]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.h
2002-03-14 H.J. Lu <hjl@gnu.org>
[thirdparty/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry *, PTR));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info *));
70 static void elf_link_output_relocs
71 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
76 struct elf_link_hash_entry **));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd *, struct bfd_link_info *, asection **));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection *));
85
86 /* Given an ELF BFD, add symbols to the global hash table as
87 appropriate. */
88
89 boolean
90 elf_bfd_link_add_symbols (abfd, info)
91 bfd *abfd;
92 struct bfd_link_info *info;
93 {
94 switch (bfd_get_format (abfd))
95 {
96 case bfd_object:
97 return elf_link_add_object_symbols (abfd, info);
98 case bfd_archive:
99 return elf_link_add_archive_symbols (abfd, info);
100 default:
101 bfd_set_error (bfd_error_wrong_format);
102 return false;
103 }
104 }
105 \f
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
107 static boolean
108 is_global_data_symbol_definition (abfd, sym)
109 bfd * abfd ATTRIBUTE_UNUSED;
110 Elf_Internal_Sym * sym;
111 {
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
114 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
115 return false;
116
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
119 return false;
120
121 /* If the section is undefined, then so is the symbol. */
122 if (sym->st_shndx == SHN_UNDEF)
123 return false;
124
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym->st_shndx == SHN_COMMON)
128 return false;
129
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
133 /* FIXME - this function is not coded yet:
134
135 return _bfd_is_global_symbol_definition (abfd, sym);
136
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
140 return false;
141
142 return true;
143 }
144
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
148 static boolean
149 elf_link_is_defined_archive_symbol (abfd, symdef)
150 bfd * abfd;
151 carsym * symdef;
152 {
153 Elf_Internal_Shdr * hdr;
154 Elf_Internal_Shdr * shndx_hdr;
155 Elf_External_Sym * esym;
156 Elf_External_Sym * esymend;
157 Elf_External_Sym * buf = NULL;
158 Elf_External_Sym_Shndx * shndx_buf = NULL;
159 Elf_External_Sym_Shndx * shndx;
160 bfd_size_type symcount;
161 bfd_size_type extsymcount;
162 bfd_size_type extsymoff;
163 boolean result = false;
164 file_ptr pos;
165 bfd_size_type amt;
166
167 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
168 if (abfd == (bfd *) NULL)
169 return false;
170
171 if (! bfd_check_format (abfd, bfd_object))
172 return false;
173
174 /* If we have already included the element containing this symbol in the
175 link then we do not need to include it again. Just claim that any symbol
176 it contains is not a definition, so that our caller will not decide to
177 (re)include this element. */
178 if (abfd->archive_pass)
179 return false;
180
181 /* Select the appropriate symbol table. */
182 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
183 {
184 hdr = &elf_tdata (abfd)->symtab_hdr;
185 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
186 }
187 else
188 {
189 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
190 shndx_hdr = NULL;
191 }
192
193 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
194
195 /* The sh_info field of the symtab header tells us where the
196 external symbols start. We don't care about the local symbols. */
197 if (elf_bad_symtab (abfd))
198 {
199 extsymcount = symcount;
200 extsymoff = 0;
201 }
202 else
203 {
204 extsymcount = symcount - hdr->sh_info;
205 extsymoff = hdr->sh_info;
206 }
207
208 amt = extsymcount * sizeof (Elf_External_Sym);
209 buf = (Elf_External_Sym *) bfd_malloc (amt);
210 if (buf == NULL && extsymcount != 0)
211 return false;
212
213 /* Read in the symbol table.
214 FIXME: This ought to be cached somewhere. */
215 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
216 if (bfd_seek (abfd, pos, SEEK_SET) != 0
217 || bfd_bread ((PTR) buf, amt, abfd) != amt)
218 goto error_exit;
219
220 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
221 {
222 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
223 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
224 if (shndx_buf == NULL && extsymcount != 0)
225 goto error_exit;
226
227 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
228 if (bfd_seek (abfd, pos, SEEK_SET) != 0
229 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
230 goto error_exit;
231 }
232
233 /* Scan the symbol table looking for SYMDEF. */
234 esymend = buf + extsymcount;
235 for (esym = buf, shndx = shndx_buf;
236 esym < esymend;
237 esym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
238 {
239 Elf_Internal_Sym sym;
240 const char * name;
241
242 elf_swap_symbol_in (abfd, esym, shndx, &sym);
243
244 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
245 if (name == (const char *) NULL)
246 break;
247
248 if (strcmp (name, symdef->name) == 0)
249 {
250 result = is_global_data_symbol_definition (abfd, & sym);
251 break;
252 }
253 }
254
255 error_exit:
256 if (shndx_buf != NULL)
257 free (shndx_buf);
258 if (buf != NULL)
259 free (buf);
260
261 return result;
262 }
263 \f
264 /* Add symbols from an ELF archive file to the linker hash table. We
265 don't use _bfd_generic_link_add_archive_symbols because of a
266 problem which arises on UnixWare. The UnixWare libc.so is an
267 archive which includes an entry libc.so.1 which defines a bunch of
268 symbols. The libc.so archive also includes a number of other
269 object files, which also define symbols, some of which are the same
270 as those defined in libc.so.1. Correct linking requires that we
271 consider each object file in turn, and include it if it defines any
272 symbols we need. _bfd_generic_link_add_archive_symbols does not do
273 this; it looks through the list of undefined symbols, and includes
274 any object file which defines them. When this algorithm is used on
275 UnixWare, it winds up pulling in libc.so.1 early and defining a
276 bunch of symbols. This means that some of the other objects in the
277 archive are not included in the link, which is incorrect since they
278 precede libc.so.1 in the archive.
279
280 Fortunately, ELF archive handling is simpler than that done by
281 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
282 oddities. In ELF, if we find a symbol in the archive map, and the
283 symbol is currently undefined, we know that we must pull in that
284 object file.
285
286 Unfortunately, we do have to make multiple passes over the symbol
287 table until nothing further is resolved. */
288
289 static boolean
290 elf_link_add_archive_symbols (abfd, info)
291 bfd *abfd;
292 struct bfd_link_info *info;
293 {
294 symindex c;
295 boolean *defined = NULL;
296 boolean *included = NULL;
297 carsym *symdefs;
298 boolean loop;
299 bfd_size_type amt;
300
301 if (! bfd_has_map (abfd))
302 {
303 /* An empty archive is a special case. */
304 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
305 return true;
306 bfd_set_error (bfd_error_no_armap);
307 return false;
308 }
309
310 /* Keep track of all symbols we know to be already defined, and all
311 files we know to be already included. This is to speed up the
312 second and subsequent passes. */
313 c = bfd_ardata (abfd)->symdef_count;
314 if (c == 0)
315 return true;
316 amt = c;
317 amt *= sizeof (boolean);
318 defined = (boolean *) bfd_malloc (amt);
319 included = (boolean *) bfd_malloc (amt);
320 if (defined == (boolean *) NULL || included == (boolean *) NULL)
321 goto error_return;
322 memset (defined, 0, (size_t) amt);
323 memset (included, 0, (size_t) amt);
324
325 symdefs = bfd_ardata (abfd)->symdefs;
326
327 do
328 {
329 file_ptr last;
330 symindex i;
331 carsym *symdef;
332 carsym *symdefend;
333
334 loop = false;
335 last = -1;
336
337 symdef = symdefs;
338 symdefend = symdef + c;
339 for (i = 0; symdef < symdefend; symdef++, i++)
340 {
341 struct elf_link_hash_entry *h;
342 bfd *element;
343 struct bfd_link_hash_entry *undefs_tail;
344 symindex mark;
345
346 if (defined[i] || included[i])
347 continue;
348 if (symdef->file_offset == last)
349 {
350 included[i] = true;
351 continue;
352 }
353
354 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
355 false, false, false);
356
357 if (h == NULL)
358 {
359 char *p, *copy;
360
361 /* If this is a default version (the name contains @@),
362 look up the symbol again without the version. The
363 effect is that references to the symbol without the
364 version will be matched by the default symbol in the
365 archive. */
366
367 p = strchr (symdef->name, ELF_VER_CHR);
368 if (p == NULL || p[1] != ELF_VER_CHR)
369 continue;
370
371 copy = bfd_alloc (abfd, (bfd_size_type) (p - symdef->name + 1));
372 if (copy == NULL)
373 goto error_return;
374 memcpy (copy, symdef->name, (size_t) (p - symdef->name));
375 copy[p - symdef->name] = '\0';
376
377 h = elf_link_hash_lookup (elf_hash_table (info), copy,
378 false, false, false);
379
380 bfd_release (abfd, copy);
381 }
382
383 if (h == NULL)
384 continue;
385
386 if (h->root.type == bfd_link_hash_common)
387 {
388 /* We currently have a common symbol. The archive map contains
389 a reference to this symbol, so we may want to include it. We
390 only want to include it however, if this archive element
391 contains a definition of the symbol, not just another common
392 declaration of it.
393
394 Unfortunately some archivers (including GNU ar) will put
395 declarations of common symbols into their archive maps, as
396 well as real definitions, so we cannot just go by the archive
397 map alone. Instead we must read in the element's symbol
398 table and check that to see what kind of symbol definition
399 this is. */
400 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
401 continue;
402 }
403 else if (h->root.type != bfd_link_hash_undefined)
404 {
405 if (h->root.type != bfd_link_hash_undefweak)
406 defined[i] = true;
407 continue;
408 }
409
410 /* We need to include this archive member. */
411 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
412 if (element == (bfd *) NULL)
413 goto error_return;
414
415 if (! bfd_check_format (element, bfd_object))
416 goto error_return;
417
418 /* Doublecheck that we have not included this object
419 already--it should be impossible, but there may be
420 something wrong with the archive. */
421 if (element->archive_pass != 0)
422 {
423 bfd_set_error (bfd_error_bad_value);
424 goto error_return;
425 }
426 element->archive_pass = 1;
427
428 undefs_tail = info->hash->undefs_tail;
429
430 if (! (*info->callbacks->add_archive_element) (info, element,
431 symdef->name))
432 goto error_return;
433 if (! elf_link_add_object_symbols (element, info))
434 goto error_return;
435
436 /* If there are any new undefined symbols, we need to make
437 another pass through the archive in order to see whether
438 they can be defined. FIXME: This isn't perfect, because
439 common symbols wind up on undefs_tail and because an
440 undefined symbol which is defined later on in this pass
441 does not require another pass. This isn't a bug, but it
442 does make the code less efficient than it could be. */
443 if (undefs_tail != info->hash->undefs_tail)
444 loop = true;
445
446 /* Look backward to mark all symbols from this object file
447 which we have already seen in this pass. */
448 mark = i;
449 do
450 {
451 included[mark] = true;
452 if (mark == 0)
453 break;
454 --mark;
455 }
456 while (symdefs[mark].file_offset == symdef->file_offset);
457
458 /* We mark subsequent symbols from this object file as we go
459 on through the loop. */
460 last = symdef->file_offset;
461 }
462 }
463 while (loop);
464
465 free (defined);
466 free (included);
467
468 return true;
469
470 error_return:
471 if (defined != (boolean *) NULL)
472 free (defined);
473 if (included != (boolean *) NULL)
474 free (included);
475 return false;
476 }
477
478 /* This function is called when we want to define a new symbol. It
479 handles the various cases which arise when we find a definition in
480 a dynamic object, or when there is already a definition in a
481 dynamic object. The new symbol is described by NAME, SYM, PSEC,
482 and PVALUE. We set SYM_HASH to the hash table entry. We set
483 OVERRIDE if the old symbol is overriding a new definition. We set
484 TYPE_CHANGE_OK if it is OK for the type to change. We set
485 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
486 change, we mean that we shouldn't warn if the type or size does
487 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
488 a shared object. */
489
490 static boolean
491 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
492 override, type_change_ok, size_change_ok, dt_needed)
493 bfd *abfd;
494 struct bfd_link_info *info;
495 const char *name;
496 Elf_Internal_Sym *sym;
497 asection **psec;
498 bfd_vma *pvalue;
499 struct elf_link_hash_entry **sym_hash;
500 boolean *override;
501 boolean *type_change_ok;
502 boolean *size_change_ok;
503 boolean dt_needed;
504 {
505 asection *sec;
506 struct elf_link_hash_entry *h;
507 int bind;
508 bfd *oldbfd;
509 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
510
511 *override = false;
512
513 sec = *psec;
514 bind = ELF_ST_BIND (sym->st_info);
515
516 if (! bfd_is_und_section (sec))
517 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
518 else
519 h = ((struct elf_link_hash_entry *)
520 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
521 if (h == NULL)
522 return false;
523 *sym_hash = h;
524
525 /* This code is for coping with dynamic objects, and is only useful
526 if we are doing an ELF link. */
527 if (info->hash->creator != abfd->xvec)
528 return true;
529
530 /* For merging, we only care about real symbols. */
531
532 while (h->root.type == bfd_link_hash_indirect
533 || h->root.type == bfd_link_hash_warning)
534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
535
536 /* If we just created the symbol, mark it as being an ELF symbol.
537 Other than that, there is nothing to do--there is no merge issue
538 with a newly defined symbol--so we just return. */
539
540 if (h->root.type == bfd_link_hash_new)
541 {
542 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
543 return true;
544 }
545
546 /* OLDBFD is a BFD associated with the existing symbol. */
547
548 switch (h->root.type)
549 {
550 default:
551 oldbfd = NULL;
552 break;
553
554 case bfd_link_hash_undefined:
555 case bfd_link_hash_undefweak:
556 oldbfd = h->root.u.undef.abfd;
557 break;
558
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 oldbfd = h->root.u.def.section->owner;
562 break;
563
564 case bfd_link_hash_common:
565 oldbfd = h->root.u.c.p->section->owner;
566 break;
567 }
568
569 /* In cases involving weak versioned symbols, we may wind up trying
570 to merge a symbol with itself. Catch that here, to avoid the
571 confusion that results if we try to override a symbol with
572 itself. The additional tests catch cases like
573 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
574 dynamic object, which we do want to handle here. */
575 if (abfd == oldbfd
576 && ((abfd->flags & DYNAMIC) == 0
577 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
578 return true;
579
580 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
581 respectively, is from a dynamic object. */
582
583 if ((abfd->flags & DYNAMIC) != 0)
584 newdyn = true;
585 else
586 newdyn = false;
587
588 if (oldbfd != NULL)
589 olddyn = (oldbfd->flags & DYNAMIC) != 0;
590 else
591 {
592 asection *hsec;
593
594 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
595 indices used by MIPS ELF. */
596 switch (h->root.type)
597 {
598 default:
599 hsec = NULL;
600 break;
601
602 case bfd_link_hash_defined:
603 case bfd_link_hash_defweak:
604 hsec = h->root.u.def.section;
605 break;
606
607 case bfd_link_hash_common:
608 hsec = h->root.u.c.p->section;
609 break;
610 }
611
612 if (hsec == NULL)
613 olddyn = false;
614 else
615 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
616 }
617
618 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
619 respectively, appear to be a definition rather than reference. */
620
621 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
622 newdef = false;
623 else
624 newdef = true;
625
626 if (h->root.type == bfd_link_hash_undefined
627 || h->root.type == bfd_link_hash_undefweak
628 || h->root.type == bfd_link_hash_common)
629 olddef = false;
630 else
631 olddef = true;
632
633 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
634 symbol, respectively, appears to be a common symbol in a dynamic
635 object. If a symbol appears in an uninitialized section, and is
636 not weak, and is not a function, then it may be a common symbol
637 which was resolved when the dynamic object was created. We want
638 to treat such symbols specially, because they raise special
639 considerations when setting the symbol size: if the symbol
640 appears as a common symbol in a regular object, and the size in
641 the regular object is larger, we must make sure that we use the
642 larger size. This problematic case can always be avoided in C,
643 but it must be handled correctly when using Fortran shared
644 libraries.
645
646 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
647 likewise for OLDDYNCOMMON and OLDDEF.
648
649 Note that this test is just a heuristic, and that it is quite
650 possible to have an uninitialized symbol in a shared object which
651 is really a definition, rather than a common symbol. This could
652 lead to some minor confusion when the symbol really is a common
653 symbol in some regular object. However, I think it will be
654 harmless. */
655
656 if (newdyn
657 && newdef
658 && (sec->flags & SEC_ALLOC) != 0
659 && (sec->flags & SEC_LOAD) == 0
660 && sym->st_size > 0
661 && bind != STB_WEAK
662 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
663 newdyncommon = true;
664 else
665 newdyncommon = false;
666
667 if (olddyn
668 && olddef
669 && h->root.type == bfd_link_hash_defined
670 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
671 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
672 && (h->root.u.def.section->flags & SEC_LOAD) == 0
673 && h->size > 0
674 && h->type != STT_FUNC)
675 olddyncommon = true;
676 else
677 olddyncommon = false;
678
679 /* It's OK to change the type if either the existing symbol or the
680 new symbol is weak unless it comes from a DT_NEEDED entry of
681 a shared object, in which case, the DT_NEEDED entry may not be
682 required at the run time. */
683
684 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
685 || h->root.type == bfd_link_hash_undefweak
686 || bind == STB_WEAK)
687 *type_change_ok = true;
688
689 /* It's OK to change the size if either the existing symbol or the
690 new symbol is weak, or if the old symbol is undefined. */
691
692 if (*type_change_ok
693 || h->root.type == bfd_link_hash_undefined)
694 *size_change_ok = true;
695
696 /* If both the old and the new symbols look like common symbols in a
697 dynamic object, set the size of the symbol to the larger of the
698 two. */
699
700 if (olddyncommon
701 && newdyncommon
702 && sym->st_size != h->size)
703 {
704 /* Since we think we have two common symbols, issue a multiple
705 common warning if desired. Note that we only warn if the
706 size is different. If the size is the same, we simply let
707 the old symbol override the new one as normally happens with
708 symbols defined in dynamic objects. */
709
710 if (! ((*info->callbacks->multiple_common)
711 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
712 h->size, abfd, bfd_link_hash_common, sym->st_size)))
713 return false;
714
715 if (sym->st_size > h->size)
716 h->size = sym->st_size;
717
718 *size_change_ok = true;
719 }
720
721 /* If we are looking at a dynamic object, and we have found a
722 definition, we need to see if the symbol was already defined by
723 some other object. If so, we want to use the existing
724 definition, and we do not want to report a multiple symbol
725 definition error; we do this by clobbering *PSEC to be
726 bfd_und_section_ptr.
727
728 We treat a common symbol as a definition if the symbol in the
729 shared library is a function, since common symbols always
730 represent variables; this can cause confusion in principle, but
731 any such confusion would seem to indicate an erroneous program or
732 shared library. We also permit a common symbol in a regular
733 object to override a weak symbol in a shared object.
734
735 We prefer a non-weak definition in a shared library to a weak
736 definition in the executable unless it comes from a DT_NEEDED
737 entry of a shared object, in which case, the DT_NEEDED entry
738 may not be required at the run time. */
739
740 if (newdyn
741 && newdef
742 && (olddef
743 || (h->root.type == bfd_link_hash_common
744 && (bind == STB_WEAK
745 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
746 && (h->root.type != bfd_link_hash_defweak
747 || dt_needed
748 || bind == STB_WEAK))
749 {
750 *override = true;
751 newdef = false;
752 newdyncommon = false;
753
754 *psec = sec = bfd_und_section_ptr;
755 *size_change_ok = true;
756
757 /* If we get here when the old symbol is a common symbol, then
758 we are explicitly letting it override a weak symbol or
759 function in a dynamic object, and we don't want to warn about
760 a type change. If the old symbol is a defined symbol, a type
761 change warning may still be appropriate. */
762
763 if (h->root.type == bfd_link_hash_common)
764 *type_change_ok = true;
765 }
766
767 /* Handle the special case of an old common symbol merging with a
768 new symbol which looks like a common symbol in a shared object.
769 We change *PSEC and *PVALUE to make the new symbol look like a
770 common symbol, and let _bfd_generic_link_add_one_symbol will do
771 the right thing. */
772
773 if (newdyncommon
774 && h->root.type == bfd_link_hash_common)
775 {
776 *override = true;
777 newdef = false;
778 newdyncommon = false;
779 *pvalue = sym->st_size;
780 *psec = sec = bfd_com_section_ptr;
781 *size_change_ok = true;
782 }
783
784 /* If the old symbol is from a dynamic object, and the new symbol is
785 a definition which is not from a dynamic object, then the new
786 symbol overrides the old symbol. Symbols from regular files
787 always take precedence over symbols from dynamic objects, even if
788 they are defined after the dynamic object in the link.
789
790 As above, we again permit a common symbol in a regular object to
791 override a definition in a shared object if the shared object
792 symbol is a function or is weak.
793
794 As above, we permit a non-weak definition in a shared object to
795 override a weak definition in a regular object. */
796
797 if (! newdyn
798 && (newdef
799 || (bfd_is_com_section (sec)
800 && (h->root.type == bfd_link_hash_defweak
801 || h->type == STT_FUNC)))
802 && olddyn
803 && olddef
804 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
805 && (bind != STB_WEAK
806 || h->root.type == bfd_link_hash_defweak))
807 {
808 /* Change the hash table entry to undefined, and let
809 _bfd_generic_link_add_one_symbol do the right thing with the
810 new definition. */
811
812 h->root.type = bfd_link_hash_undefined;
813 h->root.u.undef.abfd = h->root.u.def.section->owner;
814 *size_change_ok = true;
815
816 olddef = false;
817 olddyncommon = false;
818
819 /* We again permit a type change when a common symbol may be
820 overriding a function. */
821
822 if (bfd_is_com_section (sec))
823 *type_change_ok = true;
824
825 /* This union may have been set to be non-NULL when this symbol
826 was seen in a dynamic object. We must force the union to be
827 NULL, so that it is correct for a regular symbol. */
828
829 h->verinfo.vertree = NULL;
830
831 /* In this special case, if H is the target of an indirection,
832 we want the caller to frob with H rather than with the
833 indirect symbol. That will permit the caller to redefine the
834 target of the indirection, rather than the indirect symbol
835 itself. FIXME: This will break the -y option if we store a
836 symbol with a different name. */
837 *sym_hash = h;
838 }
839
840 /* Handle the special case of a new common symbol merging with an
841 old symbol that looks like it might be a common symbol defined in
842 a shared object. Note that we have already handled the case in
843 which a new common symbol should simply override the definition
844 in the shared library. */
845
846 if (! newdyn
847 && bfd_is_com_section (sec)
848 && olddyncommon)
849 {
850 /* It would be best if we could set the hash table entry to a
851 common symbol, but we don't know what to use for the section
852 or the alignment. */
853 if (! ((*info->callbacks->multiple_common)
854 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
855 h->size, abfd, bfd_link_hash_common, sym->st_size)))
856 return false;
857
858 /* If the predumed common symbol in the dynamic object is
859 larger, pretend that the new symbol has its size. */
860
861 if (h->size > *pvalue)
862 *pvalue = h->size;
863
864 /* FIXME: We no longer know the alignment required by the symbol
865 in the dynamic object, so we just wind up using the one from
866 the regular object. */
867
868 olddef = false;
869 olddyncommon = false;
870
871 h->root.type = bfd_link_hash_undefined;
872 h->root.u.undef.abfd = h->root.u.def.section->owner;
873
874 *size_change_ok = true;
875 *type_change_ok = true;
876
877 h->verinfo.vertree = NULL;
878 }
879
880 /* Handle the special case of a weak definition in a regular object
881 followed by a non-weak definition in a shared object. In this
882 case, we prefer the definition in the shared object unless it
883 comes from a DT_NEEDED entry of a shared object, in which case,
884 the DT_NEEDED entry may not be required at the run time. */
885 if (olddef
886 && ! dt_needed
887 && h->root.type == bfd_link_hash_defweak
888 && newdef
889 && newdyn
890 && bind != STB_WEAK)
891 {
892 /* To make this work we have to frob the flags so that the rest
893 of the code does not think we are using the regular
894 definition. */
895 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
896 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
897 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
898 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
899 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
900 | ELF_LINK_HASH_DEF_DYNAMIC);
901
902 /* If H is the target of an indirection, we want the caller to
903 use H rather than the indirect symbol. Otherwise if we are
904 defining a new indirect symbol we will wind up attaching it
905 to the entry we are overriding. */
906 *sym_hash = h;
907 }
908
909 /* Handle the special case of a non-weak definition in a shared
910 object followed by a weak definition in a regular object. In
911 this case we prefer to definition in the shared object. To make
912 this work we have to tell the caller to not treat the new symbol
913 as a definition. */
914 if (olddef
915 && olddyn
916 && h->root.type != bfd_link_hash_defweak
917 && newdef
918 && ! newdyn
919 && bind == STB_WEAK)
920 *override = true;
921
922 return true;
923 }
924
925 /* This function is called to create an indirect symbol from the
926 default for the symbol with the default version if needed. The
927 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
928 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
929 indicates if it comes from a DT_NEEDED entry of a shared object. */
930
931 static boolean
932 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
933 dynsym, override, dt_needed)
934 bfd *abfd;
935 struct bfd_link_info *info;
936 struct elf_link_hash_entry *h;
937 const char *name;
938 Elf_Internal_Sym *sym;
939 asection **sec;
940 bfd_vma *value;
941 boolean *dynsym;
942 boolean override;
943 boolean dt_needed;
944 {
945 boolean type_change_ok;
946 boolean size_change_ok;
947 char *shortname;
948 struct elf_link_hash_entry *hi;
949 struct elf_backend_data *bed;
950 boolean collect;
951 boolean dynamic;
952 char *p;
953
954 /* If this symbol has a version, and it is the default version, we
955 create an indirect symbol from the default name to the fully
956 decorated name. This will cause external references which do not
957 specify a version to be bound to this version of the symbol. */
958 p = strchr (name, ELF_VER_CHR);
959 if (p == NULL || p[1] != ELF_VER_CHR)
960 return true;
961
962 if (override)
963 {
964 /* We are overridden by an old defition. We need to check if we
965 need to crreate the indirect symbol from the default name. */
966 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
967 false, false);
968 BFD_ASSERT (hi != NULL);
969 if (hi == h)
970 return true;
971 while (hi->root.type == bfd_link_hash_indirect
972 || hi->root.type == bfd_link_hash_warning)
973 {
974 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
975 if (hi == h)
976 return true;
977 }
978 }
979
980 bed = get_elf_backend_data (abfd);
981 collect = bed->collect;
982 dynamic = (abfd->flags & DYNAMIC) != 0;
983
984 shortname = bfd_hash_allocate (&info->hash->table,
985 (size_t) (p - name + 1));
986 if (shortname == NULL)
987 return false;
988 strncpy (shortname, name, (size_t) (p - name));
989 shortname [p - name] = '\0';
990
991 /* We are going to create a new symbol. Merge it with any existing
992 symbol with this name. For the purposes of the merge, act as
993 though we were defining the symbol we just defined, although we
994 actually going to define an indirect symbol. */
995 type_change_ok = false;
996 size_change_ok = false;
997 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
998 &hi, &override, &type_change_ok,
999 &size_change_ok, dt_needed))
1000 return false;
1001
1002 if (! override)
1003 {
1004 if (! (_bfd_generic_link_add_one_symbol
1005 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1006 (bfd_vma) 0, name, false, collect,
1007 (struct bfd_link_hash_entry **) &hi)))
1008 return false;
1009 }
1010 else
1011 {
1012 /* In this case the symbol named SHORTNAME is overriding the
1013 indirect symbol we want to add. We were planning on making
1014 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1015 is the name without a version. NAME is the fully versioned
1016 name, and it is the default version.
1017
1018 Overriding means that we already saw a definition for the
1019 symbol SHORTNAME in a regular object, and it is overriding
1020 the symbol defined in the dynamic object.
