]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfnn-aarch64.c
bfd target vector rationalisation
[thirdparty/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
189 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
202
203 #define ELIMINATE_COPY_RELOCS 0
204
205 /* Return size of a relocation entry. HTAB is the bfd's
206 elf_aarch64_link_hash_entry. */
207 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
208
209 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
211 #define PLT_ENTRY_SIZE (32)
212 #define PLT_SMALL_ENTRY_SIZE (16)
213 #define PLT_TLSDESC_ENTRY_SIZE (32)
214
215 /* Encoding of the nop instruction */
216 #define INSN_NOP 0xd503201f
217
218 #define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222 /* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
226 [x16,#-GOT_ENTRY_SIZE]. */
227 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
228 {
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
231 #if ARCH_SIZE == 64
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
234 #else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237 #endif
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242 };
243
244 /* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
247 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
248 {
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
250 #if ARCH_SIZE == 64
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
253 #else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256 #endif
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258 };
259
260 static const bfd_byte
261 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
262 {
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
266 #if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
269 #else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272 #endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276 };
277
278 #define elf_info_to_howto elfNN_aarch64_info_to_howto
279 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
280
281 #define AARCH64_ELF_ABI_VERSION 0
282
283 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284 #define ALL_ONES (~ (bfd_vma) 0)
285
286 /* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
289
290 static reloc_howto_type elfNN_aarch64_howto_table[] =
291 {
292 EMPTY_HOWTO (0),
293
294 /* Basic data relocations. */
295
296 #if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
298 0, /* rightshift */
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_AARCH64_NULL", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0, /* dst_mask */
309 FALSE), /* pcrel_offset */
310 #else
311 HOWTO (R_AARCH64_NONE, /* type */
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_AARCH64_NONE", /* name */
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
324 #endif
325
326 /* .xword: (S+A) */
327 HOWTO64 (AARCH64_R (ABS64), /* type */
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 AARCH64_R_STR (ABS64), /* name */
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
342 HOWTO (AARCH64_R (ABS32), /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 AARCH64_R_STR (ABS32), /* name */
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
357 HOWTO (AARCH64_R (ABS16), /* type */
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 AARCH64_R_STR (ABS16), /* name */
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
372 HOWTO64 (AARCH64_R (PREL64), /* type */
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 AARCH64_R_STR (PREL64), /* name */
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
387 HOWTO (AARCH64_R (PREL32), /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 AARCH64_R_STR (PREL32), /* name */
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
402 HOWTO (AARCH64_R (PREL16), /* type */
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
410 AARCH64_R_STR (PREL16), /* name */
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 AARCH64_R_STR (LD_PREL_LO19), /* name */
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
669 HOWTO (AARCH64_R (TSTBR14), /* type */
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (TSTBR14), /* name */
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
684 HOWTO (AARCH64_R (CONDBR19), /* type */
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (CONDBR19), /* name */
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
699 HOWTO (AARCH64_R (JUMP26), /* type */
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (JUMP26), /* name */
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
714 HOWTO (AARCH64_R (CALL26), /* type */
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
722 AARCH64_R_STR (CALL26), /* name */
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 /* LD/ST128: (S+A) & 0xff0 */
774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
966 32, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
980 16, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
994 16, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1036 12, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1078 2, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1131 FALSE, /* partial_inplace */
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1167 16, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
1300 #if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302 #else
1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
1304 #endif
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 #if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320 #else
1321 AARCH64_R_STR (TLS_DTPREL), /* name */
1322 #endif
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
1336 #if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338 #else
1339 AARCH64_R_STR (TLS_TPREL), /* name */
1340 #endif
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
1375 };
1376
1377 static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392 /* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394 static bfd_reloc_code_real_type
1395 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396 {
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409 }
1410
1411 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413 static bfd_reloc_code_real_type
1414 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415 {
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435 }
1436
1437 struct elf_aarch64_reloc_map
1438 {
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441 };
1442
1443 /* Map bfd generic reloc to AArch64-specific reloc. */
1444 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445 {
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456 };
1457
1458 /* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461 static reloc_howto_type *
1462 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463 {
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
1484 return NULL;
1485 }
1486
1487 static reloc_howto_type *
1488 elfNN_aarch64_howto_from_type (unsigned int r_type)
1489 {
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
1493 #if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499 #endif
1500
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
1503
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1506
1507 if (howto != NULL)
1508 return howto;
1509
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512 }
1513
1514 static void
1515 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1516 Elf_Internal_Rela *elf_reloc)
1517 {
1518 unsigned int r_type;
1519
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1522 }
1523
1524 static reloc_howto_type *
1525 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1526 bfd_reloc_code_real_type code)
1527 {
1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1529
1530 if (howto != NULL)
1531 return howto;
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535 }
1536
1537 static reloc_howto_type *
1538 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1539 const char *r_name)
1540 {
1541 unsigned int i;
1542
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
1547
1548 return NULL;
1549 }
1550
1551 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1552 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1554 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1555
1556 /* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560 #define STUB_ENTRY_NAME "__%s_veneer"
1561
1562 /* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574 static int
1575 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576 {
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579 }
1580
1581 static int
1582 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583 {
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587 }
1588
1589 static const uint32_t aarch64_adrp_branch_stub [] =
1590 {
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596 };
1597
1598 static const uint32_t aarch64_long_branch_stub[] =
1599 {
1600 #if ARCH_SIZE == 64
1601 0x58000090, /* ldr ip0, 1f */
1602 #else
1603 0x18000090, /* ldr wip0, 1f */
1604 #endif
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
1610 */
1611 0x00000000,
1612 };
1613
1614 /* Section name for stubs is the associated section name plus this
1615 string. */
1616 #define STUB_SUFFIX ".stub"
1617
1618 enum elf_aarch64_stub_type
1619 {
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623 };
1624
1625 struct elf_aarch64_stub_hash_entry
1626 {
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
1641 enum elf_aarch64_stub_type stub_type;
1642
1643 /* The symbol table entry, if any, that this was derived from. */
1644 struct elf_aarch64_link_hash_entry *h;
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657 };
1658
1659 /* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
1662 typedef struct elf_elf_section_map
1663 {
1664 bfd_vma vma;
1665 char type;
1666 }
1667 elf_aarch64_section_map;
1668
1669
1670 typedef struct _aarch64_elf_section_data
1671 {
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
1675 elf_aarch64_section_map *map;
1676 }
1677 _aarch64_elf_section_data;
1678
1679 #define elf_aarch64_section_data(sec) \
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
1682 /* The size of the thread control block which is defined to be two pointers. */
1683 #define TCB_SIZE (ARCH_SIZE/8)*2
1684
1685 struct elf_aarch64_local_symbol
1686 {
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698 };
1699
1700 struct elf_aarch64_obj_tdata
1701 {
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712 };
1713
1714 #define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
1717 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
1718
1719 #define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724 static bfd_boolean
1725 elfNN_aarch64_mkobject (bfd *abfd)
1726 {
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729 }
1730
1731 #define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
1733
1734 #define GOT_UNKNOWN 0
1735 #define GOT_NORMAL 1
1736 #define GOT_TLS_GD 2
1737 #define GOT_TLS_IE 4
1738 #define GOT_TLSDESC_GD 8
1739
1740 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742 /* AArch64 ELF linker hash entry. */
1743 struct elf_aarch64_link_hash_entry
1744 {
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
1761 struct elf_aarch64_stub_hash_entry *stub_cache;
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769 };
1770
1771 static unsigned int
1772 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775 {
1776 if (h)
1777 return elf_aarch64_hash_entry (h)->got_type;
1778
1779 if (! elf_aarch64_locals (abfd))
1780 return GOT_UNKNOWN;
1781
1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
1783 }
1784
1785 /* Get the AArch64 elf linker hash table from a link_info structure. */
1786 #define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
1788
1789 #define aarch64_stub_hash_lookup(table, string, create, copy) \
1790 ((struct elf_aarch64_stub_hash_entry *) \
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793 /* AArch64 ELF linker hash table. */
1794 struct elf_aarch64_link_hash_table
1795 {
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
1862 };
1863
1864 /* Create an entry in an AArch64 ELF linker hash table. */
1865
1866 static struct bfd_hash_entry *
1867 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
1868 struct bfd_hash_table *table,
1869 const char *string)
1870 {
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
1878 sizeof (struct elf_aarch64_link_hash_entry));
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
1883 ret = ((struct elf_aarch64_link_hash_entry *)
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896 }
1897
1898 /* Initialize an entry in the stub hash table. */
1899
1900 static struct bfd_hash_entry *
1901 stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903 {
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
1910 elf_aarch64_stub_hash_entry));
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
1919 struct elf_aarch64_stub_hash_entry *eh;
1920
1921 /* Initialize the local fields. */
1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933 }
1934
1935 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940 static hashval_t
1941 elfNN_aarch64_local_htab_hash (const void *ptr)
1942 {
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946 }
1947
1948 /* Compare local hash entries. */
1949
1950 static int
1951 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952 {
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959 }
1960
1961 /* Find and/or create a hash entry for local symbol. */
1962
1963 static struct elf_link_hash_entry *
1964 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967 {
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000 }
2001
2002 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004 static void
2005 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008 {
2009 struct elf_aarch64_link_hash_entry *edir, *eind;
2010
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056 }
2057
2058 /* Create an AArch64 elf linker hash table. */
2059
2060 static struct bfd_link_hash_table *
2061 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2062 {
2063 struct elf_aarch64_link_hash_table *ret;
2064 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2065
2066 ret = bfd_zmalloc (amt);
2067 if (ret == NULL)
2068 return NULL;
2069
2070 if (!_bfd_elf_link_hash_table_init
2071 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2072 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2073 {
2074 free (ret);
2075 return NULL;
2076 }
2077
2078 ret->plt_header_size = PLT_ENTRY_SIZE;
2079 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2080 ret->obfd = abfd;
2081 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2082
2083 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2084 sizeof (struct elf_aarch64_stub_hash_entry)))
2085 {
2086 free (ret);
2087 return NULL;
2088 }
2089
2090 ret->loc_hash_table = htab_try_create (1024,
2091 elfNN_aarch64_local_htab_hash,
2092 elfNN_aarch64_local_htab_eq,
2093 NULL);
2094 ret->loc_hash_memory = objalloc_create ();
2095 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2096 {
2097 free (ret);
2098 return NULL;
2099 }
2100
2101 return &ret->root.root;
2102 }
2103
2104 /* Free the derived linker hash table. */
2105
2106 static void
2107 elfNN_aarch64_hash_table_free (struct bfd_link_hash_table *hash)
2108 {
2109 struct elf_aarch64_link_hash_table *ret
2110 = (struct elf_aarch64_link_hash_table *) hash;
2111
2112 if (ret->loc_hash_table)
2113 htab_delete (ret->loc_hash_table);
2114 if (ret->loc_hash_memory)
2115 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2116
2117 bfd_hash_table_free (&ret->stub_hash_table);
2118 _bfd_elf_link_hash_table_free (hash);
2119 }
2120
2121 static bfd_boolean
2122 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2123 bfd_vma offset, bfd_vma value)
2124 {
2125 reloc_howto_type *howto;
2126 bfd_vma place;
2127
2128 howto = elfNN_aarch64_howto_from_type (r_type);
2129 place = (input_section->output_section->vma + input_section->output_offset
2130 + offset);
2131
2132 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2133 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2134 return _bfd_aarch64_elf_put_addend (input_bfd,
2135 input_section->contents + offset, r_type,
2136 howto, value);
2137 }
2138
2139 static enum elf_aarch64_stub_type
2140 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2141 {
2142 if (aarch64_valid_for_adrp_p (value, place))
2143 return aarch64_stub_adrp_branch;
2144 return aarch64_stub_long_branch;
2145 }
2146
2147 /* Determine the type of stub needed, if any, for a call. */
2148
2149 static enum elf_aarch64_stub_type
2150 aarch64_type_of_stub (struct bfd_link_info *info,
2151 asection *input_sec,
2152 const Elf_Internal_Rela *rel,
2153 unsigned char st_type,
2154 struct elf_aarch64_link_hash_entry *hash,
2155 bfd_vma destination)
2156 {
2157 bfd_vma location;
2158 bfd_signed_vma branch_offset;
2159 unsigned int r_type;
2160 struct elf_aarch64_link_hash_table *globals;
2161 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2162 bfd_boolean via_plt_p;
2163
2164 if (st_type != STT_FUNC)
2165 return stub_type;
2166
2167 globals = elf_aarch64_hash_table (info);
2168 via_plt_p = (globals->root.splt != NULL && hash != NULL
2169 && hash->root.plt.offset != (bfd_vma) - 1);
2170
2171 if (via_plt_p)
2172 return stub_type;
2173
2174 /* Determine where the call point is. */
2175 location = (input_sec->output_offset
2176 + input_sec->output_section->vma + rel->r_offset);
2177
2178 branch_offset = (bfd_signed_vma) (destination - location);
2179
2180 r_type = ELFNN_R_TYPE (rel->r_info);
2181
2182 /* We don't want to redirect any old unconditional jump in this way,
2183 only one which is being used for a sibcall, where it is
2184 acceptable for the IP0 and IP1 registers to be clobbered. */
2185 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2186 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2187 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2188 {
2189 stub_type = aarch64_stub_long_branch;
2190 }
2191
2192 return stub_type;
2193 }
2194
2195 /* Build a name for an entry in the stub hash table. */
2196
2197 static char *
2198 elfNN_aarch64_stub_name (const asection *input_section,
2199 const asection *sym_sec,
2200 const struct elf_aarch64_link_hash_entry *hash,
2201 const Elf_Internal_Rela *rel)
2202 {
2203 char *stub_name;
2204 bfd_size_type len;
2205
2206 if (hash)
2207 {
2208 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2209 stub_name = bfd_malloc (len);
2210 if (stub_name != NULL)
2211 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2212 (unsigned int) input_section->id,
2213 hash->root.root.root.string,
2214 rel->r_addend);
2215 }
2216 else
2217 {
2218 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2219 stub_name = bfd_malloc (len);
2220 if (stub_name != NULL)
2221 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2222 (unsigned int) input_section->id,
2223 (unsigned int) sym_sec->id,
2224 (unsigned int) ELFNN_R_SYM (rel->r_info),
2225 rel->r_addend);
2226 }
2227
2228 return stub_name;
2229 }
2230
2231 /* Look up an entry in the stub hash. Stub entries are cached because
2232 creating the stub name takes a bit of time. */
2233
2234 static struct elf_aarch64_stub_hash_entry *
2235 elfNN_aarch64_get_stub_entry (const asection *input_section,
2236 const asection *sym_sec,
2237 struct elf_link_hash_entry *hash,
2238 const Elf_Internal_Rela *rel,
2239 struct elf_aarch64_link_hash_table *htab)
2240 {
2241 struct elf_aarch64_stub_hash_entry *stub_entry;
2242 struct elf_aarch64_link_hash_entry *h =
2243 (struct elf_aarch64_link_hash_entry *) hash;
2244 const asection *id_sec;
2245
2246 if ((input_section->flags & SEC_CODE) == 0)
2247 return NULL;
2248
2249 /* If this input section is part of a group of sections sharing one
2250 stub section, then use the id of the first section in the group.
