]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-ia64.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 bfd_vma got_offset;
84 bfd_vma fptr_offset;
85 bfd_vma pltoff_offset;
86 bfd_vma plt_offset;
87 bfd_vma plt2_offset;
88 bfd_vma tprel_offset;
89 bfd_vma dtpmod_offset;
90 bfd_vma dtprel_offset;
91
92 /* The symbol table entry, if any, that this was derived from. */
93 struct elf_link_hash_entry *h;
94
95 /* Used to count non-got, non-plt relocations for delayed sizing
96 of relocation sections. */
97 struct elfNN_ia64_dyn_reloc_entry
98 {
99 struct elfNN_ia64_dyn_reloc_entry *next;
100 asection *srel;
101 int type;
102 int count;
103
104 /* Is this reloc against readonly section? */
105 bfd_boolean reltext;
106 } *reloc_entries;
107
108 /* TRUE when the section contents have been updated. */
109 unsigned got_done : 1;
110 unsigned fptr_done : 1;
111 unsigned pltoff_done : 1;
112 unsigned tprel_done : 1;
113 unsigned dtpmod_done : 1;
114 unsigned dtprel_done : 1;
115
116 /* TRUE for the different kinds of linker data we want created. */
117 unsigned want_got : 1;
118 unsigned want_gotx : 1;
119 unsigned want_fptr : 1;
120 unsigned want_ltoff_fptr : 1;
121 unsigned want_plt : 1;
122 unsigned want_plt2 : 1;
123 unsigned want_pltoff : 1;
124 unsigned want_tprel : 1;
125 unsigned want_dtpmod : 1;
126 unsigned want_dtprel : 1;
127 };
128
129 struct elfNN_ia64_local_hash_entry
130 {
131 int id;
132 unsigned int r_sym;
133 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
134 unsigned int count;
135 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
136 unsigned int sorted_count;
137 /* The size of elfNN_ia64_dyn_sym_info array. */
138 unsigned int size;
139 /* The array of elfNN_ia64_dyn_sym_info. */
140 struct elfNN_ia64_dyn_sym_info *info;
141
142 /* TRUE if this hash entry's addends was translated for
143 SHF_MERGE optimization. */
144 unsigned sec_merge_done : 1;
145 };
146
147 struct elfNN_ia64_link_hash_entry
148 {
149 struct elf_link_hash_entry root;
150 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
151 unsigned int count;
152 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
153 unsigned int sorted_count;
154 /* The size of elfNN_ia64_dyn_sym_info array. */
155 unsigned int size;
156 /* The array of elfNN_ia64_dyn_sym_info. */
157 struct elfNN_ia64_dyn_sym_info *info;
158 };
159
160 struct elfNN_ia64_link_hash_table
161 {
162 /* The main hash table. */
163 struct elf_link_hash_table root;
164
165 asection *got_sec; /* the linkage table section (or NULL) */
166 asection *rel_got_sec; /* dynamic relocation section for same */
167 asection *fptr_sec; /* function descriptor table (or NULL) */
168 asection *rel_fptr_sec; /* dynamic relocation section for same */
169 asection *plt_sec; /* the primary plt section (or NULL) */
170 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
171 asection *rel_pltoff_sec; /* dynamic relocation section for same */
172
173 bfd_size_type minplt_entries; /* number of minplt entries */
174 unsigned reltext : 1; /* are there relocs against readonly sections? */
175 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
176 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
177
178 htab_t loc_hash_table;
179 void *loc_hash_memory;
180 };
181
182 struct elfNN_ia64_allocate_data
183 {
184 struct bfd_link_info *info;
185 bfd_size_type ofs;
186 bfd_boolean only_got;
187 };
188
189 #define elfNN_ia64_hash_table(p) \
190 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
191
192 static bfd_reloc_status_type elfNN_ia64_reloc
193 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
194 asection *input_section, bfd *output_bfd, char **error_message));
195 static reloc_howto_type * lookup_howto
196 PARAMS ((unsigned int rtype));
197 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
198 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
199 static void elfNN_ia64_info_to_howto
200 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
201 static bfd_boolean elfNN_ia64_relax_section
202 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
203 bfd_boolean *again));
204 static void elfNN_ia64_relax_ldxmov
205 PARAMS((bfd_byte *contents, bfd_vma off));
206 static bfd_boolean is_unwind_section_name
207 PARAMS ((bfd *abfd, const char *));
208 static bfd_boolean elfNN_ia64_section_flags
209 PARAMS ((flagword *, const Elf_Internal_Shdr *));
210 static bfd_boolean elfNN_ia64_fake_sections
211 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
212 static void elfNN_ia64_final_write_processing
213 PARAMS ((bfd *abfd, bfd_boolean linker));
214 static bfd_boolean elfNN_ia64_add_symbol_hook
215 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
216 const char **namep, flagword *flagsp, asection **secp,
217 bfd_vma *valp));
218 static bfd_boolean elfNN_ia64_is_local_label_name
219 PARAMS ((bfd *abfd, const char *name));
220 static bfd_boolean elfNN_ia64_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
222 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
223 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
224 const char *string));
225 static void elfNN_ia64_hash_copy_indirect
226 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *,
227 struct elf_link_hash_entry *));
228 static void elfNN_ia64_hash_hide_symbol
229 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
230 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
231 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
232 const void *ptr2));
233 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
234 PARAMS ((bfd *abfd));
235 static void elfNN_ia64_hash_table_free
236 PARAMS ((struct bfd_link_hash_table *hash));
237 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
238 PARAMS ((struct bfd_hash_entry *, PTR));
239 static int elfNN_ia64_local_dyn_sym_thunk
240 PARAMS ((void **, PTR));
241 static void elfNN_ia64_dyn_sym_traverse
242 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
243 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
244 PTR info));
245 static bfd_boolean elfNN_ia64_create_dynamic_sections
246 PARAMS ((bfd *abfd, struct bfd_link_info *info));
247 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
248 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
249 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
250 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
251 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
252 struct elf_link_hash_entry *h,
253 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
254 static asection *get_got
255 PARAMS ((bfd *abfd, struct bfd_link_info *info,
256 struct elfNN_ia64_link_hash_table *ia64_info));
257 static asection *get_fptr
258 PARAMS ((bfd *abfd, struct bfd_link_info *info,
259 struct elfNN_ia64_link_hash_table *ia64_info));
260 static asection *get_pltoff
261 PARAMS ((bfd *abfd, struct bfd_link_info *info,
262 struct elfNN_ia64_link_hash_table *ia64_info));
263 static asection *get_reloc_section
264 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
265 asection *sec, bfd_boolean create));
266 static bfd_boolean elfNN_ia64_check_relocs
267 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
268 const Elf_Internal_Rela *relocs));
269 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
270 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
271 static long global_sym_index
272 PARAMS ((struct elf_link_hash_entry *h));
273 static bfd_boolean allocate_fptr
274 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
275 static bfd_boolean allocate_global_data_got
276 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
277 static bfd_boolean allocate_global_fptr_got
278 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
279 static bfd_boolean allocate_local_got
280 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
281 static bfd_boolean allocate_pltoff_entries
282 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
283 static bfd_boolean allocate_plt_entries
284 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
285 static bfd_boolean allocate_plt2_entries
286 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
287 static bfd_boolean allocate_dynrel_entries
288 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
289 static bfd_boolean elfNN_ia64_size_dynamic_sections
290 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
291 static bfd_reloc_status_type elfNN_ia64_install_value
292 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
293 static void elfNN_ia64_install_dyn_reloc
294 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
295 asection *srel, bfd_vma offset, unsigned int type,
296 long dynindx, bfd_vma addend));
297 static bfd_vma set_got_entry
298 PARAMS ((bfd *abfd, struct bfd_link_info *info,
299 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
300 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
301 static bfd_vma set_fptr_entry
302 PARAMS ((bfd *abfd, struct bfd_link_info *info,
303 struct elfNN_ia64_dyn_sym_info *dyn_i,
304 bfd_vma value));
305 static bfd_vma set_pltoff_entry
306 PARAMS ((bfd *abfd, struct bfd_link_info *info,
307 struct elfNN_ia64_dyn_sym_info *dyn_i,
308 bfd_vma value, bfd_boolean));
309 static bfd_vma elfNN_ia64_tprel_base
310 PARAMS ((struct bfd_link_info *info));
311 static bfd_vma elfNN_ia64_dtprel_base
312 PARAMS ((struct bfd_link_info *info));
313 static int elfNN_ia64_unwind_entry_compare
314 PARAMS ((const PTR, const PTR));
315 static bfd_boolean elfNN_ia64_choose_gp
316 PARAMS ((bfd *abfd, struct bfd_link_info *info));
317 static bfd_boolean elfNN_ia64_final_link
318 PARAMS ((bfd *abfd, struct bfd_link_info *info));
319 static bfd_boolean elfNN_ia64_relocate_section
320 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
321 asection *input_section, bfd_byte *contents,
322 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
323 asection **local_sections));
324 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
325 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
326 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
327 static bfd_boolean elfNN_ia64_finish_dynamic_sections
328 PARAMS ((bfd *abfd, struct bfd_link_info *info));
329 static bfd_boolean elfNN_ia64_set_private_flags
330 PARAMS ((bfd *abfd, flagword flags));
331 static bfd_boolean elfNN_ia64_merge_private_bfd_data
332 PARAMS ((bfd *ibfd, bfd *obfd));
333 static bfd_boolean elfNN_ia64_print_private_bfd_data
334 PARAMS ((bfd *abfd, PTR ptr));
335 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
336 PARAMS ((const Elf_Internal_Rela *));
337 static bfd_boolean elfNN_ia64_hpux_vec
338 PARAMS ((const bfd_target *vec));
339 static void elfNN_hpux_post_process_headers
340 PARAMS ((bfd *abfd, struct bfd_link_info *info));
341 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
342 PARAMS ((bfd *abfd, asection *sec, int *retval));
343 \f
344 /* ia64-specific relocation. */
345
346 /* Perform a relocation. Not much to do here as all the hard work is
347 done in elfNN_ia64_final_link_relocate. */
348 static bfd_reloc_status_type
349 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
350 output_bfd, error_message)
351 bfd *abfd ATTRIBUTE_UNUSED;
352 arelent *reloc;
353 asymbol *sym ATTRIBUTE_UNUSED;
354 PTR data ATTRIBUTE_UNUSED;
355 asection *input_section;
356 bfd *output_bfd;
357 char **error_message;
358 {
359 if (output_bfd)
360 {
361 reloc->address += input_section->output_offset;
362 return bfd_reloc_ok;
363 }
364
365 if (input_section->flags & SEC_DEBUGGING)
366 return bfd_reloc_continue;
367
368 *error_message = "Unsupported call to elfNN_ia64_reloc";
369 return bfd_reloc_notsupported;
370 }
371
372 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
373 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
374 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
375
376 /* This table has to be sorted according to increasing number of the
377 TYPE field. */
378 static reloc_howto_type ia64_howto_table[] =
379 {
380 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
381
382 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
383 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
385 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
386 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
388 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
389
390 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
392 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
393 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
394 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
396
397 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
399
400 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
401 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
402 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
403 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
404
405 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
406 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
407 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
408 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
409 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
410
411 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
412 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
413 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
414 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
415 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
416 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
417 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
418 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
419
420 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
421 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
423 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
424 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
425 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
426
427 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
429 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
430 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
431
432 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
434 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
435 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
436
437 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
438 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
439 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
440 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
441
442 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
443 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
445 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
446
447 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
448 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
449 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
450
451 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
452 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
453 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
454 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
455 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
456
457 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
459 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
460 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
461 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
463
464 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
467
468 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
469 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
470 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
471 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
472 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
473 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
474 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
475 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
476 };
477
478 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
479
480 /* Given a BFD reloc type, return the matching HOWTO structure. */
481
482 static reloc_howto_type *
483 lookup_howto (rtype)
484 unsigned int rtype;
485 {
486 static int inited = 0;
487 int i;
488
489 if (!inited)
490 {
491 inited = 1;
492
493 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
494 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
495 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
496 }
497
498 if (rtype > R_IA64_MAX_RELOC_CODE)
499 return 0;
500 i = elf_code_to_howto_index[rtype];
501 if (i >= NELEMS (ia64_howto_table))
502 return 0;
503 return ia64_howto_table + i;
504 }
505
506 static reloc_howto_type*
507 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
508 bfd *abfd ATTRIBUTE_UNUSED;
509 bfd_reloc_code_real_type bfd_code;
510 {
511 unsigned int rtype;
512
513 switch (bfd_code)
514 {
515 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
516
517 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
518 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
519 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
520
521 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
522 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
523 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
524 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
525
526 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
527 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
528 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
529 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
530 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
531 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
532
533 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
534 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
535
536 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
537 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
538 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
539 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
540 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
541 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
542 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
543 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
544 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
545
546 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
547 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
548 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
549 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
550 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
551 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
552 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
553 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
554 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
555 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
556 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
557
558 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
559 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
560 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
561 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
562 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
563 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
564
565 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
566 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
567 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
568 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
569
570 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
571 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
572 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
573 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
574
575 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
576 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
577 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
578 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
579
580 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
581 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
582 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
583 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
584
585 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
586 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
587 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
588 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
589 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
590
591 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
592 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
593 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
594 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
595 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
596 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
597
598 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
599 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
600 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
601
602 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
603 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
604 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
605 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
606 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
607 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
608 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
609 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
610
611 default: return 0;
612 }
613 return lookup_howto (rtype);
614 }
615
616 /* Given a ELF reloc, return the matching HOWTO structure. */
617
618 static void
619 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
620 bfd *abfd ATTRIBUTE_UNUSED;
621 arelent *bfd_reloc;
622 Elf_Internal_Rela *elf_reloc;
623 {
624 bfd_reloc->howto
625 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
626 }
627 \f
628 #define PLT_HEADER_SIZE (3 * 16)
629 #define PLT_MIN_ENTRY_SIZE (1 * 16)
630 #define PLT_FULL_ENTRY_SIZE (2 * 16)
631 #define PLT_RESERVED_WORDS 3
632
633 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
634 {
635 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
636 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
637 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
638 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
639 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
640 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
641 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
642 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
643 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
644 };
645
646 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
647 {
648 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
649 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
650 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
651 };
652
653 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
654 {
655 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
656 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
657 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
658 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
659 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
660 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
661 };
662
663 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
664
665 static const bfd_byte oor_brl[16] =
666 {
667 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
668 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
669 0x00, 0x00, 0x00, 0xc0
670 };
671
672 static const bfd_byte oor_ip[48] =
673 {
674 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
675 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
676 0x01, 0x00, 0x00, 0x60,
677 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
678 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
679 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
680 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
681 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
682 0x60, 0x00, 0x80, 0x00 /* br b6;; */
683 };
684
685 static size_t oor_branch_size = sizeof (oor_brl);
686
687 void
688 bfd_elfNN_ia64_after_parse (int itanium)
689 {
690 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
691 }
692
693 #define BTYPE_SHIFT 6
694 #define Y_SHIFT 26
695 #define X6_SHIFT 27
696 #define X4_SHIFT 27
697 #define X3_SHIFT 33
698 #define X2_SHIFT 31
699 #define X_SHIFT 33
700 #define OPCODE_SHIFT 37
701
702 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
703 #define X6_BITS (0x3fLL << X6_SHIFT)
704 #define X4_BITS (0xfLL << X4_SHIFT)
705 #define X3_BITS (0x7LL << X3_SHIFT)
706 #define X2_BITS (0x3LL << X2_SHIFT)
707 #define X_BITS (0x1LL << X_SHIFT)
708 #define Y_BITS (0x1LL << Y_SHIFT)
709 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
710 #define PREDICATE_BITS (0x3fLL)
711
712 #define IS_NOP_B(i) \
713 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
714 #define IS_NOP_F(i) \
715 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
716 == (0x1LL << X6_SHIFT))
717 #define IS_NOP_I(i) \
718 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
719 == (0x1LL << X6_SHIFT))
720 #define IS_NOP_M(i) \
721 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
722 == (0x1LL << X4_SHIFT))
723 #define IS_BR_COND(i) \
724 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
725 #define IS_BR_CALL(i) \
726 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
727
728 static bfd_boolean
729 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
730 {
731 unsigned int template, mlx;
732 bfd_vma t0, t1, s0, s1, s2, br_code;
733 long br_slot;
734 bfd_byte *hit_addr;
735
736 hit_addr = (bfd_byte *) (contents + off);
737 br_slot = (long) hit_addr & 0x3;
738 hit_addr -= br_slot;
739 t0 = bfd_getl64 (hit_addr + 0);
740 t1 = bfd_getl64 (hit_addr + 8);
741
742 /* Check if we can turn br into brl. A label is always at the start
743 of the bundle. Even if there are predicates on NOPs, we still
744 perform this optimization. */
745 template = t0 & 0x1e;
746 s0 = (t0 >> 5) & 0x1ffffffffffLL;
747 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
748 s2 = (t1 >> 23) & 0x1ffffffffffLL;
749 switch (br_slot)
750 {
751 case 0:
752 /* Check if slot 1 and slot 2 are NOPs. Possible template is
753 BBB. We only need to check nop.b. */
754 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
755 return FALSE;
756 br_code = s0;
757 break;
758 case 1:
759 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
760 For BBB, slot 0 also has to be nop.b. */
761 if (!((template == 0x12 /* MBB */
762 && IS_NOP_B (s2))
763 || (template == 0x16 /* BBB */
764 && IS_NOP_B (s0)
765 && IS_NOP_B (s2))))
766 return FALSE;
767 br_code = s1;
768 break;
769 case 2:
770 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
771 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
772 if (!((template == 0x10 /* MIB */
773 && IS_NOP_I (s1))
774 || (template == 0x12 /* MBB */
775 && IS_NOP_B (s1))
776 || (template == 0x16 /* BBB */
777 && IS_NOP_B (s0)
778 && IS_NOP_B (s1))
779 || (template == 0x18 /* MMB */
780 && IS_NOP_M (s1))
781 || (template == 0x1c /* MFB */
782 && IS_NOP_F (s1))))
783 return FALSE;
784 br_code = s2;
785 break;
786 default:
787 /* It should never happen. */
788 abort ();
789 }
790
791 /* We can turn br.cond/br.call into brl.cond/brl.call. */
792 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
793 return FALSE;
794
795 /* Turn br into brl by setting bit 40. */
796 br_code |= 0x1LL << 40;
797
798 /* Turn the old bundle into a MLX bundle with the same stop-bit
799 variety. */
800 if (t0 & 0x1)
801 mlx = 0x5;
802 else
803 mlx = 0x4;
804
805 if (template == 0x16)
806 {
807 /* For BBB, we need to put nop.m in slot 0. We keep the original
808 predicate only if slot 0 isn't br. */
809 if (br_slot == 0)
810 t0 = 0LL;
811 else
812 t0 &= PREDICATE_BITS << 5;
813 t0 |= 0x1LL << (X4_SHIFT + 5);
814 }
815 else
816 {
817 /* Keep the original instruction in slot 0. */
818 t0 &= 0x1ffffffffffLL << 5;
819 }
820
821 t0 |= mlx;
822
823 /* Put brl in slot 1. */
824 t1 = br_code << 23;
825
826 bfd_putl64 (t0, hit_addr);
827 bfd_putl64 (t1, hit_addr + 8);
828 return TRUE;
829 }
830
831 static void
832 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
833 {
834 int template;
835 bfd_byte *hit_addr;
836 bfd_vma t0, t1, i0, i1, i2;
837
838 hit_addr = (bfd_byte *) (contents + off);
839 hit_addr -= (long) hit_addr & 0x3;
840 t0 = bfd_getl64 (hit_addr);
841 t1 = bfd_getl64 (hit_addr + 8);
842
843 /* Keep the instruction in slot 0. */
844 i0 = (t0 >> 5) & 0x1ffffffffffLL;
845 /* Use nop.b for slot 1. */
846 i1 = 0x4000000000LL;
847 /* For slot 2, turn brl into br by masking out bit 40. */
848 i2 = (t1 >> 23) & 0x0ffffffffffLL;
849
850 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
851 variety. */
852 if (t0 & 0x1)
853 template = 0x13;
854 else
855 template = 0x12;
856 t0 = (i1 << 46) | (i0 << 5) | template;
857 t1 = (i2 << 23) | (i1 >> 18);
858
859 bfd_putl64 (t0, hit_addr);
860 bfd_putl64 (t1, hit_addr + 8);
861 }
862
863 /* Rename some of the generic section flags to better document how they
864 are used here. */
865 #define skip_relax_pass_0 need_finalize_relax
866 #define skip_relax_pass_1 has_gp_reloc
867
868 \f
869 /* These functions do relaxation for IA-64 ELF. */
870
871 static bfd_boolean
872 elfNN_ia64_relax_section (abfd, sec, link_info, again)
873 bfd *abfd;
874 asection *sec;
875 struct bfd_link_info *link_info;
876 bfd_boolean *again;
877 {
878 struct one_fixup
879 {
880 struct one_fixup *next;
881 asection *tsec;
882 bfd_vma toff;
883 bfd_vma trampoff;
884 };
885
886 Elf_Internal_Shdr *symtab_hdr;
887 Elf_Internal_Rela *internal_relocs;
888 Elf_Internal_Rela *irel, *irelend;
889 bfd_byte *contents;
890 Elf_Internal_Sym *isymbuf = NULL;
891 struct elfNN_ia64_link_hash_table *ia64_info;
892 struct one_fixup *fixups = NULL;
893 bfd_boolean changed_contents = FALSE;
894 bfd_boolean changed_relocs = FALSE;
895 bfd_boolean changed_got = FALSE;
896 bfd_boolean skip_relax_pass_0 = TRUE;
897 bfd_boolean skip_relax_pass_1 = TRUE;
898 bfd_vma gp = 0;
899
900 /* Assume we're not going to change any sizes, and we'll only need
901 one pass. */
902 *again = FALSE;
903
904 /* Don't even try to relax for non-ELF outputs. */
905 if (!is_elf_hash_table (link_info->hash))
906 return FALSE;
907
908 /* Nothing to do if there are no relocations or there is no need for
909 the current pass. */
910 if ((sec->flags & SEC_RELOC) == 0
911 || sec->reloc_count == 0
912 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
913 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
914 return TRUE;
915
916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
917
918 /* Load the relocations for this section. */
919 internal_relocs = (_bfd_elf_link_read_relocs
920 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
921 link_info->keep_memory));
922 if (internal_relocs == NULL)
923 return FALSE;
924
925 ia64_info = elfNN_ia64_hash_table (link_info);
926 irelend = internal_relocs + sec->reloc_count;
927
928 /* Get the section contents. */
929 if (elf_section_data (sec)->this_hdr.contents != NULL)
930 contents = elf_section_data (sec)->this_hdr.contents;
931 else
932 {
933 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
934 goto error_return;
935 }
936
937 for (irel = internal_relocs; irel < irelend; irel++)
938 {
939 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
940 bfd_vma symaddr, reladdr, trampoff, toff, roff;
941 asection *tsec;
942 struct one_fixup *f;
943 bfd_size_type amt;
944 bfd_boolean is_branch;
945 struct elfNN_ia64_dyn_sym_info *dyn_i;
946 char symtype;
947
948 switch (r_type)
949 {
950 case R_IA64_PCREL21B:
951 case R_IA64_PCREL21BI:
952 case R_IA64_PCREL21M:
953 case R_IA64_PCREL21F:
954 /* In pass 1, all br relaxations are done. We can skip it. */
955 if (link_info->relax_pass == 1)
956 continue;
957 skip_relax_pass_0 = FALSE;
958 is_branch = TRUE;
959 break;
960
961 case R_IA64_PCREL60B:
962 /* We can't optimize brl to br in pass 0 since br relaxations
963 will increase the code size. Defer it to pass 1. */
964 if (link_info->relax_pass == 0)
965 {
966 skip_relax_pass_1 = FALSE;
967 continue;
968 }
969 is_branch = TRUE;
970 break;
971
972 case R_IA64_LTOFF22X:
973 case R_IA64_LDXMOV:
974 /* We can't relax ldx/mov in pass 0 since br relaxations will
975 increase the code size. Defer it to pass 1. */
976 if (link_info->relax_pass == 0)
977 {
978 skip_relax_pass_1 = FALSE;
979 continue;
980 }
981 is_branch = FALSE;
982 break;
983
984 default:
985 continue;
986 }
987
988 /* Get the value of the symbol referred to by the reloc. */
989 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
990 {
991 /* A local symbol. */
992 Elf_Internal_Sym *isym;
993
994 /* Read this BFD's local symbols. */
995 if (isymbuf == NULL)
996 {
997 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
998 if (isymbuf == NULL)
999 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1000 symtab_hdr->sh_info, 0,
1001 NULL, NULL, NULL);
1002 if (isymbuf == 0)
1003 goto error_return;
1004 }
1005
1006 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
1007 if (isym->st_shndx == SHN_UNDEF)
1008 continue; /* We can't do anything with undefined symbols. */
1009 else if (isym->st_shndx == SHN_ABS)
1010 tsec = bfd_abs_section_ptr;
1011 else if (isym->st_shndx == SHN_COMMON)
1012 tsec = bfd_com_section_ptr;
1013 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
1014 tsec = bfd_com_section_ptr;
1015 else
1016 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1017
1018 toff = isym->st_value;
1019 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1020 symtype = ELF_ST_TYPE (isym->st_info);
1021 }
1022 else
1023 {
1024 unsigned long indx;
1025 struct elf_link_hash_entry *h;
1026
1027 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1028 h = elf_sym_hashes (abfd)[indx];
1029 BFD_ASSERT (h != NULL);
1030
1031 while (h->root.type == bfd_link_hash_indirect
1032 || h->root.type == bfd_link_hash_warning)
1033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1034
1035 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1036
1037 /* For branches to dynamic symbols, we're interested instead
1038 in a branch to the PLT entry. */
1039 if (is_branch && dyn_i && dyn_i->want_plt2)
1040 {
1041 /* Internal branches shouldn't be sent to the PLT.