1021
1022 When this happens, we actually want to change NAME, the
1023 symbol we just added, to refer to SHORTNAME. This will cause
1024 references to NAME in the shared object to become references
1025 to SHORTNAME in the regular object. This is what we expect
1026 when we override a function in a shared object: that the
1027 references in the shared object will be mapped to the
1028 definition in the regular object. */
1029
1030 while (hi->root.type == bfd_link_hash_indirect
1031 || hi->root.type == bfd_link_hash_warning)
1032 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1033
1034 h->root.type = bfd_link_hash_indirect;
1035 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1036 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1037 {
1038 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1039 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1040 if (hi->elf_link_hash_flags
1041 & (ELF_LINK_HASH_REF_REGULAR
1042 | ELF_LINK_HASH_DEF_REGULAR))
1043 {
1044 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1045 return false;
1046 }
1047 }
1048
1049 /* Now set HI to H, so that the following code will set the
1050 other fields correctly. */
1051 hi = h;
1052 }
1053
1054 /* If there is a duplicate definition somewhere, then HI may not
1055 point to an indirect symbol. We will have reported an error to
1056 the user in that case. */
1057
1058 if (hi->root.type == bfd_link_hash_indirect)
1059 {
1060 struct elf_link_hash_entry *ht;
1061
1062 /* If the symbol became indirect, then we assume that we have
1063 not seen a definition before. */
1064 BFD_ASSERT ((hi->elf_link_hash_flags
1065 & (ELF_LINK_HASH_DEF_DYNAMIC
1066 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1067
1068 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1069 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1070
1071 /* See if the new flags lead us to realize that the symbol must
1072 be dynamic. */
1073 if (! *dynsym)
1074 {
1075 if (! dynamic)
1076 {
1077 if (info->shared
1078 || ((hi->elf_link_hash_flags
1079 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1080 *dynsym = true;
1081 }
1082 else
1083 {
1084 if ((hi->elf_link_hash_flags
1085 & ELF_LINK_HASH_REF_REGULAR) != 0)
1086 *dynsym = true;
1087 }
1088 }
1089 }
1090
1091 /* We also need to define an indirection from the nondefault version
1092 of the symbol. */
1093
1094 shortname = bfd_hash_allocate (&info->hash->table, strlen (name));
1095 if (shortname == NULL)
1096 return false;
1097 strncpy (shortname, name, (size_t) (p - name));
1098 strcpy (shortname + (p - name), p + 1);
1099
1100 /* Once again, merge with any existing symbol. */
1101 type_change_ok = false;
1102 size_change_ok = false;
1103 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1104 &hi, &override, &type_change_ok,
1105 &size_change_ok, dt_needed))
1106 return false;
1107
1108 if (override)
1109 {
1110 /* Here SHORTNAME is a versioned name, so we don't expect to see
1111 the type of override we do in the case above. */
1112 (*_bfd_error_handler)
1113 (_("%s: warning: unexpected redefinition of `%s'"),
1114 bfd_archive_filename (abfd), shortname);
1115 }
1116 else
1117 {
1118 if (! (_bfd_generic_link_add_one_symbol
1119 (info, abfd, shortname, BSF_INDIRECT,
1120 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1121 collect, (struct bfd_link_hash_entry **) &hi)))
1122 return false;
1123
1124 /* If there is a duplicate definition somewhere, then HI may not
1125 point to an indirect symbol. We will have reported an error
1126 to the user in that case. */
1127
1128 if (hi->root.type == bfd_link_hash_indirect)
1129 {
1130 /* If the symbol became indirect, then we assume that we have
1131 not seen a definition before. */
1132 BFD_ASSERT ((hi->elf_link_hash_flags
1133 & (ELF_LINK_HASH_DEF_DYNAMIC
1134 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1135
1136 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1137
1138 /* See if the new flags lead us to realize that the symbol
1139 must be dynamic. */
1140 if (! *dynsym)
1141 {
1142 if (! dynamic)
1143 {
1144 if (info->shared
1145 || ((hi->elf_link_hash_flags
1146 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1147 *dynsym = true;
1148 }
1149 else
1150 {
1151 if ((hi->elf_link_hash_flags
1152 & ELF_LINK_HASH_REF_REGULAR) != 0)
1153 *dynsym = true;
1154 }
1155 }
1156 }
1157 }
1158
1159 return true;
1160 }
1161
1162 /* Add symbols from an ELF object file to the linker hash table. */
1163
1164 static boolean
1165 elf_link_add_object_symbols (abfd, info)
1166 bfd *abfd;
1167 struct bfd_link_info *info;
1168 {
1169 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1170 const Elf_Internal_Sym *,
1171 const char **, flagword *,
1172 asection **, bfd_vma *));
1173 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1174 asection *, const Elf_Internal_Rela *));
1175 boolean collect;
1176 Elf_Internal_Shdr *hdr;
1177 Elf_Internal_Shdr *shndx_hdr;
1178 bfd_size_type symcount;
1179 bfd_size_type extsymcount;
1180 bfd_size_type extsymoff;
1181 Elf_External_Sym *buf = NULL;
1182 Elf_External_Sym_Shndx *shndx_buf = NULL;
1183 Elf_External_Sym_Shndx *shndx;
1184 struct elf_link_hash_entry **sym_hash;
1185 boolean dynamic;
1186 Elf_External_Versym *extversym = NULL;
1187 Elf_External_Versym *ever;
1188 Elf_External_Dyn *dynbuf = NULL;
1189 struct elf_link_hash_entry *weaks;
1190 Elf_External_Sym *esym;
1191 Elf_External_Sym *esymend;
1192 struct elf_backend_data *bed;
1193 boolean dt_needed;
1194 struct elf_link_hash_table * hash_table;
1195 file_ptr pos;
1196 bfd_size_type amt;
1197
1198 hash_table = elf_hash_table (info);
1199
1200 bed = get_elf_backend_data (abfd);
1201 add_symbol_hook = bed->elf_add_symbol_hook;
1202 collect = bed->collect;
1203
1204 if ((abfd->flags & DYNAMIC) == 0)
1205 dynamic = false;
1206 else
1207 {
1208 dynamic = true;
1209
1210 /* You can't use -r against a dynamic object. Also, there's no
1211 hope of using a dynamic object which does not exactly match
1212 the format of the output file. */
1213 if (info->relocateable || info->hash->creator != abfd->xvec)
1214 {
1215 bfd_set_error (bfd_error_invalid_operation);
1216 goto error_return;
1217 }
1218 }
1219
1220 /* As a GNU extension, any input sections which are named
1221 .gnu.warning.SYMBOL are treated as warning symbols for the given
1222 symbol. This differs from .gnu.warning sections, which generate
1223 warnings when they are included in an output file. */
1224 if (! info->shared)
1225 {
1226 asection *s;
1227
1228 for (s = abfd->sections; s != NULL; s = s->next)
1229 {
1230 const char *name;
1231
1232 name = bfd_get_section_name (abfd, s);
1233 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1234 {
1235 char *msg;
1236 bfd_size_type sz;
1237
1238 name += sizeof ".gnu.warning." - 1;
1239
1240 /* If this is a shared object, then look up the symbol
1241 in the hash table. If it is there, and it is already
1242 been defined, then we will not be using the entry
1243 from this shared object, so we don't need to warn.
1244 FIXME: If we see the definition in a regular object
1245 later on, we will warn, but we shouldn't. The only
1246 fix is to keep track of what warnings we are supposed
1247 to emit, and then handle them all at the end of the
1248 link. */
1249 if (dynamic && abfd->xvec == info->hash->creator)
1250 {
1251 struct elf_link_hash_entry *h;
1252
1253 h = elf_link_hash_lookup (hash_table, name,
1254 false, false, true);
1255
1256 /* FIXME: What about bfd_link_hash_common? */
1257 if (h != NULL
1258 && (h->root.type == bfd_link_hash_defined
1259 || h->root.type == bfd_link_hash_defweak))
1260 {
1261 /* We don't want to issue this warning. Clobber
1262 the section size so that the warning does not
1263 get copied into the output file. */
1264 s->_raw_size = 0;
1265 continue;
1266 }
1267 }
1268
1269 sz = bfd_section_size (abfd, s);
1270 msg = (char *) bfd_alloc (abfd, sz + 1);
1271 if (msg == NULL)
1272 goto error_return;
1273
1274 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1275 goto error_return;
1276
1277 msg[sz] = '\0';
1278
1279 if (! (_bfd_generic_link_add_one_symbol
1280 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1281 false, collect, (struct bfd_link_hash_entry **) NULL)))
1282 goto error_return;
1283
1284 if (! info->relocateable)
1285 {
1286 /* Clobber the section size so that the warning does
1287 not get copied into the output file. */
1288 s->_raw_size = 0;
1289 }
1290 }
1291 }
1292 }
1293
1294 /* If this is a dynamic object, we always link against the .dynsym
1295 symbol table, not the .symtab symbol table. The dynamic linker
1296 will only see the .dynsym symbol table, so there is no reason to
1297 look at .symtab for a dynamic object. */
1298
1299 if (! dynamic || elf_dynsymtab (abfd) == 0)
1300 {
1301 hdr = &elf_tdata (abfd)->symtab_hdr;
1302 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1303 }
1304 else
1305 {
1306 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1307 shndx_hdr = NULL;
1308 }
1309
1310 if (dynamic)
1311 {
1312 /* Read in any version definitions. */
1313
1314 if (! _bfd_elf_slurp_version_tables (abfd))
1315 goto error_return;
1316
1317 /* Read in the symbol versions, but don't bother to convert them
1318 to internal format. */
1319 if (elf_dynversym (abfd) != 0)
1320 {
1321 Elf_Internal_Shdr *versymhdr;
1322
1323 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1324 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1325 if (extversym == NULL)
1326 goto error_return;
1327 amt = versymhdr->sh_size;
1328 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1329 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1330 goto error_return;
1331 }
1332 }
1333
1334 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1335
1336 /* The sh_info field of the symtab header tells us where the
1337 external symbols start. We don't care about the local symbols at
1338 this point. */
1339 if (elf_bad_symtab (abfd))
1340 {
1341 extsymcount = symcount;
1342 extsymoff = 0;
1343 }
1344 else
1345 {
1346 extsymcount = symcount - hdr->sh_info;
1347 extsymoff = hdr->sh_info;
1348 }
1349
1350 amt = extsymcount * sizeof (Elf_External_Sym);
1351 buf = (Elf_External_Sym *) bfd_malloc (amt);
1352 if (buf == NULL && extsymcount != 0)
1353 goto error_return;
1354
1355 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1356 {
1357 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1358 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
1359 if (shndx_buf == NULL && extsymcount != 0)
1360 goto error_return;
1361 }
1362
1363 /* We store a pointer to the hash table entry for each external
1364 symbol. */
1365 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1366 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1367 if (sym_hash == NULL)
1368 goto error_return;
1369 elf_sym_hashes (abfd) = sym_hash;
1370
1371 dt_needed = false;
1372
1373 if (! dynamic)
1374 {
1375 /* If we are creating a shared library, create all the dynamic
1376 sections immediately. We need to attach them to something,
1377 so we attach them to this BFD, provided it is the right
1378 format. FIXME: If there are no input BFD's of the same
1379 format as the output, we can't make a shared library. */
1380 if (info->shared
1381 && is_elf_hash_table (info)
1382 && ! hash_table->dynamic_sections_created
1383 && abfd->xvec == info->hash->creator)
1384 {
1385 if (! elf_link_create_dynamic_sections (abfd, info))
1386 goto error_return;
1387 }
1388 }
1389 else if (! is_elf_hash_table (info))
1390 goto error_return;
1391 else
1392 {
1393 asection *s;
1394 boolean add_needed;
1395 const char *name;
1396 bfd_size_type oldsize;
1397 bfd_size_type strindex;
1398
1399 /* Find the name to use in a DT_NEEDED entry that refers to this
1400 object. If the object has a DT_SONAME entry, we use it.
1401 Otherwise, if the generic linker stuck something in
1402 elf_dt_name, we use that. Otherwise, we just use the file
1403 name. If the generic linker put a null string into
1404 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1405 there is a DT_SONAME entry. */
1406 add_needed = true;
1407 name = bfd_get_filename (abfd);
1408 if (elf_dt_name (abfd) != NULL)
1409 {
1410 name = elf_dt_name (abfd);
1411 if (*name == '\0')
1412 {
1413 if (elf_dt_soname (abfd) != NULL)
1414 dt_needed = true;
1415
1416 add_needed = false;
1417 }
1418 }
1419 s = bfd_get_section_by_name (abfd, ".dynamic");
1420 if (s != NULL)
1421 {
1422 Elf_External_Dyn *extdyn;
1423 Elf_External_Dyn *extdynend;
1424 int elfsec;
1425 unsigned long shlink;
1426 int rpath;
1427 int runpath;
1428
1429 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1430 if (dynbuf == NULL)
1431 goto error_return;
1432
1433 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1434 (file_ptr) 0, s->_raw_size))
1435 goto error_return;
1436
1437 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1438 if (elfsec == -1)
1439 goto error_return;
1440 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1441
1442 {
1443 /* The shared libraries distributed with hpux11 have a bogus
1444 sh_link field for the ".dynamic" section. This code detects
1445 when SHLINK refers to a section that is not a string table
1446 and tries to find the string table for the ".dynsym" section
1447 instead. */
1448 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink];
1449 if (shdr->sh_type != SHT_STRTAB)
1450 {
1451 asection *ds = bfd_get_section_by_name (abfd, ".dynsym");
1452 int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds);
1453 if (elfdsec == -1)
1454 goto error_return;
1455 shlink = elf_elfsections (abfd)[elfdsec]->sh_link;
1456 }
1457 }
1458
1459 extdyn = dynbuf;
1460 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1461 rpath = 0;
1462 runpath = 0;
1463 for (; extdyn < extdynend; extdyn++)
1464 {
1465 Elf_Internal_Dyn dyn;
1466
1467 elf_swap_dyn_in (abfd, extdyn, &dyn);
1468 if (dyn.d_tag == DT_SONAME)
1469 {
1470 unsigned int tagv = dyn.d_un.d_val;
1471 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1472 if (name == NULL)
1473 goto error_return;
1474 }
1475 if (dyn.d_tag == DT_NEEDED)
1476 {
1477 struct bfd_link_needed_list *n, **pn;
1478 char *fnm, *anm;
1479 unsigned int tagv = dyn.d_un.d_val;
1480
1481 amt = sizeof (struct bfd_link_needed_list);
1482 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1483 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1484 if (n == NULL || fnm == NULL)
1485 goto error_return;
1486 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1487 if (anm == NULL)
1488 goto error_return;
1489 strcpy (anm, fnm);
1490 n->name = anm;
1491 n->by = abfd;
1492 n->next = NULL;
1493 for (pn = & hash_table->needed;
1494 *pn != NULL;
1495 pn = &(*pn)->next)
1496 ;
1497 *pn = n;
1498 }
1499 if (dyn.d_tag == DT_RUNPATH)
1500 {
1501 struct bfd_link_needed_list *n, **pn;
1502 char *fnm, *anm;
1503 unsigned int tagv = dyn.d_un.d_val;
1504
1505 /* When we see DT_RPATH before DT_RUNPATH, we have
1506 to clear runpath. Do _NOT_ bfd_release, as that
1507 frees all more recently bfd_alloc'd blocks as
1508 well. */
1509 if (rpath && hash_table->runpath)
1510 hash_table->runpath = NULL;
1511
1512 amt = sizeof (struct bfd_link_needed_list);
1513 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1514 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1515 if (n == NULL || fnm == NULL)
1516 goto error_return;
1517 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1518 if (anm == NULL)
1519 goto error_return;
1520 strcpy (anm, fnm);
1521 n->name = anm;
1522 n->by = abfd;
1523 n->next = NULL;
1524 for (pn = & hash_table->runpath;
1525 *pn != NULL;
1526 pn = &(*pn)->next)
1527 ;
1528 *pn = n;
1529 runpath = 1;
1530 rpath = 0;
1531 }
1532 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1533 if (!runpath && dyn.d_tag == DT_RPATH)
1534 {
1535 struct bfd_link_needed_list *n, **pn;
1536 char *fnm, *anm;
1537 unsigned int tagv = dyn.d_un.d_val;
1538
1539 amt = sizeof (struct bfd_link_needed_list);
1540 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1541 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1542 if (n == NULL || fnm == NULL)
1543 goto error_return;
1544 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1545 if (anm == NULL)
1546 goto error_return;
1547 strcpy (anm, fnm);
1548 n->name = anm;
1549 n->by = abfd;
1550 n->next = NULL;
1551 for (pn = & hash_table->runpath;
1552 *pn != NULL;
1553 pn = &(*pn)->next)
1554 ;
1555 *pn = n;
1556 rpath = 1;
1557 }
1558 }
1559
1560 free (dynbuf);
1561 dynbuf = NULL;
1562 }
1563
1564 /* We do not want to include any of the sections in a dynamic
1565 object in the output file. We hack by simply clobbering the
1566 list of sections in the BFD. This could be handled more
1567 cleanly by, say, a new section flag; the existing
1568 SEC_NEVER_LOAD flag is not the one we want, because that one
1569 still implies that the section takes up space in the output
1570 file. */
1571 bfd_section_list_clear (abfd);
1572
1573 /* If this is the first dynamic object found in the link, create
1574 the special sections required for dynamic linking. */
1575 if (! hash_table->dynamic_sections_created)
1576 if (! elf_link_create_dynamic_sections (abfd, info))
1577 goto error_return;
1578
1579 if (add_needed)
1580 {
1581 /* Add a DT_NEEDED entry for this dynamic object. */
1582 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1583 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1584 if (strindex == (bfd_size_type) -1)
1585 goto error_return;
1586
1587 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1588 {
1589 asection *sdyn;
1590 Elf_External_Dyn *dyncon, *dynconend;
1591
1592 /* The hash table size did not change, which means that
1593 the dynamic object name was already entered. If we
1594 have already included this dynamic object in the
1595 link, just ignore it. There is no reason to include
1596 a particular dynamic object more than once. */
1597 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1598 BFD_ASSERT (sdyn != NULL);
1599
1600 dyncon = (Elf_External_Dyn *) sdyn->contents;
1601 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1602 sdyn->_raw_size);
1603 for (; dyncon < dynconend; dyncon++)
1604 {
1605 Elf_Internal_Dyn dyn;
1606
1607 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1608 if (dyn.d_tag == DT_NEEDED
1609 && dyn.d_un.d_val == strindex)
1610 {
1611 if (buf != NULL)
1612 free (buf);
1613 if (extversym != NULL)
1614 free (extversym);
1615 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1616 return true;
1617 }
1618 }
1619 }
1620
1621 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1622 goto error_return;
1623 }
1624
1625 /* Save the SONAME, if there is one, because sometimes the
1626 linker emulation code will need to know it. */
1627 if (*name == '\0')
1628 name = basename (bfd_get_filename (abfd));
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
1633 amt = extsymcount * sizeof (Elf_External_Sym);
1634 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1635 || bfd_bread ((PTR) buf, amt, abfd) != amt)
1636 goto error_return;
1637
1638 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1639 {
1640 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1641 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
1642 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1643 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
1644 goto error_return;
1645 }
1646
1647 weaks = NULL;
1648
1649 ever = extversym != NULL ? extversym + extsymoff : NULL;
1650 esymend = buf + extsymcount;
1651 for (esym = buf, shndx = shndx_buf;
1652 esym < esymend;
1653 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL),
1654 shndx = (shndx != NULL ? shndx + 1 : NULL))
1655 {
1656 Elf_Internal_Sym sym;
1657 int bind;
1658 bfd_vma value;
1659 asection *sec;
1660 flagword flags;
1661 const char *name;
1662 struct elf_link_hash_entry *h;
1663 boolean definition;
1664 boolean size_change_ok, type_change_ok;
1665 boolean new_weakdef;
1666 unsigned int old_alignment;
1667 boolean override;
1668
1669 override = false;
1670
1671 elf_swap_symbol_in (abfd, esym, shndx, &sym);
1672
1673 flags = BSF_NO_FLAGS;
1674 sec = NULL;
1675 value = sym.st_value;
1676 *sym_hash = NULL;
1677
1678 bind = ELF_ST_BIND (sym.st_info);
1679 if (bind == STB_LOCAL)
1680 {
1681 /* This should be impossible, since ELF requires that all
1682 global symbols follow all local symbols, and that sh_info
1683 point to the first global symbol. Unfortunatealy, Irix 5
1684 screws this up. */
1685 continue;
1686 }
1687 else if (bind == STB_GLOBAL)
1688 {
1689 if (sym.st_shndx != SHN_UNDEF
1690 && sym.st_shndx != SHN_COMMON)
1691 flags = BSF_GLOBAL;
1692 }
1693 else if (bind == STB_WEAK)
1694 flags = BSF_WEAK;
1695 else
1696 {
1697 /* Leave it up to the processor backend. */
1698 }
1699
1700 if (sym.st_shndx == SHN_UNDEF)
1701 sec = bfd_und_section_ptr;
1702 else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE)
1703 {
1704 sec = section_from_elf_index (abfd, sym.st_shndx);
1705 if (sec == NULL)
1706 sec = bfd_abs_section_ptr;
1707 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1708 value -= sec->vma;
1709 }
1710 else if (sym.st_shndx == SHN_ABS)
1711 sec = bfd_abs_section_ptr;
1712 else if (sym.st_shndx == SHN_COMMON)
1713 {
1714 sec = bfd_com_section_ptr;
1715 /* What ELF calls the size we call the value. What ELF
1716 calls the value we call the alignment. */
1717 value = sym.st_size;
1718 }
1719 else
1720 {
1721 /* Leave it up to the processor backend. */
1722 }
1723
1724 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1725 if (name == (const char *) NULL)
1726 goto error_return;
1727
1728 if (add_symbol_hook)
1729 {
1730 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1731 &value))
1732 goto error_return;
1733
1734 /* The hook function sets the name to NULL if this symbol
1735 should be skipped for some reason. */
1736 if (name == (const char *) NULL)
1737 continue;
1738 }
1739
1740 /* Sanity check that all possibilities were handled. */
1741 if (sec == (asection *) NULL)
1742 {
1743 bfd_set_error (bfd_error_bad_value);
1744 goto error_return;
1745 }
1746
1747 if (bfd_is_und_section (sec)
1748 || bfd_is_com_section (sec))
1749 definition = false;
1750 else
1751 definition = true;
1752
1753 size_change_ok = false;
1754 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1755 old_alignment = 0;
1756 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1757 {
1758 Elf_Internal_Versym iver;
1759 unsigned int vernum = 0;
1760
1761 if (ever != NULL)
1762 {
1763 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1764 vernum = iver.vs_vers & VERSYM_VERSION;
1765
1766 /* If this is a hidden symbol, or if it is not version
1767 1, we append the version name to the symbol name.
1768 However, we do not modify a non-hidden absolute
1769 symbol, because it might be the version symbol
1770 itself. FIXME: What if it isn't? */
1771 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1772 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1773 {
1774 const char *verstr;
1775 unsigned int namelen;
1776 bfd_size_type newlen;
1777 char *newname, *p;
1778
1779 if (sym.st_shndx != SHN_UNDEF)
1780 {
1781 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1782 {
1783 (*_bfd_error_handler)
1784 (_("%s: %s: invalid version %u (max %d)"),
1785 bfd_archive_filename (abfd), name, vernum,
1786 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1787 bfd_set_error (bfd_error_bad_value);
1788 goto error_return;
1789 }
1790 else if (vernum > 1)
1791 verstr =
1792 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1793 else
1794 verstr = "";
1795 }
1796 else
1797 {
1798 /* We cannot simply test for the number of
1799 entries in the VERNEED section since the
1800 numbers for the needed versions do not start
1801 at 0. */
1802 Elf_Internal_Verneed *t;
1803
1804 verstr = NULL;
1805 for (t = elf_tdata (abfd)->verref;
1806 t != NULL;
1807 t = t->vn_nextref)
1808 {
1809 Elf_Internal_Vernaux *a;
1810
1811 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1812 {
1813 if (a->vna_other == vernum)
1814 {
1815 verstr = a->vna_nodename;
1816 break;
1817 }
1818 }
1819 if (a != NULL)
1820 break;
1821 }
1822 if (verstr == NULL)
1823 {
1824 (*_bfd_error_handler)
1825 (_("%s: %s: invalid needed version %d"),
1826 bfd_archive_filename (abfd), name, vernum);
1827 bfd_set_error (bfd_error_bad_value);
1828 goto error_return;
1829 }
1830 }
1831
1832 namelen = strlen (name);
1833 newlen = namelen + strlen (verstr) + 2;
1834 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1835 ++newlen;
1836
1837 newname = (char *) bfd_alloc (abfd, newlen);
1838 if (newname == NULL)
1839 goto error_return;
1840 strcpy (newname, name);
1841 p = newname + namelen;
1842 *p++ = ELF_VER_CHR;
1843 /* If this is a defined non-hidden version symbol,
1844 we add another @ to the name. This indicates the
1845 default version of the symbol. */
1846 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1847 && sym.st_shndx != SHN_UNDEF)
1848 *p++ = ELF_VER_CHR;
1849 strcpy (p, verstr);
1850
1851 name = newname;
1852 }
1853 }
1854
1855 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1856 sym_hash, &override, &type_change_ok,
1857 &size_change_ok, dt_needed))
1858 goto error_return;
1859
1860 if (override)
1861 definition = false;
1862
1863 h = *sym_hash;
1864 while (h->root.type == bfd_link_hash_indirect
1865 || h->root.type == bfd_link_hash_warning)
1866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1867
1868 /* Remember the old alignment if this is a common symbol, so
1869 that we don't reduce the alignment later on. We can't
1870 check later, because _bfd_generic_link_add_one_symbol
1871 will set a default for the alignment which we want to
1872 override. */
1873 if (h->root.type == bfd_link_hash_common)
1874 old_alignment = h->root.u.c.p->alignment_power;
1875
1876 if (elf_tdata (abfd)->verdef != NULL
1877 && ! override
1878 && vernum > 1
1879 && definition)
1880 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1881 }
1882
1883 if (! (_bfd_generic_link_add_one_symbol
1884 (info, abfd, name, flags, sec, value, (const char *) NULL,
1885 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1886 goto error_return;
1887
1888 h = *sym_hash;
1889 while (h->root.type == bfd_link_hash_indirect
1890 || h->root.type == bfd_link_hash_warning)
1891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1892 *sym_hash = h;
1893
1894 new_weakdef = false;
1895 if (dynamic
1896 && definition
1897 && (flags & BSF_WEAK) != 0
1898 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1899 && info->hash->creator->flavour == bfd_target_elf_flavour
1900 && h->weakdef == NULL)
1901 {
1902 /* Keep a list of all weak defined non function symbols from
1903 a dynamic object, using the weakdef field. Later in this
1904 function we will set the weakdef field to the correct
1905 value. We only put non-function symbols from dynamic
1906 objects on this list, because that happens to be the only
1907 time we need to know the normal symbol corresponding to a
1908 weak symbol, and the information is time consuming to
1909 figure out. If the weakdef field is not already NULL,
1910 then this symbol was already defined by some previous
1911 dynamic object, and we will be using that previous
1912 definition anyhow. */
1913
1914 h->weakdef = weaks;
1915 weaks = h;
1916 new_weakdef = true;
1917 }
1918
1919 /* Set the alignment of a common symbol. */
1920 if (sym.st_shndx == SHN_COMMON
1921 && h->root.type == bfd_link_hash_common)
1922 {
1923 unsigned int align;
1924
1925 align = bfd_log2 (sym.st_value);
1926 if (align > old_alignment
1927 /* Permit an alignment power of zero if an alignment of one
1928 is specified and no other alignments have been specified. */
1929 || (sym.st_value == 1 && old_alignment == 0))
1930 h->root.u.c.p->alignment_power = align;
1931 }
1932
1933 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1934 {
1935 int old_flags;
1936 boolean dynsym;
1937 int new_flag;
1938
1939 /* Remember the symbol size and type. */
1940 if (sym.st_size != 0
1941 && (definition || h->size == 0))
1942 {
1943 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1944 (*_bfd_error_handler)
1945 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1946 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1947 bfd_archive_filename (abfd));
1948
1949 h->size = sym.st_size;
1950 }
1951
1952 /* If this is a common symbol, then we always want H->SIZE
1953 to be the size of the common symbol. The code just above
1954 won't fix the size if a common symbol becomes larger. We
1955 don't warn about a size change here, because that is
1956 covered by --warn-common. */
1957 if (h->root.type == bfd_link_hash_common)
1958 h->size = h->root.u.c.size;
1959
1960 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1961 && (definition || h->type == STT_NOTYPE))
1962 {
1963 if (h->type != STT_NOTYPE
1964 && h->type != ELF_ST_TYPE (sym.st_info)
1965 && ! type_change_ok)
1966 (*_bfd_error_handler)
1967 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1968 name, h->type, ELF_ST_TYPE (sym.st_info),
1969 bfd_archive_filename (abfd));
1970
1971 h->type = ELF_ST_TYPE (sym.st_info);
1972 }
1973
1974 /* If st_other has a processor-specific meaning, specific code
1975 might be needed here. */
1976 if (sym.st_other != 0)
1977 {
1978 /* Combine visibilities, using the most constraining one. */
1979 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1980 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1981
1982 if (symvis && (hvis > symvis || hvis == 0))
1983 h->other = sym.st_other;
1984
1985 /* If neither has visibility, use the st_other of the
1986 definition. This is an arbitrary choice, since the
1987 other bits have no general meaning. */
1988 if (!symvis && !hvis
1989 && (definition || h->other == 0))
1990 h->other = sym.st_other;
1991 }
1992
1993 /* Set a flag in the hash table entry indicating the type of
1994 reference or definition we just found. Keep a count of
1995 the number of dynamic symbols we find. A dynamic symbol
1996 is one which is referenced or defined by both a regular
1997 object and a shared object. */
1998 old_flags = h->elf_link_hash_flags;
1999 dynsym = false;
2000 if (! dynamic)
2001 {
2002 if (! definition)
2003 {
2004 new_flag = ELF_LINK_HASH_REF_REGULAR;
2005 if (bind != STB_WEAK)
2006 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
2007 }
2008 else
2009 new_flag = ELF_LINK_HASH_DEF_REGULAR;
2010 if (info->shared
2011 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2012 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
2013 dynsym = true;
2014 }
2015 else
2016 {
2017 if (! definition)
2018 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
2019 else
2020 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
2021 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
2022 | ELF_LINK_HASH_REF_REGULAR)) != 0
2023 || (h->weakdef != NULL
2024 && ! new_weakdef
2025 && h->weakdef->dynindx != -1))
2026 dynsym = true;
2027 }
2028
2029 h->elf_link_hash_flags |= new_flag;
2030
2031 /* Check to see if we need to add an indirect symbol for
2032 the default name. */
2033 if (definition || h->root.type == bfd_link_hash_common)
2034 if (! elf_add_default_symbol (abfd, info, h, name, &sym,
2035 &sec, &value, &dynsym,
2036 override, dt_needed))
2037 goto error_return;
2038
2039 if (dynsym && h->dynindx == -1)
2040 {
2041 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2042 goto error_return;
2043 if (h->weakdef != NULL
2044 && ! new_weakdef
2045 && h->weakdef->dynindx == -1)
2046 {
2047 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2048 goto error_return;
2049 }
2050 }
2051 else if (dynsym && h->dynindx != -1)
2052 /* If the symbol already has a dynamic index, but
2053 visibility says it should not be visible, turn it into
2054 a local symbol. */
2055 switch (ELF_ST_VISIBILITY (h->other))
2056 {
2057 case STV_INTERNAL:
2058 case STV_HIDDEN:
2059 (*bed->elf_backend_hide_symbol) (info, h, true);
2060 break;
2061 }
2062
2063 if (dt_needed && definition
2064 && (h->elf_link_hash_flags
2065 & ELF_LINK_HASH_REF_REGULAR) != 0)
2066 {
2067 bfd_size_type oldsize;
2068 bfd_size_type strindex;
2069
2070 if (! is_elf_hash_table (info))
2071 goto error_return;
2072
2073 /* The symbol from a DT_NEEDED object is referenced from
2074 the regular object to create a dynamic executable. We
2075 have to make sure there is a DT_NEEDED entry for it. */
2076
2077 dt_needed = false;
2078 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2079 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2080 elf_dt_soname (abfd), false);
2081 if (strindex == (bfd_size_type) -1)
2082 goto error_return;
2083
2084 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2085 {
2086 asection *sdyn;
2087 Elf_External_Dyn *dyncon, *dynconend;
2088
2089 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2090 ".dynamic");
2091 BFD_ASSERT (sdyn != NULL);
2092
2093 dyncon = (Elf_External_Dyn *) sdyn->contents;
2094 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2095 sdyn->_raw_size);
2096 for (; dyncon < dynconend; dyncon++)
2097 {
2098 Elf_Internal_Dyn dyn;
2099
2100 elf_swap_dyn_in (hash_table->dynobj,
2101 dyncon, &dyn);
2102 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2103 dyn.d_un.d_val != strindex);
2104 }
2105 }
2106
2107 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2108 goto error_return;
2109 }
2110 }
2111 }
2112
2113 /* Now set the weakdefs field correctly for all the weak defined
2114 symbols we found. The only way to do this is to search all the
2115 symbols. Since we only need the information for non functions in
2116 dynamic objects, that's the only time we actually put anything on
2117 the list WEAKS. We need this information so that if a regular
2118 object refers to a symbol defined weakly in a dynamic object, the
2119 real symbol in the dynamic object is also put in the dynamic
2120 symbols; we also must arrange for both symbols to point to the
2121 same memory location. We could handle the general case of symbol
2122 aliasing, but a general symbol alias can only be generated in
2123 assembler code, handling it correctly would be very time
2124 consuming, and other ELF linkers don't handle general aliasing
2125 either. */
2126 while (weaks != NULL)
2127 {
2128 struct elf_link_hash_entry *hlook;
2129 asection *slook;
2130 bfd_vma vlook;
2131 struct elf_link_hash_entry **hpp;
2132 struct elf_link_hash_entry **hppend;
2133
2134 hlook = weaks;
2135 weaks = hlook->weakdef;
2136 hlook->weakdef = NULL;
2137
2138 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2139 || hlook->root.type == bfd_link_hash_defweak
2140 || hlook->root.type == bfd_link_hash_common
2141 || hlook->root.type == bfd_link_hash_indirect);
2142 slook = hlook->root.u.def.section;
2143 vlook = hlook->root.u.def.value;
2144
2145 hpp = elf_sym_hashes (abfd);
2146 hppend = hpp + extsymcount;
2147 for (; hpp < hppend; hpp++)
2148 {
2149 struct elf_link_hash_entry *h;
2150
2151 h = *hpp;
2152 if (h != NULL && h != hlook
2153 && h->root.type == bfd_link_hash_defined
2154 && h->root.u.def.section == slook
2155 && h->root.u.def.value == vlook)
2156 {
2157 hlook->weakdef = h;
2158
2159 /* If the weak definition is in the list of dynamic
2160 symbols, make sure the real definition is put there
2161 as well. */
2162 if (hlook->dynindx != -1
2163 && h->dynindx == -1)
2164 {
2165 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2166 goto error_return;
2167 }
2168
2169 /* If the real definition is in the list of dynamic
2170 symbols, make sure the weak definition is put there
2171 as well. If we don't do this, then the dynamic
2172 loader might not merge the entries for the real
2173 definition and the weak definition. */
2174 if (h->dynindx != -1
2175 && hlook->dynindx == -1)
2176 {
2177 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2178 goto error_return;
2179 }
2180
2181 break;
2182 }
2183 }
2184 }
2185
2186 if (buf != NULL)
2187 {
2188 free (buf);
2189 buf = NULL;
2190 }
2191
2192 if (extversym != NULL)
2193 {
2194 free (extversym);
2195 extversym = NULL;
2196 }
2197
2198 /* If this object is the same format as the output object, and it is
2199 not a shared library, then let the backend look through the
2200 relocs.
