]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-ia64.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/ia64.h"
26 #include "elf/ia64.h"
27
28 /* THE RULES for all the stuff the linker creates --
29
30 GOT Entries created in response to LTOFF or LTOFF_FPTR
31 relocations. Dynamic relocs created for dynamic
32 symbols in an application; REL relocs for locals
33 in a shared library.
34
35 FPTR The canonical function descriptor. Created for local
36 symbols in applications. Descriptors for dynamic symbols
37 and local symbols in shared libraries are created by
38 ld.so. Thus there are no dynamic relocs against these
39 objects. The FPTR relocs for such _are_ passed through
40 to the dynamic relocation tables.
41
42 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
43 Requires the creation of a PLTOFF entry. This does not
44 require any dynamic relocations.
45
46 PLTOFF Created by PLTOFF relocations. For local symbols, this
47 is an alternate function descriptor, and in shared libraries
48 requires two REL relocations. Note that this cannot be
49 transformed into an FPTR relocation, since it must be in
50 range of the GP. For dynamic symbols, this is a function
51 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
52
53 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
54 does not reqire dynamic relocations. */
55
56 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
57
58 typedef struct bfd_hash_entry *(*new_hash_entry_func)
59 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
60
61 /* In dynamically (linker-) created sections, we generally need to keep track
62 of the place a symbol or expression got allocated to. This is done via hash
63 tables that store entries of the following type. */
64
65 struct elfNN_ia64_dyn_sym_info
66 {
67 /* The addend for which this entry is relevant. */
68 bfd_vma addend;
69
70 /* Next addend in the list. */
71 struct elfNN_ia64_dyn_sym_info *next;
72
73 bfd_vma got_offset;
74 bfd_vma fptr_offset;
75 bfd_vma pltoff_offset;
76 bfd_vma plt_offset;
77 bfd_vma plt2_offset;
78 bfd_vma tprel_offset;
79 bfd_vma dtpmod_offset;
80 bfd_vma dtprel_offset;
81
82 /* The symbol table entry, if any, that this was derrived from. */
83 struct elf_link_hash_entry *h;
84
85 /* Used to count non-got, non-plt relocations for delayed sizing
86 of relocation sections. */
87 struct elfNN_ia64_dyn_reloc_entry
88 {
89 struct elfNN_ia64_dyn_reloc_entry *next;
90 asection *srel;
91 int type;
92 int count;
93 } *reloc_entries;
94
95 /* TRUE when the section contents have been updated. */
96 unsigned got_done : 1;
97 unsigned fptr_done : 1;
98 unsigned pltoff_done : 1;
99 unsigned tprel_done : 1;
100 unsigned dtpmod_done : 1;
101 unsigned dtprel_done : 1;
102
103 /* TRUE for the different kinds of linker data we want created. */
104 unsigned want_got : 1;
105 unsigned want_gotx : 1;
106 unsigned want_fptr : 1;
107 unsigned want_ltoff_fptr : 1;
108 unsigned want_plt : 1;
109 unsigned want_plt2 : 1;
110 unsigned want_pltoff : 1;
111 unsigned want_tprel : 1;
112 unsigned want_dtpmod : 1;
113 unsigned want_dtprel : 1;
114 };
115
116 struct elfNN_ia64_local_hash_entry
117 {
118 struct bfd_hash_entry root;
119 struct elfNN_ia64_dyn_sym_info *info;
120
121 /* TRUE if this hash entry's addends was translated for
122 SHF_MERGE optimization. */
123 unsigned sec_merge_done : 1;
124 };
125
126 struct elfNN_ia64_local_hash_table
127 {
128 struct bfd_hash_table root;
129 /* No additional fields for now. */
130 };
131
132 struct elfNN_ia64_link_hash_entry
133 {
134 struct elf_link_hash_entry root;
135 struct elfNN_ia64_dyn_sym_info *info;
136 };
137
138 struct elfNN_ia64_link_hash_table
139 {
140 /* The main hash table. */
141 struct elf_link_hash_table root;
142
143 asection *got_sec; /* the linkage table section (or NULL) */
144 asection *rel_got_sec; /* dynamic relocation section for same */
145 asection *fptr_sec; /* function descriptor table (or NULL) */
146 asection *rel_fptr_sec; /* dynamic relocation section for same */
147 asection *plt_sec; /* the primary plt section (or NULL) */
148 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
149 asection *rel_pltoff_sec; /* dynamic relocation section for same */
150
151 bfd_size_type minplt_entries; /* number of minplt entries */
152 unsigned reltext : 1; /* are there relocs against readonly sections? */
153 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
154 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
155
156 struct elfNN_ia64_local_hash_table loc_hash_table;
157 };
158
159 struct elfNN_ia64_allocate_data
160 {
161 struct bfd_link_info *info;
162 bfd_size_type ofs;
163 };
164
165 #define elfNN_ia64_hash_table(p) \
166 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
167
168 static bfd_reloc_status_type elfNN_ia64_reloc
169 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
170 asection *input_section, bfd *output_bfd, char **error_message));
171 static reloc_howto_type * lookup_howto
172 PARAMS ((unsigned int rtype));
173 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
174 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
175 static void elfNN_ia64_info_to_howto
176 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
177 static bfd_boolean elfNN_ia64_relax_section
178 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
179 bfd_boolean *again));
180 static void elfNN_ia64_relax_ldxmov
181 PARAMS((bfd *abfd, bfd_byte *contents, bfd_vma off));
182 static bfd_boolean is_unwind_section_name
183 PARAMS ((bfd *abfd, const char *));
184 static bfd_boolean elfNN_ia64_section_from_shdr
185 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
186 static bfd_boolean elfNN_ia64_section_flags
187 PARAMS ((flagword *, Elf_Internal_Shdr *));
188 static bfd_boolean elfNN_ia64_fake_sections
189 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
190 static void elfNN_ia64_final_write_processing
191 PARAMS ((bfd *abfd, bfd_boolean linker));
192 static bfd_boolean elfNN_ia64_add_symbol_hook
193 PARAMS ((bfd *abfd, struct bfd_link_info *info, const Elf_Internal_Sym *sym,
194 const char **namep, flagword *flagsp, asection **secp,
195 bfd_vma *valp));
196 static int elfNN_ia64_additional_program_headers
197 PARAMS ((bfd *abfd));
198 static bfd_boolean elfNN_ia64_modify_segment_map
199 PARAMS ((bfd *));
200 static bfd_boolean elfNN_ia64_is_local_label_name
201 PARAMS ((bfd *abfd, const char *name));
202 static bfd_boolean elfNN_ia64_dynamic_symbol_p
203 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
204 static bfd_boolean elfNN_ia64_local_hash_table_init
205 PARAMS ((struct elfNN_ia64_local_hash_table *ht, bfd *abfd,
206 new_hash_entry_func new));
207 static struct bfd_hash_entry *elfNN_ia64_new_loc_hash_entry
208 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
209 const char *string));
210 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
211 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
212 const char *string));
213 static void elfNN_ia64_hash_copy_indirect
214 PARAMS ((const struct elf_backend_data *, struct elf_link_hash_entry *,
215 struct elf_link_hash_entry *));
216 static void elfNN_ia64_hash_hide_symbol
217 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
218 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
219 PARAMS ((bfd *abfd));
220 static struct elfNN_ia64_local_hash_entry *elfNN_ia64_local_hash_lookup
221 PARAMS ((struct elfNN_ia64_local_hash_table *table, const char *string,
222 bfd_boolean create, bfd_boolean copy));
223 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
224 PARAMS ((struct bfd_hash_entry *, PTR));
225 static bfd_boolean elfNN_ia64_local_dyn_sym_thunk
226 PARAMS ((struct bfd_hash_entry *, PTR));
227 static void elfNN_ia64_dyn_sym_traverse
228 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
229 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
230 PTR info));
231 static bfd_boolean elfNN_ia64_create_dynamic_sections
232 PARAMS ((bfd *abfd, struct bfd_link_info *info));
233 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
234 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
235 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
236 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
237 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
238 struct elf_link_hash_entry *h,
239 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
240 static asection *get_got
241 PARAMS ((bfd *abfd, struct bfd_link_info *info,
242 struct elfNN_ia64_link_hash_table *ia64_info));
243 static asection *get_fptr
244 PARAMS ((bfd *abfd, struct bfd_link_info *info,
245 struct elfNN_ia64_link_hash_table *ia64_info));
246 static asection *get_pltoff
247 PARAMS ((bfd *abfd, struct bfd_link_info *info,
248 struct elfNN_ia64_link_hash_table *ia64_info));
249 static asection *get_reloc_section
250 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
251 asection *sec, bfd_boolean create));
252 static bfd_boolean count_dyn_reloc
253 PARAMS ((bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
254 asection *srel, int type));
255 static bfd_boolean elfNN_ia64_check_relocs
256 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
257 const Elf_Internal_Rela *relocs));
258 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
259 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
260 static long global_sym_index
261 PARAMS ((struct elf_link_hash_entry *h));
262 static bfd_boolean allocate_fptr
263 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
264 static bfd_boolean allocate_global_data_got
265 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
266 static bfd_boolean allocate_global_fptr_got
267 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
268 static bfd_boolean allocate_local_got
269 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
270 static bfd_boolean allocate_pltoff_entries
271 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
272 static bfd_boolean allocate_plt_entries
273 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
274 static bfd_boolean allocate_plt2_entries
275 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
276 static bfd_boolean allocate_dynrel_entries
277 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
278 static bfd_boolean elfNN_ia64_size_dynamic_sections
279 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
280 static bfd_reloc_status_type elfNN_ia64_install_value
281 PARAMS ((bfd *abfd, bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
282 static void elfNN_ia64_install_dyn_reloc
283 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
284 asection *srel, bfd_vma offset, unsigned int type,
285 long dynindx, bfd_vma addend));
286 static bfd_vma set_got_entry
287 PARAMS ((bfd *abfd, struct bfd_link_info *info,
288 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
289 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
290 static bfd_vma set_fptr_entry
291 PARAMS ((bfd *abfd, struct bfd_link_info *info,
292 struct elfNN_ia64_dyn_sym_info *dyn_i,
293 bfd_vma value));
294 static bfd_vma set_pltoff_entry
295 PARAMS ((bfd *abfd, struct bfd_link_info *info,
296 struct elfNN_ia64_dyn_sym_info *dyn_i,
297 bfd_vma value, bfd_boolean));
298 static bfd_vma elfNN_ia64_tprel_base
299 PARAMS ((struct bfd_link_info *info));
300 static bfd_vma elfNN_ia64_dtprel_base
301 PARAMS ((struct bfd_link_info *info));
302 static int elfNN_ia64_unwind_entry_compare
303 PARAMS ((const PTR, const PTR));
304 static bfd_boolean elfNN_ia64_choose_gp
305 PARAMS ((bfd *abfd, struct bfd_link_info *info));
306 static bfd_boolean elfNN_ia64_final_link
307 PARAMS ((bfd *abfd, struct bfd_link_info *info));
308 static bfd_boolean elfNN_ia64_relocate_section
309 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
310 asection *input_section, bfd_byte *contents,
311 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
312 asection **local_sections));
313 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
314 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
315 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
316 static bfd_boolean elfNN_ia64_finish_dynamic_sections
317 PARAMS ((bfd *abfd, struct bfd_link_info *info));
318 static bfd_boolean elfNN_ia64_set_private_flags
319 PARAMS ((bfd *abfd, flagword flags));
320 static bfd_boolean elfNN_ia64_merge_private_bfd_data
321 PARAMS ((bfd *ibfd, bfd *obfd));
322 static bfd_boolean elfNN_ia64_print_private_bfd_data
323 PARAMS ((bfd *abfd, PTR ptr));
324 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
325 PARAMS ((const Elf_Internal_Rela *));
326 static bfd_boolean elfNN_ia64_hpux_vec
327 PARAMS ((const bfd_target *vec));
328 static void elfNN_hpux_post_process_headers
329 PARAMS ((bfd *abfd, struct bfd_link_info *info));
330 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
331 PARAMS ((bfd *abfd, asection *sec, int *retval));
332 \f
333 /* ia64-specific relocation. */
334
335 /* Perform a relocation. Not much to do here as all the hard work is
336 done in elfNN_ia64_final_link_relocate. */
337 static bfd_reloc_status_type
338 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
339 output_bfd, error_message)
340 bfd *abfd ATTRIBUTE_UNUSED;
341 arelent *reloc;
342 asymbol *sym ATTRIBUTE_UNUSED;
343 PTR data ATTRIBUTE_UNUSED;
344 asection *input_section;
345 bfd *output_bfd;
346 char **error_message;
347 {
348 if (output_bfd)
349 {
350 reloc->address += input_section->output_offset;
351 return bfd_reloc_ok;
352 }
353
354 if (input_section->flags & SEC_DEBUGGING)
355 return bfd_reloc_continue;
356
357 *error_message = "Unsupported call to elfNN_ia64_reloc";
358 return bfd_reloc_notsupported;
359 }
360
361 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
362 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
363 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
364
365 /* This table has to be sorted according to increasing number of the
366 TYPE field. */
367 static reloc_howto_type ia64_howto_table[] =
368 {
369 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
370
371 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
372 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
373 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
374 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
375 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
376 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
377 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
378
379 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
380 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
381 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
382 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
383 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
385
386 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
388
389 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
390 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
392 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
393
394 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
396 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
397 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
399
400 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
401 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
402 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
403 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
404 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
405 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
406 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
407 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
408
409 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
410 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
411 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
412 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
413 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
414 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
415
416 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
417 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
418 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
419 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
420
421 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
423 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
424 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
425
426 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
429 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
430
431 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
434 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
435
436 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
437 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
438 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
439
440 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
441 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
442 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
443 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
445
446 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
447 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
448 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
449 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
450 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
451 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
452
453 IA64_HOWTO (R_IA64_DTPMOD64MSB, "TPREL64MSB", 4, FALSE, FALSE),
454 IA64_HOWTO (R_IA64_DTPMOD64LSB, "TPREL64LSB", 4, FALSE, FALSE),
455 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
456
457 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
459 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
460 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
461 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
465 };
466
467 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
468
469 /* Given a BFD reloc type, return the matching HOWTO structure. */
470
471 static reloc_howto_type *
472 lookup_howto (rtype)
473 unsigned int rtype;
474 {
475 static int inited = 0;
476 int i;
477
478 if (!inited)
479 {
480 inited = 1;
481
482 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
483 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
484 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
485 }
486
487 BFD_ASSERT (rtype <= R_IA64_MAX_RELOC_CODE);
488 i = elf_code_to_howto_index[rtype];
489 if (i >= NELEMS (ia64_howto_table))
490 return 0;
491 return ia64_howto_table + i;
492 }
493
494 static reloc_howto_type*
495 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
496 bfd *abfd ATTRIBUTE_UNUSED;
497 bfd_reloc_code_real_type bfd_code;
498 {
499 unsigned int rtype;
500
501 switch (bfd_code)
502 {
503 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
504
505 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
506 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
507 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
508
509 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
510 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
511 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
512 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
513
514 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
515 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
516 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
517 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
518 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
519 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
520
521 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
522 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
523
524 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
525 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
526 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
527 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
528 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
529 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
530 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
531 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
532 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
533
534 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
535 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
536 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
537 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
538 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
539 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
540 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
541 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
542 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
543 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
544 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
545
546 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
547 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
548 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
549 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
550 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
551 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
552
553 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
554 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
555 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
556 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
557
558 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
559 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
560 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
561 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
562
563 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
564 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
565 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
566 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
567
568 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
569 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
570 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
571 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
572
573 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
574 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
575 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
576 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
577 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
578
579 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
580 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
581 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
582 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
583 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
584 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
585
586 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
587 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
588 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
589
590 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
591 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
592 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
593 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
594 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
595 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
596 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
597 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
598
599 default: return 0;
600 }
601 return lookup_howto (rtype);
602 }
603
604 /* Given a ELF reloc, return the matching HOWTO structure. */
605
606 static void
607 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
608 bfd *abfd ATTRIBUTE_UNUSED;
609 arelent *bfd_reloc;
610 Elf_Internal_Rela *elf_reloc;
611 {
612 bfd_reloc->howto
613 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
614 }
615 \f
616 #define PLT_HEADER_SIZE (3 * 16)
617 #define PLT_MIN_ENTRY_SIZE (1 * 16)
618 #define PLT_FULL_ENTRY_SIZE (2 * 16)
619 #define PLT_RESERVED_WORDS 3
620
621 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
622 {
623 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
624 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
625 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
626 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
627 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
628 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
629 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
630 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
631 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
632 };
633
634 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
635 {
636 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
637 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
638 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
639 };
640
641 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
642 {
643 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
644 0x00, 0x41, 0x3c, 0x30, 0x28, 0xc0, /* ld8 r16=[r15],8 */
645 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
646 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
647 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
648 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
649 };
650
651 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
652
653 static const bfd_byte oor_brl[16] =
654 {
655 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
656 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
657 0x00, 0x00, 0x00, 0xc0
658 };
659
660 static const bfd_byte oor_ip[48] =
661 {
662 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
663 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
664 0x01, 0x00, 0x00, 0x60,
665 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
666 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
667 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
668 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
669 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
670 0x60, 0x00, 0x80, 0x00 /* br b6;; */
671 };
672
673 static size_t oor_branch_size = sizeof (oor_brl);
674
675 void
676 bfd_elfNN_ia64_after_parse (int itanium)
677 {
678 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
679 }
680
681 \f
682 /* These functions do relaxation for IA-64 ELF. */
683
684 static bfd_boolean
685 elfNN_ia64_relax_section (abfd, sec, link_info, again)
686 bfd *abfd;
687 asection *sec;
688 struct bfd_link_info *link_info;
689 bfd_boolean *again;
690 {
691 struct one_fixup
692 {
693 struct one_fixup *next;
694 asection *tsec;
695 bfd_vma toff;
696 bfd_vma trampoff;
697 };
698
699 Elf_Internal_Shdr *symtab_hdr;
700 Elf_Internal_Rela *internal_relocs;
701 Elf_Internal_Rela *irel, *irelend;
702 bfd_byte *contents;
703 Elf_Internal_Sym *isymbuf = NULL;
704 struct elfNN_ia64_link_hash_table *ia64_info;
705 struct one_fixup *fixups = NULL;
706 bfd_boolean changed_contents = FALSE;
707 bfd_boolean changed_relocs = FALSE;
708 bfd_boolean changed_got = FALSE;
709 bfd_vma gp = 0;
710
711 /* Assume we're not going to change any sizes, and we'll only need
712 one pass. */
713 *again = FALSE;
714
715 /* Don't even try to relax for non-ELF outputs. */
716 if (link_info->hash->creator->flavour != bfd_target_elf_flavour)
717 return FALSE;
718
719 /* Nothing to do if there are no relocations or there is no need for
720 the relax finalize pass. */
721 if ((sec->flags & SEC_RELOC) == 0
722 || sec->reloc_count == 0
723 || (link_info->relax_finalizing
724 && sec->need_finalize_relax == 0))
725 return TRUE;
726
727 /* If this is the first time we have been called for this section,
728 initialize the cooked size. */
729 if (sec->_cooked_size == 0)
730 sec->_cooked_size = sec->_raw_size;
731
732 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
733
734 /* Load the relocations for this section. */
735 internal_relocs = (_bfd_elf_link_read_relocs
736 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
737 link_info->keep_memory));
738 if (internal_relocs == NULL)
739 return FALSE;
740
741 ia64_info = elfNN_ia64_hash_table (link_info);
742 irelend = internal_relocs + sec->reloc_count;
743
744 /* Get the section contents. */
745 if (elf_section_data (sec)->this_hdr.contents != NULL)
746 contents = elf_section_data (sec)->this_hdr.contents;
747 else
748 {
749 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
750 if (contents == NULL)
751 goto error_return;
752
753 if (! bfd_get_section_contents (abfd, sec, contents,
754 (file_ptr) 0, sec->_raw_size))
755 goto error_return;
756 }
757
758 for (irel = internal_relocs; irel < irelend; irel++)
759 {
760 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
761 bfd_vma symaddr, reladdr, trampoff, toff, roff;
762 asection *tsec;
763 struct one_fixup *f;
764 bfd_size_type amt;
765 bfd_boolean is_branch;
766 struct elfNN_ia64_dyn_sym_info *dyn_i;
767
768 switch (r_type)
769 {
770 case R_IA64_PCREL21B:
771 case R_IA64_PCREL21BI:
772 case R_IA64_PCREL21M:
773 case R_IA64_PCREL21F:
774 if (link_info->relax_finalizing)
775 continue;
776 is_branch = TRUE;
777 break;
778
779 case R_IA64_LTOFF22X:
780 case R_IA64_LDXMOV:
781 if (!link_info->relax_finalizing)
782 {
783 sec->need_finalize_relax = 1;
784 continue;
785 }
786 is_branch = FALSE;
787 break;
788
789 default:
790 continue;
791 }
792
793 /* Get the value of the symbol referred to by the reloc. */
794 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
795 {
796 /* A local symbol. */
797 Elf_Internal_Sym *isym;
798
799 /* Read this BFD's local symbols. */
800 if (isymbuf == NULL)
801 {
802 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
803 if (isymbuf == NULL)
804 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
805 symtab_hdr->sh_info, 0,
806 NULL, NULL, NULL);
807 if (isymbuf == 0)
808 goto error_return;
809 }
810
811 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
812 if (isym->st_shndx == SHN_UNDEF)
813 continue; /* We can't do anthing with undefined symbols. */
814 else if (isym->st_shndx == SHN_ABS)
815 tsec = bfd_abs_section_ptr;
816 else if (isym->st_shndx == SHN_COMMON)
817 tsec = bfd_com_section_ptr;
818 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
819 tsec = bfd_com_section_ptr;
820 else
821 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
822
823 toff = isym->st_value;
824 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
825 }
826 else
827 {
828 unsigned long indx;
829 struct elf_link_hash_entry *h;
830
831 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
832 h = elf_sym_hashes (abfd)[indx];
833 BFD_ASSERT (h != NULL);
834
835 while (h->root.type == bfd_link_hash_indirect
836 || h->root.type == bfd_link_hash_warning)
837 h = (struct elf_link_hash_entry *) h->root.u.i.link;
838
839 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
840
841 /* For branches to dynamic symbols, we're interested instead
842 in a branch to the PLT entry. */
843 if (is_branch && dyn_i && dyn_i->want_plt2)
844 {
845 /* Internal branches shouldn't be sent to the PLT.
