0 ? 1 : -1;
3777
3778 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3779 if (h1->type != h2->type)
3780 return h1->type - h2->type;
3781
3782 /* If symbols are properly sized and typed, and multiple strong
3783 aliases are not defined in a shared library by the user we
3784 shouldn't get here. Unfortunately linker script symbols like
3785 __bss_start sometimes match a user symbol defined at the start of
3786 .bss without proper size and type. We'd like to preference the
3787 user symbol over reserved system symbols. Sort on leading
3788 underscores. */
3789 n1 = h1->root.root.string;
3790 n2 = h2->root.root.string;
3791 while (*n1 == *n2)
3792 {
3793 if (*n1 == 0)
3794 break;
3795 ++n1;
3796 ++n2;
3797 }
3798 if (*n1 == '_')
3799 return -1;
3800 if (*n2 == '_')
3801 return 1;
3802
3803 /* Final sort on name selects user symbols like '_u' over reserved
3804 system symbols like '_Z' and also will avoid qsort instability. */
3805 return *n1 - *n2;
3806 }
3807
3808 /* This function is used to adjust offsets into .dynstr for
3809 dynamic symbols. This is called via elf_link_hash_traverse. */
3810
3811 static bool
3812 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3813 {
3814 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3815
3816 if (h->dynindx != -1)
3817 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3818 return true;
3819 }
3820
3821 /* Assign string offsets in .dynstr, update all structures referencing
3822 them. */
3823
3824 static bool
3825 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3826 {
3827 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3828 struct elf_link_local_dynamic_entry *entry;
3829 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3830 bfd *dynobj = hash_table->dynobj;
3831 asection *sdyn;
3832 bfd_size_type size;
3833 const struct elf_backend_data *bed;
3834 bfd_byte *extdyn;
3835
3836 _bfd_elf_strtab_finalize (dynstr);
3837 size = _bfd_elf_strtab_size (dynstr);
3838
3839 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3840
3841 if (info->callbacks->examine_strtab)
3842 info->callbacks->examine_strtab (dynstr);
3843
3844 bed = get_elf_backend_data (dynobj);
3845 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3846 BFD_ASSERT (sdyn != NULL);
3847
3848 /* Update all .dynamic entries referencing .dynstr strings. */
3849 for (extdyn = sdyn->contents;
3850 extdyn < sdyn->contents + sdyn->size;
3851 extdyn += bed->s->sizeof_dyn)
3852 {
3853 Elf_Internal_Dyn dyn;
3854
3855 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3856 switch (dyn.d_tag)
3857 {
3858 case DT_STRSZ:
3859 dyn.d_un.d_val = size;
3860 break;
3861 case DT_NEEDED:
3862 case DT_SONAME:
3863 case DT_RPATH:
3864 case DT_RUNPATH:
3865 case DT_FILTER:
3866 case DT_AUXILIARY:
3867 case DT_AUDIT:
3868 case DT_DEPAUDIT:
3869 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3870 break;
3871 default:
3872 continue;
3873 }
3874 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3875 }
3876
3877 /* Now update local dynamic symbols. */
3878 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3879 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3880 entry->isym.st_name);
3881
3882 /* And the rest of dynamic symbols. */
3883 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3884
3885 /* Adjust version definitions. */
3886 if (elf_tdata (output_bfd)->cverdefs)
3887 {
3888 asection *s;
3889 bfd_byte *p;
3890 size_t i;
3891 Elf_Internal_Verdef def;
3892 Elf_Internal_Verdaux defaux;
3893
3894 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3895 p = s->contents;
3896 do
3897 {
3898 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3899 &def);
3900 p += sizeof (Elf_External_Verdef);
3901 if (def.vd_aux != sizeof (Elf_External_Verdef))
3902 continue;
3903 for (i = 0; i < def.vd_cnt; ++i)
3904 {
3905 _bfd_elf_swap_verdaux_in (output_bfd,
3906 (Elf_External_Verdaux *) p, &defaux);
3907 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3908 defaux.vda_name);
3909 _bfd_elf_swap_verdaux_out (output_bfd,
3910 &defaux, (Elf_External_Verdaux *) p);
3911 p += sizeof (Elf_External_Verdaux);
3912 }
3913 }
3914 while (def.vd_next);
3915 }
3916
3917 /* Adjust version references. */
3918 if (elf_tdata (output_bfd)->verref)
3919 {
3920 asection *s;
3921 bfd_byte *p;
3922 size_t i;
3923 Elf_Internal_Verneed need;
3924 Elf_Internal_Vernaux needaux;
3925
3926 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3927 p = s->contents;
3928 do
3929 {
3930 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3931 &need);
3932 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3933 _bfd_elf_swap_verneed_out (output_bfd, &need,
3934 (Elf_External_Verneed *) p);
3935 p += sizeof (Elf_External_Verneed);
3936 for (i = 0; i < need.vn_cnt; ++i)
3937 {
3938 _bfd_elf_swap_vernaux_in (output_bfd,
3939 (Elf_External_Vernaux *) p, &needaux);
3940 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3941 needaux.vna_name);
3942 _bfd_elf_swap_vernaux_out (output_bfd,
3943 &needaux,
3944 (Elf_External_Vernaux *) p);
3945 p += sizeof (Elf_External_Vernaux);
3946 }
3947 }
3948 while (need.vn_next);
3949 }
3950
3951 return true;
3952 }
3953 \f
3954 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3955 The default is to only match when the INPUT and OUTPUT are exactly
3956 the same target. */
3957
3958 bool
3959 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3960 const bfd_target *output)
3961 {
3962 return input == output;
3963 }
3964
3965 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3966 This version is used when different targets for the same architecture
3967 are virtually identical. */
3968
3969 bool
3970 _bfd_elf_relocs_compatible (const bfd_target *input,
3971 const bfd_target *output)
3972 {
3973 const struct elf_backend_data *obed, *ibed;
3974
3975 if (input == output)
3976 return true;
3977
3978 ibed = xvec_get_elf_backend_data (input);
3979 obed = xvec_get_elf_backend_data (output);
3980
3981 if (ibed->arch != obed->arch)
3982 return false;
3983
3984 /* If both backends are using this function, deem them compatible. */
3985 return ibed->relocs_compatible == obed->relocs_compatible;
3986 }
3987
3988 /* Make a special call to the linker "notice" function to tell it that
3989 we are about to handle an as-needed lib, or have finished
3990 processing the lib. */
3991
3992 bool
3993 _bfd_elf_notice_as_needed (bfd *ibfd,
3994 struct bfd_link_info *info,
3995 enum notice_asneeded_action act)
3996 {
3997 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3998 }
3999
4000 /* Check relocations an ELF object file. */
4001
4002 bool
4003 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
4004 {
4005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4006 struct elf_link_hash_table *htab = elf_hash_table (info);
4007
4008 /* If this object is the same format as the output object, and it is
4009 not a shared library, then let the backend look through the
4010 relocs.
4011
4012 This is required to build global offset table entries and to
4013 arrange for dynamic relocs. It is not required for the
4014 particular common case of linking non PIC code, even when linking
4015 against shared libraries, but unfortunately there is no way of
4016 knowing whether an object file has been compiled PIC or not.
4017 Looking through the relocs is not particularly time consuming.
4018 The problem is that we must either (1) keep the relocs in memory,
4019 which causes the linker to require additional runtime memory or
4020 (2) read the relocs twice from the input file, which wastes time.
4021 This would be a good case for using mmap.
4022
4023 I have no idea how to handle linking PIC code into a file of a
4024 different format. It probably can't be done. */
4025 if ((abfd->flags & DYNAMIC) == 0
4026 && is_elf_hash_table (&htab->root)
4027 && bed->check_relocs != NULL
4028 && elf_object_id (abfd) == elf_hash_table_id (htab)
4029 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4030 {
4031 asection *o;
4032
4033 for (o = abfd->sections; o != NULL; o = o->next)
4034 {
4035 Elf_Internal_Rela *internal_relocs;
4036 bool ok;
4037
4038 /* Don't check relocations in excluded sections. Don't do
4039 anything special with non-loaded, non-alloced sections.
4040 In particular, any relocs in such sections should not
4041 affect GOT and PLT reference counting (ie. we don't
4042 allow them to create GOT or PLT entries), there's no
4043 possibility or desire to optimize TLS relocs, and
4044 there's not much point in propagating relocs to shared
4045 libs that the dynamic linker won't relocate. */
4046 if ((o->flags & SEC_ALLOC) == 0
4047 || (o->flags & SEC_RELOC) == 0
4048 || (o->flags & SEC_EXCLUDE) != 0
4049 || o->reloc_count == 0
4050 || ((info->strip == strip_all || info->strip == strip_debugger)
4051 && (o->flags & SEC_DEBUGGING) != 0)
4052 || bfd_is_abs_section (o->output_section))
4053 continue;
4054
4055 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
4056 o, NULL,
4057 NULL,
4058 _bfd_link_keep_memory (info));
4059 if (internal_relocs == NULL)
4060 return false;
4061
4062 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4063
4064 if (elf_section_data (o)->relocs != internal_relocs)
4065 free (internal_relocs);
4066
4067 if (! ok)
4068 return false;
4069 }
4070 }
4071
4072 return true;
4073 }
4074
4075 /* Add symbols from an ELF object file to the linker hash table. */
4076
4077 static bool
4078 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4079 {
4080 Elf_Internal_Ehdr *ehdr;
4081 Elf_Internal_Shdr *hdr;
4082 size_t symcount;
4083 size_t extsymcount;
4084 size_t extsymoff;
4085 struct elf_link_hash_entry **sym_hash;
4086 bool dynamic;
4087 Elf_External_Versym *extversym = NULL;
4088 Elf_External_Versym *extversym_end = NULL;
4089 Elf_External_Versym *ever;
4090 struct elf_link_hash_entry *weaks;
4091 struct elf_link_hash_entry **nondeflt_vers = NULL;
4092 size_t nondeflt_vers_cnt = 0;
4093 Elf_Internal_Sym *isymbuf = NULL;
4094 Elf_Internal_Sym *isym;
4095 Elf_Internal_Sym *isymend;
4096 const struct elf_backend_data *bed;
4097 bool add_needed;
4098 struct elf_link_hash_table *htab;
4099 void *alloc_mark = NULL;
4100 struct bfd_hash_entry **old_table = NULL;
4101 unsigned int old_size = 0;
4102 unsigned int old_count = 0;
4103 void *old_tab = NULL;
4104 void *old_ent;
4105 struct bfd_link_hash_entry *old_undefs = NULL;
4106 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4107 void *old_strtab = NULL;
4108 size_t tabsize = 0;
4109 asection *s;
4110 bool just_syms;
4111
4112 htab = elf_hash_table (info);
4113 bed = get_elf_backend_data (abfd);
4114
4115 if ((abfd->flags & DYNAMIC) == 0)
4116 dynamic = false;
4117 else
4118 {
4119 dynamic = true;
4120
4121 /* You can't use -r against a dynamic object. Also, there's no
4122 hope of using a dynamic object which does not exactly match
4123 the format of the output file. */
4124 if (bfd_link_relocatable (info)
4125 || !is_elf_hash_table (&htab->root)
4126 || info->output_bfd->xvec != abfd->xvec)
4127 {
4128 if (bfd_link_relocatable (info))
4129 bfd_set_error (bfd_error_invalid_operation);
4130 else
4131 bfd_set_error (bfd_error_wrong_format);
4132 goto error_return;
4133 }
4134 }
4135
4136 ehdr = elf_elfheader (abfd);
4137 if (info->warn_alternate_em
4138 && bed->elf_machine_code != ehdr->e_machine
4139 && ((bed->elf_machine_alt1 != 0
4140 && ehdr->e_machine == bed->elf_machine_alt1)
4141 || (bed->elf_machine_alt2 != 0
4142 && ehdr->e_machine == bed->elf_machine_alt2)))
4143 _bfd_error_handler
4144 /* xgettext:c-format */
4145 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4146 ehdr->e_machine, abfd, bed->elf_machine_code);
4147
4148 /* As a GNU extension, any input sections which are named
4149 .gnu.warning.SYMBOL are treated as warning symbols for the given
4150 symbol. This differs from .gnu.warning sections, which generate
4151 warnings when they are included in an output file. */
4152 /* PR 12761: Also generate this warning when building shared libraries. */
4153 for (s = abfd->sections; s != NULL; s = s->next)
4154 {
4155 const char *name;
4156
4157 name = bfd_section_name (s);
4158 if (startswith (name, ".gnu.warning."))
4159 {
4160 char *msg;
4161 bfd_size_type sz;
4162
4163 name += sizeof ".gnu.warning." - 1;
4164
4165 /* If this is a shared object, then look up the symbol
4166 in the hash table. If it is there, and it is already
4167 been defined, then we will not be using the entry
4168 from this shared object, so we don't need to warn.
4169 FIXME: If we see the definition in a regular object
4170 later on, we will warn, but we shouldn't. The only
4171 fix is to keep track of what warnings we are supposed
4172 to emit, and then handle them all at the end of the
4173 link. */
4174 if (dynamic)
4175 {
4176 struct elf_link_hash_entry *h;
4177
4178 h = elf_link_hash_lookup (htab, name, false, false, true);
4179
4180 /* FIXME: What about bfd_link_hash_common? */
4181 if (h != NULL
4182 && (h->root.type == bfd_link_hash_defined
4183 || h->root.type == bfd_link_hash_defweak))
4184 continue;
4185 }
4186
4187 sz = s->size;
4188 msg = (char *) bfd_alloc (abfd, sz + 1);
4189 if (msg == NULL)
4190 goto error_return;
4191
4192 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4193 goto error_return;
4194
4195 msg[sz] = '\0';
4196
4197 if (! (_bfd_generic_link_add_one_symbol
4198 (info, abfd, name, BSF_WARNING, s, 0, msg,
4199 false, bed->collect, NULL)))
4200 goto error_return;
4201
4202 if (bfd_link_executable (info))
4203 {
4204 /* Clobber the section size so that the warning does
4205 not get copied into the output file. */
4206 s->size = 0;
4207
4208 /* Also set SEC_EXCLUDE, so that symbols defined in
4209 the warning section don't get copied to the output. */
4210 s->flags |= SEC_EXCLUDE;
4211 }
4212 }
4213 }
4214
4215 just_syms = ((s = abfd->sections) != NULL
4216 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4217
4218 add_needed = true;
4219 if (! dynamic)
4220 {
4221 /* If we are creating a shared library, create all the dynamic
4222 sections immediately. We need to attach them to something,
4223 so we attach them to this BFD, provided it is the right
4224 format and is not from ld --just-symbols. Always create the
4225 dynamic sections for -E/--dynamic-list. FIXME: If there
4226 are no input BFD's of the same format as the output, we can't
4227 make a shared library. */
4228 if (!just_syms
4229 && (bfd_link_pic (info)
4230 || (!bfd_link_relocatable (info)
4231 && info->nointerp
4232 && (info->export_dynamic || info->dynamic)))
4233 && is_elf_hash_table (&htab->root)
4234 && info->output_bfd->xvec == abfd->xvec
4235 && !htab->dynamic_sections_created)
4236 {
4237 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4238 goto error_return;
4239 }
4240 }
4241 else if (!is_elf_hash_table (&htab->root))
4242 goto error_return;
4243 else
4244 {
4245 const char *soname = NULL;
4246 char *audit = NULL;
4247 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4248 const Elf_Internal_Phdr *phdr;
4249 struct elf_link_loaded_list *loaded_lib;
4250
4251 /* ld --just-symbols and dynamic objects don't mix very well.
4252 ld shouldn't allow it. */
4253 if (just_syms)
4254 abort ();
4255
4256 /* If this dynamic lib was specified on the command line with
4257 --as-needed in effect, then we don't want to add a DT_NEEDED
4258 tag unless the lib is actually used. Similary for libs brought
4259 in by another lib's DT_NEEDED. When --no-add-needed is used
4260 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4261 any dynamic library in DT_NEEDED tags in the dynamic lib at
4262 all. */
4263 add_needed = (elf_dyn_lib_class (abfd)
4264 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4265 | DYN_NO_NEEDED)) == 0;
4266
4267 s = bfd_get_section_by_name (abfd, ".dynamic");
4268 if (s != NULL)
4269 {
4270 bfd_byte *dynbuf;
4271 bfd_byte *extdyn;
4272 unsigned int elfsec;
4273 unsigned long shlink;
4274
4275 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4276 {
4277 error_free_dyn:
4278 free (dynbuf);
4279 goto error_return;
4280 }
4281
4282 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4283 if (elfsec == SHN_BAD)
4284 goto error_free_dyn;
4285 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4286
4287 for (extdyn = dynbuf;
4288 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4289 extdyn += bed->s->sizeof_dyn)
4290 {
4291 Elf_Internal_Dyn dyn;
4292
4293 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4294 if (dyn.d_tag == DT_SONAME)
4295 {
4296 unsigned int tagv = dyn.d_un.d_val;
4297 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4298 if (soname == NULL)
4299 goto error_free_dyn;
4300 }
4301 if (dyn.d_tag == DT_NEEDED)
4302 {
4303 struct bfd_link_needed_list *n, **pn;
4304 char *fnm, *anm;
4305 unsigned int tagv = dyn.d_un.d_val;
4306 size_t amt = sizeof (struct bfd_link_needed_list);
4307
4308 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4309 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4310 if (n == NULL || fnm == NULL)
4311 goto error_free_dyn;
4312 amt = strlen (fnm) + 1;
4313 anm = (char *) bfd_alloc (abfd, amt);
4314 if (anm == NULL)
4315 goto error_free_dyn;
4316 memcpy (anm, fnm, amt);
4317 n->name = anm;
4318 n->by = abfd;
4319 n->next = NULL;
4320 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4321 ;
4322 *pn = n;
4323 }
4324 if (dyn.d_tag == DT_RUNPATH)
4325 {
4326 struct bfd_link_needed_list *n, **pn;
4327 char *fnm, *anm;
4328 unsigned int tagv = dyn.d_un.d_val;
4329 size_t amt = sizeof (struct bfd_link_needed_list);
4330
4331 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4332 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4333 if (n == NULL || fnm == NULL)
4334 goto error_free_dyn;
4335 amt = strlen (fnm) + 1;
4336 anm = (char *) bfd_alloc (abfd, amt);
4337 if (anm == NULL)
4338 goto error_free_dyn;
4339 memcpy (anm, fnm, amt);
4340 n->name = anm;
4341 n->by = abfd;
4342 n->next = NULL;
4343 for (pn = & runpath;
4344 *pn != NULL;
4345 pn = &(*pn)->next)
4346 ;
4347 *pn = n;
4348 }
4349 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4350 if (!runpath && dyn.d_tag == DT_RPATH)
4351 {
4352 struct bfd_link_needed_list *n, **pn;
4353 char *fnm, *anm;
4354 unsigned int tagv = dyn.d_un.d_val;
4355 size_t amt = sizeof (struct bfd_link_needed_list);
4356
4357 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4358 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4359 if (n == NULL || fnm == NULL)
4360 goto error_free_dyn;
4361 amt = strlen (fnm) + 1;
4362 anm = (char *) bfd_alloc (abfd, amt);
4363 if (anm == NULL)
4364 goto error_free_dyn;
4365 memcpy (anm, fnm, amt);
4366 n->name = anm;
4367 n->by = abfd;
4368 n->next = NULL;
4369 for (pn = & rpath;
4370 *pn != NULL;
4371 pn = &(*pn)->next)
4372 ;
4373 *pn = n;
4374 }
4375 if (dyn.d_tag == DT_AUDIT)
4376 {
4377 unsigned int tagv = dyn.d_un.d_val;
4378 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4379 }
4380 if (dyn.d_tag == DT_FLAGS_1)
4381 elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0;
4382 }
4383
4384 free (dynbuf);
4385 }
4386
4387 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4388 frees all more recently bfd_alloc'd blocks as well. */
4389 if (runpath)
4390 rpath = runpath;
4391
4392 if (rpath)
4393 {
4394 struct bfd_link_needed_list **pn;
4395 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4396 ;
4397 *pn = rpath;
4398 }
4399
4400 /* If we have a PT_GNU_RELRO program header, mark as read-only
4401 all sections contained fully therein. This makes relro
4402 shared library sections appear as they will at run-time. */
4403 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4404 while (phdr-- > elf_tdata (abfd)->phdr)
4405 if (phdr->p_type == PT_GNU_RELRO)
4406 {
4407 for (s = abfd->sections; s != NULL; s = s->next)
4408 {
4409 unsigned int opb = bfd_octets_per_byte (abfd, s);
4410
4411 if ((s->flags & SEC_ALLOC) != 0
4412 && s->vma * opb >= phdr->p_vaddr
4413 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4414 s->flags |= SEC_READONLY;
4415 }
4416 break;
4417 }
4418
4419 /* We do not want to include any of the sections in a dynamic
4420 object in the output file. We hack by simply clobbering the
4421 list of sections in the BFD. This could be handled more
4422 cleanly by, say, a new section flag; the existing
4423 SEC_NEVER_LOAD flag is not the one we want, because that one
4424 still implies that the section takes up space in the output
4425 file. */
4426 bfd_section_list_clear (abfd);
4427
4428 /* Find the name to use in a DT_NEEDED entry that refers to this
4429 object. If the object has a DT_SONAME entry, we use it.
4430 Otherwise, if the generic linker stuck something in
4431 elf_dt_name, we use that. Otherwise, we just use the file
4432 name. */
4433 if (soname == NULL || *soname == '\0')
4434 {
4435 soname = elf_dt_name (abfd);
4436 if (soname == NULL || *soname == '\0')
4437 soname = bfd_get_filename (abfd);
4438 }
4439
4440 /* Save the SONAME because sometimes the linker emulation code
4441 will need to know it. */
4442 elf_dt_name (abfd) = soname;
4443
4444 /* If we have already included this dynamic object in the
4445 link, just ignore it. There is no reason to include a
4446 particular dynamic object more than once. */
4447 for (loaded_lib = htab->dyn_loaded;
4448 loaded_lib != NULL;
4449 loaded_lib = loaded_lib->next)
4450 {
4451 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4452 return true;
4453 }
4454
4455 /* Create dynamic sections for backends that require that be done
4456 before setup_gnu_properties. */
4457 if (add_needed
4458 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4459 return false;
4460
4461 /* Save the DT_AUDIT entry for the linker emulation code. */
4462 elf_dt_audit (abfd) = audit;
4463 }
4464
4465 /* If this is a dynamic object, we always link against the .dynsym
4466 symbol table, not the .symtab symbol table. The dynamic linker
4467 will only see the .dynsym symbol table, so there is no reason to
4468 look at .symtab for a dynamic object. */
4469
4470 if (! dynamic || elf_dynsymtab (abfd) == 0)
4471 hdr = &elf_tdata (abfd)->symtab_hdr;
4472 else
4473 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4474
4475 symcount = hdr->sh_size / bed->s->sizeof_sym;
4476
4477 /* The sh_info field of the symtab header tells us where the
4478 external symbols start. We don't care about the local symbols at
4479 this point. */
4480 if (elf_bad_symtab (abfd))
4481 {
4482 extsymcount = symcount;
4483 extsymoff = 0;
4484 }
4485 else
4486 {
4487 extsymcount = symcount - hdr->sh_info;
4488 extsymoff = hdr->sh_info;
4489 }
4490
4491 sym_hash = elf_sym_hashes (abfd);
4492 if (extsymcount != 0)
4493 {
4494 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4495 NULL, NULL, NULL);
4496 if (isymbuf == NULL)
4497 goto error_return;
4498
4499 if (sym_hash == NULL)
4500 {
4501 /* We store a pointer to the hash table entry for each
4502 external symbol. */
4503 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4504 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4505 if (sym_hash == NULL)
4506 goto error_free_sym;
4507 elf_sym_hashes (abfd) = sym_hash;
4508 }
4509 }
4510
4511 if (dynamic)
4512 {
4513 /* Read in any version definitions. */
4514 if (!_bfd_elf_slurp_version_tables (abfd,
4515 info->default_imported_symver))
4516 goto error_free_sym;
4517
4518 /* Read in the symbol versions, but don't bother to convert them
4519 to internal format. */
4520 if (elf_dynversym (abfd) != 0)
4521 {
4522 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4523 bfd_size_type amt = versymhdr->sh_size;
4524
4525 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4526 goto error_free_sym;
4527 extversym = (Elf_External_Versym *)
4528 _bfd_malloc_and_read (abfd, amt, amt);
4529 if (extversym == NULL)
4530 goto error_free_sym;
4531 extversym_end = extversym + amt / sizeof (*extversym);
4532 }
4533 }
4534
4535 /* If we are loading an as-needed shared lib, save the symbol table
4536 state before we start adding symbols. If the lib turns out
4537 to be unneeded, restore the state. */
4538 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4539 {
4540 unsigned int i;
4541 size_t entsize;
4542
4543 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4544 {
4545 struct bfd_hash_entry *p;
4546 struct elf_link_hash_entry *h;
4547
4548 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4549 {
4550 h = (struct elf_link_hash_entry *) p;
4551 entsize += htab->root.table.entsize;
4552 if (h->root.type == bfd_link_hash_warning)
4553 {
4554 entsize += htab->root.table.entsize;
4555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4556 }
4557 if (h->root.type == bfd_link_hash_common)
4558 entsize += sizeof (*h->root.u.c.p);
4559 }
4560 }
4561
4562 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4563 old_tab = bfd_malloc (tabsize + entsize);
4564 if (old_tab == NULL)
4565 goto error_free_vers;
4566
4567 /* Remember the current objalloc pointer, so that all mem for
4568 symbols added can later be reclaimed. */
4569 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4570 if (alloc_mark == NULL)
4571 goto error_free_vers;
4572
4573 /* Make a special call to the linker "notice" function to
4574 tell it that we are about to handle an as-needed lib. */
4575 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4576 goto error_free_vers;
4577
4578 /* Clone the symbol table. Remember some pointers into the
4579 symbol table, and dynamic symbol count. */
4580 old_ent = (char *) old_tab + tabsize;
4581 memcpy (old_tab, htab->root.table.table, tabsize);
4582 old_undefs = htab->root.undefs;
4583 old_undefs_tail = htab->root.undefs_tail;
4584 old_table = htab->root.table.table;
4585 old_size = htab->root.table.size;
4586 old_count = htab->root.table.count;
4587 old_strtab = NULL;
4588 if (htab->dynstr != NULL)
4589 {
4590 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4591 if (old_strtab == NULL)
4592 goto error_free_vers;
4593 }
4594
4595 for (i = 0; i < htab->root.table.size; i++)
4596 {
4597 struct bfd_hash_entry *p;
4598 struct elf_link_hash_entry *h;
4599
4600 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4601 {
4602 h = (struct elf_link_hash_entry *) p;
4603 memcpy (old_ent, h, htab->root.table.entsize);
4604 old_ent = (char *) old_ent + htab->root.table.entsize;
4605 if (h->root.type == bfd_link_hash_warning)
4606 {
4607 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4608 memcpy (old_ent, h, htab->root.table.entsize);
4609 old_ent = (char *) old_ent + htab->root.table.entsize;
4610 }
4611 if (h->root.type == bfd_link_hash_common)
4612 {
4613 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4614 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4615 }
4616 }
4617 }
4618 }
4619
4620 weaks = NULL;
4621 if (extversym == NULL)
4622 ever = NULL;
4623 else if (extversym + extsymoff < extversym_end)
4624 ever = extversym + extsymoff;
4625 else
4626 {
4627 /* xgettext:c-format */
4628 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4629 abfd, (long) extsymoff,
4630 (long) (extversym_end - extversym) / sizeof (* extversym));
4631 bfd_set_error (bfd_error_bad_value);
4632 goto error_free_vers;
4633 }
4634
4635 if (!bfd_link_relocatable (info)
4636 && abfd->lto_slim_object)
4637 {
4638 _bfd_error_handler
4639 (_("%pB: plugin needed to handle lto object"), abfd);
4640 }
4641
4642 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4643 isym < isymend;
4644 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4645 {
4646 int bind;
4647 bfd_vma value;
4648 asection *sec, *new_sec;
4649 flagword flags;
4650 const char *name;
4651 struct elf_link_hash_entry *h;
4652 struct elf_link_hash_entry *hi;
4653 bool definition;
4654 bool size_change_ok;
4655 bool type_change_ok;
4656 bool new_weak;
4657 bool old_weak;
4658 bfd *override;
4659 bool common;
4660 bool discarded;
4661 unsigned int old_alignment;
4662 unsigned int shindex;
4663 bfd *old_bfd;
4664 bool matched;
4665
4666 override = NULL;
4667
4668 flags = BSF_NO_FLAGS;
4669 sec = NULL;
4670 value = isym->st_value;
4671 common = bed->common_definition (isym);
4672 if (common && info->inhibit_common_definition)
4673 {
4674 /* Treat common symbol as undefined for --no-define-common. */
4675 isym->st_shndx = SHN_UNDEF;
4676 common = false;
4677 }
4678 discarded = false;
4679
4680 bind = ELF_ST_BIND (isym->st_info);
4681 switch (bind)
4682 {
4683 case STB_LOCAL:
4684 /* This should be impossible, since ELF requires that all
4685 global symbols follow all local symbols, and that sh_info
4686 point to the first global symbol. Unfortunately, Irix 5
4687 screws this up. */
4688 if (elf_bad_symtab (abfd))
4689 continue;
4690
4691 /* If we aren't prepared to handle locals within the globals
4692 then we'll likely segfault on a NULL symbol hash if the
4693 symbol is ever referenced in relocations. */
4694 shindex = elf_elfheader (abfd)->e_shstrndx;
4695 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4696 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4697 " (>= sh_info of %lu)"),
4698 abfd, name, (long) (isym - isymbuf + extsymoff),
4699 (long) extsymoff);
4700
4701 /* Dynamic object relocations are not processed by ld, so
4702 ld won't run into the problem mentioned above. */
4703 if (dynamic)
4704 continue;
4705 bfd_set_error (bfd_error_bad_value);
4706 goto error_free_vers;
4707
4708 case STB_GLOBAL:
4709 if (isym->st_shndx != SHN_UNDEF && !common)
4710 flags = BSF_GLOBAL;
4711 break;
4712
4713 case STB_WEAK:
4714 flags = BSF_WEAK;
4715 break;
4716
4717 case STB_GNU_UNIQUE:
4718 flags = BSF_GNU_UNIQUE;
4719 break;
4720
4721 default:
4722 /* Leave it up to the processor backend. */
4723 break;
4724 }
4725
4726 if (isym->st_shndx == SHN_UNDEF)
4727 sec = bfd_und_section_ptr;
4728 else if (isym->st_shndx == SHN_ABS)
4729 sec = bfd_abs_section_ptr;
4730 else if (isym->st_shndx == SHN_COMMON)
4731 {
4732 sec = bfd_com_section_ptr;
4733 /* What ELF calls the size we call the value. What ELF
4734 calls the value we call the alignment. */
4735 value = isym->st_size;
4736 }
4737 else
4738 {
4739 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4740 if (sec == NULL)
4741 sec = bfd_abs_section_ptr;
4742 else if (discarded_section (sec))
4743 {
4744 /* Symbols from discarded section are undefined. We keep
4745 its visibility. */
4746 sec = bfd_und_section_ptr;
4747 discarded = true;
4748 isym->st_shndx = SHN_UNDEF;
4749 }
4750 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4751 value -= sec->vma;
4752 }
4753
4754 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4755 isym->st_name);
4756 if (name == NULL)
4757 goto error_free_vers;
4758
4759 if (isym->st_shndx == SHN_COMMON
4760 && (abfd->flags & BFD_PLUGIN) != 0)
4761 {
4762 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4763
4764 if (xc == NULL)
4765 {
4766 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4767 | SEC_EXCLUDE);
4768 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4769 if (xc == NULL)
4770 goto error_free_vers;
4771 }
4772 sec = xc;
4773 }
4774 else if (isym->st_shndx == SHN_COMMON
4775 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4776 && !bfd_link_relocatable (info))
4777 {
4778 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4779
4780 if (tcomm == NULL)
4781 {
4782 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4783 | SEC_LINKER_CREATED);
4784 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4785 if (tcomm == NULL)
4786 goto error_free_vers;
4787 }
4788 sec = tcomm;
4789 }
4790 else if (bed->elf_add_symbol_hook)
4791 {
4792 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4793 &sec, &value))
4794 goto error_free_vers;
4795
4796 /* The hook function sets the name to NULL if this symbol
4797 should be skipped for some reason. */
4798 if (name == NULL)
4799 continue;
4800 }
4801
4802 /* Sanity check that all possibilities were handled. */
4803 if (sec == NULL)
4804 abort ();
4805
4806 /* Silently discard TLS symbols from --just-syms. There's
4807 no way to combine a static TLS block with a new TLS block
4808 for this executable. */
4809 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4810 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4811 continue;
4812
4813 if (bfd_is_und_section (sec)
4814 || bfd_is_com_section (sec))
4815 definition = false;
4816 else
4817 definition = true;
4818
4819 size_change_ok = false;
4820 type_change_ok = bed->type_change_ok;
4821 old_weak = false;
4822 matched = false;
4823 old_alignment = 0;
4824 old_bfd = NULL;
4825 new_sec = sec;
4826
4827 if (is_elf_hash_table (&htab->root))
4828 {
4829 Elf_Internal_Versym iver;
4830 unsigned int vernum = 0;
4831 bool skip;
4832
4833 if (ever == NULL)
4834 {
4835 if (info->default_imported_symver)
4836 /* Use the default symbol version created earlier. */
4837 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4838 else
4839 iver.vs_vers = 0;
4840 }
4841 else if (ever >= extversym_end)
4842 {
4843 /* xgettext:c-format */
4844 _bfd_error_handler (_("%pB: not enough version information"),
4845 abfd);
4846 bfd_set_error (bfd_error_bad_value);
4847 goto error_free_vers;
4848 }
4849 else
4850 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4851
4852 vernum = iver.vs_vers & VERSYM_VERSION;
4853
4854 /* If this is a hidden symbol, or if it is not version
4855 1, we append the version name to the symbol name.
4856 However, we do not modify a non-hidden absolute symbol
4857 if it is not a function, because it might be the version
4858 symbol itself. FIXME: What if it isn't? */
4859 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4860 || (vernum > 1
4861 && (!bfd_is_abs_section (sec)
4862 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4863 {
4864 const char *verstr;
4865 size_t namelen, verlen, newlen;
4866 char *newname, *p;
4867
4868 if (isym->st_shndx != SHN_UNDEF)
4869 {
4870 if (vernum > elf_tdata (abfd)->cverdefs)
4871 verstr = NULL;
4872 else if (vernum > 1)
4873 verstr =
4874 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4875 else
4876 verstr = "";
4877
4878 if (verstr == NULL)
4879 {
4880 _bfd_error_handler
4881 /* xgettext:c-format */
4882 (_("%pB: %s: invalid version %u (max %d)"),
4883 abfd, name, vernum,
4884 elf_tdata (abfd)->cverdefs);
4885 bfd_set_error (bfd_error_bad_value);
4886 goto error_free_vers;
4887 }
4888 }
4889 else
4890 {
4891 /* We cannot simply test for the number of
4892 entries in the VERNEED section since the
4893 numbers for the needed versions do not start
4894 at 0. */
4895 Elf_Internal_Verneed *t;
4896
4897 verstr = NULL;
4898 for (t = elf_tdata (abfd)->verref;
4899 t != NULL;
4900 t = t->vn_nextref)
4901 {
4902 Elf_Internal_Vernaux *a;
4903
4904 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4905 {
4906 if (a->vna_other == vernum)
4907 {
4908 verstr = a->vna_nodename;
4909 break;
4910 }
4911 }
4912 if (a != NULL)
4913 break;
4914 }
4915 if (verstr == NULL)
4916 {
4917 _bfd_error_handler
4918 /* xgettext:c-format */
4919 (_("%pB: %s: invalid needed version %d"),
4920 abfd, name, vernum);
4921 bfd_set_error (bfd_error_bad_value);
4922 goto error_free_vers;
4923 }
4924 }
4925
4926 namelen = strlen (name);
4927 verlen = strlen (verstr);
4928 newlen = namelen + verlen + 2;
4929 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4930 && isym->st_shndx != SHN_UNDEF)
4931 ++newlen;
4932
4933 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4934 if (newname == NULL)
4935 goto error_free_vers;
4936 memcpy (newname, name, namelen);
4937 p = newname + namelen;
4938 *p++ = ELF_VER_CHR;
4939 /* If this is a defined non-hidden version symbol,
4940 we add another @ to the name. This indicates the
4941 default version of the symbol. */
4942 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4943 && isym->st_shndx != SHN_UNDEF)
4944 *p++ = ELF_VER_CHR;
4945 memcpy (p, verstr, verlen + 1);
4946
4947 name = newname;
4948 }
4949
4950 /* If this symbol has default visibility and the user has
4951 requested we not re-export it, then mark it as hidden. */
4952 if (!bfd_is_und_section (sec)
4953 && !dynamic
4954 && abfd->no_export
4955 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4956 isym->st_other = (STV_HIDDEN
4957 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4958
4959 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4960 sym_hash, &old_bfd, &old_weak,
4961 &old_alignment, &skip, &override,
4962 &type_change_ok, &size_change_ok,
4963 &matched))
4964 goto error_free_vers;
4965
4966 if (skip)
4967 continue;
4968
4969 /* Override a definition only if the new symbol matches the
4970 existing one. */
4971 if (override && matched)
4972 definition = false;
4973
4974 h = *sym_hash;
4975 while (h->root.type == bfd_link_hash_indirect
4976 || h->root.type == bfd_link_hash_warning)
4977 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4978
4979 if (elf_tdata (abfd)->verdef != NULL
4980 && vernum > 1
4981 && definition)
4982 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4983 }
4984
4985 if (! (_bfd_generic_link_add_one_symbol
4986 (info, override ? override : abfd, name, flags, sec, value,
4987 NULL, false, bed->collect,
4988 (struct bfd_link_hash_entry **) sym_hash)))
4989 goto error_free_vers;
4990
4991 h = *sym_hash;
4992 /* We need to make sure that indirect symbol dynamic flags are
4993 updated. */
4994 hi = h;
4995 while (h->root.type == bfd_link_hash_indirect
4996 || h->root.type == bfd_link_hash_warning)
4997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4998
4999 *sym_hash = h;
5000
5001 /* Setting the index to -3 tells elf_link_output_extsym that
5002 this symbol is defined in a discarded section. */
5003 if (discarded && is_elf_hash_table (&htab->root))
5004 h->indx = -3;
5005
5006 new_weak = (flags & BSF_WEAK) != 0;
5007 if (dynamic
5008 && definition
5009 && new_weak
5010 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
5011 && is_elf_hash_table (&htab->root)
5012 && h->u.alias == NULL)
5013 {
5014 /* Keep a list of all weak defined non function symbols from
5015 a dynamic object, using the alias field. Later in this
5016 function we will set the alias field to the correct
5017 value. We only put non-function symbols from dynamic
5018 objects on this list, because that happens to be the only
5019 time we need to know the normal symbol corresponding to a
5020 weak symbol, and the information is time consuming to
5021 figure out. If the alias field is not already NULL,
5022 then this symbol was already defined by some previous
5023 dynamic object, and we will be using that previous
5024 definition anyhow. */
5025
5026 h->u.alias = weaks;
5027 weaks = h;
5028 }
5029
5030 /* Set the alignment of a common symbol. */
5031 if ((common || bfd_is_com_section (sec))
5032 && h->root.type == bfd_link_hash_common)
5033 {
5034 unsigned int align;
5035
5036 if (common)
5037 align = bfd_log2 (isym->st_value);
5038 else
5039 {
5040 /* The new symbol is a common symbol in a shared object.
