]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfnn-aarch64.c
AArch64: Fix regression in Cortex A53 erratum when PIE. (PR ld/23904)
[thirdparty/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271
272 /* Encoding of the nop instruction. */
273 #define INSN_NOP 0xd503201f
274
275 #define aarch64_compute_jump_table_size(htab) \
276 (((htab)->root.srelplt == NULL) ? 0 \
277 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
278
279 /* The first entry in a procedure linkage table looks like this
280 if the distance between the PLTGOT and the PLT is < 4GB use
281 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
282 in x16 and needs to work out PLTGOT[1] by using an address of
283 [x16,#-GOT_ENTRY_SIZE]. */
284 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
285 {
286 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
287 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
288 #if ARCH_SIZE == 64
289 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
290 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
291 #else
292 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
293 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
294 #endif
295 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
296 0x1f, 0x20, 0x03, 0xd5, /* nop */
297 0x1f, 0x20, 0x03, 0xd5, /* nop */
298 0x1f, 0x20, 0x03, 0xd5, /* nop */
299 };
300
301 /* Per function entry in a procedure linkage table looks like this
302 if the distance between the PLTGOT and the PLT is < 4GB use
303 these PLT entries. */
304 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
305 {
306 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
307 #if ARCH_SIZE == 64
308 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
309 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
310 #else
311 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
312 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
313 #endif
314 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
315 };
316
317 static const bfd_byte
318 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
319 {
320 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
321 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
322 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
323 #if ARCH_SIZE == 64
324 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
325 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
326 #else
327 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
328 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
329 #endif
330 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
331 0x1f, 0x20, 0x03, 0xd5, /* nop */
332 0x1f, 0x20, 0x03, 0xd5, /* nop */
333 };
334
335 #define elf_info_to_howto elfNN_aarch64_info_to_howto
336 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
337
338 #define AARCH64_ELF_ABI_VERSION 0
339
340 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
341 #define ALL_ONES (~ (bfd_vma) 0)
342
343 /* Indexed by the bfd interal reloc enumerators.
344 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
345 in reloc.c. */
346
347 static reloc_howto_type elfNN_aarch64_howto_table[] =
348 {
349 EMPTY_HOWTO (0),
350
351 /* Basic data relocations. */
352
353 /* Deprecated, but retained for backwards compatibility. */
354 HOWTO64 (R_AARCH64_NULL, /* type */
355 0, /* rightshift */
356 3, /* size (0 = byte, 1 = short, 2 = long) */
357 0, /* bitsize */
358 FALSE, /* pc_relative */
359 0, /* bitpos */
360 complain_overflow_dont, /* complain_on_overflow */
361 bfd_elf_generic_reloc, /* special_function */
362 "R_AARCH64_NULL", /* name */
363 FALSE, /* partial_inplace */
364 0, /* src_mask */
365 0, /* dst_mask */
366 FALSE), /* pcrel_offset */
367 HOWTO (R_AARCH64_NONE, /* type */
368 0, /* rightshift */
369 3, /* size (0 = byte, 1 = short, 2 = long) */
370 0, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_dont, /* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_AARCH64_NONE", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* .xword: (S+A) */
382 HOWTO64 (AARCH64_R (ABS64), /* type */
383 0, /* rightshift */
384 4, /* size (4 = long long) */
385 64, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_unsigned, /* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 AARCH64_R_STR (ABS64), /* name */
391 FALSE, /* partial_inplace */
392 ALL_ONES, /* src_mask */
393 ALL_ONES, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 /* .word: (S+A) */
397 HOWTO (AARCH64_R (ABS32), /* type */
398 0, /* rightshift */
399 2, /* size (0 = byte, 1 = short, 2 = long) */
400 32, /* bitsize */
401 FALSE, /* pc_relative */
402 0, /* bitpos */
403 complain_overflow_unsigned, /* complain_on_overflow */
404 bfd_elf_generic_reloc, /* special_function */
405 AARCH64_R_STR (ABS32), /* name */
406 FALSE, /* partial_inplace */
407 0xffffffff, /* src_mask */
408 0xffffffff, /* dst_mask */
409 FALSE), /* pcrel_offset */
410
411 /* .half: (S+A) */
412 HOWTO (AARCH64_R (ABS16), /* type */
413 0, /* rightshift */
414 1, /* size (0 = byte, 1 = short, 2 = long) */
415 16, /* bitsize */
416 FALSE, /* pc_relative */
417 0, /* bitpos */
418 complain_overflow_unsigned, /* complain_on_overflow */
419 bfd_elf_generic_reloc, /* special_function */
420 AARCH64_R_STR (ABS16), /* name */
421 FALSE, /* partial_inplace */
422 0xffff, /* src_mask */
423 0xffff, /* dst_mask */
424 FALSE), /* pcrel_offset */
425
426 /* .xword: (S+A-P) */
427 HOWTO64 (AARCH64_R (PREL64), /* type */
428 0, /* rightshift */
429 4, /* size (4 = long long) */
430 64, /* bitsize */
431 TRUE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 AARCH64_R_STR (PREL64), /* name */
436 FALSE, /* partial_inplace */
437 ALL_ONES, /* src_mask */
438 ALL_ONES, /* dst_mask */
439 TRUE), /* pcrel_offset */
440
441 /* .word: (S+A-P) */
442 HOWTO (AARCH64_R (PREL32), /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_signed, /* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 AARCH64_R_STR (PREL32), /* name */
451 FALSE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 /* .half: (S+A-P) */
457 HOWTO (AARCH64_R (PREL16), /* type */
458 0, /* rightshift */
459 1, /* size (0 = byte, 1 = short, 2 = long) */
460 16, /* bitsize */
461 TRUE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_signed, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 AARCH64_R_STR (PREL16), /* name */
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 TRUE), /* pcrel_offset */
470
471 /* Group relocations to create a 16, 32, 48 or 64 bit
472 unsigned data or abs address inline. */
473
474 /* MOVZ: ((S+A) >> 0) & 0xffff */
475 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
476 0, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_unsigned, /* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 AARCH64_R_STR (MOVW_UABS_G0), /* name */
484 FALSE, /* partial_inplace */
485 0xffff, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
490 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
491 0, /* rightshift */
492 2, /* size (0 = byte, 1 = short, 2 = long) */
493 16, /* bitsize */
494 FALSE, /* pc_relative */
495 0, /* bitpos */
496 complain_overflow_dont, /* complain_on_overflow */
497 bfd_elf_generic_reloc, /* special_function */
498 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
499 FALSE, /* partial_inplace */
500 0xffff, /* src_mask */
501 0xffff, /* dst_mask */
502 FALSE), /* pcrel_offset */
503
504 /* MOVZ: ((S+A) >> 16) & 0xffff */
505 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
506 16, /* rightshift */
507 2, /* size (0 = byte, 1 = short, 2 = long) */
508 16, /* bitsize */
509 FALSE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_unsigned, /* complain_on_overflow */
512 bfd_elf_generic_reloc, /* special_function */
513 AARCH64_R_STR (MOVW_UABS_G1), /* name */
514 FALSE, /* partial_inplace */
515 0xffff, /* src_mask */
516 0xffff, /* dst_mask */
517 FALSE), /* pcrel_offset */
518
519 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
520 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
521 16, /* rightshift */
522 2, /* size (0 = byte, 1 = short, 2 = long) */
523 16, /* bitsize */
524 FALSE, /* pc_relative */
525 0, /* bitpos */
526 complain_overflow_dont, /* complain_on_overflow */
527 bfd_elf_generic_reloc, /* special_function */
528 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
529 FALSE, /* partial_inplace */
530 0xffff, /* src_mask */
531 0xffff, /* dst_mask */
532 FALSE), /* pcrel_offset */
533
534 /* MOVZ: ((S+A) >> 32) & 0xffff */
535 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
536 32, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 16, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_unsigned, /* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 AARCH64_R_STR (MOVW_UABS_G2), /* name */
544 FALSE, /* partial_inplace */
545 0xffff, /* src_mask */
546 0xffff, /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
550 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
551 32, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 16, /* bitsize */
554 FALSE, /* pc_relative */
555 0, /* bitpos */
556 complain_overflow_dont, /* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
559 FALSE, /* partial_inplace */
560 0xffff, /* src_mask */
561 0xffff, /* dst_mask */
562 FALSE), /* pcrel_offset */
563
564 /* MOVZ: ((S+A) >> 48) & 0xffff */
565 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
566 48, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 16, /* bitsize */
569 FALSE, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_unsigned, /* complain_on_overflow */
572 bfd_elf_generic_reloc, /* special_function */
573 AARCH64_R_STR (MOVW_UABS_G3), /* name */
574 FALSE, /* partial_inplace */
575 0xffff, /* src_mask */
576 0xffff, /* dst_mask */
577 FALSE), /* pcrel_offset */
578
579 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
580 signed data or abs address inline. Will change instruction
581 to MOVN or MOVZ depending on sign of calculated value. */
582
583 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
584 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
585 0, /* rightshift */
586 2, /* size (0 = byte, 1 = short, 2 = long) */
587 17, /* bitsize */
588 FALSE, /* pc_relative */
589 0, /* bitpos */
590 complain_overflow_signed, /* complain_on_overflow */
591 bfd_elf_generic_reloc, /* special_function */
592 AARCH64_R_STR (MOVW_SABS_G0), /* name */
593 FALSE, /* partial_inplace */
594 0xffff, /* src_mask */
595 0xffff, /* dst_mask */
596 FALSE), /* pcrel_offset */
597
598 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
599 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
600 16, /* rightshift */
601 2, /* size (0 = byte, 1 = short, 2 = long) */
602 17, /* bitsize */
603 FALSE, /* pc_relative */
604 0, /* bitpos */
605 complain_overflow_signed, /* complain_on_overflow */
606 bfd_elf_generic_reloc, /* special_function */
607 AARCH64_R_STR (MOVW_SABS_G1), /* name */
608 FALSE, /* partial_inplace */
609 0xffff, /* src_mask */
610 0xffff, /* dst_mask */
611 FALSE), /* pcrel_offset */
612
613 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
614 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
615 32, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 17, /* bitsize */
618 FALSE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 AARCH64_R_STR (MOVW_SABS_G2), /* name */
623 FALSE, /* partial_inplace */
624 0xffff, /* src_mask */
625 0xffff, /* dst_mask */
626 FALSE), /* pcrel_offset */
627
628 /* Group relocations to create a 16, 32, 48 or 64 bit
629 PC relative address inline. */
630
631 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
632 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
633 0, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 17, /* bitsize */
636 TRUE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 AARCH64_R_STR (MOVW_PREL_G0), /* name */
641 FALSE, /* partial_inplace */
642 0xffff, /* src_mask */
643 0xffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
647 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 16, /* bitsize */
651 TRUE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
656 FALSE, /* partial_inplace */
657 0xffff, /* src_mask */
658 0xffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
660
661 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
662 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
663 16, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 17, /* bitsize */
666 TRUE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed, /* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 AARCH64_R_STR (MOVW_PREL_G1), /* name */
671 FALSE, /* partial_inplace */
672 0xffff, /* src_mask */
673 0xffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
677 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
678 16, /* rightshift */
679 2, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 TRUE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 bfd_elf_generic_reloc, /* special_function */
685 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
686 FALSE, /* partial_inplace */
687 0xffff, /* src_mask */
688 0xffff, /* dst_mask */
689 TRUE), /* pcrel_offset */
690
691 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
692 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
693 32, /* rightshift */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
695 17, /* bitsize */
696 TRUE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_signed, /* complain_on_overflow */
699 bfd_elf_generic_reloc, /* special_function */
700 AARCH64_R_STR (MOVW_PREL_G2), /* name */
701 FALSE, /* partial_inplace */
702 0xffff, /* src_mask */
703 0xffff, /* dst_mask */
704 TRUE), /* pcrel_offset */
705
706 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
707 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
708 32, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 TRUE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_dont, /* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
716 FALSE, /* partial_inplace */
717 0xffff, /* src_mask */
718 0xffff, /* dst_mask */
719 TRUE), /* pcrel_offset */
720
721 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
722 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
723 48, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont, /* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 AARCH64_R_STR (MOVW_PREL_G3), /* name */
731 FALSE, /* partial_inplace */
732 0xffff, /* src_mask */
733 0xffff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
737 addresses: PG(x) is (x & ~0xfff). */
738
739 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
740 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
741 2, /* rightshift */
742 2, /* size (0 = byte, 1 = short, 2 = long) */
743 19, /* bitsize */
744 TRUE, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_signed, /* complain_on_overflow */
747 bfd_elf_generic_reloc, /* special_function */
748 AARCH64_R_STR (LD_PREL_LO19), /* name */
749 FALSE, /* partial_inplace */
750 0x7ffff, /* src_mask */
751 0x7ffff, /* dst_mask */
752 TRUE), /* pcrel_offset */
753
754 /* ADR: (S+A-P) & 0x1fffff */
755 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 21, /* bitsize */
759 TRUE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 AARCH64_R_STR (ADR_PREL_LO21), /* name */
764 FALSE, /* partial_inplace */
765 0x1fffff, /* src_mask */
766 0x1fffff, /* dst_mask */
767 TRUE), /* pcrel_offset */
768
769 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
770 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
771 12, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 21, /* bitsize */
774 TRUE, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
779 FALSE, /* partial_inplace */
780 0x1fffff, /* src_mask */
781 0x1fffff, /* dst_mask */
782 TRUE), /* pcrel_offset */
783
784 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
785 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
786 12, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 21, /* bitsize */
789 TRUE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
794 FALSE, /* partial_inplace */
795 0x1fffff, /* src_mask */
796 0x1fffff, /* dst_mask */
797 TRUE), /* pcrel_offset */
798
799 /* ADD: (S+A) & 0xfff [no overflow check] */
800 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 12, /* bitsize */
804 FALSE, /* pc_relative */
805 10, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
809 FALSE, /* partial_inplace */
810 0x3ffc00, /* src_mask */
811 0x3ffc00, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* LD/ST8: (S+A) & 0xfff */
815 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 12, /* bitsize */
819 FALSE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
824 FALSE, /* partial_inplace */
825 0xfff, /* src_mask */
826 0xfff, /* dst_mask */
827 FALSE), /* pcrel_offset */
828
829 /* Relocations for control-flow instructions. */
830
831 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
832 HOWTO (AARCH64_R (TSTBR14), /* type */
833 2, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 14, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_signed, /* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 AARCH64_R_STR (TSTBR14), /* name */
841 FALSE, /* partial_inplace */
842 0x3fff, /* src_mask */
843 0x3fff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
847 HOWTO (AARCH64_R (CONDBR19), /* type */
848 2, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 19, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_signed, /* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 AARCH64_R_STR (CONDBR19), /* name */
856 FALSE, /* partial_inplace */
857 0x7ffff, /* src_mask */
858 0x7ffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 /* B: ((S+A-P) >> 2) & 0x3ffffff */
862 HOWTO (AARCH64_R (JUMP26), /* type */
863 2, /* rightshift */
864 2, /* size (0 = byte, 1 = short, 2 = long) */
865 26, /* bitsize */
866 TRUE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_signed, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 AARCH64_R_STR (JUMP26), /* name */
871 FALSE, /* partial_inplace */
872 0x3ffffff, /* src_mask */
873 0x3ffffff, /* dst_mask */
874 TRUE), /* pcrel_offset */
875
876 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
877 HOWTO (AARCH64_R (CALL26), /* type */
878 2, /* rightshift */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
880 26, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_signed, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 AARCH64_R_STR (CALL26), /* name */
886 FALSE, /* partial_inplace */
887 0x3ffffff, /* src_mask */
888 0x3ffffff, /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* LD/ST16: (S+A) & 0xffe */
892 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
893 1, /* rightshift */
894 2, /* size (0 = byte, 1 = short, 2 = long) */
895 12, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
901 FALSE, /* partial_inplace */
902 0xffe, /* src_mask */
903 0xffe, /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* LD/ST32: (S+A) & 0xffc */
907 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
908 2, /* rightshift */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
910 12, /* bitsize */
911 FALSE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
916 FALSE, /* partial_inplace */
917 0xffc, /* src_mask */
918 0xffc, /* dst_mask */
919 FALSE), /* pcrel_offset */
920
921 /* LD/ST64: (S+A) & 0xff8 */
922 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
923 3, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 12, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont, /* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
931 FALSE, /* partial_inplace */
932 0xff8, /* src_mask */
933 0xff8, /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* LD/ST128: (S+A) & 0xff0 */
937 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
938 4, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xff0, /* src_mask */
948 0xff0, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 /* Set a load-literal immediate field to bits
952 0x1FFFFC of G(S)-P */
953 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
954 2, /* rightshift */
955 2, /* size (0 = byte,1 = short,2 = long) */
956 19, /* bitsize */
957 TRUE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_signed, /* complain_on_overflow */
960 bfd_elf_generic_reloc, /* special_function */
961 AARCH64_R_STR (GOT_LD_PREL19), /* name */
962 FALSE, /* partial_inplace */
963 0xffffe0, /* src_mask */
964 0xffffe0, /* dst_mask */
965 TRUE), /* pcrel_offset */
966
967 /* Get to the page for the GOT entry for the symbol
968 (G(S) - P) using an ADRP instruction. */
969 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
970 12, /* rightshift */
971 2, /* size (0 = byte, 1 = short, 2 = long) */
972 21, /* bitsize */
973 TRUE, /* pc_relative */
974 0, /* bitpos */
975 complain_overflow_dont, /* complain_on_overflow */
976 bfd_elf_generic_reloc, /* special_function */
977 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
978 FALSE, /* partial_inplace */
979 0x1fffff, /* src_mask */
980 0x1fffff, /* dst_mask */
981 TRUE), /* pcrel_offset */
982
983 /* LD64: GOT offset G(S) & 0xff8 */
984 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
985 3, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 12, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont, /* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
993 FALSE, /* partial_inplace */
994 0xff8, /* src_mask */
995 0xff8, /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* LD32: GOT offset G(S) & 0xffc */
999 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1000 2, /* rightshift */
1001 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 12, /* bitsize */
1003 FALSE, /* pc_relative */
1004 0, /* bitpos */
1005 complain_overflow_dont, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1008 FALSE, /* partial_inplace */
1009 0xffc, /* src_mask */
1010 0xffc, /* dst_mask */
1011 FALSE), /* pcrel_offset */
1012
1013 /* Lower 16 bits of GOT offset for the symbol. */
1014 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1015 0, /* rightshift */
1016 2, /* size (0 = byte, 1 = short, 2 = long) */
1017 16, /* bitsize */
1018 FALSE, /* pc_relative */
1019 0, /* bitpos */
1020 complain_overflow_dont, /* complain_on_overflow */
1021 bfd_elf_generic_reloc, /* special_function */
1022 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1023 FALSE, /* partial_inplace */
1024 0xffff, /* src_mask */
1025 0xffff, /* dst_mask */
1026 FALSE), /* pcrel_offset */
1027
1028 /* Higher 16 bits of GOT offset for the symbol. */
1029 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1030 16, /* rightshift */
1031 2, /* size (0 = byte, 1 = short, 2 = long) */
1032 16, /* bitsize */
1033 FALSE, /* pc_relative */
1034 0, /* bitpos */
1035 complain_overflow_unsigned, /* complain_on_overflow */
1036 bfd_elf_generic_reloc, /* special_function */
1037 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1038 FALSE, /* partial_inplace */
1039 0xffff, /* src_mask */
1040 0xffff, /* dst_mask */
1041 FALSE), /* pcrel_offset */
1042
1043 /* LD64: GOT offset for the symbol. */
1044 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1045 3, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 12, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_unsigned, /* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1053 FALSE, /* partial_inplace */
1054 0x7ff8, /* src_mask */
1055 0x7ff8, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* LD32: GOT offset to the page address of GOT table.
1059 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1060 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1061 2, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 12, /* bitsize */
1064 FALSE, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_unsigned, /* complain_on_overflow */
1067 bfd_elf_generic_reloc, /* special_function */
1068 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1069 FALSE, /* partial_inplace */
1070 0x5ffc, /* src_mask */
1071 0x5ffc, /* dst_mask */
1072 FALSE), /* pcrel_offset */
1073
1074 /* LD64: GOT offset to the page address of GOT table.
1075 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1076 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1077 3, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 12, /* bitsize */
1080 FALSE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_unsigned, /* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1085 FALSE, /* partial_inplace */
1086 0x7ff8, /* src_mask */
1087 0x7ff8, /* dst_mask */
1088 FALSE), /* pcrel_offset */
1089
1090 /* Get to the page for the GOT entry for the symbol
1091 (G(S) - P) using an ADRP instruction. */
1092 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1093 12, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 21, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont, /* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1101 FALSE, /* partial_inplace */
1102 0x1fffff, /* src_mask */
1103 0x1fffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 21, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1115 FALSE, /* partial_inplace */
1116 0x1fffff, /* src_mask */
1117 0x1fffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1121 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1122 0, /* rightshift */
1123 2, /* size (0 = byte, 1 = short, 2 = long) */
1124 12, /* bitsize */
1125 FALSE, /* pc_relative */
1126 0, /* bitpos */
1127 complain_overflow_dont, /* complain_on_overflow */
1128 bfd_elf_generic_reloc, /* special_function */
1129 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1130 FALSE, /* partial_inplace */
1131 0xfff, /* src_mask */
1132 0xfff, /* dst_mask */
1133 FALSE), /* pcrel_offset */
1134
1135 /* Lower 16 bits of GOT offset to tls_index. */
1136 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1137 0, /* rightshift */
1138 2, /* size (0 = byte, 1 = short, 2 = long) */
1139 16, /* bitsize */
1140 FALSE, /* pc_relative */
1141 0, /* bitpos */
1142 complain_overflow_dont, /* complain_on_overflow */
1143 bfd_elf_generic_reloc, /* special_function */
1144 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1145 FALSE, /* partial_inplace */
1146 0xffff, /* src_mask */
1147 0xffff, /* dst_mask */
1148 FALSE), /* pcrel_offset */
1149
1150 /* Higher 16 bits of GOT offset to tls_index. */
1151 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1152 16, /* rightshift */
1153 2, /* size (0 = byte, 1 = short, 2 = long) */
1154 16, /* bitsize */
1155 FALSE, /* pc_relative */
1156 0, /* bitpos */
1157 complain_overflow_unsigned, /* complain_on_overflow */
1158 bfd_elf_generic_reloc, /* special_function */
1159 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1160 FALSE, /* partial_inplace */
1161 0xffff, /* src_mask */
1162 0xffff, /* dst_mask */
1163 FALSE), /* pcrel_offset */
1164
1165 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1166 12, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 21, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_dont, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1174 FALSE, /* partial_inplace */
1175 0x1fffff, /* src_mask */
1176 0x1fffff, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1180 3, /* rightshift */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1182 12, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xff8, /* src_mask */
1190 0xff8, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1194 2, /* rightshift */
1195 2, /* size (0 = byte, 1 = short, 2 = long) */
1196 12, /* bitsize */
1197 FALSE, /* pc_relative */
1198 0, /* bitpos */
1199 complain_overflow_dont, /* complain_on_overflow */
1200 bfd_elf_generic_reloc, /* special_function */
1201 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1202 FALSE, /* partial_inplace */
1203 0xffc, /* src_mask */
1204 0xffc, /* dst_mask */
1205 FALSE), /* pcrel_offset */
1206
1207 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1208 2, /* rightshift */
1209 2, /* size (0 = byte, 1 = short, 2 = long) */
1210 19, /* bitsize */
1211 FALSE, /* pc_relative */
1212 0, /* bitpos */
1213 complain_overflow_dont, /* complain_on_overflow */
1214 bfd_elf_generic_reloc, /* special_function */
1215 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1216 FALSE, /* partial_inplace */
1217 0x1ffffc, /* src_mask */
1218 0x1ffffc, /* dst_mask */
1219 FALSE), /* pcrel_offset */
1220
1221 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1222 0, /* rightshift */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1224 16, /* bitsize */
1225 FALSE, /* pc_relative */
1226 0, /* bitpos */
1227 complain_overflow_dont, /* complain_on_overflow */
1228 bfd_elf_generic_reloc, /* special_function */
1229 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1230 FALSE, /* partial_inplace */
1231 0xffff, /* src_mask */
1232 0xffff, /* dst_mask */
1233 FALSE), /* pcrel_offset */
1234
1235 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1236 16, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 FALSE, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_unsigned, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1244 FALSE, /* partial_inplace */
1245 0xffff, /* src_mask */
1246 0xffff, /* dst_mask */
1247 FALSE), /* pcrel_offset */
1248
1249 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1250 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1251 12, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 12, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_unsigned, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1259 FALSE, /* partial_inplace */
1260 0xfff, /* src_mask */
1261 0xfff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 /* Unsigned 12 bit byte offset to module TLS base address. */
1265 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 12, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_unsigned, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1274 FALSE, /* partial_inplace */
1275 0xfff, /* src_mask */
1276 0xfff, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1280 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 12, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_dont, /* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1289 FALSE, /* partial_inplace */
1290 0xfff, /* src_mask */
1291 0xfff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1295 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1296 0, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 12, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1304 FALSE, /* partial_inplace */
1305 0xfff, /* src_mask */
1306 0xfff, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 /* Get to the page for the GOT entry for the symbol
1310 (G(S) - P) using an ADRP instruction. */
1311 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1312 12, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 21, /* bitsize */
1315 TRUE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_signed, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1320 FALSE, /* partial_inplace */
1321 0x1fffff, /* src_mask */
1322 0x1fffff, /* dst_mask */
1323 TRUE), /* pcrel_offset */
1324
1325 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1326 0, /* rightshift */
1327 2, /* size (0 = byte, 1 = short, 2 = long) */
1328 21, /* bitsize */
1329 TRUE, /* pc_relative */
1330 0, /* bitpos */
1331 complain_overflow_signed, /* complain_on_overflow */
1332 bfd_elf_generic_reloc, /* special_function */
1333 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1334 FALSE, /* partial_inplace */
1335 0x1fffff, /* src_mask */
1336 0x1fffff, /* dst_mask */
1337 TRUE), /* pcrel_offset */
1338
1339 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1340 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1341 1, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 11, /* bitsize */
1344 FALSE, /* pc_relative */
1345 10, /* bitpos */
1346 complain_overflow_unsigned, /* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1349 FALSE, /* partial_inplace */
1350 0x1ffc00, /* src_mask */
1351 0x1ffc00, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1355 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1356 1, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 11, /* bitsize */
1359 FALSE, /* pc_relative */
1360 10, /* bitpos */
1361 complain_overflow_dont, /* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1364 FALSE, /* partial_inplace */
1365 0x1ffc00, /* src_mask */
1366 0x1ffc00, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1370 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1371 2, /* rightshift */
1372 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 10, /* bitsize */
1374 FALSE, /* pc_relative */
1375 10, /* bitpos */
1376 complain_overflow_unsigned, /* complain_on_overflow */
1377 bfd_elf_generic_reloc, /* special_function */
1378 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1379 FALSE, /* partial_inplace */
1380 0x3ffc00, /* src_mask */
1381 0x3ffc00, /* dst_mask */
1382 FALSE), /* pcrel_offset */
1383
1384 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1385 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1386 2, /* rightshift */
1387 2, /* size (0 = byte, 1 = short, 2 = long) */
1388 10, /* bitsize */
1389 FALSE, /* pc_relative */
1390 10, /* bitpos */
1391 complain_overflow_dont, /* complain_on_overflow */
1392 bfd_elf_generic_reloc, /* special_function */
1393 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1394 FALSE, /* partial_inplace */
1395 0xffc00, /* src_mask */
1396 0xffc00, /* dst_mask */
1397 FALSE), /* pcrel_offset */
1398
1399 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1400 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1401 3, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 9, /* bitsize */
1404 FALSE, /* pc_relative */
1405 10, /* bitpos */
1406 complain_overflow_unsigned, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1409 FALSE, /* partial_inplace */
1410 0x3ffc00, /* src_mask */
1411 0x3ffc00, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1415 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1416 3, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 9, /* bitsize */
1419 FALSE, /* pc_relative */
1420 10, /* bitpos */
1421 complain_overflow_dont, /* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1424 FALSE, /* partial_inplace */
1425 0x7fc00, /* src_mask */
1426 0x7fc00, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1430 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 12, /* bitsize */
1434 FALSE, /* pc_relative */
1435 10, /* bitpos */
1436 complain_overflow_unsigned, /* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1439 FALSE, /* partial_inplace */
1440 0x3ffc00, /* src_mask */
1441 0x3ffc00, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1445 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1446 0, /* rightshift */
1447 2, /* size (0 = byte, 1 = short, 2 = long) */
1448 12, /* bitsize */
1449 FALSE, /* pc_relative */
1450 10, /* bitpos */
1451 complain_overflow_dont, /* complain_on_overflow */
1452 bfd_elf_generic_reloc, /* special_function */
1453 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1454 FALSE, /* partial_inplace */
1455 0x3ffc00, /* src_mask */
1456 0x3ffc00, /* dst_mask */
1457 FALSE), /* pcrel_offset */
1458
1459 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1460 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 16, /* bitsize */
1464 FALSE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_unsigned, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1473
1474 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1475 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1476 0, /* rightshift */
1477 2, /* size (0 = byte, 1 = short, 2 = long) */
1478 16, /* bitsize */
1479 FALSE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_dont, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1484 FALSE, /* partial_inplace */
1485 0xffff, /* src_mask */
1486 0xffff, /* dst_mask */
1487 FALSE), /* pcrel_offset */
1488
1489 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1490 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1491 16, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 16, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_unsigned, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
1498 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1499 FALSE, /* partial_inplace */
1500 0xffff, /* src_mask */
1501 0xffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1505 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1506 16, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 16, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_dont, /* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1514 FALSE, /* partial_inplace */
1515 0xffff, /* src_mask */
1516 0xffff, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1520 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1521 32, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 16, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_unsigned, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1529 FALSE, /* partial_inplace */
1530 0xffff, /* src_mask */
1531 0xffff, /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1535 32, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 16, /* bitsize */
1538 FALSE, /* pc_relative */
1539 0, /* bitpos */
1540 complain_overflow_unsigned, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1543 FALSE, /* partial_inplace */
1544 0xffff, /* src_mask */
1545 0xffff, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1549 16, /* rightshift */
1550 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 16, /* bitsize */
1552 FALSE, /* pc_relative */
1553 0, /* bitpos */
1554 complain_overflow_dont, /* complain_on_overflow */
1555 bfd_elf_generic_reloc, /* special_function */
1556 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1557 FALSE, /* partial_inplace */
1558 0xffff, /* src_mask */
1559 0xffff, /* dst_mask */
1560 FALSE), /* pcrel_offset */
1561
1562 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1563 16, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 FALSE, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_dont, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1571 FALSE, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 FALSE), /* pcrel_offset */
1575
1576 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1577 0, /* rightshift */
1578 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 16, /* bitsize */
1580 FALSE, /* pc_relative */
1581 0, /* bitpos */
1582 complain_overflow_dont, /* complain_on_overflow */
1583 bfd_elf_generic_reloc, /* special_function */
1584 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1585 FALSE, /* partial_inplace */
1586 0xffff, /* src_mask */
1587 0xffff, /* dst_mask */
1588 FALSE), /* pcrel_offset */
1589
1590 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1591 0, /* rightshift */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 16, /* bitsize */
1594 FALSE, /* pc_relative */
1595 0, /* bitpos */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffff, /* src_mask */
1601 0xffff, /* dst_mask */
1602 FALSE), /* pcrel_offset */
1603
1604 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1605 12, /* rightshift */
1606 2, /* size (0 = byte, 1 = short, 2 = long) */
1607 12, /* bitsize */
1608 FALSE, /* pc_relative */
1609 0, /* bitpos */
1610 complain_overflow_unsigned, /* complain_on_overflow */
1611 bfd_elf_generic_reloc, /* special_function */
1612 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1613 FALSE, /* partial_inplace */
1614 0xfff, /* src_mask */
1615 0xfff, /* dst_mask */
1616 FALSE), /* pcrel_offset */
1617
1618 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1619 0, /* rightshift */
1620 2, /* size (0 = byte, 1 = short, 2 = long) */
1621 12, /* bitsize */
1622 FALSE, /* pc_relative */
1623 0, /* bitpos */
1624 complain_overflow_unsigned, /* complain_on_overflow */
1625 bfd_elf_generic_reloc, /* special_function */
1626 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1627 FALSE, /* partial_inplace */
1628 0xfff, /* src_mask */
1629 0xfff, /* dst_mask */
1630 FALSE), /* pcrel_offset */
1631
1632 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1633 0, /* rightshift */
1634 2, /* size (0 = byte, 1 = short, 2 = long) */
1635 12, /* bitsize */
1636 FALSE, /* pc_relative */
1637 0, /* bitpos */
1638 complain_overflow_dont, /* complain_on_overflow */
1639 bfd_elf_generic_reloc, /* special_function */
1640 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1641 FALSE, /* partial_inplace */
1642 0xfff, /* src_mask */
1643 0xfff, /* dst_mask */