2251 Stub names need to include a section id, as there may well be
2252 more than one stub used to reach say, printf, and we need to
2253 distinguish between them. */
2254 id_sec = htab->stub_group[input_section->id].link_sec;
2255
2256 if (h != NULL && h->stub_cache != NULL
2257 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2258 {
2259 stub_entry = h->stub_cache;
2260 }
2261 else
2262 {
2263 char *stub_name;
2264
2265 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2266 if (stub_name == NULL)
2267 return NULL;
2268
2269 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2270 stub_name, FALSE, FALSE);
2271 if (h != NULL)
2272 h->stub_cache = stub_entry;
2273
2274 free (stub_name);
2275 }
2276
2277 return stub_entry;
2278 }
2279
2280 /* Add a new stub entry to the stub hash. Not all fields of the new
2281 stub entry are initialised. */
2282
2283 static struct elf_aarch64_stub_hash_entry *
2284 elfNN_aarch64_add_stub (const char *stub_name,
2285 asection *section,
2286 struct elf_aarch64_link_hash_table *htab)
2287 {
2288 asection *link_sec;
2289 asection *stub_sec;
2290 struct elf_aarch64_stub_hash_entry *stub_entry;
2291
2292 link_sec = htab->stub_group[section->id].link_sec;
2293 stub_sec = htab->stub_group[section->id].stub_sec;
2294 if (stub_sec == NULL)
2295 {
2296 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2297 if (stub_sec == NULL)
2298 {
2299 size_t namelen;
2300 bfd_size_type len;
2301 char *s_name;
2302
2303 namelen = strlen (link_sec->name);
2304 len = namelen + sizeof (STUB_SUFFIX);
2305 s_name = bfd_alloc (htab->stub_bfd, len);
2306 if (s_name == NULL)
2307 return NULL;
2308
2309 memcpy (s_name, link_sec->name, namelen);
2310 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2311 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2312 if (stub_sec == NULL)
2313 return NULL;
2314 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2315 }
2316 htab->stub_group[section->id].stub_sec = stub_sec;
2317 }
2318
2319 /* Enter this entry into the linker stub hash table. */
2320 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2321 TRUE, FALSE);
2322 if (stub_entry == NULL)
2323 {
2324 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2325 section->owner, stub_name);
2326 return NULL;
2327 }
2328
2329 stub_entry->stub_sec = stub_sec;
2330 stub_entry->stub_offset = 0;
2331 stub_entry->id_sec = link_sec;
2332
2333 return stub_entry;
2334 }
2335
2336 static bfd_boolean
2337 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2338 void *in_arg ATTRIBUTE_UNUSED)
2339 {
2340 struct elf_aarch64_stub_hash_entry *stub_entry;
2341 asection *stub_sec;
2342 bfd *stub_bfd;
2343 bfd_byte *loc;
2344 bfd_vma sym_value;
2345 unsigned int template_size;
2346 const uint32_t *template;
2347 unsigned int i;
2348
2349 /* Massage our args to the form they really have. */
2350 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2351
2352 stub_sec = stub_entry->stub_sec;
2353
2354 /* Make a note of the offset within the stubs for this entry. */
2355 stub_entry->stub_offset = stub_sec->size;
2356 loc = stub_sec->contents + stub_entry->stub_offset;
2357
2358 stub_bfd = stub_sec->owner;
2359
2360 /* This is the address of the stub destination. */
2361 sym_value = (stub_entry->target_value
2362 + stub_entry->target_section->output_offset
2363 + stub_entry->target_section->output_section->vma);
2364
2365 if (stub_entry->stub_type == aarch64_stub_long_branch)
2366 {
2367 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2368 + stub_sec->output_offset);
2369
2370 /* See if we can relax the stub. */
2371 if (aarch64_valid_for_adrp_p (sym_value, place))
2372 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2373 }
2374
2375 switch (stub_entry->stub_type)
2376 {
2377 case aarch64_stub_adrp_branch:
2378 template = aarch64_adrp_branch_stub;
2379 template_size = sizeof (aarch64_adrp_branch_stub);
2380 break;
2381 case aarch64_stub_long_branch:
2382 template = aarch64_long_branch_stub;
2383 template_size = sizeof (aarch64_long_branch_stub);
2384 break;
2385 default:
2386 BFD_FAIL ();
2387 return FALSE;
2388 }
2389
2390 for (i = 0; i < (template_size / sizeof template[0]); i++)
2391 {
2392 bfd_putl32 (template[i], loc);
2393 loc += 4;
2394 }
2395
2396 template_size = (template_size + 7) & ~7;
2397 stub_sec->size += template_size;
2398
2399 switch (stub_entry->stub_type)
2400 {
2401 case aarch64_stub_adrp_branch:
2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2403 stub_entry->stub_offset, sym_value))
2404 /* The stub would not have been relaxed if the offset was out
2405 of range. */
2406 BFD_FAIL ();
2407
2408 _bfd_final_link_relocate
2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
2410 stub_bfd,
2411 stub_sec,
2412 stub_sec->contents,
2413 stub_entry->stub_offset + 4,
2414 sym_value,
2415 0);
2416 break;
2417
2418 case aarch64_stub_long_branch:
2419 /* We want the value relative to the address 12 bytes back from the
2420 value itself. */
2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
2422 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
2423 stub_sec->contents,
2424 stub_entry->stub_offset + 16,
2425 sym_value + 12, 0);
2426 break;
2427 default:
2428 break;
2429 }
2430
2431 return TRUE;
2432 }
2433
2434 /* As above, but don't actually build the stub. Just bump offset so
2435 we know stub section sizes. */
2436
2437 static bfd_boolean
2438 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2439 void *in_arg ATTRIBUTE_UNUSED)
2440 {
2441 struct elf_aarch64_stub_hash_entry *stub_entry;
2442 int size;
2443
2444 /* Massage our args to the form they really have. */
2445 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2446
2447 switch (stub_entry->stub_type)
2448 {
2449 case aarch64_stub_adrp_branch:
2450 size = sizeof (aarch64_adrp_branch_stub);
2451 break;
2452 case aarch64_stub_long_branch:
2453 size = sizeof (aarch64_long_branch_stub);
2454 break;
2455 default:
2456 BFD_FAIL ();
2457 return FALSE;
2458 break;
2459 }
2460
2461 size = (size + 7) & ~7;
2462 stub_entry->stub_sec->size += size;
2463 return TRUE;
2464 }
2465
2466 /* External entry points for sizing and building linker stubs. */
2467
2468 /* Set up various things so that we can make a list of input sections
2469 for each output section included in the link. Returns -1 on error,
2470 0 when no stubs will be needed, and 1 on success. */
2471
2472 int
2473 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
2474 struct bfd_link_info *info)
2475 {
2476 bfd *input_bfd;
2477 unsigned int bfd_count;
2478 int top_id, top_index;
2479 asection *section;
2480 asection **input_list, **list;
2481 bfd_size_type amt;
2482 struct elf_aarch64_link_hash_table *htab =
2483 elf_aarch64_hash_table (info);
2484
2485 if (!is_elf_hash_table (htab))
2486 return 0;
2487
2488 /* Count the number of input BFDs and find the top input section id. */
2489 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2490 input_bfd != NULL; input_bfd = input_bfd->link_next)
2491 {
2492 bfd_count += 1;
2493 for (section = input_bfd->sections;
2494 section != NULL; section = section->next)
2495 {
2496 if (top_id < section->id)
2497 top_id = section->id;
2498 }
2499 }
2500 htab->bfd_count = bfd_count;
2501
2502 amt = sizeof (struct map_stub) * (top_id + 1);
2503 htab->stub_group = bfd_zmalloc (amt);
2504 if (htab->stub_group == NULL)
2505 return -1;
2506
2507 /* We can't use output_bfd->section_count here to find the top output
2508 section index as some sections may have been removed, and
2509 _bfd_strip_section_from_output doesn't renumber the indices. */
2510 for (section = output_bfd->sections, top_index = 0;
2511 section != NULL; section = section->next)
2512 {
2513 if (top_index < section->index)
2514 top_index = section->index;
2515 }
2516
2517 htab->top_index = top_index;
2518 amt = sizeof (asection *) * (top_index + 1);
2519 input_list = bfd_malloc (amt);
2520 htab->input_list = input_list;
2521 if (input_list == NULL)
2522 return -1;
2523
2524 /* For sections we aren't interested in, mark their entries with a
2525 value we can check later. */
2526 list = input_list + top_index;
2527 do
2528 *list = bfd_abs_section_ptr;
2529 while (list-- != input_list);
2530
2531 for (section = output_bfd->sections;
2532 section != NULL; section = section->next)
2533 {
2534 if ((section->flags & SEC_CODE) != 0)
2535 input_list[section->index] = NULL;
2536 }
2537
2538 return 1;
2539 }
2540
2541 /* Used by elfNN_aarch64_next_input_section and group_sections. */
2542 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2543
2544 /* The linker repeatedly calls this function for each input section,
2545 in the order that input sections are linked into output sections.
2546 Build lists of input sections to determine groupings between which
2547 we may insert linker stubs. */
2548
2549 void
2550 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
2551 {
2552 struct elf_aarch64_link_hash_table *htab =
2553 elf_aarch64_hash_table (info);
2554
2555 if (isec->output_section->index <= htab->top_index)
2556 {
2557 asection **list = htab->input_list + isec->output_section->index;
2558
2559 if (*list != bfd_abs_section_ptr)
2560 {
2561 /* Steal the link_sec pointer for our list. */
2562 /* This happens to make the list in reverse order,
2563 which is what we want. */
2564 PREV_SEC (isec) = *list;
2565 *list = isec;
2566 }
2567 }
2568 }
2569
2570 /* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2576
2577 static void
2578 group_sections (struct elf_aarch64_link_hash_table *htab,
2579 bfd_size_type stub_group_size,
2580 bfd_boolean stubs_always_before_branch)
2581 {
2582 asection **list = htab->input_list + htab->top_index;
2583
2584 do
2585 {
2586 asection *tail = *list;
2587
2588 if (tail == bfd_abs_section_ptr)
2589 continue;
2590
2591 while (tail != NULL)
2592 {
2593 asection *curr;
2594 asection *prev;
2595 bfd_size_type total;
2596
2597 curr = tail;
2598 total = tail->size;
2599 while ((prev = PREV_SEC (curr)) != NULL
2600 && ((total += curr->output_offset - prev->output_offset)
2601 < stub_group_size))
2602 curr = prev;
2603
2604 /* OK, the size from the start of CURR to the end is less
2605 than stub_group_size and thus can be handled by one stub
2606 section. (Or the tail section is itself larger than
2607 stub_group_size, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2610 section size. */
2611 do
2612 {
2613 prev = PREV_SEC (tail);
2614 /* Set up this stub group. */
2615 htab->stub_group[tail->id].link_sec = curr;
2616 }
2617 while (tail != curr && (tail = prev) != NULL);
2618
2619 /* But wait, there's more! Input sections up to stub_group_size
2620 bytes before the stub section can be handled by it too. */
2621 if (!stubs_always_before_branch)
2622 {
2623 total = 0;
2624 while (prev != NULL
2625 && ((total += tail->output_offset - prev->output_offset)
2626 < stub_group_size))
2627 {
2628 tail = prev;
2629 prev = PREV_SEC (tail);
2630 htab->stub_group[tail->id].link_sec = curr;
2631 }
2632 }
2633 tail = prev;
2634 }
2635 }
2636 while (list-- != htab->input_list);
2637
2638 free (htab->input_list);
2639 }
2640
2641 #undef PREV_SEC
2642
2643 /* Determine and set the size of the stub section for a final link.
2644
2645 The basic idea here is to examine all the relocations looking for
2646 PC-relative calls to a target that is unreachable with a "bl"
2647 instruction. */
2648
2649 bfd_boolean
2650 elfNN_aarch64_size_stubs (bfd *output_bfd,
2651 bfd *stub_bfd,
2652 struct bfd_link_info *info,
2653 bfd_signed_vma group_size,
2654 asection * (*add_stub_section) (const char *,
2655 asection *),
2656 void (*layout_sections_again) (void))
2657 {
2658 bfd_size_type stub_group_size;
2659 bfd_boolean stubs_always_before_branch;
2660 bfd_boolean stub_changed = 0;
2661 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
2662
2663 /* Propagate mach to stub bfd, because it may not have been
2664 finalized when we created stub_bfd. */
2665 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2666 bfd_get_mach (output_bfd));
2667
2668 /* Stash our params away. */
2669 htab->stub_bfd = stub_bfd;
2670 htab->add_stub_section = add_stub_section;
2671 htab->layout_sections_again = layout_sections_again;
2672 stubs_always_before_branch = group_size < 0;
2673 if (group_size < 0)
2674 stub_group_size = -group_size;
2675 else
2676 stub_group_size = group_size;
2677
2678 if (stub_group_size == 1)
2679 {
2680 /* Default values. */
2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
2682 stub_group_size = 127 * 1024 * 1024;
2683 }
2684
2685 group_sections (htab, stub_group_size, stubs_always_before_branch);
2686
2687 while (1)
2688 {
2689 bfd *input_bfd;
2690 unsigned int bfd_indx;
2691 asection *stub_sec;
2692
2693 for (input_bfd = info->input_bfds, bfd_indx = 0;
2694 input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++)
2695 {
2696 Elf_Internal_Shdr *symtab_hdr;
2697 asection *section;
2698 Elf_Internal_Sym *local_syms = NULL;
2699
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2704
2705 /* Walk over each section attached to the input bfd. */
2706 for (section = input_bfd->sections;
2707 section != NULL; section = section->next)
2708 {
2709 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2710
2711 /* If there aren't any relocs, then there's nothing more
2712 to do. */
2713 if ((section->flags & SEC_RELOC) == 0
2714 || section->reloc_count == 0
2715 || (section->flags & SEC_CODE) == 0)
2716 continue;
2717
2718 /* If this section is a link-once section that will be
2719 discarded, then don't create any stubs. */
2720 if (section->output_section == NULL
2721 || section->output_section->owner != output_bfd)
2722 continue;
2723
2724 /* Get the relocs. */
2725 internal_relocs
2726 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2727 NULL, info->keep_memory);
2728 if (internal_relocs == NULL)
2729 goto error_ret_free_local;
2730
2731 /* Now examine each relocation. */
2732 irela = internal_relocs;
2733 irelaend = irela + section->reloc_count;
2734 for (; irela < irelaend; irela++)
2735 {
2736 unsigned int r_type, r_indx;
2737 enum elf_aarch64_stub_type stub_type;
2738 struct elf_aarch64_stub_hash_entry *stub_entry;
2739 asection *sym_sec;
2740 bfd_vma sym_value;
2741 bfd_vma destination;
2742 struct elf_aarch64_link_hash_entry *hash;
2743 const char *sym_name;
2744 char *stub_name;
2745 const asection *id_sec;
2746 unsigned char st_type;
2747 bfd_size_type len;
2748
2749 r_type = ELFNN_R_TYPE (irela->r_info);
2750 r_indx = ELFNN_R_SYM (irela->r_info);
2751
2752 if (r_type >= (unsigned int) R_AARCH64_end)
2753 {
2754 bfd_set_error (bfd_error_bad_value);
2755 error_ret_free_internal:
2756 if (elf_section_data (section)->relocs == NULL)
2757 free (internal_relocs);
2758 goto error_ret_free_local;
2759 }
2760
2761 /* Only look for stubs on unconditional branch and
2762 branch and link instructions. */
2763 if (r_type != (unsigned int) AARCH64_R (CALL26)
2764 && r_type != (unsigned int) AARCH64_R (JUMP26))
2765 continue;
2766
2767 /* Now determine the call target, its name, value,
2768 section. */
2769 sym_sec = NULL;
2770 sym_value = 0;
2771 destination = 0;
2772 hash = NULL;
2773 sym_name = NULL;
2774 if (r_indx < symtab_hdr->sh_info)
2775 {
2776 /* It's a local symbol. */
2777 Elf_Internal_Sym *sym;
2778 Elf_Internal_Shdr *hdr;
2779
2780 if (local_syms == NULL)
2781 {
2782 local_syms
2783 = (Elf_Internal_Sym *) symtab_hdr->contents;
2784 if (local_syms == NULL)
2785 local_syms
2786 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2787 symtab_hdr->sh_info, 0,
2788 NULL, NULL, NULL);
2789 if (local_syms == NULL)
2790 goto error_ret_free_internal;
2791 }
2792
2793 sym = local_syms + r_indx;
2794 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2795 sym_sec = hdr->bfd_section;
2796 if (!sym_sec)
2797 /* This is an undefined symbol. It can never
2798 be resolved. */
2799 continue;
2800
2801 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2802 sym_value = sym->st_value;
2803 destination = (sym_value + irela->r_addend
2804 + sym_sec->output_offset
2805 + sym_sec->output_section->vma);
2806 st_type = ELF_ST_TYPE (sym->st_info);
2807 sym_name
2808 = bfd_elf_string_from_elf_section (input_bfd,
2809 symtab_hdr->sh_link,
2810 sym->st_name);
2811 }
2812 else
2813 {
2814 int e_indx;
2815
2816 e_indx = r_indx - symtab_hdr->sh_info;
2817 hash = ((struct elf_aarch64_link_hash_entry *)
2818 elf_sym_hashes (input_bfd)[e_indx]);
2819
2820 while (hash->root.root.type == bfd_link_hash_indirect
2821 || hash->root.root.type == bfd_link_hash_warning)
2822 hash = ((struct elf_aarch64_link_hash_entry *)
2823 hash->root.root.u.i.link);
2824
2825 if (hash->root.root.type == bfd_link_hash_defined
2826 || hash->root.root.type == bfd_link_hash_defweak)
2827 {
2828 struct elf_aarch64_link_hash_table *globals =
2829 elf_aarch64_hash_table (info);
2830 sym_sec = hash->root.root.u.def.section;
2831 sym_value = hash->root.root.u.def.value;
2832 /* For a destination in a shared library,
2833 use the PLT stub as target address to
2834 decide whether a branch stub is
2835 needed. */
2836 if (globals->root.splt != NULL && hash != NULL
2837 && hash->root.plt.offset != (bfd_vma) - 1)
2838 {
2839 sym_sec = globals->root.splt;
2840 sym_value = hash->root.plt.offset;
2841 if (sym_sec->output_section != NULL)
2842 destination = (sym_value
2843 + sym_sec->output_offset
2844 +
2845 sym_sec->output_section->vma);
2846 }
2847 else if (sym_sec->output_section != NULL)
2848 destination = (sym_value + irela->r_addend
2849 + sym_sec->output_offset
2850 + sym_sec->output_section->vma);
2851 }
2852 else if (hash->root.root.type == bfd_link_hash_undefined
2853 || (hash->root.root.type
2854 == bfd_link_hash_undefweak))
2855 {
2856 /* For a shared library, use the PLT stub as
2857 target address to decide whether a long
2858 branch stub is needed.
2859 For absolute code, they cannot be handled. */
2860 struct elf_aarch64_link_hash_table *globals =
2861 elf_aarch64_hash_table (info);
2862
2863 if (globals->root.splt != NULL && hash != NULL
2864 && hash->root.plt.offset != (bfd_vma) - 1)
2865 {
2866 sym_sec = globals->root.splt;
2867 sym_value = hash->root.plt.offset;
2868 if (sym_sec->output_section != NULL)
2869 destination = (sym_value
2870 + sym_sec->output_offset
2871 +
2872 sym_sec->output_section->vma);
2873 }
2874 else
2875 continue;
2876 }
2877 else
2878 {
2879 bfd_set_error (bfd_error_bad_value);
2880 goto error_ret_free_internal;
2881 }
2882 st_type = ELF_ST_TYPE (hash->root.type);
2883 sym_name = hash->root.root.root.string;
2884 }
2885
2886 /* Determine what (if any) linker stub is needed. */
2887 stub_type = aarch64_type_of_stub
2888 (info, section, irela, st_type, hash, destination);
2889 if (stub_type == aarch64_stub_none)
2890 continue;
2891
2892 /* Support for grouping stub sections. */
2893 id_sec = htab->stub_group[section->id].link_sec;
2894
2895 /* Get the name of this stub. */
2896 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
2897 irela);
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
2901 stub_entry =
2902 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2903 stub_name, FALSE, FALSE);
2904 if (stub_entry != NULL)
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
2911 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
2912 htab);
2913 if (stub_entry == NULL)
2914 {
2915 free (stub_name);
2916 goto error_ret_free_internal;
2917 }
2918
2919 stub_entry->target_value = sym_value;
2920 stub_entry->target_section = sym_sec;
2921 stub_entry->stub_type = stub_type;
2922 stub_entry->h = hash;
2923 stub_entry->st_type = st_type;
2924
2925 if (sym_name == NULL)
2926 sym_name = "unnamed";
2927 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2928 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2929 if (stub_entry->output_name == NULL)
2930 {
2931 free (stub_name);
2932 goto error_ret_free_internal;
2933 }
2934
2935 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2936 sym_name);
2937
2938 stub_changed = TRUE;
2939 }
2940
2941 /* We're done with the internal relocs, free them. */
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 }
2945 }
2946
2947 if (!stub_changed)
2948 break;
2949
2950 /* OK, we've added some stubs. Find out the new size of the
2951 stub sections. */
2952 for (stub_sec = htab->stub_bfd->sections;
2953 stub_sec != NULL; stub_sec = stub_sec->next)
2954 stub_sec->size = 0;
2955
2956 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2957
2958 /* Ask the linker to do its stuff. */
2959 (*htab->layout_sections_again) ();
2960 stub_changed = FALSE;
2961 }
2962
2963 return TRUE;
2964
2965 error_ret_free_local:
2966 return FALSE;
2967 }
2968
2969 /* Build all the stubs associated with the current output file. The
2970 stubs are kept in a hash table attached to the main linker hash
2971 table. We also set up the .plt entries for statically linked PIC
2972 functions here. This function is called via aarch64_elf_finish in the
2973 linker. */
2974
2975 bfd_boolean
2976 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
2977 {
2978 asection *stub_sec;
2979 struct bfd_hash_table *table;
2980 struct elf_aarch64_link_hash_table *htab;
2981
2982 htab = elf_aarch64_hash_table (info);
2983
2984 for (stub_sec = htab->stub_bfd->sections;
2985 stub_sec != NULL; stub_sec = stub_sec->next)
2986 {
2987 bfd_size_type size;
2988
2989 /* Ignore non-stub sections. */
2990 if (!strstr (stub_sec->name, STUB_SUFFIX))
2991 continue;
2992
2993 /* Allocate memory to hold the linker stubs. */
2994 size = stub_sec->size;
2995 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2996 if (stub_sec->contents == NULL && size != 0)
2997 return FALSE;
2998 stub_sec->size = 0;
2999 }
3000
3001 /* Build the stubs as directed by the stub hash table. */
3002 table = &htab->stub_hash_table;
3003 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3004
3005 return TRUE;
3006 }
3007
3008
3009 /* Add an entry to the code/data map for section SEC. */
3010
3011 static void
3012 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
3013 {
3014 struct _aarch64_elf_section_data *sec_data =
3015 elf_aarch64_section_data (sec);
3016 unsigned int newidx;
3017
3018 if (sec_data->map == NULL)
3019 {
3020 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
3021 sec_data->mapcount = 0;
3022 sec_data->mapsize = 1;
3023 }
3024
3025 newidx = sec_data->mapcount++;
3026
3027 if (sec_data->mapcount > sec_data->mapsize)
3028 {
3029 sec_data->mapsize *= 2;
3030 sec_data->map = bfd_realloc_or_free
3031 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
3032 }
3033
3034 if (sec_data->map)
3035 {
3036 sec_data->map[newidx].vma = vma;
3037 sec_data->map[newidx].type = type;
3038 }
3039 }
3040
3041
3042 /* Initialise maps of insn/data for input BFDs. */
3043 void
3044 bfd_elfNN_aarch64_init_maps (bfd *abfd)
3045 {
3046 Elf_Internal_Sym *isymbuf;
3047 Elf_Internal_Shdr *hdr;
3048 unsigned int i, localsyms;
3049
3050 /* Make sure that we are dealing with an AArch64 elf binary. */
3051 if (!is_aarch64_elf (abfd))
3052 return;
3053
3054 if ((abfd->flags & DYNAMIC) != 0)
3055 return;
3056
3057 hdr = &elf_symtab_hdr (abfd);
3058 localsyms = hdr->sh_info;
3059
3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3061 should contain the number of local symbols, which should come before any
3062 global symbols. Mapping symbols are always local. */
3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3064
3065 /* No internal symbols read? Skip this BFD. */
3066 if (isymbuf == NULL)
3067 return;
3068
3069 for (i = 0; i < localsyms; i++)
3070 {
3071 Elf_Internal_Sym *isym = &isymbuf[i];
3072 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3073 const char *name;
3074
3075 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3076 {
3077 name = bfd_elf_string_from_elf_section (abfd,
3078 hdr->sh_link,
3079 isym->st_name);
3080
3081 if (bfd_is_aarch64_special_symbol_name
3082 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
3083 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
3084 }
3085 }
3086 }
3087
3088 /* Set option values needed during linking. */
3089 void
3090 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
3091 struct bfd_link_info *link_info,
3092 int no_enum_warn,
3093 int no_wchar_warn, int pic_veneer)
3094 {
3095 struct elf_aarch64_link_hash_table *globals;
3096
3097 globals = elf_aarch64_hash_table (link_info);
3098 globals->pic_veneer = pic_veneer;
3099
3100 BFD_ASSERT (is_aarch64_elf (output_bfd));
3101 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3102 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3103 }
3104
3105 static bfd_vma
3106 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
3107 struct elf_aarch64_link_hash_table
3108 *globals, struct bfd_link_info *info,
3109 bfd_vma value, bfd *output_bfd,
3110 bfd_boolean *unresolved_reloc_p)
3111 {
3112 bfd_vma off = (bfd_vma) - 1;
3113 asection *basegot = globals->root.sgot;
3114 bfd_boolean dyn = globals->root.dynamic_sections_created;
3115
3116 if (h != NULL)
3117 {
3118 BFD_ASSERT (basegot != NULL);
3119 off = h->got.offset;
3120 BFD_ASSERT (off != (bfd_vma) - 1);
3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3122 || (info->shared
3123 && SYMBOL_REFERENCES_LOCAL (info, h))
3124 || (ELF_ST_VISIBILITY (h->other)
3125 && h->root.type == bfd_link_hash_undefweak))
3126 {
3127 /* This is actually a static link, or it is a -Bsymbolic link
3128 and the symbol is defined locally. We must initialize this
3129 entry in the global offset table. Since the offset must
3130 always be a multiple of 8 (4 in the case of ILP32), we use
3131 the least significant bit to record whether we have
3132 initialized it already.