5041 We need to get the alignment from the section. */
5042 align = new_sec->alignment_power;
5043 }
5044 if (align > old_alignment)
5045 h->root.u.c.p->alignment_power = align;
5046 else
5047 h->root.u.c.p->alignment_power = old_alignment;
5048 }
5049
5050 if (is_elf_hash_table (&htab->root))
5051 {
5052 /* Set a flag in the hash table entry indicating the type of
5053 reference or definition we just found. A dynamic symbol
5054 is one which is referenced or defined by both a regular
5055 object and a shared object. */
5056 bool dynsym = false;
5057
5058 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5059 if ((abfd->flags & BFD_PLUGIN) != 0)
5060 {
5061 /* Except for this flag to track nonweak references. */
5062 if (!definition
5063 && bind != STB_WEAK)
5064 h->ref_ir_nonweak = 1;
5065 }
5066 else if (!dynamic)
5067 {
5068 if (! definition)
5069 {
5070 h->ref_regular = 1;
5071 if (bind != STB_WEAK)
5072 h->ref_regular_nonweak = 1;
5073 }
5074 else
5075 {
5076 h->def_regular = 1;
5077 if (h->def_dynamic)
5078 {
5079 h->def_dynamic = 0;
5080 h->ref_dynamic = 1;
5081 }
5082 }
5083 }
5084 else
5085 {
5086 if (! definition)
5087 {
5088 h->ref_dynamic = 1;
5089 hi->ref_dynamic = 1;
5090 }
5091 else
5092 {
5093 h->def_dynamic = 1;
5094 hi->def_dynamic = 1;
5095 }
5096 }
5097
5098 /* If an indirect symbol has been forced local, don't
5099 make the real symbol dynamic. */
5100 if (h != hi && hi->forced_local)
5101 ;
5102 else if (!dynamic)
5103 {
5104 if (bfd_link_dll (info)
5105 || h->def_dynamic
5106 || h->ref_dynamic)
5107 dynsym = true;
5108 }
5109 else
5110 {
5111 if (h->def_regular
5112 || h->ref_regular
5113 || (h->is_weakalias
5114 && weakdef (h)->dynindx != -1))
5115 dynsym = true;
5116 }
5117
5118 /* Check to see if we need to add an indirect symbol for
5119 the default name. */
5120 if ((definition
5121 || (!override && h->root.type == bfd_link_hash_common))
5122 && !(hi != h
5123 && hi->versioned == versioned_hidden))
5124 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5125 sec, value, &old_bfd, &dynsym))
5126 goto error_free_vers;
5127
5128 /* Check the alignment when a common symbol is involved. This
5129 can change when a common symbol is overridden by a normal
5130 definition or a common symbol is ignored due to the old
5131 normal definition. We need to make sure the maximum
5132 alignment is maintained. */
5133 if ((old_alignment || common)
5134 && h->root.type != bfd_link_hash_common)
5135 {
5136 unsigned int common_align;
5137 unsigned int normal_align;
5138 unsigned int symbol_align;
5139 bfd *normal_bfd;
5140 bfd *common_bfd;
5141
5142 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5143 || h->root.type == bfd_link_hash_defweak);
5144
5145 symbol_align = ffs (h->root.u.def.value) - 1;
5146 if (h->root.u.def.section->owner != NULL
5147 && (h->root.u.def.section->owner->flags
5148 & (DYNAMIC | BFD_PLUGIN)) == 0)
5149 {
5150 normal_align = h->root.u.def.section->alignment_power;
5151 if (normal_align > symbol_align)
5152 normal_align = symbol_align;
5153 }
5154 else
5155 normal_align = symbol_align;
5156
5157 if (old_alignment)
5158 {
5159 common_align = old_alignment;
5160 common_bfd = old_bfd;
5161 normal_bfd = abfd;
5162 }
5163 else
5164 {
5165 common_align = bfd_log2 (isym->st_value);
5166 common_bfd = abfd;
5167 normal_bfd = old_bfd;
5168 }
5169
5170 if (normal_align < common_align)
5171 {
5172 /* PR binutils/2735 */
5173 if (normal_bfd == NULL)
5174 _bfd_error_handler
5175 /* xgettext:c-format */
5176 (_("warning: alignment %u of common symbol `%s' in %pB is"
5177 " greater than the alignment (%u) of its section %pA"),
5178 1 << common_align, name, common_bfd,
5179 1 << normal_align, h->root.u.def.section);
5180 else
5181 _bfd_error_handler
5182 /* xgettext:c-format */
5183 (_("warning: alignment %u of symbol `%s' in %pB"
5184 " is smaller than %u in %pB"),
5185 1 << normal_align, name, normal_bfd,
5186 1 << common_align, common_bfd);
5187 }
5188 }
5189
5190 /* Remember the symbol size if it isn't undefined. */
5191 if (isym->st_size != 0
5192 && isym->st_shndx != SHN_UNDEF
5193 && (definition || h->size == 0))
5194 {
5195 if (h->size != 0
5196 && h->size != isym->st_size
5197 && ! size_change_ok)
5198 _bfd_error_handler
5199 /* xgettext:c-format */
5200 (_("warning: size of symbol `%s' changed"
5201 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5202 name, (uint64_t) h->size, old_bfd,
5203 (uint64_t) isym->st_size, abfd);
5204
5205 h->size = isym->st_size;
5206 }
5207
5208 /* If this is a common symbol, then we always want H->SIZE
5209 to be the size of the common symbol. The code just above
5210 won't fix the size if a common symbol becomes larger. We
5211 don't warn about a size change here, because that is
5212 covered by --warn-common. Allow changes between different
5213 function types. */
5214 if (h->root.type == bfd_link_hash_common)
5215 h->size = h->root.u.c.size;
5216
5217 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5218 && ((definition && !new_weak)
5219 || (old_weak && h->root.type == bfd_link_hash_common)
5220 || h->type == STT_NOTYPE))
5221 {
5222 unsigned int type = ELF_ST_TYPE (isym->st_info);
5223
5224 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5225 symbol. */
5226 if (type == STT_GNU_IFUNC
5227 && (abfd->flags & DYNAMIC) != 0)
5228 type = STT_FUNC;
5229
5230 if (h->type != type)
5231 {
5232 if (h->type != STT_NOTYPE && ! type_change_ok)
5233 /* xgettext:c-format */
5234 _bfd_error_handler
5235 (_("warning: type of symbol `%s' changed"
5236 " from %d to %d in %pB"),
5237 name, h->type, type, abfd);
5238
5239 h->type = type;
5240 }
5241 }
5242
5243 /* Merge st_other field. */
5244 elf_merge_st_other (abfd, h, isym->st_other, sec,
5245 definition, dynamic);
5246
5247 /* We don't want to make debug symbol dynamic. */
5248 if (definition
5249 && (sec->flags & SEC_DEBUGGING)
5250 && !bfd_link_relocatable (info))
5251 dynsym = false;
5252
5253 /* Nor should we make plugin symbols dynamic. */
5254 if ((abfd->flags & BFD_PLUGIN) != 0)
5255 dynsym = false;
5256
5257 if (definition)
5258 {
5259 h->target_internal = isym->st_target_internal;
5260 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5261 }
5262
5263 if (definition && !dynamic)
5264 {
5265 char *p = strchr (name, ELF_VER_CHR);
5266 if (p != NULL && p[1] != ELF_VER_CHR)
5267 {
5268 /* Queue non-default versions so that .symver x, x@FOO
5269 aliases can be checked. */
5270 if (!nondeflt_vers)
5271 {
5272 size_t amt = ((isymend - isym + 1)
5273 * sizeof (struct elf_link_hash_entry *));
5274 nondeflt_vers
5275 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5276 if (!nondeflt_vers)
5277 goto error_free_vers;
5278 }
5279 nondeflt_vers[nondeflt_vers_cnt++] = h;
5280 }
5281 }
5282
5283 if (dynsym && h->dynindx == -1)
5284 {
5285 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5286 goto error_free_vers;
5287 if (h->is_weakalias
5288 && weakdef (h)->dynindx == -1)
5289 {
5290 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5291 goto error_free_vers;
5292 }
5293 }
5294 else if (h->dynindx != -1)
5295 /* If the symbol already has a dynamic index, but
5296 visibility says it should not be visible, turn it into
5297 a local symbol. */
5298 switch (ELF_ST_VISIBILITY (h->other))
5299 {
5300 case STV_INTERNAL:
5301 case STV_HIDDEN:
5302 (*bed->elf_backend_hide_symbol) (info, h, true);
5303 dynsym = false;
5304 break;
5305 }
5306
5307 if (!add_needed
5308 && matched
5309 && definition
5310 && h->root.type != bfd_link_hash_indirect
5311 && ((dynsym
5312 && h->ref_regular_nonweak)
5313 || (old_bfd != NULL
5314 && (old_bfd->flags & BFD_PLUGIN) != 0
5315 && h->ref_ir_nonweak
5316 && !info->lto_all_symbols_read)
5317 || (h->ref_dynamic_nonweak
5318 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5319 && !on_needed_list (elf_dt_name (abfd),
5320 htab->needed, NULL))))
5321 {
5322 const char *soname = elf_dt_name (abfd);
5323
5324 info->callbacks->minfo ("%!", soname, old_bfd,
5325 h->root.root.string);
5326
5327 /* A symbol from a library loaded via DT_NEEDED of some
5328 other library is referenced by a regular object.
5329 Add a DT_NEEDED entry for it. Issue an error if
5330 --no-add-needed is used and the reference was not
5331 a weak one. */
5332 if (old_bfd != NULL
5333 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5334 {
5335 _bfd_error_handler
5336 /* xgettext:c-format */
5337 (_("%pB: undefined reference to symbol '%s'"),
5338 old_bfd, name);
5339 bfd_set_error (bfd_error_missing_dso);
5340 goto error_free_vers;
5341 }
5342
5343 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5344 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5345
5346 /* Create dynamic sections for backends that require
5347 that be done before setup_gnu_properties. */
5348 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5349 return false;
5350 add_needed = true;
5351 }
5352 }
5353 }
5354
5355 if (info->lto_plugin_active
5356 && !bfd_link_relocatable (info)
5357 && (abfd->flags & BFD_PLUGIN) == 0
5358 && !just_syms
5359 && extsymcount)
5360 {
5361 int r_sym_shift;
5362
5363 if (bed->s->arch_size == 32)
5364 r_sym_shift = 8;
5365 else
5366 r_sym_shift = 32;
5367
5368 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5369 referenced in regular objects so that linker plugin will get
5370 the correct symbol resolution. */
5371
5372 sym_hash = elf_sym_hashes (abfd);
5373 for (s = abfd->sections; s != NULL; s = s->next)
5374 {
5375 Elf_Internal_Rela *internal_relocs;
5376 Elf_Internal_Rela *rel, *relend;
5377
5378 /* Don't check relocations in excluded sections. */
5379 if ((s->flags & SEC_RELOC) == 0
5380 || s->reloc_count == 0
5381 || (s->flags & SEC_EXCLUDE) != 0
5382 || ((info->strip == strip_all
5383 || info->strip == strip_debugger)
5384 && (s->flags & SEC_DEBUGGING) != 0))
5385 continue;
5386
5387 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
5388 s, NULL,
5389 NULL,
5390 _bfd_link_keep_memory (info));
5391 if (internal_relocs == NULL)
5392 goto error_free_vers;
5393
5394 rel = internal_relocs;
5395 relend = rel + s->reloc_count;
5396 for ( ; rel < relend; rel++)
5397 {
5398 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5399 struct elf_link_hash_entry *h;
5400
5401 /* Skip local symbols. */
5402 if (r_symndx < extsymoff)
5403 continue;
5404
5405 h = sym_hash[r_symndx - extsymoff];
5406 if (h != NULL)
5407 h->root.non_ir_ref_regular = 1;
5408 }
5409
5410 if (elf_section_data (s)->relocs != internal_relocs)
5411 free (internal_relocs);
5412 }
5413 }
5414
5415 free (extversym);
5416 extversym = NULL;
5417 free (isymbuf);
5418 isymbuf = NULL;
5419
5420 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5421 {
5422 unsigned int i;
5423
5424 /* Restore the symbol table. */
5425 old_ent = (char *) old_tab + tabsize;
5426 memset (elf_sym_hashes (abfd), 0,
5427 extsymcount * sizeof (struct elf_link_hash_entry *));
5428 htab->root.table.table = old_table;
5429 htab->root.table.size = old_size;
5430 htab->root.table.count = old_count;
5431 memcpy (htab->root.table.table, old_tab, tabsize);
5432 htab->root.undefs = old_undefs;
5433 htab->root.undefs_tail = old_undefs_tail;
5434 if (htab->dynstr != NULL)
5435 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5436 free (old_strtab);
5437 old_strtab = NULL;
5438 for (i = 0; i < htab->root.table.size; i++)
5439 {
5440 struct bfd_hash_entry *p;
5441 struct elf_link_hash_entry *h;
5442 unsigned int non_ir_ref_dynamic;
5443
5444 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5445 {
5446 /* Preserve non_ir_ref_dynamic so that this symbol
5447 will be exported when the dynamic lib becomes needed
5448 in the second pass. */
5449 h = (struct elf_link_hash_entry *) p;
5450 if (h->root.type == bfd_link_hash_warning)
5451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5452 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5453
5454 h = (struct elf_link_hash_entry *) p;
5455 memcpy (h, old_ent, htab->root.table.entsize);
5456 old_ent = (char *) old_ent + htab->root.table.entsize;
5457 if (h->root.type == bfd_link_hash_warning)
5458 {
5459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5460 memcpy (h, old_ent, htab->root.table.entsize);
5461 old_ent = (char *) old_ent + htab->root.table.entsize;
5462 }
5463 if (h->root.type == bfd_link_hash_common)
5464 {
5465 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5466 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5467 }
5468 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5469 }
5470 }
5471
5472 /* Make a special call to the linker "notice" function to
5473 tell it that symbols added for crefs may need to be removed. */
5474 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5475 goto error_free_vers;
5476
5477 free (old_tab);
5478 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5479 alloc_mark);
5480 free (nondeflt_vers);
5481 return true;
5482 }
5483
5484 if (old_tab != NULL)
5485 {
5486 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5487 goto error_free_vers;
5488 free (old_tab);
5489 old_tab = NULL;
5490 }
5491
5492 /* Now that all the symbols from this input file are created, if
5493 not performing a relocatable link, handle .symver foo, foo@BAR
5494 such that any relocs against foo become foo@BAR. */
5495 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5496 {
5497 size_t cnt, symidx;
5498
5499 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5500 {
5501 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5502 char *shortname, *p;
5503 size_t amt;
5504
5505 p = strchr (h->root.root.string, ELF_VER_CHR);
5506 if (p == NULL
5507 || (h->root.type != bfd_link_hash_defined
5508 && h->root.type != bfd_link_hash_defweak))
5509 continue;
5510
5511 amt = p - h->root.root.string;
5512 shortname = (char *) bfd_malloc (amt + 1);
5513 if (!shortname)
5514 goto error_free_vers;
5515 memcpy (shortname, h->root.root.string, amt);
5516 shortname[amt] = '\0';
5517
5518 hi = (struct elf_link_hash_entry *)
5519 bfd_link_hash_lookup (&htab->root, shortname,
5520 false, false, false);
5521 if (hi != NULL
5522 && hi->root.type == h->root.type
5523 && hi->root.u.def.value == h->root.u.def.value
5524 && hi->root.u.def.section == h->root.u.def.section)
5525 {
5526 (*bed->elf_backend_hide_symbol) (info, hi, true);
5527 hi->root.type = bfd_link_hash_indirect;
5528 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5529 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5530 sym_hash = elf_sym_hashes (abfd);
5531 if (sym_hash)
5532 for (symidx = 0; symidx < extsymcount; ++symidx)
5533 if (sym_hash[symidx] == hi)
5534 {
5535 sym_hash[symidx] = h;
5536 break;
5537 }
5538 }
5539 free (shortname);
5540 }
5541 free (nondeflt_vers);
5542 nondeflt_vers = NULL;
5543 }
5544
5545 /* Now set the alias field correctly for all the weak defined
5546 symbols we found. The only way to do this is to search all the
5547 symbols. Since we only need the information for non functions in
5548 dynamic objects, that's the only time we actually put anything on
5549 the list WEAKS. We need this information so that if a regular
5550 object refers to a symbol defined weakly in a dynamic object, the
5551 real symbol in the dynamic object is also put in the dynamic
5552 symbols; we also must arrange for both symbols to point to the
5553 same memory location. We could handle the general case of symbol
5554 aliasing, but a general symbol alias can only be generated in
5555 assembler code, handling it correctly would be very time
5556 consuming, and other ELF linkers don't handle general aliasing
5557 either. */
5558 if (weaks != NULL)
5559 {
5560 struct elf_link_hash_entry **hpp;
5561 struct elf_link_hash_entry **hppend;
5562 struct elf_link_hash_entry **sorted_sym_hash;
5563 struct elf_link_hash_entry *h;
5564 size_t sym_count, amt;
5565
5566 /* Since we have to search the whole symbol list for each weak
5567 defined symbol, search time for N weak defined symbols will be
5568 O(N^2). Binary search will cut it down to O(NlogN). */
5569 amt = extsymcount * sizeof (*sorted_sym_hash);
5570 sorted_sym_hash = bfd_malloc (amt);
5571 if (sorted_sym_hash == NULL)
5572 goto error_return;
5573 sym_hash = sorted_sym_hash;
5574 hpp = elf_sym_hashes (abfd);
5575 hppend = hpp + extsymcount;
5576 sym_count = 0;
5577 for (; hpp < hppend; hpp++)
5578 {
5579 h = *hpp;
5580 if (h != NULL
5581 && h->root.type == bfd_link_hash_defined
5582 && !bed->is_function_type (h->type))
5583 {
5584 *sym_hash = h;
5585 sym_hash++;
5586 sym_count++;
5587 }
5588 }
5589
5590 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5591 elf_sort_symbol);
5592
5593 while (weaks != NULL)
5594 {
5595 struct elf_link_hash_entry *hlook;
5596 asection *slook;
5597 bfd_vma vlook;
5598 size_t i, j, idx = 0;
5599
5600 hlook = weaks;
5601 weaks = hlook->u.alias;
5602 hlook->u.alias = NULL;
5603
5604 if (hlook->root.type != bfd_link_hash_defined
5605 && hlook->root.type != bfd_link_hash_defweak)
5606 continue;
5607
5608 slook = hlook->root.u.def.section;
5609 vlook = hlook->root.u.def.value;
5610
5611 i = 0;
5612 j = sym_count;
5613 while (i != j)
5614 {
5615 bfd_signed_vma vdiff;
5616 idx = (i + j) / 2;
5617 h = sorted_sym_hash[idx];
5618 vdiff = vlook - h->root.u.def.value;
5619 if (vdiff < 0)
5620 j = idx;
5621 else if (vdiff > 0)
5622 i = idx + 1;
5623 else
5624 {
5625 int sdiff = slook->id - h->root.u.def.section->id;
5626 if (sdiff < 0)
5627 j = idx;
5628 else if (sdiff > 0)
5629 i = idx + 1;
5630 else
5631 break;
5632 }
5633 }
5634
5635 /* We didn't find a value/section match. */
5636 if (i == j)
5637 continue;
5638
5639 /* With multiple aliases, or when the weak symbol is already
5640 strongly defined, we have multiple matching symbols and
5641 the binary search above may land on any of them. Step
5642 one past the matching symbol(s). */
5643 while (++idx != j)
5644 {
5645 h = sorted_sym_hash[idx];
5646 if (h->root.u.def.section != slook
5647 || h->root.u.def.value != vlook)
5648 break;
5649 }
5650
5651 /* Now look back over the aliases. Since we sorted by size
5652 as well as value and section, we'll choose the one with
5653 the largest size. */
5654 while (idx-- != i)
5655 {
5656 h = sorted_sym_hash[idx];
5657
5658 /* Stop if value or section doesn't match. */
5659 if (h->root.u.def.section != slook
5660 || h->root.u.def.value != vlook)
5661 break;
5662 else if (h != hlook)
5663 {
5664 struct elf_link_hash_entry *t;
5665
5666 hlook->u.alias = h;
5667 hlook->is_weakalias = 1;
5668 t = h;
5669 if (t->u.alias != NULL)
5670 while (t->u.alias != h)
5671 t = t->u.alias;
5672 t->u.alias = hlook;
5673
5674 /* If the weak definition is in the list of dynamic
5675 symbols, make sure the real definition is put
5676 there as well. */
5677 if (hlook->dynindx != -1 && h->dynindx == -1)
5678 {
5679 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5680 {
5681 err_free_sym_hash:
5682 free (sorted_sym_hash);
5683 goto error_return;
5684 }
5685 }
5686
5687 /* If the real definition is in the list of dynamic
5688 symbols, make sure the weak definition is put
5689 there as well. If we don't do this, then the
5690 dynamic loader might not merge the entries for the
5691 real definition and the weak definition. */
5692 if (h->dynindx != -1 && hlook->dynindx == -1)
5693 {
5694 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5695 goto err_free_sym_hash;
5696 }
5697 break;
5698 }
5699 }
5700 }
5701
5702 free (sorted_sym_hash);
5703 }
5704
5705 if (bed->check_directives
5706 && !(*bed->check_directives) (abfd, info))
5707 return false;
5708
5709 /* If this is a non-traditional link, try to optimize the handling
5710 of the .stab/.stabstr sections. */
5711 if (! dynamic
5712 && ! info->traditional_format
5713 && is_elf_hash_table (&htab->root)
5714 && (info->strip != strip_all && info->strip != strip_debugger))
5715 {
5716 asection *stabstr;
5717
5718 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5719 if (stabstr != NULL)
5720 {
5721 bfd_size_type string_offset = 0;
5722 asection *stab;
5723
5724 for (stab = abfd->sections; stab; stab = stab->next)
5725 if (startswith (stab->name, ".stab")
5726 && (!stab->name[5] ||
5727 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5728 && (stab->flags & SEC_MERGE) == 0
5729 && !bfd_is_abs_section (stab->output_section))
5730 {
5731 struct bfd_elf_section_data *secdata;
5732
5733 secdata = elf_section_data (stab);
5734 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5735 stabstr, &secdata->sec_info,
5736 &string_offset))
5737 goto error_return;
5738 if (secdata->sec_info)
5739 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5740 }
5741 }
5742 }
5743
5744 if (dynamic && add_needed)
5745 {
5746 /* Add this bfd to the loaded list. */
5747 struct elf_link_loaded_list *n;
5748
5749 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5750 if (n == NULL)
5751 goto error_return;
5752 n->abfd = abfd;
5753 n->next = htab->dyn_loaded;
5754 htab->dyn_loaded = n;
5755 }
5756 if (dynamic && !add_needed
5757 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5758 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5759
5760 return true;
5761
5762 error_free_vers:
5763 free (old_tab);
5764 free (old_strtab);
5765 free (nondeflt_vers);
5766 free (extversym);
5767 error_free_sym:
5768 free (isymbuf);
5769 error_return:
5770 return false;
5771 }
5772
5773 /* Return the linker hash table entry of a symbol that might be
5774 satisfied by an archive symbol. Return -1 on error. */
5775
5776 struct bfd_link_hash_entry *
5777 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5778 struct bfd_link_info *info,
5779 const char *name)
5780 {
5781 struct bfd_link_hash_entry *h;
5782 char *p, *copy;
5783 size_t len, first;
5784
5785 h = bfd_link_hash_lookup (info->hash, name, false, false, true);
5786 if (h != NULL)
5787 return h;
5788
5789 /* If this is a default version (the name contains @@), look up the
5790 symbol again with only one `@' as well as without the version.
5791 The effect is that references to the symbol with and without the
5792 version will be matched by the default symbol in the archive. */
5793
5794 p = strchr (name, ELF_VER_CHR);
5795 if (p == NULL || p[1] != ELF_VER_CHR)
5796 return h;
5797
5798 /* First check with only one `@'. */
5799 len = strlen (name);
5800 copy = (char *) bfd_alloc (abfd, len);
5801 if (copy == NULL)
5802 return (struct bfd_link_hash_entry *) -1;
5803
5804 first = p - name + 1;
5805 memcpy (copy, name, first);
5806 memcpy (copy + first, name + first + 1, len - first);
5807
5808 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5809 if (h == NULL)
5810 {
5811 /* We also need to check references to the symbol without the
5812 version. */
5813 copy[first - 1] = '\0';
5814 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5815 }
5816
5817 bfd_release (abfd, copy);
5818 return h;
5819 }
5820
5821 /* Add symbols from an ELF archive file to the linker hash table. We
5822 don't use _bfd_generic_link_add_archive_symbols because we need to
5823 handle versioned symbols.
5824
5825 Fortunately, ELF archive handling is simpler than that done by
5826 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5827 oddities. In ELF, if we find a symbol in the archive map, and the
5828 symbol is currently undefined, we know that we must pull in that
5829 object file.
5830
5831 Unfortunately, we do have to make multiple passes over the symbol
5832 table until nothing further is resolved. */
5833
5834 static bool
5835 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5836 {
5837 symindex c;
5838 unsigned char *included = NULL;
5839 carsym *symdefs;
5840 bool loop;
5841 size_t amt;
5842 const struct elf_backend_data *bed;
5843 struct bfd_link_hash_entry * (*archive_symbol_lookup)
5844 (bfd *, struct bfd_link_info *, const char *);
5845
5846 if (! bfd_has_map (abfd))
5847 {
5848 /* An empty archive is a special case. */
5849 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5850 return true;
5851 bfd_set_error (bfd_error_no_armap);
5852 return false;
5853 }
5854
5855 /* Keep track of all symbols we know to be already defined, and all
5856 files we know to be already included. This is to speed up the
5857 second and subsequent passes. */
5858 c = bfd_ardata (abfd)->symdef_count;
5859 if (c == 0)
5860 return true;
5861 amt = c * sizeof (*included);
5862 included = (unsigned char *) bfd_zmalloc (amt);
5863 if (included == NULL)
5864 return false;
5865
5866 symdefs = bfd_ardata (abfd)->symdefs;
5867 bed = get_elf_backend_data (abfd);
5868 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5869
5870 do
5871 {
5872 file_ptr last;
5873 symindex i;
5874 carsym *symdef;
5875 carsym *symdefend;
5876
5877 loop = false;
5878 last = -1;
5879
5880 symdef = symdefs;
5881 symdefend = symdef + c;
5882 for (i = 0; symdef < symdefend; symdef++, i++)
5883 {
5884 struct bfd_link_hash_entry *h;
5885 bfd *element;
5886 struct bfd_link_hash_entry *undefs_tail;
5887 symindex mark;
5888
5889 if (included[i])
5890 continue;
5891 if (symdef->file_offset == last)
5892 {
5893 included[i] = true;
5894 continue;
5895 }
5896
5897 h = archive_symbol_lookup (abfd, info, symdef->name);
5898 if (h == (struct bfd_link_hash_entry *) -1)
5899 goto error_return;
5900
5901 if (h == NULL)
5902 continue;
5903
5904 if (h->type == bfd_link_hash_undefined)
5905 {
5906 /* If the archive element has already been loaded then one
5907 of the symbols defined by that element might have been
5908 made undefined due to being in a discarded section. */
5909 if (is_elf_hash_table (info->hash)
5910 && ((struct elf_link_hash_entry *) h)->indx == -3)
5911 continue;
5912 }
5913 else if (h->type == bfd_link_hash_common)
5914 {
5915 /* We currently have a common symbol. The archive map contains
5916 a reference to this symbol, so we may want to include it. We
5917 only want to include it however, if this archive element
5918 contains a definition of the symbol, not just another common
5919 declaration of it.
5920
5921 Unfortunately some archivers (including GNU ar) will put
5922 declarations of common symbols into their archive maps, as
5923 well as real definitions, so we cannot just go by the archive
5924 map alone. Instead we must read in the element's symbol
5925 table and check that to see what kind of symbol definition
5926 this is. */
5927 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5928 continue;
5929 }
5930 else
5931 {
5932 if (h->type != bfd_link_hash_undefweak)
5933 /* Symbol must be defined. Don't check it again. */
5934 included[i] = true;
5935 continue;
5936 }
5937
5938 /* We need to include this archive member. */
5939 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5940 if (element == NULL)
5941 goto error_return;
5942
5943 if (! bfd_check_format (element, bfd_object))
5944 goto error_return;
5945
5946 undefs_tail = info->hash->undefs_tail;
5947
5948 if (!(*info->callbacks
5949 ->add_archive_element) (info, element, symdef->name, &element))
5950 continue;
5951 if (!bfd_link_add_symbols (element, info))
5952 goto error_return;
5953
5954 /* If there are any new undefined symbols, we need to make
5955 another pass through the archive in order to see whether
5956 they can be defined. FIXME: This isn't perfect, because
5957 common symbols wind up on undefs_tail and because an
5958 undefined symbol which is defined later on in this pass
5959 does not require another pass. This isn't a bug, but it
5960 does make the code less efficient than it could be. */
5961 if (undefs_tail != info->hash->undefs_tail)
5962 loop = true;
5963
5964 /* Look backward to mark all symbols from this object file
5965 which we have already seen in this pass. */
5966 mark = i;
5967 do
5968 {
5969 included[mark] = true;
5970 if (mark == 0)
5971 break;
5972 --mark;
5973 }
5974 while (symdefs[mark].file_offset == symdef->file_offset);
5975
5976 /* We mark subsequent symbols from this object file as we go
5977 on through the loop. */
5978 last = symdef->file_offset;
5979 }
5980 }
5981 while (loop);
5982
5983 free (included);
5984 return true;
5985
5986 error_return:
5987 free (included);
5988 return false;
5989 }
5990
5991 /* Given an ELF BFD, add symbols to the global hash table as
5992 appropriate. */
5993
5994 bool
5995 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5996 {
5997 switch (bfd_get_format (abfd))
5998 {
5999 case bfd_object:
6000 return elf_link_add_object_symbols (abfd, info);
6001 case bfd_archive:
6002 return elf_link_add_archive_symbols (abfd, info);
6003 default:
6004 bfd_set_error (bfd_error_wrong_format);
6005 return false;
6006 }
6007 }
6008 \f
6009 struct hash_codes_info
6010 {
6011 unsigned long *hashcodes;
6012 bool error;
6013 };
6014
6015 /* This function will be called though elf_link_hash_traverse to store
6016 all hash value of the exported symbols in an array. */
6017
6018 static bool
6019 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
6020 {
6021 struct hash_codes_info *inf = (struct hash_codes_info *) data;
6022 const char *name;
6023 unsigned long ha;
6024 char *alc = NULL;
6025
6026 /* Ignore indirect symbols. These are added by the versioning code. */
6027 if (h->dynindx == -1)
6028 return true;
6029
6030 name = h->root.root.string;
6031 if (h->versioned >= versioned)
6032 {
6033 char *p = strchr (name, ELF_VER_CHR);
6034 if (p != NULL)
6035 {
6036 alc = (char *) bfd_malloc (p - name + 1);
6037 if (alc == NULL)
6038 {
6039 inf->error = true;
6040 return false;
6041 }
6042 memcpy (alc, name, p - name);
6043 alc[p - name] = '\0';
6044 name = alc;
6045 }
6046 }
6047
6048 /* Compute the hash value. */
6049 ha = bfd_elf_hash (name);
6050
6051 /* Store the found hash value in the array given as the argument. */
6052 *(inf->hashcodes)++ = ha;
6053
6054 /* And store it in the struct so that we can put it in the hash table
6055 later. */
6056 h->u.elf_hash_value = ha;
6057
6058 free (alc);
6059 return true;
6060 }
6061
6062 struct collect_gnu_hash_codes
6063 {
6064 bfd *output_bfd;
6065 const struct elf_backend_data *bed;
6066 unsigned long int nsyms;
6067 unsigned long int maskbits;
6068 unsigned long int *hashcodes;
6069 unsigned long int *hashval;
6070 unsigned long int *indx;
6071 unsigned long int *counts;
6072 bfd_vma *bitmask;
6073 bfd_byte *contents;
6074 bfd_size_type xlat;
6075 long int min_dynindx;
6076 unsigned long int bucketcount;
6077 unsigned long int symindx;
6078 long int local_indx;
6079 long int shift1, shift2;
6080 unsigned long int mask;
6081 bool error;
6082 };
6083
6084 /* This function will be called though elf_link_hash_traverse to store
6085 all hash value of the exported symbols in an array. */
6086
6087 static bool
6088 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6089 {
6090 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6091 const char *name;
6092 unsigned long ha;
6093 char *alc = NULL;
6094
6095 /* Ignore indirect symbols. These are added by the versioning code. */
6096 if (h->dynindx == -1)
6097 return true;
6098
6099 /* Ignore also local symbols and undefined symbols. */
6100 if (! (*s->bed->elf_hash_symbol) (h))
6101 return true;
6102
6103 name = h->root.root.string;
6104 if (h->versioned >= versioned)
6105 {
6106 char *p = strchr (name, ELF_VER_CHR);
6107 if (p != NULL)
6108 {
6109 alc = (char *) bfd_malloc (p - name + 1);
6110 if (alc == NULL)
6111 {
6112 s->error = true;
6113 return false;
6114 }
6115 memcpy (alc, name, p - name);
6116 alc[p - name] = '\0';
6117 name = alc;
6118 }
6119 }
6120
6121 /* Compute the hash value. */
6122 ha = bfd_elf_gnu_hash (name);
6123
6124 /* Store the found hash value in the array for compute_bucket_count,
6125 and also for .dynsym reordering purposes. */
6126 s->hashcodes[s->nsyms] = ha;
6127 s->hashval[h->dynindx] = ha;
6128 ++s->nsyms;
6129 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6130 s->min_dynindx = h->dynindx;
6131
6132 free (alc);
6133 return true;
6134 }
6135
6136 /* This function will be called though elf_link_hash_traverse to do
6137 final dynamic symbol renumbering in case of .gnu.hash.
6138 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6139 to the translation table. */
6140
6141 static bool
6142 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6143 {
6144 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6145 unsigned long int bucket;
6146 unsigned long int val;
6147
6148 /* Ignore indirect symbols. */
6149 if (h->dynindx == -1)
6150 return true;
6151
6152 /* Ignore also local symbols and undefined symbols. */
6153 if (! (*s->bed->elf_hash_symbol) (h))
6154 {
6155 if (h->dynindx >= s->min_dynindx)
6156 {
6157 if (s->bed->record_xhash_symbol != NULL)
6158 {
6159 (*s->bed->record_xhash_symbol) (h, 0);
6160 s->local_indx++;
6161 }
6162 else
6163 h->dynindx = s->local_indx++;
6164 }
6165 return true;
6166 }
6167
6168 bucket = s->hashval[h->dynindx] % s->bucketcount;
6169 val = (s->hashval[h->dynindx] >> s->shift1)
6170 & ((s->maskbits >> s->shift1) - 1);
6171 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6172 s->bitmask[val]
6173 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6174 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6175 if (s->counts[bucket] == 1)
6176 /* Last element terminates the chain. */
6177 val |= 1;
6178 bfd_put_32 (s->output_bfd, val,
6179 s->contents + (s->indx[bucket] - s->symindx) * 4);
6180 --s->counts[bucket];
6181 if (s->bed->record_xhash_symbol != NULL)
6182 {
6183 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6184
6185 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6186 }
6187 else
6188 h->dynindx = s->indx[bucket]++;
6189 return true;
6190 }
6191
6192 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6193
6194 bool
6195 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6196 {
6197 return !(h->forced_local
6198 || h->root.type == bfd_link_hash_undefined
6199 || h->root.type == bfd_link_hash_undefweak
6200 || ((h->root.type == bfd_link_hash_defined
6201 || h->root.type == bfd_link_hash_defweak)
6202 && h->root.u.def.section->output_section == NULL));
6203 }
6204
6205 /* Array used to determine the number of hash table buckets to use
6206 based on the number of symbols there are. If there are fewer than
6207 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6208 fewer than 37 we use 17 buckets, and so forth. We never use more
6209 than 32771 buckets. */
6210
6211 static const size_t elf_buckets[] =
6212 {
6213 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6214 16411, 32771, 0
6215 };
6216
6217 /* Compute bucket count for hashing table. We do not use a static set
6218 of possible tables sizes anymore. Instead we determine for all
6219 possible reasonable sizes of the table the outcome (i.e., the
6220 number of collisions etc) and choose the best solution. The
6221 weighting functions are not too simple to allow the table to grow
6222 without bounds. Instead one of the weighting factors is the size.