1644 FALSE), /* pcrel_offset */
1645
1646 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1647 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1648 1, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 11, /* bitsize */
1651 FALSE, /* pc_relative */
1652 10, /* bitpos */
1653 complain_overflow_unsigned, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1656 FALSE, /* partial_inplace */
1657 0x1ffc00, /* src_mask */
1658 0x1ffc00, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1662 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1663 1, /* rightshift */
1664 2, /* size (0 = byte, 1 = short, 2 = long) */
1665 11, /* bitsize */
1666 FALSE, /* pc_relative */
1667 10, /* bitpos */
1668 complain_overflow_dont, /* complain_on_overflow */
1669 bfd_elf_generic_reloc, /* special_function */
1670 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1671 FALSE, /* partial_inplace */
1672 0x1ffc00, /* src_mask */
1673 0x1ffc00, /* dst_mask */
1674 FALSE), /* pcrel_offset */
1675
1676 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1677 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1678 2, /* rightshift */
1679 2, /* size (0 = byte, 1 = short, 2 = long) */
1680 10, /* bitsize */
1681 FALSE, /* pc_relative */
1682 10, /* bitpos */
1683 complain_overflow_unsigned, /* complain_on_overflow */
1684 bfd_elf_generic_reloc, /* special_function */
1685 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1686 FALSE, /* partial_inplace */
1687 0xffc00, /* src_mask */
1688 0xffc00, /* dst_mask */
1689 FALSE), /* pcrel_offset */
1690
1691 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1692 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1693 2, /* rightshift */
1694 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 10, /* bitsize */
1696 FALSE, /* pc_relative */
1697 10, /* bitpos */
1698 complain_overflow_dont, /* complain_on_overflow */
1699 bfd_elf_generic_reloc, /* special_function */
1700 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1701 FALSE, /* partial_inplace */
1702 0xffc00, /* src_mask */
1703 0xffc00, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1707 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1708 3, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 9, /* bitsize */
1711 FALSE, /* pc_relative */
1712 10, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0x7fc00, /* src_mask */
1718 0x7fc00, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1722 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1723 3, /* rightshift */
1724 2, /* size (0 = byte, 1 = short, 2 = long) */
1725 9, /* bitsize */
1726 FALSE, /* pc_relative */
1727 10, /* bitpos */
1728 complain_overflow_dont, /* complain_on_overflow */
1729 bfd_elf_generic_reloc, /* special_function */
1730 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1731 FALSE, /* partial_inplace */
1732 0x7fc00, /* src_mask */
1733 0x7fc00, /* dst_mask */
1734 FALSE), /* pcrel_offset */
1735
1736 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1737 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1738 0, /* rightshift */
1739 2, /* size (0 = byte, 1 = short, 2 = long) */
1740 12, /* bitsize */
1741 FALSE, /* pc_relative */
1742 10, /* bitpos */
1743 complain_overflow_unsigned, /* complain_on_overflow */
1744 bfd_elf_generic_reloc, /* special_function */
1745 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1746 FALSE, /* partial_inplace */
1747 0x3ffc00, /* src_mask */
1748 0x3ffc00, /* dst_mask */
1749 FALSE), /* pcrel_offset */
1750
1751 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1752 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1753 0, /* rightshift */
1754 2, /* size (0 = byte, 1 = short, 2 = long) */
1755 12, /* bitsize */
1756 FALSE, /* pc_relative */
1757 10, /* bitpos */
1758 complain_overflow_dont, /* complain_on_overflow */
1759 bfd_elf_generic_reloc, /* special_function */
1760 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1761 FALSE, /* partial_inplace */
1762 0x3ffc00, /* src_mask */
1763 0x3ffc00, /* dst_mask */
1764 FALSE), /* pcrel_offset */
1765
1766 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 19, /* bitsize */
1770 TRUE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1775 FALSE, /* partial_inplace */
1776 0x0ffffe0, /* src_mask */
1777 0x0ffffe0, /* dst_mask */
1778 TRUE), /* pcrel_offset */
1779
1780 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1781 0, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 21, /* bitsize */
1784 TRUE, /* pc_relative */
1785 0, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
1788 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1789 FALSE, /* partial_inplace */
1790 0x1fffff, /* src_mask */
1791 0x1fffff, /* dst_mask */
1792 TRUE), /* pcrel_offset */
1793
1794 /* Get to the page for the GOT entry for the symbol
1795 (G(S) - P) using an ADRP instruction. */
1796 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1797 12, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 21, /* bitsize */
1800 TRUE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_dont, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1805 FALSE, /* partial_inplace */
1806 0x1fffff, /* src_mask */
1807 0x1fffff, /* dst_mask */
1808 TRUE), /* pcrel_offset */
1809
1810 /* LD64: GOT offset G(S) & 0xff8. */
1811 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 12, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1820 FALSE, /* partial_inplace */
1821 0xff8, /* src_mask */
1822 0xff8, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD32: GOT offset G(S) & 0xffc. */
1826 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1827 2, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 0, /* bitpos */
1832 complain_overflow_dont, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1835 FALSE, /* partial_inplace */
1836 0xffc, /* src_mask */
1837 0xffc, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* ADD: GOT offset G(S) & 0xfff. */
1841 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 0, /* bitpos */
1847 complain_overflow_dont,/* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1850 FALSE, /* partial_inplace */
1851 0xfff, /* src_mask */
1852 0xfff, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1856 16, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 12, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_unsigned, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1864 FALSE, /* partial_inplace */
1865 0xffff, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 12, /* bitsize */
1873 FALSE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1878 FALSE, /* partial_inplace */
1879 0xffff, /* src_mask */
1880 0xffff, /* dst_mask */
1881 FALSE), /* pcrel_offset */
1882
1883 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 12, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_dont, /* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 AARCH64_R_STR (TLSDESC_LDR), /* name */
1892 FALSE, /* partial_inplace */
1893 0x0, /* src_mask */
1894 0x0, /* dst_mask */
1895 FALSE), /* pcrel_offset */
1896
1897 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1898 0, /* rightshift */
1899 2, /* size (0 = byte, 1 = short, 2 = long) */
1900 12, /* bitsize */
1901 FALSE, /* pc_relative */
1902 0, /* bitpos */
1903 complain_overflow_dont, /* complain_on_overflow */
1904 bfd_elf_generic_reloc, /* special_function */
1905 AARCH64_R_STR (TLSDESC_ADD), /* name */
1906 FALSE, /* partial_inplace */
1907 0x0, /* src_mask */
1908 0x0, /* dst_mask */
1909 FALSE), /* pcrel_offset */
1910
1911 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1912 0, /* rightshift */
1913 2, /* size (0 = byte, 1 = short, 2 = long) */
1914 0, /* bitsize */
1915 FALSE, /* pc_relative */
1916 0, /* bitpos */
1917 complain_overflow_dont, /* complain_on_overflow */
1918 bfd_elf_generic_reloc, /* special_function */
1919 AARCH64_R_STR (TLSDESC_CALL), /* name */
1920 FALSE, /* partial_inplace */
1921 0x0, /* src_mask */
1922 0x0, /* dst_mask */
1923 FALSE), /* pcrel_offset */
1924
1925 HOWTO (AARCH64_R (COPY), /* type */
1926 0, /* rightshift */
1927 2, /* size (0 = byte, 1 = short, 2 = long) */
1928 64, /* bitsize */
1929 FALSE, /* pc_relative */
1930 0, /* bitpos */
1931 complain_overflow_bitfield, /* complain_on_overflow */
1932 bfd_elf_generic_reloc, /* special_function */
1933 AARCH64_R_STR (COPY), /* name */
1934 TRUE, /* partial_inplace */
1935 0xffffffff, /* src_mask */
1936 0xffffffff, /* dst_mask */
1937 FALSE), /* pcrel_offset */
1938
1939 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1940 0, /* rightshift */
1941 2, /* size (0 = byte, 1 = short, 2 = long) */
1942 64, /* bitsize */
1943 FALSE, /* pc_relative */
1944 0, /* bitpos */
1945 complain_overflow_bitfield, /* complain_on_overflow */
1946 bfd_elf_generic_reloc, /* special_function */
1947 AARCH64_R_STR (GLOB_DAT), /* name */
1948 TRUE, /* partial_inplace */
1949 0xffffffff, /* src_mask */
1950 0xffffffff, /* dst_mask */
1951 FALSE), /* pcrel_offset */
1952
1953 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1954 0, /* rightshift */
1955 2, /* size (0 = byte, 1 = short, 2 = long) */
1956 64, /* bitsize */
1957 FALSE, /* pc_relative */
1958 0, /* bitpos */
1959 complain_overflow_bitfield, /* complain_on_overflow */
1960 bfd_elf_generic_reloc, /* special_function */
1961 AARCH64_R_STR (JUMP_SLOT), /* name */
1962 TRUE, /* partial_inplace */
1963 0xffffffff, /* src_mask */
1964 0xffffffff, /* dst_mask */
1965 FALSE), /* pcrel_offset */
1966
1967 HOWTO (AARCH64_R (RELATIVE), /* type */
1968 0, /* rightshift */
1969 2, /* size (0 = byte, 1 = short, 2 = long) */
1970 64, /* bitsize */
1971 FALSE, /* pc_relative */
1972 0, /* bitpos */
1973 complain_overflow_bitfield, /* complain_on_overflow */
1974 bfd_elf_generic_reloc, /* special_function */
1975 AARCH64_R_STR (RELATIVE), /* name */
1976 TRUE, /* partial_inplace */
1977 ALL_ONES, /* src_mask */
1978 ALL_ONES, /* dst_mask */
1979 FALSE), /* pcrel_offset */
1980
1981 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1982 0, /* rightshift */
1983 2, /* size (0 = byte, 1 = short, 2 = long) */
1984 64, /* bitsize */
1985 FALSE, /* pc_relative */
1986 0, /* bitpos */
1987 complain_overflow_dont, /* complain_on_overflow */
1988 bfd_elf_generic_reloc, /* special_function */
1989 #if ARCH_SIZE == 64
1990 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1991 #else
1992 AARCH64_R_STR (TLS_DTPMOD), /* name */
1993 #endif
1994 FALSE, /* partial_inplace */
1995 0, /* src_mask */
1996 ALL_ONES, /* dst_mask */
1997 FALSE), /* pc_reloffset */
1998
1999 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2000 0, /* rightshift */
2001 2, /* size (0 = byte, 1 = short, 2 = long) */
2002 64, /* bitsize */
2003 FALSE, /* pc_relative */
2004 0, /* bitpos */
2005 complain_overflow_dont, /* complain_on_overflow */
2006 bfd_elf_generic_reloc, /* special_function */
2007 #if ARCH_SIZE == 64
2008 AARCH64_R_STR (TLS_DTPREL64), /* name */
2009 #else
2010 AARCH64_R_STR (TLS_DTPREL), /* name */
2011 #endif
2012 FALSE, /* partial_inplace */
2013 0, /* src_mask */
2014 ALL_ONES, /* dst_mask */
2015 FALSE), /* pcrel_offset */
2016
2017 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2018 0, /* rightshift */
2019 2, /* size (0 = byte, 1 = short, 2 = long) */
2020 64, /* bitsize */
2021 FALSE, /* pc_relative */
2022 0, /* bitpos */
2023 complain_overflow_dont, /* complain_on_overflow */
2024 bfd_elf_generic_reloc, /* special_function */
2025 #if ARCH_SIZE == 64
2026 AARCH64_R_STR (TLS_TPREL64), /* name */
2027 #else
2028 AARCH64_R_STR (TLS_TPREL), /* name */
2029 #endif
2030 FALSE, /* partial_inplace */
2031 0, /* src_mask */
2032 ALL_ONES, /* dst_mask */
2033 FALSE), /* pcrel_offset */
2034
2035 HOWTO (AARCH64_R (TLSDESC), /* type */
2036 0, /* rightshift */
2037 2, /* size (0 = byte, 1 = short, 2 = long) */
2038 64, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 bfd_elf_generic_reloc, /* special_function */
2043 AARCH64_R_STR (TLSDESC), /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 ALL_ONES, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 HOWTO (AARCH64_R (IRELATIVE), /* type */
2050 0, /* rightshift */
2051 2, /* size (0 = byte, 1 = short, 2 = long) */
2052 64, /* bitsize */
2053 FALSE, /* pc_relative */
2054 0, /* bitpos */
2055 complain_overflow_bitfield, /* complain_on_overflow */
2056 bfd_elf_generic_reloc, /* special_function */
2057 AARCH64_R_STR (IRELATIVE), /* name */
2058 FALSE, /* partial_inplace */
2059 0, /* src_mask */
2060 ALL_ONES, /* dst_mask */
2061 FALSE), /* pcrel_offset */
2062
2063 EMPTY_HOWTO (0),
2064 };
2065
2066 static reloc_howto_type elfNN_aarch64_howto_none =
2067 HOWTO (R_AARCH64_NONE, /* type */
2068 0, /* rightshift */
2069 3, /* size (0 = byte, 1 = short, 2 = long) */
2070 0, /* bitsize */
2071 FALSE, /* pc_relative */
2072 0, /* bitpos */
2073 complain_overflow_dont,/* complain_on_overflow */
2074 bfd_elf_generic_reloc, /* special_function */
2075 "R_AARCH64_NONE", /* name */
2076 FALSE, /* partial_inplace */
2077 0, /* src_mask */
2078 0, /* dst_mask */
2079 FALSE); /* pcrel_offset */
2080
2081 /* Given HOWTO, return the bfd internal relocation enumerator. */
2082
2083 static bfd_reloc_code_real_type
2084 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2085 {
2086 const int size
2087 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2088 const ptrdiff_t offset
2089 = howto - elfNN_aarch64_howto_table;
2090
2091 if (offset > 0 && offset < size - 1)
2092 return BFD_RELOC_AARCH64_RELOC_START + offset;
2093
2094 if (howto == &elfNN_aarch64_howto_none)
2095 return BFD_RELOC_AARCH64_NONE;
2096
2097 return BFD_RELOC_AARCH64_RELOC_START;
2098 }
2099
2100 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2101
2102 static bfd_reloc_code_real_type
2103 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2104 {
2105 static bfd_boolean initialized_p = FALSE;
2106 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2107 static unsigned int offsets[R_AARCH64_end];
2108
2109 if (!initialized_p)
2110 {
2111 unsigned int i;
2112
2113 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2114 if (elfNN_aarch64_howto_table[i].type != 0)
2115 offsets[elfNN_aarch64_howto_table[i].type] = i;
2116
2117 initialized_p = TRUE;
2118 }
2119
2120 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2121 return BFD_RELOC_AARCH64_NONE;
2122
2123 /* PR 17512: file: b371e70a. */
2124 if (r_type >= R_AARCH64_end)
2125 {
2126 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2127 abfd, r_type);
2128 bfd_set_error (bfd_error_bad_value);
2129 return BFD_RELOC_AARCH64_NONE;
2130 }
2131
2132 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2133 }
2134
2135 struct elf_aarch64_reloc_map
2136 {
2137 bfd_reloc_code_real_type from;
2138 bfd_reloc_code_real_type to;
2139 };
2140
2141 /* Map bfd generic reloc to AArch64-specific reloc. */
2142 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2143 {
2144 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2145
2146 /* Basic data relocations. */
2147 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2148 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2149 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2150 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2151 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2152 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2153 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2154 };
2155
2156 /* Given the bfd internal relocation enumerator in CODE, return the
2157 corresponding howto entry. */
2158
2159 static reloc_howto_type *
2160 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2161 {
2162 unsigned int i;
2163
2164 /* Convert bfd generic reloc to AArch64-specific reloc. */
2165 if (code < BFD_RELOC_AARCH64_RELOC_START
2166 || code > BFD_RELOC_AARCH64_RELOC_END)
2167 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2168 if (elf_aarch64_reloc_map[i].from == code)
2169 {
2170 code = elf_aarch64_reloc_map[i].to;
2171 break;
2172 }
2173
2174 if (code > BFD_RELOC_AARCH64_RELOC_START
2175 && code < BFD_RELOC_AARCH64_RELOC_END)
2176 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2177 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2178
2179 if (code == BFD_RELOC_AARCH64_NONE)
2180 return &elfNN_aarch64_howto_none;
2181
2182 return NULL;
2183 }
2184
2185 static reloc_howto_type *
2186 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2187 {
2188 bfd_reloc_code_real_type val;
2189 reloc_howto_type *howto;
2190
2191 #if ARCH_SIZE == 32
2192 if (r_type > 256)
2193 {
2194 bfd_set_error (bfd_error_bad_value);
2195 return NULL;
2196 }
2197 #endif
2198
2199 if (r_type == R_AARCH64_NONE)
2200 return &elfNN_aarch64_howto_none;
2201
2202 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2203 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2204
2205 if (howto != NULL)
2206 return howto;
2207
2208 bfd_set_error (bfd_error_bad_value);
2209 return NULL;
2210 }
2211
2212 static bfd_boolean
2213 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2214 Elf_Internal_Rela *elf_reloc)
2215 {
2216 unsigned int r_type;
2217
2218 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2219 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2220
2221 if (bfd_reloc->howto == NULL)
2222 {
2223 /* xgettext:c-format */
2224 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2225 return FALSE;
2226 }
2227 return TRUE;
2228 }
2229
2230 static reloc_howto_type *
2231 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2232 bfd_reloc_code_real_type code)
2233 {
2234 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2235
2236 if (howto != NULL)
2237 return howto;
2238
2239 bfd_set_error (bfd_error_bad_value);
2240 return NULL;
2241 }
2242
2243 static reloc_howto_type *
2244 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2245 const char *r_name)
2246 {
2247 unsigned int i;
2248
2249 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2250 if (elfNN_aarch64_howto_table[i].name != NULL
2251 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2252 return &elfNN_aarch64_howto_table[i];
2253
2254 return NULL;
2255 }
2256
2257 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2258 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2259 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2260 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2261
2262 /* The linker script knows the section names for placement.
2263 The entry_names are used to do simple name mangling on the stubs.
2264 Given a function name, and its type, the stub can be found. The
2265 name can be changed. The only requirement is the %s be present. */
2266 #define STUB_ENTRY_NAME "__%s_veneer"
2267
2268 /* The name of the dynamic interpreter. This is put in the .interp
2269 section. */
2270 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2271
2272 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2273 (((1 << 25) - 1) << 2)
2274 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2275 (-((1 << 25) << 2))
2276
2277 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2278 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2279
2280 static int
2281 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2282 {
2283 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2284 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2285 }
2286
2287 static int
2288 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2289 {
2290 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2291 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2292 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2293 }
2294
2295 static const uint32_t aarch64_adrp_branch_stub [] =
2296 {
2297 0x90000010, /* adrp ip0, X */
2298 /* R_AARCH64_ADR_HI21_PCREL(X) */
2299 0x91000210, /* add ip0, ip0, :lo12:X */
2300 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2301 0xd61f0200, /* br ip0 */
2302 };
2303
2304 static const uint32_t aarch64_long_branch_stub[] =
2305 {
2306 #if ARCH_SIZE == 64
2307 0x58000090, /* ldr ip0, 1f */
2308 #else
2309 0x18000090, /* ldr wip0, 1f */
2310 #endif
2311 0x10000011, /* adr ip1, #0 */
2312 0x8b110210, /* add ip0, ip0, ip1 */
2313 0xd61f0200, /* br ip0 */
2314 0x00000000, /* 1: .xword or .word
2315 R_AARCH64_PRELNN(X) + 12
2316 */
2317 0x00000000,
2318 };
2319
2320 static const uint32_t aarch64_erratum_835769_stub[] =
2321 {
2322 0x00000000, /* Placeholder for multiply accumulate. */
2323 0x14000000, /* b <label> */
2324 };
2325
2326 static const uint32_t aarch64_erratum_843419_stub[] =
2327 {
2328 0x00000000, /* Placeholder for LDR instruction. */
2329 0x14000000, /* b <label> */
2330 };
2331
2332 /* Section name for stubs is the associated section name plus this
2333 string. */
2334 #define STUB_SUFFIX ".stub"
2335
2336 enum elf_aarch64_stub_type
2337 {
2338 aarch64_stub_none,
2339 aarch64_stub_adrp_branch,
2340 aarch64_stub_long_branch,
2341 aarch64_stub_erratum_835769_veneer,
2342 aarch64_stub_erratum_843419_veneer,
2343 };
2344
2345 struct elf_aarch64_stub_hash_entry
2346 {
2347 /* Base hash table entry structure. */
2348 struct bfd_hash_entry root;
2349
2350 /* The stub section. */
2351 asection *stub_sec;
2352
2353 /* Offset within stub_sec of the beginning of this stub. */
2354 bfd_vma stub_offset;
2355
2356 /* Given the symbol's value and its section we can determine its final
2357 value when building the stubs (so the stub knows where to jump). */
2358 bfd_vma target_value;
2359 asection *target_section;
2360
2361 enum elf_aarch64_stub_type stub_type;
2362
2363 /* The symbol table entry, if any, that this was derived from. */
2364 struct elf_aarch64_link_hash_entry *h;
2365
2366 /* Destination symbol type */
2367 unsigned char st_type;
2368
2369 /* Where this stub is being called from, or, in the case of combined
2370 stub sections, the first input section in the group. */
2371 asection *id_sec;
2372
2373 /* The name for the local symbol at the start of this stub. The
2374 stub name in the hash table has to be unique; this does not, so
2375 it can be friendlier. */
2376 char *output_name;
2377
2378 /* The instruction which caused this stub to be generated (only valid for
2379 erratum 835769 workaround stubs at present). */
2380 uint32_t veneered_insn;
2381
2382 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2383 bfd_vma adrp_offset;
2384 };
2385
2386 /* Used to build a map of a section. This is required for mixed-endian
2387 code/data. */
2388
2389 typedef struct elf_elf_section_map
2390 {
2391 bfd_vma vma;
2392 char type;
2393 }
2394 elf_aarch64_section_map;
2395
2396
2397 typedef struct _aarch64_elf_section_data
2398 {
2399 struct bfd_elf_section_data elf;
2400 unsigned int mapcount;
2401 unsigned int mapsize;
2402 elf_aarch64_section_map *map;
2403 }
2404 _aarch64_elf_section_data;
2405
2406 #define elf_aarch64_section_data(sec) \
2407 ((_aarch64_elf_section_data *) elf_section_data (sec))
2408
2409 /* The size of the thread control block which is defined to be two pointers. */
2410 #define TCB_SIZE (ARCH_SIZE/8)*2
2411
2412 struct elf_aarch64_local_symbol
2413 {
2414 unsigned int got_type;
2415 bfd_signed_vma got_refcount;
2416 bfd_vma got_offset;
2417
2418 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2419 offset is from the end of the jump table and reserved entries
2420 within the PLTGOT.
2421
2422 The magic value (bfd_vma) -1 indicates that an offset has not be
2423 allocated. */
2424 bfd_vma tlsdesc_got_jump_table_offset;
2425 };
2426
2427 struct elf_aarch64_obj_tdata
2428 {
2429 struct elf_obj_tdata root;
2430
2431 /* local symbol descriptors */
2432 struct elf_aarch64_local_symbol *locals;
2433
2434 /* Zero to warn when linking objects with incompatible enum sizes. */
2435 int no_enum_size_warning;
2436
2437 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2438 int no_wchar_size_warning;
2439 };
2440
2441 #define elf_aarch64_tdata(bfd) \
2442 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2443
2444 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2445
2446 #define is_aarch64_elf(bfd) \
2447 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2448 && elf_tdata (bfd) != NULL \
2449 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2450
2451 static bfd_boolean
2452 elfNN_aarch64_mkobject (bfd *abfd)
2453 {
2454 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2455 AARCH64_ELF_DATA);
2456 }
2457
2458 #define elf_aarch64_hash_entry(ent) \
2459 ((struct elf_aarch64_link_hash_entry *)(ent))
2460
2461 #define GOT_UNKNOWN 0
2462 #define GOT_NORMAL 1
2463 #define GOT_TLS_GD 2
2464 #define GOT_TLS_IE 4
2465 #define GOT_TLSDESC_GD 8
2466
2467 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2468
2469 /* AArch64 ELF linker hash entry. */
2470 struct elf_aarch64_link_hash_entry
2471 {
2472 struct elf_link_hash_entry root;
2473
2474 /* Track dynamic relocs copied for this symbol. */
2475 struct elf_dyn_relocs *dyn_relocs;
2476
2477 /* Since PLT entries have variable size, we need to record the
2478 index into .got.plt instead of recomputing it from the PLT
2479 offset. */
2480 bfd_signed_vma plt_got_offset;
2481
2482 /* Bit mask representing the type of GOT entry(s) if any required by
2483 this symbol. */
2484 unsigned int got_type;
2485
2486 /* A pointer to the most recently used stub hash entry against this
2487 symbol. */
2488 struct elf_aarch64_stub_hash_entry *stub_cache;
2489
2490 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2491 is from the end of the jump table and reserved entries within the PLTGOT.
2492
2493 The magic value (bfd_vma) -1 indicates that an offset has not
2494 be allocated. */
2495 bfd_vma tlsdesc_got_jump_table_offset;
2496 };
2497
2498 static unsigned int
2499 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2500 bfd *abfd,
2501 unsigned long r_symndx)
2502 {
2503 if (h)
2504 return elf_aarch64_hash_entry (h)->got_type;
2505
2506 if (! elf_aarch64_locals (abfd))
2507 return GOT_UNKNOWN;
2508
2509 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2510 }
2511
2512 /* Get the AArch64 elf linker hash table from a link_info structure. */
2513 #define elf_aarch64_hash_table(info) \
2514 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2515
2516 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2517 ((struct elf_aarch64_stub_hash_entry *) \
2518 bfd_hash_lookup ((table), (string), (create), (copy)))
2519
2520 /* AArch64 ELF linker hash table. */
2521 struct elf_aarch64_link_hash_table
2522 {
2523 /* The main hash table. */
2524 struct elf_link_hash_table root;
2525
2526 /* Nonzero to force PIC branch veneers. */
2527 int pic_veneer;
2528
2529 /* Fix erratum 835769. */
2530 int fix_erratum_835769;
2531
2532 /* Fix erratum 843419. */
2533 int fix_erratum_843419;
2534
2535 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2536 int fix_erratum_843419_adr;
2537
2538 /* Don't apply link-time values for dynamic relocations. */
2539 int no_apply_dynamic_relocs;
2540
2541 /* The number of bytes in the initial entry in the PLT. */
2542 bfd_size_type plt_header_size;
2543
2544 /* The number of bytes in the subsequent PLT etries. */
2545 bfd_size_type plt_entry_size;
2546
2547 /* Small local sym cache. */
2548 struct sym_cache sym_cache;
2549
2550 /* For convenience in allocate_dynrelocs. */
2551 bfd *obfd;
2552
2553 /* The amount of space used by the reserved portion of the sgotplt
2554 section, plus whatever space is used by the jump slots. */
2555 bfd_vma sgotplt_jump_table_size;
2556
2557 /* The stub hash table. */
2558 struct bfd_hash_table stub_hash_table;
2559
2560 /* Linker stub bfd. */
2561 bfd *stub_bfd;
2562
2563 /* Linker call-backs. */
2564 asection *(*add_stub_section) (const char *, asection *);
2565 void (*layout_sections_again) (void);
2566
2567 /* Array to keep track of which stub sections have been created, and
2568 information on stub grouping. */
2569 struct map_stub
2570 {
2571 /* This is the section to which stubs in the group will be
2572 attached. */
2573 asection *link_sec;
2574 /* The stub section. */
2575 asection *stub_sec;
2576 } *stub_group;
2577
2578 /* Assorted information used by elfNN_aarch64_size_stubs. */
2579 unsigned int bfd_count;
2580 unsigned int top_index;
2581 asection **input_list;
2582
2583 /* The offset into splt of the PLT entry for the TLS descriptor
2584 resolver. Special values are 0, if not necessary (or not found
2585 to be necessary yet), and -1 if needed but not determined
2586 yet. */
2587 bfd_vma tlsdesc_plt;
2588
2589 /* The GOT offset for the lazy trampoline. Communicated to the
2590 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2591 indicates an offset is not allocated. */
2592 bfd_vma dt_tlsdesc_got;
2593
2594 /* Used by local STT_GNU_IFUNC symbols. */
2595 htab_t loc_hash_table;
2596 void * loc_hash_memory;
2597 };
2598
2599 /* Create an entry in an AArch64 ELF linker hash table. */
2600
2601 static struct bfd_hash_entry *
2602 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2603 struct bfd_hash_table *table,
2604 const char *string)
2605 {
2606 struct elf_aarch64_link_hash_entry *ret =
2607 (struct elf_aarch64_link_hash_entry *) entry;
2608
2609 /* Allocate the structure if it has not already been allocated by a
2610 subclass. */
2611 if (ret == NULL)
2612 ret = bfd_hash_allocate (table,
2613 sizeof (struct elf_aarch64_link_hash_entry));
2614 if (ret == NULL)
2615 return (struct bfd_hash_entry *) ret;
2616
2617 /* Call the allocation method of the superclass. */
2618 ret = ((struct elf_aarch64_link_hash_entry *)
2619 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2620 table, string));
2621 if (ret != NULL)
2622 {
2623 ret->dyn_relocs = NULL;
2624 ret->got_type = GOT_UNKNOWN;
2625 ret->plt_got_offset = (bfd_vma) - 1;
2626 ret->stub_cache = NULL;
2627 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2628 }
2629
2630 return (struct bfd_hash_entry *) ret;
2631 }
2632
2633 /* Initialize an entry in the stub hash table. */
2634
2635 static struct bfd_hash_entry *
2636 stub_hash_newfunc (struct bfd_hash_entry *entry,
2637 struct bfd_hash_table *table, const char *string)
2638 {
2639 /* Allocate the structure if it has not already been allocated by a
2640 subclass. */
2641 if (entry == NULL)
2642 {
2643 entry = bfd_hash_allocate (table,
2644 sizeof (struct
2645 elf_aarch64_stub_hash_entry));
2646 if (entry == NULL)
2647 return entry;
2648 }
2649
2650 /* Call the allocation method of the superclass. */
2651 entry = bfd_hash_newfunc (entry, table, string);
2652 if (entry != NULL)
2653 {
2654 struct elf_aarch64_stub_hash_entry *eh;
2655
2656 /* Initialize the local fields. */
2657 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2658 eh->adrp_offset = 0;
2659 eh->stub_sec = NULL;
2660 eh->stub_offset = 0;
2661 eh->target_value = 0;
2662 eh->target_section = NULL;
2663 eh->stub_type = aarch64_stub_none;
2664 eh->h = NULL;
2665 eh->id_sec = NULL;
2666 }
2667
2668 return entry;
2669 }
2670
2671 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2672 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2673 as global symbol. We reuse indx and dynstr_index for local symbol
2674 hash since they aren't used by global symbols in this backend. */
2675
2676 static hashval_t
2677 elfNN_aarch64_local_htab_hash (const void *ptr)
2678 {
2679 struct elf_link_hash_entry *h
2680 = (struct elf_link_hash_entry *) ptr;
2681 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2682 }
2683
2684 /* Compare local hash entries. */
2685
2686 static int
2687 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2688 {
2689 struct elf_link_hash_entry *h1
2690 = (struct elf_link_hash_entry *) ptr1;
2691 struct elf_link_hash_entry *h2
2692 = (struct elf_link_hash_entry *) ptr2;
2693
2694 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2695 }
2696
2697 /* Find and/or create a hash entry for local symbol. */
2698
2699 static struct elf_link_hash_entry *
2700 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2701 bfd *abfd, const Elf_Internal_Rela *rel,
2702 bfd_boolean create)
2703 {
2704 struct elf_aarch64_link_hash_entry e, *ret;
2705 asection *sec = abfd->sections;
2706 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2707 ELFNN_R_SYM (rel->r_info));
2708 void **slot;
2709
2710 e.root.indx = sec->id;
2711 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2712 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2713 create ? INSERT : NO_INSERT);
2714
2715 if (!slot)
2716 return NULL;
2717
2718 if (*slot)
2719 {
2720 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2721 return &ret->root;
2722 }
2723
2724 ret = (struct elf_aarch64_link_hash_entry *)
2725 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2726 sizeof (struct elf_aarch64_link_hash_entry));
2727 if (ret)
2728 {
2729 memset (ret, 0, sizeof (*ret));
2730 ret->root.indx = sec->id;
2731 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2732 ret->root.dynindx = -1;
2733 *slot = ret;
2734 }
2735 return &ret->root;
2736 }
2737
2738 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2739
2740 static void
2741 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2742 struct elf_link_hash_entry *dir,
2743 struct elf_link_hash_entry *ind)
2744 {
2745 struct elf_aarch64_link_hash_entry *edir, *eind;
2746
2747 edir = (struct elf_aarch64_link_hash_entry *) dir;
2748 eind = (struct elf_aarch64_link_hash_entry *) ind;
2749
2750 if (eind->dyn_relocs != NULL)
2751 {
2752 if (edir->dyn_relocs != NULL)
2753 {
2754 struct elf_dyn_relocs **pp;
2755 struct elf_dyn_relocs *p;
2756
2757 /* Add reloc counts against the indirect sym to the direct sym
2758 list. Merge any entries against the same section. */
2759 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2760 {
2761 struct elf_dyn_relocs *q;
2762
2763 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2764 if (q->sec == p->sec)
2765 {
2766 q->pc_count += p->pc_count;
2767 q->count += p->count;
2768 *pp = p->next;
2769 break;
2770 }
2771 if (q == NULL)
2772 pp = &p->next;
2773 }
2774 *pp = edir->dyn_relocs;
2775 }
2776
2777 edir->dyn_relocs = eind->dyn_relocs;
2778 eind->dyn_relocs = NULL;
2779 }
2780
2781 if (ind->root.type == bfd_link_hash_indirect)
2782 {
2783 /* Copy over PLT info. */
2784 if (dir->got.refcount <= 0)
2785 {
2786 edir->got_type = eind->got_type;
2787 eind->got_type = GOT_UNKNOWN;
2788 }
2789 }
2790
2791 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2792 }
2793
2794 /* Destroy an AArch64 elf linker hash table. */
2795
2796 static void
2797 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2798 {
2799 struct elf_aarch64_link_hash_table *ret
2800 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2801
2802 if (ret->loc_hash_table)
2803 htab_delete (ret->loc_hash_table);
2804 if (ret->loc_hash_memory)
2805 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2806
2807 bfd_hash_table_free (&ret->stub_hash_table);
2808 _bfd_elf_link_hash_table_free (obfd);
2809 }
2810
2811 /* Create an AArch64 elf linker hash table. */
2812
2813 static struct bfd_link_hash_table *
2814 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2815 {
2816 struct elf_aarch64_link_hash_table *ret;
2817 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2818
2819 ret = bfd_zmalloc (amt);
2820 if (ret == NULL)
2821 return NULL;
2822
2823 if (!_bfd_elf_link_hash_table_init
2824 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2825 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2826 {
2827 free (ret);
2828 return NULL;
2829 }
2830
2831 ret->plt_header_size = PLT_ENTRY_SIZE;
2832 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2833 ret->obfd = abfd;
2834 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2835
2836 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2837 sizeof (struct elf_aarch64_stub_hash_entry)))
2838 {
2839 _bfd_elf_link_hash_table_free (abfd);
2840 return NULL;
2841 }
2842
2843 ret->loc_hash_table = htab_try_create (1024,
2844 elfNN_aarch64_local_htab_hash,
2845 elfNN_aarch64_local_htab_eq,
2846 NULL);
2847 ret->loc_hash_memory = objalloc_create ();
2848 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2849 {
2850 elfNN_aarch64_link_hash_table_free (abfd);
2851 return NULL;
2852 }
2853 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2854
2855 return &ret->root.root;
2856 }
2857
2858 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2859
2860 static bfd_boolean
2861 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2862 bfd_vma offset, bfd_vma value)
2863 {
2864 reloc_howto_type *howto;
2865 bfd_vma place;
2866
2867 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2868 place = (input_section->output_section->vma + input_section->output_offset
2869 + offset);
2870
2871 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2872 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2873 return _bfd_aarch64_elf_put_addend (input_bfd,
2874 input_section->contents + offset, r_type,
2875 howto, value) == bfd_reloc_ok;
2876 }
2877
2878 static enum elf_aarch64_stub_type
2879 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2880 {
2881 if (aarch64_valid_for_adrp_p (value, place))
2882 return aarch64_stub_adrp_branch;
2883 return aarch64_stub_long_branch;
2884 }
2885
2886 /* Determine the type of stub needed, if any, for a call. */
2887
2888 static enum elf_aarch64_stub_type
2889 aarch64_type_of_stub (asection *input_sec,
2890 const Elf_Internal_Rela *rel,
2891 asection *sym_sec,
2892 unsigned char st_type,
2893 bfd_vma destination)
2894 {
2895 bfd_vma location;
2896 bfd_signed_vma branch_offset;
2897 unsigned int r_type;
2898 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2899
2900 if (st_type != STT_FUNC
2901 && (sym_sec == input_sec))
2902 return stub_type;
2903
2904 /* Determine where the call point is. */
2905 location = (input_sec->output_offset
2906 + input_sec->output_section->vma + rel->r_offset);
2907
2908 branch_offset = (bfd_signed_vma) (destination - location);
2909
2910 r_type = ELFNN_R_TYPE (rel->r_info);
2911
2912 /* We don't want to redirect any old unconditional jump in this way,
2913 only one which is being used for a sibcall, where it is
2914 acceptable for the IP0 and IP1 registers to be clobbered. */
2915 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2916 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2917 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2918 {
2919 stub_type = aarch64_stub_long_branch;
2920 }
2921
2922 return stub_type;
2923 }
2924
2925 /* Build a name for an entry in the stub hash table. */
2926
2927 static char *
2928 elfNN_aarch64_stub_name (const asection *input_section,
2929 const asection *sym_sec,
2930 const struct elf_aarch64_link_hash_entry *hash,
2931 const Elf_Internal_Rela *rel)
2932 {
2933 char *stub_name;
2934 bfd_size_type len;
2935
2936 if (hash)
2937 {
2938 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2939 stub_name = bfd_malloc (len);
2940 if (stub_name != NULL)
2941 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2942 (unsigned int) input_section->id,
2943 hash->root.root.root.string,
2944 rel->r_addend);
2945 }
2946 else
2947 {
2948 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2949 stub_name = bfd_malloc (len);
2950 if (stub_name != NULL)
2951 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2952 (unsigned int) input_section->id,
2953 (unsigned int) sym_sec->id,
2954 (unsigned int) ELFNN_R_SYM (rel->r_info),
2955 rel->r_addend);
2956 }
2957
2958 return stub_name;
2959 }
2960
2961 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2962 executable PLT slots where the executable never takes the address of those
2963 functions, the function symbols are not added to the hash table. */
2964
2965 static bfd_boolean
2966 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2967 {
2968 if (h->plt.offset != (bfd_vma) -1
2969 && !h->def_regular
2970 && !h->pointer_equality_needed)
2971 return FALSE;
2972
2973 return _bfd_elf_hash_symbol (h);
2974 }
2975
2976
2977 /* Look up an entry in the stub hash. Stub entries are cached because
2978 creating the stub name takes a bit of time. */
2979
2980 static struct elf_aarch64_stub_hash_entry *
2981 elfNN_aarch64_get_stub_entry (const asection *input_section,
2982 const asection *sym_sec,
2983 struct elf_link_hash_entry *hash,
2984 const Elf_Internal_Rela *rel,
2985 struct elf_aarch64_link_hash_table *htab)
2986 {
2987 struct elf_aarch64_stub_hash_entry *stub_entry;
2988 struct elf_aarch64_link_hash_entry *h =
2989 (struct elf_aarch64_link_hash_entry *) hash;
2990 const asection *id_sec;
2991
2992 if ((input_section->flags & SEC_CODE) == 0)
2993 return NULL;
2994
2995 /* If this input section is part of a group of sections sharing one
2996 stub section, then use the id of the first section in the group.