2201
2202 This is required to build global offset table entries and to
2203 arrange for dynamic relocs. It is not required for the
2204 particular common case of linking non PIC code, even when linking
2205 against shared libraries, but unfortunately there is no way of
2206 knowing whether an object file has been compiled PIC or not.
2207 Looking through the relocs is not particularly time consuming.
2208 The problem is that we must either (1) keep the relocs in memory,
2209 which causes the linker to require additional runtime memory or
2210 (2) read the relocs twice from the input file, which wastes time.
2211 This would be a good case for using mmap.
2212
2213 I have no idea how to handle linking PIC code into a file of a
2214 different format. It probably can't be done. */
2215 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2216 if (! dynamic
2217 && abfd->xvec == info->hash->creator
2218 && check_relocs != NULL)
2219 {
2220 asection *o;
2221
2222 for (o = abfd->sections; o != NULL; o = o->next)
2223 {
2224 Elf_Internal_Rela *internal_relocs;
2225 boolean ok;
2226
2227 if ((o->flags & SEC_RELOC) == 0
2228 || o->reloc_count == 0
2229 || ((info->strip == strip_all || info->strip == strip_debugger)
2230 && (o->flags & SEC_DEBUGGING) != 0)
2231 || bfd_is_abs_section (o->output_section))
2232 continue;
2233
2234 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2235 (abfd, o, (PTR) NULL,
2236 (Elf_Internal_Rela *) NULL,
2237 info->keep_memory));
2238 if (internal_relocs == NULL)
2239 goto error_return;
2240
2241 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2242
2243 if (! info->keep_memory)
2244 free (internal_relocs);
2245
2246 if (! ok)
2247 goto error_return;
2248 }
2249 }
2250
2251 /* If this is a non-traditional, non-relocateable link, try to
2252 optimize the handling of the .stab/.stabstr sections. */
2253 if (! dynamic
2254 && ! info->relocateable
2255 && ! info->traditional_format
2256 && info->hash->creator->flavour == bfd_target_elf_flavour
2257 && is_elf_hash_table (info)
2258 && (info->strip != strip_all && info->strip != strip_debugger))
2259 {
2260 asection *stab, *stabstr;
2261
2262 stab = bfd_get_section_by_name (abfd, ".stab");
2263 if (stab != NULL && !(stab->flags & SEC_MERGE))
2264 {
2265 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2266
2267 if (stabstr != NULL)
2268 {
2269 struct bfd_elf_section_data *secdata;
2270
2271 secdata = elf_section_data (stab);
2272 if (! _bfd_link_section_stabs (abfd,
2273 & hash_table->stab_info,
2274 stab, stabstr,
2275 &secdata->sec_info))
2276 goto error_return;
2277 if (secdata->sec_info)
2278 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2279 }
2280 }
2281 }
2282
2283 if (! info->relocateable && ! dynamic
2284 && is_elf_hash_table (info))
2285 {
2286 asection *s;
2287
2288 for (s = abfd->sections; s != NULL; s = s->next)
2289 if (s->flags & SEC_MERGE)
2290 {
2291 struct bfd_elf_section_data *secdata;
2292
2293 secdata = elf_section_data (s);
2294 if (! _bfd_merge_section (abfd,
2295 & hash_table->merge_info,
2296 s, &secdata->sec_info))
2297 goto error_return;
2298 else if (secdata->sec_info)
2299 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2300 }
2301 }
2302
2303 return true;
2304
2305 error_return:
2306 if (buf != NULL)
2307 free (buf);
2308 if (dynbuf != NULL)
2309 free (dynbuf);
2310 if (extversym != NULL)
2311 free (extversym);
2312 return false;
2313 }
2314
2315 /* Create some sections which will be filled in with dynamic linking
2316 information. ABFD is an input file which requires dynamic sections
2317 to be created. The dynamic sections take up virtual memory space
2318 when the final executable is run, so we need to create them before
2319 addresses are assigned to the output sections. We work out the
2320 actual contents and size of these sections later. */
2321
2322 boolean
2323 elf_link_create_dynamic_sections (abfd, info)
2324 bfd *abfd;
2325 struct bfd_link_info *info;
2326 {
2327 flagword flags;
2328 register asection *s;
2329 struct elf_link_hash_entry *h;
2330 struct elf_backend_data *bed;
2331
2332 if (! is_elf_hash_table (info))
2333 return false;
2334
2335 if (elf_hash_table (info)->dynamic_sections_created)
2336 return true;
2337
2338 /* Make sure that all dynamic sections use the same input BFD. */
2339 if (elf_hash_table (info)->dynobj == NULL)
2340 elf_hash_table (info)->dynobj = abfd;
2341 else
2342 abfd = elf_hash_table (info)->dynobj;
2343
2344 /* Note that we set the SEC_IN_MEMORY flag for all of these
2345 sections. */
2346 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2347 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2348
2349 /* A dynamically linked executable has a .interp section, but a
2350 shared library does not. */
2351 if (! info->shared)
2352 {
2353 s = bfd_make_section (abfd, ".interp");
2354 if (s == NULL
2355 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2356 return false;
2357 }
2358
2359 if (! info->traditional_format
2360 && info->hash->creator->flavour == bfd_target_elf_flavour)
2361 {
2362 s = bfd_make_section (abfd, ".eh_frame_hdr");
2363 if (s == NULL
2364 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2365 || ! bfd_set_section_alignment (abfd, s, 2))
2366 return false;
2367 }
2368
2369 /* Create sections to hold version informations. These are removed
2370 if they are not needed. */
2371 s = bfd_make_section (abfd, ".gnu.version_d");
2372 if (s == NULL
2373 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2374 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2375 return false;
2376
2377 s = bfd_make_section (abfd, ".gnu.version");
2378 if (s == NULL
2379 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2380 || ! bfd_set_section_alignment (abfd, s, 1))
2381 return false;
2382
2383 s = bfd_make_section (abfd, ".gnu.version_r");
2384 if (s == NULL
2385 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2386 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2387 return false;
2388
2389 s = bfd_make_section (abfd, ".dynsym");
2390 if (s == NULL
2391 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2392 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2393 return false;
2394
2395 s = bfd_make_section (abfd, ".dynstr");
2396 if (s == NULL
2397 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2398 return false;
2399
2400 /* Create a strtab to hold the dynamic symbol names. */
2401 if (elf_hash_table (info)->dynstr == NULL)
2402 {
2403 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2404 if (elf_hash_table (info)->dynstr == NULL)
2405 return false;
2406 }
2407
2408 s = bfd_make_section (abfd, ".dynamic");
2409 if (s == NULL
2410 || ! bfd_set_section_flags (abfd, s, flags)
2411 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2412 return false;
2413
2414 /* The special symbol _DYNAMIC is always set to the start of the
2415 .dynamic section. This call occurs before we have processed the
2416 symbols for any dynamic object, so we don't have to worry about
2417 overriding a dynamic definition. We could set _DYNAMIC in a
2418 linker script, but we only want to define it if we are, in fact,
2419 creating a .dynamic section. We don't want to define it if there
2420 is no .dynamic section, since on some ELF platforms the start up
2421 code examines it to decide how to initialize the process. */
2422 h = NULL;
2423 if (! (_bfd_generic_link_add_one_symbol
2424 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2425 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2426 (struct bfd_link_hash_entry **) &h)))
2427 return false;
2428 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2429 h->type = STT_OBJECT;
2430
2431 if (info->shared
2432 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2433 return false;
2434
2435 bed = get_elf_backend_data (abfd);
2436
2437 s = bfd_make_section (abfd, ".hash");
2438 if (s == NULL
2439 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2440 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2441 return false;
2442 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2443
2444 /* Let the backend create the rest of the sections. This lets the
2445 backend set the right flags. The backend will normally create
2446 the .got and .plt sections. */
2447 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2448 return false;
2449
2450 elf_hash_table (info)->dynamic_sections_created = true;
2451
2452 return true;
2453 }
2454
2455 /* Add an entry to the .dynamic table. */
2456
2457 boolean
2458 elf_add_dynamic_entry (info, tag, val)
2459 struct bfd_link_info *info;
2460 bfd_vma tag;
2461 bfd_vma val;
2462 {
2463 Elf_Internal_Dyn dyn;
2464 bfd *dynobj;
2465 asection *s;
2466 bfd_size_type newsize;
2467 bfd_byte *newcontents;
2468
2469 if (! is_elf_hash_table (info))
2470 return false;
2471
2472 dynobj = elf_hash_table (info)->dynobj;
2473
2474 s = bfd_get_section_by_name (dynobj, ".dynamic");
2475 BFD_ASSERT (s != NULL);
2476
2477 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2478 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2479 if (newcontents == NULL)
2480 return false;
2481
2482 dyn.d_tag = tag;
2483 dyn.d_un.d_val = val;
2484 elf_swap_dyn_out (dynobj, &dyn,
2485 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2486
2487 s->_raw_size = newsize;
2488 s->contents = newcontents;
2489
2490 return true;
2491 }
2492
2493 /* Record a new local dynamic symbol. */
2494
2495 boolean
2496 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2497 struct bfd_link_info *info;
2498 bfd *input_bfd;
2499 long input_indx;
2500 {
2501 struct elf_link_local_dynamic_entry *entry;
2502 struct elf_link_hash_table *eht;
2503 struct elf_strtab_hash *dynstr;
2504 Elf_External_Sym esym;
2505 Elf_External_Sym_Shndx eshndx;
2506 Elf_External_Sym_Shndx *shndx;
2507 unsigned long dynstr_index;
2508 char *name;
2509 file_ptr pos;
2510 bfd_size_type amt;
2511
2512 if (! is_elf_hash_table (info))
2513 return false;
2514
2515 /* See if the entry exists already. */
2516 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2517 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2518 return true;
2519
2520 entry = (struct elf_link_local_dynamic_entry *)
2521 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2522 if (entry == NULL)
2523 return false;
2524
2525 /* Go find the symbol, so that we can find it's name. */
2526 amt = sizeof (Elf_External_Sym);
2527 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2528 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2529 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2530 return false;
2531 shndx = NULL;
2532 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2533 {
2534 amt = sizeof (Elf_External_Sym_Shndx);
2535 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2536 pos += input_indx * amt;
2537 shndx = &eshndx;
2538 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2539 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2540 return false;
2541 }
2542 elf_swap_symbol_in (input_bfd, &esym, shndx, &entry->isym);
2543
2544 name = (bfd_elf_string_from_elf_section
2545 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2546 entry->isym.st_name));
2547
2548 dynstr = elf_hash_table (info)->dynstr;
2549 if (dynstr == NULL)
2550 {
2551 /* Create a strtab to hold the dynamic symbol names. */
2552 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2553 if (dynstr == NULL)
2554 return false;
2555 }
2556
2557 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2558 if (dynstr_index == (unsigned long) -1)
2559 return false;
2560 entry->isym.st_name = dynstr_index;
2561
2562 eht = elf_hash_table (info);
2563
2564 entry->next = eht->dynlocal;
2565 eht->dynlocal = entry;
2566 entry->input_bfd = input_bfd;
2567 entry->input_indx = input_indx;
2568 eht->dynsymcount++;
2569
2570 /* Whatever binding the symbol had before, it's now local. */
2571 entry->isym.st_info
2572 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2573
2574 /* The dynindx will be set at the end of size_dynamic_sections. */
2575
2576 return true;
2577 }
2578 \f
2579 /* Read and swap the relocs from the section indicated by SHDR. This
2580 may be either a REL or a RELA section. The relocations are
2581 translated into RELA relocations and stored in INTERNAL_RELOCS,
2582 which should have already been allocated to contain enough space.
2583 The EXTERNAL_RELOCS are a buffer where the external form of the
2584 relocations should be stored.
2585
2586 Returns false if something goes wrong. */
2587
2588 static boolean
2589 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2590 internal_relocs)
2591 bfd *abfd;
2592 Elf_Internal_Shdr *shdr;
2593 PTR external_relocs;
2594 Elf_Internal_Rela *internal_relocs;
2595 {
2596 struct elf_backend_data *bed;
2597 bfd_size_type amt;
2598
2599 /* If there aren't any relocations, that's OK. */
2600 if (!shdr)
2601 return true;
2602
2603 /* Position ourselves at the start of the section. */
2604 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2605 return false;
2606
2607 /* Read the relocations. */
2608 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2609 return false;
2610
2611 bed = get_elf_backend_data (abfd);
2612
2613 /* Convert the external relocations to the internal format. */
2614 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2615 {
2616 Elf_External_Rel *erel;
2617 Elf_External_Rel *erelend;
2618 Elf_Internal_Rela *irela;
2619 Elf_Internal_Rel *irel;
2620
2621 erel = (Elf_External_Rel *) external_relocs;
2622 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2623 irela = internal_relocs;
2624 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2625 irel = bfd_alloc (abfd, amt);
2626 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2627 {
2628 unsigned int i;
2629
2630 if (bed->s->swap_reloc_in)
2631 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2632 else
2633 elf_swap_reloc_in (abfd, erel, irel);
2634
2635 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2636 {
2637 irela[i].r_offset = irel[i].r_offset;
2638 irela[i].r_info = irel[i].r_info;
2639 irela[i].r_addend = 0;
2640 }
2641 }
2642 }
2643 else
2644 {
2645 Elf_External_Rela *erela;
2646 Elf_External_Rela *erelaend;
2647 Elf_Internal_Rela *irela;
2648
2649 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2650
2651 erela = (Elf_External_Rela *) external_relocs;
2652 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2653 irela = internal_relocs;
2654 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2655 {
2656 if (bed->s->swap_reloca_in)
2657 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2658 else
2659 elf_swap_reloca_in (abfd, erela, irela);
2660 }
2661 }
2662
2663 return true;
2664 }
2665
2666 /* Read and swap the relocs for a section O. They may have been
2667 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2668 not NULL, they are used as buffers to read into. They are known to
2669 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2670 the return value is allocated using either malloc or bfd_alloc,
2671 according to the KEEP_MEMORY argument. If O has two relocation
2672 sections (both REL and RELA relocations), then the REL_HDR
2673 relocations will appear first in INTERNAL_RELOCS, followed by the
2674 REL_HDR2 relocations. */
2675
2676 Elf_Internal_Rela *
2677 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2678 keep_memory)
2679 bfd *abfd;
2680 asection *o;
2681 PTR external_relocs;
2682 Elf_Internal_Rela *internal_relocs;
2683 boolean keep_memory;
2684 {
2685 Elf_Internal_Shdr *rel_hdr;
2686 PTR alloc1 = NULL;
2687 Elf_Internal_Rela *alloc2 = NULL;
2688 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2689
2690 if (elf_section_data (o)->relocs != NULL)
2691 return elf_section_data (o)->relocs;
2692
2693 if (o->reloc_count == 0)
2694 return NULL;
2695
2696 rel_hdr = &elf_section_data (o)->rel_hdr;
2697
2698 if (internal_relocs == NULL)
2699 {
2700 bfd_size_type size;
2701
2702 size = o->reloc_count;
2703 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2704 if (keep_memory)
2705 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2706 else
2707 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2708 if (internal_relocs == NULL)
2709 goto error_return;
2710 }
2711
2712 if (external_relocs == NULL)
2713 {
2714 bfd_size_type size = rel_hdr->sh_size;
2715
2716 if (elf_section_data (o)->rel_hdr2)
2717 size += elf_section_data (o)->rel_hdr2->sh_size;
2718 alloc1 = (PTR) bfd_malloc (size);
2719 if (alloc1 == NULL)
2720 goto error_return;
2721 external_relocs = alloc1;
2722 }
2723
2724 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2725 external_relocs,
2726 internal_relocs))
2727 goto error_return;
2728 if (!elf_link_read_relocs_from_section
2729 (abfd,
2730 elf_section_data (o)->rel_hdr2,
2731 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2732 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2733 * bed->s->int_rels_per_ext_rel)))
2734 goto error_return;
2735
2736 /* Cache the results for next time, if we can. */
2737 if (keep_memory)
2738 elf_section_data (o)->relocs = internal_relocs;
2739
2740 if (alloc1 != NULL)
2741 free (alloc1);
2742
2743 /* Don't free alloc2, since if it was allocated we are passing it
2744 back (under the name of internal_relocs). */
2745
2746 return internal_relocs;
2747
2748 error_return:
2749 if (alloc1 != NULL)
2750 free (alloc1);
2751 if (alloc2 != NULL)
2752 free (alloc2);
2753 return NULL;
2754 }
2755 \f
2756 /* Record an assignment to a symbol made by a linker script. We need
2757 this in case some dynamic object refers to this symbol. */
2758
2759 boolean
2760 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2761 bfd *output_bfd ATTRIBUTE_UNUSED;
2762 struct bfd_link_info *info;
2763 const char *name;
2764 boolean provide;
2765 {
2766 struct elf_link_hash_entry *h;
2767
2768 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2769 return true;
2770
2771 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2772 if (h == NULL)
2773 return false;
2774
2775 if (h->root.type == bfd_link_hash_new)
2776 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2777
2778 /* If this symbol is being provided by the linker script, and it is
2779 currently defined by a dynamic object, but not by a regular
2780 object, then mark it as undefined so that the generic linker will
2781 force the correct value. */
2782 if (provide
2783 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2784 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2785 h->root.type = bfd_link_hash_undefined;
2786
2787 /* If this symbol is not being provided by the linker script, and it is
2788 currently defined by a dynamic object, but not by a regular object,
2789 then clear out any version information because the symbol will not be
2790 associated with the dynamic object any more. */
2791 if (!provide
2792 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2793 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2794 h->verinfo.verdef = NULL;
2795
2796 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2797
2798 /* When possible, keep the original type of the symbol. */
2799 if (h->type == STT_NOTYPE)
2800 h->type = STT_OBJECT;
2801
2802 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2803 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2804 || info->shared)
2805 && h->dynindx == -1)
2806 {
2807 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2808 return false;
2809
2810 /* If this is a weak defined symbol, and we know a corresponding
2811 real symbol from the same dynamic object, make sure the real
2812 symbol is also made into a dynamic symbol. */
2813 if (h->weakdef != NULL
2814 && h->weakdef->dynindx == -1)
2815 {
2816 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2817 return false;
2818 }
2819 }
2820
2821 return true;
2822 }
2823 \f
2824 /* This structure is used to pass information to
2825 elf_link_assign_sym_version. */
2826
2827 struct elf_assign_sym_version_info
2828 {
2829 /* Output BFD. */
2830 bfd *output_bfd;
2831 /* General link information. */
2832 struct bfd_link_info *info;
2833 /* Version tree. */
2834 struct bfd_elf_version_tree *verdefs;
2835 /* Whether we had a failure. */
2836 boolean failed;
2837 };
2838
2839 /* This structure is used to pass information to
2840 elf_link_find_version_dependencies. */
2841
2842 struct elf_find_verdep_info
2843 {
2844 /* Output BFD. */
2845 bfd *output_bfd;
2846 /* General link information. */
2847 struct bfd_link_info *info;
2848 /* The number of dependencies. */
2849 unsigned int vers;
2850 /* Whether we had a failure. */
2851 boolean failed;
2852 };
2853
2854 /* Array used to determine the number of hash table buckets to use
2855 based on the number of symbols there are. If there are fewer than
2856 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2857 fewer than 37 we use 17 buckets, and so forth. We never use more
2858 than 32771 buckets. */
2859
2860 static const size_t elf_buckets[] =
2861 {
2862 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2863 16411, 32771, 0
2864 };
2865
2866 /* Compute bucket count for hashing table. We do not use a static set
2867 of possible tables sizes anymore. Instead we determine for all
2868 possible reasonable sizes of the table the outcome (i.e., the
2869 number of collisions etc) and choose the best solution. The
2870 weighting functions are not too simple to allow the table to grow
2871 without bounds. Instead one of the weighting factors is the size.
2872 Therefore the result is always a good payoff between few collisions
2873 (= short chain lengths) and table size. */
2874 static size_t
2875 compute_bucket_count (info)
2876 struct bfd_link_info *info;
2877 {
2878 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2879 size_t best_size = 0;
2880 unsigned long int *hashcodes;
2881 unsigned long int *hashcodesp;
2882 unsigned long int i;
2883 bfd_size_type amt;
2884
2885 /* Compute the hash values for all exported symbols. At the same
2886 time store the values in an array so that we could use them for
2887 optimizations. */
2888 amt = dynsymcount;
2889 amt *= sizeof (unsigned long int);
2890 hashcodes = (unsigned long int *) bfd_malloc (amt);
2891 if (hashcodes == NULL)
2892 return 0;
2893 hashcodesp = hashcodes;
2894
2895 /* Put all hash values in HASHCODES. */
2896 elf_link_hash_traverse (elf_hash_table (info),
2897 elf_collect_hash_codes, &hashcodesp);
2898
2899 /* We have a problem here. The following code to optimize the table
2900 size requires an integer type with more the 32 bits. If
2901 BFD_HOST_U_64_BIT is set we know about such a type. */
2902 #ifdef BFD_HOST_U_64_BIT
2903 if (info->optimize == true)
2904 {
2905 unsigned long int nsyms = hashcodesp - hashcodes;
2906 size_t minsize;
2907 size_t maxsize;
2908 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2909 unsigned long int *counts ;
2910
2911 /* Possible optimization parameters: if we have NSYMS symbols we say
2912 that the hashing table must at least have NSYMS/4 and at most
2913 2*NSYMS buckets. */
2914 minsize = nsyms / 4;
2915 if (minsize == 0)
2916 minsize = 1;
2917 best_size = maxsize = nsyms * 2;
2918
2919 /* Create array where we count the collisions in. We must use bfd_malloc
2920 since the size could be large. */
2921 amt = maxsize;
2922 amt *= sizeof (unsigned long int);
2923 counts = (unsigned long int *) bfd_malloc (amt);
2924 if (counts == NULL)
2925 {
2926 free (hashcodes);
2927 return 0;
2928 }
2929
2930 /* Compute the "optimal" size for the hash table. The criteria is a
2931 minimal chain length. The minor criteria is (of course) the size
2932 of the table. */
2933 for (i = minsize; i < maxsize; ++i)
2934 {
2935 /* Walk through the array of hashcodes and count the collisions. */
2936 BFD_HOST_U_64_BIT max;
2937 unsigned long int j;
2938 unsigned long int fact;
2939
2940 memset (counts, '\0', i * sizeof (unsigned long int));
2941
2942 /* Determine how often each hash bucket is used. */
2943 for (j = 0; j < nsyms; ++j)
2944 ++counts[hashcodes[j] % i];
2945
2946 /* For the weight function we need some information about the
2947 pagesize on the target. This is information need not be 100%
2948 accurate. Since this information is not available (so far) we
2949 define it here to a reasonable default value. If it is crucial
2950 to have a better value some day simply define this value. */
2951 # ifndef BFD_TARGET_PAGESIZE
2952 # define BFD_TARGET_PAGESIZE (4096)
2953 # endif
2954
2955 /* We in any case need 2 + NSYMS entries for the size values and
2956 the chains. */
2957 max = (2 + nsyms) * (ARCH_SIZE / 8);
2958
2959 # if 1
2960 /* Variant 1: optimize for short chains. We add the squares
2961 of all the chain lengths (which favous many small chain
2962 over a few long chains). */
2963 for (j = 0; j < i; ++j)
2964 max += counts[j] * counts[j];
2965
2966 /* This adds penalties for the overall size of the table. */
2967 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2968 max *= fact * fact;
2969 # else
2970 /* Variant 2: Optimize a lot more for small table. Here we
2971 also add squares of the size but we also add penalties for
2972 empty slots (the +1 term). */
2973 for (j = 0; j < i; ++j)
2974 max += (1 + counts[j]) * (1 + counts[j]);
2975
2976 /* The overall size of the table is considered, but not as
2977 strong as in variant 1, where it is squared. */
2978 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2979 max *= fact;
2980 # endif
2981
2982 /* Compare with current best results. */
2983 if (max < best_chlen)
2984 {
2985 best_chlen = max;
2986 best_size = i;
2987 }
2988 }
2989
2990 free (counts);
2991 }
2992 else
2993 #endif /* defined (BFD_HOST_U_64_BIT) */
2994 {
2995 /* This is the fallback solution if no 64bit type is available or if we
2996 are not supposed to spend much time on optimizations. We select the
2997 bucket count using a fixed set of numbers. */
2998 for (i = 0; elf_buckets[i] != 0; i++)
2999 {
3000 best_size = elf_buckets[i];
3001 if (dynsymcount < elf_buckets[i + 1])
3002 break;
3003 }
3004 }
3005
3006 /* Free the arrays we needed. */
3007 free (hashcodes);
3008
3009 return best_size;
3010 }
3011
3012 /* Set up the sizes and contents of the ELF dynamic sections. This is
3013 called by the ELF linker emulation before_allocation routine. We
3014 must set the sizes of the sections before the linker sets the
3015 addresses of the various sections. */
3016
3017 boolean
3018 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
3019 filter_shlib,
3020 auxiliary_filters, info, sinterpptr,
3021 verdefs)
3022 bfd *output_bfd;
3023 const char *soname;
3024 const char *rpath;
3025 const char *filter_shlib;
3026 const char * const *auxiliary_filters;
3027 struct bfd_link_info *info;
3028 asection **sinterpptr;
3029 struct bfd_elf_version_tree *verdefs;
3030 {
3031 bfd_size_type soname_indx;
3032 bfd *dynobj;
3033 struct elf_backend_data *bed;
3034 struct elf_assign_sym_version_info asvinfo;
3035
3036 *sinterpptr = NULL;
3037
3038 soname_indx = (bfd_size_type) -1;
3039
3040 if (info->hash->creator->flavour != bfd_target_elf_flavour)
3041 return true;
3042
3043 if (! is_elf_hash_table (info))
3044 return false;
3045
3046 /* Any syms created from now on start with -1 in
3047 got.refcount/offset and plt.refcount/offset. */
3048 elf_hash_table (info)->init_refcount = -1;
3049
3050 /* The backend may have to create some sections regardless of whether
3051 we're dynamic or not. */
3052 bed = get_elf_backend_data (output_bfd);
3053 if (bed->elf_backend_always_size_sections
3054 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3055 return false;
3056
3057 dynobj = elf_hash_table (info)->dynobj;
3058
3059 /* If there were no dynamic objects in the link, there is nothing to
3060 do here. */
3061 if (dynobj == NULL)
3062 return true;
3063
3064 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3065 return false;
3066
3067 if (elf_hash_table (info)->dynamic_sections_created)
3068 {
3069 struct elf_info_failed eif;
3070 struct elf_link_hash_entry *h;
3071 asection *dynstr;
3072
3073 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3074 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3075
3076 if (soname != NULL)
3077 {
3078 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3079 soname, true);
3080 if (soname_indx == (bfd_size_type) -1
3081 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3082 soname_indx))
3083 return false;
3084 }
3085
3086 if (info->symbolic)
3087 {
3088 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3089 (bfd_vma) 0))
3090 return false;
3091 info->flags |= DF_SYMBOLIC;
3092 }
3093
3094 if (rpath != NULL)
3095 {
3096 bfd_size_type indx;
3097
3098 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3099 true);
3100 if (info->new_dtags)
3101 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3102 if (indx == (bfd_size_type) -1
3103 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3104 || (info->new_dtags
3105 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3106 indx)))
3107 return false;
3108 }
3109
3110 if (filter_shlib != NULL)
3111 {
3112 bfd_size_type indx;
3113
3114 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3115 filter_shlib, true);
3116 if (indx == (bfd_size_type) -1
3117 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3118 return false;
3119 }
3120
3121 if (auxiliary_filters != NULL)
3122 {
3123 const char * const *p;
3124
3125 for (p = auxiliary_filters; *p != NULL; p++)
3126 {
3127 bfd_size_type indx;
3128
3129 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3130 *p, true);
3131 if (indx == (bfd_size_type) -1
3132 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3133 indx))
3134 return false;
3135 }
3136 }
3137
3138 eif.info = info;
3139 eif.verdefs = verdefs;
3140 eif.failed = false;
3141
3142 /* If we are supposed to export all symbols into the dynamic symbol
3143 table (this is not the normal case), then do so. */
3144 if (info->export_dynamic)
3145 {
3146 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3147 (PTR) &eif);
3148 if (eif.failed)
3149 return false;
3150 }
3151
3152 /* Attach all the symbols to their version information. */
3153 asvinfo.output_bfd = output_bfd;
3154 asvinfo.info = info;
3155 asvinfo.verdefs = verdefs;
3156 asvinfo.failed = false;
3157
3158 elf_link_hash_traverse (elf_hash_table (info),
3159 elf_link_assign_sym_version,
3160 (PTR) &asvinfo);
3161 if (asvinfo.failed)
3162 return false;
3163
3164 /* Find all symbols which were defined in a dynamic object and make
3165 the backend pick a reasonable value for them. */
3166 elf_link_hash_traverse (elf_hash_table (info),
3167 elf_adjust_dynamic_symbol,
3168 (PTR) &eif);
3169 if (eif.failed)
3170 return false;
3171
3172 /* Add some entries to the .dynamic section. We fill in some of the
3173 values later, in elf_bfd_final_link, but we must add the entries
3174 now so that we know the final size of the .dynamic section. */
3175
3176 /* If there are initialization and/or finalization functions to
3177 call then add the corresponding DT_INIT/DT_FINI entries. */
3178 h = (info->init_function