6223 Therefore the result is always a good payoff between few collisions
6224 (= short chain lengths) and table size. */
6225 static size_t
6226 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6227 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6228 unsigned long int nsyms,
6229 int gnu_hash)
6230 {
6231 size_t best_size = 0;
6232 unsigned long int i;
6233
6234 /* We have a problem here. The following code to optimize the table
6235 size requires an integer type with more the 32 bits. If
6236 BFD_HOST_U_64_BIT is set we know about such a type. */
6237 #ifdef BFD_HOST_U_64_BIT
6238 if (info->optimize)
6239 {
6240 size_t minsize;
6241 size_t maxsize;
6242 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6243 bfd *dynobj = elf_hash_table (info)->dynobj;
6244 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6245 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6246 unsigned long int *counts;
6247 bfd_size_type amt;
6248 unsigned int no_improvement_count = 0;
6249
6250 /* Possible optimization parameters: if we have NSYMS symbols we say
6251 that the hashing table must at least have NSYMS/4 and at most
6252 2*NSYMS buckets. */
6253 minsize = nsyms / 4;
6254 if (minsize == 0)
6255 minsize = 1;
6256 best_size = maxsize = nsyms * 2;
6257 if (gnu_hash)
6258 {
6259 if (minsize < 2)
6260 minsize = 2;
6261 if ((best_size & 31) == 0)
6262 ++best_size;
6263 }
6264
6265 /* Create array where we count the collisions in. We must use bfd_malloc
6266 since the size could be large. */
6267 amt = maxsize;
6268 amt *= sizeof (unsigned long int);
6269 counts = (unsigned long int *) bfd_malloc (amt);
6270 if (counts == NULL)
6271 return 0;
6272
6273 /* Compute the "optimal" size for the hash table. The criteria is a
6274 minimal chain length. The minor criteria is (of course) the size
6275 of the table. */
6276 for (i = minsize; i < maxsize; ++i)
6277 {
6278 /* Walk through the array of hashcodes and count the collisions. */
6279 BFD_HOST_U_64_BIT max;
6280 unsigned long int j;
6281 unsigned long int fact;
6282
6283 if (gnu_hash && (i & 31) == 0)
6284 continue;
6285
6286 memset (counts, '\0', i * sizeof (unsigned long int));
6287
6288 /* Determine how often each hash bucket is used. */
6289 for (j = 0; j < nsyms; ++j)
6290 ++counts[hashcodes[j] % i];
6291
6292 /* For the weight function we need some information about the
6293 pagesize on the target. This is information need not be 100%
6294 accurate. Since this information is not available (so far) we
6295 define it here to a reasonable default value. If it is crucial
6296 to have a better value some day simply define this value. */
6297 # ifndef BFD_TARGET_PAGESIZE
6298 # define BFD_TARGET_PAGESIZE (4096)
6299 # endif
6300
6301 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6302 and the chains. */
6303 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6304
6305 # if 1
6306 /* Variant 1: optimize for short chains. We add the squares
6307 of all the chain lengths (which favors many small chain
6308 over a few long chains). */
6309 for (j = 0; j < i; ++j)
6310 max += counts[j] * counts[j];
6311
6312 /* This adds penalties for the overall size of the table. */
6313 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6314 max *= fact * fact;
6315 # else
6316 /* Variant 2: Optimize a lot more for small table. Here we
6317 also add squares of the size but we also add penalties for
6318 empty slots (the +1 term). */
6319 for (j = 0; j < i; ++j)
6320 max += (1 + counts[j]) * (1 + counts[j]);
6321
6322 /* The overall size of the table is considered, but not as
6323 strong as in variant 1, where it is squared. */
6324 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6325 max *= fact;
6326 # endif
6327
6328 /* Compare with current best results. */
6329 if (max < best_chlen)
6330 {
6331 best_chlen = max;
6332 best_size = i;
6333 no_improvement_count = 0;
6334 }
6335 /* PR 11843: Avoid futile long searches for the best bucket size
6336 when there are a large number of symbols. */
6337 else if (++no_improvement_count == 100)
6338 break;
6339 }
6340
6341 free (counts);
6342 }
6343 else
6344 #endif /* defined (BFD_HOST_U_64_BIT) */
6345 {
6346 /* This is the fallback solution if no 64bit type is available or if we
6347 are not supposed to spend much time on optimizations. We select the
6348 bucket count using a fixed set of numbers. */
6349 for (i = 0; elf_buckets[i] != 0; i++)
6350 {
6351 best_size = elf_buckets[i];
6352 if (nsyms < elf_buckets[i + 1])
6353 break;
6354 }
6355 if (gnu_hash && best_size < 2)
6356 best_size = 2;
6357 }
6358
6359 return best_size;
6360 }
6361
6362 /* Size any SHT_GROUP section for ld -r. */
6363
6364 bool
6365 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6366 {
6367 bfd *ibfd;
6368 asection *s;
6369
6370 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6371 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6372 && (s = ibfd->sections) != NULL
6373 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6374 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6375 return false;
6376 return true;
6377 }
6378
6379 /* Set a default stack segment size. The value in INFO wins. If it
6380 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6381 undefined it is initialized. */
6382
6383 bool
6384 bfd_elf_stack_segment_size (bfd *output_bfd,
6385 struct bfd_link_info *info,
6386 const char *legacy_symbol,
6387 bfd_vma default_size)
6388 {
6389 struct elf_link_hash_entry *h = NULL;
6390
6391 /* Look for legacy symbol. */
6392 if (legacy_symbol)
6393 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6394 false, false, false);
6395 if (h && (h->root.type == bfd_link_hash_defined
6396 || h->root.type == bfd_link_hash_defweak)
6397 && h->def_regular
6398 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6399 {
6400 /* The symbol has no type if specified on the command line. */
6401 h->type = STT_OBJECT;
6402 if (info->stacksize)
6403 /* xgettext:c-format */
6404 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6405 output_bfd, legacy_symbol);
6406 else if (h->root.u.def.section != bfd_abs_section_ptr)
6407 /* xgettext:c-format */
6408 _bfd_error_handler (_("%pB: %s not absolute"),
6409 output_bfd, legacy_symbol);
6410 else
6411 info->stacksize = h->root.u.def.value;
6412 }
6413
6414 if (!info->stacksize)
6415 /* If the user didn't set a size, or explicitly inhibit the
6416 size, set it now. */
6417 info->stacksize = default_size;
6418
6419 /* Provide the legacy symbol, if it is referenced. */
6420 if (h && (h->root.type == bfd_link_hash_undefined
6421 || h->root.type == bfd_link_hash_undefweak))
6422 {
6423 struct bfd_link_hash_entry *bh = NULL;
6424
6425 if (!(_bfd_generic_link_add_one_symbol
6426 (info, output_bfd, legacy_symbol,
6427 BSF_GLOBAL, bfd_abs_section_ptr,
6428 info->stacksize >= 0 ? info->stacksize : 0,
6429 NULL, false, get_elf_backend_data (output_bfd)->collect, &bh)))
6430 return false;
6431
6432 h = (struct elf_link_hash_entry *) bh;
6433 h->def_regular = 1;
6434 h->type = STT_OBJECT;
6435 }
6436
6437 return true;
6438 }
6439
6440 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6441
6442 struct elf_gc_sweep_symbol_info
6443 {
6444 struct bfd_link_info *info;
6445 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6446 bool);
6447 };
6448
6449 static bool
6450 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6451 {
6452 if (!h->mark
6453 && (((h->root.type == bfd_link_hash_defined
6454 || h->root.type == bfd_link_hash_defweak)
6455 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6456 && h->root.u.def.section->gc_mark))
6457 || h->root.type == bfd_link_hash_undefined
6458 || h->root.type == bfd_link_hash_undefweak))
6459 {
6460 struct elf_gc_sweep_symbol_info *inf;
6461
6462 inf = (struct elf_gc_sweep_symbol_info *) data;
6463 (*inf->hide_symbol) (inf->info, h, true);
6464 h->def_regular = 0;
6465 h->ref_regular = 0;
6466 h->ref_regular_nonweak = 0;
6467 }
6468
6469 return true;
6470 }
6471
6472 /* Set up the sizes and contents of the ELF dynamic sections. This is
6473 called by the ELF linker emulation before_allocation routine. We
6474 must set the sizes of the sections before the linker sets the
6475 addresses of the various sections. */
6476
6477 bool
6478 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6479 const char *soname,
6480 const char *rpath,
6481 const char *filter_shlib,
6482 const char *audit,
6483 const char *depaudit,
6484 const char * const *auxiliary_filters,
6485 struct bfd_link_info *info,
6486 asection **sinterpptr)
6487 {
6488 bfd *dynobj;
6489 const struct elf_backend_data *bed;
6490
6491 *sinterpptr = NULL;
6492
6493 if (!is_elf_hash_table (info->hash))
6494 return true;
6495
6496 dynobj = elf_hash_table (info)->dynobj;
6497
6498 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6499 {
6500 struct bfd_elf_version_tree *verdefs;
6501 struct elf_info_failed asvinfo;
6502 struct bfd_elf_version_tree *t;
6503 struct bfd_elf_version_expr *d;
6504 asection *s;
6505 size_t soname_indx;
6506
6507 /* If we are supposed to export all symbols into the dynamic symbol
6508 table (this is not the normal case), then do so. */
6509 if (info->export_dynamic
6510 || (bfd_link_executable (info) && info->dynamic))
6511 {
6512 struct elf_info_failed eif;
6513
6514 eif.info = info;
6515 eif.failed = false;
6516 elf_link_hash_traverse (elf_hash_table (info),
6517 _bfd_elf_export_symbol,
6518 &eif);
6519 if (eif.failed)
6520 return false;
6521 }
6522
6523 if (soname != NULL)
6524 {
6525 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6526 soname, true);
6527 if (soname_indx == (size_t) -1
6528 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6529 return false;
6530 }
6531 else
6532 soname_indx = (size_t) -1;
6533
6534 /* Make all global versions with definition. */
6535 for (t = info->version_info; t != NULL; t = t->next)
6536 for (d = t->globals.list; d != NULL; d = d->next)
6537 if (!d->symver && d->literal)
6538 {
6539 const char *verstr, *name;
6540 size_t namelen, verlen, newlen;
6541 char *newname, *p, leading_char;
6542 struct elf_link_hash_entry *newh;
6543
6544 leading_char = bfd_get_symbol_leading_char (output_bfd);
6545 name = d->pattern;
6546 namelen = strlen (name) + (leading_char != '\0');
6547 verstr = t->name;
6548 verlen = strlen (verstr);
6549 newlen = namelen + verlen + 3;
6550
6551 newname = (char *) bfd_malloc (newlen);
6552 if (newname == NULL)
6553 return false;
6554 newname[0] = leading_char;
6555 memcpy (newname + (leading_char != '\0'), name, namelen);
6556
6557 /* Check the hidden versioned definition. */
6558 p = newname + namelen;
6559 *p++ = ELF_VER_CHR;
6560 memcpy (p, verstr, verlen + 1);
6561 newh = elf_link_hash_lookup (elf_hash_table (info),
6562 newname, false, false,
6563 false);
6564 if (newh == NULL
6565 || (newh->root.type != bfd_link_hash_defined
6566 && newh->root.type != bfd_link_hash_defweak))
6567 {
6568 /* Check the default versioned definition. */
6569 *p++ = ELF_VER_CHR;
6570 memcpy (p, verstr, verlen + 1);
6571 newh = elf_link_hash_lookup (elf_hash_table (info),
6572 newname, false, false,
6573 false);
6574 }
6575 free (newname);
6576
6577 /* Mark this version if there is a definition and it is
6578 not defined in a shared object. */
6579 if (newh != NULL
6580 && !newh->def_dynamic
6581 && (newh->root.type == bfd_link_hash_defined
6582 || newh->root.type == bfd_link_hash_defweak))
6583 d->symver = 1;
6584 }
6585
6586 /* Attach all the symbols to their version information. */
6587 asvinfo.info = info;
6588 asvinfo.failed = false;
6589
6590 elf_link_hash_traverse (elf_hash_table (info),
6591 _bfd_elf_link_assign_sym_version,
6592 &asvinfo);
6593 if (asvinfo.failed)
6594 return false;
6595
6596 if (!info->allow_undefined_version)
6597 {
6598 /* Check if all global versions have a definition. */
6599 bool all_defined = true;
6600 for (t = info->version_info; t != NULL; t = t->next)
6601 for (d = t->globals.list; d != NULL; d = d->next)
6602 if (d->literal && !d->symver && !d->script)
6603 {
6604 _bfd_error_handler
6605 (_("%s: undefined version: %s"),
6606 d->pattern, t->name);
6607 all_defined = false;
6608 }
6609
6610 if (!all_defined)
6611 {
6612 bfd_set_error (bfd_error_bad_value);
6613 return false;
6614 }
6615 }
6616
6617 /* Set up the version definition section. */
6618 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6619 BFD_ASSERT (s != NULL);
6620
6621 /* We may have created additional version definitions if we are
6622 just linking a regular application. */
6623 verdefs = info->version_info;
6624
6625 /* Skip anonymous version tag. */
6626 if (verdefs != NULL && verdefs->vernum == 0)
6627 verdefs = verdefs->next;
6628
6629 if (verdefs == NULL && !info->create_default_symver)
6630 s->flags |= SEC_EXCLUDE;
6631 else
6632 {
6633 unsigned int cdefs;
6634 bfd_size_type size;
6635 bfd_byte *p;
6636 Elf_Internal_Verdef def;
6637 Elf_Internal_Verdaux defaux;
6638 struct bfd_link_hash_entry *bh;
6639 struct elf_link_hash_entry *h;
6640 const char *name;
6641
6642 cdefs = 0;
6643 size = 0;
6644
6645 /* Make space for the base version. */
6646 size += sizeof (Elf_External_Verdef);
6647 size += sizeof (Elf_External_Verdaux);
6648 ++cdefs;
6649
6650 /* Make space for the default version. */
6651 if (info->create_default_symver)
6652 {
6653 size += sizeof (Elf_External_Verdef);
6654 ++cdefs;
6655 }
6656
6657 for (t = verdefs; t != NULL; t = t->next)
6658 {
6659 struct bfd_elf_version_deps *n;
6660
6661 /* Don't emit base version twice. */
6662 if (t->vernum == 0)
6663 continue;
6664
6665 size += sizeof (Elf_External_Verdef);
6666 size += sizeof (Elf_External_Verdaux);
6667 ++cdefs;
6668
6669 for (n = t->deps; n != NULL; n = n->next)
6670 size += sizeof (Elf_External_Verdaux);
6671 }
6672
6673 s->size = size;
6674 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6675 if (s->contents == NULL && s->size != 0)
6676 return false;
6677
6678 /* Fill in the version definition section. */
6679
6680 p = s->contents;
6681
6682 def.vd_version = VER_DEF_CURRENT;
6683 def.vd_flags = VER_FLG_BASE;
6684 def.vd_ndx = 1;
6685 def.vd_cnt = 1;
6686 if (info->create_default_symver)
6687 {
6688 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6689 def.vd_next = sizeof (Elf_External_Verdef);
6690 }
6691 else
6692 {
6693 def.vd_aux = sizeof (Elf_External_Verdef);
6694 def.vd_next = (sizeof (Elf_External_Verdef)
6695 + sizeof (Elf_External_Verdaux));
6696 }
6697
6698 if (soname_indx != (size_t) -1)
6699 {
6700 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6701 soname_indx);
6702 def.vd_hash = bfd_elf_hash (soname);
6703 defaux.vda_name = soname_indx;
6704 name = soname;
6705 }
6706 else
6707 {
6708 size_t indx;
6709
6710 name = lbasename (bfd_get_filename (output_bfd));
6711 def.vd_hash = bfd_elf_hash (name);
6712 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6713 name, false);
6714 if (indx == (size_t) -1)
6715 return false;
6716 defaux.vda_name = indx;
6717 }
6718 defaux.vda_next = 0;
6719
6720 _bfd_elf_swap_verdef_out (output_bfd, &def,
6721 (Elf_External_Verdef *) p);
6722 p += sizeof (Elf_External_Verdef);
6723 if (info->create_default_symver)
6724 {
6725 /* Add a symbol representing this version. */
6726 bh = NULL;
6727 if (! (_bfd_generic_link_add_one_symbol
6728 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6729 0, NULL, false,
6730 get_elf_backend_data (dynobj)->collect, &bh)))
6731 return false;
6732 h = (struct elf_link_hash_entry *) bh;
6733 h->non_elf = 0;
6734 h->def_regular = 1;
6735 h->type = STT_OBJECT;
6736 h->verinfo.vertree = NULL;
6737
6738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6739 return false;
6740
6741 /* Create a duplicate of the base version with the same
6742 aux block, but different flags. */
6743 def.vd_flags = 0;
6744 def.vd_ndx = 2;
6745 def.vd_aux = sizeof (Elf_External_Verdef);
6746 if (verdefs)
6747 def.vd_next = (sizeof (Elf_External_Verdef)
6748 + sizeof (Elf_External_Verdaux));
6749 else
6750 def.vd_next = 0;
6751 _bfd_elf_swap_verdef_out (output_bfd, &def,
6752 (Elf_External_Verdef *) p);
6753 p += sizeof (Elf_External_Verdef);
6754 }
6755 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6756 (Elf_External_Verdaux *) p);
6757 p += sizeof (Elf_External_Verdaux);
6758
6759 for (t = verdefs; t != NULL; t = t->next)
6760 {
6761 unsigned int cdeps;
6762 struct bfd_elf_version_deps *n;
6763
6764 /* Don't emit the base version twice. */
6765 if (t->vernum == 0)
6766 continue;
6767
6768 cdeps = 0;
6769 for (n = t->deps; n != NULL; n = n->next)
6770 ++cdeps;
6771
6772 /* Add a symbol representing this version. */
6773 bh = NULL;
6774 if (! (_bfd_generic_link_add_one_symbol
6775 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6776 0, NULL, false,
6777 get_elf_backend_data (dynobj)->collect, &bh)))
6778 return false;
6779 h = (struct elf_link_hash_entry *) bh;
6780 h->non_elf = 0;
6781 h->def_regular = 1;
6782 h->type = STT_OBJECT;
6783 h->verinfo.vertree = t;
6784
6785 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6786 return false;
6787
6788 def.vd_version = VER_DEF_CURRENT;
6789 def.vd_flags = 0;
6790 if (t->globals.list == NULL
6791 && t->locals.list == NULL
6792 && ! t->used)
6793 def.vd_flags |= VER_FLG_WEAK;
6794 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6795 def.vd_cnt = cdeps + 1;
6796 def.vd_hash = bfd_elf_hash (t->name);
6797 def.vd_aux = sizeof (Elf_External_Verdef);
6798 def.vd_next = 0;
6799
6800 /* If a basever node is next, it *must* be the last node in
6801 the chain, otherwise Verdef construction breaks. */
6802 if (t->next != NULL && t->next->vernum == 0)
6803 BFD_ASSERT (t->next->next == NULL);
6804
6805 if (t->next != NULL && t->next->vernum != 0)
6806 def.vd_next = (sizeof (Elf_External_Verdef)
6807 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6808
6809 _bfd_elf_swap_verdef_out (output_bfd, &def,
6810 (Elf_External_Verdef *) p);
6811 p += sizeof (Elf_External_Verdef);
6812
6813 defaux.vda_name = h->dynstr_index;
6814 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6815 h->dynstr_index);
6816 defaux.vda_next = 0;
6817 if (t->deps != NULL)
6818 defaux.vda_next = sizeof (Elf_External_Verdaux);
6819 t->name_indx = defaux.vda_name;
6820
6821 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6822 (Elf_External_Verdaux *) p);
6823 p += sizeof (Elf_External_Verdaux);
6824
6825 for (n = t->deps; n != NULL; n = n->next)
6826 {
6827 if (n->version_needed == NULL)
6828 {
6829 /* This can happen if there was an error in the
6830 version script. */
6831 defaux.vda_name = 0;
6832 }
6833 else
6834 {
6835 defaux.vda_name = n->version_needed->name_indx;
6836 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6837 defaux.vda_name);
6838 }
6839 if (n->next == NULL)
6840 defaux.vda_next = 0;
6841 else
6842 defaux.vda_next = sizeof (Elf_External_Verdaux);
6843
6844 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6845 (Elf_External_Verdaux *) p);
6846 p += sizeof (Elf_External_Verdaux);
6847 }
6848 }
6849
6850 elf_tdata (output_bfd)->cverdefs = cdefs;
6851 }
6852 }
6853
6854 bed = get_elf_backend_data (output_bfd);
6855
6856 if (info->gc_sections && bed->can_gc_sections)
6857 {
6858 struct elf_gc_sweep_symbol_info sweep_info;
6859
6860 /* Remove the symbols that were in the swept sections from the
6861 dynamic symbol table. */
6862 sweep_info.info = info;
6863 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6864 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6865 &sweep_info);
6866 }
6867
6868 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6869 {
6870 asection *s;
6871 struct elf_find_verdep_info sinfo;
6872
6873 /* Work out the size of the version reference section. */
6874
6875 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6876 BFD_ASSERT (s != NULL);
6877
6878 sinfo.info = info;
6879 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6880 if (sinfo.vers == 0)
6881 sinfo.vers = 1;
6882 sinfo.failed = false;
6883
6884 elf_link_hash_traverse (elf_hash_table (info),
6885 _bfd_elf_link_find_version_dependencies,
6886 &sinfo);
6887 if (sinfo.failed)
6888 return false;
6889
6890 if (elf_tdata (output_bfd)->verref == NULL)
6891 s->flags |= SEC_EXCLUDE;
6892 else
6893 {
6894 Elf_Internal_Verneed *vn;
6895 unsigned int size;
6896 unsigned int crefs;
6897 bfd_byte *p;
6898
6899 /* Build the version dependency section. */
6900 size = 0;
6901 crefs = 0;
6902 for (vn = elf_tdata (output_bfd)->verref;
6903 vn != NULL;
6904 vn = vn->vn_nextref)
6905 {
6906 Elf_Internal_Vernaux *a;
6907
6908 size += sizeof (Elf_External_Verneed);
6909 ++crefs;
6910 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6911 size += sizeof (Elf_External_Vernaux);
6912 }
6913
6914 s->size = size;
6915 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6916 if (s->contents == NULL)
6917 return false;
6918
6919 p = s->contents;
6920 for (vn = elf_tdata (output_bfd)->verref;
6921 vn != NULL;
6922 vn = vn->vn_nextref)
6923 {
6924 unsigned int caux;
6925 Elf_Internal_Vernaux *a;
6926 size_t indx;
6927
6928 caux = 0;
6929 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6930 ++caux;
6931
6932 vn->vn_version = VER_NEED_CURRENT;
6933 vn->vn_cnt = caux;
6934 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6935 elf_dt_name (vn->vn_bfd) != NULL
6936 ? elf_dt_name (vn->vn_bfd)
6937 : lbasename (bfd_get_filename
6938 (vn->vn_bfd)),
6939 false);
6940 if (indx == (size_t) -1)
6941 return false;
6942 vn->vn_file = indx;
6943 vn->vn_aux = sizeof (Elf_External_Verneed);
6944 if (vn->vn_nextref == NULL)
6945 vn->vn_next = 0;
6946 else
6947 vn->vn_next = (sizeof (Elf_External_Verneed)
6948 + caux * sizeof (Elf_External_Vernaux));
6949
6950 _bfd_elf_swap_verneed_out (output_bfd, vn,
6951 (Elf_External_Verneed *) p);
6952 p += sizeof (Elf_External_Verneed);
6953
6954 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6955 {
6956 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6957 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6958 a->vna_nodename, false);
6959 if (indx == (size_t) -1)
6960 return false;
6961 a->vna_name = indx;
6962 if (a->vna_nextptr == NULL)
6963 a->vna_next = 0;
6964 else
6965 a->vna_next = sizeof (Elf_External_Vernaux);
6966
6967 _bfd_elf_swap_vernaux_out (output_bfd, a,
6968 (Elf_External_Vernaux *) p);
6969 p += sizeof (Elf_External_Vernaux);
6970 }
6971 }
6972
6973 elf_tdata (output_bfd)->cverrefs = crefs;
6974 }
6975 }
6976
6977 /* Any syms created from now on start with -1 in
6978 got.refcount/offset and plt.refcount/offset. */
6979 elf_hash_table (info)->init_got_refcount
6980 = elf_hash_table (info)->init_got_offset;
6981 elf_hash_table (info)->init_plt_refcount
6982 = elf_hash_table (info)->init_plt_offset;
6983
6984 if (bfd_link_relocatable (info)
6985 && !_bfd_elf_size_group_sections (info))
6986 return false;
6987
6988 /* The backend may have to create some sections regardless of whether
6989 we're dynamic or not. */
6990 if (bed->elf_backend_always_size_sections
6991 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6992 return false;
6993
6994 /* Determine any GNU_STACK segment requirements, after the backend
6995 has had a chance to set a default segment size. */
6996 if (info->execstack)
6997 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6998 else if (info->noexecstack)
6999 elf_stack_flags (output_bfd) = PF_R | PF_W;
7000 else
7001 {
7002 bfd *inputobj;
7003 asection *notesec = NULL;
7004 int exec = 0;
7005
7006 for (inputobj = info->input_bfds;
7007 inputobj;
7008 inputobj = inputobj->link.next)
7009 {
7010 asection *s;
7011
7012 if (inputobj->flags
7013 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
7014 continue;
7015 s = inputobj->sections;
7016 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7017 continue;
7018
7019 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
7020 if (s)
7021 {
7022 if (s->flags & SEC_CODE)
7023 exec = PF_X;
7024 notesec = s;
7025 }
7026 else if (bed->default_execstack)
7027 exec = PF_X;
7028 }
7029 if (notesec || info->stacksize > 0)
7030 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
7031 if (notesec && exec && bfd_link_relocatable (info)
7032 && notesec->output_section != bfd_abs_section_ptr)
7033 notesec->output_section->flags |= SEC_CODE;
7034 }
7035
7036 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7037 {
7038 struct elf_info_failed eif;
7039 struct elf_link_hash_entry *h;
7040 asection *dynstr;
7041 asection *s;
7042
7043 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7044 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7045
7046 if (info->symbolic)
7047 {
7048 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7049 return false;
7050 info->flags |= DF_SYMBOLIC;
7051 }
7052
7053 if (rpath != NULL)
7054 {
7055 size_t indx;
7056 bfd_vma tag;
7057
7058 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7059 true);
7060 if (indx == (size_t) -1)
7061 return false;
7062
7063 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7064 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7065 return false;
7066 }
7067
7068 if (filter_shlib != NULL)
7069 {
7070 size_t indx;
7071
7072 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7073 filter_shlib, true);
7074 if (indx == (size_t) -1
7075 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7076 return false;
7077 }
7078
7079 if (auxiliary_filters != NULL)
7080 {
7081 const char * const *p;
7082
7083 for (p = auxiliary_filters; *p != NULL; p++)
7084 {
7085 size_t indx;
7086
7087 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7088 *p, true);
7089 if (indx == (size_t) -1
7090 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7091 return false;
7092 }
7093 }
7094
7095 if (audit != NULL)
7096 {
7097 size_t indx;
7098
7099 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7100 true);
7101 if (indx == (size_t) -1
7102 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7103 return false;
7104 }
7105
7106 if (depaudit != NULL)
7107 {
7108 size_t indx;
7109
7110 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7111 true);
7112 if (indx == (size_t) -1
7113 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7114 return false;
7115 }
7116
7117 eif.info = info;
7118 eif.failed = false;
7119
7120 /* Find all symbols which were defined in a dynamic object and make
7121 the backend pick a reasonable value for them. */
7122 elf_link_hash_traverse (elf_hash_table (info),
7123 _bfd_elf_adjust_dynamic_symbol,
7124 &eif);
7125 if (eif.failed)
7126 return false;
7127
7128 /* Add some entries to the .dynamic section. We fill in some of the
7129 values later, in bfd_elf_final_link, but we must add the entries
7130 now so that we know the final size of the .dynamic section. */
7131
7132 /* If there are initialization and/or finalization functions to
7133 call then add the corresponding DT_INIT/DT_FINI entries. */
7134 h = (info->init_function
7135 ? elf_link_hash_lookup (elf_hash_table (info),
7136 info->init_function, false,
7137 false, false)
7138 : NULL);
7139 if (h != NULL
7140 && (h->ref_regular
7141 || h->def_regular))
7142 {
7143 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7144 return false;
7145 }
7146 h = (info->fini_function
7147 ? elf_link_hash_lookup (elf_hash_table (info),
7148 info->fini_function, false,
7149 false, false)
7150 : NULL);
7151 if (h != NULL
7152 && (h->ref_regular
7153 || h->def_regular))
7154 {
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7156 return false;
7157 }
7158
7159 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7160 if (s != NULL && s->linker_has_input)
7161 {
7162 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7163 if (! bfd_link_executable (info))
7164 {
7165 bfd *sub;
7166 asection *o;
7167
7168 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7169 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7170 && (o = sub->sections) != NULL
7171 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7172 for (o = sub->sections; o != NULL; o = o->next)
7173 if (elf_section_data (o)->this_hdr.sh_type
7174 == SHT_PREINIT_ARRAY)
7175 {
7176 _bfd_error_handler
7177 (_("%pB: .preinit_array section is not allowed in DSO"),
7178 sub);
7179 break;
7180 }
7181
7182 bfd_set_error (bfd_error_nonrepresentable_section);
7183 return false;
7184 }
7185
7186 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7187 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7188 return false;
7189 }
7190 s = bfd_get_section_by_name (output_bfd, ".init_array");
7191 if (s != NULL && s->linker_has_input)
7192 {
7193 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7194 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7195 return false;
7196 }
7197 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7198 if (s != NULL && s->linker_has_input)
7199 {
7200 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7201 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7202 return false;
7203 }
7204
7205 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7206 /* If .dynstr is excluded from the link, we don't want any of
7207 these tags. Strictly, we should be checking each section
7208 individually; This quick check covers for the case where
7209 someone does a /DISCARD/ : { *(*) }. */
7210 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7211 {
7212 bfd_size_type strsize;
7213
7214 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7215 if ((info->emit_hash
7216 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7217 || (info->emit_gnu_hash
7218 && (bed->record_xhash_symbol == NULL
7219 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7220 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7221 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7222 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7223 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7224 bed->s->sizeof_sym)
7225 || (info->gnu_flags_1
7226 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7227 info->gnu_flags_1)))
7228 return false;
7229 }
7230 }
7231
7232 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7233 return false;
7234
7235 /* The backend must work out the sizes of all the other dynamic
7236 sections. */
7237 if (dynobj != NULL
7238 && bed->elf_backend_size_dynamic_sections != NULL
7239 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7240 return false;
7241
7242 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7243 {
7244 if (elf_tdata (output_bfd)->cverdefs)
7245 {
7246 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7247
7248 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7249 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7250 return false;
7251 }
7252
7253 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7254 {
7255 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7256 return false;
7257 }
7258 else if (info->flags & DF_BIND_NOW)
7259 {
7260 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7261 return false;
7262 }
7263
7264 if (info->flags_1)
7265 {
7266 if (bfd_link_executable (info))
7267 info->flags_1 &= ~ (DF_1_INITFIRST
7268 | DF_1_NODELETE
7269 | DF_1_NOOPEN);
7270 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7271 return false;
7272 }
7273
7274 if (elf_tdata (output_bfd)->cverrefs)
7275 {
7276 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7277
7278 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7279 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7280 return false;
7281 }
7282
7283 if ((elf_tdata (output_bfd)->cverrefs == 0
7284 && elf_tdata (output_bfd)->cverdefs == 0)
7285 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7286 {
7287 asection *s;
7288
7289 s = bfd_get_linker_section (dynobj, ".gnu.version");
7290 s->flags |= SEC_EXCLUDE;
7291 }
7292 }
7293 return true;
7294 }
7295
7296 /* Find the first non-excluded output section. We'll use its
7297 section symbol for some emitted relocs. */
7298 void
7299 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7300 {
7301 asection *s;
7302 asection *found = NULL;
7303
7304 for (s = output_bfd->sections; s != NULL; s = s->next)
7305 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7306 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7307 {
7308 found = s;
7309 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7310 break;
7311 }
7312 elf_hash_table (info)->text_index_section = found;
7313 }
7314
7315 /* Find two non-excluded output sections, one for code, one for data.
7316 We'll use their section symbols for some emitted relocs. */
7317 void
7318 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7319 {
7320 asection *s;
7321 asection *found = NULL;
7322
7323 /* Data first, since setting text_index_section changes
7324 _bfd_elf_omit_section_dynsym_default. */
7325 for (s = output_bfd->sections; s != NULL; s = s->next)
7326 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7327 && !(s->flags & SEC_READONLY)
7328 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7329 {
7330 found = s;
7331 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7332 break;
7333 }
7334 elf_hash_table (info)->data_index_section = found;
7335
7336 for (s = output_bfd->sections; s != NULL; s = s->next)
7337 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7338 && (s->flags & SEC_READONLY)
7339 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7340 {
7341 found = s;
7342 break;
7343 }
7344 elf_hash_table (info)->text_index_section = found;
7345 }
7346
7347 #define GNU_HASH_SECTION_NAME(bed) \
7348 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7349
7350 bool
7351 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7352 {
7353 const struct elf_backend_data *bed;
7354 unsigned long section_sym_count;
7355 bfd_size_type dynsymcount = 0;
7356
7357 if (!is_elf_hash_table (info->hash))
7358 return true;
7359
7360 bed = get_elf_backend_data (output_bfd);
7361 (*bed->elf_backend_init_index_section) (output_bfd, info);
7362
7363 /* Assign dynsym indices. In a shared library we generate a section
7364 symbol for each output section, which come first. Next come all
7365 of the back-end allocated local dynamic syms, followed by the rest
7366 of the global symbols.
7367
7368 This is usually not needed for static binaries, however backends
7369 can request to always do it, e.g. the MIPS backend uses dynamic
7370 symbol counts to lay out GOT, which will be produced in the
7371 presence of GOT relocations even in static binaries (holding fixed
7372 data in that case, to satisfy those relocations). */
7373
7374 if (elf_hash_table (info)->dynamic_sections_created
7375 || bed->always_renumber_dynsyms)
7376 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7377 &section_sym_count);
7378
7379 if (elf_hash_table (info)->dynamic_sections_created)
7380 {
7381 bfd *dynobj;
7382 asection *s;
7383 unsigned int dtagcount;
7384
7385 dynobj = elf_hash_table (info)->dynobj;
7386
7387 /* Work out the size of the symbol version section. */
7388 s = bfd_get_linker_section (dynobj, ".gnu.version");
7389 BFD_ASSERT (s != NULL);
7390 if ((s->flags & SEC_EXCLUDE) == 0)
7391 {
7392 s->size = dynsymcount * sizeof (Elf_External_Versym);
7393 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7394 if (s->contents == NULL)
7395 return false;
7396
7397 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7398 return false;
7399 }
7400
7401 /* Set the size of the .dynsym and .hash sections. We counted
7402 the number of dynamic symbols in elf_link_add_object_symbols.
7403 We will build the contents of .dynsym and .hash when we build
7404 the final symbol table, because until then we do not know the
7405 correct value to give the symbols. We built the .dynstr
7406 section as we went along in elf_link_add_object_symbols. */
7407 s = elf_hash_table (info)->dynsym;
7408 BFD_ASSERT (s != NULL);
7409 s->size = dynsymcount * bed->s->sizeof_sym;
7410
7411 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7412 if (s->contents == NULL)
7413 return false;
7414
7415 /* The first entry in .dynsym is a dummy symbol. Clear all the
7416 section syms, in case we don't output them all. */
7417 ++section_sym_count;
7418 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7419
7420 elf_hash_table (info)->bucketcount = 0;
7421
7422 /* Compute the size of the hashing table. As a side effect this
7423 computes the hash values for all the names we export. */
7424 if (info->emit_hash)
7425 {
7426 unsigned long int *hashcodes;
7427 struct hash_codes_info hashinf;
7428 bfd_size_type amt;
7429 unsigned long int nsyms;
7430 size_t bucketcount;
7431 size_t hash_entry_size;
7432
7433 /* Compute the hash values for all exported symbols. At the same
7434 time store the values in an array so that we could use them for
7435 optimizations. */
7436 amt = dynsymcount * sizeof (unsigned long int);
7437 hashcodes = (unsigned long int *) bfd_malloc (amt);
7438 if (hashcodes == NULL)
7439 return false;
7440 hashinf.hashcodes = hashcodes;
7441 hashinf.error = false;
7442
7443 /* Put all hash values in HASHCODES. */
7444 elf_link_hash_traverse (elf_hash_table (info),
7445 elf_collect_hash_codes, &hashinf);
7446 if (hashinf.error)
7447 {
7448 free (hashcodes);
7449 return false;
7450 }
7451
7452 nsyms = hashinf.hashcodes - hashcodes;
7453 bucketcount
7454 = compute_bucket_count (info, hashcodes, nsyms, 0);
7455 free (hashcodes);
7456
7457 if (bucketcount == 0 && nsyms > 0)
7458 return false;
7459
7460 elf_hash_table (info)->bucketcount = bucketcount;
7461
7462 s = bfd_get_linker_section (dynobj, ".hash");
7463 BFD_ASSERT (s != NULL);
7464 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7465 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7466 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7467 if (s->contents == NULL)
7468 return false;
7469
7470 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7471 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7472 s->contents + hash_entry_size);
7473 }
7474
7475 if (info->emit_gnu_hash)
7476 {
7477 size_t i, cnt;
7478 unsigned char *contents;
7479 struct collect_gnu_hash_codes cinfo;
7480 bfd_size_type amt;
7481 size_t bucketcount;
7482
7483 memset (&cinfo, 0, sizeof (cinfo));
7484
7485 /* Compute the hash values for all exported symbols. At the same
7486 time store the values in an array so that we could use them for
7487 optimizations. */
7488 amt = dynsymcount * 2 * sizeof (unsigned long int);
7489 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7490 if (cinfo.hashcodes == NULL)
7491 return false;
7492
7493 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7494 cinfo.min_dynindx = -1;
7495 cinfo.output_bfd = output_bfd;
7496 cinfo.bed = bed;
7497
7498 /* Put all hash values in HASHCODES. */
7499 elf_link_hash_traverse (elf_hash_table (info),
7500 elf_collect_gnu_hash_codes, &cinfo);
7501 if (cinfo.error)
7502 {
7503 free (cinfo.hashcodes);
7504 return false;
7505 }
7506
7507 bucketcount
7508 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7509
7510 if (bucketcount == 0)
7511 {
7512 free (cinfo.hashcodes);
7513 return false;
7514 }
7515
7516 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7517 BFD_ASSERT (s != NULL);
7518
7519 if (cinfo.nsyms == 0)
7520 {
7521 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7522 BFD_ASSERT (cinfo.min_dynindx == -1);
7523 free (cinfo.hashcodes);
7524 s->size = 5 * 4 + bed->s->arch_size / 8;
7525 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7526 if (contents == NULL)
7527 return false;
7528 s->contents = contents;
7529 /* 1 empty bucket. */
7530 bfd_put_32 (output_bfd, 1, contents);
7531 /* SYMIDX above the special symbol 0. */
7532 bfd_put_32 (output_bfd, 1, contents + 4);
7533 /* Just one word for bitmask. */
7534 bfd_put_32 (output_bfd, 1, contents + 8);
7535 /* Only hash fn bloom filter. */
7536 bfd_put_32 (output_bfd, 0, contents + 12);
7537 /* No hashes are valid - empty bitmask. */
7538 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7539 /* No hashes in the only bucket. */
7540 bfd_put_32 (output_bfd, 0,
7541 contents + 16 + bed->s->arch_size / 8);
7542 }
7543 else
7544 {
7545 unsigned long int maskwords, maskbitslog2, x;
7546 BFD_ASSERT (cinfo.min_dynindx != -1);
7547
7548 x = cinfo.nsyms;
7549 maskbitslog2 = 1;
7550 while ((x >>= 1) != 0)
7551 ++maskbitslog2;
7552 if (maskbitslog2 < 3)
7553 maskbitslog2 = 5;
7554 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7555 maskbitslog2 = maskbitslog2 + 3;
7556 else
7557 maskbitslog2 = maskbitslog2 + 2;
7558 if (bed->s->arch_size == 64)
7559 {
7560 if (maskbitslog2 == 5)
7561 maskbitslog2 = 6;
7562 cinfo.shift1 = 6;
7563 }
7564 else
7565 cinfo.shift1 = 5;
7566 cinfo.mask = (1 << cinfo.shift1) - 1;
7567 cinfo.shift2 = maskbitslog2;
7568 cinfo.maskbits = 1 << maskbitslog2;
7569 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7570 amt = bucketcount * sizeof (unsigned long int) * 2;
7571 amt += maskwords * sizeof (bfd_vma);
7572 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7573 if (cinfo.bitmask == NULL)
7574 {
7575 free (cinfo.hashcodes);
7576 return false;
7577 }
7578
7579 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7580 cinfo.indx = cinfo.counts + bucketcount;
7581 cinfo.symindx = dynsymcount - cinfo.nsyms;
7582 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7583
7584 /* Determine how often each hash bucket is used. */
7585 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7586 for (i = 0; i < cinfo.nsyms; ++i)
7587 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7588
7589 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7590 if (cinfo.counts[i] != 0)
7591 {
7592 cinfo.indx[i] = cnt;
7593 cnt += cinfo.counts[i];
7594 }
7595 BFD_ASSERT (cnt == dynsymcount);
7596 cinfo.bucketcount = bucketcount;
7597 cinfo.local_indx = cinfo.min_dynindx;
7598
7599 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7600 s->size += cinfo.maskbits / 8;
7601 if (bed->record_xhash_symbol != NULL)
7602 s->size += cinfo.nsyms * 4;
7603 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7604 if (contents == NULL)
7605 {
7606 free (cinfo.bitmask);
7607 free (cinfo.hashcodes);
7608 return false;
7609 }
7610
7611 s->contents = contents;
7612 bfd_put_32 (output_bfd, bucketcount, contents);
7613 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7614 bfd_put_32 (output_bfd, maskwords, contents + 8);
7615 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7616 contents += 16 + cinfo.maskbits / 8;
7617
7618 for (i = 0; i < bucketcount; ++i)
7619 {
7620 if (cinfo.counts[i] == 0)
7621 bfd_put_32 (output_bfd, 0, contents);
7622 else
7623 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7624 contents += 4;
7625 }
7626
7627 cinfo.contents = contents;
7628
7629 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7630 /* Renumber dynamic symbols, if populating .gnu.hash section.
7631 If using .MIPS.xhash, populate the translation table. */
7632 elf_link_hash_traverse (elf_hash_table (info),
7633 elf_gnu_hash_process_symidx, &cinfo);
7634
7635 contents = s->contents + 16;
7636 for (i = 0; i < maskwords; ++i)
7637 {
7638 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7639 contents);
7640 contents += bed->s->arch_size / 8;
7641 }
7642
7643 free (cinfo.bitmask);
7644 free (cinfo.hashcodes);
7645 }
7646 }
7647
7648 s = bfd_get_linker_section (dynobj, ".dynstr");
7649 BFD_ASSERT (s != NULL);
7650
7651 elf_finalize_dynstr (output_bfd, info);
7652
7653 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7654
7655 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7656 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7657 return false;
7658 }
7659
7660 return true;
7661 }
7662 \f
7663 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7664
7665 static void
7666 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7667 asection *sec)
7668 {
7669 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7670 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7671 }
7672
7673 /* Finish SHF_MERGE section merging. */
7674
7675 bool
7676 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7677 {
7678 bfd *ibfd;
7679 asection *sec;
7680
7681 if (!is_elf_hash_table (info->hash))
7682 return false;
7683
7684 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7685 if ((ibfd->flags & DYNAMIC) == 0
7686 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7687 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7688 == get_elf_backend_data (obfd)->s->elfclass))
7689 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7690 if ((sec->flags & SEC_MERGE) != 0
7691 && !bfd_is_abs_section (sec->output_section))
7692 {
7693 struct bfd_elf_section_data *secdata;
7694
7695 secdata = elf_section_data (sec);
7696 if (! _bfd_add_merge_section (obfd,
7697 &elf_hash_table (info)->merge_info,
7698 sec, &secdata->sec_info))
7699 return false;
7700 else if (secdata->sec_info)
7701 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7702 }
7703
7704 if (elf_hash_table (info)->merge_info != NULL)
7705 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7706 merge_sections_remove_hook);
7707 return true;
7708 }
7709
7710 /* Create an entry in an ELF linker hash table. */
7711
7712 struct bfd_hash_entry *
7713 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7714 struct bfd_hash_table *table,
7715 const char *string)
7716 {
7717 /* Allocate the structure if it has not already been allocated by a
7718 subclass. */
7719 if (entry == NULL)
7720 {
7721 entry = (struct bfd_hash_entry *)
7722 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7723 if (entry == NULL)
7724 return entry;
7725 }
7726
7727 /* Call the allocation method of the superclass. */
7728 entry = _bfd_link_hash_newfunc (entry, table, string);
7729 if (entry != NULL)
7730 {
7731 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7732 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7733
7734 /* Set local fields. */
7735 ret->indx = -1;
7736 ret->dynindx = -1;
7737 ret->got = htab->init_got_refcount;
7738 ret->plt = htab->init_plt_refcount;
7739 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7740 - offsetof (struct elf_link_hash_entry, size)));
7741 /* Assume that we have been called by a non-ELF symbol reader.
7742 This flag is then reset by the code which reads an ELF input
7743 file. This ensures that a symbol created by a non-ELF symbol
7744 reader will have the flag set correctly. */
7745 ret->non_elf = 1;
7746 }
7747
7748 return entry;
7749 }
7750
7751 /* Copy data from an indirect symbol to its direct symbol, hiding the
7752 old indirect symbol. Also used for copying flags to a weakdef. */
7753
7754 void
7755 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7756 struct elf_link_hash_entry *dir,
7757 struct elf_link_hash_entry *ind)
7758 {
7759 struct elf_link_hash_table *htab;
7760
7761 if (ind->dyn_relocs != NULL)
7762 {
7763 if (dir->dyn_relocs != NULL)
7764 {
7765 struct elf_dyn_relocs **pp;
7766 struct elf_dyn_relocs *p;
7767
7768 /* Add reloc counts against the indirect sym to the direct sym
7769 list. Merge any entries against the same section. */
7770 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7771 {
7772 struct elf_dyn_relocs *q;
7773
7774 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7775 if (q->sec == p->sec)
7776 {
7777 q->pc_count += p->pc_count;
7778 q->count += p->count;
7779 *pp = p->next;
7780 break;
7781 }
7782 if (q == NULL)
7783 pp = &p->next;
7784 }
7785 *pp = dir->dyn_relocs;
7786 }
7787
7788 dir->dyn_relocs = ind->dyn_relocs;
7789 ind->dyn_relocs = NULL;
7790 }
7791
7792 /* Copy down any references that we may have already seen to the
7793 symbol which just became indirect. */
7794
7795 if (dir->versioned != versioned_hidden)
7796 dir->ref_dynamic |= ind->ref_dynamic;
7797 dir->ref_regular |= ind->ref_regular;
7798 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7799 dir->non_got_ref |= ind->non_got_ref;
7800 dir->needs_plt |= ind->needs_plt;
7801 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7802
7803 if (ind->root.type != bfd_link_hash_indirect)
7804 return;
7805
7806 /* Copy over the global and procedure linkage table refcount entries.
