]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfnn-aarch64.c
x86: drop "mem" operand type attribute
[thirdparty/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271
272 /* Encoding of the nop instruction. */
273 #define INSN_NOP 0xd503201f
274
275 #define aarch64_compute_jump_table_size(htab) \
276 (((htab)->root.srelplt == NULL) ? 0 \
277 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
278
279 /* The first entry in a procedure linkage table looks like this
280 if the distance between the PLTGOT and the PLT is < 4GB use
281 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
282 in x16 and needs to work out PLTGOT[1] by using an address of
283 [x16,#-GOT_ENTRY_SIZE]. */
284 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
285 {
286 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
287 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
288 #if ARCH_SIZE == 64
289 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
290 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
291 #else
292 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
293 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
294 #endif
295 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
296 0x1f, 0x20, 0x03, 0xd5, /* nop */
297 0x1f, 0x20, 0x03, 0xd5, /* nop */
298 0x1f, 0x20, 0x03, 0xd5, /* nop */
299 };
300
301 /* Per function entry in a procedure linkage table looks like this
302 if the distance between the PLTGOT and the PLT is < 4GB use
303 these PLT entries. */
304 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
305 {
306 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
307 #if ARCH_SIZE == 64
308 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
309 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
310 #else
311 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
312 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
313 #endif
314 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
315 };
316
317 static const bfd_byte
318 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
319 {
320 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
321 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
322 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
323 #if ARCH_SIZE == 64
324 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
325 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
326 #else
327 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
328 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
329 #endif
330 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
331 0x1f, 0x20, 0x03, 0xd5, /* nop */
332 0x1f, 0x20, 0x03, 0xd5, /* nop */
333 };
334
335 #define elf_info_to_howto elfNN_aarch64_info_to_howto
336 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
337
338 #define AARCH64_ELF_ABI_VERSION 0
339
340 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
341 #define ALL_ONES (~ (bfd_vma) 0)
342
343 /* Indexed by the bfd interal reloc enumerators.
344 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
345 in reloc.c. */
346
347 static reloc_howto_type elfNN_aarch64_howto_table[] =
348 {
349 EMPTY_HOWTO (0),
350
351 /* Basic data relocations. */
352
353 /* Deprecated, but retained for backwards compatibility. */
354 HOWTO64 (R_AARCH64_NULL, /* type */
355 0, /* rightshift */
356 3, /* size (0 = byte, 1 = short, 2 = long) */
357 0, /* bitsize */
358 FALSE, /* pc_relative */
359 0, /* bitpos */
360 complain_overflow_dont, /* complain_on_overflow */
361 bfd_elf_generic_reloc, /* special_function */
362 "R_AARCH64_NULL", /* name */
363 FALSE, /* partial_inplace */
364 0, /* src_mask */
365 0, /* dst_mask */
366 FALSE), /* pcrel_offset */
367 HOWTO (R_AARCH64_NONE, /* type */
368 0, /* rightshift */
369 3, /* size (0 = byte, 1 = short, 2 = long) */
370 0, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_dont, /* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_AARCH64_NONE", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* .xword: (S+A) */
382 HOWTO64 (AARCH64_R (ABS64), /* type */
383 0, /* rightshift */
384 4, /* size (4 = long long) */
385 64, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_unsigned, /* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 AARCH64_R_STR (ABS64), /* name */
391 FALSE, /* partial_inplace */
392 ALL_ONES, /* src_mask */
393 ALL_ONES, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 /* .word: (S+A) */
397 HOWTO (AARCH64_R (ABS32), /* type */
398 0, /* rightshift */
399 2, /* size (0 = byte, 1 = short, 2 = long) */
400 32, /* bitsize */
401 FALSE, /* pc_relative */
402 0, /* bitpos */
403 complain_overflow_unsigned, /* complain_on_overflow */
404 bfd_elf_generic_reloc, /* special_function */
405 AARCH64_R_STR (ABS32), /* name */
406 FALSE, /* partial_inplace */
407 0xffffffff, /* src_mask */
408 0xffffffff, /* dst_mask */
409 FALSE), /* pcrel_offset */
410
411 /* .half: (S+A) */
412 HOWTO (AARCH64_R (ABS16), /* type */
413 0, /* rightshift */
414 1, /* size (0 = byte, 1 = short, 2 = long) */
415 16, /* bitsize */
416 FALSE, /* pc_relative */
417 0, /* bitpos */
418 complain_overflow_unsigned, /* complain_on_overflow */
419 bfd_elf_generic_reloc, /* special_function */
420 AARCH64_R_STR (ABS16), /* name */
421 FALSE, /* partial_inplace */
422 0xffff, /* src_mask */
423 0xffff, /* dst_mask */
424 FALSE), /* pcrel_offset */
425
426 /* .xword: (S+A-P) */
427 HOWTO64 (AARCH64_R (PREL64), /* type */
428 0, /* rightshift */
429 4, /* size (4 = long long) */
430 64, /* bitsize */
431 TRUE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 AARCH64_R_STR (PREL64), /* name */
436 FALSE, /* partial_inplace */
437 ALL_ONES, /* src_mask */
438 ALL_ONES, /* dst_mask */
439 TRUE), /* pcrel_offset */
440
441 /* .word: (S+A-P) */
442 HOWTO (AARCH64_R (PREL32), /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_signed, /* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 AARCH64_R_STR (PREL32), /* name */
451 FALSE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 /* .half: (S+A-P) */
457 HOWTO (AARCH64_R (PREL16), /* type */
458 0, /* rightshift */
459 1, /* size (0 = byte, 1 = short, 2 = long) */
460 16, /* bitsize */
461 TRUE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_signed, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 AARCH64_R_STR (PREL16), /* name */
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 TRUE), /* pcrel_offset */
470
471 /* Group relocations to create a 16, 32, 48 or 64 bit
472 unsigned data or abs address inline. */
473
474 /* MOVZ: ((S+A) >> 0) & 0xffff */
475 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
476 0, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_unsigned, /* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 AARCH64_R_STR (MOVW_UABS_G0), /* name */
484 FALSE, /* partial_inplace */
485 0xffff, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
490 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
491 0, /* rightshift */
492 2, /* size (0 = byte, 1 = short, 2 = long) */
493 16, /* bitsize */
494 FALSE, /* pc_relative */
495 0, /* bitpos */
496 complain_overflow_dont, /* complain_on_overflow */
497 bfd_elf_generic_reloc, /* special_function */
498 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
499 FALSE, /* partial_inplace */
500 0xffff, /* src_mask */
501 0xffff, /* dst_mask */
502 FALSE), /* pcrel_offset */
503
504 /* MOVZ: ((S+A) >> 16) & 0xffff */
505 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
506 16, /* rightshift */
507 2, /* size (0 = byte, 1 = short, 2 = long) */
508 16, /* bitsize */
509 FALSE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_unsigned, /* complain_on_overflow */
512 bfd_elf_generic_reloc, /* special_function */
513 AARCH64_R_STR (MOVW_UABS_G1), /* name */
514 FALSE, /* partial_inplace */
515 0xffff, /* src_mask */
516 0xffff, /* dst_mask */
517 FALSE), /* pcrel_offset */
518
519 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
520 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
521 16, /* rightshift */
522 2, /* size (0 = byte, 1 = short, 2 = long) */
523 16, /* bitsize */
524 FALSE, /* pc_relative */
525 0, /* bitpos */
526 complain_overflow_dont, /* complain_on_overflow */
527 bfd_elf_generic_reloc, /* special_function */
528 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
529 FALSE, /* partial_inplace */
530 0xffff, /* src_mask */
531 0xffff, /* dst_mask */
532 FALSE), /* pcrel_offset */
533
534 /* MOVZ: ((S+A) >> 32) & 0xffff */
535 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
536 32, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 16, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_unsigned, /* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 AARCH64_R_STR (MOVW_UABS_G2), /* name */
544 FALSE, /* partial_inplace */
545 0xffff, /* src_mask */
546 0xffff, /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
550 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
551 32, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 16, /* bitsize */
554 FALSE, /* pc_relative */
555 0, /* bitpos */
556 complain_overflow_dont, /* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
559 FALSE, /* partial_inplace */
560 0xffff, /* src_mask */
561 0xffff, /* dst_mask */
562 FALSE), /* pcrel_offset */
563
564 /* MOVZ: ((S+A) >> 48) & 0xffff */
565 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
566 48, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 16, /* bitsize */
569 FALSE, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_unsigned, /* complain_on_overflow */
572 bfd_elf_generic_reloc, /* special_function */
573 AARCH64_R_STR (MOVW_UABS_G3), /* name */
574 FALSE, /* partial_inplace */
575 0xffff, /* src_mask */
576 0xffff, /* dst_mask */
577 FALSE), /* pcrel_offset */
578
579 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
580 signed data or abs address inline. Will change instruction
581 to MOVN or MOVZ depending on sign of calculated value. */
582
583 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
584 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
585 0, /* rightshift */
586 2, /* size (0 = byte, 1 = short, 2 = long) */
587 17, /* bitsize */
588 FALSE, /* pc_relative */
589 0, /* bitpos */
590 complain_overflow_signed, /* complain_on_overflow */
591 bfd_elf_generic_reloc, /* special_function */
592 AARCH64_R_STR (MOVW_SABS_G0), /* name */
593 FALSE, /* partial_inplace */
594 0xffff, /* src_mask */
595 0xffff, /* dst_mask */
596 FALSE), /* pcrel_offset */
597
598 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
599 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
600 16, /* rightshift */
601 2, /* size (0 = byte, 1 = short, 2 = long) */
602 17, /* bitsize */
603 FALSE, /* pc_relative */
604 0, /* bitpos */
605 complain_overflow_signed, /* complain_on_overflow */
606 bfd_elf_generic_reloc, /* special_function */
607 AARCH64_R_STR (MOVW_SABS_G1), /* name */
608 FALSE, /* partial_inplace */
609 0xffff, /* src_mask */
610 0xffff, /* dst_mask */
611 FALSE), /* pcrel_offset */
612
613 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
614 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
615 32, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 17, /* bitsize */
618 FALSE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 AARCH64_R_STR (MOVW_SABS_G2), /* name */
623 FALSE, /* partial_inplace */
624 0xffff, /* src_mask */
625 0xffff, /* dst_mask */
626 FALSE), /* pcrel_offset */
627
628 /* Group relocations to create a 16, 32, 48 or 64 bit
629 PC relative address inline. */
630
631 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
632 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
633 0, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 17, /* bitsize */
636 TRUE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 AARCH64_R_STR (MOVW_PREL_G0), /* name */
641 FALSE, /* partial_inplace */
642 0xffff, /* src_mask */
643 0xffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
647 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 16, /* bitsize */
651 TRUE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
656 FALSE, /* partial_inplace */
657 0xffff, /* src_mask */
658 0xffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
660
661 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
662 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
663 16, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 17, /* bitsize */
666 TRUE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed, /* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 AARCH64_R_STR (MOVW_PREL_G1), /* name */
671 FALSE, /* partial_inplace */
672 0xffff, /* src_mask */
673 0xffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
677 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
678 16, /* rightshift */
679 2, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 TRUE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 bfd_elf_generic_reloc, /* special_function */
685 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
686 FALSE, /* partial_inplace */
687 0xffff, /* src_mask */
688 0xffff, /* dst_mask */
689 TRUE), /* pcrel_offset */
690
691 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
692 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
693 32, /* rightshift */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
695 17, /* bitsize */
696 TRUE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_signed, /* complain_on_overflow */
699 bfd_elf_generic_reloc, /* special_function */
700 AARCH64_R_STR (MOVW_PREL_G2), /* name */
701 FALSE, /* partial_inplace */
702 0xffff, /* src_mask */
703 0xffff, /* dst_mask */
704 TRUE), /* pcrel_offset */
705
706 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
707 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
708 32, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 TRUE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_dont, /* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
716 FALSE, /* partial_inplace */
717 0xffff, /* src_mask */
718 0xffff, /* dst_mask */
719 TRUE), /* pcrel_offset */
720
721 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
722 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
723 48, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont, /* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 AARCH64_R_STR (MOVW_PREL_G3), /* name */
731 FALSE, /* partial_inplace */
732 0xffff, /* src_mask */
733 0xffff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
737 addresses: PG(x) is (x & ~0xfff). */
738
739 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
740 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
741 2, /* rightshift */
742 2, /* size (0 = byte, 1 = short, 2 = long) */
743 19, /* bitsize */
744 TRUE, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_signed, /* complain_on_overflow */
747 bfd_elf_generic_reloc, /* special_function */
748 AARCH64_R_STR (LD_PREL_LO19), /* name */
749 FALSE, /* partial_inplace */
750 0x7ffff, /* src_mask */
751 0x7ffff, /* dst_mask */
752 TRUE), /* pcrel_offset */
753
754 /* ADR: (S+A-P) & 0x1fffff */
755 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 21, /* bitsize */
759 TRUE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 AARCH64_R_STR (ADR_PREL_LO21), /* name */
764 FALSE, /* partial_inplace */
765 0x1fffff, /* src_mask */
766 0x1fffff, /* dst_mask */
767 TRUE), /* pcrel_offset */
768
769 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
770 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
771 12, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 21, /* bitsize */
774 TRUE, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
779 FALSE, /* partial_inplace */
780 0x1fffff, /* src_mask */
781 0x1fffff, /* dst_mask */
782 TRUE), /* pcrel_offset */
783
784 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
785 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
786 12, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 21, /* bitsize */
789 TRUE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
794 FALSE, /* partial_inplace */
795 0x1fffff, /* src_mask */
796 0x1fffff, /* dst_mask */
797 TRUE), /* pcrel_offset */
798
799 /* ADD: (S+A) & 0xfff [no overflow check] */
800 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 12, /* bitsize */
804 FALSE, /* pc_relative */
805 10, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
809 FALSE, /* partial_inplace */
810 0x3ffc00, /* src_mask */
811 0x3ffc00, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* LD/ST8: (S+A) & 0xfff */
815 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 12, /* bitsize */
819 FALSE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
824 FALSE, /* partial_inplace */
825 0xfff, /* src_mask */
826 0xfff, /* dst_mask */
827 FALSE), /* pcrel_offset */
828
829 /* Relocations for control-flow instructions. */
830
831 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
832 HOWTO (AARCH64_R (TSTBR14), /* type */
833 2, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 14, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_signed, /* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 AARCH64_R_STR (TSTBR14), /* name */
841 FALSE, /* partial_inplace */
842 0x3fff, /* src_mask */
843 0x3fff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
847 HOWTO (AARCH64_R (CONDBR19), /* type */
848 2, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 19, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_signed, /* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 AARCH64_R_STR (CONDBR19), /* name */
856 FALSE, /* partial_inplace */
857 0x7ffff, /* src_mask */
858 0x7ffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 /* B: ((S+A-P) >> 2) & 0x3ffffff */
862 HOWTO (AARCH64_R (JUMP26), /* type */
863 2, /* rightshift */
864 2, /* size (0 = byte, 1 = short, 2 = long) */
865 26, /* bitsize */
866 TRUE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_signed, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 AARCH64_R_STR (JUMP26), /* name */
871 FALSE, /* partial_inplace */
872 0x3ffffff, /* src_mask */
873 0x3ffffff, /* dst_mask */
874 TRUE), /* pcrel_offset */
875
876 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
877 HOWTO (AARCH64_R (CALL26), /* type */
878 2, /* rightshift */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
880 26, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_signed, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 AARCH64_R_STR (CALL26), /* name */
886 FALSE, /* partial_inplace */
887 0x3ffffff, /* src_mask */
888 0x3ffffff, /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* LD/ST16: (S+A) & 0xffe */
892 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
893 1, /* rightshift */
894 2, /* size (0 = byte, 1 = short, 2 = long) */
895 12, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
901 FALSE, /* partial_inplace */
902 0xffe, /* src_mask */
903 0xffe, /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* LD/ST32: (S+A) & 0xffc */
907 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
908 2, /* rightshift */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
910 12, /* bitsize */
911 FALSE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
916 FALSE, /* partial_inplace */
917 0xffc, /* src_mask */
918 0xffc, /* dst_mask */
919 FALSE), /* pcrel_offset */
920
921 /* LD/ST64: (S+A) & 0xff8 */
922 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
923 3, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 12, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont, /* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
931 FALSE, /* partial_inplace */
932 0xff8, /* src_mask */
933 0xff8, /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* LD/ST128: (S+A) & 0xff0 */
937 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
938 4, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xff0, /* src_mask */
948 0xff0, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 /* Set a load-literal immediate field to bits
952 0x1FFFFC of G(S)-P */
953 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
954 2, /* rightshift */
955 2, /* size (0 = byte,1 = short,2 = long) */
956 19, /* bitsize */
957 TRUE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_signed, /* complain_on_overflow */
960 bfd_elf_generic_reloc, /* special_function */
961 AARCH64_R_STR (GOT_LD_PREL19), /* name */
962 FALSE, /* partial_inplace */
963 0xffffe0, /* src_mask */
964 0xffffe0, /* dst_mask */
965 TRUE), /* pcrel_offset */
966
967 /* Get to the page for the GOT entry for the symbol
968 (G(S) - P) using an ADRP instruction. */
969 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
970 12, /* rightshift */
971 2, /* size (0 = byte, 1 = short, 2 = long) */
972 21, /* bitsize */
973 TRUE, /* pc_relative */
974 0, /* bitpos */
975 complain_overflow_dont, /* complain_on_overflow */
976 bfd_elf_generic_reloc, /* special_function */
977 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
978 FALSE, /* partial_inplace */
979 0x1fffff, /* src_mask */
980 0x1fffff, /* dst_mask */
981 TRUE), /* pcrel_offset */
982
983 /* LD64: GOT offset G(S) & 0xff8 */
984 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
985 3, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 12, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont, /* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
993 FALSE, /* partial_inplace */
994 0xff8, /* src_mask */
995 0xff8, /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* LD32: GOT offset G(S) & 0xffc */
999 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1000 2, /* rightshift */
1001 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 12, /* bitsize */
1003 FALSE, /* pc_relative */
1004 0, /* bitpos */
1005 complain_overflow_dont, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1008 FALSE, /* partial_inplace */
1009 0xffc, /* src_mask */
1010 0xffc, /* dst_mask */
1011 FALSE), /* pcrel_offset */
1012
1013 /* Lower 16 bits of GOT offset for the symbol. */
1014 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1015 0, /* rightshift */
1016 2, /* size (0 = byte, 1 = short, 2 = long) */
1017 16, /* bitsize */
1018 FALSE, /* pc_relative */
1019 0, /* bitpos */
1020 complain_overflow_dont, /* complain_on_overflow */
1021 bfd_elf_generic_reloc, /* special_function */
1022 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1023 FALSE, /* partial_inplace */
1024 0xffff, /* src_mask */
1025 0xffff, /* dst_mask */
1026 FALSE), /* pcrel_offset */
1027
1028 /* Higher 16 bits of GOT offset for the symbol. */
1029 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1030 16, /* rightshift */
1031 2, /* size (0 = byte, 1 = short, 2 = long) */
1032 16, /* bitsize */
1033 FALSE, /* pc_relative */
1034 0, /* bitpos */
1035 complain_overflow_unsigned, /* complain_on_overflow */
1036 bfd_elf_generic_reloc, /* special_function */
1037 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1038 FALSE, /* partial_inplace */
1039 0xffff, /* src_mask */
1040 0xffff, /* dst_mask */
1041 FALSE), /* pcrel_offset */
1042
1043 /* LD64: GOT offset for the symbol. */
1044 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1045 3, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 12, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_unsigned, /* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1053 FALSE, /* partial_inplace */
1054 0x7ff8, /* src_mask */
1055 0x7ff8, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* LD32: GOT offset to the page address of GOT table.
1059 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1060 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1061 2, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 12, /* bitsize */
1064 FALSE, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_unsigned, /* complain_on_overflow */
1067 bfd_elf_generic_reloc, /* special_function */
1068 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1069 FALSE, /* partial_inplace */
1070 0x5ffc, /* src_mask */
1071 0x5ffc, /* dst_mask */
1072 FALSE), /* pcrel_offset */
1073
1074 /* LD64: GOT offset to the page address of GOT table.
1075 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1076 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1077 3, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 12, /* bitsize */
1080 FALSE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_unsigned, /* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1085 FALSE, /* partial_inplace */
1086 0x7ff8, /* src_mask */
1087 0x7ff8, /* dst_mask */
1088 FALSE), /* pcrel_offset */
1089
1090 /* Get to the page for the GOT entry for the symbol
1091 (G(S) - P) using an ADRP instruction. */
1092 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1093 12, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 21, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont, /* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1101 FALSE, /* partial_inplace */
1102 0x1fffff, /* src_mask */
1103 0x1fffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 21, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1115 FALSE, /* partial_inplace */
1116 0x1fffff, /* src_mask */
1117 0x1fffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1121 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1122 0, /* rightshift */
1123 2, /* size (0 = byte, 1 = short, 2 = long) */
1124 12, /* bitsize */
1125 FALSE, /* pc_relative */
1126 0, /* bitpos */
1127 complain_overflow_dont, /* complain_on_overflow */
1128 bfd_elf_generic_reloc, /* special_function */
1129 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1130 FALSE, /* partial_inplace */
1131 0xfff, /* src_mask */
1132 0xfff, /* dst_mask */
1133 FALSE), /* pcrel_offset */
1134
1135 /* Lower 16 bits of GOT offset to tls_index. */
1136 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1137 0, /* rightshift */
1138 2, /* size (0 = byte, 1 = short, 2 = long) */
1139 16, /* bitsize */
1140 FALSE, /* pc_relative */
1141 0, /* bitpos */
1142 complain_overflow_dont, /* complain_on_overflow */
1143 bfd_elf_generic_reloc, /* special_function */
1144 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1145 FALSE, /* partial_inplace */
1146 0xffff, /* src_mask */
1147 0xffff, /* dst_mask */
1148 FALSE), /* pcrel_offset */
1149
1150 /* Higher 16 bits of GOT offset to tls_index. */
1151 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1152 16, /* rightshift */
1153 2, /* size (0 = byte, 1 = short, 2 = long) */
1154 16, /* bitsize */
1155 FALSE, /* pc_relative */
1156 0, /* bitpos */
1157 complain_overflow_unsigned, /* complain_on_overflow */
1158 bfd_elf_generic_reloc, /* special_function */
1159 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1160 FALSE, /* partial_inplace */
1161 0xffff, /* src_mask */
1162 0xffff, /* dst_mask */
1163 FALSE), /* pcrel_offset */
1164
1165 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1166 12, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 21, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_dont, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1174 FALSE, /* partial_inplace */
1175 0x1fffff, /* src_mask */
1176 0x1fffff, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1180 3, /* rightshift */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1182 12, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xff8, /* src_mask */
1190 0xff8, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1194 2, /* rightshift */
1195 2, /* size (0 = byte, 1 = short, 2 = long) */
1196 12, /* bitsize */
1197 FALSE, /* pc_relative */
1198 0, /* bitpos */
1199 complain_overflow_dont, /* complain_on_overflow */
1200 bfd_elf_generic_reloc, /* special_function */
1201 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1202 FALSE, /* partial_inplace */
1203 0xffc, /* src_mask */
1204 0xffc, /* dst_mask */
1205 FALSE), /* pcrel_offset */
1206
1207 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1208 2, /* rightshift */
1209 2, /* size (0 = byte, 1 = short, 2 = long) */
1210 19, /* bitsize */
1211 FALSE, /* pc_relative */
1212 0, /* bitpos */
1213 complain_overflow_dont, /* complain_on_overflow */
1214 bfd_elf_generic_reloc, /* special_function */
1215 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1216 FALSE, /* partial_inplace */
1217 0x1ffffc, /* src_mask */
1218 0x1ffffc, /* dst_mask */
1219 FALSE), /* pcrel_offset */
1220
1221 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1222 0, /* rightshift */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1224 16, /* bitsize */
1225 FALSE, /* pc_relative */
1226 0, /* bitpos */
1227 complain_overflow_dont, /* complain_on_overflow */
1228 bfd_elf_generic_reloc, /* special_function */
1229 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1230 FALSE, /* partial_inplace */
1231 0xffff, /* src_mask */
1232 0xffff, /* dst_mask */
1233 FALSE), /* pcrel_offset */
1234
1235 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1236 16, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 FALSE, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_unsigned, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1244 FALSE, /* partial_inplace */
1245 0xffff, /* src_mask */
1246 0xffff, /* dst_mask */
1247 FALSE), /* pcrel_offset */
1248
1249 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1250 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1251 12, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 12, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_unsigned, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1259 FALSE, /* partial_inplace */
1260 0xfff, /* src_mask */
1261 0xfff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 /* Unsigned 12 bit byte offset to module TLS base address. */
1265 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 12, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_unsigned, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1274 FALSE, /* partial_inplace */
1275 0xfff, /* src_mask */
1276 0xfff, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1280 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 12, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_dont, /* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1289 FALSE, /* partial_inplace */
1290 0xfff, /* src_mask */
1291 0xfff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1295 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1296 0, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 12, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1304 FALSE, /* partial_inplace */
1305 0xfff, /* src_mask */
1306 0xfff, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 /* Get to the page for the GOT entry for the symbol
1310 (G(S) - P) using an ADRP instruction. */
1311 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1312 12, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 21, /* bitsize */
1315 TRUE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_signed, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1320 FALSE, /* partial_inplace */
1321 0x1fffff, /* src_mask */
1322 0x1fffff, /* dst_mask */
1323 TRUE), /* pcrel_offset */
1324
1325 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1326 0, /* rightshift */
1327 2, /* size (0 = byte, 1 = short, 2 = long) */
1328 21, /* bitsize */
1329 TRUE, /* pc_relative */
1330 0, /* bitpos */
1331 complain_overflow_signed, /* complain_on_overflow */
1332 bfd_elf_generic_reloc, /* special_function */
1333 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1334 FALSE, /* partial_inplace */
1335 0x1fffff, /* src_mask */
1336 0x1fffff, /* dst_mask */
1337 TRUE), /* pcrel_offset */
1338
1339 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1340 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1341 1, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 11, /* bitsize */
1344 FALSE, /* pc_relative */
1345 10, /* bitpos */
1346 complain_overflow_unsigned, /* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1349 FALSE, /* partial_inplace */
1350 0x1ffc00, /* src_mask */
1351 0x1ffc00, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1355 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1356 1, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 11, /* bitsize */
1359 FALSE, /* pc_relative */
1360 10, /* bitpos */
1361 complain_overflow_dont, /* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1364 FALSE, /* partial_inplace */
1365 0x1ffc00, /* src_mask */
1366 0x1ffc00, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1370 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1371 2, /* rightshift */
1372 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 10, /* bitsize */
1374 FALSE, /* pc_relative */
1375 10, /* bitpos */
1376 complain_overflow_unsigned, /* complain_on_overflow */
1377 bfd_elf_generic_reloc, /* special_function */
1378 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1379 FALSE, /* partial_inplace */
1380 0x3ffc00, /* src_mask */
1381 0x3ffc00, /* dst_mask */
1382 FALSE), /* pcrel_offset */
1383
1384 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1385 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1386 2, /* rightshift */
1387 2, /* size (0 = byte, 1 = short, 2 = long) */
1388 10, /* bitsize */
1389 FALSE, /* pc_relative */
1390 10, /* bitpos */
1391 complain_overflow_dont, /* complain_on_overflow */
1392 bfd_elf_generic_reloc, /* special_function */
1393 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1394 FALSE, /* partial_inplace */
1395 0xffc00, /* src_mask */
1396 0xffc00, /* dst_mask */
1397 FALSE), /* pcrel_offset */
1398
1399 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1400 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1401 3, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 9, /* bitsize */
1404 FALSE, /* pc_relative */
1405 10, /* bitpos */
1406 complain_overflow_unsigned, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1409 FALSE, /* partial_inplace */
1410 0x3ffc00, /* src_mask */
1411 0x3ffc00, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1415 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1416 3, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 9, /* bitsize */
1419 FALSE, /* pc_relative */
1420 10, /* bitpos */
1421 complain_overflow_dont, /* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1424 FALSE, /* partial_inplace */
1425 0x7fc00, /* src_mask */
1426 0x7fc00, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1430 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 12, /* bitsize */
1434 FALSE, /* pc_relative */
1435 10, /* bitpos */
1436 complain_overflow_unsigned, /* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1439 FALSE, /* partial_inplace */
1440 0x3ffc00, /* src_mask */
1441 0x3ffc00, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1445 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1446 0, /* rightshift */
1447 2, /* size (0 = byte, 1 = short, 2 = long) */
1448 12, /* bitsize */
1449 FALSE, /* pc_relative */
1450 10, /* bitpos */
1451 complain_overflow_dont, /* complain_on_overflow */
1452 bfd_elf_generic_reloc, /* special_function */
1453 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1454 FALSE, /* partial_inplace */
1455 0x3ffc00, /* src_mask */
1456 0x3ffc00, /* dst_mask */
1457 FALSE), /* pcrel_offset */
1458
1459 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1460 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 16, /* bitsize */
1464 FALSE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_unsigned, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1473
1474 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1475 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1476 0, /* rightshift */
1477 2, /* size (0 = byte, 1 = short, 2 = long) */
1478 16, /* bitsize */
1479 FALSE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_dont, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1484 FALSE, /* partial_inplace */
1485 0xffff, /* src_mask */
1486 0xffff, /* dst_mask */
1487 FALSE), /* pcrel_offset */
1488
1489 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1490 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1491 16, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 16, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_unsigned, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
1498 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1499 FALSE, /* partial_inplace */
1500 0xffff, /* src_mask */
1501 0xffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1505 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1506 16, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 16, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_dont, /* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1514 FALSE, /* partial_inplace */
1515 0xffff, /* src_mask */
1516 0xffff, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1520 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1521 32, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 16, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_unsigned, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1529 FALSE, /* partial_inplace */
1530 0xffff, /* src_mask */
1531 0xffff, /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1535 32, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 16, /* bitsize */
1538 FALSE, /* pc_relative */
1539 0, /* bitpos */
1540 complain_overflow_unsigned, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1543 FALSE, /* partial_inplace */
1544 0xffff, /* src_mask */
1545 0xffff, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1549 16, /* rightshift */
1550 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 16, /* bitsize */
1552 FALSE, /* pc_relative */
1553 0, /* bitpos */
1554 complain_overflow_dont, /* complain_on_overflow */
1555 bfd_elf_generic_reloc, /* special_function */
1556 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1557 FALSE, /* partial_inplace */
1558 0xffff, /* src_mask */
1559 0xffff, /* dst_mask */
1560 FALSE), /* pcrel_offset */
1561
1562 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1563 16, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 FALSE, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_dont, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1571 FALSE, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 FALSE), /* pcrel_offset */
1575
1576 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1577 0, /* rightshift */
1578 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 16, /* bitsize */
1580 FALSE, /* pc_relative */
1581 0, /* bitpos */
1582 complain_overflow_dont, /* complain_on_overflow */
1583 bfd_elf_generic_reloc, /* special_function */
1584 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1585 FALSE, /* partial_inplace */
1586 0xffff, /* src_mask */
1587 0xffff, /* dst_mask */
1588 FALSE), /* pcrel_offset */
1589
1590 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1591 0, /* rightshift */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 16, /* bitsize */
1594 FALSE, /* pc_relative */
1595 0, /* bitpos */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffff, /* src_mask */
1601 0xffff, /* dst_mask */
1602 FALSE), /* pcrel_offset */
1603
1604 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1605 12, /* rightshift */
1606 2, /* size (0 = byte, 1 = short, 2 = long) */
1607 12, /* bitsize */
1608 FALSE, /* pc_relative */
1609 0, /* bitpos */
1610 complain_overflow_unsigned, /* complain_on_overflow */
1611 bfd_elf_generic_reloc, /* special_function */
1612 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1613 FALSE, /* partial_inplace */
1614 0xfff, /* src_mask */
1615 0xfff, /* dst_mask */
1616 FALSE), /* pcrel_offset */
1617
1618 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1619 0, /* rightshift */
1620 2, /* size (0 = byte, 1 = short, 2 = long) */
1621 12, /* bitsize */
1622 FALSE, /* pc_relative */
1623 0, /* bitpos */
1624 complain_overflow_unsigned, /* complain_on_overflow */
1625 bfd_elf_generic_reloc, /* special_function */
1626 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1627 FALSE, /* partial_inplace */
1628 0xfff, /* src_mask */
1629 0xfff, /* dst_mask */
1630 FALSE), /* pcrel_offset */
1631
1632 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1633 0, /* rightshift */
1634 2, /* size (0 = byte, 1 = short, 2 = long) */
1635 12, /* bitsize */
1636 FALSE, /* pc_relative */
1637 0, /* bitpos */
1638 complain_overflow_dont, /* complain_on_overflow */
1639 bfd_elf_generic_reloc, /* special_function */
1640 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1641 FALSE, /* partial_inplace */
1642 0xfff, /* src_mask */
1643 0xfff, /* dst_mask */
1644 FALSE), /* pcrel_offset */