1042 Leave this for now and we'll give an error later. */
1043 if (r_type != R_IA64_PCREL21B)
1044 continue;
1045
1046 tsec = ia64_info->plt_sec;
1047 toff = dyn_i->plt2_offset;
1048 BFD_ASSERT (irel->r_addend == 0);
1049 }
1050
1051 /* Can't do anything else with dynamic symbols. */
1052 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1053 continue;
1054
1055 else
1056 {
1057 /* We can't do anything with undefined symbols. */
1058 if (h->root.type == bfd_link_hash_undefined
1059 || h->root.type == bfd_link_hash_undefweak)
1060 continue;
1061
1062 tsec = h->root.u.def.section;
1063 toff = h->root.u.def.value;
1064 }
1065
1066 symtype = h->type;
1067 }
1068
1069 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1070 {
1071 /* At this stage in linking, no SEC_MERGE symbol has been
1072 adjusted, so all references to such symbols need to be
1073 passed through _bfd_merged_section_offset. (Later, in
1074 relocate_section, all SEC_MERGE symbols *except* for
1075 section symbols have been adjusted.)
1076
1077 gas may reduce relocations against symbols in SEC_MERGE
1078 sections to a relocation against the section symbol when
1079 the original addend was zero. When the reloc is against
1080 a section symbol we should include the addend in the
1081 offset passed to _bfd_merged_section_offset, since the
1082 location of interest is the original symbol. On the
1083 other hand, an access to "sym+addend" where "sym" is not
1084 a section symbol should not include the addend; Such an
1085 access is presumed to be an offset from "sym"; The
1086 location of interest is just "sym". */
1087 if (symtype == STT_SECTION)
1088 toff += irel->r_addend;
1089
1090 toff = _bfd_merged_section_offset (abfd, &tsec,
1091 elf_section_data (tsec)->sec_info,
1092 toff);
1093
1094 if (symtype != STT_SECTION)
1095 toff += irel->r_addend;
1096 }
1097 else
1098 toff += irel->r_addend;
1099
1100 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1101
1102 roff = irel->r_offset;
1103
1104 if (is_branch)
1105 {
1106 bfd_signed_vma offset;
1107
1108 reladdr = (sec->output_section->vma
1109 + sec->output_offset
1110 + roff) & (bfd_vma) -4;
1111
1112 /* If the branch is in range, no need to do anything. */
1113 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1114 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1115 {
1116 /* If the 60-bit branch is in 21-bit range, optimize it. */
1117 if (r_type == R_IA64_PCREL60B)
1118 {
1119 elfNN_ia64_relax_brl (contents, roff);
1120
1121 irel->r_info
1122 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1123 R_IA64_PCREL21B);
1124
1125 /* If the original relocation offset points to slot
1126 1, change it to slot 2. */
1127 if ((irel->r_offset & 3) == 1)
1128 irel->r_offset += 1;
1129 }
1130
1131 continue;
1132 }
1133 else if (r_type == R_IA64_PCREL60B)
1134 continue;
1135 else if (elfNN_ia64_relax_br (contents, roff))
1136 {
1137 irel->r_info
1138 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1139 R_IA64_PCREL60B);
1140
1141 /* Make the relocation offset point to slot 1. */
1142 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1143 continue;
1144 }
1145
1146 /* We can't put a trampoline in a .init/.fini section. Issue
1147 an error. */
1148 if (strcmp (sec->output_section->name, ".init") == 0
1149 || strcmp (sec->output_section->name, ".fini") == 0)
1150 {
1151 (*_bfd_error_handler)
1152 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1153 sec->owner, sec, (unsigned long) roff);
1154 bfd_set_error (bfd_error_bad_value);
1155 goto error_return;
1156 }
1157
1158 /* If the branch and target are in the same section, you've
1159 got one honking big section and we can't help you unless
1160 you are branching backwards. You'll get an error message
1161 later. */
1162 if (tsec == sec && toff > roff)
1163 continue;
1164
1165 /* Look for an existing fixup to this address. */
1166 for (f = fixups; f ; f = f->next)
1167 if (f->tsec == tsec && f->toff == toff)
1168 break;
1169
1170 if (f == NULL)
1171 {
1172 /* Two alternatives: If it's a branch to a PLT entry, we can
1173 make a copy of the FULL_PLT entry. Otherwise, we'll have
1174 to use a `brl' insn to get where we're going. */
1175
1176 size_t size;
1177
1178 if (tsec == ia64_info->plt_sec)
1179 size = sizeof (plt_full_entry);
1180 else
1181 size = oor_branch_size;
1182
1183 /* Resize the current section to make room for the new branch. */
1184 trampoff = (sec->size + 15) & (bfd_vma) -16;
1185
1186 /* If trampoline is out of range, there is nothing we
1187 can do. */
1188 offset = trampoff - (roff & (bfd_vma) -4);
1189 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1190 continue;
1191
1192 amt = trampoff + size;
1193 contents = (bfd_byte *) bfd_realloc (contents, amt);
1194 if (contents == NULL)
1195 goto error_return;
1196 sec->size = amt;
1197
1198 if (tsec == ia64_info->plt_sec)
1199 {
1200 memcpy (contents + trampoff, plt_full_entry, size);
1201
1202 /* Hijack the old relocation for use as the PLTOFF reloc. */
1203 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1204 R_IA64_PLTOFF22);
1205 irel->r_offset = trampoff;
1206 }
1207 else
1208 {
1209 if (size == sizeof (oor_ip))
1210 {
1211 memcpy (contents + trampoff, oor_ip, size);
1212 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1213 R_IA64_PCREL64I);
1214 irel->r_addend -= 16;
1215 irel->r_offset = trampoff + 2;
1216 }
1217 else
1218 {
1219 memcpy (contents + trampoff, oor_brl, size);
1220 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1221 R_IA64_PCREL60B);
1222 irel->r_offset = trampoff + 2;
1223 }
1224
1225 }
1226
1227 /* Record the fixup so we don't do it again this section. */
1228 f = (struct one_fixup *)
1229 bfd_malloc ((bfd_size_type) sizeof (*f));
1230 f->next = fixups;
1231 f->tsec = tsec;
1232 f->toff = toff;
1233 f->trampoff = trampoff;
1234 fixups = f;
1235 }
1236 else
1237 {
1238 /* If trampoline is out of range, there is nothing we
1239 can do. */
1240 offset = f->trampoff - (roff & (bfd_vma) -4);
1241 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1242 continue;
1243
1244 /* Nop out the reloc, since we're finalizing things here. */
1245 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1246 }
1247
1248 /* Fix up the existing branch to hit the trampoline. */
1249 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1250 != bfd_reloc_ok)
1251 goto error_return;
1252
1253 changed_contents = TRUE;
1254 changed_relocs = TRUE;
1255 }
1256 else
1257 {
1258 /* Fetch the gp. */
1259 if (gp == 0)
1260 {
1261 bfd *obfd = sec->output_section->owner;
1262 gp = _bfd_get_gp_value (obfd);
1263 if (gp == 0)
1264 {
1265 if (!elfNN_ia64_choose_gp (obfd, link_info))
1266 goto error_return;
1267 gp = _bfd_get_gp_value (obfd);
1268 }
1269 }
1270
1271 /* If the data is out of range, do nothing. */
1272 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1273 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1274 continue;
1275
1276 if (r_type == R_IA64_LTOFF22X)
1277 {
1278 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1279 R_IA64_GPREL22);
1280 changed_relocs = TRUE;
1281 if (dyn_i->want_gotx)
1282 {
1283 dyn_i->want_gotx = 0;
1284 changed_got |= !dyn_i->want_got;
1285 }
1286 }
1287 else
1288 {
1289 elfNN_ia64_relax_ldxmov (contents, roff);
1290 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1291 changed_contents = TRUE;
1292 changed_relocs = TRUE;
1293 }
1294 }
1295 }
1296
1297 /* ??? If we created fixups, this may push the code segment large
1298 enough that the data segment moves, which will change the GP.
1299 Reset the GP so that we re-calculate next round. We need to
1300 do this at the _beginning_ of the next round; now will not do. */
1301
1302 /* Clean up and go home. */
1303 while (fixups)
1304 {
1305 struct one_fixup *f = fixups;
1306 fixups = fixups->next;
1307 free (f);
1308 }
1309
1310 if (isymbuf != NULL
1311 && symtab_hdr->contents != (unsigned char *) isymbuf)
1312 {
1313 if (! link_info->keep_memory)
1314 free (isymbuf);
1315 else
1316 {
1317 /* Cache the symbols for elf_link_input_bfd. */
1318 symtab_hdr->contents = (unsigned char *) isymbuf;
1319 }
1320 }
1321
1322 if (contents != NULL
1323 && elf_section_data (sec)->this_hdr.contents != contents)
1324 {
1325 if (!changed_contents && !link_info->keep_memory)
1326 free (contents);
1327 else
1328 {
1329 /* Cache the section contents for elf_link_input_bfd. */
1330 elf_section_data (sec)->this_hdr.contents = contents;
1331 }
1332 }
1333
1334 if (elf_section_data (sec)->relocs != internal_relocs)
1335 {
1336 if (!changed_relocs)
1337 free (internal_relocs);
1338 else
1339 elf_section_data (sec)->relocs = internal_relocs;
1340 }
1341
1342 if (changed_got)
1343 {
1344 struct elfNN_ia64_allocate_data data;
1345 data.info = link_info;
1346 data.ofs = 0;
1347 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1348
1349 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1350 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1351 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1352 ia64_info->got_sec->size = data.ofs;
1353
1354 if (ia64_info->root.dynamic_sections_created
1355 && ia64_info->rel_got_sec != NULL)
1356 {
1357 /* Resize .rela.got. */
1358 ia64_info->rel_got_sec->size = 0;
1359 if (link_info->shared
1360 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1361 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1362 data.only_got = TRUE;
1363 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1364 &data);
1365 }
1366 }
1367
1368 if (link_info->relax_pass == 0)
1369 {
1370 /* Pass 0 is only needed to relax br. */
1371 sec->skip_relax_pass_0 = skip_relax_pass_0;
1372 sec->skip_relax_pass_1 = skip_relax_pass_1;
1373 }
1374
1375 *again = changed_contents || changed_relocs;
1376 return TRUE;
1377
1378 error_return:
1379 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1380 free (isymbuf);
1381 if (contents != NULL
1382 && elf_section_data (sec)->this_hdr.contents != contents)
1383 free (contents);
1384 if (internal_relocs != NULL
1385 && elf_section_data (sec)->relocs != internal_relocs)
1386 free (internal_relocs);
1387 return FALSE;
1388 }
1389 #undef skip_relax_pass_0
1390 #undef skip_relax_pass_1
1391
1392 static void
1393 elfNN_ia64_relax_ldxmov (contents, off)
1394 bfd_byte *contents;
1395 bfd_vma off;
1396 {
1397 int shift, r1, r3;
1398 bfd_vma dword, insn;
1399
1400 switch ((int)off & 0x3)
1401 {
1402 case 0: shift = 5; break;
1403 case 1: shift = 14; off += 3; break;
1404 case 2: shift = 23; off += 6; break;
1405 default:
1406 abort ();
1407 }
1408
1409 dword = bfd_getl64 (contents + off);
1410 insn = (dword >> shift) & 0x1ffffffffffLL;
1411
1412 r1 = (insn >> 6) & 127;
1413 r3 = (insn >> 20) & 127;
1414 if (r1 == r3)
1415 insn = 0x8000000; /* nop */
1416 else
1417 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1418
1419 dword &= ~(0x1ffffffffffLL << shift);
1420 dword |= (insn << shift);
1421 bfd_putl64 (dword, contents + off);
1422 }
1423 \f
1424 /* Return TRUE if NAME is an unwind table section name. */
1425
1426 static inline bfd_boolean
1427 is_unwind_section_name (abfd, name)
1428 bfd *abfd;
1429 const char *name;
1430 {
1431 size_t len1, len2, len3;
1432
1433 if (elfNN_ia64_hpux_vec (abfd->xvec)
1434 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1435 return FALSE;
1436
1437 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1438 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1439 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1440 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1441 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1442 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1443 }
1444
1445 /* Handle an IA-64 specific section when reading an object file. This
1446 is called when bfd_section_from_shdr finds a section with an unknown
1447 type. */
1448
1449 static bfd_boolean
1450 elfNN_ia64_section_from_shdr (bfd *abfd,
1451 Elf_Internal_Shdr *hdr,
1452 const char *name,
1453 int shindex)
1454 {
1455 asection *newsect;
1456
1457 /* There ought to be a place to keep ELF backend specific flags, but
1458 at the moment there isn't one. We just keep track of the
1459 sections by their name, instead. Fortunately, the ABI gives
1460 suggested names for all the MIPS specific sections, so we will
1461 probably get away with this. */
1462 switch (hdr->sh_type)
1463 {
1464 case SHT_IA_64_UNWIND:
1465 case SHT_IA_64_HP_OPT_ANOT:
1466 break;
1467
1468 case SHT_IA_64_EXT:
1469 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1470 return FALSE;
1471 break;
1472
1473 default:
1474 return FALSE;
1475 }
1476
1477 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1478 return FALSE;
1479 newsect = hdr->bfd_section;
1480
1481 return TRUE;
1482 }
1483
1484 /* Convert IA-64 specific section flags to bfd internal section flags. */
1485
1486 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1487 flag. */
1488
1489 static bfd_boolean
1490 elfNN_ia64_section_flags (flags, hdr)
1491 flagword *flags;
1492 const Elf_Internal_Shdr *hdr;
1493 {
1494 if (hdr->sh_flags & SHF_IA_64_SHORT)
1495 *flags |= SEC_SMALL_DATA;
1496
1497 return TRUE;
1498 }
1499
1500 /* Set the correct type for an IA-64 ELF section. We do this by the
1501 section name, which is a hack, but ought to work. */
1502
1503 static bfd_boolean
1504 elfNN_ia64_fake_sections (abfd, hdr, sec)
1505 bfd *abfd ATTRIBUTE_UNUSED;
1506 Elf_Internal_Shdr *hdr;
1507 asection *sec;
1508 {
1509 register const char *name;
1510
1511 name = bfd_get_section_name (abfd, sec);
1512
1513 if (is_unwind_section_name (abfd, name))
1514 {
1515 /* We don't have the sections numbered at this point, so sh_info
1516 is set later, in elfNN_ia64_final_write_processing. */
1517 hdr->sh_type = SHT_IA_64_UNWIND;
1518 hdr->sh_flags |= SHF_LINK_ORDER;
1519 }
1520 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1521 hdr->sh_type = SHT_IA_64_EXT;
1522 else if (strcmp (name, ".HP.opt_annot") == 0)
1523 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1524 else if (strcmp (name, ".reloc") == 0)
1525 /* This is an ugly, but unfortunately necessary hack that is
1526 needed when producing EFI binaries on IA-64. It tells
1527 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1528 containing ELF relocation info. We need this hack in order to
1529 be able to generate ELF binaries that can be translated into
1530 EFI applications (which are essentially COFF objects). Those
1531 files contain a COFF ".reloc" section inside an ELFNN object,
1532 which would normally cause BFD to segfault because it would
1533 attempt to interpret this section as containing relocation
1534 entries for section "oc". With this hack enabled, ".reloc"
1535 will be treated as a normal data section, which will avoid the
1536 segfault. However, you won't be able to create an ELFNN binary
1537 with a section named "oc" that needs relocations, but that's
1538 the kind of ugly side-effects you get when detecting section
1539 types based on their names... In practice, this limitation is
1540 unlikely to bite. */
1541 hdr->sh_type = SHT_PROGBITS;
1542
1543 if (sec->flags & SEC_SMALL_DATA)
1544 hdr->sh_flags |= SHF_IA_64_SHORT;
1545
1546 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1547
1548 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1549 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1550
1551 return TRUE;
1552 }
1553
1554 /* The final processing done just before writing out an IA-64 ELF
1555 object file. */
1556
1557 static void
1558 elfNN_ia64_final_write_processing (abfd, linker)
1559 bfd *abfd;
1560 bfd_boolean linker ATTRIBUTE_UNUSED;
1561 {
1562 Elf_Internal_Shdr *hdr;
1563 asection *s;
1564
1565 for (s = abfd->sections; s; s = s->next)
1566 {
1567 hdr = &elf_section_data (s)->this_hdr;
1568 switch (hdr->sh_type)
1569 {
1570 case SHT_IA_64_UNWIND:
1571 /* The IA-64 processor-specific ABI requires setting sh_link
1572 to the unwind section, whereas HP-UX requires sh_info to
1573 do so. For maximum compatibility, we'll set both for
1574 now... */
1575 hdr->sh_info = hdr->sh_link;
1576 break;
1577 }
1578 }
1579
1580 if (! elf_flags_init (abfd))
1581 {
1582 unsigned long flags = 0;
1583
1584 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1585 flags |= EF_IA_64_BE;
1586 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1587 flags |= EF_IA_64_ABI64;
1588
1589 elf_elfheader(abfd)->e_flags = flags;
1590 elf_flags_init (abfd) = TRUE;
1591 }
1592 }
1593
1594 /* Hook called by the linker routine which adds symbols from an object
1595 file. We use it to put .comm items in .sbss, and not .bss. */
1596
1597 static bfd_boolean
1598 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1599 bfd *abfd;
1600 struct bfd_link_info *info;
1601 Elf_Internal_Sym *sym;
1602 const char **namep ATTRIBUTE_UNUSED;
1603 flagword *flagsp ATTRIBUTE_UNUSED;
1604 asection **secp;
1605 bfd_vma *valp;
1606 {
1607 if (sym->st_shndx == SHN_COMMON
1608 && !info->relocatable
1609 && sym->st_size <= elf_gp_size (abfd))
1610 {
1611 /* Common symbols less than or equal to -G nn bytes are
1612 automatically put into .sbss. */
1613
1614 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1615
1616 if (scomm == NULL)
1617 {
1618 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1619 (SEC_ALLOC
1620 | SEC_IS_COMMON
1621 | SEC_LINKER_CREATED));
1622 if (scomm == NULL)
1623 return FALSE;
1624 }
1625
1626 *secp = scomm;
1627 *valp = sym->st_size;
1628 }
1629
1630 return TRUE;
1631 }
1632
1633 /* Return the number of additional phdrs we will need. */
1634
1635 static int
1636 elfNN_ia64_additional_program_headers (bfd *abfd,
1637 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1638 {
1639 asection *s;
1640 int ret = 0;
1641
1642 /* See if we need a PT_IA_64_ARCHEXT segment. */
1643 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1644 if (s && (s->flags & SEC_LOAD))
1645 ++ret;
1646
1647 /* Count how many PT_IA_64_UNWIND segments we need. */
1648 for (s = abfd->sections; s; s = s->next)
1649 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1650 ++ret;