7807 These may have been already set up by a check_relocs routine. */
7808 htab = elf_hash_table (info);
7809 if (ind->got.refcount > htab->init_got_refcount.refcount)
7810 {
7811 if (dir->got.refcount < 0)
7812 dir->got.refcount = 0;
7813 dir->got.refcount += ind->got.refcount;
7814 ind->got.refcount = htab->init_got_refcount.refcount;
7815 }
7816
7817 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7818 {
7819 if (dir->plt.refcount < 0)
7820 dir->plt.refcount = 0;
7821 dir->plt.refcount += ind->plt.refcount;
7822 ind->plt.refcount = htab->init_plt_refcount.refcount;
7823 }
7824
7825 if (ind->dynindx != -1)
7826 {
7827 if (dir->dynindx != -1)
7828 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7829 dir->dynindx = ind->dynindx;
7830 dir->dynstr_index = ind->dynstr_index;
7831 ind->dynindx = -1;
7832 ind->dynstr_index = 0;
7833 }
7834 }
7835
7836 void
7837 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7838 struct elf_link_hash_entry *h,
7839 bool force_local)
7840 {
7841 /* STT_GNU_IFUNC symbol must go through PLT. */
7842 if (h->type != STT_GNU_IFUNC)
7843 {
7844 h->plt = elf_hash_table (info)->init_plt_offset;
7845 h->needs_plt = 0;
7846 }
7847 if (force_local)
7848 {
7849 h->forced_local = 1;
7850 if (h->dynindx != -1)
7851 {
7852 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7853 h->dynstr_index);
7854 h->dynindx = -1;
7855 h->dynstr_index = 0;
7856 }
7857 }
7858 }
7859
7860 /* Hide a symbol. */
7861
7862 void
7863 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7864 struct bfd_link_info *info,
7865 struct bfd_link_hash_entry *h)
7866 {
7867 if (is_elf_hash_table (info->hash))
7868 {
7869 const struct elf_backend_data *bed
7870 = get_elf_backend_data (output_bfd);
7871 struct elf_link_hash_entry *eh
7872 = (struct elf_link_hash_entry *) h;
7873 bed->elf_backend_hide_symbol (info, eh, true);
7874 eh->def_dynamic = 0;
7875 eh->ref_dynamic = 0;
7876 eh->dynamic_def = 0;
7877 }
7878 }
7879
7880 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7881 caller. */
7882
7883 bool
7884 _bfd_elf_link_hash_table_init
7885 (struct elf_link_hash_table *table,
7886 bfd *abfd,
7887 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7888 struct bfd_hash_table *,
7889 const char *),
7890 unsigned int entsize,
7891 enum elf_target_id target_id)
7892 {
7893 bool ret;
7894 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7895
7896 table->init_got_refcount.refcount = can_refcount - 1;
7897 table->init_plt_refcount.refcount = can_refcount - 1;
7898 table->init_got_offset.offset = -(bfd_vma) 1;
7899 table->init_plt_offset.offset = -(bfd_vma) 1;
7900 /* The first dynamic symbol is a dummy. */
7901 table->dynsymcount = 1;
7902
7903 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7904
7905 table->root.type = bfd_link_elf_hash_table;
7906 table->hash_table_id = target_id;
7907 table->target_os = get_elf_backend_data (abfd)->target_os;
7908
7909 return ret;
7910 }
7911
7912 /* Create an ELF linker hash table. */
7913
7914 struct bfd_link_hash_table *
7915 _bfd_elf_link_hash_table_create (bfd *abfd)
7916 {
7917 struct elf_link_hash_table *ret;
7918 size_t amt = sizeof (struct elf_link_hash_table);
7919
7920 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7921 if (ret == NULL)
7922 return NULL;
7923
7924 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7925 sizeof (struct elf_link_hash_entry),
7926 GENERIC_ELF_DATA))
7927 {
7928 free (ret);
7929 return NULL;
7930 }
7931 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7932
7933 return &ret->root;
7934 }
7935
7936 /* Destroy an ELF linker hash table. */
7937
7938 void
7939 _bfd_elf_link_hash_table_free (bfd *obfd)
7940 {
7941 struct elf_link_hash_table *htab;
7942
7943 htab = (struct elf_link_hash_table *) obfd->link.hash;
7944 if (htab->dynstr != NULL)
7945 _bfd_elf_strtab_free (htab->dynstr);
7946 _bfd_merge_sections_free (htab->merge_info);
7947 _bfd_generic_link_hash_table_free (obfd);
7948 }
7949
7950 /* This is a hook for the ELF emulation code in the generic linker to
7951 tell the backend linker what file name to use for the DT_NEEDED
7952 entry for a dynamic object. */
7953
7954 void
7955 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7956 {
7957 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7958 && bfd_get_format (abfd) == bfd_object)
7959 elf_dt_name (abfd) = name;
7960 }
7961
7962 int
7963 bfd_elf_get_dyn_lib_class (bfd *abfd)
7964 {
7965 int lib_class;
7966 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7967 && bfd_get_format (abfd) == bfd_object)
7968 lib_class = elf_dyn_lib_class (abfd);
7969 else
7970 lib_class = 0;
7971 return lib_class;
7972 }
7973
7974 void
7975 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7976 {
7977 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7978 && bfd_get_format (abfd) == bfd_object)
7979 elf_dyn_lib_class (abfd) = lib_class;
7980 }
7981
7982 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7983 the linker ELF emulation code. */
7984
7985 struct bfd_link_needed_list *
7986 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7987 struct bfd_link_info *info)
7988 {
7989 if (! is_elf_hash_table (info->hash))
7990 return NULL;
7991 return elf_hash_table (info)->needed;
7992 }
7993
7994 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7995 hook for the linker ELF emulation code. */
7996
7997 struct bfd_link_needed_list *
7998 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7999 struct bfd_link_info *info)
8000 {
8001 if (! is_elf_hash_table (info->hash))
8002 return NULL;
8003 return elf_hash_table (info)->runpath;
8004 }
8005
8006 /* Get the name actually used for a dynamic object for a link. This
8007 is the SONAME entry if there is one. Otherwise, it is the string
8008 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
8009
8010 const char *
8011 bfd_elf_get_dt_soname (bfd *abfd)
8012 {
8013 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8014 && bfd_get_format (abfd) == bfd_object)
8015 return elf_dt_name (abfd);
8016 return NULL;
8017 }
8018
8019 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
8020 the ELF linker emulation code. */
8021
8022 bool
8023 bfd_elf_get_bfd_needed_list (bfd *abfd,
8024 struct bfd_link_needed_list **pneeded)
8025 {
8026 asection *s;
8027 bfd_byte *dynbuf = NULL;
8028 unsigned int elfsec;
8029 unsigned long shlink;
8030 bfd_byte *extdyn, *extdynend;
8031 size_t extdynsize;
8032 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
8033
8034 *pneeded = NULL;
8035
8036 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
8037 || bfd_get_format (abfd) != bfd_object)
8038 return true;
8039
8040 s = bfd_get_section_by_name (abfd, ".dynamic");
8041 if (s == NULL || s->size == 0)
8042 return true;
8043
8044 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8045 goto error_return;
8046
8047 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8048 if (elfsec == SHN_BAD)
8049 goto error_return;
8050
8051 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8052
8053 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8054 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8055
8056 extdyn = dynbuf;
8057 extdynend = extdyn + s->size;
8058 for (; extdyn < extdynend; extdyn += extdynsize)
8059 {
8060 Elf_Internal_Dyn dyn;
8061
8062 (*swap_dyn_in) (abfd, extdyn, &dyn);
8063
8064 if (dyn.d_tag == DT_NULL)
8065 break;
8066
8067 if (dyn.d_tag == DT_NEEDED)
8068 {
8069 const char *string;
8070 struct bfd_link_needed_list *l;
8071 unsigned int tagv = dyn.d_un.d_val;
8072 size_t amt;
8073
8074 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8075 if (string == NULL)
8076 goto error_return;
8077
8078 amt = sizeof *l;
8079 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8080 if (l == NULL)
8081 goto error_return;
8082
8083 l->by = abfd;
8084 l->name = string;
8085 l->next = *pneeded;
8086 *pneeded = l;
8087 }
8088 }
8089
8090 free (dynbuf);
8091
8092 return true;
8093
8094 error_return:
8095 free (dynbuf);
8096 return false;
8097 }
8098
8099 struct elf_symbuf_symbol
8100 {
8101 unsigned long st_name; /* Symbol name, index in string tbl */
8102 unsigned char st_info; /* Type and binding attributes */
8103 unsigned char st_other; /* Visibilty, and target specific */
8104 };
8105
8106 struct elf_symbuf_head
8107 {
8108 struct elf_symbuf_symbol *ssym;
8109 size_t count;
8110 unsigned int st_shndx;
8111 };
8112
8113 struct elf_symbol
8114 {
8115 union
8116 {
8117 Elf_Internal_Sym *isym;
8118 struct elf_symbuf_symbol *ssym;
8119 void *p;
8120 } u;
8121 const char *name;
8122 };
8123
8124 /* Sort references to symbols by ascending section number. */
8125
8126 static int
8127 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8128 {
8129 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8130 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8131
8132 if (s1->st_shndx != s2->st_shndx)
8133 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8134 /* Final sort by the address of the sym in the symbuf ensures
8135 a stable sort. */
8136 if (s1 != s2)
8137 return s1 > s2 ? 1 : -1;
8138 return 0;
8139 }
8140
8141 static int
8142 elf_sym_name_compare (const void *arg1, const void *arg2)
8143 {
8144 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8145 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8146 int ret = strcmp (s1->name, s2->name);
8147 if (ret != 0)
8148 return ret;
8149 if (s1->u.p != s2->u.p)
8150 return s1->u.p > s2->u.p ? 1 : -1;
8151 return 0;
8152 }
8153
8154 static struct elf_symbuf_head *
8155 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8156 {
8157 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8158 struct elf_symbuf_symbol *ssym;
8159 struct elf_symbuf_head *ssymbuf, *ssymhead;
8160 size_t i, shndx_count, total_size, amt;
8161
8162 amt = symcount * sizeof (*indbuf);
8163 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8164 if (indbuf == NULL)
8165 return NULL;
8166
8167 for (ind = indbuf, i = 0; i < symcount; i++)
8168 if (isymbuf[i].st_shndx != SHN_UNDEF)
8169 *ind++ = &isymbuf[i];
8170 indbufend = ind;
8171
8172 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8173 elf_sort_elf_symbol);
8174
8175 shndx_count = 0;
8176 if (indbufend > indbuf)
8177 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8178 if (ind[0]->st_shndx != ind[1]->st_shndx)
8179 shndx_count++;
8180
8181 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8182 + (indbufend - indbuf) * sizeof (*ssym));
8183 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8184 if (ssymbuf == NULL)
8185 {
8186 free (indbuf);
8187 return NULL;
8188 }
8189
8190 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8191 ssymbuf->ssym = NULL;
8192 ssymbuf->count = shndx_count;
8193 ssymbuf->st_shndx = 0;
8194 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8195 {
8196 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8197 {
8198 ssymhead++;
8199 ssymhead->ssym = ssym;
8200 ssymhead->count = 0;
8201 ssymhead->st_shndx = (*ind)->st_shndx;
8202 }
8203 ssym->st_name = (*ind)->st_name;
8204 ssym->st_info = (*ind)->st_info;
8205 ssym->st_other = (*ind)->st_other;
8206 ssymhead->count++;
8207 }
8208 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8209 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8210 == total_size));
8211
8212 free (indbuf);
8213 return ssymbuf;
8214 }
8215
8216 /* Check if 2 sections define the same set of local and global
8217 symbols. */
8218
8219 static bool
8220 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8221 struct bfd_link_info *info)
8222 {
8223 bfd *bfd1, *bfd2;
8224 const struct elf_backend_data *bed1, *bed2;
8225 Elf_Internal_Shdr *hdr1, *hdr2;
8226 size_t symcount1, symcount2;
8227 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8228 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8229 Elf_Internal_Sym *isym, *isymend;
8230 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8231 size_t count1, count2, sec_count1, sec_count2, i;
8232 unsigned int shndx1, shndx2;
8233 bool result;
8234 bool ignore_section_symbol_p;
8235
8236 bfd1 = sec1->owner;
8237 bfd2 = sec2->owner;
8238
8239 /* Both sections have to be in ELF. */
8240 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8241 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8242 return false;
8243
8244 if (elf_section_type (sec1) != elf_section_type (sec2))
8245 return false;
8246
8247 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8248 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8249 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8250 return false;
8251
8252 bed1 = get_elf_backend_data (bfd1);
8253 bed2 = get_elf_backend_data (bfd2);
8254 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8255 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8256 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8257 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8258
8259 if (symcount1 == 0 || symcount2 == 0)
8260 return false;
8261
8262 result = false;
8263 isymbuf1 = NULL;
8264 isymbuf2 = NULL;
8265 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8266 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8267
8268 /* Ignore section symbols only when matching non-debugging sections
8269 or linkonce section with comdat section. */
8270 ignore_section_symbol_p
8271 = ((sec1->flags & SEC_DEBUGGING) == 0
8272 || ((elf_section_flags (sec1) & SHF_GROUP)
8273 != (elf_section_flags (sec2) & SHF_GROUP)));
8274
8275 if (ssymbuf1 == NULL)
8276 {
8277 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8278 NULL, NULL, NULL);
8279 if (isymbuf1 == NULL)
8280 goto done;
8281
8282 if (info != NULL && !info->reduce_memory_overheads)
8283 {
8284 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8285 elf_tdata (bfd1)->symbuf = ssymbuf1;
8286 }
8287 }
8288
8289 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8290 {
8291 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8292 NULL, NULL, NULL);
8293 if (isymbuf2 == NULL)
8294 goto done;
8295
8296 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8297 {
8298 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8299 elf_tdata (bfd2)->symbuf = ssymbuf2;
8300 }
8301 }
8302
8303 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8304 {
8305 /* Optimized faster version. */
8306 size_t lo, hi, mid;
8307 struct elf_symbol *symp;
8308 struct elf_symbuf_symbol *ssym, *ssymend;
8309
8310 lo = 0;
8311 hi = ssymbuf1->count;
8312 ssymbuf1++;
8313 count1 = 0;
8314 sec_count1 = 0;
8315 while (lo < hi)
8316 {
8317 mid = (lo + hi) / 2;
8318 if (shndx1 < ssymbuf1[mid].st_shndx)
8319 hi = mid;
8320 else if (shndx1 > ssymbuf1[mid].st_shndx)
8321 lo = mid + 1;
8322 else
8323 {
8324 count1 = ssymbuf1[mid].count;
8325 ssymbuf1 += mid;
8326 break;
8327 }
8328 }
8329 if (ignore_section_symbol_p)
8330 {
8331 for (i = 0; i < count1; i++)
8332 if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION)
8333 sec_count1++;
8334 count1 -= sec_count1;
8335 }
8336
8337 lo = 0;
8338 hi = ssymbuf2->count;
8339 ssymbuf2++;
8340 count2 = 0;
8341 sec_count2 = 0;
8342 while (lo < hi)
8343 {
8344 mid = (lo + hi) / 2;
8345 if (shndx2 < ssymbuf2[mid].st_shndx)
8346 hi = mid;
8347 else if (shndx2 > ssymbuf2[mid].st_shndx)
8348 lo = mid + 1;
8349 else
8350 {
8351 count2 = ssymbuf2[mid].count;
8352 ssymbuf2 += mid;
8353 break;
8354 }
8355 }
8356 if (ignore_section_symbol_p)
8357 {
8358 for (i = 0; i < count2; i++)
8359 if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION)
8360 sec_count2++;
8361 count2 -= sec_count2;
8362 }
8363
8364 if (count1 == 0 || count2 == 0 || count1 != count2)
8365 goto done;
8366
8367 symtable1
8368 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8369 symtable2
8370 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8371 if (symtable1 == NULL || symtable2 == NULL)
8372 goto done;
8373
8374 symp = symtable1;
8375 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1;
8376 ssym < ssymend; ssym++)
8377 if (sec_count1 == 0
8378 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8379 {
8380 symp->u.ssym = ssym;
8381 symp->name = bfd_elf_string_from_elf_section (bfd1,
8382 hdr1->sh_link,
8383 ssym->st_name);
8384 symp++;
8385 }
8386
8387 symp = symtable2;
8388 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2;
8389 ssym < ssymend; ssym++)
8390 if (sec_count2 == 0
8391 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8392 {
8393 symp->u.ssym = ssym;
8394 symp->name = bfd_elf_string_from_elf_section (bfd2,
8395 hdr2->sh_link,
8396 ssym->st_name);
8397 symp++;
8398 }
8399
8400 /* Sort symbol by name. */
8401 qsort (symtable1, count1, sizeof (struct elf_symbol),
8402 elf_sym_name_compare);
8403 qsort (symtable2, count1, sizeof (struct elf_symbol),
8404 elf_sym_name_compare);
8405
8406 for (i = 0; i < count1; i++)
8407 /* Two symbols must have the same binding, type and name. */
8408 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8409 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8410 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8411 goto done;
8412
8413 result = true;
8414 goto done;
8415 }
8416
8417 symtable1 = (struct elf_symbol *)
8418 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8419 symtable2 = (struct elf_symbol *)
8420 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8421 if (symtable1 == NULL || symtable2 == NULL)
8422 goto done;
8423
8424 /* Count definitions in the section. */
8425 count1 = 0;
8426 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8427 if (isym->st_shndx == shndx1
8428 && (!ignore_section_symbol_p
8429 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8430 symtable1[count1++].u.isym = isym;
8431
8432 count2 = 0;
8433 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8434 if (isym->st_shndx == shndx2
8435 && (!ignore_section_symbol_p
8436 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8437 symtable2[count2++].u.isym = isym;
8438
8439 if (count1 == 0 || count2 == 0 || count1 != count2)
8440 goto done;
8441
8442 for (i = 0; i < count1; i++)
8443 symtable1[i].name
8444 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8445 symtable1[i].u.isym->st_name);
8446
8447 for (i = 0; i < count2; i++)
8448 symtable2[i].name
8449 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8450 symtable2[i].u.isym->st_name);
8451
8452 /* Sort symbol by name. */
8453 qsort (symtable1, count1, sizeof (struct elf_symbol),
8454 elf_sym_name_compare);
8455 qsort (symtable2, count1, sizeof (struct elf_symbol),
8456 elf_sym_name_compare);
8457
8458 for (i = 0; i < count1; i++)
8459 /* Two symbols must have the same binding, type and name. */
8460 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8461 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8462 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8463 goto done;
8464
8465 result = true;
8466
8467 done:
8468 free (symtable1);
8469 free (symtable2);
8470 free (isymbuf1);
8471 free (isymbuf2);
8472
8473 return result;
8474 }
8475
8476 /* Return TRUE if 2 section types are compatible. */
8477
8478 bool
8479 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8480 bfd *bbfd, const asection *bsec)
8481 {
8482 if (asec == NULL
8483 || bsec == NULL
8484 || abfd->xvec->flavour != bfd_target_elf_flavour
8485 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8486 return true;
8487
8488 return elf_section_type (asec) == elf_section_type (bsec);
8489 }
8490 \f
8491 /* Final phase of ELF linker. */
8492
8493 /* A structure we use to avoid passing large numbers of arguments. */
8494
8495 struct elf_final_link_info
8496 {
8497 /* General link information. */
8498 struct bfd_link_info *info;
8499 /* Output BFD. */
8500 bfd *output_bfd;
8501 /* Symbol string table. */
8502 struct elf_strtab_hash *symstrtab;
8503 /* .hash section. */
8504 asection *hash_sec;
8505 /* symbol version section (.gnu.version). */
8506 asection *symver_sec;
8507 /* Buffer large enough to hold contents of any section. */
8508 bfd_byte *contents;
8509 /* Buffer large enough to hold external relocs of any section. */
8510 void *external_relocs;
8511 /* Buffer large enough to hold internal relocs of any section. */
8512 Elf_Internal_Rela *internal_relocs;
8513 /* Buffer large enough to hold external local symbols of any input
8514 BFD. */
8515 bfd_byte *external_syms;
8516 /* And a buffer for symbol section indices. */
8517 Elf_External_Sym_Shndx *locsym_shndx;
8518 /* Buffer large enough to hold internal local symbols of any input
8519 BFD. */
8520 Elf_Internal_Sym *internal_syms;
8521 /* Array large enough to hold a symbol index for each local symbol
8522 of any input BFD. */
8523 long *indices;
8524 /* Array large enough to hold a section pointer for each local
8525 symbol of any input BFD. */
8526 asection **sections;
8527 /* Buffer for SHT_SYMTAB_SHNDX section. */
8528 Elf_External_Sym_Shndx *symshndxbuf;
8529 /* Number of STT_FILE syms seen. */
8530 size_t filesym_count;
8531 /* Local symbol hash table. */
8532 struct bfd_hash_table local_hash_table;
8533 };
8534
8535 struct local_hash_entry
8536 {
8537 /* Base hash table entry structure. */
8538 struct bfd_hash_entry root;
8539 /* Size of the local symbol name. */
8540 size_t size;
8541 /* Number of the duplicated local symbol names. */
8542 long count;
8543 };
8544
8545 /* Create an entry in the local symbol hash table. */
8546
8547 static struct bfd_hash_entry *
8548 local_hash_newfunc (struct bfd_hash_entry *entry,
8549 struct bfd_hash_table *table,
8550 const char *string)
8551 {
8552
8553 /* Allocate the structure if it has not already been allocated by a
8554 subclass. */
8555 if (entry == NULL)
8556 {
8557 entry = bfd_hash_allocate (table,
8558 sizeof (struct local_hash_entry));
8559 if (entry == NULL)
8560 return entry;
8561 }
8562
8563 /* Call the allocation method of the superclass. */
8564 entry = bfd_hash_newfunc (entry, table, string);
8565 if (entry != NULL)
8566 {
8567 ((struct local_hash_entry *) entry)->count = 0;
8568 ((struct local_hash_entry *) entry)->size = 0;
8569 }
8570
8571 return entry;
8572 }
8573
8574 /* This struct is used to pass information to elf_link_output_extsym. */
8575
8576 struct elf_outext_info
8577 {
8578 bool failed;
8579 bool localsyms;
8580 bool file_sym_done;
8581 struct elf_final_link_info *flinfo;
8582 };
8583
8584
8585 /* Support for evaluating a complex relocation.
8586
8587 Complex relocations are generalized, self-describing relocations. The
8588 implementation of them consists of two parts: complex symbols, and the
8589 relocations themselves.
8590
8591 The relocations use a reserved elf-wide relocation type code (R_RELC
8592 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8593 information (start bit, end bit, word width, etc) into the addend. This
8594 information is extracted from CGEN-generated operand tables within gas.
8595
8596 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8597 internal) representing prefix-notation expressions, including but not
8598 limited to those sorts of expressions normally encoded as addends in the
8599 addend field. The symbol mangling format is:
8600
8601 <node> := <literal>
8602 | <unary-operator> ':' <node>
8603 | <binary-operator> ':' <node> ':' <node>
8604 ;
8605
8606 <literal> := 's' <digits=N> ':' <N character symbol name>
8607 | 'S' <digits=N> ':' <N character section name>
8608 | '#' <hexdigits>
8609 ;
8610
8611 <binary-operator> := as in C
8612 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8613
8614 static void
8615 set_symbol_value (bfd *bfd_with_globals,
8616 Elf_Internal_Sym *isymbuf,
8617 size_t locsymcount,
8618 size_t symidx,
8619 bfd_vma val)
8620 {
8621 struct elf_link_hash_entry **sym_hashes;
8622 struct elf_link_hash_entry *h;
8623 size_t extsymoff = locsymcount;
8624
8625 if (symidx < locsymcount)
8626 {
8627 Elf_Internal_Sym *sym;
8628
8629 sym = isymbuf + symidx;
8630 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8631 {
8632 /* It is a local symbol: move it to the
8633 "absolute" section and give it a value. */
8634 sym->st_shndx = SHN_ABS;
8635 sym->st_value = val;
8636 return;
8637 }
8638 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8639 extsymoff = 0;
8640 }
8641
8642 /* It is a global symbol: set its link type
8643 to "defined" and give it a value. */
8644
8645 sym_hashes = elf_sym_hashes (bfd_with_globals);
8646 h = sym_hashes [symidx - extsymoff];
8647 while (h->root.type == bfd_link_hash_indirect
8648 || h->root.type == bfd_link_hash_warning)
8649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8650 h->root.type = bfd_link_hash_defined;
8651 h->root.u.def.value = val;
8652 h->root.u.def.section = bfd_abs_section_ptr;
8653 }
8654
8655 static bool
8656 resolve_symbol (const char *name,
8657 bfd *input_bfd,
8658 struct elf_final_link_info *flinfo,
8659 bfd_vma *result,
8660 Elf_Internal_Sym *isymbuf,
8661 size_t locsymcount)
8662 {
8663 Elf_Internal_Sym *sym;
8664 struct bfd_link_hash_entry *global_entry;
8665 const char *candidate = NULL;
8666 Elf_Internal_Shdr *symtab_hdr;
8667 size_t i;
8668
8669 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8670
8671 for (i = 0; i < locsymcount; ++ i)
8672 {
8673 sym = isymbuf + i;
8674
8675 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8676 continue;
8677
8678 candidate = bfd_elf_string_from_elf_section (input_bfd,
8679 symtab_hdr->sh_link,
8680 sym->st_name);
8681 #ifdef DEBUG
8682 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8683 name, candidate, (unsigned long) sym->st_value);
8684 #endif
8685 if (candidate && strcmp (candidate, name) == 0)
8686 {
8687 asection *sec = flinfo->sections [i];
8688
8689 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8690 *result += sec->output_offset + sec->output_section->vma;
8691 #ifdef DEBUG
8692 printf ("Found symbol with value %8.8lx\n",
8693 (unsigned long) *result);
8694 #endif
8695 return true;
8696 }
8697 }
8698
8699 /* Hmm, haven't found it yet. perhaps it is a global. */
8700 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8701 false, false, true);
8702 if (!global_entry)
8703 return false;
8704
8705 if (global_entry->type == bfd_link_hash_defined
8706 || global_entry->type == bfd_link_hash_defweak)
8707 {
8708 *result = (global_entry->u.def.value
8709 + global_entry->u.def.section->output_section->vma
8710 + global_entry->u.def.section->output_offset);
8711 #ifdef DEBUG
8712 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8713 global_entry->root.string, (unsigned long) *result);
8714 #endif
8715 return true;
8716 }
8717
8718 return false;
8719 }
8720
8721 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8722 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8723 names like "foo.end" which is the end address of section "foo". */
8724
8725 static bool
8726 resolve_section (const char *name,
8727 asection *sections,
8728 bfd_vma *result,
8729 bfd * abfd)
8730 {
8731 asection *curr;
8732 unsigned int len;
8733
8734 for (curr = sections; curr; curr = curr->next)
8735 if (strcmp (curr->name, name) == 0)
8736 {
8737 *result = curr->vma;
8738 return true;
8739 }
8740
8741 /* Hmm. still haven't found it. try pseudo-section names. */
8742 /* FIXME: This could be coded more efficiently... */
8743 for (curr = sections; curr; curr = curr->next)
8744 {
8745 len = strlen (curr->name);
8746 if (len > strlen (name))
8747 continue;
8748
8749 if (strncmp (curr->name, name, len) == 0)
8750 {
8751 if (startswith (name + len, ".end"))
8752 {
8753 *result = (curr->vma
8754 + curr->size / bfd_octets_per_byte (abfd, curr));
8755 return true;
8756 }
8757
8758 /* Insert more pseudo-section names here, if you like. */
8759 }
8760 }
8761
8762 return false;
8763 }
8764
8765 static void
8766 undefined_reference (const char *reftype, const char *name)
8767 {
8768 /* xgettext:c-format */
8769 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8770 reftype, name);
8771 bfd_set_error (bfd_error_bad_value);
8772 }
8773
8774 static bool
8775 eval_symbol (bfd_vma *result,
8776 const char **symp,
8777 bfd *input_bfd,
8778 struct elf_final_link_info *flinfo,
8779 bfd_vma dot,
8780 Elf_Internal_Sym *isymbuf,
8781 size_t locsymcount,
8782 int signed_p)
8783 {
8784 size_t len;
8785 size_t symlen;
8786 bfd_vma a;
8787 bfd_vma b;
8788 char symbuf[4096];
8789 const char *sym = *symp;
8790 const char *symend;
8791 bool symbol_is_section = false;
8792
8793 len = strlen (sym);
8794 symend = sym + len;
8795
8796 if (len < 1 || len > sizeof (symbuf))
8797 {
8798 bfd_set_error (bfd_error_invalid_operation);
8799 return false;
8800 }
8801
8802 switch (* sym)
8803 {
8804 case '.':
8805 *result = dot;
8806 *symp = sym + 1;
8807 return true;
8808
8809 case '#':
8810 ++sym;
8811 *result = strtoul (sym, (char **) symp, 16);
8812 return true;
8813
8814 case 'S':
8815 symbol_is_section = true;
8816 /* Fall through. */
8817 case 's':
8818 ++sym;
8819 symlen = strtol (sym, (char **) symp, 10);
8820 sym = *symp + 1; /* Skip the trailing ':'. */
8821
8822 if (symend < sym || symlen + 1 > sizeof (symbuf))
8823 {
8824 bfd_set_error (bfd_error_invalid_operation);
8825 return false;
8826 }
8827
8828 memcpy (symbuf, sym, symlen);
8829 symbuf[symlen] = '\0';
8830 *symp = sym + symlen;
8831
8832 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8833 the symbol as a section, or vice-versa. so we're pretty liberal in our
8834 interpretation here; section means "try section first", not "must be a
8835 section", and likewise with symbol. */
8836
8837 if (symbol_is_section)
8838 {
8839 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8840 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8841 isymbuf, locsymcount))
8842 {
8843 undefined_reference ("section", symbuf);
8844 return false;
8845 }
8846 }
8847 else
8848 {
8849 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8850 isymbuf, locsymcount)
8851 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8852 result, input_bfd))
8853 {
8854 undefined_reference ("symbol", symbuf);
8855 return false;
8856 }
8857 }
8858
8859 return true;
8860
8861 /* All that remains are operators. */
8862
8863 #define UNARY_OP(op) \
8864 if (startswith (sym, #op)) \
8865 { \
8866 sym += strlen (#op); \
8867 if (*sym == ':') \
8868 ++sym; \
8869 *symp = sym; \
8870 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8871 isymbuf, locsymcount, signed_p)) \
8872 return false; \
8873 if (signed_p) \
8874 *result = op ((bfd_signed_vma) a); \
8875 else \
8876 *result = op a; \
8877 return true; \
8878 }
8879
8880 #define BINARY_OP_HEAD(op) \
8881 if (startswith (sym, #op)) \
8882 { \
8883 sym += strlen (#op); \
8884 if (*sym == ':') \
8885 ++sym; \
8886 *symp = sym; \
8887 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8888 isymbuf, locsymcount, signed_p)) \
8889 return false; \
8890 ++*symp; \
8891 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8892 isymbuf, locsymcount, signed_p)) \
8893 return false;
8894 #define BINARY_OP_TAIL(op) \
8895 if (signed_p) \
8896 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8897 else \
8898 *result = a op b; \
8899 return true; \
8900 }
8901 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8902
8903 default:
8904 UNARY_OP (0-);
8905 BINARY_OP_HEAD (<<);
8906 if (b >= sizeof (a) * CHAR_BIT)
8907 {
8908 *result = 0;
8909 return true;
8910 }
8911 signed_p = 0;
8912 BINARY_OP_TAIL (<<);
8913 BINARY_OP_HEAD (>>);
8914 if (b >= sizeof (a) * CHAR_BIT)
8915 {
8916 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8917 return true;
8918 }
8919 BINARY_OP_TAIL (>>);
8920 BINARY_OP (==);
8921 BINARY_OP (!=);
8922 BINARY_OP (<=);
8923 BINARY_OP (>=);
8924 BINARY_OP (&&);
8925 BINARY_OP (||);
8926 UNARY_OP (~);
8927 UNARY_OP (!);
8928 BINARY_OP (*);
8929 BINARY_OP_HEAD (/);
8930 if (b == 0)
8931 {
8932 _bfd_error_handler (_("division by zero"));
8933 bfd_set_error (bfd_error_bad_value);
8934 return false;
8935 }
8936 BINARY_OP_TAIL (/);
8937 BINARY_OP_HEAD (%);
8938 if (b == 0)
8939 {
8940 _bfd_error_handler (_("division by zero"));
8941 bfd_set_error (bfd_error_bad_value);
8942 return false;
8943 }
8944 BINARY_OP_TAIL (%);
8945 BINARY_OP (^);
8946 BINARY_OP (|);
8947 BINARY_OP (&);
8948 BINARY_OP (+);
8949 BINARY_OP (-);
8950 BINARY_OP (<);
8951 BINARY_OP (>);
8952 #undef UNARY_OP
8953 #undef BINARY_OP
8954 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8955 bfd_set_error (bfd_error_invalid_operation);
8956 return false;
8957 }
8958 }
8959
8960 static void
8961 put_value (bfd_vma size,
8962 unsigned long chunksz,
8963 bfd *input_bfd,
8964 bfd_vma x,
8965 bfd_byte *location)
8966 {
8967 location += (size - chunksz);
8968
8969 for (; size; size -= chunksz, location -= chunksz)
8970 {
8971 switch (chunksz)
8972 {
8973 case 1:
8974 bfd_put_8 (input_bfd, x, location);
8975 x >>= 8;
8976 break;
8977 case 2:
8978 bfd_put_16 (input_bfd, x, location);
8979 x >>= 16;
8980 break;
8981 case 4:
8982 bfd_put_32 (input_bfd, x, location);
8983 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8984 x >>= 16;
8985 x >>= 16;
8986 break;
8987 #ifdef BFD64
8988 case 8:
8989 bfd_put_64 (input_bfd, x, location);
8990 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8991 x >>= 32;
8992 x >>= 32;
8993 break;
8994 #endif
8995 default:
8996 abort ();
8997 break;
8998 }
8999 }
9000 }
9001
9002 static bfd_vma
9003 get_value (bfd_vma size,
9004 unsigned long chunksz,
9005 bfd *input_bfd,
9006 bfd_byte *location)
9007 {
9008 int shift;
9009 bfd_vma x = 0;
9010
9011 /* Sanity checks. */
9012 BFD_ASSERT (chunksz <= sizeof (x)
9013 && size >= chunksz
9014 && chunksz != 0
9015 && (size % chunksz) == 0
9016 && input_bfd != NULL
9017 && location != NULL);
9018
9019 if (chunksz == sizeof (x))
9020 {
9021 BFD_ASSERT (size == chunksz);
9022
9023 /* Make sure that we do not perform an undefined shift operation.
9024 We know that size == chunksz so there will only be one iteration
9025 of the loop below. */
9026 shift = 0;
9027 }
9028 else
9029 shift = 8 * chunksz;
9030
9031 for (; size; size -= chunksz, location += chunksz)
9032 {
9033 switch (chunksz)
9034 {
9035 case 1:
9036 x = (x << shift) | bfd_get_8 (input_bfd, location);
9037 break;
9038 case 2:
9039 x = (x << shift) | bfd_get_16 (input_bfd, location);
9040 break;
9041 case 4:
9042 x = (x << shift) | bfd_get_32 (input_bfd, location);
9043 break;
9044 #ifdef BFD64
9045 case 8:
9046 x = (x << shift) | bfd_get_64 (input_bfd, location);
9047 break;
9048 #endif
9049 default:
9050 abort ();
9051 }
9052 }
9053 return x;
9054 }
9055
9056 static void
9057 decode_complex_addend (unsigned long *start, /* in bits */
9058 unsigned long *oplen, /* in bits */
9059 unsigned long *len, /* in bits */
9060 unsigned long *wordsz, /* in bytes */
9061 unsigned long *chunksz, /* in bytes */
9062 unsigned long *lsb0_p,
9063 unsigned long *signed_p,
9064 unsigned long *trunc_p,
9065 unsigned long encoded)
9066 {
9067 * start = encoded & 0x3F;
9068 * len = (encoded >> 6) & 0x3F;
9069 * oplen = (encoded >> 12) & 0x3F;
9070 * wordsz = (encoded >> 18) & 0xF;
9071 * chunksz = (encoded >> 22) & 0xF;
9072 * lsb0_p = (encoded >> 27) & 1;
9073 * signed_p = (encoded >> 28) & 1;
9074 * trunc_p = (encoded >> 29) & 1;
9075 }
9076
9077 bfd_reloc_status_type
9078 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9079 asection *input_section,
9080 bfd_byte *contents,
9081 Elf_Internal_Rela *rel,
9082 bfd_vma relocation)
9083 {
9084 bfd_vma shift, x, mask;
9085 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9086 bfd_reloc_status_type r;
9087 bfd_size_type octets;
9088
9089 /* Perform this reloc, since it is complex.
9090 (this is not to say that it necessarily refers to a complex
9091 symbol; merely that it is a self-describing CGEN based reloc.
9092 i.e. the addend has the complete reloc information (bit start, end,
9093 word size, etc) encoded within it.). */
9094
9095 decode_complex_addend (&start, &oplen, &len, &wordsz,
9096 &chunksz, &lsb0_p, &signed_p,
9097 &trunc_p, rel->r_addend);
9098
9099 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9100
9101 if (lsb0_p)
9102 shift = (start + 1) - len;
9103 else
9104 shift = (8 * wordsz) - (start + len);
9105
9106 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9107 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9108
9109 #ifdef DEBUG
9110 printf ("Doing complex reloc: "
9111 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9112 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9113 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9114 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9115 oplen, (unsigned long) x, (unsigned long) mask,
9116 (unsigned long) relocation);
9117 #endif
9118
9119 r = bfd_reloc_ok;
9120 if (! trunc_p)
9121 /* Now do an overflow check. */
9122 r = bfd_check_overflow ((signed_p
9123 ? complain_overflow_signed
9124 : complain_overflow_unsigned),
9125 len, 0, (8 * wordsz),
9126 relocation);
9127
9128 /* Do the deed. */
9129 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9130
9131 #ifdef DEBUG
9132 printf (" relocation: %8.8lx\n"
9133 " shifted mask: %8.8lx\n"
9134 " shifted/masked reloc: %8.8lx\n"
9135 " result: %8.8lx\n",
9136 (unsigned long) relocation, (unsigned long) (mask << shift),
9137 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9138 #endif
9139 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9140 return r;
9141 }
9142
9143 /* Functions to read r_offset from external (target order) reloc
9144 entry. Faster than bfd_getl32 et al, because we let the compiler
9145 know the value is aligned. */
9146
9147 static bfd_vma
9148 ext32l_r_offset (const void *p)
9149 {
9150 union aligned32
9151 {
9152 uint32_t v;
9153 unsigned char c[4];
9154 };
9155 const union aligned32 *a
9156 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9157
9158 uint32_t aval = ( (uint32_t) a->c[0]
9159 | (uint32_t) a->c[1] << 8
9160 | (uint32_t) a->c[2] << 16
9161 | (uint32_t) a->c[3] << 24);
9162 return aval;
9163 }
9164
9165 static bfd_vma
9166 ext32b_r_offset (const void *p)
9167 {
9168 union aligned32
9169 {
9170 uint32_t v;
9171 unsigned char c[4];
9172 };
9173 const union aligned32 *a
9174 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9175
9176 uint32_t aval = ( (uint32_t) a->c[0] << 24
9177 | (uint32_t) a->c[1] << 16
9178 | (uint32_t) a->c[2] << 8
9179 | (uint32_t) a->c[3]);
9180 return aval;
9181 }
9182
9183 #ifdef BFD_HOST_64_BIT
9184 static bfd_vma
9185 ext64l_r_offset (const void *p)
9186 {
9187 union aligned64
9188 {
9189 uint64_t v;
9190 unsigned char c[8];
9191 };
9192 const union aligned64 *a
9193 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9194
9195 uint64_t aval = ( (uint64_t) a->c[0]
9196 | (uint64_t) a->c[1] << 8
9197 | (uint64_t) a->c[2] << 16
9198 | (uint64_t) a->c[3] << 24
9199 | (uint64_t) a->c[4] << 32
9200 | (uint64_t) a->c[5] << 40
9201 | (uint64_t) a->c[6] << 48
9202 | (uint64_t) a->c[7] << 56);
9203 return aval;
9204 }
9205
9206 static bfd_vma
9207 ext64b_r_offset (const void *p)
9208 {
9209 union aligned64
9210 {
9211 uint64_t v;
9212 unsigned char c[8];
9213 };
9214 const union aligned64 *a
9215 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9216
9217 uint64_t aval = ( (uint64_t) a->c[0] << 56
9218 | (uint64_t) a->c[1] << 48
9219 | (uint64_t) a->c[2] << 40
9220 | (uint64_t) a->c[3] << 32
9221 | (uint64_t) a->c[4] << 24
9222 | (uint64_t) a->c[5] << 16
9223 | (uint64_t) a->c[6] << 8
9224 | (uint64_t) a->c[7]);
9225 return aval;
9226 }
9227 #endif
9228
9229 /* When performing a relocatable link, the input relocations are
9230 preserved. But, if they reference global symbols, the indices
9231 referenced must be updated. Update all the relocations found in
9232 RELDATA. */
9233
9234 static bool
9235 elf_link_adjust_relocs (bfd *abfd,
9236 asection *sec,
9237 struct bfd_elf_section_reloc_data *reldata,
9238 bool sort,
9239 struct bfd_link_info *info)
9240 {
9241 unsigned int i;
9242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9243 bfd_byte *erela;
9244 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9245 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9246 bfd_vma r_type_mask;
9247 int r_sym_shift;
9248 unsigned int count = reldata->count;
9249 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9250
9251 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9252 {
9253 swap_in = bed->s->swap_reloc_in;
9254 swap_out = bed->s->swap_reloc_out;
9255 }
9256 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9257 {
9258 swap_in = bed->s->swap_reloca_in;
9259 swap_out = bed->s->swap_reloca_out;
9260 }
9261 else
9262 abort ();
9263
9264 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9265 abort ();
9266
9267 if (bed->s->arch_size == 32)
9268 {
9269 r_type_mask = 0xff;
9270 r_sym_shift = 8;
9271 }
9272 else
9273 {
9274 r_type_mask = 0xffffffff;
9275 r_sym_shift = 32;
9276 }
9277
9278 erela = reldata->hdr->contents;
9279 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9280 {
9281 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9282 unsigned int j;
9283
9284 if (*rel_hash == NULL)
9285 continue;
9286
9287 if ((*rel_hash)->indx == -2
9288 && info->gc_sections
9289 && ! info->gc_keep_exported)
9290 {
9291 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9292 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9293 abfd, sec,
9294 (*rel_hash)->root.root.string);
9295 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9296 abfd, sec);
9297 bfd_set_error (bfd_error_invalid_operation);
9298 return false;
9299 }
9300 BFD_ASSERT ((*rel_hash)->indx >= 0);
9301
9302 (*swap_in) (abfd, erela, irela);
9303 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9304 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9305 | (irela[j].r_info & r_type_mask));
9306 (*swap_out) (abfd, irela, erela);
9307 }
9308
9309 if (bed->elf_backend_update_relocs)
9310 (*bed->elf_backend_update_relocs) (sec, reldata);
9311
9312 if (sort && count != 0)
9313 {
9314 bfd_vma (*ext_r_off) (const void *);
9315 bfd_vma r_off;
9316 size_t elt_size;
9317 bfd_byte *base, *end, *p, *loc;
9318 bfd_byte *buf = NULL;
9319
9320 if (bed->s->arch_size == 32)
9321 {
9322 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9323 ext_r_off = ext32l_r_offset;
9324 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9325 ext_r_off = ext32b_r_offset;
9326 else
9327 abort ();
9328 }
9329 else
9330 {
9331 #ifdef BFD_HOST_64_BIT
9332 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9333 ext_r_off = ext64l_r_offset;
9334 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9335 ext_r_off = ext64b_r_offset;
9336 else
9337 #endif
9338 abort ();
9339 }
9340
9341 /* Must use a stable sort here. A modified insertion sort,
9342 since the relocs are mostly sorted already. */
9343 elt_size = reldata->hdr->sh_entsize;
9344 base = reldata->hdr->contents;
9345 end = base + count * elt_size;
9346 if (elt_size > sizeof (Elf64_External_Rela))
9347 abort ();
9348
9349 /* Ensure the first element is lowest. This acts as a sentinel,
9350 speeding the main loop below. */
9351 r_off = (*ext_r_off) (base);
9352 for (p = loc = base; (p += elt_size) < end; )
9353 {
9354 bfd_vma r_off2 = (*ext_r_off) (p);
9355 if (r_off > r_off2)
9356 {
9357 r_off = r_off2;
9358 loc = p;
9359 }
9360 }
9361 if (loc != base)
9362 {
9363 /* Don't just swap *base and *loc as that changes the order
9364 of the original base[0] and base[1] if they happen to
9365 have the same r_offset. */
9366 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9367 memcpy (onebuf, loc, elt_size);
9368 memmove (base + elt_size, base, loc - base);
9369 memcpy (base, onebuf, elt_size);
9370 }
9371
9372 for (p = base + elt_size; (p += elt_size) < end; )
9373 {
9374 /* base to p is sorted, *p is next to insert. */
9375 r_off = (*ext_r_off) (p);
9376 /* Search the sorted region for location to insert. */
9377 loc = p - elt_size;
9378 while (r_off < (*ext_r_off) (loc))
9379 loc -= elt_size;
9380 loc += elt_size;
9381 if (loc != p)
9382 {
9383 /* Chances are there is a run of relocs to insert here,
9384 from one of more input files. Files are not always
9385 linked in order due to the way elf_link_input_bfd is
9386 called. See pr17666. */
9387 size_t sortlen = p - loc;
9388 bfd_vma r_off2 = (*ext_r_off) (loc);
9389 size_t runlen = elt_size;
9390 size_t buf_size = 96 * 1024;
9391 while (p + runlen < end
9392 && (sortlen <= buf_size
9393 || runlen + elt_size <= buf_size)
9394 && r_off2 > (*ext_r_off) (p + runlen))
9395 runlen += elt_size;
9396 if (buf == NULL)
9397 {
9398 buf = bfd_malloc (buf_size);
9399 if (buf == NULL)
9400 return false;
9401 }
9402 if (runlen < sortlen)
9403 {
9404 memcpy (buf, p, runlen);
9405 memmove (loc + runlen, loc, sortlen);
9406 memcpy (loc, buf, runlen);
9407 }
9408 else
9409 {
9410 memcpy (buf, loc, sortlen);
9411 memmove (loc, p, runlen);
9412 memcpy (loc + runlen, buf, sortlen);
9413 }
9414 p += runlen - elt_size;
9415 }
9416 }
9417 /* Hashes are no longer valid. */
9418 free (reldata->hashes);
9419 reldata->hashes = NULL;
9420 free (buf);
9421 }
9422 return true;
9423 }
9424
9425 struct elf_link_sort_rela
9426 {
9427 union {
9428 bfd_vma offset;
9429 bfd_vma sym_mask;
9430 } u;
9431 enum elf_reloc_type_class type;
9432 /* We use this as an array of size int_rels_per_ext_rel. */
9433 Elf_Internal_Rela rela[1];
9434 };
9435
9436 /* qsort stability here and for cmp2 is only an issue if multiple
9437 dynamic relocations are emitted at the same address. But targets
9438 that apply a series of dynamic relocations each operating on the
9439 result of the prior relocation can't use -z combreloc as
9440 implemented anyway. Such schemes tend to be broken by sorting on
9441 symbol index. That leaves dynamic NONE relocs as the only other
9442 case where ld might emit multiple relocs at the same address, and
9443 those are only emitted due to target bugs. */
9444
9445 static int
9446 elf_link_sort_cmp1 (const void *A, const void *B)
9447 {
9448 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9449 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9450 int relativea, relativeb;
9451
9452 relativea = a->type == reloc_class_relative;
9453 relativeb = b->type == reloc_class_relative;
9454
9455 if (relativea < relativeb)
9456 return 1;
9457 if (relativea > relativeb)
9458 return -1;
9459 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9460 return -1;
9461 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9462 return 1;
9463 if (a->rela->r_offset < b->rela->r_offset)
9464 return -1;
9465 if (a->rela->r_offset > b->rela->r_offset)
9466 return 1;
9467 return 0;
9468 }
9469
9470 static int
9471 elf_link_sort_cmp2 (const void *A, const void *B)
9472 {
9473 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9474 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9475
9476 if (a->type < b->type)
9477 return -1;
9478 if (a->type > b->type)
9479 return 1;
9480 if (a->u.offset < b->u.offset)
9481 return -1;
9482 if (a->u.offset > b->u.offset)
9483 return 1;
9484 if (a->rela->r_offset < b->rela->r_offset)
9485 return -1;
9486 if (a->rela->r_offset > b->rela->r_offset)
9487 return 1;
9488 return 0;
9489 }
9490
9491 static size_t
9492 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9493 {
9494 asection *dynamic_relocs;
9495 asection *rela_dyn;
9496 asection *rel_dyn;
9497 bfd_size_type count, size;
9498 size_t i, ret, sort_elt, ext_size;
9499 bfd_byte *sort, *s_non_relative, *p;
9500 struct elf_link_sort_rela *sq;
9501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9502 int i2e = bed->s->int_rels_per_ext_rel;
9503 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9504 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9505 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9506 struct bfd_link_order *lo;
9507 bfd_vma r_sym_mask;
9508 bool use_rela;
9509
9510 /* Find a dynamic reloc section. */
9511 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9512 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9513 if (rela_dyn != NULL && rela_dyn->size > 0
9514 && rel_dyn != NULL && rel_dyn->size > 0)
9515 {
9516 bool use_rela_initialised = false;
9517
9518 /* This is just here to stop gcc from complaining.