1645
1646 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1647 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1648 1, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 11, /* bitsize */
1651 FALSE, /* pc_relative */
1652 10, /* bitpos */
1653 complain_overflow_unsigned, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1656 FALSE, /* partial_inplace */
1657 0x1ffc00, /* src_mask */
1658 0x1ffc00, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1662 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1663 1, /* rightshift */
1664 2, /* size (0 = byte, 1 = short, 2 = long) */
1665 11, /* bitsize */
1666 FALSE, /* pc_relative */
1667 10, /* bitpos */
1668 complain_overflow_dont, /* complain_on_overflow */
1669 bfd_elf_generic_reloc, /* special_function */
1670 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1671 FALSE, /* partial_inplace */
1672 0x1ffc00, /* src_mask */
1673 0x1ffc00, /* dst_mask */
1674 FALSE), /* pcrel_offset */
1675
1676 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1677 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1678 2, /* rightshift */
1679 2, /* size (0 = byte, 1 = short, 2 = long) */
1680 10, /* bitsize */
1681 FALSE, /* pc_relative */
1682 10, /* bitpos */
1683 complain_overflow_unsigned, /* complain_on_overflow */
1684 bfd_elf_generic_reloc, /* special_function */
1685 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1686 FALSE, /* partial_inplace */
1687 0xffc00, /* src_mask */
1688 0xffc00, /* dst_mask */
1689 FALSE), /* pcrel_offset */
1690
1691 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1692 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1693 2, /* rightshift */
1694 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 10, /* bitsize */
1696 FALSE, /* pc_relative */
1697 10, /* bitpos */
1698 complain_overflow_dont, /* complain_on_overflow */
1699 bfd_elf_generic_reloc, /* special_function */
1700 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1701 FALSE, /* partial_inplace */
1702 0xffc00, /* src_mask */
1703 0xffc00, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1707 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1708 3, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 9, /* bitsize */
1711 FALSE, /* pc_relative */
1712 10, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0x7fc00, /* src_mask */
1718 0x7fc00, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1722 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1723 3, /* rightshift */
1724 2, /* size (0 = byte, 1 = short, 2 = long) */
1725 9, /* bitsize */
1726 FALSE, /* pc_relative */
1727 10, /* bitpos */
1728 complain_overflow_dont, /* complain_on_overflow */
1729 bfd_elf_generic_reloc, /* special_function */
1730 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1731 FALSE, /* partial_inplace */
1732 0x7fc00, /* src_mask */
1733 0x7fc00, /* dst_mask */
1734 FALSE), /* pcrel_offset */
1735
1736 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1737 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1738 0, /* rightshift */
1739 2, /* size (0 = byte, 1 = short, 2 = long) */
1740 12, /* bitsize */
1741 FALSE, /* pc_relative */
1742 10, /* bitpos */
1743 complain_overflow_unsigned, /* complain_on_overflow */
1744 bfd_elf_generic_reloc, /* special_function */
1745 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1746 FALSE, /* partial_inplace */
1747 0x3ffc00, /* src_mask */
1748 0x3ffc00, /* dst_mask */
1749 FALSE), /* pcrel_offset */
1750
1751 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1752 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1753 0, /* rightshift */
1754 2, /* size (0 = byte, 1 = short, 2 = long) */
1755 12, /* bitsize */
1756 FALSE, /* pc_relative */
1757 10, /* bitpos */
1758 complain_overflow_dont, /* complain_on_overflow */
1759 bfd_elf_generic_reloc, /* special_function */
1760 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1761 FALSE, /* partial_inplace */
1762 0x3ffc00, /* src_mask */
1763 0x3ffc00, /* dst_mask */
1764 FALSE), /* pcrel_offset */
1765
1766 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 19, /* bitsize */
1770 TRUE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1775 FALSE, /* partial_inplace */
1776 0x0ffffe0, /* src_mask */
1777 0x0ffffe0, /* dst_mask */
1778 TRUE), /* pcrel_offset */
1779
1780 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1781 0, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 21, /* bitsize */
1784 TRUE, /* pc_relative */
1785 0, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
1788 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1789 FALSE, /* partial_inplace */
1790 0x1fffff, /* src_mask */
1791 0x1fffff, /* dst_mask */
1792 TRUE), /* pcrel_offset */
1793
1794 /* Get to the page for the GOT entry for the symbol
1795 (G(S) - P) using an ADRP instruction. */
1796 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1797 12, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 21, /* bitsize */
1800 TRUE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_dont, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1805 FALSE, /* partial_inplace */
1806 0x1fffff, /* src_mask */
1807 0x1fffff, /* dst_mask */
1808 TRUE), /* pcrel_offset */
1809
1810 /* LD64: GOT offset G(S) & 0xff8. */
1811 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 12, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1820 FALSE, /* partial_inplace */
1821 0xff8, /* src_mask */
1822 0xff8, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD32: GOT offset G(S) & 0xffc. */
1826 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1827 2, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 0, /* bitpos */
1832 complain_overflow_dont, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1835 FALSE, /* partial_inplace */
1836 0xffc, /* src_mask */
1837 0xffc, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* ADD: GOT offset G(S) & 0xfff. */
1841 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 0, /* bitpos */
1847 complain_overflow_dont,/* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1850 FALSE, /* partial_inplace */
1851 0xfff, /* src_mask */
1852 0xfff, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1856 16, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 12, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_unsigned, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1864 FALSE, /* partial_inplace */
1865 0xffff, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 12, /* bitsize */
1873 FALSE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1878 FALSE, /* partial_inplace */
1879 0xffff, /* src_mask */
1880 0xffff, /* dst_mask */
1881 FALSE), /* pcrel_offset */
1882
1883 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 12, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_dont, /* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 AARCH64_R_STR (TLSDESC_LDR), /* name */
1892 FALSE, /* partial_inplace */
1893 0x0, /* src_mask */
1894 0x0, /* dst_mask */
1895 FALSE), /* pcrel_offset */
1896
1897 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1898 0, /* rightshift */
1899 2, /* size (0 = byte, 1 = short, 2 = long) */
1900 12, /* bitsize */
1901 FALSE, /* pc_relative */
1902 0, /* bitpos */
1903 complain_overflow_dont, /* complain_on_overflow */
1904 bfd_elf_generic_reloc, /* special_function */
1905 AARCH64_R_STR (TLSDESC_ADD), /* name */
1906 FALSE, /* partial_inplace */
1907 0x0, /* src_mask */
1908 0x0, /* dst_mask */
1909 FALSE), /* pcrel_offset */
1910
1911 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1912 0, /* rightshift */
1913 2, /* size (0 = byte, 1 = short, 2 = long) */
1914 0, /* bitsize */
1915 FALSE, /* pc_relative */
1916 0, /* bitpos */
1917 complain_overflow_dont, /* complain_on_overflow */
1918 bfd_elf_generic_reloc, /* special_function */
1919 AARCH64_R_STR (TLSDESC_CALL), /* name */
1920 FALSE, /* partial_inplace */
1921 0x0, /* src_mask */
1922 0x0, /* dst_mask */
1923 FALSE), /* pcrel_offset */
1924
1925 HOWTO (AARCH64_R (COPY), /* type */
1926 0, /* rightshift */
1927 2, /* size (0 = byte, 1 = short, 2 = long) */
1928 64, /* bitsize */
1929 FALSE, /* pc_relative */
1930 0, /* bitpos */
1931 complain_overflow_bitfield, /* complain_on_overflow */
1932 bfd_elf_generic_reloc, /* special_function */
1933 AARCH64_R_STR (COPY), /* name */
1934 TRUE, /* partial_inplace */
1935 0xffffffff, /* src_mask */
1936 0xffffffff, /* dst_mask */
1937 FALSE), /* pcrel_offset */
1938
1939 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1940 0, /* rightshift */
1941 2, /* size (0 = byte, 1 = short, 2 = long) */
1942 64, /* bitsize */
1943 FALSE, /* pc_relative */
1944 0, /* bitpos */
1945 complain_overflow_bitfield, /* complain_on_overflow */
1946 bfd_elf_generic_reloc, /* special_function */
1947 AARCH64_R_STR (GLOB_DAT), /* name */
1948 TRUE, /* partial_inplace */
1949 0xffffffff, /* src_mask */
1950 0xffffffff, /* dst_mask */
1951 FALSE), /* pcrel_offset */
1952
1953 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1954 0, /* rightshift */
1955 2, /* size (0 = byte, 1 = short, 2 = long) */
1956 64, /* bitsize */
1957 FALSE, /* pc_relative */
1958 0, /* bitpos */
1959 complain_overflow_bitfield, /* complain_on_overflow */
1960 bfd_elf_generic_reloc, /* special_function */
1961 AARCH64_R_STR (JUMP_SLOT), /* name */
1962 TRUE, /* partial_inplace */
1963 0xffffffff, /* src_mask */
1964 0xffffffff, /* dst_mask */
1965 FALSE), /* pcrel_offset */
1966
1967 HOWTO (AARCH64_R (RELATIVE), /* type */
1968 0, /* rightshift */
1969 2, /* size (0 = byte, 1 = short, 2 = long) */
1970 64, /* bitsize */
1971 FALSE, /* pc_relative */
1972 0, /* bitpos */
1973 complain_overflow_bitfield, /* complain_on_overflow */
1974 bfd_elf_generic_reloc, /* special_function */
1975 AARCH64_R_STR (RELATIVE), /* name */
1976 TRUE, /* partial_inplace */
1977 ALL_ONES, /* src_mask */
1978 ALL_ONES, /* dst_mask */
1979 FALSE), /* pcrel_offset */
1980
1981 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1982 0, /* rightshift */
1983 2, /* size (0 = byte, 1 = short, 2 = long) */
1984 64, /* bitsize */
1985 FALSE, /* pc_relative */
1986 0, /* bitpos */
1987 complain_overflow_dont, /* complain_on_overflow */
1988 bfd_elf_generic_reloc, /* special_function */
1989 #if ARCH_SIZE == 64
1990 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1991 #else
1992 AARCH64_R_STR (TLS_DTPMOD), /* name */
1993 #endif
1994 FALSE, /* partial_inplace */
1995 0, /* src_mask */
1996 ALL_ONES, /* dst_mask */
1997 FALSE), /* pc_reloffset */
1998
1999 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2000 0, /* rightshift */
2001 2, /* size (0 = byte, 1 = short, 2 = long) */
2002 64, /* bitsize */
2003 FALSE, /* pc_relative */
2004 0, /* bitpos */
2005 complain_overflow_dont, /* complain_on_overflow */
2006 bfd_elf_generic_reloc, /* special_function */
2007 #if ARCH_SIZE == 64
2008 AARCH64_R_STR (TLS_DTPREL64), /* name */
2009 #else
2010 AARCH64_R_STR (TLS_DTPREL), /* name */
2011 #endif
2012 FALSE, /* partial_inplace */
2013 0, /* src_mask */
2014 ALL_ONES, /* dst_mask */
2015 FALSE), /* pcrel_offset */
2016
2017 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2018 0, /* rightshift */
2019 2, /* size (0 = byte, 1 = short, 2 = long) */
2020 64, /* bitsize */
2021 FALSE, /* pc_relative */
2022 0, /* bitpos */
2023 complain_overflow_dont, /* complain_on_overflow */
2024 bfd_elf_generic_reloc, /* special_function */
2025 #if ARCH_SIZE == 64
2026 AARCH64_R_STR (TLS_TPREL64), /* name */
2027 #else
2028 AARCH64_R_STR (TLS_TPREL), /* name */
2029 #endif
2030 FALSE, /* partial_inplace */
2031 0, /* src_mask */
2032 ALL_ONES, /* dst_mask */
2033 FALSE), /* pcrel_offset */
2034
2035 HOWTO (AARCH64_R (TLSDESC), /* type */
2036 0, /* rightshift */
2037 2, /* size (0 = byte, 1 = short, 2 = long) */
2038 64, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 bfd_elf_generic_reloc, /* special_function */
2043 AARCH64_R_STR (TLSDESC), /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 ALL_ONES, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 HOWTO (AARCH64_R (IRELATIVE), /* type */
2050 0, /* rightshift */
2051 2, /* size (0 = byte, 1 = short, 2 = long) */
2052 64, /* bitsize */
2053 FALSE, /* pc_relative */
2054 0, /* bitpos */
2055 complain_overflow_bitfield, /* complain_on_overflow */
2056 bfd_elf_generic_reloc, /* special_function */
2057 AARCH64_R_STR (IRELATIVE), /* name */
2058 FALSE, /* partial_inplace */
2059 0, /* src_mask */
2060 ALL_ONES, /* dst_mask */
2061 FALSE), /* pcrel_offset */
2062
2063 EMPTY_HOWTO (0),
2064 };
2065
2066 static reloc_howto_type elfNN_aarch64_howto_none =
2067 HOWTO (R_AARCH64_NONE, /* type */
2068 0, /* rightshift */
2069 3, /* size (0 = byte, 1 = short, 2 = long) */
2070 0, /* bitsize */
2071 FALSE, /* pc_relative */
2072 0, /* bitpos */
2073 complain_overflow_dont,/* complain_on_overflow */
2074 bfd_elf_generic_reloc, /* special_function */
2075 "R_AARCH64_NONE", /* name */
2076 FALSE, /* partial_inplace */
2077 0, /* src_mask */
2078 0, /* dst_mask */
2079 FALSE); /* pcrel_offset */
2080
2081 /* Given HOWTO, return the bfd internal relocation enumerator. */
2082
2083 static bfd_reloc_code_real_type
2084 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2085 {
2086 const int size
2087 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2088 const ptrdiff_t offset
2089 = howto - elfNN_aarch64_howto_table;
2090
2091 if (offset > 0 && offset < size - 1)
2092 return BFD_RELOC_AARCH64_RELOC_START + offset;
2093
2094 if (howto == &elfNN_aarch64_howto_none)
2095 return BFD_RELOC_AARCH64_NONE;
2096
2097 return BFD_RELOC_AARCH64_RELOC_START;
2098 }
2099
2100 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2101
2102 static bfd_reloc_code_real_type
2103 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2104 {
2105 static bfd_boolean initialized_p = FALSE;
2106 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2107 static unsigned int offsets[R_AARCH64_end];
2108
2109 if (!initialized_p)
2110 {
2111 unsigned int i;
2112
2113 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2114 if (elfNN_aarch64_howto_table[i].type != 0)
2115 offsets[elfNN_aarch64_howto_table[i].type] = i;
2116
2117 initialized_p = TRUE;
2118 }
2119
2120 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2121 return BFD_RELOC_AARCH64_NONE;
2122
2123 /* PR 17512: file: b371e70a. */
2124 if (r_type >= R_AARCH64_end)
2125 {
2126 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2127 abfd, r_type);
2128 bfd_set_error (bfd_error_bad_value);
2129 return BFD_RELOC_AARCH64_NONE;
2130 }
2131
2132 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2133 }
2134
2135 struct elf_aarch64_reloc_map
2136 {
2137 bfd_reloc_code_real_type from;
2138 bfd_reloc_code_real_type to;
2139 };
2140
2141 /* Map bfd generic reloc to AArch64-specific reloc. */
2142 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2143 {
2144 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2145
2146 /* Basic data relocations. */
2147 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2148 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2149 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2150 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2151 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2152 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2153 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2154 };
2155
2156 /* Given the bfd internal relocation enumerator in CODE, return the
2157 corresponding howto entry. */
2158
2159 static reloc_howto_type *
2160 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2161 {
2162 unsigned int i;
2163
2164 /* Convert bfd generic reloc to AArch64-specific reloc. */
2165 if (code < BFD_RELOC_AARCH64_RELOC_START
2166 || code > BFD_RELOC_AARCH64_RELOC_END)
2167 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2168 if (elf_aarch64_reloc_map[i].from == code)
2169 {
2170 code = elf_aarch64_reloc_map[i].to;
2171 break;
2172 }
2173
2174 if (code > BFD_RELOC_AARCH64_RELOC_START
2175 && code < BFD_RELOC_AARCH64_RELOC_END)
2176 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2177 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2178
2179 if (code == BFD_RELOC_AARCH64_NONE)
2180 return &elfNN_aarch64_howto_none;
2181
2182 return NULL;
2183 }
2184
2185 static reloc_howto_type *
2186 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2187 {
2188 bfd_reloc_code_real_type val;
2189 reloc_howto_type *howto;
2190
2191 #if ARCH_SIZE == 32
2192 if (r_type > 256)
2193 {
2194 bfd_set_error (bfd_error_bad_value);
2195 return NULL;
2196 }
2197 #endif
2198
2199 if (r_type == R_AARCH64_NONE)
2200 return &elfNN_aarch64_howto_none;
2201
2202 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2203 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2204
2205 if (howto != NULL)
2206 return howto;
2207
2208 bfd_set_error (bfd_error_bad_value);
2209 return NULL;
2210 }
2211
2212 static bfd_boolean
2213 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2214 Elf_Internal_Rela *elf_reloc)
2215 {
2216 unsigned int r_type;
2217
2218 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2219 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2220
2221 if (bfd_reloc->howto == NULL)
2222 {
2223 /* xgettext:c-format */
2224 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2225 return FALSE;
2226 }
2227 return TRUE;
2228 }
2229
2230 static reloc_howto_type *
2231 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2232 bfd_reloc_code_real_type code)
2233 {
2234 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2235
2236 if (howto != NULL)
2237 return howto;
2238
2239 bfd_set_error (bfd_error_bad_value);
2240 return NULL;
2241 }
2242
2243 static reloc_howto_type *
2244 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2245 const char *r_name)
2246 {
2247 unsigned int i;
2248
2249 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2250 if (elfNN_aarch64_howto_table[i].name != NULL
2251 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2252 return &elfNN_aarch64_howto_table[i];
2253
2254 return NULL;
2255 }
2256
2257 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2258 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2259 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2260 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2261
2262 /* The linker script knows the section names for placement.
2263 The entry_names are used to do simple name mangling on the stubs.
2264 Given a function name, and its type, the stub can be found. The
2265 name can be changed. The only requirement is the %s be present. */
2266 #define STUB_ENTRY_NAME "__%s_veneer"
2267
2268 /* The name of the dynamic interpreter. This is put in the .interp
2269 section. */
2270 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2271
2272 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2273 (((1 << 25) - 1) << 2)
2274 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2275 (-((1 << 25) << 2))
2276
2277 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2278 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2279
2280 static int
2281 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2282 {
2283 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2284 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2285 }
2286
2287 static int
2288 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2289 {
2290 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2291 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2292 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2293 }
2294
2295 static const uint32_t aarch64_adrp_branch_stub [] =
2296 {
2297 0x90000010, /* adrp ip0, X */
2298 /* R_AARCH64_ADR_HI21_PCREL(X) */
2299 0x91000210, /* add ip0, ip0, :lo12:X */
2300 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2301 0xd61f0200, /* br ip0 */
2302 };
2303
2304 static const uint32_t aarch64_long_branch_stub[] =
2305 {
2306 #if ARCH_SIZE == 64
2307 0x58000090, /* ldr ip0, 1f */
2308 #else
2309 0x18000090, /* ldr wip0, 1f */
2310 #endif
2311 0x10000011, /* adr ip1, #0 */
2312 0x8b110210, /* add ip0, ip0, ip1 */
2313 0xd61f0200, /* br ip0 */
2314 0x00000000, /* 1: .xword or .word
2315 R_AARCH64_PRELNN(X) + 12
2316 */
2317 0x00000000,
2318 };
2319
2320 static const uint32_t aarch64_erratum_835769_stub[] =
2321 {
2322 0x00000000, /* Placeholder for multiply accumulate. */
2323 0x14000000, /* b <label> */
2324 };
2325
2326 static const uint32_t aarch64_erratum_843419_stub[] =
2327 {
2328 0x00000000, /* Placeholder for LDR instruction. */
2329 0x14000000, /* b <label> */
2330 };
2331
2332 /* Section name for stubs is the associated section name plus this
2333 string. */
2334 #define STUB_SUFFIX ".stub"
2335
2336 enum elf_aarch64_stub_type
2337 {
2338 aarch64_stub_none,
2339 aarch64_stub_adrp_branch,
2340 aarch64_stub_long_branch,
2341 aarch64_stub_erratum_835769_veneer,
2342 aarch64_stub_erratum_843419_veneer,
2343 };
2344
2345 struct elf_aarch64_stub_hash_entry
2346 {
2347 /* Base hash table entry structure. */
2348 struct bfd_hash_entry root;
2349
2350 /* The stub section. */
2351 asection *stub_sec;
2352
2353 /* Offset within stub_sec of the beginning of this stub. */
2354 bfd_vma stub_offset;
2355
2356 /* Given the symbol's value and its section we can determine its final
2357 value when building the stubs (so the stub knows where to jump). */
2358 bfd_vma target_value;
2359 asection *target_section;
2360
2361 enum elf_aarch64_stub_type stub_type;
2362
2363 /* The symbol table entry, if any, that this was derived from. */
2364 struct elf_aarch64_link_hash_entry *h;
2365
2366 /* Destination symbol type */
2367 unsigned char st_type;
2368
2369 /* Where this stub is being called from, or, in the case of combined
2370 stub sections, the first input section in the group. */
2371 asection *id_sec;
2372
2373 /* The name for the local symbol at the start of this stub. The
2374 stub name in the hash table has to be unique; this does not, so
2375 it can be friendlier. */
2376 char *output_name;
2377
2378 /* The instruction which caused this stub to be generated (only valid for
2379 erratum 835769 workaround stubs at present). */
2380 uint32_t veneered_insn;
2381
2382 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2383 bfd_vma adrp_offset;
2384 };
2385
2386 /* Used to build a map of a section. This is required for mixed-endian
2387 code/data. */
2388
2389 typedef struct elf_elf_section_map
2390 {
2391 bfd_vma vma;
2392 char type;
2393 }
2394 elf_aarch64_section_map;
2395
2396
2397 typedef struct _aarch64_elf_section_data
2398 {
2399 struct bfd_elf_section_data elf;
2400 unsigned int mapcount;
2401 unsigned int mapsize;
2402 elf_aarch64_section_map *map;
2403 }
2404 _aarch64_elf_section_data;
2405
2406 #define elf_aarch64_section_data(sec) \
2407 ((_aarch64_elf_section_data *) elf_section_data (sec))
2408
2409 /* The size of the thread control block which is defined to be two pointers. */
2410 #define TCB_SIZE (ARCH_SIZE/8)*2
2411
2412 struct elf_aarch64_local_symbol
2413 {
2414 unsigned int got_type;
2415 bfd_signed_vma got_refcount;
2416 bfd_vma got_offset;
2417
2418 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2419 offset is from the end of the jump table and reserved entries
2420 within the PLTGOT.
2421
2422 The magic value (bfd_vma) -1 indicates that an offset has not be
2423 allocated. */
2424 bfd_vma tlsdesc_got_jump_table_offset;
2425 };
2426
2427 struct elf_aarch64_obj_tdata
2428 {
2429 struct elf_obj_tdata root;
2430
2431 /* local symbol descriptors */
2432 struct elf_aarch64_local_symbol *locals;
2433
2434 /* Zero to warn when linking objects with incompatible enum sizes. */
2435 int no_enum_size_warning;
2436
2437 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2438 int no_wchar_size_warning;
2439 };
2440
2441 #define elf_aarch64_tdata(bfd) \
2442 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2443
2444 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2445
2446 #define is_aarch64_elf(bfd) \
2447 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2448 && elf_tdata (bfd) != NULL \
2449 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2450
2451 static bfd_boolean
2452 elfNN_aarch64_mkobject (bfd *abfd)
2453 {
2454 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2455 AARCH64_ELF_DATA);
2456 }
2457
2458 #define elf_aarch64_hash_entry(ent) \
2459 ((struct elf_aarch64_link_hash_entry *)(ent))
2460
2461 #define GOT_UNKNOWN 0
2462 #define GOT_NORMAL 1
2463 #define GOT_TLS_GD 2
2464 #define GOT_TLS_IE 4
2465 #define GOT_TLSDESC_GD 8
2466
2467 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2468
2469 /* AArch64 ELF linker hash entry. */
2470 struct elf_aarch64_link_hash_entry
2471 {
2472 struct elf_link_hash_entry root;
2473
2474 /* Track dynamic relocs copied for this symbol. */
2475 struct elf_dyn_relocs *dyn_relocs;
2476
2477 /* Since PLT entries have variable size, we need to record the
2478 index into .got.plt instead of recomputing it from the PLT
2479 offset. */
2480 bfd_signed_vma plt_got_offset;
2481
2482 /* Bit mask representing the type of GOT entry(s) if any required by
2483 this symbol. */
2484 unsigned int got_type;
2485
2486 /* A pointer to the most recently used stub hash entry against this
2487 symbol. */
2488 struct elf_aarch64_stub_hash_entry *stub_cache;
2489
2490 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2491 is from the end of the jump table and reserved entries within the PLTGOT.
2492
2493 The magic value (bfd_vma) -1 indicates that an offset has not
2494 be allocated. */
2495 bfd_vma tlsdesc_got_jump_table_offset;
2496 };
2497
2498 static unsigned int
2499 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2500 bfd *abfd,
2501 unsigned long r_symndx)
2502 {
2503 if (h)
2504 return elf_aarch64_hash_entry (h)->got_type;
2505
2506 if (! elf_aarch64_locals (abfd))
2507 return GOT_UNKNOWN;
2508
2509 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2510 }
2511
2512 /* Get the AArch64 elf linker hash table from a link_info structure. */
2513 #define elf_aarch64_hash_table(info) \
2514 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2515
2516 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2517 ((struct elf_aarch64_stub_hash_entry *) \
2518 bfd_hash_lookup ((table), (string), (create), (copy)))
2519
2520 /* AArch64 ELF linker hash table. */
2521 struct elf_aarch64_link_hash_table
2522 {
2523 /* The main hash table. */
2524 struct elf_link_hash_table root;
2525
2526 /* Nonzero to force PIC branch veneers. */
2527 int pic_veneer;
2528
2529 /* Fix erratum 835769. */
2530 int fix_erratum_835769;
2531
2532 /* Fix erratum 843419. */
2533 int fix_erratum_843419;
2534
2535 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2536 int fix_erratum_843419_adr;
2537
2538 /* Don't apply link-time values for dynamic relocations. */
2539 int no_apply_dynamic_relocs;
2540
2541 /* The number of bytes in the initial entry in the PLT. */
2542 bfd_size_type plt_header_size;
2543
2544 /* The number of bytes in the subsequent PLT etries. */
2545 bfd_size_type plt_entry_size;
2546
2547 /* Small local sym cache. */
2548 struct sym_cache sym_cache;
2549
2550 /* For convenience in allocate_dynrelocs. */
2551 bfd *obfd;
2552
2553 /* The amount of space used by the reserved portion of the sgotplt
2554 section, plus whatever space is used by the jump slots. */
2555 bfd_vma sgotplt_jump_table_size;
2556
2557 /* The stub hash table. */
2558 struct bfd_hash_table stub_hash_table;
2559
2560 /* Linker stub bfd. */
2561 bfd *stub_bfd;
2562
2563 /* Linker call-backs. */
2564 asection *(*add_stub_section) (const char *, asection *);
2565 void (*layout_sections_again) (void);
2566
2567 /* Array to keep track of which stub sections have been created, and
2568 information on stub grouping. */
2569 struct map_stub
2570 {
2571 /* This is the section to which stubs in the group will be
2572 attached. */
2573 asection *link_sec;
2574 /* The stub section. */
2575 asection *stub_sec;
2576 } *stub_group;
2577
2578 /* Assorted information used by elfNN_aarch64_size_stubs. */
2579 unsigned int bfd_count;
2580 unsigned int top_index;
2581 asection **input_list;
2582
2583 /* The offset into splt of the PLT entry for the TLS descriptor
2584 resolver. Special values are 0, if not necessary (or not found
2585 to be necessary yet), and -1 if needed but not determined
2586 yet. */
2587 bfd_vma tlsdesc_plt;
2588
2589 /* The GOT offset for the lazy trampoline. Communicated to the
2590 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2591 indicates an offset is not allocated. */
2592 bfd_vma dt_tlsdesc_got;
2593
2594 /* Used by local STT_GNU_IFUNC symbols. */
2595 htab_t loc_hash_table;
2596 void * loc_hash_memory;
2597 };
2598
2599 /* Create an entry in an AArch64 ELF linker hash table. */
2600
2601 static struct bfd_hash_entry *
2602 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2603 struct bfd_hash_table *table,
2604 const char *string)
2605 {
2606 struct elf_aarch64_link_hash_entry *ret =
2607 (struct elf_aarch64_link_hash_entry *) entry;
2608
2609 /* Allocate the structure if it has not already been allocated by a
2610 subclass. */
2611 if (ret == NULL)
2612 ret = bfd_hash_allocate (table,
2613 sizeof (struct elf_aarch64_link_hash_entry));
2614 if (ret == NULL)
2615 return (struct bfd_hash_entry *) ret;
2616
2617 /* Call the allocation method of the superclass. */
2618 ret = ((struct elf_aarch64_link_hash_entry *)
2619 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2620 table, string));
2621 if (ret != NULL)
2622 {
2623 ret->dyn_relocs = NULL;
2624 ret->got_type = GOT_UNKNOWN;
2625 ret->plt_got_offset = (bfd_vma) - 1;
2626 ret->stub_cache = NULL;
2627 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2628 }
2629
2630 return (struct bfd_hash_entry *) ret;
2631 }
2632
2633 /* Initialize an entry in the stub hash table. */
2634
2635 static struct bfd_hash_entry *
2636 stub_hash_newfunc (struct bfd_hash_entry *entry,
2637 struct bfd_hash_table *table, const char *string)
2638 {
2639 /* Allocate the structure if it has not already been allocated by a
2640 subclass. */
2641 if (entry == NULL)
2642 {
2643 entry = bfd_hash_allocate (table,
2644 sizeof (struct
2645 elf_aarch64_stub_hash_entry));
2646 if (entry == NULL)
2647 return entry;
2648 }
2649
2650 /* Call the allocation method of the superclass. */
2651 entry = bfd_hash_newfunc (entry, table, string);
2652 if (entry != NULL)
2653 {
2654 struct elf_aarch64_stub_hash_entry *eh;
2655
2656 /* Initialize the local fields. */
2657 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2658 eh->adrp_offset = 0;
2659 eh->stub_sec = NULL;
2660 eh->stub_offset = 0;
2661 eh->target_value = 0;
2662 eh->target_section = NULL;
2663 eh->stub_type = aarch64_stub_none;
2664 eh->h = NULL;
2665 eh->id_sec = NULL;
2666 }
2667
2668 return entry;
2669 }
2670
2671 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2672 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2673 as global symbol. We reuse indx and dynstr_index for local symbol
2674 hash since they aren't used by global symbols in this backend. */
2675
2676 static hashval_t
2677 elfNN_aarch64_local_htab_hash (const void *ptr)
2678 {
2679 struct elf_link_hash_entry *h
2680 = (struct elf_link_hash_entry *) ptr;
2681 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2682 }
2683
2684 /* Compare local hash entries. */
2685
2686 static int
2687 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2688 {
2689 struct elf_link_hash_entry *h1
2690 = (struct elf_link_hash_entry *) ptr1;
2691 struct elf_link_hash_entry *h2
2692 = (struct elf_link_hash_entry *) ptr2;
2693
2694 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2695 }
2696
2697 /* Find and/or create a hash entry for local symbol. */
2698
2699 static struct elf_link_hash_entry *
2700 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2701 bfd *abfd, const Elf_Internal_Rela *rel,
2702 bfd_boolean create)
2703 {
2704 struct elf_aarch64_link_hash_entry e, *ret;
2705 asection *sec = abfd->sections;
2706 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2707 ELFNN_R_SYM (rel->r_info));
2708 void **slot;
2709
2710 e.root.indx = sec->id;
2711 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2712 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2713 create ? INSERT : NO_INSERT);
2714
2715 if (!slot)
2716 return NULL;
2717
2718 if (*slot)
2719 {
2720 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2721 return &ret->root;
2722 }
2723
2724 ret = (struct elf_aarch64_link_hash_entry *)
2725 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2726 sizeof (struct elf_aarch64_link_hash_entry));
2727 if (ret)
2728 {
2729 memset (ret, 0, sizeof (*ret));
2730 ret->root.indx = sec->id;
2731 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2732 ret->root.dynindx = -1;
2733 *slot = ret;
2734 }
2735 return &ret->root;
2736 }
2737
2738 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2739
2740 static void
2741 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2742 struct elf_link_hash_entry *dir,
2743 struct elf_link_hash_entry *ind)
2744 {
2745 struct elf_aarch64_link_hash_entry *edir, *eind;
2746
2747 edir = (struct elf_aarch64_link_hash_entry *) dir;
2748 eind = (struct elf_aarch64_link_hash_entry *) ind;
2749
2750 if (eind->dyn_relocs != NULL)
2751 {
2752 if (edir->dyn_relocs != NULL)
2753 {
2754 struct elf_dyn_relocs **pp;
2755 struct elf_dyn_relocs *p;
2756
2757 /* Add reloc counts against the indirect sym to the direct sym
2758 list. Merge any entries against the same section. */
2759 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2760 {
2761 struct elf_dyn_relocs *q;
2762
2763 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2764 if (q->sec == p->sec)
2765 {
2766 q->pc_count += p->pc_count;
2767 q->count += p->count;
2768 *pp = p->next;
2769 break;
2770 }
2771 if (q == NULL)
2772 pp = &p->next;
2773 }
2774 *pp = edir->dyn_relocs;
2775 }
2776
2777 edir->dyn_relocs = eind->dyn_relocs;
2778 eind->dyn_relocs = NULL;
2779 }
2780
2781 if (ind->root.type == bfd_link_hash_indirect)
2782 {
2783 /* Copy over PLT info. */
2784 if (dir->got.refcount <= 0)
2785 {
2786 edir->got_type = eind->got_type;
2787 eind->got_type = GOT_UNKNOWN;
2788 }
2789 }
2790
2791 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2792 }
2793
2794 /* Destroy an AArch64 elf linker hash table. */
2795
2796 static void
2797 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2798 {
2799 struct elf_aarch64_link_hash_table *ret
2800 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2801
2802 if (ret->loc_hash_table)
2803 htab_delete (ret->loc_hash_table);
2804 if (ret->loc_hash_memory)
2805 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2806
2807 bfd_hash_table_free (&ret->stub_hash_table);
2808 _bfd_elf_link_hash_table_free (obfd);
2809 }
2810
2811 /* Create an AArch64 elf linker hash table. */
2812
2813 static struct bfd_link_hash_table *
2814 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2815 {
2816 struct elf_aarch64_link_hash_table *ret;
2817 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2818
2819 ret = bfd_zmalloc (amt);
2820 if (ret == NULL)
2821 return NULL;
2822
2823 if (!_bfd_elf_link_hash_table_init
2824 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2825 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2826 {
2827 free (ret);
2828 return NULL;
2829 }
2830
2831 ret->plt_header_size = PLT_ENTRY_SIZE;
2832 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2833 ret->obfd = abfd;
2834 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2835
2836 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2837 sizeof (struct elf_aarch64_stub_hash_entry)))
2838 {
2839 _bfd_elf_link_hash_table_free (abfd);
2840 return NULL;
2841 }
2842
2843 ret->loc_hash_table = htab_try_create (1024,
2844 elfNN_aarch64_local_htab_hash,
2845 elfNN_aarch64_local_htab_eq,
2846 NULL);
2847 ret->loc_hash_memory = objalloc_create ();
2848 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2849 {
2850 elfNN_aarch64_link_hash_table_free (abfd);
2851 return NULL;
2852 }
2853 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2854
2855 return &ret->root.root;
2856 }
2857
2858 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2859
2860 static bfd_boolean
2861 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2862 bfd_vma offset, bfd_vma value)
2863 {
2864 reloc_howto_type *howto;
2865 bfd_vma place;
2866
2867 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2868 place = (input_section->output_section->vma + input_section->output_offset
2869 + offset);
2870
2871 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2872 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2873 return _bfd_aarch64_elf_put_addend (input_bfd,
2874 input_section->contents + offset, r_type,
2875 howto, value) == bfd_reloc_ok;
2876 }
2877
2878 static enum elf_aarch64_stub_type
2879 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2880 {
2881 if (aarch64_valid_for_adrp_p (value, place))
2882 return aarch64_stub_adrp_branch;
2883 return aarch64_stub_long_branch;
2884 }
2885
2886 /* Determine the type of stub needed, if any, for a call. */
2887
2888 static enum elf_aarch64_stub_type
2889 aarch64_type_of_stub (asection *input_sec,
2890 const Elf_Internal_Rela *rel,
2891 asection *sym_sec,
2892 unsigned char st_type,
2893 bfd_vma destination)
2894 {
2895 bfd_vma location;
2896 bfd_signed_vma branch_offset;
2897 unsigned int r_type;
2898 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2899
2900 if (st_type != STT_FUNC
2901 && (sym_sec == input_sec))
2902 return stub_type;
2903
2904 /* Determine where the call point is. */
2905 location = (input_sec->output_offset
2906 + input_sec->output_section->vma + rel->r_offset);
2907
2908 branch_offset = (bfd_signed_vma) (destination - location);
2909
2910 r_type = ELFNN_R_TYPE (rel->r_info);
2911
2912 /* We don't want to redirect any old unconditional jump in this way,
2913 only one which is being used for a sibcall, where it is
2914 acceptable for the IP0 and IP1 registers to be clobbered. */
2915 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2916 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2917 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2918 {
2919 stub_type = aarch64_stub_long_branch;
2920 }
2921
2922 return stub_type;
2923 }
2924
2925 /* Build a name for an entry in the stub hash table. */
2926
2927 static char *
2928 elfNN_aarch64_stub_name (const asection *input_section,
2929 const asection *sym_sec,
2930 const struct elf_aarch64_link_hash_entry *hash,
2931 const Elf_Internal_Rela *rel)
2932 {
2933 char *stub_name;
2934 bfd_size_type len;
2935
2936 if (hash)
2937 {
2938 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2939 stub_name = bfd_malloc (len);
2940 if (stub_name != NULL)
2941 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2942 (unsigned int) input_section->id,
2943 hash->root.root.root.string,
2944 rel->r_addend);
2945 }
2946 else
2947 {
2948 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2949 stub_name = bfd_malloc (len);
2950 if (stub_name != NULL)
2951 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2952 (unsigned int) input_section->id,
2953 (unsigned int) sym_sec->id,
2954 (unsigned int) ELFNN_R_SYM (rel->r_info),
2955 rel->r_addend);
2956 }
2957
2958 return stub_name;
2959 }
2960
2961 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2962 executable PLT slots where the executable never takes the address of those
2963 functions, the function symbols are not added to the hash table. */
2964
2965 static bfd_boolean
2966 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2967 {
2968 if (h->plt.offset != (bfd_vma) -1
2969 && !h->def_regular
2970 && !h->pointer_equality_needed)
2971 return FALSE;
2972
2973 return _bfd_elf_hash_symbol (h);
2974 }
2975
2976
2977 /* Look up an entry in the stub hash. Stub entries are cached because
2978 creating the stub name takes a bit of time. */
2979
2980 static struct elf_aarch64_stub_hash_entry *
2981 elfNN_aarch64_get_stub_entry (const asection *input_section,
2982 const asection *sym_sec,
2983 struct elf_link_hash_entry *hash,
2984 const Elf_Internal_Rela *rel,
2985 struct elf_aarch64_link_hash_table *htab)
2986 {
2987 struct elf_aarch64_stub_hash_entry *stub_entry;
2988 struct elf_aarch64_link_hash_entry *h =
2989 (struct elf_aarch64_link_hash_entry *) hash;
2990 const asection *id_sec;
2991
2992 if ((input_section->flags & SEC_CODE) == 0)
2993 return NULL;
2994
2995 /* If this input section is part of a group of sections sharing one
2996 stub section, then use the id of the first section in the group.