846 Leave this for now and we'll give an error later. */
847 if (r_type != R_IA64_PCREL21B)
848 continue;
849
850 tsec = ia64_info->plt_sec;
851 toff = dyn_i->plt2_offset;
852 BFD_ASSERT (irel->r_addend == 0);
853 }
854
855 /* Can't do anything else with dynamic symbols. */
856 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
857 continue;
858
859 else
860 {
861 /* We can't do anthing with undefined symbols. */
862 if (h->root.type == bfd_link_hash_undefined
863 || h->root.type == bfd_link_hash_undefweak)
864 continue;
865
866 tsec = h->root.u.def.section;
867 toff = h->root.u.def.value;
868 }
869 }
870
871 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
872 toff = _bfd_merged_section_offset (abfd, &tsec,
873 elf_section_data (tsec)->sec_info,
874 toff + irel->r_addend,
875 (bfd_vma) 0);
876 else
877 toff += irel->r_addend;
878
879 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
880
881 roff = irel->r_offset;
882
883 if (is_branch)
884 {
885 reladdr = (sec->output_section->vma
886 + sec->output_offset
887 + roff) & (bfd_vma) -4;
888
889 /* If the branch is in range, no need to do anything. */
890 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
891 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
892 continue;
893
894 /* If the branch and target are in the same section, you've
895 got one honking big section and we can't help you. You'll
896 get an error message later. */
897 if (tsec == sec)
898 continue;
899
900 /* Look for an existing fixup to this address. */
901 for (f = fixups; f ; f = f->next)
902 if (f->tsec == tsec && f->toff == toff)
903 break;
904
905 if (f == NULL)
906 {
907 /* Two alternatives: If it's a branch to a PLT entry, we can
908 make a copy of the FULL_PLT entry. Otherwise, we'll have
909 to use a `brl' insn to get where we're going. */
910
911 size_t size;
912
913 if (tsec == ia64_info->plt_sec)
914 size = sizeof (plt_full_entry);
915 else
916 size = oor_branch_size;
917
918 /* Resize the current section to make room for the new branch. */
919 trampoff = (sec->_cooked_size + 15) & (bfd_vma) -16;
920 amt = trampoff + size;
921 contents = (bfd_byte *) bfd_realloc (contents, amt);
922 if (contents == NULL)
923 goto error_return;
924 sec->_cooked_size = amt;
925
926 if (tsec == ia64_info->plt_sec)
927 {
928 memcpy (contents + trampoff, plt_full_entry, size);
929
930 /* Hijack the old relocation for use as the PLTOFF reloc. */
931 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
932 R_IA64_PLTOFF22);
933 irel->r_offset = trampoff;
934 }
935 else
936 {
937 if (size == sizeof (oor_ip))
938 {
939 memcpy (contents + trampoff, oor_ip, size);
940 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
941 R_IA64_PCREL64I);
942 irel->r_addend -= 16;
943 irel->r_offset = trampoff + 2;
944 }
945 else
946 {
947 memcpy (contents + trampoff, oor_brl, size);
948 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
949 R_IA64_PCREL60B);
950 irel->r_offset = trampoff + 2;
951 }
952
953 }
954
955 /* Record the fixup so we don't do it again this section. */
956 f = (struct one_fixup *)
957 bfd_malloc ((bfd_size_type) sizeof (*f));
958 f->next = fixups;
959 f->tsec = tsec;
960 f->toff = toff;
961 f->trampoff = trampoff;
962 fixups = f;
963 }
964 else
965 {
966 /* Nop out the reloc, since we're finalizing things here. */
967 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
968 }
969
970 /* Fix up the existing branch to hit the trampoline. Hope like
971 hell this doesn't overflow too. */
972 if (elfNN_ia64_install_value (abfd, contents + roff,
973 f->trampoff - (roff & (bfd_vma) -4),
974 r_type) != bfd_reloc_ok)
975 goto error_return;
976
977 changed_contents = TRUE;
978 changed_relocs = TRUE;
979 }
980 else
981 {
982 /* Fetch the gp. */
983 if (gp == 0)
984 {
985 bfd *obfd = sec->output_section->owner;
986 gp = _bfd_get_gp_value (obfd);
987 if (gp == 0)
988 {
989 if (!elfNN_ia64_choose_gp (obfd, link_info))
990 goto error_return;
991 gp = _bfd_get_gp_value (obfd);
992 }
993 }
994
995 /* If the data is out of range, do nothing. */
996 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
997 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
998 continue;
999
1000 if (r_type == R_IA64_LTOFF22X)
1001 {
1002 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1003 R_IA64_GPREL22);
1004 changed_relocs = TRUE;
1005 if (dyn_i->want_gotx)
1006 {
1007 dyn_i->want_gotx = 0;
1008 changed_got |= !dyn_i->want_got;
1009 }
1010 }
1011 else
1012 {
1013 elfNN_ia64_relax_ldxmov (abfd, contents, roff);
1014 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1015 changed_contents = TRUE;
1016 changed_relocs = TRUE;
1017 }
1018 }
1019 }
1020
1021 /* ??? If we created fixups, this may push the code segment large
1022 enough that the data segment moves, which will change the GP.
1023 Reset the GP so that we re-calculate next round. We need to
1024 do this at the _beginning_ of the next round; now will not do. */
1025
1026 /* Clean up and go home. */
1027 while (fixups)
1028 {
1029 struct one_fixup *f = fixups;
1030 fixups = fixups->next;
1031 free (f);
1032 }
1033
1034 if (isymbuf != NULL
1035 && symtab_hdr->contents != (unsigned char *) isymbuf)
1036 {
1037 if (! link_info->keep_memory)
1038 free (isymbuf);
1039 else
1040 {
1041 /* Cache the symbols for elf_link_input_bfd. */
1042 symtab_hdr->contents = (unsigned char *) isymbuf;
1043 }
1044 }
1045
1046 if (contents != NULL
1047 && elf_section_data (sec)->this_hdr.contents != contents)
1048 {
1049 if (!changed_contents && !link_info->keep_memory)
1050 free (contents);
1051 else
1052 {
1053 /* Cache the section contents for elf_link_input_bfd. */
1054 elf_section_data (sec)->this_hdr.contents = contents;
1055 }
1056 }
1057
1058 if (elf_section_data (sec)->relocs != internal_relocs)
1059 {
1060 if (!changed_relocs)
1061 free (internal_relocs);
1062 else
1063 elf_section_data (sec)->relocs = internal_relocs;
1064 }
1065
1066 if (changed_got)
1067 {
1068 struct elfNN_ia64_allocate_data data;
1069 data.info = link_info;
1070 data.ofs = 0;
1071 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1072
1073 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1074 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1075 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1076 ia64_info->got_sec->_raw_size = data.ofs;
1077 ia64_info->got_sec->_cooked_size = data.ofs;
1078
1079 /* ??? Resize .rela.got too. */
1080 }
1081
1082 if (link_info->relax_finalizing)
1083 sec->need_finalize_relax = 0;
1084
1085 *again = changed_contents || changed_relocs;
1086 return TRUE;
1087
1088 error_return:
1089 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1090 free (isymbuf);
1091 if (contents != NULL
1092 && elf_section_data (sec)->this_hdr.contents != contents)
1093 free (contents);
1094 if (internal_relocs != NULL
1095 && elf_section_data (sec)->relocs != internal_relocs)
1096 free (internal_relocs);
1097 return FALSE;
1098 }
1099
1100 static void
1101 elfNN_ia64_relax_ldxmov (abfd, contents, off)
1102 bfd *abfd;
1103 bfd_byte *contents;
1104 bfd_vma off;
1105 {
1106 int shift, r1, r3;
1107 bfd_vma dword, insn;
1108
1109 switch ((int)off & 0x3)
1110 {
1111 case 0: shift = 5; break;
1112 case 1: shift = 14; off += 3; break;
1113 case 2: shift = 23; off += 6; break;
1114 default:
1115 abort ();
1116 }
1117
1118 dword = bfd_get_64 (abfd, contents + off);
1119 insn = (dword >> shift) & 0x1ffffffffffLL;
1120
1121 r1 = (insn >> 6) & 127;
1122 r3 = (insn >> 20) & 127;
1123 if (r1 == r3)
1124 insn = 0x8000000; /* nop */
1125 else
1126 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1127
1128 dword &= ~(0x1ffffffffffLL << shift);
1129 dword |= (insn << shift);
1130 bfd_put_64 (abfd, dword, contents + off);
1131 }
1132 \f
1133 /* Return TRUE if NAME is an unwind table section name. */
1134
1135 static inline bfd_boolean
1136 is_unwind_section_name (abfd, name)
1137 bfd *abfd;
1138 const char *name;
1139 {
1140 size_t len1, len2, len3;
1141
1142 if (elfNN_ia64_hpux_vec (abfd->xvec)
1143 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1144 return FALSE;
1145
1146 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1147 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1148 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1149 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1150 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1151 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1152 }
1153
1154 /* Handle an IA-64 specific section when reading an object file. This
1155 is called when elfcode.h finds a section with an unknown type. */
1156
1157 static bfd_boolean
1158 elfNN_ia64_section_from_shdr (abfd, hdr, name)
1159 bfd *abfd;
1160 Elf_Internal_Shdr *hdr;
1161 const char *name;
1162 {
1163 asection *newsect;
1164
1165 /* There ought to be a place to keep ELF backend specific flags, but
1166 at the moment there isn't one. We just keep track of the
1167 sections by their name, instead. Fortunately, the ABI gives
1168 suggested names for all the MIPS specific sections, so we will
1169 probably get away with this. */
1170 switch (hdr->sh_type)
1171 {
1172 case SHT_IA_64_UNWIND:
1173 case SHT_IA_64_HP_OPT_ANOT:
1174 break;
1175
1176 case SHT_IA_64_EXT:
1177 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1178 return FALSE;
1179 break;
1180
1181 default:
1182 return FALSE;
1183 }
1184
1185 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1186 return FALSE;
1187 newsect = hdr->bfd_section;
1188
1189 return TRUE;
1190 }
1191
1192 /* Convert IA-64 specific section flags to bfd internal section flags. */
1193
1194 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1195 flag. */
1196
1197 static bfd_boolean
1198 elfNN_ia64_section_flags (flags, hdr)
1199 flagword *flags;
1200 Elf_Internal_Shdr *hdr;
1201 {
1202 if (hdr->sh_flags & SHF_IA_64_SHORT)
1203 *flags |= SEC_SMALL_DATA;
1204
1205 return TRUE;
1206 }
1207
1208 /* Set the correct type for an IA-64 ELF section. We do this by the
1209 section name, which is a hack, but ought to work. */
1210
1211 static bfd_boolean
1212 elfNN_ia64_fake_sections (abfd, hdr, sec)
1213 bfd *abfd ATTRIBUTE_UNUSED;
1214 Elf_Internal_Shdr *hdr;
1215 asection *sec;
1216 {
1217 register const char *name;
1218
1219 name = bfd_get_section_name (abfd, sec);
1220
1221 if (is_unwind_section_name (abfd, name))
1222 {
1223 /* We don't have the sections numbered at this point, so sh_info
1224 is set later, in elfNN_ia64_final_write_processing. */
1225 hdr->sh_type = SHT_IA_64_UNWIND;
1226 hdr->sh_flags |= SHF_LINK_ORDER;
1227 }
1228 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1229 hdr->sh_type = SHT_IA_64_EXT;
1230 else if (strcmp (name, ".HP.opt_annot") == 0)
1231 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1232 else if (strcmp (name, ".reloc") == 0)
1233 /* This is an ugly, but unfortunately necessary hack that is
1234 needed when producing EFI binaries on IA-64. It tells
1235 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1236 containing ELF relocation info. We need this hack in order to
1237 be able to generate ELF binaries that can be translated into
1238 EFI applications (which are essentially COFF objects). Those
1239 files contain a COFF ".reloc" section inside an ELFNN object,
1240 which would normally cause BFD to segfault because it would
1241 attempt to interpret this section as containing relocation
1242 entries for section "oc". With this hack enabled, ".reloc"
1243 will be treated as a normal data section, which will avoid the
1244 segfault. However, you won't be able to create an ELFNN binary
1245 with a section named "oc" that needs relocations, but that's
1246 the kind of ugly side-effects you get when detecting section
1247 types based on their names... In practice, this limitation is
1248 unlikely to bite. */
1249 hdr->sh_type = SHT_PROGBITS;
1250
1251 if (sec->flags & SEC_SMALL_DATA)
1252 hdr->sh_flags |= SHF_IA_64_SHORT;
1253
1254 return TRUE;
1255 }
1256
1257 /* The final processing done just before writing out an IA-64 ELF
1258 object file. */
1259
1260 static void
1261 elfNN_ia64_final_write_processing (abfd, linker)
1262 bfd *abfd;
1263 bfd_boolean linker ATTRIBUTE_UNUSED;
1264 {
1265 Elf_Internal_Shdr *hdr;
1266 const char *sname;
1267 asection *text_sect, *s;
1268 size_t len;
1269
1270 for (s = abfd->sections; s; s = s->next)
1271 {
1272 hdr = &elf_section_data (s)->this_hdr;
1273 switch (hdr->sh_type)
1274 {
1275 case SHT_IA_64_UNWIND:
1276 /* See comments in gas/config/tc-ia64.c:dot_endp on why we
1277 have to do this. */
1278 sname = bfd_get_section_name (abfd, s);
1279 len = sizeof (ELF_STRING_ia64_unwind) - 1;
1280 if (sname && strncmp (sname, ELF_STRING_ia64_unwind, len) == 0)
1281 {
1282 sname += len;
1283
1284 if (sname[0] == '\0')
1285 /* .IA_64.unwind -> .text */
1286 text_sect = bfd_get_section_by_name (abfd, ".text");
1287 else
1288 /* .IA_64.unwindFOO -> FOO */
1289 text_sect = bfd_get_section_by_name (abfd, sname);
1290 }
1291 else if (sname
1292 && (len = sizeof (ELF_STRING_ia64_unwind_once) - 1,
1293 strncmp (sname, ELF_STRING_ia64_unwind_once, len)) == 0)
1294 {
1295 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.t.FOO */
1296 size_t len2 = sizeof (".gnu.linkonce.t.") - 1;
1297 char *once_name = bfd_malloc (len2 + strlen (sname + len) + 1);
1298
1299 if (once_name != NULL)
1300 {
1301 memcpy (once_name, ".gnu.linkonce.t.", len2);
1302 strcpy (once_name + len2, sname + len);
1303 text_sect = bfd_get_section_by_name (abfd, once_name);
1304 free (once_name);
1305 }
1306 else
1307 /* Should only happen if we run out of memory, in
1308 which case we're probably toast anyway. Try to
1309 cope by finding the section the slow way. */
1310 for (text_sect = abfd->sections;
1311 text_sect != NULL;
1312 text_sect = text_sect->next)
1313 {
1314 if (strncmp (bfd_section_name (abfd, text_sect),
1315 ".gnu.linkonce.t.", len2) == 0
1316 && strcmp (bfd_section_name (abfd, text_sect) + len2,
1317 sname + len) == 0)
1318 break;
1319 }
1320 }
1321 else
1322 /* last resort: fall back on .text */
1323 text_sect = bfd_get_section_by_name (abfd, ".text");
1324
1325 if (text_sect)
1326 {
1327 /* The IA-64 processor-specific ABI requires setting
1328 sh_link to the unwind section, whereas HP-UX requires
1329 sh_info to do so. For maximum compatibility, we'll
1330 set both for now... */
1331 hdr->sh_link = elf_section_data (text_sect)->this_idx;
1332 hdr->sh_info = elf_section_data (text_sect)->this_idx;
1333 }
1334 break;
1335 }
1336 }
1337
1338 if (! elf_flags_init (abfd))
1339 {
1340 unsigned long flags = 0;
1341
1342 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1343 flags |= EF_IA_64_BE;
1344 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1345 flags |= EF_IA_64_ABI64;