9519 Its initialization checking code is not perfect. */
9520 use_rela = true;
9521
9522 /* Both sections are present. Examine the sizes
9523 of the indirect sections to help us choose. */
9524 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9525 if (lo->type == bfd_indirect_link_order)
9526 {
9527 asection *o = lo->u.indirect.section;
9528
9529 if ((o->size % bed->s->sizeof_rela) == 0)
9530 {
9531 if ((o->size % bed->s->sizeof_rel) == 0)
9532 /* Section size is divisible by both rel and rela sizes.
9533 It is of no help to us. */
9534 ;
9535 else
9536 {
9537 /* Section size is only divisible by rela. */
9538 if (use_rela_initialised && !use_rela)
9539 {
9540 _bfd_error_handler (_("%pB: unable to sort relocs - "
9541 "they are in more than one size"),
9542 abfd);
9543 bfd_set_error (bfd_error_invalid_operation);
9544 return 0;
9545 }
9546 else
9547 {
9548 use_rela = true;
9549 use_rela_initialised = true;
9550 }
9551 }
9552 }
9553 else if ((o->size % bed->s->sizeof_rel) == 0)
9554 {
9555 /* Section size is only divisible by rel. */
9556 if (use_rela_initialised && use_rela)
9557 {
9558 _bfd_error_handler (_("%pB: unable to sort relocs - "
9559 "they are in more than one size"),
9560 abfd);
9561 bfd_set_error (bfd_error_invalid_operation);
9562 return 0;
9563 }
9564 else
9565 {
9566 use_rela = false;
9567 use_rela_initialised = true;
9568 }
9569 }
9570 else
9571 {
9572 /* The section size is not divisible by either -
9573 something is wrong. */
9574 _bfd_error_handler (_("%pB: unable to sort relocs - "
9575 "they are of an unknown size"), abfd);
9576 bfd_set_error (bfd_error_invalid_operation);
9577 return 0;
9578 }
9579 }
9580
9581 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9582 if (lo->type == bfd_indirect_link_order)
9583 {
9584 asection *o = lo->u.indirect.section;
9585
9586 if ((o->size % bed->s->sizeof_rela) == 0)
9587 {
9588 if ((o->size % bed->s->sizeof_rel) == 0)
9589 /* Section size is divisible by both rel and rela sizes.
9590 It is of no help to us. */
9591 ;
9592 else
9593 {
9594 /* Section size is only divisible by rela. */
9595 if (use_rela_initialised && !use_rela)
9596 {
9597 _bfd_error_handler (_("%pB: unable to sort relocs - "
9598 "they are in more than one size"),
9599 abfd);
9600 bfd_set_error (bfd_error_invalid_operation);
9601 return 0;
9602 }
9603 else
9604 {
9605 use_rela = true;
9606 use_rela_initialised = true;
9607 }
9608 }
9609 }
9610 else if ((o->size % bed->s->sizeof_rel) == 0)
9611 {
9612 /* Section size is only divisible by rel. */
9613 if (use_rela_initialised && use_rela)
9614 {
9615 _bfd_error_handler (_("%pB: unable to sort relocs - "
9616 "they are in more than one size"),
9617 abfd);
9618 bfd_set_error (bfd_error_invalid_operation);
9619 return 0;
9620 }
9621 else
9622 {
9623 use_rela = false;
9624 use_rela_initialised = true;
9625 }
9626 }
9627 else
9628 {
9629 /* The section size is not divisible by either -
9630 something is wrong. */
9631 _bfd_error_handler (_("%pB: unable to sort relocs - "
9632 "they are of an unknown size"), abfd);
9633 bfd_set_error (bfd_error_invalid_operation);
9634 return 0;
9635 }
9636 }
9637
9638 if (! use_rela_initialised)
9639 /* Make a guess. */
9640 use_rela = true;
9641 }
9642 else if (rela_dyn != NULL && rela_dyn->size > 0)
9643 use_rela = true;
9644 else if (rel_dyn != NULL && rel_dyn->size > 0)
9645 use_rela = false;
9646 else
9647 return 0;
9648
9649 if (use_rela)
9650 {
9651 dynamic_relocs = rela_dyn;
9652 ext_size = bed->s->sizeof_rela;
9653 swap_in = bed->s->swap_reloca_in;
9654 swap_out = bed->s->swap_reloca_out;
9655 }
9656 else
9657 {
9658 dynamic_relocs = rel_dyn;
9659 ext_size = bed->s->sizeof_rel;
9660 swap_in = bed->s->swap_reloc_in;
9661 swap_out = bed->s->swap_reloc_out;
9662 }
9663
9664 size = 0;
9665 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9666 if (lo->type == bfd_indirect_link_order)
9667 size += lo->u.indirect.section->size;
9668
9669 if (size != dynamic_relocs->size)
9670 return 0;
9671
9672 sort_elt = (sizeof (struct elf_link_sort_rela)
9673 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9674
9675 count = dynamic_relocs->size / ext_size;
9676 if (count == 0)
9677 return 0;
9678 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9679
9680 if (sort == NULL)
9681 {
9682 (*info->callbacks->warning)
9683 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9684 return 0;
9685 }
9686
9687 if (bed->s->arch_size == 32)
9688 r_sym_mask = ~(bfd_vma) 0xff;
9689 else
9690 r_sym_mask = ~(bfd_vma) 0xffffffff;
9691
9692 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9693 if (lo->type == bfd_indirect_link_order)
9694 {
9695 bfd_byte *erel, *erelend;
9696 asection *o = lo->u.indirect.section;
9697
9698 if (o->contents == NULL && o->size != 0)
9699 {
9700 /* This is a reloc section that is being handled as a normal
9701 section. See bfd_section_from_shdr. We can't combine
9702 relocs in this case. */
9703 free (sort);
9704 return 0;
9705 }
9706 erel = o->contents;
9707 erelend = o->contents + o->size;
9708 p = sort + o->output_offset * opb / ext_size * sort_elt;
9709
9710 while (erel < erelend)
9711 {
9712 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9713
9714 (*swap_in) (abfd, erel, s->rela);
9715 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9716 s->u.sym_mask = r_sym_mask;
9717 p += sort_elt;
9718 erel += ext_size;
9719 }
9720 }
9721
9722 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9723
9724 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9725 {
9726 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9727 if (s->type != reloc_class_relative)
9728 break;
9729 }
9730 ret = i;
9731 s_non_relative = p;
9732
9733 sq = (struct elf_link_sort_rela *) s_non_relative;
9734 for (; i < count; i++, p += sort_elt)
9735 {
9736 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9737 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9738 sq = sp;
9739 sp->u.offset = sq->rela->r_offset;
9740 }
9741
9742 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9743
9744 struct elf_link_hash_table *htab = elf_hash_table (info);
9745 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9746 {
9747 /* We have plt relocs in .rela.dyn. */
9748 sq = (struct elf_link_sort_rela *) sort;
9749 for (i = 0; i < count; i++)
9750 if (sq[count - i - 1].type != reloc_class_plt)
9751 break;
9752 if (i != 0 && htab->srelplt->size == i * ext_size)
9753 {
9754 struct bfd_link_order **plo;
9755 /* Put srelplt link_order last. This is so the output_offset
9756 set in the next loop is correct for DT_JMPREL. */
9757 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9758 if ((*plo)->type == bfd_indirect_link_order
9759 && (*plo)->u.indirect.section == htab->srelplt)
9760 {
9761 lo = *plo;
9762 *plo = lo->next;
9763 }
9764 else
9765 plo = &(*plo)->next;
9766 *plo = lo;
9767 lo->next = NULL;
9768 dynamic_relocs->map_tail.link_order = lo;
9769 }
9770 }
9771
9772 p = sort;
9773 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9774 if (lo->type == bfd_indirect_link_order)
9775 {
9776 bfd_byte *erel, *erelend;
9777 asection *o = lo->u.indirect.section;
9778
9779 erel = o->contents;
9780 erelend = o->contents + o->size;
9781 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9782 while (erel < erelend)
9783 {
9784 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9785 (*swap_out) (abfd, s->rela, erel);
9786 p += sort_elt;
9787 erel += ext_size;
9788 }
9789 }
9790
9791 free (sort);
9792 *psec = dynamic_relocs;
9793 return ret;
9794 }
9795
9796 /* Add a symbol to the output symbol string table. */
9797
9798 static int
9799 elf_link_output_symstrtab (void *finf,
9800 const char *name,
9801 Elf_Internal_Sym *elfsym,
9802 asection *input_sec,
9803 struct elf_link_hash_entry *h)
9804 {
9805 struct elf_final_link_info *flinfo = finf;
9806 int (*output_symbol_hook)
9807 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9808 struct elf_link_hash_entry *);
9809 struct elf_link_hash_table *hash_table;
9810 const struct elf_backend_data *bed;
9811 bfd_size_type strtabsize;
9812
9813 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9814
9815 bed = get_elf_backend_data (flinfo->output_bfd);
9816 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9817 if (output_symbol_hook != NULL)
9818 {
9819 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9820 if (ret != 1)
9821 return ret;
9822 }
9823
9824 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9825 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9826 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9827 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9828
9829 if (name == NULL
9830 || *name == '\0'
9831 || (input_sec->flags & SEC_EXCLUDE))
9832 elfsym->st_name = (unsigned long) -1;
9833 else
9834 {
9835 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9836 to get the final offset for st_name. */
9837 char *versioned_name = (char *) name;
9838 if (h != NULL)
9839 {
9840 if (h->versioned == versioned && h->def_dynamic)
9841 {
9842 /* Keep only one '@' for versioned symbols defined in
9843 shared objects. */
9844 char *version = strrchr (name, ELF_VER_CHR);
9845 char *base_end = strchr (name, ELF_VER_CHR);
9846 if (version != base_end)
9847 {
9848 size_t base_len;
9849 size_t len = strlen (name);
9850 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9851 if (versioned_name == NULL)
9852 return 0;
9853 base_len = base_end - name;
9854 memcpy (versioned_name, name, base_len);
9855 memcpy (versioned_name + base_len, version,
9856 len - base_len);
9857 }
9858 }
9859 }
9860 else if (flinfo->info->unique_symbol
9861 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
9862 {
9863 struct local_hash_entry *lh;
9864 size_t count_len;
9865 size_t base_len;
9866 char buf[30];
9867 switch (ELF_ST_TYPE (elfsym->st_info))
9868 {
9869 case STT_FILE:
9870 case STT_SECTION:
9871 break;
9872 default:
9873 lh = (struct local_hash_entry *) bfd_hash_lookup
9874 (&flinfo->local_hash_table, name, true, false);
9875 if (lh == NULL)
9876 return 0;
9877 /* Always append ".COUNT" to local symbols to avoid
9878 potential conflicts with local symbol "XXX.COUNT". */
9879 sprintf (buf, "%lx", lh->count);
9880 base_len = lh->size;
9881 if (!base_len)
9882 {
9883 base_len = strlen (name);
9884 lh->size = base_len;
9885 }
9886 count_len = strlen (buf);
9887 versioned_name = bfd_alloc (flinfo->output_bfd,
9888 base_len + count_len + 2);
9889 if (versioned_name == NULL)
9890 return 0;
9891 memcpy (versioned_name, name, base_len);
9892 versioned_name[base_len] = '.';
9893 memcpy (versioned_name + base_len + 1, buf,
9894 count_len + 1);
9895 lh->count++;
9896 break;
9897 }
9898 }
9899 elfsym->st_name
9900 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9901 versioned_name, false);
9902 if (elfsym->st_name == (unsigned long) -1)
9903 return 0;
9904 }
9905
9906 hash_table = elf_hash_table (flinfo->info);
9907 strtabsize = hash_table->strtabsize;
9908 if (strtabsize <= hash_table->strtabcount)
9909 {
9910 strtabsize += strtabsize;
9911 hash_table->strtabsize = strtabsize;
9912 strtabsize *= sizeof (*hash_table->strtab);
9913 hash_table->strtab
9914 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9915 strtabsize);
9916 if (hash_table->strtab == NULL)
9917 return 0;
9918 }
9919 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9920 hash_table->strtab[hash_table->strtabcount].dest_index
9921 = hash_table->strtabcount;
9922 hash_table->strtab[hash_table->strtabcount].destshndx_index
9923 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9924
9925 flinfo->output_bfd->symcount += 1;
9926 hash_table->strtabcount += 1;
9927
9928 return 1;
9929 }
9930
9931 /* Swap symbols out to the symbol table and flush the output symbols to
9932 the file. */
9933
9934 static bool
9935 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9936 {
9937 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9938 size_t amt;
9939 size_t i;
9940 const struct elf_backend_data *bed;
9941 bfd_byte *symbuf;
9942 Elf_Internal_Shdr *hdr;
9943 file_ptr pos;
9944 bool ret;
9945
9946 if (!hash_table->strtabcount)
9947 return true;
9948
9949 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9950
9951 bed = get_elf_backend_data (flinfo->output_bfd);
9952
9953 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9954 symbuf = (bfd_byte *) bfd_malloc (amt);
9955 if (symbuf == NULL)
9956 return false;
9957
9958 if (flinfo->symshndxbuf)
9959 {
9960 amt = sizeof (Elf_External_Sym_Shndx);
9961 amt *= bfd_get_symcount (flinfo->output_bfd);
9962 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9963 if (flinfo->symshndxbuf == NULL)
9964 {
9965 free (symbuf);
9966 return false;
9967 }
9968 }
9969
9970 /* Now swap out the symbols. */
9971 for (i = 0; i < hash_table->strtabcount; i++)
9972 {
9973 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9974 if (elfsym->sym.st_name == (unsigned long) -1)
9975 elfsym->sym.st_name = 0;
9976 else
9977 elfsym->sym.st_name
9978 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9979 elfsym->sym.st_name);
9980
9981 /* Inform the linker of the addition of this symbol. */
9982
9983 if (flinfo->info->callbacks->ctf_new_symbol)
9984 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
9985 &elfsym->sym);
9986
9987 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9988 ((bfd_byte *) symbuf
9989 + (elfsym->dest_index
9990 * bed->s->sizeof_sym)),
9991 (flinfo->symshndxbuf
9992 + elfsym->destshndx_index));
9993 }
9994
9995 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9996 pos = hdr->sh_offset + hdr->sh_size;
9997 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9998 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9999 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
10000 {
10001 hdr->sh_size += amt;
10002 ret = true;
10003 }
10004 else
10005 ret = false;
10006
10007 free (symbuf);
10008
10009 free (hash_table->strtab);
10010 hash_table->strtab = NULL;
10011
10012 return ret;
10013 }
10014
10015 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
10016
10017 static bool
10018 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
10019 {
10020 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
10021 && sym->st_shndx < SHN_LORESERVE)
10022 {
10023 /* The gABI doesn't support dynamic symbols in output sections
10024 beyond 64k. */
10025 _bfd_error_handler
10026 /* xgettext:c-format */
10027 (_("%pB: too many sections: %d (>= %d)"),
10028 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
10029 bfd_set_error (bfd_error_nonrepresentable_section);
10030 return false;
10031 }
10032 return true;
10033 }
10034
10035 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
10036 allowing an unsatisfied unversioned symbol in the DSO to match a
10037 versioned symbol that would normally require an explicit version.
10038 We also handle the case that a DSO references a hidden symbol
10039 which may be satisfied by a versioned symbol in another DSO. */
10040
10041 static bool
10042 elf_link_check_versioned_symbol (struct bfd_link_info *info,
10043 const struct elf_backend_data *bed,
10044 struct elf_link_hash_entry *h)
10045 {
10046 bfd *abfd;
10047 struct elf_link_loaded_list *loaded;
10048
10049 if (!is_elf_hash_table (info->hash))
10050 return false;
10051
10052 /* Check indirect symbol. */
10053 while (h->root.type == bfd_link_hash_indirect)
10054 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10055
10056 switch (h->root.type)
10057 {
10058 default:
10059 abfd = NULL;
10060 break;
10061
10062 case bfd_link_hash_undefined:
10063 case bfd_link_hash_undefweak:
10064 abfd = h->root.u.undef.abfd;
10065 if (abfd == NULL
10066 || (abfd->flags & DYNAMIC) == 0
10067 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
10068 return false;
10069 break;
10070
10071 case bfd_link_hash_defined:
10072 case bfd_link_hash_defweak:
10073 abfd = h->root.u.def.section->owner;
10074 break;
10075
10076 case bfd_link_hash_common:
10077 abfd = h->root.u.c.p->section->owner;
10078 break;
10079 }
10080 BFD_ASSERT (abfd != NULL);
10081
10082 for (loaded = elf_hash_table (info)->dyn_loaded;
10083 loaded != NULL;
10084 loaded = loaded->next)
10085 {
10086 bfd *input;
10087 Elf_Internal_Shdr *hdr;
10088 size_t symcount;
10089 size_t extsymcount;
10090 size_t extsymoff;
10091 Elf_Internal_Shdr *versymhdr;
10092 Elf_Internal_Sym *isym;
10093 Elf_Internal_Sym *isymend;
10094 Elf_Internal_Sym *isymbuf;
10095 Elf_External_Versym *ever;
10096 Elf_External_Versym *extversym;
10097
10098 input = loaded->abfd;
10099
10100 /* We check each DSO for a possible hidden versioned definition. */
10101 if (input == abfd
10102 || elf_dynversym (input) == 0)
10103 continue;
10104
10105 hdr = &elf_tdata (input)->dynsymtab_hdr;
10106
10107 symcount = hdr->sh_size / bed->s->sizeof_sym;
10108 if (elf_bad_symtab (input))
10109 {
10110 extsymcount = symcount;
10111 extsymoff = 0;
10112 }
10113 else
10114 {
10115 extsymcount = symcount - hdr->sh_info;
10116 extsymoff = hdr->sh_info;
10117 }
10118
10119 if (extsymcount == 0)
10120 continue;
10121
10122 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10123 NULL, NULL, NULL);
10124 if (isymbuf == NULL)
10125 return false;
10126
10127 /* Read in any version definitions. */
10128 versymhdr = &elf_tdata (input)->dynversym_hdr;
10129 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10130 || (extversym = (Elf_External_Versym *)
10131 _bfd_malloc_and_read (input, versymhdr->sh_size,
10132 versymhdr->sh_size)) == NULL)
10133 {
10134 free (isymbuf);
10135 return false;
10136 }
10137
10138 ever = extversym + extsymoff;
10139 isymend = isymbuf + extsymcount;
10140 for (isym = isymbuf; isym < isymend; isym++, ever++)
10141 {
10142 const char *name;
10143 Elf_Internal_Versym iver;
10144 unsigned short version_index;
10145
10146 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10147 || isym->st_shndx == SHN_UNDEF)
10148 continue;
10149
10150 name = bfd_elf_string_from_elf_section (input,
10151 hdr->sh_link,
10152 isym->st_name);
10153 if (strcmp (name, h->root.root.string) != 0)
10154 continue;
10155
10156 _bfd_elf_swap_versym_in (input, ever, &iver);
10157
10158 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10159 && !(h->def_regular
10160 && h->forced_local))
10161 {
10162 /* If we have a non-hidden versioned sym, then it should
10163 have provided a definition for the undefined sym unless
10164 it is defined in a non-shared object and forced local.
10165 */
10166 abort ();
10167 }
10168
10169 version_index = iver.vs_vers & VERSYM_VERSION;
10170 if (version_index == 1 || version_index == 2)
10171 {
10172 /* This is the base or first version. We can use it. */
10173 free (extversym);
10174 free (isymbuf);
10175 return true;
10176 }
10177 }
10178
10179 free (extversym);
10180 free (isymbuf);
10181 }
10182
10183 return false;
10184 }
10185
10186 /* Convert ELF common symbol TYPE. */
10187
10188 static int
10189 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10190 {
10191 /* Commom symbol can only appear in relocatable link. */
10192 if (!bfd_link_relocatable (info))
10193 abort ();
10194 switch (info->elf_stt_common)
10195 {
10196 case unchanged:
10197 break;
10198 case elf_stt_common:
10199 type = STT_COMMON;
10200 break;
10201 case no_elf_stt_common:
10202 type = STT_OBJECT;
10203 break;
10204 }
10205 return type;
10206 }
10207
10208 /* Add an external symbol to the symbol table. This is called from
10209 the hash table traversal routine. When generating a shared object,
10210 we go through the symbol table twice. The first time we output
10211 anything that might have been forced to local scope in a version
10212 script. The second time we output the symbols that are still
10213 global symbols. */
10214
10215 static bool
10216 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10217 {
10218 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10219 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10220 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10221 bool strip;
10222 Elf_Internal_Sym sym;
10223 asection *input_sec;
10224 const struct elf_backend_data *bed;
10225 long indx;
10226 int ret;
10227 unsigned int type;
10228
10229 if (h->root.type == bfd_link_hash_warning)
10230 {
10231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10232 if (h->root.type == bfd_link_hash_new)
10233 return true;
10234 }
10235
10236 /* Decide whether to output this symbol in this pass. */
10237 if (eoinfo->localsyms)
10238 {
10239 if (!h->forced_local)
10240 return true;
10241 }
10242 else
10243 {
10244 if (h->forced_local)
10245 return true;
10246 }
10247
10248 bed = get_elf_backend_data (flinfo->output_bfd);
10249
10250 if (h->root.type == bfd_link_hash_undefined)
10251 {
10252 /* If we have an undefined symbol reference here then it must have
10253 come from a shared library that is being linked in. (Undefined
10254 references in regular files have already been handled unless
10255 they are in unreferenced sections which are removed by garbage
10256 collection). */
10257 bool ignore_undef = false;
10258
10259 /* Some symbols may be special in that the fact that they're
10260 undefined can be safely ignored - let backend determine that. */
10261 if (bed->elf_backend_ignore_undef_symbol)
10262 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10263
10264 /* If we are reporting errors for this situation then do so now. */
10265 if (!ignore_undef
10266 && h->ref_dynamic_nonweak
10267 && (!h->ref_regular || flinfo->info->gc_sections)
10268 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10269 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10270 {
10271 flinfo->info->callbacks->undefined_symbol
10272 (flinfo->info, h->root.root.string,
10273 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10274 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10275 && !flinfo->info->warn_unresolved_syms);
10276 }
10277
10278 /* Strip a global symbol defined in a discarded section. */
10279 if (h->indx == -3)
10280 return true;
10281 }
10282
10283 /* We should also warn if a forced local symbol is referenced from
10284 shared libraries. */
10285 if (bfd_link_executable (flinfo->info)
10286 && h->forced_local
10287 && h->ref_dynamic
10288 && h->def_regular
10289 && !h->dynamic_def
10290 && h->ref_dynamic_nonweak
10291 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10292 {
10293 bfd *def_bfd;
10294 const char *msg;
10295 struct elf_link_hash_entry *hi = h;
10296
10297 /* Check indirect symbol. */
10298 while (hi->root.type == bfd_link_hash_indirect)
10299 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10300
10301 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10302 /* xgettext:c-format */
10303 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10304 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10305 /* xgettext:c-format */
10306 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10307 else
10308 /* xgettext:c-format */
10309 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10310 def_bfd = flinfo->output_bfd;
10311 if (hi->root.u.def.section != bfd_abs_section_ptr)
10312 def_bfd = hi->root.u.def.section->owner;
10313 _bfd_error_handler (msg, flinfo->output_bfd,
10314 h->root.root.string, def_bfd);
10315 bfd_set_error (bfd_error_bad_value);
10316 eoinfo->failed = true;
10317 return false;
10318 }
10319
10320 /* We don't want to output symbols that have never been mentioned by
10321 a regular file, or that we have been told to strip. However, if
10322 h->indx is set to -2, the symbol is used by a reloc and we must
10323 output it. */
10324 strip = false;
10325 if (h->indx == -2)
10326 ;
10327 else if ((h->def_dynamic
10328 || h->ref_dynamic
10329 || h->root.type == bfd_link_hash_new)
10330 && !h->def_regular
10331 && !h->ref_regular)
10332 strip = true;
10333 else if (flinfo->info->strip == strip_all)
10334 strip = true;
10335 else if (flinfo->info->strip == strip_some
10336 && bfd_hash_lookup (flinfo->info->keep_hash,
10337 h->root.root.string, false, false) == NULL)
10338 strip = true;
10339 else if ((h->root.type == bfd_link_hash_defined
10340 || h->root.type == bfd_link_hash_defweak)
10341 && ((flinfo->info->strip_discarded
10342 && discarded_section (h->root.u.def.section))
10343 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10344 && h->root.u.def.section->owner != NULL
10345 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10346 strip = true;
10347 else if ((h->root.type == bfd_link_hash_undefined
10348 || h->root.type == bfd_link_hash_undefweak)
10349 && h->root.u.undef.abfd != NULL
10350 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10351 strip = true;
10352
10353 type = h->type;
10354
10355 /* If we're stripping it, and it's not a dynamic symbol, there's
10356 nothing else to do. However, if it is a forced local symbol or
10357 an ifunc symbol we need to give the backend finish_dynamic_symbol
10358 function a chance to make it dynamic. */
10359 if (strip
10360 && h->dynindx == -1
10361 && type != STT_GNU_IFUNC
10362 && !h->forced_local)
10363 return true;
10364
10365 sym.st_value = 0;
10366 sym.st_size = h->size;
10367 sym.st_other = h->other;
10368 switch (h->root.type)
10369 {
10370 default:
10371 case bfd_link_hash_new:
10372 case bfd_link_hash_warning:
10373 abort ();
10374 return false;
10375
10376 case bfd_link_hash_undefined:
10377 case bfd_link_hash_undefweak:
10378 input_sec = bfd_und_section_ptr;
10379 sym.st_shndx = SHN_UNDEF;
10380 break;
10381
10382 case bfd_link_hash_defined:
10383 case bfd_link_hash_defweak:
10384 {
10385 input_sec = h->root.u.def.section;
10386 if (input_sec->output_section != NULL)
10387 {
10388 sym.st_shndx =
10389 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10390 input_sec->output_section);
10391 if (sym.st_shndx == SHN_BAD)
10392 {
10393 _bfd_error_handler
10394 /* xgettext:c-format */
10395 (_("%pB: could not find output section %pA for input section %pA"),
10396 flinfo->output_bfd, input_sec->output_section, input_sec);
10397 bfd_set_error (bfd_error_nonrepresentable_section);
10398 eoinfo->failed = true;
10399 return false;
10400 }
10401
10402 /* ELF symbols in relocatable files are section relative,
10403 but in nonrelocatable files they are virtual
10404 addresses. */
10405 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10406 if (!bfd_link_relocatable (flinfo->info))
10407 {
10408 sym.st_value += input_sec->output_section->vma;
10409 if (h->type == STT_TLS)
10410 {
10411 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10412 if (tls_sec != NULL)
10413 sym.st_value -= tls_sec->vma;
10414 }
10415 }
10416 }
10417 else
10418 {
10419 BFD_ASSERT (input_sec->owner == NULL
10420 || (input_sec->owner->flags & DYNAMIC) != 0);
10421 sym.st_shndx = SHN_UNDEF;
10422 input_sec = bfd_und_section_ptr;
10423 }
10424 }
10425 break;
10426
10427 case bfd_link_hash_common:
10428 input_sec = h->root.u.c.p->section;
10429 sym.st_shndx = bed->common_section_index (input_sec);
10430 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10431 break;
10432
10433 case bfd_link_hash_indirect:
10434 /* These symbols are created by symbol versioning. They point
10435 to the decorated version of the name. For example, if the
10436 symbol foo@@GNU_1.2 is the default, which should be used when
10437 foo is used with no version, then we add an indirect symbol
10438 foo which points to foo@@GNU_1.2. We ignore these symbols,
10439 since the indirected symbol is already in the hash table. */
10440 return true;
10441 }
10442
10443 if (type == STT_COMMON || type == STT_OBJECT)
10444 switch (h->root.type)
10445 {
10446 case bfd_link_hash_common:
10447 type = elf_link_convert_common_type (flinfo->info, type);
10448 break;
10449 case bfd_link_hash_defined:
10450 case bfd_link_hash_defweak:
10451 if (bed->common_definition (&sym))
10452 type = elf_link_convert_common_type (flinfo->info, type);
10453 else
10454 type = STT_OBJECT;
10455 break;
10456 case bfd_link_hash_undefined:
10457 case bfd_link_hash_undefweak:
10458 break;
10459 default:
10460 abort ();
10461 }
10462
10463 if (h->forced_local)
10464 {
10465 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10466 /* Turn off visibility on local symbol. */
10467 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10468 }
10469 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10470 else if (h->unique_global && h->def_regular)
10471 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10472 else if (h->root.type == bfd_link_hash_undefweak
10473 || h->root.type == bfd_link_hash_defweak)
10474 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10475 else
10476 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10477 sym.st_target_internal = h->target_internal;
10478
10479 /* Give the processor backend a chance to tweak the symbol value,
10480 and also to finish up anything that needs to be done for this
10481 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10482 forced local syms when non-shared is due to a historical quirk.
10483 STT_GNU_IFUNC symbol must go through PLT. */
10484 if ((h->type == STT_GNU_IFUNC
10485 && h->def_regular
10486 && !bfd_link_relocatable (flinfo->info))
10487 || ((h->dynindx != -1
10488 || h->forced_local)
10489 && ((bfd_link_pic (flinfo->info)
10490 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10491 || h->root.type != bfd_link_hash_undefweak))
10492 || !h->forced_local)
10493 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10494 {
10495 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10496 (flinfo->output_bfd, flinfo->info, h, &sym)))
10497 {
10498 eoinfo->failed = true;
10499 return false;
10500 }
10501 }
10502
10503 /* If we are marking the symbol as undefined, and there are no
10504 non-weak references to this symbol from a regular object, then
10505 mark the symbol as weak undefined; if there are non-weak
10506 references, mark the symbol as strong. We can't do this earlier,
10507 because it might not be marked as undefined until the
10508 finish_dynamic_symbol routine gets through with it. */
10509 if (sym.st_shndx == SHN_UNDEF
10510 && h->ref_regular
10511 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10512 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10513 {
10514 int bindtype;
10515 type = ELF_ST_TYPE (sym.st_info);
10516
10517 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10518 if (type == STT_GNU_IFUNC)
10519 type = STT_FUNC;
10520
10521 if (h->ref_regular_nonweak)
10522 bindtype = STB_GLOBAL;
10523 else
10524 bindtype = STB_WEAK;
10525 sym.st_info = ELF_ST_INFO (bindtype, type);
10526 }
10527
10528 /* If this is a symbol defined in a dynamic library, don't use the
10529 symbol size from the dynamic library. Relinking an executable
10530 against a new library may introduce gratuitous changes in the
10531 executable's symbols if we keep the size. */
10532 if (sym.st_shndx == SHN_UNDEF
10533 && !h->def_regular
10534 && h->def_dynamic)
10535 sym.st_size = 0;
10536
10537 /* If a non-weak symbol with non-default visibility is not defined
10538 locally, it is a fatal error. */
10539 if (!bfd_link_relocatable (flinfo->info)
10540 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10541 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10542 && h->root.type == bfd_link_hash_undefined
10543 && !h->def_regular)
10544 {
10545 const char *msg;
10546
10547 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10548 /* xgettext:c-format */
10549 msg = _("%pB: protected symbol `%s' isn't defined");
10550 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10551 /* xgettext:c-format */
10552 msg = _("%pB: internal symbol `%s' isn't defined");
10553 else
10554 /* xgettext:c-format */
10555 msg = _("%pB: hidden symbol `%s' isn't defined");
10556 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10557 bfd_set_error (bfd_error_bad_value);
10558 eoinfo->failed = true;
10559 return false;
10560 }
10561
10562 /* If this symbol should be put in the .dynsym section, then put it
10563 there now. We already know the symbol index. We also fill in
10564 the entry in the .hash section. */
10565 if (h->dynindx != -1
10566 && elf_hash_table (flinfo->info)->dynamic_sections_created
10567 && elf_hash_table (flinfo->info)->dynsym != NULL
10568 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10569 {
10570 bfd_byte *esym;
10571
10572 /* Since there is no version information in the dynamic string,
10573 if there is no version info in symbol version section, we will
10574 have a run-time problem if not linking executable, referenced
10575 by shared library, or not bound locally. */
10576 if (h->verinfo.verdef == NULL
10577 && (!bfd_link_executable (flinfo->info)
10578 || h->ref_dynamic
10579 || !h->def_regular))
10580 {
10581 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10582
10583 if (p && p [1] != '\0')
10584 {
10585 _bfd_error_handler
10586 /* xgettext:c-format */
10587 (_("%pB: no symbol version section for versioned symbol `%s'"),
10588 flinfo->output_bfd, h->root.root.string);
10589 eoinfo->failed = true;
10590 return false;
10591 }
10592 }
10593
10594 sym.st_name = h->dynstr_index;
10595 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10596 + h->dynindx * bed->s->sizeof_sym);
10597 if (!check_dynsym (flinfo->output_bfd, &sym))
10598 {
10599 eoinfo->failed = true;
10600 return false;
10601 }
10602
10603 /* Inform the linker of the addition of this symbol. */
10604
10605 if (flinfo->info->callbacks->ctf_new_dynsym)
10606 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10607
10608 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10609
10610 if (flinfo->hash_sec != NULL)
10611 {
10612 size_t hash_entry_size;
10613 bfd_byte *bucketpos;
10614 bfd_vma chain;
10615 size_t bucketcount;
10616 size_t bucket;
10617
10618 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10619 bucket = h->u.elf_hash_value % bucketcount;
10620
10621 hash_entry_size
10622 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10623 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10624 + (bucket + 2) * hash_entry_size);
10625 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10626 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10627 bucketpos);
10628 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10629 ((bfd_byte *) flinfo->hash_sec->contents
10630 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10631 }
10632
10633 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10634 {
10635 Elf_Internal_Versym iversym;
10636 Elf_External_Versym *eversym;
10637
10638 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10639 {
10640 if (h->verinfo.verdef == NULL
10641 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10642 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10643 iversym.vs_vers = 1;
10644 else
10645 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10646 }
10647 else
10648 {
10649 if (h->verinfo.vertree == NULL)
10650 iversym.vs_vers = 1;
10651 else
10652 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10653 if (flinfo->info->create_default_symver)
10654 iversym.vs_vers++;
10655 }
10656
10657 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10658 defined locally. */
10659 if (h->versioned == versioned_hidden && h->def_regular)
10660 iversym.vs_vers |= VERSYM_HIDDEN;
10661
10662 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10663 eversym += h->dynindx;
10664 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10665 }
10666 }
10667
10668 /* If the symbol is undefined, and we didn't output it to .dynsym,
10669 strip it from .symtab too. Obviously we can't do this for
10670 relocatable output or when needed for --emit-relocs. */
10671 else if (input_sec == bfd_und_section_ptr
10672 && h->indx != -2
10673 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10674 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10675 && !bfd_link_relocatable (flinfo->info))
10676 return true;
10677
10678 /* Also strip others that we couldn't earlier due to dynamic symbol
10679 processing. */
10680 if (strip)
10681 return true;
10682 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10683 return true;
10684
10685 /* Output a FILE symbol so that following locals are not associated
10686 with the wrong input file. We need one for forced local symbols
10687 if we've seen more than one FILE symbol or when we have exactly
10688 one FILE symbol but global symbols are present in a file other
10689 than the one with the FILE symbol. We also need one if linker
10690 defined symbols are present. In practice these conditions are
10691 always met, so just emit the FILE symbol unconditionally. */
10692 if (eoinfo->localsyms
10693 && !eoinfo->file_sym_done
10694 && eoinfo->flinfo->filesym_count != 0)
10695 {
10696 Elf_Internal_Sym fsym;
10697
10698 memset (&fsym, 0, sizeof (fsym));
10699 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10700 fsym.st_shndx = SHN_ABS;
10701 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10702 bfd_und_section_ptr, NULL))
10703 return false;
10704
10705 eoinfo->file_sym_done = true;
10706 }
10707
10708 indx = bfd_get_symcount (flinfo->output_bfd);
10709 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10710 input_sec, h);
10711 if (ret == 0)
10712 {
10713 eoinfo->failed = true;
10714 return false;
10715 }
10716 else if (ret == 1)
10717 h->indx = indx;
10718 else if (h->indx == -2)
10719 abort();
10720
10721 return true;
10722 }
10723
10724 /* Return TRUE if special handling is done for relocs in SEC against
10725 symbols defined in discarded sections. */
10726
10727 static bool
10728 elf_section_ignore_discarded_relocs (asection *sec)
10729 {
10730 const struct elf_backend_data *bed;
10731
10732 switch (sec->sec_info_type)
10733 {
10734 case SEC_INFO_TYPE_STABS:
10735 case SEC_INFO_TYPE_EH_FRAME:
10736 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10737 return true;
10738 default:
10739 break;
10740 }
10741
10742 bed = get_elf_backend_data (sec->owner);
10743 if (bed->elf_backend_ignore_discarded_relocs != NULL
10744 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10745 return true;
10746
10747 return false;
10748 }
10749
10750 /* Return a mask saying how ld should treat relocations in SEC against
10751 symbols defined in discarded sections. If this function returns
10752 COMPLAIN set, ld will issue a warning message. If this function
10753 returns PRETEND set, and the discarded section was link-once and the
10754 same size as the kept link-once section, ld will pretend that the
10755 symbol was actually defined in the kept section. Otherwise ld will
10756 zero the reloc (at least that is the intent, but some cooperation by
10757 the target dependent code is needed, particularly for REL targets). */
10758
10759 unsigned int
10760 _bfd_elf_default_action_discarded (asection *sec)
10761 {
10762 if (sec->flags & SEC_DEBUGGING)
10763 return PRETEND;
10764
10765 if (strcmp (".eh_frame", sec->name) == 0)
10766 return 0;
10767
10768 if (strcmp (".gcc_except_table", sec->name) == 0)
10769 return 0;
10770
10771 return COMPLAIN | PRETEND;
10772 }
10773
10774 /* Find a match between a section and a member of a section group. */
10775
10776 static asection *
10777 match_group_member (asection *sec, asection *group,
10778 struct bfd_link_info *info)
10779 {
10780 asection *first = elf_next_in_group (group);
10781 asection *s = first;
10782
10783 while (s != NULL)
10784 {
10785 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10786 return s;
10787
10788 s = elf_next_in_group (s);
10789 if (s == first)
10790 break;
10791 }
10792
10793 return NULL;
10794 }
10795
10796 /* Check if the kept section of a discarded section SEC can be used
10797 to replace it. Return the replacement if it is OK. Otherwise return
10798 NULL. */
10799
10800 asection *
10801 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10802 {
10803 asection *kept;
10804
10805 kept = sec->kept_section;
10806 if (kept != NULL)
10807 {
10808 if ((kept->flags & SEC_GROUP) != 0)
10809 kept = match_group_member (sec, kept, info);
10810 if (kept != NULL)
10811 {
10812 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10813 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
10814 kept = NULL;
10815 else
10816 {
10817 /* Get the real kept section. */
10818 asection *next;
10819 for (next = kept->kept_section;
10820 next != NULL;
10821 next = next->kept_section)
10822 kept = next;
10823 }
10824 }
10825 sec->kept_section = kept;
10826 }
10827 return kept;
10828 }
10829
10830 /* Link an input file into the linker output file. This function
10831 handles all the sections and relocations of the input file at once.