2997 Stub names need to include a section id, as there may well be
2998 more than one stub used to reach say, printf, and we need to
2999 distinguish between them. */
3000 id_sec = htab->stub_group[input_section->id].link_sec;
3001
3002 if (h != NULL && h->stub_cache != NULL
3003 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3004 {
3005 stub_entry = h->stub_cache;
3006 }
3007 else
3008 {
3009 char *stub_name;
3010
3011 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3012 if (stub_name == NULL)
3013 return NULL;
3014
3015 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3016 stub_name, FALSE, FALSE);
3017 if (h != NULL)
3018 h->stub_cache = stub_entry;
3019
3020 free (stub_name);
3021 }
3022
3023 return stub_entry;
3024 }
3025
3026
3027 /* Create a stub section. */
3028
3029 static asection *
3030 _bfd_aarch64_create_stub_section (asection *section,
3031 struct elf_aarch64_link_hash_table *htab)
3032 {
3033 size_t namelen;
3034 bfd_size_type len;
3035 char *s_name;
3036
3037 namelen = strlen (section->name);
3038 len = namelen + sizeof (STUB_SUFFIX);
3039 s_name = bfd_alloc (htab->stub_bfd, len);
3040 if (s_name == NULL)
3041 return NULL;
3042
3043 memcpy (s_name, section->name, namelen);
3044 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3045 return (*htab->add_stub_section) (s_name, section);
3046 }
3047
3048
3049 /* Find or create a stub section for a link section.
3050
3051 Fix or create the stub section used to collect stubs attached to
3052 the specified link section. */
3053
3054 static asection *
3055 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3056 struct elf_aarch64_link_hash_table *htab)
3057 {
3058 if (htab->stub_group[link_section->id].stub_sec == NULL)
3059 htab->stub_group[link_section->id].stub_sec
3060 = _bfd_aarch64_create_stub_section (link_section, htab);
3061 return htab->stub_group[link_section->id].stub_sec;
3062 }
3063
3064
3065 /* Find or create a stub section in the stub group for an input
3066 section. */
3067
3068 static asection *
3069 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3070 struct elf_aarch64_link_hash_table *htab)
3071 {
3072 asection *link_sec = htab->stub_group[section->id].link_sec;
3073 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3074 }
3075
3076
3077 /* Add a new stub entry in the stub group associated with an input
3078 section to the stub hash. Not all fields of the new stub entry are
3079 initialised. */
3080
3081 static struct elf_aarch64_stub_hash_entry *
3082 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3083 asection *section,
3084 struct elf_aarch64_link_hash_table *htab)
3085 {
3086 asection *link_sec;
3087 asection *stub_sec;
3088 struct elf_aarch64_stub_hash_entry *stub_entry;
3089
3090 link_sec = htab->stub_group[section->id].link_sec;
3091 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3092
3093 /* Enter this entry into the linker stub hash table. */
3094 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3095 TRUE, FALSE);
3096 if (stub_entry == NULL)
3097 {
3098 /* xgettext:c-format */
3099 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3100 section->owner, stub_name);
3101 return NULL;
3102 }
3103
3104 stub_entry->stub_sec = stub_sec;
3105 stub_entry->stub_offset = 0;
3106 stub_entry->id_sec = link_sec;
3107
3108 return stub_entry;
3109 }
3110
3111 /* Add a new stub entry in the final stub section to the stub hash.
3112 Not all fields of the new stub entry are initialised. */
3113
3114 static struct elf_aarch64_stub_hash_entry *
3115 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3116 asection *link_section,
3117 struct elf_aarch64_link_hash_table *htab)
3118 {
3119 asection *stub_sec;
3120 struct elf_aarch64_stub_hash_entry *stub_entry;
3121
3122 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3123 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3124 TRUE, FALSE);
3125 if (stub_entry == NULL)
3126 {
3127 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3128 return NULL;
3129 }
3130
3131 stub_entry->stub_sec = stub_sec;
3132 stub_entry->stub_offset = 0;
3133 stub_entry->id_sec = link_section;
3134
3135 return stub_entry;
3136 }
3137
3138
3139 static bfd_boolean
3140 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3141 void *in_arg ATTRIBUTE_UNUSED)
3142 {
3143 struct elf_aarch64_stub_hash_entry *stub_entry;
3144 asection *stub_sec;
3145 bfd *stub_bfd;
3146 bfd_byte *loc;
3147 bfd_vma sym_value;
3148 bfd_vma veneered_insn_loc;
3149 bfd_vma veneer_entry_loc;
3150 bfd_signed_vma branch_offset = 0;
3151 unsigned int template_size;
3152 const uint32_t *template;
3153 unsigned int i;
3154
3155 /* Massage our args to the form they really have. */
3156 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3157
3158 stub_sec = stub_entry->stub_sec;
3159
3160 /* Make a note of the offset within the stubs for this entry. */
3161 stub_entry->stub_offset = stub_sec->size;
3162 loc = stub_sec->contents + stub_entry->stub_offset;
3163
3164 stub_bfd = stub_sec->owner;
3165
3166 /* This is the address of the stub destination. */
3167 sym_value = (stub_entry->target_value
3168 + stub_entry->target_section->output_offset
3169 + stub_entry->target_section->output_section->vma);
3170
3171 if (stub_entry->stub_type == aarch64_stub_long_branch)
3172 {
3173 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3174 + stub_sec->output_offset);
3175
3176 /* See if we can relax the stub. */
3177 if (aarch64_valid_for_adrp_p (sym_value, place))
3178 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3179 }
3180
3181 switch (stub_entry->stub_type)
3182 {
3183 case aarch64_stub_adrp_branch:
3184 template = aarch64_adrp_branch_stub;
3185 template_size = sizeof (aarch64_adrp_branch_stub);
3186 break;
3187 case aarch64_stub_long_branch:
3188 template = aarch64_long_branch_stub;
3189 template_size = sizeof (aarch64_long_branch_stub);
3190 break;
3191 case aarch64_stub_erratum_835769_veneer:
3192 template = aarch64_erratum_835769_stub;
3193 template_size = sizeof (aarch64_erratum_835769_stub);
3194 break;
3195 case aarch64_stub_erratum_843419_veneer:
3196 template = aarch64_erratum_843419_stub;
3197 template_size = sizeof (aarch64_erratum_843419_stub);
3198 break;
3199 default:
3200 abort ();
3201 }
3202
3203 for (i = 0; i < (template_size / sizeof template[0]); i++)
3204 {
3205 bfd_putl32 (template[i], loc);
3206 loc += 4;
3207 }
3208
3209 template_size = (template_size + 7) & ~7;
3210 stub_sec->size += template_size;
3211
3212 switch (stub_entry->stub_type)
3213 {
3214 case aarch64_stub_adrp_branch:
3215 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3216 stub_entry->stub_offset, sym_value))
3217 /* The stub would not have been relaxed if the offset was out
3218 of range. */
3219 BFD_FAIL ();
3220
3221 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3222 stub_entry->stub_offset + 4, sym_value))
3223 BFD_FAIL ();
3224 break;
3225
3226 case aarch64_stub_long_branch:
3227 /* We want the value relative to the address 12 bytes back from the
3228 value itself. */
3229 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3230 stub_entry->stub_offset + 16, sym_value + 12))
3231 BFD_FAIL ();
3232 break;
3233
3234 case aarch64_stub_erratum_835769_veneer:
3235 veneered_insn_loc = stub_entry->target_section->output_section->vma
3236 + stub_entry->target_section->output_offset
3237 + stub_entry->target_value;
3238 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3239 + stub_entry->stub_sec->output_offset
3240 + stub_entry->stub_offset;
3241 branch_offset = veneered_insn_loc - veneer_entry_loc;
3242 branch_offset >>= 2;
3243 branch_offset &= 0x3ffffff;
3244 bfd_putl32 (stub_entry->veneered_insn,
3245 stub_sec->contents + stub_entry->stub_offset);
3246 bfd_putl32 (template[1] | branch_offset,
3247 stub_sec->contents + stub_entry->stub_offset + 4);
3248 break;
3249
3250 case aarch64_stub_erratum_843419_veneer:
3251 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3252 stub_entry->stub_offset + 4, sym_value + 4))
3253 BFD_FAIL ();
3254 break;
3255
3256 default:
3257 abort ();
3258 }
3259
3260 return TRUE;
3261 }
3262
3263 /* As above, but don't actually build the stub. Just bump offset so
3264 we know stub section sizes. */
3265
3266 static bfd_boolean
3267 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3268 void *in_arg ATTRIBUTE_UNUSED)
3269 {
3270 struct elf_aarch64_stub_hash_entry *stub_entry;
3271 int size;
3272
3273 /* Massage our args to the form they really have. */
3274 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3275
3276 switch (stub_entry->stub_type)
3277 {
3278 case aarch64_stub_adrp_branch:
3279 size = sizeof (aarch64_adrp_branch_stub);
3280 break;
3281 case aarch64_stub_long_branch:
3282 size = sizeof (aarch64_long_branch_stub);
3283 break;
3284 case aarch64_stub_erratum_835769_veneer:
3285 size = sizeof (aarch64_erratum_835769_stub);
3286 break;
3287 case aarch64_stub_erratum_843419_veneer:
3288 size = sizeof (aarch64_erratum_843419_stub);
3289 break;
3290 default:
3291 abort ();
3292 }
3293
3294 size = (size + 7) & ~7;
3295 stub_entry->stub_sec->size += size;
3296 return TRUE;
3297 }
3298
3299 /* External entry points for sizing and building linker stubs. */
3300
3301 /* Set up various things so that we can make a list of input sections
3302 for each output section included in the link. Returns -1 on error,
3303 0 when no stubs will be needed, and 1 on success. */
3304
3305 int
3306 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3307 struct bfd_link_info *info)
3308 {
3309 bfd *input_bfd;
3310 unsigned int bfd_count;
3311 unsigned int top_id, top_index;
3312 asection *section;
3313 asection **input_list, **list;
3314 bfd_size_type amt;
3315 struct elf_aarch64_link_hash_table *htab =
3316 elf_aarch64_hash_table (info);
3317
3318 if (!is_elf_hash_table (htab))
3319 return 0;
3320
3321 /* Count the number of input BFDs and find the top input section id. */
3322 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3323 input_bfd != NULL; input_bfd = input_bfd->link.next)
3324 {
3325 bfd_count += 1;
3326 for (section = input_bfd->sections;
3327 section != NULL; section = section->next)
3328 {
3329 if (top_id < section->id)
3330 top_id = section->id;
3331 }
3332 }
3333 htab->bfd_count = bfd_count;
3334
3335 amt = sizeof (struct map_stub) * (top_id + 1);
3336 htab->stub_group = bfd_zmalloc (amt);
3337 if (htab->stub_group == NULL)
3338 return -1;
3339
3340 /* We can't use output_bfd->section_count here to find the top output
3341 section index as some sections may have been removed, and
3342 _bfd_strip_section_from_output doesn't renumber the indices. */
3343 for (section = output_bfd->sections, top_index = 0;
3344 section != NULL; section = section->next)
3345 {
3346 if (top_index < section->index)
3347 top_index = section->index;
3348 }
3349
3350 htab->top_index = top_index;
3351 amt = sizeof (asection *) * (top_index + 1);
3352 input_list = bfd_malloc (amt);
3353 htab->input_list = input_list;
3354 if (input_list == NULL)
3355 return -1;
3356
3357 /* For sections we aren't interested in, mark their entries with a
3358 value we can check later. */
3359 list = input_list + top_index;
3360 do
3361 *list = bfd_abs_section_ptr;
3362 while (list-- != input_list);
3363
3364 for (section = output_bfd->sections;
3365 section != NULL; section = section->next)
3366 {
3367 if ((section->flags & SEC_CODE) != 0)
3368 input_list[section->index] = NULL;
3369 }
3370
3371 return 1;
3372 }
3373
3374 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3375 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3376
3377 /* The linker repeatedly calls this function for each input section,
3378 in the order that input sections are linked into output sections.
3379 Build lists of input sections to determine groupings between which
3380 we may insert linker stubs. */
3381
3382 void
3383 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3384 {
3385 struct elf_aarch64_link_hash_table *htab =
3386 elf_aarch64_hash_table (info);
3387
3388 if (isec->output_section->index <= htab->top_index)
3389 {
3390 asection **list = htab->input_list + isec->output_section->index;
3391
3392 if (*list != bfd_abs_section_ptr)
3393 {
3394 /* Steal the link_sec pointer for our list. */
3395 /* This happens to make the list in reverse order,
3396 which is what we want. */
3397 PREV_SEC (isec) = *list;
3398 *list = isec;
3399 }
3400 }
3401 }
3402
3403 /* See whether we can group stub sections together. Grouping stub
3404 sections may result in fewer stubs. More importantly, we need to
3405 put all .init* and .fini* stubs at the beginning of the .init or
3406 .fini output sections respectively, because glibc splits the
3407 _init and _fini functions into multiple parts. Putting a stub in
3408 the middle of a function is not a good idea. */
3409
3410 static void
3411 group_sections (struct elf_aarch64_link_hash_table *htab,
3412 bfd_size_type stub_group_size,
3413 bfd_boolean stubs_always_before_branch)
3414 {
3415 asection **list = htab->input_list + htab->top_index;
3416
3417 do
3418 {
3419 asection *tail = *list;
3420
3421 if (tail == bfd_abs_section_ptr)
3422 continue;
3423
3424 while (tail != NULL)
3425 {
3426 asection *curr;
3427 asection *prev;
3428 bfd_size_type total;
3429
3430 curr = tail;
3431 total = tail->size;
3432 while ((prev = PREV_SEC (curr)) != NULL
3433 && ((total += curr->output_offset - prev->output_offset)
3434 < stub_group_size))
3435 curr = prev;
3436
3437 /* OK, the size from the start of CURR to the end is less
3438 than stub_group_size and thus can be handled by one stub
3439 section. (Or the tail section is itself larger than
3440 stub_group_size, in which case we may be toast.)
3441 We should really be keeping track of the total size of
3442 stubs added here, as stubs contribute to the final output
3443 section size. */
3444 do
3445 {
3446 prev = PREV_SEC (tail);
3447 /* Set up this stub group. */
3448 htab->stub_group[tail->id].link_sec = curr;
3449 }
3450 while (tail != curr && (tail = prev) != NULL);
3451
3452 /* But wait, there's more! Input sections up to stub_group_size
3453 bytes before the stub section can be handled by it too. */
3454 if (!stubs_always_before_branch)
3455 {
3456 total = 0;
3457 while (prev != NULL
3458 && ((total += tail->output_offset - prev->output_offset)
3459 < stub_group_size))
3460 {
3461 tail = prev;
3462 prev = PREV_SEC (tail);
3463 htab->stub_group[tail->id].link_sec = curr;
3464 }
3465 }
3466 tail = prev;
3467 }
3468 }
3469 while (list-- != htab->input_list);
3470
3471 free (htab->input_list);
3472 }
3473
3474 #undef PREV_SEC
3475
3476 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3477
3478 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3479 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3480 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3481 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3482 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3483 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3484
3485 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3486 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3487 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3488 #define AARCH64_ZR 0x1f
3489
3490 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3491 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3492
3493 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3494 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3495 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3496 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3497 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3498 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3499 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3500 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3501 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3502 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3503 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3504 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3505 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3506 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3507 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3508 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3509 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3510 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3511
3512 /* Classify an INSN if it is indeed a load/store.
3513
3514 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3515
3516 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3517 is set equal to RT.
3518
3519 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3520
3521 static bfd_boolean
3522 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3523 bfd_boolean *pair, bfd_boolean *load)
3524 {
3525 uint32_t opcode;
3526 unsigned int r;
3527 uint32_t opc = 0;
3528 uint32_t v = 0;
3529 uint32_t opc_v = 0;
3530
3531 /* Bail out quickly if INSN doesn't fall into the load-store
3532 encoding space. */
3533 if (!AARCH64_LDST (insn))
3534 return FALSE;
3535
3536 *pair = FALSE;
3537 *load = FALSE;
3538 if (AARCH64_LDST_EX (insn))
3539 {
3540 *rt = AARCH64_RT (insn);
3541 *rt2 = *rt;
3542 if (AARCH64_BIT (insn, 21) == 1)
3543 {
3544 *pair = TRUE;
3545 *rt2 = AARCH64_RT2 (insn);
3546 }
3547 *load = AARCH64_LD (insn);
3548 return TRUE;
3549 }
3550 else if (AARCH64_LDST_NAP (insn)
3551 || AARCH64_LDSTP_PI (insn)
3552 || AARCH64_LDSTP_O (insn)
3553 || AARCH64_LDSTP_PRE (insn))
3554 {
3555 *pair = TRUE;
3556 *rt = AARCH64_RT (insn);
3557 *rt2 = AARCH64_RT2 (insn);
3558 *load = AARCH64_LD (insn);
3559 return TRUE;
3560 }
3561 else if (AARCH64_LDST_PCREL (insn)
3562 || AARCH64_LDST_UI (insn)
3563 || AARCH64_LDST_PIIMM (insn)
3564 || AARCH64_LDST_U (insn)
3565 || AARCH64_LDST_PREIMM (insn)
3566 || AARCH64_LDST_RO (insn)
3567 || AARCH64_LDST_UIMM (insn))
3568 {
3569 *rt = AARCH64_RT (insn);
3570 *rt2 = *rt;
3571 if (AARCH64_LDST_PCREL (insn))
3572 *load = TRUE;
3573 opc = AARCH64_BITS (insn, 22, 2);
3574 v = AARCH64_BIT (insn, 26);
3575 opc_v = opc | (v << 2);
3576 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3577 || opc_v == 5 || opc_v == 7);
3578 return TRUE;
3579 }
3580 else if (AARCH64_LDST_SIMD_M (insn)
3581 || AARCH64_LDST_SIMD_M_PI (insn))
3582 {
3583 *rt = AARCH64_RT (insn);
3584 *load = AARCH64_BIT (insn, 22);
3585 opcode = (insn >> 12) & 0xf;
3586 switch (opcode)
3587 {
3588 case 0:
3589 case 2:
3590 *rt2 = *rt + 3;
3591 break;
3592
3593 case 4:
3594 case 6:
3595 *rt2 = *rt + 2;
3596 break;
3597
3598 case 7:
3599 *rt2 = *rt;
3600 break;
3601
3602 case 8:
3603 case 10:
3604 *rt2 = *rt + 1;
3605 break;
3606
3607 default:
3608 return FALSE;
3609 }
3610 return TRUE;
3611 }
3612 else if (AARCH64_LDST_SIMD_S (insn)
3613 || AARCH64_LDST_SIMD_S_PI (insn))
3614 {
3615 *rt = AARCH64_RT (insn);
3616 r = (insn >> 21) & 1;
3617 *load = AARCH64_BIT (insn, 22);
3618 opcode = (insn >> 13) & 0x7;
3619 switch (opcode)
3620 {
3621 case 0:
3622 case 2:
3623 case 4:
3624 *rt2 = *rt + r;
3625 break;
3626
3627 case 1:
3628 case 3:
3629 case 5:
3630 *rt2 = *rt + (r == 0 ? 2 : 3);
3631 break;
3632
3633 case 6:
3634 *rt2 = *rt + r;
3635 break;
3636
3637 case 7:
3638 *rt2 = *rt + (r == 0 ? 2 : 3);
3639 break;
3640
3641 default:
3642 return FALSE;
3643 }
3644 return TRUE;
3645 }
3646
3647 return FALSE;
3648 }
3649
3650 /* Return TRUE if INSN is multiply-accumulate. */
3651
3652 static bfd_boolean
3653 aarch64_mlxl_p (uint32_t insn)
3654 {
3655 uint32_t op31 = AARCH64_OP31 (insn);
3656
3657 if (AARCH64_MAC (insn)
3658 && (op31 == 0 || op31 == 1 || op31 == 5)
3659 /* Exclude MUL instructions which are encoded as a multiple accumulate
3660 with RA = XZR. */
3661 && AARCH64_RA (insn) != AARCH64_ZR)
3662 return TRUE;
3663
3664 return FALSE;
3665 }
3666
3667 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3668 it is possible for a 64-bit multiply-accumulate instruction to generate an
3669 incorrect result. The details are quite complex and hard to
3670 determine statically, since branches in the code may exist in some
3671 circumstances, but all cases end with a memory (load, store, or
3672 prefetch) instruction followed immediately by the multiply-accumulate
3673 operation. We employ a linker patching technique, by moving the potentially
3674 affected multiply-accumulate instruction into a patch region and replacing
3675 the original instruction with a branch to the patch. This function checks
3676 if INSN_1 is the memory operation followed by a multiply-accumulate
3677 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3678 if INSN_1 and INSN_2 are safe. */
3679
3680 static bfd_boolean
3681 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3682 {
3683 uint32_t rt;
3684 uint32_t rt2;
3685 uint32_t rn;
3686 uint32_t rm;
3687 uint32_t ra;
3688 bfd_boolean pair;
3689 bfd_boolean load;
3690
3691 if (aarch64_mlxl_p (insn_2)
3692 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3693 {
3694 /* Any SIMD memory op is independent of the subsequent MLA
3695 by definition of the erratum. */
3696 if (AARCH64_BIT (insn_1, 26))
3697 return TRUE;
3698
3699 /* If not SIMD, check for integer memory ops and MLA relationship. */
3700 rn = AARCH64_RN (insn_2);
3701 ra = AARCH64_RA (insn_2);
3702 rm = AARCH64_RM (insn_2);
3703
3704 /* If this is a load and there's a true(RAW) dependency, we are safe
3705 and this is not an erratum sequence. */
3706 if (load &&
3707 (rt == rn || rt == rm || rt == ra
3708 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3709 return FALSE;
3710
3711 /* We conservatively put out stubs for all other cases (including
3712 writebacks). */
3713 return TRUE;
3714 }
3715
3716 return FALSE;
3717 }
3718
3719 /* Used to order a list of mapping symbols by address. */
3720
3721 static int
3722 elf_aarch64_compare_mapping (const void *a, const void *b)
3723 {
3724 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3725 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3726
3727 if (amap->vma > bmap->vma)
3728 return 1;
3729 else if (amap->vma < bmap->vma)
3730 return -1;
3731 else if (amap->type > bmap->type)
3732 /* Ensure results do not depend on the host qsort for objects with
3733 multiple mapping symbols at the same address by sorting on type
3734 after vma. */
3735 return 1;
3736 else if (amap->type < bmap->type)
3737 return -1;
3738 else
3739 return 0;
3740 }
3741
3742
3743 static char *
3744 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3745 {
3746 char *stub_name = (char *) bfd_malloc
3747 (strlen ("__erratum_835769_veneer_") + 16);
3748 if (stub_name != NULL)
3749 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3750 return stub_name;
3751 }
3752
3753 /* Scan for Cortex-A53 erratum 835769 sequence.
3754
3755 Return TRUE else FALSE on abnormal termination. */
3756
3757 static bfd_boolean
3758 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3759 struct bfd_link_info *info,
3760 unsigned int *num_fixes_p)
3761 {
3762 asection *section;
3763 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3764 unsigned int num_fixes = *num_fixes_p;
3765
3766 if (htab == NULL)
3767 return TRUE;
3768
3769 for (section = input_bfd->sections;
3770 section != NULL;
3771 section = section->next)
3772 {
3773 bfd_byte *contents = NULL;
3774 struct _aarch64_elf_section_data *sec_data;
3775 unsigned int span;
3776
3777 if (elf_section_type (section) != SHT_PROGBITS
3778 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3779 || (section->flags & SEC_EXCLUDE) != 0
3780 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3781 || (section->output_section == bfd_abs_section_ptr))
3782 continue;
3783
3784 if (elf_section_data (section)->this_hdr.contents != NULL)
3785 contents = elf_section_data (section)->this_hdr.contents;
3786 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3787 return FALSE;
3788
3789 sec_data = elf_aarch64_section_data (section);
3790
3791 qsort (sec_data->map, sec_data->mapcount,
3792 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3793
3794 for (span = 0; span < sec_data->mapcount; span++)
3795 {
3796 unsigned int span_start = sec_data->map[span].vma;
3797 unsigned int span_end = ((span == sec_data->mapcount - 1)
3798 ? sec_data->map[0].vma + section->size
3799 : sec_data->map[span + 1].vma);
3800 unsigned int i;
3801 char span_type = sec_data->map[span].type;
3802
3803 if (span_type == 'd')
3804 continue;
3805
3806 for (i = span_start; i + 4 < span_end; i += 4)
3807 {
3808 uint32_t insn_1 = bfd_getl32 (contents + i);
3809 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3810
3811 if (aarch64_erratum_sequence (insn_1, insn_2))
3812 {
3813 struct elf_aarch64_stub_hash_entry *stub_entry;
3814 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3815 if (! stub_name)
3816 return FALSE;
3817
3818 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3819 section,
3820 htab);
3821 if (! stub_entry)
3822 return FALSE;
3823
3824 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3825 stub_entry->target_section = section;
3826 stub_entry->target_value = i + 4;
3827 stub_entry->veneered_insn = insn_2;
3828 stub_entry->output_name = stub_name;
3829 num_fixes++;
3830 }
3831 }
3832 }
3833 if (elf_section_data (section)->this_hdr.contents == NULL)
3834 free (contents);
3835 }
3836
3837 *num_fixes_p = num_fixes;
3838
3839 return TRUE;
3840 }
3841
3842
3843 /* Test if instruction INSN is ADRP. */
3844
3845 static bfd_boolean
3846 _bfd_aarch64_adrp_p (uint32_t insn)
3847 {
3848 return ((insn & 0x9f000000) == 0x90000000);
3849 }
3850
3851
3852 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3853
3854 static bfd_boolean
3855 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3856 uint32_t insn_3)
3857 {
3858 uint32_t rt;
3859 uint32_t rt2;
3860 bfd_boolean pair;
3861 bfd_boolean load;
3862
3863 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3864 && (!pair
3865 || (pair && !load))
3866 && AARCH64_LDST_UIMM (insn_3)
3867 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3868 }
3869
3870
3871 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3872
3873 Return TRUE if section CONTENTS at offset I contains one of the
3874 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3875 seen set P_VENEER_I to the offset of the final LOAD/STORE
3876 instruction in the sequence.
3877 */
3878
3879 static bfd_boolean
3880 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3881 bfd_vma i, bfd_vma span_end,
3882 bfd_vma *p_veneer_i)
3883 {
3884 uint32_t insn_1 = bfd_getl32 (contents + i);
3885
3886 if (!_bfd_aarch64_adrp_p (insn_1))
3887 return FALSE;
3888
3889 if (span_end < i + 12)
3890 return FALSE;
3891
3892 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3893 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3894
3895 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3896 return FALSE;
3897
3898 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3899 {
3900 *p_veneer_i = i + 8;
3901 return TRUE;
3902 }
3903
3904 if (span_end < i + 16)
3905 return FALSE;
3906
3907 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3908
3909 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3910 {
3911 *p_veneer_i = i + 12;
3912 return TRUE;
3913 }
3914
3915 return FALSE;
3916 }
3917
3918
3919 /* Resize all stub sections. */
3920
3921 static void
3922 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3923 {
3924 asection *section;
3925
3926 /* OK, we've added some stubs. Find out the new size of the
3927 stub sections. */
3928 for (section = htab->stub_bfd->sections;
3929 section != NULL; section = section->next)
3930 {
3931 /* Ignore non-stub sections. */
3932 if (!strstr (section->name, STUB_SUFFIX))
3933 continue;
3934 section->size = 0;
3935 }
3936
3937 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3938
3939 for (section = htab->stub_bfd->sections;
3940 section != NULL; section = section->next)
3941 {
3942 if (!strstr (section->name, STUB_SUFFIX))
3943 continue;
3944
3945 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
3946 as long branch stubs contain a 64-bit address. */
3947 if (section->size)
3948 section->size += 8;
3949
3950 /* Ensure all stub sections have a size which is a multiple of
3951 4096. This is important in order to ensure that the insertion
3952 of stub sections does not in itself move existing code around
3953 in such a way that new errata sequences are created. */
3954 if (htab->fix_erratum_843419)
3955 if (section->size)
3956 section->size = BFD_ALIGN (section->size, 0x1000);
3957 }
3958 }
3959
3960 /* Construct an erratum 843419 workaround stub name. */
3961
3962 static char *
3963 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3964 bfd_vma offset)
3965 {
3966 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3967 char *stub_name = bfd_malloc (len);
3968
3969 if (stub_name != NULL)
3970 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3971 input_section->owner->id,
3972 input_section->id,
3973 offset);
3974 return stub_name;
3975 }
3976
3977 /* Build a stub_entry structure describing an 843419 fixup.