3179 ? elf_link_hash_lookup (elf_hash_table (info),
3180 info->init_function, false,
3181 false, false)
3182 : NULL);
3183 if (h != NULL
3184 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3185 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3186 {
3187 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3188 return false;
3189 }
3190 h = (info->fini_function
3191 ? elf_link_hash_lookup (elf_hash_table (info),
3192 info->fini_function, false,
3193 false, false)
3194 : NULL);
3195 if (h != NULL
3196 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3197 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3198 {
3199 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3200 return false;
3201 }
3202
3203 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3204 {
3205 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3206 if (info->shared)
3207 {
3208 bfd *sub;
3209 asection *o;
3210
3211 for (sub = info->input_bfds; sub != NULL;
3212 sub = sub->link_next)
3213 for (o = sub->sections; o != NULL; o = o->next)
3214 if (elf_section_data (o)->this_hdr.sh_type
3215 == SHT_PREINIT_ARRAY)
3216 {
3217 (*_bfd_error_handler)
3218 (_("%s: .preinit_array section is not allowed in DSO"),
3219 bfd_archive_filename (sub));
3220 break;
3221 }
3222
3223 bfd_set_error (bfd_error_nonrepresentable_section);
3224 return false;
3225 }
3226
3227 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3228 (bfd_vma) 0)
3229 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3230 (bfd_vma) 0))
3231 return false;
3232 }
3233 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3234 {
3235 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3236 (bfd_vma) 0)
3237 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3238 (bfd_vma) 0))
3239 return false;
3240 }
3241 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3242 {
3243 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3244 (bfd_vma) 0)
3245 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3246 (bfd_vma) 0))
3247 return false;
3248 }
3249
3250 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3251 /* If .dynstr is excluded from the link, we don't want any of
3252 these tags. Strictly, we should be checking each section
3253 individually; This quick check covers for the case where
3254 someone does a /DISCARD/ : { *(*) }. */
3255 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3256 {
3257 bfd_size_type strsize;
3258
3259 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3260 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3261 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3262 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3263 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3264 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3265 (bfd_vma) sizeof (Elf_External_Sym)))
3266 return false;
3267 }
3268 }
3269
3270 /* The backend must work out the sizes of all the other dynamic
3271 sections. */
3272 if (bed->elf_backend_size_dynamic_sections
3273 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3274 return false;
3275
3276 if (elf_hash_table (info)->dynamic_sections_created)
3277 {
3278 bfd_size_type dynsymcount;
3279 asection *s;
3280 size_t bucketcount = 0;
3281 size_t hash_entry_size;
3282 unsigned int dtagcount;
3283
3284 /* Set up the version definition section. */
3285 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3286 BFD_ASSERT (s != NULL);
3287
3288 /* We may have created additional version definitions if we are
3289 just linking a regular application. */
3290 verdefs = asvinfo.verdefs;
3291
3292 /* Skip anonymous version tag. */
3293 if (verdefs != NULL && verdefs->vernum == 0)
3294 verdefs = verdefs->next;
3295
3296 if (verdefs == NULL)
3297 _bfd_strip_section_from_output (info, s);
3298 else
3299 {
3300 unsigned int cdefs;
3301 bfd_size_type size;
3302 struct bfd_elf_version_tree *t;
3303 bfd_byte *p;
3304 Elf_Internal_Verdef def;
3305 Elf_Internal_Verdaux defaux;
3306
3307 cdefs = 0;
3308 size = 0;
3309
3310 /* Make space for the base version. */
3311 size += sizeof (Elf_External_Verdef);
3312 size += sizeof (Elf_External_Verdaux);
3313 ++cdefs;
3314
3315 for (t = verdefs; t != NULL; t = t->next)
3316 {
3317 struct bfd_elf_version_deps *n;
3318
3319 size += sizeof (Elf_External_Verdef);
3320 size += sizeof (Elf_External_Verdaux);
3321 ++cdefs;
3322
3323 for (n = t->deps; n != NULL; n = n->next)
3324 size += sizeof (Elf_External_Verdaux);
3325 }
3326
3327 s->_raw_size = size;
3328 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3329 if (s->contents == NULL && s->_raw_size != 0)
3330 return false;
3331
3332 /* Fill in the version definition section. */
3333
3334 p = s->contents;
3335
3336 def.vd_version = VER_DEF_CURRENT;
3337 def.vd_flags = VER_FLG_BASE;
3338 def.vd_ndx = 1;
3339 def.vd_cnt = 1;
3340 def.vd_aux = sizeof (Elf_External_Verdef);
3341 def.vd_next = (sizeof (Elf_External_Verdef)
3342 + sizeof (Elf_External_Verdaux));
3343
3344 if (soname_indx != (bfd_size_type) -1)
3345 {
3346 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3347 soname_indx);
3348 def.vd_hash = bfd_elf_hash (soname);
3349 defaux.vda_name = soname_indx;
3350 }
3351 else
3352 {
3353 const char *name;
3354 bfd_size_type indx;
3355
3356 name = basename (output_bfd->filename);
3357 def.vd_hash = bfd_elf_hash (name);
3358 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3359 name, false);
3360 if (indx == (bfd_size_type) -1)
3361 return false;
3362 defaux.vda_name = indx;
3363 }
3364 defaux.vda_next = 0;
3365
3366 _bfd_elf_swap_verdef_out (output_bfd, &def,
3367 (Elf_External_Verdef *) p);
3368 p += sizeof (Elf_External_Verdef);
3369 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3370 (Elf_External_Verdaux *) p);
3371 p += sizeof (Elf_External_Verdaux);
3372
3373 for (t = verdefs; t != NULL; t = t->next)
3374 {
3375 unsigned int cdeps;
3376 struct bfd_elf_version_deps *n;
3377 struct elf_link_hash_entry *h;
3378
3379 cdeps = 0;
3380 for (n = t->deps; n != NULL; n = n->next)
3381 ++cdeps;
3382
3383 /* Add a symbol representing this version. */
3384 h = NULL;
3385 if (! (_bfd_generic_link_add_one_symbol
3386 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3387 (bfd_vma) 0, (const char *) NULL, false,
3388 get_elf_backend_data (dynobj)->collect,
3389 (struct bfd_link_hash_entry **) &h)))
3390 return false;
3391 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3392 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3393 h->type = STT_OBJECT;
3394 h->verinfo.vertree = t;
3395
3396 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3397 return false;
3398
3399 def.vd_version = VER_DEF_CURRENT;
3400 def.vd_flags = 0;
3401 if (t->globals == NULL && t->locals == NULL && ! t->used)
3402 def.vd_flags |= VER_FLG_WEAK;
3403 def.vd_ndx = t->vernum + 1;
3404 def.vd_cnt = cdeps + 1;
3405 def.vd_hash = bfd_elf_hash (t->name);
3406 def.vd_aux = sizeof (Elf_External_Verdef);
3407 if (t->next != NULL)
3408 def.vd_next = (sizeof (Elf_External_Verdef)
3409 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3410 else
3411 def.vd_next = 0;
3412
3413 _bfd_elf_swap_verdef_out (output_bfd, &def,
3414 (Elf_External_Verdef *) p);
3415 p += sizeof (Elf_External_Verdef);
3416
3417 defaux.vda_name = h->dynstr_index;
3418 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3419 h->dynstr_index);
3420 if (t->deps == NULL)
3421 defaux.vda_next = 0;
3422 else
3423 defaux.vda_next = sizeof (Elf_External_Verdaux);
3424 t->name_indx = defaux.vda_name;
3425
3426 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3427 (Elf_External_Verdaux *) p);
3428 p += sizeof (Elf_External_Verdaux);
3429
3430 for (n = t->deps; n != NULL; n = n->next)
3431 {
3432 if (n->version_needed == NULL)
3433 {
3434 /* This can happen if there was an error in the
3435 version script. */
3436 defaux.vda_name = 0;
3437 }
3438 else
3439 {
3440 defaux.vda_name = n->version_needed->name_indx;
3441 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3442 defaux.vda_name);
3443 }
3444 if (n->next == NULL)
3445 defaux.vda_next = 0;
3446 else
3447 defaux.vda_next = sizeof (Elf_External_Verdaux);
3448
3449 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3450 (Elf_External_Verdaux *) p);
3451 p += sizeof (Elf_External_Verdaux);
3452 }
3453 }
3454
3455 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3456 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3457 (bfd_vma) cdefs))
3458 return false;
3459
3460 elf_tdata (output_bfd)->cverdefs = cdefs;
3461 }
3462
3463 if (info->new_dtags && info->flags)
3464 {
3465 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3466 return false;
3467 }
3468
3469 if (info->flags_1)
3470 {
3471 if (! info->shared)
3472 info->flags_1 &= ~ (DF_1_INITFIRST
3473 | DF_1_NODELETE
3474 | DF_1_NOOPEN);
3475 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3476 info->flags_1))
3477 return false;
3478 }
3479
3480 /* Work out the size of the version reference section. */
3481
3482 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3483 BFD_ASSERT (s != NULL);
3484 {
3485 struct elf_find_verdep_info sinfo;
3486
3487 sinfo.output_bfd = output_bfd;
3488 sinfo.info = info;
3489 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3490 if (sinfo.vers == 0)
3491 sinfo.vers = 1;
3492 sinfo.failed = false;
3493
3494 elf_link_hash_traverse (elf_hash_table (info),
3495 elf_link_find_version_dependencies,
3496 (PTR) &sinfo);
3497
3498 if (elf_tdata (output_bfd)->verref == NULL)
3499 _bfd_strip_section_from_output (info, s);
3500 else
3501 {
3502 Elf_Internal_Verneed *t;
3503 unsigned int size;
3504 unsigned int crefs;
3505 bfd_byte *p;
3506
3507 /* Build the version definition section. */
3508 size = 0;
3509 crefs = 0;
3510 for (t = elf_tdata (output_bfd)->verref;
3511 t != NULL;
3512 t = t->vn_nextref)
3513 {
3514 Elf_Internal_Vernaux *a;
3515
3516 size += sizeof (Elf_External_Verneed);
3517 ++crefs;
3518 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3519 size += sizeof (Elf_External_Vernaux);
3520 }
3521
3522 s->_raw_size = size;
3523 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3524 if (s->contents == NULL)
3525 return false;
3526
3527 p = s->contents;
3528 for (t = elf_tdata (output_bfd)->verref;
3529 t != NULL;
3530 t = t->vn_nextref)
3531 {
3532 unsigned int caux;
3533 Elf_Internal_Vernaux *a;
3534 bfd_size_type indx;
3535
3536 caux = 0;
3537 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3538 ++caux;
3539
3540 t->vn_version = VER_NEED_CURRENT;
3541 t->vn_cnt = caux;
3542 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3543 elf_dt_name (t->vn_bfd) != NULL
3544 ? elf_dt_name (t->vn_bfd)
3545 : basename (t->vn_bfd->filename),
3546 false);
3547 if (indx == (bfd_size_type) -1)
3548 return false;
3549 t->vn_file = indx;
3550 t->vn_aux = sizeof (Elf_External_Verneed);
3551 if (t->vn_nextref == NULL)
3552 t->vn_next = 0;
3553 else
3554 t->vn_next = (sizeof (Elf_External_Verneed)
3555 + caux * sizeof (Elf_External_Vernaux));
3556
3557 _bfd_elf_swap_verneed_out (output_bfd, t,
3558 (Elf_External_Verneed *) p);
3559 p += sizeof (Elf_External_Verneed);
3560
3561 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3562 {
3563 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3564 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3565 a->vna_nodename, false);
3566 if (indx == (bfd_size_type) -1)
3567 return false;
3568 a->vna_name = indx;
3569 if (a->vna_nextptr == NULL)
3570 a->vna_next = 0;
3571 else
3572 a->vna_next = sizeof (Elf_External_Vernaux);
3573
3574 _bfd_elf_swap_vernaux_out (output_bfd, a,
3575 (Elf_External_Vernaux *) p);
3576 p += sizeof (Elf_External_Vernaux);
3577 }
3578 }
3579
3580 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3581 (bfd_vma) 0)
3582 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3583 (bfd_vma) crefs))
3584 return false;
3585
3586 elf_tdata (output_bfd)->cverrefs = crefs;
3587 }
3588 }
3589
3590 /* Assign dynsym indicies. In a shared library we generate a
3591 section symbol for each output section, which come first.
3592 Next come all of the back-end allocated local dynamic syms,
3593 followed by the rest of the global symbols. */
3594
3595 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3596
3597 /* Work out the size of the symbol version section. */
3598 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3599 BFD_ASSERT (s != NULL);
3600 if (dynsymcount == 0
3601 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3602 {
3603 _bfd_strip_section_from_output (info, s);
3604 /* The DYNSYMCOUNT might have changed if we were going to
3605 output a dynamic symbol table entry for S. */
3606 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3607 }
3608 else
3609 {
3610 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3611 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3612 if (s->contents == NULL)
3613 return false;
3614
3615 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3616 return false;
3617 }
3618
3619 /* Set the size of the .dynsym and .hash sections. We counted
3620 the number of dynamic symbols in elf_link_add_object_symbols.
3621 We will build the contents of .dynsym and .hash when we build
3622 the final symbol table, because until then we do not know the
3623 correct value to give the symbols. We built the .dynstr
3624 section as we went along in elf_link_add_object_symbols. */
3625 s = bfd_get_section_by_name (dynobj, ".dynsym");
3626 BFD_ASSERT (s != NULL);
3627 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3628 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3629 if (s->contents == NULL && s->_raw_size != 0)
3630 return false;
3631
3632 if (dynsymcount != 0)
3633 {
3634 Elf_Internal_Sym isym;
3635
3636 /* The first entry in .dynsym is a dummy symbol. */
3637 isym.st_value = 0;
3638 isym.st_size = 0;
3639 isym.st_name = 0;
3640 isym.st_info = 0;
3641 isym.st_other = 0;
3642 isym.st_shndx = 0;
3643 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3644 }
3645
3646 /* Compute the size of the hashing table. As a side effect this
3647 computes the hash values for all the names we export. */
3648 bucketcount = compute_bucket_count (info);
3649
3650 s = bfd_get_section_by_name (dynobj, ".hash");
3651 BFD_ASSERT (s != NULL);
3652 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3653 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3654 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3655 if (s->contents == NULL)
3656 return false;
3657 memset (s->contents, 0, (size_t) s->_raw_size);
3658
3659 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3660 s->contents);
3661 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3662 s->contents + hash_entry_size);
3663
3664 elf_hash_table (info)->bucketcount = bucketcount;
3665
3666 s = bfd_get_section_by_name (dynobj, ".dynstr");
3667 BFD_ASSERT (s != NULL);
3668
3669 elf_finalize_dynstr (output_bfd, info);
3670
3671 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3672
3673 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3674 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3675 return false;
3676 }
3677
3678 return true;
3679 }
3680 \f
3681 /* This function is used to adjust offsets into .dynstr for
3682 dynamic symbols. This is called via elf_link_hash_traverse. */
3683
3684 static boolean elf_adjust_dynstr_offsets
3685 PARAMS ((struct elf_link_hash_entry *, PTR));
3686
3687 static boolean
3688 elf_adjust_dynstr_offsets (h, data)
3689 struct elf_link_hash_entry *h;
3690 PTR data;
3691 {
3692 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3693
3694 if (h->dynindx != -1)
3695 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3696 return true;
3697 }
3698
3699 /* Assign string offsets in .dynstr, update all structures referencing
3700 them. */
3701
3702 static boolean
3703 elf_finalize_dynstr (output_bfd, info)
3704 bfd *output_bfd;
3705 struct bfd_link_info *info;
3706 {
3707 struct elf_link_local_dynamic_entry *entry;
3708 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3709 bfd *dynobj = elf_hash_table (info)->dynobj;
3710 asection *sdyn;
3711 bfd_size_type size;
3712 Elf_External_Dyn *dyncon, *dynconend;
3713
3714 _bfd_elf_strtab_finalize (dynstr);
3715 size = _bfd_elf_strtab_size (dynstr);
3716
3717 /* Update all .dynamic entries referencing .dynstr strings. */
3718 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3719 BFD_ASSERT (sdyn != NULL);
3720
3721 dyncon = (Elf_External_Dyn *) sdyn->contents;
3722 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3723 sdyn->_raw_size);
3724 for (; dyncon < dynconend; dyncon++)
3725 {
3726 Elf_Internal_Dyn dyn;
3727
3728 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3729 switch (dyn.d_tag)
3730 {
3731 case DT_STRSZ:
3732 dyn.d_un.d_val = size;
3733 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3734 break;
3735 case DT_NEEDED:
3736 case DT_SONAME:
3737 case DT_RPATH:
3738 case DT_RUNPATH:
3739 case DT_FILTER:
3740 case DT_AUXILIARY:
3741 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3742 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3743 break;
3744 default:
3745 break;
3746 }
3747 }
3748
3749 /* Now update local dynamic symbols. */
3750 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3751 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3752 entry->isym.st_name);
3753
3754 /* And the rest of dynamic symbols. */
3755 elf_link_hash_traverse (elf_hash_table (info),
3756 elf_adjust_dynstr_offsets, dynstr);
3757
3758 /* Adjust version definitions. */
3759 if (elf_tdata (output_bfd)->cverdefs)
3760 {
3761 asection *s;
3762 bfd_byte *p;
3763 bfd_size_type i;
3764 Elf_Internal_Verdef def;
3765 Elf_Internal_Verdaux defaux;
3766
3767 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3768 p = (bfd_byte *) s->contents;
3769 do
3770 {
3771 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3772 &def);
3773 p += sizeof (Elf_External_Verdef);
3774 for (i = 0; i < def.vd_cnt; ++i)
3775 {
3776 _bfd_elf_swap_verdaux_in (output_bfd,
3777 (Elf_External_Verdaux *) p, &defaux);
3778 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3779 defaux.vda_name);
3780 _bfd_elf_swap_verdaux_out (output_bfd,
3781 &defaux, (Elf_External_Verdaux *) p);
3782 p += sizeof (Elf_External_Verdaux);
3783 }
3784 }
3785 while (def.vd_next);
3786 }
3787
3788 /* Adjust version references. */
3789 if (elf_tdata (output_bfd)->verref)
3790 {
3791 asection *s;
3792 bfd_byte *p;
3793 bfd_size_type i;
3794 Elf_Internal_Verneed need;
3795 Elf_Internal_Vernaux needaux;
3796
3797 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3798 p = (bfd_byte *) s->contents;
3799 do
3800 {
3801 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3802 &need);
3803 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3804 _bfd_elf_swap_verneed_out (output_bfd, &need,
3805 (Elf_External_Verneed *) p);
3806 p += sizeof (Elf_External_Verneed);
3807 for (i = 0; i < need.vn_cnt; ++i)
3808 {
3809 _bfd_elf_swap_vernaux_in (output_bfd,
3810 (Elf_External_Vernaux *) p, &needaux);
3811 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3812 needaux.vna_name);
3813 _bfd_elf_swap_vernaux_out (output_bfd,
3814 &needaux,
3815 (Elf_External_Vernaux *) p);
3816 p += sizeof (Elf_External_Vernaux);
3817 }
3818 }
3819 while (need.vn_next);
3820 }
3821
3822 return true;
3823 }
3824
3825 /* Fix up the flags for a symbol. This handles various cases which
3826 can only be fixed after all the input files are seen. This is
3827 currently called by both adjust_dynamic_symbol and
3828 assign_sym_version, which is unnecessary but perhaps more robust in
3829 the face of future changes. */
3830
3831 static boolean
3832 elf_fix_symbol_flags (h, eif)
3833 struct elf_link_hash_entry *h;
3834 struct elf_info_failed *eif;
3835 {
3836 /* If this symbol was mentioned in a non-ELF file, try to set
3837 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3838 permit a non-ELF file to correctly refer to a symbol defined in
3839 an ELF dynamic object. */
3840 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3841 {
3842 while (h->root.type == bfd_link_hash_indirect)
3843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3844
3845 if (h->root.type != bfd_link_hash_defined
3846 && h->root.type != bfd_link_hash_defweak)
3847 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3848 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3849 else
3850 {
3851 if (h->root.u.def.section->owner != NULL
3852 && (bfd_get_flavour (h->root.u.def.section->owner)
3853 == bfd_target_elf_flavour))
3854 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3855 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3856 else
3857 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3858 }
3859
3860 if (h->dynindx == -1
3861 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3862 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3863 {
3864 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3865 {
3866 eif->failed = true;
3867 return false;
3868 }
3869 }
3870 }
3871 else
3872 {
3873 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3874 was first seen in a non-ELF file. Fortunately, if the symbol
3875 was first seen in an ELF file, we're probably OK unless the
3876 symbol was defined in a non-ELF file. Catch that case here.
3877 FIXME: We're still in trouble if the symbol was first seen in
3878 a dynamic object, and then later in a non-ELF regular object. */
3879 if ((h->root.type == bfd_link_hash_defined
3880 || h->root.type == bfd_link_hash_defweak)
3881 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3882 && (h->root.u.def.section->owner != NULL
3883 ? (bfd_get_flavour (h->root.u.def.section->owner)
3884 != bfd_target_elf_flavour)
3885 : (bfd_is_abs_section (h->root.u.def.section)
3886 && (h->elf_link_hash_flags
3887 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3888 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3889 }
3890
3891 /* If this is a final link, and the symbol was defined as a common
3892 symbol in a regular object file, and there was no definition in
3893 any dynamic object, then the linker will have allocated space for
3894 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3895 flag will not have been set. */
3896 if (h->root.type == bfd_link_hash_defined
3897 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3898 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3899 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3900 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3901 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3902
3903 /* If -Bsymbolic was used (which means to bind references to global
3904 symbols to the definition within the shared object), and this
3905 symbol was defined in a regular object, then it actually doesn't
3906 need a PLT entry, and we can accomplish that by forcing it local.
3907 Likewise, if the symbol has hidden or internal visibility.
3908 FIXME: It might be that we also do not need a PLT for other
3909 non-hidden visibilities, but we would have to tell that to the
3910 backend specifically; we can't just clear PLT-related data here. */
3911 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3912 && eif->info->shared
3913 && is_elf_hash_table (eif->info)
3914 && (eif->info->symbolic
3915 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3916 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3917 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3918 {
3919 struct elf_backend_data *bed;
3920 boolean force_local;
3921
3922 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3923
3924 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3925 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3926 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3927 }
3928
3929 /* If this is a weak defined symbol in a dynamic object, and we know
3930 the real definition in the dynamic object, copy interesting flags
3931 over to the real definition. */
3932 if (h->weakdef != NULL)
3933 {
3934 struct elf_link_hash_entry *weakdef;
3935
3936 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3937 || h->root.type == bfd_link_hash_defweak);
3938 weakdef = h->weakdef;
3939 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3940 || weakdef->root.type == bfd_link_hash_defweak);
3941 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3942
3943 /* If the real definition is defined by a regular object file,
3944 don't do anything special. See the longer description in
3945 elf_adjust_dynamic_symbol, below. */
3946 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3947 h->weakdef = NULL;
3948 else
3949 {
3950 struct elf_backend_data *bed;
3951
3952 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3953 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
3954 }
3955 }
3956
3957 return true;
3958 }
3959
3960 /* Make the backend pick a good value for a dynamic symbol. This is
3961 called via elf_link_hash_traverse, and also calls itself
3962 recursively. */
3963
3964 static boolean
3965 elf_adjust_dynamic_symbol (h, data)
3966 struct elf_link_hash_entry *h;
3967 PTR data;
3968 {
3969 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3970 bfd *dynobj;
3971 struct elf_backend_data *bed;
3972
3973 /* Ignore indirect symbols. These are added by the versioning code. */
3974 if (h->root.type == bfd_link_hash_indirect)
3975 return true;
3976
3977 if (! is_elf_hash_table (eif->info))
3978 return false;
3979
3980 /* Fix the symbol flags. */
3981 if (! elf_fix_symbol_flags (h, eif))
3982 return false;
3983
3984 /* If this symbol does not require a PLT entry, and it is not
3985 defined by a dynamic object, or is not referenced by a regular
3986 object, ignore it. We do have to handle a weak defined symbol,
3987 even if no regular object refers to it, if we decided to add it
3988 to the dynamic symbol table. FIXME: Do we normally need to worry
3989 about symbols which are defined by one dynamic object and
3990 referenced by another one? */
3991 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3992 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3993 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3994 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3995 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3996 {
3997 h->plt.offset = (bfd_vma) -1;
3998 return true;
3999 }
4000
4001 /* If we've already adjusted this symbol, don't do it again. This
4002 can happen via a recursive call. */
4003 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
4004 return true;
4005
4006 /* Don't look at this symbol again. Note that we must set this
4007 after checking the above conditions, because we may look at a
4008 symbol once, decide not to do anything, and then get called
4009 recursively later after REF_REGULAR is set below. */
4010 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
4011
4012 /* If this is a weak definition, and we know a real definition, and
4013 the real symbol is not itself defined by a regular object file,
4014 then get a good value for the real definition. We handle the
4015 real symbol first, for the convenience of the backend routine.
4016
4017 Note that there is a confusing case here. If the real definition
4018 is defined by a regular object file, we don't get the real symbol
4019 from the dynamic object, but we do get the weak symbol. If the
4020 processor backend uses a COPY reloc, then if some routine in the
4021 dynamic object changes the real symbol, we will not see that
4022 change in the corresponding weak symbol. This is the way other
4023 ELF linkers work as well, and seems to be a result of the shared
4024 library model.
4025
4026 I will clarify this issue. Most SVR4 shared libraries define the
4027 variable _timezone and define timezone as a weak synonym. The
4028 tzset call changes _timezone. If you write
4029 extern int timezone;
4030 int _timezone = 5;
4031 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4032 you might expect that, since timezone is a synonym for _timezone,
4033 the same number will print both times. However, if the processor
4034 backend uses a COPY reloc, then actually timezone will be copied
4035 into your process image, and, since you define _timezone
4036 yourself, _timezone will not. Thus timezone and _timezone will
4037 wind up at different memory locations. The tzset call will set
4038 _timezone, leaving timezone unchanged. */
4039
4040 if (h->weakdef != NULL)
4041 {
4042 /* If we get to this point, we know there is an implicit
4043 reference by a regular object file via the weak symbol H.
4044 FIXME: Is this really true? What if the traversal finds
4045 H->WEAKDEF before it finds H? */
4046 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4047
4048 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4049 return false;
4050 }
4051
4052 /* If a symbol has no type and no size and does not require a PLT
4053 entry, then we are probably about to do the wrong thing here: we
4054 are probably going to create a COPY reloc for an empty object.
4055 This case can arise when a shared object is built with assembly
4056 code, and the assembly code fails to set the symbol type. */
4057 if (h->size == 0
4058 && h->type == STT_NOTYPE
4059 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4060 (*_bfd_error_handler)
4061 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4062 h->root.root.string);
4063
4064 dynobj = elf_hash_table (eif->info)->dynobj;
4065 bed = get_elf_backend_data (dynobj);
4066 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4067 {
4068 eif->failed = true;
4069 return false;
4070 }
4071
4072 return true;
4073 }
4074 \f
4075 /* This routine is used to export all defined symbols into the dynamic
4076 symbol table. It is called via elf_link_hash_traverse. */
4077
4078 static boolean
4079 elf_export_symbol (h, data)
4080 struct elf_link_hash_entry *h;
4081 PTR data;
4082 {
4083 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4084
4085 /* Ignore indirect symbols. These are added by the versioning code. */
4086 if (h->root.type == bfd_link_hash_indirect)
4087 return true;
4088
4089 if (h->dynindx == -1
4090 && (h->elf_link_hash_flags
4091 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4092 {
4093 struct bfd_elf_version_tree *t;
4094 struct bfd_elf_version_expr *d;
4095
4096 for (t = eif->verdefs; t != NULL; t = t->next)
4097 {
4098 if (t->globals != NULL)
4099 {
4100 for (d = t->globals; d != NULL; d = d->next)
4101 {
4102 if ((*d->match) (d, h->root.root.string))
4103 goto doit;
4104 }
4105 }
4106
4107 if (t->locals != NULL)
4108 {
4109 for (d = t->locals ; d != NULL; d = d->next)
4110 {
4111 if ((*d->match) (d, h->root.root.string))
4112 return true;
4113 }
4114 }
4115 }
4116
4117 if (!eif->verdefs)
4118 {
4119 doit:
4120 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4121 {
4122 eif->failed = true;
4123 return false;
4124 }
4125 }
4126 }
4127
4128 return true;
4129 }
4130 \f
4131 /* Look through the symbols which are defined in other shared
4132 libraries and referenced here. Update the list of version
4133 dependencies. This will be put into the .gnu.version_r section.