10832 This is so that we only have to read the local symbols once, and
10833 don't have to keep them in memory. */
10834
10835 static bool
10836 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10837 {
10838 int (*relocate_section)
10839 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10840 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10841 bfd *output_bfd;
10842 Elf_Internal_Shdr *symtab_hdr;
10843 size_t locsymcount;
10844 size_t extsymoff;
10845 Elf_Internal_Sym *isymbuf;
10846 Elf_Internal_Sym *isym;
10847 Elf_Internal_Sym *isymend;
10848 long *pindex;
10849 asection **ppsection;
10850 asection *o;
10851 const struct elf_backend_data *bed;
10852 struct elf_link_hash_entry **sym_hashes;
10853 bfd_size_type address_size;
10854 bfd_vma r_type_mask;
10855 int r_sym_shift;
10856 bool have_file_sym = false;
10857
10858 output_bfd = flinfo->output_bfd;
10859 bed = get_elf_backend_data (output_bfd);
10860 relocate_section = bed->elf_backend_relocate_section;
10861
10862 /* If this is a dynamic object, we don't want to do anything here:
10863 we don't want the local symbols, and we don't want the section
10864 contents. */
10865 if ((input_bfd->flags & DYNAMIC) != 0)
10866 return true;
10867
10868 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10869 if (elf_bad_symtab (input_bfd))
10870 {
10871 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10872 extsymoff = 0;
10873 }
10874 else
10875 {
10876 locsymcount = symtab_hdr->sh_info;
10877 extsymoff = symtab_hdr->sh_info;
10878 }
10879
10880 /* Enable GNU OSABI features in the output BFD that are used in the input
10881 BFD. */
10882 if (bed->elf_osabi == ELFOSABI_NONE
10883 || bed->elf_osabi == ELFOSABI_GNU
10884 || bed->elf_osabi == ELFOSABI_FREEBSD)
10885 elf_tdata (output_bfd)->has_gnu_osabi
10886 |= (elf_tdata (input_bfd)->has_gnu_osabi
10887 & (bfd_link_relocatable (flinfo->info)
10888 ? -1 : ~elf_gnu_osabi_retain));
10889
10890 /* Read the local symbols. */
10891 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10892 if (isymbuf == NULL && locsymcount != 0)
10893 {
10894 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10895 flinfo->internal_syms,
10896 flinfo->external_syms,
10897 flinfo->locsym_shndx);
10898 if (isymbuf == NULL)
10899 return false;
10900 }
10901
10902 /* Find local symbol sections and adjust values of symbols in
10903 SEC_MERGE sections. Write out those local symbols we know are
10904 going into the output file. */
10905 isymend = isymbuf + locsymcount;
10906 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10907 isym < isymend;
10908 isym++, pindex++, ppsection++)
10909 {
10910 asection *isec;
10911 const char *name;
10912 Elf_Internal_Sym osym;
10913 long indx;
10914 int ret;
10915
10916 *pindex = -1;
10917
10918 if (elf_bad_symtab (input_bfd))
10919 {
10920 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10921 {
10922 *ppsection = NULL;
10923 continue;
10924 }
10925 }
10926
10927 if (isym->st_shndx == SHN_UNDEF)
10928 isec = bfd_und_section_ptr;
10929 else if (isym->st_shndx == SHN_ABS)
10930 isec = bfd_abs_section_ptr;
10931 else if (isym->st_shndx == SHN_COMMON)
10932 isec = bfd_com_section_ptr;
10933 else
10934 {
10935 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10936 if (isec == NULL)
10937 {
10938 /* Don't attempt to output symbols with st_shnx in the
10939 reserved range other than SHN_ABS and SHN_COMMON. */
10940 isec = bfd_und_section_ptr;
10941 }
10942 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10943 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10944 isym->st_value =
10945 _bfd_merged_section_offset (output_bfd, &isec,
10946 elf_section_data (isec)->sec_info,
10947 isym->st_value);
10948 }
10949
10950 *ppsection = isec;
10951
10952 /* Don't output the first, undefined, symbol. In fact, don't
10953 output any undefined local symbol. */
10954 if (isec == bfd_und_section_ptr)
10955 continue;
10956
10957 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10958 {
10959 /* We never output section symbols. Instead, we use the
10960 section symbol of the corresponding section in the output
10961 file. */
10962 continue;
10963 }
10964
10965 /* If we are stripping all symbols, we don't want to output this
10966 one. */
10967 if (flinfo->info->strip == strip_all)
10968 continue;
10969
10970 /* If we are discarding all local symbols, we don't want to
10971 output this one. If we are generating a relocatable output
10972 file, then some of the local symbols may be required by
10973 relocs; we output them below as we discover that they are
10974 needed. */
10975 if (flinfo->info->discard == discard_all)
10976 continue;
10977
10978 /* If this symbol is defined in a section which we are
10979 discarding, we don't need to keep it. */
10980 if (isym->st_shndx != SHN_UNDEF
10981 && isym->st_shndx < SHN_LORESERVE
10982 && isec->output_section == NULL
10983 && flinfo->info->non_contiguous_regions
10984 && flinfo->info->non_contiguous_regions_warnings)
10985 {
10986 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10987 "discards section `%s' from '%s'\n"),
10988 isec->name, bfd_get_filename (isec->owner));
10989 continue;
10990 }
10991
10992 if (isym->st_shndx != SHN_UNDEF
10993 && isym->st_shndx < SHN_LORESERVE
10994 && bfd_section_removed_from_list (output_bfd,
10995 isec->output_section))
10996 continue;
10997
10998 /* Get the name of the symbol. */
10999 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
11000 isym->st_name);
11001 if (name == NULL)
11002 return false;
11003
11004 /* See if we are discarding symbols with this name. */
11005 if ((flinfo->info->strip == strip_some
11006 && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false)
11007 == NULL))
11008 || (((flinfo->info->discard == discard_sec_merge
11009 && (isec->flags & SEC_MERGE)
11010 && !bfd_link_relocatable (flinfo->info))
11011 || flinfo->info->discard == discard_l)
11012 && bfd_is_local_label_name (input_bfd, name)))
11013 continue;
11014
11015 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
11016 {
11017 if (input_bfd->lto_output)
11018 /* -flto puts a temp file name here. This means builds
11019 are not reproducible. Discard the symbol. */
11020 continue;
11021 have_file_sym = true;
11022 flinfo->filesym_count += 1;
11023 }
11024 if (!have_file_sym)
11025 {
11026 /* In the absence of debug info, bfd_find_nearest_line uses
11027 FILE symbols to determine the source file for local
11028 function symbols. Provide a FILE symbol here if input
11029 files lack such, so that their symbols won't be
11030 associated with a previous input file. It's not the
11031 source file, but the best we can do. */
11032 const char *filename;
11033 have_file_sym = true;
11034 flinfo->filesym_count += 1;
11035 memset (&osym, 0, sizeof (osym));
11036 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11037 osym.st_shndx = SHN_ABS;
11038 if (input_bfd->lto_output)
11039 filename = NULL;
11040 else
11041 filename = lbasename (bfd_get_filename (input_bfd));
11042 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
11043 bfd_abs_section_ptr, NULL))
11044 return false;
11045 }
11046
11047 osym = *isym;
11048
11049 /* Adjust the section index for the output file. */
11050 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11051 isec->output_section);
11052 if (osym.st_shndx == SHN_BAD)
11053 return false;
11054
11055 /* ELF symbols in relocatable files are section relative, but
11056 in executable files they are virtual addresses. Note that
11057 this code assumes that all ELF sections have an associated
11058 BFD section with a reasonable value for output_offset; below
11059 we assume that they also have a reasonable value for
11060 output_section. Any special sections must be set up to meet
11061 these requirements. */
11062 osym.st_value += isec->output_offset;
11063 if (!bfd_link_relocatable (flinfo->info))
11064 {
11065 osym.st_value += isec->output_section->vma;
11066 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
11067 {
11068 /* STT_TLS symbols are relative to PT_TLS segment base. */
11069 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
11070 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
11071 else
11072 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11073 STT_NOTYPE);
11074 }
11075 }
11076
11077 indx = bfd_get_symcount (output_bfd);
11078 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11079 if (ret == 0)
11080 return false;
11081 else if (ret == 1)
11082 *pindex = indx;
11083 }
11084
11085 if (bed->s->arch_size == 32)
11086 {
11087 r_type_mask = 0xff;
11088 r_sym_shift = 8;
11089 address_size = 4;
11090 }
11091 else
11092 {
11093 r_type_mask = 0xffffffff;
11094 r_sym_shift = 32;
11095 address_size = 8;
11096 }
11097
11098 /* Relocate the contents of each section. */
11099 sym_hashes = elf_sym_hashes (input_bfd);
11100 for (o = input_bfd->sections; o != NULL; o = o->next)
11101 {
11102 bfd_byte *contents;
11103
11104 if (! o->linker_mark)
11105 {
11106 /* This section was omitted from the link. */
11107 continue;
11108 }
11109
11110 if (!flinfo->info->resolve_section_groups
11111 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11112 {
11113 /* Deal with the group signature symbol. */
11114 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11115 unsigned long symndx = sec_data->this_hdr.sh_info;
11116 asection *osec = o->output_section;
11117
11118 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11119 if (symndx >= locsymcount
11120 || (elf_bad_symtab (input_bfd)
11121 && flinfo->sections[symndx] == NULL))
11122 {
11123 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11124 while (h->root.type == bfd_link_hash_indirect
11125 || h->root.type == bfd_link_hash_warning)
11126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11127 /* Arrange for symbol to be output. */
11128 h->indx = -2;
11129 elf_section_data (osec)->this_hdr.sh_info = -2;
11130 }
11131 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11132 {
11133 /* We'll use the output section target_index. */
11134 asection *sec = flinfo->sections[symndx]->output_section;
11135 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11136 }
11137 else
11138 {
11139 if (flinfo->indices[symndx] == -1)
11140 {
11141 /* Otherwise output the local symbol now. */
11142 Elf_Internal_Sym sym = isymbuf[symndx];
11143 asection *sec = flinfo->sections[symndx]->output_section;
11144 const char *name;
11145 long indx;
11146 int ret;
11147
11148 name = bfd_elf_string_from_elf_section (input_bfd,
11149 symtab_hdr->sh_link,
11150 sym.st_name);
11151 if (name == NULL)
11152 return false;
11153
11154 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11155 sec);
11156 if (sym.st_shndx == SHN_BAD)
11157 return false;
11158
11159 sym.st_value += o->output_offset;
11160
11161 indx = bfd_get_symcount (output_bfd);
11162 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11163 NULL);
11164 if (ret == 0)
11165 return false;
11166 else if (ret == 1)
11167 flinfo->indices[symndx] = indx;
11168 else
11169 abort ();
11170 }
11171 elf_section_data (osec)->this_hdr.sh_info
11172 = flinfo->indices[symndx];
11173 }
11174 }
11175
11176 if ((o->flags & SEC_HAS_CONTENTS) == 0
11177 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11178 continue;
11179
11180 if ((o->flags & SEC_LINKER_CREATED) != 0)
11181 {
11182 /* Section was created by _bfd_elf_link_create_dynamic_sections
11183 or somesuch. */
11184 continue;
11185 }
11186
11187 /* Get the contents of the section. They have been cached by a
11188 relaxation routine. Note that o is a section in an input
11189 file, so the contents field will not have been set by any of
11190 the routines which work on output files. */
11191 if (elf_section_data (o)->this_hdr.contents != NULL)
11192 {
11193 contents = elf_section_data (o)->this_hdr.contents;
11194 if (bed->caches_rawsize
11195 && o->rawsize != 0
11196 && o->rawsize < o->size)
11197 {
11198 memcpy (flinfo->contents, contents, o->rawsize);
11199 contents = flinfo->contents;
11200 }
11201 }
11202 else
11203 {
11204 contents = flinfo->contents;
11205 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11206 return false;
11207 }
11208
11209 if ((o->flags & SEC_RELOC) != 0)
11210 {
11211 Elf_Internal_Rela *internal_relocs;
11212 Elf_Internal_Rela *rel, *relend;
11213 int action_discarded;
11214 int ret;
11215
11216 /* Get the swapped relocs. */
11217 internal_relocs
11218 = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o,
11219 flinfo->external_relocs,
11220 flinfo->internal_relocs,
11221 false);
11222 if (internal_relocs == NULL
11223 && o->reloc_count > 0)
11224 return false;
11225
11226 /* We need to reverse-copy input .ctors/.dtors sections if
11227 they are placed in .init_array/.finit_array for output. */
11228 if (o->size > address_size
11229 && ((startswith (o->name, ".ctors")
11230 && strcmp (o->output_section->name,
11231 ".init_array") == 0)
11232 || (startswith (o->name, ".dtors")
11233 && strcmp (o->output_section->name,
11234 ".fini_array") == 0))
11235 && (o->name[6] == 0 || o->name[6] == '.'))
11236 {
11237 if (o->size * bed->s->int_rels_per_ext_rel
11238 != o->reloc_count * address_size)
11239 {
11240 _bfd_error_handler
11241 /* xgettext:c-format */
11242 (_("error: %pB: size of section %pA is not "
11243 "multiple of address size"),
11244 input_bfd, o);
11245 bfd_set_error (bfd_error_bad_value);
11246 return false;
11247 }
11248 o->flags |= SEC_ELF_REVERSE_COPY;
11249 }
11250
11251 action_discarded = -1;
11252 if (!elf_section_ignore_discarded_relocs (o))
11253 action_discarded = (*bed->action_discarded) (o);
11254
11255 /* Run through the relocs evaluating complex reloc symbols and
11256 looking for relocs against symbols from discarded sections
11257 or section symbols from removed link-once sections.
11258 Complain about relocs against discarded sections. Zero
11259 relocs against removed link-once sections. */
11260
11261 rel = internal_relocs;
11262 relend = rel + o->reloc_count;
11263 for ( ; rel < relend; rel++)
11264 {
11265 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11266 unsigned int s_type;
11267 asection **ps, *sec;
11268 struct elf_link_hash_entry *h = NULL;
11269 const char *sym_name;
11270
11271 if (r_symndx == STN_UNDEF)
11272 continue;
11273
11274 if (r_symndx >= locsymcount
11275 || (elf_bad_symtab (input_bfd)
11276 && flinfo->sections[r_symndx] == NULL))
11277 {
11278 h = sym_hashes[r_symndx - extsymoff];
11279
11280 /* Badly formatted input files can contain relocs that
11281 reference non-existant symbols. Check here so that
11282 we do not seg fault. */
11283 if (h == NULL)
11284 {
11285 _bfd_error_handler
11286 /* xgettext:c-format */
11287 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11288 "that references a non-existent global symbol"),
11289 input_bfd, (uint64_t) rel->r_info, o);
11290 bfd_set_error (bfd_error_bad_value);
11291 return false;
11292 }
11293
11294 while (h->root.type == bfd_link_hash_indirect
11295 || h->root.type == bfd_link_hash_warning)
11296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11297
11298 s_type = h->type;
11299
11300 /* If a plugin symbol is referenced from a non-IR file,
11301 mark the symbol as undefined. Note that the
11302 linker may attach linker created dynamic sections
11303 to the plugin bfd. Symbols defined in linker
11304 created sections are not plugin symbols. */
11305 if ((h->root.non_ir_ref_regular
11306 || h->root.non_ir_ref_dynamic)
11307 && (h->root.type == bfd_link_hash_defined
11308 || h->root.type == bfd_link_hash_defweak)
11309 && (h->root.u.def.section->flags
11310 & SEC_LINKER_CREATED) == 0
11311 && h->root.u.def.section->owner != NULL
11312 && (h->root.u.def.section->owner->flags
11313 & BFD_PLUGIN) != 0)
11314 {
11315 h->root.type = bfd_link_hash_undefined;
11316 h->root.u.undef.abfd = h->root.u.def.section->owner;
11317 }
11318
11319 ps = NULL;
11320 if (h->root.type == bfd_link_hash_defined
11321 || h->root.type == bfd_link_hash_defweak)
11322 ps = &h->root.u.def.section;
11323
11324 sym_name = h->root.root.string;
11325 }
11326 else
11327 {
11328 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11329
11330 s_type = ELF_ST_TYPE (sym->st_info);
11331 ps = &flinfo->sections[r_symndx];
11332 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11333 sym, *ps);
11334 }
11335
11336 if ((s_type == STT_RELC || s_type == STT_SRELC)
11337 && !bfd_link_relocatable (flinfo->info))
11338 {
11339 bfd_vma val;
11340 bfd_vma dot = (rel->r_offset
11341 + o->output_offset + o->output_section->vma);
11342 #ifdef DEBUG
11343 printf ("Encountered a complex symbol!");
11344 printf (" (input_bfd %s, section %s, reloc %ld\n",
11345 bfd_get_filename (input_bfd), o->name,
11346 (long) (rel - internal_relocs));
11347 printf (" symbol: idx %8.8lx, name %s\n",
11348 r_symndx, sym_name);
11349 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11350 (unsigned long) rel->r_info,
11351 (unsigned long) rel->r_offset);
11352 #endif
11353 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11354 isymbuf, locsymcount, s_type == STT_SRELC))
11355 return false;
11356
11357 /* Symbol evaluated OK. Update to absolute value. */
11358 set_symbol_value (input_bfd, isymbuf, locsymcount,
11359 r_symndx, val);
11360 continue;
11361 }
11362
11363 if (action_discarded != -1 && ps != NULL)
11364 {
11365 /* Complain if the definition comes from a
11366 discarded section. */
11367 if ((sec = *ps) != NULL && discarded_section (sec))
11368 {
11369 BFD_ASSERT (r_symndx != STN_UNDEF);
11370 if (action_discarded & COMPLAIN)
11371 (*flinfo->info->callbacks->einfo)
11372 /* xgettext:c-format */
11373 (_("%X`%s' referenced in section `%pA' of %pB: "
11374 "defined in discarded section `%pA' of %pB\n"),
11375 sym_name, o, input_bfd, sec, sec->owner);
11376
11377 /* Try to do the best we can to support buggy old
11378 versions of gcc. Pretend that the symbol is
11379 really defined in the kept linkonce section.
11380 FIXME: This is quite broken. Modifying the
11381 symbol here means we will be changing all later
11382 uses of the symbol, not just in this section. */
11383 if (action_discarded & PRETEND)
11384 {
11385 asection *kept;
11386
11387 kept = _bfd_elf_check_kept_section (sec,
11388 flinfo->info);
11389 if (kept != NULL)
11390 {
11391 *ps = kept;
11392 continue;
11393 }
11394 }
11395 }
11396 }
11397 }
11398
11399 /* Relocate the section by invoking a back end routine.
11400
11401 The back end routine is responsible for adjusting the
11402 section contents as necessary, and (if using Rela relocs
11403 and generating a relocatable output file) adjusting the
11404 reloc addend as necessary.
11405
11406 The back end routine does not have to worry about setting
11407 the reloc address or the reloc symbol index.
11408
11409 The back end routine is given a pointer to the swapped in
11410 internal symbols, and can access the hash table entries
11411 for the external symbols via elf_sym_hashes (input_bfd).
11412
11413 When generating relocatable output, the back end routine
11414 must handle STB_LOCAL/STT_SECTION symbols specially. The
11415 output symbol is going to be a section symbol
11416 corresponding to the output section, which will require
11417 the addend to be adjusted. */
11418
11419 ret = (*relocate_section) (output_bfd, flinfo->info,
11420 input_bfd, o, contents,
11421 internal_relocs,
11422 isymbuf,
11423 flinfo->sections);
11424 if (!ret)
11425 return false;
11426
11427 if (ret == 2
11428 || bfd_link_relocatable (flinfo->info)
11429 || flinfo->info->emitrelocations)
11430 {
11431 Elf_Internal_Rela *irela;
11432 Elf_Internal_Rela *irelaend, *irelamid;
11433 bfd_vma last_offset;
11434 struct elf_link_hash_entry **rel_hash;
11435 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11436 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11437 unsigned int next_erel;
11438 bool rela_normal;
11439 struct bfd_elf_section_data *esdi, *esdo;
11440
11441 esdi = elf_section_data (o);
11442 esdo = elf_section_data (o->output_section);
11443 rela_normal = false;
11444
11445 /* Adjust the reloc addresses and symbol indices. */
11446
11447 irela = internal_relocs;
11448 irelaend = irela + o->reloc_count;
11449 rel_hash = esdo->rel.hashes + esdo->rel.count;
11450 /* We start processing the REL relocs, if any. When we reach
11451 IRELAMID in the loop, we switch to the RELA relocs. */
11452 irelamid = irela;
11453 if (esdi->rel.hdr != NULL)
11454 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11455 * bed->s->int_rels_per_ext_rel);
11456 rel_hash_list = rel_hash;
11457 rela_hash_list = NULL;
11458 last_offset = o->output_offset;
11459 if (!bfd_link_relocatable (flinfo->info))
11460 last_offset += o->output_section->vma;
11461 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11462 {
11463 unsigned long r_symndx;
11464 asection *sec;
11465 Elf_Internal_Sym sym;
11466
11467 if (next_erel == bed->s->int_rels_per_ext_rel)
11468 {
11469 rel_hash++;
11470 next_erel = 0;
11471 }
11472
11473 if (irela == irelamid)
11474 {
11475 rel_hash = esdo->rela.hashes + esdo->rela.count;
11476 rela_hash_list = rel_hash;
11477 rela_normal = bed->rela_normal;
11478 }
11479
11480 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11481 flinfo->info, o,
11482 irela->r_offset);
11483 if (irela->r_offset >= (bfd_vma) -2)
11484 {
11485 /* This is a reloc for a deleted entry or somesuch.
11486 Turn it into an R_*_NONE reloc, at the same
11487 offset as the last reloc. elf_eh_frame.c and
11488 bfd_elf_discard_info rely on reloc offsets
11489 being ordered. */
11490 irela->r_offset = last_offset;
11491 irela->r_info = 0;
11492 irela->r_addend = 0;
11493 continue;
11494 }
11495
11496 irela->r_offset += o->output_offset;
11497
11498 /* Relocs in an executable have to be virtual addresses. */
11499 if (!bfd_link_relocatable (flinfo->info))
11500 irela->r_offset += o->output_section->vma;
11501
11502 last_offset = irela->r_offset;
11503
11504 r_symndx = irela->r_info >> r_sym_shift;
11505 if (r_symndx == STN_UNDEF)
11506 continue;
11507
11508 if (r_symndx >= locsymcount
11509 || (elf_bad_symtab (input_bfd)
11510 && flinfo->sections[r_symndx] == NULL))
11511 {
11512 struct elf_link_hash_entry *rh;
11513 unsigned long indx;
11514
11515 /* This is a reloc against a global symbol. We
11516 have not yet output all the local symbols, so
11517 we do not know the symbol index of any global
11518 symbol. We set the rel_hash entry for this
11519 reloc to point to the global hash table entry
11520 for this symbol. The symbol index is then
11521 set at the end of bfd_elf_final_link. */
11522 indx = r_symndx - extsymoff;
11523 rh = elf_sym_hashes (input_bfd)[indx];
11524 while (rh->root.type == bfd_link_hash_indirect
11525 || rh->root.type == bfd_link_hash_warning)
11526 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11527
11528 /* Setting the index to -2 tells
11529 elf_link_output_extsym that this symbol is
11530 used by a reloc. */
11531 BFD_ASSERT (rh->indx < 0);
11532 rh->indx = -2;
11533 *rel_hash = rh;
11534
11535 continue;
11536 }
11537
11538 /* This is a reloc against a local symbol. */
11539
11540 *rel_hash = NULL;
11541 sym = isymbuf[r_symndx];
11542 sec = flinfo->sections[r_symndx];
11543 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11544 {
11545 /* I suppose the backend ought to fill in the
11546 section of any STT_SECTION symbol against a
11547 processor specific section. */
11548 r_symndx = STN_UNDEF;
11549 if (bfd_is_abs_section (sec))
11550 ;
11551 else if (sec == NULL || sec->owner == NULL)
11552 {
11553 bfd_set_error (bfd_error_bad_value);
11554 return false;
11555 }
11556 else
11557 {
11558 asection *osec = sec->output_section;
11559
11560 /* If we have discarded a section, the output
11561 section will be the absolute section. In
11562 case of discarded SEC_MERGE sections, use
11563 the kept section. relocate_section should
11564 have already handled discarded linkonce
11565 sections. */
11566 if (bfd_is_abs_section (osec)
11567 && sec->kept_section != NULL
11568 && sec->kept_section->output_section != NULL)
11569 {
11570 osec = sec->kept_section->output_section;
11571 irela->r_addend -= osec->vma;
11572 }
11573
11574 if (!bfd_is_abs_section (osec))
11575 {
11576 r_symndx = osec->target_index;
11577 if (r_symndx == STN_UNDEF)
11578 {
11579 irela->r_addend += osec->vma;
11580 osec = _bfd_nearby_section (output_bfd, osec,
11581 osec->vma);
11582 irela->r_addend -= osec->vma;
11583 r_symndx = osec->target_index;
11584 }
11585 }
11586 }
11587
11588 /* Adjust the addend according to where the
11589 section winds up in the output section. */
11590 if (rela_normal)
11591 irela->r_addend += sec->output_offset;
11592 }
11593 else
11594 {
11595 if (flinfo->indices[r_symndx] == -1)
11596 {
11597 unsigned long shlink;
11598 const char *name;
11599 asection *osec;
11600 long indx;
11601
11602 if (flinfo->info->strip == strip_all)
11603 {
11604 /* You can't do ld -r -s. */
11605 bfd_set_error (bfd_error_invalid_operation);
11606 return false;
11607 }
11608
11609 /* This symbol was skipped earlier, but
11610 since it is needed by a reloc, we
11611 must output it now. */
11612 shlink = symtab_hdr->sh_link;
11613 name = (bfd_elf_string_from_elf_section
11614 (input_bfd, shlink, sym.st_name));
11615 if (name == NULL)
11616 return false;
11617
11618 osec = sec->output_section;
11619 sym.st_shndx =
11620 _bfd_elf_section_from_bfd_section (output_bfd,
11621 osec);
11622 if (sym.st_shndx == SHN_BAD)
11623 return false;
11624
11625 sym.st_value += sec->output_offset;
11626 if (!bfd_link_relocatable (flinfo->info))
11627 {
11628 sym.st_value += osec->vma;
11629 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11630 {
11631 struct elf_link_hash_table *htab
11632 = elf_hash_table (flinfo->info);
11633
11634 /* STT_TLS symbols are relative to PT_TLS
11635 segment base. */
11636 if (htab->tls_sec != NULL)
11637 sym.st_value -= htab->tls_sec->vma;
11638 else
11639 sym.st_info
11640 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11641 STT_NOTYPE);
11642 }
11643 }
11644
11645 indx = bfd_get_symcount (output_bfd);
11646 ret = elf_link_output_symstrtab (flinfo, name,
11647 &sym, sec,
11648 NULL);
11649 if (ret == 0)
11650 return false;
11651 else if (ret == 1)
11652 flinfo->indices[r_symndx] = indx;
11653 else
11654 abort ();
11655 }
11656
11657 r_symndx = flinfo->indices[r_symndx];
11658 }
11659
11660 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11661 | (irela->r_info & r_type_mask));
11662 }
11663
11664 /* Swap out the relocs. */
11665 input_rel_hdr = esdi->rel.hdr;
11666 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11667 {
11668 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11669 input_rel_hdr,
11670 internal_relocs,
11671 rel_hash_list))
11672 return false;
11673 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11674 * bed->s->int_rels_per_ext_rel);
11675 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11676 }
11677
11678 input_rela_hdr = esdi->rela.hdr;
11679 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11680 {
11681 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11682 input_rela_hdr,
11683 internal_relocs,
11684 rela_hash_list))
11685 return false;
11686 }
11687 }
11688 }
11689
11690 /* Write out the modified section contents. */
11691 if (bed->elf_backend_write_section
11692 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11693 contents))
11694 {
11695 /* Section written out. */
11696 }
11697 else switch (o->sec_info_type)
11698 {
11699 case SEC_INFO_TYPE_STABS:
11700 if (! (_bfd_write_section_stabs
11701 (output_bfd,
11702 &elf_hash_table (flinfo->info)->stab_info,
11703 o, &elf_section_data (o)->sec_info, contents)))
11704 return false;
11705 break;
11706 case SEC_INFO_TYPE_MERGE:
11707 if (! _bfd_write_merged_section (output_bfd, o,
11708 elf_section_data (o)->sec_info))
11709 return false;
11710 break;
11711 case SEC_INFO_TYPE_EH_FRAME:
11712 {
11713 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11714 o, contents))
11715 return false;
11716 }
11717 break;
11718 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11719 {
11720 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11721 flinfo->info,
11722 o, contents))
11723 return false;
11724 }
11725 break;
11726 default:
11727 {
11728 if (! (o->flags & SEC_EXCLUDE))
11729 {
11730 file_ptr offset = (file_ptr) o->output_offset;
11731 bfd_size_type todo = o->size;
11732
11733 offset *= bfd_octets_per_byte (output_bfd, o);
11734
11735 if ((o->flags & SEC_ELF_REVERSE_COPY))
11736 {
11737 /* Reverse-copy input section to output. */
11738 do
11739 {
11740 todo -= address_size;
11741 if (! bfd_set_section_contents (output_bfd,
11742 o->output_section,
11743 contents + todo,
11744 offset,
11745 address_size))
11746 return false;
11747 if (todo == 0)
11748 break;
11749 offset += address_size;
11750 }
11751 while (1);
11752 }
11753 else if (! bfd_set_section_contents (output_bfd,
11754 o->output_section,
11755 contents,
11756 offset, todo))
11757 return false;
11758 }
11759 }
11760 break;
11761 }
11762 }
11763
11764 return true;
11765 }
11766
11767 /* Generate a reloc when linking an ELF file. This is a reloc
11768 requested by the linker, and does not come from any input file. This
11769 is used to build constructor and destructor tables when linking
11770 with -Ur. */
11771
11772 static bool
11773 elf_reloc_link_order (bfd *output_bfd,
11774 struct bfd_link_info *info,
11775 asection *output_section,
11776 struct bfd_link_order *link_order)
11777 {
11778 reloc_howto_type *howto;
11779 long indx;
11780 bfd_vma offset;
11781 bfd_vma addend;
11782 struct bfd_elf_section_reloc_data *reldata;
11783 struct elf_link_hash_entry **rel_hash_ptr;
11784 Elf_Internal_Shdr *rel_hdr;
11785 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11786 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11787 bfd_byte *erel;
11788 unsigned int i;
11789 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11790
11791 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11792 if (howto == NULL)
11793 {
11794 bfd_set_error (bfd_error_bad_value);
11795 return false;
11796 }
11797
11798 addend = link_order->u.reloc.p->addend;
11799
11800 if (esdo->rel.hdr)
11801 reldata = &esdo->rel;
11802 else if (esdo->rela.hdr)
11803 reldata = &esdo->rela;
11804 else
11805 {
11806 reldata = NULL;
11807 BFD_ASSERT (0);
11808 }
11809
11810 /* Figure out the symbol index. */
11811 rel_hash_ptr = reldata->hashes + reldata->count;
11812 if (link_order->type == bfd_section_reloc_link_order)
11813 {
11814 indx = link_order->u.reloc.p->u.section->target_index;
11815 BFD_ASSERT (indx != 0);
11816 *rel_hash_ptr = NULL;
11817 }
11818 else
11819 {
11820 struct elf_link_hash_entry *h;
11821
11822 /* Treat a reloc against a defined symbol as though it were
11823 actually against the section. */
11824 h = ((struct elf_link_hash_entry *)
11825 bfd_wrapped_link_hash_lookup (output_bfd, info,
11826 link_order->u.reloc.p->u.name,
11827 false, false, true));
11828 if (h != NULL
11829 && (h->root.type == bfd_link_hash_defined
11830 || h->root.type == bfd_link_hash_defweak))
11831 {
11832 asection *section;
11833
11834 section = h->root.u.def.section;
11835 indx = section->output_section->target_index;
11836 *rel_hash_ptr = NULL;
11837 /* It seems that we ought to add the symbol value to the
11838 addend here, but in practice it has already been added
11839 because it was passed to constructor_callback. */
11840 addend += section->output_section->vma + section->output_offset;
11841 }
11842 else if (h != NULL)
11843 {
11844 /* Setting the index to -2 tells elf_link_output_extsym that
11845 this symbol is used by a reloc. */
11846 h->indx = -2;
11847 *rel_hash_ptr = h;
11848 indx = 0;
11849 }
11850 else
11851 {
11852 (*info->callbacks->unattached_reloc)
11853 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11854 indx = 0;
11855 }
11856 }
11857
11858 /* If this is an inplace reloc, we must write the addend into the
11859 object file. */
11860 if (howto->partial_inplace && addend != 0)
11861 {
11862 bfd_size_type size;
11863 bfd_reloc_status_type rstat;
11864 bfd_byte *buf;
11865 bool ok;
11866 const char *sym_name;
11867 bfd_size_type octets;
11868
11869 size = (bfd_size_type) bfd_get_reloc_size (howto);
11870 buf = (bfd_byte *) bfd_zmalloc (size);
11871 if (buf == NULL && size != 0)
11872 return false;
11873 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11874 switch (rstat)
11875 {
11876 case bfd_reloc_ok:
11877 break;
11878
11879 default:
11880 case bfd_reloc_outofrange:
11881 abort ();
11882
11883 case bfd_reloc_overflow:
11884 if (link_order->type == bfd_section_reloc_link_order)
11885 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11886 else
11887 sym_name = link_order->u.reloc.p->u.name;
11888 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11889 howto->name, addend, NULL, NULL,
11890 (bfd_vma) 0);
11891 break;
11892 }
11893
11894 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11895 output_section);
11896 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11897 octets, size);
11898 free (buf);
11899 if (! ok)
11900 return false;
11901 }
11902
11903 /* The address of a reloc is relative to the section in a
11904 relocatable file, and is a virtual address in an executable
11905 file. */
11906 offset = link_order->offset;
11907 if (! bfd_link_relocatable (info))
11908 offset += output_section->vma;
11909
11910 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11911 {
11912 irel[i].r_offset = offset;
11913 irel[i].r_info = 0;
11914 irel[i].r_addend = 0;
11915 }
11916 if (bed->s->arch_size == 32)
11917 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11918 else
11919 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11920
11921 rel_hdr = reldata->hdr;
11922 erel = rel_hdr->contents;
11923 if (rel_hdr->sh_type == SHT_REL)
11924 {
11925 erel += reldata->count * bed->s->sizeof_rel;
11926 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11927 }
11928 else
11929 {
11930 irel[0].r_addend = addend;
11931 erel += reldata->count * bed->s->sizeof_rela;
11932 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11933 }
11934
11935 ++reldata->count;
11936
11937 return true;
11938 }
11939
11940 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11941 Returns TRUE upon success, FALSE otherwise. */
11942
11943 static bool
11944 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11945 {
11946 bool ret = false;
11947 bfd *implib_bfd;
11948 const struct elf_backend_data *bed;
11949 flagword flags;
11950 enum bfd_architecture arch;
11951 unsigned int mach;
11952 asymbol **sympp = NULL;
11953 long symsize;
11954 long symcount;
11955 long src_count;
11956 elf_symbol_type *osymbuf;
11957 size_t amt;
11958
11959 implib_bfd = info->out_implib_bfd;
11960 bed = get_elf_backend_data (abfd);
11961
11962 if (!bfd_set_format (implib_bfd, bfd_object))
11963 return false;
11964
11965 /* Use flag from executable but make it a relocatable object. */
11966 flags = bfd_get_file_flags (abfd);
11967 flags &= ~HAS_RELOC;
11968 if (!bfd_set_start_address (implib_bfd, 0)
11969 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11970 return false;
11971
11972 /* Copy architecture of output file to import library file. */
11973 arch = bfd_get_arch (abfd);
11974 mach = bfd_get_mach (abfd);
11975 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11976 && (abfd->target_defaulted
11977 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11978 return false;
11979
11980 /* Get symbol table size. */
11981 symsize = bfd_get_symtab_upper_bound (abfd);
11982 if (symsize < 0)
11983 return false;
11984
11985 /* Read in the symbol table. */
11986 sympp = (asymbol **) bfd_malloc (symsize);
11987 if (sympp == NULL)
11988 return false;
11989
11990 symcount = bfd_canonicalize_symtab (abfd, sympp);
11991 if (symcount < 0)
11992 goto free_sym_buf;
11993
11994 /* Allow the BFD backend to copy any private header data it
11995 understands from the output BFD to the import library BFD. */
11996 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11997 goto free_sym_buf;
11998
11999 /* Filter symbols to appear in the import library. */
12000 if (bed->elf_backend_filter_implib_symbols)
12001 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
12002 symcount);
12003 else
12004 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
12005 if (symcount == 0)
12006 {
12007 bfd_set_error (bfd_error_no_symbols);
12008 _bfd_error_handler (_("%pB: no symbol found for import library"),
12009 implib_bfd);
12010 goto free_sym_buf;
12011 }
12012
12013
12014 /* Make symbols absolute. */
12015 amt = symcount * sizeof (*osymbuf);
12016 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
12017 if (osymbuf == NULL)
12018 goto free_sym_buf;
12019
12020 for (src_count = 0; src_count < symcount; src_count++)
12021 {
12022 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
12023 sizeof (*osymbuf));
12024 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
12025 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
12026 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
12027 osymbuf[src_count].internal_elf_sym.st_value =
12028 osymbuf[src_count].symbol.value;
12029 sympp[src_count] = &osymbuf[src_count].symbol;
12030 }
12031
12032 bfd_set_symtab (implib_bfd, sympp, symcount);
12033
12034 /* Allow the BFD backend to copy any private data it understands
12035 from the output BFD to the import library BFD. This is done last
12036 to permit the routine to look at the filtered symbol table. */
12037 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
12038 goto free_sym_buf;
12039
12040 if (!bfd_close (implib_bfd))
12041 goto free_sym_buf;
12042
12043 ret = true;
12044
12045 free_sym_buf:
12046 free (sympp);
12047 return ret;
12048 }
12049
12050 static void
12051 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
12052 {
12053 asection *o;
12054
12055 if (flinfo->symstrtab != NULL)
12056 _bfd_elf_strtab_free (flinfo->symstrtab);
12057 free (flinfo->contents);
12058 free (flinfo->external_relocs);
12059 free (flinfo->internal_relocs);
12060 free (flinfo->external_syms);
12061 free (flinfo->locsym_shndx);
12062 free (flinfo->internal_syms);
12063 free (flinfo->indices);
12064 free (flinfo->sections);
12065 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12066 free (flinfo->symshndxbuf);
12067 for (o = obfd->sections; o != NULL; o = o->next)
12068 {
12069 struct bfd_elf_section_data *esdo = elf_section_data (o);
12070 free (esdo->rel.hashes);
12071 free (esdo->rela.hashes);
12072 }
12073 }
12074
12075 /* Do the final step of an ELF link. */
12076
12077 bool
12078 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12079 {
12080 bool dynamic;
12081 bool emit_relocs;
12082 bfd *dynobj;
12083 struct elf_final_link_info flinfo;
12084 asection *o;
12085 struct bfd_link_order *p;
12086 bfd *sub;
12087 bfd_size_type max_contents_size;
12088 bfd_size_type max_external_reloc_size;
12089 bfd_size_type max_internal_reloc_count;
12090 bfd_size_type max_sym_count;
12091 bfd_size_type max_sym_shndx_count;
12092 Elf_Internal_Sym elfsym;
12093 unsigned int i;
12094 Elf_Internal_Shdr *symtab_hdr;
12095 Elf_Internal_Shdr *symtab_shndx_hdr;
12096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12097 struct elf_outext_info eoinfo;
12098 bool merged;
12099 size_t relativecount = 0;
12100 asection *reldyn = 0;
12101 bfd_size_type amt;
12102 asection *attr_section = NULL;
12103 bfd_vma attr_size = 0;
12104 const char *std_attrs_section;
12105 struct elf_link_hash_table *htab = elf_hash_table (info);
12106 bool sections_removed;
12107 bool ret;
12108
12109 if (!is_elf_hash_table (&htab->root))
12110 return false;
12111
12112 if (bfd_link_pic (info))
12113 abfd->flags |= DYNAMIC;
12114
12115 dynamic = htab->dynamic_sections_created;
12116 dynobj = htab->dynobj;
12117
12118 emit_relocs = (bfd_link_relocatable (info)
12119 || info->emitrelocations);
12120
12121 memset (&flinfo, 0, sizeof (flinfo));
12122 flinfo.info = info;
12123 flinfo.output_bfd = abfd;
12124 flinfo.symstrtab = _bfd_elf_strtab_init ();
12125 if (flinfo.symstrtab == NULL)
12126 return false;
12127
12128 if (! dynamic)
12129 {
12130 flinfo.hash_sec = NULL;
12131 flinfo.symver_sec = NULL;
12132 }
12133 else
12134 {
12135 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12136 /* Note that dynsym_sec can be NULL (on VMS). */
12137 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12138 /* Note that it is OK if symver_sec is NULL. */
12139 }
12140
12141 if (info->unique_symbol
12142 && !bfd_hash_table_init (&flinfo.local_hash_table,
12143 local_hash_newfunc,
12144 sizeof (struct local_hash_entry)))
12145 return false;
12146
12147 /* The object attributes have been merged. Remove the input
12148 sections from the link, and set the contents of the output
12149 section. */
12150 sections_removed = false;
12151 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12152 for (o = abfd->sections; o != NULL; o = o->next)
12153 {
12154 bool remove_section = false;
12155
12156 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12157 || strcmp (o->name, ".gnu.attributes") == 0)
12158 {
12159 for (p = o->map_head.link_order; p != NULL; p = p->next)
12160 {
12161 asection *input_section;
12162
12163 if (p->type != bfd_indirect_link_order)
12164 continue;
12165 input_section = p->u.indirect.section;
12166 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12167 elf_link_input_bfd ignores this section. */
12168 input_section->flags &= ~SEC_HAS_CONTENTS;
12169 }
12170
12171 attr_size = bfd_elf_obj_attr_size (abfd);
12172 bfd_set_section_size (o, attr_size);
12173 /* Skip this section later on. */
12174 o->map_head.link_order = NULL;
12175 if (attr_size)
12176 attr_section = o;
12177 else
12178 remove_section = true;
12179 }
12180 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12181 {
12182 /* Remove empty group section from linker output. */
12183 remove_section = true;
12184 }
12185 if (remove_section)
12186 {
12187 o->flags |= SEC_EXCLUDE;
12188 bfd_section_list_remove (abfd, o);
12189 abfd->section_count--;
12190 sections_removed = true;
12191 }
12192 }
12193 if (sections_removed)
12194 _bfd_fix_excluded_sec_syms (abfd, info);
12195
12196 /* Count up the number of relocations we will output for each output
12197 section, so that we know the sizes of the reloc sections. We
12198 also figure out some maximum sizes. */
12199 max_contents_size = 0;
12200 max_external_reloc_size = 0;
12201 max_internal_reloc_count = 0;
12202 max_sym_count = 0;
12203 max_sym_shndx_count = 0;
12204 merged = false;
12205 for (o = abfd->sections; o != NULL; o = o->next)
12206 {
12207 struct bfd_elf_section_data *esdo = elf_section_data (o);
12208 o->reloc_count = 0;
12209
12210 for (p = o->map_head.link_order; p != NULL; p = p->next)
12211 {
12212 unsigned int reloc_count = 0;
12213 unsigned int additional_reloc_count = 0;
12214 struct bfd_elf_section_data *esdi = NULL;
12215
12216 if (p->type == bfd_section_reloc_link_order
12217 || p->type == bfd_symbol_reloc_link_order)
12218 reloc_count = 1;
12219 else if (p->type == bfd_indirect_link_order)
12220 {
12221 asection *sec;
12222
12223 sec = p->u.indirect.section;
12224
12225 /* Mark all sections which are to be included in the
12226 link. This will normally be every section. We need
12227 to do this so that we can identify any sections which
12228 the linker has decided to not include. */
12229 sec->linker_mark = true;
12230
12231 if (sec->flags & SEC_MERGE)
12232 merged = true;
12233
12234 if (sec->rawsize > max_contents_size)
12235 max_contents_size = sec->rawsize;
12236 if (sec->size > max_contents_size)
12237 max_contents_size = sec->size;
12238
12239 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12240 && (sec->owner->flags & DYNAMIC) == 0)
12241 {
12242 size_t sym_count;
12243
12244 /* We are interested in just local symbols, not all
12245 symbols. */
12246 if (elf_bad_symtab (sec->owner))
12247 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12248 / bed->s->sizeof_sym);
12249 else
12250 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12251
12252 if (sym_count > max_sym_count)
12253 max_sym_count = sym_count;
12254
12255 if (sym_count > max_sym_shndx_count
12256 && elf_symtab_shndx_list (sec->owner) != NULL)
12257 max_sym_shndx_count = sym_count;
12258
12259 if (esdo->this_hdr.sh_type == SHT_REL
12260 || esdo->this_hdr.sh_type == SHT_RELA)
12261 /* Some backends use reloc_count in relocation sections
12262 to count particular types of relocs. Of course,
12263 reloc sections themselves can't have relocations. */
12264 ;
12265 else if (emit_relocs)
12266 {
12267 reloc_count = sec->reloc_count;
12268 if (bed->elf_backend_count_additional_relocs)
12269 {
12270 int c;
12271 c = (*bed->elf_backend_count_additional_relocs) (sec);
12272 additional_reloc_count += c;
12273 }
12274 }
12275 else if (bed->elf_backend_count_relocs)
12276 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12277
12278 esdi = elf_section_data (sec);
12279
12280 if ((sec->flags & SEC_RELOC) != 0)
12281 {
12282 size_t ext_size = 0;
12283
12284 if (esdi->rel.hdr != NULL)
12285 ext_size = esdi->rel.hdr->sh_size;
12286 if (esdi->rela.hdr != NULL)
12287 ext_size += esdi->rela.hdr->sh_size;
12288
12289 if (ext_size > max_external_reloc_size)
12290 max_external_reloc_size = ext_size;
12291 if (sec->reloc_count > max_internal_reloc_count)
12292 max_internal_reloc_count = sec->reloc_count;
12293 }
12294 }
12295 }
12296
12297 if (reloc_count == 0)
12298 continue;
12299
12300 reloc_count += additional_reloc_count;
12301 o->reloc_count += reloc_count;
12302
12303 if (p->type == bfd_indirect_link_order && emit_relocs)
12304 {
12305 if (esdi->rel.hdr)
12306 {
12307 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12308 esdo->rel.count += additional_reloc_count;
12309 }
12310 if (esdi->rela.hdr)
12311 {
12312 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12313 esdo->rela.count += additional_reloc_count;
12314 }
12315 }
12316 else
12317 {
12318 if (o->use_rela_p)
12319 esdo->rela.count += reloc_count;
12320 else
12321 esdo->rel.count += reloc_count;
12322 }
12323 }
12324
12325 if (o->reloc_count > 0)
12326 o->flags |= SEC_RELOC;
12327 else
12328 {
12329 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12330 set it (this is probably a bug) and if it is set
12331 assign_section_numbers will create a reloc section. */
12332 o->flags &=~ SEC_RELOC;
12333 }
12334
12335 /* If the SEC_ALLOC flag is not set, force the section VMA to
12336 zero. This is done in elf_fake_sections as well, but forcing
12337 the VMA to 0 here will ensure that relocs against these
12338 sections are handled correctly. */
12339 if ((o->flags & SEC_ALLOC) == 0
12340 && ! o->user_set_vma)
12341 o->vma = 0;
12342 }
12343
12344 if (! bfd_link_relocatable (info) && merged)
12345 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12346
12347 /* Figure out the file positions for everything but the symbol table
12348 and the relocs. We set symcount to force assign_section_numbers
12349 to create a symbol table. */
12350 abfd->symcount = info->strip != strip_all || emit_relocs;
12351 BFD_ASSERT (! abfd->output_has_begun);
12352 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12353 goto error_return;
12354
12355 /* Set sizes, and assign file positions for reloc sections. */
12356 for (o = abfd->sections; o != NULL; o = o->next)
12357 {
12358 struct bfd_elf_section_data *esdo = elf_section_data (o);
12359 if ((o->flags & SEC_RELOC) != 0)
12360 {
12361 if (esdo->rel.hdr
12362 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12363 goto error_return;
12364
12365 if (esdo->rela.hdr
12366 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12367 goto error_return;
12368 }
12369
12370 /* _bfd_elf_compute_section_file_positions makes temporary use
12371 of target_index. Reset it. */
12372 o->target_index = 0;
12373
12374 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12375 to count upwards while actually outputting the relocations. */
12376 esdo->rel.count = 0;
12377 esdo->rela.count = 0;
12378
12379 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12380 && !bfd_section_is_ctf (o))
12381 {
12382 /* Cache the section contents so that they can be compressed
12383 later. Use bfd_malloc since it will be freed by
12384 bfd_compress_section_contents. */
12385 unsigned char *contents = esdo->this_hdr.contents;
12386 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12387 abort ();
12388 contents
12389 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12390 if (contents == NULL)
12391 goto error_return;
12392 esdo->this_hdr.contents = contents;
12393 }
12394 }
12395
12396 /* We have now assigned file positions for all the sections except .symtab,
12397 .strtab, and non-loaded reloc and compressed debugging sections. We start
12398 the .symtab section at the current file position, and write directly to it.