3978
3979 The stub_entry constructed is populated with the bit pattern INSN
3980 of the instruction located at OFFSET within input SECTION.
3981
3982 Returns TRUE on success. */
3983
3984 static bfd_boolean
3985 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3986 bfd_vma adrp_offset,
3987 bfd_vma ldst_offset,
3988 asection *section,
3989 struct bfd_link_info *info)
3990 {
3991 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3992 char *stub_name;
3993 struct elf_aarch64_stub_hash_entry *stub_entry;
3994
3995 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3996 if (stub_name == NULL)
3997 return FALSE;
3998 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3999 FALSE, FALSE);
4000 if (stub_entry)
4001 {
4002 free (stub_name);
4003 return TRUE;
4004 }
4005
4006 /* We always place an 843419 workaround veneer in the stub section
4007 attached to the input section in which an erratum sequence has
4008 been found. This ensures that later in the link process (in
4009 elfNN_aarch64_write_section) when we copy the veneered
4010 instruction from the input section into the stub section the
4011 copied instruction will have had any relocations applied to it.
4012 If we placed workaround veneers in any other stub section then we
4013 could not assume that all relocations have been processed on the
4014 corresponding input section at the point we output the stub
4015 section. */
4016
4017 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4018 if (stub_entry == NULL)
4019 {
4020 free (stub_name);
4021 return FALSE;
4022 }
4023
4024 stub_entry->adrp_offset = adrp_offset;
4025 stub_entry->target_value = ldst_offset;
4026 stub_entry->target_section = section;
4027 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4028 stub_entry->veneered_insn = insn;
4029 stub_entry->output_name = stub_name;
4030
4031 return TRUE;
4032 }
4033
4034
4035 /* Scan an input section looking for the signature of erratum 843419.
4036
4037 Scans input SECTION in INPUT_BFD looking for erratum 843419
4038 signatures, for each signature found a stub_entry is created
4039 describing the location of the erratum for subsequent fixup.
4040
4041 Return TRUE on successful scan, FALSE on failure to scan.
4042 */
4043
4044 static bfd_boolean
4045 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4046 struct bfd_link_info *info)
4047 {
4048 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4049
4050 if (htab == NULL)
4051 return TRUE;
4052
4053 if (elf_section_type (section) != SHT_PROGBITS
4054 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4055 || (section->flags & SEC_EXCLUDE) != 0
4056 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4057 || (section->output_section == bfd_abs_section_ptr))
4058 return TRUE;
4059
4060 do
4061 {
4062 bfd_byte *contents = NULL;
4063 struct _aarch64_elf_section_data *sec_data;
4064 unsigned int span;
4065
4066 if (elf_section_data (section)->this_hdr.contents != NULL)
4067 contents = elf_section_data (section)->this_hdr.contents;
4068 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4069 return FALSE;
4070
4071 sec_data = elf_aarch64_section_data (section);
4072
4073 qsort (sec_data->map, sec_data->mapcount,
4074 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4075
4076 for (span = 0; span < sec_data->mapcount; span++)
4077 {
4078 unsigned int span_start = sec_data->map[span].vma;
4079 unsigned int span_end = ((span == sec_data->mapcount - 1)
4080 ? sec_data->map[0].vma + section->size
4081 : sec_data->map[span + 1].vma);
4082 unsigned int i;
4083 char span_type = sec_data->map[span].type;
4084
4085 if (span_type == 'd')
4086 continue;
4087
4088 for (i = span_start; i + 8 < span_end; i += 4)
4089 {
4090 bfd_vma vma = (section->output_section->vma
4091 + section->output_offset
4092 + i);
4093 bfd_vma veneer_i;
4094
4095 if (_bfd_aarch64_erratum_843419_p
4096 (contents, vma, i, span_end, &veneer_i))
4097 {
4098 uint32_t insn = bfd_getl32 (contents + veneer_i);
4099
4100 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4101 section, info))
4102 return FALSE;
4103 }
4104 }
4105 }
4106
4107 if (elf_section_data (section)->this_hdr.contents == NULL)
4108 free (contents);
4109 }
4110 while (0);
4111
4112 return TRUE;
4113 }
4114
4115
4116 /* Determine and set the size of the stub section for a final link.
4117
4118 The basic idea here is to examine all the relocations looking for
4119 PC-relative calls to a target that is unreachable with a "bl"
4120 instruction. */
4121
4122 bfd_boolean
4123 elfNN_aarch64_size_stubs (bfd *output_bfd,
4124 bfd *stub_bfd,
4125 struct bfd_link_info *info,
4126 bfd_signed_vma group_size,
4127 asection * (*add_stub_section) (const char *,
4128 asection *),
4129 void (*layout_sections_again) (void))
4130 {
4131 bfd_size_type stub_group_size;
4132 bfd_boolean stubs_always_before_branch;
4133 bfd_boolean stub_changed = FALSE;
4134 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4135 unsigned int num_erratum_835769_fixes = 0;
4136
4137 /* Propagate mach to stub bfd, because it may not have been
4138 finalized when we created stub_bfd. */
4139 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4140 bfd_get_mach (output_bfd));
4141
4142 /* Stash our params away. */
4143 htab->stub_bfd = stub_bfd;
4144 htab->add_stub_section = add_stub_section;
4145 htab->layout_sections_again = layout_sections_again;
4146 stubs_always_before_branch = group_size < 0;
4147 if (group_size < 0)
4148 stub_group_size = -group_size;
4149 else
4150 stub_group_size = group_size;
4151
4152 if (stub_group_size == 1)
4153 {
4154 /* Default values. */
4155 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4156 stub_group_size = 127 * 1024 * 1024;
4157 }
4158
4159 group_sections (htab, stub_group_size, stubs_always_before_branch);
4160
4161 (*htab->layout_sections_again) ();
4162
4163 if (htab->fix_erratum_835769)
4164 {
4165 bfd *input_bfd;
4166
4167 for (input_bfd = info->input_bfds;
4168 input_bfd != NULL; input_bfd = input_bfd->link.next)
4169 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4170 &num_erratum_835769_fixes))
4171 return FALSE;
4172
4173 _bfd_aarch64_resize_stubs (htab);
4174 (*htab->layout_sections_again) ();
4175 }
4176
4177 if (htab->fix_erratum_843419)
4178 {
4179 bfd *input_bfd;
4180
4181 for (input_bfd = info->input_bfds;
4182 input_bfd != NULL;
4183 input_bfd = input_bfd->link.next)
4184 {
4185 asection *section;
4186
4187 for (section = input_bfd->sections;
4188 section != NULL;
4189 section = section->next)
4190 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4191 return FALSE;
4192 }
4193
4194 _bfd_aarch64_resize_stubs (htab);
4195 (*htab->layout_sections_again) ();
4196 }
4197
4198 while (1)
4199 {
4200 bfd *input_bfd;
4201
4202 for (input_bfd = info->input_bfds;
4203 input_bfd != NULL; input_bfd = input_bfd->link.next)
4204 {
4205 Elf_Internal_Shdr *symtab_hdr;
4206 asection *section;
4207 Elf_Internal_Sym *local_syms = NULL;
4208
4209 /* We'll need the symbol table in a second. */
4210 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4211 if (symtab_hdr->sh_info == 0)
4212 continue;
4213
4214 /* Walk over each section attached to the input bfd. */
4215 for (section = input_bfd->sections;
4216 section != NULL; section = section->next)
4217 {
4218 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4219
4220 /* If there aren't any relocs, then there's nothing more
4221 to do. */
4222 if ((section->flags & SEC_RELOC) == 0
4223 || section->reloc_count == 0
4224 || (section->flags & SEC_CODE) == 0)
4225 continue;
4226
4227 /* If this section is a link-once section that will be
4228 discarded, then don't create any stubs. */
4229 if (section->output_section == NULL
4230 || section->output_section->owner != output_bfd)
4231 continue;
4232
4233 /* Get the relocs. */
4234 internal_relocs
4235 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4236 NULL, info->keep_memory);
4237 if (internal_relocs == NULL)
4238 goto error_ret_free_local;
4239
4240 /* Now examine each relocation. */
4241 irela = internal_relocs;
4242 irelaend = irela + section->reloc_count;
4243 for (; irela < irelaend; irela++)
4244 {
4245 unsigned int r_type, r_indx;
4246 enum elf_aarch64_stub_type stub_type;
4247 struct elf_aarch64_stub_hash_entry *stub_entry;
4248 asection *sym_sec;
4249 bfd_vma sym_value;
4250 bfd_vma destination;
4251 struct elf_aarch64_link_hash_entry *hash;
4252 const char *sym_name;
4253 char *stub_name;
4254 const asection *id_sec;
4255 unsigned char st_type;
4256 bfd_size_type len;
4257
4258 r_type = ELFNN_R_TYPE (irela->r_info);
4259 r_indx = ELFNN_R_SYM (irela->r_info);
4260
4261 if (r_type >= (unsigned int) R_AARCH64_end)
4262 {
4263 bfd_set_error (bfd_error_bad_value);
4264 error_ret_free_internal:
4265 if (elf_section_data (section)->relocs == NULL)
4266 free (internal_relocs);
4267 goto error_ret_free_local;
4268 }
4269
4270 /* Only look for stubs on unconditional branch and
4271 branch and link instructions. */
4272 if (r_type != (unsigned int) AARCH64_R (CALL26)
4273 && r_type != (unsigned int) AARCH64_R (JUMP26))
4274 continue;
4275
4276 /* Now determine the call target, its name, value,
4277 section. */
4278 sym_sec = NULL;
4279 sym_value = 0;
4280 destination = 0;
4281 hash = NULL;
4282 sym_name = NULL;
4283 if (r_indx < symtab_hdr->sh_info)
4284 {
4285 /* It's a local symbol. */
4286 Elf_Internal_Sym *sym;
4287 Elf_Internal_Shdr *hdr;
4288
4289 if (local_syms == NULL)
4290 {
4291 local_syms
4292 = (Elf_Internal_Sym *) symtab_hdr->contents;
4293 if (local_syms == NULL)
4294 local_syms
4295 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4296 symtab_hdr->sh_info, 0,
4297 NULL, NULL, NULL);
4298 if (local_syms == NULL)
4299 goto error_ret_free_internal;
4300 }
4301
4302 sym = local_syms + r_indx;
4303 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4304 sym_sec = hdr->bfd_section;
4305 if (!sym_sec)
4306 /* This is an undefined symbol. It can never
4307 be resolved. */
4308 continue;
4309
4310 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4311 sym_value = sym->st_value;
4312 destination = (sym_value + irela->r_addend
4313 + sym_sec->output_offset
4314 + sym_sec->output_section->vma);
4315 st_type = ELF_ST_TYPE (sym->st_info);
4316 sym_name
4317 = bfd_elf_string_from_elf_section (input_bfd,
4318 symtab_hdr->sh_link,
4319 sym->st_name);
4320 }
4321 else
4322 {
4323 int e_indx;
4324
4325 e_indx = r_indx - symtab_hdr->sh_info;
4326 hash = ((struct elf_aarch64_link_hash_entry *)
4327 elf_sym_hashes (input_bfd)[e_indx]);
4328
4329 while (hash->root.root.type == bfd_link_hash_indirect
4330 || hash->root.root.type == bfd_link_hash_warning)
4331 hash = ((struct elf_aarch64_link_hash_entry *)
4332 hash->root.root.u.i.link);
4333
4334 if (hash->root.root.type == bfd_link_hash_defined
4335 || hash->root.root.type == bfd_link_hash_defweak)
4336 {
4337 struct elf_aarch64_link_hash_table *globals =
4338 elf_aarch64_hash_table (info);
4339 sym_sec = hash->root.root.u.def.section;
4340 sym_value = hash->root.root.u.def.value;
4341 /* For a destination in a shared library,
4342 use the PLT stub as target address to
4343 decide whether a branch stub is
4344 needed. */
4345 if (globals->root.splt != NULL && hash != NULL
4346 && hash->root.plt.offset != (bfd_vma) - 1)
4347 {
4348 sym_sec = globals->root.splt;
4349 sym_value = hash->root.plt.offset;
4350 if (sym_sec->output_section != NULL)
4351 destination = (sym_value
4352 + sym_sec->output_offset
4353 +
4354 sym_sec->output_section->vma);
4355 }
4356 else if (sym_sec->output_section != NULL)
4357 destination = (sym_value + irela->r_addend
4358 + sym_sec->output_offset
4359 + sym_sec->output_section->vma);
4360 }
4361 else if (hash->root.root.type == bfd_link_hash_undefined
4362 || (hash->root.root.type
4363 == bfd_link_hash_undefweak))
4364 {
4365 /* For a shared library, use the PLT stub as
4366 target address to decide whether a long
4367 branch stub is needed.
4368 For absolute code, they cannot be handled. */
4369 struct elf_aarch64_link_hash_table *globals =
4370 elf_aarch64_hash_table (info);
4371
4372 if (globals->root.splt != NULL && hash != NULL
4373 && hash->root.plt.offset != (bfd_vma) - 1)
4374 {
4375 sym_sec = globals->root.splt;
4376 sym_value = hash->root.plt.offset;
4377 if (sym_sec->output_section != NULL)
4378 destination = (sym_value
4379 + sym_sec->output_offset
4380 +
4381 sym_sec->output_section->vma);
4382 }
4383 else
4384 continue;
4385 }
4386 else
4387 {
4388 bfd_set_error (bfd_error_bad_value);
4389 goto error_ret_free_internal;
4390 }
4391 st_type = ELF_ST_TYPE (hash->root.type);
4392 sym_name = hash->root.root.root.string;
4393 }
4394
4395 /* Determine what (if any) linker stub is needed. */
4396 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4397 st_type, destination);
4398 if (stub_type == aarch64_stub_none)
4399 continue;
4400
4401 /* Support for grouping stub sections. */
4402 id_sec = htab->stub_group[section->id].link_sec;
4403
4404 /* Get the name of this stub. */
4405 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4406 irela);
4407 if (!stub_name)
4408 goto error_ret_free_internal;
4409
4410 stub_entry =
4411 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4412 stub_name, FALSE, FALSE);
4413 if (stub_entry != NULL)
4414 {
4415 /* The proper stub has already been created. */
4416 free (stub_name);
4417 continue;
4418 }
4419
4420 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4421 (stub_name, section, htab);
4422 if (stub_entry == NULL)
4423 {
4424 free (stub_name);
4425 goto error_ret_free_internal;
4426 }
4427
4428 stub_entry->target_value = sym_value + irela->r_addend;
4429 stub_entry->target_section = sym_sec;
4430 stub_entry->stub_type = stub_type;
4431 stub_entry->h = hash;
4432 stub_entry->st_type = st_type;
4433
4434 if (sym_name == NULL)
4435 sym_name = "unnamed";
4436 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4437 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4438 if (stub_entry->output_name == NULL)
4439 {
4440 free (stub_name);
4441 goto error_ret_free_internal;
4442 }
4443
4444 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4445 sym_name);
4446
4447 stub_changed = TRUE;
4448 }
4449
4450 /* We're done with the internal relocs, free them. */
4451 if (elf_section_data (section)->relocs == NULL)
4452 free (internal_relocs);
4453 }
4454 }
4455
4456 if (!stub_changed)
4457 break;
4458
4459 _bfd_aarch64_resize_stubs (htab);
4460
4461 /* Ask the linker to do its stuff. */
4462 (*htab->layout_sections_again) ();
4463 stub_changed = FALSE;
4464 }
4465
4466 return TRUE;
4467
4468 error_ret_free_local:
4469 return FALSE;
4470 }
4471
4472 /* Build all the stubs associated with the current output file. The
4473 stubs are kept in a hash table attached to the main linker hash
4474 table. We also set up the .plt entries for statically linked PIC
4475 functions here. This function is called via aarch64_elf_finish in the
4476 linker. */
4477
4478 bfd_boolean
4479 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4480 {
4481 asection *stub_sec;
4482 struct bfd_hash_table *table;
4483 struct elf_aarch64_link_hash_table *htab;
4484
4485 htab = elf_aarch64_hash_table (info);
4486
4487 for (stub_sec = htab->stub_bfd->sections;
4488 stub_sec != NULL; stub_sec = stub_sec->next)
4489 {
4490 bfd_size_type size;
4491
4492 /* Ignore non-stub sections. */
4493 if (!strstr (stub_sec->name, STUB_SUFFIX))
4494 continue;
4495
4496 /* Allocate memory to hold the linker stubs. */
4497 size = stub_sec->size;
4498 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4499 if (stub_sec->contents == NULL && size != 0)
4500 return FALSE;
4501 stub_sec->size = 0;
4502
4503 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4504 aligned, as long branch stubs contain a 64-bit address. */
4505 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4506 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4507 stub_sec->size += 8;
4508 }
4509
4510 /* Build the stubs as directed by the stub hash table. */
4511 table = &htab->stub_hash_table;
4512 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4513
4514 return TRUE;
4515 }
4516
4517
4518 /* Add an entry to the code/data map for section SEC. */
4519
4520 static void
4521 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4522 {
4523 struct _aarch64_elf_section_data *sec_data =
4524 elf_aarch64_section_data (sec);
4525 unsigned int newidx;
4526
4527 if (sec_data->map == NULL)
4528 {
4529 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4530 sec_data->mapcount = 0;
4531 sec_data->mapsize = 1;
4532 }
4533
4534 newidx = sec_data->mapcount++;
4535
4536 if (sec_data->mapcount > sec_data->mapsize)
4537 {
4538 sec_data->mapsize *= 2;
4539 sec_data->map = bfd_realloc_or_free
4540 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4541 }
4542
4543 if (sec_data->map)
4544 {
4545 sec_data->map[newidx].vma = vma;
4546 sec_data->map[newidx].type = type;
4547 }
4548 }
4549
4550
4551 /* Initialise maps of insn/data for input BFDs. */
4552 void
4553 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4554 {
4555 Elf_Internal_Sym *isymbuf;
4556 Elf_Internal_Shdr *hdr;
4557 unsigned int i, localsyms;
4558
4559 /* Make sure that we are dealing with an AArch64 elf binary. */
4560 if (!is_aarch64_elf (abfd))
4561 return;
4562
4563 if ((abfd->flags & DYNAMIC) != 0)
4564 return;
4565
4566 hdr = &elf_symtab_hdr (abfd);
4567 localsyms = hdr->sh_info;
4568
4569 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4570 should contain the number of local symbols, which should come before any
4571 global symbols. Mapping symbols are always local. */
4572 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4573
4574 /* No internal symbols read? Skip this BFD. */
4575 if (isymbuf == NULL)
4576 return;
4577
4578 for (i = 0; i < localsyms; i++)
4579 {
4580 Elf_Internal_Sym *isym = &isymbuf[i];
4581 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4582 const char *name;
4583
4584 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4585 {
4586 name = bfd_elf_string_from_elf_section (abfd,
4587 hdr->sh_link,
4588 isym->st_name);
4589
4590 if (bfd_is_aarch64_special_symbol_name
4591 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4592 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4593 }
4594 }
4595 }
4596
4597 /* Set option values needed during linking. */
4598 void
4599 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4600 struct bfd_link_info *link_info,
4601 int no_enum_warn,
4602 int no_wchar_warn, int pic_veneer,
4603 int fix_erratum_835769,
4604 int fix_erratum_843419,
4605 int no_apply_dynamic_relocs)
4606 {
4607 struct elf_aarch64_link_hash_table *globals;
4608
4609 globals = elf_aarch64_hash_table (link_info);
4610 globals->pic_veneer = pic_veneer;
4611 globals->fix_erratum_835769 = fix_erratum_835769;
4612 globals->fix_erratum_843419 = fix_erratum_843419;
4613 globals->fix_erratum_843419_adr = TRUE;
4614 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4615
4616 BFD_ASSERT (is_aarch64_elf (output_bfd));
4617 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4618 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4619 }
4620
4621 static bfd_vma
4622 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4623 struct elf_aarch64_link_hash_table
4624 *globals, struct bfd_link_info *info,
4625 bfd_vma value, bfd *output_bfd,
4626 bfd_boolean *unresolved_reloc_p)
4627 {
4628 bfd_vma off = (bfd_vma) - 1;
4629 asection *basegot = globals->root.sgot;
4630 bfd_boolean dyn = globals->root.dynamic_sections_created;
4631
4632 if (h != NULL)
4633 {
4634 BFD_ASSERT (basegot != NULL);
4635 off = h->got.offset;
4636 BFD_ASSERT (off != (bfd_vma) - 1);
4637 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4638 || (bfd_link_pic (info)
4639 && SYMBOL_REFERENCES_LOCAL (info, h))
4640 || (ELF_ST_VISIBILITY (h->other)
4641 && h->root.type == bfd_link_hash_undefweak))
4642 {
4643 /* This is actually a static link, or it is a -Bsymbolic link
4644 and the symbol is defined locally. We must initialize this
4645 entry in the global offset table. Since the offset must
4646 always be a multiple of 8 (4 in the case of ILP32), we use
4647 the least significant bit to record whether we have
4648 initialized it already.
4649 When doing a dynamic link, we create a .rel(a).got relocation
4650 entry to initialize the value. This is done in the
4651 finish_dynamic_symbol routine. */
4652 if ((off & 1) != 0)
4653 off &= ~1;
4654 else
4655 {
4656 bfd_put_NN (output_bfd, value, basegot->contents + off);
4657 h->got.offset |= 1;
4658 }
4659 }
4660 else
4661 *unresolved_reloc_p = FALSE;
4662
4663 off = off + basegot->output_section->vma + basegot->output_offset;
4664 }
4665
4666 return off;
4667 }
4668
4669 /* Change R_TYPE to a more efficient access model where possible,
4670 return the new reloc type. */
4671
4672 static bfd_reloc_code_real_type
4673 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4674 struct elf_link_hash_entry *h)
4675 {
4676 bfd_boolean is_local = h == NULL;
4677
4678 switch (r_type)
4679 {
4680 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4681 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4682 return (is_local
4683 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4684 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4685
4686 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4687 return (is_local
4688 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4689 : r_type);
4690
4691 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4692 return (is_local
4693 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4694 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4695
4696 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4697 return (is_local
4698 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4699 : BFD_RELOC_AARCH64_NONE);
4700
4701 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4702 return (is_local
4703 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4704 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4705
4706 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4707 return (is_local
4708 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4709 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4710
4711 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4712 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4713 return (is_local
4714 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4715 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4716
4717 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4718 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4719
4720 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4721 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4722
4723 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4724 return r_type;
4725
4726 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4727 return (is_local
4728 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4729 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4730
4731 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4732 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4733 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4734 /* Instructions with these relocations will become NOPs. */
4735 return BFD_RELOC_AARCH64_NONE;
4736
4737 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4738 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4739 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4740 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4741
4742 #if ARCH_SIZE == 64
4743 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4744 return is_local
4745 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4746 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4747
4748 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4749 return is_local
4750 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4751 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4752 #endif
4753
4754 default:
4755 break;
4756 }
4757
4758 return r_type;
4759 }
4760
4761 static unsigned int
4762 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4763 {
4764 switch (r_type)
4765 {
4766 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4767 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4768 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4769 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4770 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4771 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4772 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4773 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4774 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4775 return GOT_NORMAL;
4776
4777 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4778 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4779 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4780 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4781 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4782 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4783 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4784 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4785 return GOT_TLS_GD;
4786
4787 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4788 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4789 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4790 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4791 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4792 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4793 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4794 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4795 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4796 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4797 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4798 return GOT_TLSDESC_GD;
4799
4800 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4801 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4802 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4803 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4804 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4805 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4806 return GOT_TLS_IE;
4807
4808 default:
4809 break;
4810 }
4811 return GOT_UNKNOWN;
4812 }
4813
4814 static bfd_boolean
4815 aarch64_can_relax_tls (bfd *input_bfd,
4816 struct bfd_link_info *info,
4817 bfd_reloc_code_real_type r_type,
4818 struct elf_link_hash_entry *h,
4819 unsigned long r_symndx)
4820 {
4821 unsigned int symbol_got_type;
4822 unsigned int reloc_got_type;
4823
4824 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4825 return FALSE;
4826
4827 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4828 reloc_got_type = aarch64_reloc_got_type (r_type);
4829
4830 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4831 return TRUE;
4832
4833 if (!bfd_link_executable (info))
4834 return FALSE;
4835
4836 if (h && h->root.type == bfd_link_hash_undefweak)
4837 return FALSE;
4838
4839 return TRUE;
4840 }
4841
4842 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4843 enumerator. */
4844
4845 static bfd_reloc_code_real_type
4846 aarch64_tls_transition (bfd *input_bfd,
4847 struct bfd_link_info *info,
4848 unsigned int r_type,
4849 struct elf_link_hash_entry *h,
4850 unsigned long r_symndx)
4851 {
4852 bfd_reloc_code_real_type bfd_r_type
4853 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
4854
4855 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4856 return bfd_r_type;
4857
4858 return aarch64_tls_transition_without_check (bfd_r_type, h);
4859 }
4860
4861 /* Return the base VMA address which should be subtracted from real addresses
4862 when resolving R_AARCH64_TLS_DTPREL relocation. */
4863
4864 static bfd_vma
4865 dtpoff_base (struct bfd_link_info *info)
4866 {
4867 /* If tls_sec is NULL, we should have signalled an error already. */
4868 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4869 return elf_hash_table (info)->tls_sec->vma;
4870 }
4871
4872 /* Return the base VMA address which should be subtracted from real addresses
4873 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4874
4875 static bfd_vma
4876 tpoff_base (struct bfd_link_info *info)
4877 {
4878 struct elf_link_hash_table *htab = elf_hash_table (info);
4879
4880 /* If tls_sec is NULL, we should have signalled an error already. */
4881 BFD_ASSERT (htab->tls_sec != NULL);
4882
4883 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4884 htab->tls_sec->alignment_power);
4885 return htab->tls_sec->vma - base;
4886 }
4887
4888 static bfd_vma *
4889 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4890 unsigned long r_symndx)
4891 {
4892 /* Calculate the address of the GOT entry for symbol
4893 referred to in h. */
4894 if (h != NULL)
4895 return &h->got.offset;
4896 else
4897 {
4898 /* local symbol */
4899 struct elf_aarch64_local_symbol *l;
4900
4901 l = elf_aarch64_locals (input_bfd);
4902 return &l[r_symndx].got_offset;
4903 }
4904 }
4905
4906 static void
4907 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4908 unsigned long r_symndx)
4909 {
4910 bfd_vma *p;
4911 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4912 *p |= 1;
4913 }
4914
4915 static int
4916 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4917 unsigned long r_symndx)
4918 {
4919 bfd_vma value;
4920 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4921 return value & 1;
4922 }
4923
4924 static bfd_vma
4925 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4926 unsigned long r_symndx)
4927 {
4928 bfd_vma value;
4929 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4930 value &= ~1;
4931 return value;
4932 }
4933
4934 static bfd_vma *
4935 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4936 unsigned long r_symndx)
4937 {
4938 /* Calculate the address of the GOT entry for symbol
4939 referred to in h. */
4940 if (h != NULL)
4941 {
4942 struct elf_aarch64_link_hash_entry *eh;
4943 eh = (struct elf_aarch64_link_hash_entry *) h;
4944 return &eh->tlsdesc_got_jump_table_offset;
4945 }
4946 else
4947 {
4948 /* local symbol */
4949 struct elf_aarch64_local_symbol *l;
4950
4951 l = elf_aarch64_locals (input_bfd);
4952 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4953 }
4954 }
4955
4956 static void
4957 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4958 unsigned long r_symndx)
4959 {
4960 bfd_vma *p;
4961 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4962 *p |= 1;
4963 }
4964
4965 static int
4966 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4967 struct elf_link_hash_entry *h,
4968 unsigned long r_symndx)
4969 {
4970 bfd_vma value;
4971 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4972 return value & 1;
4973 }
4974
4975 static bfd_vma
4976 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4977 unsigned long r_symndx)
4978 {
4979 bfd_vma value;
4980 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4981 value &= ~1;
4982 return value;
4983 }
4984
4985 /* Data for make_branch_to_erratum_835769_stub(). */
4986
4987 struct erratum_835769_branch_to_stub_data
4988 {
4989 struct bfd_link_info *info;
4990 asection *output_section;
4991 bfd_byte *contents;
4992 };
4993
4994 /* Helper to insert branches to erratum 835769 stubs in the right
4995 places for a particular section. */
4996
4997 static bfd_boolean
4998 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4999 void *in_arg)
5000 {
5001 struct elf_aarch64_stub_hash_entry *stub_entry;
5002 struct erratum_835769_branch_to_stub_data *data;
5003 bfd_byte *contents;
5004 unsigned long branch_insn = 0;
5005 bfd_vma veneered_insn_loc, veneer_entry_loc;
5006 bfd_signed_vma branch_offset;
5007 unsigned int target;
5008 bfd *abfd;
5009
5010 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5011 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5012
5013 if (stub_entry->target_section != data->output_section
5014 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5015 return TRUE;
5016
5017 contents = data->contents;
5018 veneered_insn_loc = stub_entry->target_section->output_section->vma
5019 + stub_entry->target_section->output_offset
5020 + stub_entry->target_value;
5021 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5022 + stub_entry->stub_sec->output_offset
5023 + stub_entry->stub_offset;
5024 branch_offset = veneer_entry_loc - veneered_insn_loc;
5025
5026 abfd = stub_entry->target_section->owner;
5027 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5028 _bfd_error_handler
5029 (_("%pB: error: erratum 835769 stub out "
5030 "of range (input file too large)"), abfd);
5031
5032 target = stub_entry->target_value;
5033 branch_insn = 0x14000000;
5034 branch_offset >>= 2;
5035 branch_offset &= 0x3ffffff;
5036 branch_insn |= branch_offset;
5037 bfd_putl32 (branch_insn, &contents[target]);
5038
5039 return TRUE;
5040 }
5041
5042
5043 static bfd_boolean
5044 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5045 void *in_arg)
5046 {
5047 struct elf_aarch64_stub_hash_entry *stub_entry
5048 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5049 struct erratum_835769_branch_to_stub_data *data
5050 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5051 struct bfd_link_info *info;
5052 struct elf_aarch64_link_hash_table *htab;
5053 bfd_byte *contents;
5054 asection *section;
5055 bfd *abfd;
5056 bfd_vma place;
5057 uint32_t insn;
5058
5059 info = data->info;
5060 contents = data->contents;
5061 section = data->output_section;
5062
5063 htab = elf_aarch64_hash_table (info);
5064
5065 if (stub_entry->target_section != section
5066 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5067 return TRUE;
5068
5069 insn = bfd_getl32 (contents + stub_entry->target_value);
5070 bfd_putl32 (insn,
5071 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5072
5073 place = (section->output_section->vma + section->output_offset
5074 + stub_entry->adrp_offset);
5075 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5076
5077 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
5078 abort ();
5079
5080 bfd_signed_vma imm =
5081 (_bfd_aarch64_sign_extend
5082 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5083 - (place & 0xfff));
5084
5085 if (htab->fix_erratum_843419_adr
5086 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5087 {
5088 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5089 | AARCH64_RT (insn));
5090 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5091 }
5092 else
5093 {
5094 bfd_vma veneered_insn_loc;
5095 bfd_vma veneer_entry_loc;
5096 bfd_signed_vma branch_offset;
5097 uint32_t branch_insn;
5098
5099 veneered_insn_loc = stub_entry->target_section->output_section->vma
5100 + stub_entry->target_section->output_offset
5101 + stub_entry->target_value;
5102 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5103 + stub_entry->stub_sec->output_offset
5104 + stub_entry->stub_offset;
5105 branch_offset = veneer_entry_loc - veneered_insn_loc;
5106
5107 abfd = stub_entry->target_section->owner;
5108 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5109 _bfd_error_handler
5110 (_("%pB: error: erratum 843419 stub out "
5111 "of range (input file too large)"), abfd);
5112
5113 branch_insn = 0x14000000;
5114 branch_offset >>= 2;
5115 branch_offset &= 0x3ffffff;
5116 branch_insn |= branch_offset;
5117 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5118 }
5119 return TRUE;
5120 }
5121
5122
5123 static bfd_boolean
5124 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5125 struct bfd_link_info *link_info,
5126 asection *sec,
5127 bfd_byte *contents)
5128
5129 {
5130 struct elf_aarch64_link_hash_table *globals =
5131 elf_aarch64_hash_table (link_info);
5132
5133 if (globals == NULL)
5134 return FALSE;
5135
5136 /* Fix code to point to erratum 835769 stubs. */
5137 if (globals->fix_erratum_835769)
5138 {
5139 struct erratum_835769_branch_to_stub_data data;
5140
5141 data.info = link_info;
5142 data.output_section = sec;
5143 data.contents = contents;
5144 bfd_hash_traverse (&globals->stub_hash_table,
5145 make_branch_to_erratum_835769_stub, &data);
5146 }
5147
5148 if (globals->fix_erratum_843419)
5149 {
5150 struct erratum_835769_branch_to_stub_data data;
5151
5152 data.info = link_info;
5153 data.output_section = sec;
5154 data.contents = contents;
5155 bfd_hash_traverse (&globals->stub_hash_table,
5156 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5157 }
5158
5159 return FALSE;
5160 }
5161
5162 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5163
5164 static bfd_boolean
5165 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5166 {
5167 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5168 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5169 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5170 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5171 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5172 }
5173
5174 /* Perform a relocation as part of a final link. The input relocation type
5175 should be TLS relaxed. */
5176
5177 static bfd_reloc_status_type
5178 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5179 bfd *input_bfd,
5180 bfd *output_bfd,
5181 asection *input_section,
5182 bfd_byte *contents,
5183 Elf_Internal_Rela *rel,
5184 bfd_vma value,
5185 struct bfd_link_info *info,
5186 asection *sym_sec,
5187 struct elf_link_hash_entry *h,
5188 bfd_boolean *unresolved_reloc_p,
5189 bfd_boolean save_addend,
5190 bfd_vma *saved_addend,
5191 Elf_Internal_Sym *sym)
5192 {
5193 Elf_Internal_Shdr *symtab_hdr;
5194 unsigned int r_type = howto->type;
5195 bfd_reloc_code_real_type bfd_r_type
5196 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5197 unsigned long r_symndx;
5198 bfd_byte *hit_data = contents + rel->r_offset;
5199 bfd_vma place, off, got_entry_addr = 0;
5200 bfd_signed_vma signed_addend;
5201 struct elf_aarch64_link_hash_table *globals;
5202 bfd_boolean weak_undef_p;
5203 bfd_boolean relative_reloc;
5204 asection *base_got;
5205 bfd_vma orig_value = value;
5206 bfd_boolean resolved_to_zero;
5207 bfd_boolean abs_symbol_p;
5208
5209 globals = elf_aarch64_hash_table (info);
5210
5211 symtab_hdr = &elf_symtab_hdr (input_bfd);
5212
5213 BFD_ASSERT (is_aarch64_elf (input_bfd));
5214
5215 r_symndx = ELFNN_R_SYM (rel->r_info);
5216
5217 place = input_section->output_section->vma
5218 + input_section->output_offset + rel->r_offset;
5219
5220 /* Get addend, accumulating the addend for consecutive relocs
5221 which refer to the same offset. */
5222 signed_addend = saved_addend ? *saved_addend : 0;
5223 signed_addend += rel->r_addend;
5224
5225 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5226 : bfd_is_und_section (sym_sec));
5227 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5228
5229
5230 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5231 it here if it is defined in a non-shared object. */
5232 if (h != NULL
5233 && h->type == STT_GNU_IFUNC
5234 && h->def_regular)
5235 {
5236 asection *plt;
5237 const char *name;
5238 bfd_vma addend = 0;
5239
5240 if ((input_section->flags & SEC_ALLOC) == 0)
5241 {
5242 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5243 STT_GNU_IFUNC symbol as STT_FUNC. */
5244 if (elf_section_type (input_section) == SHT_NOTE)
5245 goto skip_ifunc;
5246
5247 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5248 sections because such sections are not SEC_ALLOC and
5249 thus ld.so will not process them. */
5250 if ((input_section->flags & SEC_DEBUGGING) != 0)
5251 return bfd_reloc_ok;
5252
5253 if (h->root.root.string)
5254 name = h->root.root.string;
5255 else
5256 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5257 _bfd_error_handler
5258 /* xgettext:c-format */
5259 (_("%pB(%pA+%#" PRIx64 "): "
5260 "unresolvable %s relocation against symbol `%s'"),
5261 input_bfd, input_section, (uint64_t) rel->r_offset,
5262 howto->name, name);
5263 bfd_set_error (bfd_error_bad_value);
5264 return bfd_reloc_notsupported;
5265 }
5266 else if (h->plt.offset == (bfd_vma) -1)
5267 goto bad_ifunc_reloc;
5268
5269 /* STT_GNU_IFUNC symbol must go through PLT. */
5270 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5271 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5272
5273 switch (bfd_r_type)
5274 {
5275 default:
5276 bad_ifunc_reloc:
5277 if (h->root.root.string)
5278 name = h->root.root.string;
5279 else
5280 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5281 NULL);
5282 _bfd_error_handler
5283 /* xgettext:c-format */
5284 (_("%pB: relocation %s against STT_GNU_IFUNC "
5285 "symbol `%s' isn't handled by %s"), input_bfd,
5286 howto->name, name, __FUNCTION__);
5287 bfd_set_error (bfd_error_bad_value);
5288 return bfd_reloc_notsupported;
5289
5290 case BFD_RELOC_AARCH64_NN:
5291 if (rel->r_addend != 0)
5292 {
5293 if (h->root.root.string)
5294 name = h->root.root.string;
5295 else
5296 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5297 sym, NULL);
5298 _bfd_error_handler
5299 /* xgettext:c-format */
5300 (_("%pB: relocation %s against STT_GNU_IFUNC "
5301 "symbol `%s' has non-zero addend: %" PRId64),
5302 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5303 bfd_set_error (bfd_error_bad_value);
5304 return bfd_reloc_notsupported;
5305 }
5306
5307 /* Generate dynamic relocation only when there is a
5308 non-GOT reference in a shared object. */
5309 if (bfd_link_pic (info) && h->non_got_ref)
5310 {
5311 Elf_Internal_Rela outrel;
5312 asection *sreloc;
5313
5314 /* Need a dynamic relocation to get the real function
5315 address. */
5316 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5317 info,
5318 input_section,
5319 rel->r_offset);
5320 if (outrel.r_offset == (bfd_vma) -1
5321 || outrel.r_offset == (bfd_vma) -2)
5322 abort ();
5323
5324 outrel.r_offset += (input_section->output_section->vma
5325 + input_section->output_offset);
5326
5327 if (h->dynindx == -1
5328 || h->forced_local
5329 || bfd_link_executable (info))
5330 {
5331 /* This symbol is resolved locally. */
5332 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5333 outrel.r_addend = (h->root.u.def.value
5334 + h->root.u.def.section->output_section->vma
5335 + h->root.u.def.section->output_offset);
5336 }
5337 else
5338 {
5339 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5340 outrel.r_addend = 0;
5341 }
5342
5343 sreloc = globals->root.irelifunc;
5344 elf_append_rela (output_bfd, sreloc, &outrel);
5345
5346 /* If this reloc is against an external symbol, we
5347 do not want to fiddle with the addend. Otherwise,
5348 we need to include the symbol value so that it
5349 becomes an addend for the dynamic reloc. For an
5350 internal symbol, we have updated addend. */
5351 return bfd_reloc_ok;
5352 }
5353 /* FALLTHROUGH */
5354 case BFD_RELOC_AARCH64_CALL26:
5355 case BFD_RELOC_AARCH64_JUMP26:
5356 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5357 signed_addend,
5358 weak_undef_p);
5359 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5360 howto, value);
5361 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5362 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5363 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5364 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5365 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5366 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5367 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5368 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5369 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5370 base_got = globals->root.sgot;
5371 off = h->got.offset;
5372
5373 if (base_got == NULL)
5374 abort ();
5375
5376 if (off == (bfd_vma) -1)
5377 {
5378 bfd_vma plt_index;
5379
5380 /* We can't use h->got.offset here to save state, or
5381 even just remember the offset, as finish_dynamic_symbol
5382 would use that as offset into .got. */
5383
5384 if (globals->root.splt != NULL)
5385 {
5386 plt_index = ((h->plt.offset - globals->plt_header_size) /
5387 globals->plt_entry_size);
5388 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5389 base_got = globals->root.sgotplt;
5390 }
5391 else
5392 {
5393 plt_index = h->plt.offset / globals->plt_entry_size;
5394 off = plt_index * GOT_ENTRY_SIZE;
5395 base_got = globals->root.igotplt;
5396 }
5397
5398 if (h->dynindx == -1
5399 || h->forced_local
5400 || info->symbolic)
5401 {
5402 /* This references the local definition. We must
5403 initialize this entry in the global offset table.
