]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
Re: MSP430: Support relocations for subtract expressions in .uleb128 directives
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
465 /* True if we already reported the small-data section overflow. */
466 bfd_boolean small_data_overflow_reported;
467
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bfd_boolean use_absolute_zero;
470
471 /* True if we have been configured for a GNU target. */
472 bfd_boolean gnu_target;
473
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
478
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
481
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
485
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
488
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
491
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
494
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
497
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
500
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
503
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
506
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
509
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
512
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
516
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
520
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
525
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
529
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
532 };
533
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
535
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
543 {
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
547
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bfd_boolean error;
550 };
551
552 /* MIPS ELF private object data. */
553
554 struct mips_elf_obj_tdata
555 {
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
558
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
561
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
564
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bfd_boolean abiflags_valid;
568
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
571
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
576
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
580
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
587 };
588
589 /* Get MIPS ELF private object data from BFD's tdata. */
590
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622
623 /* Structure used to pass information to mips_elf_output_extsym. */
624
625 struct extsym_info
626 {
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bfd_boolean failed;
632 };
633
634 /* The names of the runtime procedure table symbols used on IRIX5. */
635
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
642 };
643
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
646
647 typedef struct
648 {
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
656
657 typedef struct
658 {
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666
667 typedef struct
668 {
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
676
677 typedef struct
678 {
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
685
686 typedef struct
687 {
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692
693 typedef struct
694 {
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698
699 /* These are the constants used to swap the bitfields in a crinfo. */
700
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
715
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
718
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
724 */
725
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
730
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
735 \f
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
738
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754 \f
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bfd_boolean mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bfd_boolean mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
768
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
771
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
788
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
793
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
829
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
842
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
854
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
858
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
862
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
874
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
878
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
888
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
896
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
904
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
909
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
920
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
940
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
960
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
970
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
975
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
994 \f
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
997
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1006
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1013
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1022
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1026
1027 We record any stubs that we find in the symbol table. */
1028
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032
1033 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1034 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1036 \f
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1048 };
1049
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1062 };
1063
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1076 };
1077
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1091 };
1092
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1105 };
1106
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1120 };
1121
1122
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1127
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1140 };
1141
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1154 };
1155
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1163 };
1164
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1171 };
1172
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1179 };
1180
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1193 };
1194
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1203 };
1204
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1212 };
1213
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1223 };
1224
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1236 };
1237
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1247 };
1248
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1254 };
1255 \f
1256 /* microMIPS 32-bit opcode helper installer. */
1257
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1263 }
1264
1265 /* microMIPS 32-bit opcode helper retriever. */
1266
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272 \f
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1274
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1279
1280 /* Traverse a MIPS ELF linker hash table. */
1281
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1287
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1290
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1305 {
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311
1312 /* Create an entry in a MIPS ELF linker hash table. */
1313
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1317 {
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1320
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1327
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1333 {
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = TRUE;
1347 ret->readonly_reloc = FALSE;
1348 ret->has_static_relocs = FALSE;
1349 ret->no_fn_stub = FALSE;
1350 ret->need_fn_stub = FALSE;
1351 ret->has_nonpic_branches = FALSE;
1352 ret->needs_lazy_stub = FALSE;
1353 ret->use_plt_entry = FALSE;
1354 }
1355
1356 return (struct bfd_hash_entry *) ret;
1357 }
1358
1359 /* Allocate MIPS ELF private object data. */
1360
1361 bfd_boolean
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1366 }
1367
1368 bfd_boolean
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371 if (!sec->used_by_bfd)
1372 {
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1375
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return FALSE;
1379 sec->used_by_bfd = sdata;
1380 }
1381
1382 return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384 \f
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1387
1388 bfd_boolean
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1391 {
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1395
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1398
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1402
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1406
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1414 { \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1420 { \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1423 } \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1430
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444
1445 debug->fdr = NULL;
1446
1447 return TRUE;
1448
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return FALSE;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bfd_boolean
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return TRUE;
1612
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return FALSE;
1620 }
1621 \f
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1624
1625 static bfd_boolean
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1630 {
1631 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bfd_boolean res;
1636
1637 if (micromips_p)
1638 value |= 1;
1639
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 TRUE, FALSE, &bh);
1646 free (name);
1647 if (! res)
1648 return FALSE;
1649
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return TRUE;
1658 }
1659
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1663
1664 static bfd_boolean
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1668 {
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bfd_boolean res;
1675
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1681
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 TRUE, FALSE, &bh);
1688 free (name);
1689 if (! res)
1690 return FALSE;
1691
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return TRUE;
1699 }
1700
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1703
1704 static bfd_boolean
1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707 const char *name;
1708
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1714 }
1715
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1719
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1725 {
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1728
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1734
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1739
1740 return 0;
1741 }
1742
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1745
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1749 {
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1754 {
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = TRUE;
1757 }
1758
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1761 {
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1770 }
1771
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1774 {
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1783 }
1784
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1787 {
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796 }
1797 }
1798
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1800
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804 const struct mips_elf_la25_stub *entry;
1805
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1809 }
1810
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1815
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1822 }
1823
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1827
1828 bfd_boolean
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1832 {
1833 struct mips_elf_link_hash_table *htab;
1834
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return FALSE;
1838
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return FALSE;
1844
1845 return TRUE;
1846 }
1847
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1853
1854 static bfd_boolean
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1870
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1874 {
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876 {
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1880 }
1881 else
1882 {
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1885 }
1886 }
1887
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1891
1892 static bfd_boolean
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1895 {
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1900
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return FALSE;
1904
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return FALSE;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return FALSE;
1917
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return FALSE;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1924
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1929
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return TRUE;
1933 }
1934
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1938
1939 static bfd_boolean
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1942 {
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1945
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return FALSE;
1949
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1953 {
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return FALSE;
1959 htab->strampoline = s;
1960 }
1961
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1966
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return TRUE;
1970 }
1971
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1974
1975 static bfd_boolean
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1978 {
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bfd_boolean use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1985
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1990
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return FALSE;
1995
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return FALSE;
1999
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2002 {
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return TRUE;
2006 }
2007
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return FALSE;
2012 *stub = search;
2013 *slot = stub;
2014
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2026 }
2027
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2030
2031 static bfd_boolean
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034 struct mips_htab_traverse_info *hti;
2035
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2039
2040 if (mips_elf_local_pic_function_p (h))
2041 {
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return TRUE;
2046
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2053 {
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 }
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 {
2059 hti->error = TRUE;
2060 return FALSE;
2061 }
2062 }
2063 return TRUE;
2064 }
2065 \f
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2069
2070 The format of these instructions is:
2071
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2077
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2080
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2092
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2099
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2102
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2109
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2118
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2129
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2135
2136 A typical instruction will have a format like this:
2137
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2143
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2146
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2150
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2154
2155 static inline bfd_boolean
2156 mips16_reloc_p (int r_type)
2157 {
2158 switch (r_type)
2159 {
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return TRUE;
2175
2176 default:
2177 return FALSE;
2178 }
2179 }
2180
2181 /* Check if a microMIPS reloc. */
2182
2183 static inline bfd_boolean
2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2192
2193 static inline bfd_boolean
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200
2201 static inline bfd_boolean
2202 got16_reloc_p (int r_type)
2203 {
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2207 }
2208
2209 static inline bfd_boolean
2210 call16_reloc_p (int r_type)
2211 {
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2215 }
2216
2217 static inline bfd_boolean
2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222
2223 static inline bfd_boolean
2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228
2229 static inline bfd_boolean
2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234
2235 static inline bfd_boolean
2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240
2241 static inline bfd_boolean
2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246
2247 static inline bfd_boolean
2248 hi16_reloc_p (int r_type)
2249 {
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2254 }
2255
2256 static inline bfd_boolean
2257 lo16_reloc_p (int r_type)
2258 {
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2263 }
2264
2265 static inline bfd_boolean
2266 mips16_call_reloc_p (int r_type)
2267 {
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270
2271 static inline bfd_boolean
2272 jal_reloc_p (int r_type)
2273 {
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2277 }
2278
2279 static inline bfd_boolean
2280 b_reloc_p (int r_type)
2281 {
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291
2292 static inline bfd_boolean
2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2297 }
2298
2299 static inline bfd_boolean
2300 branch_reloc_p (int r_type)
2301 {
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308
2309 static inline bfd_boolean
2310 mips16_branch_reloc_p (int r_type)
2311 {
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2314 }
2315
2316 static inline bfd_boolean
2317 micromips_branch_reloc_p (int r_type)
2318 {
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324
2325 static inline bfd_boolean
2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332
2333 static inline bfd_boolean
2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340
2341 static inline bfd_boolean
2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bfd_boolean jal_shuffle, bfd_byte *data)
2352 {
2353 bfd_vma first, second, val;
2354
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2357
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2370 }
2371
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bfd_boolean jal_shuffle, bfd_byte *data)
2375 {
2376 bfd_vma first, second, val;
2377
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2380
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 {
2384 second = val & 0xffff;
2385 first = val >> 16;
2386 }
2387 else if (r_type != R_MIPS16_26)
2388 {
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391 }
2392 else
2393 {
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2397 }
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2400 }
2401
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bfd_boolean relocatable, void *data, bfd_vma gp)
2406 {
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2410
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2415
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2418
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2421
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2424
2425 _bfd_mips_elf_sign_extend (val, 16);
2426
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2433
2434 if (reloc_entry->howto->partial_inplace)
2435 {
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2441 }
2442 else
2443 reloc_entry->addend = val;
2444
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449 }
2450
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2455
2456 struct mips_hi16
2457 {
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2462 };
2463
2464 /* FIXME: This should not be a static variable. */
2465
2466 static struct mips_hi16 *mips_hi16_list;
2467
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2471
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2476
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2482 {
2483 struct mips_hi16 *n;
2484
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2487
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2491
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2497
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2500
2501 return bfd_reloc_ok;
2502 }
2503
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2507
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2520
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2523 }
2524
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2528
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2539
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2544 location);
2545
2546 while (mips_hi16_list != NULL)
2547 {
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2550
2551 hi = mips_hi16_list;
2552
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2564
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2574
2575 mips_hi16_list = hi->next;
2576 free (hi);
2577 }
2578
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2582 }
2583
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2587
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2593 {
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bfd_boolean relocatable;
2597
2598 relocatable = (output_bfd != NULL);
2599
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2602
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606 {
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2612 }
2613
2614 if (!relocatable)
2615 {
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2620 {
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2624 }
2625 }
2626
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2634 {
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2639
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2646 location);
2647
2648 if (status != bfd_reloc_ok)
2649 return status;
2650 }
2651
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2654
2655 return bfd_reloc_ok;
2656 }
2657 \f
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2660
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2664 {
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2672 {
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2680 {
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2692 {
2693 unsigned long l;
2694
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703 \f
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2707
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2711 {
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2737
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2741 {
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2754 {
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763
2764 /* Swap in an options header. */
2765
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2769 {
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2774 }
2775
2776 /* Swap out an options header. */
2777
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2781 {
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787
2788 /* Swap in an abiflags structure. */
2789
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2794 {
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807
2808 /* Swap out an abiflags structure. */
2809
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2814 {
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827 \f
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2830
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2837
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2844
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2850 }
2851
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2853
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2861
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2866
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2871
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2880 }
2881
2882
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2896
2897 static bfd_boolean
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900 struct extsym_info *einfo = data;
2901 bfd_boolean strip;
2902 asection *sec, *output_section;
2903
2904 if (h->root.indx == -2)
2905 strip = FALSE;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = TRUE;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 FALSE, FALSE) == NULL))
2917 strip = TRUE;
2918 else
2919 strip = FALSE;
2920
2921 if (strip)
2922 return TRUE;
2923
2924 if (h->esym.ifd == -2)
2925 {
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2933
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2936 {
2937 const char *name;
2938
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 {
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2948 }
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 {
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2955 }
2956 else
2957 h->esym.asym.sc = scUndefined;
2958 }
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2963 {
2964 const char *name;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2974 {
2975 name = bfd_section_name (output_section);
2976
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2996 }
2997 }
2998
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3001 }
3002
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3007 {
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3012
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3021 }
3022 else
3023 {
3024 struct mips_elf_link_hash_entry *hd = h;
3025
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028
3029 if (hd->needs_lazy_stub)
3030 {
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3039 {
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
3048 }
3049 }
3050
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3054 {
3055 einfo->failed = TRUE;
3056 return FALSE;
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 /* A comparison routine used to sort .gptab entries. */
3063
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3069
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072 \f
3073 /* Functions to manage the got entry hash table. */
3074
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3077
3078 static INLINE hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3086 }
3087
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3100 }
3101
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120 const struct mips_got_page_ref *ref;
3121
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132 const struct mips_got_page_ref *ref1, *ref2;
3133
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3141 }
3142
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146 const struct mips_got_page_entry *entry;
3147
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3150 }
3151
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155 const struct mips_got_page_entry *entry1, *entry2;
3156
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3160 }
3161 \f
3162 /* Create and return a new mips_got_info structure. */
3163
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167 struct mips_got_info *g;
3168
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3172
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3177
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3182
3183 return g;
3184 }
3185
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3188
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3191 {
3192 struct mips_elf_obj_tdata *tdata;
3193
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3196
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3201 }
3202
3203 /* Record that ABFD should use output GOT G. */
3204
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208 struct mips_elf_obj_tdata *tdata;
3209
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3213 {
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3220 }
3221 tdata->got = g;
3222 }
3223
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3227
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3230 {
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3234
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3239 {
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3251 }
3252 return sreloc;
3253 }
3254
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3256
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3262
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3265
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3268
3269 return GOT_TLS_NONE;
3270 }
3271
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3273
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3276 {
3277 switch (type)
3278 {
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3282
3283 case GOT_TLS_IE:
3284 return 1;
3285
3286 case GOT_TLS_NONE:
3287 return 0;
3288 }
3289 abort ();
3290 }
3291
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3295
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3299 {
3300 int indx = 0;
3301 bfd_boolean need_relocs = FALSE;
3302 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3303
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3309
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = TRUE;
3315
3316 if (!need_relocs)
3317 return 0;
3318
3319 switch (tls_type)
3320 {
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3323
3324 case GOT_TLS_IE:
3325 return 1;
3326
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3329
3330 default:
3331 return 0;
3332 }
3333 }
3334
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3337
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3342 {
3343 if (entry->tls_type)
3344 {
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3349 }
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3354 }
3355
3356 /* Output a simple dynamic relocation into SRELOC. */
3357
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3365 {
3366 Elf_Internal_Rela rel[3];
3367
3368 memset (rel, 0, sizeof (rel));
3369
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372
3373 if (ABI_64_P (output_bfd))
3374 {
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379 }
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3388
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3394 {
3395 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bfd_boolean need_relocs = FALSE;
3401
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3405
3406 sgot = htab->root.sgot;
3407
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3414
3415 if (entry->tls_initialized)
3416 return;
3417
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = TRUE;
3423
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3429
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3432 got_offset = entry->gotidx;
3433
3434 switch (entry->tls_type)
3435 {
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439
3440 if (need_relocs)
3441 {
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3446
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3455 }
3456 else
3457 {
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3462 }
3463 break;
3464
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3468 {
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3475
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3480 }
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3485
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3492
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3502
3503 default:
3504 abort ();
3505 }
3506
3507 entry->tls_initialized = TRUE;
3508 }
3509
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3513
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3517 {
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3520
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3523
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3537
3538 return got_address - got_value;
3539 }
3540
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3545
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3553
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3556
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3561
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3565 }
3566
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3568
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3584
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, FALSE);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3594
3595 return got_index;
3596 }
3597
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3600
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3604 {
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3609
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3612
3613 g = mips_elf_bfd_got (ibfd, FALSE);
3614 BFD_ASSERT (g);
3615
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3619
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3625
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628
3629 if (lookup.tls_type)
3630 {
3631 bfd_vma value = MINUS_ONE;
3632
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3639
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641 }
3642 return gotidx;
3643 }
3644
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3650
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3654 {
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3657
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3661
3662 if (!entry)
3663 return MINUS_ONE;
3664
3665 got_index = entry->gotidx;
3666
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3669
3670 return got_index;
3671 }
3672
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3676
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bfd_boolean external)
3680 {
3681 struct mips_got_entry *entry;
3682
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3689
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3699 }
3700
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3703
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3707 {
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3711
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3714
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3726
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3733 {
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3739
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3742
3743 g = mips_elf_bfd_got (ibfd, FALSE);
3744 if (g == NULL)
3745 {
3746 g = mips_elf_bfd_got (abfd, FALSE);
3747 BFD_ASSERT (g != NULL);
3748 }
3749
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3756 {
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3759 {
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3762 }
3763 else if (h == NULL)
3764 {
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3767 }
3768 else
3769 {
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3772 }
3773
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3776
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779
3780 return entry;
3781 }
3782
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3789
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3793
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3795 {
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3801 }
3802
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3806
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814
3815 *entry = lookup;
3816 *loc = entry;
3817
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3822 {
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3827
3828 s = mips_elf_rel_dyn_section (info, FALSE);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3832
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838 }
3839
3840 return entry;
3841 }
3842
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3847
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851 bfd_size_type count;
3852
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3856 {
3857 asection *p;
3858 const struct elf_backend_data *bed;
3859
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3867 }
3868 return count;
3869 }
3870
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3873
3874 static bfd_boolean
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3880
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3883
3884 if (htab->root.dynsymcount == 0)
3885 return TRUE;
3886
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return TRUE;
3890
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3903 {
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3908 }
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3923
3924 return TRUE;
3925 }
3926
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3930
3931 static bfd_boolean
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934 struct mips_elf_hash_sort_data *hsd = data;
3935
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return TRUE;
3940
3941 switch (h->global_got_area)
3942 {
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3949
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3954
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3960 }
3961
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3967
3968 return TRUE;
3969 }
3970
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3974
3975 static bfd_boolean
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3978 {
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3983
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return FALSE;
3990
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3994 {
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return FALSE;
3998
3999 lookup->tls_initialized = FALSE;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4003 }
4004
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, TRUE);
4007 if (!g)
4008 return FALSE;
4009
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return FALSE;
4013
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return TRUE;
4017 }
4018
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4022
4023 static bfd_boolean
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bfd_boolean for_call, int r_type)
4027 {
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4032