3133 When doing a dynamic link, we create a .rel(a).got relocation
3134 entry to initialize the value. This is done in the
3135 finish_dynamic_symbol routine. */
3136 if ((off & 1) != 0)
3137 off &= ~1;
3138 else
3139 {
3140 bfd_put_NN (output_bfd, value, basegot->contents + off);
3141 h->got.offset |= 1;
3142 }
3143 }
3144 else
3145 *unresolved_reloc_p = FALSE;
3146
3147 off = off + basegot->output_section->vma + basegot->output_offset;
3148 }
3149
3150 return off;
3151 }
3152
3153 /* Change R_TYPE to a more efficient access model where possible,
3154 return the new reloc type. */
3155
3156 static bfd_reloc_code_real_type
3157 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
3158 struct elf_link_hash_entry *h)
3159 {
3160 bfd_boolean is_local = h == NULL;
3161
3162 switch (r_type)
3163 {
3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3166 return (is_local
3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3169
3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3172 return (is_local
3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3175
3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3177 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3178
3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3180 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3181
3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3183 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3184 /* Instructions with these relocations will become NOPs. */
3185 return BFD_RELOC_AARCH64_NONE;
3186
3187 default:
3188 break;
3189 }
3190
3191 return r_type;
3192 }
3193
3194 static unsigned int
3195 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
3196 {
3197 switch (r_type)
3198 {
3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3203 return GOT_NORMAL;
3204
3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3207 return GOT_TLS_GD;
3208
3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3211 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3214 return GOT_TLSDESC_GD;
3215
3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3219 return GOT_TLS_IE;
3220
3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3229 return GOT_UNKNOWN;
3230
3231 default:
3232 break;
3233 }
3234 return GOT_UNKNOWN;
3235 }
3236
3237 static bfd_boolean
3238 aarch64_can_relax_tls (bfd *input_bfd,
3239 struct bfd_link_info *info,
3240 bfd_reloc_code_real_type r_type,
3241 struct elf_link_hash_entry *h,
3242 unsigned long r_symndx)
3243 {
3244 unsigned int symbol_got_type;
3245 unsigned int reloc_got_type;
3246
3247 if (! IS_AARCH64_TLS_RELOC (r_type))
3248 return FALSE;
3249
3250 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
3251 reloc_got_type = aarch64_reloc_got_type (r_type);
3252
3253 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3254 return TRUE;
3255
3256 if (info->shared)
3257 return FALSE;
3258
3259 if (h && h->root.type == bfd_link_hash_undefweak)
3260 return FALSE;
3261
3262 return TRUE;
3263 }
3264
3265 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
3266 enumerator. */
3267
3268 static bfd_reloc_code_real_type
3269 aarch64_tls_transition (bfd *input_bfd,
3270 struct bfd_link_info *info,
3271 unsigned int r_type,
3272 struct elf_link_hash_entry *h,
3273 unsigned long r_symndx)
3274 {
3275 bfd_reloc_code_real_type bfd_r_type
3276 = elfNN_aarch64_bfd_reloc_from_type (r_type);
3277
3278 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3279 return bfd_r_type;
3280
3281 return aarch64_tls_transition_without_check (bfd_r_type, h);
3282 }
3283
3284 /* Return the base VMA address which should be subtracted from real addresses
3285 when resolving R_AARCH64_TLS_DTPREL relocation. */
3286
3287 static bfd_vma
3288 dtpoff_base (struct bfd_link_info *info)
3289 {
3290 /* If tls_sec is NULL, we should have signalled an error already. */
3291 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3292 return elf_hash_table (info)->tls_sec->vma;
3293 }
3294
3295 /* Return the base VMA address which should be subtracted from real addresses
3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3297
3298 static bfd_vma
3299 tpoff_base (struct bfd_link_info *info)
3300 {
3301 struct elf_link_hash_table *htab = elf_hash_table (info);
3302
3303 /* If tls_sec is NULL, we should have signalled an error already. */
3304 if (htab->tls_sec == NULL)
3305 return 0;
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310 }
3311
3312 static bfd_vma *
3313 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315 {
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
3325 l = elf_aarch64_locals (input_bfd);
3326 return &l[r_symndx].got_offset;
3327 }
3328 }
3329
3330 static void
3331 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333 {
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337 }
3338
3339 static int
3340 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342 {
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346 }
3347
3348 static bfd_vma
3349 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351 {
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356 }
3357
3358 static bfd_vma *
3359 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361 {
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
3375 l = elf_aarch64_locals (input_bfd);
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378 }
3379
3380 static void
3381 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383 {
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387 }
3388
3389 static int
3390 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393 {
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397 }
3398
3399 static bfd_vma
3400 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402 {
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407 }
3408
3409 /* Perform a relocation as part of a final link. */
3410 static bfd_reloc_status_type
3411 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
3425 {
3426 Elf_Internal_Shdr *symtab_hdr;
3427 unsigned int r_type = howto->type;
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
3435 struct elf_aarch64_link_hash_table *globals;
3436 bfd_boolean weak_undef_p;
3437
3438 globals = elf_aarch64_hash_table (info);
3439
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
3444 r_symndx = ELFNN_R_SYM (rel->r_info);
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
3467
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
3592 plt_index = ((h->plt.offset - globals->plt_header_size) /
3593 globals->plt_entry_size);
3594 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3595 base_got = globals->root.sgotplt;
3596 }
3597 else
3598 {
3599 plt_index = h->plt.offset / globals->plt_entry_size;
3600 off = plt_index * GOT_ENTRY_SIZE;
3601 base_got = globals->root.igotplt;
3602 }
3603
3604 if (h->dynindx == -1
3605 || h->forced_local
3606 || info->symbolic)
3607 {
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3613
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3617 if ((off & 1) != 0)
3618 off &= ~1;
3619 else
3620 {
3621 bfd_put_NN (output_bfd, value,
3622 base_got->contents + off);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3624 h->got.offset |= 1;
3625 }
3626 }
3627 value = (base_got->output_section->vma
3628 + base_got->output_offset + off);
3629 }
3630 else
3631 value = aarch64_calculate_got_entry_vma (h, globals, info,
3632 value, output_bfd,
3633 unresolved_reloc_p);
3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3635 0, weak_undef_p);
3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3638 case BFD_RELOC_AARCH64_ADD_LO12:
3639 break;
3640 }
3641 }
3642
3643 switch (bfd_r_type)
3644 {
3645 case BFD_RELOC_AARCH64_NONE:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3647 *unresolved_reloc_p = FALSE;
3648 return bfd_reloc_ok;
3649
3650 case BFD_RELOC_AARCH64_NN:
3651
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3654 run time. */
3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3656 && (input_section->flags & SEC_ALLOC)
3657 && (h == NULL
3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3659 || h->root.type != bfd_link_hash_undefweak))
3660 {
3661 Elf_Internal_Rela outrel;
3662 bfd_byte *loc;
3663 bfd_boolean skip, relocate;
3664 asection *sreloc;
3665
3666 *unresolved_reloc_p = FALSE;
3667
3668 skip = FALSE;
3669 relocate = FALSE;
3670
3671 outrel.r_addend = signed_addend;
3672 outrel.r_offset =
3673 _bfd_elf_section_offset (output_bfd, info, input_section,
3674 rel->r_offset);
3675 if (outrel.r_offset == (bfd_vma) - 1)
3676 skip = TRUE;
3677 else if (outrel.r_offset == (bfd_vma) - 2)
3678 {
3679 skip = TRUE;
3680 relocate = TRUE;
3681 }
3682
3683 outrel.r_offset += (input_section->output_section->vma
3684 + input_section->output_offset);
3685
3686 if (skip)
3687 memset (&outrel, 0, sizeof outrel);
3688 else if (h != NULL
3689 && h->dynindx != -1
3690 && (!info->shared || !info->symbolic || !h->def_regular))
3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3692 else
3693 {
3694 int symbol;
3695
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3699 symbol = 0;
3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
3701 outrel.r_addend += value;
3702 }
3703
3704 sreloc = elf_section_data (input_section)->sreloc;
3705 if (sreloc == NULL || sreloc->contents == NULL)
3706 return bfd_reloc_notsupported;
3707
3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
3710
3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
3712 {
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3716 abort ();
3717 }
3718
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3722 if (!relocate)
3723 return bfd_reloc_ok;
3724
3725 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3726 contents, rel->r_offset, value,
3727 signed_addend);
3728 }
3729 else
3730 value += signed_addend;
3731 break;
3732
3733 case BFD_RELOC_AARCH64_JUMP26:
3734 case BFD_RELOC_AARCH64_CALL26:
3735 {
3736 asection *splt = globals->root.splt;
3737 bfd_boolean via_plt_p =
3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3739
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p && ! via_plt_p)
3745 {
3746 bfd_putl32 (INSN_NOP, hit_data);
3747 return bfd_reloc_ok;
3748 }
3749
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3752 if (via_plt_p)
3753 {
3754 value = (splt->output_section->vma
3755 + splt->output_offset + h->plt.offset);
3756 *unresolved_reloc_p = FALSE;
3757 }
3758
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h && h->type == STT_FUNC)
3765 {
3766 /* Check if a stub has to be inserted because the destination
3767 is too far away. */
3768 if (! aarch64_valid_branch_p (value, place))
3769 {
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
3772 struct elf_aarch64_stub_hash_entry *stub_entry;
3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
3774 sym_sec, h,
3775 rel, globals);
3776 if (stub_entry != NULL)
3777 value = (stub_entry->stub_offset
3778 + stub_entry->stub_sec->output_offset
3779 + stub_entry->stub_sec->output_section->vma);
3780 }
3781 }
3782 }
3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3784 signed_addend, weak_undef_p);
3785 break;
3786
3787 case BFD_RELOC_AARCH64_16:
3788 #if ARCH_SIZE == 64
3789 case BFD_RELOC_AARCH64_32:
3790 #endif
3791 case BFD_RELOC_AARCH64_ADD_LO12:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3795 case BFD_RELOC_AARCH64_BRANCH19:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3797 case BFD_RELOC_AARCH64_LDST8_LO12:
3798 case BFD_RELOC_AARCH64_LDST16_LO12:
3799 case BFD_RELOC_AARCH64_LDST32_LO12:
3800 case BFD_RELOC_AARCH64_LDST64_LO12:
3801 case BFD_RELOC_AARCH64_LDST128_LO12:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S:
3805 case BFD_RELOC_AARCH64_MOVW_G0:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3807 case BFD_RELOC_AARCH64_MOVW_G1:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3809 case BFD_RELOC_AARCH64_MOVW_G2:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3811 case BFD_RELOC_AARCH64_MOVW_G3:
3812 case BFD_RELOC_AARCH64_16_PCREL:
3813 case BFD_RELOC_AARCH64_32_PCREL:
3814 case BFD_RELOC_AARCH64_64_PCREL:
3815 case BFD_RELOC_AARCH64_TSTBR14:
3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3817 signed_addend, weak_undef_p);
3818 break;
3819
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3824 if (globals->root.sgot == NULL)
3825 BFD_ASSERT (h != NULL);
3826
3827 if (h != NULL)
3828 {
3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3830 output_bfd,
3831 unresolved_reloc_p);
3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3833 0, weak_undef_p);
3834 }
3835 break;
3836
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3842 if (globals->root.sgot == NULL)
3843 return bfd_reloc_notsupported;
3844
3845 value = (symbol_got_offset (input_bfd, h, r_symndx)
3846 + globals->root.sgot->output_section->vma
3847 + globals->root.sgot->output_offset);
3848
3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3850 0, weak_undef_p);
3851 *unresolved_reloc_p = FALSE;
3852 break;
3853
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3863 signed_addend - tpoff_base (info),
3864 weak_undef_p);
3865 *unresolved_reloc_p = FALSE;
3866 break;
3867
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
3874 if (globals->root.sgot == NULL)
3875 return bfd_reloc_notsupported;
3876 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3877 + globals->root.sgotplt->output_section->vma
3878 + globals->root.sgotplt->output_offset
3879 + globals->sgotplt_jump_table_size);
3880
3881 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3882 0, weak_undef_p);
3883 *unresolved_reloc_p = FALSE;
3884 break;
3885
3886 default:
3887 return bfd_reloc_notsupported;
3888 }
3889
3890 if (saved_addend)
3891 *saved_addend = value;
3892
3893 /* Only apply the final relocation in a sequence. */
3894 if (save_addend)
3895 return bfd_reloc_continue;
3896
3897 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3898 howto, value);
3899 }
3900
3901 /* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3903 link.