5404 Since the offset must always be a multiple of 8,
5405 we use the least significant bit to record
5406 whether we have initialized it already.
5407
5408 When doing a dynamic link, we create a .rela.got
5409 relocation entry to initialize the value. This
5410 is done in the finish_dynamic_symbol routine. */
5411 if ((off & 1) != 0)
5412 off &= ~1;
5413 else
5414 {
5415 bfd_put_NN (output_bfd, value,
5416 base_got->contents + off);
5417 /* Note that this is harmless as -1 | 1 still is -1. */
5418 h->got.offset |= 1;
5419 }
5420 }
5421 value = (base_got->output_section->vma
5422 + base_got->output_offset + off);
5423 }
5424 else
5425 value = aarch64_calculate_got_entry_vma (h, globals, info,
5426 value, output_bfd,
5427 unresolved_reloc_p);
5428
5429 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5430 addend = (globals->root.sgot->output_section->vma
5431 + globals->root.sgot->output_offset);
5432
5433 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5434 addend, weak_undef_p);
5435 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5436 case BFD_RELOC_AARCH64_ADD_LO12:
5437 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5438 break;
5439 }
5440 }
5441
5442 skip_ifunc:
5443 resolved_to_zero = (h != NULL
5444 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5445
5446 switch (bfd_r_type)
5447 {
5448 case BFD_RELOC_AARCH64_NONE:
5449 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5450 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5451 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5452 *unresolved_reloc_p = FALSE;
5453 return bfd_reloc_ok;
5454
5455 case BFD_RELOC_AARCH64_NN:
5456
5457 /* When generating a shared object or relocatable executable, these
5458 relocations are copied into the output file to be resolved at
5459 run time. */
5460 if (((bfd_link_pic (info)
5461 || globals->root.is_relocatable_executable)
5462 && (input_section->flags & SEC_ALLOC)
5463 && (h == NULL
5464 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5465 && !resolved_to_zero)
5466 || h->root.type != bfd_link_hash_undefweak))
5467 /* Or we are creating an executable, we may need to keep relocations
5468 for symbols satisfied by a dynamic library if we manage to avoid
5469 copy relocs for the symbol. */
5470 || (ELIMINATE_COPY_RELOCS
5471 && !bfd_link_pic (info)
5472 && h != NULL
5473 && (input_section->flags & SEC_ALLOC)
5474 && h->dynindx != -1
5475 && !h->non_got_ref
5476 && ((h->def_dynamic
5477 && !h->def_regular)
5478 || h->root.type == bfd_link_hash_undefweak
5479 || h->root.type == bfd_link_hash_undefined)))
5480 {
5481 Elf_Internal_Rela outrel;
5482 bfd_byte *loc;
5483 bfd_boolean skip, relocate;
5484 asection *sreloc;
5485
5486 *unresolved_reloc_p = FALSE;
5487
5488 skip = FALSE;
5489 relocate = FALSE;
5490
5491 outrel.r_addend = signed_addend;
5492 outrel.r_offset =
5493 _bfd_elf_section_offset (output_bfd, info, input_section,
5494 rel->r_offset);
5495 if (outrel.r_offset == (bfd_vma) - 1)
5496 skip = TRUE;
5497 else if (outrel.r_offset == (bfd_vma) - 2)
5498 {
5499 skip = TRUE;
5500 relocate = TRUE;
5501 }
5502 else if (abs_symbol_p)
5503 {
5504 /* Local absolute symbol. */
5505 skip = (h->forced_local || (h->dynindx == -1));
5506 relocate = skip;
5507 }
5508
5509 outrel.r_offset += (input_section->output_section->vma
5510 + input_section->output_offset);
5511
5512 if (skip)
5513 memset (&outrel, 0, sizeof outrel);
5514 else if (h != NULL
5515 && h->dynindx != -1
5516 && (!bfd_link_pic (info)
5517 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5518 || !h->def_regular))
5519 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5520 else
5521 {
5522 int symbol;
5523
5524 /* On SVR4-ish systems, the dynamic loader cannot
5525 relocate the text and data segments independently,
5526 so the symbol does not matter. */
5527 symbol = 0;
5528 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5529 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5530 outrel.r_addend += value;
5531 }
5532
5533 sreloc = elf_section_data (input_section)->sreloc;
5534 if (sreloc == NULL || sreloc->contents == NULL)
5535 return bfd_reloc_notsupported;
5536
5537 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5538 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5539
5540 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5541 {
5542 /* Sanity to check that we have previously allocated
5543 sufficient space in the relocation section for the
5544 number of relocations we actually want to emit. */
5545 abort ();
5546 }
5547
5548 /* If this reloc is against an external symbol, we do not want to
5549 fiddle with the addend. Otherwise, we need to include the symbol
5550 value so that it becomes an addend for the dynamic reloc. */
5551 if (!relocate)
5552 return bfd_reloc_ok;
5553
5554 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5555 contents, rel->r_offset, value,
5556 signed_addend);
5557 }
5558 else
5559 value += signed_addend;
5560 break;
5561
5562 case BFD_RELOC_AARCH64_CALL26:
5563 case BFD_RELOC_AARCH64_JUMP26:
5564 {
5565 asection *splt = globals->root.splt;
5566 bfd_boolean via_plt_p =
5567 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5568
5569 /* A call to an undefined weak symbol is converted to a jump to
5570 the next instruction unless a PLT entry will be created.
5571 The jump to the next instruction is optimized as a NOP.
5572 Do the same for local undefined symbols. */
5573 if (weak_undef_p && ! via_plt_p)
5574 {
5575 bfd_putl32 (INSN_NOP, hit_data);
5576 return bfd_reloc_ok;
5577 }
5578
5579 /* If the call goes through a PLT entry, make sure to
5580 check distance to the right destination address. */
5581 if (via_plt_p)
5582 value = (splt->output_section->vma
5583 + splt->output_offset + h->plt.offset);
5584
5585 /* Check if a stub has to be inserted because the destination
5586 is too far away. */
5587 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5588
5589 /* If the branch destination is directed to plt stub, "value" will be
5590 the final destination, otherwise we should plus signed_addend, it may
5591 contain non-zero value, for example call to local function symbol
5592 which are turned into "sec_sym + sec_off", and sec_off is kept in
5593 signed_addend. */
5594 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5595 place))
5596 /* The target is out of reach, so redirect the branch to
5597 the local stub for this function. */
5598 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5599 rel, globals);
5600 if (stub_entry != NULL)
5601 {
5602 value = (stub_entry->stub_offset
5603 + stub_entry->stub_sec->output_offset
5604 + stub_entry->stub_sec->output_section->vma);
5605
5606 /* We have redirected the destination to stub entry address,
5607 so ignore any addend record in the original rela entry. */
5608 signed_addend = 0;
5609 }
5610 }
5611 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5612 signed_addend, weak_undef_p);
5613 *unresolved_reloc_p = FALSE;
5614 break;
5615
5616 case BFD_RELOC_AARCH64_16_PCREL:
5617 case BFD_RELOC_AARCH64_32_PCREL:
5618 case BFD_RELOC_AARCH64_64_PCREL:
5619 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5620 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5621 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5622 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5623 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5624 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5625 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5626 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5627 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5628 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5629 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5630 if (bfd_link_pic (info)
5631 && (input_section->flags & SEC_ALLOC) != 0
5632 && (input_section->flags & SEC_READONLY) != 0
5633 && !SYMBOL_REFERENCES_LOCAL (info, h))
5634 {
5635 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5636
5637 _bfd_error_handler
5638 /* xgettext:c-format */
5639 (_("%pB: relocation %s against symbol `%s' which may bind "
5640 "externally can not be used when making a shared object; "
5641 "recompile with -fPIC"),
5642 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5643 h->root.root.string);
5644 bfd_set_error (bfd_error_bad_value);
5645 return bfd_reloc_notsupported;
5646 }
5647 /* Fall through. */
5648
5649 case BFD_RELOC_AARCH64_16:
5650 #if ARCH_SIZE == 64
5651 case BFD_RELOC_AARCH64_32:
5652 #endif
5653 case BFD_RELOC_AARCH64_ADD_LO12:
5654 case BFD_RELOC_AARCH64_BRANCH19:
5655 case BFD_RELOC_AARCH64_LDST128_LO12:
5656 case BFD_RELOC_AARCH64_LDST16_LO12:
5657 case BFD_RELOC_AARCH64_LDST32_LO12:
5658 case BFD_RELOC_AARCH64_LDST64_LO12:
5659 case BFD_RELOC_AARCH64_LDST8_LO12:
5660 case BFD_RELOC_AARCH64_MOVW_G0:
5661 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5662 case BFD_RELOC_AARCH64_MOVW_G0_S:
5663 case BFD_RELOC_AARCH64_MOVW_G1:
5664 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5665 case BFD_RELOC_AARCH64_MOVW_G1_S:
5666 case BFD_RELOC_AARCH64_MOVW_G2:
5667 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5668 case BFD_RELOC_AARCH64_MOVW_G2_S:
5669 case BFD_RELOC_AARCH64_MOVW_G3:
5670 case BFD_RELOC_AARCH64_TSTBR14:
5671 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5672 signed_addend, weak_undef_p);
5673 break;
5674
5675 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5676 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5677 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5678 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5679 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5680 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5681 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5682 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5683 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5684 if (globals->root.sgot == NULL)
5685 BFD_ASSERT (h != NULL);
5686
5687 relative_reloc = FALSE;
5688 if (h != NULL)
5689 {
5690 bfd_vma addend = 0;
5691
5692 /* If a symbol is not dynamic and is not undefined weak, bind it
5693 locally and generate a RELATIVE relocation under PIC mode.
5694
5695 NOTE: one symbol may be referenced by several relocations, we
5696 should only generate one RELATIVE relocation for that symbol.
5697 Therefore, check GOT offset mark first. */
5698 if (h->dynindx == -1
5699 && !h->forced_local
5700 && h->root.type != bfd_link_hash_undefweak
5701 && bfd_link_pic (info)
5702 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5703 relative_reloc = TRUE;
5704
5705 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5706 output_bfd,
5707 unresolved_reloc_p);
5708 /* Record the GOT entry address which will be used when generating
5709 RELATIVE relocation. */
5710 if (relative_reloc)
5711 got_entry_addr = value;
5712
5713 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5714 addend = (globals->root.sgot->output_section->vma
5715 + globals->root.sgot->output_offset);
5716 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5717 addend, weak_undef_p);
5718 }
5719 else
5720 {
5721 bfd_vma addend = 0;
5722 struct elf_aarch64_local_symbol *locals
5723 = elf_aarch64_locals (input_bfd);
5724
5725 if (locals == NULL)
5726 {
5727 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5728 _bfd_error_handler
5729 /* xgettext:c-format */
5730 (_("%pB: local symbol descriptor table be NULL when applying "
5731 "relocation %s against local symbol"),
5732 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5733 abort ();
5734 }
5735
5736 off = symbol_got_offset (input_bfd, h, r_symndx);
5737 base_got = globals->root.sgot;
5738 got_entry_addr = (base_got->output_section->vma
5739 + base_got->output_offset + off);
5740
5741 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5742 {
5743 bfd_put_64 (output_bfd, value, base_got->contents + off);
5744
5745 /* For local symbol, we have done absolute relocation in static
5746 linking stage. While for shared library, we need to update the
5747 content of GOT entry according to the shared object's runtime
5748 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5749 for dynamic linker. */
5750 if (bfd_link_pic (info))
5751 relative_reloc = TRUE;
5752
5753 symbol_got_offset_mark (input_bfd, h, r_symndx);
5754 }
5755
5756 /* Update the relocation value to GOT entry addr as we have transformed
5757 the direct data access into indirect data access through GOT. */
5758 value = got_entry_addr;
5759
5760 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5761 addend = base_got->output_section->vma + base_got->output_offset;
5762
5763 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5764 addend, weak_undef_p);
5765 }
5766
5767 if (relative_reloc)
5768 {
5769 asection *s;
5770 Elf_Internal_Rela outrel;
5771
5772 s = globals->root.srelgot;
5773 if (s == NULL)
5774 abort ();
5775
5776 outrel.r_offset = got_entry_addr;
5777 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5778 outrel.r_addend = orig_value;
5779 elf_append_rela (output_bfd, s, &outrel);
5780 }
5781 break;
5782
5783 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5784 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5785 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5786 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5787 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5788 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5789 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5790 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5791 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5792 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5793 if (globals->root.sgot == NULL)
5794 return bfd_reloc_notsupported;
5795
5796 value = (symbol_got_offset (input_bfd, h, r_symndx)
5797 + globals->root.sgot->output_section->vma
5798 + globals->root.sgot->output_offset);
5799
5800 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5801 0, weak_undef_p);
5802 *unresolved_reloc_p = FALSE;
5803 break;
5804
5805 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5806 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5807 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5808 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5809 if (globals->root.sgot == NULL)
5810 return bfd_reloc_notsupported;
5811
5812 value = symbol_got_offset (input_bfd, h, r_symndx);
5813 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5814 0, weak_undef_p);
5815 *unresolved_reloc_p = FALSE;
5816 break;
5817
5818 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5819 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5820 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5821 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5822 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5823 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5824 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5825 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5826 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5827 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5828 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5829 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5830 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5831 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5832 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5833 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5834 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5835 signed_addend - dtpoff_base (info),
5836 weak_undef_p);
5837 break;
5838
5839 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5840 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5841 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5842 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
5843 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5844 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
5845 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5846 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
5847 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5848 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
5849 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5850 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5851 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5852 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5853 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5854 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5855 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5856 signed_addend - tpoff_base (info),
5857 weak_undef_p);
5858 *unresolved_reloc_p = FALSE;
5859 break;
5860
5861 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5862 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5863 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5864 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5865 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5866 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5867 if (globals->root.sgot == NULL)
5868 return bfd_reloc_notsupported;
5869 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5870 + globals->root.sgotplt->output_section->vma
5871 + globals->root.sgotplt->output_offset
5872 + globals->sgotplt_jump_table_size);
5873
5874 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5875 0, weak_undef_p);
5876 *unresolved_reloc_p = FALSE;
5877 break;
5878
5879 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5880 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5881 if (globals->root.sgot == NULL)
5882 return bfd_reloc_notsupported;
5883
5884 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5885 + globals->root.sgotplt->output_section->vma
5886 + globals->root.sgotplt->output_offset
5887 + globals->sgotplt_jump_table_size);
5888
5889 value -= (globals->root.sgot->output_section->vma
5890 + globals->root.sgot->output_offset);
5891
5892 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5893 0, weak_undef_p);
5894 *unresolved_reloc_p = FALSE;
5895 break;
5896
5897 default:
5898 return bfd_reloc_notsupported;
5899 }
5900
5901 if (saved_addend)
5902 *saved_addend = value;
5903
5904 /* Only apply the final relocation in a sequence. */
5905 if (save_addend)
5906 return bfd_reloc_continue;
5907
5908 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5909 howto, value);
5910 }
5911
5912 /* LP64 and ILP32 operates on x- and w-registers respectively.
5913 Next definitions take into account the difference between
5914 corresponding machine codes. R means x-register if the target
5915 arch is LP64, and w-register if the target is ILP32. */
5916
5917 #if ARCH_SIZE == 64
5918 # define add_R0_R0 (0x91000000)
5919 # define add_R0_R0_R1 (0x8b000020)
5920 # define add_R0_R1 (0x91400020)
5921 # define ldr_R0 (0x58000000)
5922 # define ldr_R0_mask(i) (i & 0xffffffe0)
5923 # define ldr_R0_x0 (0xf9400000)
5924 # define ldr_hw_R0 (0xf2a00000)
5925 # define movk_R0 (0xf2800000)
5926 # define movz_R0 (0xd2a00000)
5927 # define movz_hw_R0 (0xd2c00000)
5928 #else /*ARCH_SIZE == 32 */
5929 # define add_R0_R0 (0x11000000)
5930 # define add_R0_R0_R1 (0x0b000020)
5931 # define add_R0_R1 (0x11400020)
5932 # define ldr_R0 (0x18000000)
5933 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5934 # define ldr_R0_x0 (0xb9400000)
5935 # define ldr_hw_R0 (0x72a00000)
5936 # define movk_R0 (0x72800000)
5937 # define movz_R0 (0x52a00000)
5938 # define movz_hw_R0 (0x52c00000)
5939 #endif
5940
5941 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5942 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5943 link.
5944
5945 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5946 is to then call final_link_relocate. Return other values in the
5947 case of error. */
5948
5949 static bfd_reloc_status_type
5950 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5951 bfd *input_bfd, bfd_byte *contents,
5952 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5953 {
5954 bfd_boolean is_local = h == NULL;
5955 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5956 unsigned long insn;
5957
5958 BFD_ASSERT (globals && input_bfd && contents && rel);
5959
5960 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
5961 {
5962 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5963 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5964 if (is_local)
5965 {
5966 /* GD->LE relaxation:
5967 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5968 or
5969 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5970
5971 Where R is x for LP64, and w for ILP32. */
5972 bfd_putl32 (movz_R0, contents + rel->r_offset);
5973 return bfd_reloc_continue;
5974 }
5975 else
5976 {
5977 /* GD->IE relaxation:
5978 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5979 or
5980 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5981 */
5982 return bfd_reloc_continue;
5983 }
5984
5985 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5986 BFD_ASSERT (0);
5987 break;
5988
5989 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5990 if (is_local)
5991 {
5992 /* Tiny TLSDESC->LE relaxation:
5993 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5994 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5995 .tlsdesccall var
5996 blr x1 => nop
5997
5998 Where R is x for LP64, and w for ILP32. */
5999 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6000 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6001
6002 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6003 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6004 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6005
6006 bfd_putl32 (movz_R0, contents + rel->r_offset);
6007 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6008 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6009 return bfd_reloc_continue;
6010 }
6011 else
6012 {
6013 /* Tiny TLSDESC->IE relaxation:
6014 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6015 adr x0, :tlsdesc:var => nop
6016 .tlsdesccall var
6017 blr x1 => nop
6018 */
6019 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6020 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6021
6022 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6023 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6024
6025 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6026 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6027 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6028 return bfd_reloc_continue;
6029 }
6030
6031 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6032 if (is_local)
6033 {
6034 /* Tiny GD->LE relaxation:
6035 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6036 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6037 nop => add R0, R0, #:tprel_lo12_nc:x
6038
6039 Where R is x for LP64, and x for Ilp32. */
6040
6041 /* First kill the tls_get_addr reloc on the bl instruction. */
6042 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6043
6044 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6045 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6046 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6047
6048 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6049 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6050 rel[1].r_offset = rel->r_offset + 8;
6051
6052 /* Move the current relocation to the second instruction in
6053 the sequence. */
6054 rel->r_offset += 4;
6055 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6056 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6057 return bfd_reloc_continue;
6058 }
6059 else
6060 {
6061 /* Tiny GD->IE relaxation:
6062 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6063 bl __tls_get_addr => mrs x1, tpidr_el0
6064 nop => add R0, R0, R1
6065
6066 Where R is x for LP64, and w for Ilp32. */
6067
6068 /* First kill the tls_get_addr reloc on the bl instruction. */
6069 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6070 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6071
6072 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6073 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6074 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6075 return bfd_reloc_continue;
6076 }
6077
6078 #if ARCH_SIZE == 64
6079 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6080 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6081 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6082 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6083
6084 if (is_local)
6085 {
6086 /* Large GD->LE relaxation:
6087 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6088 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6089 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6090 bl __tls_get_addr => mrs x1, tpidr_el0
6091 nop => add x0, x0, x1
6092 */
6093 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6094 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6095 rel[2].r_offset = rel->r_offset + 8;
6096
6097 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6098 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6099 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6100 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6101 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6102 }
6103 else
6104 {
6105 /* Large GD->IE relaxation:
6106 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6107 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6108 add x0, gp, x0 => ldr x0, [gp, x0]
6109 bl __tls_get_addr => mrs x1, tpidr_el0
6110 nop => add x0, x0, x1
6111 */
6112 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6113 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6114 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6115 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6116 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6117 }
6118 return bfd_reloc_continue;
6119
6120 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6121 return bfd_reloc_continue;
6122 #endif
6123
6124 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6125 return bfd_reloc_continue;
6126
6127 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6128 if (is_local)
6129 {
6130 /* GD->LE relaxation:
6131 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6132
6133 Where R is x for lp64 mode, and w for ILP32 mode. */
6134 bfd_putl32 (movk_R0, contents + rel->r_offset);
6135 return bfd_reloc_continue;
6136 }
6137 else
6138 {
6139 /* GD->IE relaxation:
6140 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6141
6142 Where R is x for lp64 mode, and w for ILP32 mode. */
6143 insn = bfd_getl32 (contents + rel->r_offset);
6144 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6145 return bfd_reloc_continue;
6146 }
6147
6148 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6149 if (is_local)
6150 {
6151 /* GD->LE relaxation
6152 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6153 bl __tls_get_addr => mrs x1, tpidr_el0
6154 nop => add R0, R1, R0
6155
6156 Where R is x for lp64 mode, and w for ILP32 mode. */
6157
6158 /* First kill the tls_get_addr reloc on the bl instruction. */
6159 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6160 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6161
6162 bfd_putl32 (movk_R0, contents + rel->r_offset);
6163 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6164 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6165 return bfd_reloc_continue;
6166 }
6167 else
6168 {
6169 /* GD->IE relaxation
6170 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6171 BL __tls_get_addr => mrs x1, tpidr_el0
6172 R_AARCH64_CALL26
6173 NOP => add R0, R1, R0
6174
6175 Where R is x for lp64 mode, and w for ilp32 mode. */
6176
6177 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6178
6179 /* Remove the relocation on the BL instruction. */
6180 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6181
6182 /* We choose to fixup the BL and NOP instructions using the
6183 offset from the second relocation to allow flexibility in
6184 scheduling instructions between the ADD and BL. */
6185 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6186 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6187 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6188 return bfd_reloc_continue;
6189 }
6190
6191 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6192 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6193 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6194 /* GD->IE/LE relaxation:
6195 add x0, x0, #:tlsdesc_lo12:var => nop
6196 blr xd => nop
6197 */
6198 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6199 return bfd_reloc_ok;
6200
6201 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6202 if (is_local)
6203 {
6204 /* GD->LE relaxation:
6205 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6206
6207 Where R is x for lp64 mode, and w for ILP32 mode. */
6208 bfd_putl32 (movk_R0, contents + rel->r_offset);
6209 return bfd_reloc_continue;
6210 }
6211 else
6212 {
6213 /* GD->IE relaxation:
6214 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6215
6216 Where R is x for lp64 mode, and w for ILP32 mode. */
6217 insn = bfd_getl32 (contents + rel->r_offset);
6218 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6219 return bfd_reloc_ok;
6220 }
6221
6222 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6223 /* GD->LE relaxation:
6224 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6225 GD->IE relaxation:
6226 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6227
6228 Where R is x for lp64 mode, and w for ILP32 mode. */
6229 if (is_local)
6230 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6231 return bfd_reloc_continue;
6232
6233 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6234 if (is_local)
6235 {
6236 /* GD->LE relaxation:
6237 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6238
6239 Where R is x for lp64 mode, and w for ILP32 mode. */
6240 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6241 return bfd_reloc_continue;
6242 }
6243 else
6244 {
6245 /* GD->IE relaxation:
6246 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6247
6248 Where R is x for lp64 mode, and w for ILP32 mode. */
6249 insn = bfd_getl32 (contents + rel->r_offset);
6250 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6251 return bfd_reloc_continue;
6252 }
6253
6254 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6255 /* IE->LE relaxation:
6256 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6257
6258 Where R is x for lp64 mode, and w for ILP32 mode. */
6259 if (is_local)
6260 {
6261 insn = bfd_getl32 (contents + rel->r_offset);
6262 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6263 }
6264 return bfd_reloc_continue;
6265
6266 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6267 /* IE->LE relaxation:
6268 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6269
6270 Where R is x for lp64 mode, and w for ILP32 mode. */
6271 if (is_local)
6272 {
6273 insn = bfd_getl32 (contents + rel->r_offset);
6274 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6275 }
6276 return bfd_reloc_continue;
6277
6278 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6279 /* LD->LE relaxation (tiny):
6280 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6281 bl __tls_get_addr => add R0, R0, TCB_SIZE
6282
6283 Where R is x for lp64 mode, and w for ilp32 mode. */
6284 if (is_local)
6285 {
6286 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6287 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6288 /* No need of CALL26 relocation for tls_get_addr. */
6289 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6290 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6291 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6292 contents + rel->r_offset + 4);
6293 return bfd_reloc_ok;
6294 }
6295 return bfd_reloc_continue;
6296
6297 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6298 /* LD->LE relaxation (small):
6299 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6300 */
6301 if (is_local)
6302 {
6303 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6304 return bfd_reloc_ok;
6305 }
6306 return bfd_reloc_continue;
6307
6308 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6309 /* LD->LE relaxation (small):
6310 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6311 bl __tls_get_addr => nop
6312
6313 Where R is x for lp64 mode, and w for ilp32 mode. */
6314 if (is_local)
6315 {
6316 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6317 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6318 /* No need of CALL26 relocation for tls_get_addr. */
6319 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6320 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6321 contents + rel->r_offset + 0);
6322 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6323 return bfd_reloc_ok;
6324 }
6325 return bfd_reloc_continue;
6326
6327 default:
6328 return bfd_reloc_continue;
6329 }
6330
6331 return bfd_reloc_ok;
6332 }
6333
6334 /* Relocate an AArch64 ELF section. */
6335
6336 static bfd_boolean
6337 elfNN_aarch64_relocate_section (bfd *output_bfd,
6338 struct bfd_link_info *info,
6339 bfd *input_bfd,
6340 asection *input_section,
6341 bfd_byte *contents,
6342 Elf_Internal_Rela *relocs,
6343 Elf_Internal_Sym *local_syms,
6344 asection **local_sections)
6345 {
6346 Elf_Internal_Shdr *symtab_hdr;
6347 struct elf_link_hash_entry **sym_hashes;
6348 Elf_Internal_Rela *rel;
6349 Elf_Internal_Rela *relend;
6350 const char *name;
6351 struct elf_aarch64_link_hash_table *globals;
6352 bfd_boolean save_addend = FALSE;
6353 bfd_vma addend = 0;
6354
6355 globals = elf_aarch64_hash_table (info);
6356
6357 symtab_hdr = &elf_symtab_hdr (input_bfd);
6358 sym_hashes = elf_sym_hashes (input_bfd);
6359
6360 rel = relocs;
6361 relend = relocs + input_section->reloc_count;
6362 for (; rel < relend; rel++)
6363 {
6364 unsigned int r_type;
6365 bfd_reloc_code_real_type bfd_r_type;
6366 bfd_reloc_code_real_type relaxed_bfd_r_type;
6367 reloc_howto_type *howto;
6368 unsigned long r_symndx;
6369 Elf_Internal_Sym *sym;
6370 asection *sec;
6371 struct elf_link_hash_entry *h;
6372 bfd_vma relocation;
6373 bfd_reloc_status_type r;
6374 arelent bfd_reloc;
6375 char sym_type;
6376 bfd_boolean unresolved_reloc = FALSE;
6377 char *error_message = NULL;
6378
6379 r_symndx = ELFNN_R_SYM (rel->r_info);
6380 r_type = ELFNN_R_TYPE (rel->r_info);
6381
6382 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6383 howto = bfd_reloc.howto;
6384
6385 if (howto == NULL)
6386 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6387
6388 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6389
6390 h = NULL;
6391 sym = NULL;
6392 sec = NULL;
6393
6394 if (r_symndx < symtab_hdr->sh_info)
6395 {
6396 sym = local_syms + r_symndx;
6397 sym_type = ELFNN_ST_TYPE (sym->st_info);
6398 sec = local_sections[r_symndx];
6399
6400 /* An object file might have a reference to a local
6401 undefined symbol. This is a daft object file, but we
6402 should at least do something about it. */
6403 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6404 && bfd_is_und_section (sec)
6405 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6406 (*info->callbacks->undefined_symbol)
6407 (info, bfd_elf_string_from_elf_section
6408 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6409 input_bfd, input_section, rel->r_offset, TRUE);
6410
6411 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6412
6413 /* Relocate against local STT_GNU_IFUNC symbol. */
6414 if (!bfd_link_relocatable (info)
6415 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6416 {
6417 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6418 rel, FALSE);
6419 if (h == NULL)
6420 abort ();
6421
6422 /* Set STT_GNU_IFUNC symbol value. */
6423 h->root.u.def.value = sym->st_value;
6424 h->root.u.def.section = sec;
6425 }
6426 }
6427 else
6428 {
6429 bfd_boolean warned, ignored;
6430
6431 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6432 r_symndx, symtab_hdr, sym_hashes,
6433 h, sec, relocation,
6434 unresolved_reloc, warned, ignored);
6435
6436 sym_type = h->type;
6437 }
6438
6439 if (sec != NULL && discarded_section (sec))
6440 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6441 rel, 1, relend, howto, 0, contents);
6442
6443 if (bfd_link_relocatable (info))
6444 continue;
6445
6446 if (h != NULL)
6447 name = h->root.root.string;
6448 else
6449 {
6450 name = (bfd_elf_string_from_elf_section
6451 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6452 if (name == NULL || *name == '\0')
6453 name = bfd_section_name (input_bfd, sec);
6454 }
6455
6456 if (r_symndx != 0
6457 && r_type != R_AARCH64_NONE
6458 && r_type != R_AARCH64_NULL
6459 && (h == NULL
6460 || h->root.type == bfd_link_hash_defined
6461 || h->root.type == bfd_link_hash_defweak)
6462 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6463 {
6464 _bfd_error_handler
6465 ((sym_type == STT_TLS
6466 /* xgettext:c-format */
6467 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6468 /* xgettext:c-format */
6469 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6470 input_bfd,
6471 input_section, (uint64_t) rel->r_offset, howto->name, name);
6472 }
6473
6474 /* We relax only if we can see that there can be a valid transition
6475 from a reloc type to another.