1651
1652 return ret;
1653 }
1654
1655 static bfd_boolean
1656 elfNN_ia64_modify_segment_map (bfd *abfd,
1657 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1658 {
1659 struct elf_segment_map *m, **pm;
1660 Elf_Internal_Shdr *hdr;
1661 asection *s;
1662
1663 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1664 all PT_LOAD segments. */
1665 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1666 if (s && (s->flags & SEC_LOAD))
1667 {
1668 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1669 if (m->p_type == PT_IA_64_ARCHEXT)
1670 break;
1671 if (m == NULL)
1672 {
1673 m = ((struct elf_segment_map *)
1674 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1675 if (m == NULL)
1676 return FALSE;
1677
1678 m->p_type = PT_IA_64_ARCHEXT;
1679 m->count = 1;
1680 m->sections[0] = s;
1681
1682 /* We want to put it after the PHDR and INTERP segments. */
1683 pm = &elf_tdata (abfd)->segment_map;
1684 while (*pm != NULL
1685 && ((*pm)->p_type == PT_PHDR
1686 || (*pm)->p_type == PT_INTERP))
1687 pm = &(*pm)->next;
1688
1689 m->next = *pm;
1690 *pm = m;
1691 }
1692 }
1693
1694 /* Install PT_IA_64_UNWIND segments, if needed. */
1695 for (s = abfd->sections; s; s = s->next)
1696 {
1697 hdr = &elf_section_data (s)->this_hdr;
1698 if (hdr->sh_type != SHT_IA_64_UNWIND)
1699 continue;
1700
1701 if (s && (s->flags & SEC_LOAD))
1702 {
1703 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1704 if (m->p_type == PT_IA_64_UNWIND)
1705 {
1706 int i;
1707
1708 /* Look through all sections in the unwind segment
1709 for a match since there may be multiple sections
1710 to a segment. */
1711 for (i = m->count - 1; i >= 0; --i)
1712 if (m->sections[i] == s)
1713 break;
1714
1715 if (i >= 0)
1716 break;
1717 }
1718
1719 if (m == NULL)
1720 {
1721 m = ((struct elf_segment_map *)
1722 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1723 if (m == NULL)
1724 return FALSE;
1725
1726 m->p_type = PT_IA_64_UNWIND;
1727 m->count = 1;
1728 m->sections[0] = s;
1729 m->next = NULL;
1730
1731 /* We want to put it last. */
1732 pm = &elf_tdata (abfd)->segment_map;
1733 while (*pm != NULL)
1734 pm = &(*pm)->next;
1735 *pm = m;
1736 }
1737 }
1738 }
1739
1740 return TRUE;
1741 }
1742
1743 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1744 the input sections for each output section in the segment and testing
1745 for SHF_IA_64_NORECOV on each. */
1746
1747 static bfd_boolean
1748 elfNN_ia64_modify_program_headers (bfd *abfd,
1749 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1750 {
1751 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1752 struct elf_segment_map *m;
1753 Elf_Internal_Phdr *p;
1754
1755 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1756 if (m->p_type == PT_LOAD)
1757 {
1758 int i;
1759 for (i = m->count - 1; i >= 0; --i)
1760 {
1761 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1762
1763 while (order != NULL)
1764 {
1765 if (order->type == bfd_indirect_link_order)
1766 {
1767 asection *is = order->u.indirect.section;
1768 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1769 if (flags & SHF_IA_64_NORECOV)
1770 {
1771 p->p_flags |= PF_IA_64_NORECOV;
1772 goto found;
1773 }
1774 }
1775 order = order->next;
1776 }
1777 }
1778 found:;
1779 }
1780
1781 return TRUE;
1782 }
1783
1784 /* According to the Tahoe assembler spec, all labels starting with a
1785 '.' are local. */
1786
1787 static bfd_boolean
1788 elfNN_ia64_is_local_label_name (abfd, name)
1789 bfd *abfd ATTRIBUTE_UNUSED;
1790 const char *name;
1791 {
1792 return name[0] == '.';
1793 }
1794
1795 /* Should we do dynamic things to this symbol? */
1796
1797 static bfd_boolean
1798 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1799 struct elf_link_hash_entry *h;
1800 struct bfd_link_info *info;
1801 int r_type;
1802 {
1803 bfd_boolean ignore_protected
1804 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1805 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1806
1807 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1808 }
1809 \f
1810 static struct bfd_hash_entry*
1811 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1812 struct bfd_hash_entry *entry;
1813 struct bfd_hash_table *table;
1814 const char *string;
1815 {
1816 struct elfNN_ia64_link_hash_entry *ret;
1817 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1818
1819 /* Allocate the structure if it has not already been allocated by a
1820 subclass. */
1821 if (!ret)
1822 ret = bfd_hash_allocate (table, sizeof (*ret));
1823
1824 if (!ret)
1825 return 0;
1826
1827 /* Call the allocation method of the superclass. */
1828 ret = ((struct elfNN_ia64_link_hash_entry *)
1829 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1830 table, string));
1831
1832 ret->info = NULL;
1833 ret->count = 0;
1834 ret->sorted_count = 0;
1835 ret->size = 0;
1836 return (struct bfd_hash_entry *) ret;
1837 }
1838
1839 static void
1840 elfNN_ia64_hash_copy_indirect (info, xdir, xind)
1841 struct bfd_link_info *info;
1842 struct elf_link_hash_entry *xdir, *xind;
1843 {
1844 struct elfNN_ia64_link_hash_entry *dir, *ind;
1845
1846 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1847 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1848
1849 /* Copy down any references that we may have already seen to the
1850 symbol which just became indirect. */
1851
1852 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1853 dir->root.ref_regular |= ind->root.ref_regular;
1854 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1855 dir->root.needs_plt |= ind->root.needs_plt;
1856
1857 if (ind->root.root.type != bfd_link_hash_indirect)
1858 return;
1859
1860 /* Copy over the got and plt data. This would have been done
1861 by check_relocs. */
1862
1863 if (ind->info != NULL)
1864 {
1865 struct elfNN_ia64_dyn_sym_info *dyn_i;
1866 unsigned int count;
1867
1868 if (dir->info)
1869 free (dir->info);
1870
1871 dir->info = ind->info;
1872 dir->count = ind->count;
1873 dir->sorted_count = ind->sorted_count;
1874 dir->size = ind->size;
1875
1876 ind->info = NULL;
1877 ind->count = 0;
1878 ind->sorted_count = 0;
1879 ind->size = 0;
1880
1881 /* Fix up the dyn_sym_info pointers to the global symbol. */
1882 for (count = dir->count, dyn_i = dir->info;
1883 count != 0;
1884 count--, dyn_i++)
1885 dyn_i->h = &dir->root;
1886 }
1887
1888 /* Copy over the dynindx. */
1889
1890 if (ind->root.dynindx != -1)
1891 {
1892 if (dir->root.dynindx != -1)
1893 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1894 dir->root.dynstr_index);
1895 dir->root.dynindx = ind->root.dynindx;
1896 dir->root.dynstr_index = ind->root.dynstr_index;
1897 ind->root.dynindx = -1;
1898 ind->root.dynstr_index = 0;
1899 }
1900 }
1901
1902 static void
1903 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1904 struct bfd_link_info *info;
1905 struct elf_link_hash_entry *xh;
1906 bfd_boolean force_local;
1907 {
1908 struct elfNN_ia64_link_hash_entry *h;
1909 struct elfNN_ia64_dyn_sym_info *dyn_i;
1910 unsigned int count;
1911
1912 h = (struct elfNN_ia64_link_hash_entry *)xh;
1913
1914 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1915
1916 for (count = h->count, dyn_i = h->info;
1917 count != 0;
1918 count--, dyn_i++)
1919 {
1920 dyn_i->want_plt2 = 0;
1921 dyn_i->want_plt = 0;
1922 }
1923 }
1924
1925 /* Compute a hash of a local hash entry. */
1926
1927 static hashval_t
1928 elfNN_ia64_local_htab_hash (ptr)
1929 const void *ptr;
1930 {
1931 struct elfNN_ia64_local_hash_entry *entry
1932 = (struct elfNN_ia64_local_hash_entry *) ptr;
1933
1934 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1935 ^ entry->r_sym ^ (entry->id >> 16);
1936 }
1937
1938 /* Compare local hash entries. */
1939
1940 static int
1941 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1942 const void *ptr1, *ptr2;
1943 {
1944 struct elfNN_ia64_local_hash_entry *entry1
1945 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1946 struct elfNN_ia64_local_hash_entry *entry2
1947 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1948
1949 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1950 }
1951
1952 /* Create the derived linker hash table. The IA-64 ELF port uses this
1953 derived hash table to keep information specific to the IA-64 ElF
1954 linker (without using static variables). */
1955
1956 static struct bfd_link_hash_table*
1957 elfNN_ia64_hash_table_create (abfd)
1958 bfd *abfd;
1959 {
1960 struct elfNN_ia64_link_hash_table *ret;
1961
1962 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1963 if (!ret)
1964 return 0;
1965
1966 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1967 elfNN_ia64_new_elf_hash_entry,
1968 sizeof (struct elfNN_ia64_link_hash_entry)))
1969 {
1970 free (ret);
1971 return 0;
1972 }
1973
1974 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1975 elfNN_ia64_local_htab_eq, NULL);
1976 ret->loc_hash_memory = objalloc_create ();
1977 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1978 {
1979 free (ret);
1980 return 0;
1981 }
1982
1983 return &ret->root.root;
1984 }
1985
1986 /* Free the global elfNN_ia64_dyn_sym_info array. */
1987
1988 static bfd_boolean
1989 elfNN_ia64_global_dyn_info_free (void **xentry,
1990 PTR unused ATTRIBUTE_UNUSED)
1991 {
1992 struct elfNN_ia64_link_hash_entry *entry
1993 = (struct elfNN_ia64_link_hash_entry *) xentry;
1994
1995 if (entry->root.root.type == bfd_link_hash_warning)
1996 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1997
1998 if (entry->info)
1999 {
2000 free (entry->info);
2001 entry->info = NULL;
2002 entry->count = 0;
2003 entry->sorted_count = 0;
2004 entry->size = 0;
2005 }
2006
2007 return TRUE;
2008 }
2009
2010 /* Free the local elfNN_ia64_dyn_sym_info array. */
2011
2012 static bfd_boolean
2013 elfNN_ia64_local_dyn_info_free (void **slot,
2014 PTR unused ATTRIBUTE_UNUSED)
2015 {
2016 struct elfNN_ia64_local_hash_entry *entry
2017 = (struct elfNN_ia64_local_hash_entry *) *slot;
2018
2019 if (entry->info)
2020 {
2021 free (entry->info);
2022 entry->info = NULL;
2023 entry->count = 0;
2024 entry->sorted_count = 0;
2025 entry->size = 0;
2026 }
2027
2028 return TRUE;
2029 }
2030
2031 /* Destroy IA-64 linker hash table. */
2032
2033 static void
2034 elfNN_ia64_hash_table_free (hash)
2035 struct bfd_link_hash_table *hash;
2036 {
2037 struct elfNN_ia64_link_hash_table *ia64_info
2038 = (struct elfNN_ia64_link_hash_table *) hash;
2039 if (ia64_info->loc_hash_table)
2040 {
2041 htab_traverse (ia64_info->loc_hash_table,
2042 elfNN_ia64_local_dyn_info_free, NULL);
2043 htab_delete (ia64_info->loc_hash_table);
2044 }
2045 if (ia64_info->loc_hash_memory)
2046 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
2047 elf_link_hash_traverse (&ia64_info->root,
2048 elfNN_ia64_global_dyn_info_free, NULL);
2049 _bfd_generic_link_hash_table_free (hash);
2050 }
2051
2052 /* Traverse both local and global hash tables. */
2053
2054 struct elfNN_ia64_dyn_sym_traverse_data
2055 {
2056 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2057 PTR data;
2058 };
2059
2060 static bfd_boolean
2061 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
2062 struct bfd_hash_entry *xentry;
2063 PTR xdata;
2064 {
2065 struct elfNN_ia64_link_hash_entry *entry
2066 = (struct elfNN_ia64_link_hash_entry *) xentry;
2067 struct elfNN_ia64_dyn_sym_traverse_data *data
2068 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2069 struct elfNN_ia64_dyn_sym_info *dyn_i;
2070 unsigned int count;
2071
2072 if (entry->root.root.type == bfd_link_hash_warning)
2073 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
2074
2075 for (count = entry->count, dyn_i = entry->info;
2076 count != 0;
2077 count--, dyn_i++)
2078 if (! (*data->func) (dyn_i, data->data))
2079 return FALSE;
2080 return TRUE;
2081 }
2082
2083 static bfd_boolean
2084 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
2085 void **slot;
2086 PTR xdata;
2087 {
2088 struct elfNN_ia64_local_hash_entry *entry
2089 = (struct elfNN_ia64_local_hash_entry *) *slot;
2090 struct elfNN_ia64_dyn_sym_traverse_data *data
2091 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2092 struct elfNN_ia64_dyn_sym_info *dyn_i;
2093 unsigned int count;
2094
2095 for (count = entry->count, dyn_i = entry->info;
2096 count != 0;
2097 count--, dyn_i++)
2098 if (! (*data->func) (dyn_i, data->data))
2099 return FALSE;
2100 return TRUE;
2101 }
2102
2103 static void
2104 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
2105 struct elfNN_ia64_link_hash_table *ia64_info;
2106 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2107 PTR data;
2108 {
2109 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2110
2111 xdata.func = func;
2112 xdata.data = data;
2113
2114 elf_link_hash_traverse (&ia64_info->root,
2115 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2116 htab_traverse (ia64_info->loc_hash_table,
2117 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2118 }
2119 \f
2120 static bfd_boolean
2121 elfNN_ia64_create_dynamic_sections (abfd, info)
2122 bfd *abfd;
2123 struct bfd_link_info *info;
2124 {
2125 struct elfNN_ia64_link_hash_table *ia64_info;
2126 asection *s;
2127
2128 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2129 return FALSE;
2130
2131 ia64_info = elfNN_ia64_hash_table (info);
2132
2133 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2134 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2135
2136 {
2137 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2138 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2139 /* The .got section is always aligned at 8 bytes. */
2140 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2141 }
2142
2143 if (!get_pltoff (abfd, info, ia64_info))
2144 return FALSE;
2145
2146 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2147 (SEC_ALLOC | SEC_LOAD
2148 | SEC_HAS_CONTENTS
2149 | SEC_IN_MEMORY
2150 | SEC_LINKER_CREATED
2151 | SEC_READONLY));
2152 if (s == NULL
2153 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2154 return FALSE;
2155 ia64_info->rel_pltoff_sec = s;
2156
2157 s = bfd_make_section_with_flags (abfd, ".rela.got",
2158 (SEC_ALLOC | SEC_LOAD
2159 | SEC_HAS_CONTENTS
2160 | SEC_IN_MEMORY
2161 | SEC_LINKER_CREATED
2162 | SEC_READONLY));
2163 if (s == NULL
2164 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2165 return FALSE;
2166 ia64_info->rel_got_sec = s;
2167
2168 return TRUE;
2169 }
2170
2171 /* Find and/or create a hash entry for local symbol. */
2172 static struct elfNN_ia64_local_hash_entry *
2173 get_local_sym_hash (ia64_info, abfd, rel, create)
2174 struct elfNN_ia64_link_hash_table *ia64_info;
2175 bfd *abfd;
2176 const Elf_Internal_Rela *rel;
2177 bfd_boolean create;
2178 {
2179 struct elfNN_ia64_local_hash_entry e, *ret;
2180 asection *sec = abfd->sections;
2181 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2182 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2183 void **slot;
2184
2185 e.id = sec->id;
2186 e.r_sym = ELFNN_R_SYM (rel->r_info);
2187 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2188 create ? INSERT : NO_INSERT);
2189
2190 if (!slot)
2191 return NULL;
2192
2193 if (*slot)
2194 return (struct elfNN_ia64_local_hash_entry *) *slot;
2195
2196 ret = (struct elfNN_ia64_local_hash_entry *)
2197 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2198 sizeof (struct elfNN_ia64_local_hash_entry));
2199 if (ret)
2200 {
2201 memset (ret, 0, sizeof (*ret));
2202 ret->id = sec->id;
2203 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2204 *slot = ret;
2205 }
2206 return ret;
2207 }
2208
2209 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2210
2211 static int
2212 addend_compare (const void *xp, const void *yp)
2213 {
2214 const struct elfNN_ia64_dyn_sym_info *x
2215 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2216 const struct elfNN_ia64_dyn_sym_info *y
2217 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2218
2219 return x->addend - y->addend;
2220 }
2221
2222 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2223
2224 static unsigned int
2225 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2226 unsigned int count)
2227 {
2228 bfd_vma curr, prev;
2229 unsigned int i, dup, diff, dest, src, len;
2230
2231 qsort (info, count, sizeof (*info), addend_compare);
2232
2233 /* Find the first duplicate. */
2234 prev = info [0].addend;
2235 for (i = 1; i < count; i++)
2236 {
2237 curr = info [i].addend;
2238 if (curr == prev)
2239 break;
2240 prev = curr;
2241 }
2242
2243 /* Remove duplicates. */
2244 if (i < count)
2245 {
2246 /* We need to move a block of elements to here. */
2247 dest = i++;
2248 while (i < count)
2249 {
2250 curr = info [i].addend;
2251
2252 /* Move a block of elements whose first one is different from
2253 the previous. */
2254 if (curr == prev)
2255 {
2256 for (src = i + 1; src < count; src++)
2257 if (info [src].addend != curr)
2258 break;
2259 }
2260 else
2261 src = i;
2262
2263 if (src >= count)
2264 break;
2265
2266 /* Find the next duplicate. */
2267 prev = info [src].addend;
2268 for (dup = src + 1; dup < count; dup++)
2269 {
2270 curr = info [dup].addend;
2271 if (curr == prev)
2272 break;
2273 prev = curr;
2274 }
2275
2276 /* How much to move. */
2277 len = dup - src;
2278 i = dup + 1;
2279
2280 if (len == 1 && dup < count)
2281 {
2282 /* If we only move 1 element, we combine it with the next
2283 one. Find the next different one. */
2284 for (diff = dup + 1, src++; diff < count; diff++, src++)
2285 if (info [diff].addend != curr)
2286 break;
2287
2288 if (diff < count)
2289 {
2290 /* Find the next duplicate. */
2291 prev = info [diff].addend;
2292 for (dup = diff + 1; dup < count; dup++)
2293 {
2294 curr = info [dup].addend;
2295 if (curr == prev)
2296 break;
2297 prev = curr;
2298 diff++;
2299 }
2300
2301 len = diff - src + 1;
2302 i = diff + 1;
2303 }
2304 }
2305
2306 memmove (&info [dest], &info [src], len * sizeof (*info));
2307
2308 dest += len;
2309 }
2310
2311 count = dest;
2312 }
2313
2314 return count;
2315 }
2316
2317 /* Find and/or create a descriptor for dynamic symbol info. This will
2318 vary based on global or local symbol, and the addend to the reloc.