12399 We build the .strtab section in memory. */
12400 abfd->symcount = 0;
12401 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12402 /* sh_name is set in prep_headers. */
12403 symtab_hdr->sh_type = SHT_SYMTAB;
12404 /* sh_flags, sh_addr and sh_size all start off zero. */
12405 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12406 /* sh_link is set in assign_section_numbers. */
12407 /* sh_info is set below. */
12408 /* sh_offset is set just below. */
12409 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12410
12411 if (max_sym_count < 20)
12412 max_sym_count = 20;
12413 htab->strtabsize = max_sym_count;
12414 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12415 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12416 if (htab->strtab == NULL)
12417 goto error_return;
12418 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12419 flinfo.symshndxbuf
12420 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12421 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12422
12423 if (info->strip != strip_all || emit_relocs)
12424 {
12425 file_ptr off = elf_next_file_pos (abfd);
12426
12427 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
12428
12429 /* Note that at this point elf_next_file_pos (abfd) is
12430 incorrect. We do not yet know the size of the .symtab section.
12431 We correct next_file_pos below, after we do know the size. */
12432
12433 /* Start writing out the symbol table. The first symbol is always a
12434 dummy symbol. */
12435 elfsym.st_value = 0;
12436 elfsym.st_size = 0;
12437 elfsym.st_info = 0;
12438 elfsym.st_other = 0;
12439 elfsym.st_shndx = SHN_UNDEF;
12440 elfsym.st_target_internal = 0;
12441 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12442 bfd_und_section_ptr, NULL) != 1)
12443 goto error_return;
12444
12445 /* Output a symbol for each section if asked or they are used for
12446 relocs. These symbols usually have no names. We store the
12447 index of each one in the index field of the section, so that
12448 we can find it again when outputting relocs. */
12449
12450 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12451 {
12452 bool name_local_sections
12453 = (bed->elf_backend_name_local_section_symbols
12454 && bed->elf_backend_name_local_section_symbols (abfd));
12455 const char *name = NULL;
12456
12457 elfsym.st_size = 0;
12458 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12459 elfsym.st_other = 0;
12460 elfsym.st_value = 0;
12461 elfsym.st_target_internal = 0;
12462 for (i = 1; i < elf_numsections (abfd); i++)
12463 {
12464 o = bfd_section_from_elf_index (abfd, i);
12465 if (o != NULL)
12466 {
12467 o->target_index = bfd_get_symcount (abfd);
12468 elfsym.st_shndx = i;
12469 if (!bfd_link_relocatable (info))
12470 elfsym.st_value = o->vma;
12471 if (name_local_sections)
12472 name = o->name;
12473 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12474 NULL) != 1)
12475 goto error_return;
12476 }
12477 }
12478 }
12479 }
12480
12481 /* On some targets like Irix 5 the symbol split between local and global
12482 ones recorded in the sh_info field needs to be done between section
12483 and all other symbols. */
12484 if (bed->elf_backend_elfsym_local_is_section
12485 && bed->elf_backend_elfsym_local_is_section (abfd))
12486 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12487
12488 /* Allocate some memory to hold information read in from the input
12489 files. */
12490 if (max_contents_size != 0)
12491 {
12492 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12493 if (flinfo.contents == NULL)
12494 goto error_return;
12495 }
12496
12497 if (max_external_reloc_size != 0)
12498 {
12499 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12500 if (flinfo.external_relocs == NULL)
12501 goto error_return;
12502 }
12503
12504 if (max_internal_reloc_count != 0)
12505 {
12506 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12507 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12508 if (flinfo.internal_relocs == NULL)
12509 goto error_return;
12510 }
12511
12512 if (max_sym_count != 0)
12513 {
12514 amt = max_sym_count * bed->s->sizeof_sym;
12515 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12516 if (flinfo.external_syms == NULL)
12517 goto error_return;
12518
12519 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12520 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12521 if (flinfo.internal_syms == NULL)
12522 goto error_return;
12523
12524 amt = max_sym_count * sizeof (long);
12525 flinfo.indices = (long int *) bfd_malloc (amt);
12526 if (flinfo.indices == NULL)
12527 goto error_return;
12528
12529 amt = max_sym_count * sizeof (asection *);
12530 flinfo.sections = (asection **) bfd_malloc (amt);
12531 if (flinfo.sections == NULL)
12532 goto error_return;
12533 }
12534
12535 if (max_sym_shndx_count != 0)
12536 {
12537 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12538 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12539 if (flinfo.locsym_shndx == NULL)
12540 goto error_return;
12541 }
12542
12543 if (htab->tls_sec)
12544 {
12545 bfd_vma base, end = 0; /* Both bytes. */
12546 asection *sec;
12547
12548 for (sec = htab->tls_sec;
12549 sec && (sec->flags & SEC_THREAD_LOCAL);
12550 sec = sec->next)
12551 {
12552 bfd_size_type size = sec->size;
12553 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12554
12555 if (size == 0
12556 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12557 {
12558 struct bfd_link_order *ord = sec->map_tail.link_order;
12559
12560 if (ord != NULL)
12561 size = ord->offset * opb + ord->size;
12562 }
12563 end = sec->vma + size / opb;
12564 }
12565 base = htab->tls_sec->vma;
12566 /* Only align end of TLS section if static TLS doesn't have special
12567 alignment requirements. */
12568 if (bed->static_tls_alignment == 1)
12569 end = align_power (end, htab->tls_sec->alignment_power);
12570 htab->tls_size = end - base;
12571 }
12572
12573 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12574 return false;
12575
12576 /* Since ELF permits relocations to be against local symbols, we
12577 must have the local symbols available when we do the relocations.
12578 Since we would rather only read the local symbols once, and we
12579 would rather not keep them in memory, we handle all the
12580 relocations for a single input file at the same time.
12581
12582 Unfortunately, there is no way to know the total number of local
12583 symbols until we have seen all of them, and the local symbol
12584 indices precede the global symbol indices. This means that when
12585 we are generating relocatable output, and we see a reloc against
12586 a global symbol, we can not know the symbol index until we have
12587 finished examining all the local symbols to see which ones we are
12588 going to output. To deal with this, we keep the relocations in
12589 memory, and don't output them until the end of the link. This is
12590 an unfortunate waste of memory, but I don't see a good way around
12591 it. Fortunately, it only happens when performing a relocatable
12592 link, which is not the common case. FIXME: If keep_memory is set
12593 we could write the relocs out and then read them again; I don't
12594 know how bad the memory loss will be. */
12595
12596 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12597 sub->output_has_begun = false;
12598 for (o = abfd->sections; o != NULL; o = o->next)
12599 {
12600 for (p = o->map_head.link_order; p != NULL; p = p->next)
12601 {
12602 if (p->type == bfd_indirect_link_order
12603 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12604 == bfd_target_elf_flavour)
12605 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12606 {
12607 if (! sub->output_has_begun)
12608 {
12609 if (! elf_link_input_bfd (&flinfo, sub))
12610 goto error_return;
12611 sub->output_has_begun = true;
12612 }
12613 }
12614 else if (p->type == bfd_section_reloc_link_order
12615 || p->type == bfd_symbol_reloc_link_order)
12616 {
12617 if (! elf_reloc_link_order (abfd, info, o, p))
12618 goto error_return;
12619 }
12620 else
12621 {
12622 if (! _bfd_default_link_order (abfd, info, o, p))
12623 {
12624 if (p->type == bfd_indirect_link_order
12625 && (bfd_get_flavour (sub)
12626 == bfd_target_elf_flavour)
12627 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12628 != bed->s->elfclass))
12629 {
12630 const char *iclass, *oclass;
12631
12632 switch (bed->s->elfclass)
12633 {
12634 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12635 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12636 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12637 default: abort ();
12638 }
12639
12640 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12641 {
12642 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12643 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12644 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12645 default: abort ();
12646 }
12647
12648 bfd_set_error (bfd_error_wrong_format);
12649 _bfd_error_handler
12650 /* xgettext:c-format */
12651 (_("%pB: file class %s incompatible with %s"),
12652 sub, iclass, oclass);
12653 }
12654
12655 goto error_return;
12656 }
12657 }
12658 }
12659 }
12660
12661 /* Free symbol buffer if needed. */
12662 if (!info->reduce_memory_overheads)
12663 {
12664 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12665 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12666 {
12667 free (elf_tdata (sub)->symbuf);
12668 elf_tdata (sub)->symbuf = NULL;
12669 }
12670 }
12671
12672 ret = true;
12673
12674 /* Output any global symbols that got converted to local in a
12675 version script or due to symbol visibility. We do this in a
12676 separate step since ELF requires all local symbols to appear
12677 prior to any global symbols. FIXME: We should only do this if
12678 some global symbols were, in fact, converted to become local.
12679 FIXME: Will this work correctly with the Irix 5 linker? */
12680 eoinfo.failed = false;
12681 eoinfo.flinfo = &flinfo;
12682 eoinfo.localsyms = true;
12683 eoinfo.file_sym_done = false;
12684 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12685 if (eoinfo.failed)
12686 {
12687 ret = false;
12688 goto return_local_hash_table;
12689 }
12690
12691 /* If backend needs to output some local symbols not present in the hash
12692 table, do it now. */
12693 if (bed->elf_backend_output_arch_local_syms
12694 && (info->strip != strip_all || emit_relocs))
12695 {
12696 if (! ((*bed->elf_backend_output_arch_local_syms)
12697 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12698 {
12699 ret = false;
12700 goto return_local_hash_table;
12701 }
12702 }
12703
12704 /* That wrote out all the local symbols. Finish up the symbol table
12705 with the global symbols. Even if we want to strip everything we
12706 can, we still need to deal with those global symbols that got
12707 converted to local in a version script. */
12708
12709 /* The sh_info field records the index of the first non local symbol. */
12710 if (!symtab_hdr->sh_info)
12711 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12712
12713 if (dynamic
12714 && htab->dynsym != NULL
12715 && htab->dynsym->output_section != bfd_abs_section_ptr)
12716 {
12717 Elf_Internal_Sym sym;
12718 bfd_byte *dynsym = htab->dynsym->contents;
12719
12720 o = htab->dynsym->output_section;
12721 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12722
12723 /* Write out the section symbols for the output sections. */
12724 if (bfd_link_pic (info)
12725 || htab->is_relocatable_executable)
12726 {
12727 asection *s;
12728
12729 sym.st_size = 0;
12730 sym.st_name = 0;
12731 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12732 sym.st_other = 0;
12733 sym.st_target_internal = 0;
12734
12735 for (s = abfd->sections; s != NULL; s = s->next)
12736 {
12737 int indx;
12738 bfd_byte *dest;
12739 long dynindx;
12740
12741 dynindx = elf_section_data (s)->dynindx;
12742 if (dynindx <= 0)
12743 continue;
12744 indx = elf_section_data (s)->this_idx;
12745 BFD_ASSERT (indx > 0);
12746 sym.st_shndx = indx;
12747 if (! check_dynsym (abfd, &sym))
12748 {
12749 ret = false;
12750 goto return_local_hash_table;
12751 }
12752 sym.st_value = s->vma;
12753 dest = dynsym + dynindx * bed->s->sizeof_sym;
12754
12755 /* Inform the linker of the addition of this symbol. */
12756
12757 if (info->callbacks->ctf_new_dynsym)
12758 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12759
12760 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12761 }
12762 }
12763
12764 /* Write out the local dynsyms. */
12765 if (htab->dynlocal)
12766 {
12767 struct elf_link_local_dynamic_entry *e;
12768 for (e = htab->dynlocal; e ; e = e->next)
12769 {
12770 asection *s;
12771 bfd_byte *dest;
12772
12773 /* Copy the internal symbol and turn off visibility.
12774 Note that we saved a word of storage and overwrote
12775 the original st_name with the dynstr_index. */
12776 sym = e->isym;
12777 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12778 sym.st_shndx = SHN_UNDEF;
12779
12780 s = bfd_section_from_elf_index (e->input_bfd,
12781 e->isym.st_shndx);
12782 if (s != NULL
12783 && s->output_section != NULL
12784 && elf_section_data (s->output_section) != NULL)
12785 {
12786 sym.st_shndx =
12787 elf_section_data (s->output_section)->this_idx;
12788 if (! check_dynsym (abfd, &sym))
12789 {
12790 ret = false;
12791 goto return_local_hash_table;
12792 }
12793 sym.st_value = (s->output_section->vma
12794 + s->output_offset
12795 + e->isym.st_value);
12796 }
12797
12798 /* Inform the linker of the addition of this symbol. */
12799
12800 if (info->callbacks->ctf_new_dynsym)
12801 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
12802
12803 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12804 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12805 }
12806 }
12807 }
12808
12809 /* We get the global symbols from the hash table. */
12810 eoinfo.failed = false;
12811 eoinfo.localsyms = false;
12812 eoinfo.flinfo = &flinfo;
12813 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12814 if (eoinfo.failed)
12815 {
12816 ret = false;
12817 goto return_local_hash_table;
12818 }
12819
12820 /* If backend needs to output some symbols not present in the hash
12821 table, do it now. */
12822 if (bed->elf_backend_output_arch_syms
12823 && (info->strip != strip_all || emit_relocs))
12824 {
12825 if (! ((*bed->elf_backend_output_arch_syms)
12826 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12827 {
12828 ret = false;
12829 goto return_local_hash_table;
12830 }
12831 }
12832
12833 /* Finalize the .strtab section. */
12834 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12835
12836 /* Swap out the .strtab section. */
12837 if (!elf_link_swap_symbols_out (&flinfo))
12838 {
12839 ret = false;
12840 goto return_local_hash_table;
12841 }
12842
12843 /* Now we know the size of the symtab section. */
12844 if (bfd_get_symcount (abfd) > 0)
12845 {
12846 /* Finish up and write out the symbol string table (.strtab)
12847 section. */
12848 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12849 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12850
12851 if (elf_symtab_shndx_list (abfd))
12852 {
12853 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12854
12855 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12856 {
12857 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12858 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12859 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12860 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12861 symtab_shndx_hdr->sh_size = amt;
12862
12863 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12864 off, true);
12865
12866 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12867 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12868 {
12869 ret = false;
12870 goto return_local_hash_table;
12871 }
12872 }
12873 }
12874
12875 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12876 /* sh_name was set in prep_headers. */
12877 symstrtab_hdr->sh_type = SHT_STRTAB;
12878 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12879 symstrtab_hdr->sh_addr = 0;
12880 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12881 symstrtab_hdr->sh_entsize = 0;
12882 symstrtab_hdr->sh_link = 0;
12883 symstrtab_hdr->sh_info = 0;
12884 /* sh_offset is set just below. */
12885 symstrtab_hdr->sh_addralign = 1;
12886
12887 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12888 off, true);
12889 elf_next_file_pos (abfd) = off;
12890
12891 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12892 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12893 {
12894 ret = false;
12895 goto return_local_hash_table;
12896 }
12897 }
12898
12899 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12900 {
12901 _bfd_error_handler (_("%pB: failed to generate import library"),
12902 info->out_implib_bfd);
12903 ret = false;
12904 goto return_local_hash_table;
12905 }
12906
12907 /* Adjust the relocs to have the correct symbol indices. */
12908 for (o = abfd->sections; o != NULL; o = o->next)
12909 {
12910 struct bfd_elf_section_data *esdo = elf_section_data (o);
12911 bool sort;
12912
12913 if ((o->flags & SEC_RELOC) == 0)
12914 continue;
12915
12916 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12917 if (esdo->rel.hdr != NULL
12918 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12919 {
12920 ret = false;
12921 goto return_local_hash_table;
12922 }
12923 if (esdo->rela.hdr != NULL
12924 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12925 {
12926 ret = false;
12927 goto return_local_hash_table;
12928 }
12929
12930 /* Set the reloc_count field to 0 to prevent write_relocs from
12931 trying to swap the relocs out itself. */
12932 o->reloc_count = 0;
12933 }
12934
12935 if (dynamic && info->combreloc && dynobj != NULL)
12936 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12937
12938 /* If we are linking against a dynamic object, or generating a
12939 shared library, finish up the dynamic linking information. */
12940 if (dynamic)
12941 {
12942 bfd_byte *dyncon, *dynconend;
12943
12944 /* Fix up .dynamic entries. */
12945 o = bfd_get_linker_section (dynobj, ".dynamic");
12946 BFD_ASSERT (o != NULL);
12947
12948 dyncon = o->contents;
12949 dynconend = o->contents + o->size;
12950 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12951 {
12952 Elf_Internal_Dyn dyn;
12953 const char *name;
12954 unsigned int type;
12955 bfd_size_type sh_size;
12956 bfd_vma sh_addr;
12957
12958 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12959
12960 switch (dyn.d_tag)
12961 {
12962 default:
12963 continue;
12964 case DT_NULL:
12965 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12966 {
12967 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12968 {
12969 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12970 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12971 default: continue;
12972 }
12973 dyn.d_un.d_val = relativecount;
12974 relativecount = 0;
12975 break;
12976 }
12977 continue;
12978
12979 case DT_INIT:
12980 name = info->init_function;
12981 goto get_sym;
12982 case DT_FINI:
12983 name = info->fini_function;
12984 get_sym:
12985 {
12986 struct elf_link_hash_entry *h;
12987
12988 h = elf_link_hash_lookup (htab, name, false, false, true);
12989 if (h != NULL
12990 && (h->root.type == bfd_link_hash_defined
12991 || h->root.type == bfd_link_hash_defweak))
12992 {
12993 dyn.d_un.d_ptr = h->root.u.def.value;
12994 o = h->root.u.def.section;
12995 if (o->output_section != NULL)
12996 dyn.d_un.d_ptr += (o->output_section->vma
12997 + o->output_offset);
12998 else
12999 {
13000 /* The symbol is imported from another shared
13001 library and does not apply to this one. */
13002 dyn.d_un.d_ptr = 0;
13003 }
13004 break;
13005 }
13006 }
13007 continue;
13008
13009 case DT_PREINIT_ARRAYSZ:
13010 name = ".preinit_array";
13011 goto get_out_size;
13012 case DT_INIT_ARRAYSZ:
13013 name = ".init_array";
13014 goto get_out_size;
13015 case DT_FINI_ARRAYSZ:
13016 name = ".fini_array";
13017 get_out_size:
13018 o = bfd_get_section_by_name (abfd, name);
13019 if (o == NULL)
13020 {
13021 _bfd_error_handler
13022 (_("could not find section %s"), name);
13023 goto error_return;
13024 }
13025 if (o->size == 0)
13026 _bfd_error_handler
13027 (_("warning: %s section has zero size"), name);
13028 dyn.d_un.d_val = o->size;
13029 break;
13030
13031 case DT_PREINIT_ARRAY:
13032 name = ".preinit_array";
13033 goto get_out_vma;
13034 case DT_INIT_ARRAY:
13035 name = ".init_array";
13036 goto get_out_vma;
13037 case DT_FINI_ARRAY:
13038 name = ".fini_array";
13039 get_out_vma:
13040 o = bfd_get_section_by_name (abfd, name);
13041 goto do_vma;
13042
13043 case DT_HASH:
13044 name = ".hash";
13045 goto get_vma;
13046 case DT_GNU_HASH:
13047 name = ".gnu.hash";
13048 goto get_vma;
13049 case DT_STRTAB:
13050 name = ".dynstr";
13051 goto get_vma;
13052 case DT_SYMTAB:
13053 name = ".dynsym";
13054 goto get_vma;
13055 case DT_VERDEF:
13056 name = ".gnu.version_d";
13057 goto get_vma;
13058 case DT_VERNEED:
13059 name = ".gnu.version_r";
13060 goto get_vma;
13061 case DT_VERSYM:
13062 name = ".gnu.version";
13063 get_vma:
13064 o = bfd_get_linker_section (dynobj, name);
13065 do_vma:
13066 if (o == NULL || bfd_is_abs_section (o->output_section))
13067 {
13068 _bfd_error_handler
13069 (_("could not find section %s"), name);
13070 goto error_return;
13071 }
13072 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13073 {
13074 _bfd_error_handler
13075 (_("warning: section '%s' is being made into a note"), name);
13076 bfd_set_error (bfd_error_nonrepresentable_section);
13077 goto error_return;
13078 }
13079 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13080 break;
13081
13082 case DT_REL:
13083 case DT_RELA:
13084 case DT_RELSZ:
13085 case DT_RELASZ:
13086 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13087 type = SHT_REL;
13088 else
13089 type = SHT_RELA;
13090 sh_size = 0;
13091 sh_addr = 0;
13092 for (i = 1; i < elf_numsections (abfd); i++)
13093 {
13094 Elf_Internal_Shdr *hdr;
13095
13096 hdr = elf_elfsections (abfd)[i];
13097 if (hdr->sh_type == type
13098 && (hdr->sh_flags & SHF_ALLOC) != 0)
13099 {
13100 sh_size += hdr->sh_size;
13101 if (sh_addr == 0
13102 || sh_addr > hdr->sh_addr)
13103 sh_addr = hdr->sh_addr;
13104 }
13105 }
13106
13107 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13108 {
13109 unsigned int opb = bfd_octets_per_byte (abfd, o);
13110
13111 /* Don't count procedure linkage table relocs in the
13112 overall reloc count. */
13113 sh_size -= htab->srelplt->size;
13114 if (sh_size == 0)
13115 /* If the size is zero, make the address zero too.
13116 This is to avoid a glibc bug. If the backend
13117 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13118 zero, then we'll put DT_RELA at the end of
13119 DT_JMPREL. glibc will interpret the end of
13120 DT_RELA matching the end of DT_JMPREL as the
13121 case where DT_RELA includes DT_JMPREL, and for
13122 LD_BIND_NOW will decide that processing DT_RELA
13123 will process the PLT relocs too. Net result:
13124 No PLT relocs applied. */
13125 sh_addr = 0;
13126
13127 /* If .rela.plt is the first .rela section, exclude
13128 it from DT_RELA. */
13129 else if (sh_addr == (htab->srelplt->output_section->vma
13130 + htab->srelplt->output_offset) * opb)
13131 sh_addr += htab->srelplt->size;
13132 }
13133
13134 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13135 dyn.d_un.d_val = sh_size;
13136 else
13137 dyn.d_un.d_ptr = sh_addr;
13138 break;
13139 }
13140 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13141 }
13142 }
13143
13144 /* If we have created any dynamic sections, then output them. */
13145 if (dynobj != NULL)
13146 {
13147 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13148 goto error_return;
13149
13150 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13151 if (bfd_link_textrel_check (info)
13152 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13153 {
13154 bfd_byte *dyncon, *dynconend;
13155
13156 dyncon = o->contents;
13157 dynconend = o->contents + o->size;
13158 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13159 {
13160 Elf_Internal_Dyn dyn;
13161
13162 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13163
13164 if (dyn.d_tag == DT_TEXTREL)
13165 {
13166 if (info->textrel_check == textrel_check_error)
13167 info->callbacks->einfo
13168 (_("%P%X: read-only segment has dynamic relocations\n"));
13169 else if (bfd_link_dll (info))
13170 info->callbacks->einfo
13171 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13172 else if (bfd_link_pde (info))
13173 info->callbacks->einfo
13174 (_("%P: warning: creating DT_TEXTREL in a PDE\n"));
13175 else
13176 info->callbacks->einfo
13177 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13178 break;
13179 }
13180 }
13181 }
13182
13183 for (o = dynobj->sections; o != NULL; o = o->next)
13184 {
13185 if ((o->flags & SEC_HAS_CONTENTS) == 0
13186 || o->size == 0
13187 || o->output_section == bfd_abs_section_ptr)
13188 continue;
13189 if ((o->flags & SEC_LINKER_CREATED) == 0)
13190 {
13191 /* At this point, we are only interested in sections
13192 created by _bfd_elf_link_create_dynamic_sections. */
13193 continue;
13194 }
13195 if (htab->stab_info.stabstr == o)
13196 continue;
13197 if (htab->eh_info.hdr_sec == o)
13198 continue;
13199 if (strcmp (o->name, ".dynstr") != 0)
13200 {
13201 bfd_size_type octets = ((file_ptr) o->output_offset
13202 * bfd_octets_per_byte (abfd, o));
13203 if (!bfd_set_section_contents (abfd, o->output_section,
13204 o->contents, octets, o->size))
13205 goto error_return;
13206 }
13207 else
13208 {
13209 /* The contents of the .dynstr section are actually in a
13210 stringtab. */
13211 file_ptr off;
13212
13213 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13214 if (bfd_seek (abfd, off, SEEK_SET) != 0
13215 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13216 goto error_return;
13217 }
13218 }
13219 }
13220
13221 if (!info->resolve_section_groups)
13222 {
13223 bool failed = false;
13224
13225 BFD_ASSERT (bfd_link_relocatable (info));
13226 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13227 if (failed)
13228 goto error_return;
13229 }
13230
13231 /* If we have optimized stabs strings, output them. */
13232 if (htab->stab_info.stabstr != NULL)
13233 {
13234 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13235 goto error_return;
13236 }
13237
13238 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13239 goto error_return;
13240
13241 if (info->callbacks->emit_ctf)
13242 info->callbacks->emit_ctf ();
13243
13244 elf_final_link_free (abfd, &flinfo);
13245
13246 if (attr_section)
13247 {
13248 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13249 if (contents == NULL)
13250 {
13251 /* Bail out and fail. */
13252 ret = false;
13253 goto return_local_hash_table;
13254 }
13255 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13256 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13257 free (contents);
13258 }
13259
13260 return_local_hash_table:
13261 if (info->unique_symbol)
13262 bfd_hash_table_free (&flinfo.local_hash_table);
13263 return ret;
13264
13265 error_return:
13266 elf_final_link_free (abfd, &flinfo);
13267 ret = false;
13268 goto return_local_hash_table;
13269 }
13270 \f
13271 /* Initialize COOKIE for input bfd ABFD. */
13272
13273 static bool
13274 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13275 struct bfd_link_info *info, bfd *abfd)
13276 {
13277 Elf_Internal_Shdr *symtab_hdr;
13278 const struct elf_backend_data *bed;
13279
13280 bed = get_elf_backend_data (abfd);
13281 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13282
13283 cookie->abfd = abfd;
13284 cookie->sym_hashes = elf_sym_hashes (abfd);
13285 cookie->bad_symtab = elf_bad_symtab (abfd);
13286 if (cookie->bad_symtab)
13287 {
13288 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13289 cookie->extsymoff = 0;
13290 }
13291 else
13292 {
13293 cookie->locsymcount = symtab_hdr->sh_info;
13294 cookie->extsymoff = symtab_hdr->sh_info;
13295 }
13296
13297 if (bed->s->arch_size == 32)
13298 cookie->r_sym_shift = 8;
13299 else
13300 cookie->r_sym_shift = 32;
13301
13302 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13303 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13304 {
13305 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13306 cookie->locsymcount, 0,
13307 NULL, NULL, NULL);
13308 if (cookie->locsyms == NULL)
13309 {
13310 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13311 return false;
13312 }
13313 if (_bfd_link_keep_memory (info) )
13314 {
13315 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13316 info->cache_size += (cookie->locsymcount
13317 * sizeof (Elf_External_Sym_Shndx));
13318 }
13319 }
13320 return true;
13321 }
13322
13323 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13324
13325 static void
13326 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13327 {
13328 Elf_Internal_Shdr *symtab_hdr;
13329
13330 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13331 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13332 free (cookie->locsyms);
13333 }
13334
13335 /* Initialize the relocation information in COOKIE for input section SEC
13336 of input bfd ABFD. */
13337
13338 static bool
13339 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13340 struct bfd_link_info *info, bfd *abfd,
13341 asection *sec)
13342 {
13343 if (sec->reloc_count == 0)
13344 {
13345 cookie->rels = NULL;
13346 cookie->relend = NULL;
13347 }
13348 else
13349 {
13350 cookie->rels = _bfd_elf_link_info_read_relocs (abfd, info, sec,
13351 NULL, NULL,
13352 _bfd_link_keep_memory (info));
13353 if (cookie->rels == NULL)
13354 return false;
13355 cookie->rel = cookie->rels;
13356 cookie->relend = cookie->rels + sec->reloc_count;
13357 }
13358 cookie->rel = cookie->rels;
13359 return true;
13360 }
13361
13362 /* Free the memory allocated by init_reloc_cookie_rels,
13363 if appropriate. */
13364
13365 static void
13366 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13367 asection *sec)
13368 {
13369 if (elf_section_data (sec)->relocs != cookie->rels)
13370 free (cookie->rels);
13371 }
13372
13373 /* Initialize the whole of COOKIE for input section SEC. */
13374
13375 static bool
13376 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13377 struct bfd_link_info *info,
13378 asection *sec)
13379 {
13380 if (!init_reloc_cookie (cookie, info, sec->owner))
13381 goto error1;
13382 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13383 goto error2;
13384 return true;
13385
13386 error2:
13387 fini_reloc_cookie (cookie, sec->owner);
13388 error1:
13389 return false;
13390 }
13391
13392 /* Free the memory allocated by init_reloc_cookie_for_section,
13393 if appropriate. */
13394
13395 static void
13396 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13397 asection *sec)
13398 {
13399 fini_reloc_cookie_rels (cookie, sec);
13400 fini_reloc_cookie (cookie, sec->owner);
13401 }
13402 \f
13403 /* Garbage collect unused sections. */
13404
13405 /* Default gc_mark_hook. */
13406
13407 asection *
13408 _bfd_elf_gc_mark_hook (asection *sec,
13409 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13410 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13411 struct elf_link_hash_entry *h,
13412 Elf_Internal_Sym *sym)
13413 {
13414 if (h != NULL)
13415 {
13416 switch (h->root.type)
13417 {
13418 case bfd_link_hash_defined:
13419 case bfd_link_hash_defweak:
13420 return h->root.u.def.section;
13421
13422 case bfd_link_hash_common:
13423 return h->root.u.c.p->section;
13424
13425 default:
13426 break;
13427 }
13428 }
13429 else
13430 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13431
13432 return NULL;
13433 }
13434
13435 /* Return the debug definition section. */
13436
13437 static asection *
13438 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13439 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13440 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13441 struct elf_link_hash_entry *h,
13442 Elf_Internal_Sym *sym)
13443 {
13444 if (h != NULL)
13445 {
13446 /* Return the global debug definition section. */
13447 if ((h->root.type == bfd_link_hash_defined
13448 || h->root.type == bfd_link_hash_defweak)
13449 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13450 return h->root.u.def.section;
13451 }
13452 else
13453 {
13454 /* Return the local debug definition section. */
13455 asection *isec = bfd_section_from_elf_index (sec->owner,
13456 sym->st_shndx);
13457 if ((isec->flags & SEC_DEBUGGING) != 0)
13458 return isec;
13459 }
13460
13461 return NULL;
13462 }
13463
13464 /* COOKIE->rel describes a relocation against section SEC, which is
13465 a section we've decided to keep. Return the section that contains
13466 the relocation symbol, or NULL if no section contains it. */
13467
13468 asection *
13469 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13470 elf_gc_mark_hook_fn gc_mark_hook,
13471 struct elf_reloc_cookie *cookie,
13472 bool *start_stop)
13473 {
13474 unsigned long r_symndx;
13475 struct elf_link_hash_entry *h, *hw;
13476
13477 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13478 if (r_symndx == STN_UNDEF)
13479 return NULL;
13480
13481 if (r_symndx >= cookie->locsymcount
13482 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13483 {
13484 bool was_marked;
13485
13486 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13487 if (h == NULL)
13488 {
13489 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13490 sec->owner);
13491 return NULL;
13492 }
13493 while (h->root.type == bfd_link_hash_indirect
13494 || h->root.type == bfd_link_hash_warning)
13495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13496
13497 was_marked = h->mark;
13498 h->mark = 1;
13499 /* Keep all aliases of the symbol too. If an object symbol
13500 needs to be copied into .dynbss then all of its aliases
13501 should be present as dynamic symbols, not just the one used
13502 on the copy relocation. */
13503 hw = h;
13504 while (hw->is_weakalias)
13505 {
13506 hw = hw->u.alias;
13507 hw->mark = 1;
13508 }
13509
13510 if (!was_marked && h->start_stop && !h->root.ldscript_def)
13511 {
13512 if (info->start_stop_gc)
13513 return NULL;
13514
13515 /* To work around a glibc bug, mark XXX input sections
13516 when there is a reference to __start_XXX or __stop_XXX
13517 symbols. */
13518 else if (start_stop != NULL)
13519 {
13520 asection *s = h->u2.start_stop_section;
13521 *start_stop = true;
13522 return s;
13523 }
13524 }
13525
13526 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13527 }
13528
13529 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13530 &cookie->locsyms[r_symndx]);
13531 }
13532
13533 /* COOKIE->rel describes a relocation against section SEC, which is
13534 a section we've decided to keep. Mark the section that contains
13535 the relocation symbol. */
13536
13537 bool
13538 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13539 asection *sec,
13540 elf_gc_mark_hook_fn gc_mark_hook,
13541 struct elf_reloc_cookie *cookie)
13542 {
13543 asection *rsec;
13544 bool start_stop = false;
13545
13546 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13547 while (rsec != NULL)
13548 {
13549 if (!rsec->gc_mark)
13550 {
13551 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13552 || (rsec->owner->flags & DYNAMIC) != 0)
13553 rsec->gc_mark = 1;
13554 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13555 return false;
13556 }
13557 if (!start_stop)
13558 break;
13559 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13560 }
13561 return true;
13562 }
13563
13564 /* The mark phase of garbage collection. For a given section, mark
13565 it and any sections in this section's group, and all the sections
13566 which define symbols to which it refers. */
13567
13568 bool
13569 _bfd_elf_gc_mark (struct bfd_link_info *info,
13570 asection *sec,
13571 elf_gc_mark_hook_fn gc_mark_hook)
13572 {
13573 bool ret;
13574 asection *group_sec, *eh_frame;
13575
13576 sec->gc_mark = 1;
13577
13578 /* Mark all the sections in the group. */
13579 group_sec = elf_section_data (sec)->next_in_group;
13580 if (group_sec && !group_sec->gc_mark)
13581 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13582 return false;
13583
13584 /* Look through the section relocs. */
13585 ret = true;
13586 eh_frame = elf_eh_frame_section (sec->owner);
13587 if ((sec->flags & SEC_RELOC) != 0
13588 && sec->reloc_count > 0
13589 && sec != eh_frame)
13590 {
13591 struct elf_reloc_cookie cookie;
13592
13593 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13594 ret = false;
13595 else
13596 {
13597 for (; cookie.rel < cookie.relend; cookie.rel++)
13598 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13599 {
13600 ret = false;
13601 break;
13602 }
13603 fini_reloc_cookie_for_section (&cookie, sec);
13604 }
13605 }
13606
13607 if (ret && eh_frame && elf_fde_list (sec))
13608 {
13609 struct elf_reloc_cookie cookie;
13610
13611 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13612 ret = false;
13613 else
13614 {
13615 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13616 gc_mark_hook, &cookie))
13617 ret = false;
13618 fini_reloc_cookie_for_section (&cookie, eh_frame);
13619 }
13620 }
13621
13622 eh_frame = elf_section_eh_frame_entry (sec);
13623 if (ret && eh_frame && !eh_frame->gc_mark)
13624 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13625 ret = false;
13626
13627 return ret;
13628 }
13629
13630 /* Scan and mark sections in a special or debug section group. */
13631
13632 static void
13633 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13634 {
13635 /* Point to first section of section group. */
13636 asection *ssec;
13637 /* Used to iterate the section group. */
13638 asection *msec;
13639
13640 bool is_special_grp = true;
13641 bool is_debug_grp = true;
13642
13643 /* First scan to see if group contains any section other than debug
13644 and special section. */
13645 ssec = msec = elf_next_in_group (grp);
13646 do
13647 {
13648 if ((msec->flags & SEC_DEBUGGING) == 0)
13649 is_debug_grp = false;
13650
13651 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13652 is_special_grp = false;
13653
13654 msec = elf_next_in_group (msec);
13655 }
13656 while (msec != ssec);
13657
13658 /* If this is a pure debug section group or pure special section group,
13659 keep all sections in this group. */
13660 if (is_debug_grp || is_special_grp)
13661 {
13662 do
13663 {
13664 msec->gc_mark = 1;
13665 msec = elf_next_in_group (msec);
13666 }
13667 while (msec != ssec);
13668 }
13669 }
13670
13671 /* Keep debug and special sections. */
13672
13673 bool
13674 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13675 elf_gc_mark_hook_fn mark_hook)
13676 {
13677 bfd *ibfd;
13678
13679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13680 {
13681 asection *isec;
13682 bool some_kept;
13683 bool debug_frag_seen;
13684 bool has_kept_debug_info;
13685
13686 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13687 continue;
13688 isec = ibfd->sections;
13689 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13690 continue;
13691
13692 /* Ensure all linker created sections are kept,
13693 see if any other section is already marked,
13694 and note if we have any fragmented debug sections. */
13695 debug_frag_seen = some_kept = has_kept_debug_info = false;
13696 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13697 {
13698 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13699 isec->gc_mark = 1;
13700 else if (isec->gc_mark
13701 && (isec->flags & SEC_ALLOC) != 0
13702 && elf_section_type (isec) != SHT_NOTE)
13703 some_kept = true;
13704 else
13705 {
13706 /* Since all sections, except for backend specific ones,
13707 have been garbage collected, call mark_hook on this
13708 section if any of its linked-to sections is marked. */
13709 asection *linked_to_sec;
13710 for (linked_to_sec = elf_linked_to_section (isec);
13711 linked_to_sec != NULL && !linked_to_sec->linker_mark;
13712 linked_to_sec = elf_linked_to_section (linked_to_sec))
13713 {
13714 if (linked_to_sec->gc_mark)
13715 {
13716 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13717 return false;
13718 break;
13719 }
13720 linked_to_sec->linker_mark = 1;
13721 }
13722 for (linked_to_sec = elf_linked_to_section (isec);
13723 linked_to_sec != NULL && linked_to_sec->linker_mark;
13724 linked_to_sec = elf_linked_to_section (linked_to_sec))
13725 linked_to_sec->linker_mark = 0;
13726 }
13727
13728 if (!debug_frag_seen
13729 && (isec->flags & SEC_DEBUGGING)
13730 && startswith (isec->name, ".debug_line."))