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4035
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = FALSE;
4039
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4043 {
4044 switch (ELF_ST_VISIBILITY (h->other))
4045 {
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4049 break;
4050 }
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return FALSE;
4053 }
4054
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4058
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4068
4069 static bfd_boolean
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4072 {
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4076
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4079
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4082
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4093
4094 static bfd_boolean
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4098 {
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4103
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4106
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4109
4110 if (h)
4111 {
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114 }
4115 else
4116 {
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4119 }
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return FALSE;
4124
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4127 {
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return FALSE;
4131
4132 *entry = lookup;
4133 *loc = entry;
4134 }
4135
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, TRUE);
4138 if (!g2)
4139 return FALSE;
4140
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return FALSE;
4144
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4147
4148 return TRUE;
4149 }
4150
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4152
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4156 {
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4159
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4162
4163 s = mips_elf_rel_dyn_section (info, FALSE);
4164 BFD_ASSERT (s != NULL);
4165
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4169 {
4170 if (s->size == 0)
4171 {
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4175 }
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177 }
4178 }
4179 \f
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4184
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4190
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4194 {
4195 struct mips_elf_link_hash_entry *h;
4196
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4200 {
4201 arg->value = TRUE;
4202 return 0;
4203 }
4204 }
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4207 }
4208
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4213
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4220
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4227 {
4228 struct mips_elf_link_hash_entry *h;
4229
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4233 do
4234 {
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 }
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4241 }
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4244 {
4245 arg->g = NULL;
4246 return 0;
4247 }
4248 if (*slot == NULL)
4249 {
4250 if (entry == &new_entry)
4251 {
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4254 {
4255 arg->g = NULL;
4256 return 0;
4257 }
4258 *entry = new_entry;
4259 }
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4262 }
4263 return 1;
4264 }
4265
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4267
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4275
4276 static bfd_boolean
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4279 {
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4285
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return FALSE;
4291
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4296 {
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return FALSE;
4300
4301 entry->sec = sec;
4302 *loc = entry;
4303 }
4304
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4310
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4316 {
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return FALSE;
4320
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4324
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return TRUE;
4329 }
4330
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4333
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4338 {
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4340 {
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4344 }
4345 else
4346 range->max_addend = addend;
4347 }
4348
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4352 {
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4355 }
4356
4357 return TRUE;
4358 }
4359
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4364
4365 static bfd_boolean
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4373
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4377
4378 if (ref->symndx < 0)
4379 {
4380 struct mips_elf_link_hash_entry *h;
4381
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4386
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4393
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4396 }
4397 else
4398 {
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4413 {
4414 arg->g = NULL;
4415 return 0;
4416 }
4417
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4423 {
4424 void *secinfo;
4425
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4433 }
4434 else
4435 addend = isym->st_value + ref->addend;
4436 }
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438 {
4439 arg->g = NULL;
4440 return 0;
4441 }
4442 return 1;
4443 }
4444
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4449
4450 static bfd_boolean
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4453 {
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4456
4457 oldg = *g;
4458
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = FALSE;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4464 {
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return FALSE;
4471
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return FALSE;
4475
4476 htab_delete (oldg.got_entries);
4477 }
4478
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return FALSE;
4483
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487
4488 return TRUE;
4489 }
4490
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4493
4494 static bfd_boolean
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4497 {
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return TRUE;
4504
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return FALSE;
4510
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return TRUE;
4517
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return TRUE;
4523
4524 return FALSE;
4525 }
4526
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4532
4533 static int
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4539
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4544 {
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4560 {
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4563 }
4564 }
4565 return 1;
4566 }
4567 \f
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4570
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4577
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4582 {
4583 arg->g = NULL;
4584 return 0;
4585 }
4586 if (!*slot)
4587 {
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4590 }
4591 return 1;
4592 }
4593
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4596
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4603
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4608 {
4609 arg->g = NULL;
4610 return 0;
4611 }
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4616 }
4617 return 1;
4618 }
4619
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4625
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4633
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4638
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4643
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4651
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4655
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4662
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4666
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4669 }
4670
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4677
4678 static bfd_boolean
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682 unsigned int estimate;
4683 int result;
4684
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return FALSE;
4687
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4693
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699
4700 if (estimate <= arg->max_count)
4701 {
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4705 {
4706 arg->primary = g;
4707 return TRUE;
4708 }
4709
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4714 }
4715
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4718 {
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4722 }
4723
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4729
4730 return TRUE;
4731 }
4732
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4736
4737 static bfd_boolean
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740 struct mips_got_entry *entry;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4744 {
4745 struct mips_got_entry *new_entry;
4746
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return FALSE;
4750
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4754 }
4755 entry->gotidx = gotidx;
4756 return TRUE;
4757 }
4758
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4762
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4768
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4773
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776 {
4777 arg->g = NULL;
4778 return 0;
4779 }
4780
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4784 }
4785
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4789
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4795
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4803 }
4804
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4809
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4815
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 {
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 {
4824 arg->g = NULL;
4825 return 0;
4826 }
4827 arg->g->assigned_low_gotno += 1;
4828
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4834 }
4835
4836 return 1;
4837 }
4838
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4842
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4849
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4854
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4858 {
4859 entry->d.h->needs_lazy_stub = FALSE;
4860 htab->lazy_stub_count--;
4861 }
4862
4863 return 1;
4864 }
4865
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871 if (!g->next)
4872 return 0;
4873
4874 g = mips_elf_bfd_got (ibfd, FALSE);
4875 if (! g)
4876 return 0;
4877
4878 BFD_ASSERT (g->next);
4879
4880 g = g->next;
4881
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4888
4889 static bfd_boolean
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4892 {
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4899
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4903
4904 g = htab->got_info;
4905
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4918
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923 {
4924 gg = mips_elf_bfd_got (ibfd, FALSE);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return FALSE;
4927 }
4928
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4935
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4939
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4946
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4952
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4977
4978 do
4979 {
4980 struct mips_got_info *gn;
4981
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4995
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return FALSE;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5005
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5008
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013 }
5014 while (g);
5015
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5020 {
5021 unsigned int save_assign;
5022
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return FALSE;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5035
5036 if (bfd_link_pic (info))
5037 {
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5043 }
5044 needed_relocs += g->relocs;
5045 }
5046 needed_relocs += g->relocs;
5047
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5051
5052 return TRUE;
5053 }
5054
5055 \f
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5058
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5063 {
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065
5066 while (relocation < relend)
5067 {
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5071
5072 ++relocation;
5073 }
5074
5075 /* We didn't find it. */
5076 return NULL;
5077 }
5078
5079 /* Return whether an input relocation is against a local symbol. */
5080
5081 static bfd_boolean
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5085 {
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5089
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093
5094 if (r_symndx < extsymoff)
5095 return TRUE;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return TRUE;
5098
5099 return FALSE;
5100 }
5101 \f
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5103
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5110
5111 return value;
5112 }
5113
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5117
5118 static bfd_boolean
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5122
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return TRUE;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return TRUE;
5129
5130 /* All is well. */
5131 return FALSE;
5132 }
5133
5134 /* Calculate the %high function. */
5135
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5138 {
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141
5142 /* Calculate the %higher function. */
5143
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5153 }
5154
5155 /* Calculate the %highest function. */
5156
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5166 }
5167 \f
5168 /* Create the .compact_rel section. */
5169
5170 static bfd_boolean
5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174 flagword flags;
5175 register asection *s;
5176
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178 {
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5181
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return FALSE;
5186
5187 s->size = sizeof (Elf32_External_compact_rel);
5188 }
5189
5190 return TRUE;
5191 }
5192
5193 /* Create the .got section to hold the global offset table. */
5194
5195 static bfd_boolean
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5203
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5206
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return TRUE;
5210
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5213
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return FALSE;
5220 htab->root.sgot = s;
5221
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5229 return FALSE;
5230
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5237
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return FALSE;
5241
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return FALSE;
5254 htab->root.sgotplt = s;
5255
5256 return TRUE;
5257 }
5258 \f
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5262
5263 static bfd_boolean
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5276
5277 static bfd_boolean
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bfd_boolean target_is_16_bit_code_p)
5280 {
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return FALSE;
5288
5289 switch (r_type)
5290 {
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return TRUE;
5301
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5304
5305 default:
5306 return FALSE;
5307 }
5308 }
5309 \f
5310 /* Obtain the field relocated by RELOCATION. */
5311
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5316 {
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5320
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5324
5325 return x;
5326 }
5327
5328 /* Store the field relocated by RELOCATION. */
5329
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5337
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5341 }
5342
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5348 */
5349
5350 static bfd_boolean
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bfd_boolean doit)
5354 {
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bfd_boolean nullified = TRUE;
5358 bfd_vma x;
5359
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5361
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = FALSE;
5379
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5385
5386 return nullified;
5387 }
5388
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5392
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5401
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bfd_boolean *cross_mode_jump_p,
5412 bfd_boolean save_addend)
5413 {
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bfd_boolean local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bfd_boolean section_p = FALSE;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bfd_boolean gp_disp_p = FALSE;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bfd_boolean gnu_local_gp_p = FALSE;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bfd_boolean overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bfd_boolean target_is_16_bit_code_p = FALSE;
5455 bfd_boolean target_is_micromips_code_p = FALSE;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bfd_boolean resolved_to_zero;
5459
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5463
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5470
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = FALSE;
5473
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5483 {
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5487 }
5488
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5491 {
5492 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5494
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5497
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5504 {
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5508 }
5509
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5513
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5520
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5524 {
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 }
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5531 {
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 }
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5537 {
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 }
5541 }
5542 else
5543 {
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5545
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5556
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5561 {
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5566
5567 gp_disp_p = TRUE;
5568 }
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = TRUE;
5573
5574
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5582 {
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5590 }
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 {
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5612 }
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 {
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5623 }
5624 else
5625 {
5626 bfd_boolean reject_undefined
5627 = (info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT;
5630
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5634
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5637
5638 symbol = 0;
5639 }
5640
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643 }
5644
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5647
5648 (a) the relocation is for a MIPS16 JAL;
5649
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5652
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5663 {
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5668 {
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5671 }
5672 else
5673 {
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5676 {
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5681 }
5682 else
5683 {
5684 sec = h->fn_stub;
5685 value = 0;
5686 }
5687 }
5688
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = FALSE;
5692 }
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703 {
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5707 {
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 {
5713 asection *o;
5714
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5717 {
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 {
5720 sec = h->call_fp_stub;
5721 break;
5722 }
5723 }
5724 if (sec == NULL)
5725 sec = h->call_stub;
5726 }
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5731 }
5732
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5735 }
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5741 {
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5747 }
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5760 {
5761 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5762
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5770
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5773 }
5774
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778 {
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5782 }
5783
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5800
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803
5804 switch (r_type)
5805 {
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, TRUE))
5824 return bfd_reloc_continue;
5825
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5834 {
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 FALSE, FALSE, FALSE);
5838 BFD_ASSERT (h != NULL);
5839 }
5840 break;
5841 }
5842
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5844
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5852
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5857 {
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5861 }
5862
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5866 {
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5894 {
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5899 }
5900 else if (!local_p)
5901 {
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5908 {
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5912 }
5913 else
5914 {
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 }
5923 }
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5929 {
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5934 }
5935
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5939 }
5940
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5944 {
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5948
5949 s = mips_elf_rel_dyn_section (info, FALSE);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5964
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5967 }
5968
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5971 {
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5974
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5981
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5997 {
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6008 h,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6014 }
6015 else
6016 {
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6021 }
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6038 {
6039 unsigned int shift;
6040
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6049
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6058
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6063 }
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6072
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6087
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6100 {
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6103 }
6104 else
6105 {
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6125 }
6126 break;
6127
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6135 {
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6150
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6154
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6161 }
6162 break;
6163
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6170
6171 /* Fall through. */
6172
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6197
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6207 {
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216 }
6217
6218 /* Fall through. */
6219
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6240
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6245
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6253
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6264
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6270
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6277
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6281
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6284
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6291
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6295
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6298
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6305
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6309
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6323
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6326
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6349
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6355
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6362
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6366
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6372
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6379
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6383
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6389
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6396
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6406
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6434
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6443
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6449
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6455
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6461
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6467
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6483
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6489
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6493 }
6494
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506
6507 Returns FALSE if anything goes wrong. */
6508
6509 static bfd_boolean
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bfd_boolean cross_mode_jump_p)
6516 {
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6523
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6525
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6531
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6534
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537 {
6538 bfd_vma opcode = x >> 26;
6539
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6543 {
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return TRUE;
6548 }
6549 }
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6551 {
6552 bfd_boolean ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6555
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6558 {
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6561 }
6562 else if (r_type == R_MICROMIPS_26_S1)
6563 {
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6566 }
6567 else
6568 {
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6571 }
6572
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6576 {
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return TRUE;
6582 }
6583
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586 }
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6588 {
6589 bfd_boolean ok = FALSE;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6595
6596 if (r_type == R_MICROMIPS_PC16_S1)
6597 {
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6602 }
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 {
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6609 }
6610
6611 if (ok && !bfd_link_pic (info))
6612 {
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 {
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return TRUE;
6627 }
6628
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 }
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 {
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return TRUE;
6638 }
6639 }
6640
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6654 {
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6658
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6669 {
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6674 }
6675 }
6676
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6682
6683 return TRUE;
6684 }
6685 \f
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6690
6691 static bfd_boolean
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6698 {
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bfd_boolean defined_p;
6705 struct mips_elf_link_hash_table *htab;
6706
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6709
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6717
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6721 {
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726 }
6727
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return TRUE;
6731
6732 if (outrel[0].r_offset == MINUS_TWO)
6733 {
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return TRUE;
6739 }
6740
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744 {
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = FALSE;
6756 }
6757 else
6758 {
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6762 {
6763 bfd_set_error (bfd_error_bad_value);
6764 return FALSE;
6765 }
6766 else
6767 {
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6770 {
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6773 }
6774 if (indx == 0)
6775 abort ();
6776 }
6777
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = TRUE;
6796 }
6797
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6804
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6813
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6845 {
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850 }
6851 else if (htab->root.target_os == is_vxworks)
6852 {
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859 }
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6867
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6872
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875 {
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6878
6879 if (scpt)
6880 {
6881 Elf32_crinfo cptrel;
6882
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6893
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6901 }
6902 }
6903
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6909
6910 return TRUE;
6911 }
6912 \f
6913 /* Return the MACH for a MIPS e_flags value. */
6914
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918 switch (flags & EF_MIPS_MACH)
6919 {
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6922
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6925
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6928
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6931
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6934
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6937
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6940
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6943
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6946
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6949
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6952
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6955
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6958
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6961
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6964
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6967
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6970
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6973
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6976
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6979
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6982
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6985 {
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6989
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6992
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6995
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6998
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7001
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7004
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7007
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7010
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7013
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7016
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7019 }
7020 }
7021
7022 return 0;
7023 }
7024
7025 /* Return printable name for ABI. */
7026
7027 static INLINE char *
7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030 flagword flags;
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7034 {
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7052 }
7053 }
7054 \f
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static asymbol mips_elf_scom_symbol;
7062 static asymbol *mips_elf_scom_symbol_ptr;
7063
7064 /* MIPS ELF also uses an acommon section, which represents an
7065 allocated common symbol which may be overridden by a
7066 definition in a shared library. */
7067 static asection mips_elf_acom_section;
7068 static asymbol mips_elf_acom_symbol;
7069 static asymbol *mips_elf_acom_symbol_ptr;
7070
7071 /* This is used for both the 32-bit and the 64-bit ABI. */
7072
7073 void
7074 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7075 {
7076 elf_symbol_type *elfsym;
7077
7078 /* Handle the special MIPS section numbers that a symbol may use. */
7079 elfsym = (elf_symbol_type *) asym;
7080 switch (elfsym->internal_elf_sym.st_shndx)
7081 {
7082 case SHN_MIPS_ACOMMON:
7083 /* This section is used in a dynamically linked executable file.
7084 It is an allocated common section. The dynamic linker can
7085 either resolve these symbols to something in a shared
7086 library, or it can just leave them here. For our purposes,
7087 we can consider these symbols to be in a new section. */
7088 if (mips_elf_acom_section.name == NULL)
7089 {
7090 /* Initialize the acommon section. */
7091 mips_elf_acom_section.name = ".acommon";
7092 mips_elf_acom_section.flags = SEC_ALLOC;
7093 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7094 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7095 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7096 mips_elf_acom_symbol.name = ".acommon";
7097 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7098 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7099 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7100 }
7101 asym->section = &mips_elf_acom_section;
7102 break;
7103
7104 case SHN_COMMON:
7105 /* Common symbols less than the GP size are automatically
7106 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7107 if (asym->value > elf_gp_size (abfd)
7108 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7109 || IRIX_COMPAT (abfd) == ict_irix6)
7110 break;
7111 /* Fall through. */
7112 case SHN_MIPS_SCOMMON:
7113 if (mips_elf_scom_section.name == NULL)
7114 {
7115 /* Initialize the small common section. */
7116 mips_elf_scom_section.name = ".scommon";
7117 mips_elf_scom_section.flags = SEC_IS_COMMON | SEC_SMALL_DATA;
7118 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7119 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7120 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7121 mips_elf_scom_symbol.name = ".scommon";
7122 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7123 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7124 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7125 }
7126 asym->section = &mips_elf_scom_section;
7127 asym->value = elfsym->internal_elf_sym.st_size;
7128 break;
7129
7130 case SHN_MIPS_SUNDEFINED:
7131 asym->section = bfd_und_section_ptr;
7132 break;
7133
7134 case SHN_MIPS_TEXT:
7135 {
7136 asection *section = bfd_get_section_by_name (abfd, ".text");
7137
7138 if (section != NULL)
7139 {
7140 asym->section = section;
7141 /* MIPS_TEXT is a bit special, the address is not an offset
7142 to the base of the .text section. So subtract the section
7143 base address to make it an offset. */
7144 asym->value -= section->vma;
7145 }
7146 }
7147 break;
7148
7149 case SHN_MIPS_DATA:
7150 {
7151 asection *section = bfd_get_section_by_name (abfd, ".data");
7152
7153 if (section != NULL)
7154 {
7155 asym->section = section;
7156 /* MIPS_DATA is a bit special, the address is not an offset
7157 to the base of the .data section. So subtract the section
7158 base address to make it an offset. */
7159 asym->value -= section->vma;
7160 }
7161 }
7162 break;
7163 }
7164
7165 /* If this is an odd-valued function symbol, assume it's a MIPS16
7166 or microMIPS one. */
7167 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7168 && (asym->value & 1) != 0)
7169 {
7170 asym->value--;
7171 if (MICROMIPS_P (abfd))
7172 elfsym->internal_elf_sym.st_other
7173 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7174 else
7175 elfsym->internal_elf_sym.st_other
7176 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7177 }
7178 }
7179 \f
7180 /* Implement elf_backend_eh_frame_address_size. This differs from
7181 the default in the way it handles EABI64.
7182
7183 EABI64 was originally specified as an LP64 ABI, and that is what
7184 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7185 historically accepted the combination of -mabi=eabi and -mlong32,
7186 and this ILP32 variation has become semi-official over time.
7187 Both forms use elf32 and have pointer-sized FDE addresses.
7188
7189 If an EABI object was generated by GCC 4.0 or above, it will have
7190 an empty .gcc_compiled_longXX section, where XX is the size of longs
7191 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7192 have no special marking to distinguish them from LP64 objects.
7193
7194 We don't want users of the official LP64 ABI to be punished for the
7195 existence of the ILP32 variant, but at the same time, we don't want
7196 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7197 We therefore take the following approach:
7198
7199 - If ABFD contains a .gcc_compiled_longXX section, use it to
7200 determine the pointer size.