2997 Stub names need to include a section id, as there may well be
2998 more than one stub used to reach say, printf, and we need to
2999 distinguish between them. */
3000 id_sec = htab->stub_group[input_section->id].link_sec;
3001
3002 if (h != NULL && h->stub_cache != NULL
3003 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3004 {
3005 stub_entry = h->stub_cache;
3006 }
3007 else
3008 {
3009 char *stub_name;
3010
3011 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3012 if (stub_name == NULL)
3013 return NULL;
3014
3015 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3016 stub_name, FALSE, FALSE);
3017 if (h != NULL)
3018 h->stub_cache = stub_entry;
3019
3020 free (stub_name);
3021 }
3022
3023 return stub_entry;
3024 }
3025
3026
3027 /* Create a stub section. */
3028
3029 static asection *
3030 _bfd_aarch64_create_stub_section (asection *section,
3031 struct elf_aarch64_link_hash_table *htab)
3032 {
3033 size_t namelen;
3034 bfd_size_type len;
3035 char *s_name;
3036
3037 namelen = strlen (section->name);
3038 len = namelen + sizeof (STUB_SUFFIX);
3039 s_name = bfd_alloc (htab->stub_bfd, len);
3040 if (s_name == NULL)
3041 return NULL;
3042
3043 memcpy (s_name, section->name, namelen);
3044 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3045 return (*htab->add_stub_section) (s_name, section);
3046 }
3047
3048
3049 /* Find or create a stub section for a link section.
3050
3051 Fix or create the stub section used to collect stubs attached to
3052 the specified link section. */
3053
3054 static asection *
3055 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3056 struct elf_aarch64_link_hash_table *htab)
3057 {
3058 if (htab->stub_group[link_section->id].stub_sec == NULL)
3059 htab->stub_group[link_section->id].stub_sec
3060 = _bfd_aarch64_create_stub_section (link_section, htab);
3061 return htab->stub_group[link_section->id].stub_sec;
3062 }
3063
3064
3065 /* Find or create a stub section in the stub group for an input
3066 section. */
3067
3068 static asection *
3069 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3070 struct elf_aarch64_link_hash_table *htab)
3071 {
3072 asection *link_sec = htab->stub_group[section->id].link_sec;
3073 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3074 }
3075
3076
3077 /* Add a new stub entry in the stub group associated with an input
3078 section to the stub hash. Not all fields of the new stub entry are
3079 initialised. */
3080
3081 static struct elf_aarch64_stub_hash_entry *
3082 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3083 asection *section,
3084 struct elf_aarch64_link_hash_table *htab)
3085 {
3086 asection *link_sec;
3087 asection *stub_sec;
3088 struct elf_aarch64_stub_hash_entry *stub_entry;
3089
3090 link_sec = htab->stub_group[section->id].link_sec;
3091 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3092
3093 /* Enter this entry into the linker stub hash table. */
3094 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3095 TRUE, FALSE);
3096 if (stub_entry == NULL)
3097 {
3098 /* xgettext:c-format */
3099 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3100 section->owner, stub_name);
3101 return NULL;
3102 }
3103
3104 stub_entry->stub_sec = stub_sec;
3105 stub_entry->stub_offset = 0;
3106 stub_entry->id_sec = link_sec;
3107
3108 return stub_entry;
3109 }
3110
3111 /* Add a new stub entry in the final stub section to the stub hash.
3112 Not all fields of the new stub entry are initialised. */
3113
3114 static struct elf_aarch64_stub_hash_entry *
3115 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3116 asection *link_section,
3117 struct elf_aarch64_link_hash_table *htab)
3118 {
3119 asection *stub_sec;
3120 struct elf_aarch64_stub_hash_entry *stub_entry;
3121
3122 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3123 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3124 TRUE, FALSE);
3125 if (stub_entry == NULL)
3126 {
3127 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3128 return NULL;
3129 }
3130
3131 stub_entry->stub_sec = stub_sec;
3132 stub_entry->stub_offset = 0;
3133 stub_entry->id_sec = link_section;
3134
3135 return stub_entry;
3136 }
3137
3138
3139 static bfd_boolean
3140 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3141 void *in_arg ATTRIBUTE_UNUSED)
3142 {
3143 struct elf_aarch64_stub_hash_entry *stub_entry;
3144 asection *stub_sec;
3145 bfd *stub_bfd;
3146 bfd_byte *loc;
3147 bfd_vma sym_value;
3148 bfd_vma veneered_insn_loc;
3149 bfd_vma veneer_entry_loc;
3150 bfd_signed_vma branch_offset = 0;
3151 unsigned int template_size;
3152 const uint32_t *template;
3153 unsigned int i;
3154
3155 /* Massage our args to the form they really have. */
3156 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3157
3158 stub_sec = stub_entry->stub_sec;
3159
3160 /* Make a note of the offset within the stubs for this entry. */
3161 stub_entry->stub_offset = stub_sec->size;
3162 loc = stub_sec->contents + stub_entry->stub_offset;
3163
3164 stub_bfd = stub_sec->owner;
3165
3166 /* This is the address of the stub destination. */
3167 sym_value = (stub_entry->target_value
3168 + stub_entry->target_section->output_offset
3169 + stub_entry->target_section->output_section->vma);
3170
3171 if (stub_entry->stub_type == aarch64_stub_long_branch)
3172 {
3173 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3174 + stub_sec->output_offset);
3175
3176 /* See if we can relax the stub. */
3177 if (aarch64_valid_for_adrp_p (sym_value, place))
3178 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3179 }
3180
3181 switch (stub_entry->stub_type)
3182 {
3183 case aarch64_stub_adrp_branch:
3184 template = aarch64_adrp_branch_stub;
3185 template_size = sizeof (aarch64_adrp_branch_stub);
3186 break;
3187 case aarch64_stub_long_branch:
3188 template = aarch64_long_branch_stub;
3189 template_size = sizeof (aarch64_long_branch_stub);
3190 break;
3191 case aarch64_stub_erratum_835769_veneer:
3192 template = aarch64_erratum_835769_stub;
3193 template_size = sizeof (aarch64_erratum_835769_stub);
3194 break;
3195 case aarch64_stub_erratum_843419_veneer:
3196 template = aarch64_erratum_843419_stub;
3197 template_size = sizeof (aarch64_erratum_843419_stub);
3198 break;
3199 default:
3200 abort ();
3201 }
3202
3203 for (i = 0; i < (template_size / sizeof template[0]); i++)
3204 {
3205 bfd_putl32 (template[i], loc);
3206 loc += 4;
3207 }
3208
3209 template_size = (template_size + 7) & ~7;
3210 stub_sec->size += template_size;
3211
3212 switch (stub_entry->stub_type)
3213 {
3214 case aarch64_stub_adrp_branch:
3215 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3216 stub_entry->stub_offset, sym_value))
3217 /* The stub would not have been relaxed if the offset was out
3218 of range. */
3219 BFD_FAIL ();
3220
3221 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3222 stub_entry->stub_offset + 4, sym_value))
3223 BFD_FAIL ();
3224 break;
3225
3226 case aarch64_stub_long_branch:
3227 /* We want the value relative to the address 12 bytes back from the
3228 value itself. */
3229 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3230 stub_entry->stub_offset + 16, sym_value + 12))
3231 BFD_FAIL ();
3232 break;
3233
3234 case aarch64_stub_erratum_835769_veneer:
3235 veneered_insn_loc = stub_entry->target_section->output_section->vma
3236 + stub_entry->target_section->output_offset
3237 + stub_entry->target_value;
3238 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3239 + stub_entry->stub_sec->output_offset
3240 + stub_entry->stub_offset;
3241 branch_offset = veneered_insn_loc - veneer_entry_loc;
3242 branch_offset >>= 2;
3243 branch_offset &= 0x3ffffff;
3244 bfd_putl32 (stub_entry->veneered_insn,
3245 stub_sec->contents + stub_entry->stub_offset);
3246 bfd_putl32 (template[1] | branch_offset,
3247 stub_sec->contents + stub_entry->stub_offset + 4);
3248 break;
3249
3250 case aarch64_stub_erratum_843419_veneer:
3251 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3252 stub_entry->stub_offset + 4, sym_value + 4))
3253 BFD_FAIL ();
3254 break;
3255
3256 default:
3257 abort ();
3258 }
3259
3260 return TRUE;
3261 }
3262
3263 /* As above, but don't actually build the stub. Just bump offset so
3264 we know stub section sizes. */
3265
3266 static bfd_boolean
3267 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3268 void *in_arg ATTRIBUTE_UNUSED)
3269 {
3270 struct elf_aarch64_stub_hash_entry *stub_entry;
3271 int size;
3272
3273 /* Massage our args to the form they really have. */
3274 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3275
3276 switch (stub_entry->stub_type)
3277 {
3278 case aarch64_stub_adrp_branch:
3279 size = sizeof (aarch64_adrp_branch_stub);
3280 break;
3281 case aarch64_stub_long_branch:
3282 size = sizeof (aarch64_long_branch_stub);
3283 break;
3284 case aarch64_stub_erratum_835769_veneer:
3285 size = sizeof (aarch64_erratum_835769_stub);
3286 break;
3287 case aarch64_stub_erratum_843419_veneer:
3288 size = sizeof (aarch64_erratum_843419_stub);
3289 break;
3290 default:
3291 abort ();
3292 }
3293
3294 size = (size + 7) & ~7;
3295 stub_entry->stub_sec->size += size;
3296 return TRUE;
3297 }
3298
3299 /* External entry points for sizing and building linker stubs. */
3300
3301 /* Set up various things so that we can make a list of input sections
3302 for each output section included in the link. Returns -1 on error,
3303 0 when no stubs will be needed, and 1 on success. */
3304
3305 int
3306 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3307 struct bfd_link_info *info)
3308 {
3309 bfd *input_bfd;
3310 unsigned int bfd_count;
3311 unsigned int top_id, top_index;
3312 asection *section;
3313 asection **input_list, **list;
3314 bfd_size_type amt;
3315 struct elf_aarch64_link_hash_table *htab =
3316 elf_aarch64_hash_table (info);
3317
3318 if (!is_elf_hash_table (htab))
3319 return 0;
3320
3321 /* Count the number of input BFDs and find the top input section id. */
3322 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3323 input_bfd != NULL; input_bfd = input_bfd->link.next)
3324 {
3325 bfd_count += 1;
3326 for (section = input_bfd->sections;
3327 section != NULL; section = section->next)
3328 {
3329 if (top_id < section->id)
3330 top_id = section->id;
3331 }
3332 }
3333 htab->bfd_count = bfd_count;
3334
3335 amt = sizeof (struct map_stub) * (top_id + 1);
3336 htab->stub_group = bfd_zmalloc (amt);
3337 if (htab->stub_group == NULL)
3338 return -1;
3339
3340 /* We can't use output_bfd->section_count here to find the top output
3341 section index as some sections may have been removed, and
3342 _bfd_strip_section_from_output doesn't renumber the indices. */
3343 for (section = output_bfd->sections, top_index = 0;
3344 section != NULL; section = section->next)
3345 {
3346 if (top_index < section->index)
3347 top_index = section->index;
3348 }
3349
3350 htab->top_index = top_index;
3351 amt = sizeof (asection *) * (top_index + 1);
3352 input_list = bfd_malloc (amt);
3353 htab->input_list = input_list;
3354 if (input_list == NULL)
3355 return -1;
3356
3357 /* For sections we aren't interested in, mark their entries with a
3358 value we can check later. */
3359 list = input_list + top_index;
3360 do
3361 *list = bfd_abs_section_ptr;
3362 while (list-- != input_list);
3363
3364 for (section = output_bfd->sections;
3365 section != NULL; section = section->next)
3366 {
3367 if ((section->flags & SEC_CODE) != 0)
3368 input_list[section->index] = NULL;
3369 }
3370
3371 return 1;
3372 }
3373
3374 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3375 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3376
3377 /* The linker repeatedly calls this function for each input section,
3378 in the order that input sections are linked into output sections.
3379 Build lists of input sections to determine groupings between which
3380 we may insert linker stubs. */
3381
3382 void
3383 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3384 {
3385 struct elf_aarch64_link_hash_table *htab =
3386 elf_aarch64_hash_table (info);
3387
3388 if (isec->output_section->index <= htab->top_index)
3389 {
3390 asection **list = htab->input_list + isec->output_section->index;
3391
3392 if (*list != bfd_abs_section_ptr)
3393 {
3394 /* Steal the link_sec pointer for our list. */
3395 /* This happens to make the list in reverse order,
3396 which is what we want. */
3397 PREV_SEC (isec) = *list;
3398 *list = isec;
3399 }
3400 }
3401 }
3402
3403 /* See whether we can group stub sections together. Grouping stub
3404 sections may result in fewer stubs. More importantly, we need to
3405 put all .init* and .fini* stubs at the beginning of the .init or
3406 .fini output sections respectively, because glibc splits the
3407 _init and _fini functions into multiple parts. Putting a stub in
3408 the middle of a function is not a good idea. */
3409
3410 static void
3411 group_sections (struct elf_aarch64_link_hash_table *htab,
3412 bfd_size_type stub_group_size,
3413 bfd_boolean stubs_always_before_branch)
3414 {
3415 asection **list = htab->input_list + htab->top_index;
3416
3417 do
3418 {
3419 asection *tail = *list;
3420
3421 if (tail == bfd_abs_section_ptr)
3422 continue;
3423
3424 while (tail != NULL)
3425 {
3426 asection *curr;
3427 asection *prev;
3428 bfd_size_type total;
3429
3430 curr = tail;
3431 total = tail->size;
3432 while ((prev = PREV_SEC (curr)) != NULL
3433 && ((total += curr->output_offset - prev->output_offset)
3434 < stub_group_size))
3435 curr = prev;
3436
3437 /* OK, the size from the start of CURR to the end is less
3438 than stub_group_size and thus can be handled by one stub
3439 section. (Or the tail section is itself larger than
3440 stub_group_size, in which case we may be toast.)
3441 We should really be keeping track of the total size of
3442 stubs added here, as stubs contribute to the final output
3443 section size. */
3444 do
3445 {
3446 prev = PREV_SEC (tail);
3447 /* Set up this stub group. */
3448 htab->stub_group[tail->id].link_sec = curr;
3449 }
3450 while (tail != curr && (tail = prev) != NULL);
3451
3452 /* But wait, there's more! Input sections up to stub_group_size
3453 bytes before the stub section can be handled by it too. */
3454 if (!stubs_always_before_branch)
3455 {
3456 total = 0;
3457 while (prev != NULL
3458 && ((total += tail->output_offset - prev->output_offset)
3459 < stub_group_size))
3460 {
3461 tail = prev;
3462 prev = PREV_SEC (tail);
3463 htab->stub_group[tail->id].link_sec = curr;
3464 }
3465 }
3466 tail = prev;
3467 }
3468 }
3469 while (list-- != htab->input_list);
3470
3471 free (htab->input_list);
3472 }
3473
3474 #undef PREV_SEC
3475
3476 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3477
3478 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3479 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3480 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3481 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3482 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3483 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3484
3485 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3486 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3487 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3488 #define AARCH64_ZR 0x1f
3489
3490 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3491 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3492
3493 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3494 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3495 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3496 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3497 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3498 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3499 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3500 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3501 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3502 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3503 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3504 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3505 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3506 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3507 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3508 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3509 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3510 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3511
3512 /* Classify an INSN if it is indeed a load/store.
3513
3514 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3515
3516 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3517 is set equal to RT.
3518
3519 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3520
3521 static bfd_boolean
3522 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3523 bfd_boolean *pair, bfd_boolean *load)
3524 {
3525 uint32_t opcode;
3526 unsigned int r;
3527 uint32_t opc = 0;
3528 uint32_t v = 0;
3529 uint32_t opc_v = 0;
3530
3531 /* Bail out quickly if INSN doesn't fall into the load-store
3532 encoding space. */
3533 if (!AARCH64_LDST (insn))
3534 return FALSE;
3535
3536 *pair = FALSE;
3537 *load = FALSE;
3538 if (AARCH64_LDST_EX (insn))
3539 {
3540 *rt = AARCH64_RT (insn);
3541 *rt2 = *rt;
3542 if (AARCH64_BIT (insn, 21) == 1)
3543 {
3544 *pair = TRUE;
3545 *rt2 = AARCH64_RT2 (insn);
3546 }
3547 *load = AARCH64_LD (insn);
3548 return TRUE;
3549 }
3550 else if (AARCH64_LDST_NAP (insn)
3551 || AARCH64_LDSTP_PI (insn)
3552 || AARCH64_LDSTP_O (insn)
3553 || AARCH64_LDSTP_PRE (insn))
3554 {
3555 *pair = TRUE;
3556 *rt = AARCH64_RT (insn);
3557 *rt2 = AARCH64_RT2 (insn);
3558 *load = AARCH64_LD (insn);
3559 return TRUE;
3560 }
3561 else if (AARCH64_LDST_PCREL (insn)
3562 || AARCH64_LDST_UI (insn)
3563 || AARCH64_LDST_PIIMM (insn)
3564 || AARCH64_LDST_U (insn)
3565 || AARCH64_LDST_PREIMM (insn)
3566 || AARCH64_LDST_RO (insn)
3567 || AARCH64_LDST_UIMM (insn))
3568 {
3569 *rt = AARCH64_RT (insn);
3570 *rt2 = *rt;
3571 if (AARCH64_LDST_PCREL (insn))
3572 *load = TRUE;
3573 opc = AARCH64_BITS (insn, 22, 2);
3574 v = AARCH64_BIT (insn, 26);
3575 opc_v = opc | (v << 2);
3576 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3577 || opc_v == 5 || opc_v == 7);
3578 return TRUE;
3579 }
3580 else if (AARCH64_LDST_SIMD_M (insn)
3581 || AARCH64_LDST_SIMD_M_PI (insn))
3582 {
3583 *rt = AARCH64_RT (insn);
3584 *load = AARCH64_BIT (insn, 22);
3585 opcode = (insn >> 12) & 0xf;
3586 switch (opcode)
3587 {
3588 case 0:
3589 case 2:
3590 *rt2 = *rt + 3;
3591 break;
3592
3593 case 4:
3594 case 6:
3595 *rt2 = *rt + 2;
3596 break;
3597
3598 case 7:
3599 *rt2 = *rt;
3600 break;
3601
3602 case 8:
3603 case 10:
3604 *rt2 = *rt + 1;
3605 break;
3606
3607 default:
3608 return FALSE;
3609 }
3610 return TRUE;
3611 }
3612 else if (AARCH64_LDST_SIMD_S (insn)
3613 || AARCH64_LDST_SIMD_S_PI (insn))
3614 {
3615 *rt = AARCH64_RT (insn);
3616 r = (insn >> 21) & 1;
3617 *load = AARCH64_BIT (insn, 22);
3618 opcode = (insn >> 13) & 0x7;
3619 switch (opcode)
3620 {
3621 case 0:
3622 case 2:
3623 case 4:
3624 *rt2 = *rt + r;
3625 break;
3626
3627 case 1:
3628 case 3:
3629 case 5:
3630 *rt2 = *rt + (r == 0 ? 2 : 3);
3631 break;
3632
3633 case 6:
3634 *rt2 = *rt + r;
3635 break;
3636
3637 case 7:
3638 *rt2 = *rt + (r == 0 ? 2 : 3);
3639 break;
3640
3641 default:
3642 return FALSE;
3643 }
3644 return TRUE;
3645 }
3646
3647 return FALSE;
3648 }
3649
3650 /* Return TRUE if INSN is multiply-accumulate. */
3651
3652 static bfd_boolean
3653 aarch64_mlxl_p (uint32_t insn)
3654 {
3655 uint32_t op31 = AARCH64_OP31 (insn);
3656
3657 if (AARCH64_MAC (insn)
3658 && (op31 == 0 || op31 == 1 || op31 == 5)
3659 /* Exclude MUL instructions which are encoded as a multiple accumulate
3660 with RA = XZR. */
3661 && AARCH64_RA (insn) != AARCH64_ZR)
3662 return TRUE;
3663
3664 return FALSE;
3665 }
3666
3667 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3668 it is possible for a 64-bit multiply-accumulate instruction to generate an
3669 incorrect result. The details are quite complex and hard to
3670 determine statically, since branches in the code may exist in some
3671 circumstances, but all cases end with a memory (load, store, or
3672 prefetch) instruction followed immediately by the multiply-accumulate
3673 operation. We employ a linker patching technique, by moving the potentially
3674 affected multiply-accumulate instruction into a patch region and replacing
3675 the original instruction with a branch to the patch. This function checks
3676 if INSN_1 is the memory operation followed by a multiply-accumulate
3677 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3678 if INSN_1 and INSN_2 are safe. */
3679
3680 static bfd_boolean
3681 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3682 {
3683 uint32_t rt;
3684 uint32_t rt2;
3685 uint32_t rn;
3686 uint32_t rm;
3687 uint32_t ra;
3688 bfd_boolean pair;
3689 bfd_boolean load;
3690
3691 if (aarch64_mlxl_p (insn_2)
3692 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3693 {
3694 /* Any SIMD memory op is independent of the subsequent MLA
3695 by definition of the erratum. */
3696 if (AARCH64_BIT (insn_1, 26))
3697 return TRUE;
3698
3699 /* If not SIMD, check for integer memory ops and MLA relationship. */
3700 rn = AARCH64_RN (insn_2);
3701 ra = AARCH64_RA (insn_2);
3702 rm = AARCH64_RM (insn_2);
3703
3704 /* If this is a load and there's a true(RAW) dependency, we are safe
3705 and this is not an erratum sequence. */
3706 if (load &&
3707 (rt == rn || rt == rm || rt == ra
3708 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3709 return FALSE;
3710
3711 /* We conservatively put out stubs for all other cases (including
3712 writebacks). */
3713 return TRUE;
3714 }
3715
3716 return FALSE;
3717 }
3718
3719 /* Used to order a list of mapping symbols by address. */
3720
3721 static int
3722 elf_aarch64_compare_mapping (const void *a, const void *b)
3723 {
3724 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3725 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3726
3727 if (amap->vma > bmap->vma)
3728 return 1;
3729 else if (amap->vma < bmap->vma)
3730 return -1;
3731 else if (amap->type > bmap->type)
3732 /* Ensure results do not depend on the host qsort for objects with
3733 multiple mapping symbols at the same address by sorting on type
3734 after vma. */
3735 return 1;
3736 else if (amap->type < bmap->type)
3737 return -1;
3738 else
3739 return 0;
3740 }
3741
3742
3743 static char *
3744 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3745 {
3746 char *stub_name = (char *) bfd_malloc
3747 (strlen ("__erratum_835769_veneer_") + 16);
3748 if (stub_name != NULL)
3749 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3750 return stub_name;
3751 }
3752
3753 /* Scan for Cortex-A53 erratum 835769 sequence.
3754
3755 Return TRUE else FALSE on abnormal termination. */
3756
3757 static bfd_boolean
3758 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3759 struct bfd_link_info *info,
3760 unsigned int *num_fixes_p)
3761 {
3762 asection *section;
3763 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3764 unsigned int num_fixes = *num_fixes_p;
3765
3766 if (htab == NULL)
3767 return TRUE;
3768
3769 for (section = input_bfd->sections;
3770 section != NULL;
3771 section = section->next)
3772 {
3773 bfd_byte *contents = NULL;
3774 struct _aarch64_elf_section_data *sec_data;
3775 unsigned int span;
3776
3777 if (elf_section_type (section) != SHT_PROGBITS
3778 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3779 || (section->flags & SEC_EXCLUDE) != 0
3780 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3781 || (section->output_section == bfd_abs_section_ptr))
3782 continue;
3783
3784 if (elf_section_data (section)->this_hdr.contents != NULL)
3785 contents = elf_section_data (section)->this_hdr.contents;
3786 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3787 return FALSE;
3788
3789 sec_data = elf_aarch64_section_data (section);
3790
3791 qsort (sec_data->map, sec_data->mapcount,
3792 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3793
3794 for (span = 0; span < sec_data->mapcount; span++)
3795 {
3796 unsigned int span_start = sec_data->map[span].vma;
3797 unsigned int span_end = ((span == sec_data->mapcount - 1)
3798 ? sec_data->map[0].vma + section->size
3799 : sec_data->map[span + 1].vma);
3800 unsigned int i;
3801 char span_type = sec_data->map[span].type;
3802
3803 if (span_type == 'd')
3804 continue;
3805
3806 for (i = span_start; i + 4 < span_end; i += 4)
3807 {
3808 uint32_t insn_1 = bfd_getl32 (contents + i);
3809 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3810
3811 if (aarch64_erratum_sequence (insn_1, insn_2))
3812 {
3813 struct elf_aarch64_stub_hash_entry *stub_entry;
3814 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3815 if (! stub_name)
3816 return FALSE;
3817
3818 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3819 section,
3820 htab);
3821 if (! stub_entry)
3822 return FALSE;
3823
3824 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3825 stub_entry->target_section = section;
3826 stub_entry->target_value = i + 4;
3827 stub_entry->veneered_insn = insn_2;
3828 stub_entry->output_name = stub_name;
3829 num_fixes++;
3830 }
3831 }
3832 }
3833 if (elf_section_data (section)->this_hdr.contents == NULL)
3834 free (contents);
3835 }
3836
3837 *num_fixes_p = num_fixes;
3838
3839 return TRUE;
3840 }
3841
3842
3843 /* Test if instruction INSN is ADRP. */
3844
3845 static bfd_boolean
3846 _bfd_aarch64_adrp_p (uint32_t insn)
3847 {
3848 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3849 }
3850
3851
3852 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3853
3854 static bfd_boolean
3855 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3856 uint32_t insn_3)
3857 {
3858 uint32_t rt;
3859 uint32_t rt2;
3860 bfd_boolean pair;
3861 bfd_boolean load;
3862
3863 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3864 && (!pair
3865 || (pair && !load))
3866 && AARCH64_LDST_UIMM (insn_3)
3867 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3868 }
3869
3870
3871 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3872
3873 Return TRUE if section CONTENTS at offset I contains one of the
3874 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3875 seen set P_VENEER_I to the offset of the final LOAD/STORE
3876 instruction in the sequence.
3877 */
3878
3879 static bfd_boolean
3880 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3881 bfd_vma i, bfd_vma span_end,
3882 bfd_vma *p_veneer_i)
3883 {
3884 uint32_t insn_1 = bfd_getl32 (contents + i);
3885
3886 if (!_bfd_aarch64_adrp_p (insn_1))
3887 return FALSE;
3888
3889 if (span_end < i + 12)
3890 return FALSE;
3891
3892 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3893 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3894
3895 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3896 return FALSE;
3897
3898 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3899 {
3900 *p_veneer_i = i + 8;
3901 return TRUE;
3902 }
3903
3904 if (span_end < i + 16)
3905 return FALSE;
3906
3907 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3908
3909 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3910 {
3911 *p_veneer_i = i + 12;
3912 return TRUE;
3913 }
3914
3915 return FALSE;
3916 }
3917
3918
3919 /* Resize all stub sections. */
3920
3921 static void
3922 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3923 {
3924 asection *section;
3925
3926 /* OK, we've added some stubs. Find out the new size of the
3927 stub sections. */
3928 for (section = htab->stub_bfd->sections;
3929 section != NULL; section = section->next)
3930 {
3931 /* Ignore non-stub sections. */
3932 if (!strstr (section->name, STUB_SUFFIX))
3933 continue;
3934 section->size = 0;
3935 }
3936
3937 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3938
3939 for (section = htab->stub_bfd->sections;
3940 section != NULL; section = section->next)
3941 {
3942 if (!strstr (section->name, STUB_SUFFIX))
3943 continue;
3944
3945 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
3946 as long branch stubs contain a 64-bit address. */
3947 if (section->size)
3948 section->size += 8;
3949
3950 /* Ensure all stub sections have a size which is a multiple of
3951 4096. This is important in order to ensure that the insertion
3952 of stub sections does not in itself move existing code around
3953 in such a way that new errata sequences are created. */
3954 if (htab->fix_erratum_843419)
3955 if (section->size)
3956 section->size = BFD_ALIGN (section->size, 0x1000);
3957 }
3958 }
3959
3960 /* Construct an erratum 843419 workaround stub name. */
3961
3962 static char *
3963 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3964 bfd_vma offset)
3965 {
3966 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3967 char *stub_name = bfd_malloc (len);
3968
3969 if (stub_name != NULL)
3970 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3971 input_section->owner->id,
3972 input_section->id,
3973 offset);
3974 return stub_name;
3975 }
3976
3977 /* Build a stub_entry structure describing an 843419 fixup.
3978
3979 The stub_entry constructed is populated with the bit pattern INSN
3980 of the instruction located at OFFSET within input SECTION.
3981
3982 Returns TRUE on success. */
3983
3984 static bfd_boolean
3985 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3986 bfd_vma adrp_offset,
3987 bfd_vma ldst_offset,
3988 asection *section,
3989 struct bfd_link_info *info)
3990 {
3991 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3992 char *stub_name;
3993 struct elf_aarch64_stub_hash_entry *stub_entry;
3994
3995 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3996 if (stub_name == NULL)
3997 return FALSE;
3998 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3999 FALSE, FALSE);
4000 if (stub_entry)
4001 {
4002 free (stub_name);
4003 return TRUE;
4004 }
4005
4006 /* We always place an 843419 workaround veneer in the stub section
4007 attached to the input section in which an erratum sequence has
4008 been found. This ensures that later in the link process (in
4009 elfNN_aarch64_write_section) when we copy the veneered
4010 instruction from the input section into the stub section the
4011 copied instruction will have had any relocations applied to it.