4134 This function is called via elf_link_hash_traverse. */
4135
4136 static boolean
4137 elf_link_find_version_dependencies (h, data)
4138 struct elf_link_hash_entry *h;
4139 PTR data;
4140 {
4141 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4142 Elf_Internal_Verneed *t;
4143 Elf_Internal_Vernaux *a;
4144 bfd_size_type amt;
4145
4146 /* We only care about symbols defined in shared objects with version
4147 information. */
4148 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4149 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4150 || h->dynindx == -1
4151 || h->verinfo.verdef == NULL)
4152 return true;
4153
4154 /* See if we already know about this version. */
4155 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4156 {
4157 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4158 continue;
4159
4160 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4161 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4162 return true;
4163
4164 break;
4165 }
4166
4167 /* This is a new version. Add it to tree we are building. */
4168
4169 if (t == NULL)
4170 {
4171 amt = sizeof *t;
4172 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4173 if (t == NULL)
4174 {
4175 rinfo->failed = true;
4176 return false;
4177 }
4178
4179 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4180 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4181 elf_tdata (rinfo->output_bfd)->verref = t;
4182 }
4183
4184 amt = sizeof *a;
4185 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4186
4187 /* Note that we are copying a string pointer here, and testing it
4188 above. If bfd_elf_string_from_elf_section is ever changed to
4189 discard the string data when low in memory, this will have to be
4190 fixed. */
4191 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4192
4193 a->vna_flags = h->verinfo.verdef->vd_flags;
4194 a->vna_nextptr = t->vn_auxptr;
4195
4196 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4197 ++rinfo->vers;
4198
4199 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4200
4201 t->vn_auxptr = a;
4202
4203 return true;
4204 }
4205
4206 /* Figure out appropriate versions for all the symbols. We may not
4207 have the version number script until we have read all of the input
4208 files, so until that point we don't know which symbols should be
4209 local. This function is called via elf_link_hash_traverse. */
4210
4211 static boolean
4212 elf_link_assign_sym_version (h, data)
4213 struct elf_link_hash_entry *h;
4214 PTR data;
4215 {
4216 struct elf_assign_sym_version_info *sinfo;
4217 struct bfd_link_info *info;
4218 struct elf_backend_data *bed;
4219 struct elf_info_failed eif;
4220 char *p;
4221 bfd_size_type amt;
4222
4223 sinfo = (struct elf_assign_sym_version_info *) data;
4224 info = sinfo->info;
4225
4226 /* Fix the symbol flags. */
4227 eif.failed = false;
4228 eif.info = info;
4229 if (! elf_fix_symbol_flags (h, &eif))
4230 {
4231 if (eif.failed)
4232 sinfo->failed = true;
4233 return false;
4234 }
4235
4236 /* We only need version numbers for symbols defined in regular
4237 objects. */
4238 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4239 return true;
4240
4241 bed = get_elf_backend_data (sinfo->output_bfd);
4242 p = strchr (h->root.root.string, ELF_VER_CHR);
4243 if (p != NULL && h->verinfo.vertree == NULL)
4244 {
4245 struct bfd_elf_version_tree *t;
4246 boolean hidden;
4247
4248 hidden = true;
4249
4250 /* There are two consecutive ELF_VER_CHR characters if this is
4251 not a hidden symbol. */
4252 ++p;
4253 if (*p == ELF_VER_CHR)
4254 {
4255 hidden = false;
4256 ++p;
4257 }
4258
4259 /* If there is no version string, we can just return out. */
4260 if (*p == '\0')
4261 {
4262 if (hidden)
4263 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4264 return true;
4265 }
4266
4267 /* Look for the version. If we find it, it is no longer weak. */
4268 for (t = sinfo->verdefs; t != NULL; t = t->next)
4269 {
4270 if (strcmp (t->name, p) == 0)
4271 {
4272 size_t len;
4273 char *alc;
4274 struct bfd_elf_version_expr *d;
4275
4276 len = p - h->root.root.string;
4277 alc = bfd_malloc ((bfd_size_type) len);
4278 if (alc == NULL)
4279 return false;
4280 strncpy (alc, h->root.root.string, len - 1);
4281 alc[len - 1] = '\0';
4282 if (alc[len - 2] == ELF_VER_CHR)
4283 alc[len - 2] = '\0';
4284
4285 h->verinfo.vertree = t;
4286 t->used = true;
4287 d = NULL;
4288
4289 if (t->globals != NULL)
4290 {
4291 for (d = t->globals; d != NULL; d = d->next)
4292 if ((*d->match) (d, alc))
4293 break;
4294 }
4295
4296 /* See if there is anything to force this symbol to
4297 local scope. */
4298 if (d == NULL && t->locals != NULL)
4299 {
4300 for (d = t->locals; d != NULL; d = d->next)
4301 {
4302 if ((*d->match) (d, alc))
4303 {
4304 if (h->dynindx != -1
4305 && info->shared
4306 && ! info->export_dynamic)
4307 {
4308 (*bed->elf_backend_hide_symbol) (info, h, true);
4309 }
4310
4311 break;
4312 }
4313 }
4314 }
4315
4316 free (alc);
4317 break;
4318 }
4319 }
4320
4321 /* If we are building an application, we need to create a
4322 version node for this version. */
4323 if (t == NULL && ! info->shared)
4324 {
4325 struct bfd_elf_version_tree **pp;
4326 int version_index;
4327
4328 /* If we aren't going to export this symbol, we don't need
4329 to worry about it. */
4330 if (h->dynindx == -1)
4331 return true;
4332
4333 amt = sizeof *t;
4334 t = ((struct bfd_elf_version_tree *)
4335 bfd_alloc (sinfo->output_bfd, amt));
4336 if (t == NULL)
4337 {
4338 sinfo->failed = true;
4339 return false;
4340 }
4341
4342 t->next = NULL;
4343 t->name = p;
4344 t->globals = NULL;
4345 t->locals = NULL;
4346 t->deps = NULL;
4347 t->name_indx = (unsigned int) -1;
4348 t->used = true;
4349
4350 version_index = 1;
4351 /* Don't count anonymous version tag. */
4352 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4353 version_index = 0;
4354 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4355 ++version_index;
4356 t->vernum = version_index;
4357
4358 *pp = t;
4359
4360 h->verinfo.vertree = t;
4361 }
4362 else if (t == NULL)
4363 {
4364 /* We could not find the version for a symbol when
4365 generating a shared archive. Return an error. */
4366 (*_bfd_error_handler)
4367 (_("%s: undefined versioned symbol name %s"),
4368 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4369 bfd_set_error (bfd_error_bad_value);
4370 sinfo->failed = true;
4371 return false;
4372 }
4373
4374 if (hidden)
4375 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4376 }
4377
4378 /* If we don't have a version for this symbol, see if we can find
4379 something. */
4380 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4381 {
4382 struct bfd_elf_version_tree *t;
4383 struct bfd_elf_version_tree *deflt;
4384 struct bfd_elf_version_expr *d;
4385
4386 /* See if can find what version this symbol is in. If the
4387 symbol is supposed to be local, then don't actually register
4388 it. */
4389 deflt = NULL;
4390 for (t = sinfo->verdefs; t != NULL; t = t->next)
4391 {
4392 if (t->globals != NULL)
4393 {
4394 for (d = t->globals; d != NULL; d = d->next)
4395 {
4396 if ((*d->match) (d, h->root.root.string))
4397 {
4398 h->verinfo.vertree = t;
4399 break;
4400 }
4401 }
4402
4403 if (d != NULL)
4404 break;
4405 }
4406
4407 if (t->locals != NULL)
4408 {
4409 for (d = t->locals; d != NULL; d = d->next)
4410 {
4411 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4412 deflt = t;
4413 else if ((*d->match) (d, h->root.root.string))
4414 {
4415 h->verinfo.vertree = t;
4416 if (h->dynindx != -1
4417 && info->shared
4418 && ! info->export_dynamic)
4419 {
4420 (*bed->elf_backend_hide_symbol) (info, h, true);
4421 }
4422 break;
4423 }
4424 }
4425
4426 if (d != NULL)
4427 break;
4428 }
4429 }
4430
4431 if (deflt != NULL && h->verinfo.vertree == NULL)
4432 {
4433 h->verinfo.vertree = deflt;
4434 if (h->dynindx != -1
4435 && info->shared
4436 && ! info->export_dynamic)
4437 {
4438 (*bed->elf_backend_hide_symbol) (info, h, true);
4439 }
4440 }
4441 }
4442
4443 return true;
4444 }
4445 \f
4446 /* Final phase of ELF linker. */
4447
4448 /* A structure we use to avoid passing large numbers of arguments. */
4449
4450 struct elf_final_link_info
4451 {
4452 /* General link information. */
4453 struct bfd_link_info *info;
4454 /* Output BFD. */
4455 bfd *output_bfd;
4456 /* Symbol string table. */
4457 struct bfd_strtab_hash *symstrtab;
4458 /* .dynsym section. */
4459 asection *dynsym_sec;
4460 /* .hash section. */
4461 asection *hash_sec;
4462 /* symbol version section (.gnu.version). */
4463 asection *symver_sec;
4464 /* Buffer large enough to hold contents of any section. */
4465 bfd_byte *contents;
4466 /* Buffer large enough to hold external relocs of any section. */
4467 PTR external_relocs;
4468 /* Buffer large enough to hold internal relocs of any section. */
4469 Elf_Internal_Rela *internal_relocs;
4470 /* Buffer large enough to hold external local symbols of any input
4471 BFD. */
4472 Elf_External_Sym *external_syms;
4473 /* And a buffer for symbol section indices. */
4474 Elf_External_Sym_Shndx *locsym_shndx;
4475 /* Buffer large enough to hold internal local symbols of any input
4476 BFD. */
4477 Elf_Internal_Sym *internal_syms;
4478 /* Array large enough to hold a symbol index for each local symbol
4479 of any input BFD. */
4480 long *indices;
4481 /* Array large enough to hold a section pointer for each local
4482 symbol of any input BFD. */
4483 asection **sections;
4484 /* Buffer to hold swapped out symbols. */
4485 Elf_External_Sym *symbuf;
4486 /* And one for symbol section indices. */
4487 Elf_External_Sym_Shndx *symshndxbuf;
4488 /* Number of swapped out symbols in buffer. */
4489 size_t symbuf_count;
4490 /* Number of symbols which fit in symbuf. */
4491 size_t symbuf_size;
4492 };
4493
4494 static boolean elf_link_output_sym
4495 PARAMS ((struct elf_final_link_info *, const char *,
4496 Elf_Internal_Sym *, asection *));
4497 static boolean elf_link_flush_output_syms
4498 PARAMS ((struct elf_final_link_info *));
4499 static boolean elf_link_output_extsym
4500 PARAMS ((struct elf_link_hash_entry *, PTR));
4501 static boolean elf_link_sec_merge_syms
4502 PARAMS ((struct elf_link_hash_entry *, PTR));
4503 static boolean elf_link_input_bfd
4504 PARAMS ((struct elf_final_link_info *, bfd *));
4505 static boolean elf_reloc_link_order
4506 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4507 struct bfd_link_order *));
4508
4509 /* This struct is used to pass information to elf_link_output_extsym. */
4510
4511 struct elf_outext_info
4512 {
4513 boolean failed;
4514 boolean localsyms;
4515 struct elf_final_link_info *finfo;
4516 };
4517
4518 /* Compute the size of, and allocate space for, REL_HDR which is the
4519 section header for a section containing relocations for O. */
4520
4521 static boolean
4522 elf_link_size_reloc_section (abfd, rel_hdr, o)
4523 bfd *abfd;
4524 Elf_Internal_Shdr *rel_hdr;
4525 asection *o;
4526 {
4527 bfd_size_type reloc_count;
4528 bfd_size_type num_rel_hashes;
4529
4530 /* Figure out how many relocations there will be. */
4531 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4532 reloc_count = elf_section_data (o)->rel_count;
4533 else
4534 reloc_count = elf_section_data (o)->rel_count2;
4535
4536 num_rel_hashes = o->reloc_count;
4537 if (num_rel_hashes < reloc_count)
4538 num_rel_hashes = reloc_count;
4539
4540 /* That allows us to calculate the size of the section. */
4541 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4542
4543 /* The contents field must last into write_object_contents, so we
4544 allocate it with bfd_alloc rather than malloc. Also since we
4545 cannot be sure that the contents will actually be filled in,
4546 we zero the allocated space. */
4547 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4548 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4549 return false;
4550
4551 /* We only allocate one set of hash entries, so we only do it the
4552 first time we are called. */
4553 if (elf_section_data (o)->rel_hashes == NULL
4554 && num_rel_hashes)
4555 {
4556 struct elf_link_hash_entry **p;
4557
4558 p = ((struct elf_link_hash_entry **)
4559 bfd_zmalloc (num_rel_hashes
4560 * sizeof (struct elf_link_hash_entry *)));
4561 if (p == NULL)
4562 return false;
4563
4564 elf_section_data (o)->rel_hashes = p;
4565 }
4566
4567 return true;
4568 }
4569
4570 /* When performing a relocateable link, the input relocations are
4571 preserved. But, if they reference global symbols, the indices
4572 referenced must be updated. Update all the relocations in
4573 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4574
4575 static void
4576 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4577 bfd *abfd;
4578 Elf_Internal_Shdr *rel_hdr;
4579 unsigned int count;
4580 struct elf_link_hash_entry **rel_hash;
4581 {
4582 unsigned int i;
4583 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4584 Elf_Internal_Rel *irel;
4585 Elf_Internal_Rela *irela;
4586 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4587
4588 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4589 if (irel == NULL)
4590 {
4591 (*_bfd_error_handler) (_("Error: out of memory"));
4592 abort ();
4593 }
4594
4595 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4596 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4597 if (irela == NULL)
4598 {
4599 (*_bfd_error_handler) (_("Error: out of memory"));
4600 abort ();
4601 }
4602
4603 for (i = 0; i < count; i++, rel_hash++)
4604 {
4605 if (*rel_hash == NULL)
4606 continue;
4607
4608 BFD_ASSERT ((*rel_hash)->indx >= 0);
4609
4610 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4611 {
4612 Elf_External_Rel *erel;
4613 unsigned int j;
4614
4615 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4616 if (bed->s->swap_reloc_in)
4617 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4618 else
4619 elf_swap_reloc_in (abfd, erel, irel);
4620
4621 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4622 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4623 ELF_R_TYPE (irel[j].r_info));
4624
4625 if (bed->s->swap_reloc_out)
4626 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4627 else
4628 elf_swap_reloc_out (abfd, irel, erel);
4629 }
4630 else
4631 {
4632 Elf_External_Rela *erela;
4633 unsigned int j;
4634
4635 BFD_ASSERT (rel_hdr->sh_entsize
4636 == sizeof (Elf_External_Rela));
4637
4638 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4639 if (bed->s->swap_reloca_in)
4640 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4641 else
4642 elf_swap_reloca_in (abfd, erela, irela);
4643
4644 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4645 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4646 ELF_R_TYPE (irela[j].r_info));
4647
4648 if (bed->s->swap_reloca_out)
4649 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4650 else
4651 elf_swap_reloca_out (abfd, irela, erela);
4652 }
4653 }
4654
4655 free (irel);
4656 free (irela);
4657 }
4658
4659 struct elf_link_sort_rela {
4660 bfd_vma offset;
4661 enum elf_reloc_type_class type;
4662 union {
4663 Elf_Internal_Rel rel;
4664 Elf_Internal_Rela rela;
4665 } u;
4666 };
4667
4668 static int
4669 elf_link_sort_cmp1 (A, B)
4670 const PTR A;
4671 const PTR B;
4672 {
4673 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4674 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4675 int relativea, relativeb;
4676
4677 relativea = a->type == reloc_class_relative;
4678 relativeb = b->type == reloc_class_relative;
4679
4680 if (relativea < relativeb)
4681 return 1;
4682 if (relativea > relativeb)
4683 return -1;
4684 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4685 return -1;
4686 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4687 return 1;
4688 if (a->u.rel.r_offset < b->u.rel.r_offset)
4689 return -1;
4690 if (a->u.rel.r_offset > b->u.rel.r_offset)
4691 return 1;
4692 return 0;
4693 }
4694
4695 static int
4696 elf_link_sort_cmp2 (A, B)
4697 const PTR A;
4698 const PTR B;
4699 {
4700 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4701 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4702 int copya, copyb;
4703
4704 if (a->offset < b->offset)
4705 return -1;
4706 if (a->offset > b->offset)
4707 return 1;
4708 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4709 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4710 if (copya < copyb)
4711 return -1;
4712 if (copya > copyb)
4713 return 1;
4714 if (a->u.rel.r_offset < b->u.rel.r_offset)
4715 return -1;
4716 if (a->u.rel.r_offset > b->u.rel.r_offset)
4717 return 1;
4718 return 0;
4719 }
4720
4721 static size_t
4722 elf_link_sort_relocs (abfd, info, psec)
4723 bfd *abfd;
4724 struct bfd_link_info *info;
4725 asection **psec;
4726 {
4727 bfd *dynobj = elf_hash_table (info)->dynobj;
4728 asection *reldyn, *o;
4729 boolean rel = false;
4730 bfd_size_type count, size;
4731 size_t i, j, ret;
4732 struct elf_link_sort_rela *rela;
4733 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4734
4735 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4736 if (reldyn == NULL || reldyn->_raw_size == 0)
4737 {
4738 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4739 if (reldyn == NULL || reldyn->_raw_size == 0)
4740 return 0;
4741 rel = true;
4742 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4743 }
4744 else
4745 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4746
4747 size = 0;
4748 for (o = dynobj->sections; o != NULL; o = o->next)
4749 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4750 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4751 && o->output_section == reldyn)
4752 size += o->_raw_size;
4753
4754 if (size != reldyn->_raw_size)
4755 return 0;
4756
4757 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4758 if (rela == NULL)
4759 {
4760 (*info->callbacks->warning)
4761 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4762 (bfd_vma) 0);
4763 return 0;
4764 }
4765
4766 for (o = dynobj->sections; o != NULL; o = o->next)
4767 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4768 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4769 && o->output_section == reldyn)
4770 {
4771 if (rel)
4772 {
4773 Elf_External_Rel *erel, *erelend;
4774 struct elf_link_sort_rela *s;
4775
4776 erel = (Elf_External_Rel *) o->contents;
4777 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4778 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4779 for (; erel < erelend; erel++, s++)
4780 {
4781 if (bed->s->swap_reloc_in)
4782 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4783 else
4784 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4785
4786 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4787 }
4788 }
4789 else
4790 {
4791 Elf_External_Rela *erela, *erelaend;
4792 struct elf_link_sort_rela *s;
4793
4794 erela = (Elf_External_Rela *) o->contents;
4795 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4796 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4797 for (; erela < erelaend; erela++, s++)
4798 {
4799 if (bed->s->swap_reloca_in)
4800 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4801 &s->u.rela);
4802 else
4803 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4804
4805 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4806 }
4807 }
4808 }
4809
4810 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4811 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4812 ;
4813 for (i = ret, j = ret; i < count; i++)
4814 {
4815 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4816 j = i;
4817 rela[i].offset = rela[j].u.rel.r_offset;
4818 }
4819 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4820
4821 for (o = dynobj->sections; o != NULL; o = o->next)
4822 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4823 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4824 && o->output_section == reldyn)
4825 {
4826 if (rel)
4827 {
4828 Elf_External_Rel *erel, *erelend;
4829 struct elf_link_sort_rela *s;
4830
4831 erel = (Elf_External_Rel *) o->contents;
4832 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4833 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4834 for (; erel < erelend; erel++, s++)
4835 {
4836 if (bed->s->swap_reloc_out)
4837 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4838 (bfd_byte *) erel);
4839 else
4840 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4841 }
4842 }
4843 else
4844 {
4845 Elf_External_Rela *erela, *erelaend;
4846 struct elf_link_sort_rela *s;
4847
4848 erela = (Elf_External_Rela *) o->contents;
4849 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4850 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4851 for (; erela < erelaend; erela++, s++)
4852 {
4853 if (bed->s->swap_reloca_out)
4854 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4855 (bfd_byte *) erela);
4856 else
4857 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4858 }
4859 }
4860 }
4861
4862 free (rela);
4863 *psec = reldyn;
4864 return ret;
4865 }
4866
4867 /* Do the final step of an ELF link. */
4868
4869 boolean
4870 elf_bfd_final_link (abfd, info)
4871 bfd *abfd;
4872 struct bfd_link_info *info;
4873 {
4874 boolean dynamic;
4875 boolean emit_relocs;
4876 bfd *dynobj;
4877 struct elf_final_link_info finfo;
4878 register asection *o;
4879 register struct bfd_link_order *p;
4880 register bfd *sub;
4881 bfd_size_type max_contents_size;
4882 bfd_size_type max_external_reloc_size;
4883 bfd_size_type max_internal_reloc_count;
4884 bfd_size_type max_sym_count;
4885 bfd_size_type max_sym_shndx_count;
4886 file_ptr off;
4887 Elf_Internal_Sym elfsym;
4888 unsigned int i;
4889 Elf_Internal_Shdr *symtab_hdr;
4890 Elf_Internal_Shdr *symstrtab_hdr;
4891 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4892 struct elf_outext_info eoinfo;
4893 boolean merged;
4894 size_t relativecount = 0;
4895 asection *reldyn = 0;
4896 bfd_size_type amt;
4897
4898 if (! is_elf_hash_table (info))
4899 return false;
4900
4901 if (info->shared)
4902 abfd->flags |= DYNAMIC;
4903
4904 dynamic = elf_hash_table (info)->dynamic_sections_created;
4905 dynobj = elf_hash_table (info)->dynobj;
4906
4907 emit_relocs = (info->relocateable
4908 || info->emitrelocations
4909 || bed->elf_backend_emit_relocs);
4910
4911 finfo.info = info;
4912 finfo.output_bfd = abfd;
4913 finfo.symstrtab = elf_stringtab_init ();
4914 if (finfo.symstrtab == NULL)
4915 return false;
4916
4917 if (! dynamic)
4918 {
4919 finfo.dynsym_sec = NULL;
4920 finfo.hash_sec = NULL;
4921 finfo.symver_sec = NULL;
4922 }
4923 else
4924 {
4925 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4926 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4927 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4928 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4929 /* Note that it is OK if symver_sec is NULL. */
4930 }
4931
4932 finfo.contents = NULL;
4933 finfo.external_relocs = NULL;
4934 finfo.internal_relocs = NULL;
4935 finfo.external_syms = NULL;
4936 finfo.locsym_shndx = NULL;
4937 finfo.internal_syms = NULL;
4938 finfo.indices = NULL;
4939 finfo.sections = NULL;
4940 finfo.symbuf = NULL;
4941 finfo.symshndxbuf = NULL;
4942 finfo.symbuf_count = 0;
4943
4944 /* Count up the number of relocations we will output for each output
4945 section, so that we know the sizes of the reloc sections. We
4946 also figure out some maximum sizes. */
4947 max_contents_size = 0;
4948 max_external_reloc_size = 0;
4949 max_internal_reloc_count = 0;
4950 max_sym_count = 0;
4951 max_sym_shndx_count = 0;
4952 merged = false;
4953 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4954 {
4955 o->reloc_count = 0;
4956
4957 for (p = o->link_order_head; p != NULL; p = p->next)
4958 {
4959 if (p->type == bfd_section_reloc_link_order
4960 || p->type == bfd_symbol_reloc_link_order)
4961 ++o->reloc_count;
4962 else if (p->type == bfd_indirect_link_order)
4963 {
4964 asection *sec;
4965
4966 sec = p->u.indirect.section;
4967
4968 /* Mark all sections which are to be included in the
4969 link. This will normally be every section. We need
4970 to do this so that we can identify any sections which
4971 the linker has decided to not include. */
4972 sec->linker_mark = true;
4973
4974 if (sec->flags & SEC_MERGE)
4975 merged = true;
4976
4977 if (info->relocateable || info->emitrelocations)
4978 o->reloc_count += sec->reloc_count;
4979 else if (bed->elf_backend_count_relocs)
4980 {
4981 Elf_Internal_Rela * relocs;
4982
4983 relocs = (NAME(_bfd_elf,link_read_relocs)
4984 (abfd, sec, (PTR) NULL,
4985 (Elf_Internal_Rela *) NULL, info->keep_memory));
4986
4987 o->reloc_count
4988 += (*bed->elf_backend_count_relocs) (sec, relocs);
4989
4990 if (!info->keep_memory)
4991 free (relocs);
4992 }
4993
4994 if (sec->_raw_size > max_contents_size)
4995 max_contents_size = sec->_raw_size;
4996 if (sec->_cooked_size > max_contents_size)
4997 max_contents_size = sec->_cooked_size;
4998
4999 /* We are interested in just local symbols, not all
5000 symbols. */
5001 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5002 && (sec->owner->flags & DYNAMIC) == 0)
5003 {
5004 size_t sym_count;
5005
5006 if (elf_bad_symtab (sec->owner))
5007 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5008 / sizeof (Elf_External_Sym));
5009 else
5010 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5011
5012 if (sym_count > max_sym_count)
5013 max_sym_count = sym_count;
5014
5015 if (sym_count > max_sym_shndx_count
5016 && elf_symtab_shndx (sec->owner) != 0)
5017 max_sym_shndx_count = sym_count;
5018
5019 if ((sec->flags & SEC_RELOC) != 0)
5020 {
5021 size_t ext_size;
5022
5023 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5024 if (ext_size > max_external_reloc_size)
5025 max_external_reloc_size = ext_size;
5026 if (sec->reloc_count > max_internal_reloc_count)
5027 max_internal_reloc_count = sec->reloc_count;
5028 }
5029 }
5030 }
5031 }
5032
5033 if (o->reloc_count > 0)
5034 o->flags |= SEC_RELOC;
5035 else
5036 {
5037 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5038 set it (this is probably a bug) and if it is set
5039 assign_section_numbers will create a reloc section. */
5040 o->flags &=~ SEC_RELOC;
5041 }
5042
5043 /* If the SEC_ALLOC flag is not set, force the section VMA to
5044 zero. This is done in elf_fake_sections as well, but forcing
5045 the VMA to 0 here will ensure that relocs against these
5046 sections are handled correctly. */
5047 if ((o->flags & SEC_ALLOC) == 0
5048 && ! o->user_set_vma)
5049 o->vma = 0;
5050 }
5051
5052 if (! info->relocateable && merged)
5053 elf_link_hash_traverse (elf_hash_table (info),
5054 elf_link_sec_merge_syms, (PTR) abfd);
5055
5056 /* Figure out the file positions for everything but the symbol table
5057 and the relocs. We set symcount to force assign_section_numbers
5058 to create a symbol table. */
5059 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5060 BFD_ASSERT (! abfd->output_has_begun);
5061 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5062 goto error_return;
5063
5064 /* Figure out how many relocations we will have in each section.
5065 Just using RELOC_COUNT isn't good enough since that doesn't
5066 maintain a separate value for REL vs. RELA relocations. */
5067 if (emit_relocs)
5068 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5069 for (o = sub->sections; o != NULL; o = o->next)
5070 {
5071 asection *output_section;
5072
5073 if (! o->linker_mark)
5074 {
5075 /* This section was omitted from the link. */
5076 continue;
5077 }
5078
5079 output_section = o->output_section;
5080
5081 if (output_section != NULL
5082 && (o->flags & SEC_RELOC) != 0)
5083 {
5084 struct bfd_elf_section_data *esdi
5085 = elf_section_data (o);
5086 struct bfd_elf_section_data *esdo
5087 = elf_section_data (output_section);
5088 unsigned int *rel_count;
5089 unsigned int *rel_count2;
5090 bfd_size_type entsize;
5091 bfd_size_type entsize2;
5092
5093 /* We must be careful to add the relocations from the
5094 input section to the right output count. */
5095 entsize = esdi->rel_hdr.sh_entsize;
5096 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5097 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5098 || entsize == sizeof (Elf_External_Rela))
5099 && entsize2 != entsize
5100 && (entsize2 == 0
5101 || entsize2 == sizeof (Elf_External_Rel)
5102 || entsize2 == sizeof (Elf_External_Rela)));
5103 if (entsize == esdo->rel_hdr.sh_entsize)
5104 {
5105 rel_count = &esdo->rel_count;
5106 rel_count2 = &esdo->rel_count2;
5107 }
5108 else
5109 {
5110 rel_count = &esdo->rel_count2;
5111 rel_count2 = &esdo->rel_count;
5112 }
5113
5114 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5115 if (esdi->rel_hdr2)
5116 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5117 output_section->flags |= SEC_RELOC;
5118 }
5119 }
5120
5121 /* That created the reloc sections. Set their sizes, and assign
5122 them file positions, and allocate some buffers. */
5123 for (o = abfd->sections; o != NULL; o = o->next)
5124 {
5125 if ((o->flags & SEC_RELOC) != 0)
5126 {
5127 if (!elf_link_size_reloc_section (abfd,
5128 &elf_section_data (o)->rel_hdr,
5129 o))
5130 goto error_return;
5131
5132 if (elf_section_data (o)->rel_hdr2
5133 && !elf_link_size_reloc_section (abfd,
5134 elf_section_data (o)->rel_hdr2,
5135 o))
5136 goto error_return;
5137 }
5138
5139 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5140 to count upwards while actually outputting the relocations. */
5141 elf_section_data (o)->rel_count = 0;
5142 elf_section_data (o)->rel_count2 = 0;
5143 }
5144
5145 _bfd_elf_assign_file_positions_for_relocs (abfd);
5146
5147 /* We have now assigned file positions for all the sections except
5148 .symtab and .strtab. We start the .symtab section at the current
5149 file position, and write directly to it. We build the .strtab
5150 section in memory. */
5151 bfd_get_symcount (abfd) = 0;
5152 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5153 /* sh_name is set in prep_headers. */
5154 symtab_hdr->sh_type = SHT_SYMTAB;
5155 symtab_hdr->sh_flags = 0;
5156 symtab_hdr->sh_addr = 0;
5157 symtab_hdr->sh_size = 0;
5158 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5159 /* sh_link is set in assign_section_numbers. */
5160 /* sh_info is set below. */
5161 /* sh_offset is set just below. */
5162 symtab_hdr->sh_addralign = bed->s->file_align;
5163
5164 off = elf_tdata (abfd)->next_file_pos;
5165 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5166
5167 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5168 incorrect. We do not yet know the size of the .symtab section.
5169 We correct next_file_pos below, after we do know the size. */
5170
5171 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5172 continuously seeking to the right position in the file. */
5173 if (! info->keep_memory || max_sym_count < 20)
5174 finfo.symbuf_size = 20;
5175 else
5176 finfo.symbuf_size = max_sym_count;
5177 amt = finfo.symbuf_size;
5178 amt *= sizeof (Elf_External_Sym);
5179 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5180 if (finfo.symbuf == NULL)
5181 goto error_return;
5182 if (elf_numsections (abfd) > SHN_LORESERVE)
5183 {
5184 amt = finfo.symbuf_size;
5185 amt *= sizeof (Elf_External_Sym_Shndx);
5186 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5187 if (finfo.symshndxbuf == NULL)
5188 goto error_return;
5189 }
5190
5191 /* Start writing out the symbol table. The first symbol is always a
5192 dummy symbol. */
5193 if (info->strip != strip_all
5194 || emit_relocs)
5195 {
5196 elfsym.st_value = 0;
5197 elfsym.st_size = 0;
5198 elfsym.st_info = 0;
5199 elfsym.st_other = 0;
5200 elfsym.st_shndx = SHN_UNDEF;
5201 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5202 &elfsym, bfd_und_section_ptr))
5203 goto error_return;
5204 }
5205
5206 #if 0
5207 /* Some standard ELF linkers do this, but we don't because it causes
5208 bootstrap comparison failures. */
5209 /* Output a file symbol for the output file as the second symbol.
5210 We output this even if we are discarding local symbols, although
5211 I'm not sure if this is correct. */
5212 elfsym.st_value = 0;
5213 elfsym.st_size = 0;
5214 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5215 elfsym.st_other = 0;
5216 elfsym.st_shndx = SHN_ABS;
5217 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5218 &elfsym, bfd_abs_section_ptr))
5219 goto error_return;
5220 #endif
5221
5222 /* Output a symbol for each section. We output these even if we are
5223 discarding local symbols, since they are used for relocs. These
5224 symbols have no names. We store the index of each one in the
5225 index field of the section, so that we can find it again when
5226 outputting relocs. */
5227 if (info->strip != strip_all
5228 || emit_relocs)
5229 {
5230 elfsym.st_size = 0;
5231 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5232 elfsym.st_other = 0;
5233 for (i = 1; i < elf_numsections (abfd); i++)
5234 {
5235 o = section_from_elf_index (abfd, i);
5236 if (o != NULL)
5237 o->target_index = bfd_get_symcount (abfd);
5238 elfsym.st_shndx = i;
5239 if (info->relocateable || o == NULL)
5240 elfsym.st_value = 0;
5241 else
5242 elfsym.st_value = o->vma;
5243 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5244 &elfsym, o))
5245 goto error_return;
5246 if (i == SHN_LORESERVE)
5247 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5248 }
5249 }
5250
5251 /* Allocate some memory to hold information read in from the input
5252 files. */
5253 if (max_contents_size != 0)
5254 {
5255 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5256 if (finfo.contents == NULL)
5257 goto error_return;
5258 }
5259
5260 if (max_external_reloc_size != 0)
5261 {
5262 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5263 if (finfo.external_relocs == NULL)
5264 goto error_return;
5265 }
5266
5267 if (max_internal_reloc_count != 0)
5268 {
5269 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5270 amt *= sizeof (Elf_Internal_Rela);
5271 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5272 if (finfo.internal_relocs == NULL)
5273 goto error_return;
5274 }
5275
5276 if (max_sym_count != 0)
5277 {
5278 amt = max_sym_count * sizeof (Elf_External_Sym);
5279 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5280 if (finfo.external_syms == NULL)
5281 goto error_return;
5282
5283 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5284 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5285 if (finfo.internal_syms == NULL)
5286 goto error_return;
5287
5288 amt = max_sym_count * sizeof (long);
5289 finfo.indices = (long *) bfd_malloc (amt);
5290 if (finfo.indices == NULL)
5291 goto error_return;
5292
5293 amt = max_sym_count * sizeof (asection *);
5294 finfo.sections = (asection **) bfd_malloc (amt);
5295 if (finfo.sections == NULL)
5296 goto error_return;
5297 }
5298
5299 if (max_sym_shndx_count != 0)
5300 {
5301 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5302 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5303 if (finfo.locsym_shndx == NULL)
5304 goto error_return;
5305 }
5306
5307 /* Since ELF permits relocations to be against local symbols, we
5308 must have the local symbols available when we do the relocations.