6476 We call elfNN_aarch64_final_link_relocate unless we're completely
6477 done, i.e., the relaxation produced the final output we want. */
6478
6479 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6480 h, r_symndx);
6481 if (relaxed_bfd_r_type != bfd_r_type)
6482 {
6483 bfd_r_type = relaxed_bfd_r_type;
6484 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6485 BFD_ASSERT (howto != NULL);
6486 r_type = howto->type;
6487 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6488 unresolved_reloc = 0;
6489 }
6490 else
6491 r = bfd_reloc_continue;
6492
6493 /* There may be multiple consecutive relocations for the
6494 same offset. In that case we are supposed to treat the
6495 output of each relocation as the addend for the next. */
6496 if (rel + 1 < relend
6497 && rel->r_offset == rel[1].r_offset
6498 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6499 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6500 save_addend = TRUE;
6501 else
6502 save_addend = FALSE;
6503
6504 if (r == bfd_reloc_continue)
6505 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6506 input_section, contents, rel,
6507 relocation, info, sec,
6508 h, &unresolved_reloc,
6509 save_addend, &addend, sym);
6510
6511 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6512 {
6513 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6514 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6515 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6516 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6517 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6518 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6519 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6520 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6521 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6522 {
6523 bfd_boolean need_relocs = FALSE;
6524 bfd_byte *loc;
6525 int indx;
6526 bfd_vma off;
6527
6528 off = symbol_got_offset (input_bfd, h, r_symndx);
6529 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6530
6531 need_relocs =
6532 (!bfd_link_executable (info) || indx != 0) &&
6533 (h == NULL
6534 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6535 || h->root.type != bfd_link_hash_undefweak);
6536
6537 BFD_ASSERT (globals->root.srelgot != NULL);
6538
6539 if (need_relocs)
6540 {
6541 Elf_Internal_Rela rela;
6542 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6543 rela.r_addend = 0;
6544 rela.r_offset = globals->root.sgot->output_section->vma +
6545 globals->root.sgot->output_offset + off;
6546
6547
6548 loc = globals->root.srelgot->contents;
6549 loc += globals->root.srelgot->reloc_count++
6550 * RELOC_SIZE (htab);
6551 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6552
6553 bfd_reloc_code_real_type real_type =
6554 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6555
6556 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6557 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6558 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6559 {
6560 /* For local dynamic, don't generate DTPREL in any case.
6561 Initialize the DTPREL slot into zero, so we get module
6562 base address when invoke runtime TLS resolver. */
6563 bfd_put_NN (output_bfd, 0,
6564 globals->root.sgot->contents + off
6565 + GOT_ENTRY_SIZE);
6566 }
6567 else if (indx == 0)
6568 {
6569 bfd_put_NN (output_bfd,
6570 relocation - dtpoff_base (info),
6571 globals->root.sgot->contents + off
6572 + GOT_ENTRY_SIZE);
6573 }
6574 else
6575 {
6576 /* This TLS symbol is global. We emit a
6577 relocation to fixup the tls offset at load
6578 time. */
6579 rela.r_info =
6580 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6581 rela.r_addend = 0;
6582 rela.r_offset =
6583 (globals->root.sgot->output_section->vma
6584 + globals->root.sgot->output_offset + off
6585 + GOT_ENTRY_SIZE);
6586
6587 loc = globals->root.srelgot->contents;
6588 loc += globals->root.srelgot->reloc_count++
6589 * RELOC_SIZE (globals);
6590 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6591 bfd_put_NN (output_bfd, (bfd_vma) 0,
6592 globals->root.sgot->contents + off
6593 + GOT_ENTRY_SIZE);
6594 }
6595 }
6596 else
6597 {
6598 bfd_put_NN (output_bfd, (bfd_vma) 1,
6599 globals->root.sgot->contents + off);
6600 bfd_put_NN (output_bfd,
6601 relocation - dtpoff_base (info),
6602 globals->root.sgot->contents + off
6603 + GOT_ENTRY_SIZE);
6604 }
6605
6606 symbol_got_offset_mark (input_bfd, h, r_symndx);
6607 }
6608 break;
6609
6610 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6611 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6612 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6613 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6614 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6615 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6616 {
6617 bfd_boolean need_relocs = FALSE;
6618 bfd_byte *loc;
6619 int indx;
6620 bfd_vma off;
6621
6622 off = symbol_got_offset (input_bfd, h, r_symndx);
6623
6624 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6625
6626 need_relocs =
6627 (!bfd_link_executable (info) || indx != 0) &&
6628 (h == NULL
6629 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6630 || h->root.type != bfd_link_hash_undefweak);
6631
6632 BFD_ASSERT (globals->root.srelgot != NULL);
6633
6634 if (need_relocs)
6635 {
6636 Elf_Internal_Rela rela;
6637
6638 if (indx == 0)
6639 rela.r_addend = relocation - dtpoff_base (info);
6640 else
6641 rela.r_addend = 0;
6642
6643 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6644 rela.r_offset = globals->root.sgot->output_section->vma +
6645 globals->root.sgot->output_offset + off;
6646
6647 loc = globals->root.srelgot->contents;
6648 loc += globals->root.srelgot->reloc_count++
6649 * RELOC_SIZE (htab);
6650
6651 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6652
6653 bfd_put_NN (output_bfd, rela.r_addend,
6654 globals->root.sgot->contents + off);
6655 }
6656 else
6657 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6658 globals->root.sgot->contents + off);
6659
6660 symbol_got_offset_mark (input_bfd, h, r_symndx);
6661 }
6662 break;
6663
6664 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6665 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6666 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6667 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6668 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6669 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6670 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6671 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6672 {
6673 bfd_boolean need_relocs = FALSE;
6674 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6675 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6676
6677 need_relocs = (h == NULL
6678 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6679 || h->root.type != bfd_link_hash_undefweak);
6680
6681 BFD_ASSERT (globals->root.srelgot != NULL);
6682 BFD_ASSERT (globals->root.sgot != NULL);
6683
6684 if (need_relocs)
6685 {
6686 bfd_byte *loc;
6687 Elf_Internal_Rela rela;
6688 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6689
6690 rela.r_addend = 0;
6691 rela.r_offset = (globals->root.sgotplt->output_section->vma
6692 + globals->root.sgotplt->output_offset
6693 + off + globals->sgotplt_jump_table_size);
6694
6695 if (indx == 0)
6696 rela.r_addend = relocation - dtpoff_base (info);
6697
6698 /* Allocate the next available slot in the PLT reloc
6699 section to hold our R_AARCH64_TLSDESC, the next
6700 available slot is determined from reloc_count,
6701 which we step. But note, reloc_count was
6702 artifically moved down while allocating slots for
6703 real PLT relocs such that all of the PLT relocs
6704 will fit above the initial reloc_count and the
6705 extra stuff will fit below. */
6706 loc = globals->root.srelplt->contents;
6707 loc += globals->root.srelplt->reloc_count++
6708 * RELOC_SIZE (globals);
6709
6710 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6711
6712 bfd_put_NN (output_bfd, (bfd_vma) 0,
6713 globals->root.sgotplt->contents + off +
6714 globals->sgotplt_jump_table_size);
6715 bfd_put_NN (output_bfd, (bfd_vma) 0,
6716 globals->root.sgotplt->contents + off +
6717 globals->sgotplt_jump_table_size +
6718 GOT_ENTRY_SIZE);
6719 }
6720
6721 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6722 }
6723 break;
6724 default:
6725 break;
6726 }
6727
6728 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6729 because such sections are not SEC_ALLOC and thus ld.so will
6730 not process them. */
6731 if (unresolved_reloc
6732 && !((input_section->flags & SEC_DEBUGGING) != 0
6733 && h->def_dynamic)
6734 && _bfd_elf_section_offset (output_bfd, info, input_section,
6735 +rel->r_offset) != (bfd_vma) - 1)
6736 {
6737 _bfd_error_handler
6738 /* xgettext:c-format */
6739 (_("%pB(%pA+%#" PRIx64 "): "
6740 "unresolvable %s relocation against symbol `%s'"),
6741 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
6742 h->root.root.string);
6743 return FALSE;
6744 }
6745
6746 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6747 {
6748 bfd_reloc_code_real_type real_r_type
6749 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6750
6751 switch (r)
6752 {
6753 case bfd_reloc_overflow:
6754 (*info->callbacks->reloc_overflow)
6755 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6756 input_bfd, input_section, rel->r_offset);
6757 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6758 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6759 {
6760 (*info->callbacks->warning)
6761 (info,
6762 _("too many GOT entries for -fpic, "
6763 "please recompile with -fPIC"),
6764 name, input_bfd, input_section, rel->r_offset);
6765 return FALSE;
6766 }
6767 /* Overflow can occur when a variable is referenced with a type
6768 that has a larger alignment than the type with which it was
6769 declared. eg:
6770 file1.c: extern int foo; int a (void) { return foo; }
6771 file2.c: char bar, foo, baz;
6772 If the variable is placed into a data section at an offset
6773 that is incompatible with the larger alignment requirement
6774 overflow will occur. (Strictly speaking this is not overflow
6775 but rather an alignment problem, but the bfd_reloc_ error
6776 enum does not have a value to cover that situation).
6777
6778 Try to catch this situation here and provide a more helpful
6779 error message to the user. */
6780 if (addend & ((1 << howto->rightshift) - 1)
6781 /* FIXME: Are we testing all of the appropriate reloc
6782 types here ? */
6783 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6784 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6785 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6786 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6787 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6788 {
6789 info->callbacks->warning
6790 (info, _("one possible cause of this error is that the \
6791 symbol is being referenced in the indicated code as if it had a larger \
6792 alignment than was declared where it was defined"),
6793 name, input_bfd, input_section, rel->r_offset);
6794 }
6795 break;
6796
6797 case bfd_reloc_undefined:
6798 (*info->callbacks->undefined_symbol)
6799 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6800 break;
6801
6802 case bfd_reloc_outofrange:
6803 error_message = _("out of range");
6804 goto common_error;
6805
6806 case bfd_reloc_notsupported:
6807 error_message = _("unsupported relocation");
6808 goto common_error;
6809
6810 case bfd_reloc_dangerous:
6811 /* error_message should already be set. */
6812 goto common_error;
6813
6814 default:
6815 error_message = _("unknown error");
6816 /* Fall through. */
6817
6818 common_error:
6819 BFD_ASSERT (error_message != NULL);
6820 (*info->callbacks->reloc_dangerous)
6821 (info, error_message, input_bfd, input_section, rel->r_offset);
6822 break;
6823 }
6824 }
6825
6826 if (!save_addend)
6827 addend = 0;
6828 }
6829
6830 return TRUE;
6831 }
6832
6833 /* Set the right machine number. */
6834
6835 static bfd_boolean
6836 elfNN_aarch64_object_p (bfd *abfd)
6837 {
6838 #if ARCH_SIZE == 32
6839 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6840 #else
6841 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6842 #endif
6843 return TRUE;
6844 }
6845
6846 /* Function to keep AArch64 specific flags in the ELF header. */
6847
6848 static bfd_boolean
6849 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6850 {
6851 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6852 {
6853 }
6854 else
6855 {
6856 elf_elfheader (abfd)->e_flags = flags;
6857 elf_flags_init (abfd) = TRUE;
6858 }
6859
6860 return TRUE;
6861 }
6862
6863 /* Merge backend specific data from an object file to the output
6864 object file when linking. */
6865
6866 static bfd_boolean
6867 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6868 {
6869 bfd *obfd = info->output_bfd;
6870 flagword out_flags;
6871 flagword in_flags;
6872 bfd_boolean flags_compatible = TRUE;
6873 asection *sec;
6874
6875 /* Check if we have the same endianess. */
6876 if (!_bfd_generic_verify_endian_match (ibfd, info))
6877 return FALSE;
6878
6879 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6880 return TRUE;
6881
6882 /* The input BFD must have had its flags initialised. */
6883 /* The following seems bogus to me -- The flags are initialized in
6884 the assembler but I don't think an elf_flags_init field is
6885 written into the object. */
6886 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6887
6888 in_flags = elf_elfheader (ibfd)->e_flags;
6889 out_flags = elf_elfheader (obfd)->e_flags;
6890
6891 if (!elf_flags_init (obfd))
6892 {
6893 /* If the input is the default architecture and had the default
6894 flags then do not bother setting the flags for the output
6895 architecture, instead allow future merges to do this. If no
6896 future merges ever set these flags then they will retain their
6897 uninitialised values, which surprise surprise, correspond
6898 to the default values. */
6899 if (bfd_get_arch_info (ibfd)->the_default
6900 && elf_elfheader (ibfd)->e_flags == 0)
6901 return TRUE;
6902
6903 elf_flags_init (obfd) = TRUE;
6904 elf_elfheader (obfd)->e_flags = in_flags;
6905
6906 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6907 && bfd_get_arch_info (obfd)->the_default)
6908 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6909 bfd_get_mach (ibfd));
6910
6911 return TRUE;
6912 }
6913
6914 /* Identical flags must be compatible. */
6915 if (in_flags == out_flags)
6916 return TRUE;
6917
6918 /* Check to see if the input BFD actually contains any sections. If
6919 not, its flags may not have been initialised either, but it
6920 cannot actually cause any incompatiblity. Do not short-circuit
6921 dynamic objects; their section list may be emptied by
6922 elf_link_add_object_symbols.
6923
6924 Also check to see if there are no code sections in the input.
6925 In this case there is no need to check for code specific flags.
6926 XXX - do we need to worry about floating-point format compatability
6927 in data sections ? */
6928 if (!(ibfd->flags & DYNAMIC))
6929 {
6930 bfd_boolean null_input_bfd = TRUE;
6931 bfd_boolean only_data_sections = TRUE;
6932
6933 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6934 {
6935 if ((bfd_get_section_flags (ibfd, sec)
6936 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6937 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6938 only_data_sections = FALSE;
6939
6940 null_input_bfd = FALSE;
6941 break;
6942 }
6943
6944 if (null_input_bfd || only_data_sections)
6945 return TRUE;
6946 }
6947
6948 return flags_compatible;
6949 }
6950
6951 /* Display the flags field. */
6952
6953 static bfd_boolean
6954 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6955 {
6956 FILE *file = (FILE *) ptr;
6957 unsigned long flags;
6958
6959 BFD_ASSERT (abfd != NULL && ptr != NULL);
6960
6961 /* Print normal ELF private data. */
6962 _bfd_elf_print_private_bfd_data (abfd, ptr);
6963
6964 flags = elf_elfheader (abfd)->e_flags;
6965 /* Ignore init flag - it may not be set, despite the flags field
6966 containing valid data. */
6967
6968 /* xgettext:c-format */
6969 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6970
6971 if (flags)
6972 fprintf (file, _("<Unrecognised flag bits set>"));
6973
6974 fputc ('\n', file);
6975
6976 return TRUE;
6977 }
6978
6979 /* Find dynamic relocs for H that apply to read-only sections. */
6980
6981 static asection *
6982 readonly_dynrelocs (struct elf_link_hash_entry *h)
6983 {
6984 struct elf_dyn_relocs *p;
6985
6986 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
6987 {
6988 asection *s = p->sec->output_section;
6989
6990 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6991 return p->sec;
6992 }
6993 return NULL;
6994 }
6995
6996 /* Return true if we need copy relocation against EH. */
6997
6998 static bfd_boolean
6999 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7000 {
7001 struct elf_dyn_relocs *p;
7002 asection *s;
7003
7004 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7005 {
7006 /* If there is any pc-relative reference, we need to keep copy relocation
7007 to avoid propagating the relocation into runtime that current glibc
7008 does not support. */
7009 if (p->pc_count)
7010 return TRUE;
7011
7012 s = p->sec->output_section;
7013 /* Need copy relocation if it's against read-only section. */
7014 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7015 return TRUE;
7016 }
7017
7018 return FALSE;
7019 }
7020
7021 /* Adjust a symbol defined by a dynamic object and referenced by a
7022 regular object. The current definition is in some section of the
7023 dynamic object, but we're not including those sections. We have to
7024 change the definition to something the rest of the link can
7025 understand. */
7026
7027 static bfd_boolean
7028 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7029 struct elf_link_hash_entry *h)
7030 {
7031 struct elf_aarch64_link_hash_table *htab;
7032 asection *s, *srel;
7033
7034 /* If this is a function, put it in the procedure linkage table. We
7035 will fill in the contents of the procedure linkage table later,
7036 when we know the address of the .got section. */
7037 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7038 {
7039 if (h->plt.refcount <= 0
7040 || (h->type != STT_GNU_IFUNC
7041 && (SYMBOL_CALLS_LOCAL (info, h)
7042 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7043 && h->root.type == bfd_link_hash_undefweak))))
7044 {
7045 /* This case can occur if we saw a CALL26 reloc in
7046 an input file, but the symbol wasn't referred to
7047 by a dynamic object or all references were
7048 garbage collected. In which case we can end up
7049 resolving. */
7050 h->plt.offset = (bfd_vma) - 1;
7051 h->needs_plt = 0;
7052 }
7053
7054 return TRUE;
7055 }
7056 else
7057 /* Otherwise, reset to -1. */
7058 h->plt.offset = (bfd_vma) - 1;
7059
7060
7061 /* If this is a weak symbol, and there is a real definition, the
7062 processor independent code will have arranged for us to see the
7063 real definition first, and we can just use the same value. */
7064 if (h->is_weakalias)
7065 {
7066 struct elf_link_hash_entry *def = weakdef (h);
7067 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7068 h->root.u.def.section = def->root.u.def.section;
7069 h->root.u.def.value = def->root.u.def.value;
7070 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7071 h->non_got_ref = def->non_got_ref;
7072 return TRUE;
7073 }
7074
7075 /* If we are creating a shared library, we must presume that the
7076 only references to the symbol are via the global offset table.
7077 For such cases we need not do anything here; the relocations will
7078 be handled correctly by relocate_section. */
7079 if (bfd_link_pic (info))
7080 return TRUE;
7081
7082 /* If there are no references to this symbol that do not use the
7083 GOT, we don't need to generate a copy reloc. */
7084 if (!h->non_got_ref)
7085 return TRUE;
7086
7087 /* If -z nocopyreloc was given, we won't generate them either. */
7088 if (info->nocopyreloc)
7089 {
7090 h->non_got_ref = 0;
7091 return TRUE;
7092 }
7093
7094 if (ELIMINATE_COPY_RELOCS)
7095 {
7096 struct elf_aarch64_link_hash_entry *eh;
7097 /* If we don't find any dynamic relocs in read-only sections, then
7098 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7099 eh = (struct elf_aarch64_link_hash_entry *) h;
7100 if (!need_copy_relocation_p (eh))
7101 {
7102 h->non_got_ref = 0;
7103 return TRUE;
7104 }
7105 }
7106
7107 /* We must allocate the symbol in our .dynbss section, which will
7108 become part of the .bss section of the executable. There will be
7109 an entry for this symbol in the .dynsym section. The dynamic
7110 object will contain position independent code, so all references
7111 from the dynamic object to this symbol will go through the global
7112 offset table. The dynamic linker will use the .dynsym entry to
7113 determine the address it must put in the global offset table, so
7114 both the dynamic object and the regular object will refer to the
7115 same memory location for the variable. */
7116
7117 htab = elf_aarch64_hash_table (info);
7118
7119 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7120 to copy the initial value out of the dynamic object and into the
7121 runtime process image. */
7122 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7123 {
7124 s = htab->root.sdynrelro;
7125 srel = htab->root.sreldynrelro;
7126 }
7127 else
7128 {
7129 s = htab->root.sdynbss;
7130 srel = htab->root.srelbss;
7131 }
7132 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7133 {
7134 srel->size += RELOC_SIZE (htab);
7135 h->needs_copy = 1;
7136 }
7137
7138 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7139
7140 }
7141
7142 static bfd_boolean
7143 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7144 {
7145 struct elf_aarch64_local_symbol *locals;
7146 locals = elf_aarch64_locals (abfd);
7147 if (locals == NULL)
7148 {
7149 locals = (struct elf_aarch64_local_symbol *)
7150 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7151 if (locals == NULL)
7152 return FALSE;
7153 elf_aarch64_locals (abfd) = locals;
7154 }
7155 return TRUE;
7156 }
7157
7158 /* Create the .got section to hold the global offset table. */
7159
7160 static bfd_boolean
7161 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7162 {
7163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7164 flagword flags;
7165 asection *s;
7166 struct elf_link_hash_entry *h;
7167 struct elf_link_hash_table *htab = elf_hash_table (info);
7168
7169 /* This function may be called more than once. */
7170 if (htab->sgot != NULL)
7171 return TRUE;
7172
7173 flags = bed->dynamic_sec_flags;
7174
7175 s = bfd_make_section_anyway_with_flags (abfd,
7176 (bed->rela_plts_and_copies_p
7177 ? ".rela.got" : ".rel.got"),
7178 (bed->dynamic_sec_flags
7179 | SEC_READONLY));
7180 if (s == NULL
7181 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7182 return FALSE;
7183 htab->srelgot = s;
7184
7185 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7186 if (s == NULL
7187 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7188 return FALSE;
7189 htab->sgot = s;
7190 htab->sgot->size += GOT_ENTRY_SIZE;
7191
7192 if (bed->want_got_sym)
7193 {
7194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7195 (or .got.plt) section. We don't do this in the linker script
7196 because we don't want to define the symbol if we are not creating
7197 a global offset table. */
7198 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7199 "_GLOBAL_OFFSET_TABLE_");
7200 elf_hash_table (info)->hgot = h;
7201 if (h == NULL)
7202 return FALSE;
7203 }
7204
7205 if (bed->want_got_plt)
7206 {
7207 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7208 if (s == NULL
7209 || !bfd_set_section_alignment (abfd, s,
7210 bed->s->log_file_align))
7211 return FALSE;
7212 htab->sgotplt = s;
7213 }
7214
7215 /* The first bit of the global offset table is the header. */
7216 s->size += bed->got_header_size;
7217
7218 return TRUE;
7219 }
7220
7221 /* Look through the relocs for a section during the first phase. */
7222
7223 static bfd_boolean
7224 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7225 asection *sec, const Elf_Internal_Rela *relocs)
7226 {
7227 Elf_Internal_Shdr *symtab_hdr;
7228 struct elf_link_hash_entry **sym_hashes;
7229 const Elf_Internal_Rela *rel;
7230 const Elf_Internal_Rela *rel_end;
7231 asection *sreloc;
7232
7233 struct elf_aarch64_link_hash_table *htab;
7234
7235 if (bfd_link_relocatable (info))
7236 return TRUE;
7237
7238 BFD_ASSERT (is_aarch64_elf (abfd));
7239
7240 htab = elf_aarch64_hash_table (info);
7241 sreloc = NULL;
7242
7243 symtab_hdr = &elf_symtab_hdr (abfd);
7244 sym_hashes = elf_sym_hashes (abfd);
7245
7246 rel_end = relocs + sec->reloc_count;
7247 for (rel = relocs; rel < rel_end; rel++)
7248 {
7249 struct elf_link_hash_entry *h;
7250 unsigned int r_symndx;
7251 unsigned int r_type;
7252 bfd_reloc_code_real_type bfd_r_type;
7253 Elf_Internal_Sym *isym;
7254
7255 r_symndx = ELFNN_R_SYM (rel->r_info);
7256 r_type = ELFNN_R_TYPE (rel->r_info);
7257
7258 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7259 {
7260 /* xgettext:c-format */
7261 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7262 return FALSE;
7263 }
7264
7265 if (r_symndx < symtab_hdr->sh_info)
7266 {
7267 /* A local symbol. */
7268 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7269 abfd, r_symndx);
7270 if (isym == NULL)
7271 return FALSE;
7272
7273 /* Check relocation against local STT_GNU_IFUNC symbol. */
7274 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7275 {
7276 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7277 TRUE);
7278 if (h == NULL)
7279 return FALSE;
7280
7281 /* Fake a STT_GNU_IFUNC symbol. */
7282 h->type = STT_GNU_IFUNC;
7283 h->def_regular = 1;
7284 h->ref_regular = 1;
7285 h->forced_local = 1;
7286 h->root.type = bfd_link_hash_defined;
7287 }
7288 else
7289 h = NULL;
7290 }
7291 else
7292 {
7293 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7294 while (h->root.type == bfd_link_hash_indirect
7295 || h->root.type == bfd_link_hash_warning)
7296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7297 }
7298
7299 /* Could be done earlier, if h were already available. */
7300 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7301
7302 if (h != NULL)
7303 {
7304 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7305 This shows up in particular in an R_AARCH64_PREL64 in large model
7306 when calculating the pc-relative address to .got section which is
7307 used to initialize the gp register. */
7308 if (h->root.root.string
7309 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7310 {
7311 if (htab->root.dynobj == NULL)
7312 htab->root.dynobj = abfd;
7313
7314 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7315 return FALSE;
7316
7317 BFD_ASSERT (h == htab->root.hgot);
7318 }
7319
7320 /* Create the ifunc sections for static executables. If we
7321 never see an indirect function symbol nor we are building
7322 a static executable, those sections will be empty and
7323 won't appear in output. */
7324 switch (bfd_r_type)
7325 {
7326 default:
7327 break;
7328
7329 case BFD_RELOC_AARCH64_ADD_LO12:
7330 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7331 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7332 case BFD_RELOC_AARCH64_CALL26:
7333 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7334 case BFD_RELOC_AARCH64_JUMP26:
7335 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7336 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7337 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7338 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7339 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7340 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7341 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7342 case BFD_RELOC_AARCH64_NN:
7343 if (htab->root.dynobj == NULL)
7344 htab->root.dynobj = abfd;
7345 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7346 return FALSE;
7347 break;
7348 }
7349
7350 /* It is referenced by a non-shared object. */
7351 h->ref_regular = 1;
7352 }
7353
7354 switch (bfd_r_type)
7355 {
7356 case BFD_RELOC_AARCH64_16:
7357 #if ARCH_SIZE == 64
7358 case BFD_RELOC_AARCH64_32:
7359 #endif
7360 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7361 {
7362 if (h != NULL
7363 /* This is an absolute symbol. It represents a value instead
7364 of an address. */
7365 && (bfd_is_abs_symbol (&h->root)
7366 /* This is an undefined symbol. */
7367 || h->root.type == bfd_link_hash_undefined))
7368 break;
7369
7370 /* For local symbols, defined global symbols in a non-ABS section,
7371 it is assumed that the value is an address. */
7372 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7373 _bfd_error_handler
7374 /* xgettext:c-format */
7375 (_("%pB: relocation %s against `%s' can not be used when making "
7376 "a shared object"),
7377 abfd, elfNN_aarch64_howto_table[howto_index].name,
7378 (h) ? h->root.root.string : "a local symbol");
7379 bfd_set_error (bfd_error_bad_value);
7380 return FALSE;
7381 }
7382 else
7383 break;
7384
7385 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7386 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7387 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7388 case BFD_RELOC_AARCH64_MOVW_G3:
7389 if (bfd_link_pic (info))
7390 {
7391 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7392 _bfd_error_handler
7393 /* xgettext:c-format */
7394 (_("%pB: relocation %s against `%s' can not be used when making "
7395 "a shared object; recompile with -fPIC"),
7396 abfd, elfNN_aarch64_howto_table[howto_index].name,
7397 (h) ? h->root.root.string : "a local symbol");
7398 bfd_set_error (bfd_error_bad_value);
7399 return FALSE;
7400 }
7401 /* Fall through. */
7402
7403 case BFD_RELOC_AARCH64_16_PCREL:
7404 case BFD_RELOC_AARCH64_32_PCREL:
7405 case BFD_RELOC_AARCH64_64_PCREL:
7406 case BFD_RELOC_AARCH64_ADD_LO12:
7407 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7408 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7409 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7410 case BFD_RELOC_AARCH64_LDST128_LO12:
7411 case BFD_RELOC_AARCH64_LDST16_LO12:
7412 case BFD_RELOC_AARCH64_LDST32_LO12:
7413 case BFD_RELOC_AARCH64_LDST64_LO12:
7414 case BFD_RELOC_AARCH64_LDST8_LO12:
7415 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7416 if (h == NULL || bfd_link_pic (info))
7417 break;
7418 /* Fall through. */
7419
7420 case BFD_RELOC_AARCH64_NN:
7421
7422 /* We don't need to handle relocs into sections not going into
7423 the "real" output. */
7424 if ((sec->flags & SEC_ALLOC) == 0)
7425 break;
7426
7427 if (h != NULL)
7428 {
7429 if (!bfd_link_pic (info))
7430 h->non_got_ref = 1;
7431
7432 h->plt.refcount += 1;
7433 h->pointer_equality_needed = 1;
7434 }
7435
7436 /* No need to do anything if we're not creating a shared
7437 object. */
7438 if (!(bfd_link_pic (info)
7439 /* If on the other hand, we are creating an executable, we
7440 may need to keep relocations for symbols satisfied by a
7441 dynamic library if we manage to avoid copy relocs for the
7442 symbol.
7443
7444 NOTE: Currently, there is no support of copy relocs
7445 elimination on pc-relative relocation types, because there is
7446 no dynamic relocation support for them in glibc. We still
7447 record the dynamic symbol reference for them. This is
7448 because one symbol may be referenced by both absolute
7449 relocation (for example, BFD_RELOC_AARCH64_NN) and
7450 pc-relative relocation. We need full symbol reference
7451 information to make correct decision later in
7452 elfNN_aarch64_adjust_dynamic_symbol. */
7453 || (ELIMINATE_COPY_RELOCS
7454 && !bfd_link_pic (info)
7455 && h != NULL
7456 && (h->root.type == bfd_link_hash_defweak
7457 || !h->def_regular))))
7458 break;
7459
7460 {
7461 struct elf_dyn_relocs *p;
7462 struct elf_dyn_relocs **head;
7463 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7464
7465 /* We must copy these reloc types into the output file.
7466 Create a reloc section in dynobj and make room for
7467 this reloc. */
7468 if (sreloc == NULL)
7469 {
7470 if (htab->root.dynobj == NULL)
7471 htab->root.dynobj = abfd;
7472
7473 sreloc = _bfd_elf_make_dynamic_reloc_section
7474 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7475
7476 if (sreloc == NULL)
7477 return FALSE;
7478 }
7479
7480 /* If this is a global symbol, we count the number of
7481 relocations we need for this symbol. */
7482 if (h != NULL)
7483 {
7484 struct elf_aarch64_link_hash_entry *eh;
7485 eh = (struct elf_aarch64_link_hash_entry *) h;
7486 head = &eh->dyn_relocs;
7487 }
7488 else
7489 {
7490 /* Track dynamic relocs needed for local syms too.