4012 If we placed workaround veneers in any other stub section then we
4013 could not assume that all relocations have been processed on the
4014 corresponding input section at the point we output the stub
4015 section. */
4016
4017 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4018 if (stub_entry == NULL)
4019 {
4020 free (stub_name);
4021 return FALSE;
4022 }
4023
4024 stub_entry->adrp_offset = adrp_offset;
4025 stub_entry->target_value = ldst_offset;
4026 stub_entry->target_section = section;
4027 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4028 stub_entry->veneered_insn = insn;
4029 stub_entry->output_name = stub_name;
4030
4031 return TRUE;
4032 }
4033
4034
4035 /* Scan an input section looking for the signature of erratum 843419.
4036
4037 Scans input SECTION in INPUT_BFD looking for erratum 843419
4038 signatures, for each signature found a stub_entry is created
4039 describing the location of the erratum for subsequent fixup.
4040
4041 Return TRUE on successful scan, FALSE on failure to scan.
4042 */
4043
4044 static bfd_boolean
4045 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4046 struct bfd_link_info *info)
4047 {
4048 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4049
4050 if (htab == NULL)
4051 return TRUE;
4052
4053 if (elf_section_type (section) != SHT_PROGBITS
4054 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4055 || (section->flags & SEC_EXCLUDE) != 0
4056 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4057 || (section->output_section == bfd_abs_section_ptr))
4058 return TRUE;
4059
4060 do
4061 {
4062 bfd_byte *contents = NULL;
4063 struct _aarch64_elf_section_data *sec_data;
4064 unsigned int span;
4065
4066 if (elf_section_data (section)->this_hdr.contents != NULL)
4067 contents = elf_section_data (section)->this_hdr.contents;
4068 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4069 return FALSE;
4070
4071 sec_data = elf_aarch64_section_data (section);
4072
4073 qsort (sec_data->map, sec_data->mapcount,
4074 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4075
4076 for (span = 0; span < sec_data->mapcount; span++)
4077 {
4078 unsigned int span_start = sec_data->map[span].vma;
4079 unsigned int span_end = ((span == sec_data->mapcount - 1)
4080 ? sec_data->map[0].vma + section->size
4081 : sec_data->map[span + 1].vma);
4082 unsigned int i;
4083 char span_type = sec_data->map[span].type;
4084
4085 if (span_type == 'd')
4086 continue;
4087
4088 for (i = span_start; i + 8 < span_end; i += 4)
4089 {
4090 bfd_vma vma = (section->output_section->vma
4091 + section->output_offset
4092 + i);
4093 bfd_vma veneer_i;
4094
4095 if (_bfd_aarch64_erratum_843419_p
4096 (contents, vma, i, span_end, &veneer_i))
4097 {
4098 uint32_t insn = bfd_getl32 (contents + veneer_i);
4099
4100 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4101 section, info))
4102 return FALSE;
4103 }
4104 }
4105 }
4106
4107 if (elf_section_data (section)->this_hdr.contents == NULL)
4108 free (contents);
4109 }
4110 while (0);
4111
4112 return TRUE;
4113 }
4114
4115
4116 /* Determine and set the size of the stub section for a final link.
4117
4118 The basic idea here is to examine all the relocations looking for
4119 PC-relative calls to a target that is unreachable with a "bl"
4120 instruction. */
4121
4122 bfd_boolean
4123 elfNN_aarch64_size_stubs (bfd *output_bfd,
4124 bfd *stub_bfd,
4125 struct bfd_link_info *info,
4126 bfd_signed_vma group_size,
4127 asection * (*add_stub_section) (const char *,
4128 asection *),
4129 void (*layout_sections_again) (void))
4130 {
4131 bfd_size_type stub_group_size;
4132 bfd_boolean stubs_always_before_branch;
4133 bfd_boolean stub_changed = FALSE;
4134 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4135 unsigned int num_erratum_835769_fixes = 0;
4136
4137 /* Propagate mach to stub bfd, because it may not have been
4138 finalized when we created stub_bfd. */
4139 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4140 bfd_get_mach (output_bfd));
4141
4142 /* Stash our params away. */
4143 htab->stub_bfd = stub_bfd;
4144 htab->add_stub_section = add_stub_section;
4145 htab->layout_sections_again = layout_sections_again;
4146 stubs_always_before_branch = group_size < 0;
4147 if (group_size < 0)
4148 stub_group_size = -group_size;
4149 else
4150 stub_group_size = group_size;
4151
4152 if (stub_group_size == 1)
4153 {
4154 /* Default values. */
4155 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4156 stub_group_size = 127 * 1024 * 1024;
4157 }
4158
4159 group_sections (htab, stub_group_size, stubs_always_before_branch);
4160
4161 (*htab->layout_sections_again) ();
4162
4163 if (htab->fix_erratum_835769)
4164 {
4165 bfd *input_bfd;
4166
4167 for (input_bfd = info->input_bfds;
4168 input_bfd != NULL; input_bfd = input_bfd->link.next)
4169 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4170 &num_erratum_835769_fixes))
4171 return FALSE;
4172
4173 _bfd_aarch64_resize_stubs (htab);
4174 (*htab->layout_sections_again) ();
4175 }
4176
4177 if (htab->fix_erratum_843419)
4178 {
4179 bfd *input_bfd;
4180
4181 for (input_bfd = info->input_bfds;
4182 input_bfd != NULL;
4183 input_bfd = input_bfd->link.next)
4184 {
4185 asection *section;
4186
4187 for (section = input_bfd->sections;
4188 section != NULL;
4189 section = section->next)
4190 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4191 return FALSE;
4192 }
4193
4194 _bfd_aarch64_resize_stubs (htab);
4195 (*htab->layout_sections_again) ();
4196 }
4197
4198 while (1)
4199 {
4200 bfd *input_bfd;
4201
4202 for (input_bfd = info->input_bfds;
4203 input_bfd != NULL; input_bfd = input_bfd->link.next)
4204 {
4205 Elf_Internal_Shdr *symtab_hdr;
4206 asection *section;
4207 Elf_Internal_Sym *local_syms = NULL;
4208
4209 /* We'll need the symbol table in a second. */
4210 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4211 if (symtab_hdr->sh_info == 0)
4212 continue;
4213
4214 /* Walk over each section attached to the input bfd. */
4215 for (section = input_bfd->sections;
4216 section != NULL; section = section->next)
4217 {
4218 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4219
4220 /* If there aren't any relocs, then there's nothing more
4221 to do. */
4222 if ((section->flags & SEC_RELOC) == 0
4223 || section->reloc_count == 0
4224 || (section->flags & SEC_CODE) == 0)
4225 continue;
4226
4227 /* If this section is a link-once section that will be
4228 discarded, then don't create any stubs. */
4229 if (section->output_section == NULL
4230 || section->output_section->owner != output_bfd)
4231 continue;
4232
4233 /* Get the relocs. */
4234 internal_relocs
4235 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4236 NULL, info->keep_memory);
4237 if (internal_relocs == NULL)
4238 goto error_ret_free_local;
4239
4240 /* Now examine each relocation. */
4241 irela = internal_relocs;
4242 irelaend = irela + section->reloc_count;
4243 for (; irela < irelaend; irela++)
4244 {
4245 unsigned int r_type, r_indx;
4246 enum elf_aarch64_stub_type stub_type;
4247 struct elf_aarch64_stub_hash_entry *stub_entry;
4248 asection *sym_sec;
4249 bfd_vma sym_value;
4250 bfd_vma destination;
4251 struct elf_aarch64_link_hash_entry *hash;
4252 const char *sym_name;
4253 char *stub_name;
4254 const asection *id_sec;
4255 unsigned char st_type;
4256 bfd_size_type len;
4257
4258 r_type = ELFNN_R_TYPE (irela->r_info);
4259 r_indx = ELFNN_R_SYM (irela->r_info);
4260
4261 if (r_type >= (unsigned int) R_AARCH64_end)
4262 {
4263 bfd_set_error (bfd_error_bad_value);
4264 error_ret_free_internal:
4265 if (elf_section_data (section)->relocs == NULL)
4266 free (internal_relocs);
4267 goto error_ret_free_local;
4268 }
4269
4270 /* Only look for stubs on unconditional branch and
4271 branch and link instructions. */
4272 if (r_type != (unsigned int) AARCH64_R (CALL26)
4273 && r_type != (unsigned int) AARCH64_R (JUMP26))
4274 continue;
4275
4276 /* Now determine the call target, its name, value,
4277 section. */
4278 sym_sec = NULL;
4279 sym_value = 0;
4280 destination = 0;
4281 hash = NULL;
4282 sym_name = NULL;
4283 if (r_indx < symtab_hdr->sh_info)
4284 {
4285 /* It's a local symbol. */
4286 Elf_Internal_Sym *sym;
4287 Elf_Internal_Shdr *hdr;
4288
4289 if (local_syms == NULL)
4290 {
4291 local_syms
4292 = (Elf_Internal_Sym *) symtab_hdr->contents;
4293 if (local_syms == NULL)
4294 local_syms
4295 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4296 symtab_hdr->sh_info, 0,
4297 NULL, NULL, NULL);
4298 if (local_syms == NULL)
4299 goto error_ret_free_internal;
4300 }
4301
4302 sym = local_syms + r_indx;
4303 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4304 sym_sec = hdr->bfd_section;
4305 if (!sym_sec)
4306 /* This is an undefined symbol. It can never
4307 be resolved. */
4308 continue;
4309
4310 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4311 sym_value = sym->st_value;
4312 destination = (sym_value + irela->r_addend
4313 + sym_sec->output_offset
4314 + sym_sec->output_section->vma);
4315 st_type = ELF_ST_TYPE (sym->st_info);
4316 sym_name
4317 = bfd_elf_string_from_elf_section (input_bfd,
4318 symtab_hdr->sh_link,
4319 sym->st_name);
4320 }
4321 else
4322 {
4323 int e_indx;
4324
4325 e_indx = r_indx - symtab_hdr->sh_info;
4326 hash = ((struct elf_aarch64_link_hash_entry *)
4327 elf_sym_hashes (input_bfd)[e_indx]);
4328
4329 while (hash->root.root.type == bfd_link_hash_indirect
4330 || hash->root.root.type == bfd_link_hash_warning)
4331 hash = ((struct elf_aarch64_link_hash_entry *)
4332 hash->root.root.u.i.link);
4333
4334 if (hash->root.root.type == bfd_link_hash_defined
4335 || hash->root.root.type == bfd_link_hash_defweak)
4336 {
4337 struct elf_aarch64_link_hash_table *globals =
4338 elf_aarch64_hash_table (info);
4339 sym_sec = hash->root.root.u.def.section;
4340 sym_value = hash->root.root.u.def.value;
4341 /* For a destination in a shared library,
4342 use the PLT stub as target address to
4343 decide whether a branch stub is
4344 needed. */
4345 if (globals->root.splt != NULL && hash != NULL
4346 && hash->root.plt.offset != (bfd_vma) - 1)
4347 {
4348 sym_sec = globals->root.splt;
4349 sym_value = hash->root.plt.offset;
4350 if (sym_sec->output_section != NULL)
4351 destination = (sym_value
4352 + sym_sec->output_offset
4353 +
4354 sym_sec->output_section->vma);
4355 }
4356 else if (sym_sec->output_section != NULL)
4357 destination = (sym_value + irela->r_addend
4358 + sym_sec->output_offset
4359 + sym_sec->output_section->vma);
4360 }
4361 else if (hash->root.root.type == bfd_link_hash_undefined
4362 || (hash->root.root.type
4363 == bfd_link_hash_undefweak))
4364 {
4365 /* For a shared library, use the PLT stub as
4366 target address to decide whether a long
4367 branch stub is needed.
4368 For absolute code, they cannot be handled. */
4369 struct elf_aarch64_link_hash_table *globals =
4370 elf_aarch64_hash_table (info);
4371
4372 if (globals->root.splt != NULL && hash != NULL
4373 && hash->root.plt.offset != (bfd_vma) - 1)
4374 {
4375 sym_sec = globals->root.splt;
4376 sym_value = hash->root.plt.offset;
4377 if (sym_sec->output_section != NULL)
4378 destination = (sym_value
4379 + sym_sec->output_offset
4380 +
4381 sym_sec->output_section->vma);
4382 }
4383 else
4384 continue;
4385 }
4386 else
4387 {
4388 bfd_set_error (bfd_error_bad_value);
4389 goto error_ret_free_internal;
4390 }
4391 st_type = ELF_ST_TYPE (hash->root.type);
4392 sym_name = hash->root.root.root.string;
4393 }
4394
4395 /* Determine what (if any) linker stub is needed. */
4396 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4397 st_type, destination);
4398 if (stub_type == aarch64_stub_none)
4399 continue;
4400
4401 /* Support for grouping stub sections. */
4402 id_sec = htab->stub_group[section->id].link_sec;
4403
4404 /* Get the name of this stub. */
4405 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4406 irela);
4407 if (!stub_name)
4408 goto error_ret_free_internal;
4409
4410 stub_entry =
4411 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4412 stub_name, FALSE, FALSE);
4413 if (stub_entry != NULL)
4414 {
4415 /* The proper stub has already been created. */
4416 free (stub_name);
4417 /* Always update this stub's target since it may have
4418 changed after layout. */
4419 stub_entry->target_value = sym_value + irela->r_addend;
4420 continue;
4421 }
4422
4423 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4424 (stub_name, section, htab);
4425 if (stub_entry == NULL)
4426 {
4427 free (stub_name);
4428 goto error_ret_free_internal;
4429 }
4430
4431 stub_entry->target_value = sym_value + irela->r_addend;
4432 stub_entry->target_section = sym_sec;
4433 stub_entry->stub_type = stub_type;
4434 stub_entry->h = hash;
4435 stub_entry->st_type = st_type;
4436
4437 if (sym_name == NULL)
4438 sym_name = "unnamed";
4439 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4440 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4441 if (stub_entry->output_name == NULL)
4442 {
4443 free (stub_name);
4444 goto error_ret_free_internal;
4445 }
4446
4447 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4448 sym_name);
4449
4450 stub_changed = TRUE;
4451 }
4452
4453 /* We're done with the internal relocs, free them. */
4454 if (elf_section_data (section)->relocs == NULL)
4455 free (internal_relocs);
4456 }
4457 }
4458
4459 if (!stub_changed)
4460 break;
4461
4462 _bfd_aarch64_resize_stubs (htab);
4463
4464 /* Ask the linker to do its stuff. */
4465 (*htab->layout_sections_again) ();
4466 stub_changed = FALSE;
4467 }
4468
4469 return TRUE;
4470
4471 error_ret_free_local:
4472 return FALSE;
4473 }
4474
4475 /* Build all the stubs associated with the current output file. The
4476 stubs are kept in a hash table attached to the main linker hash
4477 table. We also set up the .plt entries for statically linked PIC
4478 functions here. This function is called via aarch64_elf_finish in the
4479 linker. */
4480
4481 bfd_boolean
4482 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4483 {
4484 asection *stub_sec;
4485 struct bfd_hash_table *table;
4486 struct elf_aarch64_link_hash_table *htab;
4487
4488 htab = elf_aarch64_hash_table (info);
4489
4490 for (stub_sec = htab->stub_bfd->sections;
4491 stub_sec != NULL; stub_sec = stub_sec->next)
4492 {
4493 bfd_size_type size;
4494
4495 /* Ignore non-stub sections. */
4496 if (!strstr (stub_sec->name, STUB_SUFFIX))
4497 continue;
4498
4499 /* Allocate memory to hold the linker stubs. */
4500 size = stub_sec->size;
4501 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4502 if (stub_sec->contents == NULL && size != 0)
4503 return FALSE;
4504 stub_sec->size = 0;
4505
4506 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4507 aligned, as long branch stubs contain a 64-bit address. */
4508 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4509 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4510 stub_sec->size += 8;
4511 }
4512
4513 /* Build the stubs as directed by the stub hash table. */
4514 table = &htab->stub_hash_table;
4515 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4516
4517 return TRUE;
4518 }
4519
4520
4521 /* Add an entry to the code/data map for section SEC. */
4522
4523 static void
4524 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4525 {
4526 struct _aarch64_elf_section_data *sec_data =
4527 elf_aarch64_section_data (sec);
4528 unsigned int newidx;
4529
4530 if (sec_data->map == NULL)
4531 {
4532 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4533 sec_data->mapcount = 0;
4534 sec_data->mapsize = 1;
4535 }
4536
4537 newidx = sec_data->mapcount++;
4538
4539 if (sec_data->mapcount > sec_data->mapsize)
4540 {
4541 sec_data->mapsize *= 2;
4542 sec_data->map = bfd_realloc_or_free
4543 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4544 }
4545
4546 if (sec_data->map)
4547 {
4548 sec_data->map[newidx].vma = vma;
4549 sec_data->map[newidx].type = type;
4550 }
4551 }
4552
4553
4554 /* Initialise maps of insn/data for input BFDs. */
4555 void
4556 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4557 {
4558 Elf_Internal_Sym *isymbuf;
4559 Elf_Internal_Shdr *hdr;
4560 unsigned int i, localsyms;
4561
4562 /* Make sure that we are dealing with an AArch64 elf binary. */
4563 if (!is_aarch64_elf (abfd))
4564 return;
4565
4566 if ((abfd->flags & DYNAMIC) != 0)
4567 return;
4568
4569 hdr = &elf_symtab_hdr (abfd);
4570 localsyms = hdr->sh_info;
4571
4572 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4573 should contain the number of local symbols, which should come before any
4574 global symbols. Mapping symbols are always local. */
4575 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4576
4577 /* No internal symbols read? Skip this BFD. */
4578 if (isymbuf == NULL)
4579 return;
4580
4581 for (i = 0; i < localsyms; i++)
4582 {
4583 Elf_Internal_Sym *isym = &isymbuf[i];
4584 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4585 const char *name;
4586
4587 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4588 {
4589 name = bfd_elf_string_from_elf_section (abfd,
4590 hdr->sh_link,
4591 isym->st_name);
4592
4593 if (bfd_is_aarch64_special_symbol_name
4594 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4595 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4596 }
4597 }
4598 }
4599
4600 /* Set option values needed during linking. */
4601 void
4602 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4603 struct bfd_link_info *link_info,
4604 int no_enum_warn,
4605 int no_wchar_warn, int pic_veneer,
4606 int fix_erratum_835769,
4607 int fix_erratum_843419,
4608 int no_apply_dynamic_relocs)
4609 {
4610 struct elf_aarch64_link_hash_table *globals;
4611
4612 globals = elf_aarch64_hash_table (link_info);
4613 globals->pic_veneer = pic_veneer;
4614 globals->fix_erratum_835769 = fix_erratum_835769;
4615 globals->fix_erratum_843419 = fix_erratum_843419;
4616 globals->fix_erratum_843419_adr = TRUE;
4617 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4618
4619 BFD_ASSERT (is_aarch64_elf (output_bfd));
4620 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4621 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4622 }
4623
4624 static bfd_vma
4625 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4626 struct elf_aarch64_link_hash_table
4627 *globals, struct bfd_link_info *info,
4628 bfd_vma value, bfd *output_bfd,
4629 bfd_boolean *unresolved_reloc_p)
4630 {
4631 bfd_vma off = (bfd_vma) - 1;
4632 asection *basegot = globals->root.sgot;
4633 bfd_boolean dyn = globals->root.dynamic_sections_created;
4634
4635 if (h != NULL)
4636 {
4637 BFD_ASSERT (basegot != NULL);
4638 off = h->got.offset;
4639 BFD_ASSERT (off != (bfd_vma) - 1);
4640 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4641 || (bfd_link_pic (info)
4642 && SYMBOL_REFERENCES_LOCAL (info, h))
4643 || (ELF_ST_VISIBILITY (h->other)
4644 && h->root.type == bfd_link_hash_undefweak))
4645 {
4646 /* This is actually a static link, or it is a -Bsymbolic link
4647 and the symbol is defined locally. We must initialize this
4648 entry in the global offset table. Since the offset must
4649 always be a multiple of 8 (4 in the case of ILP32), we use
4650 the least significant bit to record whether we have
4651 initialized it already.
4652 When doing a dynamic link, we create a .rel(a).got relocation
4653 entry to initialize the value. This is done in the
4654 finish_dynamic_symbol routine. */
4655 if ((off & 1) != 0)
4656 off &= ~1;
4657 else
4658 {
4659 bfd_put_NN (output_bfd, value, basegot->contents + off);
4660 h->got.offset |= 1;
4661 }
4662 }
4663 else
4664 *unresolved_reloc_p = FALSE;
4665
4666 off = off + basegot->output_section->vma + basegot->output_offset;
4667 }
4668
4669 return off;
4670 }
4671
4672 /* Change R_TYPE to a more efficient access model where possible,
4673 return the new reloc type. */
4674
4675 static bfd_reloc_code_real_type
4676 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4677 struct elf_link_hash_entry *h)
4678 {
4679 bfd_boolean is_local = h == NULL;
4680
4681 switch (r_type)
4682 {
4683 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4684 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4685 return (is_local
4686 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4687 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4688
4689 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4690 return (is_local
4691 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4692 : r_type);
4693
4694 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4695 return (is_local
4696 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4697 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4698
4699 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4700 return (is_local
4701 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4702 : BFD_RELOC_AARCH64_NONE);
4703
4704 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4705 return (is_local
4706 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4707 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4708
4709 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4710 return (is_local
4711 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4712 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4713
4714 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4715 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4716 return (is_local
4717 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4718 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4719
4720 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4721 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4722
4723 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4724 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4725
4726 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4727 return r_type;
4728
4729 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4730 return (is_local
4731 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4732 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4733
4734 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4735 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4736 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4737 /* Instructions with these relocations will become NOPs. */
4738 return BFD_RELOC_AARCH64_NONE;
4739
4740 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4741 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4742 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4743 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4744
4745 #if ARCH_SIZE == 64
4746 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4747 return is_local
4748 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4749 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4750
4751 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4752 return is_local
4753 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4754 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4755 #endif
4756
4757 default:
4758 break;
4759 }
4760
4761 return r_type;
4762 }
4763
4764 static unsigned int
4765 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4766 {
4767 switch (r_type)
4768 {
4769 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4770 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4771 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4772 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4773 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4774 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4775 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4776 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4777 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4778 return GOT_NORMAL;
4779
4780 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4781 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4782 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4783 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4784 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4785 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4786 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4787 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4788 return GOT_TLS_GD;
4789
4790 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4791 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4792 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4793 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4794 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4795 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4796 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4797 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4798 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4799 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4800 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4801 return GOT_TLSDESC_GD;
4802
4803 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4804 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4805 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4806 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4807 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4808 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4809 return GOT_TLS_IE;
4810
4811 default:
4812 break;
4813 }
4814 return GOT_UNKNOWN;
4815 }
4816
4817 static bfd_boolean
4818 aarch64_can_relax_tls (bfd *input_bfd,
4819 struct bfd_link_info *info,
4820 bfd_reloc_code_real_type r_type,
4821 struct elf_link_hash_entry *h,
4822 unsigned long r_symndx)
4823 {
4824 unsigned int symbol_got_type;
4825 unsigned int reloc_got_type;
4826
4827 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4828 return FALSE;
4829
4830 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4831 reloc_got_type = aarch64_reloc_got_type (r_type);
4832
4833 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4834 return TRUE;
4835
4836 if (!bfd_link_executable (info))
4837 return FALSE;
4838
4839 if (h && h->root.type == bfd_link_hash_undefweak)
4840 return FALSE;
4841
4842 return TRUE;
4843 }
4844
4845 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4846 enumerator. */
4847
4848 static bfd_reloc_code_real_type
4849 aarch64_tls_transition (bfd *input_bfd,
4850 struct bfd_link_info *info,
4851 unsigned int r_type,
4852 struct elf_link_hash_entry *h,
4853 unsigned long r_symndx)
4854 {
4855 bfd_reloc_code_real_type bfd_r_type
4856 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
4857
4858 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4859 return bfd_r_type;
4860
4861 return aarch64_tls_transition_without_check (bfd_r_type, h);
4862 }
4863
4864 /* Return the base VMA address which should be subtracted from real addresses
4865 when resolving R_AARCH64_TLS_DTPREL relocation. */
4866
4867 static bfd_vma
4868 dtpoff_base (struct bfd_link_info *info)
4869 {
4870 /* If tls_sec is NULL, we should have signalled an error already. */
4871 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4872 return elf_hash_table (info)->tls_sec->vma;
4873 }
4874
4875 /* Return the base VMA address which should be subtracted from real addresses
4876 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4877
4878 static bfd_vma
4879 tpoff_base (struct bfd_link_info *info)
4880 {
4881 struct elf_link_hash_table *htab = elf_hash_table (info);
4882
4883 /* If tls_sec is NULL, we should have signalled an error already. */
4884 BFD_ASSERT (htab->tls_sec != NULL);
4885
4886 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4887 htab->tls_sec->alignment_power);
4888 return htab->tls_sec->vma - base;
4889 }
4890
4891 static bfd_vma *
4892 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4893 unsigned long r_symndx)
4894 {
4895 /* Calculate the address of the GOT entry for symbol
4896 referred to in h. */
4897 if (h != NULL)
4898 return &h->got.offset;
4899 else
4900 {
4901 /* local symbol */
4902 struct elf_aarch64_local_symbol *l;
4903
4904 l = elf_aarch64_locals (input_bfd);
4905 return &l[r_symndx].got_offset;
4906 }
4907 }
4908
4909 static void
4910 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4911 unsigned long r_symndx)
4912 {
4913 bfd_vma *p;
4914 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4915 *p |= 1;
4916 }
4917
4918 static int
4919 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4920 unsigned long r_symndx)
4921 {
4922 bfd_vma value;
4923 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4924 return value & 1;
4925 }
4926
4927 static bfd_vma
4928 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4929 unsigned long r_symndx)
4930 {
4931 bfd_vma value;
4932 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4933 value &= ~1;
4934 return value;
4935 }
4936
4937 static bfd_vma *
4938 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4939 unsigned long r_symndx)
4940 {
4941 /* Calculate the address of the GOT entry for symbol
4942 referred to in h. */
4943 if (h != NULL)
4944 {
4945 struct elf_aarch64_link_hash_entry *eh;
4946 eh = (struct elf_aarch64_link_hash_entry *) h;
4947 return &eh->tlsdesc_got_jump_table_offset;
4948 }
4949 else
4950 {
4951 /* local symbol */
4952 struct elf_aarch64_local_symbol *l;
4953
4954 l = elf_aarch64_locals (input_bfd);
4955 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4956 }
4957 }
4958
4959 static void
4960 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4961 unsigned long r_symndx)
4962 {
4963 bfd_vma *p;
4964 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4965 *p |= 1;
4966 }
4967
4968 static int
4969 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4970 struct elf_link_hash_entry *h,
4971 unsigned long r_symndx)
4972 {
4973 bfd_vma value;
4974 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4975 return value & 1;
4976 }
4977
4978 static bfd_vma
4979 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4980 unsigned long r_symndx)
4981 {
4982 bfd_vma value;
4983 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4984 value &= ~1;
4985 return value;
4986 }
4987
4988 /* Data for make_branch_to_erratum_835769_stub(). */
4989
4990 struct erratum_835769_branch_to_stub_data
4991 {
4992 struct bfd_link_info *info;
4993 asection *output_section;
4994 bfd_byte *contents;
4995 };
4996
4997 /* Helper to insert branches to erratum 835769 stubs in the right
4998 places for a particular section. */
4999
5000 static bfd_boolean
5001 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5002 void *in_arg)
5003 {
5004 struct elf_aarch64_stub_hash_entry *stub_entry;
5005 struct erratum_835769_branch_to_stub_data *data;
5006 bfd_byte *contents;
5007 unsigned long branch_insn = 0;
5008 bfd_vma veneered_insn_loc, veneer_entry_loc;
5009 bfd_signed_vma branch_offset;
5010 unsigned int target;
5011 bfd *abfd;
5012
5013 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5014 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5015
5016 if (stub_entry->target_section != data->output_section
5017 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5018 return TRUE;
5019
5020 contents = data->contents;
5021 veneered_insn_loc = stub_entry->target_section->output_section->vma
5022 + stub_entry->target_section->output_offset
5023 + stub_entry->target_value;
5024 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5025 + stub_entry->stub_sec->output_offset
5026 + stub_entry->stub_offset;
5027 branch_offset = veneer_entry_loc - veneered_insn_loc;
5028
5029 abfd = stub_entry->target_section->owner;
5030 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5031 _bfd_error_handler
5032 (_("%pB: error: erratum 835769 stub out "
5033 "of range (input file too large)"), abfd);
5034
5035 target = stub_entry->target_value;
5036 branch_insn = 0x14000000;
5037 branch_offset >>= 2;
5038 branch_offset &= 0x3ffffff;
5039 branch_insn |= branch_offset;
5040 bfd_putl32 (branch_insn, &contents[target]);
5041
5042 return TRUE;
5043 }
5044
5045
5046 static bfd_boolean
5047 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5048 void *in_arg)
5049 {
5050 struct elf_aarch64_stub_hash_entry *stub_entry
5051 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5052 struct erratum_835769_branch_to_stub_data *data
5053 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5054 struct bfd_link_info *info;
5055 struct elf_aarch64_link_hash_table *htab;
5056 bfd_byte *contents;
5057 asection *section;
5058 bfd *abfd;
5059 bfd_vma place;
5060 uint32_t insn;
5061
5062 info = data->info;
5063 contents = data->contents;
5064 section = data->output_section;
5065
5066 htab = elf_aarch64_hash_table (info);
5067
5068 if (stub_entry->target_section != section
5069 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5070 return TRUE;
5071
5072 insn = bfd_getl32 (contents + stub_entry->target_value);
5073 bfd_putl32 (insn,
5074 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5075
5076 place = (section->output_section->vma + section->output_offset
5077 + stub_entry->adrp_offset);
5078 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5079
5080 if (!_bfd_aarch64_adrp_p (insn))
5081 abort ();
5082
5083 bfd_signed_vma imm =
5084 (_bfd_aarch64_sign_extend
5085 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5086 - (place & 0xfff));
5087
5088 if (htab->fix_erratum_843419_adr
5089 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5090 {
5091 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5092 | AARCH64_RT (insn));
5093 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5094 }
5095 else
5096 {
5097 bfd_vma veneered_insn_loc;
5098 bfd_vma veneer_entry_loc;
5099 bfd_signed_vma branch_offset;
5100 uint32_t branch_insn;
5101
5102 veneered_insn_loc = stub_entry->target_section->output_section->vma
5103 + stub_entry->target_section->output_offset
5104 + stub_entry->target_value;
5105 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5106 + stub_entry->stub_sec->output_offset
5107 + stub_entry->stub_offset;
5108 branch_offset = veneer_entry_loc - veneered_insn_loc;
5109
5110 abfd = stub_entry->target_section->owner;
5111 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5112 _bfd_error_handler
5113 (_("%pB: error: erratum 843419 stub out "
5114 "of range (input file too large)"), abfd);
5115
5116 branch_insn = 0x14000000;
5117 branch_offset >>= 2;
5118 branch_offset &= 0x3ffffff;
5119 branch_insn |= branch_offset;
5120 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5121 }
5122 return TRUE;
5123 }
5124
5125
5126 static bfd_boolean
5127 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5128 struct bfd_link_info *link_info,
5129 asection *sec,
5130 bfd_byte *contents)
5131
5132 {
5133 struct elf_aarch64_link_hash_table *globals =
5134 elf_aarch64_hash_table (link_info);
5135
5136 if (globals == NULL)
5137 return FALSE;
5138
5139 /* Fix code to point to erratum 835769 stubs. */
5140 if (globals->fix_erratum_835769)
5141 {
5142 struct erratum_835769_branch_to_stub_data data;
5143
5144 data.info = link_info;
5145 data.output_section = sec;
5146 data.contents = contents;
5147 bfd_hash_traverse (&globals->stub_hash_table,
5148 make_branch_to_erratum_835769_stub, &data);
5149 }
5150
5151 if (globals->fix_erratum_843419)
5152 {
5153 struct erratum_835769_branch_to_stub_data data;
5154
5155 data.info = link_info;
5156 data.output_section = sec;
5157 data.contents = contents;
5158 bfd_hash_traverse (&globals->stub_hash_table,
5159 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5160 }
5161
5162 return FALSE;
5163 }
5164
5165 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5166
5167 static bfd_boolean
5168 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5169 {
5170 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5171 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5172 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5173 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5174 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5175 }
5176
5177 /* Perform a relocation as part of a final link. The input relocation type
5178 should be TLS relaxed. */
5179
5180 static bfd_reloc_status_type
5181 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5182 bfd *input_bfd,
5183 bfd *output_bfd,
5184 asection *input_section,
5185 bfd_byte *contents,
5186 Elf_Internal_Rela *rel,
5187 bfd_vma value,
5188 struct bfd_link_info *info,
5189 asection *sym_sec,
5190 struct elf_link_hash_entry *h,
5191 bfd_boolean *unresolved_reloc_p,
5192 bfd_boolean save_addend,
5193 bfd_vma *saved_addend,
5194 Elf_Internal_Sym *sym)
5195 {
5196 Elf_Internal_Shdr *symtab_hdr;
5197 unsigned int r_type = howto->type;
5198 bfd_reloc_code_real_type bfd_r_type
5199 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5200 unsigned long r_symndx;
5201 bfd_byte *hit_data = contents + rel->r_offset;
5202 bfd_vma place, off, got_entry_addr = 0;
5203 bfd_signed_vma signed_addend;
5204 struct elf_aarch64_link_hash_table *globals;
5205 bfd_boolean weak_undef_p;
5206 bfd_boolean relative_reloc;
5207 asection *base_got;
5208 bfd_vma orig_value = value;
5209 bfd_boolean resolved_to_zero;
5210 bfd_boolean abs_symbol_p;
5211
5212 globals = elf_aarch64_hash_table (info);
5213
5214 symtab_hdr = &elf_symtab_hdr (input_bfd);
5215
5216 BFD_ASSERT (is_aarch64_elf (input_bfd));
5217
5218 r_symndx = ELFNN_R_SYM (rel->r_info);
5219
5220 place = input_section->output_section->vma
5221 + input_section->output_offset + rel->r_offset;
5222
5223 /* Get addend, accumulating the addend for consecutive relocs
5224 which refer to the same offset. */
5225 signed_addend = saved_addend ? *saved_addend : 0;
5226 signed_addend += rel->r_addend;
5227
5228 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5229 : bfd_is_und_section (sym_sec));
5230 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5231
5232
5233 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5234 it here if it is defined in a non-shared object. */
5235 if (h != NULL
5236 && h->type == STT_GNU_IFUNC
5237 && h->def_regular)
5238 {
5239 asection *plt;
5240 const char *name;
5241 bfd_vma addend = 0;
5242
5243 if ((input_section->flags & SEC_ALLOC) == 0)
5244 {
5245 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5246 STT_GNU_IFUNC symbol as STT_FUNC. */
5247 if (elf_section_type (input_section) == SHT_NOTE)
5248 goto skip_ifunc;
5249
5250 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5251 sections because such sections are not SEC_ALLOC and
5252 thus ld.so will not process them. */
5253 if ((input_section->flags & SEC_DEBUGGING) != 0)
5254 return bfd_reloc_ok;
5255
5256 if (h->root.root.string)
5257 name = h->root.root.string;
5258 else
5259 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5260 _bfd_error_handler
5261 /* xgettext:c-format */
5262 (_("%pB(%pA+%#" PRIx64 "): "
5263 "unresolvable %s relocation against symbol `%s'"),
5264 input_bfd, input_section, (uint64_t) rel->r_offset,
5265 howto->name, name);
5266 bfd_set_error (bfd_error_bad_value);
5267 return bfd_reloc_notsupported;
5268 }
5269 else if (h->plt.offset == (bfd_vma) -1)
5270 goto bad_ifunc_reloc;
5271
5272 /* STT_GNU_IFUNC symbol must go through PLT. */
5273 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5274 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5275
5276 switch (bfd_r_type)
5277 {
5278 default:
5279 bad_ifunc_reloc:
5280 if (h->root.root.string)
5281 name = h->root.root.string;
5282 else
5283 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5284 NULL);
5285 _bfd_error_handler
5286 /* xgettext:c-format */
5287 (_("%pB: relocation %s against STT_GNU_IFUNC "
5288 "symbol `%s' isn't handled by %s"), input_bfd,
5289 howto->name, name, __FUNCTION__);
5290 bfd_set_error (bfd_error_bad_value);
5291 return bfd_reloc_notsupported;
5292
5293 case BFD_RELOC_AARCH64_NN:
5294 if (rel->r_addend != 0)
5295 {
5296 if (h->root.root.string)
5297 name = h->root.root.string;
5298 else
5299 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5300 sym, NULL);
5301 _bfd_error_handler
5302 /* xgettext:c-format */
5303 (_("%pB: relocation %s against STT_GNU_IFUNC "
5304 "symbol `%s' has non-zero addend: %" PRId64),
5305 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5306 bfd_set_error (bfd_error_bad_value);
5307 return bfd_reloc_notsupported;
5308 }
5309
5310 /* Generate dynamic relocation only when there is a
5311 non-GOT reference in a shared object. */
5312 if (bfd_link_pic (info) && h->non_got_ref)
5313 {
5314 Elf_Internal_Rela outrel;
5315 asection *sreloc;
5316
5317 /* Need a dynamic relocation to get the real function
5318 address. */
5319 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5320 info,
5321 input_section,
5322 rel->r_offset);
5323 if (outrel.r_offset == (bfd_vma) -1
5324 || outrel.r_offset == (bfd_vma) -2)
5325 abort ();
5326
5327 outrel.r_offset += (input_section->output_section->vma
5328 + input_section->output_offset);
5329
5330 if (h->dynindx == -1
5331 || h->forced_local
5332 || bfd_link_executable (info))
5333 {
5334 /* This symbol is resolved locally. */
5335 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5336 outrel.r_addend = (h->root.u.def.value
5337 + h->root.u.def.section->output_section->vma
5338 + h->root.u.def.section->output_offset);
5339 }
5340 else
5341 {
5342 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5343 outrel.r_addend = 0;
5344 }
5345
5346 sreloc = globals->root.irelifunc;
5347 elf_append_rela (output_bfd, sreloc, &outrel);
5348
5349 /* If this reloc is against an external symbol, we
5350 do not want to fiddle with the addend. Otherwise,
5351 we need to include the symbol value so that it
5352 becomes an addend for the dynamic reloc. For an
5353 internal symbol, we have updated addend. */
5354 return bfd_reloc_ok;
5355 }
5356 /* FALLTHROUGH */
5357 case BFD_RELOC_AARCH64_CALL26:
5358 case BFD_RELOC_AARCH64_JUMP26:
5359 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5360 signed_addend,
5361 weak_undef_p);
5362 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5363 howto, value);
5364 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5365 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5366 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5367 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5368 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5369 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5370 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5371 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5372 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5373 base_got = globals->root.sgot;
5374 off = h->got.offset;
5375
5376 if (base_got == NULL)
5377 abort ();
5378
5379 if (off == (bfd_vma) -1)
5380 {
5381 bfd_vma plt_index;
5382
5383 /* We can't use h->got.offset here to save state, or
5384 even just remember the offset, as finish_dynamic_symbol
5385 would use that as offset into .got. */
5386
5387 if (globals->root.splt != NULL)
5388 {
5389 plt_index = ((h->plt.offset - globals->plt_header_size) /
5390 globals->plt_entry_size);
5391 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5392 base_got = globals->root.sgotplt;
5393 }
5394 else
5395 {
5396 plt_index = h->plt.offset / globals->plt_entry_size;
5397 off = plt_index * GOT_ENTRY_SIZE;
5398 base_got = globals->root.igotplt;
5399 }
5400
5401 if (h->dynindx == -1
5402 || h->forced_local
5403 || info->symbolic)
5404 {
5405 /* This references the local definition. We must
5406 initialize this entry in the global offset table.