5309 Since we would rather only read the local symbols once, and we
5310 would rather not keep them in memory, we handle all the
5311 relocations for a single input file at the same time.
5312
5313 Unfortunately, there is no way to know the total number of local
5314 symbols until we have seen all of them, and the local symbol
5315 indices precede the global symbol indices. This means that when
5316 we are generating relocateable output, and we see a reloc against
5317 a global symbol, we can not know the symbol index until we have
5318 finished examining all the local symbols to see which ones we are
5319 going to output. To deal with this, we keep the relocations in
5320 memory, and don't output them until the end of the link. This is
5321 an unfortunate waste of memory, but I don't see a good way around
5322 it. Fortunately, it only happens when performing a relocateable
5323 link, which is not the common case. FIXME: If keep_memory is set
5324 we could write the relocs out and then read them again; I don't
5325 know how bad the memory loss will be. */
5326
5327 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5328 sub->output_has_begun = false;
5329 for (o = abfd->sections; o != NULL; o = o->next)
5330 {
5331 for (p = o->link_order_head; p != NULL; p = p->next)
5332 {
5333 Elf_Internal_Shdr *rhdr;
5334
5335 if (p->type == bfd_indirect_link_order
5336 && (bfd_get_flavour (p->u.indirect.section->owner)
5337 == bfd_target_elf_flavour)
5338 && (((rhdr = &elf_section_data (p->u.indirect.section)->rel_hdr)
5339 ->sh_entsize == 0)
5340 || rhdr->sh_entsize == sizeof (Elf_External_Rel)
5341 || rhdr->sh_entsize == sizeof (Elf_External_Rela))
5342 && (((rhdr = elf_section_data (p->u.indirect.section)->rel_hdr2)
5343 == NULL)
5344 || rhdr->sh_entsize == sizeof (Elf_External_Rel)
5345 || rhdr->sh_entsize == sizeof (Elf_External_Rela)))
5346 {
5347 sub = p->u.indirect.section->owner;
5348 if (! sub->output_has_begun)
5349 {
5350 if (! elf_link_input_bfd (&finfo, sub))
5351 goto error_return;
5352 sub->output_has_begun = true;
5353 }
5354 }
5355 else if (p->type == bfd_section_reloc_link_order
5356 || p->type == bfd_symbol_reloc_link_order)
5357 {
5358 if (! elf_reloc_link_order (abfd, info, o, p))
5359 goto error_return;
5360 }
5361 else
5362 {
5363 if (! _bfd_default_link_order (abfd, info, o, p))
5364 goto error_return;
5365 }
5366 }
5367 }
5368
5369 /* Output any global symbols that got converted to local in a
5370 version script or due to symbol visibility. We do this in a
5371 separate step since ELF requires all local symbols to appear
5372 prior to any global symbols. FIXME: We should only do this if
5373 some global symbols were, in fact, converted to become local.
5374 FIXME: Will this work correctly with the Irix 5 linker? */
5375 eoinfo.failed = false;
5376 eoinfo.finfo = &finfo;
5377 eoinfo.localsyms = true;
5378 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5379 (PTR) &eoinfo);
5380 if (eoinfo.failed)
5381 return false;
5382
5383 /* That wrote out all the local symbols. Finish up the symbol table
5384 with the global symbols. Even if we want to strip everything we
5385 can, we still need to deal with those global symbols that got
5386 converted to local in a version script. */
5387
5388 /* The sh_info field records the index of the first non local symbol. */
5389 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5390
5391 if (dynamic
5392 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5393 {
5394 Elf_Internal_Sym sym;
5395 Elf_External_Sym *dynsym =
5396 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5397 long last_local = 0;
5398
5399 /* Write out the section symbols for the output sections. */
5400 if (info->shared)
5401 {
5402 asection *s;
5403
5404 sym.st_size = 0;
5405 sym.st_name = 0;
5406 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5407 sym.st_other = 0;
5408
5409 for (s = abfd->sections; s != NULL; s = s->next)
5410 {
5411 int indx;
5412 Elf_External_Sym *dest;
5413
5414 indx = elf_section_data (s)->this_idx;
5415 BFD_ASSERT (indx > 0);
5416 sym.st_shndx = indx;
5417 sym.st_value = s->vma;
5418 dest = dynsym + elf_section_data (s)->dynindx;
5419 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5420 }
5421
5422 last_local = bfd_count_sections (abfd);
5423 }
5424
5425 /* Write out the local dynsyms. */
5426 if (elf_hash_table (info)->dynlocal)
5427 {
5428 struct elf_link_local_dynamic_entry *e;
5429 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5430 {
5431 asection *s;
5432 Elf_External_Sym *dest;
5433
5434 sym.st_size = e->isym.st_size;
5435 sym.st_other = e->isym.st_other;
5436
5437 /* Copy the internal symbol as is.
5438 Note that we saved a word of storage and overwrote
5439 the original st_name with the dynstr_index. */
5440 sym = e->isym;
5441
5442 if (e->isym.st_shndx != SHN_UNDEF
5443 && (e->isym.st_shndx < SHN_LORESERVE
5444 || e->isym.st_shndx > SHN_HIRESERVE))
5445 {
5446 s = bfd_section_from_elf_index (e->input_bfd,
5447 e->isym.st_shndx);
5448
5449 sym.st_shndx =
5450 elf_section_data (s->output_section)->this_idx;
5451 sym.st_value = (s->output_section->vma
5452 + s->output_offset
5453 + e->isym.st_value);
5454 }
5455
5456 if (last_local < e->dynindx)
5457 last_local = e->dynindx;
5458
5459 dest = dynsym + e->dynindx;
5460 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5461 }
5462 }
5463
5464 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5465 last_local + 1;
5466 }
5467
5468 /* We get the global symbols from the hash table. */
5469 eoinfo.failed = false;
5470 eoinfo.localsyms = false;
5471 eoinfo.finfo = &finfo;
5472 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5473 (PTR) &eoinfo);
5474 if (eoinfo.failed)
5475 return false;
5476
5477 /* If backend needs to output some symbols not present in the hash
5478 table, do it now. */
5479 if (bed->elf_backend_output_arch_syms)
5480 {
5481 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5482 Elf_Internal_Sym *,
5483 asection *));
5484
5485 if (! ((*bed->elf_backend_output_arch_syms)
5486 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5487 return false;
5488 }
5489
5490 /* Flush all symbols to the file. */
5491 if (! elf_link_flush_output_syms (&finfo))
5492 return false;
5493
5494 /* Now we know the size of the symtab section. */
5495 off += symtab_hdr->sh_size;
5496
5497 /* Finish up and write out the symbol string table (.strtab)
5498 section. */
5499 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5500 /* sh_name was set in prep_headers. */
5501 symstrtab_hdr->sh_type = SHT_STRTAB;
5502 symstrtab_hdr->sh_flags = 0;
5503 symstrtab_hdr->sh_addr = 0;
5504 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5505 symstrtab_hdr->sh_entsize = 0;
5506 symstrtab_hdr->sh_link = 0;
5507 symstrtab_hdr->sh_info = 0;
5508 /* sh_offset is set just below. */
5509 symstrtab_hdr->sh_addralign = 1;
5510
5511 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5512 elf_tdata (abfd)->next_file_pos = off;
5513
5514 if (bfd_get_symcount (abfd) > 0)
5515 {
5516 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5517 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5518 return false;
5519 }
5520
5521 /* Adjust the relocs to have the correct symbol indices. */
5522 for (o = abfd->sections; o != NULL; o = o->next)
5523 {
5524 if ((o->flags & SEC_RELOC) == 0)
5525 continue;
5526
5527 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5528 elf_section_data (o)->rel_count,
5529 elf_section_data (o)->rel_hashes);
5530 if (elf_section_data (o)->rel_hdr2 != NULL)
5531 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5532 elf_section_data (o)->rel_count2,
5533 (elf_section_data (o)->rel_hashes
5534 + elf_section_data (o)->rel_count));
5535
5536 /* Set the reloc_count field to 0 to prevent write_relocs from
5537 trying to swap the relocs out itself. */
5538 o->reloc_count = 0;
5539 }
5540
5541 if (dynamic && info->combreloc && dynobj != NULL)
5542 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5543
5544 /* If we are linking against a dynamic object, or generating a
5545 shared library, finish up the dynamic linking information. */
5546 if (dynamic)
5547 {
5548 Elf_External_Dyn *dyncon, *dynconend;
5549
5550 /* Fix up .dynamic entries. */
5551 o = bfd_get_section_by_name (dynobj, ".dynamic");
5552 BFD_ASSERT (o != NULL);
5553
5554 dyncon = (Elf_External_Dyn *) o->contents;
5555 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5556 for (; dyncon < dynconend; dyncon++)
5557 {
5558 Elf_Internal_Dyn dyn;
5559 const char *name;
5560 unsigned int type;
5561
5562 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5563
5564 switch (dyn.d_tag)
5565 {
5566 default:
5567 break;
5568 case DT_NULL:
5569 if (relativecount > 0 && dyncon + 1 < dynconend)
5570 {
5571 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5572 {
5573 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5574 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5575 default: break;
5576 }
5577 if (dyn.d_tag != DT_NULL)
5578 {
5579 dyn.d_un.d_val = relativecount;
5580 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5581 relativecount = 0;
5582 }
5583 }
5584 break;
5585 case DT_INIT:
5586 name = info->init_function;
5587 goto get_sym;
5588 case DT_FINI:
5589 name = info->fini_function;
5590 get_sym:
5591 {
5592 struct elf_link_hash_entry *h;
5593
5594 h = elf_link_hash_lookup (elf_hash_table (info), name,
5595 false, false, true);
5596 if (h != NULL
5597 && (h->root.type == bfd_link_hash_defined
5598 || h->root.type == bfd_link_hash_defweak))
5599 {
5600 dyn.d_un.d_val = h->root.u.def.value;
5601 o = h->root.u.def.section;
5602 if (o->output_section != NULL)
5603 dyn.d_un.d_val += (o->output_section->vma
5604 + o->output_offset);
5605 else
5606 {
5607 /* The symbol is imported from another shared
5608 library and does not apply to this one. */
5609 dyn.d_un.d_val = 0;
5610 }
5611
5612 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5613 }
5614 }
5615 break;
5616
5617 case DT_PREINIT_ARRAYSZ:
5618 name = ".preinit_array";
5619 goto get_size;
5620 case DT_INIT_ARRAYSZ:
5621 name = ".init_array";
5622 goto get_size;
5623 case DT_FINI_ARRAYSZ:
5624 name = ".fini_array";
5625 get_size:
5626 o = bfd_get_section_by_name (abfd, name);
5627 BFD_ASSERT (o != NULL);
5628 if (o->_raw_size == 0)
5629 (*_bfd_error_handler)
5630 (_("warning: %s section has zero size"), name);
5631 dyn.d_un.d_val = o->_raw_size;
5632 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5633 break;
5634
5635 case DT_PREINIT_ARRAY:
5636 name = ".preinit_array";
5637 goto get_vma;
5638 case DT_INIT_ARRAY:
5639 name = ".init_array";
5640 goto get_vma;
5641 case DT_FINI_ARRAY:
5642 name = ".fini_array";
5643 goto get_vma;
5644
5645 case DT_HASH:
5646 name = ".hash";
5647 goto get_vma;
5648 case DT_STRTAB:
5649 name = ".dynstr";
5650 goto get_vma;
5651 case DT_SYMTAB:
5652 name = ".dynsym";
5653 goto get_vma;
5654 case DT_VERDEF:
5655 name = ".gnu.version_d";
5656 goto get_vma;
5657 case DT_VERNEED:
5658 name = ".gnu.version_r";
5659 goto get_vma;
5660 case DT_VERSYM:
5661 name = ".gnu.version";
5662 get_vma:
5663 o = bfd_get_section_by_name (abfd, name);
5664 BFD_ASSERT (o != NULL);
5665 dyn.d_un.d_ptr = o->vma;
5666 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5667 break;
5668
5669 case DT_REL:
5670 case DT_RELA:
5671 case DT_RELSZ:
5672 case DT_RELASZ:
5673 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5674 type = SHT_REL;
5675 else
5676 type = SHT_RELA;
5677 dyn.d_un.d_val = 0;
5678 for (i = 1; i < elf_numsections (abfd); i++)
5679 {
5680 Elf_Internal_Shdr *hdr;
5681
5682 hdr = elf_elfsections (abfd)[i];
5683 if (hdr->sh_type == type
5684 && (hdr->sh_flags & SHF_ALLOC) != 0)
5685 {
5686 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5687 dyn.d_un.d_val += hdr->sh_size;
5688 else
5689 {
5690 if (dyn.d_un.d_val == 0
5691 || hdr->sh_addr < dyn.d_un.d_val)
5692 dyn.d_un.d_val = hdr->sh_addr;
5693 }
5694 }
5695 }
5696 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5697 break;
5698 }
5699 }
5700 }
5701
5702 /* If we have created any dynamic sections, then output them. */
5703 if (dynobj != NULL)
5704 {
5705 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5706 goto error_return;
5707
5708 for (o = dynobj->sections; o != NULL; o = o->next)
5709 {
5710 if ((o->flags & SEC_HAS_CONTENTS) == 0
5711 || o->_raw_size == 0
5712 || o->output_section == bfd_abs_section_ptr)
5713 continue;
5714 if ((o->flags & SEC_LINKER_CREATED) == 0)
5715 {
5716 /* At this point, we are only interested in sections
5717 created by elf_link_create_dynamic_sections. */
5718 continue;
5719 }
5720 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5721 != SHT_STRTAB)
5722 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5723 {
5724 if (! bfd_set_section_contents (abfd, o->output_section,
5725 o->contents,
5726 (file_ptr) o->output_offset,
5727 o->_raw_size))
5728 goto error_return;
5729 }
5730 else
5731 {
5732 /* The contents of the .dynstr section are actually in a
5733 stringtab. */
5734 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5735 if (bfd_seek (abfd, off, SEEK_SET) != 0
5736 || ! _bfd_elf_strtab_emit (abfd,
5737 elf_hash_table (info)->dynstr))
5738 goto error_return;
5739 }
5740 }
5741 }
5742
5743 /* If we have optimized stabs strings, output them. */
5744 if (elf_hash_table (info)->stab_info != NULL)
5745 {
5746 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5747 goto error_return;
5748 }
5749
5750 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5751 {
5752 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5753 ".eh_frame_hdr");
5754 if (o
5755 && (elf_section_data (o)->sec_info_type
5756 == ELF_INFO_TYPE_EH_FRAME_HDR))
5757 {
5758 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5759 goto error_return;
5760 }
5761 }
5762
5763 if (finfo.symstrtab != NULL)
5764 _bfd_stringtab_free (finfo.symstrtab);
5765 if (finfo.contents != NULL)
5766 free (finfo.contents);
5767 if (finfo.external_relocs != NULL)
5768 free (finfo.external_relocs);
5769 if (finfo.internal_relocs != NULL)
5770 free (finfo.internal_relocs);
5771 if (finfo.external_syms != NULL)
5772 free (finfo.external_syms);
5773 if (finfo.locsym_shndx != NULL)
5774 free (finfo.locsym_shndx);
5775 if (finfo.internal_syms != NULL)
5776 free (finfo.internal_syms);
5777 if (finfo.indices != NULL)
5778 free (finfo.indices);
5779 if (finfo.sections != NULL)
5780 free (finfo.sections);
5781 if (finfo.symbuf != NULL)
5782 free (finfo.symbuf);
5783 if (finfo.symshndxbuf != NULL)
5784 free (finfo.symbuf);
5785 for (o = abfd->sections; o != NULL; o = o->next)
5786 {
5787 if ((o->flags & SEC_RELOC) != 0
5788 && elf_section_data (o)->rel_hashes != NULL)
5789 free (elf_section_data (o)->rel_hashes);
5790 }
5791
5792 elf_tdata (abfd)->linker = true;
5793
5794 return true;
5795
5796 error_return:
5797 if (finfo.symstrtab != NULL)
5798 _bfd_stringtab_free (finfo.symstrtab);
5799 if (finfo.contents != NULL)
5800 free (finfo.contents);
5801 if (finfo.external_relocs != NULL)
5802 free (finfo.external_relocs);
5803 if (finfo.internal_relocs != NULL)
5804 free (finfo.internal_relocs);
5805 if (finfo.external_syms != NULL)
5806 free (finfo.external_syms);
5807 if (finfo.locsym_shndx != NULL)
5808 free (finfo.locsym_shndx);
5809 if (finfo.internal_syms != NULL)
5810 free (finfo.internal_syms);
5811 if (finfo.indices != NULL)
5812 free (finfo.indices);
5813 if (finfo.sections != NULL)
5814 free (finfo.sections);
5815 if (finfo.symbuf != NULL)
5816 free (finfo.symbuf);
5817 if (finfo.symshndxbuf != NULL)
5818 free (finfo.symbuf);
5819 for (o = abfd->sections; o != NULL; o = o->next)
5820 {
5821 if ((o->flags & SEC_RELOC) != 0
5822 && elf_section_data (o)->rel_hashes != NULL)
5823 free (elf_section_data (o)->rel_hashes);
5824 }
5825
5826 return false;
5827 }
5828
5829 /* Add a symbol to the output symbol table. */
5830
5831 static boolean
5832 elf_link_output_sym (finfo, name, elfsym, input_sec)
5833 struct elf_final_link_info *finfo;
5834 const char *name;
5835 Elf_Internal_Sym *elfsym;
5836 asection *input_sec;
5837 {
5838 Elf_External_Sym *dest;
5839 Elf_External_Sym_Shndx *destshndx;
5840
5841 boolean (*output_symbol_hook) PARAMS ((bfd *,
5842 struct bfd_link_info *info,
5843 const char *,
5844 Elf_Internal_Sym *,
5845 asection *));
5846
5847 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5848 elf_backend_link_output_symbol_hook;
5849 if (output_symbol_hook != NULL)
5850 {
5851 if (! ((*output_symbol_hook)
5852 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5853 return false;
5854 }
5855
5856 if (name == (const char *) NULL || *name == '\0')
5857 elfsym->st_name = 0;
5858 else if (input_sec->flags & SEC_EXCLUDE)
5859 elfsym->st_name = 0;
5860 else
5861 {
5862 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5863 name, true, false);
5864 if (elfsym->st_name == (unsigned long) -1)
5865 return false;
5866 }
5867
5868 if (finfo->symbuf_count >= finfo->symbuf_size)
5869 {
5870 if (! elf_link_flush_output_syms (finfo))
5871 return false;
5872 }
5873
5874 dest = finfo->symbuf + finfo->symbuf_count;
5875 destshndx = finfo->symshndxbuf;
5876 if (destshndx != NULL)
5877 destshndx += finfo->symbuf_count;
5878 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5879 ++finfo->symbuf_count;
5880
5881 ++ bfd_get_symcount (finfo->output_bfd);
5882
5883 return true;
5884 }
5885
5886 /* Flush the output symbols to the file. */
5887
5888 static boolean
5889 elf_link_flush_output_syms (finfo)
5890 struct elf_final_link_info *finfo;
5891 {
5892 if (finfo->symbuf_count > 0)
5893 {
5894 Elf_Internal_Shdr *hdr;
5895 file_ptr pos;
5896 bfd_size_type amt;
5897
5898 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5899 pos = hdr->sh_offset + hdr->sh_size;
5900 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5901 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5902 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5903 return false;
5904
5905 hdr->sh_size += amt;
5906
5907 if (finfo->symshndxbuf != NULL)
5908 {
5909 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5910 pos = hdr->sh_offset + hdr->sh_size;
5911 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5912 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5913 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5914 != amt))
5915 return false;
5916
5917 hdr->sh_size += amt;
5918 }
5919
5920 finfo->symbuf_count = 0;
5921 }
5922
5923 return true;
5924 }
5925
5926 /* Adjust all external symbols pointing into SEC_MERGE sections
5927 to reflect the object merging within the sections. */
5928
5929 static boolean
5930 elf_link_sec_merge_syms (h, data)
5931 struct elf_link_hash_entry *h;
5932 PTR data;
5933 {
5934 asection *sec;
5935
5936 if ((h->root.type == bfd_link_hash_defined
5937 || h->root.type == bfd_link_hash_defweak)
5938 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5939 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5940 {
5941 bfd *output_bfd = (bfd *) data;
5942
5943 h->root.u.def.value =
5944 _bfd_merged_section_offset (output_bfd,
5945 &h->root.u.def.section,
5946 elf_section_data (sec)->sec_info,
5947 h->root.u.def.value, (bfd_vma) 0);
5948 }
5949
5950 return true;
5951 }
5952
5953 /* Add an external symbol to the symbol table. This is called from
5954 the hash table traversal routine. When generating a shared object,
5955 we go through the symbol table twice. The first time we output
5956 anything that might have been forced to local scope in a version
5957 script. The second time we output the symbols that are still
5958 global symbols. */
5959
5960 static boolean
5961 elf_link_output_extsym (h, data)
5962 struct elf_link_hash_entry *h;
5963 PTR data;
5964 {
5965 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5966 struct elf_final_link_info *finfo = eoinfo->finfo;
5967 boolean strip;
5968 Elf_Internal_Sym sym;
5969 asection *input_sec;
5970
5971 /* Decide whether to output this symbol in this pass. */
5972 if (eoinfo->localsyms)
5973 {
5974 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5975 return true;
5976 }
5977 else
5978 {
5979 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5980 return true;
5981 }
5982
5983 /* If we are not creating a shared library, and this symbol is
5984 referenced by a shared library but is not defined anywhere, then
5985 warn that it is undefined. If we do not do this, the runtime
5986 linker will complain that the symbol is undefined when the
5987 program is run. We don't have to worry about symbols that are
5988 referenced by regular files, because we will already have issued
5989 warnings for them. */
5990 if (! finfo->info->relocateable
5991 && ! finfo->info->allow_shlib_undefined
5992 && ! finfo->info->shared
5993 && h->root.type == bfd_link_hash_undefined
5994 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5995 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5996 {
5997 if (! ((*finfo->info->callbacks->undefined_symbol)
5998 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5999 (asection *) NULL, (bfd_vma) 0, true)))
6000 {
6001 eoinfo->failed = true;
6002 return false;
6003 }
6004 }
6005
6006 /* We don't want to output symbols that have never been mentioned by
6007 a regular file, or that we have been told to strip. However, if
6008 h->indx is set to -2, the symbol is used by a reloc and we must
6009 output it. */
6010 if (h->indx == -2)
6011 strip = false;
6012 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6013 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6014 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6015 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6016 strip = true;
6017 else if (finfo->info->strip == strip_all
6018 || (finfo->info->strip == strip_some
6019 && bfd_hash_lookup (finfo->info->keep_hash,
6020 h->root.root.string,
6021 false, false) == NULL))
6022 strip = true;
6023 else
6024 strip = false;
6025
6026 /* If we're stripping it, and it's not a dynamic symbol, there's
6027 nothing else to do unless it is a forced local symbol. */
6028 if (strip
6029 && h->dynindx == -1
6030 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6031 return true;
6032
6033 sym.st_value = 0;
6034 sym.st_size = h->size;
6035 sym.st_other = h->other;
6036 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6037 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6038 else if (h->root.type == bfd_link_hash_undefweak
6039 || h->root.type == bfd_link_hash_defweak)
6040 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6041 else
6042 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6043
6044 switch (h->root.type)
6045 {
6046 default:
6047 case bfd_link_hash_new:
6048 abort ();
6049 return false;
6050
6051 case bfd_link_hash_undefined:
6052 case bfd_link_hash_undefweak:
6053 input_sec = bfd_und_section_ptr;
6054 sym.st_shndx = SHN_UNDEF;
6055 break;
6056
6057 case bfd_link_hash_defined:
6058 case bfd_link_hash_defweak:
6059 {
6060 input_sec = h->root.u.def.section;
6061 if (input_sec->output_section != NULL)
6062 {
6063 sym.st_shndx =
6064 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6065 input_sec->output_section);
6066 if (sym.st_shndx == SHN_BAD)
6067 {
6068 (*_bfd_error_handler)
6069 (_("%s: could not find output section %s for input section %s"),
6070 bfd_get_filename (finfo->output_bfd),
6071 input_sec->output_section->name,
6072 input_sec->name);
6073 eoinfo->failed = true;
6074 return false;
6075 }
6076
6077 /* ELF symbols in relocateable files are section relative,
6078 but in nonrelocateable files they are virtual
6079 addresses. */
6080 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6081 if (! finfo->info->relocateable)
6082 sym.st_value += input_sec->output_section->vma;
6083 }
6084 else
6085 {
6086 BFD_ASSERT (input_sec->owner == NULL
6087 || (input_sec->owner->flags & DYNAMIC) != 0);
6088 sym.st_shndx = SHN_UNDEF;
6089 input_sec = bfd_und_section_ptr;
6090 }
6091 }
6092 break;
6093
6094 case bfd_link_hash_common:
6095 input_sec = h->root.u.c.p->section;
6096 sym.st_shndx = SHN_COMMON;
6097 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6098 break;
6099
6100 case bfd_link_hash_indirect:
6101 /* These symbols are created by symbol versioning. They point
6102 to the decorated version of the name. For example, if the
6103 symbol foo@@GNU_1.2 is the default, which should be used when
6104 foo is used with no version, then we add an indirect symbol
6105 foo which points to foo@@GNU_1.2. We ignore these symbols,
6106 since the indirected symbol is already in the hash table. */
6107 return true;
6108
6109 case bfd_link_hash_warning:
6110 /* We can't represent these symbols in ELF, although a warning
6111 symbol may have come from a .gnu.warning.SYMBOL section. We
6112 just put the target symbol in the hash table. If the target
6113 symbol does not really exist, don't do anything. */
6114 if (h->root.u.i.link->type == bfd_link_hash_new)
6115 return true;
6116 return (elf_link_output_extsym
6117 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
6118 }
6119
6120 /* Give the processor backend a chance to tweak the symbol value,
6121 and also to finish up anything that needs to be done for this
6122 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6123 forced local syms when non-shared is due to a historical quirk. */
6124 if ((h->dynindx != -1
6125 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6126 && (finfo->info->shared
6127 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6128 && elf_hash_table (finfo->info)->dynamic_sections_created)
6129 {
6130 struct elf_backend_data *bed;
6131
6132 bed = get_elf_backend_data (finfo->output_bfd);
6133 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6134 (finfo->output_bfd, finfo->info, h, &sym)))
6135 {
6136 eoinfo->failed = true;
6137 return false;
6138 }
6139 }
6140
6141 /* If we are marking the symbol as undefined, and there are no
6142 non-weak references to this symbol from a regular object, then
6143 mark the symbol as weak undefined; if there are non-weak
6144 references, mark the symbol as strong. We can't do this earlier,
6145 because it might not be marked as undefined until the
6146 finish_dynamic_symbol routine gets through with it. */
6147 if (sym.st_shndx == SHN_UNDEF
6148 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6149 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6150 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6151 {
6152 int bindtype;
6153
6154 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6155 bindtype = STB_GLOBAL;
6156 else
6157 bindtype = STB_WEAK;
6158 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6159 }
6160
6161 /* If a symbol is not defined locally, we clear the visibility
6162 field. */
6163 if (! finfo->info->relocateable
6164 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6165 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6166
6167 /* If this symbol should be put in the .dynsym section, then put it
6168 there now. We have already know the symbol index. We also fill
6169 in the entry in the .hash section. */
6170 if (h->dynindx != -1
6171 && elf_hash_table (finfo->info)->dynamic_sections_created)
6172 {
6173 size_t bucketcount;
6174 size_t bucket;
6175 size_t hash_entry_size;
6176 bfd_byte *bucketpos;
6177 bfd_vma chain;
6178 Elf_External_Sym *esym;
6179
6180 sym.st_name = h->dynstr_index;
6181 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6182 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6183
6184 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6185 bucket = h->elf_hash_value % bucketcount;
6186 hash_entry_size
6187 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6188 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6189 + (bucket + 2) * hash_entry_size);
6190 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6191 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6192 bucketpos);
6193 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6194 ((bfd_byte *) finfo->hash_sec->contents
6195 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6196
6197 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6198 {
6199 Elf_Internal_Versym iversym;
6200 Elf_External_Versym *eversym;
6201
6202 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6203 {
6204 if (h->verinfo.verdef == NULL)
6205 iversym.vs_vers = 0;
6206 else
6207 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6208 }
6209 else
6210 {
6211 if (h->verinfo.vertree == NULL)
6212 iversym.vs_vers = 1;
6213 else
6214 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6215 }
6216
6217 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6218 iversym.vs_vers |= VERSYM_HIDDEN;
6219
6220 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6221 eversym += h->dynindx;
6222 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6223 }
6224 }
6225
6226 /* If we're stripping it, then it was just a dynamic symbol, and
6227 there's nothing else to do. */
6228 if (strip)
6229 return true;
6230
6231 h->indx = bfd_get_symcount (finfo->output_bfd);
6232
6233 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6234 {
6235 eoinfo->failed = true;
6236 return false;
6237 }
6238
6239 return true;
6240 }
6241
6242 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6243 originated from the section given by INPUT_REL_HDR) to the
6244 OUTPUT_BFD. */
6245
6246 static void
6247 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6248 internal_relocs)
6249 bfd *output_bfd;
6250 asection *input_section;
6251 Elf_Internal_Shdr *input_rel_hdr;
6252 Elf_Internal_Rela *internal_relocs;
6253 {
6254 Elf_Internal_Rela *irela;
6255 Elf_Internal_Rela *irelaend;
6256 Elf_Internal_Shdr *output_rel_hdr;
6257 asection *output_section;
6258 unsigned int *rel_countp = NULL;
6259 struct elf_backend_data *bed;
6260 bfd_size_type amt;
6261
6262 output_section = input_section->output_section;
6263 output_rel_hdr = NULL;
6264
6265 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6266 == input_rel_hdr->sh_entsize)
6267 {
6268 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6269 rel_countp = &elf_section_data (output_section)->rel_count;
6270 }
6271 else if (elf_section_data (output_section)->rel_hdr2
6272 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6273 == input_rel_hdr->sh_entsize))
6274 {
6275 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6276 rel_countp = &elf_section_data (output_section)->rel_count2;
6277 }
6278
6279 BFD_ASSERT (output_rel_hdr != NULL);
6280
6281 bed = get_elf_backend_data (output_bfd);
6282 irela = internal_relocs;
6283 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6284 * bed->s->int_rels_per_ext_rel;
6285
6286 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6287 {
6288 Elf_External_Rel *erel;
6289 Elf_Internal_Rel *irel;
6290
6291 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6292 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6293 if (irel == NULL)
6294 {
6295 (*_bfd_error_handler) (_("Error: out of memory"));
6296 abort ();
6297 }
6298
6299 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6300 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6301 {
6302 unsigned int i;
6303
6304 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6305 {
6306 irel[i].r_offset = irela[i].r_offset;
6307 irel[i].r_info = irela[i].r_info;
6308 BFD_ASSERT (irela[i].r_addend == 0);
6309 }
6310
6311 if (bed->s->swap_reloc_out)
6312 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6313 else
6314 elf_swap_reloc_out (output_bfd, irel, erel);
6315 }
6316
6317 free (irel);
6318 }
6319 else
6320 {
6321 Elf_External_Rela *erela;
6322
6323 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6324
6325 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6326 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6327 if (bed->s->swap_reloca_out)
6328 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6329 else
6330 elf_swap_reloca_out (output_bfd, irela, erela);
6331 }
6332
6333 /* Bump the counter, so that we know where to add the next set of
6334 relocations. */
6335 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6336 }
6337
6338 /* Link an input file into the linker output file. This function
6339 handles all the sections and relocations of the input file at once.