3904
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3907 case of error. */
3908
3909 static bfd_reloc_status_type
3910 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
3911 bfd *input_bfd, bfd_byte *contents,
3912 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3913 {
3914 bfd_boolean is_local = h == NULL;
3915 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
3916 unsigned long insn;
3917
3918 BFD_ASSERT (globals && input_bfd && contents && rel);
3919
3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
3921 {
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3924 if (is_local)
3925 {
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3928 or
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3930 */
3931 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3932 return bfd_reloc_continue;
3933 }
3934 else
3935 {
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3938 or
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3940 */
3941 insn = bfd_getl32 (contents + rel->r_offset);
3942 return bfd_reloc_continue;
3943 }
3944
3945 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3946 if (is_local)
3947 {
3948 /* GD->LE relaxation:
3949 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3950 */
3951 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3952 return bfd_reloc_continue;
3953 }
3954 else
3955 {
3956 /* GD->IE relaxation:
3957 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3958 */
3959 insn = bfd_getl32 (contents + rel->r_offset);
3960 insn &= 0xffffffe0;
3961 bfd_putl32 (insn, contents + rel->r_offset);
3962 return bfd_reloc_continue;
3963 }
3964
3965 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3966 if (is_local)
3967 {
3968 /* GD->LE relaxation
3969 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3970 bl __tls_get_addr => mrs x1, tpidr_el0
3971 nop => add x0, x1, x0
3972 */
3973
3974 /* First kill the tls_get_addr reloc on the bl instruction. */
3975 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
3976 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
3977
3978 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3979 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3980 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3981 return bfd_reloc_continue;
3982 }
3983 else
3984 {
3985 /* GD->IE relaxation
3986 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3987 BL __tls_get_addr => mrs x1, tpidr_el0
3988 R_AARCH64_CALL26
3989 NOP => add x0, x1, x0
3990 */
3991
3992 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
3993
3994 /* Remove the relocation on the BL instruction. */
3995 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
3996
3997 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3998
3999 /* We choose to fixup the BL and NOP instructions using the
4000 offset from the second relocation to allow flexibility in
4001 scheduling instructions between the ADD and BL. */
4002 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4003 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4004 return bfd_reloc_continue;
4005 }
4006
4007 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4008 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4009 /* GD->IE/LE relaxation:
4010 add x0, x0, #:tlsdesc_lo12:var => nop
4011 blr xd => nop
4012 */
4013 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4014 return bfd_reloc_ok;
4015
4016 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4017 /* IE->LE relaxation:
4018 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4019 */
4020 if (is_local)
4021 {
4022 insn = bfd_getl32 (contents + rel->r_offset);
4023 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4024 }
4025 return bfd_reloc_continue;
4026
4027 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4028 /* IE->LE relaxation:
4029 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4030 */
4031 if (is_local)
4032 {
4033 insn = bfd_getl32 (contents + rel->r_offset);
4034 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4035 }
4036 return bfd_reloc_continue;
4037
4038 default:
4039 return bfd_reloc_continue;
4040 }
4041
4042 return bfd_reloc_ok;
4043 }
4044
4045 /* Relocate an AArch64 ELF section. */
4046
4047 static bfd_boolean
4048 elfNN_aarch64_relocate_section (bfd *output_bfd,
4049 struct bfd_link_info *info,
4050 bfd *input_bfd,
4051 asection *input_section,
4052 bfd_byte *contents,
4053 Elf_Internal_Rela *relocs,
4054 Elf_Internal_Sym *local_syms,
4055 asection **local_sections)
4056 {
4057 Elf_Internal_Shdr *symtab_hdr;
4058 struct elf_link_hash_entry **sym_hashes;
4059 Elf_Internal_Rela *rel;
4060 Elf_Internal_Rela *relend;
4061 const char *name;
4062 struct elf_aarch64_link_hash_table *globals;
4063 bfd_boolean save_addend = FALSE;
4064 bfd_vma addend = 0;
4065
4066 globals = elf_aarch64_hash_table (info);
4067
4068 symtab_hdr = &elf_symtab_hdr (input_bfd);
4069 sym_hashes = elf_sym_hashes (input_bfd);
4070
4071 rel = relocs;
4072 relend = relocs + input_section->reloc_count;
4073 for (; rel < relend; rel++)
4074 {
4075 unsigned int r_type;
4076 bfd_reloc_code_real_type bfd_r_type;
4077 bfd_reloc_code_real_type relaxed_bfd_r_type;
4078 reloc_howto_type *howto;
4079 unsigned long r_symndx;
4080 Elf_Internal_Sym *sym;
4081 asection *sec;
4082 struct elf_link_hash_entry *h;
4083 bfd_vma relocation;
4084 bfd_reloc_status_type r;
4085 arelent bfd_reloc;
4086 char sym_type;
4087 bfd_boolean unresolved_reloc = FALSE;
4088 char *error_message = NULL;
4089
4090 r_symndx = ELFNN_R_SYM (rel->r_info);
4091 r_type = ELFNN_R_TYPE (rel->r_info);
4092
4093 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
4094 howto = bfd_reloc.howto;
4095
4096 if (howto == NULL)
4097 {
4098 (*_bfd_error_handler)
4099 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4100 input_bfd, input_section, r_type);
4101 return FALSE;
4102 }
4103 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
4104
4105 h = NULL;
4106 sym = NULL;
4107 sec = NULL;
4108
4109 if (r_symndx < symtab_hdr->sh_info)
4110 {
4111 sym = local_syms + r_symndx;
4112 sym_type = ELFNN_ST_TYPE (sym->st_info);
4113 sec = local_sections[r_symndx];
4114
4115 /* An object file might have a reference to a local
4116 undefined symbol. This is a daft object file, but we
4117 should at least do something about it. */
4118 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4119 && bfd_is_und_section (sec)
4120 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4121 {
4122 if (!info->callbacks->undefined_symbol
4123 (info, bfd_elf_string_from_elf_section
4124 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4125 input_bfd, input_section, rel->r_offset, TRUE))
4126 return FALSE;
4127 }
4128
4129 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
4130
4131 /* Relocate against local STT_GNU_IFUNC symbol. */
4132 if (!info->relocatable
4133 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4134 {
4135 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4136 rel, FALSE);
4137 if (h == NULL)
4138 abort ();
4139
4140 /* Set STT_GNU_IFUNC symbol value. */
4141 h->root.u.def.value = sym->st_value;
4142 h->root.u.def.section = sec;
4143 }
4144 }
4145 else
4146 {
4147 bfd_boolean warned, ignored;
4148
4149 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4150 r_symndx, symtab_hdr, sym_hashes,
4151 h, sec, relocation,
4152 unresolved_reloc, warned, ignored);
4153
4154 sym_type = h->type;
4155 }
4156
4157 if (sec != NULL && discarded_section (sec))
4158 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4159 rel, 1, relend, howto, 0, contents);
4160
4161 if (info->relocatable)
4162 {
4163 /* This is a relocatable link. We don't have to change
4164 anything, unless the reloc is against a section symbol,
4165 in which case we have to adjust according to where the
4166 section symbol winds up in the output section. */
4167 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4168 rel->r_addend += sec->output_offset;
4169 continue;
4170 }
4171
4172 if (h != NULL)
4173 name = h->root.root.string;
4174 else
4175 {
4176 name = (bfd_elf_string_from_elf_section
4177 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4178 if (name == NULL || *name == '\0')
4179 name = bfd_section_name (input_bfd, sec);
4180 }
4181
4182 if (r_symndx != 0
4183 && r_type != R_AARCH64_NONE
4184 && r_type != R_AARCH64_NULL
4185 && (h == NULL
4186 || h->root.type == bfd_link_hash_defined
4187 || h->root.type == bfd_link_hash_defweak)
4188 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
4189 {
4190 (*_bfd_error_handler)
4191 ((sym_type == STT_TLS
4192 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4193 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4194 input_bfd,
4195 input_section, (long) rel->r_offset, howto->name, name);
4196 }
4197
4198 /* We relax only if we can see that there can be a valid transition
4199 from a reloc type to another.
4200 We call elfNN_aarch64_final_link_relocate unless we're completely
4201 done, i.e., the relaxation produced the final output we want. */
4202
4203 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4204 h, r_symndx);
4205 if (relaxed_bfd_r_type != bfd_r_type)
4206 {
4207 bfd_r_type = relaxed_bfd_r_type;
4208 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4209 BFD_ASSERT (howto != NULL);
4210 r_type = howto->type;
4211 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
4212 unresolved_reloc = 0;
4213 }
4214 else
4215 r = bfd_reloc_continue;
4216
4217 /* There may be multiple consecutive relocations for the
4218 same offset. In that case we are supposed to treat the
4219 output of each relocation as the addend for the next. */
4220 if (rel + 1 < relend
4221 && rel->r_offset == rel[1].r_offset
4222 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4223 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
4224 save_addend = TRUE;
4225 else
4226 save_addend = FALSE;
4227
4228 if (r == bfd_reloc_continue)
4229 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
4230 input_section, contents, rel,
4231 relocation, info, sec,
4232 h, &unresolved_reloc,
4233 save_addend, &addend, sym);
4234
4235 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
4236 {
4237 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4238 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4239 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4240 {
4241 bfd_boolean need_relocs = FALSE;
4242 bfd_byte *loc;
4243 int indx;
4244 bfd_vma off;
4245
4246 off = symbol_got_offset (input_bfd, h, r_symndx);
4247 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4248
4249 need_relocs =
4250 (info->shared || indx != 0) &&
4251 (h == NULL
4252 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4253 || h->root.type != bfd_link_hash_undefweak);
4254
4255 BFD_ASSERT (globals->root.srelgot != NULL);
4256
4257 if (need_relocs)
4258 {
4259 Elf_Internal_Rela rela;
4260 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
4261 rela.r_addend = 0;
4262 rela.r_offset = globals->root.sgot->output_section->vma +
4263 globals->root.sgot->output_offset + off;
4264
4265
4266 loc = globals->root.srelgot->contents;
4267 loc += globals->root.srelgot->reloc_count++
4268 * RELOC_SIZE (htab);
4269 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4270
4271 if (indx == 0)
4272 {
4273 bfd_put_NN (output_bfd,
4274 relocation - dtpoff_base (info),
4275 globals->root.sgot->contents + off
4276 + GOT_ENTRY_SIZE);
4277 }
4278 else
4279 {
4280 /* This TLS symbol is global. We emit a
4281 relocation to fixup the tls offset at load
4282 time. */
4283 rela.r_info =
4284 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
4285 rela.r_addend = 0;
4286 rela.r_offset =
4287 (globals->root.sgot->output_section->vma
4288 + globals->root.sgot->output_offset + off
4289 + GOT_ENTRY_SIZE);
4290
4291 loc = globals->root.srelgot->contents;
4292 loc += globals->root.srelgot->reloc_count++
4293 * RELOC_SIZE (globals);
4294 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4295 bfd_put_NN (output_bfd, (bfd_vma) 0,
4296 globals->root.sgot->contents + off
4297 + GOT_ENTRY_SIZE);
4298 }
4299 }
4300 else
4301 {
4302 bfd_put_NN (output_bfd, (bfd_vma) 1,
4303 globals->root.sgot->contents + off);
4304 bfd_put_NN (output_bfd,
4305 relocation - dtpoff_base (info),
4306 globals->root.sgot->contents + off
4307 + GOT_ENTRY_SIZE);
4308 }
4309
4310 symbol_got_offset_mark (input_bfd, h, r_symndx);
4311 }
4312 break;
4313
4314 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4315 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4316 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4317 {
4318 bfd_boolean need_relocs = FALSE;
4319 bfd_byte *loc;
4320 int indx;
4321 bfd_vma off;
4322
4323 off = symbol_got_offset (input_bfd, h, r_symndx);
4324
4325 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4326
4327 need_relocs =
4328 (info->shared || indx != 0) &&
4329 (h == NULL
4330 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4331 || h->root.type != bfd_link_hash_undefweak);
4332
4333 BFD_ASSERT (globals->root.srelgot != NULL);
4334
4335 if (need_relocs)
4336 {
4337 Elf_Internal_Rela rela;
4338
4339 if (indx == 0)
4340 rela.r_addend = relocation - dtpoff_base (info);
4341 else
4342 rela.r_addend = 0;
4343
4344 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
4345 rela.r_offset = globals->root.sgot->output_section->vma +
4346 globals->root.sgot->output_offset + off;
4347
4348 loc = globals->root.srelgot->contents;
4349 loc += globals->root.srelgot->reloc_count++
4350 * RELOC_SIZE (htab);
4351
4352 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4353
4354 bfd_put_NN (output_bfd, rela.r_addend,
4355 globals->root.sgot->contents + off);
4356 }
4357 else
4358 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
4359 globals->root.sgot->contents + off);
4360
4361 symbol_got_offset_mark (input_bfd, h, r_symndx);
4362 }
4363 break;
4364
4365 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4367 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4372 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4373 break;
4374
4375 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4376 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4377 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4378 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4379 {
4380 bfd_boolean need_relocs = FALSE;
4381 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4382 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4383
4384 need_relocs = (h == NULL
4385 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4386 || h->root.type != bfd_link_hash_undefweak);
4387
4388 BFD_ASSERT (globals->root.srelgot != NULL);
4389 BFD_ASSERT (globals->root.sgot != NULL);
4390
4391 if (need_relocs)
4392 {
4393 bfd_byte *loc;
4394 Elf_Internal_Rela rela;
4395 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4396
4397 rela.r_addend = 0;
4398 rela.r_offset = (globals->root.sgotplt->output_section->vma
4399 + globals->root.sgotplt->output_offset
4400 + off + globals->sgotplt_jump_table_size);
4401
4402 if (indx == 0)
4403 rela.r_addend = relocation - dtpoff_base (info);
4404
4405 /* Allocate the next available slot in the PLT reloc
4406 section to hold our R_AARCH64_TLSDESC, the next
4407 available slot is determined from reloc_count,
4408 which we step. But note, reloc_count was
4409 artifically moved down while allocating slots for
4410 real PLT relocs such that all of the PLT relocs
4411 will fit above the initial reloc_count and the
4412 extra stuff will fit below. */
4413 loc = globals->root.srelplt->contents;
4414 loc += globals->root.srelplt->reloc_count++
4415 * RELOC_SIZE (globals);
4416
4417 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4418
4419 bfd_put_NN (output_bfd, (bfd_vma) 0,
4420 globals->root.sgotplt->contents + off +
4421 globals->sgotplt_jump_table_size);
4422 bfd_put_NN (output_bfd, (bfd_vma) 0,
4423 globals->root.sgotplt->contents + off +
4424 globals->sgotplt_jump_table_size +
4425 GOT_ENTRY_SIZE);
4426 }
4427
4428 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4429 }
4430 break;
4431 default:
4432 break;
4433 }
4434
4435 if (!save_addend)
4436 addend = 0;
4437
4438
4439 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4440 because such sections are not SEC_ALLOC and thus ld.so will
4441 not process them. */
4442 if (unresolved_reloc
4443 && !((input_section->flags & SEC_DEBUGGING) != 0
4444 && h->def_dynamic)
4445 && _bfd_elf_section_offset (output_bfd, info, input_section,
4446 +rel->r_offset) != (bfd_vma) - 1)
4447 {
4448 (*_bfd_error_handler)
4449 (_
4450 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4451 input_bfd, input_section, (long) rel->r_offset, howto->name,
4452 h->root.root.string);
4453 return FALSE;
4454 }
4455
4456 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4457 {
4458 switch (r)
4459 {
4460 case bfd_reloc_overflow:
4461 /* If the overflowing reloc was to an undefined symbol,
4462 we have already printed one error message and there
4463 is no point complaining again. */
4464 if ((!h ||
4465 h->root.type != bfd_link_hash_undefined)
4466 && (!((*info->callbacks->reloc_overflow)
4467 (info, (h ? &h->root : NULL), name, howto->name,
4468 (bfd_vma) 0, input_bfd, input_section,
4469 rel->r_offset))))
4470 return FALSE;
4471 break;
4472
4473 case bfd_reloc_undefined:
4474 if (!((*info->callbacks->undefined_symbol)
4475 (info, name, input_bfd, input_section,
4476 rel->r_offset, TRUE)))
4477 return FALSE;
4478 break;
4479
4480 case bfd_reloc_outofrange:
4481 error_message = _("out of range");
4482 goto common_error;
4483
4484 case bfd_reloc_notsupported:
4485 error_message = _("unsupported relocation");
4486 goto common_error;
4487
4488 case bfd_reloc_dangerous:
4489 /* error_message should already be set. */
4490 goto common_error;
4491
4492 default:
4493 error_message = _("unknown error");
4494 /* Fall through. */
4495
4496 common_error:
4497 BFD_ASSERT (error_message != NULL);
4498 if (!((*info->callbacks->reloc_dangerous)
4499 (info, error_message, input_bfd, input_section,
4500 rel->r_offset)))
4501 return FALSE;
4502 break;
4503 }
4504 }
4505 }
4506
4507 return TRUE;
4508 }
4509
4510 /* Set the right machine number. */
4511
4512 static bfd_boolean
4513 elfNN_aarch64_object_p (bfd *abfd)
4514 {
4515 #if ARCH_SIZE == 32
4516 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4517 #else
4518 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
4519 #endif
4520 return TRUE;
4521 }
4522
4523 /* Function to keep AArch64 specific flags in the ELF header. */
4524
4525 static bfd_boolean
4526 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
4527 {
4528 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4529 {
4530 }
4531 else
4532 {
4533 elf_elfheader (abfd)->e_flags = flags;
4534 elf_flags_init (abfd) = TRUE;
4535 }
4536
4537 return TRUE;
4538 }
4539
4540 /* Merge backend specific data from an object file to the output
4541 object file when linking. */
4542
4543 static bfd_boolean
4544 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
4545 {
4546 flagword out_flags;
4547 flagword in_flags;
4548 bfd_boolean flags_compatible = TRUE;
4549 asection *sec;
4550
4551 /* Check if we have the same endianess. */
4552 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4553 return FALSE;
4554
4555 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4556 return TRUE;
4557
4558 /* The input BFD must have had its flags initialised. */
4559 /* The following seems bogus to me -- The flags are initialized in
4560 the assembler but I don't think an elf_flags_init field is
4561 written into the object. */
4562 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4563
4564 in_flags = elf_elfheader (ibfd)->e_flags;
4565 out_flags = elf_elfheader (obfd)->e_flags;
4566
4567 if (!elf_flags_init (obfd))
4568 {
4569 /* If the input is the default architecture and had the default
4570 flags then do not bother setting the flags for the output
4571 architecture, instead allow future merges to do this. If no
4572 future merges ever set these flags then they will retain their
4573 uninitialised values, which surprise surprise, correspond
4574 to the default values. */
4575 if (bfd_get_arch_info (ibfd)->the_default
4576 && elf_elfheader (ibfd)->e_flags == 0)
4577 return TRUE;
4578
4579 elf_flags_init (obfd) = TRUE;
4580 elf_elfheader (obfd)->e_flags = in_flags;
4581
4582 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4583 && bfd_get_arch_info (obfd)->the_default)
4584 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4585 bfd_get_mach (ibfd));
4586
4587 return TRUE;
4588 }
4589
4590 /* Identical flags must be compatible. */
4591 if (in_flags == out_flags)
4592 return TRUE;
4593
4594 /* Check to see if the input BFD actually contains any sections. If
4595 not, its flags may not have been initialised either, but it
4596 cannot actually cause any incompatiblity. Do not short-circuit
4597 dynamic objects; their section list may be emptied by
4598 elf_link_add_object_symbols.