5407 Since the offset must always be a multiple of 8,
5408 we use the least significant bit to record
5409 whether we have initialized it already.
5410
5411 When doing a dynamic link, we create a .rela.got
5412 relocation entry to initialize the value. This
5413 is done in the finish_dynamic_symbol routine. */
5414 if ((off & 1) != 0)
5415 off &= ~1;
5416 else
5417 {
5418 bfd_put_NN (output_bfd, value,
5419 base_got->contents + off);
5420 /* Note that this is harmless as -1 | 1 still is -1. */
5421 h->got.offset |= 1;
5422 }
5423 }
5424 value = (base_got->output_section->vma
5425 + base_got->output_offset + off);
5426 }
5427 else
5428 value = aarch64_calculate_got_entry_vma (h, globals, info,
5429 value, output_bfd,
5430 unresolved_reloc_p);
5431
5432 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5433 addend = (globals->root.sgot->output_section->vma
5434 + globals->root.sgot->output_offset);
5435
5436 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5437 addend, weak_undef_p);
5438 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5439 case BFD_RELOC_AARCH64_ADD_LO12:
5440 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5441 break;
5442 }
5443 }
5444
5445 skip_ifunc:
5446 resolved_to_zero = (h != NULL
5447 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5448
5449 switch (bfd_r_type)
5450 {
5451 case BFD_RELOC_AARCH64_NONE:
5452 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5453 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5454 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5455 *unresolved_reloc_p = FALSE;
5456 return bfd_reloc_ok;
5457
5458 case BFD_RELOC_AARCH64_NN:
5459
5460 /* When generating a shared object or relocatable executable, these
5461 relocations are copied into the output file to be resolved at
5462 run time. */
5463 if (((bfd_link_pic (info)
5464 || globals->root.is_relocatable_executable)
5465 && (input_section->flags & SEC_ALLOC)
5466 && (h == NULL
5467 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5468 && !resolved_to_zero)
5469 || h->root.type != bfd_link_hash_undefweak))
5470 /* Or we are creating an executable, we may need to keep relocations
5471 for symbols satisfied by a dynamic library if we manage to avoid
5472 copy relocs for the symbol. */
5473 || (ELIMINATE_COPY_RELOCS
5474 && !bfd_link_pic (info)
5475 && h != NULL
5476 && (input_section->flags & SEC_ALLOC)
5477 && h->dynindx != -1
5478 && !h->non_got_ref
5479 && ((h->def_dynamic
5480 && !h->def_regular)
5481 || h->root.type == bfd_link_hash_undefweak
5482 || h->root.type == bfd_link_hash_undefined)))
5483 {
5484 Elf_Internal_Rela outrel;
5485 bfd_byte *loc;
5486 bfd_boolean skip, relocate;
5487 asection *sreloc;
5488
5489 *unresolved_reloc_p = FALSE;
5490
5491 skip = FALSE;
5492 relocate = FALSE;
5493
5494 outrel.r_addend = signed_addend;
5495 outrel.r_offset =
5496 _bfd_elf_section_offset (output_bfd, info, input_section,
5497 rel->r_offset);
5498 if (outrel.r_offset == (bfd_vma) - 1)
5499 skip = TRUE;
5500 else if (outrel.r_offset == (bfd_vma) - 2)
5501 {
5502 skip = TRUE;
5503 relocate = TRUE;
5504 }
5505 else if (abs_symbol_p)
5506 {
5507 /* Local absolute symbol. */
5508 skip = (h->forced_local || (h->dynindx == -1));
5509 relocate = skip;
5510 }
5511
5512 outrel.r_offset += (input_section->output_section->vma
5513 + input_section->output_offset);
5514
5515 if (skip)
5516 memset (&outrel, 0, sizeof outrel);
5517 else if (h != NULL
5518 && h->dynindx != -1
5519 && (!bfd_link_pic (info)
5520 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5521 || !h->def_regular))
5522 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5523 else
5524 {
5525 int symbol;
5526
5527 /* On SVR4-ish systems, the dynamic loader cannot
5528 relocate the text and data segments independently,
5529 so the symbol does not matter. */
5530 symbol = 0;
5531 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5532 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5533 outrel.r_addend += value;
5534 }
5535
5536 sreloc = elf_section_data (input_section)->sreloc;
5537 if (sreloc == NULL || sreloc->contents == NULL)
5538 return bfd_reloc_notsupported;
5539
5540 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5541 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5542
5543 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5544 {
5545 /* Sanity to check that we have previously allocated
5546 sufficient space in the relocation section for the
5547 number of relocations we actually want to emit. */
5548 abort ();
5549 }
5550
5551 /* If this reloc is against an external symbol, we do not want to
5552 fiddle with the addend. Otherwise, we need to include the symbol
5553 value so that it becomes an addend for the dynamic reloc. */
5554 if (!relocate)
5555 return bfd_reloc_ok;
5556
5557 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5558 contents, rel->r_offset, value,
5559 signed_addend);
5560 }
5561 else
5562 value += signed_addend;
5563 break;
5564
5565 case BFD_RELOC_AARCH64_CALL26:
5566 case BFD_RELOC_AARCH64_JUMP26:
5567 {
5568 asection *splt = globals->root.splt;
5569 bfd_boolean via_plt_p =
5570 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5571
5572 /* A call to an undefined weak symbol is converted to a jump to
5573 the next instruction unless a PLT entry will be created.
5574 The jump to the next instruction is optimized as a NOP.
5575 Do the same for local undefined symbols. */
5576 if (weak_undef_p && ! via_plt_p)
5577 {
5578 bfd_putl32 (INSN_NOP, hit_data);
5579 return bfd_reloc_ok;
5580 }
5581
5582 /* If the call goes through a PLT entry, make sure to
5583 check distance to the right destination address. */
5584 if (via_plt_p)
5585 value = (splt->output_section->vma
5586 + splt->output_offset + h->plt.offset);
5587
5588 /* Check if a stub has to be inserted because the destination
5589 is too far away. */
5590 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5591
5592 /* If the branch destination is directed to plt stub, "value" will be
5593 the final destination, otherwise we should plus signed_addend, it may
5594 contain non-zero value, for example call to local function symbol
5595 which are turned into "sec_sym + sec_off", and sec_off is kept in
5596 signed_addend. */
5597 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5598 place))
5599 /* The target is out of reach, so redirect the branch to
5600 the local stub for this function. */
5601 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5602 rel, globals);
5603 if (stub_entry != NULL)
5604 {
5605 value = (stub_entry->stub_offset
5606 + stub_entry->stub_sec->output_offset
5607 + stub_entry->stub_sec->output_section->vma);
5608
5609 /* We have redirected the destination to stub entry address,
5610 so ignore any addend record in the original rela entry. */
5611 signed_addend = 0;
5612 }
5613 }
5614 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5615 signed_addend, weak_undef_p);
5616 *unresolved_reloc_p = FALSE;
5617 break;
5618
5619 case BFD_RELOC_AARCH64_16_PCREL:
5620 case BFD_RELOC_AARCH64_32_PCREL:
5621 case BFD_RELOC_AARCH64_64_PCREL:
5622 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5623 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5624 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5625 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5626 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5627 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5628 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5629 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5630 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5631 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5632 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5633 if (bfd_link_pic (info)
5634 && (input_section->flags & SEC_ALLOC) != 0
5635 && (input_section->flags & SEC_READONLY) != 0
5636 && !SYMBOL_REFERENCES_LOCAL (info, h))
5637 {
5638 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5639
5640 _bfd_error_handler
5641 /* xgettext:c-format */
5642 (_("%pB: relocation %s against symbol `%s' which may bind "
5643 "externally can not be used when making a shared object; "
5644 "recompile with -fPIC"),
5645 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5646 h->root.root.string);
5647 bfd_set_error (bfd_error_bad_value);
5648 return bfd_reloc_notsupported;
5649 }
5650 /* Fall through. */
5651
5652 case BFD_RELOC_AARCH64_16:
5653 #if ARCH_SIZE == 64
5654 case BFD_RELOC_AARCH64_32:
5655 #endif
5656 case BFD_RELOC_AARCH64_ADD_LO12:
5657 case BFD_RELOC_AARCH64_BRANCH19:
5658 case BFD_RELOC_AARCH64_LDST128_LO12:
5659 case BFD_RELOC_AARCH64_LDST16_LO12:
5660 case BFD_RELOC_AARCH64_LDST32_LO12:
5661 case BFD_RELOC_AARCH64_LDST64_LO12:
5662 case BFD_RELOC_AARCH64_LDST8_LO12:
5663 case BFD_RELOC_AARCH64_MOVW_G0:
5664 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5665 case BFD_RELOC_AARCH64_MOVW_G0_S:
5666 case BFD_RELOC_AARCH64_MOVW_G1:
5667 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5668 case BFD_RELOC_AARCH64_MOVW_G1_S:
5669 case BFD_RELOC_AARCH64_MOVW_G2:
5670 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5671 case BFD_RELOC_AARCH64_MOVW_G2_S:
5672 case BFD_RELOC_AARCH64_MOVW_G3:
5673 case BFD_RELOC_AARCH64_TSTBR14:
5674 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5675 signed_addend, weak_undef_p);
5676 break;
5677
5678 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5679 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5680 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5681 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5682 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5683 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5684 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5685 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5686 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5687 if (globals->root.sgot == NULL)
5688 BFD_ASSERT (h != NULL);
5689
5690 relative_reloc = FALSE;
5691 if (h != NULL)
5692 {
5693 bfd_vma addend = 0;
5694
5695 /* If a symbol is not dynamic and is not undefined weak, bind it
5696 locally and generate a RELATIVE relocation under PIC mode.
5697
5698 NOTE: one symbol may be referenced by several relocations, we
5699 should only generate one RELATIVE relocation for that symbol.
5700 Therefore, check GOT offset mark first. */
5701 if (h->dynindx == -1
5702 && !h->forced_local
5703 && h->root.type != bfd_link_hash_undefweak
5704 && bfd_link_pic (info)
5705 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5706 relative_reloc = TRUE;
5707
5708 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5709 output_bfd,
5710 unresolved_reloc_p);
5711 /* Record the GOT entry address which will be used when generating
5712 RELATIVE relocation. */
5713 if (relative_reloc)
5714 got_entry_addr = value;
5715
5716 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5717 addend = (globals->root.sgot->output_section->vma
5718 + globals->root.sgot->output_offset);
5719 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5720 addend, weak_undef_p);
5721 }
5722 else
5723 {
5724 bfd_vma addend = 0;
5725 struct elf_aarch64_local_symbol *locals
5726 = elf_aarch64_locals (input_bfd);
5727
5728 if (locals == NULL)
5729 {
5730 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5731 _bfd_error_handler
5732 /* xgettext:c-format */
5733 (_("%pB: local symbol descriptor table be NULL when applying "
5734 "relocation %s against local symbol"),
5735 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5736 abort ();
5737 }
5738
5739 off = symbol_got_offset (input_bfd, h, r_symndx);
5740 base_got = globals->root.sgot;
5741 got_entry_addr = (base_got->output_section->vma
5742 + base_got->output_offset + off);
5743
5744 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5745 {
5746 bfd_put_64 (output_bfd, value, base_got->contents + off);
5747
5748 /* For local symbol, we have done absolute relocation in static
5749 linking stage. While for shared library, we need to update the
5750 content of GOT entry according to the shared object's runtime
5751 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5752 for dynamic linker. */
5753 if (bfd_link_pic (info))
5754 relative_reloc = TRUE;
5755
5756 symbol_got_offset_mark (input_bfd, h, r_symndx);
5757 }
5758
5759 /* Update the relocation value to GOT entry addr as we have transformed
5760 the direct data access into indirect data access through GOT. */
5761 value = got_entry_addr;
5762
5763 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5764 addend = base_got->output_section->vma + base_got->output_offset;
5765
5766 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5767 addend, weak_undef_p);
5768 }
5769
5770 if (relative_reloc)
5771 {
5772 asection *s;
5773 Elf_Internal_Rela outrel;
5774
5775 s = globals->root.srelgot;
5776 if (s == NULL)
5777 abort ();
5778
5779 outrel.r_offset = got_entry_addr;
5780 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5781 outrel.r_addend = orig_value;
5782 elf_append_rela (output_bfd, s, &outrel);
5783 }
5784 break;
5785
5786 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5787 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5788 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5789 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5790 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5791 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5792 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5793 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5794 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5795 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5796 if (globals->root.sgot == NULL)
5797 return bfd_reloc_notsupported;
5798
5799 value = (symbol_got_offset (input_bfd, h, r_symndx)
5800 + globals->root.sgot->output_section->vma
5801 + globals->root.sgot->output_offset);
5802
5803 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5804 0, weak_undef_p);
5805 *unresolved_reloc_p = FALSE;
5806 break;
5807
5808 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5809 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5810 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5811 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5812 if (globals->root.sgot == NULL)
5813 return bfd_reloc_notsupported;
5814
5815 value = symbol_got_offset (input_bfd, h, r_symndx);
5816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5817 0, weak_undef_p);
5818 *unresolved_reloc_p = FALSE;
5819 break;
5820
5821 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5822 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5823 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5824 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5825 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5826 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5827 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5828 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5829 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5830 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5831 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5832 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5833 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5834 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5835 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5836 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5837 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5838 signed_addend - dtpoff_base (info),
5839 weak_undef_p);
5840 break;
5841
5842 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5843 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5844 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5845 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
5846 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5847 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
5848 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5849 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
5850 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5851 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
5852 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5853 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5854 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5855 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5856 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5858 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5859 signed_addend - tpoff_base (info),
5860 weak_undef_p);
5861 *unresolved_reloc_p = FALSE;
5862 break;
5863
5864 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5865 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5866 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5867 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5868 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5869 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5870 if (globals->root.sgot == NULL)
5871 return bfd_reloc_notsupported;
5872 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5873 + globals->root.sgotplt->output_section->vma
5874 + globals->root.sgotplt->output_offset
5875 + globals->sgotplt_jump_table_size);
5876
5877 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5878 0, weak_undef_p);
5879 *unresolved_reloc_p = FALSE;
5880 break;
5881
5882 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5883 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5884 if (globals->root.sgot == NULL)
5885 return bfd_reloc_notsupported;
5886
5887 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5888 + globals->root.sgotplt->output_section->vma
5889 + globals->root.sgotplt->output_offset
5890 + globals->sgotplt_jump_table_size);
5891
5892 value -= (globals->root.sgot->output_section->vma
5893 + globals->root.sgot->output_offset);
5894
5895 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5896 0, weak_undef_p);
5897 *unresolved_reloc_p = FALSE;
5898 break;
5899
5900 default:
5901 return bfd_reloc_notsupported;
5902 }
5903
5904 if (saved_addend)
5905 *saved_addend = value;
5906
5907 /* Only apply the final relocation in a sequence. */
5908 if (save_addend)
5909 return bfd_reloc_continue;
5910
5911 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5912 howto, value);
5913 }
5914
5915 /* LP64 and ILP32 operates on x- and w-registers respectively.
5916 Next definitions take into account the difference between
5917 corresponding machine codes. R means x-register if the target
5918 arch is LP64, and w-register if the target is ILP32. */
5919
5920 #if ARCH_SIZE == 64
5921 # define add_R0_R0 (0x91000000)
5922 # define add_R0_R0_R1 (0x8b000020)
5923 # define add_R0_R1 (0x91400020)
5924 # define ldr_R0 (0x58000000)
5925 # define ldr_R0_mask(i) (i & 0xffffffe0)
5926 # define ldr_R0_x0 (0xf9400000)
5927 # define ldr_hw_R0 (0xf2a00000)
5928 # define movk_R0 (0xf2800000)
5929 # define movz_R0 (0xd2a00000)
5930 # define movz_hw_R0 (0xd2c00000)
5931 #else /*ARCH_SIZE == 32 */
5932 # define add_R0_R0 (0x11000000)
5933 # define add_R0_R0_R1 (0x0b000020)
5934 # define add_R0_R1 (0x11400020)
5935 # define ldr_R0 (0x18000000)
5936 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5937 # define ldr_R0_x0 (0xb9400000)
5938 # define ldr_hw_R0 (0x72a00000)
5939 # define movk_R0 (0x72800000)
5940 # define movz_R0 (0x52a00000)
5941 # define movz_hw_R0 (0x52c00000)
5942 #endif
5943
5944 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
5945 it is used to identify the stub information to reset. */
5946
5947 struct erratum_843419_branch_to_stub_clear_data
5948 {
5949 bfd_vma adrp_offset;
5950 asection *output_section;
5951 };
5952
5953 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
5954 section inside IN_ARG matches. The clearing is done by setting the
5955 stub_type to none. */
5956
5957 static bfd_boolean
5958 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
5959 void *in_arg)
5960 {
5961 struct elf_aarch64_stub_hash_entry *stub_entry
5962 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5963 struct erratum_843419_branch_to_stub_clear_data *data
5964 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
5965
5966 if (stub_entry->target_section != data->output_section
5967 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
5968 || stub_entry->adrp_offset != data->adrp_offset)
5969 return TRUE;
5970
5971 /* Change the stub type instead of removing the entry, removing from the hash
5972 table would be slower and we have already reserved the memory for the entry
5973 so there wouldn't be much gain. Changing the stub also keeps around a
5974 record of what was there before. */
5975 stub_entry->stub_type = aarch64_stub_none;
5976
5977 /* We're done and there could have been only one matching stub at that
5978 particular offset, so abort further traversal. */
5979 return FALSE;
5980 }
5981
5982 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
5983 sequence. In this case the erratum no longer applies and we need to remove
5984 the entry from the pending stub generation. This clears matching adrp insn
5985 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
5986
5987 static void
5988 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
5989 bfd_vma adrp_offset, asection *input_section)
5990 {
5991 if (globals->fix_erratum_843419)
5992 {
5993 struct erratum_843419_branch_to_stub_clear_data data;
5994 data.adrp_offset = adrp_offset;
5995 data.output_section = input_section;
5996
5997 bfd_hash_traverse (&globals->stub_hash_table,
5998 _bfd_aarch64_erratum_843419_clear_stub, &data);
5999 }
6000 }
6001
6002 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6003 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6004 link.
6005
6006 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6007 is to then call final_link_relocate. Return other values in the
6008 case of error. */
6009
6010 static bfd_reloc_status_type
6011 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6012 bfd *input_bfd, asection *input_section,
6013 bfd_byte *contents, Elf_Internal_Rela *rel,
6014 struct elf_link_hash_entry *h)
6015 {
6016 bfd_boolean is_local = h == NULL;
6017 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6018 unsigned long insn;
6019
6020 BFD_ASSERT (globals && input_bfd && contents && rel);
6021
6022 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6023 {
6024 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6025 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6026 if (is_local)
6027 {
6028 /* GD->LE relaxation:
6029 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6030 or
6031 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6032
6033 Where R is x for LP64, and w for ILP32. */
6034 bfd_putl32 (movz_R0, contents + rel->r_offset);
6035 /* We have relaxed the adrp into a mov, we may have to clear any
6036 pending erratum fixes. */
6037 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6038 return bfd_reloc_continue;
6039 }
6040 else
6041 {
6042 /* GD->IE relaxation:
6043 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6044 or
6045 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6046 */
6047 return bfd_reloc_continue;
6048 }
6049
6050 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6051 BFD_ASSERT (0);
6052 break;
6053
6054 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6055 if (is_local)
6056 {
6057 /* Tiny TLSDESC->LE relaxation:
6058 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6059 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6060 .tlsdesccall var
6061 blr x1 => nop
6062
6063 Where R is x for LP64, and w for ILP32. */
6064 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6065 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6066
6067 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6068 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6069 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6070
6071 bfd_putl32 (movz_R0, contents + rel->r_offset);
6072 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6073 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6074 return bfd_reloc_continue;
6075 }
6076 else
6077 {
6078 /* Tiny TLSDESC->IE relaxation:
6079 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6080 adr x0, :tlsdesc:var => nop
6081 .tlsdesccall var
6082 blr x1 => nop
6083 */
6084 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6085 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6086
6087 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6088 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6089
6090 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6091 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6092 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6093 return bfd_reloc_continue;
6094 }
6095
6096 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6097 if (is_local)
6098 {
6099 /* Tiny GD->LE relaxation:
6100 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6101 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6102 nop => add R0, R0, #:tprel_lo12_nc:x
6103
6104 Where R is x for LP64, and x for Ilp32. */
6105
6106 /* First kill the tls_get_addr reloc on the bl instruction. */
6107 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6108
6109 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6110 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6111 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6112
6113 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6114 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6115 rel[1].r_offset = rel->r_offset + 8;
6116
6117 /* Move the current relocation to the second instruction in
6118 the sequence. */
6119 rel->r_offset += 4;
6120 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6121 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6122 return bfd_reloc_continue;
6123 }
6124 else
6125 {
6126 /* Tiny GD->IE relaxation:
6127 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6128 bl __tls_get_addr => mrs x1, tpidr_el0
6129 nop => add R0, R0, R1
6130
6131 Where R is x for LP64, and w for Ilp32. */
6132
6133 /* First kill the tls_get_addr reloc on the bl instruction. */
6134 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6135 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6136
6137 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6138 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6139 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6140 return bfd_reloc_continue;
6141 }
6142
6143 #if ARCH_SIZE == 64
6144 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6145 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6146 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6147 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6148
6149 if (is_local)
6150 {
6151 /* Large GD->LE relaxation:
6152 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6153 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6154 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6155 bl __tls_get_addr => mrs x1, tpidr_el0
6156 nop => add x0, x0, x1
6157 */
6158 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6159 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6160 rel[2].r_offset = rel->r_offset + 8;
6161
6162 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6163 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6164 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6165 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6166 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6167 }
6168 else
6169 {
6170 /* Large GD->IE relaxation:
6171 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6172 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6173 add x0, gp, x0 => ldr x0, [gp, x0]
6174 bl __tls_get_addr => mrs x1, tpidr_el0
6175 nop => add x0, x0, x1
6176 */
6177 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6178 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6179 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6180 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6181 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6182 }
6183 return bfd_reloc_continue;
6184
6185 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6186 return bfd_reloc_continue;
6187 #endif
6188
6189 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6190 return bfd_reloc_continue;
6191
6192 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6193 if (is_local)
6194 {
6195 /* GD->LE relaxation:
6196 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6197
6198 Where R is x for lp64 mode, and w for ILP32 mode. */
6199 bfd_putl32 (movk_R0, contents + rel->r_offset);
6200 return bfd_reloc_continue;
6201 }
6202 else
6203 {
6204 /* GD->IE relaxation:
6205 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6206
6207 Where R is x for lp64 mode, and w for ILP32 mode. */
6208 insn = bfd_getl32 (contents + rel->r_offset);
6209 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6210 return bfd_reloc_continue;
6211 }
6212
6213 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6214 if (is_local)
6215 {
6216 /* GD->LE relaxation
6217 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6218 bl __tls_get_addr => mrs x1, tpidr_el0
6219 nop => add R0, R1, R0
6220
6221 Where R is x for lp64 mode, and w for ILP32 mode. */
6222
6223 /* First kill the tls_get_addr reloc on the bl instruction. */
6224 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6225 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6226
6227 bfd_putl32 (movk_R0, contents + rel->r_offset);
6228 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6229 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6230 return bfd_reloc_continue;
6231 }
6232 else
6233 {
6234 /* GD->IE relaxation
6235 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6236 BL __tls_get_addr => mrs x1, tpidr_el0
6237 R_AARCH64_CALL26
6238 NOP => add R0, R1, R0
6239
6240 Where R is x for lp64 mode, and w for ilp32 mode. */
6241
6242 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6243
6244 /* Remove the relocation on the BL instruction. */
6245 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6246
6247 /* We choose to fixup the BL and NOP instructions using the
6248 offset from the second relocation to allow flexibility in
6249 scheduling instructions between the ADD and BL. */
6250 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6251 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6252 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6253 return bfd_reloc_continue;
6254 }
6255
6256 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6257 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6258 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6259 /* GD->IE/LE relaxation:
6260 add x0, x0, #:tlsdesc_lo12:var => nop
6261 blr xd => nop
6262 */
6263 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6264 return bfd_reloc_ok;
6265
6266 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6267 if (is_local)
6268 {
6269 /* GD->LE relaxation:
6270 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6271
6272 Where R is x for lp64 mode, and w for ILP32 mode. */
6273 bfd_putl32 (movk_R0, contents + rel->r_offset);
6274 return bfd_reloc_continue;
6275 }
6276 else
6277 {
6278 /* GD->IE relaxation:
6279 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6280
6281 Where R is x for lp64 mode, and w for ILP32 mode. */
6282 insn = bfd_getl32 (contents + rel->r_offset);
6283 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6284 return bfd_reloc_ok;
6285 }
6286
6287 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6288 /* GD->LE relaxation:
6289 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6290 GD->IE relaxation:
6291 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6292
6293 Where R is x for lp64 mode, and w for ILP32 mode. */
6294 if (is_local)
6295 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6296 return bfd_reloc_continue;
6297
6298 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6299 if (is_local)
6300 {
6301 /* GD->LE relaxation:
6302 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6303
6304 Where R is x for lp64 mode, and w for ILP32 mode. */
6305 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6306 return bfd_reloc_continue;
6307 }
6308 else
6309 {
6310 /* GD->IE relaxation:
6311 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6312
6313 Where R is x for lp64 mode, and w for ILP32 mode. */
6314 insn = bfd_getl32 (contents + rel->r_offset);
6315 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6316 return bfd_reloc_continue;
6317 }
6318
6319 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6320 /* IE->LE relaxation:
6321 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6322
6323 Where R is x for lp64 mode, and w for ILP32 mode. */
6324 if (is_local)
6325 {
6326 insn = bfd_getl32 (contents + rel->r_offset);
6327 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6328 /* We have relaxed the adrp into a mov, we may have to clear any
6329 pending erratum fixes. */
6330 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6331 }
6332 return bfd_reloc_continue;
6333
6334 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6335 /* IE->LE relaxation:
6336 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6337
6338 Where R is x for lp64 mode, and w for ILP32 mode. */
6339 if (is_local)
6340 {
6341 insn = bfd_getl32 (contents + rel->r_offset);
6342 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6343 }
6344 return bfd_reloc_continue;
6345
6346 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6347 /* LD->LE relaxation (tiny):
6348 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6349 bl __tls_get_addr => add R0, R0, TCB_SIZE
6350
6351 Where R is x for lp64 mode, and w for ilp32 mode. */
6352 if (is_local)
6353 {
6354 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6355 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6356 /* No need of CALL26 relocation for tls_get_addr. */
6357 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6358 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6359 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6360 contents + rel->r_offset + 4);
6361 return bfd_reloc_ok;
6362 }
6363 return bfd_reloc_continue;
6364
6365 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6366 /* LD->LE relaxation (small):
6367 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6368 */
6369 if (is_local)
6370 {
6371 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6372 return bfd_reloc_ok;
6373 }
6374 return bfd_reloc_continue;
6375
6376 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6377 /* LD->LE relaxation (small):
6378 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6379 bl __tls_get_addr => nop
6380
6381 Where R is x for lp64 mode, and w for ilp32 mode. */
6382 if (is_local)
6383 {
6384 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6385 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6386 /* No need of CALL26 relocation for tls_get_addr. */
6387 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6388 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6389 contents + rel->r_offset + 0);
6390 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6391 return bfd_reloc_ok;
6392 }
6393 return bfd_reloc_continue;
6394
6395 default:
6396 return bfd_reloc_continue;
6397 }
6398
6399 return bfd_reloc_ok;
6400 }
6401
6402 /* Relocate an AArch64 ELF section. */
6403
6404 static bfd_boolean
6405 elfNN_aarch64_relocate_section (bfd *output_bfd,
6406 struct bfd_link_info *info,
6407 bfd *input_bfd,
6408 asection *input_section,
6409 bfd_byte *contents,
6410 Elf_Internal_Rela *relocs,
6411 Elf_Internal_Sym *local_syms,
6412 asection **local_sections)
6413 {
6414 Elf_Internal_Shdr *symtab_hdr;
6415 struct elf_link_hash_entry **sym_hashes;
6416 Elf_Internal_Rela *rel;
6417 Elf_Internal_Rela *relend;
6418 const char *name;
6419 struct elf_aarch64_link_hash_table *globals;
6420 bfd_boolean save_addend = FALSE;
6421 bfd_vma addend = 0;
6422
6423 globals = elf_aarch64_hash_table (info);
6424
6425 symtab_hdr = &elf_symtab_hdr (input_bfd);
6426 sym_hashes = elf_sym_hashes (input_bfd);
6427
6428 rel = relocs;
6429 relend = relocs + input_section->reloc_count;
6430 for (; rel < relend; rel++)
6431 {
6432 unsigned int r_type;
6433 bfd_reloc_code_real_type bfd_r_type;
6434 bfd_reloc_code_real_type relaxed_bfd_r_type;
6435 reloc_howto_type *howto;
6436 unsigned long r_symndx;
6437 Elf_Internal_Sym *sym;
6438 asection *sec;
6439 struct elf_link_hash_entry *h;
6440 bfd_vma relocation;
6441 bfd_reloc_status_type r;
6442 arelent bfd_reloc;
6443 char sym_type;
6444 bfd_boolean unresolved_reloc = FALSE;
6445 char *error_message = NULL;
6446
6447 r_symndx = ELFNN_R_SYM (rel->r_info);
6448 r_type = ELFNN_R_TYPE (rel->r_info);
6449
6450 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6451 howto = bfd_reloc.howto;
6452
6453 if (howto == NULL)
6454 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6455
6456 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6457
6458 h = NULL;
6459 sym = NULL;
6460 sec = NULL;
6461
6462 if (r_symndx < symtab_hdr->sh_info)
6463 {
6464 sym = local_syms + r_symndx;
6465 sym_type = ELFNN_ST_TYPE (sym->st_info);
6466 sec = local_sections[r_symndx];
6467
6468 /* An object file might have a reference to a local
6469 undefined symbol. This is a daft object file, but we
6470 should at least do something about it. */
6471 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6472 && bfd_is_und_section (sec)
6473 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6474 (*info->callbacks->undefined_symbol)
6475 (info, bfd_elf_string_from_elf_section
6476 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6477 input_bfd, input_section, rel->r_offset, TRUE);
6478
6479 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6480
6481 /* Relocate against local STT_GNU_IFUNC symbol. */
6482 if (!bfd_link_relocatable (info)
6483 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6484 {
6485 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6486 rel, FALSE);
6487 if (h == NULL)
6488 abort ();
6489
6490 /* Set STT_GNU_IFUNC symbol value. */
6491 h->root.u.def.value = sym->st_value;
6492 h->root.u.def.section = sec;
6493 }
6494 }
6495 else
6496 {
6497 bfd_boolean warned, ignored;
6498
6499 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6500 r_symndx, symtab_hdr, sym_hashes,
6501 h, sec, relocation,
6502 unresolved_reloc, warned, ignored);
6503
6504 sym_type = h->type;
6505 }
6506
6507 if (sec != NULL && discarded_section (sec))
6508 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6509 rel, 1, relend, howto, 0, contents);
6510
6511 if (bfd_link_relocatable (info))
6512 continue;
6513
6514 if (h != NULL)
6515 name = h->root.root.string;
6516 else
6517 {
6518 name = (bfd_elf_string_from_elf_section
6519 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6520 if (name == NULL || *name == '\0')
6521 name = bfd_section_name (input_bfd, sec);
6522 }
6523
6524 if (r_symndx != 0
6525 && r_type != R_AARCH64_NONE
6526 && r_type != R_AARCH64_NULL
6527 && (h == NULL
6528 || h->root.type == bfd_link_hash_defined
6529 || h->root.type == bfd_link_hash_defweak)
6530 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6531 {
6532 _bfd_error_handler
6533 ((sym_type == STT_TLS
6534 /* xgettext:c-format */
6535 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6536 /* xgettext:c-format */
6537 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6538 input_bfd,
6539 input_section, (uint64_t) rel->r_offset, howto->name, name);
6540 }
6541
6542 /* We relax only if we can see that there can be a valid transition
6543 from a reloc type to another.