7201
7202 - Otherwise check the type of the first relocation. Assume that
7203 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7204
7205 - Otherwise punt.
7206
7207 The second check is enough to detect LP64 objects generated by pre-4.0
7208 compilers because, in the kind of output generated by those compilers,
7209 the first relocation will be associated with either a CIE personality
7210 routine or an FDE start address. Furthermore, the compilers never
7211 used a special (non-pointer) encoding for this ABI.
7212
7213 Checking the relocation type should also be safe because there is no
7214 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7215 did so. */
7216
7217 unsigned int
7218 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7219 {
7220 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7221 return 8;
7222 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7223 {
7224 bfd_boolean long32_p, long64_p;
7225
7226 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7227 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7228 if (long32_p && long64_p)
7229 return 0;
7230 if (long32_p)
7231 return 4;
7232 if (long64_p)
7233 return 8;
7234
7235 if (sec->reloc_count > 0
7236 && elf_section_data (sec)->relocs != NULL
7237 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7238 == R_MIPS_64))
7239 return 8;
7240
7241 return 0;
7242 }
7243 return 4;
7244 }
7245 \f
7246 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7247 relocations against two unnamed section symbols to resolve to the
7248 same address. For example, if we have code like:
7249
7250 lw $4,%got_disp(.data)($gp)
7251 lw $25,%got_disp(.text)($gp)
7252 jalr $25
7253
7254 then the linker will resolve both relocations to .data and the program
7255 will jump there rather than to .text.
7256
7257 We can work around this problem by giving names to local section symbols.
7258 This is also what the MIPSpro tools do. */
7259
7260 bfd_boolean
7261 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7262 {
7263 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7264 }
7265 \f
7266 /* Work over a section just before writing it out. This routine is
7267 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7268 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7269 a better way. */
7270
7271 bfd_boolean
7272 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7273 {
7274 if (hdr->sh_type == SHT_MIPS_REGINFO
7275 && hdr->sh_size > 0)
7276 {
7277 bfd_byte buf[4];
7278
7279 BFD_ASSERT (hdr->contents == NULL);
7280
7281 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7282 {
7283 _bfd_error_handler
7284 (_("%pB: incorrect `.reginfo' section size; "
7285 "expected %" PRIu64 ", got %" PRIu64),
7286 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7287 (uint64_t) hdr->sh_size);
7288 bfd_set_error (bfd_error_bad_value);
7289 return FALSE;
7290 }
7291
7292 if (bfd_seek (abfd,
7293 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7294 SEEK_SET) != 0)
7295 return FALSE;
7296 H_PUT_32 (abfd, elf_gp (abfd), buf);
7297 if (bfd_bwrite (buf, 4, abfd) != 4)
7298 return FALSE;
7299 }
7300
7301 if (hdr->sh_type == SHT_MIPS_OPTIONS
7302 && hdr->bfd_section != NULL
7303 && mips_elf_section_data (hdr->bfd_section) != NULL
7304 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7305 {
7306 bfd_byte *contents, *l, *lend;
7307
7308 /* We stored the section contents in the tdata field in the
7309 set_section_contents routine. We save the section contents
7310 so that we don't have to read them again.
7311 At this point we know that elf_gp is set, so we can look
7312 through the section contents to see if there is an
7313 ODK_REGINFO structure. */
7314
7315 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7316 l = contents;
7317 lend = contents + hdr->sh_size;
7318 while (l + sizeof (Elf_External_Options) <= lend)
7319 {
7320 Elf_Internal_Options intopt;
7321
7322 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7323 &intopt);
7324 if (intopt.size < sizeof (Elf_External_Options))
7325 {
7326 _bfd_error_handler
7327 /* xgettext:c-format */
7328 (_("%pB: warning: bad `%s' option size %u smaller than"
7329 " its header"),
7330 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7331 break;
7332 }
7333 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7334 {
7335 bfd_byte buf[8];
7336
7337 if (bfd_seek (abfd,
7338 (hdr->sh_offset
7339 + (l - contents)
7340 + sizeof (Elf_External_Options)
7341 + (sizeof (Elf64_External_RegInfo) - 8)),
7342 SEEK_SET) != 0)
7343 return FALSE;
7344 H_PUT_64 (abfd, elf_gp (abfd), buf);
7345 if (bfd_bwrite (buf, 8, abfd) != 8)
7346 return FALSE;
7347 }
7348 else if (intopt.kind == ODK_REGINFO)
7349 {
7350 bfd_byte buf[4];
7351
7352 if (bfd_seek (abfd,
7353 (hdr->sh_offset
7354 + (l - contents)
7355 + sizeof (Elf_External_Options)
7356 + (sizeof (Elf32_External_RegInfo) - 4)),
7357 SEEK_SET) != 0)
7358 return FALSE;
7359 H_PUT_32 (abfd, elf_gp (abfd), buf);
7360 if (bfd_bwrite (buf, 4, abfd) != 4)
7361 return FALSE;
7362 }
7363 l += intopt.size;
7364 }
7365 }
7366
7367 if (hdr->bfd_section != NULL)
7368 {
7369 const char *name = bfd_section_name (hdr->bfd_section);
7370
7371 /* .sbss is not handled specially here because the GNU/Linux
7372 prelinker can convert .sbss from NOBITS to PROGBITS and
7373 changing it back to NOBITS breaks the binary. The entry in
7374 _bfd_mips_elf_special_sections will ensure the correct flags
7375 are set on .sbss if BFD creates it without reading it from an
7376 input file, and without special handling here the flags set
7377 on it in an input file will be followed. */
7378 if (strcmp (name, ".sdata") == 0
7379 || strcmp (name, ".lit8") == 0
7380 || strcmp (name, ".lit4") == 0)
7381 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7382 else if (strcmp (name, ".srdata") == 0)
7383 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7384 else if (strcmp (name, ".compact_rel") == 0)
7385 hdr->sh_flags = 0;
7386 else if (strcmp (name, ".rtproc") == 0)
7387 {
7388 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7389 {
7390 unsigned int adjust;
7391
7392 adjust = hdr->sh_size % hdr->sh_addralign;
7393 if (adjust != 0)
7394 hdr->sh_size += hdr->sh_addralign - adjust;
7395 }
7396 }
7397 }
7398
7399 return TRUE;
7400 }
7401
7402 /* Handle a MIPS specific section when reading an object file. This
7403 is called when elfcode.h finds a section with an unknown type.
7404 This routine supports both the 32-bit and 64-bit ELF ABI. */
7405
7406 bfd_boolean
7407 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7408 Elf_Internal_Shdr *hdr,
7409 const char *name,
7410 int shindex)
7411 {
7412 flagword flags = 0;
7413
7414 /* There ought to be a place to keep ELF backend specific flags, but
7415 at the moment there isn't one. We just keep track of the
7416 sections by their name, instead. Fortunately, the ABI gives
7417 suggested names for all the MIPS specific sections, so we will
7418 probably get away with this. */
7419 switch (hdr->sh_type)
7420 {
7421 case SHT_MIPS_LIBLIST:
7422 if (strcmp (name, ".liblist") != 0)
7423 return FALSE;
7424 break;
7425 case SHT_MIPS_MSYM:
7426 if (strcmp (name, ".msym") != 0)
7427 return FALSE;
7428 break;
7429 case SHT_MIPS_CONFLICT:
7430 if (strcmp (name, ".conflict") != 0)
7431 return FALSE;
7432 break;
7433 case SHT_MIPS_GPTAB:
7434 if (! CONST_STRNEQ (name, ".gptab."))
7435 return FALSE;
7436 break;
7437 case SHT_MIPS_UCODE:
7438 if (strcmp (name, ".ucode") != 0)
7439 return FALSE;
7440 break;
7441 case SHT_MIPS_DEBUG:
7442 if (strcmp (name, ".mdebug") != 0)
7443 return FALSE;
7444 flags = SEC_DEBUGGING;
7445 break;
7446 case SHT_MIPS_REGINFO:
7447 if (strcmp (name, ".reginfo") != 0
7448 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7449 return FALSE;
7450 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7451 break;
7452 case SHT_MIPS_IFACE:
7453 if (strcmp (name, ".MIPS.interfaces") != 0)
7454 return FALSE;
7455 break;
7456 case SHT_MIPS_CONTENT:
7457 if (! CONST_STRNEQ (name, ".MIPS.content"))
7458 return FALSE;
7459 break;
7460 case SHT_MIPS_OPTIONS:
7461 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7462 return FALSE;
7463 break;
7464 case SHT_MIPS_ABIFLAGS:
7465 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7466 return FALSE;
7467 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7468 break;
7469 case SHT_MIPS_DWARF:
7470 if (! CONST_STRNEQ (name, ".debug_")
7471 && ! CONST_STRNEQ (name, ".zdebug_"))
7472 return FALSE;
7473 break;
7474 case SHT_MIPS_SYMBOL_LIB:
7475 if (strcmp (name, ".MIPS.symlib") != 0)
7476 return FALSE;
7477 break;
7478 case SHT_MIPS_EVENTS:
7479 if (! CONST_STRNEQ (name, ".MIPS.events")
7480 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7481 return FALSE;
7482 break;
7483 case SHT_MIPS_XHASH:
7484 if (strcmp (name, ".MIPS.xhash") != 0)
7485 return FALSE;
7486 default:
7487 break;
7488 }
7489
7490 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7491 return FALSE;
7492
7493 if (hdr->sh_flags & SHF_MIPS_GPREL)
7494 flags |= SEC_SMALL_DATA;
7495
7496 if (flags)
7497 {
7498 if (!bfd_set_section_flags (hdr->bfd_section,
7499 (bfd_section_flags (hdr->bfd_section)
7500 | flags)))
7501 return FALSE;
7502 }
7503
7504 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7505 {
7506 Elf_External_ABIFlags_v0 ext;
7507
7508 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7509 &ext, 0, sizeof ext))
7510 return FALSE;
7511 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7512 &mips_elf_tdata (abfd)->abiflags);
7513 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7514 return FALSE;
7515 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7516 }
7517
7518 /* FIXME: We should record sh_info for a .gptab section. */
7519
7520 /* For a .reginfo section, set the gp value in the tdata information
7521 from the contents of this section. We need the gp value while
7522 processing relocs, so we just get it now. The .reginfo section
7523 is not used in the 64-bit MIPS ELF ABI. */
7524 if (hdr->sh_type == SHT_MIPS_REGINFO)
7525 {
7526 Elf32_External_RegInfo ext;
7527 Elf32_RegInfo s;
7528
7529 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7530 &ext, 0, sizeof ext))
7531 return FALSE;
7532 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7533 elf_gp (abfd) = s.ri_gp_value;
7534 }
7535
7536 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7537 set the gp value based on what we find. We may see both
7538 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7539 they should agree. */
7540 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7541 {
7542 bfd_byte *contents, *l, *lend;
7543
7544 contents = bfd_malloc (hdr->sh_size);
7545 if (contents == NULL)
7546 return FALSE;
7547 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7548 0, hdr->sh_size))
7549 {
7550 free (contents);
7551 return FALSE;
7552 }
7553 l = contents;
7554 lend = contents + hdr->sh_size;
7555 while (l + sizeof (Elf_External_Options) <= lend)
7556 {
7557 Elf_Internal_Options intopt;
7558
7559 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7560 &intopt);
7561 if (intopt.size < sizeof (Elf_External_Options))
7562 {
7563 _bfd_error_handler
7564 /* xgettext:c-format */
7565 (_("%pB: warning: bad `%s' option size %u smaller than"
7566 " its header"),
7567 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7568 break;
7569 }
7570 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7571 {
7572 Elf64_Internal_RegInfo intreg;
7573
7574 bfd_mips_elf64_swap_reginfo_in
7575 (abfd,
7576 ((Elf64_External_RegInfo *)
7577 (l + sizeof (Elf_External_Options))),
7578 &intreg);
7579 elf_gp (abfd) = intreg.ri_gp_value;
7580 }
7581 else if (intopt.kind == ODK_REGINFO)
7582 {
7583 Elf32_RegInfo intreg;
7584
7585 bfd_mips_elf32_swap_reginfo_in
7586 (abfd,
7587 ((Elf32_External_RegInfo *)
7588 (l + sizeof (Elf_External_Options))),
7589 &intreg);
7590 elf_gp (abfd) = intreg.ri_gp_value;
7591 }
7592 l += intopt.size;
7593 }
7594 free (contents);
7595 }
7596
7597 return TRUE;
7598 }
7599
7600 /* Set the correct type for a MIPS ELF section. We do this by the
7601 section name, which is a hack, but ought to work. This routine is
7602 used by both the 32-bit and the 64-bit ABI. */
7603
7604 bfd_boolean
7605 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7606 {
7607 const char *name = bfd_section_name (sec);
7608
7609 if (strcmp (name, ".liblist") == 0)
7610 {
7611 hdr->sh_type = SHT_MIPS_LIBLIST;
7612 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7613 /* The sh_link field is set in final_write_processing. */
7614 }
7615 else if (strcmp (name, ".conflict") == 0)
7616 hdr->sh_type = SHT_MIPS_CONFLICT;
7617 else if (CONST_STRNEQ (name, ".gptab."))
7618 {
7619 hdr->sh_type = SHT_MIPS_GPTAB;
7620 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7621 /* The sh_info field is set in final_write_processing. */
7622 }
7623 else if (strcmp (name, ".ucode") == 0)
7624 hdr->sh_type = SHT_MIPS_UCODE;
7625 else if (strcmp (name, ".mdebug") == 0)
7626 {
7627 hdr->sh_type = SHT_MIPS_DEBUG;
7628 /* In a shared object on IRIX 5.3, the .mdebug section has an
7629 entsize of 0. FIXME: Does this matter? */
7630 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7631 hdr->sh_entsize = 0;
7632 else
7633 hdr->sh_entsize = 1;
7634 }
7635 else if (strcmp (name, ".reginfo") == 0)
7636 {
7637 hdr->sh_type = SHT_MIPS_REGINFO;
7638 /* In a shared object on IRIX 5.3, the .reginfo section has an
7639 entsize of 0x18. FIXME: Does this matter? */
7640 if (SGI_COMPAT (abfd))
7641 {
7642 if ((abfd->flags & DYNAMIC) != 0)
7643 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7644 else
7645 hdr->sh_entsize = 1;
7646 }
7647 else
7648 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7649 }
7650 else if (SGI_COMPAT (abfd)
7651 && (strcmp (name, ".hash") == 0
7652 || strcmp (name, ".dynamic") == 0
7653 || strcmp (name, ".dynstr") == 0))
7654 {
7655 if (SGI_COMPAT (abfd))
7656 hdr->sh_entsize = 0;
7657 #if 0
7658 /* This isn't how the IRIX6 linker behaves. */
7659 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7660 #endif
7661 }
7662 else if (strcmp (name, ".got") == 0
7663 || strcmp (name, ".srdata") == 0
7664 || strcmp (name, ".sdata") == 0
7665 || strcmp (name, ".sbss") == 0
7666 || strcmp (name, ".lit4") == 0
7667 || strcmp (name, ".lit8") == 0)
7668 hdr->sh_flags |= SHF_MIPS_GPREL;
7669 else if (strcmp (name, ".MIPS.interfaces") == 0)
7670 {
7671 hdr->sh_type = SHT_MIPS_IFACE;
7672 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7673 }
7674 else if (CONST_STRNEQ (name, ".MIPS.content"))
7675 {
7676 hdr->sh_type = SHT_MIPS_CONTENT;
7677 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7678 /* The sh_info field is set in final_write_processing. */
7679 }
7680 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7681 {
7682 hdr->sh_type = SHT_MIPS_OPTIONS;
7683 hdr->sh_entsize = 1;
7684 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7685 }
7686 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7687 {
7688 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7689 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7690 }
7691 else if (CONST_STRNEQ (name, ".debug_")
7692 || CONST_STRNEQ (name, ".zdebug_"))
7693 {
7694 hdr->sh_type = SHT_MIPS_DWARF;
7695
7696 /* Irix facilities such as libexc expect a single .debug_frame
7697 per executable, the system ones have NOSTRIP set and the linker
7698 doesn't merge sections with different flags so ... */
7699 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7700 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7701 }
7702 else if (strcmp (name, ".MIPS.symlib") == 0)
7703 {
7704 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7705 /* The sh_link and sh_info fields are set in
7706 final_write_processing. */
7707 }
7708 else if (CONST_STRNEQ (name, ".MIPS.events")
7709 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7710 {
7711 hdr->sh_type = SHT_MIPS_EVENTS;
7712 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7713 /* The sh_link field is set in final_write_processing. */
7714 }
7715 else if (strcmp (name, ".msym") == 0)
7716 {
7717 hdr->sh_type = SHT_MIPS_MSYM;
7718 hdr->sh_flags |= SHF_ALLOC;
7719 hdr->sh_entsize = 8;
7720 }
7721 else if (strcmp (name, ".MIPS.xhash") == 0)
7722 {
7723 hdr->sh_type = SHT_MIPS_XHASH;
7724 hdr->sh_flags |= SHF_ALLOC;
7725 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7726 }
7727
7728 /* The generic elf_fake_sections will set up REL_HDR using the default
7729 kind of relocations. We used to set up a second header for the
7730 non-default kind of relocations here, but only NewABI would use
7731 these, and the IRIX ld doesn't like resulting empty RELA sections.
7732 Thus we create those header only on demand now. */
7733
7734 return TRUE;
7735 }
7736
7737 /* Given a BFD section, try to locate the corresponding ELF section
7738 index. This is used by both the 32-bit and the 64-bit ABI.