4599
4600 Also check to see if there are no code sections in the input.
4601 In this case there is no need to check for code specific flags.
4602 XXX - do we need to worry about floating-point format compatability
4603 in data sections ? */
4604 if (!(ibfd->flags & DYNAMIC))
4605 {
4606 bfd_boolean null_input_bfd = TRUE;
4607 bfd_boolean only_data_sections = TRUE;
4608
4609 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4610 {
4611 if ((bfd_get_section_flags (ibfd, sec)
4612 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4613 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4614 only_data_sections = FALSE;
4615
4616 null_input_bfd = FALSE;
4617 break;
4618 }
4619
4620 if (null_input_bfd || only_data_sections)
4621 return TRUE;
4622 }
4623
4624 return flags_compatible;
4625 }
4626
4627 /* Display the flags field. */
4628
4629 static bfd_boolean
4630 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
4631 {
4632 FILE *file = (FILE *) ptr;
4633 unsigned long flags;
4634
4635 BFD_ASSERT (abfd != NULL && ptr != NULL);
4636
4637 /* Print normal ELF private data. */
4638 _bfd_elf_print_private_bfd_data (abfd, ptr);
4639
4640 flags = elf_elfheader (abfd)->e_flags;
4641 /* Ignore init flag - it may not be set, despite the flags field
4642 containing valid data. */
4643
4644 /* xgettext:c-format */
4645 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4646
4647 if (flags)
4648 fprintf (file, _("<Unrecognised flag bits set>"));
4649
4650 fputc ('\n', file);
4651
4652 return TRUE;
4653 }
4654
4655 /* Update the got entry reference counts for the section being removed. */
4656
4657 static bfd_boolean
4658 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
4659 struct bfd_link_info *info,
4660 asection *sec,
4661 const Elf_Internal_Rela * relocs)
4662 {
4663 struct elf_aarch64_link_hash_table *htab;
4664 Elf_Internal_Shdr *symtab_hdr;
4665 struct elf_link_hash_entry **sym_hashes;
4666 struct elf_aarch64_local_symbol *locals;
4667 const Elf_Internal_Rela *rel, *relend;
4668
4669 if (info->relocatable)
4670 return TRUE;
4671
4672 htab = elf_aarch64_hash_table (info);
4673
4674 if (htab == NULL)
4675 return FALSE;
4676
4677 elf_section_data (sec)->local_dynrel = NULL;
4678
4679 symtab_hdr = &elf_symtab_hdr (abfd);
4680 sym_hashes = elf_sym_hashes (abfd);
4681
4682 locals = elf_aarch64_locals (abfd);
4683
4684 relend = relocs + sec->reloc_count;
4685 for (rel = relocs; rel < relend; rel++)
4686 {
4687 unsigned long r_symndx;
4688 unsigned int r_type;
4689 struct elf_link_hash_entry *h = NULL;
4690
4691 r_symndx = ELFNN_R_SYM (rel->r_info);
4692
4693 if (r_symndx >= symtab_hdr->sh_info)
4694 {
4695
4696 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4697 while (h->root.type == bfd_link_hash_indirect
4698 || h->root.type == bfd_link_hash_warning)
4699 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4700 }
4701 else
4702 {
4703 Elf_Internal_Sym *isym;
4704
4705 /* A local symbol. */
4706 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4707 abfd, r_symndx);
4708
4709 /* Check relocation against local STT_GNU_IFUNC symbol. */
4710 if (isym != NULL
4711 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4712 {
4713 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4714 if (h == NULL)
4715 abort ();
4716 }
4717 }
4718
4719 if (h)
4720 {
4721 struct elf_aarch64_link_hash_entry *eh;
4722 struct elf_dyn_relocs **pp;
4723 struct elf_dyn_relocs *p;
4724
4725 eh = (struct elf_aarch64_link_hash_entry *) h;
4726
4727 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4728 if (p->sec == sec)
4729 {
4730 /* Everything must go for SEC. */
4731 *pp = p->next;
4732 break;
4733 }
4734 }
4735
4736 r_type = ELFNN_R_TYPE (rel->r_info);
4737 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
4738 {
4739 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4740 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4741 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4742 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4743 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4744 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4745 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4746 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4747 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4748 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4749 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4750 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4751 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4752 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4753 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4754 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4755 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4756 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4758 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4759 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4760 if (h != NULL)
4761 {
4762 if (h->got.refcount > 0)
4763 h->got.refcount -= 1;
4764
4765 if (h->type == STT_GNU_IFUNC)
4766 {
4767 if (h->plt.refcount > 0)
4768 h->plt.refcount -= 1;
4769 }
4770 }
4771 else if (locals != NULL)
4772 {
4773 if (locals[r_symndx].got_refcount > 0)
4774 locals[r_symndx].got_refcount -= 1;
4775 }
4776 break;
4777
4778 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4779 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4780 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
4781 if (h != NULL && info->executable)
4782 {
4783 if (h->plt.refcount > 0)
4784 h->plt.refcount -= 1;
4785 }
4786 break;
4787
4788 case BFD_RELOC_AARCH64_CALL26:
4789 case BFD_RELOC_AARCH64_JUMP26:
4790 /* If this is a local symbol then we resolve it
4791 directly without creating a PLT entry. */
4792 if (h == NULL)
4793 continue;
4794
4795 if (h->plt.refcount > 0)
4796 h->plt.refcount -= 1;
4797 break;
4798
4799 case BFD_RELOC_AARCH64_NN:
4800 if (h != NULL && info->executable)
4801 {
4802 if (h->plt.refcount > 0)
4803 h->plt.refcount -= 1;
4804 }
4805 break;
4806
4807 default:
4808 break;
4809 }
4810 }
4811
4812 return TRUE;
4813 }
4814
4815 /* Adjust a symbol defined by a dynamic object and referenced by a
4816 regular object. The current definition is in some section of the
4817 dynamic object, but we're not including those sections. We have to
4818 change the definition to something the rest of the link can
4819 understand. */
4820
4821 static bfd_boolean
4822 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
4823 struct elf_link_hash_entry *h)
4824 {
4825 struct elf_aarch64_link_hash_table *htab;
4826 asection *s;
4827
4828 /* If this is a function, put it in the procedure linkage table. We
4829 will fill in the contents of the procedure linkage table later,
4830 when we know the address of the .got section. */
4831 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
4832 {
4833 if (h->plt.refcount <= 0
4834 || (h->type != STT_GNU_IFUNC
4835 && (SYMBOL_CALLS_LOCAL (info, h)
4836 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4837 && h->root.type == bfd_link_hash_undefweak))))
4838 {
4839 /* This case can occur if we saw a CALL26 reloc in
4840 an input file, but the symbol wasn't referred to
4841 by a dynamic object or all references were
4842 garbage collected. In which case we can end up
4843 resolving. */
4844 h->plt.offset = (bfd_vma) - 1;
4845 h->needs_plt = 0;
4846 }
4847
4848 return TRUE;
4849 }
4850 else
4851 /* It's possible that we incorrectly decided a .plt reloc was
4852 needed for an R_X86_64_PC32 reloc to a non-function sym in
4853 check_relocs. We can't decide accurately between function and
4854 non-function syms in check-relocs; Objects loaded later in
4855 the link may change h->type. So fix it now. */
4856 h->plt.offset = (bfd_vma) - 1;
4857
4858
4859 /* If this is a weak symbol, and there is a real definition, the
4860 processor independent code will have arranged for us to see the
4861 real definition first, and we can just use the same value. */
4862 if (h->u.weakdef != NULL)
4863 {
4864 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4865 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4866 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4867 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4868 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4869 h->non_got_ref = h->u.weakdef->non_got_ref;
4870 return TRUE;
4871 }
4872
4873 /* If we are creating a shared library, we must presume that the
4874 only references to the symbol are via the global offset table.
4875 For such cases we need not do anything here; the relocations will
4876 be handled correctly by relocate_section. */
4877 if (info->shared)
4878 return TRUE;
4879
4880 /* If there are no references to this symbol that do not use the
4881 GOT, we don't need to generate a copy reloc. */
4882 if (!h->non_got_ref)
4883 return TRUE;
4884
4885 /* If -z nocopyreloc was given, we won't generate them either. */
4886 if (info->nocopyreloc)
4887 {
4888 h->non_got_ref = 0;
4889 return TRUE;
4890 }
4891
4892 /* We must allocate the symbol in our .dynbss section, which will
4893 become part of the .bss section of the executable. There will be
4894 an entry for this symbol in the .dynsym section. The dynamic
4895 object will contain position independent code, so all references
4896 from the dynamic object to this symbol will go through the global
4897 offset table. The dynamic linker will use the .dynsym entry to
4898 determine the address it must put in the global offset table, so
4899 both the dynamic object and the regular object will refer to the
4900 same memory location for the variable. */
4901
4902 htab = elf_aarch64_hash_table (info);
4903
4904 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4905 to copy the initial value out of the dynamic object and into the
4906 runtime process image. */
4907 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4908 {
4909 htab->srelbss->size += RELOC_SIZE (htab);
4910 h->needs_copy = 1;
4911 }
4912
4913 s = htab->sdynbss;
4914
4915 return _bfd_elf_adjust_dynamic_copy (h, s);
4916
4917 }
4918
4919 static bfd_boolean
4920 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
4921 {
4922 struct elf_aarch64_local_symbol *locals;
4923 locals = elf_aarch64_locals (abfd);
4924 if (locals == NULL)
4925 {
4926 locals = (struct elf_aarch64_local_symbol *)
4927 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4928 if (locals == NULL)
4929 return FALSE;
4930 elf_aarch64_locals (abfd) = locals;
4931 }
4932 return TRUE;
4933 }
4934
4935 /* Create the .got section to hold the global offset table. */
4936
4937 static bfd_boolean
4938 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4939 {
4940 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4941 flagword flags;
4942 asection *s;
4943 struct elf_link_hash_entry *h;
4944 struct elf_link_hash_table *htab = elf_hash_table (info);
4945
4946 /* This function may be called more than once. */
4947 s = bfd_get_linker_section (abfd, ".got");
4948 if (s != NULL)
4949 return TRUE;
4950
4951 flags = bed->dynamic_sec_flags;
4952
4953 s = bfd_make_section_anyway_with_flags (abfd,
4954 (bed->rela_plts_and_copies_p
4955 ? ".rela.got" : ".rel.got"),
4956 (bed->dynamic_sec_flags
4957 | SEC_READONLY));
4958 if (s == NULL
4959 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4960 return FALSE;
4961 htab->srelgot = s;
4962
4963 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4964 if (s == NULL
4965 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4966 return FALSE;
4967 htab->sgot = s;
4968 htab->sgot->size += GOT_ENTRY_SIZE;
4969
4970 if (bed->want_got_sym)
4971 {
4972 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4973 (or .got.plt) section. We don't do this in the linker script
4974 because we don't want to define the symbol if we are not creating
4975 a global offset table. */
4976 h = _bfd_elf_define_linkage_sym (abfd, info, s,
4977 "_GLOBAL_OFFSET_TABLE_");
4978 elf_hash_table (info)->hgot = h;
4979 if (h == NULL)
4980 return FALSE;
4981 }
4982
4983 if (bed->want_got_plt)
4984 {
4985 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
4986 if (s == NULL
4987 || !bfd_set_section_alignment (abfd, s,
4988 bed->s->log_file_align))
4989 return FALSE;
4990 htab->sgotplt = s;
4991 }
4992
4993 /* The first bit of the global offset table is the header. */
4994 s->size += bed->got_header_size;
4995
4996 return TRUE;
4997 }
4998
4999 /* Look through the relocs for a section during the first phase. */
5000
5001 static bfd_boolean
5002 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
5003 asection *sec, const Elf_Internal_Rela *relocs)
5004 {
5005 Elf_Internal_Shdr *symtab_hdr;
5006 struct elf_link_hash_entry **sym_hashes;
5007 const Elf_Internal_Rela *rel;
5008 const Elf_Internal_Rela *rel_end;
5009 asection *sreloc;
5010
5011 struct elf_aarch64_link_hash_table *htab;
5012
5013 if (info->relocatable)
5014 return TRUE;
5015
5016 BFD_ASSERT (is_aarch64_elf (abfd));
5017
5018 htab = elf_aarch64_hash_table (info);
5019 sreloc = NULL;
5020
5021 symtab_hdr = &elf_symtab_hdr (abfd);
5022 sym_hashes = elf_sym_hashes (abfd);
5023
5024 rel_end = relocs + sec->reloc_count;
5025 for (rel = relocs; rel < rel_end; rel++)
5026 {
5027 struct elf_link_hash_entry *h;
5028 unsigned long r_symndx;
5029 unsigned int r_type;
5030 bfd_reloc_code_real_type bfd_r_type;
5031 Elf_Internal_Sym *isym;
5032
5033 r_symndx = ELFNN_R_SYM (rel->r_info);
5034 r_type = ELFNN_R_TYPE (rel->r_info);
5035
5036 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5037 {
5038 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5039 r_symndx);
5040 return FALSE;
5041 }
5042
5043 if (r_symndx < symtab_hdr->sh_info)
5044 {
5045 /* A local symbol. */
5046 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5047 abfd, r_symndx);
5048 if (isym == NULL)
5049 return FALSE;
5050
5051 /* Check relocation against local STT_GNU_IFUNC symbol. */
5052 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5053 {
5054 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5055 TRUE);
5056 if (h == NULL)
5057 return FALSE;
5058
5059 /* Fake a STT_GNU_IFUNC symbol. */
5060 h->type = STT_GNU_IFUNC;
5061 h->def_regular = 1;
5062 h->ref_regular = 1;
5063 h->forced_local = 1;
5064 h->root.type = bfd_link_hash_defined;
5065 }
5066 else
5067 h = NULL;
5068 }
5069 else
5070 {
5071 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5072 while (h->root.type == bfd_link_hash_indirect
5073 || h->root.type == bfd_link_hash_warning)
5074 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5075
5076 /* PR15323, ref flags aren't set for references in the same
5077 object. */
5078 h->root.non_ir_ref = 1;
5079 }
5080
5081 /* Could be done earlier, if h were already available. */
5082 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
5083
5084 if (h != NULL)
5085 {
5086 /* Create the ifunc sections for static executables. If we
5087 never see an indirect function symbol nor we are building
5088 a static executable, those sections will be empty and
5089 won't appear in output. */
5090 switch (bfd_r_type)
5091 {
5092 default:
5093 break;
5094
5095 case BFD_RELOC_AARCH64_NN:
5096 case BFD_RELOC_AARCH64_CALL26:
5097 case BFD_RELOC_AARCH64_JUMP26:
5098 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5099 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5100 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5101 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5102 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5103 case BFD_RELOC_AARCH64_ADD_LO12:
5104 if (htab->root.dynobj == NULL)
5105 htab->root.dynobj = abfd;
5106 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5107 return FALSE;
5108 break;
5109 }
5110
5111 /* It is referenced by a non-shared object. */
5112 h->ref_regular = 1;
5113 h->root.non_ir_ref = 1;
5114 }
5115
5116 switch (bfd_r_type)
5117 {
5118 case BFD_RELOC_AARCH64_NN:
5119
5120 /* We don't need to handle relocs into sections not going into
5121 the "real" output. */
5122 if ((sec->flags & SEC_ALLOC) == 0)
5123 break;
5124
5125 if (h != NULL)
5126 {
5127 if (!info->shared)
5128 h->non_got_ref = 1;
5129
5130 h->plt.refcount += 1;
5131 h->pointer_equality_needed = 1;
5132 }
5133
5134 /* No need to do anything if we're not creating a shared
5135 object. */
5136 if (! info->shared)
5137 break;
5138
5139 {
5140 struct elf_dyn_relocs *p;
5141 struct elf_dyn_relocs **head;
5142
5143 /* We must copy these reloc types into the output file.
5144 Create a reloc section in dynobj and make room for
5145 this reloc. */
5146 if (sreloc == NULL)
5147 {
5148 if (htab->root.dynobj == NULL)
5149 htab->root.dynobj = abfd;
5150
5151 sreloc = _bfd_elf_make_dynamic_reloc_section
5152 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
5153
5154 if (sreloc == NULL)
5155 return FALSE;
5156 }
5157
5158 /* If this is a global symbol, we count the number of
5159 relocations we need for this symbol. */
5160 if (h != NULL)
5161 {
5162 struct elf_aarch64_link_hash_entry *eh;
5163 eh = (struct elf_aarch64_link_hash_entry *) h;
5164 head = &eh->dyn_relocs;
5165 }
5166 else
5167 {
5168 /* Track dynamic relocs needed for local syms too.
5169 We really need local syms available to do this
5170 easily. Oh well. */
5171
5172 asection *s;
5173 void **vpp;
5174
5175 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5176 abfd, r_symndx);
5177 if (isym == NULL)
5178 return FALSE;
5179
5180 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5181 if (s == NULL)
5182 s = sec;
5183
5184 /* Beware of type punned pointers vs strict aliasing
5185 rules. */
5186 vpp = &(elf_section_data (s)->local_dynrel);
5187 head = (struct elf_dyn_relocs **) vpp;
5188 }
5189
5190 p = *head;
5191 if (p == NULL || p->sec != sec)
5192 {
5193 bfd_size_type amt = sizeof *p;
5194 p = ((struct elf_dyn_relocs *)
5195 bfd_zalloc (htab->root.dynobj, amt));
5196 if (p == NULL)
5197 return FALSE;
5198 p->next = *head;
5199 *head = p;
5200 p->sec = sec;
5201 }
5202
5203 p->count += 1;
5204
5205 }
5206 break;
5207
5208 /* RR: We probably want to keep a consistency check that
5209 there are no dangling GOT_PAGE relocs. */
5210 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5211 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5212 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5213 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5214 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5215 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5216 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5217 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5218 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5219 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5220 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5221 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5222 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5225 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5230 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5231 {
5232 unsigned got_type;
5233 unsigned old_got_type;
5234
5235 got_type = aarch64_reloc_got_type (bfd_r_type);
5236
5237 if (h)
5238 {
5239 h->got.refcount += 1;
5240 old_got_type = elf_aarch64_hash_entry (h)->got_type;
5241 }
5242 else
5243 {
5244 struct elf_aarch64_local_symbol *locals;
5245
5246 if (!elfNN_aarch64_allocate_local_symbols
5247 (abfd, symtab_hdr->sh_info))
5248 return FALSE;
5249
5250 locals = elf_aarch64_locals (abfd);
5251 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5252 locals[r_symndx].got_refcount += 1;
5253 old_got_type = locals[r_symndx].got_type;
5254 }
5255
5256 /* If a variable is accessed with both general dynamic TLS
5257 methods, two slots may be created. */
5258 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5259 got_type |= old_got_type;
5260
5261 /* We will already have issued an error message if there
5262 is a TLS/non-TLS mismatch, based on the symbol type.
5263 So just combine any TLS types needed. */
5264 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5265 && got_type != GOT_NORMAL)
5266 got_type |= old_got_type;
5267
5268 /* If the symbol is accessed by both IE and GD methods, we
5269 are able to relax. Turn off the GD flag, without
5270 messing up with any other kind of TLS types that may be
5271 involved. */
5272 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5273 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5274
5275 if (old_got_type != got_type)
5276 {
5277 if (h != NULL)
5278 elf_aarch64_hash_entry (h)->got_type = got_type;
5279 else
5280 {
5281 struct elf_aarch64_local_symbol *locals;
5282 locals = elf_aarch64_locals (abfd);
5283 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5284 locals[r_symndx].got_type = got_type;
5285 }
5286 }
5287
5288 if (htab->root.dynobj == NULL)
5289 htab->root.dynobj = abfd;
5290 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5291 return FALSE;
5292 break;
5293 }
5294
5295 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5296 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5297 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5298 if (h != NULL && info->executable)
5299 {
5300 /* If this reloc is in a read-only section, we might
5301 need a copy reloc. We can't check reliably at this
5302 stage whether the section is read-only, as input
5303 sections have not yet been mapped to output sections.