1346
1347 elf_elfheader(abfd)->e_flags = flags;
1348 elf_flags_init (abfd) = TRUE;
1349 }
1350 }
1351
1352 /* Hook called by the linker routine which adds symbols from an object
1353 file. We use it to put .comm items in .sbss, and not .bss. */
1354
1355 static bfd_boolean
1356 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1357 bfd *abfd;
1358 struct bfd_link_info *info;
1359 const Elf_Internal_Sym *sym;
1360 const char **namep ATTRIBUTE_UNUSED;
1361 flagword *flagsp ATTRIBUTE_UNUSED;
1362 asection **secp;
1363 bfd_vma *valp;
1364 {
1365 if (sym->st_shndx == SHN_COMMON
1366 && !info->relocatable
1367 && sym->st_size <= elf_gp_size (abfd))
1368 {
1369 /* Common symbols less than or equal to -G nn bytes are
1370 automatically put into .sbss. */
1371
1372 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1373
1374 if (scomm == NULL)
1375 {
1376 scomm = bfd_make_section (abfd, ".scommon");
1377 if (scomm == NULL
1378 || !bfd_set_section_flags (abfd, scomm, (SEC_ALLOC
1379 | SEC_IS_COMMON
1380 | SEC_LINKER_CREATED)))
1381 return FALSE;
1382 }
1383
1384 *secp = scomm;
1385 *valp = sym->st_size;
1386 }
1387
1388 return TRUE;
1389 }
1390
1391 /* Return the number of additional phdrs we will need. */
1392
1393 static int
1394 elfNN_ia64_additional_program_headers (abfd)
1395 bfd *abfd;
1396 {
1397 asection *s;
1398 int ret = 0;
1399
1400 /* See if we need a PT_IA_64_ARCHEXT segment. */
1401 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1402 if (s && (s->flags & SEC_LOAD))
1403 ++ret;
1404
1405 /* Count how many PT_IA_64_UNWIND segments we need. */
1406 for (s = abfd->sections; s; s = s->next)
1407 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1408 ++ret;
1409
1410 return ret;
1411 }
1412
1413 static bfd_boolean
1414 elfNN_ia64_modify_segment_map (abfd)
1415 bfd *abfd;
1416 {
1417 struct elf_segment_map *m, **pm;
1418 Elf_Internal_Shdr *hdr;
1419 asection *s;
1420
1421 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1422 all PT_LOAD segments. */
1423 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1424 if (s && (s->flags & SEC_LOAD))
1425 {
1426 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1427 if (m->p_type == PT_IA_64_ARCHEXT)
1428 break;
1429 if (m == NULL)
1430 {
1431 m = ((struct elf_segment_map *)
1432 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1433 if (m == NULL)
1434 return FALSE;
1435
1436 m->p_type = PT_IA_64_ARCHEXT;
1437 m->count = 1;
1438 m->sections[0] = s;
1439
1440 /* We want to put it after the PHDR and INTERP segments. */
1441 pm = &elf_tdata (abfd)->segment_map;
1442 while (*pm != NULL
1443 && ((*pm)->p_type == PT_PHDR
1444 || (*pm)->p_type == PT_INTERP))
1445 pm = &(*pm)->next;
1446
1447 m->next = *pm;
1448 *pm = m;
1449 }
1450 }
1451
1452 /* Install PT_IA_64_UNWIND segments, if needed. */
1453 for (s = abfd->sections; s; s = s->next)
1454 {
1455 hdr = &elf_section_data (s)->this_hdr;
1456 if (hdr->sh_type != SHT_IA_64_UNWIND)
1457 continue;
1458
1459 if (s && (s->flags & SEC_LOAD))
1460 {
1461 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1462 if (m->p_type == PT_IA_64_UNWIND)
1463 {
1464 int i;
1465
1466 /* Look through all sections in the unwind segment
1467 for a match since there may be multiple sections
1468 to a segment. */
1469 for (i = m->count - 1; i >= 0; --i)
1470 if (m->sections[i] == s)
1471 break;
1472
1473 if (i >= 0)
1474 break;
1475 }
1476
1477 if (m == NULL)
1478 {
1479 m = ((struct elf_segment_map *)
1480 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1481 if (m == NULL)
1482 return FALSE;
1483
1484 m->p_type = PT_IA_64_UNWIND;
1485 m->count = 1;
1486 m->sections[0] = s;
1487 m->next = NULL;
1488
1489 /* We want to put it last. */
1490 pm = &elf_tdata (abfd)->segment_map;
1491 while (*pm != NULL)
1492 pm = &(*pm)->next;
1493 *pm = m;
1494 }
1495 }
1496 }
1497
1498 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1499 the input sections for each output section in the segment and testing
1500 for SHF_IA_64_NORECOV on each. */
1501 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1502 if (m->p_type == PT_LOAD)
1503 {
1504 int i;
1505 for (i = m->count - 1; i >= 0; --i)
1506 {
1507 struct bfd_link_order *order = m->sections[i]->link_order_head;
1508 while (order)
1509 {
1510 if (order->type == bfd_indirect_link_order)
1511 {
1512 asection *is = order->u.indirect.section;
1513 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1514 if (flags & SHF_IA_64_NORECOV)
1515 {
1516 m->p_flags |= PF_IA_64_NORECOV;
1517 goto found;
1518 }
1519 }
1520 order = order->next;
1521 }
1522 }
1523 found:;
1524 }
1525
1526 return TRUE;
1527 }
1528
1529 /* According to the Tahoe assembler spec, all labels starting with a
1530 '.' are local. */
1531
1532 static bfd_boolean
1533 elfNN_ia64_is_local_label_name (abfd, name)
1534 bfd *abfd ATTRIBUTE_UNUSED;
1535 const char *name;
1536 {
1537 return name[0] == '.';
1538 }
1539
1540 /* Should we do dynamic things to this symbol? */
1541
1542 static bfd_boolean
1543 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1544 struct elf_link_hash_entry *h;
1545 struct bfd_link_info *info;
1546 int r_type;
1547 {
1548 bfd_boolean ignore_protected
1549 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1550 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1551
1552 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1553 }
1554 \f
1555 static bfd_boolean
1556 elfNN_ia64_local_hash_table_init (ht, abfd, new)
1557 struct elfNN_ia64_local_hash_table *ht;
1558 bfd *abfd ATTRIBUTE_UNUSED;
1559 new_hash_entry_func new;
1560 {
1561 memset (ht, 0, sizeof (*ht));
1562 return bfd_hash_table_init (&ht->root, new);
1563 }
1564
1565 static struct bfd_hash_entry*
1566 elfNN_ia64_new_loc_hash_entry (entry, table, string)
1567 struct bfd_hash_entry *entry;
1568 struct bfd_hash_table *table;
1569 const char *string;
1570 {
1571 struct elfNN_ia64_local_hash_entry *ret;
1572 ret = (struct elfNN_ia64_local_hash_entry *) entry;
1573
1574 /* Allocate the structure if it has not already been allocated by a
1575 subclass. */
1576 if (!ret)
1577 ret = bfd_hash_allocate (table, sizeof (*ret));
1578
1579 if (!ret)
1580 return 0;
1581
1582 /* Initialize our local data. All zeros, and definitely easier
1583 than setting a handful of bit fields. */
1584 memset (ret, 0, sizeof (*ret));
1585
1586 /* Call the allocation method of the superclass. */
1587 ret = ((struct elfNN_ia64_local_hash_entry *)
1588 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
1589
1590 return (struct bfd_hash_entry *) ret;
1591 }
1592
1593 static struct bfd_hash_entry*
1594 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1595 struct bfd_hash_entry *entry;
1596 struct bfd_hash_table *table;
1597 const char *string;
1598 {
1599 struct elfNN_ia64_link_hash_entry *ret;
1600 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1601
1602 /* Allocate the structure if it has not already been allocated by a
1603 subclass. */
1604 if (!ret)
1605 ret = bfd_hash_allocate (table, sizeof (*ret));
1606
1607 if (!ret)
1608 return 0;
1609
1610 /* Initialize our local data. All zeros, and definitely easier
1611 than setting a handful of bit fields. */
1612 memset (ret, 0, sizeof (*ret));
1613
1614 /* Call the allocation method of the superclass. */
1615 ret = ((struct elfNN_ia64_link_hash_entry *)
1616 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1617 table, string));
1618
1619 return (struct bfd_hash_entry *) ret;
1620 }
1621
1622 static void
1623 elfNN_ia64_hash_copy_indirect (bed, xdir, xind)
1624 const struct elf_backend_data *bed ATTRIBUTE_UNUSED;
1625 struct elf_link_hash_entry *xdir, *xind;
1626 {
1627 struct elfNN_ia64_link_hash_entry *dir, *ind;
1628
1629 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1630 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1631
1632 /* Copy down any references that we may have already seen to the
1633 symbol which just became indirect. */
1634
1635 dir->root.elf_link_hash_flags |=
1636 (ind->root.elf_link_hash_flags
1637 & (ELF_LINK_HASH_REF_DYNAMIC
1638 | ELF_LINK_HASH_REF_REGULAR
1639 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1640
1641 if (ind->root.root.type != bfd_link_hash_indirect)
1642 return;
1643
1644 /* Copy over the got and plt data. This would have been done
1645 by check_relocs. */
1646
1647 if (dir->info == NULL)
1648 {
1649 struct elfNN_ia64_dyn_sym_info *dyn_i;
1650
1651 dir->info = dyn_i = ind->info;
1652 ind->info = NULL;
1653
1654 /* Fix up the dyn_sym_info pointers to the global symbol. */
1655 for (; dyn_i; dyn_i = dyn_i->next)
1656 dyn_i->h = &dir->root;
1657 }
1658 BFD_ASSERT (ind->info == NULL);
1659
1660 /* Copy over the dynindx. */
1661
1662 if (dir->root.dynindx == -1)
1663 {
1664 dir->root.dynindx = ind->root.dynindx;
1665 dir->root.dynstr_index = ind->root.dynstr_index;
1666 ind->root.dynindx = -1;
1667 ind->root.dynstr_index = 0;
1668 }
1669 BFD_ASSERT (ind->root.dynindx == -1);
1670 }
1671
1672 static void
1673 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1674 struct bfd_link_info *info;
1675 struct elf_link_hash_entry *xh;
1676 bfd_boolean force_local;
1677 {
1678 struct elfNN_ia64_link_hash_entry *h;
1679 struct elfNN_ia64_dyn_sym_info *dyn_i;
1680
1681 h = (struct elfNN_ia64_link_hash_entry *)xh;
1682
1683 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1684
1685 for (dyn_i = h->info; dyn_i; dyn_i = dyn_i->next)
1686 {
1687 dyn_i->want_plt2 = 0;
1688 dyn_i->want_plt = 0;
1689 }
1690 }
1691
1692 /* Create the derived linker hash table. The IA-64 ELF port uses this
1693 derived hash table to keep information specific to the IA-64 ElF
1694 linker (without using static variables). */
1695
1696 static struct bfd_link_hash_table*
1697 elfNN_ia64_hash_table_create (abfd)
1698 bfd *abfd;
1699 {
1700 struct elfNN_ia64_link_hash_table *ret;
1701
1702 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1703 if (!ret)
1704 return 0;
1705
1706 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1707 elfNN_ia64_new_elf_hash_entry))
1708 {
1709 free (ret);
1710 return 0;
1711 }
1712
1713 if (!elfNN_ia64_local_hash_table_init (&ret->loc_hash_table, abfd,
1714 elfNN_ia64_new_loc_hash_entry))
1715 {
1716 free (ret);
1717 return 0;
1718 }
1719
1720 return &ret->root.root;
1721 }
1722
1723 /* Look up an entry in a Alpha ELF linker hash table. */
1724
1725 static INLINE struct elfNN_ia64_local_hash_entry *
1726 elfNN_ia64_local_hash_lookup(table, string, create, copy)
1727 struct elfNN_ia64_local_hash_table *table;
1728 const char *string;
1729 bfd_boolean create, copy;
1730 {
1731 return ((struct elfNN_ia64_local_hash_entry *)
1732 bfd_hash_lookup (&table->root, string, create, copy));
1733 }
1734
1735 /* Traverse both local and global hash tables. */
1736
1737 struct elfNN_ia64_dyn_sym_traverse_data
1738 {
1739 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1740 PTR data;
1741 };
1742
1743 static bfd_boolean
1744 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
1745 struct bfd_hash_entry *xentry;
1746 PTR xdata;
1747 {
1748 struct elfNN_ia64_link_hash_entry *entry
1749 = (struct elfNN_ia64_link_hash_entry *) xentry;
1750 struct elfNN_ia64_dyn_sym_traverse_data *data
1751 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1752 struct elfNN_ia64_dyn_sym_info *dyn_i;
1753
1754 if (entry->root.root.type == bfd_link_hash_warning)
1755 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1756
1757 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1758 if (! (*data->func) (dyn_i, data->data))
1759 return FALSE;
1760 return TRUE;
1761 }
1762
1763 static bfd_boolean
1764 elfNN_ia64_local_dyn_sym_thunk (xentry, xdata)
1765 struct bfd_hash_entry *xentry;
1766 PTR xdata;
1767 {
1768 struct elfNN_ia64_local_hash_entry *entry
1769 = (struct elfNN_ia64_local_hash_entry *) xentry;
1770 struct elfNN_ia64_dyn_sym_traverse_data *data
1771 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1772 struct elfNN_ia64_dyn_sym_info *dyn_i;
1773
1774 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1775 if (! (*data->func) (dyn_i, data->data))
1776 return FALSE;
1777 return TRUE;
1778 }
1779
1780 static void
1781 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
1782 struct elfNN_ia64_link_hash_table *ia64_info;
1783 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1784 PTR data;
1785 {
1786 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1787
1788 xdata.func = func;
1789 xdata.data = data;
1790
1791 elf_link_hash_traverse (&ia64_info->root,
1792 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1793 bfd_hash_traverse (&ia64_info->loc_hash_table.root,
1794 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1795 }
1796 \f
1797 static bfd_boolean
1798 elfNN_ia64_create_dynamic_sections (abfd, info)
1799 bfd *abfd;
1800 struct bfd_link_info *info;
1801 {
1802 struct elfNN_ia64_link_hash_table *ia64_info;
1803 asection *s;
1804
1805 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1806 return FALSE;
1807
1808 ia64_info = elfNN_ia64_hash_table (info);
1809
1810 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
1811 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
1812
1813 {
1814 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
1815 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
1816 /* The .got section is always aligned at 8 bytes. */
1817 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
1818 }
1819
1820 if (!get_pltoff (abfd, info, ia64_info))
1821 return FALSE;
1822
1823 s = bfd_make_section(abfd, ".rela.IA_64.pltoff");
1824 if (s == NULL
1825 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1826 | SEC_HAS_CONTENTS
1827 | SEC_IN_MEMORY
1828 | SEC_LINKER_CREATED
1829 | SEC_READONLY))
1830 || !bfd_set_section_alignment (abfd, s, 3))
1831 return FALSE;
1832 ia64_info->rel_pltoff_sec = s;
1833
1834 s = bfd_make_section(abfd, ".rela.got");
1835 if (s == NULL
1836 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1837 | SEC_HAS_CONTENTS
1838 | SEC_IN_MEMORY
1839 | SEC_LINKER_CREATED
1840 | SEC_READONLY))
1841 || !bfd_set_section_alignment (abfd, s, 3))
1842 return FALSE;
1843 ia64_info->rel_got_sec = s;
1844
1845 return TRUE;
1846 }
1847
1848 /* Find and/or create a hash entry for local symbol. */
1849 static struct elfNN_ia64_local_hash_entry *
1850 get_local_sym_hash (ia64_info, abfd, rel, create)
1851 struct elfNN_ia64_link_hash_table *ia64_info;
1852 bfd *abfd;
1853 const Elf_Internal_Rela *rel;
1854 bfd_boolean create;
1855 {
1856 struct elfNN_ia64_local_hash_entry *ret;
1857 asection *sec = abfd->sections;
1858 char addr_name [34];
1859
1860 BFD_ASSERT ((sizeof (sec->id)*2 + 1 + sizeof (unsigned long)*2 + 1) <= 34);
1861 BFD_ASSERT (sec);
1862
1863 /* Construct a string for use in the elfNN_ia64_local_hash_table.