7739 Actually, it's not clear to me that the 64-bit ABI supports these,
7740 but for non-PIC objects we will certainly want support for at least
7741 the .scommon section. */
7742
7743 bfd_boolean
7744 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7745 asection *sec, int *retval)
7746 {
7747 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7748 {
7749 *retval = SHN_MIPS_SCOMMON;
7750 return TRUE;
7751 }
7752 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7753 {
7754 *retval = SHN_MIPS_ACOMMON;
7755 return TRUE;
7756 }
7757 return FALSE;
7758 }
7759 \f
7760 /* Hook called by the linker routine which adds symbols from an object
7761 file. We must handle the special MIPS section numbers here. */
7762
7763 bfd_boolean
7764 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7765 Elf_Internal_Sym *sym, const char **namep,
7766 flagword *flagsp ATTRIBUTE_UNUSED,
7767 asection **secp, bfd_vma *valp)
7768 {
7769 if (SGI_COMPAT (abfd)
7770 && (abfd->flags & DYNAMIC) != 0
7771 && strcmp (*namep, "_rld_new_interface") == 0)
7772 {
7773 /* Skip IRIX5 rld entry name. */
7774 *namep = NULL;
7775 return TRUE;
7776 }
7777
7778 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7779 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7780 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7781 a magic symbol resolved by the linker, we ignore this bogus definition
7782 of _gp_disp. New ABI objects do not suffer from this problem so this
7783 is not done for them. */
7784 if (!NEWABI_P(abfd)
7785 && (sym->st_shndx == SHN_ABS)
7786 && (strcmp (*namep, "_gp_disp") == 0))
7787 {
7788 *namep = NULL;
7789 return TRUE;
7790 }
7791
7792 switch (sym->st_shndx)
7793 {
7794 case SHN_COMMON:
7795 /* Common symbols less than the GP size are automatically
7796 treated as SHN_MIPS_SCOMMON symbols. */
7797 if (sym->st_size > elf_gp_size (abfd)
7798 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7799 || IRIX_COMPAT (abfd) == ict_irix6)
7800 break;
7801 /* Fall through. */
7802 case SHN_MIPS_SCOMMON:
7803 *secp = bfd_make_section_old_way (abfd, ".scommon");
7804 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7805 *valp = sym->st_size;
7806 break;
7807
7808 case SHN_MIPS_TEXT:
7809 /* This section is used in a shared object. */
7810 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7811 {
7812 asymbol *elf_text_symbol;
7813 asection *elf_text_section;
7814 size_t amt = sizeof (asection);
7815
7816 elf_text_section = bfd_zalloc (abfd, amt);
7817 if (elf_text_section == NULL)
7818 return FALSE;
7819
7820 amt = sizeof (asymbol);
7821 elf_text_symbol = bfd_zalloc (abfd, amt);
7822 if (elf_text_symbol == NULL)
7823 return FALSE;
7824
7825 /* Initialize the section. */
7826
7827 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7828 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7829
7830 elf_text_section->symbol = elf_text_symbol;
7831 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7832
7833 elf_text_section->name = ".text";
7834 elf_text_section->flags = SEC_NO_FLAGS;
7835 elf_text_section->output_section = NULL;
7836 elf_text_section->owner = abfd;
7837 elf_text_symbol->name = ".text";
7838 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7839 elf_text_symbol->section = elf_text_section;
7840 }
7841 /* This code used to do *secp = bfd_und_section_ptr if
7842 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7843 so I took it out. */
7844 *secp = mips_elf_tdata (abfd)->elf_text_section;
7845 break;
7846
7847 case SHN_MIPS_ACOMMON:
7848 /* Fall through. XXX Can we treat this as allocated data? */
7849 case SHN_MIPS_DATA:
7850 /* This section is used in a shared object. */
7851 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7852 {
7853 asymbol *elf_data_symbol;
7854 asection *elf_data_section;
7855 size_t amt = sizeof (asection);
7856
7857 elf_data_section = bfd_zalloc (abfd, amt);
7858 if (elf_data_section == NULL)
7859 return FALSE;
7860
7861 amt = sizeof (asymbol);
7862 elf_data_symbol = bfd_zalloc (abfd, amt);
7863 if (elf_data_symbol == NULL)
7864 return FALSE;
7865
7866 /* Initialize the section. */
7867
7868 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7869 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7870
7871 elf_data_section->symbol = elf_data_symbol;
7872 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7873
7874 elf_data_section->name = ".data";
7875 elf_data_section->flags = SEC_NO_FLAGS;
7876 elf_data_section->output_section = NULL;
7877 elf_data_section->owner = abfd;
7878 elf_data_symbol->name = ".data";
7879 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7880 elf_data_symbol->section = elf_data_section;
7881 }
7882 /* This code used to do *secp = bfd_und_section_ptr if
7883 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7884 so I took it out. */
7885 *secp = mips_elf_tdata (abfd)->elf_data_section;
7886 break;
7887
7888 case SHN_MIPS_SUNDEFINED:
7889 *secp = bfd_und_section_ptr;
7890 break;
7891 }
7892
7893 if (SGI_COMPAT (abfd)
7894 && ! bfd_link_pic (info)
7895 && info->output_bfd->xvec == abfd->xvec
7896 && strcmp (*namep, "__rld_obj_head") == 0)
7897 {
7898 struct elf_link_hash_entry *h;
7899 struct bfd_link_hash_entry *bh;
7900
7901 /* Mark __rld_obj_head as dynamic. */
7902 bh = NULL;
7903 if (! (_bfd_generic_link_add_one_symbol
7904 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7905 get_elf_backend_data (abfd)->collect, &bh)))
7906 return FALSE;
7907
7908 h = (struct elf_link_hash_entry *) bh;
7909 h->non_elf = 0;
7910 h->def_regular = 1;
7911 h->type = STT_OBJECT;
7912
7913 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7914 return FALSE;
7915
7916 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7917 mips_elf_hash_table (info)->rld_symbol = h;
7918 }
7919
7920 /* If this is a mips16 text symbol, add 1 to the value to make it
7921 odd. This will cause something like .word SYM to come up with
7922 the right value when it is loaded into the PC. */
7923 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7924 ++*valp;
7925
7926 return TRUE;
7927 }
7928
7929 /* This hook function is called before the linker writes out a global
7930 symbol. We mark symbols as small common if appropriate. This is
7931 also where we undo the increment of the value for a mips16 symbol. */
7932
7933 int
7934 _bfd_mips_elf_link_output_symbol_hook
7935 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7936 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7937 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7938 {
7939 /* If we see a common symbol, which implies a relocatable link, then
7940 if a symbol was small common in an input file, mark it as small
7941 common in the output file. */
7942 if (sym->st_shndx == SHN_COMMON
7943 && strcmp (input_sec->name, ".scommon") == 0)
7944 sym->st_shndx = SHN_MIPS_SCOMMON;
7945
7946 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7947 sym->st_value &= ~1;
7948
7949 return 1;
7950 }
7951 \f
7952 /* Functions for the dynamic linker. */
7953
7954 /* Create dynamic sections when linking against a dynamic object. */
7955
7956 bfd_boolean
7957 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7958 {
7959 struct elf_link_hash_entry *h;
7960 struct bfd_link_hash_entry *bh;
7961 flagword flags;
7962 register asection *s;
7963 const char * const *namep;
7964 struct mips_elf_link_hash_table *htab;
7965
7966 htab = mips_elf_hash_table (info);
7967 BFD_ASSERT (htab != NULL);
7968
7969 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7970 | SEC_LINKER_CREATED | SEC_READONLY);
7971
7972 /* The psABI requires a read-only .dynamic section, but the VxWorks
7973 EABI doesn't. */
7974 if (htab->root.target_os != is_vxworks)
7975 {
7976 s = bfd_get_linker_section (abfd, ".dynamic");
7977 if (s != NULL)
7978 {
7979 if (!bfd_set_section_flags (s, flags))
7980 return FALSE;
7981 }
7982 }
7983
7984 /* We need to create .got section. */
7985 if (!mips_elf_create_got_section (abfd, info))
7986 return FALSE;
7987
7988 if (! mips_elf_rel_dyn_section (info, TRUE))
7989 return FALSE;
7990
7991 /* Create .stub section. */
7992 s = bfd_make_section_anyway_with_flags (abfd,
7993 MIPS_ELF_STUB_SECTION_NAME (abfd),
7994 flags | SEC_CODE);
7995 if (s == NULL
7996 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7997 return FALSE;
7998 htab->sstubs = s;
7999
8000 if (!mips_elf_hash_table (info)->use_rld_obj_head
8001 && bfd_link_executable (info)
8002 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
8003 {
8004 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8005 flags &~ (flagword) SEC_READONLY);
8006 if (s == NULL
8007 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8008 return FALSE;
8009 }
8010
8011 /* Create .MIPS.xhash section. */
8012 if (info->emit_gnu_hash)
8013 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8014 flags | SEC_READONLY);
8015
8016 /* On IRIX5, we adjust add some additional symbols and change the
8017 alignments of several sections. There is no ABI documentation
8018 indicating that this is necessary on IRIX6, nor any evidence that
8019 the linker takes such action. */
8020 if (IRIX_COMPAT (abfd) == ict_irix5)
8021 {
8022 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8023 {
8024 bh = NULL;
8025 if (! (_bfd_generic_link_add_one_symbol
8026 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8027 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8028 return FALSE;
8029
8030 h = (struct elf_link_hash_entry *) bh;
8031 h->mark = 1;
8032 h->non_elf = 0;
8033 h->def_regular = 1;
8034 h->type = STT_SECTION;
8035
8036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8037 return FALSE;
8038 }
8039
8040 /* We need to create a .compact_rel section. */
8041 if (SGI_COMPAT (abfd))
8042 {
8043 if (!mips_elf_create_compact_rel_section (abfd, info))
8044 return FALSE;
8045 }
8046
8047 /* Change alignments of some sections. */
8048 s = bfd_get_linker_section (abfd, ".hash");
8049 if (s != NULL)
8050 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8051
8052 s = bfd_get_linker_section (abfd, ".dynsym");
8053 if (s != NULL)
8054 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8055
8056 s = bfd_get_linker_section (abfd, ".dynstr");
8057 if (s != NULL)
8058 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8059
8060 /* ??? */
8061 s = bfd_get_section_by_name (abfd, ".reginfo");
8062 if (s != NULL)
8063 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8064
8065 s = bfd_get_linker_section (abfd, ".dynamic");
8066 if (s != NULL)
8067 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8068 }
8069
8070 if (bfd_link_executable (info))
8071 {
8072 const char *name;
8073
8074 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8075 bh = NULL;
8076 if (!(_bfd_generic_link_add_one_symbol
8077 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8078 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8079 return FALSE;
8080
8081 h = (struct elf_link_hash_entry *) bh;
8082 h->non_elf = 0;
8083 h->def_regular = 1;
8084 h->type = STT_SECTION;
8085
8086 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8087 return FALSE;
8088
8089 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8090 {
8091 /* __rld_map is a four byte word located in the .data section
8092 and is filled in by the rtld to contain a pointer to
8093 the _r_debug structure. Its symbol value will be set in
8094 _bfd_mips_elf_finish_dynamic_symbol. */
8095 s = bfd_get_linker_section (abfd, ".rld_map");
8096 BFD_ASSERT (s != NULL);
8097
8098 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8099 bh = NULL;
8100 if (!(_bfd_generic_link_add_one_symbol
8101 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8102 get_elf_backend_data (abfd)->collect, &bh)))
8103 return FALSE;
8104
8105 h = (struct elf_link_hash_entry *) bh;
8106 h->non_elf = 0;
8107 h->def_regular = 1;
8108 h->type = STT_OBJECT;
8109
8110 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8111 return FALSE;
8112 mips_elf_hash_table (info)->rld_symbol = h;
8113 }
8114 }
8115
8116 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8117 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8118 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8119 return FALSE;
8120
8121 /* Do the usual VxWorks handling. */
8122 if (htab->root.target_os == is_vxworks
8123 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8124 return FALSE;
8125
8126 return TRUE;
8127 }
8128 \f
8129 /* Return true if relocation REL against section SEC is a REL rather than
8130 RELA relocation. RELOCS is the first relocation in the section and
8131 ABFD is the bfd that contains SEC. */
8132
8133 static bfd_boolean
8134 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8135 const Elf_Internal_Rela *relocs,
8136 const Elf_Internal_Rela *rel)
8137 {
8138 Elf_Internal_Shdr *rel_hdr;
8139 const struct elf_backend_data *bed;
8140
8141 /* To determine which flavor of relocation this is, we depend on the
8142 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8143 rel_hdr = elf_section_data (sec)->rel.hdr;
8144 if (rel_hdr == NULL)
8145 return FALSE;
8146 bed = get_elf_backend_data (abfd);
8147 return ((size_t) (rel - relocs)
8148 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8149 }
8150
8151 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8152 HOWTO is the relocation's howto and CONTENTS points to the contents
8153 of the section that REL is against. */
8154
8155 static bfd_vma
8156 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8157 reloc_howto_type *howto, bfd_byte *contents)
8158 {
8159 bfd_byte *location;
8160 unsigned int r_type;
8161 bfd_vma addend;
8162 bfd_vma bytes;
8163
8164 r_type = ELF_R_TYPE (abfd, rel->r_info);
8165 location = contents + rel->r_offset;
8166
8167 /* Get the addend, which is stored in the input file. */
8168 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8169 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8170 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8171
8172 addend = bytes & howto->src_mask;
8173
8174 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8175 accordingly. */
8176 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8177 addend <<= 1;
8178
8179 return addend;
8180 }
8181
8182 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8183 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8184 and update *ADDEND with the final addend. Return true on success
8185 or false if the LO16 could not be found. RELEND is the exclusive
8186 upper bound on the relocations for REL's section. */
8187
8188 static bfd_boolean
8189 mips_elf_add_lo16_rel_addend (bfd *abfd,
8190 const Elf_Internal_Rela *rel,
8191 const Elf_Internal_Rela *relend,
8192 bfd_byte *contents, bfd_vma *addend)
8193 {
8194 unsigned int r_type, lo16_type;
8195 const Elf_Internal_Rela *lo16_relocation;
8196 reloc_howto_type *lo16_howto;
8197 bfd_vma l;
8198
8199 r_type = ELF_R_TYPE (abfd, rel->r_info);
8200 if (mips16_reloc_p (r_type))
8201 lo16_type = R_MIPS16_LO16;
8202 else if (micromips_reloc_p (r_type))
8203 lo16_type = R_MICROMIPS_LO16;
8204 else if (r_type == R_MIPS_PCHI16)
8205 lo16_type = R_MIPS_PCLO16;
8206 else
8207 lo16_type = R_MIPS_LO16;
8208
8209 /* The combined value is the sum of the HI16 addend, left-shifted by
8210 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8211 code does a `lui' of the HI16 value, and then an `addiu' of the
8212 LO16 value.)
8213
8214 Scan ahead to find a matching LO16 relocation.
8215
8216 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8217 be immediately following. However, for the IRIX6 ABI, the next
8218 relocation may be a composed relocation consisting of several
8219 relocations for the same address. In that case, the R_MIPS_LO16
8220 relocation may occur as one of these. We permit a similar
8221 extension in general, as that is useful for GCC.
8222
8223 In some cases GCC dead code elimination removes the LO16 but keeps
8224 the corresponding HI16. This is strictly speaking a violation of
8225 the ABI but not immediately harmful. */
8226 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8227 if (lo16_relocation == NULL)
8228 return FALSE;
8229
8230 /* Obtain the addend kept there. */
8231 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8232 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8233
8234 l <<= lo16_howto->rightshift;
8235 l = _bfd_mips_elf_sign_extend (l, 16);
8236
8237 *addend <<= 16;
8238 *addend += l;
8239 return TRUE;
8240 }
8241
8242 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8243 store the contents in *CONTENTS on success. Assume that *CONTENTS
8244 already holds the contents if it is nonull on entry. */
8245
8246 static bfd_boolean
8247 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8248 {
8249 if (*contents)
8250 return TRUE;
8251
8252 /* Get cached copy if it exists. */
8253 if (elf_section_data (sec)->this_hdr.contents != NULL)
8254 {
8255 *contents = elf_section_data (sec)->this_hdr.contents;
8256 return TRUE;
8257 }
8258
8259 return bfd_malloc_and_get_section (abfd, sec, contents);
8260 }
8261
8262 /* Make a new PLT record to keep internal data. */
8263
8264 static struct plt_entry *
8265 mips_elf_make_plt_record (bfd *abfd)
8266 {
8267 struct plt_entry *entry;
8268
8269 entry = bfd_zalloc (abfd, sizeof (*entry));
8270 if (entry == NULL)
8271 return NULL;
8272
8273 entry->stub_offset = MINUS_ONE;
8274 entry->mips_offset = MINUS_ONE;
8275 entry->comp_offset = MINUS_ONE;
8276 entry->gotplt_index = MINUS_ONE;
8277 return entry;
8278 }
8279
8280 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8281 for PIC code, as otherwise there is no load-time relocation involved
8282 and local GOT entries whose value is zero at static link time will
8283 retain their value at load time. */
8284
8285 static bfd_boolean
8286 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8287 struct mips_elf_link_hash_table *htab,
8288 unsigned int r_type)
8289 {
8290 union
8291 {
8292 struct elf_link_hash_entry *eh;
8293 struct bfd_link_hash_entry *bh;
8294 }
8295 hzero;
8296
8297 BFD_ASSERT (!htab->use_absolute_zero);
8298 BFD_ASSERT (bfd_link_pic (info));
8299
8300 hzero.bh = NULL;
8301 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8302 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8303 NULL, FALSE, FALSE, &hzero.bh))
8304 return FALSE;
8305
8306 BFD_ASSERT (hzero.bh != NULL);
8307 hzero.eh->size = 0;
8308 hzero.eh->type = STT_NOTYPE;
8309 hzero.eh->other = STV_PROTECTED;
8310 hzero.eh->def_regular = 1;
8311 hzero.eh->non_elf = 0;
8312
8313 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8314 return FALSE;
8315
8316 htab->use_absolute_zero = TRUE;
8317
8318 return TRUE;
8319 }
8320
8321 /* Look through the relocs for a section during the first phase, and
8322 allocate space in the global offset table and record the need for
8323 standard MIPS and compressed procedure linkage table entries. */
8324
8325 bfd_boolean
8326 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8327 asection *sec, const Elf_Internal_Rela *relocs)
8328 {
8329 const char *name;
8330 bfd *dynobj;
8331 Elf_Internal_Shdr *symtab_hdr;
8332 struct elf_link_hash_entry **sym_hashes;
8333 size_t extsymoff;
8334 const Elf_Internal_Rela *rel;
8335 const Elf_Internal_Rela *rel_end;
8336 asection *sreloc;
8337 const struct elf_backend_data *bed;
8338 struct mips_elf_link_hash_table *htab;
8339 bfd_byte *contents;
8340 bfd_vma addend;
8341 reloc_howto_type *howto;
8342
8343 if (bfd_link_relocatable (info))
8344 return TRUE;
8345
8346 htab = mips_elf_hash_table (info);
8347 BFD_ASSERT (htab != NULL);
8348
8349 dynobj = elf_hash_table (info)->dynobj;
8350 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8351 sym_hashes = elf_sym_hashes (abfd);
8352 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8353
8354 bed = get_elf_backend_data (abfd);
8355 rel_end = relocs + sec->reloc_count;
8356
8357 /* Check for the mips16 stub sections. */
8358
8359 name = bfd_section_name (sec);
8360 if (FN_STUB_P (name))
8361 {
8362 unsigned long r_symndx;
8363
8364 /* Look at the relocation information to figure out which symbol
8365 this is for. */
8366
8367 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8368 if (r_symndx == 0)
8369 {
8370 _bfd_error_handler
8371 /* xgettext:c-format */
8372 (_("%pB: warning: cannot determine the target function for"
8373 " stub section `%s'"),
8374 abfd, name);
8375 bfd_set_error (bfd_error_bad_value);
8376 return FALSE;
8377 }
8378
8379 if (r_symndx < extsymoff
8380 || sym_hashes[r_symndx - extsymoff] == NULL)
8381 {
8382 asection *o;
8383
8384 /* This stub is for a local symbol. This stub will only be
8385 needed if there is some relocation in this BFD, other
8386 than a 16 bit function call, which refers to this symbol. */
8387 for (o = abfd->sections; o != NULL; o = o->next)
8388 {
8389 Elf_Internal_Rela *sec_relocs;
8390 const Elf_Internal_Rela *r, *rend;
8391
8392 /* We can ignore stub sections when looking for relocs. */
8393 if ((o->flags & SEC_RELOC) == 0
8394 || o->reloc_count == 0
8395 || section_allows_mips16_refs_p (o))
8396 continue;
8397
8398 sec_relocs
8399 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8400 info->keep_memory);
8401 if (sec_relocs == NULL)
8402 return FALSE;
8403
8404 rend = sec_relocs + o->reloc_count;
8405 for (r = sec_relocs; r < rend; r++)
8406 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8407 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8408 break;
8409
8410 if (elf_section_data (o)->relocs != sec_relocs)
8411 free (sec_relocs);
8412
8413 if (r < rend)
8414 break;
8415 }
8416
8417 if (o == NULL)
8418 {
8419 /* There is no non-call reloc for this stub, so we do
8420 not need it. Since this function is called before
8421 the linker maps input sections to output sections, we
8422 can easily discard it by setting the SEC_EXCLUDE
8423 flag. */
8424 sec->flags |= SEC_EXCLUDE;
8425 return TRUE;
8426 }
8427
8428 /* Record this stub in an array of local symbol stubs for
8429 this BFD. */
8430 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8431 {
8432 unsigned long symcount;
8433 asection **n;
8434 bfd_size_type amt;
8435
8436 if (elf_bad_symtab (abfd))
8437 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8438 else
8439 symcount = symtab_hdr->sh_info;
8440 amt = symcount * sizeof (asection *);
8441 n = bfd_zalloc (abfd, amt);
8442 if (n == NULL)
8443 return FALSE;
8444 mips_elf_tdata (abfd)->local_stubs = n;
8445 }
8446
8447 sec->flags |= SEC_KEEP;
8448 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8449
8450 /* We don't need to set mips16_stubs_seen in this case.