5304 Tentatively set the flag for now, and correct in
5305 adjust_dynamic_symbol. */
5306 h->non_got_ref = 1;
5307 h->plt.refcount += 1;
5308 h->pointer_equality_needed = 1;
5309 }
5310 /* FIXME:: RR need to handle these in shared libraries
5311 and essentially bomb out as these being non-PIC
5312 relocations in shared libraries. */
5313 break;
5314
5315 case BFD_RELOC_AARCH64_CALL26:
5316 case BFD_RELOC_AARCH64_JUMP26:
5317 /* If this is a local symbol then we resolve it
5318 directly without creating a PLT entry. */
5319 if (h == NULL)
5320 continue;
5321
5322 h->needs_plt = 1;
5323 if (h->plt.refcount <= 0)
5324 h->plt.refcount = 1;
5325 else
5326 h->plt.refcount += 1;
5327 break;
5328
5329 default:
5330 break;
5331 }
5332 }
5333
5334 return TRUE;
5335 }
5336
5337 /* Treat mapping symbols as special target symbols. */
5338
5339 static bfd_boolean
5340 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
5341 asymbol *sym)
5342 {
5343 return bfd_is_aarch64_special_symbol_name (sym->name,
5344 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5345 }
5346
5347 /* This is a copy of elf_find_function () from elf.c except that
5348 AArch64 mapping symbols are ignored when looking for function names. */
5349
5350 static bfd_boolean
5351 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5352 asection *section,
5353 asymbol **symbols,
5354 bfd_vma offset,
5355 const char **filename_ptr,
5356 const char **functionname_ptr)
5357 {
5358 const char *filename = NULL;
5359 asymbol *func = NULL;
5360 bfd_vma low_func = 0;
5361 asymbol **p;
5362
5363 for (p = symbols; *p != NULL; p++)
5364 {
5365 elf_symbol_type *q;
5366
5367 q = (elf_symbol_type *) * p;
5368
5369 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5370 {
5371 default:
5372 break;
5373 case STT_FILE:
5374 filename = bfd_asymbol_name (&q->symbol);
5375 break;
5376 case STT_FUNC:
5377 case STT_NOTYPE:
5378 /* Skip mapping symbols. */
5379 if ((q->symbol.flags & BSF_LOCAL)
5380 && (bfd_is_aarch64_special_symbol_name
5381 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5382 continue;
5383 /* Fall through. */
5384 if (bfd_get_section (&q->symbol) == section
5385 && q->symbol.value >= low_func && q->symbol.value <= offset)
5386 {
5387 func = (asymbol *) q;
5388 low_func = q->symbol.value;
5389 }
5390 break;
5391 }
5392 }
5393
5394 if (func == NULL)
5395 return FALSE;
5396
5397 if (filename_ptr)
5398 *filename_ptr = filename;
5399 if (functionname_ptr)
5400 *functionname_ptr = bfd_asymbol_name (func);
5401
5402 return TRUE;
5403 }
5404
5405
5406 /* Find the nearest line to a particular section and offset, for error
5407 reporting. This code is a duplicate of the code in elf.c, except
5408 that it uses aarch64_elf_find_function. */
5409
5410 static bfd_boolean
5411 elfNN_aarch64_find_nearest_line (bfd *abfd,
5412 asection *section,
5413 asymbol **symbols,
5414 bfd_vma offset,
5415 const char **filename_ptr,
5416 const char **functionname_ptr,
5417 unsigned int *line_ptr)
5418 {
5419 bfd_boolean found = FALSE;
5420
5421 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5422 toolchain uses it. */
5423
5424 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5425 section, symbols, offset,
5426 filename_ptr, functionname_ptr,
5427 line_ptr, NULL, 0,
5428 &elf_tdata (abfd)->dwarf2_find_line_info))
5429 {
5430 if (!*functionname_ptr)
5431 aarch64_elf_find_function (abfd, section, symbols, offset,
5432 *filename_ptr ? NULL : filename_ptr,
5433 functionname_ptr);
5434
5435 return TRUE;
5436 }
5437
5438 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5439 &found, filename_ptr,
5440 functionname_ptr, line_ptr,
5441 &elf_tdata (abfd)->line_info))
5442 return FALSE;
5443
5444 if (found && (*functionname_ptr || *line_ptr))
5445 return TRUE;
5446
5447 if (symbols == NULL)
5448 return FALSE;
5449
5450 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5451 filename_ptr, functionname_ptr))
5452 return FALSE;
5453
5454 *line_ptr = 0;
5455 return TRUE;
5456 }
5457
5458 static bfd_boolean
5459 elfNN_aarch64_find_inliner_info (bfd *abfd,
5460 const char **filename_ptr,
5461 const char **functionname_ptr,
5462 unsigned int *line_ptr)
5463 {
5464 bfd_boolean found;
5465 found = _bfd_dwarf2_find_inliner_info
5466 (abfd, filename_ptr,
5467 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5468 return found;
5469 }
5470
5471
5472 static void
5473 elfNN_aarch64_post_process_headers (bfd *abfd,
5474 struct bfd_link_info *link_info)
5475 {
5476 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5477
5478 i_ehdrp = elf_elfheader (abfd);
5479 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
5480
5481 _bfd_elf_post_process_headers (abfd, link_info);
5482 }
5483
5484 static enum elf_reloc_type_class
5485 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5486 const asection *rel_sec ATTRIBUTE_UNUSED,
5487 const Elf_Internal_Rela *rela)
5488 {
5489 switch ((int) ELFNN_R_TYPE (rela->r_info))
5490 {
5491 case AARCH64_R (RELATIVE):
5492 return reloc_class_relative;
5493 case AARCH64_R (JUMP_SLOT):
5494 return reloc_class_plt;
5495 case AARCH64_R (COPY):
5496 return reloc_class_copy;
5497 default:
5498 return reloc_class_normal;
5499 }
5500 }
5501
5502 /* Handle an AArch64 specific section when reading an object file. This is
5503 called when bfd_section_from_shdr finds a section with an unknown
5504 type. */
5505
5506 static bfd_boolean
5507 elfNN_aarch64_section_from_shdr (bfd *abfd,
5508 Elf_Internal_Shdr *hdr,
5509 const char *name, int shindex)
5510 {
5511 /* There ought to be a place to keep ELF backend specific flags, but
5512 at the moment there isn't one. We just keep track of the
5513 sections by their name, instead. Fortunately, the ABI gives
5514 names for all the AArch64 specific sections, so we will probably get
5515 away with this. */
5516 switch (hdr->sh_type)
5517 {
5518 case SHT_AARCH64_ATTRIBUTES:
5519 break;
5520
5521 default:
5522 return FALSE;
5523 }
5524
5525 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5526 return FALSE;
5527
5528 return TRUE;
5529 }
5530
5531 /* A structure used to record a list of sections, independently
5532 of the next and prev fields in the asection structure. */
5533 typedef struct section_list
5534 {
5535 asection *sec;
5536 struct section_list *next;
5537 struct section_list *prev;
5538 }
5539 section_list;
5540
5541 /* Unfortunately we need to keep a list of sections for which
5542 an _aarch64_elf_section_data structure has been allocated. This
5543 is because it is possible for functions like elfNN_aarch64_write_section
5544 to be called on a section which has had an elf_data_structure
5545 allocated for it (and so the used_by_bfd field is valid) but
5546 for which the AArch64 extended version of this structure - the
5547 _aarch64_elf_section_data structure - has not been allocated. */
5548 static section_list *sections_with_aarch64_elf_section_data = NULL;
5549
5550 static void
5551 record_section_with_aarch64_elf_section_data (asection *sec)
5552 {
5553 struct section_list *entry;
5554
5555 entry = bfd_malloc (sizeof (*entry));
5556 if (entry == NULL)
5557 return;
5558 entry->sec = sec;
5559 entry->next = sections_with_aarch64_elf_section_data;
5560 entry->prev = NULL;
5561 if (entry->next != NULL)
5562 entry->next->prev = entry;
5563 sections_with_aarch64_elf_section_data = entry;
5564 }
5565
5566 static struct section_list *
5567 find_aarch64_elf_section_entry (asection *sec)
5568 {
5569 struct section_list *entry;
5570 static struct section_list *last_entry = NULL;
5571
5572 /* This is a short cut for the typical case where the sections are added
5573 to the sections_with_aarch64_elf_section_data list in forward order and
5574 then looked up here in backwards order. This makes a real difference
5575 to the ld-srec/sec64k.exp linker test. */
5576 entry = sections_with_aarch64_elf_section_data;
5577 if (last_entry != NULL)
5578 {
5579 if (last_entry->sec == sec)
5580 entry = last_entry;
5581 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5582 entry = last_entry->next;
5583 }
5584
5585 for (; entry; entry = entry->next)
5586 if (entry->sec == sec)
5587 break;
5588
5589 if (entry)
5590 /* Record the entry prior to this one - it is the entry we are
5591 most likely to want to locate next time. Also this way if we
5592 have been called from
5593 unrecord_section_with_aarch64_elf_section_data () we will not
5594 be caching a pointer that is about to be freed. */
5595 last_entry = entry->prev;
5596
5597 return entry;
5598 }
5599
5600 static void
5601 unrecord_section_with_aarch64_elf_section_data (asection *sec)
5602 {
5603 struct section_list *entry;
5604
5605 entry = find_aarch64_elf_section_entry (sec);
5606
5607 if (entry)
5608 {
5609 if (entry->prev != NULL)
5610 entry->prev->next = entry->next;
5611 if (entry->next != NULL)
5612 entry->next->prev = entry->prev;
5613 if (entry == sections_with_aarch64_elf_section_data)
5614 sections_with_aarch64_elf_section_data = entry->next;
5615 free (entry);
5616 }
5617 }
5618
5619
5620 typedef struct
5621 {
5622 void *finfo;
5623 struct bfd_link_info *info;
5624 asection *sec;
5625 int sec_shndx;
5626 int (*func) (void *, const char *, Elf_Internal_Sym *,
5627 asection *, struct elf_link_hash_entry *);
5628 } output_arch_syminfo;
5629
5630 enum map_symbol_type
5631 {
5632 AARCH64_MAP_INSN,
5633 AARCH64_MAP_DATA
5634 };
5635
5636
5637 /* Output a single mapping symbol. */
5638
5639 static bfd_boolean
5640 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
5641 enum map_symbol_type type, bfd_vma offset)
5642 {
5643 static const char *names[2] = { "$x", "$d" };
5644 Elf_Internal_Sym sym;
5645
5646 sym.st_value = (osi->sec->output_section->vma
5647 + osi->sec->output_offset + offset);
5648 sym.st_size = 0;
5649 sym.st_other = 0;
5650 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5651 sym.st_shndx = osi->sec_shndx;
5652 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5653 }
5654
5655
5656
5657 /* Output mapping symbols for PLT entries associated with H. */
5658
5659 static bfd_boolean
5660 elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
5661 {
5662 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5663 bfd_vma addr;
5664
5665 if (h->root.type == bfd_link_hash_indirect)
5666 return TRUE;
5667
5668 if (h->root.type == bfd_link_hash_warning)
5669 /* When warning symbols are created, they **replace** the "real"
5670 entry in the hash table, thus we never get to see the real
5671 symbol in a hash traversal. So look at it now. */
5672 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5673
5674 if (h->plt.offset == (bfd_vma) - 1)
5675 return TRUE;
5676
5677 addr = h->plt.offset;
5678 if (addr == 32)
5679 {
5680 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5681 return FALSE;
5682 }
5683 return TRUE;
5684 }
5685
5686
5687 /* Output a single local symbol for a generated stub. */
5688
5689 static bfd_boolean
5690 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
5691 bfd_vma offset, bfd_vma size)
5692 {
5693 Elf_Internal_Sym sym;
5694
5695 sym.st_value = (osi->sec->output_section->vma
5696 + osi->sec->output_offset + offset);
5697 sym.st_size = size;
5698 sym.st_other = 0;
5699 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5700 sym.st_shndx = osi->sec_shndx;
5701 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5702 }
5703
5704 static bfd_boolean
5705 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5706 {
5707 struct elf_aarch64_stub_hash_entry *stub_entry;
5708 asection *stub_sec;
5709 bfd_vma addr;
5710 char *stub_name;
5711 output_arch_syminfo *osi;
5712
5713 /* Massage our args to the form they really have. */
5714 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5715 osi = (output_arch_syminfo *) in_arg;
5716
5717 stub_sec = stub_entry->stub_sec;
5718
5719 /* Ensure this stub is attached to the current section being
5720 processed. */
5721 if (stub_sec != osi->sec)
5722 return TRUE;
5723
5724 addr = (bfd_vma) stub_entry->stub_offset;
5725
5726 stub_name = stub_entry->output_name;
5727
5728 switch (stub_entry->stub_type)
5729 {
5730 case aarch64_stub_adrp_branch:
5731 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
5732 sizeof (aarch64_adrp_branch_stub)))
5733 return FALSE;
5734 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5735 return FALSE;
5736 break;
5737 case aarch64_stub_long_branch:
5738 if (!elfNN_aarch64_output_stub_sym
5739 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5740 return FALSE;
5741 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5742 return FALSE;
5743 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
5744 return FALSE;
5745 break;
5746 default:
5747 BFD_FAIL ();
5748 }
5749
5750 return TRUE;
5751 }
5752
5753 /* Output mapping symbols for linker generated sections. */
5754
5755 static bfd_boolean
5756 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
5757 struct bfd_link_info *info,
5758 void *finfo,
5759 int (*func) (void *, const char *,
5760 Elf_Internal_Sym *,
5761 asection *,
5762 struct elf_link_hash_entry
5763 *))
5764 {
5765 output_arch_syminfo osi;
5766 struct elf_aarch64_link_hash_table *htab;
5767
5768 htab = elf_aarch64_hash_table (info);
5769
5770 osi.finfo = finfo;
5771 osi.info = info;
5772 osi.func = func;
5773
5774 /* Long calls stubs. */
5775 if (htab->stub_bfd && htab->stub_bfd->sections)
5776 {
5777 asection *stub_sec;
5778
5779 for (stub_sec = htab->stub_bfd->sections;
5780 stub_sec != NULL; stub_sec = stub_sec->next)
5781 {
5782 /* Ignore non-stub sections. */
5783 if (!strstr (stub_sec->name, STUB_SUFFIX))
5784 continue;
5785
5786 osi.sec = stub_sec;
5787
5788 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5789 (output_bfd, osi.sec->output_section);
5790
5791 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5792 &osi);
5793 }
5794 }
5795
5796 /* Finally, output mapping symbols for the PLT. */
5797 if (!htab->root.splt || htab->root.splt->size == 0)
5798 return TRUE;
5799
5800 /* For now live without mapping symbols for the plt. */
5801 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5802 (output_bfd, htab->root.splt->output_section);
5803 osi.sec = htab->root.splt;
5804
5805 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
5806 (void *) &osi);
5807
5808 return TRUE;
5809
5810 }
5811
5812 /* Allocate target specific section data. */
5813
5814 static bfd_boolean
5815 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
5816 {
5817 if (!sec->used_by_bfd)
5818 {
5819 _aarch64_elf_section_data *sdata;
5820 bfd_size_type amt = sizeof (*sdata);
5821
5822 sdata = bfd_zalloc (abfd, amt);
5823 if (sdata == NULL)
5824 return FALSE;
5825 sec->used_by_bfd = sdata;
5826 }
5827
5828 record_section_with_aarch64_elf_section_data (sec);
5829
5830 return _bfd_elf_new_section_hook (abfd, sec);
5831 }
5832
5833
5834 static void
5835 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5836 asection *sec,
5837 void *ignore ATTRIBUTE_UNUSED)
5838 {
5839 unrecord_section_with_aarch64_elf_section_data (sec);
5840 }
5841
5842 static bfd_boolean
5843 elfNN_aarch64_close_and_cleanup (bfd *abfd)
5844 {
5845 if (abfd->sections)
5846 bfd_map_over_sections (abfd,
5847 unrecord_section_via_map_over_sections, NULL);
5848
5849 return _bfd_elf_close_and_cleanup (abfd);
5850 }
5851
5852 static bfd_boolean
5853 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
5854 {
5855 if (abfd->sections)
5856 bfd_map_over_sections (abfd,
5857 unrecord_section_via_map_over_sections, NULL);
5858
5859 return _bfd_free_cached_info (abfd);
5860 }
5861
5862 /* Create dynamic sections. This is different from the ARM backend in that
5863 the got, plt, gotplt and their relocation sections are all created in the
5864 standard part of the bfd elf backend. */
5865
5866 static bfd_boolean
5867 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
5868 struct bfd_link_info *info)
5869 {
5870 struct elf_aarch64_link_hash_table *htab;
5871
5872 /* We need to create .got section. */
5873 if (!aarch64_elf_create_got_section (dynobj, info))
5874 return FALSE;
5875
5876 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5877 return FALSE;
5878
5879 htab = elf_aarch64_hash_table (info);
5880 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5881 if (!info->shared)
5882 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5883
5884 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5885 abort ();
5886
5887 return TRUE;
5888 }
5889
5890
5891 /* Allocate space in .plt, .got and associated reloc sections for
5892 dynamic relocs. */
5893
5894 static bfd_boolean
5895 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
5896 {
5897 struct bfd_link_info *info;
5898 struct elf_aarch64_link_hash_table *htab;
5899 struct elf_aarch64_link_hash_entry *eh;
5900 struct elf_dyn_relocs *p;
5901
5902 /* An example of a bfd_link_hash_indirect symbol is versioned
5903 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5904 -> __gxx_personality_v0(bfd_link_hash_defined)
5905
5906 There is no need to process bfd_link_hash_indirect symbols here
5907 because we will also be presented with the concrete instance of
5908 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
5909 called to copy all relevant data from the generic to the concrete
5910 symbol instance.
5911 */
5912 if (h->root.type == bfd_link_hash_indirect)
5913 return TRUE;
5914
5915 if (h->root.type == bfd_link_hash_warning)
5916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5917
5918 info = (struct bfd_link_info *) inf;
5919 htab = elf_aarch64_hash_table (info);
5920
5921 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5922 here if it is defined and referenced in a non-shared object. */
5923 if (h->type == STT_GNU_IFUNC
5924 && h->def_regular)
5925 return TRUE;
5926 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
5927 {
5928 /* Make sure this symbol is output as a dynamic symbol.
5929 Undefined weak syms won't yet be marked as dynamic. */
5930 if (h->dynindx == -1 && !h->forced_local)
5931 {
5932 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5933 return FALSE;
5934 }
5935
5936 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5937 {
5938 asection *s = htab->root.splt;
5939
5940 /* If this is the first .plt entry, make room for the special
5941 first entry. */
5942 if (s->size == 0)
5943 s->size += htab->plt_header_size;
5944
5945 h->plt.offset = s->size;
5946
5947 /* If this symbol is not defined in a regular file, and we are
5948 not generating a shared library, then set the symbol to this
5949 location in the .plt. This is required to make function
5950 pointers compare as equal between the normal executable and
5951 the shared library. */
5952 if (!info->shared && !h->def_regular)
5953 {
5954 h->root.u.def.section = s;
5955 h->root.u.def.value = h->plt.offset;
5956 }
5957
5958 /* Make room for this entry. For now we only create the
5959 small model PLT entries. We later need to find a way
5960 of relaxing into these from the large model PLT entries. */
5961 s->size += PLT_SMALL_ENTRY_SIZE;
5962
5963 /* We also need to make an entry in the .got.plt section, which
5964 will be placed in the .got section by the linker script. */
5965 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
5966
5967 /* We also need to make an entry in the .rela.plt section. */
5968 htab->root.srelplt->size += RELOC_SIZE (htab);
5969
5970 /* We need to ensure that all GOT entries that serve the PLT
5971 are consecutive with the special GOT slots [0] [1] and
5972 [2]. Any addtional relocations, such as
5973 R_AARCH64_TLSDESC, must be placed after the PLT related
5974 entries. We abuse the reloc_count such that during
5975 sizing we adjust reloc_count to indicate the number of
5976 PLT related reserved entries. In subsequent phases when
5977 filling in the contents of the reloc entries, PLT related
5978 entries are placed by computing their PLT index (0
5979 .. reloc_count). While other none PLT relocs are placed
5980 at the slot indicated by reloc_count and reloc_count is
5981 updated. */
5982
5983 htab->root.srelplt->reloc_count++;
5984 }
5985 else
5986 {
5987 h->plt.offset = (bfd_vma) - 1;
5988 h->needs_plt = 0;
5989 }
5990 }
5991 else
5992 {
5993 h->plt.offset = (bfd_vma) - 1;
5994 h->needs_plt = 0;
5995 }
5996
5997 eh = (struct elf_aarch64_link_hash_entry *) h;
5998 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
5999
6000 if (h->got.refcount > 0)
6001 {
6002 bfd_boolean dyn;
6003 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
6004
6005 h->got.offset = (bfd_vma) - 1;
6006
6007 dyn = htab->root.dynamic_sections_created;
6008
6009 /* Make sure this symbol is output as a dynamic symbol.
6010 Undefined weak syms won't yet be marked as dynamic. */
6011 if (dyn && h->dynindx == -1 && !h->forced_local)
6012 {
6013 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6014 return FALSE;
6015 }
6016
6017 if (got_type == GOT_UNKNOWN)
6018 {
6019 }
6020 else if (got_type == GOT_NORMAL)
6021 {
6022 h->got.offset = htab->root.sgot->size;
6023 htab->root.sgot->size += GOT_ENTRY_SIZE;
6024 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6025 || h->root.type != bfd_link_hash_undefweak)
6026 && (info->shared
6027 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6028 {
6029 htab->root.srelgot->size += RELOC_SIZE (htab);
6030 }
6031 }
6032 else
6033 {
6034 int indx;
6035 if (got_type & GOT_TLSDESC_GD)
6036 {
6037 eh->tlsdesc_got_jump_table_offset =
6038 (htab->root.sgotplt->size
6039 - aarch64_compute_jump_table_size (htab));
6040 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6041 h->got.offset = (bfd_vma) - 2;
6042 }
6043
6044 if (got_type & GOT_TLS_GD)
6045 {
6046 h->got.offset = htab->root.sgot->size;
6047 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6048 }
6049
6050 if (got_type & GOT_TLS_IE)
6051 {
6052 h->got.offset = htab->root.sgot->size;
6053 htab->root.sgot->size += GOT_ENTRY_SIZE;
6054 }
6055
6056 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6057 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6058 || h->root.type != bfd_link_hash_undefweak)
6059 && (info->shared
6060 || indx != 0
6061 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6062 {
6063 if (got_type & GOT_TLSDESC_GD)
6064 {
6065 htab->root.srelplt->size += RELOC_SIZE (htab);
6066 /* Note reloc_count not incremented here! We have
6067 already adjusted reloc_count for this relocation
6068 type. */
6069
6070 /* TLSDESC PLT is now needed, but not yet determined. */
6071 htab->tlsdesc_plt = (bfd_vma) - 1;
6072 }
6073
6074 if (got_type & GOT_TLS_GD)
6075 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6076
6077 if (got_type & GOT_TLS_IE)
6078 htab->root.srelgot->size += RELOC_SIZE (htab);
6079 }
6080 }
6081 }
6082 else
6083 {
6084 h->got.offset = (bfd_vma) - 1;
6085 }
6086
6087 if (eh->dyn_relocs == NULL)
6088 return TRUE;
6089
6090 /* In the shared -Bsymbolic case, discard space allocated for
6091 dynamic pc-relative relocs against symbols which turn out to be
6092 defined in regular objects. For the normal shared case, discard
6093 space for pc-relative relocs that have become local due to symbol
6094 visibility changes. */
6095
6096 if (info->shared)
6097 {
6098 /* Relocs that use pc_count are those that appear on a call
6099 insn, or certain REL relocs that can generated via assembly.