1864 name describes what was once anonymous memory. */
1865
1866 sprintf (addr_name, "%x:%lx",
1867 sec->id, (unsigned long) ELFNN_R_SYM (rel->r_info));
1868
1869 /* Collect the canonical entry data for this address. */
1870 ret = elfNN_ia64_local_hash_lookup (&ia64_info->loc_hash_table,
1871 addr_name, create, create);
1872 return ret;
1873 }
1874
1875 /* Find and/or create a descriptor for dynamic symbol info. This will
1876 vary based on global or local symbol, and the addend to the reloc. */
1877
1878 static struct elfNN_ia64_dyn_sym_info *
1879 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
1880 struct elfNN_ia64_link_hash_table *ia64_info;
1881 struct elf_link_hash_entry *h;
1882 bfd *abfd;
1883 const Elf_Internal_Rela *rel;
1884 bfd_boolean create;
1885 {
1886 struct elfNN_ia64_dyn_sym_info **pp;
1887 struct elfNN_ia64_dyn_sym_info *dyn_i;
1888 bfd_vma addend = rel ? rel->r_addend : 0;
1889
1890 if (h)
1891 pp = &((struct elfNN_ia64_link_hash_entry *)h)->info;
1892 else
1893 {
1894 struct elfNN_ia64_local_hash_entry *loc_h;
1895
1896 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
1897 if (!loc_h)
1898 {
1899 BFD_ASSERT (!create);
1900 return NULL;
1901 }
1902
1903 pp = &loc_h->info;
1904 }
1905
1906 for (dyn_i = *pp; dyn_i && dyn_i->addend != addend; dyn_i = *pp)
1907 pp = &dyn_i->next;
1908
1909 if (dyn_i == NULL && create)
1910 {
1911 dyn_i = ((struct elfNN_ia64_dyn_sym_info *)
1912 bfd_zalloc (abfd, (bfd_size_type) sizeof *dyn_i));
1913 *pp = dyn_i;
1914 dyn_i->addend = addend;
1915 }
1916
1917 return dyn_i;
1918 }
1919
1920 static asection *
1921 get_got (abfd, info, ia64_info)
1922 bfd *abfd;
1923 struct bfd_link_info *info;
1924 struct elfNN_ia64_link_hash_table *ia64_info;
1925 {
1926 asection *got;
1927 bfd *dynobj;
1928
1929 got = ia64_info->got_sec;
1930 if (!got)
1931 {
1932 flagword flags;
1933
1934 dynobj = ia64_info->root.dynobj;
1935 if (!dynobj)
1936 ia64_info->root.dynobj = dynobj = abfd;
1937 if (!_bfd_elf_create_got_section (dynobj, info))
1938 return 0;
1939
1940 got = bfd_get_section_by_name (dynobj, ".got");
1941 BFD_ASSERT (got);
1942 ia64_info->got_sec = got;
1943
1944 /* The .got section is always aligned at 8 bytes. */
1945 if (!bfd_set_section_alignment (abfd, got, 3))
1946 return 0;
1947
1948 flags = bfd_get_section_flags (abfd, got);
1949 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
1950 }
1951
1952 return got;
1953 }
1954
1955 /* Create function descriptor section (.opd). This section is called .opd
1956 because it contains "official prodecure descriptors". The "official"
1957 refers to the fact that these descriptors are used when taking the address
1958 of a procedure, thus ensuring a unique address for each procedure. */
1959
1960 static asection *
1961 get_fptr (abfd, info, ia64_info)
1962 bfd *abfd;
1963 struct bfd_link_info *info;
1964 struct elfNN_ia64_link_hash_table *ia64_info;
1965 {
1966 asection *fptr;
1967 bfd *dynobj;
1968
1969 fptr = ia64_info->fptr_sec;
1970 if (!fptr)
1971 {
1972 dynobj = ia64_info->root.dynobj;
1973 if (!dynobj)
1974 ia64_info->root.dynobj = dynobj = abfd;
1975
1976 fptr = bfd_make_section (dynobj, ".opd");
1977 if (!fptr
1978 || !bfd_set_section_flags (dynobj, fptr,
1979 (SEC_ALLOC
1980 | SEC_LOAD
1981 | SEC_HAS_CONTENTS
1982 | SEC_IN_MEMORY
1983 | (info->pie ? 0 : SEC_READONLY)
1984 | SEC_LINKER_CREATED))
1985 || !bfd_set_section_alignment (abfd, fptr, 4))
1986 {
1987 BFD_ASSERT (0);
1988 return NULL;
1989 }
1990
1991 ia64_info->fptr_sec = fptr;
1992
1993 if (info->pie)
1994 {
1995 asection *fptr_rel;
1996 fptr_rel = bfd_make_section(abfd, ".rela.opd");
1997 if (fptr_rel == NULL
1998 || !bfd_set_section_flags (abfd, fptr_rel,
1999 (SEC_ALLOC | SEC_LOAD
2000 | SEC_HAS_CONTENTS
2001 | SEC_IN_MEMORY
2002 | SEC_LINKER_CREATED
2003 | SEC_READONLY))
2004 || !bfd_set_section_alignment (abfd, fptr_rel, 3))
2005 {
2006 BFD_ASSERT (0);
2007 return NULL;
2008 }
2009
2010 ia64_info->rel_fptr_sec = fptr_rel;
2011 }
2012 }
2013
2014 return fptr;
2015 }
2016
2017 static asection *
2018 get_pltoff (abfd, info, ia64_info)
2019 bfd *abfd;
2020 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2021 struct elfNN_ia64_link_hash_table *ia64_info;
2022 {
2023 asection *pltoff;
2024 bfd *dynobj;
2025
2026 pltoff = ia64_info->pltoff_sec;
2027 if (!pltoff)
2028 {
2029 dynobj = ia64_info->root.dynobj;
2030 if (!dynobj)
2031 ia64_info->root.dynobj = dynobj = abfd;
2032
2033 pltoff = bfd_make_section (dynobj, ELF_STRING_ia64_pltoff);
2034 if (!pltoff
2035 || !bfd_set_section_flags (dynobj, pltoff,
2036 (SEC_ALLOC
2037 | SEC_LOAD
2038 | SEC_HAS_CONTENTS
2039 | SEC_IN_MEMORY
2040 | SEC_SMALL_DATA
2041 | SEC_LINKER_CREATED))
2042 || !bfd_set_section_alignment (abfd, pltoff, 4))
2043 {
2044 BFD_ASSERT (0);
2045 return NULL;
2046 }
2047
2048 ia64_info->pltoff_sec = pltoff;
2049 }
2050
2051 return pltoff;
2052 }
2053
2054 static asection *
2055 get_reloc_section (abfd, ia64_info, sec, create)
2056 bfd *abfd;
2057 struct elfNN_ia64_link_hash_table *ia64_info;
2058 asection *sec;
2059 bfd_boolean create;
2060 {
2061 const char *srel_name;
2062 asection *srel;
2063 bfd *dynobj;
2064
2065 srel_name = (bfd_elf_string_from_elf_section
2066 (abfd, elf_elfheader(abfd)->e_shstrndx,
2067 elf_section_data(sec)->rel_hdr.sh_name));
2068 if (srel_name == NULL)
2069 return NULL;
2070
2071 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2072 && strcmp (bfd_get_section_name (abfd, sec),
2073 srel_name+5) == 0)
2074 || (strncmp (srel_name, ".rel", 4) == 0
2075 && strcmp (bfd_get_section_name (abfd, sec),
2076 srel_name+4) == 0));
2077
2078 dynobj = ia64_info->root.dynobj;
2079 if (!dynobj)
2080 ia64_info->root.dynobj = dynobj = abfd;
2081
2082 srel = bfd_get_section_by_name (dynobj, srel_name);
2083 if (srel == NULL && create)
2084 {
2085 srel = bfd_make_section (dynobj, srel_name);
2086 if (srel == NULL
2087 || !bfd_set_section_flags (dynobj, srel,
2088 (SEC_ALLOC
2089 | SEC_LOAD
2090 | SEC_HAS_CONTENTS
2091 | SEC_IN_MEMORY
2092 | SEC_LINKER_CREATED
2093 | SEC_READONLY))
2094 || !bfd_set_section_alignment (dynobj, srel, 3))
2095 return NULL;
2096 }
2097
2098 if (sec->flags & SEC_READONLY)
2099 ia64_info->reltext = 1;
2100
2101 return srel;
2102 }
2103
2104 static bfd_boolean
2105 count_dyn_reloc (abfd, dyn_i, srel, type)
2106 bfd *abfd;
2107 struct elfNN_ia64_dyn_sym_info *dyn_i;
2108 asection *srel;
2109 int type;
2110 {
2111 struct elfNN_ia64_dyn_reloc_entry *rent;
2112
2113 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2114 if (rent->srel == srel && rent->type == type)
2115 break;
2116
2117 if (!rent)
2118 {
2119 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2120 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2121 if (!rent)
2122 return FALSE;
2123
2124 rent->next = dyn_i->reloc_entries;
2125 rent->srel = srel;
2126 rent->type = type;
2127 rent->count = 0;
2128 dyn_i->reloc_entries = rent;
2129 }
2130 rent->count++;
2131
2132 return TRUE;
2133 }
2134
2135 static bfd_boolean
2136 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2137 bfd *abfd;
2138 struct bfd_link_info *info;
2139 asection *sec;
2140 const Elf_Internal_Rela *relocs;
2141 {
2142 struct elfNN_ia64_link_hash_table *ia64_info;
2143 const Elf_Internal_Rela *relend;
2144 Elf_Internal_Shdr *symtab_hdr;
2145 const Elf_Internal_Rela *rel;
2146 asection *got, *fptr, *srel;
2147
2148 if (info->relocatable)
2149 return TRUE;
2150
2151 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2152 ia64_info = elfNN_ia64_hash_table (info);
2153
2154 got = fptr = srel = NULL;
2155
2156 relend = relocs + sec->reloc_count;
2157 for (rel = relocs; rel < relend; ++rel)
2158 {
2159 enum {
2160 NEED_GOT = 1,
2161 NEED_GOTX = 2,
2162 NEED_FPTR = 4,
2163 NEED_PLTOFF = 8,
2164 NEED_MIN_PLT = 16,
2165 NEED_FULL_PLT = 32,
2166 NEED_DYNREL = 64,
2167 NEED_LTOFF_FPTR = 128,
2168 NEED_TPREL = 256,
2169 NEED_DTPMOD = 512,
2170 NEED_DTPREL = 1024
2171 };
2172
2173 struct elf_link_hash_entry *h = NULL;
2174 unsigned long r_symndx = ELFNN_R_SYM (rel->r_info);
2175 struct elfNN_ia64_dyn_sym_info *dyn_i;
2176 int need_entry;
2177 bfd_boolean maybe_dynamic;
2178 int dynrel_type = R_IA64_NONE;
2179
2180 if (r_symndx >= symtab_hdr->sh_info)
2181 {
2182 /* We're dealing with a global symbol -- find its hash entry
2183 and mark it as being referenced. */
2184 long indx = r_symndx - symtab_hdr->sh_info;
2185 h = elf_sym_hashes (abfd)[indx];
2186 while (h->root.type == bfd_link_hash_indirect
2187 || h->root.type == bfd_link_hash_warning)
2188 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2189
2190 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2191 }
2192
2193 /* We can only get preliminary data on whether a symbol is
2194 locally or externally defined, as not all of the input files
2195 have yet been processed. Do something with what we know, as
2196 this may help reduce memory usage and processing time later. */
2197 maybe_dynamic = FALSE;
2198 if (h && ((!info->executable
2199 && (!info->symbolic || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2200 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2201 || h->root.type == bfd_link_hash_defweak))
2202 maybe_dynamic = TRUE;
2203
2204 need_entry = 0;
2205 switch (ELFNN_R_TYPE (rel->r_info))
2206 {
2207 case R_IA64_TPREL64MSB:
2208 case R_IA64_TPREL64LSB:
2209 if (info->shared || maybe_dynamic)
2210 need_entry = NEED_DYNREL;
2211 dynrel_type = R_IA64_TPREL64LSB;
2212 if (info->shared)
2213 info->flags |= DF_STATIC_TLS;
2214 break;
2215
2216 case R_IA64_LTOFF_TPREL22:
2217 need_entry = NEED_TPREL;
2218 if (info->shared)
2219 info->flags |= DF_STATIC_TLS;
2220 break;
2221
2222 case R_IA64_DTPREL64MSB:
2223 case R_IA64_DTPREL64LSB:
2224 if (info->shared || maybe_dynamic)
2225 need_entry = NEED_DYNREL;
2226 dynrel_type = R_IA64_DTPREL64LSB;
2227 break;
2228
2229 case R_IA64_LTOFF_DTPREL22:
2230 need_entry = NEED_DTPREL;
2231 break;
2232
2233 case R_IA64_DTPMOD64MSB:
2234 case R_IA64_DTPMOD64LSB:
2235 if (info->shared || maybe_dynamic)
2236 need_entry = NEED_DYNREL;
2237 dynrel_type = R_IA64_DTPMOD64LSB;
2238 break;
2239
2240 case R_IA64_LTOFF_DTPMOD22:
2241 need_entry = NEED_DTPMOD;
2242 break;
2243
2244 case R_IA64_LTOFF_FPTR22:
2245 case R_IA64_LTOFF_FPTR64I:
2246 case R_IA64_LTOFF_FPTR32MSB:
2247 case R_IA64_LTOFF_FPTR32LSB:
2248 case R_IA64_LTOFF_FPTR64MSB:
2249 case R_IA64_LTOFF_FPTR64LSB:
2250 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2251 break;
2252
2253 case R_IA64_FPTR64I:
2254 case R_IA64_FPTR32MSB:
2255 case R_IA64_FPTR32LSB:
2256 case R_IA64_FPTR64MSB:
2257 case R_IA64_FPTR64LSB:
2258 if (info->shared || h)
2259 need_entry = NEED_FPTR | NEED_DYNREL;
2260 else
2261 need_entry = NEED_FPTR;
2262 dynrel_type = R_IA64_FPTR64LSB;
2263 break;
2264
2265 case R_IA64_LTOFF22:
2266 case R_IA64_LTOFF64I:
2267 need_entry = NEED_GOT;
2268 break;
2269
2270 case R_IA64_LTOFF22X:
2271 need_entry = NEED_GOTX;
2272 break;
2273
2274 case R_IA64_PLTOFF22:
2275 case R_IA64_PLTOFF64I:
2276 case R_IA64_PLTOFF64MSB:
2277 case R_IA64_PLTOFF64LSB:
2278 need_entry = NEED_PLTOFF;
2279 if (h)
2280 {
2281 if (maybe_dynamic)
2282 need_entry |= NEED_MIN_PLT;
2283 }
2284 else
2285 {
2286 (*info->callbacks->warning)
2287 (info, _("@pltoff reloc against local symbol"), 0,
2288 abfd, 0, (bfd_vma) 0);
2289 }
2290 break;
2291
2292 case R_IA64_PCREL21B:
2293 case R_IA64_PCREL60B:
2294 /* Depending on where this symbol is defined, we may or may not
2295 need a full plt entry. Only skip if we know we'll not need
2296 the entry -- static or symbolic, and the symbol definition
2297 has already been seen. */
2298 if (maybe_dynamic && rel->r_addend == 0)
2299 need_entry = NEED_FULL_PLT;
2300 break;
2301
2302 case R_IA64_IMM14:
2303 case R_IA64_IMM22:
2304 case R_IA64_IMM64:
2305 case R_IA64_DIR32MSB:
2306 case R_IA64_DIR32LSB:
2307 case R_IA64_DIR64MSB:
2308 case R_IA64_DIR64LSB:
2309 /* Shared objects will always need at least a REL relocation. */
2310 if (info->shared || maybe_dynamic)
2311 need_entry = NEED_DYNREL;
2312 dynrel_type = R_IA64_DIR64LSB;
2313 break;
2314
2315 case R_IA64_IPLTMSB:
2316 case R_IA64_IPLTLSB:
2317 /* Shared objects will always need at least a REL relocation. */
2318 if (info->shared || maybe_dynamic)
2319 need_entry = NEED_DYNREL;
2320 dynrel_type = R_IA64_IPLTLSB;
2321 break;
2322
2323 case R_IA64_PCREL22:
2324 case R_IA64_PCREL64I:
2325 case R_IA64_PCREL32MSB:
2326 case R_IA64_PCREL32LSB:
2327 case R_IA64_PCREL64MSB:
2328 case R_IA64_PCREL64LSB:
2329 if (maybe_dynamic)
2330 need_entry = NEED_DYNREL;
2331 dynrel_type = R_IA64_PCREL64LSB;
2332 break;
2333 }
2334
2335 if (!need_entry)
2336 continue;
2337
2338 if ((need_entry & NEED_FPTR) != 0
2339 && rel->r_addend)
2340 {
2341 (*info->callbacks->warning)
2342 (info, _("non-zero addend in @fptr reloc"), 0,
2343 abfd, 0, (bfd_vma) 0);
2344 }
2345
2346 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE);
2347
2348 /* Record whether or not this is a local symbol. */
2349 dyn_i->h = h;
2350
2351 /* Create what's needed. */
2352 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2353 | NEED_DTPMOD | NEED_DTPREL))
2354 {
2355 if (!got)
2356 {
2357 got = get_got (abfd, info, ia64_info);
2358 if (!got)
2359 return FALSE;
2360 }
2361 if (need_entry & NEED_GOT)
2362 dyn_i->want_got = 1;
2363 if (need_entry & NEED_GOTX)
2364 dyn_i->want_gotx = 1;
2365 if (need_entry & NEED_TPREL)
2366 dyn_i->want_tprel = 1;
2367 if (need_entry & NEED_DTPMOD)
2368 dyn_i->want_dtpmod = 1;
2369 if (need_entry & NEED_DTPREL)
2370 dyn_i->want_dtprel = 1;
2371 }
2372 if (need_entry & NEED_FPTR)
2373 {
2374 if (!fptr)
2375 {
2376 fptr = get_fptr (abfd, info, ia64_info);
2377 if (!fptr)
2378 return FALSE;
2379 }
2380
2381 /* FPTRs for shared libraries are allocated by the dynamic
2382 linker. Make sure this local symbol will appear in the
2383 dynamic symbol table. */
2384 if (!h && info->shared)
2385 {
2386 if (! (_bfd_elfNN_link_record_local_dynamic_symbol
2387 (info, abfd, (long) r_symndx)))
2388 return FALSE;
2389 }
2390
2391 dyn_i->want_fptr = 1;
2392 }
2393 if (need_entry & NEED_LTOFF_FPTR)
2394 dyn_i->want_ltoff_fptr = 1;
2395 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
2396 {
2397 if (!ia64_info->root.dynobj)
2398 ia64_info->root.dynobj = abfd;
2399 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2400 dyn_i->want_plt = 1;
2401 }
2402 if (need_entry & NEED_FULL_PLT)
2403 dyn_i->want_plt2 = 1;
2404 if (need_entry & NEED_PLTOFF)
2405 dyn_i->want_pltoff = 1;
2406 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
2407 {
2408 if (!srel)
2409 {
2410 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
2411 if (!srel)
2412 return FALSE;
2413 }
2414 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type))
2415 return FALSE;
2416 }
2417 }
2418
2419 return TRUE;
2420 }
2421
2422 /* For cleanliness, and potentially faster dynamic loading, allocate
2423 external GOT entries first. */
2424
2425 static bfd_boolean
2426 allocate_global_data_got (dyn_i, data)
2427 struct elfNN_ia64_dyn_sym_info *dyn_i;
2428 PTR data;
2429 {
2430 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2431
2432 if ((dyn_i->want_got || dyn_i->want_gotx)
2433 && ! dyn_i->want_fptr
2434 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2435 {
2436 dyn_i->got_offset = x->ofs;
2437 x->ofs += 8;
2438 }
2439 if (dyn_i->want_tprel)
2440 {
2441 dyn_i->tprel_offset = x->ofs;
2442 x->ofs += 8;
2443 }
2444 if (dyn_i->want_dtpmod)
2445 {
2446 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2447 {
2448 dyn_i->dtpmod_offset = x->ofs;
2449 x->ofs += 8;
2450 }
2451 else
2452 {
2453 struct elfNN_ia64_link_hash_table *ia64_info;
2454
2455 ia64_info = elfNN_ia64_hash_table (x->info);
2456 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
2457 {
2458 ia64_info->self_dtpmod_offset = x->ofs;
2459 x->ofs += 8;
2460 }
2461 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
2462 }
2463 }
2464 if (dyn_i->want_dtprel)
2465 {
2466 dyn_i->dtprel_offset = x->ofs;
2467 x->ofs += 8;
2468 }
2469 return TRUE;
2470 }
2471
2472 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
2473
2474 static bfd_boolean
2475 allocate_global_fptr_got (dyn_i, data)
2476 struct elfNN_ia64_dyn_sym_info *dyn_i;
2477 PTR data;
2478 {
2479 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2480
2481 if (dyn_i->want_got
2482 && dyn_i->want_fptr
2483 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTR64LSB))
2484 {
2485 dyn_i->got_offset = x->ofs;
2486 x->ofs += 8;
2487 }
2488 return TRUE;
2489 }
2490
2491 /* Lastly, allocate all the GOT entries for local data. */
2492
2493 static bfd_boolean
2494 allocate_local_got (dyn_i, data)
2495 struct elfNN_ia64_dyn_sym_info *dyn_i;
2496 PTR data;
2497 {
2498 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2499
2500 if ((dyn_i->want_got || dyn_i->want_gotx)
2501 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2502 {
2503 dyn_i->got_offset = x->ofs;
2504 x->ofs += 8;
2505 }
2506 return TRUE;
2507 }
2508
2509 /* Search for the index of a global symbol in it's defining object file. */
2510
2511 static long
2512 global_sym_index (h)
2513 struct elf_link_hash_entry *h;
2514 {
2515 struct elf_link_hash_entry **p;
2516 bfd *obj;
2517
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520
2521 obj = h->root.u.def.section->owner;
2522 for (p = elf_sym_hashes (obj); *p != h; ++p)
2523 continue;
2524
2525 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
2526 }
2527
2528 /* Allocate function descriptors. We can do these for every function
2529 in a main executable that is not exported. */
2530
2531 static bfd_boolean
2532 allocate_fptr (dyn_i, data)
2533 struct elfNN_ia64_dyn_sym_info *dyn_i;
2534 PTR data;
2535 {
2536 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2537
2538 if (dyn_i->want_fptr)
2539 {
2540 struct elf_link_hash_entry *h = dyn_i->h;
2541
2542 if (h)
2543 while (h->root.type == bfd_link_hash_indirect
2544 || h->root.type == bfd_link_hash_warning)
2545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2546
2547 if (!x->info->executable
2548 && (!h
2549 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2550 || h->root.type != bfd_link_hash_undefweak))
2551 {
2552 if (h && h->dynindx == -1)
2553 {
2554 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
2555 || (h->root.type == bfd_link_hash_defweak));
2556
2557 if (!_bfd_elfNN_link_record_local_dynamic_symbol
2558 (x->info, h->root.u.def.section->owner,
2559 global_sym_index (h)))
2560 return FALSE;
2561 }
2562
2563 dyn_i->want_fptr = 0;
2564 }
2565 else if (h == NULL || h->dynindx == -1)
2566 {
2567 dyn_i->fptr_offset = x->ofs;
2568 x->ofs += 16;
2569 }
2570 else
2571 dyn_i->want_fptr = 0;
2572 }
2573 return TRUE;
2574 }
2575
2576 /* Allocate all the minimal PLT entries. */
2577
2578 static bfd_boolean
2579 allocate_plt_entries (dyn_i, data)
2580 struct elfNN_ia64_dyn_sym_info *dyn_i;
2581 PTR data;
2582 {
2583 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2584
2585 if (dyn_i->want_plt)
2586 {
2587 struct elf_link_hash_entry *h = dyn_i->h;
2588
2589 if (h)
2590 while (h->root.type == bfd_link_hash_indirect
2591 || h->root.type == bfd_link_hash_warning)
2592 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2593
2594 /* ??? Versioned symbols seem to lose ELF_LINK_HASH_NEEDS_PLT. */
2595 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
2596 {
2597 bfd_size_type offset = x->ofs;
2598 if (offset == 0)
2599 offset = PLT_HEADER_SIZE;
2600 dyn_i->plt_offset = offset;
2601 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
2602
2603 dyn_i->want_pltoff = 1;
2604 }
2605 else
2606 {
2607 dyn_i->want_plt = 0;
2608 dyn_i->want_plt2 = 0;
2609 }
2610 }
2611 return TRUE;
2612 }
2613
2614 /* Allocate all the full PLT entries. */
2615
2616 static bfd_boolean
2617 allocate_plt2_entries (dyn_i, data)
2618 struct elfNN_ia64_dyn_sym_info *dyn_i;
2619 PTR data;
2620 {
2621 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2622
2623 if (dyn_i->want_plt2)
2624 {
2625 struct elf_link_hash_entry *h = dyn_i->h;
2626 bfd_size_type ofs = x->ofs;
2627
2628 dyn_i->plt2_offset = ofs;
2629 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
2630
2631 while (h->root.type == bfd_link_hash_indirect
2632 || h->root.type == bfd_link_hash_warning)
2633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2634 dyn_i->h->plt.offset = ofs;
2635 }
2636 return TRUE;
2637 }
2638
2639 /* Allocate all the PLTOFF entries requested by relocations and
2640 plt entries. We can't share space with allocated FPTR entries,
2641 because the latter are not necessarily addressable by the GP.