8451 That flag is used to see whether we need to look through
8452 the global symbol table for stubs. We don't need to set
8453 it here, because we just have a local stub. */
8454 }
8455 else
8456 {
8457 struct mips_elf_link_hash_entry *h;
8458
8459 h = ((struct mips_elf_link_hash_entry *)
8460 sym_hashes[r_symndx - extsymoff]);
8461
8462 while (h->root.root.type == bfd_link_hash_indirect
8463 || h->root.root.type == bfd_link_hash_warning)
8464 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8465
8466 /* H is the symbol this stub is for. */
8467
8468 /* If we already have an appropriate stub for this function, we
8469 don't need another one, so we can discard this one. Since
8470 this function is called before the linker maps input sections
8471 to output sections, we can easily discard it by setting the
8472 SEC_EXCLUDE flag. */
8473 if (h->fn_stub != NULL)
8474 {
8475 sec->flags |= SEC_EXCLUDE;
8476 return TRUE;
8477 }
8478
8479 sec->flags |= SEC_KEEP;
8480 h->fn_stub = sec;
8481 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8482 }
8483 }
8484 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8485 {
8486 unsigned long r_symndx;
8487 struct mips_elf_link_hash_entry *h;
8488 asection **loc;
8489
8490 /* Look at the relocation information to figure out which symbol
8491 this is for. */
8492
8493 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8494 if (r_symndx == 0)
8495 {
8496 _bfd_error_handler
8497 /* xgettext:c-format */
8498 (_("%pB: warning: cannot determine the target function for"
8499 " stub section `%s'"),
8500 abfd, name);
8501 bfd_set_error (bfd_error_bad_value);
8502 return FALSE;
8503 }
8504
8505 if (r_symndx < extsymoff
8506 || sym_hashes[r_symndx - extsymoff] == NULL)
8507 {
8508 asection *o;
8509
8510 /* This stub is for a local symbol. This stub will only be
8511 needed if there is some relocation (R_MIPS16_26) in this BFD
8512 that refers to this symbol. */
8513 for (o = abfd->sections; o != NULL; o = o->next)
8514 {
8515 Elf_Internal_Rela *sec_relocs;
8516 const Elf_Internal_Rela *r, *rend;
8517
8518 /* We can ignore stub sections when looking for relocs. */
8519 if ((o->flags & SEC_RELOC) == 0
8520 || o->reloc_count == 0
8521 || section_allows_mips16_refs_p (o))
8522 continue;
8523
8524 sec_relocs
8525 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8526 info->keep_memory);
8527 if (sec_relocs == NULL)
8528 return FALSE;
8529
8530 rend = sec_relocs + o->reloc_count;
8531 for (r = sec_relocs; r < rend; r++)
8532 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8533 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8534 break;
8535
8536 if (elf_section_data (o)->relocs != sec_relocs)
8537 free (sec_relocs);
8538
8539 if (r < rend)
8540 break;
8541 }
8542
8543 if (o == NULL)
8544 {
8545 /* There is no non-call reloc for this stub, so we do
8546 not need it. Since this function is called before
8547 the linker maps input sections to output sections, we
8548 can easily discard it by setting the SEC_EXCLUDE
8549 flag. */
8550 sec->flags |= SEC_EXCLUDE;
8551 return TRUE;
8552 }
8553
8554 /* Record this stub in an array of local symbol call_stubs for
8555 this BFD. */
8556 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8557 {
8558 unsigned long symcount;
8559 asection **n;
8560 bfd_size_type amt;
8561
8562 if (elf_bad_symtab (abfd))
8563 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8564 else
8565 symcount = symtab_hdr->sh_info;
8566 amt = symcount * sizeof (asection *);
8567 n = bfd_zalloc (abfd, amt);
8568 if (n == NULL)
8569 return FALSE;
8570 mips_elf_tdata (abfd)->local_call_stubs = n;
8571 }
8572
8573 sec->flags |= SEC_KEEP;
8574 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8575
8576 /* We don't need to set mips16_stubs_seen in this case.
8577 That flag is used to see whether we need to look through
8578 the global symbol table for stubs. We don't need to set
8579 it here, because we just have a local stub. */
8580 }
8581 else
8582 {
8583 h = ((struct mips_elf_link_hash_entry *)
8584 sym_hashes[r_symndx - extsymoff]);
8585
8586 /* H is the symbol this stub is for. */
8587
8588 if (CALL_FP_STUB_P (name))
8589 loc = &h->call_fp_stub;
8590 else
8591 loc = &h->call_stub;
8592
8593 /* If we already have an appropriate stub for this function, we
8594 don't need another one, so we can discard this one. Since
8595 this function is called before the linker maps input sections
8596 to output sections, we can easily discard it by setting the
8597 SEC_EXCLUDE flag. */
8598 if (*loc != NULL)
8599 {
8600 sec->flags |= SEC_EXCLUDE;
8601 return TRUE;
8602 }
8603
8604 sec->flags |= SEC_KEEP;
8605 *loc = sec;
8606 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8607 }
8608 }
8609
8610 sreloc = NULL;
8611 contents = NULL;
8612 for (rel = relocs; rel < rel_end; ++rel)
8613 {
8614 unsigned long r_symndx;
8615 unsigned int r_type;
8616 struct elf_link_hash_entry *h;
8617 bfd_boolean can_make_dynamic_p;
8618 bfd_boolean call_reloc_p;
8619 bfd_boolean constrain_symbol_p;
8620
8621 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8622 r_type = ELF_R_TYPE (abfd, rel->r_info);
8623
8624 if (r_symndx < extsymoff)
8625 h = NULL;
8626 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8627 {
8628 _bfd_error_handler
8629 /* xgettext:c-format */
8630 (_("%pB: malformed reloc detected for section %s"),
8631 abfd, name);
8632 bfd_set_error (bfd_error_bad_value);
8633 return FALSE;
8634 }
8635 else
8636 {
8637 h = sym_hashes[r_symndx - extsymoff];
8638 if (h != NULL)
8639 {
8640 while (h->root.type == bfd_link_hash_indirect
8641 || h->root.type == bfd_link_hash_warning)
8642 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8643 }
8644 }
8645
8646 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8647 relocation into a dynamic one. */
8648 can_make_dynamic_p = FALSE;
8649
8650 /* Set CALL_RELOC_P to true if the relocation is for a call,
8651 and if pointer equality therefore doesn't matter. */
8652 call_reloc_p = FALSE;
8653
8654 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8655 into account when deciding how to define the symbol. */
8656 constrain_symbol_p = TRUE;
8657
8658 switch (r_type)
8659 {
8660 case R_MIPS_CALL16:
8661 case R_MIPS_CALL_HI16:
8662 case R_MIPS_CALL_LO16:
8663 case R_MIPS16_CALL16:
8664 case R_MICROMIPS_CALL16:
8665 case R_MICROMIPS_CALL_HI16:
8666 case R_MICROMIPS_CALL_LO16:
8667 call_reloc_p = TRUE;
8668 /* Fall through. */
8669
8670 case R_MIPS_GOT16:
8671 case R_MIPS_GOT_LO16:
8672 case R_MIPS_GOT_PAGE:
8673 case R_MIPS_GOT_DISP:
8674 case R_MIPS16_GOT16:
8675 case R_MICROMIPS_GOT16:
8676 case R_MICROMIPS_GOT_LO16:
8677 case R_MICROMIPS_GOT_PAGE:
8678 case R_MICROMIPS_GOT_DISP:
8679 /* If we have a symbol that will resolve to zero at static link
8680 time and it is used by a GOT relocation applied to code we
8681 cannot relax to an immediate zero load, then we will be using
8682 the special `__gnu_absolute_zero' symbol whose value is zero
8683 at dynamic load time. We ignore HI16-type GOT relocations at
8684 this stage, because their handling will depend entirely on
8685 the corresponding LO16-type GOT relocation. */
8686 if (!call_hi16_reloc_p (r_type)
8687 && h != NULL
8688 && bfd_link_pic (info)
8689 && !htab->use_absolute_zero
8690 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8691 {
8692 bfd_boolean rel_reloc;
8693
8694 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8695 return FALSE;
8696
8697 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8698 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8699
8700 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8701 FALSE))
8702 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8703 return FALSE;
8704 }
8705
8706 /* Fall through. */
8707 case R_MIPS_GOT_HI16:
8708 case R_MIPS_GOT_OFST:
8709 case R_MIPS_TLS_GOTTPREL:
8710 case R_MIPS_TLS_GD:
8711 case R_MIPS_TLS_LDM:
8712 case R_MIPS16_TLS_GOTTPREL:
8713 case R_MIPS16_TLS_GD:
8714 case R_MIPS16_TLS_LDM:
8715 case R_MICROMIPS_GOT_HI16:
8716 case R_MICROMIPS_GOT_OFST:
8717 case R_MICROMIPS_TLS_GOTTPREL:
8718 case R_MICROMIPS_TLS_GD:
8719 case R_MICROMIPS_TLS_LDM:
8720 if (dynobj == NULL)
8721 elf_hash_table (info)->dynobj = dynobj = abfd;
8722 if (!mips_elf_create_got_section (dynobj, info))
8723 return FALSE;
8724 if (htab->root.target_os == is_vxworks
8725 && !bfd_link_pic (info))
8726 {
8727 _bfd_error_handler
8728 /* xgettext:c-format */
8729 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8730 abfd, (uint64_t) rel->r_offset);
8731 bfd_set_error (bfd_error_bad_value);
8732 return FALSE;
8733 }
8734 can_make_dynamic_p = TRUE;
8735 break;
8736
8737 case R_MIPS_NONE:
8738 case R_MIPS_JALR:
8739 case R_MICROMIPS_JALR:
8740 /* These relocations have empty fields and are purely there to
8741 provide link information. The symbol value doesn't matter. */
8742 constrain_symbol_p = FALSE;
8743 break;
8744
8745 case R_MIPS_GPREL16:
8746 case R_MIPS_GPREL32:
8747 case R_MIPS16_GPREL:
8748 case R_MICROMIPS_GPREL16:
8749 /* GP-relative relocations always resolve to a definition in a
8750 regular input file, ignoring the one-definition rule. This is
8751 important for the GP setup sequence in NewABI code, which
8752 always resolves to a local function even if other relocations
8753 against the symbol wouldn't. */
8754 constrain_symbol_p = FALSE;
8755 break;
8756
8757 case R_MIPS_32:
8758 case R_MIPS_REL32:
8759 case R_MIPS_64:
8760 /* In VxWorks executables, references to external symbols
8761 must be handled using copy relocs or PLT entries; it is not
8762 possible to convert this relocation into a dynamic one.
8763
8764 For executables that use PLTs and copy-relocs, we have a
8765 choice between converting the relocation into a dynamic
8766 one or using copy relocations or PLT entries. It is
8767 usually better to do the former, unless the relocation is
8768 against a read-only section. */
8769 if ((bfd_link_pic (info)
8770 || (h != NULL
8771 && htab->root.target_os != is_vxworks
8772 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8773 && !(!info->nocopyreloc
8774 && !PIC_OBJECT_P (abfd)
8775 && MIPS_ELF_READONLY_SECTION (sec))))
8776 && (sec->flags & SEC_ALLOC) != 0)
8777 {
8778 can_make_dynamic_p = TRUE;
8779 if (dynobj == NULL)
8780 elf_hash_table (info)->dynobj = dynobj = abfd;
8781 }
8782 break;
8783
8784 case R_MIPS_26:
8785 case R_MIPS_PC16:
8786 case R_MIPS_PC21_S2:
8787 case R_MIPS_PC26_S2:
8788 case R_MIPS16_26:
8789 case R_MIPS16_PC16_S1:
8790 case R_MICROMIPS_26_S1:
8791 case R_MICROMIPS_PC7_S1:
8792 case R_MICROMIPS_PC10_S1:
8793 case R_MICROMIPS_PC16_S1:
8794 case R_MICROMIPS_PC23_S2:
8795 call_reloc_p = TRUE;
8796 break;
8797 }
8798
8799 if (h)
8800 {
8801 if (constrain_symbol_p)
8802 {
8803 if (!can_make_dynamic_p)
8804 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8805
8806 if (!call_reloc_p)
8807 h->pointer_equality_needed = 1;
8808
8809 /* We must not create a stub for a symbol that has
8810 relocations related to taking the function's address.
8811 This doesn't apply to VxWorks, where CALL relocs refer
8812 to a .got.plt entry instead of a normal .got entry. */
8813 if (htab->root.target_os != is_vxworks
8814 && (!can_make_dynamic_p || !call_reloc_p))
8815 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8816 }
8817
8818 /* Relocations against the special VxWorks __GOTT_BASE__ and
8819 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8820 room for them in .rela.dyn. */
8821 if (is_gott_symbol (info, h))
8822 {
8823 if (sreloc == NULL)
8824 {
8825 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8826 if (sreloc == NULL)
8827 return FALSE;
8828 }
8829 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8830 if (MIPS_ELF_READONLY_SECTION (sec))
8831 /* We tell the dynamic linker that there are
8832 relocations against the text segment. */
8833 info->flags |= DF_TEXTREL;
8834 }
8835 }
8836 else if (call_lo16_reloc_p (r_type)
8837 || got_lo16_reloc_p (r_type)
8838 || got_disp_reloc_p (r_type)
8839 || (got16_reloc_p (r_type)
8840 && htab->root.target_os == is_vxworks))
8841 {
8842 /* We may need a local GOT entry for this relocation. We
8843 don't count R_MIPS_GOT_PAGE because we can estimate the
8844 maximum number of pages needed by looking at the size of
8845 the segment. Similar comments apply to R_MIPS*_GOT16 and
8846 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8847 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8848 R_MIPS_CALL_HI16 because these are always followed by an
8849 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8850 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8851 rel->r_addend, info, r_type))
8852 return FALSE;
8853 }
8854
8855 if (h != NULL
8856 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8857 ELF_ST_IS_MIPS16 (h->other)))
8858 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8859
8860 switch (r_type)
8861 {
8862 case R_MIPS_CALL16:
8863 case R_MIPS16_CALL16:
8864 case R_MICROMIPS_CALL16:
8865 if (h == NULL)
8866 {
8867 _bfd_error_handler
8868 /* xgettext:c-format */
8869 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8870 abfd, (uint64_t) rel->r_offset);
8871 bfd_set_error (bfd_error_bad_value);
8872 return FALSE;
8873 }
8874 /* Fall through. */
8875
8876 case R_MIPS_CALL_HI16:
8877 case R_MIPS_CALL_LO16:
8878 case R_MICROMIPS_CALL_HI16:
8879 case R_MICROMIPS_CALL_LO16:
8880 if (h != NULL)
8881 {
8882 /* Make sure there is room in the regular GOT to hold the
8883 function's address. We may eliminate it in favour of
8884 a .got.plt entry later; see mips_elf_count_got_symbols. */
8885 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8886 r_type))
8887 return FALSE;
8888
8889 /* We need a stub, not a plt entry for the undefined
8890 function. But we record it as if it needs plt. See
8891 _bfd_elf_adjust_dynamic_symbol. */
8892 h->needs_plt = 1;
8893 h->type = STT_FUNC;
8894 }
8895 break;
8896
8897 case R_MIPS_GOT_PAGE:
8898 case R_MICROMIPS_GOT_PAGE:
8899 case R_MIPS16_GOT16:
8900 case R_MIPS_GOT16:
8901 case R_MIPS_GOT_HI16:
8902 case R_MIPS_GOT_LO16:
8903 case R_MICROMIPS_GOT16:
8904 case R_MICROMIPS_GOT_HI16:
8905 case R_MICROMIPS_GOT_LO16:
8906 if (!h || got_page_reloc_p (r_type))
8907 {
8908 /* This relocation needs (or may need, if h != NULL) a
8909 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8910 know for sure until we know whether the symbol is
8911 preemptible. */
8912 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8913 {
8914 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8915 return FALSE;
8916 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8917 addend = mips_elf_read_rel_addend (abfd, rel,
8918 howto, contents);
8919 if (got16_reloc_p (r_type))
8920 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8921 contents, &addend);
8922 else
8923 addend <<= howto->rightshift;
8924 }
8925 else
8926 addend = rel->r_addend;
8927 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8928 h, addend))
8929 return FALSE;
8930
8931 if (h)
8932 {
8933 struct mips_elf_link_hash_entry *hmips =
8934 (struct mips_elf_link_hash_entry *) h;
8935
8936 /* This symbol is definitely not overridable. */
8937 if (hmips->root.def_regular
8938 && ! (bfd_link_pic (info) && ! info->symbolic
8939 && ! hmips->root.forced_local))
8940 h = NULL;
8941 }
8942 }
8943 /* If this is a global, overridable symbol, GOT_PAGE will
8944 decay to GOT_DISP, so we'll need a GOT entry for it. */
8945 /* Fall through. */
8946
8947 case R_MIPS_GOT_DISP:
8948 case R_MICROMIPS_GOT_DISP:
8949 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8950 FALSE, r_type))
8951 return FALSE;
8952 break;
8953
8954 case R_MIPS_TLS_GOTTPREL:
8955 case R_MIPS16_TLS_GOTTPREL:
8956 case R_MICROMIPS_TLS_GOTTPREL:
8957 if (bfd_link_pic (info))
8958 info->flags |= DF_STATIC_TLS;
8959 /* Fall through */
8960
8961 case R_MIPS_TLS_LDM:
8962 case R_MIPS16_TLS_LDM:
8963 case R_MICROMIPS_TLS_LDM:
8964 if (tls_ldm_reloc_p (r_type))
8965 {
8966 r_symndx = STN_UNDEF;
8967 h = NULL;
8968 }
8969 /* Fall through */
8970
8971 case R_MIPS_TLS_GD:
8972 case R_MIPS16_TLS_GD:
8973 case R_MICROMIPS_TLS_GD:
8974 /* This symbol requires a global offset table entry, or two
8975 for TLS GD relocations. */
8976 if (h != NULL)
8977 {
8978 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8979 FALSE, r_type))
8980 return FALSE;
8981 }
8982 else
8983 {
8984 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8985 rel->r_addend,
8986 info, r_type))
8987 return FALSE;
8988 }
8989 break;
8990
8991 case R_MIPS_32:
8992 case R_MIPS_REL32:
8993 case R_MIPS_64:
8994 /* In VxWorks executables, references to external symbols
8995 are handled using copy relocs or PLT stubs, so there's
8996 no need to add a .rela.dyn entry for this relocation. */
8997 if (can_make_dynamic_p)
8998 {
8999 if (sreloc == NULL)
9000 {
9001 sreloc = mips_elf_rel_dyn_section (info, TRUE);
9002 if (sreloc == NULL)
9003 return FALSE;
9004 }
9005 if (bfd_link_pic (info) && h == NULL)
9006 {
9007 /* When creating a shared object, we must copy these
9008 reloc types into the output file as R_MIPS_REL32
9009 relocs. Make room for this reloc in .rel(a).dyn. */
9010 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9011 if (MIPS_ELF_READONLY_SECTION (sec))
9012 /* We tell the dynamic linker that there are
9013 relocations against the text segment. */
9014 info->flags |= DF_TEXTREL;
9015 }
9016 else
9017 {
9018 struct mips_elf_link_hash_entry *hmips;
9019
9020 /* For a shared object, we must copy this relocation
9021 unless the symbol turns out to be undefined and
9022 weak with non-default visibility, in which case
9023 it will be left as zero.