6100 We want calls to protected symbols to resolve directly to the
6101 function rather than going via the plt. If people want
6102 function pointer comparisons to work as expected then they
6103 should avoid writing weird assembly. */
6104 if (SYMBOL_CALLS_LOCAL (info, h))
6105 {
6106 struct elf_dyn_relocs **pp;
6107
6108 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6109 {
6110 p->count -= p->pc_count;
6111 p->pc_count = 0;
6112 if (p->count == 0)
6113 *pp = p->next;
6114 else
6115 pp = &p->next;
6116 }
6117 }
6118
6119 /* Also discard relocs on undefined weak syms with non-default
6120 visibility. */
6121 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6122 {
6123 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6124 eh->dyn_relocs = NULL;
6125
6126 /* Make sure undefined weak symbols are output as a dynamic
6127 symbol in PIEs. */
6128 else if (h->dynindx == -1
6129 && !h->forced_local
6130 && !bfd_elf_link_record_dynamic_symbol (info, h))
6131 return FALSE;
6132 }
6133
6134 }
6135 else if (ELIMINATE_COPY_RELOCS)
6136 {
6137 /* For the non-shared case, discard space for relocs against
6138 symbols which turn out to need copy relocs or are not
6139 dynamic. */
6140
6141 if (!h->non_got_ref
6142 && ((h->def_dynamic
6143 && !h->def_regular)
6144 || (htab->root.dynamic_sections_created
6145 && (h->root.type == bfd_link_hash_undefweak
6146 || h->root.type == bfd_link_hash_undefined))))
6147 {
6148 /* Make sure this symbol is output as a dynamic symbol.
6149 Undefined weak syms won't yet be marked as dynamic. */
6150 if (h->dynindx == -1
6151 && !h->forced_local
6152 && !bfd_elf_link_record_dynamic_symbol (info, h))
6153 return FALSE;
6154
6155 /* If that succeeded, we know we'll be keeping all the
6156 relocs. */
6157 if (h->dynindx != -1)
6158 goto keep;
6159 }
6160
6161 eh->dyn_relocs = NULL;
6162
6163 keep:;
6164 }
6165
6166 /* Finally, allocate space. */
6167 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6168 {
6169 asection *sreloc;
6170
6171 sreloc = elf_section_data (p->sec)->sreloc;
6172
6173 BFD_ASSERT (sreloc != NULL);
6174
6175 sreloc->size += p->count * RELOC_SIZE (htab);
6176 }
6177
6178 return TRUE;
6179 }
6180
6181 /* Allocate space in .plt, .got and associated reloc sections for
6182 ifunc dynamic relocs. */
6183
6184 static bfd_boolean
6185 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6186 void *inf)
6187 {
6188 struct bfd_link_info *info;
6189 struct elf_aarch64_link_hash_table *htab;
6190 struct elf_aarch64_link_hash_entry *eh;
6191
6192 /* An example of a bfd_link_hash_indirect symbol is versioned
6193 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6194 -> __gxx_personality_v0(bfd_link_hash_defined)
6195
6196 There is no need to process bfd_link_hash_indirect symbols here
6197 because we will also be presented with the concrete instance of
6198 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6199 called to copy all relevant data from the generic to the concrete
6200 symbol instance.
6201 */
6202 if (h->root.type == bfd_link_hash_indirect)
6203 return TRUE;
6204
6205 if (h->root.type == bfd_link_hash_warning)
6206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6207
6208 info = (struct bfd_link_info *) inf;
6209 htab = elf_aarch64_hash_table (info);
6210
6211 eh = (struct elf_aarch64_link_hash_entry *) h;
6212
6213 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6214 here if it is defined and referenced in a non-shared object. */
6215 if (h->type == STT_GNU_IFUNC
6216 && h->def_regular)
6217 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6218 &eh->dyn_relocs,
6219 htab->plt_entry_size,
6220 htab->plt_header_size,
6221 GOT_ENTRY_SIZE);
6222 return TRUE;
6223 }
6224
6225 /* Allocate space in .plt, .got and associated reloc sections for
6226 local dynamic relocs. */
6227
6228 static bfd_boolean
6229 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6230 {
6231 struct elf_link_hash_entry *h
6232 = (struct elf_link_hash_entry *) *slot;
6233
6234 if (h->type != STT_GNU_IFUNC
6235 || !h->def_regular
6236 || !h->ref_regular
6237 || !h->forced_local
6238 || h->root.type != bfd_link_hash_defined)
6239 abort ();
6240
6241 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6242 }
6243
6244 /* Allocate space in .plt, .got and associated reloc sections for
6245 local ifunc dynamic relocs. */
6246
6247 static bfd_boolean
6248 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6249 {
6250 struct elf_link_hash_entry *h
6251 = (struct elf_link_hash_entry *) *slot;
6252
6253 if (h->type != STT_GNU_IFUNC
6254 || !h->def_regular
6255 || !h->ref_regular
6256 || !h->forced_local
6257 || h->root.type != bfd_link_hash_defined)
6258 abort ();
6259
6260 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6261 }
6262
6263 /* This is the most important function of all . Innocuosly named
6264 though ! */
6265 static bfd_boolean
6266 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6267 struct bfd_link_info *info)
6268 {
6269 struct elf_aarch64_link_hash_table *htab;
6270 bfd *dynobj;
6271 asection *s;
6272 bfd_boolean relocs;
6273 bfd *ibfd;
6274
6275 htab = elf_aarch64_hash_table ((info));
6276 dynobj = htab->root.dynobj;
6277
6278 BFD_ASSERT (dynobj != NULL);
6279
6280 if (htab->root.dynamic_sections_created)
6281 {
6282 if (info->executable)
6283 {
6284 s = bfd_get_linker_section (dynobj, ".interp");
6285 if (s == NULL)
6286 abort ();
6287 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6288 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6289 }
6290 }
6291
6292 /* Set up .got offsets for local syms, and space for local dynamic
6293 relocs. */
6294 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6295 {
6296 struct elf_aarch64_local_symbol *locals = NULL;
6297 Elf_Internal_Shdr *symtab_hdr;
6298 asection *srel;
6299 unsigned int i;
6300
6301 if (!is_aarch64_elf (ibfd))
6302 continue;
6303
6304 for (s = ibfd->sections; s != NULL; s = s->next)
6305 {
6306 struct elf_dyn_relocs *p;
6307
6308 for (p = (struct elf_dyn_relocs *)
6309 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6310 {
6311 if (!bfd_is_abs_section (p->sec)
6312 && bfd_is_abs_section (p->sec->output_section))
6313 {
6314 /* Input section has been discarded, either because
6315 it is a copy of a linkonce section or due to
6316 linker script /DISCARD/, so we'll be discarding
6317 the relocs too. */
6318 }
6319 else if (p->count != 0)
6320 {
6321 srel = elf_section_data (p->sec)->sreloc;
6322 srel->size += p->count * RELOC_SIZE (htab);
6323 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6324 info->flags |= DF_TEXTREL;
6325 }
6326 }
6327 }
6328
6329 locals = elf_aarch64_locals (ibfd);
6330 if (!locals)
6331 continue;
6332
6333 symtab_hdr = &elf_symtab_hdr (ibfd);
6334 srel = htab->root.srelgot;
6335 for (i = 0; i < symtab_hdr->sh_info; i++)
6336 {
6337 locals[i].got_offset = (bfd_vma) - 1;
6338 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6339 if (locals[i].got_refcount > 0)
6340 {
6341 unsigned got_type = locals[i].got_type;
6342 if (got_type & GOT_TLSDESC_GD)
6343 {
6344 locals[i].tlsdesc_got_jump_table_offset =
6345 (htab->root.sgotplt->size
6346 - aarch64_compute_jump_table_size (htab));
6347 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6348 locals[i].got_offset = (bfd_vma) - 2;
6349 }
6350
6351 if (got_type & GOT_TLS_GD)
6352 {
6353 locals[i].got_offset = htab->root.sgot->size;
6354 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6355 }
6356
6357 if (got_type & GOT_TLS_IE)
6358 {
6359 locals[i].got_offset = htab->root.sgot->size;
6360 htab->root.sgot->size += GOT_ENTRY_SIZE;
6361 }
6362
6363 if (got_type == GOT_UNKNOWN)
6364 {
6365 }
6366
6367 if (got_type == GOT_NORMAL)
6368 {
6369 }
6370
6371 if (info->shared)
6372 {
6373 if (got_type & GOT_TLSDESC_GD)
6374 {
6375 htab->root.srelplt->size += RELOC_SIZE (htab);
6376 /* Note RELOC_COUNT not incremented here! */
6377 htab->tlsdesc_plt = (bfd_vma) - 1;
6378 }
6379
6380 if (got_type & GOT_TLS_GD)
6381 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6382
6383 if (got_type & GOT_TLS_IE)
6384 htab->root.srelgot->size += RELOC_SIZE (htab);
6385 }
6386 }
6387 else
6388 {
6389 locals[i].got_refcount = (bfd_vma) - 1;
6390 }
6391 }
6392 }
6393
6394
6395 /* Allocate global sym .plt and .got entries, and space for global
6396 sym dynamic relocs. */
6397 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
6398 info);
6399
6400 /* Allocate global ifunc sym .plt and .got entries, and space for global
6401 ifunc sym dynamic relocs. */
6402 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6403 info);
6404
6405 /* Allocate .plt and .got entries, and space for local symbols. */
6406 htab_traverse (htab->loc_hash_table,
6407 elfNN_aarch64_allocate_local_dynrelocs,
6408 info);
6409
6410 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6411 htab_traverse (htab->loc_hash_table,
6412 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6413 info);
6414
6415 /* For every jump slot reserved in the sgotplt, reloc_count is
6416 incremented. However, when we reserve space for TLS descriptors,
6417 it's not incremented, so in order to compute the space reserved
6418 for them, it suffices to multiply the reloc count by the jump
6419 slot size. */
6420
6421 if (htab->root.srelplt)
6422 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
6423
6424 if (htab->tlsdesc_plt)
6425 {
6426 if (htab->root.splt->size == 0)
6427 htab->root.splt->size += PLT_ENTRY_SIZE;
6428
6429 htab->tlsdesc_plt = htab->root.splt->size;
6430 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6431
6432 /* If we're not using lazy TLS relocations, don't generate the
6433 GOT entry required. */
6434 if (!(info->flags & DF_BIND_NOW))
6435 {
6436 htab->dt_tlsdesc_got = htab->root.sgot->size;
6437 htab->root.sgot->size += GOT_ENTRY_SIZE;
6438 }
6439 }
6440
6441 /* We now have determined the sizes of the various dynamic sections.
6442 Allocate memory for them. */
6443 relocs = FALSE;
6444 for (s = dynobj->sections; s != NULL; s = s->next)
6445 {
6446 if ((s->flags & SEC_LINKER_CREATED) == 0)
6447 continue;
6448
6449 if (s == htab->root.splt
6450 || s == htab->root.sgot
6451 || s == htab->root.sgotplt
6452 || s == htab->root.iplt
6453 || s == htab->root.igotplt || s == htab->sdynbss)
6454 {
6455 /* Strip this section if we don't need it; see the
6456 comment below. */
6457 }
6458 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6459 {
6460 if (s->size != 0 && s != htab->root.srelplt)
6461 relocs = TRUE;
6462
6463 /* We use the reloc_count field as a counter if we need
6464 to copy relocs into the output file. */
6465 if (s != htab->root.srelplt)
6466 s->reloc_count = 0;
6467 }
6468 else
6469 {
6470 /* It's not one of our sections, so don't allocate space. */
6471 continue;
6472 }
6473
6474 if (s->size == 0)
6475 {
6476 /* If we don't need this section, strip it from the
6477 output file. This is mostly to handle .rela.bss and
6478 .rela.plt. We must create both sections in
6479 create_dynamic_sections, because they must be created
6480 before the linker maps input sections to output
6481 sections. The linker does that before
6482 adjust_dynamic_symbol is called, and it is that
6483 function which decides whether anything needs to go
6484 into these sections. */
6485
6486 s->flags |= SEC_EXCLUDE;
6487 continue;
6488 }
6489
6490 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6491 continue;
6492
6493 /* Allocate memory for the section contents. We use bfd_zalloc
6494 here in case unused entries are not reclaimed before the
6495 section's contents are written out. This should not happen,
6496 but this way if it does, we get a R_AARCH64_NONE reloc instead
6497 of garbage. */
6498 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6499 if (s->contents == NULL)
6500 return FALSE;
6501 }
6502
6503 if (htab->root.dynamic_sections_created)
6504 {
6505 /* Add some entries to the .dynamic section. We fill in the
6506 values later, in elfNN_aarch64_finish_dynamic_sections, but we
6507 must add the entries now so that we get the correct size for
6508 the .dynamic section. The DT_DEBUG entry is filled in by the
6509 dynamic linker and used by the debugger. */
6510 #define add_dynamic_entry(TAG, VAL) \
6511 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6512
6513 if (info->executable)
6514 {
6515 if (!add_dynamic_entry (DT_DEBUG, 0))
6516 return FALSE;
6517 }
6518
6519 if (htab->root.splt->size != 0)
6520 {
6521 if (!add_dynamic_entry (DT_PLTGOT, 0)
6522 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6523 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6524 || !add_dynamic_entry (DT_JMPREL, 0))
6525 return FALSE;
6526
6527 if (htab->tlsdesc_plt
6528 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6529 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6530 return FALSE;
6531 }
6532
6533 if (relocs)
6534 {
6535 if (!add_dynamic_entry (DT_RELA, 0)
6536 || !add_dynamic_entry (DT_RELASZ, 0)
6537 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6538 return FALSE;
6539
6540 /* If any dynamic relocs apply to a read-only section,
6541 then we need a DT_TEXTREL entry. */
6542 if ((info->flags & DF_TEXTREL) != 0)
6543 {
6544 if (!add_dynamic_entry (DT_TEXTREL, 0))
6545 return FALSE;
6546 }
6547 }
6548 }
6549 #undef add_dynamic_entry
6550
6551 return TRUE;
6552 }
6553
6554 static inline void
6555 elf_aarch64_update_plt_entry (bfd *output_bfd,
6556 bfd_reloc_code_real_type r_type,
6557 bfd_byte *plt_entry, bfd_vma value)
6558 {
6559 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6560
6561 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
6562 }
6563
6564 static void
6565 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6566 struct elf_aarch64_link_hash_table
6567 *htab, bfd *output_bfd,
6568 struct bfd_link_info *info)
6569 {
6570 bfd_byte *plt_entry;
6571 bfd_vma plt_index;
6572 bfd_vma got_offset;
6573 bfd_vma gotplt_entry_address;
6574 bfd_vma plt_entry_address;
6575 Elf_Internal_Rela rela;
6576 bfd_byte *loc;
6577 asection *plt, *gotplt, *relplt;
6578
6579 /* When building a static executable, use .iplt, .igot.plt and
6580 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6581 if (htab->root.splt != NULL)
6582 {
6583 plt = htab->root.splt;
6584 gotplt = htab->root.sgotplt;
6585 relplt = htab->root.srelplt;
6586 }
6587 else
6588 {
6589 plt = htab->root.iplt;
6590 gotplt = htab->root.igotplt;
6591 relplt = htab->root.irelplt;
6592 }
6593
6594 /* Get the index in the procedure linkage table which
6595 corresponds to this symbol. This is the index of this symbol
6596 in all the symbols for which we are making plt entries. The
6597 first entry in the procedure linkage table is reserved.
6598
6599 Get the offset into the .got table of the entry that
6600 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6601 bytes. The first three are reserved for the dynamic linker.