2642 ??? Relaxation might be able to determine that they are. */
2643
2644 static bfd_boolean
2645 allocate_pltoff_entries (dyn_i, data)
2646 struct elfNN_ia64_dyn_sym_info *dyn_i;
2647 PTR data;
2648 {
2649 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2650
2651 if (dyn_i->want_pltoff)
2652 {
2653 dyn_i->pltoff_offset = x->ofs;
2654 x->ofs += 16;
2655 }
2656 return TRUE;
2657 }
2658
2659 /* Allocate dynamic relocations for those symbols that turned out
2660 to be dynamic. */
2661
2662 static bfd_boolean
2663 allocate_dynrel_entries (dyn_i, data)
2664 struct elfNN_ia64_dyn_sym_info *dyn_i;
2665 PTR data;
2666 {
2667 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2668 struct elfNN_ia64_link_hash_table *ia64_info;
2669 struct elfNN_ia64_dyn_reloc_entry *rent;
2670 bfd_boolean dynamic_symbol, shared, resolved_zero;
2671
2672 ia64_info = elfNN_ia64_hash_table (x->info);
2673
2674 /* Note that this can't be used in relation to FPTR relocs below. */
2675 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
2676
2677 shared = x->info->shared;
2678 resolved_zero = (dyn_i->h
2679 && ELF_ST_VISIBILITY (dyn_i->h->other)
2680 && dyn_i->h->root.type == bfd_link_hash_undefweak);
2681
2682 /* Take care of the normal data relocations. */
2683
2684 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2685 {
2686 int count = rent->count;
2687
2688 switch (rent->type)
2689 {
2690 case R_IA64_FPTR64LSB:
2691 /* Allocate one iff !want_fptr and not PIE, which by this point
2692 will be true only if we're actually allocating one statically
2693 in the main executable. Position independent executables
2694 need a relative reloc. */
2695 if (dyn_i->want_fptr && !x->info->pie)
2696 continue;
2697 break;
2698 case R_IA64_PCREL64LSB:
2699 if (!dynamic_symbol)
2700 continue;
2701 break;
2702 case R_IA64_DIR64LSB:
2703 if (!dynamic_symbol && !shared)
2704 continue;
2705 break;
2706 case R_IA64_IPLTLSB:
2707 if (!dynamic_symbol && !shared)
2708 continue;
2709 /* Use two REL relocations for IPLT relocations
2710 against local symbols. */
2711 if (!dynamic_symbol)
2712 count *= 2;
2713 break;
2714 case R_IA64_TPREL64LSB:
2715 case R_IA64_DTPREL64LSB:
2716 case R_IA64_DTPMOD64LSB:
2717 break;
2718 default:
2719 abort ();
2720 }
2721 rent->srel->_raw_size += sizeof (ElfNN_External_Rela) * count;
2722 }
2723
2724 /* Take care of the GOT and PLT relocations. */
2725
2726 if ((!resolved_zero
2727 && (dynamic_symbol || shared)
2728 && (dyn_i->want_got || dyn_i->want_gotx))
2729 || (dyn_i->want_ltoff_fptr
2730 && dyn_i->h
2731 && dyn_i->h->dynindx != -1))
2732 {
2733 if (!dyn_i->want_ltoff_fptr
2734 || !x->info->pie
2735 || dyn_i->h == NULL
2736 || dyn_i->h->root.type != bfd_link_hash_undefweak)
2737 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2738 }
2739 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
2740 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2741 if (dynamic_symbol && dyn_i->want_dtpmod)
2742 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2743 if (dynamic_symbol && dyn_i->want_dtprel)
2744 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2745 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
2746 {
2747 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
2748 ia64_info->rel_fptr_sec->_raw_size += sizeof (ElfNN_External_Rela);
2749 }
2750
2751 if (!resolved_zero && dyn_i->want_pltoff)
2752 {
2753 bfd_size_type t = 0;
2754
2755 /* Dynamic symbols get one IPLT relocation. Local symbols in
2756 shared libraries get two REL relocations. Local symbols in
2757 main applications get nothing. */
2758 if (dynamic_symbol)
2759 t = sizeof (ElfNN_External_Rela);
2760 else if (shared)
2761 t = 2 * sizeof (ElfNN_External_Rela);
2762
2763 ia64_info->rel_pltoff_sec->_raw_size += t;
2764 }
2765
2766 return TRUE;
2767 }
2768
2769 static bfd_boolean
2770 elfNN_ia64_adjust_dynamic_symbol (info, h)
2771 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2772 struct elf_link_hash_entry *h;
2773 {
2774 /* ??? Undefined symbols with PLT entries should be re-defined
2775 to be the PLT entry. */
2776
2777 /* If this is a weak symbol, and there is a real definition, the
2778 processor independent code will have arranged for us to see the
2779 real definition first, and we can just use the same value. */
2780 if (h->weakdef != NULL)
2781 {
2782 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2783 || h->weakdef->root.type == bfd_link_hash_defweak);
2784 h->root.u.def.section = h->weakdef->root.u.def.section;
2785 h->root.u.def.value = h->weakdef->root.u.def.value;
2786 return TRUE;
2787 }
2788
2789 /* If this is a reference to a symbol defined by a dynamic object which
2790 is not a function, we might allocate the symbol in our .dynbss section
2791 and allocate a COPY dynamic relocation.
2792
2793 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
2794 of hackery. */
2795
2796 return TRUE;
2797 }
2798
2799 static bfd_boolean
2800 elfNN_ia64_size_dynamic_sections (output_bfd, info)
2801 bfd *output_bfd ATTRIBUTE_UNUSED;
2802 struct bfd_link_info *info;
2803 {
2804 struct elfNN_ia64_allocate_data data;
2805 struct elfNN_ia64_link_hash_table *ia64_info;
2806 asection *sec;
2807 bfd *dynobj;
2808 bfd_boolean relplt = FALSE;
2809
2810 dynobj = elf_hash_table(info)->dynobj;
2811 ia64_info = elfNN_ia64_hash_table (info);
2812 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
2813 BFD_ASSERT(dynobj != NULL);
2814 data.info = info;
2815
2816 /* Set the contents of the .interp section to the interpreter. */
2817 if (ia64_info->root.dynamic_sections_created
2818 && info->executable)
2819 {
2820 sec = bfd_get_section_by_name (dynobj, ".interp");
2821 BFD_ASSERT (sec != NULL);
2822 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
2823 sec->_raw_size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
2824 }
2825
2826 /* Allocate the GOT entries. */
2827
2828 if (ia64_info->got_sec)
2829 {
2830 data.ofs = 0;
2831 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
2832 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
2833 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
2834 ia64_info->got_sec->_raw_size = data.ofs;
2835 }
2836
2837 /* Allocate the FPTR entries. */
2838
2839 if (ia64_info->fptr_sec)
2840 {
2841 data.ofs = 0;
2842 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
2843 ia64_info->fptr_sec->_raw_size = data.ofs;
2844 }
2845
2846 /* Now that we've seen all of the input files, we can decide which
2847 symbols need plt entries. Allocate the minimal PLT entries first.
2848 We do this even though dynamic_sections_created may be FALSE, because
2849 this has the side-effect of clearing want_plt and want_plt2. */
2850
2851 data.ofs = 0;
2852 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
2853
2854 ia64_info->minplt_entries = 0;
2855 if (data.ofs)
2856 {
2857 ia64_info->minplt_entries
2858 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
2859 }
2860
2861 /* Align the pointer for the plt2 entries. */
2862 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
2863
2864 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
2865 if (data.ofs != 0)
2866 {
2867 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
2868
2869 ia64_info->plt_sec->_raw_size = data.ofs;
2870
2871 /* If we've got a .plt, we need some extra memory for the dynamic
2872 linker. We stuff these in .got.plt. */
2873 sec = bfd_get_section_by_name (dynobj, ".got.plt");
2874 sec->_raw_size = 8 * PLT_RESERVED_WORDS;
2875 }
2876
2877 /* Allocate the PLTOFF entries. */
2878
2879 if (ia64_info->pltoff_sec)
2880 {
2881 data.ofs = 0;
2882 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
2883 ia64_info->pltoff_sec->_raw_size = data.ofs;
2884 }
2885
2886 if (ia64_info->root.dynamic_sections_created)
2887 {
2888 /* Allocate space for the dynamic relocations that turned out to be
2889 required. */
2890
2891 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
2892 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2893 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
2894 }
2895
2896 /* We have now determined the sizes of the various dynamic sections.
2897 Allocate memory for them. */
2898 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2899 {
2900 bfd_boolean strip;
2901
2902 if (!(sec->flags & SEC_LINKER_CREATED))
2903 continue;
2904
2905 /* If we don't need this section, strip it from the output file.
2906 There were several sections primarily related to dynamic
2907 linking that must be create before the linker maps input
2908 sections to output sections. The linker does that before
2909 bfd_elf_size_dynamic_sections is called, and it is that
2910 function which decides whether anything needs to go into
2911 these sections. */
2912
2913 strip = (sec->_raw_size == 0);
2914
2915 if (sec == ia64_info->got_sec)
2916 strip = FALSE;
2917 else if (sec == ia64_info->rel_got_sec)
2918 {
2919 if (strip)
2920 ia64_info->rel_got_sec = NULL;
2921 else
2922 /* We use the reloc_count field as a counter if we need to
2923 copy relocs into the output file. */
2924 sec->reloc_count = 0;
2925 }
2926 else if (sec == ia64_info->fptr_sec)
2927 {
2928 if (strip)
2929 ia64_info->fptr_sec = NULL;
2930 }
2931 else if (sec == ia64_info->plt_sec)
2932 {
2933 if (strip)
2934 ia64_info->plt_sec = NULL;
2935 }
2936 else if (sec == ia64_info->pltoff_sec)
2937 {
2938 if (strip)
2939 ia64_info->pltoff_sec = NULL;
2940 }
2941 else if (sec == ia64_info->rel_pltoff_sec)
2942 {
2943 if (strip)
2944 ia64_info->rel_pltoff_sec = NULL;
2945 else
2946 {
2947 relplt = TRUE;
2948 /* We use the reloc_count field as a counter if we need to
2949 copy relocs into the output file. */
2950 sec->reloc_count = 0;
2951 }
2952 }
2953 else
2954 {
2955 const char *name;
2956
2957 /* It's OK to base decisions on the section name, because none
2958 of the dynobj section names depend upon the input files. */
2959 name = bfd_get_section_name (dynobj, sec);
2960
2961 if (strcmp (name, ".got.plt") == 0)
2962 strip = FALSE;
2963 else if (strncmp (name, ".rel", 4) == 0)
2964 {
2965 if (!strip)
2966 {
2967 /* We use the reloc_count field as a counter if we need to
2968 copy relocs into the output file. */
2969 sec->reloc_count = 0;
2970 }
2971 }
2972 else
2973 continue;
2974 }
2975
2976 if (strip)
2977 _bfd_strip_section_from_output (info, sec);
2978 else
2979 {
2980 /* Allocate memory for the section contents. */
2981 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->_raw_size);
2982 if (sec->contents == NULL && sec->_raw_size != 0)
2983 return FALSE;
2984 }
2985 }
2986
2987 if (elf_hash_table (info)->dynamic_sections_created)
2988 {
2989 /* Add some entries to the .dynamic section. We fill in the values
2990 later (in finish_dynamic_sections) but we must add the entries now
2991 so that we get the correct size for the .dynamic section. */
2992
2993 if (info->executable)
2994 {
2995 /* The DT_DEBUG entry is filled in by the dynamic linker and used
2996 by the debugger. */
2997 #define add_dynamic_entry(TAG, VAL) \
2998 bfd_elfNN_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2999
3000 if (!add_dynamic_entry (DT_DEBUG, 0))
3001 return FALSE;
3002 }
3003
3004 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3005 return FALSE;
3006 if (!add_dynamic_entry (DT_PLTGOT, 0))
3007 return FALSE;
3008
3009 if (relplt)
3010 {
3011 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3012 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3013 || !add_dynamic_entry (DT_JMPREL, 0))
3014 return FALSE;
3015 }
3016
3017 if (!add_dynamic_entry (DT_RELA, 0)
3018 || !add_dynamic_entry (DT_RELASZ, 0)
3019 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3020 return FALSE;
3021
3022 if (ia64_info->reltext)
3023 {
3024 if (!add_dynamic_entry (DT_TEXTREL, 0))
3025 return FALSE;
3026 info->flags |= DF_TEXTREL;
3027 }
3028 }
3029
3030 /* ??? Perhaps force __gp local. */
3031
3032 return TRUE;
3033 }
3034
3035 static bfd_reloc_status_type
3036 elfNN_ia64_install_value (abfd, hit_addr, v, r_type)
3037 bfd *abfd;
3038 bfd_byte *hit_addr;
3039 bfd_vma v;
3040 unsigned int r_type;
3041 {
3042 const struct ia64_operand *op;
3043 int bigendian = 0, shift = 0;
3044 bfd_vma t0, t1, insn, dword;
3045 enum ia64_opnd opnd;
3046 const char *err;
3047 size_t size = 8;
3048 #ifdef BFD_HOST_U_64_BIT
3049 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3050 #else
3051 bfd_vma val = v;
3052 #endif
3053
3054 opnd = IA64_OPND_NIL;
3055 switch (r_type)
3056 {
3057 case R_IA64_NONE:
3058 case R_IA64_LDXMOV:
3059 return bfd_reloc_ok;
3060
3061 /* Instruction relocations. */
3062
3063 case R_IA64_IMM14:
3064 case R_IA64_TPREL14:
3065 case R_IA64_DTPREL14:
3066 opnd = IA64_OPND_IMM14;
3067 break;
3068
3069 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3070 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3071 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3072 case R_IA64_PCREL21B:
3073 case R_IA64_PCREL21BI:
3074 opnd = IA64_OPND_TGT25c;
3075 break;
3076
3077 case R_IA64_IMM22:
3078 case R_IA64_GPREL22:
3079 case R_IA64_LTOFF22:
3080 case R_IA64_LTOFF22X:
3081 case R_IA64_PLTOFF22:
3082 case R_IA64_PCREL22:
3083 case R_IA64_LTOFF_FPTR22:
3084 case R_IA64_TPREL22:
3085 case R_IA64_DTPREL22:
3086 case R_IA64_LTOFF_TPREL22:
3087 case R_IA64_LTOFF_DTPMOD22:
3088 case R_IA64_LTOFF_DTPREL22:
3089 opnd = IA64_OPND_IMM22;
3090 break;
3091
3092 case R_IA64_IMM64:
3093 case R_IA64_GPREL64I:
3094 case R_IA64_LTOFF64I:
3095 case R_IA64_PLTOFF64I:
3096 case R_IA64_PCREL64I:
3097 case R_IA64_FPTR64I:
3098 case R_IA64_LTOFF_FPTR64I:
3099 case R_IA64_TPREL64I:
3100 case R_IA64_DTPREL64I:
3101 opnd = IA64_OPND_IMMU64;
3102 break;
3103
3104 /* Data relocations. */
3105
3106 case R_IA64_DIR32MSB:
3107 case R_IA64_GPREL32MSB:
3108 case R_IA64_FPTR32MSB:
3109 case R_IA64_PCREL32MSB:
3110 case R_IA64_LTOFF_FPTR32MSB:
3111 case R_IA64_SEGREL32MSB:
3112 case R_IA64_SECREL32MSB:
3113 case R_IA64_LTV32MSB:
3114 case R_IA64_DTPREL32MSB:
3115 size = 4; bigendian = 1;
3116 break;
3117
3118 case R_IA64_DIR32LSB:
3119 case R_IA64_GPREL32LSB:
3120 case R_IA64_FPTR32LSB:
3121 case R_IA64_PCREL32LSB:
3122 case R_IA64_LTOFF_FPTR32LSB:
3123 case R_IA64_SEGREL32LSB:
3124 case R_IA64_SECREL32LSB:
3125 case R_IA64_LTV32LSB:
3126 case R_IA64_DTPREL32LSB:
3127 size = 4; bigendian = 0;
3128 break;
3129
3130 case R_IA64_DIR64MSB:
3131 case R_IA64_GPREL64MSB:
3132 case R_IA64_PLTOFF64MSB:
3133 case R_IA64_FPTR64MSB:
3134 case R_IA64_PCREL64MSB:
3135 case R_IA64_LTOFF_FPTR64MSB:
3136 case R_IA64_SEGREL64MSB:
3137 case R_IA64_SECREL64MSB:
3138 case R_IA64_LTV64MSB:
3139 case R_IA64_TPREL64MSB:
3140 case R_IA64_DTPMOD64MSB:
3141 case R_IA64_DTPREL64MSB:
3142 size = 8; bigendian = 1;
3143 break;
3144
3145 case R_IA64_DIR64LSB:
3146 case R_IA64_GPREL64LSB:
3147 case R_IA64_PLTOFF64LSB:
3148 case R_IA64_FPTR64LSB:
3149 case R_IA64_PCREL64LSB:
3150 case R_IA64_LTOFF_FPTR64LSB:
3151 case R_IA64_SEGREL64LSB:
3152 case R_IA64_SECREL64LSB:
3153 case R_IA64_LTV64LSB:
3154 case R_IA64_TPREL64LSB:
3155 case R_IA64_DTPMOD64LSB:
3156 case R_IA64_DTPREL64LSB:
3157 size = 8; bigendian = 0;
3158 break;
3159
3160 /* Unsupported / Dynamic relocations. */
3161 default:
3162 return bfd_reloc_notsupported;
3163 }
3164
3165 switch (opnd)
3166 {
3167 case IA64_OPND_IMMU64:
3168 hit_addr -= (long) hit_addr & 0x3;
3169 t0 = bfd_get_64 (abfd, hit_addr);
3170 t1 = bfd_get_64 (abfd, hit_addr + 8);
3171
3172 /* tmpl/s: bits 0.. 5 in t0
3173 slot 0: bits 5..45 in t0
3174 slot 1: bits 46..63 in t0, bits 0..22 in t1
3175 slot 2: bits 23..63 in t1 */
3176
3177 /* First, clear the bits that form the 64 bit constant. */
3178 t0 &= ~(0x3ffffLL << 46);
3179 t1 &= ~(0x7fffffLL
3180 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3181 | (0x01fLL << 22) | (0x001LL << 21)
3182 | (0x001LL << 36)) << 23));
3183
3184 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3185 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3186 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3187 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3188 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3189 | (((val >> 21) & 0x001) << 21) /* ic */
3190 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3191
3192 bfd_put_64 (abfd, t0, hit_addr);
3193 bfd_put_64 (abfd, t1, hit_addr + 8);
3194 break;
3195
3196 case IA64_OPND_TGT64:
3197 hit_addr -= (long) hit_addr & 0x3;
3198 t0 = bfd_get_64 (abfd, hit_addr);
3199 t1 = bfd_get_64 (abfd, hit_addr + 8);
3200
3201 /* tmpl/s: bits 0.. 5 in t0
3202 slot 0: bits 5..45 in t0
3203 slot 1: bits 46..63 in t0, bits 0..22 in t1
3204 slot 2: bits 23..63 in t1 */
3205
3206 /* First, clear the bits that form the 64 bit constant. */
3207 t0 &= ~(0x3ffffLL << 46);
3208 t1 &= ~(0x7fffffLL
3209 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3210
3211 val >>= 4;
3212 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3213 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3214 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3215 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3216
3217 bfd_put_64 (abfd, t0, hit_addr);
3218 bfd_put_64 (abfd, t1, hit_addr + 8);
3219 break;
3220
3221 default:
3222 switch ((long) hit_addr & 0x3)
3223 {
3224 case 0: shift = 5; break;
3225 case 1: shift = 14; hit_addr += 3; break;
3226 case 2: shift = 23; hit_addr += 6; break;
3227 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3228 }
3229 dword = bfd_get_64 (abfd, hit_addr);
3230 insn = (dword >> shift) & 0x1ffffffffffLL;
3231
3232 op = elf64_ia64_operands + opnd;
3233 err = (*op->insert) (op, val, (ia64_insn *)& insn);
3234 if (err)
3235 return bfd_reloc_overflow;
3236
3237 dword &= ~(0x1ffffffffffLL << shift);
3238 dword |= (insn << shift);
3239 bfd_put_64 (abfd, dword, hit_addr);
3240 break;
3241
3242 case IA64_OPND_NIL:
3243 /* A data relocation. */
3244 if (bigendian)
3245 if (size == 4)
3246 bfd_putb32 (val, hit_addr);
3247 else