6340 This is so that we only have to read the local symbols once, and
6341 don't have to keep them in memory. */
6342
6343 static boolean
6344 elf_link_input_bfd (finfo, input_bfd)
6345 struct elf_final_link_info *finfo;
6346 bfd *input_bfd;
6347 {
6348 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6349 bfd *, asection *, bfd_byte *,
6350 Elf_Internal_Rela *,
6351 Elf_Internal_Sym *, asection **));
6352 bfd *output_bfd;
6353 Elf_Internal_Shdr *symtab_hdr;
6354 Elf_Internal_Shdr *shndx_hdr;
6355 size_t locsymcount;
6356 size_t extsymoff;
6357 Elf_External_Sym *external_syms;
6358 Elf_External_Sym *esym;
6359 Elf_External_Sym *esymend;
6360 Elf_External_Sym_Shndx *shndx_buf;
6361 Elf_External_Sym_Shndx *shndx;
6362 Elf_Internal_Sym *isym;
6363 long *pindex;
6364 asection **ppsection;
6365 asection *o;
6366 struct elf_backend_data *bed;
6367 boolean emit_relocs;
6368 struct elf_link_hash_entry **sym_hashes;
6369
6370 output_bfd = finfo->output_bfd;
6371 bed = get_elf_backend_data (output_bfd);
6372 relocate_section = bed->elf_backend_relocate_section;
6373
6374 /* If this is a dynamic object, we don't want to do anything here:
6375 we don't want the local symbols, and we don't want the section
6376 contents. */
6377 if ((input_bfd->flags & DYNAMIC) != 0)
6378 return true;
6379
6380 emit_relocs = (finfo->info->relocateable
6381 || finfo->info->emitrelocations
6382 || bed->elf_backend_emit_relocs);
6383
6384 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6385 if (elf_bad_symtab (input_bfd))
6386 {
6387 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6388 extsymoff = 0;
6389 }
6390 else
6391 {
6392 locsymcount = symtab_hdr->sh_info;
6393 extsymoff = symtab_hdr->sh_info;
6394 }
6395
6396 /* Read the local symbols. */
6397 if (symtab_hdr->contents != NULL)
6398 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
6399 else if (locsymcount == 0)
6400 external_syms = NULL;
6401 else
6402 {
6403 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym);
6404 external_syms = finfo->external_syms;
6405 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6406 || bfd_bread (external_syms, amt, input_bfd) != amt)
6407 return false;
6408 }
6409
6410 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
6411 shndx_buf = NULL;
6412 if (shndx_hdr->sh_size != 0 && locsymcount != 0)
6413 {
6414 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx);
6415 shndx_buf = finfo->locsym_shndx;
6416 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
6417 || bfd_bread (shndx_buf, amt, input_bfd) != amt)
6418 return false;
6419 }
6420
6421 /* Swap in the local symbols and write out the ones which we know
6422 are going into the output file. */
6423 for (esym = external_syms, esymend = esym + locsymcount,
6424 isym = finfo->internal_syms, pindex = finfo->indices,
6425 ppsection = finfo->sections, shndx = shndx_buf;
6426 esym < esymend;
6427 esym++, isym++, pindex++, ppsection++,
6428 shndx = (shndx != NULL ? shndx + 1 : NULL))
6429 {
6430 asection *isec;
6431 const char *name;
6432 Elf_Internal_Sym osym;
6433
6434 elf_swap_symbol_in (input_bfd, esym, shndx, isym);
6435 *pindex = -1;
6436
6437 if (elf_bad_symtab (input_bfd))
6438 {
6439 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6440 {
6441 *ppsection = NULL;
6442 continue;
6443 }
6444 }
6445
6446 if (isym->st_shndx == SHN_UNDEF)
6447 isec = bfd_und_section_ptr;
6448 else if (isym->st_shndx < SHN_LORESERVE
6449 || isym->st_shndx > SHN_HIRESERVE)
6450 {
6451 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6452 if (isec
6453 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6454 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6455 isym->st_value =
6456 _bfd_merged_section_offset (output_bfd, &isec,
6457 elf_section_data (isec)->sec_info,
6458 isym->st_value, (bfd_vma) 0);
6459 }
6460 else if (isym->st_shndx == SHN_ABS)
6461 isec = bfd_abs_section_ptr;
6462 else if (isym->st_shndx == SHN_COMMON)
6463 isec = bfd_com_section_ptr;
6464 else
6465 {
6466 /* Who knows? */
6467 isec = NULL;
6468 }
6469
6470 *ppsection = isec;
6471
6472 /* Don't output the first, undefined, symbol. */
6473 if (esym == external_syms)
6474 continue;
6475
6476 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6477 {
6478 /* We never output section symbols. Instead, we use the
6479 section symbol of the corresponding section in the output
6480 file. */
6481 continue;
6482 }
6483
6484 /* If we are stripping all symbols, we don't want to output this
6485 one. */
6486 if (finfo->info->strip == strip_all)
6487 continue;
6488
6489 /* If we are discarding all local symbols, we don't want to
6490 output this one. If we are generating a relocateable output
6491 file, then some of the local symbols may be required by
6492 relocs; we output them below as we discover that they are
6493 needed. */
6494 if (finfo->info->discard == discard_all)
6495 continue;
6496
6497 /* If this symbol is defined in a section which we are
6498 discarding, we don't need to keep it, but note that
6499 linker_mark is only reliable for sections that have contents.
6500 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6501 as well as linker_mark. */
6502 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6503 && isec != NULL
6504 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6505 || (! finfo->info->relocateable
6506 && (isec->flags & SEC_EXCLUDE) != 0)))
6507 continue;
6508
6509 /* Get the name of the symbol. */
6510 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6511 isym->st_name);
6512 if (name == NULL)
6513 return false;
6514
6515 /* See if we are discarding symbols with this name. */
6516 if ((finfo->info->strip == strip_some
6517 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6518 == NULL))
6519 || (((finfo->info->discard == discard_sec_merge
6520 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6521 || finfo->info->discard == discard_l)
6522 && bfd_is_local_label_name (input_bfd, name)))
6523 continue;
6524
6525 /* If we get here, we are going to output this symbol. */
6526
6527 osym = *isym;
6528
6529 /* Adjust the section index for the output file. */
6530 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6531 isec->output_section);
6532 if (osym.st_shndx == SHN_BAD)
6533 return false;
6534
6535 *pindex = bfd_get_symcount (output_bfd);
6536
6537 /* ELF symbols in relocateable files are section relative, but
6538 in executable files they are virtual addresses. Note that
6539 this code assumes that all ELF sections have an associated
6540 BFD section with a reasonable value for output_offset; below
6541 we assume that they also have a reasonable value for
6542 output_section. Any special sections must be set up to meet
6543 these requirements. */
6544 osym.st_value += isec->output_offset;
6545 if (! finfo->info->relocateable)
6546 osym.st_value += isec->output_section->vma;
6547
6548 if (! elf_link_output_sym (finfo, name, &osym, isec))
6549 return false;
6550 }
6551
6552 /* Relocate the contents of each section. */
6553 sym_hashes = elf_sym_hashes (input_bfd);
6554 for (o = input_bfd->sections; o != NULL; o = o->next)
6555 {
6556 bfd_byte *contents;
6557
6558 if (! o->linker_mark)
6559 {
6560 /* This section was omitted from the link. */
6561 continue;
6562 }
6563
6564 if ((o->flags & SEC_HAS_CONTENTS) == 0
6565 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6566 continue;
6567
6568 if ((o->flags & SEC_LINKER_CREATED) != 0)
6569 {
6570 /* Section was created by elf_link_create_dynamic_sections
6571 or somesuch. */
6572 continue;
6573 }
6574
6575 /* Get the contents of the section. They have been cached by a
6576 relaxation routine. Note that o is a section in an input
6577 file, so the contents field will not have been set by any of
6578 the routines which work on output files. */
6579 if (elf_section_data (o)->this_hdr.contents != NULL)
6580 contents = elf_section_data (o)->this_hdr.contents;
6581 else
6582 {
6583 contents = finfo->contents;
6584 if (! bfd_get_section_contents (input_bfd, o, contents,
6585 (file_ptr) 0, o->_raw_size))
6586 return false;
6587 }
6588
6589 if ((o->flags & SEC_RELOC) != 0)
6590 {
6591 Elf_Internal_Rela *internal_relocs;
6592
6593 /* Get the swapped relocs. */
6594 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6595 (input_bfd, o, finfo->external_relocs,
6596 finfo->internal_relocs, false));
6597 if (internal_relocs == NULL
6598 && o->reloc_count > 0)
6599 return false;
6600
6601 /* Run through the relocs looking for any against symbols
6602 from discarded sections and section symbols from
6603 removed link-once sections. Complain about relocs
6604 against discarded sections. Zero relocs against removed
6605 link-once sections. We should really complain if
6606 anything in the final link tries to use it, but
6607 DWARF-based exception handling might have an entry in
6608 .eh_frame to describe a routine in the linkonce section,
6609 and it turns out to be hard to remove the .eh_frame
6610 entry too. FIXME. */
6611 if (!finfo->info->relocateable
6612 && !elf_section_ignore_discarded_relocs (o))
6613 {
6614 Elf_Internal_Rela *rel, *relend;
6615
6616 rel = internal_relocs;
6617 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6618 for ( ; rel < relend; rel++)
6619 {
6620 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6621
6622 if (r_symndx >= locsymcount
6623 || (elf_bad_symtab (input_bfd)
6624 && finfo->sections[r_symndx] == NULL))
6625 {
6626 struct elf_link_hash_entry *h;
6627
6628 h = sym_hashes[r_symndx - extsymoff];
6629 while (h->root.type == bfd_link_hash_indirect
6630 || h->root.type == bfd_link_hash_warning)
6631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6632
6633 /* Complain if the definition comes from a
6634 discarded section. */
6635 if ((h->root.type == bfd_link_hash_defined
6636 || h->root.type == bfd_link_hash_defweak)
6637 && elf_discarded_section (h->root.u.def.section))
6638 {
6639 #if BFD_VERSION_DATE < 20031005
6640 if ((o->flags & SEC_DEBUGGING) != 0)
6641 {
6642 #if BFD_VERSION_DATE > 20021005
6643 (*finfo->info->callbacks->warning)
6644 (finfo->info,
6645 _("warning: relocation against removed section; zeroing"),
6646 NULL, input_bfd, o, rel->r_offset);
6647 #endif
6648 BFD_ASSERT (r_symndx != 0);
6649 memset (rel, 0, sizeof (*rel));
6650 }
6651 else
6652 #endif
6653 {
6654 if (! ((*finfo->info->callbacks->undefined_symbol)
6655 (finfo->info, h->root.root.string,
6656 input_bfd, o, rel->r_offset,
6657 true)))
6658 return false;
6659 }
6660 }
6661 }
6662 else
6663 {
6664 asection *sec = finfo->sections[r_symndx];
6665
6666 if (sec != NULL && elf_discarded_section (sec))
6667 {
6668 #if BFD_VERSION_DATE < 20031005
6669 if ((o->flags & SEC_DEBUGGING) != 0
6670 || (sec->flags & SEC_LINK_ONCE) != 0)
6671 {
6672 #if BFD_VERSION_DATE > 20021005
6673 (*finfo->info->callbacks->warning)
6674 (finfo->info,
6675 _("warning: relocation against removed section"),
6676 NULL, input_bfd, o, rel->r_offset);
6677 #endif
6678 BFD_ASSERT (r_symndx != 0);
6679 rel->r_info
6680 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6681 rel->r_addend = 0;
6682 }
6683 else
6684 #endif
6685 {
6686 boolean ok;
6687 const char *msg
6688 = _("local symbols in discarded section %s");
6689 bfd_size_type amt
6690 = strlen (sec->name) + strlen (msg) - 1;
6691 char *buf = (char *) bfd_malloc (amt);
6692
6693 if (buf != NULL)
6694 sprintf (buf, msg, sec->name);
6695 else
6696 buf = (char *) sec->name;
6697 ok = (*finfo->info->callbacks
6698 ->undefined_symbol) (finfo->info, buf,
6699 input_bfd, o,
6700 rel->r_offset,
6701 true);
6702 if (buf != sec->name)
6703 free (buf);
6704 if (!ok)
6705 return false;
6706 }
6707 }
6708 }
6709 }
6710 }
6711
6712 /* Relocate the section by invoking a back end routine.
6713
6714 The back end routine is responsible for adjusting the
6715 section contents as necessary, and (if using Rela relocs
6716 and generating a relocateable output file) adjusting the
6717 reloc addend as necessary.
6718
6719 The back end routine does not have to worry about setting
6720 the reloc address or the reloc symbol index.
6721
6722 The back end routine is given a pointer to the swapped in
6723 internal symbols, and can access the hash table entries
6724 for the external symbols via elf_sym_hashes (input_bfd).
6725
6726 When generating relocateable output, the back end routine
6727 must handle STB_LOCAL/STT_SECTION symbols specially. The
6728 output symbol is going to be a section symbol
6729 corresponding to the output section, which will require
6730 the addend to be adjusted. */
6731
6732 if (! (*relocate_section) (output_bfd, finfo->info,
6733 input_bfd, o, contents,
6734 internal_relocs,
6735 finfo->internal_syms,
6736 finfo->sections))
6737 return false;
6738
6739 if (emit_relocs)
6740 {
6741 Elf_Internal_Rela *irela;
6742 Elf_Internal_Rela *irelaend;
6743 struct elf_link_hash_entry **rel_hash;
6744 Elf_Internal_Shdr *input_rel_hdr;
6745 unsigned int next_erel;
6746 void (*reloc_emitter) PARAMS ((bfd *, asection *,
6747 Elf_Internal_Shdr *,
6748 Elf_Internal_Rela *));
6749
6750 /* Adjust the reloc addresses and symbol indices. */
6751
6752 irela = internal_relocs;
6753 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6754 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6755 + elf_section_data (o->output_section)->rel_count
6756 + elf_section_data (o->output_section)->rel_count2);
6757 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6758 {
6759 unsigned long r_symndx;
6760 asection *sec;
6761
6762 if (next_erel == bed->s->int_rels_per_ext_rel)
6763 {
6764 rel_hash++;
6765 next_erel = 0;
6766 }
6767
6768 irela->r_offset += o->output_offset;
6769
6770 /* Relocs in an executable have to be virtual addresses. */
6771 if (finfo->info->emitrelocations)
6772 irela->r_offset += o->output_section->vma;
6773
6774 r_symndx = ELF_R_SYM (irela->r_info);
6775
6776 if (r_symndx == 0)
6777 continue;
6778
6779 if (r_symndx >= locsymcount
6780 || (elf_bad_symtab (input_bfd)
6781 && finfo->sections[r_symndx] == NULL))
6782 {
6783 struct elf_link_hash_entry *rh;
6784 unsigned long indx;
6785
6786 /* This is a reloc against a global symbol. We
6787 have not yet output all the local symbols, so
6788 we do not know the symbol index of any global
6789 symbol. We set the rel_hash entry for this
6790 reloc to point to the global hash table entry
6791 for this symbol. The symbol index is then
6792 set at the end of elf_bfd_final_link. */
6793 indx = r_symndx - extsymoff;
6794 rh = elf_sym_hashes (input_bfd)[indx];
6795 while (rh->root.type == bfd_link_hash_indirect
6796 || rh->root.type == bfd_link_hash_warning)
6797 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6798
6799 /* Setting the index to -2 tells
6800 elf_link_output_extsym that this symbol is
6801 used by a reloc. */
6802 BFD_ASSERT (rh->indx < 0);
6803 rh->indx = -2;
6804
6805 *rel_hash = rh;
6806
6807 continue;
6808 }
6809
6810 /* This is a reloc against a local symbol. */
6811
6812 *rel_hash = NULL;
6813 isym = finfo->internal_syms + r_symndx;
6814 sec = finfo->sections[r_symndx];
6815 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6816 {
6817 /* I suppose the backend ought to fill in the
6818 section of any STT_SECTION symbol against a
6819 processor specific section. If we have
6820 discarded a section, the output_section will
6821 be the absolute section. */
6822 if (sec != NULL
6823 && (bfd_is_abs_section (sec)
6824 || (sec->output_section != NULL
6825 && bfd_is_abs_section (sec->output_section))))
6826 r_symndx = 0;
6827 else if (sec == NULL || sec->owner == NULL)
6828 {
6829 bfd_set_error (bfd_error_bad_value);
6830 return false;
6831 }
6832 else
6833 {
6834 r_symndx = sec->output_section->target_index;
6835 BFD_ASSERT (r_symndx != 0);
6836 }
6837 }
6838 else
6839 {
6840 if (finfo->indices[r_symndx] == -1)
6841 {
6842 unsigned long shlink;
6843 const char *name;
6844 asection *osec;
6845
6846 if (finfo->info->strip == strip_all)
6847 {
6848 /* You can't do ld -r -s. */
6849 bfd_set_error (bfd_error_invalid_operation);
6850 return false;
6851 }
6852
6853 /* This symbol was skipped earlier, but
6854 since it is needed by a reloc, we
6855 must output it now. */
6856 shlink = symtab_hdr->sh_link;
6857 name = (bfd_elf_string_from_elf_section
6858 (input_bfd, shlink, isym->st_name));
6859 if (name == NULL)
6860 return false;
6861
6862 osec = sec->output_section;
6863 isym->st_shndx =
6864 _bfd_elf_section_from_bfd_section (output_bfd,
6865 osec);
6866 if (isym->st_shndx == SHN_BAD)
6867 return false;
6868
6869 isym->st_value += sec->output_offset;
6870 if (! finfo->info->relocateable)
6871 isym->st_value += osec->vma;
6872
6873 finfo->indices[r_symndx]
6874 = bfd_get_symcount (output_bfd);
6875
6876 if (! elf_link_output_sym (finfo, name, isym, sec))
6877 return false;
6878 }
6879
6880 r_symndx = finfo->indices[r_symndx];
6881 }
6882
6883 irela->r_info = ELF_R_INFO (r_symndx,
6884 ELF_R_TYPE (irela->r_info));
6885 }
6886
6887 /* Swap out the relocs. */
6888 if (bed->elf_backend_emit_relocs
6889 && !(finfo->info->relocateable
6890 || finfo->info->emitrelocations))
6891 reloc_emitter = bed->elf_backend_emit_relocs;
6892 else
6893 reloc_emitter = elf_link_output_relocs;
6894
6895 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6896 (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs);
6897
6898 input_rel_hdr = elf_section_data (o)->rel_hdr2;
6899 if (input_rel_hdr)
6900 {
6901 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6902 * bed->s->int_rels_per_ext_rel);
6903 reloc_emitter (output_bfd, o, input_rel_hdr, internal_relocs);
6904 }
6905
6906 }
6907 }
6908
6909 /* Write out the modified section contents. */
6910 if (bed->elf_backend_write_section
6911 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6912 {
6913 /* Section written out. */
6914 }
6915 else switch (elf_section_data (o)->sec_info_type)
6916 {
6917 case ELF_INFO_TYPE_STABS:
6918 if (! (_bfd_write_section_stabs
6919 (output_bfd,
6920 &elf_hash_table (finfo->info)->stab_info,
6921 o, &elf_section_data (o)->sec_info, contents)))
6922 return false;
6923 break;
6924 case ELF_INFO_TYPE_MERGE:
6925 if (! (_bfd_write_merged_section
6926 (output_bfd, o, elf_section_data (o)->sec_info)))
6927 return false;
6928 break;
6929 case ELF_INFO_TYPE_EH_FRAME:
6930 {
6931 asection *ehdrsec;
6932
6933 ehdrsec
6934 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
6935 ".eh_frame_hdr");
6936 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
6937 contents)))
6938 return false;
6939 }
6940 break;
6941 default:
6942 {
6943 bfd_size_type sec_size;
6944
6945 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
6946 if (! (o->flags & SEC_EXCLUDE)
6947 && ! bfd_set_section_contents (output_bfd, o->output_section,
6948 contents,
6949 (file_ptr) o->output_offset,
6950 sec_size))
6951 return false;
6952 }
6953 break;
6954 }
6955 }
6956
6957 return true;
6958 }
6959
6960 /* Generate a reloc when linking an ELF file. This is a reloc
6961 requested by the linker, and does come from any input file. This
6962 is used to build constructor and destructor tables when linking
6963 with -Ur. */
6964
6965 static boolean
6966 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6967 bfd *output_bfd;
6968 struct bfd_link_info *info;
6969 asection *output_section;
6970 struct bfd_link_order *link_order;
6971 {
6972 reloc_howto_type *howto;
6973 long indx;
6974 bfd_vma offset;
6975 bfd_vma addend;
6976 struct elf_link_hash_entry **rel_hash_ptr;
6977 Elf_Internal_Shdr *rel_hdr;
6978 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6979
6980 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6981 if (howto == NULL)
6982 {
6983 bfd_set_error (bfd_error_bad_value);
6984 return false;
6985 }
6986
6987 addend = link_order->u.reloc.p->addend;
6988
6989 /* Figure out the symbol index. */
6990 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6991 + elf_section_data (output_section)->rel_count
6992 + elf_section_data (output_section)->rel_count2);
6993 if (link_order->type == bfd_section_reloc_link_order)
6994 {
6995 indx = link_order->u.reloc.p->u.section->target_index;
6996 BFD_ASSERT (indx != 0);
6997 *rel_hash_ptr = NULL;
6998 }
6999 else
7000 {
7001 struct elf_link_hash_entry *h;
7002
7003 /* Treat a reloc against a defined symbol as though it were
7004 actually against the section. */
7005 h = ((struct elf_link_hash_entry *)
7006 bfd_wrapped_link_hash_lookup (output_bfd, info,
7007 link_order->u.reloc.p->u.name,
7008 false, false, true));
7009 if (h != NULL
7010 && (h->root.type == bfd_link_hash_defined
7011 || h->root.type == bfd_link_hash_defweak))
7012 {
7013 asection *section;
7014
7015 section = h->root.u.def.section;
7016 indx = section->output_section->target_index;
7017 *rel_hash_ptr = NULL;
7018 /* It seems that we ought to add the symbol value to the
7019 addend here, but in practice it has already been added
7020 because it was passed to constructor_callback. */
7021 addend += section->output_section->vma + section->output_offset;
7022 }
7023 else if (h != NULL)
7024 {
7025 /* Setting the index to -2 tells elf_link_output_extsym that
7026 this symbol is used by a reloc. */
7027 h->indx = -2;
7028 *rel_hash_ptr = h;
7029 indx = 0;
7030 }
7031 else
7032 {
7033 if (! ((*info->callbacks->unattached_reloc)
7034 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7035 (asection *) NULL, (bfd_vma) 0)))
7036 return false;
7037 indx = 0;
7038 }
7039 }
7040
7041 /* If this is an inplace reloc, we must write the addend into the
7042 object file. */
7043 if (howto->partial_inplace && addend != 0)
7044 {
7045 bfd_size_type size;
7046 bfd_reloc_status_type rstat;
7047 bfd_byte *buf;
7048 boolean ok;
7049 const char *sym_name;
7050
7051 size = bfd_get_reloc_size (howto);
7052 buf = (bfd_byte *) bfd_zmalloc (size);
7053 if (buf == (bfd_byte *) NULL)
7054 return false;
7055 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7056 switch (rstat)
7057 {
7058 case bfd_reloc_ok:
7059 break;
7060
7061 default:
7062 case bfd_reloc_outofrange:
7063 abort ();
7064
7065 case bfd_reloc_overflow:
7066 if (link_order->type == bfd_section_reloc_link_order)
7067 sym_name = bfd_section_name (output_bfd,
7068 link_order->u.reloc.p->u.section);
7069 else
7070 sym_name = link_order->u.reloc.p->u.name;
7071 if (! ((*info->callbacks->reloc_overflow)
7072 (info, sym_name, howto->name, addend,
7073 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7074 {
7075 free (buf);
7076 return false;
7077 }
7078 break;
7079 }
7080 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7081 (file_ptr) link_order->offset, size);
7082 free (buf);
7083 if (! ok)
7084 return false;
7085 }
7086
7087 /* The address of a reloc is relative to the section in a
7088 relocateable file, and is a virtual address in an executable
7089 file. */
7090 offset = link_order->offset;
7091 if (! info->relocateable)
7092 offset += output_section->vma;
7093
7094 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7095
7096 if (rel_hdr->sh_type == SHT_REL)
7097 {
7098 bfd_size_type size;
7099 Elf_Internal_Rel *irel;
7100 Elf_External_Rel *erel;
7101 unsigned int i;
7102
7103 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7104 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7105 if (irel == NULL)
7106 return false;
7107
7108 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7109 irel[i].r_offset = offset;
7110 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7111
7112 erel = ((Elf_External_Rel *) rel_hdr->contents
7113 + elf_section_data (output_section)->rel_count);
7114
7115 if (bed->s->swap_reloc_out)
7116 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7117 else
7118 elf_swap_reloc_out (output_bfd, irel, erel);
7119
7120 free (irel);
7121 }
7122 else
7123 {
7124 bfd_size_type size;
7125 Elf_Internal_Rela *irela;
7126 Elf_External_Rela *erela;
7127 unsigned int i;
7128
7129 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7130 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7131 if (irela == NULL)
7132 return false;
7133
7134 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7135 irela[i].r_offset = offset;
7136 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7137 irela[0].r_addend = addend;
7138
7139 erela = ((Elf_External_Rela *) rel_hdr->contents
7140 + elf_section_data (output_section)->rel_count);
7141
7142 if (bed->s->swap_reloca_out)
7143 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7144 else
7145 elf_swap_reloca_out (output_bfd, irela, erela);
7146 }
7147
7148 ++elf_section_data (output_section)->rel_count;
7149
7150 return true;
7151 }
7152 \f
7153 /* Allocate a pointer to live in a linker created section. */
7154
7155 boolean
7156 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7157 bfd *abfd;
7158 struct bfd_link_info *info;
7159 elf_linker_section_t *lsect;
7160 struct elf_link_hash_entry *h;
7161 const Elf_Internal_Rela *rel;
7162 {
7163 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7164 elf_linker_section_pointers_t *linker_section_ptr;
7165 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7166 bfd_size_type amt;
7167
7168 BFD_ASSERT (lsect != NULL);
7169
7170 /* Is this a global symbol? */
7171 if (h != NULL)
7172 {
7173 /* Has this symbol already been allocated? If so, our work is done. */
7174 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7175 rel->r_addend,
7176 lsect->which))
7177 return true;
7178
7179 ptr_linker_section_ptr = &h->linker_section_pointer;
7180 /* Make sure this symbol is output as a dynamic symbol. */
7181 if (h->dynindx == -1)
7182 {
7183 if (! elf_link_record_dynamic_symbol (info, h))
7184 return false;
7185 }
7186
7187 if (lsect->rel_section)
7188 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7189 }
7190 else
7191 {
7192 /* Allocation of a pointer to a local symbol. */
7193 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7194
7195 /* Allocate a table to hold the local symbols if first time. */
7196 if (!ptr)
7197 {
7198 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7199 register unsigned int i;
7200
7201 amt = num_symbols;
7202 amt *= sizeof (elf_linker_section_pointers_t *);
7203 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7204
7205 if (!ptr)
7206 return false;
7207
7208 elf_local_ptr_offsets (abfd) = ptr;
7209 for (i = 0; i < num_symbols; i++)
7210 ptr[i] = (elf_linker_section_pointers_t *) 0;
7211 }
7212
7213 /* Has this symbol already been allocated? If so, our work is done. */
7214 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7215 rel->r_addend,
7216 lsect->which))
7217 return true;
7218
7219 ptr_linker_section_ptr = &ptr[r_symndx];
7220
7221 if (info->shared)
7222 {
7223 /* If we are generating a shared object, we need to
7224 output a R_<xxx>_RELATIVE reloc so that the
7225 dynamic linker can adjust this GOT entry. */
7226 BFD_ASSERT (lsect->rel_section != NULL);
7227 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7228 }
7229 }
7230
7231 /* Allocate space for a pointer in the linker section, and allocate
7232 a new pointer record from internal memory. */
7233 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7234 amt = sizeof (elf_linker_section_pointers_t);
7235 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7236
7237 if (!linker_section_ptr)
7238 return false;
7239
7240 linker_section_ptr->next = *ptr_linker_section_ptr;
7241 linker_section_ptr->addend = rel->r_addend;
7242 linker_section_ptr->which = lsect->which;
7243 linker_section_ptr->written_address_p = false;
7244 *ptr_linker_section_ptr = linker_section_ptr;
7245
7246 #if 0
7247 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7248 {
7249 linker_section_ptr->offset = (lsect->section->_raw_size
7250 - lsect->hole_size + (ARCH_SIZE / 8));
7251 lsect->hole_offset += ARCH_SIZE / 8;
7252 lsect->sym_offset += ARCH_SIZE / 8;
7253 if (lsect->sym_hash)
7254 {
7255 /* Bump up symbol value if needed. */
7256 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7257 #ifdef DEBUG
7258 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7259 lsect->sym_hash->root.root.string,
7260 (long) ARCH_SIZE / 8,
7261 (long) lsect->sym_hash->root.u.def.value);
7262 #endif
7263 }
7264 }
7265 else
7266 #endif
7267 linker_section_ptr->offset = lsect->section->_raw_size;
7268
7269 lsect->section->_raw_size += ARCH_SIZE / 8;
7270
7271 #ifdef DEBUG
7272 fprintf (stderr,
7273 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7274 lsect->name, (long) linker_section_ptr->offset,
7275 (long) lsect->section->_raw_size);
7276 #endif
7277
7278 return true;
7279 }
7280 \f
7281 #if ARCH_SIZE==64
7282 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7283 #endif
7284 #if ARCH_SIZE==32
7285 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7286 #endif
7287
7288 /* Fill in the address for a pointer generated in a linker section. */
7289
7290 bfd_vma
7291 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7292 relocation, rel, relative_reloc)
7293 bfd *output_bfd;
7294 bfd *input_bfd;
7295 struct bfd_link_info *info;
7296 elf_linker_section_t *lsect;
7297 struct elf_link_hash_entry *h;
7298 bfd_vma relocation;
7299 const Elf_Internal_Rela *rel;
7300 int relative_reloc;
7301 {
7302 elf_linker_section_pointers_t *linker_section_ptr;
7303
7304 BFD_ASSERT (lsect != NULL);
7305
7306 if (h != NULL)
7307 {
7308 /* Handle global symbol. */
7309 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7310 (h->linker_section_pointer,
7311 rel->r_addend,
7312 lsect->which));
7313
7314 BFD_ASSERT (linker_section_ptr != NULL);
7315
7316 if (! elf_hash_table (info)->dynamic_sections_created
7317 || (info->shared
7318 && info->symbolic
7319 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7320 {
7321 /* This is actually a static link, or it is a
7322 -Bsymbolic link and the symbol is defined
7323 locally. We must initialize this entry in the
7324 global section.