2319
2320 We don't sort when inserting. Also, we sort and eliminate
2321 duplicates if there is an unsorted section. Typically, this will
2322 only happen once, because we do all insertions before lookups. We
2323 then use bsearch to do a lookup. This also allows lookups to be
2324 fast. So we have fast insertion (O(log N) due to duplicate check),
2325 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2326 Previously, all lookups were O(N) because of the use of the linked
2327 list and also all insertions were O(N) because of the check for
2328 duplicates. There are some complications here because the array
2329 size grows occasionally, which may add an O(N) factor, but this
2330 should be rare. Also, we free the excess array allocation, which
2331 requires a copy which is O(N), but this only happens once. */
2332
2333 static struct elfNN_ia64_dyn_sym_info *
2334 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2335 struct elfNN_ia64_link_hash_table *ia64_info;
2336 struct elf_link_hash_entry *h;
2337 bfd *abfd;
2338 const Elf_Internal_Rela *rel;
2339 bfd_boolean create;
2340 {
2341 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2342 unsigned int *count_p, *sorted_count_p, *size_p;
2343 unsigned int count, sorted_count, size;
2344 bfd_vma addend = rel ? rel->r_addend : 0;
2345 bfd_size_type amt;
2346
2347 if (h)
2348 {
2349 struct elfNN_ia64_link_hash_entry *global_h;
2350
2351 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2352 info_p = &global_h->info;
2353 count_p = &global_h->count;
2354 sorted_count_p = &global_h->sorted_count;
2355 size_p = &global_h->size;
2356 }
2357 else
2358 {
2359 struct elfNN_ia64_local_hash_entry *loc_h;
2360
2361 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2362 if (!loc_h)
2363 {
2364 BFD_ASSERT (!create);
2365 return NULL;
2366 }
2367
2368 info_p = &loc_h->info;
2369 count_p = &loc_h->count;
2370 sorted_count_p = &loc_h->sorted_count;
2371 size_p = &loc_h->size;
2372 }
2373
2374 count = *count_p;
2375 sorted_count = *sorted_count_p;
2376 size = *size_p;
2377 info = *info_p;
2378 if (create)
2379 {
2380 /* When we create the array, we don't check for duplicates,
2381 except in the previously sorted section if one exists, and
2382 against the last inserted entry. This allows insertions to
2383 be fast. */
2384 if (info)
2385 {
2386 if (sorted_count)
2387 {
2388 /* Try bsearch first on the sorted section. */
2389 key.addend = addend;
2390 dyn_i = bsearch (&key, info, sorted_count,
2391 sizeof (*info), addend_compare);
2392
2393 if (dyn_i)
2394 {
2395 return dyn_i;
2396 }
2397 }
2398
2399 /* Do a quick check for the last inserted entry. */
2400 dyn_i = info + count - 1;
2401 if (dyn_i->addend == addend)
2402 {
2403 return dyn_i;
2404 }
2405 }
2406
2407 if (size == 0)
2408 {
2409 /* It is the very first element. We create the array of size
2410 1. */
2411 size = 1;
2412 amt = size * sizeof (*info);
2413 info = bfd_malloc (amt);
2414 }
2415 else if (size <= count)
2416 {
2417 /* We double the array size every time when we reach the
2418 size limit. */
2419 size += size;
2420 amt = size * sizeof (*info);
2421 info = bfd_realloc (info, amt);
2422 }
2423 else
2424 goto has_space;
2425
2426 if (info == NULL)
2427 return NULL;
2428 *size_p = size;
2429 *info_p = info;
2430
2431 has_space:
2432 /* Append the new one to the array. */
2433 dyn_i = info + count;
2434 memset (dyn_i, 0, sizeof (*dyn_i));
2435 dyn_i->addend = addend;
2436
2437 /* We increment count only since the new ones are unsorted and
2438 may have duplicate. */
2439 (*count_p)++;
2440 }
2441 else
2442 {
2443 /* It is a lookup without insertion. Sort array if part of the
2444 array isn't sorted. */
2445 if (count != sorted_count)
2446 {
2447 count = sort_dyn_sym_info (info, count);
2448 *count_p = count;
2449 *sorted_count_p = count;
2450 }
2451
2452 /* Free unused memory. */
2453 if (size != count)
2454 {
2455 amt = count * sizeof (*info);
2456 info = bfd_malloc (amt);
2457 if (info != NULL)
2458 {
2459 memcpy (info, *info_p, amt);
2460 free (*info_p);
2461 *size_p = count;
2462 *info_p = info;
2463 }
2464 }
2465
2466 key.addend = addend;
2467 dyn_i = bsearch (&key, info, count,
2468 sizeof (*info), addend_compare);
2469 }
2470
2471 return dyn_i;
2472 }
2473
2474 static asection *
2475 get_got (abfd, info, ia64_info)
2476 bfd *abfd;
2477 struct bfd_link_info *info;
2478 struct elfNN_ia64_link_hash_table *ia64_info;
2479 {
2480 asection *got;
2481 bfd *dynobj;
2482
2483 got = ia64_info->got_sec;
2484 if (!got)
2485 {
2486 flagword flags;
2487
2488 dynobj = ia64_info->root.dynobj;
2489 if (!dynobj)
2490 ia64_info->root.dynobj = dynobj = abfd;
2491 if (!_bfd_elf_create_got_section (dynobj, info))
2492 return 0;
2493
2494 got = bfd_get_section_by_name (dynobj, ".got");
2495 BFD_ASSERT (got);
2496 ia64_info->got_sec = got;
2497
2498 /* The .got section is always aligned at 8 bytes. */
2499 if (!bfd_set_section_alignment (abfd, got, 3))
2500 return 0;
2501
2502 flags = bfd_get_section_flags (abfd, got);
2503 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2504 }
2505
2506 return got;
2507 }
2508
2509 /* Create function descriptor section (.opd). This section is called .opd
2510 because it contains "official procedure descriptors". The "official"
2511 refers to the fact that these descriptors are used when taking the address
2512 of a procedure, thus ensuring a unique address for each procedure. */
2513
2514 static asection *
2515 get_fptr (abfd, info, ia64_info)
2516 bfd *abfd;
2517 struct bfd_link_info *info;
2518 struct elfNN_ia64_link_hash_table *ia64_info;
2519 {
2520 asection *fptr;
2521 bfd *dynobj;
2522
2523 fptr = ia64_info->fptr_sec;
2524 if (!fptr)
2525 {
2526 dynobj = ia64_info->root.dynobj;
2527 if (!dynobj)
2528 ia64_info->root.dynobj = dynobj = abfd;
2529
2530 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2531 (SEC_ALLOC
2532 | SEC_LOAD
2533 | SEC_HAS_CONTENTS
2534 | SEC_IN_MEMORY
2535 | (info->pie ? 0 : SEC_READONLY)
2536 | SEC_LINKER_CREATED));
2537 if (!fptr
2538 || !bfd_set_section_alignment (abfd, fptr, 4))
2539 {
2540 BFD_ASSERT (0);
2541 return NULL;
2542 }
2543
2544 ia64_info->fptr_sec = fptr;
2545
2546 if (info->pie)
2547 {
2548 asection *fptr_rel;
2549 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2550 (SEC_ALLOC | SEC_LOAD
2551 | SEC_HAS_CONTENTS
2552 | SEC_IN_MEMORY
2553 | SEC_LINKER_CREATED
2554 | SEC_READONLY));
2555 if (fptr_rel == NULL
2556 || !bfd_set_section_alignment (abfd, fptr_rel,
2557 LOG_SECTION_ALIGN))
2558 {
2559 BFD_ASSERT (0);
2560 return NULL;
2561 }
2562
2563 ia64_info->rel_fptr_sec = fptr_rel;
2564 }
2565 }
2566
2567 return fptr;
2568 }
2569
2570 static asection *
2571 get_pltoff (abfd, info, ia64_info)
2572 bfd *abfd;
2573 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2574 struct elfNN_ia64_link_hash_table *ia64_info;
2575 {
2576 asection *pltoff;
2577 bfd *dynobj;
2578
2579 pltoff = ia64_info->pltoff_sec;
2580 if (!pltoff)
2581 {
2582 dynobj = ia64_info->root.dynobj;
2583 if (!dynobj)
2584 ia64_info->root.dynobj = dynobj = abfd;
2585
2586 pltoff = bfd_make_section_with_flags (dynobj,
2587 ELF_STRING_ia64_pltoff,
2588 (SEC_ALLOC
2589 | SEC_LOAD
2590 | SEC_HAS_CONTENTS
2591 | SEC_IN_MEMORY
2592 | SEC_SMALL_DATA
2593 | SEC_LINKER_CREATED));
2594 if (!pltoff
2595 || !bfd_set_section_alignment (abfd, pltoff, 4))
2596 {
2597 BFD_ASSERT (0);
2598 return NULL;
2599 }
2600
2601 ia64_info->pltoff_sec = pltoff;
2602 }
2603
2604 return pltoff;
2605 }
2606
2607 static asection *
2608 get_reloc_section (abfd, ia64_info, sec, create)
2609 bfd *abfd;
2610 struct elfNN_ia64_link_hash_table *ia64_info;
2611 asection *sec;
2612 bfd_boolean create;
2613 {
2614 const char *srel_name;
2615 asection *srel;
2616 bfd *dynobj;
2617
2618 srel_name = (bfd_elf_string_from_elf_section
2619 (abfd, elf_elfheader(abfd)->e_shstrndx,
2620 elf_section_data(sec)->rel_hdr.sh_name));
2621 if (srel_name == NULL)
2622 return NULL;
2623
2624 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2625 && strcmp (bfd_get_section_name (abfd, sec),
2626 srel_name+5) == 0)
2627 || (strncmp (srel_name, ".rel", 4) == 0
2628 && strcmp (bfd_get_section_name (abfd, sec),
2629 srel_name+4) == 0));
2630
2631 dynobj = ia64_info->root.dynobj;
2632 if (!dynobj)
2633 ia64_info->root.dynobj = dynobj = abfd;
2634
2635 srel = bfd_get_section_by_name (dynobj, srel_name);
2636 if (srel == NULL && create)
2637 {
2638 srel = bfd_make_section_with_flags (dynobj, srel_name,
2639 (SEC_ALLOC | SEC_LOAD
2640 | SEC_HAS_CONTENTS
2641 | SEC_IN_MEMORY
2642 | SEC_LINKER_CREATED
2643 | SEC_READONLY));
2644 if (srel == NULL
2645 || !bfd_set_section_alignment (dynobj, srel,
2646 LOG_SECTION_ALIGN))
2647 return NULL;
2648 }
2649
2650 return srel;
2651 }
2652
2653 static bfd_boolean
2654 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2655 asection *srel, int type, bfd_boolean reltext)
2656 {
2657 struct elfNN_ia64_dyn_reloc_entry *rent;
2658
2659 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2660 if (rent->srel == srel && rent->type == type)
2661 break;
2662
2663 if (!rent)
2664 {
2665 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2666 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2667 if (!rent)
2668 return FALSE;
2669
2670 rent->next = dyn_i->reloc_entries;
2671 rent->srel = srel;
2672 rent->type = type;
2673 rent->count = 0;
2674 dyn_i->reloc_entries = rent;
2675 }
2676 rent->reltext = reltext;
2677 rent->count++;
2678
2679 return TRUE;
2680 }
2681
2682 static bfd_boolean
2683 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2684 bfd *abfd;
2685 struct bfd_link_info *info;
2686 asection *sec;
2687 const Elf_Internal_Rela *relocs;
2688 {
2689 struct elfNN_ia64_link_hash_table *ia64_info;
2690 const Elf_Internal_Rela *relend;
2691 Elf_Internal_Shdr *symtab_hdr;
2692 const Elf_Internal_Rela *rel;
2693 asection *got, *fptr, *srel, *pltoff;
2694 enum {
2695 NEED_GOT = 1,
2696 NEED_GOTX = 2,
2697 NEED_FPTR = 4,
2698 NEED_PLTOFF = 8,
2699 NEED_MIN_PLT = 16,
2700 NEED_FULL_PLT = 32,
2701 NEED_DYNREL = 64,
2702 NEED_LTOFF_FPTR = 128,
2703 NEED_TPREL = 256,
2704 NEED_DTPMOD = 512,
2705 NEED_DTPREL = 1024
2706 };
2707 int need_entry;
2708 struct elf_link_hash_entry *h;
2709 unsigned long r_symndx;
2710 bfd_boolean maybe_dynamic;
2711
2712 if (info->relocatable)
2713 return TRUE;
2714
2715 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2716 ia64_info = elfNN_ia64_hash_table (info);
2717
2718 got = fptr = srel = pltoff = NULL;
2719
2720 relend = relocs + sec->reloc_count;
2721
2722 /* We scan relocations first to create dynamic relocation arrays. We
2723 modified get_dyn_sym_info to allow fast insertion and support fast
2724 lookup in the next loop. */
2725 for (rel = relocs; rel < relend; ++rel)
2726 {
2727 r_symndx = ELFNN_R_SYM (rel->r_info);
2728 if (r_symndx >= symtab_hdr->sh_info)
2729 {
2730 long indx = r_symndx - symtab_hdr->sh_info;
2731 h = elf_sym_hashes (abfd)[indx];
2732 while (h->root.type == bfd_link_hash_indirect
2733 || h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735 }
2736 else
2737 h = NULL;
2738
2739 /* We can only get preliminary data on whether a symbol is
2740 locally or externally defined, as not all of the input files
2741 have yet been processed. Do something with what we know, as
2742 this may help reduce memory usage and processing time later. */
2743 maybe_dynamic = (h && ((!info->executable
2744 && (!SYMBOLIC_BIND (info, h)
2745 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2746 || !h->def_regular
2747 || h->root.type == bfd_link_hash_defweak));
2748
2749 need_entry = 0;
2750 switch (ELFNN_R_TYPE (rel->r_info))
2751 {
2752 case R_IA64_TPREL64MSB:
2753 case R_IA64_TPREL64LSB:
2754 if (info->shared || maybe_dynamic)
2755 need_entry = NEED_DYNREL;
2756 break;
2757
2758 case R_IA64_LTOFF_TPREL22:
2759 need_entry = NEED_TPREL;
2760 if (info->shared)
2761 info->flags |= DF_STATIC_TLS;
2762 break;
2763
2764 case R_IA64_DTPREL32MSB:
2765 case R_IA64_DTPREL32LSB:
2766 case R_IA64_DTPREL64MSB:
2767 case R_IA64_DTPREL64LSB:
2768 if (info->shared || maybe_dynamic)
2769 need_entry = NEED_DYNREL;
2770 break;
2771
2772 case R_IA64_LTOFF_DTPREL22:
2773 need_entry = NEED_DTPREL;
2774 break;
2775
2776 case R_IA64_DTPMOD64MSB:
2777 case R_IA64_DTPMOD64LSB:
2778 if (info->shared || maybe_dynamic)
2779 need_entry = NEED_DYNREL;
2780 break;
2781
2782 case R_IA64_LTOFF_DTPMOD22:
2783 need_entry = NEED_DTPMOD;
2784 break;
2785
2786 case R_IA64_LTOFF_FPTR22:
2787 case R_IA64_LTOFF_FPTR64I:
2788 case R_IA64_LTOFF_FPTR32MSB:
2789 case R_IA64_LTOFF_FPTR32LSB:
2790 case R_IA64_LTOFF_FPTR64MSB:
2791 case R_IA64_LTOFF_FPTR64LSB:
2792 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2793 break;
2794
2795 case R_IA64_FPTR64I:
2796 case R_IA64_FPTR32MSB:
2797 case R_IA64_FPTR32LSB:
2798 case R_IA64_FPTR64MSB:
2799 case R_IA64_FPTR64LSB:
2800 if (info->shared || h)
2801 need_entry = NEED_FPTR | NEED_DYNREL;
2802 else
2803 need_entry = NEED_FPTR;
2804 break;
2805
2806 case R_IA64_LTOFF22:
2807 case R_IA64_LTOFF64I:
2808 need_entry = NEED_GOT;
2809 break;
2810
2811 case R_IA64_LTOFF22X:
2812 need_entry = NEED_GOTX;
2813 break;
2814
2815 case R_IA64_PLTOFF22:
2816 case R_IA64_PLTOFF64I:
2817 case R_IA64_PLTOFF64MSB:
2818 case R_IA64_PLTOFF64LSB:
2819 need_entry = NEED_PLTOFF;
2820 if (h)
2821 {
2822 if (maybe_dynamic)
2823 need_entry |= NEED_MIN_PLT;
2824 }
2825 else
2826 {
2827 (*info->callbacks->warning)
2828 (info, _("@pltoff reloc against local symbol"), 0,
2829 abfd, 0, (bfd_vma) 0);
2830 }
2831 break;
2832
2833 case R_IA64_PCREL21B:
2834 case R_IA64_PCREL60B:
2835 /* Depending on where this symbol is defined, we may or may not
2836 need a full plt entry. Only skip if we know we'll not need
2837 the entry -- static or symbolic, and the symbol definition
2838 has already been seen. */
2839 if (maybe_dynamic && rel->r_addend == 0)
2840 need_entry = NEED_FULL_PLT;
2841 break;
2842
2843 case R_IA64_IMM14:
2844 case R_IA64_IMM22:
2845 case R_IA64_IMM64:
2846 case R_IA64_DIR32MSB:
2847 case R_IA64_DIR32LSB:
2848 case R_IA64_DIR64MSB:
2849 case R_IA64_DIR64LSB:
2850 /* Shared objects will always need at least a REL relocation. */
2851 if (info->shared || maybe_dynamic)
2852 need_entry = NEED_DYNREL;
2853 break;
2854
2855 case R_IA64_IPLTMSB:
2856 case R_IA64_IPLTLSB:
2857 /* Shared objects will always need at least a REL relocation. */
2858 if (info->shared || maybe_dynamic)
2859 need_entry = NEED_DYNREL;
2860 break;
2861
2862 case R_IA64_PCREL22:
2863 case R_IA64_PCREL64I:
2864 case R_IA64_PCREL32MSB:
2865 case R_IA64_PCREL32LSB:
2866 case R_IA64_PCREL64MSB:
2867 case R_IA64_PCREL64LSB:
2868 if (maybe_dynamic)
2869 need_entry = NEED_DYNREL;
2870 break;
2871 }
2872
2873 if (!need_entry)
2874 continue;
2875
2876 if ((need_entry & NEED_FPTR) != 0
2877 && rel->r_addend)
2878 {
2879 (*info->callbacks->warning)
2880 (info, _("non-zero addend in @fptr reloc"), 0,
2881 abfd, 0, (bfd_vma) 0);
2882 }
2883
2884 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2885 return FALSE;
2886 }
2887
2888 /* Now, we only do lookup without insertion, which is very fast
2889 with the modified get_dyn_sym_info. */
2890 for (rel = relocs; rel < relend; ++rel)
2891 {
2892 struct elfNN_ia64_dyn_sym_info *dyn_i;
2893 int dynrel_type = R_IA64_NONE;
2894
2895 r_symndx = ELFNN_R_SYM (rel->r_info);
2896 if (r_symndx >= symtab_hdr->sh_info)
2897 {
2898 /* We're dealing with a global symbol -- find its hash entry
2899 and mark it as being referenced. */
2900 long indx = r_symndx - symtab_hdr->sh_info;
2901 h = elf_sym_hashes (abfd)[indx];
2902 while (h->root.type == bfd_link_hash_indirect
2903 || h->root.type == bfd_link_hash_warning)
2904 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2905
2906 h->ref_regular = 1;
2907 }
2908 else
2909 h = NULL;
2910
2911 /* We can only get preliminary data on whether a symbol is
2912 locally or externally defined, as not all of the input files
2913 have yet been processed. Do something with what we know, as
2914 this may help reduce memory usage and processing time later. */
2915 maybe_dynamic = (h && ((!info->executable
2916 && (!SYMBOLIC_BIND (info, h)
2917 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2918 || !h->def_regular
2919 || h->root.type == bfd_link_hash_defweak));
2920
2921 need_entry = 0;
2922 switch (ELFNN_R_TYPE (rel->r_info))
2923 {
2924 case R_IA64_TPREL64MSB:
2925 case R_IA64_TPREL64LSB:
2926 if (info->shared || maybe_dynamic)
2927 need_entry = NEED_DYNREL;
2928 dynrel_type = R_IA64_TPREL64LSB;
2929 if (info->shared)
2930 info->flags |= DF_STATIC_TLS;
2931 break;
2932
2933 case R_IA64_LTOFF_TPREL22:
2934 need_entry = NEED_TPREL;
2935 if (info->shared)
2936 info->flags |= DF_STATIC_TLS;
2937 break;
2938
2939 case R_IA64_DTPREL32MSB:
2940 case R_IA64_DTPREL32LSB:
2941 case R_IA64_DTPREL64MSB:
2942 case R_IA64_DTPREL64LSB:
2943 if (info->shared || maybe_dynamic)
2944 need_entry = NEED_DYNREL;
2945 dynrel_type = R_IA64_DTPRELNNLSB;
2946 break;
2947
2948 case R_IA64_LTOFF_DTPREL22:
2949 need_entry = NEED_DTPREL;
2950 break;
2951
2952 case R_IA64_DTPMOD64MSB:
2953 case R_IA64_DTPMOD64LSB:
2954 if (info->shared || maybe_dynamic)
2955 need_entry = NEED_DYNREL;
2956 dynrel_type = R_IA64_DTPMOD64LSB;
2957 break;
2958
2959 case R_IA64_LTOFF_DTPMOD22:
2960 need_entry = NEED_DTPMOD;
2961 break;
2962
2963 case R_IA64_LTOFF_FPTR22:
2964 case R_IA64_LTOFF_FPTR64I:
2965 case R_IA64_LTOFF_FPTR32MSB:
2966 case R_IA64_LTOFF_FPTR32LSB:
2967 case R_IA64_LTOFF_FPTR64MSB:
2968 case R_IA64_LTOFF_FPTR64LSB:
2969 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2970 break;
2971
2972 case R_IA64_FPTR64I:
2973 case R_IA64_FPTR32MSB:
2974 case R_IA64_FPTR32LSB:
2975 case R_IA64_FPTR64MSB:
2976 case R_IA64_FPTR64LSB:
2977 if (info->shared || h)
2978 need_entry = NEED_FPTR | NEED_DYNREL;
2979 else
2980 need_entry = NEED_FPTR;
2981 dynrel_type = R_IA64_FPTRNNLSB;
2982 break;
2983
2984 case R_IA64_LTOFF22:
2985 case R_IA64_LTOFF64I:
2986 need_entry = NEED_GOT;
2987 break;
2988
2989 case R_IA64_LTOFF22X:
2990 need_entry = NEED_GOTX;
2991 break;
2992
2993 case R_IA64_PLTOFF22:
2994 case R_IA64_PLTOFF64I:
2995 case R_IA64_PLTOFF64MSB:
2996 case R_IA64_PLTOFF64LSB:
2997 need_entry = NEED_PLTOFF;
2998 if (h)
2999 {
3000 if (maybe_dynamic)
3001 need_entry |= NEED_MIN_PLT;
3002 }
3003 break;
3004
3005 case R_IA64_PCREL21B:
3006 case R_IA64_PCREL60B:
3007 /* Depending on where this symbol is defined, we may or may not
3008 need a full plt entry. Only skip if we know we'll not need
3009 the entry -- static or symbolic, and the symbol definition
3010 has already been seen. */
3011 if (maybe_dynamic && rel->r_addend == 0)
3012 need_entry = NEED_FULL_PLT;
3013 break;
3014
3015 case R_IA64_IMM14:
3016 case R_IA64_IMM22:
3017 case R_IA64_IMM64:
3018 case R_IA64_DIR32MSB:
3019 case R_IA64_DIR32LSB:
3020 case R_IA64_DIR64MSB:
3021 case R_IA64_DIR64LSB:
3022 /* Shared objects will always need at least a REL relocation. */
3023 if (info->shared || maybe_dynamic)
3024 need_entry = NEED_DYNREL;
3025 dynrel_type = R_IA64_DIRNNLSB;
3026 break;
3027
3028 case R_IA64_IPLTMSB:
3029 case R_IA64_IPLTLSB:
3030 /* Shared objects will always need at least a REL relocation. */
3031 if (info->shared || maybe_dynamic)
3032 need_entry = NEED_DYNREL;
3033 dynrel_type = R_IA64_IPLTLSB;
3034 break;
3035
3036 case R_IA64_PCREL22:
3037 case R_IA64_PCREL64I:
3038 case R_IA64_PCREL32MSB:
3039 case R_IA64_PCREL32LSB:
3040 case R_IA64_PCREL64MSB:
3041 case R_IA64_PCREL64LSB:
3042 if (maybe_dynamic)
3043 need_entry = NEED_DYNREL;
3044 dynrel_type = R_IA64_PCRELNNLSB;
3045 break;
3046 }
3047
3048 if (!need_entry)
3049 continue;
3050
3051 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
3052
3053 /* Record whether or not this is a local symbol. */
3054 dyn_i->h = h;
3055
3056 /* Create what's needed. */
3057 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
3058 | NEED_DTPMOD | NEED_DTPREL))
3059 {
3060 if (!got)
3061 {
3062 got = get_got (abfd, info, ia64_info);
3063 if (!got)
3064 return FALSE;
3065 }
3066 if (need_entry & NEED_GOT)
3067 dyn_i->want_got = 1;
3068 if (need_entry & NEED_GOTX)
3069 dyn_i->want_gotx = 1;
3070 if (need_entry & NEED_TPREL)
3071 dyn_i->want_tprel = 1;
3072 if (need_entry & NEED_DTPMOD)
3073 dyn_i->want_dtpmod = 1;
3074 if (need_entry & NEED_DTPREL)
3075 dyn_i->want_dtprel = 1;
3076 }
3077 if (need_entry & NEED_FPTR)
3078 {
3079 if (!fptr)
3080 {
3081 fptr = get_fptr (abfd, info, ia64_info);
3082 if (!fptr)
3083 return FALSE;
3084 }
3085
3086 /* FPTRs for shared libraries are allocated by the dynamic
3087 linker. Make sure this local symbol will appear in the
3088 dynamic symbol table. */
3089 if (!h && info->shared)
3090 {
3091 if (! (bfd_elf_link_record_local_dynamic_symbol
3092 (info, abfd, (long) r_symndx)))
3093 return FALSE;
3094 }
3095
3096 dyn_i->want_fptr = 1;
3097 }
3098 if (need_entry & NEED_LTOFF_FPTR)
3099 dyn_i->want_ltoff_fptr = 1;
3100 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3101 {
3102 if (!ia64_info->root.dynobj)
3103 ia64_info->root.dynobj = abfd;
3104 h->needs_plt = 1;
3105 dyn_i->want_plt = 1;
3106 }
3107 if (need_entry & NEED_FULL_PLT)
3108 dyn_i->want_plt2 = 1;
3109 if (need_entry & NEED_PLTOFF)
3110 {
3111 /* This is needed here, in case @pltoff is used in a non-shared
3112 link. */
3113 if (!pltoff)
3114 {
3115 pltoff = get_pltoff (abfd, info, ia64_info);
3116 if (!pltoff)
3117 return FALSE;
3118 }
3119
3120 dyn_i->want_pltoff = 1;
3121 }
3122 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3123 {
3124 if (!srel)
3125 {
3126 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3127 if (!srel)
3128 return FALSE;
3129 }
3130 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3131 (sec->flags & SEC_READONLY) != 0))
3132 return FALSE;
3133 }
3134 }
3135
3136 return TRUE;
3137 }
3138
3139 /* For cleanliness, and potentially faster dynamic loading, allocate
3140 external GOT entries first. */
3141
3142 static bfd_boolean
3143 allocate_global_data_got (dyn_i, data)
3144 struct elfNN_ia64_dyn_sym_info *dyn_i;
3145 PTR data;
3146 {
3147 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3148
3149 if ((dyn_i->want_got || dyn_i->want_gotx)
3150 && ! dyn_i->want_fptr
3151 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3152 {
3153 dyn_i->got_offset = x->ofs;
3154 x->ofs += 8;
3155 }
3156 if (dyn_i->want_tprel)
3157 {
3158 dyn_i->tprel_offset = x->ofs;
3159 x->ofs += 8;
3160 }
3161 if (dyn_i->want_dtpmod)
3162 {
3163 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3164 {
3165 dyn_i->dtpmod_offset = x->ofs;
3166 x->ofs += 8;
3167 }
3168 else
3169 {
3170 struct elfNN_ia64_link_hash_table *ia64_info;
3171
3172 ia64_info = elfNN_ia64_hash_table (x->info);
3173 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3174 {
3175 ia64_info->self_dtpmod_offset = x->ofs;
3176 x->ofs += 8;
3177 }
3178 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3179 }
3180 }
3181 if (dyn_i->want_dtprel)
3182 {
3183 dyn_i->dtprel_offset = x->ofs;
3184 x->ofs += 8;
3185 }
3186 return TRUE;
3187 }
3188
3189 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3190
3191 static bfd_boolean
3192 allocate_global_fptr_got (dyn_i, data)
3193 struct elfNN_ia64_dyn_sym_info *dyn_i;
3194 PTR data;
3195 {
3196 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3197
3198 if (dyn_i->want_got
3199 && dyn_i->want_fptr
3200 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3201 {
3202 dyn_i->got_offset = x->ofs;
3203 x->ofs += 8;
3204 }
3205 return TRUE;
3206 }
3207
3208 /* Lastly, allocate all the GOT entries for local data. */
3209
3210 static bfd_boolean
3211 allocate_local_got (dyn_i, data)
3212 struct elfNN_ia64_dyn_sym_info *dyn_i;
3213 PTR data;
3214 {
3215 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3216
3217 if ((dyn_i->want_got || dyn_i->want_gotx)
3218 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3219 {
3220 dyn_i->got_offset = x->ofs;
3221 x->ofs += 8;
3222 }
3223 return TRUE;
3224 }
3225
3226 /* Search for the index of a global symbol in it's defining object file. */
3227
3228 static long
3229 global_sym_index (h)
3230 struct elf_link_hash_entry *h;
3231 {
3232 struct elf_link_hash_entry **p;
3233 bfd *obj;
3234
3235 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3236 || h->root.type == bfd_link_hash_defweak);
3237
3238 obj = h->root.u.def.section->owner;
3239 for (p = elf_sym_hashes (obj); *p != h; ++p)
3240 continue;
3241
3242 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3243 }
3244
3245 /* Allocate function descriptors. We can do these for every function
3246 in a main executable that is not exported. */
3247
3248 static bfd_boolean
3249 allocate_fptr (dyn_i, data)
3250 struct elfNN_ia64_dyn_sym_info *dyn_i;
3251 PTR data;
3252 {
3253 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3254
3255 if (dyn_i->want_fptr)
3256 {
3257 struct elf_link_hash_entry *h = dyn_i->h;
3258
3259 if (h)
3260 while (h->root.type == bfd_link_hash_indirect
3261 || h->root.type == bfd_link_hash_warning)
3262 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3263
3264 if (!x->info->executable
3265 && (!h
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || (h->root.type != bfd_link_hash_undefweak
3268 && h->root.type != bfd_link_hash_undefined)))
3269 {
3270 if (h && h->dynindx == -1)
3271 {
3272 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3273 || (h->root.type == bfd_link_hash_defweak));
3274
3275 if (!bfd_elf_link_record_local_dynamic_symbol
3276 (x->info, h->root.u.def.section->owner,
3277 global_sym_index (h)))
3278 return FALSE;
3279 }
3280
3281 dyn_i->want_fptr = 0;
3282 }
3283 else if (h == NULL || h->dynindx == -1)
3284 {
3285 dyn_i->fptr_offset = x->ofs;
3286 x->ofs += 16;
3287 }
3288 else
3289 dyn_i->want_fptr = 0;
3290 }
3291 return TRUE;
3292 }
3293
3294 /* Allocate all the minimal PLT entries. */
3295
3296 static bfd_boolean
3297 allocate_plt_entries (dyn_i, data)
3298 struct elfNN_ia64_dyn_sym_info *dyn_i;
3299 PTR data;
3300 {
3301 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3302
3303 if (dyn_i->want_plt)
3304 {
3305 struct elf_link_hash_entry *h = dyn_i->h;
3306
3307 if (h)
3308 while (h->root.type == bfd_link_hash_indirect
3309 || h->root.type == bfd_link_hash_warning)
3310 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3311
3312 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3313 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3314 {
3315 bfd_size_type offset = x->ofs;
3316 if (offset == 0)
3317 offset = PLT_HEADER_SIZE;
3318 dyn_i->plt_offset = offset;
3319 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3320
3321 dyn_i->want_pltoff = 1;
3322 }
3323 else
3324 {
3325 dyn_i->want_plt = 0;
3326 dyn_i->want_plt2 = 0;
3327 }
3328 }
3329 return TRUE;
3330 }
3331
3332 /* Allocate all the full PLT entries. */
3333
3334 static bfd_boolean
3335 allocate_plt2_entries (dyn_i, data)
3336 struct elfNN_ia64_dyn_sym_info *dyn_i;
3337 PTR data;
3338 {
3339 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3340
3341 if (dyn_i->want_plt2)
3342 {
3343 struct elf_link_hash_entry *h = dyn_i->h;
3344 bfd_size_type ofs = x->ofs;
3345
3346 dyn_i->plt2_offset = ofs;
3347 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3348
3349 while (h->root.type == bfd_link_hash_indirect
3350 || h->root.type == bfd_link_hash_warning)
3351 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3352 dyn_i->h->plt.offset = ofs;
3353 }
3354 return TRUE;
3355 }
3356
3357 /* Allocate all the PLTOFF entries requested by relocations and
3358 plt entries. We can't share space with allocated FPTR entries,
3359 because the latter are not necessarily addressable by the GP.
3360 ??? Relaxation might be able to determine that they are. */
3361
3362 static bfd_boolean
3363 allocate_pltoff_entries (dyn_i, data)
3364 struct elfNN_ia64_dyn_sym_info *dyn_i;
3365 PTR data;
3366 {
3367 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3368
3369 if (dyn_i->want_pltoff)
3370 {
3371 dyn_i->pltoff_offset = x->ofs;
3372 x->ofs += 16;
3373 }
3374 return TRUE;
3375 }
3376
3377 /* Allocate dynamic relocations for those symbols that turned out
3378 to be dynamic. */
3379
3380 static bfd_boolean
3381 allocate_dynrel_entries (dyn_i, data)
3382 struct elfNN_ia64_dyn_sym_info *dyn_i;
3383 PTR data;
3384 {
3385 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3386 struct elfNN_ia64_link_hash_table *ia64_info;
3387 struct elfNN_ia64_dyn_reloc_entry *rent;
3388 bfd_boolean dynamic_symbol, shared, resolved_zero;
3389
3390 ia64_info = elfNN_ia64_hash_table (x->info);
3391
3392 /* Note that this can't be used in relation to FPTR relocs below. */
3393 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3394
3395 shared = x->info->shared;
3396 resolved_zero = (dyn_i->h
3397 && ELF_ST_VISIBILITY (dyn_i->h->other)
3398 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3399
3400 /* Take care of the GOT and PLT relocations. */
3401
3402 if ((!resolved_zero
3403 && (dynamic_symbol || shared)
3404 && (dyn_i->want_got || dyn_i->want_gotx))
3405 || (dyn_i->want_ltoff_fptr
3406 && dyn_i->h
3407 && dyn_i->h->dynindx != -1))
3408 {
3409 if (!dyn_i->want_ltoff_fptr
3410 || !x->info->pie
3411 || dyn_i->h == NULL
3412 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3413 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3414 }
3415 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3416 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3417 if (dynamic_symbol && dyn_i->want_dtpmod)
3418 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3419 if (dynamic_symbol && dyn_i->want_dtprel)
3420 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3421
3422 if (x->only_got)
3423 return TRUE;
3424
3425 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3426 {
3427 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3428 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3429 }
3430
3431 if (!resolved_zero && dyn_i->want_pltoff)
3432 {
3433 bfd_size_type t = 0;
3434
3435 /* Dynamic symbols get one IPLT relocation. Local symbols in
3436 shared libraries get two REL relocations. Local symbols in
3437 main applications get nothing. */
3438 if (dynamic_symbol)
3439 t = sizeof (ElfNN_External_Rela);
3440 else if (shared)
3441 t = 2 * sizeof (ElfNN_External_Rela);
3442
3443 ia64_info->rel_pltoff_sec->size += t;
3444 }
3445
3446 /* Take care of the normal data relocations. */
3447
3448 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3449 {
3450 int count = rent->count;
3451
3452 switch (rent->type)
3453 {
3454 case R_IA64_FPTR32LSB:
3455 case R_IA64_FPTR64LSB:
3456 /* Allocate one iff !want_fptr and not PIE, which by this point
3457 will be true only if we're actually allocating one statically
3458 in the main executable. Position independent executables
3459 need a relative reloc. */
3460 if (dyn_i->want_fptr && !x->info->pie)
3461 continue;
3462 break;
3463 case R_IA64_PCREL32LSB:
3464 case R_IA64_PCREL64LSB:
3465 if (!dynamic_symbol)
3466 continue;
3467 break;
3468 case R_IA64_DIR32LSB:
3469 case R_IA64_DIR64LSB:
3470 if (!dynamic_symbol && !shared)
3471 continue;
3472 break;
3473 case R_IA64_IPLTLSB:
3474 if (!dynamic_symbol && !shared)
3475 continue;
3476 /* Use two REL relocations for IPLT relocations
3477 against local symbols. */
3478 if (!dynamic_symbol)
3479 count *= 2;
3480 break;
3481 case R_IA64_DTPREL32LSB:
3482 case R_IA64_TPREL64LSB:
3483 case R_IA64_DTPREL64LSB:
3484 case R_IA64_DTPMOD64LSB:
3485 break;
3486 default:
3487 abort ();
3488 }
3489 if (rent->reltext)
3490 ia64_info->reltext = 1;
3491 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3492 }
3493
3494 return TRUE;
3495 }
3496
3497 static bfd_boolean
3498 elfNN_ia64_adjust_dynamic_symbol (info, h)
3499 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3500 struct elf_link_hash_entry *h;
3501 {
3502 /* ??? Undefined symbols with PLT entries should be re-defined
3503 to be the PLT entry. */
3504
3505 /* If this is a weak symbol, and there is a real definition, the
3506 processor independent code will have arranged for us to see the
3507 real definition first, and we can just use the same value. */
3508 if (h->u.weakdef != NULL)
3509 {
3510 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3511 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3512 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3513 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3514 return TRUE;
3515 }
3516
3517 /* If this is a reference to a symbol defined by a dynamic object which
3518 is not a function, we might allocate the symbol in our .dynbss section
3519 and allocate a COPY dynamic relocation.
3520
3521 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3522 of hackery. */
3523
3524 return TRUE;
3525 }
3526
3527 static bfd_boolean
3528 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3529 bfd *output_bfd ATTRIBUTE_UNUSED;
3530 struct bfd_link_info *info;
3531 {
3532 struct elfNN_ia64_allocate_data data;
3533 struct elfNN_ia64_link_hash_table *ia64_info;
3534 asection *sec;
3535 bfd *dynobj;
3536 bfd_boolean relplt = FALSE;
3537
3538 dynobj = elf_hash_table(info)->dynobj;
3539 ia64_info = elfNN_ia64_hash_table (info);
3540 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3541 BFD_ASSERT(dynobj != NULL);
3542 data.info = info;
3543
3544 /* Set the contents of the .interp section to the interpreter. */
3545 if (ia64_info->root.dynamic_sections_created
3546 && info->executable)
3547 {
3548 sec = bfd_get_section_by_name (dynobj, ".interp");
3549 BFD_ASSERT (sec != NULL);
3550 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3551 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3552 }
3553
3554 /* Allocate the GOT entries. */
3555
3556 if (ia64_info->got_sec)
3557 {
3558 data.ofs = 0;
3559 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3560 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3561 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3562 ia64_info->got_sec->size = data.ofs;
3563 }
3564
3565 /* Allocate the FPTR entries. */
3566
3567 if (ia64_info->fptr_sec)
3568 {
3569 data.ofs = 0;
3570 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3571 ia64_info->fptr_sec->size = data.ofs;
3572 }
3573
3574 /* Now that we've seen all of the input files, we can decide which
3575 symbols need plt entries. Allocate the minimal PLT entries first.
3576 We do this even though dynamic_sections_created may be FALSE, because
3577 this has the side-effect of clearing want_plt and want_plt2. */
3578
3579 data.ofs = 0;
3580 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3581
3582 ia64_info->minplt_entries = 0;
3583 if (data.ofs)
3584 {
3585 ia64_info->minplt_entries
3586 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3587 }
3588
3589 /* Align the pointer for the plt2 entries. */
3590 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3591
3592 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3593 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3594 {
3595 /* FIXME: we always reserve the memory for dynamic linker even if
3596 there are no PLT entries since dynamic linker may assume the
3597 reserved memory always exists. */
3598
3599 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3600
3601 ia64_info->plt_sec->size = data.ofs;
3602
3603 /* If we've got a .plt, we need some extra memory for the dynamic
3604 linker. We stuff these in .got.plt. */
3605 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3606 sec->size = 8 * PLT_RESERVED_WORDS;
3607 }
3608
3609 /* Allocate the PLTOFF entries. */
3610
3611 if (ia64_info->pltoff_sec)
3612 {
3613 data.ofs = 0;
3614 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3615 ia64_info->pltoff_sec->size = data.ofs;
3616 }
3617
3618 if (ia64_info->root.dynamic_sections_created)
3619 {
3620 /* Allocate space for the dynamic relocations that turned out to be
3621 required. */
3622
3623 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3624 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3625 data.only_got = FALSE;
3626 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3627 }
3628
3629 /* We have now determined the sizes of the various dynamic sections.
3630 Allocate memory for them. */
3631 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3632 {
3633 bfd_boolean strip;
3634
3635 if (!(sec->flags & SEC_LINKER_CREATED))
3636 continue;
3637
3638 /* If we don't need this section, strip it from the output file.