3248 bfd_putb64 (val, hit_addr);
3249 else
3250 if (size == 4)
3251 bfd_putl32 (val, hit_addr);
3252 else
3253 bfd_putl64 (val, hit_addr);
3254 break;
3255 }
3256
3257 return bfd_reloc_ok;
3258 }
3259
3260 static void
3261 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3262 dynindx, addend)
3263 bfd *abfd;
3264 struct bfd_link_info *info;
3265 asection *sec;
3266 asection *srel;
3267 bfd_vma offset;
3268 unsigned int type;
3269 long dynindx;
3270 bfd_vma addend;
3271 {
3272 Elf_Internal_Rela outrel;
3273 bfd_byte *loc;
3274
3275 BFD_ASSERT (dynindx != -1);
3276 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3277 outrel.r_addend = addend;
3278 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3279 if (outrel.r_offset >= (bfd_vma) -2)
3280 {
3281 /* Run for the hills. We shouldn't be outputting a relocation
3282 for this. So do what everyone else does and output a no-op. */
3283 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3284 outrel.r_addend = 0;
3285 outrel.r_offset = 0;
3286 }
3287 else
3288 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3289
3290 loc = srel->contents;
3291 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3292 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3293 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count
3294 <= srel->_cooked_size);
3295 }
3296
3297 /* Store an entry for target address TARGET_ADDR in the linkage table
3298 and return the gp-relative address of the linkage table entry. */
3299
3300 static bfd_vma
3301 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
3302 bfd *abfd;
3303 struct bfd_link_info *info;
3304 struct elfNN_ia64_dyn_sym_info *dyn_i;
3305 long dynindx;
3306 bfd_vma addend;
3307 bfd_vma value;
3308 unsigned int dyn_r_type;
3309 {
3310 struct elfNN_ia64_link_hash_table *ia64_info;
3311 asection *got_sec;
3312 bfd_boolean done;
3313 bfd_vma got_offset;
3314
3315 ia64_info = elfNN_ia64_hash_table (info);
3316 got_sec = ia64_info->got_sec;
3317
3318 switch (dyn_r_type)
3319 {
3320 case R_IA64_TPREL64LSB:
3321 done = dyn_i->tprel_done;
3322 dyn_i->tprel_done = TRUE;
3323 got_offset = dyn_i->tprel_offset;
3324 break;
3325 case R_IA64_DTPMOD64LSB:
3326 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3327 {
3328 done = dyn_i->dtpmod_done;
3329 dyn_i->dtpmod_done = TRUE;
3330 }
3331 else
3332 {
3333 done = ia64_info->self_dtpmod_done;
3334 ia64_info->self_dtpmod_done = TRUE;
3335 dynindx = 0;
3336 }
3337 got_offset = dyn_i->dtpmod_offset;
3338 break;
3339 case R_IA64_DTPREL64LSB:
3340 done = dyn_i->dtprel_done;
3341 dyn_i->dtprel_done = TRUE;
3342 got_offset = dyn_i->dtprel_offset;
3343 break;
3344 default:
3345 done = dyn_i->got_done;
3346 dyn_i->got_done = TRUE;
3347 got_offset = dyn_i->got_offset;
3348 break;
3349 }
3350
3351 BFD_ASSERT ((got_offset & 7) == 0);
3352
3353 if (! done)
3354 {
3355 /* Store the target address in the linkage table entry. */
3356 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3357
3358 /* Install a dynamic relocation if needed. */
3359 if (((info->shared
3360 && (!dyn_i->h
3361 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3362 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3363 && dyn_r_type != R_IA64_DTPREL64LSB)
3364 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3365 || (dynindx != -1 && dyn_r_type == R_IA64_FPTR64LSB))
3366 && (!dyn_i->want_ltoff_fptr
3367 || !info->pie
3368 || !dyn_i->h
3369 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3370 {
3371 if (dynindx == -1
3372 && dyn_r_type != R_IA64_TPREL64LSB
3373 && dyn_r_type != R_IA64_DTPMOD64LSB
3374 && dyn_r_type != R_IA64_DTPREL64LSB)
3375 {
3376 dyn_r_type = R_IA64_REL64LSB;
3377 dynindx = 0;
3378 addend = value;
3379 }
3380
3381 if (bfd_big_endian (abfd))
3382 {
3383 switch (dyn_r_type)
3384 {
3385 case R_IA64_REL64LSB:
3386 dyn_r_type = R_IA64_REL64MSB;
3387 break;
3388 case R_IA64_DIR64LSB:
3389 dyn_r_type = R_IA64_DIR64MSB;
3390 break;
3391 case R_IA64_FPTR64LSB:
3392 dyn_r_type = R_IA64_FPTR64MSB;
3393 break;
3394 case R_IA64_TPREL64LSB:
3395 dyn_r_type = R_IA64_TPREL64MSB;
3396 break;
3397 case R_IA64_DTPMOD64LSB:
3398 dyn_r_type = R_IA64_DTPMOD64MSB;
3399 break;
3400 case R_IA64_DTPREL64LSB:
3401 dyn_r_type = R_IA64_DTPREL64MSB;
3402 break;
3403 default:
3404 BFD_ASSERT (FALSE);
3405 break;
3406 }
3407 }
3408
3409 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
3410 ia64_info->rel_got_sec,
3411 got_offset, dyn_r_type,
3412 dynindx, addend);
3413 }
3414 }
3415
3416 /* Return the address of the linkage table entry. */
3417 value = (got_sec->output_section->vma
3418 + got_sec->output_offset
3419 + got_offset);
3420
3421 return value;
3422 }
3423
3424 /* Fill in a function descriptor consisting of the function's code
3425 address and its global pointer. Return the descriptor's address. */
3426
3427 static bfd_vma
3428 set_fptr_entry (abfd, info, dyn_i, value)
3429 bfd *abfd;
3430 struct bfd_link_info *info;
3431 struct elfNN_ia64_dyn_sym_info *dyn_i;
3432 bfd_vma value;
3433 {
3434 struct elfNN_ia64_link_hash_table *ia64_info;
3435 asection *fptr_sec;
3436
3437 ia64_info = elfNN_ia64_hash_table (info);
3438 fptr_sec = ia64_info->fptr_sec;
3439
3440 if (!dyn_i->fptr_done)
3441 {
3442 dyn_i->fptr_done = 1;
3443
3444 /* Fill in the function descriptor. */
3445 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
3446 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
3447 fptr_sec->contents + dyn_i->fptr_offset + 8);
3448 if (ia64_info->rel_fptr_sec)
3449 {
3450 Elf_Internal_Rela outrel;
3451 bfd_byte *loc;
3452
3453 if (bfd_little_endian (abfd))
3454 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
3455 else
3456 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
3457 outrel.r_addend = value;
3458 outrel.r_offset = (fptr_sec->output_section->vma
3459 + fptr_sec->output_offset
3460 + dyn_i->fptr_offset);
3461 loc = ia64_info->rel_fptr_sec->contents;
3462 loc += ia64_info->rel_fptr_sec->reloc_count++
3463 * sizeof (ElfNN_External_Rela);
3464 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3465 }
3466 }
3467
3468 /* Return the descriptor's address. */
3469 value = (fptr_sec->output_section->vma
3470 + fptr_sec->output_offset
3471 + dyn_i->fptr_offset);
3472
3473 return value;
3474 }
3475
3476 /* Fill in a PLTOFF entry consisting of the function's code address
3477 and its global pointer. Return the descriptor's address. */
3478
3479 static bfd_vma
3480 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
3481 bfd *abfd;
3482 struct bfd_link_info *info;
3483 struct elfNN_ia64_dyn_sym_info *dyn_i;
3484 bfd_vma value;
3485 bfd_boolean is_plt;
3486 {
3487 struct elfNN_ia64_link_hash_table *ia64_info;
3488 asection *pltoff_sec;
3489
3490 ia64_info = elfNN_ia64_hash_table (info);
3491 pltoff_sec = ia64_info->pltoff_sec;
3492
3493 /* Don't do anything if this symbol uses a real PLT entry. In
3494 that case, we'll fill this in during finish_dynamic_symbol. */
3495 if ((! dyn_i->want_plt || is_plt)
3496 && !dyn_i->pltoff_done)
3497 {
3498 bfd_vma gp = _bfd_get_gp_value (abfd);
3499
3500 /* Fill in the function descriptor. */
3501 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
3502 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
3503
3504 /* Install dynamic relocations if needed. */
3505 if (!is_plt
3506 && info->shared
3507 && (!dyn_i->h
3508 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3509 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3510 {
3511 unsigned int dyn_r_type;
3512
3513 if (bfd_big_endian (abfd))
3514 dyn_r_type = R_IA64_REL64MSB;
3515 else
3516 dyn_r_type = R_IA64_REL64LSB;
3517
3518 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3519 ia64_info->rel_pltoff_sec,
3520 dyn_i->pltoff_offset,
3521 dyn_r_type, 0, value);
3522 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3523 ia64_info->rel_pltoff_sec,
3524 dyn_i->pltoff_offset + 8,
3525 dyn_r_type, 0, gp);
3526 }
3527
3528 dyn_i->pltoff_done = 1;
3529 }
3530
3531 /* Return the descriptor's address. */
3532 value = (pltoff_sec->output_section->vma
3533 + pltoff_sec->output_offset
3534 + dyn_i->pltoff_offset);
3535
3536 return value;
3537 }
3538
3539 /* Return the base VMA address which should be subtracted from real addresses
3540 when resolving @tprel() relocation.
3541 Main program TLS (whose template starts at PT_TLS p_vaddr)
3542 is assigned offset round(16, PT_TLS p_align). */
3543
3544 static bfd_vma
3545 elfNN_ia64_tprel_base (info)
3546 struct bfd_link_info *info;
3547 {
3548 struct elf_link_tls_segment *tls_segment
3549 = elf_hash_table (info)->tls_segment;
3550
3551 BFD_ASSERT (tls_segment != NULL);
3552 return (tls_segment->start
3553 - align_power ((bfd_vma) 16, tls_segment->align));
3554 }
3555
3556 /* Return the base VMA address which should be subtracted from real addresses
3557 when resolving @dtprel() relocation.
3558 This is PT_TLS segment p_vaddr. */
3559
3560 static bfd_vma
3561 elfNN_ia64_dtprel_base (info)
3562 struct bfd_link_info *info;
3563 {
3564 BFD_ASSERT (elf_hash_table (info)->tls_segment != NULL);
3565 return elf_hash_table (info)->tls_segment->start;
3566 }
3567
3568 /* Called through qsort to sort the .IA_64.unwind section during a
3569 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
3570 to the output bfd so we can do proper endianness frobbing. */
3571
3572 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
3573
3574 static int
3575 elfNN_ia64_unwind_entry_compare (a, b)
3576 const PTR a;
3577 const PTR b;
3578 {
3579 bfd_vma av, bv;
3580
3581 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
3582 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
3583
3584 return (av < bv ? -1 : av > bv ? 1 : 0);
3585 }
3586
3587 /* Make sure we've got ourselves a nice fat __gp value. */
3588 static bfd_boolean
3589 elfNN_ia64_choose_gp (abfd, info)
3590 bfd *abfd;
3591 struct bfd_link_info *info;
3592 {
3593 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
3594 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
3595 struct elf_link_hash_entry *gp;
3596 bfd_vma gp_val;
3597 asection *os;
3598 struct elfNN_ia64_link_hash_table *ia64_info;
3599
3600 ia64_info = elfNN_ia64_hash_table (info);
3601
3602 /* Find the min and max vma of all sections marked short. Also collect
3603 min and max vma of any type, for use in selecting a nice gp. */
3604 for (os = abfd->sections; os ; os = os->next)
3605 {
3606 bfd_vma lo, hi;
3607
3608 if ((os->flags & SEC_ALLOC) == 0)
3609 continue;
3610
3611 lo = os->vma;
3612 hi = os->vma + os->_raw_size;
3613 if (hi < lo)
3614 hi = (bfd_vma) -1;
3615
3616 if (min_vma > lo)
3617 min_vma = lo;
3618 if (max_vma < hi)
3619 max_vma = hi;
3620 if (os->flags & SEC_SMALL_DATA)
3621 {
3622 if (min_short_vma > lo)
3623 min_short_vma = lo;
3624 if (max_short_vma < hi)
3625 max_short_vma = hi;
3626 }
3627 }
3628
3629 /* See if the user wants to force a value. */
3630 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3631 FALSE, FALSE);
3632
3633 if (gp
3634 && (gp->root.type == bfd_link_hash_defined
3635 || gp->root.type == bfd_link_hash_defweak))
3636 {
3637 asection *gp_sec = gp->root.u.def.section;
3638 gp_val = (gp->root.u.def.value
3639 + gp_sec->output_section->vma
3640 + gp_sec->output_offset);
3641 }
3642 else
3643 {
3644 /* Pick a sensible value. */
3645
3646 asection *got_sec = ia64_info->got_sec;
3647
3648 /* Start with just the address of the .got. */
3649 if (got_sec)
3650 gp_val = got_sec->output_section->vma;
3651 else if (max_short_vma != 0)
3652 gp_val = min_short_vma;
3653 else
3654 gp_val = min_vma;
3655
3656 /* If it is possible to address the entire image, but we
3657 don't with the choice above, adjust. */
3658 if (max_vma - min_vma < 0x400000
3659 && max_vma - gp_val <= 0x200000
3660 && gp_val - min_vma > 0x200000)
3661 gp_val = min_vma + 0x200000;
3662 else if (max_short_vma != 0)
3663 {
3664 /* If we don't cover all the short data, adjust. */
3665 if (max_short_vma - gp_val >= 0x200000)
3666 gp_val = min_short_vma + 0x200000;
3667
3668 /* If we're addressing stuff past the end, adjust back. */
3669 if (gp_val > max_vma)
3670 gp_val = max_vma - 0x200000 + 8;
3671 }
3672 }
3673
3674 /* Validate whether all SHF_IA_64_SHORT sections are within
3675 range of the chosen GP. */
3676
3677 if (max_short_vma != 0)
3678 {
3679 if (max_short_vma - min_short_vma >= 0x400000)
3680 {
3681 (*_bfd_error_handler)
3682 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
3683 bfd_get_filename (abfd),
3684 (unsigned long) (max_short_vma - min_short_vma));
3685 return FALSE;
3686 }
3687 else if ((gp_val > min_short_vma
3688 && gp_val - min_short_vma > 0x200000)
3689 || (gp_val < max_short_vma
3690 && max_short_vma - gp_val >= 0x200000))
3691 {
3692 (*_bfd_error_handler)
3693 (_("%s: __gp does not cover short data segment"),
3694 bfd_get_filename (abfd));
3695 return FALSE;
3696 }
3697 }
3698
3699 _bfd_set_gp_value (abfd, gp_val);
3700
3701 return TRUE;
3702 }
3703
3704 static bfd_boolean
3705 elfNN_ia64_final_link (abfd, info)
3706 bfd *abfd;
3707 struct bfd_link_info *info;
3708 {
3709 struct elfNN_ia64_link_hash_table *ia64_info;
3710 asection *unwind_output_sec;
3711
3712 ia64_info = elfNN_ia64_hash_table (info);
3713
3714 /* Make sure we've got ourselves a nice fat __gp value. */
3715 if (!info->relocatable)
3716 {
3717 bfd_vma gp_val = _bfd_get_gp_value (abfd);
3718 struct elf_link_hash_entry *gp;
3719
3720 if (gp_val == 0)
3721 {
3722 if (! elfNN_ia64_choose_gp (abfd, info))
3723 return FALSE;
3724 gp_val = _bfd_get_gp_value (abfd);
3725 }
3726
3727 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3728 FALSE, FALSE);
3729 if (gp)
3730 {
3731 gp->root.type = bfd_link_hash_defined;
3732 gp->root.u.def.value = gp_val;
3733 gp->root.u.def.section = bfd_abs_section_ptr;
3734 }
3735 }
3736
3737 /* If we're producing a final executable, we need to sort the contents
3738 of the .IA_64.unwind section. Force this section to be relocated
3739 into memory rather than written immediately to the output file. */
3740 unwind_output_sec = NULL;
3741 if (!info->relocatable)
3742 {
3743 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
3744 if (s)
3745 {
3746 unwind_output_sec = s->output_section;
3747 unwind_output_sec->contents
3748 = bfd_malloc (unwind_output_sec->_raw_size);
3749 if (unwind_output_sec->contents == NULL)
3750 return FALSE;
3751 }
3752 }
3753
3754 /* Invoke the regular ELF backend linker to do all the work. */
3755 if (!bfd_elfNN_bfd_final_link (abfd, info))
3756 return FALSE;
3757
3758 if (unwind_output_sec)
3759 {
3760 elfNN_ia64_unwind_entry_compare_bfd = abfd;
3761 qsort (unwind_output_sec->contents,
3762 (size_t) (unwind_output_sec->_raw_size / 24),
3763 24,
3764 elfNN_ia64_unwind_entry_compare);
3765
3766 if (! bfd_set_section_contents (abfd, unwind_output_sec,
3767 unwind_output_sec->contents, (bfd_vma) 0,
3768 unwind_output_sec->_raw_size))
3769 return FALSE;
3770 }
3771
3772 return TRUE;
3773 }
3774
3775 static bfd_boolean
3776 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
3777 contents, relocs, local_syms, local_sections)
3778 bfd *output_bfd;
3779 struct bfd_link_info *info;
3780 bfd *input_bfd;
3781 asection *input_section;
3782 bfd_byte *contents;
3783 Elf_Internal_Rela *relocs;
3784 Elf_Internal_Sym *local_syms;
3785 asection **local_sections;
3786 {
3787 struct elfNN_ia64_link_hash_table *ia64_info;
3788 Elf_Internal_Shdr *symtab_hdr;
3789 Elf_Internal_Rela *rel;
3790 Elf_Internal_Rela *relend;
3791 asection *srel;
3792 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
3793 bfd_vma gp_val;
3794
3795 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3796 ia64_info = elfNN_ia64_hash_table (info);
3797
3798 /* Infect various flags from the input section to the output section. */
3799 if (info->relocatable)
3800 {
3801 bfd_vma flags;
3802
3803 flags = elf_section_data(input_section)->this_hdr.sh_flags;
3804 flags &= SHF_IA_64_NORECOV;
3805
3806 elf_section_data(input_section->output_section)
3807 ->this_hdr.sh_flags |= flags;
3808 return TRUE;
3809 }
3810
3811 gp_val = _bfd_get_gp_value (output_bfd);
3812 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
3813
3814 rel = relocs;
3815 relend = relocs + input_section->reloc_count;
3816 for (; rel < relend; ++rel)
3817 {
3818 struct elf_link_hash_entry *h;
3819 struct elfNN_ia64_dyn_sym_info *dyn_i;
3820 bfd_reloc_status_type r;
3821 reloc_howto_type *howto;
3822 unsigned long r_symndx;
3823 Elf_Internal_Sym *sym;
3824 unsigned int r_type;
3825 bfd_vma value;
3826 asection *sym_sec;
3827 bfd_byte *hit_addr;
3828 bfd_boolean dynamic_symbol_p;
3829 bfd_boolean undef_weak_ref;
3830
3831 r_type = ELFNN_R_TYPE (rel->r_info);
3832 if (r_type > R_IA64_MAX_RELOC_CODE)
3833 {
3834 (*_bfd_error_handler)
3835 (_("%s: unknown relocation type %d"),
3836 bfd_archive_filename (input_bfd), (int)r_type);
3837 bfd_set_error (bfd_error_bad_value);
3838 ret_val = FALSE;
3839 continue;
3840 }
3841
3842 howto = lookup_howto (r_type);
3843 r_symndx = ELFNN_R_SYM (rel->r_info);
3844 h = NULL;
3845 sym = NULL;
3846 sym_sec = NULL;
3847 undef_weak_ref = FALSE;
3848
3849 if (r_symndx < symtab_hdr->sh_info)
3850 {
3851 /* Reloc against local symbol. */
3852 sym = local_syms + r_symndx;
3853 sym_sec = local_sections[r_symndx];
3854 value = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3855 if ((sym_sec->flags & SEC_MERGE)
3856 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
3857 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
3858 {
3859 struct elfNN_ia64_local_hash_entry *loc_h;
3860
3861 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
3862 if (loc_h && ! loc_h->sec_merge_done)
3863 {
3864 struct elfNN_ia64_dyn_sym_info *dynent;
3865 asection *msec;
3866
3867 for (dynent = loc_h->info; dynent; dynent = dynent->next)
3868 {
3869 msec = sym_sec;
3870 dynent->addend =
3871 _bfd_merged_section_offset (output_bfd, &msec,
3872 elf_section_data (msec)->