6544 We call elfNN_aarch64_final_link_relocate unless we're completely
6545 done, i.e., the relaxation produced the final output we want. */
6546
6547 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6548 h, r_symndx);
6549 if (relaxed_bfd_r_type != bfd_r_type)
6550 {
6551 bfd_r_type = relaxed_bfd_r_type;
6552 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6553 BFD_ASSERT (howto != NULL);
6554 r_type = howto->type;
6555 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6556 contents, rel, h);
6557 unresolved_reloc = 0;
6558 }
6559 else
6560 r = bfd_reloc_continue;
6561
6562 /* There may be multiple consecutive relocations for the
6563 same offset. In that case we are supposed to treat the
6564 output of each relocation as the addend for the next. */
6565 if (rel + 1 < relend
6566 && rel->r_offset == rel[1].r_offset
6567 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6568 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6569 save_addend = TRUE;
6570 else
6571 save_addend = FALSE;
6572
6573 if (r == bfd_reloc_continue)
6574 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6575 input_section, contents, rel,
6576 relocation, info, sec,
6577 h, &unresolved_reloc,
6578 save_addend, &addend, sym);
6579
6580 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6581 {
6582 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6583 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6584 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6585 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6586 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6587 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6588 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6589 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6590 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6591 {
6592 bfd_boolean need_relocs = FALSE;
6593 bfd_byte *loc;
6594 int indx;
6595 bfd_vma off;
6596
6597 off = symbol_got_offset (input_bfd, h, r_symndx);
6598 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6599
6600 need_relocs =
6601 (!bfd_link_executable (info) || indx != 0) &&
6602 (h == NULL
6603 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6604 || h->root.type != bfd_link_hash_undefweak);
6605
6606 BFD_ASSERT (globals->root.srelgot != NULL);
6607
6608 if (need_relocs)
6609 {
6610 Elf_Internal_Rela rela;
6611 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6612 rela.r_addend = 0;
6613 rela.r_offset = globals->root.sgot->output_section->vma +
6614 globals->root.sgot->output_offset + off;
6615
6616
6617 loc = globals->root.srelgot->contents;
6618 loc += globals->root.srelgot->reloc_count++
6619 * RELOC_SIZE (htab);
6620 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6621
6622 bfd_reloc_code_real_type real_type =
6623 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6624
6625 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6626 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6627 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6628 {
6629 /* For local dynamic, don't generate DTPREL in any case.
6630 Initialize the DTPREL slot into zero, so we get module
6631 base address when invoke runtime TLS resolver. */
6632 bfd_put_NN (output_bfd, 0,
6633 globals->root.sgot->contents + off
6634 + GOT_ENTRY_SIZE);
6635 }
6636 else if (indx == 0)
6637 {
6638 bfd_put_NN (output_bfd,
6639 relocation - dtpoff_base (info),
6640 globals->root.sgot->contents + off
6641 + GOT_ENTRY_SIZE);
6642 }
6643 else
6644 {
6645 /* This TLS symbol is global. We emit a
6646 relocation to fixup the tls offset at load
6647 time. */
6648 rela.r_info =
6649 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6650 rela.r_addend = 0;
6651 rela.r_offset =
6652 (globals->root.sgot->output_section->vma
6653 + globals->root.sgot->output_offset + off
6654 + GOT_ENTRY_SIZE);
6655
6656 loc = globals->root.srelgot->contents;
6657 loc += globals->root.srelgot->reloc_count++
6658 * RELOC_SIZE (globals);
6659 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6660 bfd_put_NN (output_bfd, (bfd_vma) 0,
6661 globals->root.sgot->contents + off
6662 + GOT_ENTRY_SIZE);
6663 }
6664 }
6665 else
6666 {
6667 bfd_put_NN (output_bfd, (bfd_vma) 1,
6668 globals->root.sgot->contents + off);
6669 bfd_put_NN (output_bfd,
6670 relocation - dtpoff_base (info),
6671 globals->root.sgot->contents + off
6672 + GOT_ENTRY_SIZE);
6673 }
6674
6675 symbol_got_offset_mark (input_bfd, h, r_symndx);
6676 }
6677 break;
6678
6679 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6680 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6681 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6682 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6683 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6684 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6685 {
6686 bfd_boolean need_relocs = FALSE;
6687 bfd_byte *loc;
6688 int indx;
6689 bfd_vma off;
6690
6691 off = symbol_got_offset (input_bfd, h, r_symndx);
6692
6693 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6694
6695 need_relocs =
6696 (!bfd_link_executable (info) || indx != 0) &&
6697 (h == NULL
6698 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6699 || h->root.type != bfd_link_hash_undefweak);
6700
6701 BFD_ASSERT (globals->root.srelgot != NULL);
6702
6703 if (need_relocs)
6704 {
6705 Elf_Internal_Rela rela;
6706
6707 if (indx == 0)
6708 rela.r_addend = relocation - dtpoff_base (info);
6709 else
6710 rela.r_addend = 0;
6711
6712 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6713 rela.r_offset = globals->root.sgot->output_section->vma +
6714 globals->root.sgot->output_offset + off;
6715
6716 loc = globals->root.srelgot->contents;
6717 loc += globals->root.srelgot->reloc_count++
6718 * RELOC_SIZE (htab);
6719
6720 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6721
6722 bfd_put_NN (output_bfd, rela.r_addend,
6723 globals->root.sgot->contents + off);
6724 }
6725 else
6726 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6727 globals->root.sgot->contents + off);
6728
6729 symbol_got_offset_mark (input_bfd, h, r_symndx);
6730 }
6731 break;
6732
6733 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6734 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6735 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6736 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6737 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6738 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6739 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6740 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6741 {
6742 bfd_boolean need_relocs = FALSE;
6743 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6744 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6745
6746 need_relocs = (h == NULL
6747 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6748 || h->root.type != bfd_link_hash_undefweak);
6749
6750 BFD_ASSERT (globals->root.srelgot != NULL);
6751 BFD_ASSERT (globals->root.sgot != NULL);
6752
6753 if (need_relocs)
6754 {
6755 bfd_byte *loc;
6756 Elf_Internal_Rela rela;
6757 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6758
6759 rela.r_addend = 0;
6760 rela.r_offset = (globals->root.sgotplt->output_section->vma
6761 + globals->root.sgotplt->output_offset
6762 + off + globals->sgotplt_jump_table_size);
6763
6764 if (indx == 0)
6765 rela.r_addend = relocation - dtpoff_base (info);
6766
6767 /* Allocate the next available slot in the PLT reloc
6768 section to hold our R_AARCH64_TLSDESC, the next
6769 available slot is determined from reloc_count,
6770 which we step. But note, reloc_count was
6771 artifically moved down while allocating slots for
6772 real PLT relocs such that all of the PLT relocs
6773 will fit above the initial reloc_count and the
6774 extra stuff will fit below. */
6775 loc = globals->root.srelplt->contents;
6776 loc += globals->root.srelplt->reloc_count++
6777 * RELOC_SIZE (globals);
6778
6779 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6780
6781 bfd_put_NN (output_bfd, (bfd_vma) 0,
6782 globals->root.sgotplt->contents + off +
6783 globals->sgotplt_jump_table_size);
6784 bfd_put_NN (output_bfd, (bfd_vma) 0,
6785 globals->root.sgotplt->contents + off +
6786 globals->sgotplt_jump_table_size +
6787 GOT_ENTRY_SIZE);
6788 }
6789
6790 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6791 }
6792 break;
6793 default:
6794 break;
6795 }
6796
6797 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6798 because such sections are not SEC_ALLOC and thus ld.so will
6799 not process them. */
6800 if (unresolved_reloc
6801 && !((input_section->flags & SEC_DEBUGGING) != 0
6802 && h->def_dynamic)
6803 && _bfd_elf_section_offset (output_bfd, info, input_section,
6804 +rel->r_offset) != (bfd_vma) - 1)
6805 {
6806 _bfd_error_handler
6807 /* xgettext:c-format */
6808 (_("%pB(%pA+%#" PRIx64 "): "
6809 "unresolvable %s relocation against symbol `%s'"),
6810 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
6811 h->root.root.string);
6812 return FALSE;
6813 }
6814
6815 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6816 {
6817 bfd_reloc_code_real_type real_r_type
6818 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6819
6820 switch (r)
6821 {
6822 case bfd_reloc_overflow:
6823 (*info->callbacks->reloc_overflow)
6824 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6825 input_bfd, input_section, rel->r_offset);
6826 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6827 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6828 {
6829 (*info->callbacks->warning)
6830 (info,
6831 _("too many GOT entries for -fpic, "
6832 "please recompile with -fPIC"),
6833 name, input_bfd, input_section, rel->r_offset);
6834 return FALSE;
6835 }
6836 /* Overflow can occur when a variable is referenced with a type
6837 that has a larger alignment than the type with which it was
6838 declared. eg:
6839 file1.c: extern int foo; int a (void) { return foo; }
6840 file2.c: char bar, foo, baz;
6841 If the variable is placed into a data section at an offset
6842 that is incompatible with the larger alignment requirement
6843 overflow will occur. (Strictly speaking this is not overflow
6844 but rather an alignment problem, but the bfd_reloc_ error
6845 enum does not have a value to cover that situation).
6846
6847 Try to catch this situation here and provide a more helpful
6848 error message to the user. */
6849 if (addend & ((1 << howto->rightshift) - 1)
6850 /* FIXME: Are we testing all of the appropriate reloc
6851 types here ? */
6852 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6853 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6854 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6855 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6856 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6857 {
6858 info->callbacks->warning
6859 (info, _("one possible cause of this error is that the \
6860 symbol is being referenced in the indicated code as if it had a larger \
6861 alignment than was declared where it was defined"),
6862 name, input_bfd, input_section, rel->r_offset);
6863 }
6864 break;
6865
6866 case bfd_reloc_undefined:
6867 (*info->callbacks->undefined_symbol)
6868 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6869 break;
6870
6871 case bfd_reloc_outofrange:
6872 error_message = _("out of range");
6873 goto common_error;
6874
6875 case bfd_reloc_notsupported:
6876 error_message = _("unsupported relocation");
6877 goto common_error;
6878
6879 case bfd_reloc_dangerous:
6880 /* error_message should already be set. */
6881 goto common_error;
6882
6883 default:
6884 error_message = _("unknown error");
6885 /* Fall through. */
6886
6887 common_error:
6888 BFD_ASSERT (error_message != NULL);
6889 (*info->callbacks->reloc_dangerous)
6890 (info, error_message, input_bfd, input_section, rel->r_offset);
6891 break;
6892 }
6893 }
6894
6895 if (!save_addend)
6896 addend = 0;
6897 }
6898
6899 return TRUE;
6900 }
6901
6902 /* Set the right machine number. */
6903
6904 static bfd_boolean
6905 elfNN_aarch64_object_p (bfd *abfd)
6906 {
6907 #if ARCH_SIZE == 32
6908 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6909 #else
6910 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6911 #endif
6912 return TRUE;
6913 }
6914
6915 /* Function to keep AArch64 specific flags in the ELF header. */
6916
6917 static bfd_boolean
6918 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6919 {
6920 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6921 {
6922 }
6923 else
6924 {
6925 elf_elfheader (abfd)->e_flags = flags;
6926 elf_flags_init (abfd) = TRUE;
6927 }
6928
6929 return TRUE;
6930 }
6931
6932 /* Merge backend specific data from an object file to the output
6933 object file when linking. */
6934
6935 static bfd_boolean
6936 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6937 {
6938 bfd *obfd = info->output_bfd;
6939 flagword out_flags;
6940 flagword in_flags;
6941 bfd_boolean flags_compatible = TRUE;
6942 asection *sec;
6943
6944 /* Check if we have the same endianess. */
6945 if (!_bfd_generic_verify_endian_match (ibfd, info))
6946 return FALSE;
6947
6948 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6949 return TRUE;
6950
6951 /* The input BFD must have had its flags initialised. */
6952 /* The following seems bogus to me -- The flags are initialized in
6953 the assembler but I don't think an elf_flags_init field is
6954 written into the object. */
6955 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6956
6957 in_flags = elf_elfheader (ibfd)->e_flags;
6958 out_flags = elf_elfheader (obfd)->e_flags;
6959
6960 if (!elf_flags_init (obfd))
6961 {
6962 /* If the input is the default architecture and had the default
6963 flags then do not bother setting the flags for the output
6964 architecture, instead allow future merges to do this. If no
6965 future merges ever set these flags then they will retain their
6966 uninitialised values, which surprise surprise, correspond
6967 to the default values. */
6968 if (bfd_get_arch_info (ibfd)->the_default
6969 && elf_elfheader (ibfd)->e_flags == 0)
6970 return TRUE;
6971
6972 elf_flags_init (obfd) = TRUE;
6973 elf_elfheader (obfd)->e_flags = in_flags;
6974
6975 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6976 && bfd_get_arch_info (obfd)->the_default)
6977 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6978 bfd_get_mach (ibfd));
6979
6980 return TRUE;
6981 }
6982
6983 /* Identical flags must be compatible. */
6984 if (in_flags == out_flags)
6985 return TRUE;
6986
6987 /* Check to see if the input BFD actually contains any sections. If
6988 not, its flags may not have been initialised either, but it
6989 cannot actually cause any incompatiblity. Do not short-circuit
6990 dynamic objects; their section list may be emptied by
6991 elf_link_add_object_symbols.
6992
6993 Also check to see if there are no code sections in the input.
6994 In this case there is no need to check for code specific flags.
6995 XXX - do we need to worry about floating-point format compatability
6996 in data sections ? */
6997 if (!(ibfd->flags & DYNAMIC))
6998 {
6999 bfd_boolean null_input_bfd = TRUE;
7000 bfd_boolean only_data_sections = TRUE;
7001
7002 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7003 {
7004 if ((bfd_get_section_flags (ibfd, sec)
7005 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7006 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7007 only_data_sections = FALSE;
7008
7009 null_input_bfd = FALSE;
7010 break;
7011 }
7012
7013 if (null_input_bfd || only_data_sections)
7014 return TRUE;
7015 }
7016
7017 return flags_compatible;
7018 }
7019
7020 /* Display the flags field. */
7021
7022 static bfd_boolean
7023 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7024 {
7025 FILE *file = (FILE *) ptr;
7026 unsigned long flags;
7027
7028 BFD_ASSERT (abfd != NULL && ptr != NULL);
7029
7030 /* Print normal ELF private data. */
7031 _bfd_elf_print_private_bfd_data (abfd, ptr);
7032
7033 flags = elf_elfheader (abfd)->e_flags;
7034 /* Ignore init flag - it may not be set, despite the flags field
7035 containing valid data. */
7036
7037 /* xgettext:c-format */
7038 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7039
7040 if (flags)
7041 fprintf (file, _("<Unrecognised flag bits set>"));
7042
7043 fputc ('\n', file);
7044
7045 return TRUE;
7046 }
7047
7048 /* Find dynamic relocs for H that apply to read-only sections. */
7049
7050 static asection *
7051 readonly_dynrelocs (struct elf_link_hash_entry *h)
7052 {
7053 struct elf_dyn_relocs *p;
7054
7055 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7056 {
7057 asection *s = p->sec->output_section;
7058
7059 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7060 return p->sec;
7061 }
7062 return NULL;
7063 }
7064
7065 /* Return true if we need copy relocation against EH. */
7066
7067 static bfd_boolean
7068 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7069 {
7070 struct elf_dyn_relocs *p;
7071 asection *s;
7072
7073 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7074 {
7075 /* If there is any pc-relative reference, we need to keep copy relocation
7076 to avoid propagating the relocation into runtime that current glibc
7077 does not support. */
7078 if (p->pc_count)
7079 return TRUE;
7080
7081 s = p->sec->output_section;
7082 /* Need copy relocation if it's against read-only section. */
7083 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7084 return TRUE;
7085 }
7086
7087 return FALSE;
7088 }
7089
7090 /* Adjust a symbol defined by a dynamic object and referenced by a
7091 regular object. The current definition is in some section of the
7092 dynamic object, but we're not including those sections. We have to
7093 change the definition to something the rest of the link can
7094 understand. */
7095
7096 static bfd_boolean
7097 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7098 struct elf_link_hash_entry *h)
7099 {
7100 struct elf_aarch64_link_hash_table *htab;
7101 asection *s, *srel;
7102
7103 /* If this is a function, put it in the procedure linkage table. We
7104 will fill in the contents of the procedure linkage table later,
7105 when we know the address of the .got section. */
7106 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7107 {
7108 if (h->plt.refcount <= 0
7109 || (h->type != STT_GNU_IFUNC
7110 && (SYMBOL_CALLS_LOCAL (info, h)
7111 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7112 && h->root.type == bfd_link_hash_undefweak))))
7113 {
7114 /* This case can occur if we saw a CALL26 reloc in
7115 an input file, but the symbol wasn't referred to
7116 by a dynamic object or all references were
7117 garbage collected. In which case we can end up
7118 resolving. */
7119 h->plt.offset = (bfd_vma) - 1;
7120 h->needs_plt = 0;
7121 }
7122
7123 return TRUE;
7124 }
7125 else
7126 /* Otherwise, reset to -1. */
7127 h->plt.offset = (bfd_vma) - 1;
7128
7129
7130 /* If this is a weak symbol, and there is a real definition, the
7131 processor independent code will have arranged for us to see the
7132 real definition first, and we can just use the same value. */
7133 if (h->is_weakalias)
7134 {
7135 struct elf_link_hash_entry *def = weakdef (h);
7136 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7137 h->root.u.def.section = def->root.u.def.section;
7138 h->root.u.def.value = def->root.u.def.value;
7139 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7140 h->non_got_ref = def->non_got_ref;
7141 return TRUE;
7142 }
7143
7144 /* If we are creating a shared library, we must presume that the
7145 only references to the symbol are via the global offset table.
7146 For such cases we need not do anything here; the relocations will
7147 be handled correctly by relocate_section. */
7148 if (bfd_link_pic (info))
7149 return TRUE;
7150
7151 /* If there are no references to this symbol that do not use the
7152 GOT, we don't need to generate a copy reloc. */
7153 if (!h->non_got_ref)
7154 return TRUE;
7155
7156 /* If -z nocopyreloc was given, we won't generate them either. */
7157 if (info->nocopyreloc)
7158 {
7159 h->non_got_ref = 0;
7160 return TRUE;
7161 }
7162
7163 if (ELIMINATE_COPY_RELOCS)
7164 {
7165 struct elf_aarch64_link_hash_entry *eh;
7166 /* If we don't find any dynamic relocs in read-only sections, then
7167 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7168 eh = (struct elf_aarch64_link_hash_entry *) h;
7169 if (!need_copy_relocation_p (eh))
7170 {
7171 h->non_got_ref = 0;
7172 return TRUE;
7173 }
7174 }
7175
7176 /* We must allocate the symbol in our .dynbss section, which will
7177 become part of the .bss section of the executable. There will be
7178 an entry for this symbol in the .dynsym section. The dynamic
7179 object will contain position independent code, so all references
7180 from the dynamic object to this symbol will go through the global
7181 offset table. The dynamic linker will use the .dynsym entry to
7182 determine the address it must put in the global offset table, so
7183 both the dynamic object and the regular object will refer to the
7184 same memory location for the variable. */
7185
7186 htab = elf_aarch64_hash_table (info);
7187
7188 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7189 to copy the initial value out of the dynamic object and into the
7190 runtime process image. */
7191 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7192 {
7193 s = htab->root.sdynrelro;
7194 srel = htab->root.sreldynrelro;
7195 }
7196 else
7197 {
7198 s = htab->root.sdynbss;
7199 srel = htab->root.srelbss;
7200 }
7201 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7202 {
7203 srel->size += RELOC_SIZE (htab);
7204 h->needs_copy = 1;
7205 }
7206
7207 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7208
7209 }
7210
7211 static bfd_boolean
7212 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7213 {
7214 struct elf_aarch64_local_symbol *locals;
7215 locals = elf_aarch64_locals (abfd);
7216 if (locals == NULL)
7217 {
7218 locals = (struct elf_aarch64_local_symbol *)
7219 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7220 if (locals == NULL)
7221 return FALSE;
7222 elf_aarch64_locals (abfd) = locals;
7223 }
7224 return TRUE;
7225 }
7226
7227 /* Create the .got section to hold the global offset table. */
7228
7229 static bfd_boolean
7230 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7231 {
7232 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7233 flagword flags;
7234 asection *s;
7235 struct elf_link_hash_entry *h;
7236 struct elf_link_hash_table *htab = elf_hash_table (info);
7237
7238 /* This function may be called more than once. */
7239 if (htab->sgot != NULL)
7240 return TRUE;
7241
7242 flags = bed->dynamic_sec_flags;
7243
7244 s = bfd_make_section_anyway_with_flags (abfd,
7245 (bed->rela_plts_and_copies_p
7246 ? ".rela.got" : ".rel.got"),
7247 (bed->dynamic_sec_flags
7248 | SEC_READONLY));
7249 if (s == NULL
7250 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7251 return FALSE;
7252 htab->srelgot = s;
7253
7254 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7255 if (s == NULL
7256 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7257 return FALSE;
7258 htab->sgot = s;
7259 htab->sgot->size += GOT_ENTRY_SIZE;
7260
7261 if (bed->want_got_sym)
7262 {
7263 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7264 (or .got.plt) section. We don't do this in the linker script
7265 because we don't want to define the symbol if we are not creating
7266 a global offset table. */
7267 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7268 "_GLOBAL_OFFSET_TABLE_");
7269 elf_hash_table (info)->hgot = h;
7270 if (h == NULL)
7271 return FALSE;
7272 }
7273
7274 if (bed->want_got_plt)
7275 {
7276 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7277 if (s == NULL
7278 || !bfd_set_section_alignment (abfd, s,
7279 bed->s->log_file_align))
7280 return FALSE;
7281 htab->sgotplt = s;
7282 }
7283
7284 /* The first bit of the global offset table is the header. */
7285 s->size += bed->got_header_size;
7286
7287 return TRUE;
7288 }
7289
7290 /* Look through the relocs for a section during the first phase. */
7291
7292 static bfd_boolean
7293 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7294 asection *sec, const Elf_Internal_Rela *relocs)
7295 {
7296 Elf_Internal_Shdr *symtab_hdr;
7297 struct elf_link_hash_entry **sym_hashes;
7298 const Elf_Internal_Rela *rel;
7299 const Elf_Internal_Rela *rel_end;
7300 asection *sreloc;
7301
7302 struct elf_aarch64_link_hash_table *htab;
7303
7304 if (bfd_link_relocatable (info))
7305 return TRUE;
7306
7307 BFD_ASSERT (is_aarch64_elf (abfd));
7308
7309 htab = elf_aarch64_hash_table (info);
7310 sreloc = NULL;
7311
7312 symtab_hdr = &elf_symtab_hdr (abfd);
7313 sym_hashes = elf_sym_hashes (abfd);
7314
7315 rel_end = relocs + sec->reloc_count;
7316 for (rel = relocs; rel < rel_end; rel++)
7317 {
7318 struct elf_link_hash_entry *h;
7319 unsigned int r_symndx;
7320 unsigned int r_type;
7321 bfd_reloc_code_real_type bfd_r_type;
7322 Elf_Internal_Sym *isym;
7323
7324 r_symndx = ELFNN_R_SYM (rel->r_info);
7325 r_type = ELFNN_R_TYPE (rel->r_info);
7326
7327 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7328 {
7329 /* xgettext:c-format */
7330 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7331 return FALSE;
7332 }
7333
7334 if (r_symndx < symtab_hdr->sh_info)
7335 {
7336 /* A local symbol. */
7337 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7338 abfd, r_symndx);
7339 if (isym == NULL)
7340 return FALSE;
7341
7342 /* Check relocation against local STT_GNU_IFUNC symbol. */
7343 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7344 {
7345 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7346 TRUE);
7347 if (h == NULL)
7348 return FALSE;
7349
7350 /* Fake a STT_GNU_IFUNC symbol. */
7351 h->type = STT_GNU_IFUNC;
7352 h->def_regular = 1;
7353 h->ref_regular = 1;
7354 h->forced_local = 1;
7355 h->root.type = bfd_link_hash_defined;
7356 }
7357 else
7358 h = NULL;
7359 }
7360 else
7361 {
7362 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7363 while (h->root.type == bfd_link_hash_indirect
7364 || h->root.type == bfd_link_hash_warning)
7365 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7366 }
7367
7368 /* Could be done earlier, if h were already available. */
7369 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7370
7371 if (h != NULL)
7372 {
7373 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7374 This shows up in particular in an R_AARCH64_PREL64 in large model
7375 when calculating the pc-relative address to .got section which is
7376 used to initialize the gp register. */
7377 if (h->root.root.string
7378 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7379 {
7380 if (htab->root.dynobj == NULL)
7381 htab->root.dynobj = abfd;
7382
7383 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7384 return FALSE;
7385
7386 BFD_ASSERT (h == htab->root.hgot);
7387 }
7388
7389 /* Create the ifunc sections for static executables. If we
7390 never see an indirect function symbol nor we are building
7391 a static executable, those sections will be empty and
7392 won't appear in output. */
7393 switch (bfd_r_type)
7394 {
7395 default:
7396 break;
7397
7398 case BFD_RELOC_AARCH64_ADD_LO12:
7399 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7400 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7401 case BFD_RELOC_AARCH64_CALL26:
7402 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7403 case BFD_RELOC_AARCH64_JUMP26:
7404 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7405 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7406 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7407 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7408 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7409 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7410 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7411 case BFD_RELOC_AARCH64_NN:
7412 if (htab->root.dynobj == NULL)
7413 htab->root.dynobj = abfd;
7414 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7415 return FALSE;
7416 break;
7417 }
7418
7419 /* It is referenced by a non-shared object. */
7420 h->ref_regular = 1;
7421 }
7422
7423 switch (bfd_r_type)
7424 {
7425 case BFD_RELOC_AARCH64_16:
7426 #if ARCH_SIZE == 64
7427 case BFD_RELOC_AARCH64_32:
7428 #endif
7429 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7430 {
7431 if (h != NULL
7432 /* This is an absolute symbol. It represents a value instead
7433 of an address. */
7434 && (bfd_is_abs_symbol (&h->root)
7435 /* This is an undefined symbol. */
7436 || h->root.type == bfd_link_hash_undefined))
7437 break;
7438
7439 /* For local symbols, defined global symbols in a non-ABS section,
7440 it is assumed that the value is an address. */
7441 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7442 _bfd_error_handler
7443 /* xgettext:c-format */
7444 (_("%pB: relocation %s against `%s' can not be used when making "
7445 "a shared object"),
7446 abfd, elfNN_aarch64_howto_table[howto_index].name,
7447 (h) ? h->root.root.string : "a local symbol");
7448 bfd_set_error (bfd_error_bad_value);
7449 return FALSE;
7450 }
7451 else
7452 break;
7453
7454 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7455 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7456 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7457 case BFD_RELOC_AARCH64_MOVW_G3:
7458 if (bfd_link_pic (info))
7459 {
7460 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7461 _bfd_error_handler
7462 /* xgettext:c-format */
7463 (_("%pB: relocation %s against `%s' can not be used when making "
7464 "a shared object; recompile with -fPIC"),
7465 abfd, elfNN_aarch64_howto_table[howto_index].name,
7466 (h) ? h->root.root.string : "a local symbol");
7467 bfd_set_error (bfd_error_bad_value);
7468 return FALSE;
7469 }
7470 /* Fall through. */
7471
7472 case BFD_RELOC_AARCH64_16_PCREL:
7473 case BFD_RELOC_AARCH64_32_PCREL:
7474 case BFD_RELOC_AARCH64_64_PCREL:
7475 case BFD_RELOC_AARCH64_ADD_LO12:
7476 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7477 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7478 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7479 case BFD_RELOC_AARCH64_LDST128_LO12:
7480 case BFD_RELOC_AARCH64_LDST16_LO12:
7481 case BFD_RELOC_AARCH64_LDST32_LO12:
7482 case BFD_RELOC_AARCH64_LDST64_LO12:
7483 case BFD_RELOC_AARCH64_LDST8_LO12:
7484 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7485 if (h == NULL || bfd_link_pic (info))
7486 break;
7487 /* Fall through. */
7488
7489 case BFD_RELOC_AARCH64_NN:
7490
7491 /* We don't need to handle relocs into sections not going into
7492 the "real" output. */
7493 if ((sec->flags & SEC_ALLOC) == 0)
7494 break;
7495
7496 if (h != NULL)
7497 {
7498 if (!bfd_link_pic (info))
7499 h->non_got_ref = 1;
7500
7501 h->plt.refcount += 1;
7502 h->pointer_equality_needed = 1;
7503 }
7504
7505 /* No need to do anything if we're not creating a shared
7506 object. */
7507 if (!(bfd_link_pic (info)
7508 /* If on the other hand, we are creating an executable, we
7509 may need to keep relocations for symbols satisfied by a
7510 dynamic library if we manage to avoid copy relocs for the
7511 symbol.
7512
7513 NOTE: Currently, there is no support of copy relocs
7514 elimination on pc-relative relocation types, because there is
7515 no dynamic relocation support for them in glibc. We still
7516 record the dynamic symbol reference for them. This is
7517 because one symbol may be referenced by both absolute
7518 relocation (for example, BFD_RELOC_AARCH64_NN) and
7519 pc-relative relocation. We need full symbol reference
7520 information to make correct decision later in
7521 elfNN_aarch64_adjust_dynamic_symbol. */
7522 || (ELIMINATE_COPY_RELOCS
7523 && !bfd_link_pic (info)
7524 && h != NULL
7525 && (h->root.type == bfd_link_hash_defweak
7526 || !h->def_regular))))
7527 break;
7528
7529 {
7530 struct elf_dyn_relocs *p;
7531 struct elf_dyn_relocs **head;
7532 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7533
7534 /* We must copy these reloc types into the output file.