3639 There were several sections primarily related to dynamic
3640 linking that must be create before the linker maps input
3641 sections to output sections. The linker does that before
3642 bfd_elf_size_dynamic_sections is called, and it is that
3643 function which decides whether anything needs to go into
3644 these sections. */
3645
3646 strip = (sec->size == 0);
3647
3648 if (sec == ia64_info->got_sec)
3649 strip = FALSE;
3650 else if (sec == ia64_info->rel_got_sec)
3651 {
3652 if (strip)
3653 ia64_info->rel_got_sec = NULL;
3654 else
3655 /* We use the reloc_count field as a counter if we need to
3656 copy relocs into the output file. */
3657 sec->reloc_count = 0;
3658 }
3659 else if (sec == ia64_info->fptr_sec)
3660 {
3661 if (strip)
3662 ia64_info->fptr_sec = NULL;
3663 }
3664 else if (sec == ia64_info->rel_fptr_sec)
3665 {
3666 if (strip)
3667 ia64_info->rel_fptr_sec = NULL;
3668 else
3669 /* We use the reloc_count field as a counter if we need to
3670 copy relocs into the output file. */
3671 sec->reloc_count = 0;
3672 }
3673 else if (sec == ia64_info->plt_sec)
3674 {
3675 if (strip)
3676 ia64_info->plt_sec = NULL;
3677 }
3678 else if (sec == ia64_info->pltoff_sec)
3679 {
3680 if (strip)
3681 ia64_info->pltoff_sec = NULL;
3682 }
3683 else if (sec == ia64_info->rel_pltoff_sec)
3684 {
3685 if (strip)
3686 ia64_info->rel_pltoff_sec = NULL;
3687 else
3688 {
3689 relplt = TRUE;
3690 /* We use the reloc_count field as a counter if we need to
3691 copy relocs into the output file. */
3692 sec->reloc_count = 0;
3693 }
3694 }
3695 else
3696 {
3697 const char *name;
3698
3699 /* It's OK to base decisions on the section name, because none
3700 of the dynobj section names depend upon the input files. */
3701 name = bfd_get_section_name (dynobj, sec);
3702
3703 if (strcmp (name, ".got.plt") == 0)
3704 strip = FALSE;
3705 else if (strncmp (name, ".rel", 4) == 0)
3706 {
3707 if (!strip)
3708 {
3709 /* We use the reloc_count field as a counter if we need to
3710 copy relocs into the output file. */
3711 sec->reloc_count = 0;
3712 }
3713 }
3714 else
3715 continue;
3716 }
3717
3718 if (strip)
3719 sec->flags |= SEC_EXCLUDE;
3720 else
3721 {
3722 /* Allocate memory for the section contents. */
3723 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3724 if (sec->contents == NULL && sec->size != 0)
3725 return FALSE;
3726 }
3727 }
3728
3729 if (elf_hash_table (info)->dynamic_sections_created)
3730 {
3731 /* Add some entries to the .dynamic section. We fill in the values
3732 later (in finish_dynamic_sections) but we must add the entries now
3733 so that we get the correct size for the .dynamic section. */
3734
3735 if (info->executable)
3736 {
3737 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3738 by the debugger. */
3739 #define add_dynamic_entry(TAG, VAL) \
3740 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3741
3742 if (!add_dynamic_entry (DT_DEBUG, 0))
3743 return FALSE;
3744 }
3745
3746 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3747 return FALSE;
3748 if (!add_dynamic_entry (DT_PLTGOT, 0))
3749 return FALSE;
3750
3751 if (relplt)
3752 {
3753 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3754 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3755 || !add_dynamic_entry (DT_JMPREL, 0))
3756 return FALSE;
3757 }
3758
3759 if (!add_dynamic_entry (DT_RELA, 0)
3760 || !add_dynamic_entry (DT_RELASZ, 0)
3761 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3762 return FALSE;
3763
3764 if (ia64_info->reltext)
3765 {
3766 if (!add_dynamic_entry (DT_TEXTREL, 0))
3767 return FALSE;
3768 info->flags |= DF_TEXTREL;
3769 }
3770 }
3771
3772 /* ??? Perhaps force __gp local. */
3773
3774 return TRUE;
3775 }
3776
3777 static bfd_reloc_status_type
3778 elfNN_ia64_install_value (hit_addr, v, r_type)
3779 bfd_byte *hit_addr;
3780 bfd_vma v;
3781 unsigned int r_type;
3782 {
3783 const struct ia64_operand *op;
3784 int bigendian = 0, shift = 0;
3785 bfd_vma t0, t1, dword;
3786 ia64_insn insn;
3787 enum ia64_opnd opnd;
3788 const char *err;
3789 size_t size = 8;
3790 #ifdef BFD_HOST_U_64_BIT
3791 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3792 #else
3793 bfd_vma val = v;
3794 #endif
3795
3796 opnd = IA64_OPND_NIL;
3797 switch (r_type)
3798 {
3799 case R_IA64_NONE:
3800 case R_IA64_LDXMOV:
3801 return bfd_reloc_ok;
3802
3803 /* Instruction relocations. */
3804
3805 case R_IA64_IMM14:
3806 case R_IA64_TPREL14:
3807 case R_IA64_DTPREL14:
3808 opnd = IA64_OPND_IMM14;
3809 break;
3810
3811 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3812 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3813 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3814 case R_IA64_PCREL21B:
3815 case R_IA64_PCREL21BI:
3816 opnd = IA64_OPND_TGT25c;
3817 break;
3818
3819 case R_IA64_IMM22:
3820 case R_IA64_GPREL22:
3821 case R_IA64_LTOFF22:
3822 case R_IA64_LTOFF22X:
3823 case R_IA64_PLTOFF22:
3824 case R_IA64_PCREL22:
3825 case R_IA64_LTOFF_FPTR22:
3826 case R_IA64_TPREL22:
3827 case R_IA64_DTPREL22:
3828 case R_IA64_LTOFF_TPREL22:
3829 case R_IA64_LTOFF_DTPMOD22:
3830 case R_IA64_LTOFF_DTPREL22:
3831 opnd = IA64_OPND_IMM22;
3832 break;
3833
3834 case R_IA64_IMM64:
3835 case R_IA64_GPREL64I:
3836 case R_IA64_LTOFF64I:
3837 case R_IA64_PLTOFF64I:
3838 case R_IA64_PCREL64I:
3839 case R_IA64_FPTR64I:
3840 case R_IA64_LTOFF_FPTR64I:
3841 case R_IA64_TPREL64I:
3842 case R_IA64_DTPREL64I:
3843 opnd = IA64_OPND_IMMU64;
3844 break;
3845
3846 /* Data relocations. */
3847
3848 case R_IA64_DIR32MSB:
3849 case R_IA64_GPREL32MSB:
3850 case R_IA64_FPTR32MSB:
3851 case R_IA64_PCREL32MSB:
3852 case R_IA64_LTOFF_FPTR32MSB:
3853 case R_IA64_SEGREL32MSB:
3854 case R_IA64_SECREL32MSB:
3855 case R_IA64_LTV32MSB:
3856 case R_IA64_DTPREL32MSB:
3857 size = 4; bigendian = 1;
3858 break;
3859
3860 case R_IA64_DIR32LSB:
3861 case R_IA64_GPREL32LSB:
3862 case R_IA64_FPTR32LSB:
3863 case R_IA64_PCREL32LSB:
3864 case R_IA64_LTOFF_FPTR32LSB:
3865 case R_IA64_SEGREL32LSB:
3866 case R_IA64_SECREL32LSB:
3867 case R_IA64_LTV32LSB:
3868 case R_IA64_DTPREL32LSB:
3869 size = 4; bigendian = 0;
3870 break;
3871
3872 case R_IA64_DIR64MSB:
3873 case R_IA64_GPREL64MSB:
3874 case R_IA64_PLTOFF64MSB:
3875 case R_IA64_FPTR64MSB:
3876 case R_IA64_PCREL64MSB:
3877 case R_IA64_LTOFF_FPTR64MSB:
3878 case R_IA64_SEGREL64MSB:
3879 case R_IA64_SECREL64MSB:
3880 case R_IA64_LTV64MSB:
3881 case R_IA64_TPREL64MSB:
3882 case R_IA64_DTPMOD64MSB:
3883 case R_IA64_DTPREL64MSB:
3884 size = 8; bigendian = 1;
3885 break;
3886
3887 case R_IA64_DIR64LSB:
3888 case R_IA64_GPREL64LSB:
3889 case R_IA64_PLTOFF64LSB:
3890 case R_IA64_FPTR64LSB:
3891 case R_IA64_PCREL64LSB:
3892 case R_IA64_LTOFF_FPTR64LSB:
3893 case R_IA64_SEGREL64LSB:
3894 case R_IA64_SECREL64LSB:
3895 case R_IA64_LTV64LSB:
3896 case R_IA64_TPREL64LSB:
3897 case R_IA64_DTPMOD64LSB:
3898 case R_IA64_DTPREL64LSB:
3899 size = 8; bigendian = 0;
3900 break;
3901
3902 /* Unsupported / Dynamic relocations. */
3903 default:
3904 return bfd_reloc_notsupported;
3905 }
3906
3907 switch (opnd)
3908 {
3909 case IA64_OPND_IMMU64:
3910 hit_addr -= (long) hit_addr & 0x3;
3911 t0 = bfd_getl64 (hit_addr);
3912 t1 = bfd_getl64 (hit_addr + 8);
3913
3914 /* tmpl/s: bits 0.. 5 in t0
3915 slot 0: bits 5..45 in t0
3916 slot 1: bits 46..63 in t0, bits 0..22 in t1
3917 slot 2: bits 23..63 in t1 */
3918
3919 /* First, clear the bits that form the 64 bit constant. */
3920 t0 &= ~(0x3ffffLL << 46);
3921 t1 &= ~(0x7fffffLL
3922 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3923 | (0x01fLL << 22) | (0x001LL << 21)
3924 | (0x001LL << 36)) << 23));
3925
3926 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3927 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3928 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3929 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3930 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3931 | (((val >> 21) & 0x001) << 21) /* ic */
3932 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3933
3934 bfd_putl64 (t0, hit_addr);
3935 bfd_putl64 (t1, hit_addr + 8);
3936 break;
3937
3938 case IA64_OPND_TGT64:
3939 hit_addr -= (long) hit_addr & 0x3;
3940 t0 = bfd_getl64 (hit_addr);
3941 t1 = bfd_getl64 (hit_addr + 8);
3942
3943 /* tmpl/s: bits 0.. 5 in t0
3944 slot 0: bits 5..45 in t0
3945 slot 1: bits 46..63 in t0, bits 0..22 in t1
3946 slot 2: bits 23..63 in t1 */
3947
3948 /* First, clear the bits that form the 64 bit constant. */
3949 t0 &= ~(0x3ffffLL << 46);
3950 t1 &= ~(0x7fffffLL
3951 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3952
3953 val >>= 4;
3954 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3955 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3956 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3957 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3958
3959 bfd_putl64 (t0, hit_addr);
3960 bfd_putl64 (t1, hit_addr + 8);
3961 break;
3962
3963 default:
3964 switch ((long) hit_addr & 0x3)
3965 {
3966 case 0: shift = 5; break;
3967 case 1: shift = 14; hit_addr += 3; break;
3968 case 2: shift = 23; hit_addr += 6; break;
3969 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3970 }
3971 dword = bfd_getl64 (hit_addr);
3972 insn = (dword >> shift) & 0x1ffffffffffLL;
3973
3974 op = elf64_ia64_operands + opnd;
3975 err = (*op->insert) (op, val, &insn);
3976 if (err)
3977 return bfd_reloc_overflow;
3978
3979 dword &= ~(0x1ffffffffffLL << shift);
3980 dword |= (insn << shift);
3981 bfd_putl64 (dword, hit_addr);
3982 break;
3983
3984 case IA64_OPND_NIL:
3985 /* A data relocation. */
3986 if (bigendian)
3987 if (size == 4)
3988 bfd_putb32 (val, hit_addr);
3989 else
3990 bfd_putb64 (val, hit_addr);
3991 else
3992 if (size == 4)
3993 bfd_putl32 (val, hit_addr);
3994 else
3995 bfd_putl64 (val, hit_addr);
3996 break;
3997 }
3998
3999 return bfd_reloc_ok;
4000 }
4001
4002 static void
4003 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
4004 dynindx, addend)
4005 bfd *abfd;
4006 struct bfd_link_info *info;
4007 asection *sec;
4008 asection *srel;
4009 bfd_vma offset;
4010 unsigned int type;
4011 long dynindx;
4012 bfd_vma addend;
4013 {
4014 Elf_Internal_Rela outrel;
4015 bfd_byte *loc;
4016
4017 BFD_ASSERT (dynindx != -1);
4018 outrel.r_info = ELFNN_R_INFO (dynindx, type);
4019 outrel.r_addend = addend;
4020 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4021 if (outrel.r_offset >= (bfd_vma) -2)
4022 {
4023 /* Run for the hills. We shouldn't be outputting a relocation
4024 for this. So do what everyone else does and output a no-op. */
4025 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
4026 outrel.r_addend = 0;
4027 outrel.r_offset = 0;
4028 }
4029 else
4030 outrel.r_offset += sec->output_section->vma + sec->output_offset;
4031
4032 loc = srel->contents;
4033 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
4034 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4035 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
4036 }
4037
4038 /* Store an entry for target address TARGET_ADDR in the linkage table
4039 and return the gp-relative address of the linkage table entry. */
4040
4041 static bfd_vma
4042 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
4043 bfd *abfd;
4044 struct bfd_link_info *info;
4045 struct elfNN_ia64_dyn_sym_info *dyn_i;
4046 long dynindx;
4047 bfd_vma addend;
4048 bfd_vma value;
4049 unsigned int dyn_r_type;
4050 {
4051 struct elfNN_ia64_link_hash_table *ia64_info;
4052 asection *got_sec;
4053 bfd_boolean done;
4054 bfd_vma got_offset;
4055
4056 ia64_info = elfNN_ia64_hash_table (info);
4057 got_sec = ia64_info->got_sec;
4058
4059 switch (dyn_r_type)
4060 {
4061 case R_IA64_TPREL64LSB:
4062 done = dyn_i->tprel_done;
4063 dyn_i->tprel_done = TRUE;
4064 got_offset = dyn_i->tprel_offset;
4065 break;
4066 case R_IA64_DTPMOD64LSB:
4067 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
4068 {
4069 done = dyn_i->dtpmod_done;
4070 dyn_i->dtpmod_done = TRUE;
4071 }
4072 else
4073 {
4074 done = ia64_info->self_dtpmod_done;
4075 ia64_info->self_dtpmod_done = TRUE;
4076 dynindx = 0;
4077 }
4078 got_offset = dyn_i->dtpmod_offset;
4079 break;
4080 case R_IA64_DTPREL32LSB:
4081 case R_IA64_DTPREL64LSB:
4082 done = dyn_i->dtprel_done;
4083 dyn_i->dtprel_done = TRUE;
4084 got_offset = dyn_i->dtprel_offset;
4085 break;
4086 default:
4087 done = dyn_i->got_done;
4088 dyn_i->got_done = TRUE;
4089 got_offset = dyn_i->got_offset;
4090 break;
4091 }
4092
4093 BFD_ASSERT ((got_offset & 7) == 0);
4094
4095 if (! done)
4096 {
4097 /* Store the target address in the linkage table entry. */
4098 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
4099
4100 /* Install a dynamic relocation if needed. */
4101 if (((info->shared
4102 && (!dyn_i->h
4103 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4104 || dyn_i->h->root.type != bfd_link_hash_undefweak)
4105 && dyn_r_type != R_IA64_DTPREL32LSB
4106 && dyn_r_type != R_IA64_DTPREL64LSB)
4107 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
4108 || (dynindx != -1
4109 && (dyn_r_type == R_IA64_FPTR32LSB
4110 || dyn_r_type == R_IA64_FPTR64LSB)))
4111 && (!dyn_i->want_ltoff_fptr
4112 || !info->pie
4113 || !dyn_i->h
4114 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4115 {
4116 if (dynindx == -1
4117 && dyn_r_type != R_IA64_TPREL64LSB
4118 && dyn_r_type != R_IA64_DTPMOD64LSB
4119 && dyn_r_type != R_IA64_DTPREL32LSB
4120 && dyn_r_type != R_IA64_DTPREL64LSB)
4121 {
4122 dyn_r_type = R_IA64_RELNNLSB;
4123 dynindx = 0;
4124 addend = value;
4125 }
4126
4127 if (bfd_big_endian (abfd))
4128 {
4129 switch (dyn_r_type)
4130 {
4131 case R_IA64_REL32LSB:
4132 dyn_r_type = R_IA64_REL32MSB;
4133 break;
4134 case R_IA64_DIR32LSB:
4135 dyn_r_type = R_IA64_DIR32MSB;
4136 break;
4137 case R_IA64_FPTR32LSB:
4138 dyn_r_type = R_IA64_FPTR32MSB;
4139 break;
4140 case R_IA64_DTPREL32LSB:
4141 dyn_r_type = R_IA64_DTPREL32MSB;
4142 break;
4143 case R_IA64_REL64LSB:
4144 dyn_r_type = R_IA64_REL64MSB;
4145 break;
4146 case R_IA64_DIR64LSB:
4147 dyn_r_type = R_IA64_DIR64MSB;
4148 break;
4149 case R_IA64_FPTR64LSB:
4150 dyn_r_type = R_IA64_FPTR64MSB;
4151 break;
4152 case R_IA64_TPREL64LSB:
4153 dyn_r_type = R_IA64_TPREL64MSB;
4154 break;
4155 case R_IA64_DTPMOD64LSB:
4156 dyn_r_type = R_IA64_DTPMOD64MSB;
4157 break;
4158 case R_IA64_DTPREL64LSB:
4159 dyn_r_type = R_IA64_DTPREL64MSB;
4160 break;
4161 default:
4162 BFD_ASSERT (FALSE);
4163 break;
4164 }
4165 }
4166
4167 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4168 ia64_info->rel_got_sec,
4169 got_offset, dyn_r_type,
4170 dynindx, addend);
4171 }
4172 }
4173
4174 /* Return the address of the linkage table entry. */
4175 value = (got_sec->output_section->vma
4176 + got_sec->output_offset
4177 + got_offset);
4178
4179 return value;
4180 }
4181
4182 /* Fill in a function descriptor consisting of the function's code
4183 address and its global pointer. Return the descriptor's address. */
4184
4185 static bfd_vma
4186 set_fptr_entry (abfd, info, dyn_i, value)
4187 bfd *abfd;
4188 struct bfd_link_info *info;
4189 struct elfNN_ia64_dyn_sym_info *dyn_i;
4190 bfd_vma value;
4191 {
4192 struct elfNN_ia64_link_hash_table *ia64_info;
4193 asection *fptr_sec;
4194
4195 ia64_info = elfNN_ia64_hash_table (info);
4196 fptr_sec = ia64_info->fptr_sec;
4197
4198 if (!dyn_i->fptr_done)
4199 {
4200 dyn_i->fptr_done = 1;
4201
4202 /* Fill in the function descriptor. */
4203 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4204 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4205 fptr_sec->contents + dyn_i->fptr_offset + 8);
4206 if (ia64_info->rel_fptr_sec)
4207 {
4208 Elf_Internal_Rela outrel;
4209 bfd_byte *loc;
4210
4211 if (bfd_little_endian (abfd))
4212 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4213 else
4214 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4215 outrel.r_addend = value;
4216 outrel.r_offset = (fptr_sec->output_section->vma
4217 + fptr_sec->output_offset
4218 + dyn_i->fptr_offset);
4219 loc = ia64_info->rel_fptr_sec->contents;
4220 loc += ia64_info->rel_fptr_sec->reloc_count++
4221 * sizeof (ElfNN_External_Rela);
4222 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4223 }
4224 }
4225
4226 /* Return the descriptor's address. */
4227 value = (fptr_sec->output_section->vma
4228 + fptr_sec->output_offset
4229 + dyn_i->fptr_offset);
4230
4231 return value;
4232 }
4233
4234 /* Fill in a PLTOFF entry consisting of the function's code address
4235 and its global pointer. Return the descriptor's address. */
4236
4237 static bfd_vma
4238 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
4239 bfd *abfd;
4240 struct bfd_link_info *info;
4241 struct elfNN_ia64_dyn_sym_info *dyn_i;
4242 bfd_vma value;
4243 bfd_boolean is_plt;
4244 {
4245 struct elfNN_ia64_link_hash_table *ia64_info;
4246 asection *pltoff_sec;
4247
4248 ia64_info = elfNN_ia64_hash_table (info);
4249 pltoff_sec = ia64_info->pltoff_sec;
4250
4251 /* Don't do anything if this symbol uses a real PLT entry. In
4252 that case, we'll fill this in during finish_dynamic_symbol. */
4253 if ((! dyn_i->want_plt || is_plt)
4254 && !dyn_i->pltoff_done)
4255 {
4256 bfd_vma gp = _bfd_get_gp_value (abfd);
4257
4258 /* Fill in the function descriptor. */
4259 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4260 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4261
4262 /* Install dynamic relocations if needed. */
4263 if (!is_plt
4264 && info->shared
4265 && (!dyn_i->h
4266 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4267 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4268 {
4269 unsigned int dyn_r_type;
4270
4271 if (bfd_big_endian (abfd))
4272 dyn_r_type = R_IA64_RELNNMSB;
4273 else
4274 dyn_r_type = R_IA64_RELNNLSB;
4275
4276 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4277 ia64_info->rel_pltoff_sec,
4278 dyn_i->pltoff_offset,
4279 dyn_r_type, 0, value);
4280 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4281 ia64_info->rel_pltoff_sec,
4282 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4283 dyn_r_type, 0, gp);
4284 }
4285
4286 dyn_i->pltoff_done = 1;
4287 }
4288
4289 /* Return the descriptor's address. */
4290 value = (pltoff_sec->output_section->vma
4291 + pltoff_sec->output_offset
4292 + dyn_i->pltoff_offset);
4293
4294 return value;
4295 }
4296
4297 /* Return the base VMA address which should be subtracted from real addresses
4298 when resolving @tprel() relocation.
4299 Main program TLS (whose template starts at PT_TLS p_vaddr)
4300 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4301
4302 static bfd_vma
4303 elfNN_ia64_tprel_base (info)
4304 struct bfd_link_info *info;
4305 {
4306 asection *tls_sec = elf_hash_table (info)->tls_sec;
4307
4308 BFD_ASSERT (tls_sec != NULL);
4309 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4310 tls_sec->alignment_power);
4311 }
4312
4313 /* Return the base VMA address which should be subtracted from real addresses
4314 when resolving @dtprel() relocation.