3873 sec_info,
3874 sym->st_value
3875 + dynent->addend,
3876 (bfd_vma) 0);
3877 dynent->addend -= sym->st_value;
3878 dynent->addend += msec->output_section->vma
3879 + msec->output_offset
3880 - sym_sec->output_section->vma
3881 - sym_sec->output_offset;
3882 }
3883 loc_h->sec_merge_done = 1;
3884 }
3885 }
3886 }
3887 else
3888 {
3889 bfd_boolean unresolved_reloc;
3890 bfd_boolean warned;
3891
3892 RELOC_FOR_GLOBAL_SYMBOL (h, elf_sym_hashes (input_bfd),
3893 r_symndx,
3894 symtab_hdr, value, sym_sec,
3895 unresolved_reloc, info,
3896 warned);
3897
3898 if (h->root.type == bfd_link_hash_undefweak)
3899 undef_weak_ref = TRUE;
3900 else if (warned)
3901 continue;
3902 }
3903
3904 hit_addr = contents + rel->r_offset;
3905 value += rel->r_addend;
3906 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
3907
3908 switch (r_type)
3909 {
3910 case R_IA64_NONE:
3911 case R_IA64_LDXMOV:
3912 continue;
3913
3914 case R_IA64_IMM14:
3915 case R_IA64_IMM22:
3916 case R_IA64_IMM64:
3917 case R_IA64_DIR32MSB:
3918 case R_IA64_DIR32LSB:
3919 case R_IA64_DIR64MSB:
3920 case R_IA64_DIR64LSB:
3921 /* Install a dynamic relocation for this reloc. */
3922 if ((dynamic_symbol_p || info->shared)
3923 && r_symndx != 0
3924 && (input_section->flags & SEC_ALLOC) != 0)
3925 {
3926 unsigned int dyn_r_type;
3927 long dynindx;
3928 bfd_vma addend;
3929
3930 BFD_ASSERT (srel != NULL);
3931
3932 /* If we don't need dynamic symbol lookup, find a
3933 matching RELATIVE relocation. */
3934 dyn_r_type = r_type;
3935 if (dynamic_symbol_p)
3936 {
3937 dynindx = h->dynindx;
3938 addend = rel->r_addend;
3939 value = 0;
3940 }
3941 else
3942 {
3943 switch (r_type)
3944 {
3945 case R_IA64_DIR32MSB:
3946 dyn_r_type = R_IA64_REL32MSB;
3947 break;
3948 case R_IA64_DIR32LSB:
3949 dyn_r_type = R_IA64_REL32LSB;
3950 break;
3951 case R_IA64_DIR64MSB:
3952 dyn_r_type = R_IA64_REL64MSB;
3953 break;
3954 case R_IA64_DIR64LSB:
3955 dyn_r_type = R_IA64_REL64LSB;
3956 break;
3957
3958 default:
3959 /* We can't represent this without a dynamic symbol.
3960 Adjust the relocation to be against an output
3961 section symbol, which are always present in the
3962 dynamic symbol table. */
3963 /* ??? People shouldn't be doing non-pic code in
3964 shared libraries. Hork. */
3965 (*_bfd_error_handler)
3966 (_("%s: linking non-pic code in a shared library"),
3967 bfd_archive_filename (input_bfd));
3968 ret_val = FALSE;
3969 continue;
3970 }
3971 dynindx = 0;
3972 addend = value;
3973 }
3974
3975 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
3976 srel, rel->r_offset, dyn_r_type,
3977 dynindx, addend);
3978 }
3979 /* Fall through. */
3980
3981 case R_IA64_LTV32MSB:
3982 case R_IA64_LTV32LSB:
3983 case R_IA64_LTV64MSB:
3984 case R_IA64_LTV64LSB:
3985 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
3986 break;
3987
3988 case R_IA64_GPREL22:
3989 case R_IA64_GPREL64I:
3990 case R_IA64_GPREL32MSB:
3991 case R_IA64_GPREL32LSB:
3992 case R_IA64_GPREL64MSB:
3993 case R_IA64_GPREL64LSB:
3994 if (dynamic_symbol_p)
3995 {
3996 (*_bfd_error_handler)
3997 (_("%s: @gprel relocation against dynamic symbol %s"),
3998 bfd_archive_filename (input_bfd), h->root.root.string);
3999 ret_val = FALSE;
4000 continue;
4001 }
4002 value -= gp_val;
4003 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4004 break;
4005
4006 case R_IA64_LTOFF22:
4007 case R_IA64_LTOFF22X:
4008 case R_IA64_LTOFF64I:
4009 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4010 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4011 rel->r_addend, value, R_IA64_DIR64LSB);
4012 value -= gp_val;
4013 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4014 break;
4015
4016 case R_IA64_PLTOFF22:
4017 case R_IA64_PLTOFF64I:
4018 case R_IA64_PLTOFF64MSB:
4019 case R_IA64_PLTOFF64LSB:
4020 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4021 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4022 value -= gp_val;
4023 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4024 break;
4025
4026 case R_IA64_FPTR64I:
4027 case R_IA64_FPTR32MSB:
4028 case R_IA64_FPTR32LSB:
4029 case R_IA64_FPTR64MSB:
4030 case R_IA64_FPTR64LSB:
4031 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4032 if (dyn_i->want_fptr)
4033 {
4034 if (!undef_weak_ref)
4035 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4036 }
4037 if (!dyn_i->want_fptr || info->pie)
4038 {
4039 long dynindx;
4040 unsigned int dyn_r_type = r_type;
4041 bfd_vma addend = rel->r_addend;
4042
4043 /* Otherwise, we expect the dynamic linker to create
4044 the entry. */
4045
4046 if (dyn_i->want_fptr)
4047 {
4048 if (r_type == R_IA64_FPTR64I)
4049 {
4050 /* We can't represent this without a dynamic symbol.
4051 Adjust the relocation to be against an output
4052 section symbol, which are always present in the
4053 dynamic symbol table. */
4054 /* ??? People shouldn't be doing non-pic code in
4055 shared libraries. Hork. */
4056 (*_bfd_error_handler)
4057 (_("%s: linking non-pic code in a position independent executable"),
4058 bfd_archive_filename (input_bfd));
4059 ret_val = FALSE;
4060 continue;
4061 }
4062 dynindx = 0;
4063 addend = value;
4064 dyn_r_type = r_type + R_IA64_REL64LSB - R_IA64_FPTR64LSB;
4065 }
4066 else if (h)
4067 {
4068 if (h->dynindx != -1)
4069 dynindx = h->dynindx;
4070 else
4071 dynindx = (_bfd_elf_link_lookup_local_dynindx
4072 (info, h->root.u.def.section->owner,
4073 global_sym_index (h)));
4074 value = 0;
4075 }
4076 else
4077 {
4078 dynindx = (_bfd_elf_link_lookup_local_dynindx
4079 (info, input_bfd, (long) r_symndx));
4080 value = 0;
4081 }
4082
4083 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4084 srel, rel->r_offset, dyn_r_type,
4085 dynindx, addend);
4086 }
4087
4088 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4089 break;
4090
4091 case R_IA64_LTOFF_FPTR22:
4092 case R_IA64_LTOFF_FPTR64I:
4093 case R_IA64_LTOFF_FPTR32MSB:
4094 case R_IA64_LTOFF_FPTR32LSB:
4095 case R_IA64_LTOFF_FPTR64MSB:
4096 case R_IA64_LTOFF_FPTR64LSB:
4097 {
4098 long dynindx;
4099
4100 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4101 if (dyn_i->want_fptr)
4102 {
4103 BFD_ASSERT (h == NULL || h->dynindx == -1)
4104 if (!undef_weak_ref)
4105 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4106 dynindx = -1;
4107 }
4108 else
4109 {
4110 /* Otherwise, we expect the dynamic linker to create
4111 the entry. */
4112 if (h)
4113 {
4114 if (h->dynindx != -1)
4115 dynindx = h->dynindx;
4116 else
4117 dynindx = (_bfd_elf_link_lookup_local_dynindx
4118 (info, h->root.u.def.section->owner,
4119 global_sym_index (h)));
4120 }
4121 else
4122 dynindx = (_bfd_elf_link_lookup_local_dynindx
4123 (info, input_bfd, (long) r_symndx));
4124 value = 0;
4125 }
4126
4127 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4128 rel->r_addend, value, R_IA64_FPTR64LSB);
4129 value -= gp_val;
4130 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4131 }
4132 break;
4133
4134 case R_IA64_PCREL32MSB:
4135 case R_IA64_PCREL32LSB:
4136 case R_IA64_PCREL64MSB:
4137 case R_IA64_PCREL64LSB:
4138 /* Install a dynamic relocation for this reloc. */
4139 if (dynamic_symbol_p && r_symndx != 0)
4140 {
4141 BFD_ASSERT (srel != NULL);
4142
4143 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4144 srel, rel->r_offset, r_type,
4145 h->dynindx, rel->r_addend);
4146 }
4147 goto finish_pcrel;
4148
4149 case R_IA64_PCREL21B:
4150 case R_IA64_PCREL60B:
4151 /* We should have created a PLT entry for any dynamic symbol. */
4152 dyn_i = NULL;
4153 if (h)
4154 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4155
4156 if (dyn_i && dyn_i->want_plt2)
4157 {
4158 /* Should have caught this earlier. */
4159 BFD_ASSERT (rel->r_addend == 0);
4160
4161 value = (ia64_info->plt_sec->output_section->vma
4162 + ia64_info->plt_sec->output_offset
4163 + dyn_i->plt2_offset);
4164 }
4165 else
4166 {
4167 /* Since there's no PLT entry, Validate that this is
4168 locally defined. */
4169 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4170
4171 /* If the symbol is undef_weak, we shouldn't be trying
4172 to call it. There's every chance that we'd wind up
4173 with an out-of-range fixup here. Don't bother setting
4174 any value at all. */
4175 if (undef_weak_ref)
4176 continue;
4177 }
4178 goto finish_pcrel;
4179
4180 case R_IA64_PCREL21BI:
4181 case R_IA64_PCREL21F:
4182 case R_IA64_PCREL21M:
4183 case R_IA64_PCREL22:
4184 case R_IA64_PCREL64I:
4185 /* The PCREL21BI reloc is specifically not intended for use with
4186 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4187 fixup code, and thus probably ought not be dynamic. The
4188 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4189 if (dynamic_symbol_p)
4190 {
4191 const char *msg;
4192
4193 if (r_type == R_IA64_PCREL21BI)
4194 msg = _("%s: @internal branch to dynamic symbol %s");
4195 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4196 msg = _("%s: speculation fixup to dynamic symbol %s");
4197 else
4198 msg = _("%s: @pcrel relocation against dynamic symbol %s");
4199 (*_bfd_error_handler) (msg, bfd_archive_filename (input_bfd),
4200 h->root.root.string);
4201 ret_val = FALSE;
4202 continue;
4203 }
4204 goto finish_pcrel;
4205
4206 finish_pcrel:
4207 /* Make pc-relative. */
4208 value -= (input_section->output_section->vma
4209 + input_section->output_offset
4210 + rel->r_offset) & ~ (bfd_vma) 0x3;
4211 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4212 break;
4213
4214 case R_IA64_SEGREL32MSB:
4215 case R_IA64_SEGREL32LSB:
4216 case R_IA64_SEGREL64MSB:
4217 case R_IA64_SEGREL64LSB:
4218 if (r_symndx == 0)
4219 {
4220 /* If the input section was discarded from the output, then
4221 do nothing. */
4222 r = bfd_reloc_ok;
4223 }
4224 else
4225 {
4226 struct elf_segment_map *m;
4227 Elf_Internal_Phdr *p;
4228
4229 /* Find the segment that contains the output_section. */
4230 for (m = elf_tdata (output_bfd)->segment_map,
4231 p = elf_tdata (output_bfd)->phdr;
4232 m != NULL;
4233 m = m->next, p++)
4234 {
4235 int i;
4236 for (i = m->count - 1; i >= 0; i--)
4237 if (m->sections[i] == input_section->output_section)
4238 break;
4239 if (i >= 0)
4240 break;
4241 }
4242
4243 if (m == NULL)
4244 {
4245 r = bfd_reloc_notsupported;
4246 }
4247 else
4248 {
4249 /* The VMA of the segment is the vaddr of the associated
4250 program header. */
4251 if (value > p->p_vaddr)
4252 value -= p->p_vaddr;
4253 else
4254 value = 0;
4255 r = elfNN_ia64_install_value (output_bfd, hit_addr, value,
4256 r_type);
4257 }
4258 break;
4259 }
4260
4261 case R_IA64_SECREL32MSB:
4262 case R_IA64_SECREL32LSB:
4263 case R_IA64_SECREL64MSB:
4264 case R_IA64_SECREL64LSB:
4265 /* Make output-section relative. */
4266 if (value > input_section->output_section->vma)
4267 value -= input_section->output_section->vma;
4268 else
4269 value = 0;
4270 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4271 break;
4272
4273 case R_IA64_IPLTMSB:
4274 case R_IA64_IPLTLSB:
4275 /* Install a dynamic relocation for this reloc. */
4276 if ((dynamic_symbol_p || info->shared)
4277 && (input_section->flags & SEC_ALLOC) != 0)
4278 {
4279 BFD_ASSERT (srel != NULL);
4280
4281 /* If we don't need dynamic symbol lookup, install two
4282 RELATIVE relocations. */
4283 if (!dynamic_symbol_p)
4284 {
4285 unsigned int dyn_r_type;
4286
4287 if (r_type == R_IA64_IPLTMSB)
4288 dyn_r_type = R_IA64_REL64MSB;
4289 else
4290 dyn_r_type = R_IA64_REL64LSB;
4291
4292 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4293 input_section,
4294 srel, rel->r_offset,
4295 dyn_r_type, 0, value);
4296 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4297 input_section,
4298 srel, rel->r_offset + 8,
4299 dyn_r_type, 0, gp_val);
4300 }
4301 else
4302 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4303 srel, rel->r_offset, r_type,
4304 h->dynindx, rel->r_addend);
4305 }
4306
4307 if (r_type == R_IA64_IPLTMSB)
4308 r_type = R_IA64_DIR64MSB;
4309 else
4310 r_type = R_IA64_DIR64LSB;
4311 elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4312 r = elfNN_ia64_install_value (output_bfd, hit_addr + 8, gp_val,
4313 r_type);
4314 break;
4315
4316 case R_IA64_TPREL14:
4317 case R_IA64_TPREL22:
4318 case R_IA64_TPREL64I:
4319 value -= elfNN_ia64_tprel_base (info);
4320 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4321 break;
4322
4323 case R_IA64_DTPREL14:
4324 case R_IA64_DTPREL22:
4325 case R_IA64_DTPREL64I:
4326 case R_IA64_DTPREL64LSB:
4327 case R_IA64_DTPREL64MSB:
4328 value -= elfNN_ia64_dtprel_base (info);
4329 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4330 break;
4331
4332 case R_IA64_LTOFF_TPREL22:
4333 case R_IA64_LTOFF_DTPMOD22:
4334 case R_IA64_LTOFF_DTPREL22:
4335 {
4336 int got_r_type;
4337 long dynindx = h ? h->dynindx : -1;
4338 bfd_vma r_addend = rel->r_addend;
4339
4340 switch (r_type)
4341 {
4342 default:
4343 case R_IA64_LTOFF_TPREL22:
4344 if (!dynamic_symbol_p)
4345 {
4346 if (!info->shared)
4347 value -= elfNN_ia64_tprel_base (info);
4348 else
4349 {
4350 r_addend += value - elfNN_ia64_dtprel_base (info);
4351 dynindx = 0;
4352 }
4353 }
4354 got_r_type = R_IA64_TPREL64LSB;
4355 break;
4356 case R_IA64_LTOFF_DTPMOD22:
4357 if (!dynamic_symbol_p && !info->shared)
4358 value = 1;
4359 got_r_type = R_IA64_DTPMOD64LSB;
4360 break;
4361 case R_IA64_LTOFF_DTPREL22:
4362 if (!dynamic_symbol_p)
4363 value -= elfNN_ia64_dtprel_base (info);
4364 got_r_type = R_IA64_DTPREL64LSB;
4365 break;
4366 }
4367 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4368 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
4369 value, got_r_type);
4370 value -= gp_val;
4371 r = elfNN_ia64_install_value (output_bfd, hit_addr, value,
4372 r_type);
4373 }
4374 break;
4375
4376 default:
4377 r = bfd_reloc_notsupported;
4378 break;
4379 }
4380
4381 switch (r)
4382 {
4383 case bfd_reloc_ok:
4384 break;
4385
4386 case bfd_reloc_undefined:
4387 /* This can happen for global table relative relocs if
4388 __gp is undefined. This is a panic situation so we
4389 don't try to continue. */
4390 (*info->callbacks->undefined_symbol)
4391 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
4392 return FALSE;
4393
4394 case bfd_reloc_notsupported:
4395 {
4396 const char *name;
4397
4398 if (h)
4399 name = h->root.root.string;
4400 else
4401 {
4402 name = bfd_elf_string_from_elf_section (input_bfd,
4403 symtab_hdr->sh_link,
4404 sym->st_name);
4405 if (name == NULL)
4406 return FALSE;
4407 if (*name == '\0')
4408 name = bfd_section_name (input_bfd, input_section);
4409 }
4410 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
4411 name, input_bfd,
4412 input_section, rel->r_offset))
4413 return FALSE;
4414 ret_val = FALSE;
4415 }
4416 break;
4417
4418 case bfd_reloc_dangerous:
4419 case bfd_reloc_outofrange:
4420 case bfd_reloc_overflow:
4421 default:
4422 {
4423 const char *name;
4424
4425 if (h)
4426 name = h->root.root.string;
4427 else
4428 {
4429 name = bfd_elf_string_from_elf_section (input_bfd,
4430 symtab_hdr->sh_link,
4431 sym->st_name);
4432 if (name == NULL)
4433 return FALSE;
4434 if (*name == '\0')
4435 name = bfd_section_name (input_bfd, input_section);
4436 }
4437 if (!(*info->callbacks->reloc_overflow) (info, name,
4438 howto->name,
4439 (bfd_vma) 0,
4440 input_bfd,
4441 input_section,
4442 rel->r_offset))
4443 return FALSE;
4444 ret_val = FALSE;
4445 }
4446 break;
4447 }
4448 }
4449
4450 return ret_val;
4451 }
4452
4453 static bfd_boolean
4454 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
4455 bfd *output_bfd;
4456 struct bfd_link_info *info;
4457 struct elf_link_hash_entry *h;
4458 Elf_Internal_Sym *sym;
4459 {
4460 struct elfNN_ia64_link_hash_table *ia64_info;
4461 struct elfNN_ia64_dyn_sym_info *dyn_i;
4462
4463 ia64_info = elfNN_ia64_hash_table (info);
4464 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4465
4466 /* Fill in the PLT data, if required. */
4467 if (dyn_i && dyn_i->want_plt)
4468 {
4469 Elf_Internal_Rela outrel;
4470 bfd_byte *loc;
4471 asection *plt_sec;
4472 bfd_vma plt_addr, pltoff_addr, gp_val, index;
4473
4474 gp_val = _bfd_get_gp_value (output_bfd);
4475
4476 /* Initialize the minimal PLT entry. */
4477
4478 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
4479 plt_sec = ia64_info->plt_sec;
4480 loc = plt_sec->contents + dyn_i->plt_offset;
4481
4482 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
4483 elfNN_ia64_install_value (output_bfd, loc, index, R_IA64_IMM22);
4484 elfNN_ia64_install_value (output_bfd, loc+2, -dyn_i->plt_offset,
4485 R_IA64_PCREL21B);
4486
4487 plt_addr = (plt_sec->output_section->vma
4488 + plt_sec->output_offset
4489 + dyn_i->plt_offset);
4490 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
4491
4492 /* Initialize the FULL PLT entry, if needed. */
4493 if (dyn_i->want_plt2)
4494 {
4495 loc = plt_sec->contents + dyn_i->plt2_offset;
4496
4497 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
4498 elfNN_ia64_install_value (output_bfd, loc, pltoff_addr - gp_val,
4499 R_IA64_IMM22);
4500
4501 /* Mark the symbol as undefined, rather than as defined in the
4502 plt section. Leave the value alone. */
4503 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
4504 first place. But perhaps elflink.h did some for us. */
4505 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4506 sym->st_shndx = SHN_UNDEF;
4507 }
4508
4509 /* Create the dynamic relocation. */
4510 outrel.r_offset = pltoff_addr;
4511 if (bfd_little_endian (output_bfd))
4512 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
4513 else
4514 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
4515 outrel.r_addend = 0;
4516
4517 /* This is fun. In the .IA_64.pltoff section, we've got entries
4518 that correspond both to real PLT entries, and those that
4519 happened to resolve to local symbols but need to be created
4520 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
4521 relocations for the real PLT should come at the end of the
4522 section, so that they can be indexed by plt entry at runtime.