7535 Create a reloc section in dynobj and make room for
7536 this reloc. */
7537 if (sreloc == NULL)
7538 {
7539 if (htab->root.dynobj == NULL)
7540 htab->root.dynobj = abfd;
7541
7542 sreloc = _bfd_elf_make_dynamic_reloc_section
7543 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7544
7545 if (sreloc == NULL)
7546 return FALSE;
7547 }
7548
7549 /* If this is a global symbol, we count the number of
7550 relocations we need for this symbol. */
7551 if (h != NULL)
7552 {
7553 struct elf_aarch64_link_hash_entry *eh;
7554 eh = (struct elf_aarch64_link_hash_entry *) h;
7555 head = &eh->dyn_relocs;
7556 }
7557 else
7558 {
7559 /* Track dynamic relocs needed for local syms too.
7560 We really need local syms available to do this
7561 easily. Oh well. */
7562
7563 asection *s;
7564 void **vpp;
7565
7566 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7567 abfd, r_symndx);
7568 if (isym == NULL)
7569 return FALSE;
7570
7571 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7572 if (s == NULL)
7573 s = sec;
7574
7575 /* Beware of type punned pointers vs strict aliasing
7576 rules. */
7577 vpp = &(elf_section_data (s)->local_dynrel);
7578 head = (struct elf_dyn_relocs **) vpp;
7579 }
7580
7581 p = *head;
7582 if (p == NULL || p->sec != sec)
7583 {
7584 bfd_size_type amt = sizeof *p;
7585 p = ((struct elf_dyn_relocs *)
7586 bfd_zalloc (htab->root.dynobj, amt));
7587 if (p == NULL)
7588 return FALSE;
7589 p->next = *head;
7590 *head = p;
7591 p->sec = sec;
7592 }
7593
7594 p->count += 1;
7595
7596 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7597 p->pc_count += 1;
7598 }
7599 break;
7600
7601 /* RR: We probably want to keep a consistency check that
7602 there are no dangling GOT_PAGE relocs. */
7603 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7604 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7605 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7606 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7607 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7608 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7609 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7610 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7611 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7612 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7613 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7614 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7615 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7616 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7617 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7618 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7619 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7620 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7621 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7622 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7623 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7624 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7625 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7626 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7627 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7628 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7629 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7630 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7631 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7632 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7633 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7634 {
7635 unsigned got_type;
7636 unsigned old_got_type;
7637
7638 got_type = aarch64_reloc_got_type (bfd_r_type);
7639
7640 if (h)
7641 {
7642 h->got.refcount += 1;
7643 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7644 }
7645 else
7646 {
7647 struct elf_aarch64_local_symbol *locals;
7648
7649 if (!elfNN_aarch64_allocate_local_symbols
7650 (abfd, symtab_hdr->sh_info))
7651 return FALSE;
7652
7653 locals = elf_aarch64_locals (abfd);
7654 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7655 locals[r_symndx].got_refcount += 1;
7656 old_got_type = locals[r_symndx].got_type;
7657 }
7658
7659 /* If a variable is accessed with both general dynamic TLS
7660 methods, two slots may be created. */
7661 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7662 got_type |= old_got_type;
7663
7664 /* We will already have issued an error message if there
7665 is a TLS/non-TLS mismatch, based on the symbol type.
7666 So just combine any TLS types needed. */
7667 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7668 && got_type != GOT_NORMAL)
7669 got_type |= old_got_type;
7670
7671 /* If the symbol is accessed by both IE and GD methods, we
7672 are able to relax. Turn off the GD flag, without
7673 messing up with any other kind of TLS types that may be
7674 involved. */
7675 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7676 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7677
7678 if (old_got_type != got_type)
7679 {
7680 if (h != NULL)
7681 elf_aarch64_hash_entry (h)->got_type = got_type;
7682 else
7683 {
7684 struct elf_aarch64_local_symbol *locals;
7685 locals = elf_aarch64_locals (abfd);
7686 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7687 locals[r_symndx].got_type = got_type;
7688 }
7689 }
7690
7691 if (htab->root.dynobj == NULL)
7692 htab->root.dynobj = abfd;
7693 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7694 return FALSE;
7695 break;
7696 }
7697
7698 case BFD_RELOC_AARCH64_CALL26:
7699 case BFD_RELOC_AARCH64_JUMP26:
7700 /* If this is a local symbol then we resolve it
7701 directly without creating a PLT entry. */
7702 if (h == NULL)
7703 continue;
7704
7705 h->needs_plt = 1;
7706 if (h->plt.refcount <= 0)
7707 h->plt.refcount = 1;
7708 else
7709 h->plt.refcount += 1;
7710 break;
7711
7712 default:
7713 break;
7714 }
7715 }
7716
7717 return TRUE;
7718 }
7719
7720 /* Treat mapping symbols as special target symbols. */
7721
7722 static bfd_boolean
7723 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7724 asymbol *sym)
7725 {
7726 return bfd_is_aarch64_special_symbol_name (sym->name,
7727 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7728 }
7729
7730 /* This is a copy of elf_find_function () from elf.c except that
7731 AArch64 mapping symbols are ignored when looking for function names. */
7732
7733 static bfd_boolean
7734 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7735 asymbol **symbols,
7736 asection *section,
7737 bfd_vma offset,
7738 const char **filename_ptr,
7739 const char **functionname_ptr)
7740 {
7741 const char *filename = NULL;
7742 asymbol *func = NULL;
7743 bfd_vma low_func = 0;
7744 asymbol **p;
7745
7746 for (p = symbols; *p != NULL; p++)
7747 {
7748 elf_symbol_type *q;
7749
7750 q = (elf_symbol_type *) * p;
7751
7752 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7753 {
7754 default:
7755 break;
7756 case STT_FILE:
7757 filename = bfd_asymbol_name (&q->symbol);
7758 break;
7759 case STT_FUNC:
7760 case STT_NOTYPE:
7761 /* Skip mapping symbols. */
7762 if ((q->symbol.flags & BSF_LOCAL)
7763 && (bfd_is_aarch64_special_symbol_name
7764 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7765 continue;
7766 /* Fall through. */
7767 if (bfd_get_section (&q->symbol) == section
7768 && q->symbol.value >= low_func && q->symbol.value <= offset)
7769 {
7770 func = (asymbol *) q;
7771 low_func = q->symbol.value;
7772 }
7773 break;
7774 }
7775 }
7776
7777 if (func == NULL)
7778 return FALSE;
7779
7780 if (filename_ptr)
7781 *filename_ptr = filename;
7782 if (functionname_ptr)
7783 *functionname_ptr = bfd_asymbol_name (func);
7784
7785 return TRUE;
7786 }
7787
7788
7789 /* Find the nearest line to a particular section and offset, for error
7790 reporting. This code is a duplicate of the code in elf.c, except
7791 that it uses aarch64_elf_find_function. */
7792
7793 static bfd_boolean
7794 elfNN_aarch64_find_nearest_line (bfd *abfd,
7795 asymbol **symbols,
7796 asection *section,
7797 bfd_vma offset,
7798 const char **filename_ptr,
7799 const char **functionname_ptr,
7800 unsigned int *line_ptr,
7801 unsigned int *discriminator_ptr)
7802 {
7803 bfd_boolean found = FALSE;
7804
7805 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7806 filename_ptr, functionname_ptr,
7807 line_ptr, discriminator_ptr,
7808 dwarf_debug_sections, 0,
7809 &elf_tdata (abfd)->dwarf2_find_line_info))
7810 {
7811 if (!*functionname_ptr)
7812 aarch64_elf_find_function (abfd, symbols, section, offset,
7813 *filename_ptr ? NULL : filename_ptr,
7814 functionname_ptr);
7815
7816 return TRUE;
7817 }
7818
7819 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7820 toolchain uses DWARF1. */
7821
7822 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7823 &found, filename_ptr,
7824 functionname_ptr, line_ptr,
7825 &elf_tdata (abfd)->line_info))
7826 return FALSE;
7827
7828 if (found && (*functionname_ptr || *line_ptr))
7829 return TRUE;
7830
7831 if (symbols == NULL)
7832 return FALSE;
7833
7834 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7835 filename_ptr, functionname_ptr))
7836 return FALSE;
7837
7838 *line_ptr = 0;
7839 return TRUE;
7840 }
7841
7842 static bfd_boolean
7843 elfNN_aarch64_find_inliner_info (bfd *abfd,
7844 const char **filename_ptr,
7845 const char **functionname_ptr,
7846 unsigned int *line_ptr)
7847 {
7848 bfd_boolean found;
7849 found = _bfd_dwarf2_find_inliner_info
7850 (abfd, filename_ptr,
7851 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7852 return found;
7853 }
7854
7855
7856 static void
7857 elfNN_aarch64_post_process_headers (bfd *abfd,
7858 struct bfd_link_info *link_info)
7859 {
7860 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7861
7862 i_ehdrp = elf_elfheader (abfd);
7863 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7864
7865 _bfd_elf_post_process_headers (abfd, link_info);
7866 }
7867
7868 static enum elf_reloc_type_class
7869 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7870 const asection *rel_sec ATTRIBUTE_UNUSED,
7871 const Elf_Internal_Rela *rela)
7872 {
7873 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7874
7875 if (htab->root.dynsym != NULL
7876 && htab->root.dynsym->contents != NULL)
7877 {
7878 /* Check relocation against STT_GNU_IFUNC symbol if there are
7879 dynamic symbols. */
7880 bfd *abfd = info->output_bfd;
7881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7882 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7883 if (r_symndx != STN_UNDEF)
7884 {
7885 Elf_Internal_Sym sym;
7886 if (!bed->s->swap_symbol_in (abfd,
7887 (htab->root.dynsym->contents
7888 + r_symndx * bed->s->sizeof_sym),
7889 0, &sym))
7890 {
7891 /* xgettext:c-format */
7892 _bfd_error_handler (_("%pB symbol number %lu references"
7893 " nonexistent SHT_SYMTAB_SHNDX section"),
7894 abfd, r_symndx);
7895 /* Ideally an error class should be returned here. */
7896 }
7897 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7898 return reloc_class_ifunc;
7899 }
7900 }
7901
7902 switch ((int) ELFNN_R_TYPE (rela->r_info))
7903 {
7904 case AARCH64_R (IRELATIVE):
7905 return reloc_class_ifunc;
7906 case AARCH64_R (RELATIVE):
7907 return reloc_class_relative;
7908 case AARCH64_R (JUMP_SLOT):
7909 return reloc_class_plt;
7910 case AARCH64_R (COPY):
7911 return reloc_class_copy;
7912 default:
7913 return reloc_class_normal;
7914 }
7915 }
7916
7917 /* Handle an AArch64 specific section when reading an object file. This is
7918 called when bfd_section_from_shdr finds a section with an unknown
7919 type. */
7920
7921 static bfd_boolean
7922 elfNN_aarch64_section_from_shdr (bfd *abfd,
7923 Elf_Internal_Shdr *hdr,
7924 const char *name, int shindex)
7925 {
7926 /* There ought to be a place to keep ELF backend specific flags, but
7927 at the moment there isn't one. We just keep track of the
7928 sections by their name, instead. Fortunately, the ABI gives
7929 names for all the AArch64 specific sections, so we will probably get
7930 away with this. */
7931 switch (hdr->sh_type)
7932 {
7933 case SHT_AARCH64_ATTRIBUTES:
7934 break;
7935
7936 default:
7937 return FALSE;
7938 }
7939
7940 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7941 return FALSE;
7942
7943 return TRUE;
7944 }
7945
7946 /* A structure used to record a list of sections, independently
7947 of the next and prev fields in the asection structure. */
7948 typedef struct section_list
7949 {
7950 asection *sec;
7951 struct section_list *next;
7952 struct section_list *prev;
7953 }
7954 section_list;
7955
7956 /* Unfortunately we need to keep a list of sections for which
7957 an _aarch64_elf_section_data structure has been allocated. This
7958 is because it is possible for functions like elfNN_aarch64_write_section
7959 to be called on a section which has had an elf_data_structure
7960 allocated for it (and so the used_by_bfd field is valid) but
7961 for which the AArch64 extended version of this structure - the
7962 _aarch64_elf_section_data structure - has not been allocated. */
7963 static section_list *sections_with_aarch64_elf_section_data = NULL;
7964
7965 static void
7966 record_section_with_aarch64_elf_section_data (asection *sec)
7967 {
7968 struct section_list *entry;
7969
7970 entry = bfd_malloc (sizeof (*entry));
7971 if (entry == NULL)
7972 return;
7973 entry->sec = sec;
7974 entry->next = sections_with_aarch64_elf_section_data;
7975 entry->prev = NULL;
7976 if (entry->next != NULL)
7977 entry->next->prev = entry;
7978 sections_with_aarch64_elf_section_data = entry;
7979 }
7980
7981 static struct section_list *
7982 find_aarch64_elf_section_entry (asection *sec)
7983 {
7984 struct section_list *entry;
7985 static struct section_list *last_entry = NULL;
7986
7987 /* This is a short cut for the typical case where the sections are added
7988 to the sections_with_aarch64_elf_section_data list in forward order and
7989 then looked up here in backwards order. This makes a real difference
7990 to the ld-srec/sec64k.exp linker test. */
7991 entry = sections_with_aarch64_elf_section_data;
7992 if (last_entry != NULL)
7993 {
7994 if (last_entry->sec == sec)
7995 entry = last_entry;
7996 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7997 entry = last_entry->next;
7998 }
7999
8000 for (; entry; entry = entry->next)
8001 if (entry->sec == sec)
8002 break;
8003
8004 if (entry)
8005 /* Record the entry prior to this one - it is the entry we are
8006 most likely to want to locate next time. Also this way if we
8007 have been called from
8008 unrecord_section_with_aarch64_elf_section_data () we will not
8009 be caching a pointer that is about to be freed. */
8010 last_entry = entry->prev;
8011
8012 return entry;
8013 }
8014
8015 static void
8016 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8017 {
8018 struct section_list *entry;
8019
8020 entry = find_aarch64_elf_section_entry (sec);
8021
8022 if (entry)
8023 {
8024 if (entry->prev != NULL)
8025 entry->prev->next = entry->next;
8026 if (entry->next != NULL)
8027 entry->next->prev = entry->prev;
8028 if (entry == sections_with_aarch64_elf_section_data)
8029 sections_with_aarch64_elf_section_data = entry->next;
8030 free (entry);
8031 }
8032 }
8033
8034
8035 typedef struct
8036 {
8037 void *finfo;
8038 struct bfd_link_info *info;
8039 asection *sec;
8040 int sec_shndx;
8041 int (*func) (void *, const char *, Elf_Internal_Sym *,
8042 asection *, struct elf_link_hash_entry *);
8043 } output_arch_syminfo;
8044
8045 enum map_symbol_type
8046 {
8047 AARCH64_MAP_INSN,
8048 AARCH64_MAP_DATA
8049 };
8050
8051
8052 /* Output a single mapping symbol. */
8053
8054 static bfd_boolean
8055 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8056 enum map_symbol_type type, bfd_vma offset)
8057 {
8058 static const char *names[2] = { "$x", "$d" };
8059 Elf_Internal_Sym sym;
8060
8061 sym.st_value = (osi->sec->output_section->vma
8062 + osi->sec->output_offset + offset);
8063 sym.st_size = 0;
8064 sym.st_other = 0;
8065 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8066 sym.st_shndx = osi->sec_shndx;
8067 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8068 }
8069
8070 /* Output a single local symbol for a generated stub. */
8071
8072 static bfd_boolean
8073 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8074 bfd_vma offset, bfd_vma size)
8075 {
8076 Elf_Internal_Sym sym;
8077
8078 sym.st_value = (osi->sec->output_section->vma
8079 + osi->sec->output_offset + offset);
8080 sym.st_size = size;
8081 sym.st_other = 0;
8082 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8083 sym.st_shndx = osi->sec_shndx;
8084 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8085 }
8086
8087 static bfd_boolean
8088 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8089 {
8090 struct elf_aarch64_stub_hash_entry *stub_entry;
8091 asection *stub_sec;
8092 bfd_vma addr;
8093 char *stub_name;
8094 output_arch_syminfo *osi;
8095
8096 /* Massage our args to the form they really have. */
8097 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8098 osi = (output_arch_syminfo *) in_arg;
8099
8100 stub_sec = stub_entry->stub_sec;
8101
8102 /* Ensure this stub is attached to the current section being
8103 processed. */
8104 if (stub_sec != osi->sec)
8105 return TRUE;
8106
8107 addr = (bfd_vma) stub_entry->stub_offset;
8108
8109 stub_name = stub_entry->output_name;
8110
8111 switch (stub_entry->stub_type)
8112 {
8113 case aarch64_stub_adrp_branch:
8114 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8115 sizeof (aarch64_adrp_branch_stub)))
8116 return FALSE;
8117 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8118 return FALSE;
8119 break;
8120 case aarch64_stub_long_branch:
8121 if (!elfNN_aarch64_output_stub_sym
8122 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8123 return FALSE;
8124 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8125 return FALSE;
8126 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8127 return FALSE;
8128 break;
8129 case aarch64_stub_erratum_835769_veneer:
8130 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8131 sizeof (aarch64_erratum_835769_stub)))
8132 return FALSE;
8133 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8134 return FALSE;
8135 break;
8136 case aarch64_stub_erratum_843419_veneer:
8137 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8138 sizeof (aarch64_erratum_843419_stub)))
8139 return FALSE;
8140 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8141 return FALSE;
8142 break;
8143 case aarch64_stub_none:
8144 break;
8145
8146 default:
8147 abort ();
8148 }
8149
8150 return TRUE;
8151 }
8152
8153 /* Output mapping symbols for linker generated sections. */
8154
8155 static bfd_boolean
8156 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8157 struct bfd_link_info *info,
8158 void *finfo,
8159 int (*func) (void *, const char *,
8160 Elf_Internal_Sym *,
8161 asection *,
8162 struct elf_link_hash_entry
8163 *))
8164 {
8165 output_arch_syminfo osi;
8166 struct elf_aarch64_link_hash_table *htab;
8167
8168 htab = elf_aarch64_hash_table (info);
8169
8170 osi.finfo = finfo;
8171 osi.info = info;
8172 osi.func = func;
8173
8174 /* Long calls stubs. */
8175 if (htab->stub_bfd && htab->stub_bfd->sections)
8176 {
8177 asection *stub_sec;
8178
8179 for (stub_sec = htab->stub_bfd->sections;
8180 stub_sec != NULL; stub_sec = stub_sec->next)
8181 {
8182 /* Ignore non-stub sections. */
8183 if (!strstr (stub_sec->name, STUB_SUFFIX))
8184 continue;
8185
8186 osi.sec = stub_sec;
8187
8188 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8189 (output_bfd, osi.sec->output_section);
8190
8191 /* The first instruction in a stub is always a branch. */
8192 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8193 return FALSE;
8194
8195 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8196 &osi);
8197 }
8198 }
8199
8200 /* Finally, output mapping symbols for the PLT. */
8201 if (!htab->root.splt || htab->root.splt->size == 0)
8202 return TRUE;
8203
8204 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8205 (output_bfd, htab->root.splt->output_section);
8206 osi.sec = htab->root.splt;
8207
8208 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8209
8210 return TRUE;
8211
8212 }
8213
8214 /* Allocate target specific section data. */
8215
8216 static bfd_boolean
8217 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8218 {
8219 if (!sec->used_by_bfd)
8220 {
8221 _aarch64_elf_section_data *sdata;
8222 bfd_size_type amt = sizeof (*sdata);
8223
8224 sdata = bfd_zalloc (abfd, amt);
8225 if (sdata == NULL)
8226 return FALSE;
8227 sec->used_by_bfd = sdata;
8228 }
8229
8230 record_section_with_aarch64_elf_section_data (sec);
8231
8232 return _bfd_elf_new_section_hook (abfd, sec);
8233 }
8234
8235
8236 static void
8237 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8238 asection *sec,
8239 void *ignore ATTRIBUTE_UNUSED)
8240 {
8241 unrecord_section_with_aarch64_elf_section_data (sec);
8242 }
8243
8244 static bfd_boolean
8245 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8246 {
8247 if (abfd->sections)
8248 bfd_map_over_sections (abfd,
8249 unrecord_section_via_map_over_sections, NULL);
8250
8251 return _bfd_elf_close_and_cleanup (abfd);
8252 }
8253
8254 static bfd_boolean
8255 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8256 {
8257 if (abfd->sections)
8258 bfd_map_over_sections (abfd,
8259 unrecord_section_via_map_over_sections, NULL);
8260
8261 return _bfd_free_cached_info (abfd);
8262 }
8263
8264 /* Create dynamic sections. This is different from the ARM backend in that
8265 the got, plt, gotplt and their relocation sections are all created in the
8266 standard part of the bfd elf backend. */
8267
8268 static bfd_boolean
8269 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8270 struct bfd_link_info *info)
8271 {
8272 /* We need to create .got section. */
8273 if (!aarch64_elf_create_got_section (dynobj, info))
8274 return FALSE;
8275
8276 return _bfd_elf_create_dynamic_sections (dynobj, info);
8277 }
8278
8279
8280 /* Allocate space in .plt, .got and associated reloc sections for
8281 dynamic relocs. */
8282
8283 static bfd_boolean
8284 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8285 {
8286 struct bfd_link_info *info;
8287 struct elf_aarch64_link_hash_table *htab;
8288 struct elf_aarch64_link_hash_entry *eh;
8289 struct elf_dyn_relocs *p;
8290
8291 /* An example of a bfd_link_hash_indirect symbol is versioned
8292 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8293 -> __gxx_personality_v0(bfd_link_hash_defined)
8294
8295 There is no need to process bfd_link_hash_indirect symbols here
8296 because we will also be presented with the concrete instance of
8297 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8298 called to copy all relevant data from the generic to the concrete
8299 symbol instance. */
8300 if (h->root.type == bfd_link_hash_indirect)
8301 return TRUE;
8302
8303 if (h->root.type == bfd_link_hash_warning)
8304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8305
8306 info = (struct bfd_link_info *) inf;
8307 htab = elf_aarch64_hash_table (info);
8308
8309 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8310 here if it is defined and referenced in a non-shared object. */
8311 if (h->type == STT_GNU_IFUNC
8312 && h->def_regular)
8313 return TRUE;
8314 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8315 {
8316 /* Make sure this symbol is output as a dynamic symbol.
8317 Undefined weak syms won't yet be marked as dynamic. */
8318 if (h->dynindx == -1 && !h->forced_local
8319 && h->root.type == bfd_link_hash_undefweak)
8320 {
8321 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8322 return FALSE;
8323 }
8324
8325 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8326 {
8327 asection *s = htab->root.splt;
8328
8329 /* If this is the first .plt entry, make room for the special
8330 first entry. */
8331 if (s->size == 0)
8332 s->size += htab->plt_header_size;
8333
8334 h->plt.offset = s->size;
8335
8336 /* If this symbol is not defined in a regular file, and we are
8337 not generating a shared library, then set the symbol to this
8338 location in the .plt. This is required to make function
8339 pointers compare as equal between the normal executable and
8340 the shared library. */
8341 if (!bfd_link_pic (info) && !h->def_regular)
8342 {
8343 h->root.u.def.section = s;
8344 h->root.u.def.value = h->plt.offset;
8345 }
8346
8347 /* Make room for this entry. For now we only create the
8348 small model PLT entries. We later need to find a way
8349 of relaxing into these from the large model PLT entries. */
8350 s->size += PLT_SMALL_ENTRY_SIZE;
8351
8352 /* We also need to make an entry in the .got.plt section, which
8353 will be placed in the .got section by the linker script. */
8354 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8355
8356 /* We also need to make an entry in the .rela.plt section. */
8357 htab->root.srelplt->size += RELOC_SIZE (htab);
8358
8359 /* We need to ensure that all GOT entries that serve the PLT
8360 are consecutive with the special GOT slots [0] [1] and
8361 [2]. Any addtional relocations, such as
8362 R_AARCH64_TLSDESC, must be placed after the PLT related
8363 entries. We abuse the reloc_count such that during
8364 sizing we adjust reloc_count to indicate the number of
8365 PLT related reserved entries. In subsequent phases when
8366 filling in the contents of the reloc entries, PLT related
8367 entries are placed by computing their PLT index (0
8368 .. reloc_count). While other none PLT relocs are placed
8369 at the slot indicated by reloc_count and reloc_count is
8370 updated. */
8371
8372 htab->root.srelplt->reloc_count++;
8373 }
8374 else
8375 {
8376 h->plt.offset = (bfd_vma) - 1;
8377 h->needs_plt = 0;
8378 }
8379 }
8380 else
8381 {
8382 h->plt.offset = (bfd_vma) - 1;
8383 h->needs_plt = 0;
8384 }
8385
8386 eh = (struct elf_aarch64_link_hash_entry *) h;
8387 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8388
8389 if (h->got.refcount > 0)
8390 {
8391 bfd_boolean dyn;
8392 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8393
8394 h->got.offset = (bfd_vma) - 1;
8395
8396 dyn = htab->root.dynamic_sections_created;
8397
8398 /* Make sure this symbol is output as a dynamic symbol.
8399 Undefined weak syms won't yet be marked as dynamic. */
8400 if (dyn && h->dynindx == -1 && !h->forced_local
8401 && h->root.type == bfd_link_hash_undefweak)
8402 {
8403 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8404 return FALSE;
8405 }
8406
8407 if (got_type == GOT_UNKNOWN)
8408 {
8409 }
8410 else if (got_type == GOT_NORMAL)
8411 {
8412 h->got.offset = htab->root.sgot->size;
8413 htab->root.sgot->size += GOT_ENTRY_SIZE;
8414 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8415 || h->root.type != bfd_link_hash_undefweak)
8416 && (bfd_link_pic (info)
8417 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8418 /* Undefined weak symbol in static PIE resolves to 0 without
8419 any dynamic relocations. */
8420 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8421 {
8422 htab->root.srelgot->size += RELOC_SIZE (htab);
8423 }
8424 }
8425 else
8426 {
8427 int indx;
8428 if (got_type & GOT_TLSDESC_GD)
8429 {
8430 eh->tlsdesc_got_jump_table_offset =
8431 (htab->root.sgotplt->size
8432 - aarch64_compute_jump_table_size (htab));
8433 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8434 h->got.offset = (bfd_vma) - 2;
8435 }
8436
8437 if (got_type & GOT_TLS_GD)
8438 {
8439 h->got.offset = htab->root.sgot->size;
8440 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8441 }
8442
8443 if (got_type & GOT_TLS_IE)
8444 {
8445 h->got.offset = htab->root.sgot->size;
8446 htab->root.sgot->size += GOT_ENTRY_SIZE;
8447 }
8448
8449 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8450 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8451 || h->root.type != bfd_link_hash_undefweak)
8452 && (!bfd_link_executable (info)
8453 || indx != 0
8454 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8455 {
8456 if (got_type & GOT_TLSDESC_GD)
8457 {
8458 htab->root.srelplt->size += RELOC_SIZE (htab);
8459 /* Note reloc_count not incremented here! We have
8460 already adjusted reloc_count for this relocation
8461 type. */
8462
8463 /* TLSDESC PLT is now needed, but not yet determined. */
8464 htab->tlsdesc_plt = (bfd_vma) - 1;
8465 }
8466
8467 if (got_type & GOT_TLS_GD)
8468 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8469
8470 if (got_type & GOT_TLS_IE)
8471 htab->root.srelgot->size += RELOC_SIZE (htab);
8472 }
8473 }
8474 }
8475 else
8476 {
8477 h->got.offset = (bfd_vma) - 1;
8478 }
8479
8480 if (eh->dyn_relocs == NULL)
8481 return TRUE;
8482
8483 /* In the shared -Bsymbolic case, discard space allocated for
8484 dynamic pc-relative relocs against symbols which turn out to be
8485 defined in regular objects. For the normal shared case, discard
8486 space for pc-relative relocs that have become local due to symbol
8487 visibility changes. */
8488
8489 if (bfd_link_pic (info))
8490 {
8491 /* Relocs that use pc_count are those that appear on a call
8492 insn, or certain REL relocs that can generated via assembly.
8493 We want calls to protected symbols to resolve directly to the
8494 function rather than going via the plt. If people want
8495 function pointer comparisons to work as expected then they
8496 should avoid writing weird assembly. */
8497 if (SYMBOL_CALLS_LOCAL (info, h))
8498 {
8499 struct elf_dyn_relocs **pp;
8500
8501 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8502 {
8503 p->count -= p->pc_count;
8504 p->pc_count = 0;
8505 if (p->count == 0)
8506 *pp = p->next;
8507 else
8508 pp = &p->next;
8509 }
8510 }
8511
8512 /* Also discard relocs on undefined weak syms with non-default
8513 visibility. */
8514 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8515 {
8516 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8517 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8518 eh->dyn_relocs = NULL;
8519
8520 /* Make sure undefined weak symbols are output as a dynamic
8521 symbol in PIEs. */
8522 else if (h->dynindx == -1
8523 && !h->forced_local
8524 && h->root.type == bfd_link_hash_undefweak
8525 && !bfd_elf_link_record_dynamic_symbol (info, h))
8526 return FALSE;
8527 }
8528
8529 }
8530 else if (ELIMINATE_COPY_RELOCS)
8531 {
8532 /* For the non-shared case, discard space for relocs against
8533 symbols which turn out to need copy relocs or are not
8534 dynamic. */
8535
8536 if (!h->non_got_ref
8537 && ((h->def_dynamic
8538 && !h->def_regular)
8539 || (htab->root.dynamic_sections_created
8540 && (h->root.type == bfd_link_hash_undefweak
8541 || h->root.type == bfd_link_hash_undefined))))
8542 {
8543 /* Make sure this symbol is output as a dynamic symbol.