4315 This is PT_TLS segment p_vaddr. */
4316
4317 static bfd_vma
4318 elfNN_ia64_dtprel_base (info)
4319 struct bfd_link_info *info;
4320 {
4321 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4322 return elf_hash_table (info)->tls_sec->vma;
4323 }
4324
4325 /* Called through qsort to sort the .IA_64.unwind section during a
4326 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4327 to the output bfd so we can do proper endianness frobbing. */
4328
4329 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4330
4331 static int
4332 elfNN_ia64_unwind_entry_compare (a, b)
4333 const PTR a;
4334 const PTR b;
4335 {
4336 bfd_vma av, bv;
4337
4338 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4339 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4340
4341 return (av < bv ? -1 : av > bv ? 1 : 0);
4342 }
4343
4344 /* Make sure we've got ourselves a nice fat __gp value. */
4345 static bfd_boolean
4346 elfNN_ia64_choose_gp (abfd, info)
4347 bfd *abfd;
4348 struct bfd_link_info *info;
4349 {
4350 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4351 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4352 struct elf_link_hash_entry *gp;
4353 bfd_vma gp_val;
4354 asection *os;
4355 struct elfNN_ia64_link_hash_table *ia64_info;
4356
4357 ia64_info = elfNN_ia64_hash_table (info);
4358
4359 /* Find the min and max vma of all sections marked short. Also collect
4360 min and max vma of any type, for use in selecting a nice gp. */
4361 for (os = abfd->sections; os ; os = os->next)
4362 {
4363 bfd_vma lo, hi;
4364
4365 if ((os->flags & SEC_ALLOC) == 0)
4366 continue;
4367
4368 lo = os->vma;
4369 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4370 if (hi < lo)
4371 hi = (bfd_vma) -1;
4372
4373 if (min_vma > lo)
4374 min_vma = lo;
4375 if (max_vma < hi)
4376 max_vma = hi;
4377 if (os->flags & SEC_SMALL_DATA)
4378 {
4379 if (min_short_vma > lo)
4380 min_short_vma = lo;
4381 if (max_short_vma < hi)
4382 max_short_vma = hi;
4383 }
4384 }
4385
4386 /* See if the user wants to force a value. */
4387 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4388 FALSE, FALSE);
4389
4390 if (gp
4391 && (gp->root.type == bfd_link_hash_defined
4392 || gp->root.type == bfd_link_hash_defweak))
4393 {
4394 asection *gp_sec = gp->root.u.def.section;
4395 gp_val = (gp->root.u.def.value
4396 + gp_sec->output_section->vma
4397 + gp_sec->output_offset);
4398 }
4399 else
4400 {
4401 /* Pick a sensible value. */
4402
4403 asection *got_sec = ia64_info->got_sec;
4404
4405 /* Start with just the address of the .got. */
4406 if (got_sec)
4407 gp_val = got_sec->output_section->vma;
4408 else if (max_short_vma != 0)
4409 gp_val = min_short_vma;
4410 else if (max_vma - min_vma < 0x200000)
4411 gp_val = min_vma;
4412 else
4413 gp_val = max_vma - 0x200000 + 8;
4414
4415 /* If it is possible to address the entire image, but we
4416 don't with the choice above, adjust. */
4417 if (max_vma - min_vma < 0x400000
4418 && (max_vma - gp_val >= 0x200000
4419 || gp_val - min_vma > 0x200000))
4420 gp_val = min_vma + 0x200000;
4421 else if (max_short_vma != 0)
4422 {
4423 /* If we don't cover all the short data, adjust. */
4424 if (max_short_vma - gp_val >= 0x200000)
4425 gp_val = min_short_vma + 0x200000;
4426
4427 /* If we're addressing stuff past the end, adjust back. */
4428 if (gp_val > max_vma)
4429 gp_val = max_vma - 0x200000 + 8;
4430 }
4431 }
4432
4433 /* Validate whether all SHF_IA_64_SHORT sections are within
4434 range of the chosen GP. */
4435
4436 if (max_short_vma != 0)
4437 {
4438 if (max_short_vma - min_short_vma >= 0x400000)
4439 {
4440 (*_bfd_error_handler)
4441 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4442 bfd_get_filename (abfd),
4443 (unsigned long) (max_short_vma - min_short_vma));
4444 return FALSE;
4445 }
4446 else if ((gp_val > min_short_vma
4447 && gp_val - min_short_vma > 0x200000)
4448 || (gp_val < max_short_vma
4449 && max_short_vma - gp_val >= 0x200000))
4450 {
4451 (*_bfd_error_handler)
4452 (_("%s: __gp does not cover short data segment"),
4453 bfd_get_filename (abfd));
4454 return FALSE;
4455 }
4456 }
4457
4458 _bfd_set_gp_value (abfd, gp_val);
4459
4460 return TRUE;
4461 }
4462
4463 static bfd_boolean
4464 elfNN_ia64_final_link (abfd, info)
4465 bfd *abfd;
4466 struct bfd_link_info *info;
4467 {
4468 struct elfNN_ia64_link_hash_table *ia64_info;
4469 asection *unwind_output_sec;
4470
4471 ia64_info = elfNN_ia64_hash_table (info);
4472
4473 /* Make sure we've got ourselves a nice fat __gp value. */
4474 if (!info->relocatable)
4475 {
4476 bfd_vma gp_val;
4477 struct elf_link_hash_entry *gp;
4478
4479 /* We assume after gp is set, section size will only decrease. We
4480 need to adjust gp for it. */
4481 _bfd_set_gp_value (abfd, 0);
4482 if (! elfNN_ia64_choose_gp (abfd, info))
4483 return FALSE;
4484 gp_val = _bfd_get_gp_value (abfd);
4485
4486 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4487 FALSE, FALSE);
4488 if (gp)
4489 {
4490 gp->root.type = bfd_link_hash_defined;
4491 gp->root.u.def.value = gp_val;
4492 gp->root.u.def.section = bfd_abs_section_ptr;
4493 }
4494 }
4495
4496 /* If we're producing a final executable, we need to sort the contents
4497 of the .IA_64.unwind section. Force this section to be relocated
4498 into memory rather than written immediately to the output file. */
4499 unwind_output_sec = NULL;
4500 if (!info->relocatable)
4501 {
4502 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4503 if (s)
4504 {
4505 unwind_output_sec = s->output_section;
4506 unwind_output_sec->contents
4507 = bfd_malloc (unwind_output_sec->size);
4508 if (unwind_output_sec->contents == NULL)
4509 return FALSE;
4510 }
4511 }
4512
4513 /* Invoke the regular ELF backend linker to do all the work. */
4514 if (!bfd_elf_final_link (abfd, info))
4515 return FALSE;
4516
4517 if (unwind_output_sec)
4518 {
4519 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4520 qsort (unwind_output_sec->contents,
4521 (size_t) (unwind_output_sec->size / 24),
4522 24,
4523 elfNN_ia64_unwind_entry_compare);
4524
4525 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4526 unwind_output_sec->contents, (bfd_vma) 0,
4527 unwind_output_sec->size))
4528 return FALSE;
4529 }
4530
4531 return TRUE;
4532 }
4533
4534 static bfd_boolean
4535 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4536 contents, relocs, local_syms, local_sections)
4537 bfd *output_bfd;
4538 struct bfd_link_info *info;
4539 bfd *input_bfd;
4540 asection *input_section;
4541 bfd_byte *contents;
4542 Elf_Internal_Rela *relocs;
4543 Elf_Internal_Sym *local_syms;
4544 asection **local_sections;
4545 {
4546 struct elfNN_ia64_link_hash_table *ia64_info;
4547 Elf_Internal_Shdr *symtab_hdr;
4548 Elf_Internal_Rela *rel;
4549 Elf_Internal_Rela *relend;
4550 asection *srel;
4551 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4552 bfd_vma gp_val;
4553
4554 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4555 ia64_info = elfNN_ia64_hash_table (info);
4556
4557 /* Infect various flags from the input section to the output section. */
4558 if (info->relocatable)
4559 {
4560 bfd_vma flags;
4561
4562 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4563 flags &= SHF_IA_64_NORECOV;
4564
4565 elf_section_data(input_section->output_section)
4566 ->this_hdr.sh_flags |= flags;
4567 return TRUE;
4568 }
4569
4570 gp_val = _bfd_get_gp_value (output_bfd);
4571 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4572
4573 rel = relocs;
4574 relend = relocs + input_section->reloc_count;
4575 for (; rel < relend; ++rel)
4576 {
4577 struct elf_link_hash_entry *h;
4578 struct elfNN_ia64_dyn_sym_info *dyn_i;
4579 bfd_reloc_status_type r;
4580 reloc_howto_type *howto;
4581 unsigned long r_symndx;
4582 Elf_Internal_Sym *sym;
4583 unsigned int r_type;
4584 bfd_vma value;
4585 asection *sym_sec;
4586 bfd_byte *hit_addr;
4587 bfd_boolean dynamic_symbol_p;
4588 bfd_boolean undef_weak_ref;
4589
4590 r_type = ELFNN_R_TYPE (rel->r_info);
4591 if (r_type > R_IA64_MAX_RELOC_CODE)
4592 {
4593 (*_bfd_error_handler)
4594 (_("%B: unknown relocation type %d"),
4595 input_bfd, (int) r_type);
4596 bfd_set_error (bfd_error_bad_value);
4597 ret_val = FALSE;
4598 continue;
4599 }
4600
4601 howto = lookup_howto (r_type);
4602 r_symndx = ELFNN_R_SYM (rel->r_info);
4603 h = NULL;
4604 sym = NULL;
4605 sym_sec = NULL;
4606 undef_weak_ref = FALSE;
4607
4608 if (r_symndx < symtab_hdr->sh_info)
4609 {
4610 /* Reloc against local symbol. */
4611 asection *msec;
4612 sym = local_syms + r_symndx;
4613 sym_sec = local_sections[r_symndx];
4614 msec = sym_sec;
4615 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4616 if ((sym_sec->flags & SEC_MERGE)
4617 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4618 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4619 {
4620 struct elfNN_ia64_local_hash_entry *loc_h;
4621
4622 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4623 if (loc_h && ! loc_h->sec_merge_done)
4624 {
4625 struct elfNN_ia64_dyn_sym_info *dynent;
4626 unsigned int count;
4627
4628 for (count = loc_h->count, dynent = loc_h->info;
4629 count != 0;
4630 count--, dynent++)
4631 {
4632 msec = sym_sec;
4633 dynent->addend =
4634 _bfd_merged_section_offset (output_bfd, &msec,
4635 elf_section_data (msec)->
4636 sec_info,
4637 sym->st_value
4638 + dynent->addend);
4639 dynent->addend -= sym->st_value;
4640 dynent->addend += msec->output_section->vma
4641 + msec->output_offset
4642 - sym_sec->output_section->vma
4643 - sym_sec->output_offset;
4644 }
4645
4646 qsort (loc_h->info, loc_h->count,
4647 sizeof (*loc_h->info), addend_compare);
4648
4649 loc_h->sec_merge_done = 1;
4650 }
4651 }
4652 }
4653 else
4654 {
4655 bfd_boolean unresolved_reloc;
4656 bfd_boolean warned;
4657 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4658
4659 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4660 r_symndx, symtab_hdr, sym_hashes,
4661 h, sym_sec, value,
4662 unresolved_reloc, warned);
4663
4664 if (h->root.type == bfd_link_hash_undefweak)
4665 undef_weak_ref = TRUE;
4666 else if (warned)
4667 continue;
4668 }
4669
4670 hit_addr = contents + rel->r_offset;
4671 value += rel->r_addend;
4672 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4673
4674 switch (r_type)
4675 {
4676 case R_IA64_NONE:
4677 case R_IA64_LDXMOV:
4678 continue;
4679
4680 case R_IA64_IMM14:
4681 case R_IA64_IMM22:
4682 case R_IA64_IMM64:
4683 case R_IA64_DIR32MSB:
4684 case R_IA64_DIR32LSB:
4685 case R_IA64_DIR64MSB:
4686 case R_IA64_DIR64LSB:
4687 /* Install a dynamic relocation for this reloc. */
4688 if ((dynamic_symbol_p || info->shared)
4689 && r_symndx != 0
4690 && (input_section->flags & SEC_ALLOC) != 0)
4691 {
4692 unsigned int dyn_r_type;
4693 long dynindx;
4694 bfd_vma addend;
4695
4696 BFD_ASSERT (srel != NULL);
4697
4698 switch (r_type)
4699 {
4700 case R_IA64_IMM14:
4701 case R_IA64_IMM22:
4702 case R_IA64_IMM64:
4703 /* ??? People shouldn't be doing non-pic code in
4704 shared libraries nor dynamic executables. */
4705 (*_bfd_error_handler)
4706 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4707 input_bfd,
4708 h ? h->root.root.string
4709 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4710 sym_sec));
4711 ret_val = FALSE;
4712 continue;
4713
4714 default:
4715 break;
4716 }
4717
4718 /* If we don't need dynamic symbol lookup, find a
4719 matching RELATIVE relocation. */
4720 dyn_r_type = r_type;
4721 if (dynamic_symbol_p)
4722 {
4723 dynindx = h->dynindx;
4724 addend = rel->r_addend;
4725 value = 0;
4726 }
4727 else
4728 {
4729 switch (r_type)
4730 {
4731 case R_IA64_DIR32MSB:
4732 dyn_r_type = R_IA64_REL32MSB;
4733 break;
4734 case R_IA64_DIR32LSB:
4735 dyn_r_type = R_IA64_REL32LSB;
4736 break;
4737 case R_IA64_DIR64MSB:
4738 dyn_r_type = R_IA64_REL64MSB;
4739 break;
4740 case R_IA64_DIR64LSB:
4741 dyn_r_type = R_IA64_REL64LSB;
4742 break;
4743
4744 default:
4745 break;
4746 }
4747 dynindx = 0;
4748 addend = value;
4749 }
4750
4751 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4752 srel, rel->r_offset, dyn_r_type,
4753 dynindx, addend);
4754 }
4755 /* Fall through. */
4756
4757 case R_IA64_LTV32MSB:
4758 case R_IA64_LTV32LSB:
4759 case R_IA64_LTV64MSB:
4760 case R_IA64_LTV64LSB:
4761 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4762 break;
4763
4764 case R_IA64_GPREL22:
4765 case R_IA64_GPREL64I:
4766 case R_IA64_GPREL32MSB:
4767 case R_IA64_GPREL32LSB:
4768 case R_IA64_GPREL64MSB:
4769 case R_IA64_GPREL64LSB:
4770 if (dynamic_symbol_p)
4771 {
4772 (*_bfd_error_handler)
4773 (_("%B: @gprel relocation against dynamic symbol %s"),
4774 input_bfd,
4775 h ? h->root.root.string
4776 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4777 sym_sec));
4778 ret_val = FALSE;
4779 continue;
4780 }
4781 value -= gp_val;
4782 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4783 break;
4784
4785 case R_IA64_LTOFF22:
4786 case R_IA64_LTOFF22X:
4787 case R_IA64_LTOFF64I:
4788 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4789 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4790 rel->r_addend, value, R_IA64_DIRNNLSB);
4791 value -= gp_val;
4792 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4793 break;
4794
4795 case R_IA64_PLTOFF22:
4796 case R_IA64_PLTOFF64I:
4797 case R_IA64_PLTOFF64MSB:
4798 case R_IA64_PLTOFF64LSB:
4799 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4800 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4801 value -= gp_val;
4802 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4803 break;
4804
4805 case R_IA64_FPTR64I:
4806 case R_IA64_FPTR32MSB:
4807 case R_IA64_FPTR32LSB:
4808 case R_IA64_FPTR64MSB:
4809 case R_IA64_FPTR64LSB:
4810 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4811 if (dyn_i->want_fptr)
4812 {
4813 if (!undef_weak_ref)
4814 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4815 }
4816 if (!dyn_i->want_fptr || info->pie)
4817 {
4818 long dynindx;
4819 unsigned int dyn_r_type = r_type;
4820 bfd_vma addend = rel->r_addend;
4821
4822 /* Otherwise, we expect the dynamic linker to create
4823 the entry. */
4824
4825 if (dyn_i->want_fptr)
4826 {
4827 if (r_type == R_IA64_FPTR64I)
4828 {
4829 /* We can't represent this without a dynamic symbol.
4830 Adjust the relocation to be against an output
4831 section symbol, which are always present in the
4832 dynamic symbol table. */
4833 /* ??? People shouldn't be doing non-pic code in
4834 shared libraries. Hork. */
4835 (*_bfd_error_handler)
4836 (_("%B: linking non-pic code in a position independent executable"),
4837 input_bfd);
4838 ret_val = FALSE;
4839 continue;
4840 }
4841 dynindx = 0;
4842 addend = value;
4843 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4844 }
4845 else if (h)
4846 {
4847 if (h->dynindx != -1)
4848 dynindx = h->dynindx;
4849 else
4850 dynindx = (_bfd_elf_link_lookup_local_dynindx
4851 (info, h->root.u.def.section->owner,
4852 global_sym_index (h)));
4853 value = 0;
4854 }
4855 else
4856 {
4857 dynindx = (_bfd_elf_link_lookup_local_dynindx
4858 (info, input_bfd, (long) r_symndx));
4859 value = 0;
4860 }
4861
4862 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4863 srel, rel->r_offset, dyn_r_type,
4864 dynindx, addend);
4865 }
4866
4867 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4868 break;
4869
4870 case R_IA64_LTOFF_FPTR22:
4871 case R_IA64_LTOFF_FPTR64I:
4872 case R_IA64_LTOFF_FPTR32MSB:
4873 case R_IA64_LTOFF_FPTR32LSB:
4874 case R_IA64_LTOFF_FPTR64MSB:
4875 case R_IA64_LTOFF_FPTR64LSB:
4876 {
4877 long dynindx;
4878
4879 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4880 if (dyn_i->want_fptr)
4881 {
4882 BFD_ASSERT (h == NULL || h->dynindx == -1);
4883 if (!undef_weak_ref)
4884 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4885 dynindx = -1;
4886 }
4887 else
4888 {
4889 /* Otherwise, we expect the dynamic linker to create
4890 the entry. */
4891 if (h)
4892 {
4893 if (h->dynindx != -1)
4894 dynindx = h->dynindx;
4895 else
4896 dynindx = (_bfd_elf_link_lookup_local_dynindx
4897 (info, h->root.u.def.section->owner,
4898 global_sym_index (h)));
4899 }
4900 else
4901 dynindx = (_bfd_elf_link_lookup_local_dynindx
4902 (info, input_bfd, (long) r_symndx));
4903 value = 0;
4904 }
4905
4906 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4907 rel->r_addend, value, R_IA64_FPTRNNLSB);
4908 value -= gp_val;
4909 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4910 }
4911 break;
4912
4913 case R_IA64_PCREL32MSB:
4914 case R_IA64_PCREL32LSB:
4915 case R_IA64_PCREL64MSB:
4916 case R_IA64_PCREL64LSB:
4917 /* Install a dynamic relocation for this reloc. */
4918 if (dynamic_symbol_p && r_symndx != 0)
4919 {
4920 BFD_ASSERT (srel != NULL);
4921
4922 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4923 srel, rel->r_offset, r_type,
4924 h->dynindx, rel->r_addend);
4925 }
4926 goto finish_pcrel;
4927
4928 case R_IA64_PCREL21B:
4929 case R_IA64_PCREL60B:
4930 /* We should have created a PLT entry for any dynamic symbol. */
4931 dyn_i = NULL;
4932 if (h)
4933 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4934
4935 if (dyn_i && dyn_i->want_plt2)
4936 {
4937 /* Should have caught this earlier. */
4938 BFD_ASSERT (rel->r_addend == 0);
4939
4940 value = (ia64_info->plt_sec->output_section->vma
4941 + ia64_info->plt_sec->output_offset
4942 + dyn_i->plt2_offset);
4943 }
4944 else
4945 {
4946 /* Since there's no PLT entry, Validate that this is
4947 locally defined. */
4948 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4949
4950 /* If the symbol is undef_weak, we shouldn't be trying
4951 to call it. There's every chance that we'd wind up
4952 with an out-of-range fixup here. Don't bother setting
4953 any value at all. */
4954 if (undef_weak_ref)
4955 continue;
4956 }
4957 goto finish_pcrel;
4958
4959 case R_IA64_PCREL21BI:
4960 case R_IA64_PCREL21F:
4961 case R_IA64_PCREL21M:
4962 case R_IA64_PCREL22:
4963 case R_IA64_PCREL64I:
4964 /* The PCREL21BI reloc is specifically not intended for use with
4965 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4966 fixup code, and thus probably ought not be dynamic. The
4967 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4968 if (dynamic_symbol_p)
4969 {
4970 const char *msg;
4971
4972 if (r_type == R_IA64_PCREL21BI)
4973 msg = _("%B: @internal branch to dynamic symbol %s");
4974 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4975 msg = _("%B: speculation fixup to dynamic symbol %s");
4976 else
4977 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4978 (*_bfd_error_handler) (msg, input_bfd,
4979 h ? h->root.root.string
4980 : bfd_elf_sym_name (input_bfd,
4981 symtab_hdr,
4982 sym,
4983 sym_sec));
4984 ret_val = FALSE;
4985 continue;
4986 }
4987 goto finish_pcrel;
4988
4989 finish_pcrel:
4990 /* Make pc-relative. */
4991 value -= (input_section->output_section->vma
4992 + input_section->output_offset
4993 + rel->r_offset) & ~ (bfd_vma) 0x3;
4994 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4995 break;
4996
4997 case R_IA64_SEGREL32MSB:
4998 case R_IA64_SEGREL32LSB:
4999 case R_IA64_SEGREL64MSB:
5000 case R_IA64_SEGREL64LSB:
5001 if (r_symndx == 0)
5002 {
5003 /* If the input section was discarded from the output, then
5004 do nothing. */
5005 r = bfd_reloc_ok;
5006 }
5007 else
5008 {
5009 struct elf_segment_map *m;
5010 Elf_Internal_Phdr *p;
5011
5012 /* Find the segment that contains the output_section. */
5013 for (m = elf_tdata (output_bfd)->segment_map,
5014 p = elf_tdata (output_bfd)->phdr;
5015 m != NULL;
5016 m = m->next, p++)
5017 {
5018 int i;
5019 for (i = m->count - 1; i >= 0; i--)
5020 if (m->sections[i] == input_section->output_section)
5021 break;
5022 if (i >= 0)
5023 break;
5024 }
5025
5026 if (m == NULL)
5027 {
5028 r = bfd_reloc_notsupported;
5029 }
5030 else
5031 {
5032 /* The VMA of the segment is the vaddr of the associated
5033 program header. */
5034 if (value > p->p_vaddr)
5035 value -= p->p_vaddr;
5036 else
5037 value = 0;
5038 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5039 }
5040 break;
5041 }
5042
5043 case R_IA64_SECREL32MSB:
5044 case R_IA64_SECREL32LSB:
5045 case R_IA64_SECREL64MSB:
5046 case R_IA64_SECREL64LSB:
5047 /* Make output-section relative to section where the symbol
5048 is defined. PR 475 */
5049 if (sym_sec)
5050 value -= sym_sec->output_section->vma;
5051 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5052 break;
5053
5054 case R_IA64_IPLTMSB:
5055 case R_IA64_IPLTLSB:
5056 /* Install a dynamic relocation for this reloc. */
5057 if ((dynamic_symbol_p || info->shared)
5058 && (input_section->flags & SEC_ALLOC) != 0)
5059 {
5060 BFD_ASSERT (srel != NULL);
5061
5062 /* If we don't need dynamic symbol lookup, install two
5063 RELATIVE relocations. */
5064 if (!dynamic_symbol_p)
5065 {
5066 unsigned int dyn_r_type;
5067
5068 if (r_type == R_IA64_IPLTMSB)
5069 dyn_r_type = R_IA64_REL64MSB;
5070 else
5071 dyn_r_type = R_IA64_REL64LSB;
5072
5073 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5074 input_section,
5075 srel, rel->r_offset,
5076 dyn_r_type, 0, value);
5077 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5078 input_section,
5079 srel, rel->r_offset + 8,
5080 dyn_r_type, 0, gp_val);
5081 }
5082 else
5083 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
5084 srel, rel->r_offset, r_type,
5085 h->dynindx, rel->r_addend);
5086 }
5087
5088 if (r_type == R_IA64_IPLTMSB)
5089 r_type = R_IA64_DIR64MSB;
5090 else
5091 r_type = R_IA64_DIR64LSB;
5092 elfNN_ia64_install_value (hit_addr, value, r_type);
5093 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
5094 break;
5095
5096 case R_IA64_TPREL14:
5097 case R_IA64_TPREL22:
5098 case R_IA64_TPREL64I:
5099 value -= elfNN_ia64_tprel_base (info);
5100 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5101 break;
5102
5103 case R_IA64_DTPREL14:
5104 case R_IA64_DTPREL22:
5105 case R_IA64_DTPREL64I:
5106 case R_IA64_DTPREL32LSB:
5107 case R_IA64_DTPREL32MSB:
5108 case R_IA64_DTPREL64LSB:
5109 case R_IA64_DTPREL64MSB:
5110 value -= elfNN_ia64_dtprel_base (info);
5111 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5112 break;
5113
5114 case R_IA64_LTOFF_TPREL22:
5115 case R_IA64_LTOFF_DTPMOD22:
5116 case R_IA64_LTOFF_DTPREL22:
5117 {
5118 int got_r_type;
5119 long dynindx = h ? h->dynindx : -1;
5120 bfd_vma r_addend = rel->r_addend;
5121
5122 switch (r_type)
5123 {
5124 default:
5125 case R_IA64_LTOFF_TPREL22:
5126 if (!dynamic_symbol_p)
5127 {
5128 if (!info->shared)
5129 value -= elfNN_ia64_tprel_base (info);
5130 else
5131 {
5132 r_addend += value - elfNN_ia64_dtprel_base (info);
5133 dynindx = 0;
5134 }
5135 }
5136 got_r_type = R_IA64_TPREL64LSB;
5137 break;
5138 case R_IA64_LTOFF_DTPMOD22:
5139 if (!dynamic_symbol_p && !info->shared)
5140 value = 1;
5141 got_r_type = R_IA64_DTPMOD64LSB;
5142 break;
5143 case R_IA64_LTOFF_DTPREL22:
5144 if (!dynamic_symbol_p)
5145 value -= elfNN_ia64_dtprel_base (info);
5146 got_r_type = R_IA64_DTPRELNNLSB;
5147 break;
5148 }
5149 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5150 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5151 value, got_r_type);
5152 value -= gp_val;
5153 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5154 }
5155 break;
5156
5157 default:
5158 r = bfd_reloc_notsupported;
5159 break;
5160 }
5161
5162 switch (r)
5163 {
5164 case bfd_reloc_ok:
5165 break;
5166
5167 case bfd_reloc_undefined:
5168 /* This can happen for global table relative relocs if
5169 __gp is undefined. This is a panic situation so we
5170 don't try to continue. */
5171 (*info->callbacks->undefined_symbol)
5172 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5173 return FALSE;
5174
5175 case bfd_reloc_notsupported:
5176 {
5177 const char *name;
5178
5179 if (h)
5180 name = h->root.root.string;
5181 else
5182 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5183 sym_sec);
5184 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5185 name, input_bfd,
5186 input_section, rel->r_offset))
5187 return FALSE;
5188 ret_val = FALSE;
5189 }
5190 break;
5191
5192 case bfd_reloc_dangerous:
5193 case bfd_reloc_outofrange:
5194 case bfd_reloc_overflow:
5195 default:
5196 {
5197 const char *name;
5198
5199 if (h)
5200 name = h->root.root.string;
5201 else
5202 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5203 sym_sec);
5204
5205 switch (r_type)
5206 {
5207 case R_IA64_PCREL21B:
5208 case R_IA64_PCREL21BI:
5209 case R_IA64_PCREL21M:
5210 case R_IA64_PCREL21F:
5211 if (is_elf_hash_table (info->hash))
5212 {
5213 /* Relaxtion is always performed for ELF output.