9024
9025 We could elide R_MIPS_REL32 for locally binding symbols
9026 in shared libraries, but do not yet do so.
9027
9028 For an executable, we only need to copy this
9029 reloc if the symbol is defined in a dynamic
9030 object. */
9031 hmips = (struct mips_elf_link_hash_entry *) h;
9032 ++hmips->possibly_dynamic_relocs;
9033 if (MIPS_ELF_READONLY_SECTION (sec))
9034 /* We need it to tell the dynamic linker if there
9035 are relocations against the text segment. */
9036 hmips->readonly_reloc = TRUE;
9037 }
9038 }
9039
9040 if (SGI_COMPAT (abfd))
9041 mips_elf_hash_table (info)->compact_rel_size +=
9042 sizeof (Elf32_External_crinfo);
9043 break;
9044
9045 case R_MIPS_26:
9046 case R_MIPS_GPREL16:
9047 case R_MIPS_LITERAL:
9048 case R_MIPS_GPREL32:
9049 case R_MICROMIPS_26_S1:
9050 case R_MICROMIPS_GPREL16:
9051 case R_MICROMIPS_LITERAL:
9052 case R_MICROMIPS_GPREL7_S2:
9053 if (SGI_COMPAT (abfd))
9054 mips_elf_hash_table (info)->compact_rel_size +=
9055 sizeof (Elf32_External_crinfo);
9056 break;
9057
9058 /* This relocation describes the C++ object vtable hierarchy.
9059 Reconstruct it for later use during GC. */
9060 case R_MIPS_GNU_VTINHERIT:
9061 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9062 return FALSE;
9063 break;
9064
9065 /* This relocation describes which C++ vtable entries are actually
9066 used. Record for later use during GC. */
9067 case R_MIPS_GNU_VTENTRY:
9068 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9069 return FALSE;
9070 break;
9071
9072 default:
9073 break;
9074 }
9075
9076 /* Record the need for a PLT entry. At this point we don't know
9077 yet if we are going to create a PLT in the first place, but
9078 we only record whether the relocation requires a standard MIPS
9079 or a compressed code entry anyway. If we don't make a PLT after
9080 all, then we'll just ignore these arrangements. Likewise if
9081 a PLT entry is not created because the symbol is satisfied
9082 locally. */
9083 if (h != NULL
9084 && (branch_reloc_p (r_type)
9085 || mips16_branch_reloc_p (r_type)
9086 || micromips_branch_reloc_p (r_type))
9087 && !SYMBOL_CALLS_LOCAL (info, h))
9088 {
9089 if (h->plt.plist == NULL)
9090 h->plt.plist = mips_elf_make_plt_record (abfd);
9091 if (h->plt.plist == NULL)
9092 return FALSE;
9093
9094 if (branch_reloc_p (r_type))
9095 h->plt.plist->need_mips = TRUE;
9096 else
9097 h->plt.plist->need_comp = TRUE;
9098 }
9099
9100 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9101 if there is one. We only need to handle global symbols here;
9102 we decide whether to keep or delete stubs for local symbols
9103 when processing the stub's relocations. */
9104 if (h != NULL
9105 && !mips16_call_reloc_p (r_type)
9106 && !section_allows_mips16_refs_p (sec))
9107 {
9108 struct mips_elf_link_hash_entry *mh;
9109
9110 mh = (struct mips_elf_link_hash_entry *) h;
9111 mh->need_fn_stub = TRUE;
9112 }
9113
9114 /* Refuse some position-dependent relocations when creating a
9115 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9116 not PIC, but we can create dynamic relocations and the result
9117 will be fine. Also do not refuse R_MIPS_LO16, which can be
9118 combined with R_MIPS_GOT16. */
9119 if (bfd_link_pic (info))
9120 {
9121 switch (r_type)
9122 {
9123 case R_MIPS_TLS_TPREL_HI16:
9124 case R_MIPS16_TLS_TPREL_HI16:
9125 case R_MICROMIPS_TLS_TPREL_HI16:
9126 case R_MIPS_TLS_TPREL_LO16:
9127 case R_MIPS16_TLS_TPREL_LO16:
9128 case R_MICROMIPS_TLS_TPREL_LO16:
9129 /* These are okay in PIE, but not in a shared library. */
9130 if (bfd_link_executable (info))
9131 break;
9132
9133 /* FALLTHROUGH */
9134
9135 case R_MIPS16_HI16:
9136 case R_MIPS_HI16:
9137 case R_MIPS_HIGHER:
9138 case R_MIPS_HIGHEST:
9139 case R_MICROMIPS_HI16:
9140 case R_MICROMIPS_HIGHER:
9141 case R_MICROMIPS_HIGHEST:
9142 /* Don't refuse a high part relocation if it's against
9143 no symbol (e.g. part of a compound relocation). */
9144 if (r_symndx == STN_UNDEF)
9145 break;
9146
9147 /* Likewise an absolute symbol. */
9148 if (h != NULL && bfd_is_abs_symbol (&h->root))
9149 break;
9150
9151 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9152 and has a special meaning. */
9153 if (!NEWABI_P (abfd) && h != NULL
9154 && strcmp (h->root.root.string, "_gp_disp") == 0)
9155 break;
9156
9157 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9158 if (is_gott_symbol (info, h))
9159 break;
9160
9161 /* FALLTHROUGH */
9162
9163 case R_MIPS16_26:
9164 case R_MIPS_26:
9165 case R_MICROMIPS_26_S1:
9166 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9167 /* An error for unsupported relocations is raised as part
9168 of the above search, so we can skip the following. */
9169 if (howto != NULL)
9170 info->callbacks->einfo
9171 /* xgettext:c-format */
9172 (_("%X%H: relocation %s against `%s' cannot be used"
9173 " when making a shared object; recompile with -fPIC\n"),
9174 abfd, sec, rel->r_offset, howto->name,
9175 (h) ? h->root.root.string : "a local symbol");
9176 break;
9177 default:
9178 break;
9179 }
9180 }
9181 }
9182
9183 return TRUE;
9184 }
9185 \f
9186 /* Allocate space for global sym dynamic relocs. */
9187
9188 static bfd_boolean
9189 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9190 {
9191 struct bfd_link_info *info = inf;
9192 bfd *dynobj;
9193 struct mips_elf_link_hash_entry *hmips;
9194 struct mips_elf_link_hash_table *htab;
9195
9196 htab = mips_elf_hash_table (info);
9197 BFD_ASSERT (htab != NULL);
9198
9199 dynobj = elf_hash_table (info)->dynobj;
9200 hmips = (struct mips_elf_link_hash_entry *) h;
9201
9202 /* VxWorks executables are handled elsewhere; we only need to
9203 allocate relocations in shared objects. */
9204 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9205 return TRUE;
9206
9207 /* Ignore indirect symbols. All relocations against such symbols
9208 will be redirected to the target symbol. */
9209 if (h->root.type == bfd_link_hash_indirect)
9210 return TRUE;
9211
9212 /* If this symbol is defined in a dynamic object, or we are creating
9213 a shared library, we will need to copy any R_MIPS_32 or
9214 R_MIPS_REL32 relocs against it into the output file. */
9215 if (! bfd_link_relocatable (info)
9216 && hmips->possibly_dynamic_relocs != 0
9217 && (h->root.type == bfd_link_hash_defweak
9218 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9219 || bfd_link_pic (info)))
9220 {
9221 bfd_boolean do_copy = TRUE;
9222
9223 if (h->root.type == bfd_link_hash_undefweak)
9224 {
9225 /* Do not copy relocations for undefined weak symbols that
9226 we are not going to export. */
9227 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9228 do_copy = FALSE;
9229
9230 /* Make sure undefined weak symbols are output as a dynamic
9231 symbol in PIEs. */
9232 else if (h->dynindx == -1 && !h->forced_local)
9233 {
9234 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9235 return FALSE;
9236 }
9237 }
9238
9239 if (do_copy)
9240 {
9241 /* Even though we don't directly need a GOT entry for this symbol,
9242 the SVR4 psABI requires it to have a dynamic symbol table
9243 index greater that DT_MIPS_GOTSYM if there are dynamic
9244 relocations against it.
9245
9246 VxWorks does not enforce the same mapping between the GOT
9247 and the symbol table, so the same requirement does not
9248 apply there. */
9249 if (htab->root.target_os != is_vxworks)
9250 {
9251 if (hmips->global_got_area > GGA_RELOC_ONLY)
9252 hmips->global_got_area = GGA_RELOC_ONLY;
9253 hmips->got_only_for_calls = FALSE;
9254 }
9255
9256 mips_elf_allocate_dynamic_relocations
9257 (dynobj, info, hmips->possibly_dynamic_relocs);
9258 if (hmips->readonly_reloc)
9259 /* We tell the dynamic linker that there are relocations
9260 against the text segment. */
9261 info->flags |= DF_TEXTREL;
9262 }
9263 }
9264
9265 return TRUE;
9266 }
9267
9268 /* Adjust a symbol defined by a dynamic object and referenced by a
9269 regular object. The current definition is in some section of the
9270 dynamic object, but we're not including those sections. We have to
9271 change the definition to something the rest of the link can
9272 understand. */
9273
9274 bfd_boolean
9275 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9276 struct elf_link_hash_entry *h)
9277 {
9278 bfd *dynobj;
9279 struct mips_elf_link_hash_entry *hmips;
9280 struct mips_elf_link_hash_table *htab;
9281 asection *s, *srel;
9282
9283 htab = mips_elf_hash_table (info);
9284 BFD_ASSERT (htab != NULL);
9285
9286 dynobj = elf_hash_table (info)->dynobj;
9287 hmips = (struct mips_elf_link_hash_entry *) h;
9288
9289 /* Make sure we know what is going on here. */
9290 if (dynobj == NULL
9291 || (! h->needs_plt
9292 && ! h->is_weakalias
9293 && (! h->def_dynamic
9294 || ! h->ref_regular
9295 || h->def_regular)))
9296 {
9297 if (h->type == STT_GNU_IFUNC)
9298 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9299 h->root.root.string);
9300 else
9301 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9302 h->root.root.string);
9303 return TRUE;
9304 }
9305
9306 hmips = (struct mips_elf_link_hash_entry *) h;
9307
9308 /* If there are call relocations against an externally-defined symbol,
9309 see whether we can create a MIPS lazy-binding stub for it. We can
9310 only do this if all references to the function are through call
9311 relocations, and in that case, the traditional lazy-binding stubs
9312 are much more efficient than PLT entries.
9313
9314 Traditional stubs are only available on SVR4 psABI-based systems;
9315 VxWorks always uses PLTs instead. */
9316 if (htab->root.target_os != is_vxworks
9317 && h->needs_plt
9318 && !hmips->no_fn_stub)
9319 {
9320 if (! elf_hash_table (info)->dynamic_sections_created)
9321 return TRUE;
9322
9323 /* If this symbol is not defined in a regular file, then set
9324 the symbol to the stub location. This is required to make
9325 function pointers compare as equal between the normal
9326 executable and the shared library. */
9327 if (!h->def_regular
9328 && !bfd_is_abs_section (htab->sstubs->output_section))
9329 {
9330 hmips->needs_lazy_stub = TRUE;
9331 htab->lazy_stub_count++;
9332 return TRUE;
9333 }
9334 }
9335 /* As above, VxWorks requires PLT entries for externally-defined
9336 functions that are only accessed through call relocations.
9337
9338 Both VxWorks and non-VxWorks targets also need PLT entries if there
9339 are static-only relocations against an externally-defined function.
9340 This can technically occur for shared libraries if there are
9341 branches to the symbol, although it is unlikely that this will be
9342 used in practice due to the short ranges involved. It can occur
9343 for any relative or absolute relocation in executables; in that
9344 case, the PLT entry becomes the function's canonical address. */
9345 else if (((h->needs_plt && !hmips->no_fn_stub)
9346 || (h->type == STT_FUNC && hmips->has_static_relocs))
9347 && htab->use_plts_and_copy_relocs
9348 && !SYMBOL_CALLS_LOCAL (info, h)
9349 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9350 && h->root.type == bfd_link_hash_undefweak))
9351 {
9352 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9353 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9354
9355 /* If this is the first symbol to need a PLT entry, then make some
9356 basic setup. Also work out PLT entry sizes. We'll need them
9357 for PLT offset calculations. */
9358 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9359 {
9360 BFD_ASSERT (htab->root.sgotplt->size == 0);
9361 BFD_ASSERT (htab->plt_got_index == 0);
9362
9363 /* If we're using the PLT additions to the psABI, each PLT
9364 entry is 16 bytes and the PLT0 entry is 32 bytes.
9365 Encourage better cache usage by aligning. We do this
9366 lazily to avoid pessimizing traditional objects. */
9367 if (htab->root.target_os != is_vxworks
9368 && !bfd_set_section_alignment (htab->root.splt, 5))
9369 return FALSE;
9370
9371 /* Make sure that .got.plt is word-aligned. We do this lazily
9372 for the same reason as above. */
9373 if (!bfd_set_section_alignment (htab->root.sgotplt,
9374 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9375 return FALSE;
9376
9377 /* On non-VxWorks targets, the first two entries in .got.plt
9378 are reserved. */
9379 if (htab->root.target_os != is_vxworks)
9380 htab->plt_got_index
9381 += (get_elf_backend_data (dynobj)->got_header_size
9382 / MIPS_ELF_GOT_SIZE (dynobj));
9383
9384 /* On VxWorks, also allocate room for the header's
9385 .rela.plt.unloaded entries. */
9386 if (htab->root.target_os == is_vxworks
9387 && !bfd_link_pic (info))
9388 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9389
9390 /* Now work out the sizes of individual PLT entries. */
9391 if (htab->root.target_os == is_vxworks
9392 && bfd_link_pic (info))
9393 htab->plt_mips_entry_size
9394 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9395 else if (htab->root.target_os == is_vxworks)
9396 htab->plt_mips_entry_size
9397 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9398 else if (newabi_p)
9399 htab->plt_mips_entry_size
9400 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9401 else if (!micromips_p)
9402 {
9403 htab->plt_mips_entry_size
9404 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9405 htab->plt_comp_entry_size
9406 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9407 }
9408 else if (htab->insn32)
9409 {
9410 htab->plt_mips_entry_size
9411 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9412 htab->plt_comp_entry_size
9413 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9414 }
9415 else
9416 {
9417 htab->plt_mips_entry_size
9418 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9419 htab->plt_comp_entry_size
9420 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9421 }
9422 }
9423
9424 if (h->plt.plist == NULL)
9425 h->plt.plist = mips_elf_make_plt_record (dynobj);
9426 if (h->plt.plist == NULL)
9427 return FALSE;
9428
9429 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9430 n32 or n64, so always use a standard entry there.