7491 We really need local syms available to do this
7492 easily. Oh well. */
7493
7494 asection *s;
7495 void **vpp;
7496
7497 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7498 abfd, r_symndx);
7499 if (isym == NULL)
7500 return FALSE;
7501
7502 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7503 if (s == NULL)
7504 s = sec;
7505
7506 /* Beware of type punned pointers vs strict aliasing
7507 rules. */
7508 vpp = &(elf_section_data (s)->local_dynrel);
7509 head = (struct elf_dyn_relocs **) vpp;
7510 }
7511
7512 p = *head;
7513 if (p == NULL || p->sec != sec)
7514 {
7515 bfd_size_type amt = sizeof *p;
7516 p = ((struct elf_dyn_relocs *)
7517 bfd_zalloc (htab->root.dynobj, amt));
7518 if (p == NULL)
7519 return FALSE;
7520 p->next = *head;
7521 *head = p;
7522 p->sec = sec;
7523 }
7524
7525 p->count += 1;
7526
7527 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7528 p->pc_count += 1;
7529 }
7530 break;
7531
7532 /* RR: We probably want to keep a consistency check that
7533 there are no dangling GOT_PAGE relocs. */
7534 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7535 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7536 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7537 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7538 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7539 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7540 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7541 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7542 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7543 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7544 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7545 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7546 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7547 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7548 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7549 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7550 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7551 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7552 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7553 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7554 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7555 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7556 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7557 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7558 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7559 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7560 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7561 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7562 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7563 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7564 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7565 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7566 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7567 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7568 {
7569 unsigned got_type;
7570 unsigned old_got_type;
7571
7572 got_type = aarch64_reloc_got_type (bfd_r_type);
7573
7574 if (h)
7575 {
7576 h->got.refcount += 1;
7577 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7578 }
7579 else
7580 {
7581 struct elf_aarch64_local_symbol *locals;
7582
7583 if (!elfNN_aarch64_allocate_local_symbols
7584 (abfd, symtab_hdr->sh_info))
7585 return FALSE;
7586
7587 locals = elf_aarch64_locals (abfd);
7588 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7589 locals[r_symndx].got_refcount += 1;
7590 old_got_type = locals[r_symndx].got_type;
7591 }
7592
7593 /* If a variable is accessed with both general dynamic TLS
7594 methods, two slots may be created. */
7595 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7596 got_type |= old_got_type;
7597
7598 /* We will already have issued an error message if there
7599 is a TLS/non-TLS mismatch, based on the symbol type.
7600 So just combine any TLS types needed. */
7601 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7602 && got_type != GOT_NORMAL)
7603 got_type |= old_got_type;
7604
7605 /* If the symbol is accessed by both IE and GD methods, we
7606 are able to relax. Turn off the GD flag, without
7607 messing up with any other kind of TLS types that may be
7608 involved. */
7609 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7610 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7611
7612 if (old_got_type != got_type)
7613 {
7614 if (h != NULL)
7615 elf_aarch64_hash_entry (h)->got_type = got_type;
7616 else
7617 {
7618 struct elf_aarch64_local_symbol *locals;
7619 locals = elf_aarch64_locals (abfd);
7620 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7621 locals[r_symndx].got_type = got_type;
7622 }
7623 }
7624
7625 if (htab->root.dynobj == NULL)
7626 htab->root.dynobj = abfd;
7627 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7628 return FALSE;
7629 break;
7630 }
7631
7632 case BFD_RELOC_AARCH64_CALL26:
7633 case BFD_RELOC_AARCH64_JUMP26:
7634 /* If this is a local symbol then we resolve it
7635 directly without creating a PLT entry. */
7636 if (h == NULL)
7637 continue;
7638
7639 h->needs_plt = 1;
7640 if (h->plt.refcount <= 0)
7641 h->plt.refcount = 1;
7642 else
7643 h->plt.refcount += 1;
7644 break;
7645
7646 default:
7647 break;
7648 }
7649 }
7650
7651 return TRUE;
7652 }
7653
7654 /* Treat mapping symbols as special target symbols. */
7655
7656 static bfd_boolean
7657 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7658 asymbol *sym)
7659 {
7660 return bfd_is_aarch64_special_symbol_name (sym->name,
7661 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7662 }
7663
7664 /* This is a copy of elf_find_function () from elf.c except that
7665 AArch64 mapping symbols are ignored when looking for function names. */
7666
7667 static bfd_boolean
7668 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7669 asymbol **symbols,
7670 asection *section,
7671 bfd_vma offset,
7672 const char **filename_ptr,
7673 const char **functionname_ptr)
7674 {
7675 const char *filename = NULL;
7676 asymbol *func = NULL;
7677 bfd_vma low_func = 0;
7678 asymbol **p;
7679
7680 for (p = symbols; *p != NULL; p++)
7681 {
7682 elf_symbol_type *q;
7683
7684 q = (elf_symbol_type *) * p;
7685
7686 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7687 {
7688 default:
7689 break;
7690 case STT_FILE:
7691 filename = bfd_asymbol_name (&q->symbol);
7692 break;
7693 case STT_FUNC:
7694 case STT_NOTYPE:
7695 /* Skip mapping symbols. */
7696 if ((q->symbol.flags & BSF_LOCAL)
7697 && (bfd_is_aarch64_special_symbol_name
7698 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7699 continue;
7700 /* Fall through. */
7701 if (bfd_get_section (&q->symbol) == section
7702 && q->symbol.value >= low_func && q->symbol.value <= offset)
7703 {
7704 func = (asymbol *) q;
7705 low_func = q->symbol.value;
7706 }
7707 break;
7708 }
7709 }
7710
7711 if (func == NULL)
7712 return FALSE;
7713
7714 if (filename_ptr)
7715 *filename_ptr = filename;
7716 if (functionname_ptr)
7717 *functionname_ptr = bfd_asymbol_name (func);
7718
7719 return TRUE;
7720 }
7721
7722
7723 /* Find the nearest line to a particular section and offset, for error
7724 reporting. This code is a duplicate of the code in elf.c, except
7725 that it uses aarch64_elf_find_function. */
7726
7727 static bfd_boolean
7728 elfNN_aarch64_find_nearest_line (bfd *abfd,
7729 asymbol **symbols,
7730 asection *section,
7731 bfd_vma offset,
7732 const char **filename_ptr,
7733 const char **functionname_ptr,
7734 unsigned int *line_ptr,
7735 unsigned int *discriminator_ptr)
7736 {
7737 bfd_boolean found = FALSE;
7738
7739 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7740 filename_ptr, functionname_ptr,
7741 line_ptr, discriminator_ptr,
7742 dwarf_debug_sections, 0,
7743 &elf_tdata (abfd)->dwarf2_find_line_info))
7744 {
7745 if (!*functionname_ptr)
7746 aarch64_elf_find_function (abfd, symbols, section, offset,
7747 *filename_ptr ? NULL : filename_ptr,
7748 functionname_ptr);
7749
7750 return TRUE;
7751 }
7752
7753 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7754 toolchain uses DWARF1. */
7755
7756 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7757 &found, filename_ptr,
7758 functionname_ptr, line_ptr,
7759 &elf_tdata (abfd)->line_info))
7760 return FALSE;
7761
7762 if (found && (*functionname_ptr || *line_ptr))
7763 return TRUE;
7764
7765 if (symbols == NULL)
7766 return FALSE;
7767
7768 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7769 filename_ptr, functionname_ptr))
7770 return FALSE;
7771
7772 *line_ptr = 0;
7773 return TRUE;
7774 }
7775
7776 static bfd_boolean
7777 elfNN_aarch64_find_inliner_info (bfd *abfd,
7778 const char **filename_ptr,
7779 const char **functionname_ptr,
7780 unsigned int *line_ptr)
7781 {
7782 bfd_boolean found;
7783 found = _bfd_dwarf2_find_inliner_info
7784 (abfd, filename_ptr,
7785 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7786 return found;
7787 }
7788
7789
7790 static void
7791 elfNN_aarch64_post_process_headers (bfd *abfd,
7792 struct bfd_link_info *link_info)
7793 {
7794 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7795
7796 i_ehdrp = elf_elfheader (abfd);
7797 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7798
7799 _bfd_elf_post_process_headers (abfd, link_info);
7800 }
7801
7802 static enum elf_reloc_type_class
7803 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7804 const asection *rel_sec ATTRIBUTE_UNUSED,
7805 const Elf_Internal_Rela *rela)
7806 {
7807 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7808
7809 if (htab->root.dynsym != NULL
7810 && htab->root.dynsym->contents != NULL)
7811 {
7812 /* Check relocation against STT_GNU_IFUNC symbol if there are
7813 dynamic symbols. */
7814 bfd *abfd = info->output_bfd;
7815 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7816 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7817 if (r_symndx != STN_UNDEF)
7818 {
7819 Elf_Internal_Sym sym;
7820 if (!bed->s->swap_symbol_in (abfd,
7821 (htab->root.dynsym->contents
7822 + r_symndx * bed->s->sizeof_sym),
7823 0, &sym))
7824 {
7825 /* xgettext:c-format */
7826 _bfd_error_handler (_("%pB symbol number %lu references"
7827 " nonexistent SHT_SYMTAB_SHNDX section"),
7828 abfd, r_symndx);
7829 /* Ideally an error class should be returned here. */
7830 }
7831 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7832 return reloc_class_ifunc;
7833 }
7834 }
7835
7836 switch ((int) ELFNN_R_TYPE (rela->r_info))
7837 {
7838 case AARCH64_R (IRELATIVE):
7839 return reloc_class_ifunc;
7840 case AARCH64_R (RELATIVE):
7841 return reloc_class_relative;
7842 case AARCH64_R (JUMP_SLOT):
7843 return reloc_class_plt;
7844 case AARCH64_R (COPY):
7845 return reloc_class_copy;
7846 default:
7847 return reloc_class_normal;
7848 }
7849 }
7850
7851 /* Handle an AArch64 specific section when reading an object file. This is
7852 called when bfd_section_from_shdr finds a section with an unknown
7853 type. */
7854
7855 static bfd_boolean
7856 elfNN_aarch64_section_from_shdr (bfd *abfd,
7857 Elf_Internal_Shdr *hdr,
7858 const char *name, int shindex)
7859 {
7860 /* There ought to be a place to keep ELF backend specific flags, but
7861 at the moment there isn't one. We just keep track of the
7862 sections by their name, instead. Fortunately, the ABI gives
7863 names for all the AArch64 specific sections, so we will probably get
7864 away with this. */
7865 switch (hdr->sh_type)
7866 {
7867 case SHT_AARCH64_ATTRIBUTES:
7868 break;
7869
7870 default:
7871 return FALSE;
7872 }
7873
7874 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7875 return FALSE;
7876
7877 return TRUE;
7878 }
7879
7880 /* A structure used to record a list of sections, independently
7881 of the next and prev fields in the asection structure. */
7882 typedef struct section_list
7883 {
7884 asection *sec;
7885 struct section_list *next;
7886 struct section_list *prev;
7887 }
7888 section_list;
7889
7890 /* Unfortunately we need to keep a list of sections for which
7891 an _aarch64_elf_section_data structure has been allocated. This
7892 is because it is possible for functions like elfNN_aarch64_write_section
7893 to be called on a section which has had an elf_data_structure
7894 allocated for it (and so the used_by_bfd field is valid) but
7895 for which the AArch64 extended version of this structure - the
7896 _aarch64_elf_section_data structure - has not been allocated. */
7897 static section_list *sections_with_aarch64_elf_section_data = NULL;
7898
7899 static void
7900 record_section_with_aarch64_elf_section_data (asection *sec)
7901 {
7902 struct section_list *entry;
7903
7904 entry = bfd_malloc (sizeof (*entry));
7905 if (entry == NULL)
7906 return;
7907 entry->sec = sec;
7908 entry->next = sections_with_aarch64_elf_section_data;
7909 entry->prev = NULL;
7910 if (entry->next != NULL)
7911 entry->next->prev = entry;
7912 sections_with_aarch64_elf_section_data = entry;
7913 }
7914
7915 static struct section_list *
7916 find_aarch64_elf_section_entry (asection *sec)
7917 {
7918 struct section_list *entry;
7919 static struct section_list *last_entry = NULL;
7920
7921 /* This is a short cut for the typical case where the sections are added
7922 to the sections_with_aarch64_elf_section_data list in forward order and
7923 then looked up here in backwards order. This makes a real difference
7924 to the ld-srec/sec64k.exp linker test. */
7925 entry = sections_with_aarch64_elf_section_data;
7926 if (last_entry != NULL)
7927 {
7928 if (last_entry->sec == sec)
7929 entry = last_entry;
7930 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7931 entry = last_entry->next;
7932 }
7933
7934 for (; entry; entry = entry->next)
7935 if (entry->sec == sec)
7936 break;
7937
7938 if (entry)
7939 /* Record the entry prior to this one - it is the entry we are
7940 most likely to want to locate next time. Also this way if we
7941 have been called from
7942 unrecord_section_with_aarch64_elf_section_data () we will not
7943 be caching a pointer that is about to be freed. */
7944 last_entry = entry->prev;
7945
7946 return entry;
7947 }
7948
7949 static void
7950 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7951 {
7952 struct section_list *entry;
7953
7954 entry = find_aarch64_elf_section_entry (sec);
7955
7956 if (entry)
7957 {
7958 if (entry->prev != NULL)
7959 entry->prev->next = entry->next;
7960 if (entry->next != NULL)
7961 entry->next->prev = entry->prev;
7962 if (entry == sections_with_aarch64_elf_section_data)
7963 sections_with_aarch64_elf_section_data = entry->next;
7964 free (entry);
7965 }
7966 }
7967
7968
7969 typedef struct
7970 {
7971 void *finfo;
7972 struct bfd_link_info *info;
7973 asection *sec;
7974 int sec_shndx;
7975 int (*func) (void *, const char *, Elf_Internal_Sym *,
7976 asection *, struct elf_link_hash_entry *);
7977 } output_arch_syminfo;
7978
7979 enum map_symbol_type
7980 {
7981 AARCH64_MAP_INSN,
7982 AARCH64_MAP_DATA
7983 };
7984
7985
7986 /* Output a single mapping symbol. */
7987
7988 static bfd_boolean
7989 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7990 enum map_symbol_type type, bfd_vma offset)
7991 {
7992 static const char *names[2] = { "$x", "$d" };
7993 Elf_Internal_Sym sym;
7994
7995 sym.st_value = (osi->sec->output_section->vma
7996 + osi->sec->output_offset + offset);
7997 sym.st_size = 0;
7998 sym.st_other = 0;
7999 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8000 sym.st_shndx = osi->sec_shndx;
8001 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8002 }
8003
8004 /* Output a single local symbol for a generated stub. */
8005
8006 static bfd_boolean
8007 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8008 bfd_vma offset, bfd_vma size)
8009 {
8010 Elf_Internal_Sym sym;
8011
8012 sym.st_value = (osi->sec->output_section->vma
8013 + osi->sec->output_offset + offset);
8014 sym.st_size = size;
8015 sym.st_other = 0;
8016 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8017 sym.st_shndx = osi->sec_shndx;
8018 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8019 }
8020
8021 static bfd_boolean
8022 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8023 {
8024 struct elf_aarch64_stub_hash_entry *stub_entry;
8025 asection *stub_sec;
8026 bfd_vma addr;
8027 char *stub_name;
8028 output_arch_syminfo *osi;
8029
8030 /* Massage our args to the form they really have. */
8031 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8032 osi = (output_arch_syminfo *) in_arg;
8033
8034 stub_sec = stub_entry->stub_sec;
8035
8036 /* Ensure this stub is attached to the current section being
8037 processed. */
8038 if (stub_sec != osi->sec)
8039 return TRUE;
8040
8041 addr = (bfd_vma) stub_entry->stub_offset;
8042
8043 stub_name = stub_entry->output_name;
8044
8045 switch (stub_entry->stub_type)
8046 {
8047 case aarch64_stub_adrp_branch:
8048 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8049 sizeof (aarch64_adrp_branch_stub)))
8050 return FALSE;
8051 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8052 return FALSE;
8053 break;
8054 case aarch64_stub_long_branch:
8055 if (!elfNN_aarch64_output_stub_sym
8056 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8057 return FALSE;
8058 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8059 return FALSE;
8060 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8061 return FALSE;
8062 break;
8063 case aarch64_stub_erratum_835769_veneer:
8064 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8065 sizeof (aarch64_erratum_835769_stub)))
8066 return FALSE;
8067 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8068 return FALSE;
8069 break;
8070 case aarch64_stub_erratum_843419_veneer:
8071 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8072 sizeof (aarch64_erratum_843419_stub)))
8073 return FALSE;
8074 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8075 return FALSE;
8076 break;
8077
8078 default:
8079 abort ();
8080 }
8081
8082 return TRUE;
8083 }
8084
8085 /* Output mapping symbols for linker generated sections. */
8086
8087 static bfd_boolean
8088 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8089 struct bfd_link_info *info,
8090 void *finfo,
8091 int (*func) (void *, const char *,
8092 Elf_Internal_Sym *,
8093 asection *,
8094 struct elf_link_hash_entry
8095 *))
8096 {
8097 output_arch_syminfo osi;
8098 struct elf_aarch64_link_hash_table *htab;
8099
8100 htab = elf_aarch64_hash_table (info);
8101
8102 osi.finfo = finfo;
8103 osi.info = info;
8104 osi.func = func;
8105
8106 /* Long calls stubs. */
8107 if (htab->stub_bfd && htab->stub_bfd->sections)
8108 {
8109 asection *stub_sec;
8110
8111 for (stub_sec = htab->stub_bfd->sections;
8112 stub_sec != NULL; stub_sec = stub_sec->next)
8113 {
8114 /* Ignore non-stub sections. */
8115 if (!strstr (stub_sec->name, STUB_SUFFIX))
8116 continue;
8117
8118 osi.sec = stub_sec;
8119
8120 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8121 (output_bfd, osi.sec->output_section);
8122
8123 /* The first instruction in a stub is always a branch. */
8124 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8125 return FALSE;
8126
8127 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8128 &osi);
8129 }
8130 }
8131
8132 /* Finally, output mapping symbols for the PLT. */
8133 if (!htab->root.splt || htab->root.splt->size == 0)
8134 return TRUE;
8135
8136 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8137 (output_bfd, htab->root.splt->output_section);
8138 osi.sec = htab->root.splt;
8139
8140 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8141
8142 return TRUE;
8143
8144 }
8145
8146 /* Allocate target specific section data. */
8147
8148 static bfd_boolean
8149 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8150 {
8151 if (!sec->used_by_bfd)
8152 {
8153 _aarch64_elf_section_data *sdata;
8154 bfd_size_type amt = sizeof (*sdata);
8155
8156 sdata = bfd_zalloc (abfd, amt);
8157 if (sdata == NULL)
8158 return FALSE;
8159 sec->used_by_bfd = sdata;
8160 }
8161
8162 record_section_with_aarch64_elf_section_data (sec);
8163
8164 return _bfd_elf_new_section_hook (abfd, sec);
8165 }
8166
8167
8168 static void
8169 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8170 asection *sec,
8171 void *ignore ATTRIBUTE_UNUSED)
8172 {
8173 unrecord_section_with_aarch64_elf_section_data (sec);
8174 }
8175
8176 static bfd_boolean
8177 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8178 {
8179 if (abfd->sections)
8180 bfd_map_over_sections (abfd,
8181 unrecord_section_via_map_over_sections, NULL);
8182
8183 return _bfd_elf_close_and_cleanup (abfd);
8184 }
8185
8186 static bfd_boolean
8187 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8188 {
8189 if (abfd->sections)
8190 bfd_map_over_sections (abfd,
8191 unrecord_section_via_map_over_sections, NULL);
8192
8193 return _bfd_free_cached_info (abfd);
8194 }
8195
8196 /* Create dynamic sections. This is different from the ARM backend in that
8197 the got, plt, gotplt and their relocation sections are all created in the
8198 standard part of the bfd elf backend. */
8199
8200 static bfd_boolean
8201 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8202 struct bfd_link_info *info)
8203 {
8204 /* We need to create .got section. */
8205 if (!aarch64_elf_create_got_section (dynobj, info))
8206 return FALSE;
8207
8208 return _bfd_elf_create_dynamic_sections (dynobj, info);
8209 }
8210
8211
8212 /* Allocate space in .plt, .got and associated reloc sections for
8213 dynamic relocs. */
8214
8215 static bfd_boolean
8216 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8217 {
8218 struct bfd_link_info *info;
8219 struct elf_aarch64_link_hash_table *htab;
8220 struct elf_aarch64_link_hash_entry *eh;
8221 struct elf_dyn_relocs *p;
8222
8223 /* An example of a bfd_link_hash_indirect symbol is versioned
8224 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8225 -> __gxx_personality_v0(bfd_link_hash_defined)
8226
8227 There is no need to process bfd_link_hash_indirect symbols here
8228 because we will also be presented with the concrete instance of
8229 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8230 called to copy all relevant data from the generic to the concrete
8231 symbol instance. */
8232 if (h->root.type == bfd_link_hash_indirect)
8233 return TRUE;
8234
8235 if (h->root.type == bfd_link_hash_warning)
8236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8237
8238 info = (struct bfd_link_info *) inf;
8239 htab = elf_aarch64_hash_table (info);
8240
8241 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8242 here if it is defined and referenced in a non-shared object. */
8243 if (h->type == STT_GNU_IFUNC
8244 && h->def_regular)
8245 return TRUE;
8246 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8247 {
8248 /* Make sure this symbol is output as a dynamic symbol.
8249 Undefined weak syms won't yet be marked as dynamic. */
8250 if (h->dynindx == -1 && !h->forced_local
8251 && h->root.type == bfd_link_hash_undefweak)
8252 {
8253 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8254 return FALSE;
8255 }
8256
8257 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8258 {
8259 asection *s = htab->root.splt;
8260
8261 /* If this is the first .plt entry, make room for the special
8262 first entry. */
8263 if (s->size == 0)
8264 s->size += htab->plt_header_size;
8265
8266 h->plt.offset = s->size;
8267
8268 /* If this symbol is not defined in a regular file, and we are
8269 not generating a shared library, then set the symbol to this
8270 location in the .plt. This is required to make function
8271 pointers compare as equal between the normal executable and
8272 the shared library. */
8273 if (!bfd_link_pic (info) && !h->def_regular)
8274 {
8275 h->root.u.def.section = s;
8276 h->root.u.def.value = h->plt.offset;
8277 }
8278
8279 /* Make room for this entry. For now we only create the
8280 small model PLT entries. We later need to find a way
8281 of relaxing into these from the large model PLT entries. */
8282 s->size += PLT_SMALL_ENTRY_SIZE;
8283
8284 /* We also need to make an entry in the .got.plt section, which
8285 will be placed in the .got section by the linker script. */
8286 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8287
8288 /* We also need to make an entry in the .rela.plt section. */
8289 htab->root.srelplt->size += RELOC_SIZE (htab);
8290
8291 /* We need to ensure that all GOT entries that serve the PLT
8292 are consecutive with the special GOT slots [0] [1] and
8293 [2]. Any addtional relocations, such as
8294 R_AARCH64_TLSDESC, must be placed after the PLT related
8295 entries. We abuse the reloc_count such that during
8296 sizing we adjust reloc_count to indicate the number of
8297 PLT related reserved entries. In subsequent phases when
8298 filling in the contents of the reloc entries, PLT related
8299 entries are placed by computing their PLT index (0
8300 .. reloc_count). While other none PLT relocs are placed
8301 at the slot indicated by reloc_count and reloc_count is
8302 updated. */
8303
8304 htab->root.srelplt->reloc_count++;
8305 }
8306 else
8307 {
8308 h->plt.offset = (bfd_vma) - 1;
8309 h->needs_plt = 0;
8310 }
8311 }
8312 else
8313 {
8314 h->plt.offset = (bfd_vma) - 1;
8315 h->needs_plt = 0;
8316 }
8317
8318 eh = (struct elf_aarch64_link_hash_entry *) h;
8319 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8320
8321 if (h->got.refcount > 0)
8322 {
8323 bfd_boolean dyn;
8324 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8325
8326 h->got.offset = (bfd_vma) - 1;
8327
8328 dyn = htab->root.dynamic_sections_created;
8329
8330 /* Make sure this symbol is output as a dynamic symbol.
8331 Undefined weak syms won't yet be marked as dynamic. */
8332 if (dyn && h->dynindx == -1 && !h->forced_local
8333 && h->root.type == bfd_link_hash_undefweak)
8334 {
8335 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8336 return FALSE;
8337 }
8338
8339 if (got_type == GOT_UNKNOWN)
8340 {
8341 }
8342 else if (got_type == GOT_NORMAL)
8343 {
8344 h->got.offset = htab->root.sgot->size;
8345 htab->root.sgot->size += GOT_ENTRY_SIZE;
8346 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8347 || h->root.type != bfd_link_hash_undefweak)
8348 && (bfd_link_pic (info)
8349 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8350 /* Undefined weak symbol in static PIE resolves to 0 without
8351 any dynamic relocations. */
8352 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8353 {
8354 htab->root.srelgot->size += RELOC_SIZE (htab);
8355 }
8356 }
8357 else
8358 {
8359 int indx;
8360 if (got_type & GOT_TLSDESC_GD)
8361 {
8362 eh->tlsdesc_got_jump_table_offset =
8363 (htab->root.sgotplt->size
8364 - aarch64_compute_jump_table_size (htab));
8365 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8366 h->got.offset = (bfd_vma) - 2;
8367 }
8368
8369 if (got_type & GOT_TLS_GD)
8370 {
8371 h->got.offset = htab->root.sgot->size;
8372 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8373 }
8374
8375 if (got_type & GOT_TLS_IE)
8376 {
8377 h->got.offset = htab->root.sgot->size;
8378 htab->root.sgot->size += GOT_ENTRY_SIZE;
8379 }
8380
8381 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8382 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8383 || h->root.type != bfd_link_hash_undefweak)
8384 && (!bfd_link_executable (info)
8385 || indx != 0
8386 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8387 {
8388 if (got_type & GOT_TLSDESC_GD)
8389 {
8390 htab->root.srelplt->size += RELOC_SIZE (htab);
8391 /* Note reloc_count not incremented here! We have
8392 already adjusted reloc_count for this relocation
8393 type. */
8394
8395 /* TLSDESC PLT is now needed, but not yet determined. */
8396 htab->tlsdesc_plt = (bfd_vma) - 1;
8397 }
8398
8399 if (got_type & GOT_TLS_GD)
8400 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8401
8402 if (got_type & GOT_TLS_IE)
8403 htab->root.srelgot->size += RELOC_SIZE (htab);
8404 }
8405 }
8406 }
8407 else
8408 {
8409 h->got.offset = (bfd_vma) - 1;
8410 }
8411
8412 if (eh->dyn_relocs == NULL)
8413 return TRUE;
8414
8415 /* In the shared -Bsymbolic case, discard space allocated for
8416 dynamic pc-relative relocs against symbols which turn out to be
8417 defined in regular objects. For the normal shared case, discard
8418 space for pc-relative relocs that have become local due to symbol
8419 visibility changes. */
8420
8421 if (bfd_link_pic (info))
8422 {
8423 /* Relocs that use pc_count are those that appear on a call
8424 insn, or certain REL relocs that can generated via assembly.
8425 We want calls to protected symbols to resolve directly to the
8426 function rather than going via the plt. If people want
8427 function pointer comparisons to work as expected then they
8428 should avoid writing weird assembly. */
8429 if (SYMBOL_CALLS_LOCAL (info, h))
8430 {
8431 struct elf_dyn_relocs **pp;
8432
8433 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8434 {
8435 p->count -= p->pc_count;
8436 p->pc_count = 0;
8437 if (p->count == 0)
8438 *pp = p->next;
8439 else
8440 pp = &p->next;
8441 }
8442 }
8443
8444 /* Also discard relocs on undefined weak syms with non-default
8445 visibility. */
8446 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8447 {
8448 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8449 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8450 eh->dyn_relocs = NULL;
8451
8452 /* Make sure undefined weak symbols are output as a dynamic
8453 symbol in PIEs. */
8454 else if (h->dynindx == -1
8455 && !h->forced_local
8456 && h->root.type == bfd_link_hash_undefweak
8457 && !bfd_elf_link_record_dynamic_symbol (info, h))
8458 return FALSE;
8459 }
8460
8461 }
8462 else if (ELIMINATE_COPY_RELOCS)
8463 {
8464 /* For the non-shared case, discard space for relocs against
8465 symbols which turn out to need copy relocs or are not
8466 dynamic. */
8467
8468 if (!h->non_got_ref
8469 && ((h->def_dynamic
8470 && !h->def_regular)
8471 || (htab->root.dynamic_sections_created
8472 && (h->root.type == bfd_link_hash_undefweak
8473 || h->root.type == bfd_link_hash_undefined))))
8474 {
8475 /* Make sure this symbol is output as a dynamic symbol.