7325
7326 When doing a dynamic link, we create a .rela.<xxx>
7327 relocation entry to initialize the value. This
7328 is done in the finish_dynamic_symbol routine. */
7329 if (!linker_section_ptr->written_address_p)
7330 {
7331 linker_section_ptr->written_address_p = true;
7332 bfd_put_ptr (output_bfd,
7333 relocation + linker_section_ptr->addend,
7334 (lsect->section->contents
7335 + linker_section_ptr->offset));
7336 }
7337 }
7338 }
7339 else
7340 {
7341 /* Handle local symbol. */
7342 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7343 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7344 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7345 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7346 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7347 rel->r_addend,
7348 lsect->which));
7349
7350 BFD_ASSERT (linker_section_ptr != NULL);
7351
7352 /* Write out pointer if it hasn't been rewritten out before. */
7353 if (!linker_section_ptr->written_address_p)
7354 {
7355 linker_section_ptr->written_address_p = true;
7356 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7357 lsect->section->contents + linker_section_ptr->offset);
7358
7359 if (info->shared)
7360 {
7361 asection *srel = lsect->rel_section;
7362 Elf_Internal_Rela *outrel;
7363 Elf_External_Rela *erel;
7364 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7365 unsigned int i;
7366 bfd_size_type amt;
7367
7368 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7369 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7370 if (outrel == NULL)
7371 {
7372 (*_bfd_error_handler) (_("Error: out of memory"));
7373 return 0;
7374 }
7375
7376 /* We need to generate a relative reloc for the dynamic
7377 linker. */
7378 if (!srel)
7379 {
7380 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7381 lsect->rel_name);
7382 lsect->rel_section = srel;
7383 }
7384
7385 BFD_ASSERT (srel != NULL);
7386
7387 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7388 outrel[i].r_offset = (lsect->section->output_section->vma
7389 + lsect->section->output_offset
7390 + linker_section_ptr->offset);
7391 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7392 outrel[0].r_addend = 0;
7393 erel = (Elf_External_Rela *) lsect->section->contents;
7394 erel += elf_section_data (lsect->section)->rel_count;
7395 elf_swap_reloca_out (output_bfd, outrel, erel);
7396 ++elf_section_data (lsect->section)->rel_count;
7397
7398 free (outrel);
7399 }
7400 }
7401 }
7402
7403 relocation = (lsect->section->output_offset
7404 + linker_section_ptr->offset
7405 - lsect->hole_offset
7406 - lsect->sym_offset);
7407
7408 #ifdef DEBUG
7409 fprintf (stderr,
7410 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7411 lsect->name, (long) relocation, (long) relocation);
7412 #endif
7413
7414 /* Subtract out the addend, because it will get added back in by the normal
7415 processing. */
7416 return relocation - linker_section_ptr->addend;
7417 }
7418 \f
7419 /* Garbage collect unused sections. */
7420
7421 static boolean elf_gc_mark
7422 PARAMS ((struct bfd_link_info *info, asection *sec,
7423 asection * (*gc_mark_hook)
7424 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7425 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7426
7427 static boolean elf_gc_sweep
7428 PARAMS ((struct bfd_link_info *info,
7429 boolean (*gc_sweep_hook)
7430 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7431 const Elf_Internal_Rela *relocs))));
7432
7433 static boolean elf_gc_sweep_symbol
7434 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7435
7436 static boolean elf_gc_allocate_got_offsets
7437 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7438
7439 static boolean elf_gc_propagate_vtable_entries_used
7440 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7441
7442 static boolean elf_gc_smash_unused_vtentry_relocs
7443 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7444
7445 /* The mark phase of garbage collection. For a given section, mark
7446 it and any sections in this section's group, and all the sections
7447 which define symbols to which it refers. */
7448
7449 static boolean
7450 elf_gc_mark (info, sec, gc_mark_hook)
7451 struct bfd_link_info *info;
7452 asection *sec;
7453 asection * (*gc_mark_hook)
7454 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7455 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7456 {
7457 boolean ret;
7458 asection *group_sec;
7459
7460 sec->gc_mark = 1;
7461
7462 /* Mark all the sections in the group. */
7463 group_sec = elf_section_data (sec)->next_in_group;
7464 if (group_sec && !group_sec->gc_mark)
7465 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7466 return false;
7467
7468 /* Look through the section relocs. */
7469 ret = true;
7470 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7471 {
7472 Elf_Internal_Rela *relstart, *rel, *relend;
7473 Elf_Internal_Shdr *symtab_hdr;
7474 Elf_Internal_Shdr *shndx_hdr;
7475 struct elf_link_hash_entry **sym_hashes;
7476 size_t nlocsyms;
7477 size_t extsymoff;
7478 Elf_External_Sym *locsyms, *freesyms = NULL;
7479 Elf_External_Sym_Shndx *locsym_shndx;
7480 bfd *input_bfd = sec->owner;
7481 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7482
7483 /* GCFIXME: how to arrange so that relocs and symbols are not
7484 reread continually? */
7485
7486 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7487 sym_hashes = elf_sym_hashes (input_bfd);
7488
7489 /* Read the local symbols. */
7490 if (elf_bad_symtab (input_bfd))
7491 {
7492 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7493 extsymoff = 0;
7494 }
7495 else
7496 extsymoff = nlocsyms = symtab_hdr->sh_info;
7497
7498 if (symtab_hdr->contents)
7499 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
7500 else if (nlocsyms == 0)
7501 locsyms = NULL;
7502 else
7503 {
7504 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym);
7505 locsyms = freesyms = bfd_malloc (amt);
7506 if (freesyms == NULL
7507 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
7508 || bfd_bread (locsyms, amt, input_bfd) != amt)
7509 {
7510 ret = false;
7511 goto out1;
7512 }
7513 }
7514
7515 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
7516 locsym_shndx = NULL;
7517 if (shndx_hdr->sh_size != 0 && nlocsyms != 0)
7518 {
7519 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx);
7520 locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
7521 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
7522 || bfd_bread (locsym_shndx, amt, input_bfd) != amt)
7523 return false;
7524 }
7525
7526 /* Read the relocations. */
7527 relstart = (NAME(_bfd_elf,link_read_relocs)
7528 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
7529 info->keep_memory));
7530 if (relstart == NULL)
7531 {
7532 ret = false;
7533 goto out1;
7534 }
7535 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7536
7537 for (rel = relstart; rel < relend; rel++)
7538 {
7539 unsigned long r_symndx;
7540 asection *rsec;
7541 struct elf_link_hash_entry *h;
7542 Elf_Internal_Sym s;
7543
7544 r_symndx = ELF_R_SYM (rel->r_info);
7545 if (r_symndx == 0)
7546 continue;
7547
7548 if (elf_bad_symtab (sec->owner))
7549 {
7550 elf_swap_symbol_in (input_bfd,
7551 locsyms + r_symndx,
7552 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7553 &s);
7554 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
7555 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7556 else
7557 {
7558 h = sym_hashes[r_symndx - extsymoff];
7559 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7560 }
7561 }
7562 else if (r_symndx >= nlocsyms)
7563 {
7564 h = sym_hashes[r_symndx - extsymoff];
7565 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7566 }
7567 else
7568 {
7569 elf_swap_symbol_in (input_bfd,
7570 locsyms + r_symndx,
7571 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7572 &s);
7573 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7574 }
7575
7576 if (rsec && !rsec->gc_mark)
7577 if (!elf_gc_mark (info, rsec, gc_mark_hook))
7578 {
7579 ret = false;
7580 goto out2;
7581 }
7582 }
7583
7584 out2:
7585 if (!info->keep_memory)
7586 free (relstart);
7587 out1:
7588 if (freesyms)
7589 free (freesyms);
7590 }
7591
7592 return ret;
7593 }
7594
7595 /* The sweep phase of garbage collection. Remove all garbage sections. */
7596
7597 static boolean
7598 elf_gc_sweep (info, gc_sweep_hook)
7599 struct bfd_link_info *info;
7600 boolean (*gc_sweep_hook)
7601 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7602 const Elf_Internal_Rela *relocs));
7603 {
7604 bfd *sub;
7605
7606 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7607 {
7608 asection *o;
7609
7610 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7611 continue;
7612
7613 for (o = sub->sections; o != NULL; o = o->next)
7614 {
7615 /* Keep special sections. Keep .debug sections. */
7616 if ((o->flags & SEC_LINKER_CREATED)
7617 || (o->flags & SEC_DEBUGGING))
7618 o->gc_mark = 1;
7619
7620 if (o->gc_mark)
7621 continue;
7622
7623 /* Skip sweeping sections already excluded. */
7624 if (o->flags & SEC_EXCLUDE)
7625 continue;
7626
7627 /* Since this is early in the link process, it is simple
7628 to remove a section from the output. */
7629 o->flags |= SEC_EXCLUDE;
7630
7631 /* But we also have to update some of the relocation
7632 info we collected before. */
7633 if (gc_sweep_hook
7634 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7635 {
7636 Elf_Internal_Rela *internal_relocs;
7637 boolean r;
7638
7639 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7640 (o->owner, o, NULL, NULL, info->keep_memory));
7641 if (internal_relocs == NULL)
7642 return false;
7643
7644 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7645
7646 if (!info->keep_memory)
7647 free (internal_relocs);
7648
7649 if (!r)
7650 return false;
7651 }
7652 }
7653 }
7654
7655 /* Remove the symbols that were in the swept sections from the dynamic
7656 symbol table. GCFIXME: Anyone know how to get them out of the
7657 static symbol table as well? */
7658 {
7659 int i = 0;
7660
7661 elf_link_hash_traverse (elf_hash_table (info),
7662 elf_gc_sweep_symbol,
7663 (PTR) &i);
7664
7665 elf_hash_table (info)->dynsymcount = i;
7666 }
7667
7668 return true;
7669 }
7670
7671 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7672
7673 static boolean
7674 elf_gc_sweep_symbol (h, idxptr)
7675 struct elf_link_hash_entry *h;
7676 PTR idxptr;
7677 {
7678 int *idx = (int *) idxptr;
7679
7680 if (h->dynindx != -1
7681 && ((h->root.type != bfd_link_hash_defined
7682 && h->root.type != bfd_link_hash_defweak)
7683 || h->root.u.def.section->gc_mark))
7684 h->dynindx = (*idx)++;
7685
7686 return true;
7687 }
7688
7689 /* Propogate collected vtable information. This is called through
7690 elf_link_hash_traverse. */
7691
7692 static boolean
7693 elf_gc_propagate_vtable_entries_used (h, okp)
7694 struct elf_link_hash_entry *h;
7695 PTR okp;
7696 {
7697 /* Those that are not vtables. */
7698 if (h->vtable_parent == NULL)
7699 return true;
7700
7701 /* Those vtables that do not have parents, we cannot merge. */
7702 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7703 return true;
7704
7705 /* If we've already been done, exit. */
7706 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7707 return true;
7708
7709 /* Make sure the parent's table is up to date. */
7710 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7711
7712 if (h->vtable_entries_used == NULL)
7713 {
7714 /* None of this table's entries were referenced. Re-use the
7715 parent's table. */
7716 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7717 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7718 }
7719 else
7720 {
7721 size_t n;
7722 boolean *cu, *pu;
7723
7724 /* Or the parent's entries into ours. */
7725 cu = h->vtable_entries_used;
7726 cu[-1] = true;
7727 pu = h->vtable_parent->vtable_entries_used;
7728 if (pu != NULL)
7729 {
7730 asection *sec = h->root.u.def.section;
7731 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7732 int file_align = bed->s->file_align;
7733
7734 n = h->vtable_parent->vtable_entries_size / file_align;
7735 while (n--)
7736 {
7737 if (*pu)
7738 *cu = true;
7739 pu++;
7740 cu++;
7741 }
7742 }
7743 }
7744
7745 return true;
7746 }
7747
7748 static boolean
7749 elf_gc_smash_unused_vtentry_relocs (h, okp)
7750 struct elf_link_hash_entry *h;
7751 PTR okp;
7752 {
7753 asection *sec;
7754 bfd_vma hstart, hend;
7755 Elf_Internal_Rela *relstart, *relend, *rel;
7756 struct elf_backend_data *bed;
7757 int file_align;
7758
7759 /* Take care of both those symbols that do not describe vtables as
7760 well as those that are not loaded. */
7761 if (h->vtable_parent == NULL)
7762 return true;
7763
7764 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7765 || h->root.type == bfd_link_hash_defweak);
7766
7767 sec = h->root.u.def.section;
7768 hstart = h->root.u.def.value;
7769 hend = hstart + h->size;
7770
7771 relstart = (NAME(_bfd_elf,link_read_relocs)
7772 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7773 if (!relstart)
7774 return *(boolean *) okp = false;
7775 bed = get_elf_backend_data (sec->owner);
7776 file_align = bed->s->file_align;
7777
7778 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7779
7780 for (rel = relstart; rel < relend; ++rel)
7781 if (rel->r_offset >= hstart && rel->r_offset < hend)
7782 {
7783 /* If the entry is in use, do nothing. */
7784 if (h->vtable_entries_used
7785 && (rel->r_offset - hstart) < h->vtable_entries_size)
7786 {
7787 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7788 if (h->vtable_entries_used[entry])
7789 continue;
7790 }
7791 /* Otherwise, kill it. */
7792 rel->r_offset = rel->r_info = rel->r_addend = 0;
7793 }
7794
7795 return true;
7796 }
7797
7798 /* Do mark and sweep of unused sections. */
7799
7800 boolean
7801 elf_gc_sections (abfd, info)
7802 bfd *abfd;
7803 struct bfd_link_info *info;
7804 {
7805 boolean ok = true;
7806 bfd *sub;
7807 asection * (*gc_mark_hook)
7808 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7809 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7810
7811 if (!get_elf_backend_data (abfd)->can_gc_sections
7812 || info->relocateable || info->emitrelocations
7813 || elf_hash_table (info)->dynamic_sections_created)
7814 return true;
7815
7816 /* Apply transitive closure to the vtable entry usage info. */
7817 elf_link_hash_traverse (elf_hash_table (info),
7818 elf_gc_propagate_vtable_entries_used,
7819 (PTR) &ok);
7820 if (!ok)
7821 return false;
7822
7823 /* Kill the vtable relocations that were not used. */
7824 elf_link_hash_traverse (elf_hash_table (info),
7825 elf_gc_smash_unused_vtentry_relocs,
7826 (PTR) &ok);
7827 if (!ok)
7828 return false;
7829
7830 /* Grovel through relocs to find out who stays ... */
7831
7832 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7833 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7834 {
7835 asection *o;
7836
7837 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7838 continue;
7839
7840 for (o = sub->sections; o != NULL; o = o->next)
7841 {
7842 if (o->flags & SEC_KEEP)
7843 if (!elf_gc_mark (info, o, gc_mark_hook))
7844 return false;
7845 }
7846 }
7847
7848 /* ... and mark SEC_EXCLUDE for those that go. */
7849 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
7850 return false;
7851
7852 return true;
7853 }
7854 \f
7855 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7856
7857 boolean
7858 elf_gc_record_vtinherit (abfd, sec, h, offset)
7859 bfd *abfd;
7860 asection *sec;
7861 struct elf_link_hash_entry *h;
7862 bfd_vma offset;
7863 {
7864 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
7865 struct elf_link_hash_entry **search, *child;
7866 bfd_size_type extsymcount;
7867
7868 /* The sh_info field of the symtab header tells us where the
7869 external symbols start. We don't care about the local symbols at
7870 this point. */
7871 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
7872 if (!elf_bad_symtab (abfd))
7873 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
7874
7875 sym_hashes = elf_sym_hashes (abfd);
7876 sym_hashes_end = sym_hashes + extsymcount;
7877
7878 /* Hunt down the child symbol, which is in this section at the same
7879 offset as the relocation. */
7880 for (search = sym_hashes; search != sym_hashes_end; ++search)
7881 {
7882 if ((child = *search) != NULL
7883 && (child->root.type == bfd_link_hash_defined
7884 || child->root.type == bfd_link_hash_defweak)
7885 && child->root.u.def.section == sec
7886 && child->root.u.def.value == offset)
7887 goto win;
7888 }
7889
7890 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
7891 bfd_archive_filename (abfd), sec->name,
7892 (unsigned long) offset);
7893 bfd_set_error (bfd_error_invalid_operation);
7894 return false;
7895
7896 win:
7897 if (!h)
7898 {
7899 /* This *should* only be the absolute section. It could potentially
7900 be that someone has defined a non-global vtable though, which
7901 would be bad. It isn't worth paging in the local symbols to be
7902 sure though; that case should simply be handled by the assembler. */
7903
7904 child->vtable_parent = (struct elf_link_hash_entry *) -1;
7905 }
7906 else
7907 child->vtable_parent = h;
7908
7909 return true;
7910 }
7911
7912 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7913
7914 boolean
7915 elf_gc_record_vtentry (abfd, sec, h, addend)
7916 bfd *abfd ATTRIBUTE_UNUSED;
7917 asection *sec ATTRIBUTE_UNUSED;
7918 struct elf_link_hash_entry *h;
7919 bfd_vma addend;
7920 {
7921 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7922 int file_align = bed->s->file_align;
7923
7924 if (addend >= h->vtable_entries_size)
7925 {
7926 size_t size, bytes;
7927 boolean *ptr = h->vtable_entries_used;
7928
7929 /* While the symbol is undefined, we have to be prepared to handle
7930 a zero size. */
7931 if (h->root.type == bfd_link_hash_undefined)
7932 size = addend;
7933 else
7934 {
7935 size = h->size;
7936 if (size < addend)
7937 {
7938 /* Oops! We've got a reference past the defined end of
7939 the table. This is probably a bug -- shall we warn? */
7940 size = addend;
7941 }
7942 }
7943
7944 /* Allocate one extra entry for use as a "done" flag for the
7945 consolidation pass. */
7946 bytes = (size / file_align + 1) * sizeof (boolean);
7947
7948 if (ptr)
7949 {
7950 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
7951
7952 if (ptr != NULL)
7953 {
7954 size_t oldbytes;
7955
7956 oldbytes = ((h->vtable_entries_size / file_align + 1)
7957 * sizeof (boolean));
7958 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
7959 }
7960 }
7961 else
7962 ptr = bfd_zmalloc ((bfd_size_type) bytes);
7963
7964 if (ptr == NULL)
7965 return false;
7966
7967 /* And arrange for that done flag to be at index -1. */
7968 h->vtable_entries_used = ptr + 1;
7969 h->vtable_entries_size = size;
7970 }
7971
7972 h->vtable_entries_used[addend / file_align] = true;
7973
7974 return true;
7975 }
7976
7977 /* And an accompanying bit to work out final got entry offsets once
7978 we're done. Should be called from final_link. */
7979
7980 boolean
7981 elf_gc_common_finalize_got_offsets (abfd, info)
7982 bfd *abfd;
7983 struct bfd_link_info *info;
7984 {
7985 bfd *i;
7986 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7987 bfd_vma gotoff;
7988
7989 /* The GOT offset is relative to the .got section, but the GOT header is
7990 put into the .got.plt section, if the backend uses it. */
7991 if (bed->want_got_plt)
7992 gotoff = 0;
7993 else
7994 gotoff = bed->got_header_size;
7995
7996 /* Do the local .got entries first. */
7997 for (i = info->input_bfds; i; i = i->link_next)
7998 {
7999 bfd_signed_vma *local_got;
8000 bfd_size_type j, locsymcount;
8001 Elf_Internal_Shdr *symtab_hdr;
8002
8003 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8004 continue;
8005
8006 local_got = elf_local_got_refcounts (i);
8007 if (!local_got)
8008 continue;
8009
8010 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8011 if (elf_bad_symtab (i))
8012 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8013 else
8014 locsymcount = symtab_hdr->sh_info;
8015
8016 for (j = 0; j < locsymcount; ++j)
8017 {
8018 if (local_got[j] > 0)
8019 {
8020 local_got[j] = gotoff;
8021 gotoff += ARCH_SIZE / 8;
8022 }
8023 else
8024 local_got[j] = (bfd_vma) -1;
8025 }
8026 }
8027
8028 /* Then the global .got entries. .plt refcounts are handled by
8029 adjust_dynamic_symbol */
8030 elf_link_hash_traverse (elf_hash_table (info),
8031 elf_gc_allocate_got_offsets,
8032 (PTR) &gotoff);
8033 return true;
8034 }
8035
8036 /* We need a special top-level link routine to convert got reference counts
8037 to real got offsets. */
8038
8039 static boolean
8040 elf_gc_allocate_got_offsets (h, offarg)
8041 struct elf_link_hash_entry *h;
8042 PTR offarg;
8043 {
8044 bfd_vma *off = (bfd_vma *) offarg;
8045
8046 if (h->got.refcount > 0)
8047 {
8048 h->got.offset = off[0];
8049 off[0] += ARCH_SIZE / 8;
8050 }
8051 else
8052 h->got.offset = (bfd_vma) -1;
8053
8054 return true;
8055 }
8056
8057 /* Many folk need no more in the way of final link than this, once
8058 got entry reference counting is enabled. */
8059
8060 boolean
8061 elf_gc_common_final_link (abfd, info)
8062 bfd *abfd;
8063 struct bfd_link_info *info;
8064 {
8065 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8066 return false;
8067
8068 /* Invoke the regular ELF backend linker to do all the work. */
8069 return elf_bfd_final_link (abfd, info);
8070 }
8071
8072 /* This function will be called though elf_link_hash_traverse to store
8073 all hash value of the exported symbols in an array. */
8074
8075 static boolean
8076 elf_collect_hash_codes (h, data)
8077 struct elf_link_hash_entry *h;
8078 PTR data;
8079 {
8080 unsigned long **valuep = (unsigned long **) data;
8081 const char *name;
8082 char *p;
8083 unsigned long ha;
8084 char *alc = NULL;
8085
8086 /* Ignore indirect symbols. These are added by the versioning code. */
8087 if (h->dynindx == -1)
8088 return true;
8089
8090 name = h->root.root.string;
8091 p = strchr (name, ELF_VER_CHR);
8092 if (p != NULL)
8093 {
8094 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8095 memcpy (alc, name, (size_t) (p - name));
8096 alc[p - name] = '\0';
8097 name = alc;
8098 }
8099
8100 /* Compute the hash value. */
8101 ha = bfd_elf_hash (name);
8102
8103 /* Store the found hash value in the array given as the argument. */
8104 *(*valuep)++ = ha;
8105
8106 /* And store it in the struct so that we can put it in the hash table
8107 later. */
8108 h->elf_hash_value = ha;
8109
8110 if (alc != NULL)
8111 free (alc);
8112
8113 return true;
8114 }
8115
8116 boolean
8117 elf_reloc_symbol_deleted_p (offset, cookie)
8118 bfd_vma offset;
8119 PTR cookie;
8120 {
8121 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8122
8123 if (rcookie->bad_symtab)
8124 rcookie->rel = rcookie->rels;
8125
8126 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8127 {
8128 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8129 Elf_Internal_Sym isym;
8130
8131 if (! rcookie->bad_symtab)
8132 if (rcookie->rel->r_offset > offset)
8133 return false;
8134 if (rcookie->rel->r_offset != offset)
8135 continue;
8136
8137 if (rcookie->locsyms && r_symndx < rcookie->locsymcount)
8138 {
8139 Elf_External_Sym *lsym;
8140 Elf_External_Sym_Shndx *lshndx;
8141
8142 lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx;
8143 lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx;
8144 if (lshndx != NULL)
8145 lshndx += r_symndx;
8146 elf_swap_symbol_in (rcookie->abfd, lsym, lshndx, &isym);
8147 }
8148
8149 if (r_symndx >= rcookie->locsymcount
8150 || (rcookie->locsyms
8151 && ELF_ST_BIND (isym.st_info) != STB_LOCAL))
8152 {
8153 struct elf_link_hash_entry *h;
8154
8155 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8156
8157 while (h->root.type == bfd_link_hash_indirect
8158 || h->root.type == bfd_link_hash_warning)
8159 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8160
8161 if ((h->root.type == bfd_link_hash_defined
8162 || h->root.type == bfd_link_hash_defweak)
8163 && elf_discarded_section (h->root.u.def.section))
8164 return true;
8165 else
8166 return false;
8167 }
8168 else if (rcookie->locsyms)
8169 {
8170 /* It's not a relocation against a global symbol,
8171 but it could be a relocation against a local
8172 symbol for a discarded section. */
8173 asection *isec;
8174
8175 /* Need to: get the symbol; get the section. */
8176 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
8177 {
8178 isec = section_from_elf_index (rcookie->abfd, isym.st_shndx);
8179 if (isec != NULL && elf_discarded_section (isec))
8180 return true;
8181 }
8182 }
8183 return false;
8184 }
8185 return false;
8186 }
8187
8188 /* Discard unneeded references to discarded sections.
8189 Returns true if any section's size was changed. */
8190 /* This function assumes that the relocations are in sorted order,
8191 which is true for all known assemblers. */
8192
8193 boolean
8194 elf_bfd_discard_info (output_bfd, info)
8195 bfd *output_bfd;
8196 struct bfd_link_info *info;
8197 {
8198 struct elf_reloc_cookie cookie;
8199 asection *stab, *eh, *ehdr;
8200 Elf_Internal_Shdr *symtab_hdr;
8201 Elf_Internal_Shdr *shndx_hdr;
8202 Elf_External_Sym *freesyms;
8203 struct elf_backend_data *bed;
8204 bfd *abfd;
8205 boolean ret = false;
8206 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8207
8208 if (info->relocateable
8209 || info->traditional_format
8210 || info->hash->creator->flavour != bfd_target_elf_flavour
8211 || ! is_elf_hash_table (info))
8212 return false;
8213
8214 ehdr = NULL;
8215 if (elf_hash_table (info)->dynobj != NULL)
8216 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8217 ".eh_frame_hdr");
8218
8219 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8220 {
8221 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8222 continue;
8223
8224 bed = get_elf_backend_data (abfd);
8225
8226 if ((abfd->flags & DYNAMIC) != 0)
8227 continue;
8228
8229 eh = NULL;
8230 if (ehdr)
8231 {
8232 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8233 if (eh && eh->_raw_size == 0)
8234 eh = NULL;
8235 }
8236
8237 stab = strip ? NULL : bfd_get_section_by_name (abfd, ".stab");
8238 if ((! stab
8239 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8240 && ! eh
8241 && (strip || ! bed->elf_backend_discard_info))
8242 continue;
8243
8244 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8245 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8246
8247 cookie.abfd = abfd;
8248 cookie.sym_hashes = elf_sym_hashes (abfd);
8249 cookie.bad_symtab = elf_bad_symtab (abfd);
8250 if (cookie.bad_symtab)
8251 {
8252 cookie.locsymcount =
8253 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8254 cookie.extsymoff = 0;
8255 }
8256 else
8257 {
8258 cookie.locsymcount = symtab_hdr->sh_info;
8259 cookie.extsymoff = symtab_hdr->sh_info;
8260 }
8261
8262 freesyms = NULL;
8263 if (symtab_hdr->contents)
8264 cookie.locsyms = (void *) symtab_hdr->contents;
8265 else if (cookie.locsymcount == 0)
8266 cookie.locsyms = NULL;
8267 else
8268 {
8269 bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym);
8270 cookie.locsyms = bfd_malloc (amt);
8271 if (cookie.locsyms == NULL)
8272 return false;
8273 freesyms = cookie.locsyms;
8274 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
8275 || bfd_bread (cookie.locsyms, amt, abfd) != amt)
8276 {
8277 error_ret_free_loc:
8278 free (cookie.locsyms);
8279 return false;
8280 }
8281 }
8282
8283 cookie.locsym_shndx = NULL;
8284 if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0)
8285 {
8286 bfd_size_type amt;
8287 amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx);
8288 cookie.locsym_shndx = bfd_malloc (amt);
8289 if (cookie.locsym_shndx == NULL)
8290 goto error_ret_free_loc;
8291 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
8292 || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt)
8293 {
8294 free (cookie.locsym_shndx);
8295 goto error_ret_free_loc;
8296 }
8297 }
8298
8299 if (stab)
8300 {
8301 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8302 (abfd, stab, (PTR) NULL,
8303 (Elf_Internal_Rela *) NULL,
8304 info->keep_memory));
8305 if (cookie.rels)
8306 {
8307 cookie.rel = cookie.rels;
8308 cookie.relend =
8309 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8310 if (_bfd_discard_section_stabs (abfd, stab,
8311 elf_section_data (stab)->sec_info,
8312 elf_reloc_symbol_deleted_p,
8313 &cookie))
8314 ret = true;
8315 if (! info->keep_memory)
8316 free (cookie.rels);
8317 }
8318 }
8319
8320 if (eh)
8321 {
8322 cookie.rels = NULL;
8323 cookie.rel = NULL;
8324 cookie.relend = NULL;
8325 if (eh->reloc_count)
8326 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8327 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8328 info->keep_memory));
8329 if (cookie.rels)
8330 {
8331 cookie.rel = cookie.rels;
8332 cookie.relend =
8333 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8334 }
8335 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8336 elf_reloc_symbol_deleted_p,
8337 &cookie))
8338 ret = true;
8339 if (! info->keep_memory)
8340 free (cookie.rels);
8341 }
8342
8343 if (bed->elf_backend_discard_info)
8344 {
8345 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8346 ret = true;
8347 }
8348
8349 if (cookie.locsym_shndx != NULL)
8350 free (cookie.locsym_shndx);
8351
8352 if (freesyms != NULL)
8353 free (freesyms);
8354 }
8355
8356 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8357 ret = true;
8358 return ret;
8359 }
8360
8361 static boolean
8362 elf_section_ignore_discarded_relocs (sec)
8363 asection *sec;
8364 {
8365 struct elf_backend_data *bed;
8366
8367 switch (elf_section_data (sec)->sec_info_type)
8368 {
8369 case ELF_INFO_TYPE_STABS:
8370 case ELF_INFO_TYPE_EH_FRAME:
8371 return true;
8372 default:
8373 break;
8374 }
8375
8376 bed = get_elf_backend_data (sec->owner);
8377 if (bed->elf_backend_ignore_discarded_relocs != NULL
8378 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8379 return true;
8380
8381 return false;
8382 }