5214 Overflow failures for those relocations mean
5215 that the section is too big to relax. */
5216 (*_bfd_error_handler)
5217 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5218 input_bfd, input_section, howto->name, name,
5219 rel->r_offset, input_section->size);
5220 break;
5221 }
5222 default:
5223 if (!(*info->callbacks->reloc_overflow) (info,
5224 &h->root,
5225 name,
5226 howto->name,
5227 (bfd_vma) 0,
5228 input_bfd,
5229 input_section,
5230 rel->r_offset))
5231 return FALSE;
5232 break;
5233 }
5234
5235 ret_val = FALSE;
5236 }
5237 break;
5238 }
5239 }
5240
5241 return ret_val;
5242 }
5243
5244 static bfd_boolean
5245 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
5246 bfd *output_bfd;
5247 struct bfd_link_info *info;
5248 struct elf_link_hash_entry *h;
5249 Elf_Internal_Sym *sym;
5250 {
5251 struct elfNN_ia64_link_hash_table *ia64_info;
5252 struct elfNN_ia64_dyn_sym_info *dyn_i;
5253
5254 ia64_info = elfNN_ia64_hash_table (info);
5255 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5256
5257 /* Fill in the PLT data, if required. */
5258 if (dyn_i && dyn_i->want_plt)
5259 {
5260 Elf_Internal_Rela outrel;
5261 bfd_byte *loc;
5262 asection *plt_sec;
5263 bfd_vma plt_addr, pltoff_addr, gp_val, index;
5264
5265 gp_val = _bfd_get_gp_value (output_bfd);
5266
5267 /* Initialize the minimal PLT entry. */
5268
5269 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5270 plt_sec = ia64_info->plt_sec;
5271 loc = plt_sec->contents + dyn_i->plt_offset;
5272
5273 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5274 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
5275 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5276
5277 plt_addr = (plt_sec->output_section->vma
5278 + plt_sec->output_offset
5279 + dyn_i->plt_offset);
5280 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5281
5282 /* Initialize the FULL PLT entry, if needed. */
5283 if (dyn_i->want_plt2)
5284 {
5285 loc = plt_sec->contents + dyn_i->plt2_offset;
5286
5287 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5288 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5289
5290 /* Mark the symbol as undefined, rather than as defined in the
5291 plt section. Leave the value alone. */
5292 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5293 first place. But perhaps elflink.c did some for us. */
5294 if (!h->def_regular)
5295 sym->st_shndx = SHN_UNDEF;
5296 }
5297
5298 /* Create the dynamic relocation. */
5299 outrel.r_offset = pltoff_addr;
5300 if (bfd_little_endian (output_bfd))
5301 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5302 else
5303 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5304 outrel.r_addend = 0;
5305
5306 /* This is fun. In the .IA_64.pltoff section, we've got entries
5307 that correspond both to real PLT entries, and those that
5308 happened to resolve to local symbols but need to be created
5309 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5310 relocations for the real PLT should come at the end of the
5311 section, so that they can be indexed by plt entry at runtime.
5312
5313 We emitted all of the relocations for the non-PLT @pltoff
5314 entries during relocate_section. So we can consider the
5315 existing sec->reloc_count to be the base of the array of
5316 PLT relocations. */
5317
5318 loc = ia64_info->rel_pltoff_sec->contents;
5319 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
5320 * sizeof (ElfNN_External_Rela));
5321 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5322 }
5323
5324 /* Mark some specially defined symbols as absolute. */
5325 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5326 || h == ia64_info->root.hgot
5327 || h == ia64_info->root.hplt)
5328 sym->st_shndx = SHN_ABS;
5329
5330 return TRUE;
5331 }
5332
5333 static bfd_boolean
5334 elfNN_ia64_finish_dynamic_sections (abfd, info)
5335 bfd *abfd;
5336 struct bfd_link_info *info;
5337 {
5338 struct elfNN_ia64_link_hash_table *ia64_info;
5339 bfd *dynobj;
5340
5341 ia64_info = elfNN_ia64_hash_table (info);
5342 dynobj = ia64_info->root.dynobj;
5343
5344 if (elf_hash_table (info)->dynamic_sections_created)
5345 {
5346 ElfNN_External_Dyn *dyncon, *dynconend;
5347 asection *sdyn, *sgotplt;
5348 bfd_vma gp_val;
5349
5350 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5351 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5352 BFD_ASSERT (sdyn != NULL);
5353 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5354 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5355
5356 gp_val = _bfd_get_gp_value (abfd);
5357
5358 for (; dyncon < dynconend; dyncon++)
5359 {
5360 Elf_Internal_Dyn dyn;
5361
5362 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5363
5364 switch (dyn.d_tag)
5365 {
5366 case DT_PLTGOT:
5367 dyn.d_un.d_ptr = gp_val;
5368 break;
5369
5370 case DT_PLTRELSZ:
5371 dyn.d_un.d_val = (ia64_info->minplt_entries
5372 * sizeof (ElfNN_External_Rela));
5373 break;
5374
5375 case DT_JMPREL:
5376 /* See the comment above in finish_dynamic_symbol. */
5377 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5378 + ia64_info->rel_pltoff_sec->output_offset
5379 + (ia64_info->rel_pltoff_sec->reloc_count
5380 * sizeof (ElfNN_External_Rela)));
5381 break;
5382
5383 case DT_IA_64_PLT_RESERVE:
5384 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5385 + sgotplt->output_offset);
5386 break;
5387
5388 case DT_RELASZ:
5389 /* Do not have RELASZ include JMPREL. This makes things
5390 easier on ld.so. This is not what the rest of BFD set up. */
5391 dyn.d_un.d_val -= (ia64_info->minplt_entries
5392 * sizeof (ElfNN_External_Rela));
5393 break;
5394 }
5395
5396 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5397 }
5398
5399 /* Initialize the PLT0 entry. */
5400 if (ia64_info->plt_sec)
5401 {
5402 bfd_byte *loc = ia64_info->plt_sec->contents;
5403 bfd_vma pltres;
5404
5405 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5406
5407 pltres = (sgotplt->output_section->vma
5408 + sgotplt->output_offset
5409 - gp_val);
5410
5411 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5412 }
5413 }
5414
5415 return TRUE;
5416 }
5417 \f
5418 /* ELF file flag handling: */
5419
5420 /* Function to keep IA-64 specific file flags. */
5421 static bfd_boolean
5422 elfNN_ia64_set_private_flags (abfd, flags)
5423 bfd *abfd;
5424 flagword flags;
5425 {
5426 BFD_ASSERT (!elf_flags_init (abfd)
5427 || elf_elfheader (abfd)->e_flags == flags);
5428
5429 elf_elfheader (abfd)->e_flags = flags;
5430 elf_flags_init (abfd) = TRUE;
5431 return TRUE;
5432 }
5433
5434 /* Merge backend specific data from an object file to the output
5435 object file when linking. */
5436 static bfd_boolean
5437 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
5438 bfd *ibfd, *obfd;
5439 {
5440 flagword out_flags;
5441 flagword in_flags;
5442 bfd_boolean ok = TRUE;
5443
5444 /* Don't even pretend to support mixed-format linking. */
5445 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5446 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5447 return FALSE;
5448
5449 in_flags = elf_elfheader (ibfd)->e_flags;
5450 out_flags = elf_elfheader (obfd)->e_flags;
5451
5452 if (! elf_flags_init (obfd))
5453 {
5454 elf_flags_init (obfd) = TRUE;
5455 elf_elfheader (obfd)->e_flags = in_flags;
5456
5457 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5458 && bfd_get_arch_info (obfd)->the_default)
5459 {
5460 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5461 bfd_get_mach (ibfd));
5462 }
5463
5464 return TRUE;
5465 }
5466
5467 /* Check flag compatibility. */
5468 if (in_flags == out_flags)
5469 return TRUE;
5470
5471 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5472 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5473 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5474
5475 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5476 {
5477 (*_bfd_error_handler)
5478 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5479 ibfd);
5480
5481 bfd_set_error (bfd_error_bad_value);
5482 ok = FALSE;
5483 }
5484 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5485 {
5486 (*_bfd_error_handler)
5487 (_("%B: linking big-endian files with little-endian files"),
5488 ibfd);
5489
5490 bfd_set_error (bfd_error_bad_value);
5491 ok = FALSE;
5492 }
5493 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5494 {
5495 (*_bfd_error_handler)
5496 (_("%B: linking 64-bit files with 32-bit files"),
5497 ibfd);
5498
5499 bfd_set_error (bfd_error_bad_value);
5500 ok = FALSE;
5501 }
5502 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5503 {
5504 (*_bfd_error_handler)
5505 (_("%B: linking constant-gp files with non-constant-gp files"),
5506 ibfd);
5507
5508 bfd_set_error (bfd_error_bad_value);
5509 ok = FALSE;
5510 }
5511 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5512 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5513 {
5514 (*_bfd_error_handler)
5515 (_("%B: linking auto-pic files with non-auto-pic files"),
5516 ibfd);
5517
5518 bfd_set_error (bfd_error_bad_value);
5519 ok = FALSE;
5520 }
5521
5522 return ok;
5523 }
5524
5525 static bfd_boolean
5526 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5527 bfd *abfd;
5528 PTR ptr;
5529 {
5530 FILE *file = (FILE *) ptr;
5531 flagword flags = elf_elfheader (abfd)->e_flags;
5532
5533 BFD_ASSERT (abfd != NULL && ptr != NULL);
5534
5535 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5536 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5537 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5538 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5539 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5540 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5541 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5542 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5543 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5544
5545 _bfd_elf_print_private_bfd_data (abfd, ptr);
5546 return TRUE;
5547 }
5548
5549 static enum elf_reloc_type_class
5550 elfNN_ia64_reloc_type_class (rela)
5551 const Elf_Internal_Rela *rela;
5552 {
5553 switch ((int) ELFNN_R_TYPE (rela->r_info))
5554 {
5555 case R_IA64_REL32MSB:
5556 case R_IA64_REL32LSB:
5557 case R_IA64_REL64MSB:
5558 case R_IA64_REL64LSB:
5559 return reloc_class_relative;
5560 case R_IA64_IPLTMSB:
5561 case R_IA64_IPLTLSB:
5562 return reloc_class_plt;
5563 case R_IA64_COPY:
5564 return reloc_class_copy;
5565 default:
5566 return reloc_class_normal;
5567 }
5568 }
5569
5570 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5571 {
5572 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5573 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5574 { NULL, 0, 0, 0, 0 }
5575 };
5576
5577 static bfd_boolean
5578 elfNN_ia64_object_p (bfd *abfd)
5579 {
5580 asection *sec;
5581 asection *group, *unwi, *unw;
5582 flagword flags;
5583 const char *name;
5584 char *unwi_name, *unw_name;
5585 bfd_size_type amt;
5586
5587 if (abfd->flags & DYNAMIC)
5588 return TRUE;
5589
5590 /* Flags for fake group section. */
5591 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5592 | SEC_EXCLUDE);
5593
5594 /* We add a fake section group for each .gnu.linkonce.t.* section,
5595 which isn't in a section group, and its unwind sections. */
5596 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5597 {
5598 if (elf_sec_group (sec) == NULL
5599 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5600 == (SEC_LINK_ONCE | SEC_CODE))
5601 && strncmp (sec->name, ".gnu.linkonce.t.", 16) == 0)
5602 {
5603 name = sec->name + 16;
5604
5605 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5606 unwi_name = bfd_alloc (abfd, amt);
5607 if (!unwi_name)
5608 return FALSE;
5609
5610 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5611 unwi = bfd_get_section_by_name (abfd, unwi_name);
5612
5613 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5614 unw_name = bfd_alloc (abfd, amt);
5615 if (!unw_name)
5616 return FALSE;
5617
5618 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5619 unw = bfd_get_section_by_name (abfd, unw_name);
5620
5621 /* We need to create a fake group section for it and its
5622 unwind sections. */
5623 group = bfd_make_section_anyway_with_flags (abfd, name,
5624 flags);
5625 if (group == NULL)
5626 return FALSE;
5627
5628 /* Move the fake group section to the beginning. */
5629 bfd_section_list_remove (abfd, group);
5630 bfd_section_list_prepend (abfd, group);
5631
5632 elf_next_in_group (group) = sec;
5633
5634 elf_group_name (sec) = name;
5635 elf_next_in_group (sec) = sec;
5636 elf_sec_group (sec) = group;
5637
5638 if (unwi)
5639 {
5640 elf_group_name (unwi) = name;
5641 elf_next_in_group (unwi) = sec;
5642 elf_next_in_group (sec) = unwi;
5643 elf_sec_group (unwi) = group;
5644 }
5645
5646 if (unw)
5647 {
5648 elf_group_name (unw) = name;
5649 if (unwi)
5650 {
5651 elf_next_in_group (unw) = elf_next_in_group (unwi);
5652 elf_next_in_group (unwi) = unw;
5653 }
5654 else
5655 {
5656 elf_next_in_group (unw) = sec;
5657 elf_next_in_group (sec) = unw;
5658 }
5659 elf_sec_group (unw) = group;
5660 }
5661
5662 /* Fake SHT_GROUP section header. */
5663 elf_section_data (group)->this_hdr.bfd_section = group;
5664 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5665 }
5666 }
5667 return TRUE;
5668 }
5669
5670 static bfd_boolean
5671 elfNN_ia64_hpux_vec (const bfd_target *vec)
5672 {
5673 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5674 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5675 }
5676
5677 static void
5678 elfNN_hpux_post_process_headers (abfd, info)
5679 bfd *abfd;
5680 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5681 {
5682 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5683
5684 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5685 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5686 }
5687
5688 bfd_boolean
5689 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5690 bfd *abfd ATTRIBUTE_UNUSED;
5691 asection *sec;
5692 int *retval;
5693 {
5694 if (bfd_is_com_section (sec))
5695 {
5696 *retval = SHN_IA_64_ANSI_COMMON;
5697 return TRUE;
5698 }
5699 return FALSE;
5700 }
5701
5702 static void
5703 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5704 asymbol *asym)
5705 {
5706 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5707
5708 switch (elfsym->internal_elf_sym.st_shndx)
5709 {
5710 case SHN_IA_64_ANSI_COMMON:
5711 asym->section = bfd_com_section_ptr;
5712 asym->value = elfsym->internal_elf_sym.st_size;
5713 asym->flags &= ~BSF_GLOBAL;
5714 break;
5715 }
5716 }
5717
5718 \f
5719 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5720 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5721 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5722 #define TARGET_BIG_NAME "elfNN-ia64-big"
5723 #define ELF_ARCH bfd_arch_ia64
5724 #define ELF_MACHINE_CODE EM_IA_64
5725 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5726 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5727 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5728 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
5729
5730 #define elf_backend_section_from_shdr \
5731 elfNN_ia64_section_from_shdr
5732 #define elf_backend_section_flags \
5733 elfNN_ia64_section_flags
5734 #define elf_backend_fake_sections \
5735 elfNN_ia64_fake_sections
5736 #define elf_backend_final_write_processing \
5737 elfNN_ia64_final_write_processing
5738 #define elf_backend_add_symbol_hook \
5739 elfNN_ia64_add_symbol_hook
5740 #define elf_backend_additional_program_headers \
5741 elfNN_ia64_additional_program_headers
5742 #define elf_backend_modify_segment_map \
5743 elfNN_ia64_modify_segment_map
5744 #define elf_backend_modify_program_headers \
5745 elfNN_ia64_modify_program_headers
5746 #define elf_info_to_howto \
5747 elfNN_ia64_info_to_howto
5748
5749 #define bfd_elfNN_bfd_reloc_type_lookup \
5750 elfNN_ia64_reloc_type_lookup
5751 #define bfd_elfNN_bfd_is_local_label_name \
5752 elfNN_ia64_is_local_label_name
5753 #define bfd_elfNN_bfd_relax_section \
5754 elfNN_ia64_relax_section
5755
5756 #define elf_backend_object_p \
5757 elfNN_ia64_object_p
5758
5759 /* Stuff for the BFD linker: */
5760 #define bfd_elfNN_bfd_link_hash_table_create \
5761 elfNN_ia64_hash_table_create
5762 #define bfd_elfNN_bfd_link_hash_table_free \
5763 elfNN_ia64_hash_table_free
5764 #define elf_backend_create_dynamic_sections \
5765 elfNN_ia64_create_dynamic_sections
5766 #define elf_backend_check_relocs \
5767 elfNN_ia64_check_relocs
5768 #define elf_backend_adjust_dynamic_symbol \
5769 elfNN_ia64_adjust_dynamic_symbol
5770 #define elf_backend_size_dynamic_sections \
5771 elfNN_ia64_size_dynamic_sections
5772 #define elf_backend_relocate_section \
5773 elfNN_ia64_relocate_section
5774 #define elf_backend_finish_dynamic_symbol \
5775 elfNN_ia64_finish_dynamic_symbol
5776 #define elf_backend_finish_dynamic_sections \
5777 elfNN_ia64_finish_dynamic_sections
5778 #define bfd_elfNN_bfd_final_link \
5779 elfNN_ia64_final_link
5780
5781 #define bfd_elfNN_bfd_merge_private_bfd_data \
5782 elfNN_ia64_merge_private_bfd_data
5783 #define bfd_elfNN_bfd_set_private_flags \
5784 elfNN_ia64_set_private_flags
5785 #define bfd_elfNN_bfd_print_private_bfd_data \
5786 elfNN_ia64_print_private_bfd_data
5787
5788 #define elf_backend_plt_readonly 1
5789 #define elf_backend_want_plt_sym 0
5790 #define elf_backend_plt_alignment 5
5791 #define elf_backend_got_header_size 0
5792 #define elf_backend_want_got_plt 1
5793 #define elf_backend_may_use_rel_p 1
5794 #define elf_backend_may_use_rela_p 1
5795 #define elf_backend_default_use_rela_p 1
5796 #define elf_backend_want_dynbss 0
5797 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5798 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5799 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5800 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5801 #define elf_backend_rela_normal 1
5802 #define elf_backend_special_sections elfNN_ia64_special_sections
5803
5804 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5805 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5806 We don't want to flood users with so many error messages. We turn
5807 off the warning for now. It will be turned on later when the Intel
5808 compiler is fixed. */
5809 #define elf_backend_link_order_error_handler NULL
5810
5811 #include "elfNN-target.h"
5812
5813 /* HPUX-specific vectors. */
5814
5815 #undef TARGET_LITTLE_SYM
5816 #undef TARGET_LITTLE_NAME
5817 #undef TARGET_BIG_SYM
5818 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5819 #undef TARGET_BIG_NAME
5820 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5821
5822 /* These are HP-UX specific functions. */
5823
5824 #undef elf_backend_post_process_headers
5825 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5826
5827 #undef elf_backend_section_from_bfd_section
5828 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5829
5830 #undef elf_backend_symbol_processing
5831 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5832
5833 #undef elf_backend_want_p_paddr_set_to_zero
5834 #define elf_backend_want_p_paddr_set_to_zero 1
5835
5836 #undef ELF_MAXPAGESIZE
5837 #define ELF_MAXPAGESIZE 0x1000 /* 4K */
5838 #undef ELF_COMMONPAGESIZE
5839
5840 #undef elfNN_bed
5841 #define elfNN_bed elfNN_ia64_hpux_bed
5842
5843 #include "elfNN-target.h"
5844
5845 #undef elf_backend_want_p_paddr_set_to_zero