13731 debug_frag_seen = true;
13732 else if (strcmp (bfd_section_name (isec),
13733 "__patchable_function_entries") == 0
13734 && elf_linked_to_section (isec) == NULL)
13735 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13736 "need linked-to section "
13737 "for --gc-sections\n"),
13738 isec->owner, isec);
13739 }
13740
13741 /* If no non-note alloc section in this file will be kept, then
13742 we can toss out the debug and special sections. */
13743 if (!some_kept)
13744 continue;
13745
13746 /* Keep debug and special sections like .comment when they are
13747 not part of a group. Also keep section groups that contain
13748 just debug sections or special sections. NB: Sections with
13749 linked-to section has been handled above. */
13750 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13751 {
13752 if ((isec->flags & SEC_GROUP) != 0)
13753 _bfd_elf_gc_mark_debug_special_section_group (isec);
13754 else if (((isec->flags & SEC_DEBUGGING) != 0
13755 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13756 && elf_next_in_group (isec) == NULL
13757 && elf_linked_to_section (isec) == NULL)
13758 isec->gc_mark = 1;
13759 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13760 has_kept_debug_info = true;
13761 }
13762
13763 /* Look for CODE sections which are going to be discarded,
13764 and find and discard any fragmented debug sections which
13765 are associated with that code section. */
13766 if (debug_frag_seen)
13767 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13768 if ((isec->flags & SEC_CODE) != 0
13769 && isec->gc_mark == 0)
13770 {
13771 unsigned int ilen;
13772 asection *dsec;
13773
13774 ilen = strlen (isec->name);
13775
13776 /* Association is determined by the name of the debug
13777 section containing the name of the code section as
13778 a suffix. For example .debug_line.text.foo is a
13779 debug section associated with .text.foo. */
13780 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13781 {
13782 unsigned int dlen;
13783
13784 if (dsec->gc_mark == 0
13785 || (dsec->flags & SEC_DEBUGGING) == 0)
13786 continue;
13787
13788 dlen = strlen (dsec->name);
13789
13790 if (dlen > ilen
13791 && strncmp (dsec->name + (dlen - ilen),
13792 isec->name, ilen) == 0)
13793 dsec->gc_mark = 0;
13794 }
13795 }
13796
13797 /* Mark debug sections referenced by kept debug sections. */
13798 if (has_kept_debug_info)
13799 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13800 if (isec->gc_mark
13801 && (isec->flags & SEC_DEBUGGING) != 0)
13802 if (!_bfd_elf_gc_mark (info, isec,
13803 elf_gc_mark_debug_section))
13804 return false;
13805 }
13806 return true;
13807 }
13808
13809 static bool
13810 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13811 {
13812 bfd *sub;
13813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13814
13815 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13816 {
13817 asection *o;
13818
13819 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13820 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13821 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13822 continue;
13823 o = sub->sections;
13824 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13825 continue;
13826
13827 for (o = sub->sections; o != NULL; o = o->next)
13828 {
13829 /* When any section in a section group is kept, we keep all
13830 sections in the section group. If the first member of
13831 the section group is excluded, we will also exclude the
13832 group section. */
13833 if (o->flags & SEC_GROUP)
13834 {
13835 asection *first = elf_next_in_group (o);
13836 o->gc_mark = first->gc_mark;
13837 }
13838
13839 if (o->gc_mark)
13840 continue;
13841
13842 /* Skip sweeping sections already excluded. */
13843 if (o->flags & SEC_EXCLUDE)
13844 continue;
13845
13846 /* Since this is early in the link process, it is simple
13847 to remove a section from the output. */
13848 o->flags |= SEC_EXCLUDE;
13849
13850 if (info->print_gc_sections && o->size != 0)
13851 /* xgettext:c-format */
13852 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13853 o, sub);
13854 }
13855 }
13856
13857 return true;
13858 }
13859
13860 /* Propagate collected vtable information. This is called through
13861 elf_link_hash_traverse. */
13862
13863 static bool
13864 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13865 {
13866 /* Those that are not vtables. */
13867 if (h->start_stop
13868 || h->u2.vtable == NULL
13869 || h->u2.vtable->parent == NULL)
13870 return true;
13871
13872 /* Those vtables that do not have parents, we cannot merge. */
13873 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13874 return true;
13875
13876 /* If we've already been done, exit. */
13877 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13878 return true;
13879
13880 /* Make sure the parent's table is up to date. */
13881 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13882
13883 if (h->u2.vtable->used == NULL)
13884 {
13885 /* None of this table's entries were referenced. Re-use the
13886 parent's table. */
13887 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13888 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13889 }
13890 else
13891 {
13892 size_t n;
13893 bool *cu, *pu;
13894
13895 /* Or the parent's entries into ours. */
13896 cu = h->u2.vtable->used;
13897 cu[-1] = true;
13898 pu = h->u2.vtable->parent->u2.vtable->used;
13899 if (pu != NULL)
13900 {
13901 const struct elf_backend_data *bed;
13902 unsigned int log_file_align;
13903
13904 bed = get_elf_backend_data (h->root.u.def.section->owner);
13905 log_file_align = bed->s->log_file_align;
13906 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13907 while (n--)
13908 {
13909 if (*pu)
13910 *cu = true;
13911 pu++;
13912 cu++;
13913 }
13914 }
13915 }
13916
13917 return true;
13918 }
13919
13920 struct link_info_ok
13921 {
13922 struct bfd_link_info *info;
13923 bool ok;
13924 };
13925
13926 static bool
13927 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h,
13928 void *ptr)
13929 {
13930 asection *sec;
13931 bfd_vma hstart, hend;
13932 Elf_Internal_Rela *relstart, *relend, *rel;
13933 const struct elf_backend_data *bed;
13934 unsigned int log_file_align;
13935 struct link_info_ok *info = (struct link_info_ok *) ptr;
13936
13937 /* Take care of both those symbols that do not describe vtables as
13938 well as those that are not loaded. */
13939 if (h->start_stop
13940 || h->u2.vtable == NULL
13941 || h->u2.vtable->parent == NULL)
13942 return true;
13943
13944 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13945 || h->root.type == bfd_link_hash_defweak);
13946
13947 sec = h->root.u.def.section;
13948 hstart = h->root.u.def.value;
13949 hend = hstart + h->size;
13950
13951 relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info,
13952 sec, NULL, NULL, true);
13953 if (!relstart)
13954 return info->ok = false;
13955 bed = get_elf_backend_data (sec->owner);
13956 log_file_align = bed->s->log_file_align;
13957
13958 relend = relstart + sec->reloc_count;
13959
13960 for (rel = relstart; rel < relend; ++rel)
13961 if (rel->r_offset >= hstart && rel->r_offset < hend)
13962 {
13963 /* If the entry is in use, do nothing. */
13964 if (h->u2.vtable->used
13965 && (rel->r_offset - hstart) < h->u2.vtable->size)
13966 {
13967 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13968 if (h->u2.vtable->used[entry])
13969 continue;
13970 }
13971 /* Otherwise, kill it. */
13972 rel->r_offset = rel->r_info = rel->r_addend = 0;
13973 }
13974
13975 return true;
13976 }
13977
13978 /* Mark sections containing dynamically referenced symbols. When
13979 building shared libraries, we must assume that any visible symbol is
13980 referenced. */
13981
13982 bool
13983 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13984 {
13985 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13986 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13987
13988 if ((h->root.type == bfd_link_hash_defined
13989 || h->root.type == bfd_link_hash_defweak)
13990 && (!h->start_stop
13991 || h->root.ldscript_def
13992 || !info->start_stop_gc)
13993 && ((h->ref_dynamic && !h->forced_local)
13994 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13995 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13996 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13997 && (!bfd_link_executable (info)
13998 || info->gc_keep_exported
13999 || info->export_dynamic
14000 || (h->dynamic
14001 && d != NULL
14002 && (*d->match) (&d->head, NULL, h->root.root.string)))
14003 && (h->versioned >= versioned
14004 || !bfd_hide_sym_by_version (info->version_info,
14005 h->root.root.string)))))
14006 h->root.u.def.section->flags |= SEC_KEEP;
14007
14008 return true;
14009 }
14010
14011 /* Keep all sections containing symbols undefined on the command-line,
14012 and the section containing the entry symbol. */
14013
14014 void
14015 _bfd_elf_gc_keep (struct bfd_link_info *info)
14016 {
14017 struct bfd_sym_chain *sym;
14018
14019 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
14020 {
14021 struct elf_link_hash_entry *h;
14022
14023 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
14024 false, false, false);
14025
14026 if (h != NULL
14027 && (h->root.type == bfd_link_hash_defined
14028 || h->root.type == bfd_link_hash_defweak)
14029 && !bfd_is_const_section (h->root.u.def.section))
14030 h->root.u.def.section->flags |= SEC_KEEP;
14031 }
14032 }
14033
14034 bool
14035 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
14036 struct bfd_link_info *info)
14037 {
14038 bfd *ibfd = info->input_bfds;
14039
14040 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14041 {
14042 asection *sec;
14043 struct elf_reloc_cookie cookie;
14044
14045 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
14046 continue;
14047 sec = ibfd->sections;
14048 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14049 continue;
14050
14051 if (!init_reloc_cookie (&cookie, info, ibfd))
14052 return false;
14053
14054 for (sec = ibfd->sections; sec; sec = sec->next)
14055 {
14056 if (startswith (bfd_section_name (sec), ".eh_frame_entry")
14057 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
14058 {
14059 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
14060 fini_reloc_cookie_rels (&cookie, sec);
14061 }
14062 }
14063 }
14064 return true;
14065 }
14066
14067 /* Do mark and sweep of unused sections. */
14068
14069 bool
14070 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
14071 {
14072 bool ok = true;
14073 bfd *sub;
14074 elf_gc_mark_hook_fn gc_mark_hook;
14075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14076 struct elf_link_hash_table *htab;
14077 struct link_info_ok info_ok;
14078
14079 if (!bed->can_gc_sections
14080 || !is_elf_hash_table (info->hash))
14081 {
14082 _bfd_error_handler(_("warning: gc-sections option ignored"));
14083 return true;
14084 }
14085
14086 bed->gc_keep (info);
14087 htab = elf_hash_table (info);
14088
14089 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14090 at the .eh_frame section if we can mark the FDEs individually. */
14091 for (sub = info->input_bfds;
14092 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14093 sub = sub->link.next)
14094 {
14095 asection *sec;
14096 struct elf_reloc_cookie cookie;
14097
14098 sec = sub->sections;
14099 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14100 continue;
14101 sec = bfd_get_section_by_name (sub, ".eh_frame");
14102 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14103 {
14104 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14105 if (elf_section_data (sec)->sec_info
14106 && (sec->flags & SEC_LINKER_CREATED) == 0)
14107 elf_eh_frame_section (sub) = sec;
14108 fini_reloc_cookie_for_section (&cookie, sec);
14109 sec = bfd_get_next_section_by_name (NULL, sec);
14110 }
14111 }
14112
14113 /* Apply transitive closure to the vtable entry usage info. */
14114 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14115 if (!ok)
14116 return false;
14117
14118 /* Kill the vtable relocations that were not used. */
14119 info_ok.info = info;
14120 info_ok.ok = true;
14121 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok);
14122 if (!info_ok.ok)
14123 return false;
14124
14125 /* Mark dynamically referenced symbols. */
14126 if (htab->dynamic_sections_created || info->gc_keep_exported)
14127 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14128
14129 /* Grovel through relocs to find out who stays ... */
14130 gc_mark_hook = bed->gc_mark_hook;
14131 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14132 {
14133 asection *o;
14134
14135 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14136 || elf_object_id (sub) != elf_hash_table_id (htab)
14137 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14138 continue;
14139
14140 o = sub->sections;
14141 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14142 continue;
14143
14144 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14145 Also treat note sections as a root, if the section is not part
14146 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14147 well as FINI_ARRAY sections for ld -r. */
14148 for (o = sub->sections; o != NULL; o = o->next)
14149 if (!o->gc_mark
14150 && (o->flags & SEC_EXCLUDE) == 0
14151 && ((o->flags & SEC_KEEP) != 0
14152 || (bfd_link_relocatable (info)
14153 && ((elf_section_data (o)->this_hdr.sh_type
14154 == SHT_PREINIT_ARRAY)
14155 || (elf_section_data (o)->this_hdr.sh_type
14156 == SHT_INIT_ARRAY)
14157 || (elf_section_data (o)->this_hdr.sh_type
14158 == SHT_FINI_ARRAY)))
14159 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14160 && elf_next_in_group (o) == NULL
14161 && elf_linked_to_section (o) == NULL)
14162 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14163 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14164 {
14165 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14166 return false;
14167 }
14168 }
14169
14170 /* Allow the backend to mark additional target specific sections. */
14171 bed->gc_mark_extra_sections (info, gc_mark_hook);
14172
14173 /* ... and mark SEC_EXCLUDE for those that go. */
14174 return elf_gc_sweep (abfd, info);
14175 }
14176 \f
14177 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14178
14179 bool
14180 bfd_elf_gc_record_vtinherit (bfd *abfd,
14181 asection *sec,
14182 struct elf_link_hash_entry *h,
14183 bfd_vma offset)
14184 {
14185 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14186 struct elf_link_hash_entry **search, *child;
14187 size_t extsymcount;
14188 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14189
14190 /* The sh_info field of the symtab header tells us where the
14191 external symbols start. We don't care about the local symbols at
14192 this point. */
14193 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14194 if (!elf_bad_symtab (abfd))
14195 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14196
14197 sym_hashes = elf_sym_hashes (abfd);
14198 sym_hashes_end = sym_hashes + extsymcount;
14199
14200 /* Hunt down the child symbol, which is in this section at the same
14201 offset as the relocation. */
14202 for (search = sym_hashes; search != sym_hashes_end; ++search)
14203 {
14204 if ((child = *search) != NULL
14205 && (child->root.type == bfd_link_hash_defined
14206 || child->root.type == bfd_link_hash_defweak)
14207 && child->root.u.def.section == sec
14208 && child->root.u.def.value == offset)
14209 goto win;
14210 }
14211
14212 /* xgettext:c-format */
14213 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14214 abfd, sec, (uint64_t) offset);
14215 bfd_set_error (bfd_error_invalid_operation);
14216 return false;
14217
14218 win:
14219 if (!child->u2.vtable)
14220 {
14221 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14222 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14223 if (!child->u2.vtable)
14224 return false;
14225 }
14226 if (!h)
14227 {
14228 /* This *should* only be the absolute section. It could potentially
14229 be that someone has defined a non-global vtable though, which
14230 would be bad. It isn't worth paging in the local symbols to be
14231 sure though; that case should simply be handled by the assembler. */
14232
14233 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14234 }
14235 else
14236 child->u2.vtable->parent = h;
14237
14238 return true;
14239 }
14240
14241 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14242
14243 bool
14244 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14245 struct elf_link_hash_entry *h,
14246 bfd_vma addend)
14247 {
14248 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14249 unsigned int log_file_align = bed->s->log_file_align;
14250
14251 if (!h)
14252 {
14253 /* xgettext:c-format */
14254 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14255 abfd, sec);
14256 bfd_set_error (bfd_error_bad_value);
14257 return false;
14258 }
14259
14260 if (!h->u2.vtable)
14261 {
14262 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14263 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14264 if (!h->u2.vtable)
14265 return false;
14266 }
14267
14268 if (addend >= h->u2.vtable->size)
14269 {
14270 size_t size, bytes, file_align;
14271 bool *ptr = h->u2.vtable->used;
14272
14273 /* While the symbol is undefined, we have to be prepared to handle
14274 a zero size. */
14275 file_align = 1 << log_file_align;
14276 if (h->root.type == bfd_link_hash_undefined)
14277 size = addend + file_align;
14278 else
14279 {
14280 size = h->size;
14281 if (addend >= size)
14282 {
14283 /* Oops! We've got a reference past the defined end of
14284 the table. This is probably a bug -- shall we warn? */
14285 size = addend + file_align;
14286 }
14287 }
14288 size = (size + file_align - 1) & -file_align;
14289
14290 /* Allocate one extra entry for use as a "done" flag for the
14291 consolidation pass. */
14292 bytes = ((size >> log_file_align) + 1) * sizeof (bool);
14293
14294 if (ptr)
14295 {
14296 ptr = (bool *) bfd_realloc (ptr - 1, bytes);
14297
14298 if (ptr != NULL)
14299 {
14300 size_t oldbytes;
14301
14302 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14303 * sizeof (bool));
14304 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14305 }
14306 }
14307 else
14308 ptr = (bool *) bfd_zmalloc (bytes);
14309
14310 if (ptr == NULL)
14311 return false;
14312
14313 /* And arrange for that done flag to be at index -1. */
14314 h->u2.vtable->used = ptr + 1;
14315 h->u2.vtable->size = size;
14316 }
14317
14318 h->u2.vtable->used[addend >> log_file_align] = true;
14319
14320 return true;
14321 }
14322
14323 /* Map an ELF section header flag to its corresponding string. */
14324 typedef struct
14325 {
14326 char *flag_name;
14327 flagword flag_value;
14328 } elf_flags_to_name_table;
14329
14330 static const elf_flags_to_name_table elf_flags_to_names [] =
14331 {
14332 { "SHF_WRITE", SHF_WRITE },
14333 { "SHF_ALLOC", SHF_ALLOC },
14334 { "SHF_EXECINSTR", SHF_EXECINSTR },
14335 { "SHF_MERGE", SHF_MERGE },
14336 { "SHF_STRINGS", SHF_STRINGS },
14337 { "SHF_INFO_LINK", SHF_INFO_LINK},
14338 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14339 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14340 { "SHF_GROUP", SHF_GROUP },
14341 { "SHF_TLS", SHF_TLS },
14342 { "SHF_MASKOS", SHF_MASKOS },
14343 { "SHF_EXCLUDE", SHF_EXCLUDE },
14344 };
14345
14346 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14347 bool
14348 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14349 struct flag_info *flaginfo,
14350 asection *section)
14351 {
14352 const bfd_vma sh_flags = elf_section_flags (section);
14353
14354 if (!flaginfo->flags_initialized)
14355 {
14356 bfd *obfd = info->output_bfd;
14357 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14358 struct flag_info_list *tf = flaginfo->flag_list;
14359 int with_hex = 0;
14360 int without_hex = 0;
14361
14362 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14363 {
14364 unsigned i;
14365 flagword (*lookup) (char *);
14366
14367 lookup = bed->elf_backend_lookup_section_flags_hook;
14368 if (lookup != NULL)
14369 {
14370 flagword hexval = (*lookup) ((char *) tf->name);
14371
14372 if (hexval != 0)
14373 {
14374 if (tf->with == with_flags)
14375 with_hex |= hexval;
14376 else if (tf->with == without_flags)
14377 without_hex |= hexval;
14378 tf->valid = true;
14379 continue;
14380 }
14381 }
14382 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14383 {
14384 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14385 {
14386 if (tf->with == with_flags)
14387 with_hex |= elf_flags_to_names[i].flag_value;
14388 else if (tf->with == without_flags)
14389 without_hex |= elf_flags_to_names[i].flag_value;
14390 tf->valid = true;
14391 break;
14392 }
14393 }
14394 if (!tf->valid)
14395 {
14396 info->callbacks->einfo
14397 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14398 return false;
14399 }
14400 }
14401 flaginfo->flags_initialized = true;
14402 flaginfo->only_with_flags |= with_hex;
14403 flaginfo->not_with_flags |= without_hex;
14404 }
14405
14406 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14407 return false;
14408
14409 if ((flaginfo->not_with_flags & sh_flags) != 0)
14410 return false;
14411
14412 return true;
14413 }
14414
14415 struct alloc_got_off_arg {
14416 bfd_vma gotoff;
14417 struct bfd_link_info *info;
14418 };
14419
14420 /* We need a special top-level link routine to convert got reference counts
14421 to real got offsets. */
14422
14423 static bool
14424 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14425 {
14426 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14427 bfd *obfd = gofarg->info->output_bfd;
14428 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14429
14430 if (h->got.refcount > 0)
14431 {
14432 h->got.offset = gofarg->gotoff;
14433 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14434 }
14435 else
14436 h->got.offset = (bfd_vma) -1;
14437
14438 return true;
14439 }
14440
14441 /* And an accompanying bit to work out final got entry offsets once
14442 we're done. Should be called from final_link. */
14443
14444 bool
14445 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14446 struct bfd_link_info *info)
14447 {
14448 bfd *i;
14449 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14450 bfd_vma gotoff;
14451 struct alloc_got_off_arg gofarg;
14452
14453 BFD_ASSERT (abfd == info->output_bfd);
14454
14455 if (! is_elf_hash_table (info->hash))
14456 return false;
14457
14458 /* The GOT offset is relative to the .got section, but the GOT header is
14459 put into the .got.plt section, if the backend uses it. */
14460 if (bed->want_got_plt)
14461 gotoff = 0;
14462 else
14463 gotoff = bed->got_header_size;
14464
14465 /* Do the local .got entries first. */
14466 for (i = info->input_bfds; i; i = i->link.next)
14467 {
14468 bfd_signed_vma *local_got;
14469 size_t j, locsymcount;
14470 Elf_Internal_Shdr *symtab_hdr;
14471
14472 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14473 continue;
14474
14475 local_got = elf_local_got_refcounts (i);
14476 if (!local_got)
14477 continue;
14478
14479 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14480 if (elf_bad_symtab (i))
14481 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14482 else
14483 locsymcount = symtab_hdr->sh_info;
14484
14485 for (j = 0; j < locsymcount; ++j)
14486 {
14487 if (local_got[j] > 0)
14488 {
14489 local_got[j] = gotoff;
14490 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14491 }
14492 else
14493 local_got[j] = (bfd_vma) -1;
14494 }
14495 }
14496
14497 /* Then the global .got entries. .plt refcounts are handled by
14498 adjust_dynamic_symbol */
14499 gofarg.gotoff = gotoff;
14500 gofarg.info = info;
14501 elf_link_hash_traverse (elf_hash_table (info),
14502 elf_gc_allocate_got_offsets,
14503 &gofarg);
14504 return true;
14505 }
14506
14507 /* Many folk need no more in the way of final link than this, once
14508 got entry reference counting is enabled. */
14509
14510 bool
14511 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14512 {
14513 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14514 return false;
14515
14516 /* Invoke the regular ELF backend linker to do all the work. */
14517 return bfd_elf_final_link (abfd, info);
14518 }
14519
14520 bool
14521 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14522 {
14523 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14524
14525 if (rcookie->bad_symtab)
14526 rcookie->rel = rcookie->rels;
14527
14528 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14529 {
14530 unsigned long r_symndx;
14531
14532 if (! rcookie->bad_symtab)
14533 if (rcookie->rel->r_offset > offset)
14534 return false;
14535 if (rcookie->rel->r_offset != offset)
14536 continue;
14537
14538 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14539 if (r_symndx == STN_UNDEF)
14540 return true;
14541
14542 if (r_symndx >= rcookie->locsymcount
14543 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14544 {
14545 struct elf_link_hash_entry *h;
14546
14547 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14548
14549 while (h->root.type == bfd_link_hash_indirect
14550 || h->root.type == bfd_link_hash_warning)
14551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14552
14553 if ((h->root.type == bfd_link_hash_defined
14554 || h->root.type == bfd_link_hash_defweak)
14555 && (h->root.u.def.section->owner != rcookie->abfd
14556 || h->root.u.def.section->kept_section != NULL
14557 || discarded_section (h->root.u.def.section)))
14558 return true;
14559 }
14560 else
14561 {
14562 /* It's not a relocation against a global symbol,
14563 but it could be a relocation against a local
14564 symbol for a discarded section. */
14565 asection *isec;
14566 Elf_Internal_Sym *isym;
14567
14568 /* Need to: get the symbol; get the section. */
14569 isym = &rcookie->locsyms[r_symndx];
14570 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14571 if (isec != NULL
14572 && (isec->kept_section != NULL
14573 || discarded_section (isec)))
14574 return true;
14575 }
14576 return false;
14577 }
14578 return false;
14579 }
14580
14581 /* Discard unneeded references to discarded sections.
14582 Returns -1 on error, 1 if any section's size was changed, 0 if
14583 nothing changed. This function assumes that the relocations are in
14584 sorted order, which is true for all known assemblers. */
14585
14586 int
14587 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14588 {
14589 struct elf_reloc_cookie cookie;
14590 asection *o;
14591 bfd *abfd;
14592 int changed = 0;
14593
14594 if (info->traditional_format
14595 || !is_elf_hash_table (info->hash))
14596 return 0;
14597
14598 o = bfd_get_section_by_name (output_bfd, ".stab");
14599 if (o != NULL)
14600 {
14601 asection *i;
14602
14603 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14604 {
14605 if (i->size == 0
14606 || i->reloc_count == 0
14607 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14608 continue;
14609
14610 abfd = i->owner;
14611 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14612 continue;
14613
14614 if (!init_reloc_cookie_for_section (&cookie, info, i))
14615 return -1;
14616
14617 if (_bfd_discard_section_stabs (abfd, i,
14618 elf_section_data (i)->sec_info,
14619 bfd_elf_reloc_symbol_deleted_p,
14620 &cookie))
14621 changed = 1;
14622
14623 fini_reloc_cookie_for_section (&cookie, i);
14624 }
14625 }
14626
14627 o = NULL;
14628 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14629 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14630 if (o != NULL)
14631 {
14632 asection *i;
14633 int eh_changed = 0;
14634 unsigned int eh_alignment; /* Octets. */
14635
14636 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14637 {
14638 if (i->size == 0)
14639 continue;
14640
14641 abfd = i->owner;
14642 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14643 continue;
14644
14645 if (!init_reloc_cookie_for_section (&cookie, info, i))
14646 return -1;
14647
14648 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14649 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14650 bfd_elf_reloc_symbol_deleted_p,
14651 &cookie))
14652 {
14653 eh_changed = 1;
14654 if (i->size != i->rawsize)
14655 changed = 1;
14656 }
14657
14658 fini_reloc_cookie_for_section (&cookie, i);
14659 }
14660
14661 eh_alignment = ((1 << o->alignment_power)
14662 * bfd_octets_per_byte (output_bfd, o));
14663 /* Skip over zero terminator, and prevent empty sections from
14664 adding alignment padding at the end. */
14665 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14666 if (i->size == 0)
14667 i->flags |= SEC_EXCLUDE;
14668 else if (i->size > 4)
14669 break;
14670 /* The last non-empty eh_frame section doesn't need padding. */
14671 if (i != NULL)
14672 i = i->map_tail.s;
14673 /* Any prior sections must pad the last FDE out to the output
14674 section alignment. Otherwise we might have zero padding
14675 between sections, which would be seen as a terminator. */
14676 for (; i != NULL; i = i->map_tail.s)
14677 if (i->size == 4)
14678 /* All but the last zero terminator should have been removed. */
14679 BFD_FAIL ();
14680 else
14681 {
14682 bfd_size_type size
14683 = (i->size + eh_alignment - 1) & -eh_alignment;
14684 if (i->size != size)
14685 {
14686 i->size = size;
14687 changed = 1;
14688 eh_changed = 1;
14689 }
14690 }
14691 if (eh_changed)
14692 elf_link_hash_traverse (elf_hash_table (info),
14693 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14694 }
14695
14696 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14697 {
14698 const struct elf_backend_data *bed;
14699 asection *s;
14700
14701 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14702 continue;
14703 s = abfd->sections;
14704 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14705 continue;
14706
14707 bed = get_elf_backend_data (abfd);
14708
14709 if (bed->elf_backend_discard_info != NULL)
14710 {
14711 if (!init_reloc_cookie (&cookie, info, abfd))
14712 return -1;
14713
14714 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14715 changed = 1;
14716
14717 fini_reloc_cookie (&cookie, abfd);
14718 }
14719 }
14720
14721 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14722 _bfd_elf_end_eh_frame_parsing (info);
14723
14724 if (info->eh_frame_hdr_type
14725 && !bfd_link_relocatable (info)
14726 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14727 changed = 1;
14728
14729 return changed;
14730 }
14731
14732 bool
14733 _bfd_elf_section_already_linked (bfd *abfd,
14734 asection *sec,
14735 struct bfd_link_info *info)
14736 {
14737 flagword flags;
14738 const char *name, *key;
14739 struct bfd_section_already_linked *l;
14740 struct bfd_section_already_linked_hash_entry *already_linked_list;
14741
14742 if (sec->output_section == bfd_abs_section_ptr)
14743 return false;
14744
14745 flags = sec->flags;
14746
14747 /* Return if it isn't a linkonce section. A comdat group section
14748 also has SEC_LINK_ONCE set. */
14749 if ((flags & SEC_LINK_ONCE) == 0)
14750 return false;
14751
14752 /* Don't put group member sections on our list of already linked
14753 sections. They are handled as a group via their group section. */
14754 if (elf_sec_group (sec) != NULL)
14755 return false;
14756
14757 /* For a SHT_GROUP section, use the group signature as the key. */
14758 name = sec->name;
14759 if ((flags & SEC_GROUP) != 0
14760 && elf_next_in_group (sec) != NULL
14761 && elf_group_name (elf_next_in_group (sec)) != NULL)
14762 key = elf_group_name (elf_next_in_group (sec));
14763 else
14764 {
14765 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14766 if (startswith (name, ".gnu.linkonce.")
14767 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14768 key++;
14769 else
14770 /* Must be a user linkonce section that doesn't follow gcc's
14771 naming convention. In this case we won't be matching
14772 single member groups. */
14773 key = name;
14774 }
14775
14776 already_linked_list = bfd_section_already_linked_table_lookup (key);
14777
14778 for (l = already_linked_list->entry; l != NULL; l = l->next)
14779 {
14780 /* We may have 2 different types of sections on the list: group
14781 sections with a signature of <key> (<key> is some string),
14782 and linkonce sections named .gnu.linkonce.<type>.<key>.
14783 Match like sections. LTO plugin sections are an exception.
14784 They are always named .gnu.linkonce.t.<key> and match either
14785 type of section. */
14786 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14787 && ((flags & SEC_GROUP) != 0
14788 || strcmp (name, l->sec->name) == 0))
14789 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14790 || (sec->owner->flags & BFD_PLUGIN) != 0)
14791 {
14792 /* The section has already been linked. See if we should
14793 issue a warning. */
14794 if (!_bfd_handle_already_linked (sec, l, info))
14795 return false;
14796
14797 if (flags & SEC_GROUP)
14798 {
14799 asection *first = elf_next_in_group (sec);
14800 asection *s = first;
14801
14802 while (s != NULL)
14803 {
14804 s->output_section = bfd_abs_section_ptr;
14805 /* Record which group discards it. */
14806 s->kept_section = l->sec;
14807 s = elf_next_in_group (s);
14808 /* These lists are circular. */
14809 if (s == first)
14810 break;
14811 }
14812 }
14813
14814 return true;
14815 }
14816 }
14817
14818 /* A single member comdat group section may be discarded by a
14819 linkonce section and vice versa. */
14820 if ((flags & SEC_GROUP) != 0)
14821 {
14822 asection *first = elf_next_in_group (sec);
14823
14824 if (first != NULL && elf_next_in_group (first) == first)
14825 /* Check this single member group against linkonce sections. */
14826 for (l = already_linked_list->entry; l != NULL; l = l->next)
14827 if ((l->sec->flags & SEC_GROUP) == 0
14828 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14829 {
14830 first->output_section = bfd_abs_section_ptr;
14831 first->kept_section = l->sec;
14832 sec->output_section = bfd_abs_section_ptr;
14833 break;
14834 }
14835 }
14836 else
14837 /* Check this linkonce section against single member groups. */
14838 for (l = already_linked_list->entry; l != NULL; l = l->next)
14839 if (l->sec->flags & SEC_GROUP)
14840 {
14841 asection *first = elf_next_in_group (l->sec);
14842
14843 if (first != NULL
14844 && elf_next_in_group (first) == first
14845 && bfd_elf_match_symbols_in_sections (first, sec, info))
14846 {
14847 sec->output_section = bfd_abs_section_ptr;
14848 sec->kept_section = first;
14849 break;
14850 }
14851 }
14852
14853 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14854 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14855 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14856 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14857 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14858 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14859 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14860 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14861 The reverse order cannot happen as there is never a bfd with only the
14862 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14863 matter as here were are looking only for cross-bfd sections. */
14864
14865 if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r."))
14866 for (l = already_linked_list->entry; l != NULL; l = l->next)
14867 if ((l->sec->flags & SEC_GROUP) == 0
14868 && startswith (l->sec->name, ".gnu.linkonce.t."))
14869 {
14870 if (abfd != l->sec->owner)
14871 sec->output_section = bfd_abs_section_ptr;
14872 break;
14873 }
14874
14875 /* This is the first section with this name. Record it. */
14876 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14877 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14878 return sec->output_section == bfd_abs_section_ptr;
14879 }
14880
14881 bool
14882 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14883 {
14884 return sym->st_shndx == SHN_COMMON;
14885 }
14886
14887 unsigned int
14888 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14889 {
14890 return SHN_COMMON;
14891 }
14892
14893 asection *
14894 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14895 {
14896 return bfd_com_section_ptr;
14897 }
14898
14899 bfd_vma
14900 _bfd_elf_default_got_elt_size (bfd *abfd,
14901 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14902 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14903 bfd *ibfd ATTRIBUTE_UNUSED,
14904 unsigned long symndx ATTRIBUTE_UNUSED)
14905 {
14906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14907 return bed->s->arch_size / 8;
14908 }
14909
14910 /* Routines to support the creation of dynamic relocs. */
14911
14912 /* Returns the name of the dynamic reloc section associated with SEC. */
14913
14914 static const char *
14915 get_dynamic_reloc_section_name (bfd * abfd,
14916 asection * sec,
14917 bool is_rela)
14918 {
14919 char *name;
14920 const char *old_name = bfd_section_name (sec);
14921 const char *prefix = is_rela ? ".rela" : ".rel";
14922
14923 if (old_name == NULL)
14924 return NULL;
14925
14926 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14927 sprintf (name, "%s%s", prefix, old_name);
14928
14929 return name;
14930 }
14931
14932 /* Returns the dynamic reloc section associated with SEC.
14933 If necessary compute the name of the dynamic reloc section based
14934 on SEC's name (looked up in ABFD's string table) and the setting
14935 of IS_RELA. */
14936
14937 asection *
14938 _bfd_elf_get_dynamic_reloc_section (bfd *abfd,
14939 asection *sec,
14940 bool is_rela)
14941 {
14942 asection *reloc_sec = elf_section_data (sec)->sreloc;
14943
14944 if (reloc_sec == NULL)
14945 {
14946 const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14947
14948 if (name != NULL)
14949 {
14950 reloc_sec = bfd_get_linker_section (abfd, name);
14951
14952 if (reloc_sec != NULL)
14953 elf_section_data (sec)->sreloc = reloc_sec;
14954 }
14955 }
14956
14957 return reloc_sec;
14958 }
14959
14960 /* Returns the dynamic reloc section associated with SEC. If the
14961 section does not exist it is created and attached to the DYNOBJ
14962 bfd and stored in the SRELOC field of SEC's elf_section_data
14963 structure.
14964
14965 ALIGNMENT is the alignment for the newly created section and
14966 IS_RELA defines whether the name should be .rela.<SEC's name>
14967 or .rel.<SEC's name>. The section name is looked up in the
14968 string table associated with ABFD. */
14969
14970 asection *
14971 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14972 bfd *dynobj,
14973 unsigned int alignment,
14974 bfd *abfd,
14975 bool is_rela)
14976 {
14977 asection * reloc_sec = elf_section_data (sec)->sreloc;
14978
14979 if (reloc_sec == NULL)
14980 {
14981 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14982
14983 if (name == NULL)
14984 return NULL;
14985
14986 reloc_sec = bfd_get_linker_section (dynobj, name);
14987
14988 if (reloc_sec == NULL)
14989 {
14990 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14991 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14992 if ((sec->flags & SEC_ALLOC) != 0)
14993 flags |= SEC_ALLOC | SEC_LOAD;
14994
14995 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14996 if (reloc_sec != NULL)
14997 {
14998 /* _bfd_elf_get_sec_type_attr chooses a section type by
14999 name. Override as it may be wrong, eg. for a user
15000 section named "auto" we'll get ".relauto" which is
15001 seen to be a .rela section. */
15002 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
15003 if (!bfd_set_section_alignment (reloc_sec, alignment))
15004 reloc_sec = NULL;
15005 }
15006 }
15007
15008 elf_section_data (sec)->sreloc = reloc_sec;
15009 }
15010
15011 return reloc_sec;
15012 }
15013
15014 /* Copy the ELF symbol type and other attributes for a linker script
15015 assignment from HSRC to HDEST. Generally this should be treated as
15016 if we found a strong non-dynamic definition for HDEST (except that
15017 ld ignores multiple definition errors). */
15018 void
15019 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
15020 struct bfd_link_hash_entry *hdest,
15021 struct bfd_link_hash_entry *hsrc)
15022 {
15023 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
15024 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
15025 Elf_Internal_Sym isym;
15026
15027 ehdest->type = ehsrc->type;
15028 ehdest->target_internal = ehsrc->target_internal;
15029
15030 isym.st_other = ehsrc->other;
15031 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false);
15032 }
15033
15034 /* Append a RELA relocation REL to section S in BFD. */
15035
15036 void
15037 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15038 {
15039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15040 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
15041 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
15042 bed->s->swap_reloca_out (abfd, rel, loc);
15043 }
15044
15045 /* Append a REL relocation REL to section S in BFD. */
15046
15047 void
15048 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15049 {
15050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15051 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
15052 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
15053 bed->s->swap_reloc_out (abfd, rel, loc);
15054 }
15055
15056 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15057
15058 struct bfd_link_hash_entry *
15059 bfd_elf_define_start_stop (struct bfd_link_info *info,
15060 const char *symbol, asection *sec)
15061 {
15062 struct elf_link_hash_entry *h;
15063
15064 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
15065 false, false, true);
15066 /* NB: Common symbols will be turned into definition later. */
15067 if (h != NULL
15068 && !h->root.ldscript_def
15069 && (h->root.type == bfd_link_hash_undefined
15070 || h->root.type == bfd_link_hash_undefweak
15071 || ((h->ref_regular || h->def_dynamic)
15072 && !h->def_regular
15073 && h->root.type != bfd_link_hash_common)))
15074 {
15075 bool was_dynamic = h->ref_dynamic || h->def_dynamic;
15076 h->verinfo.verdef = NULL;
15077 h->root.type = bfd_link_hash_defined;
15078 h->root.u.def.section = sec;
15079 h->root.u.def.value = 0;
15080 h->def_regular = 1;
15081 h->def_dynamic = 0;
15082 h->start_stop = 1;
15083 h->u2.start_stop_section = sec;
15084 if (symbol[0] == '.')
15085 {
15086 /* .startof. and .sizeof. symbols are local. */
15087 const struct elf_backend_data *bed;
15088 bed = get_elf_backend_data (info->output_bfd);
15089 (*bed->elf_backend_hide_symbol) (info, h, true);
15090 }
15091 else
15092 {
15093 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15094 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15095 | info->start_stop_visibility);
15096 if (was_dynamic)
15097 bfd_elf_link_record_dynamic_symbol (info, h);
15098 }
15099 return &h->root;
15100 }
15101 return NULL;
15102 }
15103
15104 /* Find dynamic relocs for H that apply to read-only sections. */
15105
15106 asection *
15107 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15108 {
15109 struct elf_dyn_relocs *p;
15110
15111 for (p = h->dyn_relocs; p != NULL; p = p->next)
15112 {
15113 asection *s = p->sec->output_section;
15114
15115 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15116 return p->sec;
15117 }
15118 return NULL;
15119 }
15120
15121 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15122 read-only sections. */
15123
15124 bool
15125 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15126 {
15127 asection *sec;
15128
15129 if (h->root.type == bfd_link_hash_indirect)
15130 return true;
15131
15132 sec = _bfd_elf_readonly_dynrelocs (h);
15133 if (sec != NULL)
15134 {
15135 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15136
15137 info->flags |= DF_TEXTREL;
15138 /* xgettext:c-format */
15139 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15140 "in read-only section `%pA'\n"),
15141 sec->owner, h->root.root.string, sec);
15142
15143 if (bfd_link_textrel_check (info))
15144 /* xgettext:c-format */
15145 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15146 "in read-only section `%pA'\n"),
15147 sec->owner, h->root.root.string, sec);
15148
15149 /* Not an error, just cut short the traversal. */
15150 return false;
15151 }
15152 return true;
15153 }
15154
15155 /* Add dynamic tags. */
15156
15157 bool
15158 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15159 bool need_dynamic_reloc)
15160 {
15161 struct elf_link_hash_table *htab = elf_hash_table (info);
15162
15163 if (htab->dynamic_sections_created)
15164 {
15165 /* Add some entries to the .dynamic section. We fill in the
15166 values later, in finish_dynamic_sections, but we must add
15167 the entries now so that we get the correct size for the
15168 .dynamic section. The DT_DEBUG entry is filled in by the
15169 dynamic linker and used by the debugger. */
15170 #define add_dynamic_entry(TAG, VAL) \
15171 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15172
15173 const struct elf_backend_data *bed
15174 = get_elf_backend_data (output_bfd);
15175
15176 if (bfd_link_executable (info))
15177 {
15178 if (!add_dynamic_entry (DT_DEBUG, 0))
15179 return false;
15180 }
15181
15182 if (htab->dt_pltgot_required || htab->splt->size != 0)
15183 {
15184 /* DT_PLTGOT is used by prelink even if there is no PLT
15185 relocation. */
15186 if (!add_dynamic_entry (DT_PLTGOT, 0))
15187 return false;
15188 }
15189
15190 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15191 {
15192 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15193 || !add_dynamic_entry (DT_PLTREL,
15194 (bed->rela_plts_and_copies_p
15195 ? DT_RELA : DT_REL))
15196 || !add_dynamic_entry (DT_JMPREL, 0))
15197 return false;
15198 }
15199
15200 if (htab->tlsdesc_plt
15201 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15202 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15203 return false;
15204
15205 if (need_dynamic_reloc)
15206 {
15207 if (bed->rela_plts_and_copies_p)
15208 {
15209 if (!add_dynamic_entry (DT_RELA, 0)
15210 || !add_dynamic_entry (DT_RELASZ, 0)
15211 || !add_dynamic_entry (DT_RELAENT,
15212 bed->s->sizeof_rela))
15213 return false;
15214 }
15215 else
15216 {
15217 if (!add_dynamic_entry (DT_REL, 0)
15218 || !add_dynamic_entry (DT_RELSZ, 0)
15219 || !add_dynamic_entry (DT_RELENT,
15220 bed->s->sizeof_rel))
15221 return false;
15222 }
15223
15224 /* If any dynamic relocs apply to a read-only section,
15225 then we need a DT_TEXTREL entry. */
15226 if ((info->flags & DF_TEXTREL) == 0)
15227 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15228 info);
15229
15230 if ((info->flags & DF_TEXTREL) != 0)
15231 {
15232 if (htab->ifunc_resolvers)
15233 info->callbacks->einfo
15234 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15235 "may result in a segfault at runtime; recompile with %s\n"),
15236 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15237
15238 if (!add_dynamic_entry (DT_TEXTREL, 0))
15239 return false;
15240 }
15241 }
15242 }
15243 #undef add_dynamic_entry
15244
15245 return true;
15246 }