6602
6603 For static executables, we don't reserve anything. */
6604
6605 if (plt == htab->root.splt)
6606 {
6607 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6608 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6609 }
6610 else
6611 {
6612 plt_index = h->plt.offset / htab->plt_entry_size;
6613 got_offset = plt_index * GOT_ENTRY_SIZE;
6614 }
6615
6616 plt_entry = plt->contents + h->plt.offset;
6617 plt_entry_address = plt->output_section->vma
6618 + plt->output_offset + h->plt.offset;
6619 gotplt_entry_address = gotplt->output_section->vma +
6620 gotplt->output_offset + got_offset;
6621
6622 /* Copy in the boiler-plate for the PLTn entry. */
6623 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
6624
6625 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6626 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6627 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6628 plt_entry,
6629 PG (gotplt_entry_address) -
6630 PG (plt_entry_address));
6631
6632 /* Fill in the lo12 bits for the load from the pltgot. */
6633 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6634 plt_entry + 4,
6635 PG_OFFSET (gotplt_entry_address));
6636
6637 /* Fill in the lo12 bits for the add from the pltgot entry. */
6638 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6639 plt_entry + 8,
6640 PG_OFFSET (gotplt_entry_address));
6641
6642 /* All the GOTPLT Entries are essentially initialized to PLT0. */
6643 bfd_put_NN (output_bfd,
6644 plt->output_section->vma + plt->output_offset,
6645 gotplt->contents + got_offset);
6646
6647 rela.r_offset = gotplt_entry_address;
6648
6649 if (h->dynindx == -1
6650 || ((info->executable
6651 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6652 && h->def_regular
6653 && h->type == STT_GNU_IFUNC))
6654 {
6655 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6656 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6657 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6658 rela.r_addend = (h->root.u.def.value
6659 + h->root.u.def.section->output_section->vma
6660 + h->root.u.def.section->output_offset);
6661 }
6662 else
6663 {
6664 /* Fill in the entry in the .rela.plt section. */
6665 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6666 rela.r_addend = 0;
6667 }
6668
6669 /* Compute the relocation entry to used based on PLT index and do
6670 not adjust reloc_count. The reloc_count has already been adjusted
6671 to account for this entry. */
6672 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
6673 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6674 }
6675
6676 /* Size sections even though they're not dynamic. We use it to setup
6677 _TLS_MODULE_BASE_, if needed. */
6678
6679 static bfd_boolean
6680 elfNN_aarch64_always_size_sections (bfd *output_bfd,
6681 struct bfd_link_info *info)
6682 {
6683 asection *tls_sec;
6684
6685 if (info->relocatable)
6686 return TRUE;
6687
6688 tls_sec = elf_hash_table (info)->tls_sec;
6689
6690 if (tls_sec)
6691 {
6692 struct elf_link_hash_entry *tlsbase;
6693
6694 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6695 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6696
6697 if (tlsbase)
6698 {
6699 struct bfd_link_hash_entry *h = NULL;
6700 const struct elf_backend_data *bed =
6701 get_elf_backend_data (output_bfd);
6702
6703 if (!(_bfd_generic_link_add_one_symbol
6704 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6705 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6706 return FALSE;
6707
6708 tlsbase->type = STT_TLS;
6709 tlsbase = (struct elf_link_hash_entry *) h;
6710 tlsbase->def_regular = 1;
6711 tlsbase->other = STV_HIDDEN;
6712 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6713 }
6714 }
6715
6716 return TRUE;
6717 }
6718
6719 /* Finish up dynamic symbol handling. We set the contents of various
6720 dynamic sections here. */
6721 static bfd_boolean
6722 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
6723 struct bfd_link_info *info,
6724 struct elf_link_hash_entry *h,
6725 Elf_Internal_Sym *sym)
6726 {
6727 struct elf_aarch64_link_hash_table *htab;
6728 htab = elf_aarch64_hash_table (info);
6729
6730 if (h->plt.offset != (bfd_vma) - 1)
6731 {
6732 asection *plt, *gotplt, *relplt;
6733
6734 /* This symbol has an entry in the procedure linkage table. Set
6735 it up. */
6736
6737 /* When building a static executable, use .iplt, .igot.plt and
6738 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6739 if (htab->root.splt != NULL)
6740 {
6741 plt = htab->root.splt;
6742 gotplt = htab->root.sgotplt;
6743 relplt = htab->root.srelplt;
6744 }
6745 else
6746 {
6747 plt = htab->root.iplt;
6748 gotplt = htab->root.igotplt;
6749 relplt = htab->root.irelplt;
6750 }
6751
6752 /* This symbol has an entry in the procedure linkage table. Set
6753 it up. */
6754 if ((h->dynindx == -1
6755 && !((h->forced_local || info->executable)
6756 && h->def_regular
6757 && h->type == STT_GNU_IFUNC))
6758 || plt == NULL
6759 || gotplt == NULL
6760 || relplt == NULL)
6761 abort ();
6762
6763 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
6764 if (!h->def_regular)
6765 {
6766 /* Mark the symbol as undefined, rather than as defined in
6767 the .plt section. Leave the value alone. This is a clue
6768 for the dynamic linker, to make function pointer
6769 comparisons work between an application and shared
6770 library. */
6771 sym->st_shndx = SHN_UNDEF;
6772 }
6773 }
6774
6775 if (h->got.offset != (bfd_vma) - 1
6776 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
6777 {
6778 Elf_Internal_Rela rela;
6779 bfd_byte *loc;
6780
6781 /* This symbol has an entry in the global offset table. Set it
6782 up. */
6783 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6784 abort ();
6785
6786 rela.r_offset = (htab->root.sgot->output_section->vma
6787 + htab->root.sgot->output_offset
6788 + (h->got.offset & ~(bfd_vma) 1));
6789
6790 if (h->def_regular
6791 && h->type == STT_GNU_IFUNC)
6792 {
6793 if (info->shared)
6794 {
6795 /* Generate R_AARCH64_GLOB_DAT. */
6796 goto do_glob_dat;
6797 }
6798 else
6799 {
6800 asection *plt;
6801
6802 if (!h->pointer_equality_needed)
6803 abort ();
6804
6805 /* For non-shared object, we can't use .got.plt, which
6806 contains the real function address if we need pointer
6807 equality. We load the GOT entry with the PLT entry. */
6808 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6809 bfd_put_NN (output_bfd, (plt->output_section->vma
6810 + plt->output_offset
6811 + h->plt.offset),
6812 htab->root.sgot->contents
6813 + (h->got.offset & ~(bfd_vma) 1));
6814 return TRUE;
6815 }
6816 }
6817 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
6818 {
6819 if (!h->def_regular)
6820 return FALSE;
6821
6822 BFD_ASSERT ((h->got.offset & 1) != 0);
6823 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6824 rela.r_addend = (h->root.u.def.value
6825 + h->root.u.def.section->output_section->vma
6826 + h->root.u.def.section->output_offset);
6827 }
6828 else
6829 {
6830 do_glob_dat:
6831 BFD_ASSERT ((h->got.offset & 1) == 0);
6832 bfd_put_NN (output_bfd, (bfd_vma) 0,
6833 htab->root.sgot->contents + h->got.offset);
6834 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
6835 rela.r_addend = 0;
6836 }
6837
6838 loc = htab->root.srelgot->contents;
6839 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
6840 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6841 }
6842
6843 if (h->needs_copy)
6844 {
6845 Elf_Internal_Rela rela;
6846 bfd_byte *loc;
6847
6848 /* This symbol needs a copy reloc. Set it up. */
6849
6850 if (h->dynindx == -1
6851 || (h->root.type != bfd_link_hash_defined
6852 && h->root.type != bfd_link_hash_defweak)
6853 || htab->srelbss == NULL)
6854 abort ();
6855
6856 rela.r_offset = (h->root.u.def.value
6857 + h->root.u.def.section->output_section->vma
6858 + h->root.u.def.section->output_offset);
6859 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
6860 rela.r_addend = 0;
6861 loc = htab->srelbss->contents;
6862 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
6863 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6864 }
6865
6866 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6867 be NULL for local symbols. */
6868 if (sym != NULL
6869 && (h == elf_hash_table (info)->hdynamic
6870 || h == elf_hash_table (info)->hgot))
6871 sym->st_shndx = SHN_ABS;
6872
6873 return TRUE;
6874 }
6875
6876 /* Finish up local dynamic symbol handling. We set the contents of
6877 various dynamic sections here. */
6878
6879 static bfd_boolean
6880 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6881 {
6882 struct elf_link_hash_entry *h
6883 = (struct elf_link_hash_entry *) *slot;
6884 struct bfd_link_info *info
6885 = (struct bfd_link_info *) inf;
6886
6887 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6888 info, h, NULL);
6889 }
6890
6891 static void
6892 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6893 struct elf_aarch64_link_hash_table
6894 *htab)
6895 {
6896 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6897 small and large plts and at the minute just generates
6898 the small PLT. */
6899
6900 /* PLT0 of the small PLT looks like this in ELF64 -
6901 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6902 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6903 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6904 // symbol resolver
6905 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6906 // GOTPLT entry for this.
6907 br x17
6908 PLT0 will be slightly different in ELF32 due to different got entry
6909 size.
6910 */
6911 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
6912 bfd_vma plt_base;
6913
6914
6915 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
6916 PLT_ENTRY_SIZE);
6917 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6918 PLT_ENTRY_SIZE;
6919
6920 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6921 + htab->root.sgotplt->output_offset
6922 + GOT_ENTRY_SIZE * 2);
6923
6924 plt_base = htab->root.splt->output_section->vma +
6925 htab->root.splt->output_offset;
6926
6927 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6928 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6929 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6930 htab->root.splt->contents + 4,
6931 PG (plt_got_2nd_ent) - PG (plt_base + 4));
6932
6933 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6934 htab->root.splt->contents + 8,
6935 PG_OFFSET (plt_got_2nd_ent));
6936
6937 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6938 htab->root.splt->contents + 12,
6939 PG_OFFSET (plt_got_2nd_ent));
6940 }
6941
6942 static bfd_boolean
6943 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
6944 struct bfd_link_info *info)
6945 {
6946 struct elf_aarch64_link_hash_table *htab;
6947 bfd *dynobj;
6948 asection *sdyn;
6949
6950 htab = elf_aarch64_hash_table (info);
6951 dynobj = htab->root.dynobj;
6952 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6953
6954 if (htab->root.dynamic_sections_created)
6955 {
6956 ElfNN_External_Dyn *dyncon, *dynconend;
6957
6958 if (sdyn == NULL || htab->root.sgot == NULL)
6959 abort ();
6960
6961 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6962 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
6963 for (; dyncon < dynconend; dyncon++)
6964 {
6965 Elf_Internal_Dyn dyn;
6966 asection *s;
6967
6968 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
6969
6970 switch (dyn.d_tag)
6971 {
6972 default:
6973 continue;
6974
6975 case DT_PLTGOT:
6976 s = htab->root.sgotplt;
6977 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6978 break;
6979
6980 case DT_JMPREL:
6981 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6982 break;
6983
6984 case DT_PLTRELSZ:
6985 s = htab->root.srelplt;
6986 dyn.d_un.d_val = s->size;
6987 break;
6988
6989 case DT_RELASZ:
6990 /* The procedure linkage table relocs (DT_JMPREL) should
6991 not be included in the overall relocs (DT_RELA).
6992 Therefore, we override the DT_RELASZ entry here to
6993 make it not include the JMPREL relocs. Since the
6994 linker script arranges for .rela.plt to follow all
6995 other relocation sections, we don't have to worry
6996 about changing the DT_RELA entry. */
6997 if (htab->root.srelplt != NULL)
6998 {
6999 s = htab->root.srelplt;
7000 dyn.d_un.d_val -= s->size;
7001 }
7002 break;
7003
7004 case DT_TLSDESC_PLT:
7005 s = htab->root.splt;
7006 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7007 + htab->tlsdesc_plt;
7008 break;
7009
7010 case DT_TLSDESC_GOT:
7011 s = htab->root.sgot;
7012 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7013 + htab->dt_tlsdesc_got;
7014 break;
7015 }
7016
7017 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
7018 }
7019
7020 }
7021
7022 /* Fill in the special first entry in the procedure linkage table. */
7023 if (htab->root.splt && htab->root.splt->size > 0)
7024 {
7025 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
7026
7027 elf_section_data (htab->root.splt->output_section)->
7028 this_hdr.sh_entsize = htab->plt_entry_size;
7029
7030
7031 if (htab->tlsdesc_plt)
7032 {
7033 bfd_put_NN (output_bfd, (bfd_vma) 0,
7034 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7035
7036 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
7037 elfNN_aarch64_tlsdesc_small_plt_entry,
7038 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
7039
7040 {
7041 bfd_vma adrp1_addr =
7042 htab->root.splt->output_section->vma
7043 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7044
7045 bfd_vma adrp2_addr = adrp1_addr + 4;
7046
7047 bfd_vma got_addr =
7048 htab->root.sgot->output_section->vma
7049 + htab->root.sgot->output_offset;
7050
7051 bfd_vma pltgot_addr =
7052 htab->root.sgotplt->output_section->vma
7053 + htab->root.sgotplt->output_offset;
7054
7055 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
7056
7057 bfd_byte *plt_entry =
7058 htab->root.splt->contents + htab->tlsdesc_plt;
7059
7060 /* adrp x2, DT_TLSDESC_GOT */
7061 elf_aarch64_update_plt_entry (output_bfd,
7062 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7063 plt_entry + 4,
7064 (PG (dt_tlsdesc_got)
7065 - PG (adrp1_addr)));
7066
7067 /* adrp x3, 0 */
7068 elf_aarch64_update_plt_entry (output_bfd,
7069 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7070 plt_entry + 8,
7071 (PG (pltgot_addr)
7072 - PG (adrp2_addr)));
7073
7074 /* ldr x2, [x2, #0] */
7075 elf_aarch64_update_plt_entry (output_bfd,
7076 BFD_RELOC_AARCH64_LDSTNN_LO12,
7077 plt_entry + 12,
7078 PG_OFFSET (dt_tlsdesc_got));
7079
7080 /* add x3, x3, 0 */
7081 elf_aarch64_update_plt_entry (output_bfd,
7082 BFD_RELOC_AARCH64_ADD_LO12,
7083 plt_entry + 16,
7084 PG_OFFSET (pltgot_addr));
7085 }
7086 }
7087 }
7088
7089 if (htab->root.sgotplt)
7090 {
7091 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7092 {
7093 (*_bfd_error_handler)
7094 (_("discarded output section: `%A'"), htab->root.sgotplt);
7095 return FALSE;
7096 }
7097
7098 /* Fill in the first three entries in the global offset table. */
7099 if (htab->root.sgotplt->size > 0)
7100 {
7101 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7102
7103 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
7104 bfd_put_NN (output_bfd,
7105 (bfd_vma) 0,
7106 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
7107 bfd_put_NN (output_bfd,
7108 (bfd_vma) 0,
7109 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7110 }
7111
7112 if (htab->root.sgot)
7113 {
7114 if (htab->root.sgot->size > 0)
7115 {
7116 bfd_vma addr =
7117 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7118 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7119 }
7120 }
7121
7122 elf_section_data (htab->root.sgotplt->output_section)->
7123 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7124 }
7125
7126 if (htab->root.sgot && htab->root.sgot->size > 0)
7127 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7128 = GOT_ENTRY_SIZE;
7129
7130 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7131 htab_traverse (htab->loc_hash_table,
7132 elfNN_aarch64_finish_local_dynamic_symbol,
7133 info);
7134
7135 return TRUE;
7136 }
7137
7138 /* Return address for Ith PLT stub in section PLT, for relocation REL
7139 or (bfd_vma) -1 if it should not be included. */
7140
7141 static bfd_vma
7142 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
7143 const arelent *rel ATTRIBUTE_UNUSED)
7144 {
7145 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7146 }
7147
7148
7149 /* We use this so we can override certain functions
7150 (though currently we don't). */
7151
7152 const struct elf_size_info elfNN_aarch64_size_info =
7153 {
7154 sizeof (ElfNN_External_Ehdr),
7155 sizeof (ElfNN_External_Phdr),
7156 sizeof (ElfNN_External_Shdr),
7157 sizeof (ElfNN_External_Rel),
7158 sizeof (ElfNN_External_Rela),
7159 sizeof (ElfNN_External_Sym),
7160 sizeof (ElfNN_External_Dyn),
7161 sizeof (Elf_External_Note),
7162 4, /* Hash table entry size. */
7163 1, /* Internal relocs per external relocs. */
7164 ARCH_SIZE, /* Arch size. */
7165 LOG_FILE_ALIGN, /* Log_file_align. */
7166 ELFCLASSNN, EV_CURRENT,
7167 bfd_elfNN_write_out_phdrs,
7168 bfd_elfNN_write_shdrs_and_ehdr,
7169 bfd_elfNN_checksum_contents,
7170 bfd_elfNN_write_relocs,
7171 bfd_elfNN_swap_symbol_in,
7172 bfd_elfNN_swap_symbol_out,
7173 bfd_elfNN_slurp_reloc_table,
7174 bfd_elfNN_slurp_symbol_table,
7175 bfd_elfNN_swap_dyn_in,
7176 bfd_elfNN_swap_dyn_out,
7177 bfd_elfNN_swap_reloc_in,
7178 bfd_elfNN_swap_reloc_out,
7179 bfd_elfNN_swap_reloca_in,
7180 bfd_elfNN_swap_reloca_out
7181 };
7182
7183 #define ELF_ARCH bfd_arch_aarch64
7184 #define ELF_MACHINE_CODE EM_AARCH64
7185 #define ELF_MAXPAGESIZE 0x10000
7186 #define ELF_MINPAGESIZE 0x1000
7187 #define ELF_COMMONPAGESIZE 0x1000
7188
7189 #define bfd_elfNN_close_and_cleanup \
7190 elfNN_aarch64_close_and_cleanup
7191
7192 #define bfd_elfNN_bfd_free_cached_info \
7193 elfNN_aarch64_bfd_free_cached_info
7194
7195 #define bfd_elfNN_bfd_is_target_special_symbol \
7196 elfNN_aarch64_is_target_special_symbol
7197
7198 #define bfd_elfNN_bfd_link_hash_table_create \
7199 elfNN_aarch64_link_hash_table_create
7200
7201 #define bfd_elfNN_bfd_link_hash_table_free \
7202 elfNN_aarch64_hash_table_free
7203
7204 #define bfd_elfNN_bfd_merge_private_bfd_data \
7205 elfNN_aarch64_merge_private_bfd_data
7206
7207 #define bfd_elfNN_bfd_print_private_bfd_data \
7208 elfNN_aarch64_print_private_bfd_data
7209
7210 #define bfd_elfNN_bfd_reloc_type_lookup \
7211 elfNN_aarch64_reloc_type_lookup
7212
7213 #define bfd_elfNN_bfd_reloc_name_lookup \
7214 elfNN_aarch64_reloc_name_lookup
7215
7216 #define bfd_elfNN_bfd_set_private_flags \
7217 elfNN_aarch64_set_private_flags
7218
7219 #define bfd_elfNN_find_inliner_info \
7220 elfNN_aarch64_find_inliner_info
7221
7222 #define bfd_elfNN_find_nearest_line \
7223 elfNN_aarch64_find_nearest_line
7224
7225 #define bfd_elfNN_mkobject \
7226 elfNN_aarch64_mkobject
7227
7228 #define bfd_elfNN_new_section_hook \
7229 elfNN_aarch64_new_section_hook
7230
7231 #define elf_backend_adjust_dynamic_symbol \
7232 elfNN_aarch64_adjust_dynamic_symbol
7233
7234 #define elf_backend_always_size_sections \
7235 elfNN_aarch64_always_size_sections
7236
7237 #define elf_backend_check_relocs \
7238 elfNN_aarch64_check_relocs
7239
7240 #define elf_backend_copy_indirect_symbol \
7241 elfNN_aarch64_copy_indirect_symbol
7242
7243 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7244 to them in our hash. */
7245 #define elf_backend_create_dynamic_sections \
7246 elfNN_aarch64_create_dynamic_sections
7247
7248 #define elf_backend_init_index_section \
7249 _bfd_elf_init_2_index_sections
7250
7251 #define elf_backend_finish_dynamic_sections \
7252 elfNN_aarch64_finish_dynamic_sections
7253
7254 #define elf_backend_finish_dynamic_symbol \
7255 elfNN_aarch64_finish_dynamic_symbol
7256
7257 #define elf_backend_gc_sweep_hook \
7258 elfNN_aarch64_gc_sweep_hook
7259
7260 #define elf_backend_object_p \
7261 elfNN_aarch64_object_p
7262
7263 #define elf_backend_output_arch_local_syms \
7264 elfNN_aarch64_output_arch_local_syms
7265
7266 #define elf_backend_plt_sym_val \
7267 elfNN_aarch64_plt_sym_val
7268
7269 #define elf_backend_post_process_headers \
7270 elfNN_aarch64_post_process_headers
7271
7272 #define elf_backend_relocate_section \
7273 elfNN_aarch64_relocate_section
7274
7275 #define elf_backend_reloc_type_class \
7276 elfNN_aarch64_reloc_type_class
7277
7278 #define elf_backend_section_from_shdr \
7279 elfNN_aarch64_section_from_shdr
7280
7281 #define elf_backend_size_dynamic_sections \
7282 elfNN_aarch64_size_dynamic_sections
7283
7284 #define elf_backend_size_info \
7285 elfNN_aarch64_size_info
7286
7287 #define elf_backend_can_refcount 1
7288 #define elf_backend_can_gc_sections 1
7289 #define elf_backend_plt_readonly 1
7290 #define elf_backend_want_got_plt 1
7291 #define elf_backend_want_plt_sym 0
7292 #define elf_backend_may_use_rel_p 0
7293 #define elf_backend_may_use_rela_p 1
7294 #define elf_backend_default_use_rela_p 1
7295 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
7296 #define elf_backend_default_execstack 0
7297
7298 #undef elf_backend_obj_attrs_section
7299 #define elf_backend_obj_attrs_section ".ARM.attributes"
7300
7301 #include "elfNN-target.h"