8476 Undefined weak syms won't yet be marked as dynamic. */
8477 if (h->dynindx == -1
8478 && !h->forced_local
8479 && h->root.type == bfd_link_hash_undefweak
8480 && !bfd_elf_link_record_dynamic_symbol (info, h))
8481 return FALSE;
8482
8483 /* If that succeeded, we know we'll be keeping all the
8484 relocs. */
8485 if (h->dynindx != -1)
8486 goto keep;
8487 }
8488
8489 eh->dyn_relocs = NULL;
8490
8491 keep:;
8492 }
8493
8494 /* Finally, allocate space. */
8495 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8496 {
8497 asection *sreloc;
8498
8499 sreloc = elf_section_data (p->sec)->sreloc;
8500
8501 BFD_ASSERT (sreloc != NULL);
8502
8503 sreloc->size += p->count * RELOC_SIZE (htab);
8504 }
8505
8506 return TRUE;
8507 }
8508
8509 /* Allocate space in .plt, .got and associated reloc sections for
8510 ifunc dynamic relocs. */
8511
8512 static bfd_boolean
8513 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8514 void *inf)
8515 {
8516 struct bfd_link_info *info;
8517 struct elf_aarch64_link_hash_table *htab;
8518 struct elf_aarch64_link_hash_entry *eh;
8519
8520 /* An example of a bfd_link_hash_indirect symbol is versioned
8521 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8522 -> __gxx_personality_v0(bfd_link_hash_defined)
8523
8524 There is no need to process bfd_link_hash_indirect symbols here
8525 because we will also be presented with the concrete instance of
8526 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8527 called to copy all relevant data from the generic to the concrete
8528 symbol instance. */
8529 if (h->root.type == bfd_link_hash_indirect)
8530 return TRUE;
8531
8532 if (h->root.type == bfd_link_hash_warning)
8533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8534
8535 info = (struct bfd_link_info *) inf;
8536 htab = elf_aarch64_hash_table (info);
8537
8538 eh = (struct elf_aarch64_link_hash_entry *) h;
8539
8540 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8541 here if it is defined and referenced in a non-shared object. */
8542 if (h->type == STT_GNU_IFUNC
8543 && h->def_regular)
8544 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8545 &eh->dyn_relocs,
8546 NULL,
8547 htab->plt_entry_size,
8548 htab->plt_header_size,
8549 GOT_ENTRY_SIZE,
8550 FALSE);
8551 return TRUE;
8552 }
8553
8554 /* Allocate space in .plt, .got and associated reloc sections for
8555 local dynamic relocs. */
8556
8557 static bfd_boolean
8558 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8559 {
8560 struct elf_link_hash_entry *h
8561 = (struct elf_link_hash_entry *) *slot;
8562
8563 if (h->type != STT_GNU_IFUNC
8564 || !h->def_regular
8565 || !h->ref_regular
8566 || !h->forced_local
8567 || h->root.type != bfd_link_hash_defined)
8568 abort ();
8569
8570 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8571 }
8572
8573 /* Allocate space in .plt, .got and associated reloc sections for
8574 local ifunc dynamic relocs. */
8575
8576 static bfd_boolean
8577 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8578 {
8579 struct elf_link_hash_entry *h
8580 = (struct elf_link_hash_entry *) *slot;
8581
8582 if (h->type != STT_GNU_IFUNC
8583 || !h->def_regular
8584 || !h->ref_regular
8585 || !h->forced_local
8586 || h->root.type != bfd_link_hash_defined)
8587 abort ();
8588
8589 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8590 }
8591
8592 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8593 read-only sections. */
8594
8595 static bfd_boolean
8596 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8597 {
8598 asection *sec;
8599
8600 if (h->root.type == bfd_link_hash_indirect)
8601 return TRUE;
8602
8603 sec = readonly_dynrelocs (h);
8604 if (sec != NULL)
8605 {
8606 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8607
8608 info->flags |= DF_TEXTREL;
8609 info->callbacks->minfo
8610 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8611 sec->owner, h->root.root.string, sec);
8612
8613 /* Not an error, just cut short the traversal. */
8614 return FALSE;
8615 }
8616 return TRUE;
8617 }
8618
8619 /* This is the most important function of all . Innocuosly named
8620 though ! */
8621
8622 static bfd_boolean
8623 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8624 struct bfd_link_info *info)
8625 {
8626 struct elf_aarch64_link_hash_table *htab;
8627 bfd *dynobj;
8628 asection *s;
8629 bfd_boolean relocs;
8630 bfd *ibfd;
8631
8632 htab = elf_aarch64_hash_table ((info));
8633 dynobj = htab->root.dynobj;
8634
8635 BFD_ASSERT (dynobj != NULL);
8636
8637 if (htab->root.dynamic_sections_created)
8638 {
8639 if (bfd_link_executable (info) && !info->nointerp)
8640 {
8641 s = bfd_get_linker_section (dynobj, ".interp");
8642 if (s == NULL)
8643 abort ();
8644 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8645 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8646 }
8647 }
8648
8649 /* Set up .got offsets for local syms, and space for local dynamic
8650 relocs. */
8651 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8652 {
8653 struct elf_aarch64_local_symbol *locals = NULL;
8654 Elf_Internal_Shdr *symtab_hdr;
8655 asection *srel;
8656 unsigned int i;
8657
8658 if (!is_aarch64_elf (ibfd))
8659 continue;
8660
8661 for (s = ibfd->sections; s != NULL; s = s->next)
8662 {
8663 struct elf_dyn_relocs *p;
8664
8665 for (p = (struct elf_dyn_relocs *)
8666 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8667 {
8668 if (!bfd_is_abs_section (p->sec)
8669 && bfd_is_abs_section (p->sec->output_section))
8670 {
8671 /* Input section has been discarded, either because
8672 it is a copy of a linkonce section or due to
8673 linker script /DISCARD/, so we'll be discarding
8674 the relocs too. */
8675 }
8676 else if (p->count != 0)
8677 {
8678 srel = elf_section_data (p->sec)->sreloc;
8679 srel->size += p->count * RELOC_SIZE (htab);
8680 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8681 info->flags |= DF_TEXTREL;
8682 }
8683 }
8684 }
8685
8686 locals = elf_aarch64_locals (ibfd);
8687 if (!locals)
8688 continue;
8689
8690 symtab_hdr = &elf_symtab_hdr (ibfd);
8691 srel = htab->root.srelgot;
8692 for (i = 0; i < symtab_hdr->sh_info; i++)
8693 {
8694 locals[i].got_offset = (bfd_vma) - 1;
8695 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8696 if (locals[i].got_refcount > 0)
8697 {
8698 unsigned got_type = locals[i].got_type;
8699 if (got_type & GOT_TLSDESC_GD)
8700 {
8701 locals[i].tlsdesc_got_jump_table_offset =
8702 (htab->root.sgotplt->size
8703 - aarch64_compute_jump_table_size (htab));
8704 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8705 locals[i].got_offset = (bfd_vma) - 2;
8706 }
8707
8708 if (got_type & GOT_TLS_GD)
8709 {
8710 locals[i].got_offset = htab->root.sgot->size;
8711 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8712 }
8713
8714 if (got_type & GOT_TLS_IE
8715 || got_type & GOT_NORMAL)
8716 {
8717 locals[i].got_offset = htab->root.sgot->size;
8718 htab->root.sgot->size += GOT_ENTRY_SIZE;
8719 }
8720
8721 if (got_type == GOT_UNKNOWN)
8722 {
8723 }
8724
8725 if (bfd_link_pic (info))
8726 {
8727 if (got_type & GOT_TLSDESC_GD)
8728 {
8729 htab->root.srelplt->size += RELOC_SIZE (htab);
8730 /* Note RELOC_COUNT not incremented here! */
8731 htab->tlsdesc_plt = (bfd_vma) - 1;
8732 }
8733
8734 if (got_type & GOT_TLS_GD)
8735 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8736
8737 if (got_type & GOT_TLS_IE
8738 || got_type & GOT_NORMAL)
8739 htab->root.srelgot->size += RELOC_SIZE (htab);
8740 }
8741 }
8742 else
8743 {
8744 locals[i].got_refcount = (bfd_vma) - 1;
8745 }
8746 }
8747 }
8748
8749
8750 /* Allocate global sym .plt and .got entries, and space for global
8751 sym dynamic relocs. */
8752 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8753 info);
8754
8755 /* Allocate global ifunc sym .plt and .got entries, and space for global
8756 ifunc sym dynamic relocs. */
8757 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8758 info);
8759
8760 /* Allocate .plt and .got entries, and space for local symbols. */
8761 htab_traverse (htab->loc_hash_table,
8762 elfNN_aarch64_allocate_local_dynrelocs,
8763 info);
8764
8765 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8766 htab_traverse (htab->loc_hash_table,
8767 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8768 info);
8769
8770 /* For every jump slot reserved in the sgotplt, reloc_count is
8771 incremented. However, when we reserve space for TLS descriptors,
8772 it's not incremented, so in order to compute the space reserved
8773 for them, it suffices to multiply the reloc count by the jump
8774 slot size. */
8775
8776 if (htab->root.srelplt)
8777 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8778
8779 if (htab->tlsdesc_plt)
8780 {
8781 if (htab->root.splt->size == 0)
8782 htab->root.splt->size += PLT_ENTRY_SIZE;
8783
8784 htab->tlsdesc_plt = htab->root.splt->size;
8785 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8786
8787 /* If we're not using lazy TLS relocations, don't generate the
8788 GOT entry required. */
8789 if (!(info->flags & DF_BIND_NOW))
8790 {
8791 htab->dt_tlsdesc_got = htab->root.sgot->size;
8792 htab->root.sgot->size += GOT_ENTRY_SIZE;
8793 }
8794 }
8795
8796 /* Init mapping symbols information to use later to distingush between
8797 code and data while scanning for errata. */
8798 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8799 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8800 {
8801 if (!is_aarch64_elf (ibfd))
8802 continue;
8803 bfd_elfNN_aarch64_init_maps (ibfd);
8804 }
8805
8806 /* We now have determined the sizes of the various dynamic sections.
8807 Allocate memory for them. */
8808 relocs = FALSE;
8809 for (s = dynobj->sections; s != NULL; s = s->next)
8810 {
8811 if ((s->flags & SEC_LINKER_CREATED) == 0)
8812 continue;
8813
8814 if (s == htab->root.splt
8815 || s == htab->root.sgot
8816 || s == htab->root.sgotplt
8817 || s == htab->root.iplt
8818 || s == htab->root.igotplt
8819 || s == htab->root.sdynbss
8820 || s == htab->root.sdynrelro)
8821 {
8822 /* Strip this section if we don't need it; see the
8823 comment below. */
8824 }
8825 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8826 {
8827 if (s->size != 0 && s != htab->root.srelplt)
8828 relocs = TRUE;
8829
8830 /* We use the reloc_count field as a counter if we need
8831 to copy relocs into the output file. */
8832 if (s != htab->root.srelplt)
8833 s->reloc_count = 0;
8834 }
8835 else
8836 {
8837 /* It's not one of our sections, so don't allocate space. */
8838 continue;
8839 }
8840
8841 if (s->size == 0)
8842 {
8843 /* If we don't need this section, strip it from the
8844 output file. This is mostly to handle .rela.bss and
8845 .rela.plt. We must create both sections in
8846 create_dynamic_sections, because they must be created
8847 before the linker maps input sections to output
8848 sections. The linker does that before
8849 adjust_dynamic_symbol is called, and it is that
8850 function which decides whether anything needs to go
8851 into these sections. */
8852 s->flags |= SEC_EXCLUDE;
8853 continue;
8854 }
8855
8856 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8857 continue;
8858
8859 /* Allocate memory for the section contents. We use bfd_zalloc
8860 here in case unused entries are not reclaimed before the
8861 section's contents are written out. This should not happen,
8862 but this way if it does, we get a R_AARCH64_NONE reloc instead
8863 of garbage. */
8864 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8865 if (s->contents == NULL)
8866 return FALSE;
8867 }
8868
8869 if (htab->root.dynamic_sections_created)
8870 {
8871 /* Add some entries to the .dynamic section. We fill in the
8872 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8873 must add the entries now so that we get the correct size for
8874 the .dynamic section. The DT_DEBUG entry is filled in by the
8875 dynamic linker and used by the debugger. */
8876 #define add_dynamic_entry(TAG, VAL) \
8877 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8878
8879 if (bfd_link_executable (info))
8880 {
8881 if (!add_dynamic_entry (DT_DEBUG, 0))
8882 return FALSE;
8883 }
8884
8885 if (htab->root.splt->size != 0)
8886 {
8887 if (!add_dynamic_entry (DT_PLTGOT, 0)
8888 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8889 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8890 || !add_dynamic_entry (DT_JMPREL, 0))
8891 return FALSE;
8892
8893 if (htab->tlsdesc_plt
8894 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8895 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8896 return FALSE;
8897 }
8898
8899 if (relocs)
8900 {
8901 if (!add_dynamic_entry (DT_RELA, 0)
8902 || !add_dynamic_entry (DT_RELASZ, 0)
8903 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8904 return FALSE;
8905
8906 /* If any dynamic relocs apply to a read-only section,
8907 then we need a DT_TEXTREL entry. */
8908 if ((info->flags & DF_TEXTREL) == 0)
8909 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
8910
8911 if ((info->flags & DF_TEXTREL) != 0)
8912 {
8913 if (!add_dynamic_entry (DT_TEXTREL, 0))
8914 return FALSE;
8915 }
8916 }
8917 }
8918 #undef add_dynamic_entry
8919
8920 return TRUE;
8921 }
8922
8923 static inline void
8924 elf_aarch64_update_plt_entry (bfd *output_bfd,
8925 bfd_reloc_code_real_type r_type,
8926 bfd_byte *plt_entry, bfd_vma value)
8927 {
8928 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8929
8930 /* FIXME: We should check the return value from this function call. */
8931 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8932 }
8933
8934 static void
8935 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8936 struct elf_aarch64_link_hash_table
8937 *htab, bfd *output_bfd,
8938 struct bfd_link_info *info)
8939 {
8940 bfd_byte *plt_entry;
8941 bfd_vma plt_index;
8942 bfd_vma got_offset;
8943 bfd_vma gotplt_entry_address;
8944 bfd_vma plt_entry_address;
8945 Elf_Internal_Rela rela;
8946 bfd_byte *loc;
8947 asection *plt, *gotplt, *relplt;
8948
8949 /* When building a static executable, use .iplt, .igot.plt and
8950 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8951 if (htab->root.splt != NULL)
8952 {
8953 plt = htab->root.splt;
8954 gotplt = htab->root.sgotplt;
8955 relplt = htab->root.srelplt;
8956 }
8957 else
8958 {
8959 plt = htab->root.iplt;
8960 gotplt = htab->root.igotplt;
8961 relplt = htab->root.irelplt;
8962 }
8963
8964 /* Get the index in the procedure linkage table which
8965 corresponds to this symbol. This is the index of this symbol
8966 in all the symbols for which we are making plt entries. The
8967 first entry in the procedure linkage table is reserved.
8968
8969 Get the offset into the .got table of the entry that
8970 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8971 bytes. The first three are reserved for the dynamic linker.
8972
8973 For static executables, we don't reserve anything. */
8974
8975 if (plt == htab->root.splt)
8976 {
8977 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8978 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8979 }
8980 else
8981 {
8982 plt_index = h->plt.offset / htab->plt_entry_size;
8983 got_offset = plt_index * GOT_ENTRY_SIZE;
8984 }
8985
8986 plt_entry = plt->contents + h->plt.offset;
8987 plt_entry_address = plt->output_section->vma
8988 + plt->output_offset + h->plt.offset;
8989 gotplt_entry_address = gotplt->output_section->vma +
8990 gotplt->output_offset + got_offset;
8991
8992 /* Copy in the boiler-plate for the PLTn entry. */
8993 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8994
8995 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8996 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8997 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8998 plt_entry,
8999 PG (gotplt_entry_address) -
9000 PG (plt_entry_address));
9001
9002 /* Fill in the lo12 bits for the load from the pltgot. */
9003 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9004 plt_entry + 4,
9005 PG_OFFSET (gotplt_entry_address));
9006
9007 /* Fill in the lo12 bits for the add from the pltgot entry. */
9008 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9009 plt_entry + 8,
9010 PG_OFFSET (gotplt_entry_address));
9011
9012 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9013 bfd_put_NN (output_bfd,
9014 plt->output_section->vma + plt->output_offset,
9015 gotplt->contents + got_offset);
9016
9017 rela.r_offset = gotplt_entry_address;
9018
9019 if (h->dynindx == -1
9020 || ((bfd_link_executable (info)
9021 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9022 && h->def_regular
9023 && h->type == STT_GNU_IFUNC))
9024 {
9025 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9026 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9027 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9028 rela.r_addend = (h->root.u.def.value
9029 + h->root.u.def.section->output_section->vma
9030 + h->root.u.def.section->output_offset);
9031 }
9032 else
9033 {
9034 /* Fill in the entry in the .rela.plt section. */
9035 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9036 rela.r_addend = 0;
9037 }
9038
9039 /* Compute the relocation entry to used based on PLT index and do
9040 not adjust reloc_count. The reloc_count has already been adjusted
9041 to account for this entry. */
9042 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9043 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9044 }
9045
9046 /* Size sections even though they're not dynamic. We use it to setup
9047 _TLS_MODULE_BASE_, if needed. */
9048
9049 static bfd_boolean
9050 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9051 struct bfd_link_info *info)
9052 {
9053 asection *tls_sec;
9054
9055 if (bfd_link_relocatable (info))
9056 return TRUE;
9057
9058 tls_sec = elf_hash_table (info)->tls_sec;
9059
9060 if (tls_sec)
9061 {
9062 struct elf_link_hash_entry *tlsbase;
9063
9064 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9065 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9066
9067 if (tlsbase)
9068 {
9069 struct bfd_link_hash_entry *h = NULL;
9070 const struct elf_backend_data *bed =
9071 get_elf_backend_data (output_bfd);
9072
9073 if (!(_bfd_generic_link_add_one_symbol
9074 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9075 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9076 return FALSE;
9077
9078 tlsbase->type = STT_TLS;
9079 tlsbase = (struct elf_link_hash_entry *) h;
9080 tlsbase->def_regular = 1;
9081 tlsbase->other = STV_HIDDEN;
9082 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9083 }
9084 }
9085
9086 return TRUE;
9087 }
9088
9089 /* Finish up dynamic symbol handling. We set the contents of various
9090 dynamic sections here. */
9091
9092 static bfd_boolean
9093 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9094 struct bfd_link_info *info,
9095 struct elf_link_hash_entry *h,
9096 Elf_Internal_Sym *sym)
9097 {
9098 struct elf_aarch64_link_hash_table *htab;
9099 htab = elf_aarch64_hash_table (info);
9100
9101 if (h->plt.offset != (bfd_vma) - 1)
9102 {
9103 asection *plt, *gotplt, *relplt;
9104
9105 /* This symbol has an entry in the procedure linkage table. Set
9106 it up. */
9107
9108 /* When building a static executable, use .iplt, .igot.plt and
9109 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9110 if (htab->root.splt != NULL)
9111 {
9112 plt = htab->root.splt;
9113 gotplt = htab->root.sgotplt;
9114 relplt = htab->root.srelplt;
9115 }
9116 else
9117 {
9118 plt = htab->root.iplt;
9119 gotplt = htab->root.igotplt;
9120 relplt = htab->root.irelplt;
9121 }
9122
9123 /* This symbol has an entry in the procedure linkage table. Set
9124 it up. */
9125 if ((h->dynindx == -1
9126 && !((h->forced_local || bfd_link_executable (info))
9127 && h->def_regular
9128 && h->type == STT_GNU_IFUNC))
9129 || plt == NULL
9130 || gotplt == NULL
9131 || relplt == NULL)
9132 return FALSE;
9133
9134 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9135 if (!h->def_regular)
9136 {
9137 /* Mark the symbol as undefined, rather than as defined in
9138 the .plt section. */
9139 sym->st_shndx = SHN_UNDEF;
9140 /* If the symbol is weak we need to clear the value.
9141 Otherwise, the PLT entry would provide a definition for
9142 the symbol even if the symbol wasn't defined anywhere,
9143 and so the symbol would never be NULL. Leave the value if
9144 there were any relocations where pointer equality matters
9145 (this is a clue for the dynamic linker, to make function
9146 pointer comparisons work between an application and shared
9147 library). */
9148 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9149 sym->st_value = 0;
9150 }
9151 }
9152
9153 if (h->got.offset != (bfd_vma) - 1
9154 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9155 /* Undefined weak symbol in static PIE resolves to 0 without
9156 any dynamic relocations. */
9157 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9158 {
9159 Elf_Internal_Rela rela;
9160 bfd_byte *loc;
9161
9162 /* This symbol has an entry in the global offset table. Set it
9163 up. */
9164 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9165 abort ();
9166
9167 rela.r_offset = (htab->root.sgot->output_section->vma
9168 + htab->root.sgot->output_offset
9169 + (h->got.offset & ~(bfd_vma) 1));
9170
9171 if (h->def_regular
9172 && h->type == STT_GNU_IFUNC)
9173 {
9174 if (bfd_link_pic (info))
9175 {
9176 /* Generate R_AARCH64_GLOB_DAT. */
9177 goto do_glob_dat;
9178 }
9179 else
9180 {
9181 asection *plt;
9182
9183 if (!h->pointer_equality_needed)
9184 abort ();
9185
9186 /* For non-shared object, we can't use .got.plt, which
9187 contains the real function address if we need pointer
9188 equality. We load the GOT entry with the PLT entry. */
9189 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9190 bfd_put_NN (output_bfd, (plt->output_section->vma
9191 + plt->output_offset
9192 + h->plt.offset),
9193 htab->root.sgot->contents
9194 + (h->got.offset & ~(bfd_vma) 1));
9195 return TRUE;
9196 }
9197 }
9198 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9199 {
9200 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9201 return FALSE;
9202
9203 BFD_ASSERT ((h->got.offset & 1) != 0);
9204 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9205 rela.r_addend = (h->root.u.def.value
9206 + h->root.u.def.section->output_section->vma
9207 + h->root.u.def.section->output_offset);
9208 }
9209 else
9210 {
9211 do_glob_dat:
9212 BFD_ASSERT ((h->got.offset & 1) == 0);
9213 bfd_put_NN (output_bfd, (bfd_vma) 0,
9214 htab->root.sgot->contents + h->got.offset);
9215 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9216 rela.r_addend = 0;
9217 }
9218
9219 loc = htab->root.srelgot->contents;
9220 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9221 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9222 }
9223
9224 if (h->needs_copy)
9225 {
9226 Elf_Internal_Rela rela;
9227 asection *s;
9228 bfd_byte *loc;
9229
9230 /* This symbol needs a copy reloc. Set it up. */
9231 if (h->dynindx == -1
9232 || (h->root.type != bfd_link_hash_defined
9233 && h->root.type != bfd_link_hash_defweak)
9234 || htab->root.srelbss == NULL)
9235 abort ();
9236
9237 rela.r_offset = (h->root.u.def.value
9238 + h->root.u.def.section->output_section->vma
9239 + h->root.u.def.section->output_offset);
9240 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9241 rela.r_addend = 0;
9242 if (h->root.u.def.section == htab->root.sdynrelro)
9243 s = htab->root.sreldynrelro;
9244 else
9245 s = htab->root.srelbss;
9246 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9247 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9248 }
9249
9250 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9251 be NULL for local symbols. */
9252 if (sym != NULL
9253 && (h == elf_hash_table (info)->hdynamic
9254 || h == elf_hash_table (info)->hgot))
9255 sym->st_shndx = SHN_ABS;
9256
9257 return TRUE;
9258 }
9259
9260 /* Finish up local dynamic symbol handling. We set the contents of
9261 various dynamic sections here. */
9262
9263 static bfd_boolean
9264 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9265 {
9266 struct elf_link_hash_entry *h
9267 = (struct elf_link_hash_entry *) *slot;
9268 struct bfd_link_info *info
9269 = (struct bfd_link_info *) inf;
9270
9271 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9272 info, h, NULL);
9273 }
9274
9275 static void
9276 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9277 struct elf_aarch64_link_hash_table
9278 *htab)
9279 {
9280 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9281 small and large plts and at the minute just generates
9282 the small PLT. */
9283
9284 /* PLT0 of the small PLT looks like this in ELF64 -
9285 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9286 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9287 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9288 // symbol resolver
9289 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9290 // GOTPLT entry for this.
9291 br x17
9292 PLT0 will be slightly different in ELF32 due to different got entry
9293 size. */
9294 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9295 bfd_vma plt_base;
9296
9297
9298 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9299 PLT_ENTRY_SIZE);
9300 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9301 PLT_ENTRY_SIZE;
9302
9303 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9304 + htab->root.sgotplt->output_offset
9305 + GOT_ENTRY_SIZE * 2);
9306
9307 plt_base = htab->root.splt->output_section->vma +
9308 htab->root.splt->output_offset;
9309
9310 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9311 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9312 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9313 htab->root.splt->contents + 4,
9314 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9315
9316 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9317 htab->root.splt->contents + 8,
9318 PG_OFFSET (plt_got_2nd_ent));
9319
9320 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9321 htab->root.splt->contents + 12,
9322 PG_OFFSET (plt_got_2nd_ent));
9323 }
9324
9325 static bfd_boolean
9326 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9327 struct bfd_link_info *info)
9328 {
9329 struct elf_aarch64_link_hash_table *htab;
9330 bfd *dynobj;
9331 asection *sdyn;
9332
9333 htab = elf_aarch64_hash_table (info);
9334 dynobj = htab->root.dynobj;
9335 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9336
9337 if (htab->root.dynamic_sections_created)
9338 {
9339 ElfNN_External_Dyn *dyncon, *dynconend;
9340
9341 if (sdyn == NULL || htab->root.sgot == NULL)
9342 abort ();
9343
9344 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9345 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9346 for (; dyncon < dynconend; dyncon++)
9347 {
9348 Elf_Internal_Dyn dyn;
9349 asection *s;
9350
9351 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9352
9353 switch (dyn.d_tag)
9354 {
9355 default:
9356 continue;
9357
9358 case DT_PLTGOT:
9359 s = htab->root.sgotplt;
9360 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9361 break;
9362
9363 case DT_JMPREL:
9364 s = htab->root.srelplt;
9365 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9366 break;
9367
9368 case DT_PLTRELSZ:
9369 s = htab->root.srelplt;
9370 dyn.d_un.d_val = s->size;
9371 break;
9372
9373 case DT_TLSDESC_PLT:
9374 s = htab->root.splt;
9375 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9376 + htab->tlsdesc_plt;
9377 break;
9378
9379 case DT_TLSDESC_GOT:
9380 s = htab->root.sgot;
9381 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9382 + htab->dt_tlsdesc_got;
9383 break;
9384 }
9385
9386 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9387 }
9388
9389 }
9390
9391 /* Fill in the special first entry in the procedure linkage table. */
9392 if (htab->root.splt && htab->root.splt->size > 0)
9393 {
9394 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9395
9396 elf_section_data (htab->root.splt->output_section)->
9397 this_hdr.sh_entsize = htab->plt_entry_size;
9398
9399
9400 if (htab->tlsdesc_plt)
9401 {
9402 bfd_put_NN (output_bfd, (bfd_vma) 0,
9403 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9404
9405 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9406 elfNN_aarch64_tlsdesc_small_plt_entry,
9407 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9408
9409 {
9410 bfd_vma adrp1_addr =
9411 htab->root.splt->output_section->vma
9412 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9413
9414 bfd_vma adrp2_addr = adrp1_addr + 4;
9415
9416 bfd_vma got_addr =
9417 htab->root.sgot->output_section->vma
9418 + htab->root.sgot->output_offset;
9419
9420 bfd_vma pltgot_addr =
9421 htab->root.sgotplt->output_section->vma
9422 + htab->root.sgotplt->output_offset;
9423
9424 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9425
9426 bfd_byte *plt_entry =
9427 htab->root.splt->contents + htab->tlsdesc_plt;
9428
9429 /* adrp x2, DT_TLSDESC_GOT */
9430 elf_aarch64_update_plt_entry (output_bfd,
9431 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9432 plt_entry + 4,
9433 (PG (dt_tlsdesc_got)
9434 - PG (adrp1_addr)));
9435
9436 /* adrp x3, 0 */
9437 elf_aarch64_update_plt_entry (output_bfd,
9438 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9439 plt_entry + 8,
9440 (PG (pltgot_addr)
9441 - PG (adrp2_addr)));
9442
9443 /* ldr x2, [x2, #0] */
9444 elf_aarch64_update_plt_entry (output_bfd,
9445 BFD_RELOC_AARCH64_LDSTNN_LO12,
9446 plt_entry + 12,
9447 PG_OFFSET (dt_tlsdesc_got));
9448
9449 /* add x3, x3, 0 */
9450 elf_aarch64_update_plt_entry (output_bfd,
9451 BFD_RELOC_AARCH64_ADD_LO12,
9452 plt_entry + 16,
9453 PG_OFFSET (pltgot_addr));
9454 }
9455 }
9456 }
9457
9458 if (htab->root.sgotplt)
9459 {
9460 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9461 {
9462 _bfd_error_handler
9463 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9464 return FALSE;
9465 }
9466
9467 /* Fill in the first three entries in the global offset table. */
9468 if (htab->root.sgotplt->size > 0)
9469 {
9470 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9471
9472 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9473 bfd_put_NN (output_bfd,
9474 (bfd_vma) 0,
9475 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9476 bfd_put_NN (output_bfd,
9477 (bfd_vma) 0,
9478 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9479 }
9480
9481 if (htab->root.sgot)
9482 {
9483 if (htab->root.sgot->size > 0)
9484 {
9485 bfd_vma addr =
9486 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9487 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9488 }
9489 }
9490
9491 elf_section_data (htab->root.sgotplt->output_section)->
9492 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9493 }
9494
9495 if (htab->root.sgot && htab->root.sgot->size > 0)
9496 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9497 = GOT_ENTRY_SIZE;
9498
9499 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9500 htab_traverse (htab->loc_hash_table,
9501 elfNN_aarch64_finish_local_dynamic_symbol,
9502 info);
9503
9504 return TRUE;
9505 }
9506
9507 /* Return address for Ith PLT stub in section PLT, for relocation REL
9508 or (bfd_vma) -1 if it should not be included. */
9509
9510 static bfd_vma
9511 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9512 const arelent *rel ATTRIBUTE_UNUSED)
9513 {
9514 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9515 }
9516
9517 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9518 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9519 It also allows a period initiated suffix to be added to the symbol, ie:
9520 "$[adtx]\.[:sym_char]+". */
9521
9522 static bfd_boolean
9523 is_aarch64_mapping_symbol (const char * name)
9524 {
9525 return name != NULL /* Paranoia. */
9526 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9527 the mapping symbols could have acquired a prefix.
9528 We do not support this here, since such symbols no
9529 longer conform to the ARM ELF ABI. */
9530 && (name[1] == 'd' || name[1] == 'x')
9531 && (name[2] == 0 || name[2] == '.');
9532 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9533 any characters that follow the period are legal characters for the body
9534 of a symbol's name. For now we just assume that this is the case. */
9535 }
9536
9537 /* Make sure that mapping symbols in object files are not removed via the
9538 "strip --strip-unneeded" tool. These symbols might needed in order to
9539 correctly generate linked files. Once an object file has been linked,
9540 it should be safe to remove them. */
9541
9542 static void
9543 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9544 {
9545 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9546 && sym->section != bfd_abs_section_ptr
9547 && is_aarch64_mapping_symbol (sym->name))
9548 sym->flags |= BSF_KEEP;
9549 }
9550
9551
9552 /* We use this so we can override certain functions
9553 (though currently we don't). */
9554
9555 const struct elf_size_info elfNN_aarch64_size_info =
9556 {
9557 sizeof (ElfNN_External_Ehdr),
9558 sizeof (ElfNN_External_Phdr),
9559 sizeof (ElfNN_External_Shdr),
9560 sizeof (ElfNN_External_Rel),
9561 sizeof (ElfNN_External_Rela),
9562 sizeof (ElfNN_External_Sym),
9563 sizeof (ElfNN_External_Dyn),
9564 sizeof (Elf_External_Note),
9565 4, /* Hash table entry size. */
9566 1, /* Internal relocs per external relocs. */
9567 ARCH_SIZE, /* Arch size. */
9568 LOG_FILE_ALIGN, /* Log_file_align. */
9569 ELFCLASSNN, EV_CURRENT,
9570 bfd_elfNN_write_out_phdrs,
9571 bfd_elfNN_write_shdrs_and_ehdr,
9572 bfd_elfNN_checksum_contents,
9573 bfd_elfNN_write_relocs,
9574 bfd_elfNN_swap_symbol_in,
9575 bfd_elfNN_swap_symbol_out,
9576 bfd_elfNN_slurp_reloc_table,
9577 bfd_elfNN_slurp_symbol_table,
9578 bfd_elfNN_swap_dyn_in,
9579 bfd_elfNN_swap_dyn_out,
9580 bfd_elfNN_swap_reloc_in,
9581 bfd_elfNN_swap_reloc_out,
9582 bfd_elfNN_swap_reloca_in,
9583 bfd_elfNN_swap_reloca_out
9584 };
9585
9586 #define ELF_ARCH bfd_arch_aarch64
9587 #define ELF_MACHINE_CODE EM_AARCH64
9588 #define ELF_MAXPAGESIZE 0x10000
9589 #define ELF_MINPAGESIZE 0x1000
9590 #define ELF_COMMONPAGESIZE 0x1000
9591
9592 #define bfd_elfNN_close_and_cleanup \
9593 elfNN_aarch64_close_and_cleanup
9594
9595 #define bfd_elfNN_bfd_free_cached_info \
9596 elfNN_aarch64_bfd_free_cached_info
9597
9598 #define bfd_elfNN_bfd_is_target_special_symbol \
9599 elfNN_aarch64_is_target_special_symbol
9600
9601 #define bfd_elfNN_bfd_link_hash_table_create \
9602 elfNN_aarch64_link_hash_table_create
9603
9604 #define bfd_elfNN_bfd_merge_private_bfd_data \
9605 elfNN_aarch64_merge_private_bfd_data
9606
9607 #define bfd_elfNN_bfd_print_private_bfd_data \
9608 elfNN_aarch64_print_private_bfd_data
9609
9610 #define bfd_elfNN_bfd_reloc_type_lookup \
9611 elfNN_aarch64_reloc_type_lookup
9612
9613 #define bfd_elfNN_bfd_reloc_name_lookup \
9614 elfNN_aarch64_reloc_name_lookup
9615
9616 #define bfd_elfNN_bfd_set_private_flags \
9617 elfNN_aarch64_set_private_flags
9618
9619 #define bfd_elfNN_find_inliner_info \
9620 elfNN_aarch64_find_inliner_info
9621
9622 #define bfd_elfNN_find_nearest_line \
9623 elfNN_aarch64_find_nearest_line
9624
9625 #define bfd_elfNN_mkobject \
9626 elfNN_aarch64_mkobject
9627
9628 #define bfd_elfNN_new_section_hook \
9629 elfNN_aarch64_new_section_hook
9630
9631 #define elf_backend_adjust_dynamic_symbol \
9632 elfNN_aarch64_adjust_dynamic_symbol
9633
9634 #define elf_backend_always_size_sections \
9635 elfNN_aarch64_always_size_sections
9636
9637 #define elf_backend_check_relocs \
9638 elfNN_aarch64_check_relocs
9639
9640 #define elf_backend_copy_indirect_symbol \
9641 elfNN_aarch64_copy_indirect_symbol
9642
9643 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9644 to them in our hash. */
9645 #define elf_backend_create_dynamic_sections \
9646 elfNN_aarch64_create_dynamic_sections
9647
9648 #define elf_backend_init_index_section \
9649 _bfd_elf_init_2_index_sections
9650
9651 #define elf_backend_finish_dynamic_sections \
9652 elfNN_aarch64_finish_dynamic_sections
9653
9654 #define elf_backend_finish_dynamic_symbol \
9655 elfNN_aarch64_finish_dynamic_symbol
9656
9657 #define elf_backend_object_p \
9658 elfNN_aarch64_object_p
9659
9660 #define elf_backend_output_arch_local_syms \
9661 elfNN_aarch64_output_arch_local_syms
9662
9663 #define elf_backend_plt_sym_val \
9664 elfNN_aarch64_plt_sym_val
9665
9666 #define elf_backend_post_process_headers \
9667 elfNN_aarch64_post_process_headers
9668
9669 #define elf_backend_relocate_section \
9670 elfNN_aarch64_relocate_section
9671
9672 #define elf_backend_reloc_type_class \
9673 elfNN_aarch64_reloc_type_class
9674
9675 #define elf_backend_section_from_shdr \
9676 elfNN_aarch64_section_from_shdr
9677
9678 #define elf_backend_size_dynamic_sections \
9679 elfNN_aarch64_size_dynamic_sections
9680
9681 #define elf_backend_size_info \
9682 elfNN_aarch64_size_info
9683
9684 #define elf_backend_write_section \
9685 elfNN_aarch64_write_section
9686
9687 #define elf_backend_symbol_processing \
9688 elfNN_aarch64_backend_symbol_processing
9689
9690 #define elf_backend_can_refcount 1
9691 #define elf_backend_can_gc_sections 1
9692 #define elf_backend_plt_readonly 1
9693 #define elf_backend_want_got_plt 1
9694 #define elf_backend_want_plt_sym 0
9695 #define elf_backend_want_dynrelro 1
9696 #define elf_backend_may_use_rel_p 0
9697 #define elf_backend_may_use_rela_p 1
9698 #define elf_backend_default_use_rela_p 1
9699 #define elf_backend_rela_normal 1
9700 #define elf_backend_dtrel_excludes_plt 1
9701 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9702 #define elf_backend_default_execstack 0
9703 #define elf_backend_extern_protected_data 1
9704 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9705
9706 #undef elf_backend_obj_attrs_section
9707 #define elf_backend_obj_attrs_section ".ARM.attributes"
9708
9709 #include "elfNN-target.h"
9710
9711 /* CloudABI support. */
9712
9713 #undef TARGET_LITTLE_SYM
9714 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9715 #undef TARGET_LITTLE_NAME
9716 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9717 #undef TARGET_BIG_SYM
9718 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9719 #undef TARGET_BIG_NAME
9720 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9721
9722 #undef ELF_OSABI
9723 #define ELF_OSABI ELFOSABI_CLOUDABI
9724
9725 #undef elfNN_bed
9726 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9727
9728 #include "elfNN-target.h"