9431
9432 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9433 all MIPS16 calls will go via that stub, and there is no benefit
9434 to having a MIPS16 entry. And in the case of call_stub a
9435 standard entry actually has to be used as the stub ends with a J
9436 instruction. */
9437 if (newabi_p
9438 || htab->root.target_os == is_vxworks
9439 || hmips->call_stub
9440 || hmips->call_fp_stub)
9441 {
9442 h->plt.plist->need_mips = TRUE;
9443 h->plt.plist->need_comp = FALSE;
9444 }
9445
9446 /* Otherwise, if there are no direct calls to the function, we
9447 have a free choice of whether to use standard or compressed
9448 entries. Prefer microMIPS entries if the object is known to
9449 contain microMIPS code, so that it becomes possible to create
9450 pure microMIPS binaries. Prefer standard entries otherwise,
9451 because MIPS16 ones are no smaller and are usually slower. */
9452 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9453 {
9454 if (micromips_p)
9455 h->plt.plist->need_comp = TRUE;
9456 else
9457 h->plt.plist->need_mips = TRUE;
9458 }
9459
9460 if (h->plt.plist->need_mips)
9461 {
9462 h->plt.plist->mips_offset = htab->plt_mips_offset;
9463 htab->plt_mips_offset += htab->plt_mips_entry_size;
9464 }
9465 if (h->plt.plist->need_comp)
9466 {
9467 h->plt.plist->comp_offset = htab->plt_comp_offset;
9468 htab->plt_comp_offset += htab->plt_comp_entry_size;
9469 }
9470
9471 /* Reserve the corresponding .got.plt entry now too. */
9472 h->plt.plist->gotplt_index = htab->plt_got_index++;
9473
9474 /* If the output file has no definition of the symbol, set the
9475 symbol's value to the address of the stub. */
9476 if (!bfd_link_pic (info) && !h->def_regular)
9477 hmips->use_plt_entry = TRUE;
9478
9479 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9480 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9481 ? MIPS_ELF_RELA_SIZE (dynobj)
9482 : MIPS_ELF_REL_SIZE (dynobj));
9483
9484 /* Make room for the .rela.plt.unloaded relocations. */
9485 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9486 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9487
9488 /* All relocations against this symbol that could have been made
9489 dynamic will now refer to the PLT entry instead. */
9490 hmips->possibly_dynamic_relocs = 0;
9491
9492 return TRUE;
9493 }
9494
9495 /* If this is a weak symbol, and there is a real definition, the
9496 processor independent code will have arranged for us to see the
9497 real definition first, and we can just use the same value. */
9498 if (h->is_weakalias)
9499 {
9500 struct elf_link_hash_entry *def = weakdef (h);
9501 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9502 h->root.u.def.section = def->root.u.def.section;
9503 h->root.u.def.value = def->root.u.def.value;
9504 return TRUE;
9505 }
9506
9507 /* Otherwise, there is nothing further to do for symbols defined
9508 in regular objects. */
9509 if (h->def_regular)
9510 return TRUE;
9511
9512 /* There's also nothing more to do if we'll convert all relocations
9513 against this symbol into dynamic relocations. */
9514 if (!hmips->has_static_relocs)
9515 return TRUE;
9516
9517 /* We're now relying on copy relocations. Complain if we have
9518 some that we can't convert. */
9519 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9520 {
9521 _bfd_error_handler (_("non-dynamic relocations refer to "
9522 "dynamic symbol %s"),
9523 h->root.root.string);
9524 bfd_set_error (bfd_error_bad_value);
9525 return FALSE;
9526 }
9527
9528 /* We must allocate the symbol in our .dynbss section, which will
9529 become part of the .bss section of the executable. There will be
9530 an entry for this symbol in the .dynsym section. The dynamic
9531 object will contain position independent code, so all references
9532 from the dynamic object to this symbol will go through the global
9533 offset table. The dynamic linker will use the .dynsym entry to
9534 determine the address it must put in the global offset table, so
9535 both the dynamic object and the regular object will refer to the
9536 same memory location for the variable. */
9537
9538 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9539 {
9540 s = htab->root.sdynrelro;
9541 srel = htab->root.sreldynrelro;
9542 }
9543 else
9544 {
9545 s = htab->root.sdynbss;
9546 srel = htab->root.srelbss;
9547 }
9548 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9549 {
9550 if (htab->root.target_os == is_vxworks)
9551 srel->size += sizeof (Elf32_External_Rela);
9552 else
9553 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9554 h->needs_copy = 1;
9555 }
9556
9557 /* All relocations against this symbol that could have been made
9558 dynamic will now refer to the local copy instead. */
9559 hmips->possibly_dynamic_relocs = 0;
9560
9561 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9562 }
9563 \f
9564 /* This function is called after all the input files have been read,
9565 and the input sections have been assigned to output sections. We
9566 check for any mips16 stub sections that we can discard. */
9567
9568 bfd_boolean
9569 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9570 struct bfd_link_info *info)
9571 {
9572 asection *sect;
9573 struct mips_elf_link_hash_table *htab;
9574 struct mips_htab_traverse_info hti;
9575
9576 htab = mips_elf_hash_table (info);
9577 BFD_ASSERT (htab != NULL);
9578
9579 /* The .reginfo section has a fixed size. */
9580 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9581 if (sect != NULL)
9582 {
9583 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9584 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9585 }
9586
9587 /* The .MIPS.abiflags section has a fixed size. */
9588 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9589 if (sect != NULL)
9590 {
9591 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9592 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9593 }
9594
9595 hti.info = info;
9596 hti.output_bfd = output_bfd;
9597 hti.error = FALSE;
9598 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9599 mips_elf_check_symbols, &hti);
9600 if (hti.error)
9601 return FALSE;
9602
9603 return TRUE;
9604 }
9605
9606 /* If the link uses a GOT, lay it out and work out its size. */
9607
9608 static bfd_boolean
9609 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9610 {
9611 bfd *dynobj;
9612 asection *s;
9613 struct mips_got_info *g;
9614 bfd_size_type loadable_size = 0;
9615 bfd_size_type page_gotno;
9616 bfd *ibfd;
9617 struct mips_elf_traverse_got_arg tga;
9618 struct mips_elf_link_hash_table *htab;
9619
9620 htab = mips_elf_hash_table (info);
9621 BFD_ASSERT (htab != NULL);
9622
9623 s = htab->root.sgot;
9624 if (s == NULL)
9625 return TRUE;
9626
9627 dynobj = elf_hash_table (info)->dynobj;
9628 g = htab->got_info;
9629
9630 /* Allocate room for the reserved entries. VxWorks always reserves
9631 3 entries; other objects only reserve 2 entries. */
9632 BFD_ASSERT (g->assigned_low_gotno == 0);
9633 if (htab->root.target_os == is_vxworks)
9634 htab->reserved_gotno = 3;
9635 else
9636 htab->reserved_gotno = 2;
9637 g->local_gotno += htab->reserved_gotno;
9638 g->assigned_low_gotno = htab->reserved_gotno;
9639
9640 /* Decide which symbols need to go in the global part of the GOT and
9641 count the number of reloc-only GOT symbols. */
9642 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9643
9644 if (!mips_elf_resolve_final_got_entries (info, g))
9645 return FALSE;
9646
9647 /* Calculate the total loadable size of the output. That
9648 will give us the maximum number of GOT_PAGE entries
9649 required. */
9650 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9651 {
9652 asection *subsection;
9653
9654 for (subsection = ibfd->sections;
9655 subsection;
9656 subsection = subsection->next)
9657 {
9658 if ((subsection->flags & SEC_ALLOC) == 0)
9659 continue;
9660 loadable_size += ((subsection->size + 0xf)
9661 &~ (bfd_size_type) 0xf);
9662 }
9663 }
9664
9665 if (htab->root.target_os == is_vxworks)
9666 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9667 relocations against local symbols evaluate to "G", and the EABI does
9668 not include R_MIPS_GOT_PAGE. */
9669 page_gotno = 0;
9670 else
9671 /* Assume there are two loadable segments consisting of contiguous
9672 sections. Is 5 enough? */
9673 page_gotno = (loadable_size >> 16) + 5;
9674
9675 /* Choose the smaller of the two page estimates; both are intended to be
9676 conservative. */
9677 if (page_gotno > g->page_gotno)
9678 page_gotno = g->page_gotno;
9679
9680 g->local_gotno += page_gotno;
9681 g->assigned_high_gotno = g->local_gotno - 1;
9682
9683 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9684 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9685 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9686
9687 /* VxWorks does not support multiple GOTs. It initializes $gp to
9688 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9689 dynamic loader. */
9690 if (htab->root.target_os != is_vxworks
9691 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9692 {
9693 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9694 return FALSE;
9695 }
9696 else
9697 {
9698 /* Record that all bfds use G. This also has the effect of freeing
9699 the per-bfd GOTs, which we no longer need. */
9700 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9701 if (mips_elf_bfd_got (ibfd, FALSE))
9702 mips_elf_replace_bfd_got (ibfd, g);
9703 mips_elf_replace_bfd_got (output_bfd, g);
9704
9705 /* Set up TLS entries. */
9706 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9707 tga.info = info;
9708 tga.g = g;
9709 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9710 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9711 if (!tga.g)
9712 return FALSE;
9713 BFD_ASSERT (g->tls_assigned_gotno
9714 == g->global_gotno + g->local_gotno + g->tls_gotno);
9715
9716 /* Each VxWorks GOT entry needs an explicit relocation. */
9717 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9718 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9719
9720 /* Allocate room for the TLS relocations. */
9721 if (g->relocs)
9722 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9723 }
9724
9725 return TRUE;
9726 }
9727
9728 /* Estimate the size of the .MIPS.stubs section. */
9729
9730 static void
9731 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9732 {
9733 struct mips_elf_link_hash_table *htab;
9734 bfd_size_type dynsymcount;
9735
9736 htab = mips_elf_hash_table (info);
9737 BFD_ASSERT (htab != NULL);
9738
9739 if (htab->lazy_stub_count == 0)
9740 return;
9741
9742 /* IRIX rld assumes that a function stub isn't at the end of the .text
9743 section, so add a dummy entry to the end. */
9744 htab->lazy_stub_count++;
9745
9746 /* Get a worst-case estimate of the number of dynamic symbols needed.
9747 At this point, dynsymcount does not account for section symbols
9748 and count_section_dynsyms may overestimate the number that will
9749 be needed. */
9750 dynsymcount = (elf_hash_table (info)->dynsymcount
9751 + count_section_dynsyms (output_bfd, info));
9752
9753 /* Determine the size of one stub entry. There's no disadvantage
9754 from using microMIPS code here, so for the sake of pure-microMIPS
9755 binaries we prefer it whenever there's any microMIPS code in
9756 output produced at all. This has a benefit of stubs being
9757 shorter by 4 bytes each too, unless in the insn32 mode. */
9758 if (!MICROMIPS_P (output_bfd))
9759 htab->function_stub_size = (dynsymcount > 0x10000
9760 ? MIPS_FUNCTION_STUB_BIG_SIZE
9761 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9762 else if (htab->insn32)
9763 htab->function_stub_size = (dynsymcount > 0x10000
9764 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9765 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9766 else
9767 htab->function_stub_size = (dynsymcount > 0x10000
9768 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9769 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9770
9771 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9772 }
9773
9774 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9775 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9776 stub, allocate an entry in the stubs section. */
9777
9778 static bfd_boolean
9779 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9780 {
9781 struct mips_htab_traverse_info *hti = data;
9782 struct mips_elf_link_hash_table *htab;
9783 struct bfd_link_info *info;
9784 bfd *output_bfd;
9785
9786 info = hti->info;
9787 output_bfd = hti->output_bfd;
9788 htab = mips_elf_hash_table (info);
9789 BFD_ASSERT (htab != NULL);
9790
9791 if (h->needs_lazy_stub)
9792 {
9793 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9794 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9795 bfd_vma isa_bit = micromips_p;
9796
9797 BFD_ASSERT (htab->root.dynobj != NULL);
9798 if (h->root.plt.plist == NULL)
9799 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9800 if (h->root.plt.plist == NULL)
9801 {
9802 hti->error = TRUE;
9803 return FALSE;
9804 }
9805 h->root.root.u.def.section = htab->sstubs;
9806 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9807 h->root.plt.plist->stub_offset = htab->sstubs->size;
9808 h->root.other = other;
9809 htab->sstubs->size += htab->function_stub_size;
9810 }
9811 return TRUE;
9812 }
9813
9814 /* Allocate offsets in the stubs section to each symbol that needs one.
9815 Set the final size of the .MIPS.stub section. */
9816
9817 static bfd_boolean
9818 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9819 {
9820 bfd *output_bfd = info->output_bfd;
9821 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9822 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9823 bfd_vma isa_bit = micromips_p;
9824 struct mips_elf_link_hash_table *htab;
9825 struct mips_htab_traverse_info hti;
9826 struct elf_link_hash_entry *h;
9827 bfd *dynobj;
9828
9829 htab = mips_elf_hash_table (info);
9830 BFD_ASSERT (htab != NULL);
9831
9832 if (htab->lazy_stub_count == 0)
9833 return TRUE;
9834
9835 htab->sstubs->size = 0;
9836 hti.info = info;
9837 hti.output_bfd = output_bfd;
9838 hti.error = FALSE;
9839 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9840 if (hti.error)
9841 return FALSE;
9842 htab->sstubs->size += htab->function_stub_size;
9843 BFD_ASSERT (htab->sstubs->size
9844 == htab->lazy_stub_count * htab->function_stub_size);
9845
9846 dynobj = elf_hash_table (info)->dynobj;
9847 BFD_ASSERT (dynobj != NULL);
9848 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9849 if (h == NULL)
9850 return FALSE;
9851 h->root.u.def.value = isa_bit;
9852 h->other = other;
9853 h->type = STT_FUNC;
9854
9855 return TRUE;
9856 }
9857
9858 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9859 bfd_link_info. If H uses the address of a PLT entry as the value
9860 of the symbol, then set the entry in the symbol table now. Prefer
9861 a standard MIPS PLT entry. */
9862
9863 static bfd_boolean
9864 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9865 {
9866 struct bfd_link_info *info = data;
9867 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9868 struct mips_elf_link_hash_table *htab;
9869 unsigned int other;
9870 bfd_vma isa_bit;
9871 bfd_vma val;
9872
9873 htab = mips_elf_hash_table (info);
9874 BFD_ASSERT (htab != NULL);
9875
9876 if (h->use_plt_entry)
9877 {
9878 BFD_ASSERT (h->root.plt.plist != NULL);
9879 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9880 || h->root.plt.plist->comp_offset != MINUS_ONE);
9881
9882 val = htab->plt_header_size;
9883 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9884 {
9885 isa_bit = 0;
9886 val += h->root.plt.plist->mips_offset;
9887 other = 0;
9888 }
9889 else
9890 {
9891 isa_bit = 1;
9892 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9893 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9894 }
9895 val += isa_bit;
9896 /* For VxWorks, point at the PLT load stub rather than the lazy
9897 resolution stub; this stub will become the canonical function
9898 address. */
9899 if (htab->root.target_os == is_vxworks)
9900 val += 8;
9901
9902 h->root.root.u.def.section = htab->root.splt;
9903 h->root.root.u.def.value = val;
9904 h->root.other = other;
9905 }
9906
9907 return TRUE;
9908 }
9909
9910 /* Set the sizes of the dynamic sections. */
9911
9912 bfd_boolean
9913 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9914 struct bfd_link_info *info)
9915 {
9916 bfd *dynobj;
9917 asection *s, *sreldyn;
9918 bfd_boolean reltext;
9919 struct mips_elf_link_hash_table *htab;
9920
9921 htab = mips_elf_hash_table (info);
9922 BFD_ASSERT (htab != NULL);
9923 dynobj = elf_hash_table (info)->dynobj;
9924 BFD_ASSERT (dynobj != NULL);
9925
9926 if (elf_hash_table (info)->dynamic_sections_created)
9927 {
9928 /* Set the contents of the .interp section to the interpreter. */
9929 if (bfd_link_executable (info) && !info->nointerp)
9930 {
9931 s = bfd_get_linker_section (dynobj, ".interp");
9932 BFD_ASSERT (s != NULL);
9933 s->size
9934 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9935 s->contents
9936 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9937 }
9938
9939 /* Figure out the size of the PLT header if we know that we
9940 are using it. For the sake of cache alignment always use
9941 a standard header whenever any standard entries are present
9942 even if microMIPS entries are present as well. This also
9943 lets the microMIPS header rely on the value of $v0 only set
9944 by microMIPS entries, for a small size reduction.
9945
9946 Set symbol table entry values for symbols that use the
9947 address of their PLT entry now that we can calculate it.
9948
9949 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9950 haven't already in _bfd_elf_create_dynamic_sections. */
9951 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9952 {
9953 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9954 && !htab->plt_mips_offset);
9955 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9956 bfd_vma isa_bit = micromips_p;
9957 struct elf_link_hash_entry *h;
9958 bfd_vma size;
9959
9960 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9961 BFD_ASSERT (htab->root.sgotplt->size == 0);
9962 BFD_ASSERT (htab->root.splt->size == 0);
9963
9964 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9965 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9966 else if (htab->root.target_os == is_vxworks)
9967 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9968 else if (ABI_64_P (output_bfd))
9969 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9970 else if (ABI_N32_P (output_bfd))
9971 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9972 else if (!micromips_p)
9973 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9974 else if (htab->insn32)
9975 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9976 else
9977 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9978
9979 htab->plt_header_is_comp = micromips_p;
9980 htab->plt_header_size = size;
9981 htab->root.splt->size = (size
9982 + htab->plt_mips_offset
9983 + htab->plt_comp_offset);
9984 htab->root.sgotplt->size = (htab->plt_got_index
9985 * MIPS_ELF_GOT_SIZE (dynobj));
9986
9987 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9988
9989 if (htab->root.hplt == NULL)
9990 {
9991 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9992 "_PROCEDURE_LINKAGE_TABLE_");
9993 htab->root.hplt = h;
9994 if (h == NULL)
9995 return FALSE;
9996 }
9997
9998 h = htab->root.hplt;
9999 h->root.u.def.value = isa_bit;
10000 h->other = other;
10001 h->type = STT_FUNC;
10002 }
10003 }
10004
10005 /* Allocate space for global sym dynamic relocs. */
10006 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10007
10008 mips_elf_estimate_stub_size (output_bfd, info);
10009
10010 if (!mips_elf_lay_out_got (output_bfd, info))
10011 return FALSE;
10012
10013 mips_elf_lay_out_lazy_stubs (info);
10014
10015 /* The check_relocs and adjust_dynamic_symbol entry points have
10016 determined the sizes of the various dynamic sections. Allocate
10017 memory for them. */
10018 reltext = FALSE;
10019 for (s = dynobj->sections; s != NULL; s = s->next)
10020 {
10021 const char *name;
10022
10023 /* It's OK to base decisions on the section name, because none
10024 of the dynobj section names depend upon the input files. */
10025 name = bfd_section_name (s);
10026
10027 if ((s->flags & SEC_LINKER_CREATED) == 0)
10028 continue;
10029
10030 if (CONST_STRNEQ (name, ".rel"))
10031 {
10032 if (s->size != 0)
10033 {
10034 const char *outname;
10035 asection *target;
10036
10037 /* If this relocation section applies to a read only
10038 section, then we probably need a DT_TEXTREL entry.