4523
4524 We emitted all of the relocations for the non-PLT @pltoff
4525 entries during relocate_section. So we can consider the
4526 existing sec->reloc_count to be the base of the array of
4527 PLT relocations. */
4528
4529 loc = ia64_info->rel_pltoff_sec->contents;
4530 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
4531 * sizeof (ElfNN_External_Rela));
4532 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4533 }
4534
4535 /* Mark some specially defined symbols as absolute. */
4536 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4537 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
4538 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
4539 sym->st_shndx = SHN_ABS;
4540
4541 return TRUE;
4542 }
4543
4544 static bfd_boolean
4545 elfNN_ia64_finish_dynamic_sections (abfd, info)
4546 bfd *abfd;
4547 struct bfd_link_info *info;
4548 {
4549 struct elfNN_ia64_link_hash_table *ia64_info;
4550 bfd *dynobj;
4551
4552 ia64_info = elfNN_ia64_hash_table (info);
4553 dynobj = ia64_info->root.dynobj;
4554
4555 if (elf_hash_table (info)->dynamic_sections_created)
4556 {
4557 ElfNN_External_Dyn *dyncon, *dynconend;
4558 asection *sdyn, *sgotplt;
4559 bfd_vma gp_val;
4560
4561 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4562 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4563 BFD_ASSERT (sdyn != NULL);
4564 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4565 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4566
4567 gp_val = _bfd_get_gp_value (abfd);
4568
4569 for (; dyncon < dynconend; dyncon++)
4570 {
4571 Elf_Internal_Dyn dyn;
4572
4573 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4574
4575 switch (dyn.d_tag)
4576 {
4577 case DT_PLTGOT:
4578 dyn.d_un.d_ptr = gp_val;
4579 break;
4580
4581 case DT_PLTRELSZ:
4582 dyn.d_un.d_val = (ia64_info->minplt_entries
4583 * sizeof (ElfNN_External_Rela));
4584 break;
4585
4586 case DT_JMPREL:
4587 /* See the comment above in finish_dynamic_symbol. */
4588 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
4589 + ia64_info->rel_pltoff_sec->output_offset
4590 + (ia64_info->rel_pltoff_sec->reloc_count
4591 * sizeof (ElfNN_External_Rela)));
4592 break;
4593
4594 case DT_IA_64_PLT_RESERVE:
4595 dyn.d_un.d_ptr = (sgotplt->output_section->vma
4596 + sgotplt->output_offset);
4597 break;
4598
4599 case DT_RELASZ:
4600 /* Do not have RELASZ include JMPREL. This makes things
4601 easier on ld.so. This is not what the rest of BFD set up. */
4602 dyn.d_un.d_val -= (ia64_info->minplt_entries
4603 * sizeof (ElfNN_External_Rela));
4604 break;
4605 }
4606
4607 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
4608 }
4609
4610 /* Initialize the PLT0 entry. */
4611 if (ia64_info->plt_sec)
4612 {
4613 bfd_byte *loc = ia64_info->plt_sec->contents;
4614 bfd_vma pltres;
4615
4616 memcpy (loc, plt_header, PLT_HEADER_SIZE);
4617
4618 pltres = (sgotplt->output_section->vma
4619 + sgotplt->output_offset
4620 - gp_val);
4621
4622 elfNN_ia64_install_value (abfd, loc+1, pltres, R_IA64_GPREL22);
4623 }
4624 }
4625
4626 return TRUE;
4627 }
4628 \f
4629 /* ELF file flag handling: */
4630
4631 /* Function to keep IA-64 specific file flags. */
4632 static bfd_boolean
4633 elfNN_ia64_set_private_flags (abfd, flags)
4634 bfd *abfd;
4635 flagword flags;
4636 {
4637 BFD_ASSERT (!elf_flags_init (abfd)
4638 || elf_elfheader (abfd)->e_flags == flags);
4639
4640 elf_elfheader (abfd)->e_flags = flags;
4641 elf_flags_init (abfd) = TRUE;
4642 return TRUE;
4643 }
4644
4645 /* Merge backend specific data from an object file to the output
4646 object file when linking. */
4647 static bfd_boolean
4648 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
4649 bfd *ibfd, *obfd;
4650 {
4651 flagword out_flags;
4652 flagword in_flags;
4653 bfd_boolean ok = TRUE;
4654
4655 /* Don't even pretend to support mixed-format linking. */
4656 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4657 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4658 return FALSE;
4659
4660 in_flags = elf_elfheader (ibfd)->e_flags;
4661 out_flags = elf_elfheader (obfd)->e_flags;
4662
4663 if (! elf_flags_init (obfd))
4664 {
4665 elf_flags_init (obfd) = TRUE;
4666 elf_elfheader (obfd)->e_flags = in_flags;
4667
4668 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4669 && bfd_get_arch_info (obfd)->the_default)
4670 {
4671 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4672 bfd_get_mach (ibfd));
4673 }
4674
4675 return TRUE;
4676 }
4677
4678 /* Check flag compatibility. */
4679 if (in_flags == out_flags)
4680 return TRUE;
4681
4682 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
4683 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
4684 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
4685
4686 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
4687 {
4688 (*_bfd_error_handler)
4689 (_("%s: linking trap-on-NULL-dereference with non-trapping files"),
4690 bfd_archive_filename (ibfd));
4691
4692 bfd_set_error (bfd_error_bad_value);
4693 ok = FALSE;
4694 }
4695 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
4696 {
4697 (*_bfd_error_handler)
4698 (_("%s: linking big-endian files with little-endian files"),
4699 bfd_archive_filename (ibfd));
4700
4701 bfd_set_error (bfd_error_bad_value);
4702 ok = FALSE;
4703 }
4704 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
4705 {
4706 (*_bfd_error_handler)
4707 (_("%s: linking 64-bit files with 32-bit files"),
4708 bfd_archive_filename (ibfd));
4709
4710 bfd_set_error (bfd_error_bad_value);
4711 ok = FALSE;
4712 }
4713 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
4714 {
4715 (*_bfd_error_handler)
4716 (_("%s: linking constant-gp files with non-constant-gp files"),
4717 bfd_archive_filename (ibfd));
4718
4719 bfd_set_error (bfd_error_bad_value);
4720 ok = FALSE;
4721 }
4722 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
4723 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
4724 {
4725 (*_bfd_error_handler)
4726 (_("%s: linking auto-pic files with non-auto-pic files"),
4727 bfd_archive_filename (ibfd));
4728
4729 bfd_set_error (bfd_error_bad_value);
4730 ok = FALSE;
4731 }
4732
4733 return ok;
4734 }
4735
4736 static bfd_boolean
4737 elfNN_ia64_print_private_bfd_data (abfd, ptr)
4738 bfd *abfd;
4739 PTR ptr;
4740 {
4741 FILE *file = (FILE *) ptr;
4742 flagword flags = elf_elfheader (abfd)->e_flags;
4743
4744 BFD_ASSERT (abfd != NULL && ptr != NULL);
4745
4746 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
4747 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
4748 (flags & EF_IA_64_EXT) ? "EXT, " : "",
4749 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
4750 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
4751 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
4752 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
4753 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
4754 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
4755
4756 _bfd_elf_print_private_bfd_data (abfd, ptr);
4757 return TRUE;
4758 }
4759
4760 static enum elf_reloc_type_class
4761 elfNN_ia64_reloc_type_class (rela)
4762 const Elf_Internal_Rela *rela;
4763 {
4764 switch ((int) ELFNN_R_TYPE (rela->r_info))
4765 {
4766 case R_IA64_REL32MSB:
4767 case R_IA64_REL32LSB:
4768 case R_IA64_REL64MSB:
4769 case R_IA64_REL64LSB:
4770 return reloc_class_relative;
4771 case R_IA64_IPLTMSB:
4772 case R_IA64_IPLTLSB:
4773 return reloc_class_plt;
4774 case R_IA64_COPY:
4775 return reloc_class_copy;
4776 default:
4777 return reloc_class_normal;
4778 }
4779 }
4780
4781 static struct bfd_elf_special_section const elfNN_ia64_special_sections[]=
4782 {
4783 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
4784 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
4785 { NULL, 0, 0, 0, 0 }
4786 };
4787
4788 static bfd_boolean
4789 elfNN_ia64_hpux_vec (const bfd_target *vec)
4790 {
4791 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
4792 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
4793 }
4794
4795 static void
4796 elfNN_hpux_post_process_headers (abfd, info)
4797 bfd *abfd;
4798 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4799 {
4800 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4801
4802 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4803 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
4804 }
4805
4806 bfd_boolean
4807 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
4808 bfd *abfd ATTRIBUTE_UNUSED;
4809 asection *sec;
4810 int *retval;
4811 {
4812 if (bfd_is_com_section (sec))
4813 {
4814 *retval = SHN_IA_64_ANSI_COMMON;
4815 return TRUE;
4816 }
4817 return FALSE;
4818 }
4819
4820 static void
4821 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4822 asymbol *asym)
4823 {
4824 elf_symbol_type *elfsym = (elf_symbol_type *) asym;;
4825
4826 switch (elfsym->internal_elf_sym.st_shndx)
4827 {
4828 case SHN_IA_64_ANSI_COMMON:
4829 asym->section = bfd_com_section_ptr;
4830 asym->value = elfsym->internal_elf_sym.st_size;
4831 asym->flags &= ~BSF_GLOBAL;
4832 break;
4833 }
4834 }
4835
4836 \f
4837 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
4838 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
4839 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
4840 #define TARGET_BIG_NAME "elfNN-ia64-big"
4841 #define ELF_ARCH bfd_arch_ia64
4842 #define ELF_MACHINE_CODE EM_IA_64
4843 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
4844 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
4845 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
4846
4847 #define elf_backend_section_from_shdr \
4848 elfNN_ia64_section_from_shdr
4849 #define elf_backend_section_flags \
4850 elfNN_ia64_section_flags
4851 #define elf_backend_fake_sections \
4852 elfNN_ia64_fake_sections
4853 #define elf_backend_final_write_processing \
4854 elfNN_ia64_final_write_processing
4855 #define elf_backend_add_symbol_hook \
4856 elfNN_ia64_add_symbol_hook
4857 #define elf_backend_additional_program_headers \
4858 elfNN_ia64_additional_program_headers
4859 #define elf_backend_modify_segment_map \
4860 elfNN_ia64_modify_segment_map
4861 #define elf_info_to_howto \
4862 elfNN_ia64_info_to_howto
4863
4864 #define bfd_elfNN_bfd_reloc_type_lookup \
4865 elfNN_ia64_reloc_type_lookup
4866 #define bfd_elfNN_bfd_is_local_label_name \
4867 elfNN_ia64_is_local_label_name
4868 #define bfd_elfNN_bfd_relax_section \
4869 elfNN_ia64_relax_section
4870
4871 /* Stuff for the BFD linker: */
4872 #define bfd_elfNN_bfd_link_hash_table_create \
4873 elfNN_ia64_hash_table_create
4874 #define elf_backend_create_dynamic_sections \
4875 elfNN_ia64_create_dynamic_sections
4876 #define elf_backend_check_relocs \
4877 elfNN_ia64_check_relocs
4878 #define elf_backend_adjust_dynamic_symbol \
4879 elfNN_ia64_adjust_dynamic_symbol
4880 #define elf_backend_size_dynamic_sections \
4881 elfNN_ia64_size_dynamic_sections
4882 #define elf_backend_relocate_section \
4883 elfNN_ia64_relocate_section
4884 #define elf_backend_finish_dynamic_symbol \
4885 elfNN_ia64_finish_dynamic_symbol
4886 #define elf_backend_finish_dynamic_sections \
4887 elfNN_ia64_finish_dynamic_sections
4888 #define bfd_elfNN_bfd_final_link \
4889 elfNN_ia64_final_link
4890
4891 #define bfd_elfNN_bfd_merge_private_bfd_data \
4892 elfNN_ia64_merge_private_bfd_data
4893 #define bfd_elfNN_bfd_set_private_flags \
4894 elfNN_ia64_set_private_flags
4895 #define bfd_elfNN_bfd_print_private_bfd_data \
4896 elfNN_ia64_print_private_bfd_data
4897
4898 #define elf_backend_plt_readonly 1
4899 #define elf_backend_want_plt_sym 0
4900 #define elf_backend_plt_alignment 5
4901 #define elf_backend_got_header_size 0
4902 #define elf_backend_plt_header_size PLT_HEADER_SIZE
4903 #define elf_backend_want_got_plt 1
4904 #define elf_backend_may_use_rel_p 1
4905 #define elf_backend_may_use_rela_p 1
4906 #define elf_backend_default_use_rela_p 1
4907 #define elf_backend_want_dynbss 0
4908 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
4909 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
4910 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
4911 #define elf_backend_rela_normal 1
4912 #define elf_backend_special_sections elfNN_ia64_special_sections
4913
4914 #include "elfNN-target.h"
4915
4916 /* HPUX-specific vectors. */
4917
4918 #undef TARGET_LITTLE_SYM
4919 #undef TARGET_LITTLE_NAME
4920 #undef TARGET_BIG_SYM
4921 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
4922 #undef TARGET_BIG_NAME
4923 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
4924
4925 /* These are HP-UX specific functions. */
4926
4927 #undef elf_backend_post_process_headers
4928 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
4929
4930 #undef elf_backend_section_from_bfd_section
4931 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
4932
4933 #undef elf_backend_symbol_processing
4934 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
4935
4936 #undef elf_backend_want_p_paddr_set_to_zero
4937 #define elf_backend_want_p_paddr_set_to_zero 1
4938
4939 #undef ELF_MAXPAGESIZE
4940 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
4941
4942 #undef elfNN_bed
4943 #define elfNN_bed elfNN_ia64_hpux_bed
4944
4945 #include "elfNN-target.h"
4946
4947 #undef elf_backend_want_p_paddr_set_to_zero