8544 Undefined weak syms won't yet be marked as dynamic. */
8545 if (h->dynindx == -1
8546 && !h->forced_local
8547 && h->root.type == bfd_link_hash_undefweak
8548 && !bfd_elf_link_record_dynamic_symbol (info, h))
8549 return FALSE;
8550
8551 /* If that succeeded, we know we'll be keeping all the
8552 relocs. */
8553 if (h->dynindx != -1)
8554 goto keep;
8555 }
8556
8557 eh->dyn_relocs = NULL;
8558
8559 keep:;
8560 }
8561
8562 /* Finally, allocate space. */
8563 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8564 {
8565 asection *sreloc;
8566
8567 sreloc = elf_section_data (p->sec)->sreloc;
8568
8569 BFD_ASSERT (sreloc != NULL);
8570
8571 sreloc->size += p->count * RELOC_SIZE (htab);
8572 }
8573
8574 return TRUE;
8575 }
8576
8577 /* Allocate space in .plt, .got and associated reloc sections for
8578 ifunc dynamic relocs. */
8579
8580 static bfd_boolean
8581 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8582 void *inf)
8583 {
8584 struct bfd_link_info *info;
8585 struct elf_aarch64_link_hash_table *htab;
8586 struct elf_aarch64_link_hash_entry *eh;
8587
8588 /* An example of a bfd_link_hash_indirect symbol is versioned
8589 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8590 -> __gxx_personality_v0(bfd_link_hash_defined)
8591
8592 There is no need to process bfd_link_hash_indirect symbols here
8593 because we will also be presented with the concrete instance of
8594 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8595 called to copy all relevant data from the generic to the concrete
8596 symbol instance. */
8597 if (h->root.type == bfd_link_hash_indirect)
8598 return TRUE;
8599
8600 if (h->root.type == bfd_link_hash_warning)
8601 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8602
8603 info = (struct bfd_link_info *) inf;
8604 htab = elf_aarch64_hash_table (info);
8605
8606 eh = (struct elf_aarch64_link_hash_entry *) h;
8607
8608 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8609 here if it is defined and referenced in a non-shared object. */
8610 if (h->type == STT_GNU_IFUNC
8611 && h->def_regular)
8612 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8613 &eh->dyn_relocs,
8614 NULL,
8615 htab->plt_entry_size,
8616 htab->plt_header_size,
8617 GOT_ENTRY_SIZE,
8618 FALSE);
8619 return TRUE;
8620 }
8621
8622 /* Allocate space in .plt, .got and associated reloc sections for
8623 local dynamic relocs. */
8624
8625 static bfd_boolean
8626 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8627 {
8628 struct elf_link_hash_entry *h
8629 = (struct elf_link_hash_entry *) *slot;
8630
8631 if (h->type != STT_GNU_IFUNC
8632 || !h->def_regular
8633 || !h->ref_regular
8634 || !h->forced_local
8635 || h->root.type != bfd_link_hash_defined)
8636 abort ();
8637
8638 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8639 }
8640
8641 /* Allocate space in .plt, .got and associated reloc sections for
8642 local ifunc dynamic relocs. */
8643
8644 static bfd_boolean
8645 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8646 {
8647 struct elf_link_hash_entry *h
8648 = (struct elf_link_hash_entry *) *slot;
8649
8650 if (h->type != STT_GNU_IFUNC
8651 || !h->def_regular
8652 || !h->ref_regular
8653 || !h->forced_local
8654 || h->root.type != bfd_link_hash_defined)
8655 abort ();
8656
8657 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8658 }
8659
8660 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8661 read-only sections. */
8662
8663 static bfd_boolean
8664 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8665 {
8666 asection *sec;
8667
8668 if (h->root.type == bfd_link_hash_indirect)
8669 return TRUE;
8670
8671 sec = readonly_dynrelocs (h);
8672 if (sec != NULL)
8673 {
8674 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8675
8676 info->flags |= DF_TEXTREL;
8677 info->callbacks->minfo
8678 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8679 sec->owner, h->root.root.string, sec);
8680
8681 /* Not an error, just cut short the traversal. */
8682 return FALSE;
8683 }
8684 return TRUE;
8685 }
8686
8687 /* This is the most important function of all . Innocuosly named
8688 though ! */
8689
8690 static bfd_boolean
8691 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8692 struct bfd_link_info *info)
8693 {
8694 struct elf_aarch64_link_hash_table *htab;
8695 bfd *dynobj;
8696 asection *s;
8697 bfd_boolean relocs;
8698 bfd *ibfd;
8699
8700 htab = elf_aarch64_hash_table ((info));
8701 dynobj = htab->root.dynobj;
8702
8703 BFD_ASSERT (dynobj != NULL);
8704
8705 if (htab->root.dynamic_sections_created)
8706 {
8707 if (bfd_link_executable (info) && !info->nointerp)
8708 {
8709 s = bfd_get_linker_section (dynobj, ".interp");
8710 if (s == NULL)
8711 abort ();
8712 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8713 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8714 }
8715 }
8716
8717 /* Set up .got offsets for local syms, and space for local dynamic
8718 relocs. */
8719 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8720 {
8721 struct elf_aarch64_local_symbol *locals = NULL;
8722 Elf_Internal_Shdr *symtab_hdr;
8723 asection *srel;
8724 unsigned int i;
8725
8726 if (!is_aarch64_elf (ibfd))
8727 continue;
8728
8729 for (s = ibfd->sections; s != NULL; s = s->next)
8730 {
8731 struct elf_dyn_relocs *p;
8732
8733 for (p = (struct elf_dyn_relocs *)
8734 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8735 {
8736 if (!bfd_is_abs_section (p->sec)
8737 && bfd_is_abs_section (p->sec->output_section))
8738 {
8739 /* Input section has been discarded, either because
8740 it is a copy of a linkonce section or due to
8741 linker script /DISCARD/, so we'll be discarding
8742 the relocs too. */
8743 }
8744 else if (p->count != 0)
8745 {
8746 srel = elf_section_data (p->sec)->sreloc;
8747 srel->size += p->count * RELOC_SIZE (htab);
8748 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8749 info->flags |= DF_TEXTREL;
8750 }
8751 }
8752 }
8753
8754 locals = elf_aarch64_locals (ibfd);
8755 if (!locals)
8756 continue;
8757
8758 symtab_hdr = &elf_symtab_hdr (ibfd);
8759 srel = htab->root.srelgot;
8760 for (i = 0; i < symtab_hdr->sh_info; i++)
8761 {
8762 locals[i].got_offset = (bfd_vma) - 1;
8763 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8764 if (locals[i].got_refcount > 0)
8765 {
8766 unsigned got_type = locals[i].got_type;
8767 if (got_type & GOT_TLSDESC_GD)
8768 {
8769 locals[i].tlsdesc_got_jump_table_offset =
8770 (htab->root.sgotplt->size
8771 - aarch64_compute_jump_table_size (htab));
8772 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8773 locals[i].got_offset = (bfd_vma) - 2;
8774 }
8775
8776 if (got_type & GOT_TLS_GD)
8777 {
8778 locals[i].got_offset = htab->root.sgot->size;
8779 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8780 }
8781
8782 if (got_type & GOT_TLS_IE
8783 || got_type & GOT_NORMAL)
8784 {
8785 locals[i].got_offset = htab->root.sgot->size;
8786 htab->root.sgot->size += GOT_ENTRY_SIZE;
8787 }
8788
8789 if (got_type == GOT_UNKNOWN)
8790 {
8791 }
8792
8793 if (bfd_link_pic (info))
8794 {
8795 if (got_type & GOT_TLSDESC_GD)
8796 {
8797 htab->root.srelplt->size += RELOC_SIZE (htab);
8798 /* Note RELOC_COUNT not incremented here! */
8799 htab->tlsdesc_plt = (bfd_vma) - 1;
8800 }
8801
8802 if (got_type & GOT_TLS_GD)
8803 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8804
8805 if (got_type & GOT_TLS_IE
8806 || got_type & GOT_NORMAL)
8807 htab->root.srelgot->size += RELOC_SIZE (htab);
8808 }
8809 }
8810 else
8811 {
8812 locals[i].got_refcount = (bfd_vma) - 1;
8813 }
8814 }
8815 }
8816
8817
8818 /* Allocate global sym .plt and .got entries, and space for global
8819 sym dynamic relocs. */
8820 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8821 info);
8822
8823 /* Allocate global ifunc sym .plt and .got entries, and space for global
8824 ifunc sym dynamic relocs. */
8825 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8826 info);
8827
8828 /* Allocate .plt and .got entries, and space for local symbols. */
8829 htab_traverse (htab->loc_hash_table,
8830 elfNN_aarch64_allocate_local_dynrelocs,
8831 info);
8832
8833 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8834 htab_traverse (htab->loc_hash_table,
8835 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8836 info);
8837
8838 /* For every jump slot reserved in the sgotplt, reloc_count is
8839 incremented. However, when we reserve space for TLS descriptors,
8840 it's not incremented, so in order to compute the space reserved
8841 for them, it suffices to multiply the reloc count by the jump
8842 slot size. */
8843
8844 if (htab->root.srelplt)
8845 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8846
8847 if (htab->tlsdesc_plt)
8848 {
8849 if (htab->root.splt->size == 0)
8850 htab->root.splt->size += PLT_ENTRY_SIZE;
8851
8852 htab->tlsdesc_plt = htab->root.splt->size;
8853 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8854
8855 /* If we're not using lazy TLS relocations, don't generate the
8856 GOT entry required. */
8857 if (!(info->flags & DF_BIND_NOW))
8858 {
8859 htab->dt_tlsdesc_got = htab->root.sgot->size;
8860 htab->root.sgot->size += GOT_ENTRY_SIZE;
8861 }
8862 }
8863
8864 /* Init mapping symbols information to use later to distingush between
8865 code and data while scanning for errata. */
8866 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8867 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8868 {
8869 if (!is_aarch64_elf (ibfd))
8870 continue;
8871 bfd_elfNN_aarch64_init_maps (ibfd);
8872 }
8873
8874 /* We now have determined the sizes of the various dynamic sections.
8875 Allocate memory for them. */
8876 relocs = FALSE;
8877 for (s = dynobj->sections; s != NULL; s = s->next)
8878 {
8879 if ((s->flags & SEC_LINKER_CREATED) == 0)
8880 continue;
8881
8882 if (s == htab->root.splt
8883 || s == htab->root.sgot
8884 || s == htab->root.sgotplt
8885 || s == htab->root.iplt
8886 || s == htab->root.igotplt
8887 || s == htab->root.sdynbss
8888 || s == htab->root.sdynrelro)
8889 {
8890 /* Strip this section if we don't need it; see the
8891 comment below. */
8892 }
8893 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8894 {
8895 if (s->size != 0 && s != htab->root.srelplt)
8896 relocs = TRUE;
8897
8898 /* We use the reloc_count field as a counter if we need
8899 to copy relocs into the output file. */
8900 if (s != htab->root.srelplt)
8901 s->reloc_count = 0;
8902 }
8903 else
8904 {
8905 /* It's not one of our sections, so don't allocate space. */
8906 continue;
8907 }
8908
8909 if (s->size == 0)
8910 {
8911 /* If we don't need this section, strip it from the
8912 output file. This is mostly to handle .rela.bss and
8913 .rela.plt. We must create both sections in
8914 create_dynamic_sections, because they must be created
8915 before the linker maps input sections to output
8916 sections. The linker does that before
8917 adjust_dynamic_symbol is called, and it is that
8918 function which decides whether anything needs to go
8919 into these sections. */
8920 s->flags |= SEC_EXCLUDE;
8921 continue;
8922 }
8923
8924 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8925 continue;
8926
8927 /* Allocate memory for the section contents. We use bfd_zalloc
8928 here in case unused entries are not reclaimed before the
8929 section's contents are written out. This should not happen,
8930 but this way if it does, we get a R_AARCH64_NONE reloc instead
8931 of garbage. */
8932 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8933 if (s->contents == NULL)
8934 return FALSE;
8935 }
8936
8937 if (htab->root.dynamic_sections_created)
8938 {
8939 /* Add some entries to the .dynamic section. We fill in the
8940 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8941 must add the entries now so that we get the correct size for
8942 the .dynamic section. The DT_DEBUG entry is filled in by the
8943 dynamic linker and used by the debugger. */
8944 #define add_dynamic_entry(TAG, VAL) \
8945 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8946
8947 if (bfd_link_executable (info))
8948 {
8949 if (!add_dynamic_entry (DT_DEBUG, 0))
8950 return FALSE;
8951 }
8952
8953 if (htab->root.splt->size != 0)
8954 {
8955 if (!add_dynamic_entry (DT_PLTGOT, 0)
8956 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8957 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8958 || !add_dynamic_entry (DT_JMPREL, 0))
8959 return FALSE;
8960
8961 if (htab->tlsdesc_plt
8962 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8963 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8964 return FALSE;
8965 }
8966
8967 if (relocs)
8968 {
8969 if (!add_dynamic_entry (DT_RELA, 0)
8970 || !add_dynamic_entry (DT_RELASZ, 0)
8971 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8972 return FALSE;
8973
8974 /* If any dynamic relocs apply to a read-only section,
8975 then we need a DT_TEXTREL entry. */
8976 if ((info->flags & DF_TEXTREL) == 0)
8977 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
8978
8979 if ((info->flags & DF_TEXTREL) != 0)
8980 {
8981 if (!add_dynamic_entry (DT_TEXTREL, 0))
8982 return FALSE;
8983 }
8984 }
8985 }
8986 #undef add_dynamic_entry
8987
8988 return TRUE;
8989 }
8990
8991 static inline void
8992 elf_aarch64_update_plt_entry (bfd *output_bfd,
8993 bfd_reloc_code_real_type r_type,
8994 bfd_byte *plt_entry, bfd_vma value)
8995 {
8996 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8997
8998 /* FIXME: We should check the return value from this function call. */
8999 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9000 }
9001
9002 static void
9003 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9004 struct elf_aarch64_link_hash_table
9005 *htab, bfd *output_bfd,
9006 struct bfd_link_info *info)
9007 {
9008 bfd_byte *plt_entry;
9009 bfd_vma plt_index;
9010 bfd_vma got_offset;
9011 bfd_vma gotplt_entry_address;
9012 bfd_vma plt_entry_address;
9013 Elf_Internal_Rela rela;
9014 bfd_byte *loc;
9015 asection *plt, *gotplt, *relplt;
9016
9017 /* When building a static executable, use .iplt, .igot.plt and
9018 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9019 if (htab->root.splt != NULL)
9020 {
9021 plt = htab->root.splt;
9022 gotplt = htab->root.sgotplt;
9023 relplt = htab->root.srelplt;
9024 }
9025 else
9026 {
9027 plt = htab->root.iplt;
9028 gotplt = htab->root.igotplt;
9029 relplt = htab->root.irelplt;
9030 }
9031
9032 /* Get the index in the procedure linkage table which
9033 corresponds to this symbol. This is the index of this symbol
9034 in all the symbols for which we are making plt entries. The
9035 first entry in the procedure linkage table is reserved.
9036
9037 Get the offset into the .got table of the entry that
9038 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9039 bytes. The first three are reserved for the dynamic linker.
9040
9041 For static executables, we don't reserve anything. */
9042
9043 if (plt == htab->root.splt)
9044 {
9045 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9046 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9047 }
9048 else
9049 {
9050 plt_index = h->plt.offset / htab->plt_entry_size;
9051 got_offset = plt_index * GOT_ENTRY_SIZE;
9052 }
9053
9054 plt_entry = plt->contents + h->plt.offset;
9055 plt_entry_address = plt->output_section->vma
9056 + plt->output_offset + h->plt.offset;
9057 gotplt_entry_address = gotplt->output_section->vma +
9058 gotplt->output_offset + got_offset;
9059
9060 /* Copy in the boiler-plate for the PLTn entry. */
9061 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
9062
9063 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9064 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9065 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9066 plt_entry,
9067 PG (gotplt_entry_address) -
9068 PG (plt_entry_address));
9069
9070 /* Fill in the lo12 bits for the load from the pltgot. */
9071 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9072 plt_entry + 4,
9073 PG_OFFSET (gotplt_entry_address));
9074
9075 /* Fill in the lo12 bits for the add from the pltgot entry. */
9076 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9077 plt_entry + 8,
9078 PG_OFFSET (gotplt_entry_address));
9079
9080 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9081 bfd_put_NN (output_bfd,
9082 plt->output_section->vma + plt->output_offset,
9083 gotplt->contents + got_offset);
9084
9085 rela.r_offset = gotplt_entry_address;
9086
9087 if (h->dynindx == -1
9088 || ((bfd_link_executable (info)
9089 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9090 && h->def_regular
9091 && h->type == STT_GNU_IFUNC))
9092 {
9093 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9094 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9095 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9096 rela.r_addend = (h->root.u.def.value
9097 + h->root.u.def.section->output_section->vma
9098 + h->root.u.def.section->output_offset);
9099 }
9100 else
9101 {
9102 /* Fill in the entry in the .rela.plt section. */
9103 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9104 rela.r_addend = 0;
9105 }
9106
9107 /* Compute the relocation entry to used based on PLT index and do
9108 not adjust reloc_count. The reloc_count has already been adjusted
9109 to account for this entry. */
9110 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9111 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9112 }
9113
9114 /* Size sections even though they're not dynamic. We use it to setup
9115 _TLS_MODULE_BASE_, if needed. */
9116
9117 static bfd_boolean
9118 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9119 struct bfd_link_info *info)
9120 {
9121 asection *tls_sec;
9122
9123 if (bfd_link_relocatable (info))
9124 return TRUE;
9125
9126 tls_sec = elf_hash_table (info)->tls_sec;
9127
9128 if (tls_sec)
9129 {
9130 struct elf_link_hash_entry *tlsbase;
9131
9132 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9133 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9134
9135 if (tlsbase)
9136 {
9137 struct bfd_link_hash_entry *h = NULL;
9138 const struct elf_backend_data *bed =
9139 get_elf_backend_data (output_bfd);
9140
9141 if (!(_bfd_generic_link_add_one_symbol
9142 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9143 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9144 return FALSE;
9145
9146 tlsbase->type = STT_TLS;
9147 tlsbase = (struct elf_link_hash_entry *) h;
9148 tlsbase->def_regular = 1;
9149 tlsbase->other = STV_HIDDEN;
9150 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9151 }
9152 }
9153
9154 return TRUE;
9155 }
9156
9157 /* Finish up dynamic symbol handling. We set the contents of various
9158 dynamic sections here. */
9159
9160 static bfd_boolean
9161 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9162 struct bfd_link_info *info,
9163 struct elf_link_hash_entry *h,
9164 Elf_Internal_Sym *sym)
9165 {
9166 struct elf_aarch64_link_hash_table *htab;
9167 htab = elf_aarch64_hash_table (info);
9168
9169 if (h->plt.offset != (bfd_vma) - 1)
9170 {
9171 asection *plt, *gotplt, *relplt;
9172
9173 /* This symbol has an entry in the procedure linkage table. Set
9174 it up. */
9175
9176 /* When building a static executable, use .iplt, .igot.plt and
9177 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9178 if (htab->root.splt != NULL)
9179 {
9180 plt = htab->root.splt;
9181 gotplt = htab->root.sgotplt;
9182 relplt = htab->root.srelplt;
9183 }
9184 else
9185 {
9186 plt = htab->root.iplt;
9187 gotplt = htab->root.igotplt;
9188 relplt = htab->root.irelplt;
9189 }
9190
9191 /* This symbol has an entry in the procedure linkage table. Set
9192 it up. */
9193 if ((h->dynindx == -1
9194 && !((h->forced_local || bfd_link_executable (info))
9195 && h->def_regular
9196 && h->type == STT_GNU_IFUNC))
9197 || plt == NULL
9198 || gotplt == NULL
9199 || relplt == NULL)
9200 return FALSE;
9201
9202 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9203 if (!h->def_regular)
9204 {
9205 /* Mark the symbol as undefined, rather than as defined in
9206 the .plt section. */
9207 sym->st_shndx = SHN_UNDEF;
9208 /* If the symbol is weak we need to clear the value.
9209 Otherwise, the PLT entry would provide a definition for
9210 the symbol even if the symbol wasn't defined anywhere,
9211 and so the symbol would never be NULL. Leave the value if
9212 there were any relocations where pointer equality matters
9213 (this is a clue for the dynamic linker, to make function
9214 pointer comparisons work between an application and shared
9215 library). */
9216 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9217 sym->st_value = 0;
9218 }
9219 }
9220
9221 if (h->got.offset != (bfd_vma) - 1
9222 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9223 /* Undefined weak symbol in static PIE resolves to 0 without
9224 any dynamic relocations. */
9225 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9226 {
9227 Elf_Internal_Rela rela;
9228 bfd_byte *loc;
9229
9230 /* This symbol has an entry in the global offset table. Set it
9231 up. */
9232 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9233 abort ();
9234
9235 rela.r_offset = (htab->root.sgot->output_section->vma
9236 + htab->root.sgot->output_offset
9237 + (h->got.offset & ~(bfd_vma) 1));
9238
9239 if (h->def_regular
9240 && h->type == STT_GNU_IFUNC)
9241 {
9242 if (bfd_link_pic (info))
9243 {
9244 /* Generate R_AARCH64_GLOB_DAT. */
9245 goto do_glob_dat;
9246 }
9247 else
9248 {
9249 asection *plt;
9250
9251 if (!h->pointer_equality_needed)
9252 abort ();
9253
9254 /* For non-shared object, we can't use .got.plt, which
9255 contains the real function address if we need pointer
9256 equality. We load the GOT entry with the PLT entry. */
9257 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9258 bfd_put_NN (output_bfd, (plt->output_section->vma
9259 + plt->output_offset
9260 + h->plt.offset),
9261 htab->root.sgot->contents
9262 + (h->got.offset & ~(bfd_vma) 1));
9263 return TRUE;
9264 }
9265 }
9266 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9267 {
9268 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9269 return FALSE;
9270
9271 BFD_ASSERT ((h->got.offset & 1) != 0);
9272 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9273 rela.r_addend = (h->root.u.def.value
9274 + h->root.u.def.section->output_section->vma
9275 + h->root.u.def.section->output_offset);
9276 }
9277 else
9278 {
9279 do_glob_dat:
9280 BFD_ASSERT ((h->got.offset & 1) == 0);
9281 bfd_put_NN (output_bfd, (bfd_vma) 0,
9282 htab->root.sgot->contents + h->got.offset);
9283 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9284 rela.r_addend = 0;
9285 }
9286
9287 loc = htab->root.srelgot->contents;
9288 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9289 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9290 }
9291
9292 if (h->needs_copy)
9293 {
9294 Elf_Internal_Rela rela;
9295 asection *s;
9296 bfd_byte *loc;
9297
9298 /* This symbol needs a copy reloc. Set it up. */
9299 if (h->dynindx == -1
9300 || (h->root.type != bfd_link_hash_defined
9301 && h->root.type != bfd_link_hash_defweak)
9302 || htab->root.srelbss == NULL)
9303 abort ();
9304
9305 rela.r_offset = (h->root.u.def.value
9306 + h->root.u.def.section->output_section->vma
9307 + h->root.u.def.section->output_offset);
9308 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9309 rela.r_addend = 0;
9310 if (h->root.u.def.section == htab->root.sdynrelro)
9311 s = htab->root.sreldynrelro;
9312 else
9313 s = htab->root.srelbss;
9314 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9315 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9316 }
9317
9318 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9319 be NULL for local symbols. */
9320 if (sym != NULL
9321 && (h == elf_hash_table (info)->hdynamic
9322 || h == elf_hash_table (info)->hgot))
9323 sym->st_shndx = SHN_ABS;
9324
9325 return TRUE;
9326 }
9327
9328 /* Finish up local dynamic symbol handling. We set the contents of
9329 various dynamic sections here. */
9330
9331 static bfd_boolean
9332 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9333 {
9334 struct elf_link_hash_entry *h
9335 = (struct elf_link_hash_entry *) *slot;
9336 struct bfd_link_info *info
9337 = (struct bfd_link_info *) inf;
9338
9339 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9340 info, h, NULL);
9341 }
9342
9343 static void
9344 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9345 struct elf_aarch64_link_hash_table
9346 *htab)
9347 {
9348 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9349 small and large plts and at the minute just generates
9350 the small PLT. */
9351
9352 /* PLT0 of the small PLT looks like this in ELF64 -
9353 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9354 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9355 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9356 // symbol resolver
9357 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9358 // GOTPLT entry for this.
9359 br x17
9360 PLT0 will be slightly different in ELF32 due to different got entry
9361 size. */
9362 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9363 bfd_vma plt_base;
9364
9365
9366 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9367 PLT_ENTRY_SIZE);
9368 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9369 PLT_ENTRY_SIZE;
9370
9371 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9372 + htab->root.sgotplt->output_offset
9373 + GOT_ENTRY_SIZE * 2);
9374
9375 plt_base = htab->root.splt->output_section->vma +
9376 htab->root.splt->output_offset;
9377
9378 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9379 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9380 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9381 htab->root.splt->contents + 4,
9382 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9383
9384 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9385 htab->root.splt->contents + 8,
9386 PG_OFFSET (plt_got_2nd_ent));
9387
9388 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9389 htab->root.splt->contents + 12,
9390 PG_OFFSET (plt_got_2nd_ent));
9391 }
9392
9393 static bfd_boolean
9394 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9395 struct bfd_link_info *info)
9396 {
9397 struct elf_aarch64_link_hash_table *htab;
9398 bfd *dynobj;
9399 asection *sdyn;
9400
9401 htab = elf_aarch64_hash_table (info);
9402 dynobj = htab->root.dynobj;
9403 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9404
9405 if (htab->root.dynamic_sections_created)
9406 {
9407 ElfNN_External_Dyn *dyncon, *dynconend;
9408
9409 if (sdyn == NULL || htab->root.sgot == NULL)
9410 abort ();
9411
9412 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9413 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9414 for (; dyncon < dynconend; dyncon++)
9415 {
9416 Elf_Internal_Dyn dyn;
9417 asection *s;
9418
9419 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9420
9421 switch (dyn.d_tag)
9422 {
9423 default:
9424 continue;
9425
9426 case DT_PLTGOT:
9427 s = htab->root.sgotplt;
9428 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9429 break;
9430
9431 case DT_JMPREL:
9432 s = htab->root.srelplt;
9433 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9434 break;
9435
9436 case DT_PLTRELSZ:
9437 s = htab->root.srelplt;
9438 dyn.d_un.d_val = s->size;
9439 break;
9440
9441 case DT_TLSDESC_PLT:
9442 s = htab->root.splt;
9443 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9444 + htab->tlsdesc_plt;
9445 break;
9446
9447 case DT_TLSDESC_GOT:
9448 s = htab->root.sgot;
9449 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9450 + htab->dt_tlsdesc_got;
9451 break;
9452 }
9453
9454 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9455 }
9456
9457 }
9458
9459 /* Fill in the special first entry in the procedure linkage table. */
9460 if (htab->root.splt && htab->root.splt->size > 0)
9461 {
9462 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9463
9464 elf_section_data (htab->root.splt->output_section)->
9465 this_hdr.sh_entsize = htab->plt_entry_size;
9466
9467
9468 if (htab->tlsdesc_plt)
9469 {
9470 bfd_put_NN (output_bfd, (bfd_vma) 0,
9471 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9472
9473 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9474 elfNN_aarch64_tlsdesc_small_plt_entry,
9475 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9476
9477 {
9478 bfd_vma adrp1_addr =
9479 htab->root.splt->output_section->vma
9480 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9481
9482 bfd_vma adrp2_addr = adrp1_addr + 4;
9483
9484 bfd_vma got_addr =
9485 htab->root.sgot->output_section->vma
9486 + htab->root.sgot->output_offset;
9487
9488 bfd_vma pltgot_addr =
9489 htab->root.sgotplt->output_section->vma
9490 + htab->root.sgotplt->output_offset;
9491
9492 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9493
9494 bfd_byte *plt_entry =
9495 htab->root.splt->contents + htab->tlsdesc_plt;
9496
9497 /* adrp x2, DT_TLSDESC_GOT */
9498 elf_aarch64_update_plt_entry (output_bfd,
9499 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9500 plt_entry + 4,
9501 (PG (dt_tlsdesc_got)
9502 - PG (adrp1_addr)));
9503
9504 /* adrp x3, 0 */
9505 elf_aarch64_update_plt_entry (output_bfd,
9506 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9507 plt_entry + 8,
9508 (PG (pltgot_addr)
9509 - PG (adrp2_addr)));
9510
9511 /* ldr x2, [x2, #0] */
9512 elf_aarch64_update_plt_entry (output_bfd,
9513 BFD_RELOC_AARCH64_LDSTNN_LO12,
9514 plt_entry + 12,
9515 PG_OFFSET (dt_tlsdesc_got));
9516
9517 /* add x3, x3, 0 */
9518 elf_aarch64_update_plt_entry (output_bfd,
9519 BFD_RELOC_AARCH64_ADD_LO12,
9520 plt_entry + 16,
9521 PG_OFFSET (pltgot_addr));
9522 }
9523 }
9524 }
9525
9526 if (htab->root.sgotplt)
9527 {
9528 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9529 {
9530 _bfd_error_handler
9531 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9532 return FALSE;
9533 }
9534
9535 /* Fill in the first three entries in the global offset table. */
9536 if (htab->root.sgotplt->size > 0)
9537 {
9538 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9539
9540 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9541 bfd_put_NN (output_bfd,
9542 (bfd_vma) 0,
9543 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9544 bfd_put_NN (output_bfd,
9545 (bfd_vma) 0,
9546 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9547 }
9548
9549 if (htab->root.sgot)
9550 {
9551 if (htab->root.sgot->size > 0)
9552 {
9553 bfd_vma addr =
9554 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9555 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9556 }
9557 }
9558
9559 elf_section_data (htab->root.sgotplt->output_section)->
9560 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9561 }
9562
9563 if (htab->root.sgot && htab->root.sgot->size > 0)
9564 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9565 = GOT_ENTRY_SIZE;
9566
9567 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9568 htab_traverse (htab->loc_hash_table,
9569 elfNN_aarch64_finish_local_dynamic_symbol,
9570 info);
9571
9572 return TRUE;
9573 }
9574
9575 /* Return address for Ith PLT stub in section PLT, for relocation REL
9576 or (bfd_vma) -1 if it should not be included. */
9577
9578 static bfd_vma
9579 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9580 const arelent *rel ATTRIBUTE_UNUSED)
9581 {
9582 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9583 }
9584
9585 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9586 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9587 It also allows a period initiated suffix to be added to the symbol, ie:
9588 "$[adtx]\.[:sym_char]+". */
9589
9590 static bfd_boolean
9591 is_aarch64_mapping_symbol (const char * name)
9592 {
9593 return name != NULL /* Paranoia. */
9594 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9595 the mapping symbols could have acquired a prefix.
9596 We do not support this here, since such symbols no
9597 longer conform to the ARM ELF ABI. */
9598 && (name[1] == 'd' || name[1] == 'x')
9599 && (name[2] == 0 || name[2] == '.');
9600 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9601 any characters that follow the period are legal characters for the body
9602 of a symbol's name. For now we just assume that this is the case. */
9603 }
9604
9605 /* Make sure that mapping symbols in object files are not removed via the
9606 "strip --strip-unneeded" tool. These symbols might needed in order to
9607 correctly generate linked files. Once an object file has been linked,
9608 it should be safe to remove them. */
9609
9610 static void
9611 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9612 {
9613 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9614 && sym->section != bfd_abs_section_ptr
9615 && is_aarch64_mapping_symbol (sym->name))
9616 sym->flags |= BSF_KEEP;
9617 }
9618
9619
9620 /* We use this so we can override certain functions
9621 (though currently we don't). */
9622
9623 const struct elf_size_info elfNN_aarch64_size_info =
9624 {
9625 sizeof (ElfNN_External_Ehdr),
9626 sizeof (ElfNN_External_Phdr),
9627 sizeof (ElfNN_External_Shdr),
9628 sizeof (ElfNN_External_Rel),
9629 sizeof (ElfNN_External_Rela),
9630 sizeof (ElfNN_External_Sym),
9631 sizeof (ElfNN_External_Dyn),
9632 sizeof (Elf_External_Note),
9633 4, /* Hash table entry size. */
9634 1, /* Internal relocs per external relocs. */
9635 ARCH_SIZE, /* Arch size. */
9636 LOG_FILE_ALIGN, /* Log_file_align. */
9637 ELFCLASSNN, EV_CURRENT,
9638 bfd_elfNN_write_out_phdrs,
9639 bfd_elfNN_write_shdrs_and_ehdr,
9640 bfd_elfNN_checksum_contents,
9641 bfd_elfNN_write_relocs,
9642 bfd_elfNN_swap_symbol_in,
9643 bfd_elfNN_swap_symbol_out,
9644 bfd_elfNN_slurp_reloc_table,
9645 bfd_elfNN_slurp_symbol_table,
9646 bfd_elfNN_swap_dyn_in,
9647 bfd_elfNN_swap_dyn_out,
9648 bfd_elfNN_swap_reloc_in,
9649 bfd_elfNN_swap_reloc_out,
9650 bfd_elfNN_swap_reloca_in,
9651 bfd_elfNN_swap_reloca_out
9652 };
9653
9654 #define ELF_ARCH bfd_arch_aarch64
9655 #define ELF_MACHINE_CODE EM_AARCH64
9656 #define ELF_MAXPAGESIZE 0x10000
9657 #define ELF_MINPAGESIZE 0x1000
9658 #define ELF_COMMONPAGESIZE 0x1000
9659
9660 #define bfd_elfNN_close_and_cleanup \
9661 elfNN_aarch64_close_and_cleanup
9662
9663 #define bfd_elfNN_bfd_free_cached_info \
9664 elfNN_aarch64_bfd_free_cached_info
9665
9666 #define bfd_elfNN_bfd_is_target_special_symbol \
9667 elfNN_aarch64_is_target_special_symbol
9668
9669 #define bfd_elfNN_bfd_link_hash_table_create \
9670 elfNN_aarch64_link_hash_table_create
9671
9672 #define bfd_elfNN_bfd_merge_private_bfd_data \
9673 elfNN_aarch64_merge_private_bfd_data
9674
9675 #define bfd_elfNN_bfd_print_private_bfd_data \
9676 elfNN_aarch64_print_private_bfd_data
9677
9678 #define bfd_elfNN_bfd_reloc_type_lookup \
9679 elfNN_aarch64_reloc_type_lookup
9680
9681 #define bfd_elfNN_bfd_reloc_name_lookup \
9682 elfNN_aarch64_reloc_name_lookup
9683
9684 #define bfd_elfNN_bfd_set_private_flags \
9685 elfNN_aarch64_set_private_flags
9686
9687 #define bfd_elfNN_find_inliner_info \
9688 elfNN_aarch64_find_inliner_info
9689
9690 #define bfd_elfNN_find_nearest_line \
9691 elfNN_aarch64_find_nearest_line
9692
9693 #define bfd_elfNN_mkobject \
9694 elfNN_aarch64_mkobject
9695
9696 #define bfd_elfNN_new_section_hook \
9697 elfNN_aarch64_new_section_hook
9698
9699 #define elf_backend_adjust_dynamic_symbol \
9700 elfNN_aarch64_adjust_dynamic_symbol
9701
9702 #define elf_backend_always_size_sections \
9703 elfNN_aarch64_always_size_sections
9704
9705 #define elf_backend_check_relocs \
9706 elfNN_aarch64_check_relocs
9707
9708 #define elf_backend_copy_indirect_symbol \
9709 elfNN_aarch64_copy_indirect_symbol
9710
9711 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9712 to them in our hash. */
9713 #define elf_backend_create_dynamic_sections \
9714 elfNN_aarch64_create_dynamic_sections
9715
9716 #define elf_backend_init_index_section \
9717 _bfd_elf_init_2_index_sections
9718
9719 #define elf_backend_finish_dynamic_sections \
9720 elfNN_aarch64_finish_dynamic_sections
9721
9722 #define elf_backend_finish_dynamic_symbol \
9723 elfNN_aarch64_finish_dynamic_symbol
9724
9725 #define elf_backend_object_p \
9726 elfNN_aarch64_object_p
9727
9728 #define elf_backend_output_arch_local_syms \
9729 elfNN_aarch64_output_arch_local_syms
9730
9731 #define elf_backend_plt_sym_val \
9732 elfNN_aarch64_plt_sym_val
9733
9734 #define elf_backend_post_process_headers \
9735 elfNN_aarch64_post_process_headers
9736
9737 #define elf_backend_relocate_section \
9738 elfNN_aarch64_relocate_section
9739
9740 #define elf_backend_reloc_type_class \
9741 elfNN_aarch64_reloc_type_class
9742
9743 #define elf_backend_section_from_shdr \
9744 elfNN_aarch64_section_from_shdr
9745
9746 #define elf_backend_size_dynamic_sections \
9747 elfNN_aarch64_size_dynamic_sections
9748
9749 #define elf_backend_size_info \
9750 elfNN_aarch64_size_info
9751
9752 #define elf_backend_write_section \
9753 elfNN_aarch64_write_section
9754
9755 #define elf_backend_symbol_processing \
9756 elfNN_aarch64_backend_symbol_processing
9757
9758 #define elf_backend_can_refcount 1
9759 #define elf_backend_can_gc_sections 1
9760 #define elf_backend_plt_readonly 1
9761 #define elf_backend_want_got_plt 1
9762 #define elf_backend_want_plt_sym 0
9763 #define elf_backend_want_dynrelro 1
9764 #define elf_backend_may_use_rel_p 0
9765 #define elf_backend_may_use_rela_p 1
9766 #define elf_backend_default_use_rela_p 1
9767 #define elf_backend_rela_normal 1
9768 #define elf_backend_dtrel_excludes_plt 1
9769 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9770 #define elf_backend_default_execstack 0
9771 #define elf_backend_extern_protected_data 1
9772 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9773
9774 #undef elf_backend_obj_attrs_section
9775 #define elf_backend_obj_attrs_section ".ARM.attributes"
9776
9777 #include "elfNN-target.h"
9778
9779 /* CloudABI support. */
9780
9781 #undef TARGET_LITTLE_SYM
9782 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9783 #undef TARGET_LITTLE_NAME
9784 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9785 #undef TARGET_BIG_SYM
9786 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9787 #undef TARGET_BIG_NAME
9788 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9789
9790 #undef ELF_OSABI
9791 #define ELF_OSABI ELFOSABI_CLOUDABI
9792
9793 #undef elfNN_bed
9794 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9795
9796 #include "elfNN-target.h"