10039 If the relocation section is .rel(a).dyn, we always
10040 assert a DT_TEXTREL entry rather than testing whether
10041 there exists a relocation to a read only section or
10042 not. */
10043 outname = bfd_section_name (s->output_section);
10044 target = bfd_get_section_by_name (output_bfd, outname + 4);
10045 if ((target != NULL
10046 && (target->flags & SEC_READONLY) != 0
10047 && (target->flags & SEC_ALLOC) != 0)
10048 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10049 reltext = TRUE;
10050
10051 /* We use the reloc_count field as a counter if we need
10052 to copy relocs into the output file. */
10053 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10054 s->reloc_count = 0;
10055
10056 /* If combreloc is enabled, elf_link_sort_relocs() will
10057 sort relocations, but in a different way than we do,
10058 and before we're done creating relocations. Also, it
10059 will move them around between input sections'
10060 relocation's contents, so our sorting would be
10061 broken, so don't let it run. */
10062 info->combreloc = 0;
10063 }
10064 }
10065 else if (bfd_link_executable (info)
10066 && ! mips_elf_hash_table (info)->use_rld_obj_head
10067 && CONST_STRNEQ (name, ".rld_map"))
10068 {
10069 /* We add a room for __rld_map. It will be filled in by the
10070 rtld to contain a pointer to the _r_debug structure. */
10071 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10072 }
10073 else if (SGI_COMPAT (output_bfd)
10074 && CONST_STRNEQ (name, ".compact_rel"))
10075 s->size += mips_elf_hash_table (info)->compact_rel_size;
10076 else if (s == htab->root.splt)
10077 {
10078 /* If the last PLT entry has a branch delay slot, allocate
10079 room for an extra nop to fill the delay slot. This is
10080 for CPUs without load interlocking. */
10081 if (! LOAD_INTERLOCKS_P (output_bfd)
10082 && htab->root.target_os != is_vxworks
10083 && s->size > 0)
10084 s->size += 4;
10085 }
10086 else if (! CONST_STRNEQ (name, ".init")
10087 && s != htab->root.sgot
10088 && s != htab->root.sgotplt
10089 && s != htab->sstubs
10090 && s != htab->root.sdynbss
10091 && s != htab->root.sdynrelro)
10092 {
10093 /* It's not one of our sections, so don't allocate space. */
10094 continue;
10095 }
10096
10097 if (s->size == 0)
10098 {
10099 s->flags |= SEC_EXCLUDE;
10100 continue;
10101 }
10102
10103 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10104 continue;
10105
10106 /* Allocate memory for the section contents. */
10107 s->contents = bfd_zalloc (dynobj, s->size);
10108 if (s->contents == NULL)
10109 {
10110 bfd_set_error (bfd_error_no_memory);
10111 return FALSE;
10112 }
10113 }
10114
10115 if (elf_hash_table (info)->dynamic_sections_created)
10116 {
10117 /* Add some entries to the .dynamic section. We fill in the
10118 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10119 must add the entries now so that we get the correct size for
10120 the .dynamic section. */
10121
10122 /* SGI object has the equivalence of DT_DEBUG in the
10123 DT_MIPS_RLD_MAP entry. This must come first because glibc
10124 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10125 may only look at the first one they see. */
10126 if (!bfd_link_pic (info)
10127 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10128 return FALSE;
10129
10130 if (bfd_link_executable (info)
10131 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10132 return FALSE;
10133
10134 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10135 used by the debugger. */
10136 if (bfd_link_executable (info)
10137 && !SGI_COMPAT (output_bfd)
10138 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10139 return FALSE;
10140
10141 if (reltext
10142 && (SGI_COMPAT (output_bfd)
10143 || htab->root.target_os == is_vxworks))
10144 info->flags |= DF_TEXTREL;
10145
10146 if ((info->flags & DF_TEXTREL) != 0)
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10149 return FALSE;
10150
10151 /* Clear the DF_TEXTREL flag. It will be set again if we
10152 write out an actual text relocation; we may not, because
10153 at this point we do not know whether e.g. any .eh_frame
10154 absolute relocations have been converted to PC-relative. */
10155 info->flags &= ~DF_TEXTREL;
10156 }
10157
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10159 return FALSE;
10160
10161 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10162 if (htab->root.target_os == is_vxworks)
10163 {
10164 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10165 use any of the DT_MIPS_* tags. */
10166 if (sreldyn && sreldyn->size > 0)
10167 {
10168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10169 return FALSE;
10170
10171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10172 return FALSE;
10173
10174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10175 return FALSE;
10176 }
10177 }
10178 else
10179 {
10180 if (sreldyn && sreldyn->size > 0
10181 && !bfd_is_abs_section (sreldyn->output_section))
10182 {
10183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10184 return FALSE;
10185
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10187 return FALSE;
10188
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10190 return FALSE;
10191 }
10192
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10194 return FALSE;
10195
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10197 return FALSE;
10198
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10200 return FALSE;
10201
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10203 return FALSE;
10204
10205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10206 return FALSE;
10207
10208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10209 return FALSE;
10210
10211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10212 return FALSE;
10213
10214 if (info->emit_gnu_hash
10215 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10216 return FALSE;
10217
10218 if (IRIX_COMPAT (dynobj) == ict_irix5
10219 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10220 return FALSE;
10221
10222 if (IRIX_COMPAT (dynobj) == ict_irix6
10223 && (bfd_get_section_by_name
10224 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10226 return FALSE;
10227 }
10228 if (htab->root.splt->size > 0)
10229 {
10230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10231 return FALSE;
10232
10233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10234 return FALSE;
10235
10236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10237 return FALSE;
10238
10239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10240 return FALSE;
10241 }
10242 if (htab->root.target_os == is_vxworks
10243 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10244 return FALSE;
10245 }
10246
10247 return TRUE;
10248 }
10249 \f
10250 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10251 Adjust its R_ADDEND field so that it is correct for the output file.
10252 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10253 and sections respectively; both use symbol indexes. */
10254
10255 static void
10256 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10257 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10258 asection **local_sections, Elf_Internal_Rela *rel)
10259 {
10260 unsigned int r_type, r_symndx;
10261 Elf_Internal_Sym *sym;
10262 asection *sec;
10263
10264 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10265 {
10266 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10267 if (gprel16_reloc_p (r_type)
10268 || r_type == R_MIPS_GPREL32
10269 || literal_reloc_p (r_type))
10270 {
10271 rel->r_addend += _bfd_get_gp_value (input_bfd);
10272 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10273 }
10274
10275 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10276 sym = local_syms + r_symndx;
10277
10278 /* Adjust REL's addend to account for section merging. */
10279 if (!bfd_link_relocatable (info))
10280 {
10281 sec = local_sections[r_symndx];
10282 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10283 }
10284
10285 /* This would normally be done by the rela_normal code in elflink.c. */
10286 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10287 rel->r_addend += local_sections[r_symndx]->output_offset;
10288 }
10289 }
10290
10291 /* Handle relocations against symbols from removed linkonce sections,
10292 or sections discarded by a linker script. We use this wrapper around
10293 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10294 on 64-bit ELF targets. In this case for any relocation handled, which
10295 always be the first in a triplet, the remaining two have to be processed
10296 together with the first, even if they are R_MIPS_NONE. It is the symbol
10297 index referred by the first reloc that applies to all the three and the
10298 remaining two never refer to an object symbol. And it is the final
10299 relocation (the last non-null one) that determines the output field of
10300 the whole relocation so retrieve the corresponding howto structure for
10301 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10302
10303 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10304 and therefore requires to be pasted in a loop. It also defines a block
10305 and does not protect any of its arguments, hence the extra brackets. */
10306
10307 static void
10308 mips_reloc_against_discarded_section (bfd *output_bfd,
10309 struct bfd_link_info *info,
10310 bfd *input_bfd, asection *input_section,
10311 Elf_Internal_Rela **rel,
10312 const Elf_Internal_Rela **relend,
10313 bfd_boolean rel_reloc,
10314 reloc_howto_type *howto,
10315 bfd_byte *contents)
10316 {
10317 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10318 int count = bed->s->int_rels_per_ext_rel;
10319 unsigned int r_type;
10320 int i;
10321
10322 for (i = count - 1; i > 0; i--)
10323 {
10324 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10325 if (r_type != R_MIPS_NONE)
10326 {
10327 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10328 break;
10329 }
10330 }
10331 do
10332 {
10333 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10334 (*rel), count, (*relend),
10335 howto, i, contents);
10336 }
10337 while (0);
10338 }
10339
10340 /* Relocate a MIPS ELF section. */
10341
10342 bfd_boolean
10343 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10344 bfd *input_bfd, asection *input_section,
10345 bfd_byte *contents, Elf_Internal_Rela *relocs,
10346 Elf_Internal_Sym *local_syms,
10347 asection **local_sections)
10348 {
10349 Elf_Internal_Rela *rel;
10350 const Elf_Internal_Rela *relend;
10351 bfd_vma addend = 0;
10352 bfd_boolean use_saved_addend_p = FALSE;
10353
10354 relend = relocs + input_section->reloc_count;
10355 for (rel = relocs; rel < relend; ++rel)
10356 {
10357 const char *name;
10358 bfd_vma value = 0;
10359 reloc_howto_type *howto;
10360 bfd_boolean cross_mode_jump_p = FALSE;
10361 /* TRUE if the relocation is a RELA relocation, rather than a
10362 REL relocation. */
10363 bfd_boolean rela_relocation_p = TRUE;
10364 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10365 const char *msg;
10366 unsigned long r_symndx;
10367 asection *sec;
10368 Elf_Internal_Shdr *symtab_hdr;
10369 struct elf_link_hash_entry *h;
10370 bfd_boolean rel_reloc;
10371
10372 rel_reloc = (NEWABI_P (input_bfd)
10373 && mips_elf_rel_relocation_p (input_bfd, input_section,
10374 relocs, rel));
10375 /* Find the relocation howto for this relocation. */
10376 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10377
10378 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10379 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10380 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10381 {
10382 sec = local_sections[r_symndx];
10383 h = NULL;
10384 }
10385 else
10386 {
10387 unsigned long extsymoff;
10388
10389 extsymoff = 0;
10390 if (!elf_bad_symtab (input_bfd))
10391 extsymoff = symtab_hdr->sh_info;
10392 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10393 while (h->root.type == bfd_link_hash_indirect
10394 || h->root.type == bfd_link_hash_warning)
10395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10396
10397 sec = NULL;
10398 if (h->root.type == bfd_link_hash_defined
10399 || h->root.type == bfd_link_hash_defweak)
10400 sec = h->root.u.def.section;
10401 }
10402
10403 if (sec != NULL && discarded_section (sec))
10404 {
10405 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10406 input_section, &rel, &relend,
10407 rel_reloc, howto, contents);
10408 continue;
10409 }
10410
10411 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10412 {
10413 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10414 64-bit code, but make sure all their addresses are in the
10415 lowermost or uppermost 32-bit section of the 64-bit address
10416 space. Thus, when they use an R_MIPS_64 they mean what is
10417 usually meant by R_MIPS_32, with the exception that the
10418 stored value is sign-extended to 64 bits. */
10419 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10420
10421 /* On big-endian systems, we need to lie about the position
10422 of the reloc. */
10423 if (bfd_big_endian (input_bfd))
10424 rel->r_offset += 4;
10425 }
10426
10427 if (!use_saved_addend_p)
10428 {
10429 /* If these relocations were originally of the REL variety,
10430 we must pull the addend out of the field that will be
10431 relocated. Otherwise, we simply use the contents of the
10432 RELA relocation. */
10433 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10434 relocs, rel))
10435 {
10436 rela_relocation_p = FALSE;
10437 addend = mips_elf_read_rel_addend (input_bfd, rel,
10438 howto, contents);
10439 if (hi16_reloc_p (r_type)
10440 || (got16_reloc_p (r_type)
10441 && mips_elf_local_relocation_p (input_bfd, rel,
10442 local_sections)))
10443 {
10444 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10445 contents, &addend))
10446 {
10447 if (h)
10448 name = h->root.root.string;
10449 else
10450 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10451 local_syms + r_symndx,
10452 sec);
10453 _bfd_error_handler
10454 /* xgettext:c-format */
10455 (_("%pB: can't find matching LO16 reloc against `%s'"
10456 " for %s at %#" PRIx64 " in section `%pA'"),
10457 input_bfd, name,
10458 howto->name, (uint64_t) rel->r_offset, input_section);
10459 }
10460 }
10461 else
10462 addend <<= howto->rightshift;
10463 }
10464 else
10465 addend = rel->r_addend;
10466 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10467 local_syms, local_sections, rel);
10468 }
10469
10470 if (bfd_link_relocatable (info))
10471 {
10472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10473 && bfd_big_endian (input_bfd))
10474 rel->r_offset -= 4;
10475
10476 if (!rela_relocation_p && rel->r_addend)
10477 {
10478 addend += rel->r_addend;
10479 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10480 addend = mips_elf_high (addend);
10481 else if (r_type == R_MIPS_HIGHER)
10482 addend = mips_elf_higher (addend);
10483 else if (r_type == R_MIPS_HIGHEST)
10484 addend = mips_elf_highest (addend);
10485 else
10486 addend >>= howto->rightshift;
10487
10488 /* We use the source mask, rather than the destination
10489 mask because the place to which we are writing will be
10490 source of the addend in the final link. */
10491 addend &= howto->src_mask;
10492
10493 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10494 /* See the comment above about using R_MIPS_64 in the 32-bit
10495 ABI. Here, we need to update the addend. It would be
10496 possible to get away with just using the R_MIPS_32 reloc
10497 but for endianness. */
10498 {
10499 bfd_vma sign_bits;
10500 bfd_vma low_bits;
10501 bfd_vma high_bits;
10502
10503 if (addend & ((bfd_vma) 1 << 31))
10504 #ifdef BFD64
10505 sign_bits = ((bfd_vma) 1 << 32) - 1;
10506 #else
10507 sign_bits = -1;
10508 #endif
10509 else
10510 sign_bits = 0;
10511
10512 /* If we don't know that we have a 64-bit type,
10513 do two separate stores. */
10514 if (bfd_big_endian (input_bfd))
10515 {
10516 /* Store the sign-bits (which are most significant)
10517 first. */
10518 low_bits = sign_bits;
10519 high_bits = addend;
10520 }
10521 else
10522 {
10523 low_bits = addend;
10524 high_bits = sign_bits;
10525 }
10526 bfd_put_32 (input_bfd, low_bits,
10527 contents + rel->r_offset);
10528 bfd_put_32 (input_bfd, high_bits,
10529 contents + rel->r_offset + 4);
10530 continue;
10531 }
10532
10533 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10534 input_bfd, input_section,
10535 contents, FALSE))
10536 return FALSE;
10537 }
10538
10539 /* Go on to the next relocation. */
10540 continue;
10541 }
10542
10543 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10544 relocations for the same offset. In that case we are
10545 supposed to treat the output of each relocation as the addend
10546 for the next. */
10547 if (rel + 1 < relend
10548 && rel->r_offset == rel[1].r_offset
10549 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10550 use_saved_addend_p = TRUE;
10551 else
10552 use_saved_addend_p = FALSE;
10553
10554 /* Figure out what value we are supposed to relocate. */
10555 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10556 input_section, contents,
10557 info, rel, addend, howto,
10558 local_syms, local_sections,
10559 &value, &name, &cross_mode_jump_p,
10560 use_saved_addend_p))
10561 {
10562 case bfd_reloc_continue:
10563 /* There's nothing to do. */
10564 continue;
10565
10566 case bfd_reloc_undefined:
10567 /* mips_elf_calculate_relocation already called the
10568 undefined_symbol callback. There's no real point in
10569 trying to perform the relocation at this point, so we
10570 just skip ahead to the next relocation. */
10571 continue;
10572
10573 case bfd_reloc_notsupported:
10574 msg = _("internal error: unsupported relocation error");
10575 info->callbacks->warning
10576 (info, msg, name, input_bfd, input_section, rel->r_offset);
10577 return FALSE;
10578
10579 case bfd_reloc_overflow:
10580 if (use_saved_addend_p)
10581 /* Ignore overflow until we reach the last relocation for
10582 a given location. */
10583 ;
10584 else
10585 {
10586 struct mips_elf_link_hash_table *htab;
10587
10588 htab = mips_elf_hash_table (info);
10589 BFD_ASSERT (htab != NULL);
10590 BFD_ASSERT (name != NULL);
10591 if (!htab->small_data_overflow_reported
10592 && (gprel16_reloc_p (howto->type)
10593 || literal_reloc_p (howto->type)))
10594 {
10595 msg = _("small-data section exceeds 64KB;"
10596 " lower small-data size limit (see option -G)");
10597
10598 htab->small_data_overflow_reported = TRUE;
10599 (*info->callbacks->einfo) ("%P: %s\n", msg);
10600 }
10601 (*info->callbacks->reloc_overflow)
10602 (info, NULL, name, howto->name, (bfd_vma) 0,
10603 input_bfd, input_section, rel->r_offset);
10604 }
10605 break;
10606
10607 case bfd_reloc_ok:
10608 break;
10609
10610 case bfd_reloc_outofrange:
10611 msg = NULL;
10612 if (jal_reloc_p (howto->type))
10613 msg = (cross_mode_jump_p
10614 ? _("cannot convert a jump to JALX "
10615 "for a non-word-aligned address")
10616 : (howto->type == R_MIPS16_26
10617 ? _("jump to a non-word-aligned address")
10618 : _("jump to a non-instruction-aligned address")));
10619 else if (b_reloc_p (howto->type))
10620 msg = (cross_mode_jump_p
10621 ? _("cannot convert a branch to JALX "
10622 "for a non-word-aligned address")
10623 : _("branch to a non-instruction-aligned address"));
10624 else if (aligned_pcrel_reloc_p (howto->type))
10625 msg = _("PC-relative load from unaligned address");
10626 if (msg)
10627 {
10628 info->callbacks->einfo
10629 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10630 break;
10631 }
10632 /* Fall through. */
10633
10634 default:
10635 abort ();
10636 break;
10637 }
10638
10639 /* If we've got another relocation for the address, keep going
10640 until we reach the last one. */
10641 if (use_saved_addend_p)
10642 {
10643 addend = value;
10644 continue;
10645 }
10646
10647 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10648 /* See the comment above about using R_MIPS_64 in the 32-bit
10649 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10650 that calculated the right value. Now, however, we
10651 sign-extend the 32-bit result to 64-bits, and store it as a
10652 64-bit value. We are especially generous here in that we
10653 go to extreme lengths to support this usage on systems with
10654 only a 32-bit VMA. */
10655 {
10656 bfd_vma sign_bits;
10657 bfd_vma low_bits;
10658 bfd_vma high_bits;
10659
10660 if (value & ((bfd_vma) 1 << 31))
10661 #ifdef BFD64
10662 sign_bits = ((bfd_vma) 1 << 32) - 1;
10663 #else
10664 sign_bits = -1;
10665 #endif
10666 else
10667 sign_bits = 0;
10668
10669 /* If we don't know that we have a 64-bit type,
10670 do two separate stores. */
10671 if (bfd_big_endian (input_bfd))
10672 {
10673 /* Undo what we did above. */
10674 rel->r_offset -= 4;
10675 /* Store the sign-bits (which are most significant)
10676 first. */
10677 low_bits = sign_bits;
10678 high_bits = value;
10679 }
10680 else
10681 {
10682 low_bits = value;
10683 high_bits = sign_bits;
10684 }
10685 bfd_put_32 (input_bfd, low_bits,
10686 contents + rel->r_offset);
10687 bfd_put_32 (input_bfd, high_bits,
10688 contents + rel->r_offset + 4);
10689 continue;
10690 }
10691
10692 /* Actually perform the relocation. */
10693 if (! mips_elf_perform_relocation (info, howto, rel, value,
10694 input_bfd, input_section,
10695 contents, cross_mode_jump_p))
10696 return FALSE;
10697 }
10698
10699 return TRUE;
10700 }
10701 \f
10702 /* A function that iterates over each entry in la25_stubs and fills
10703 in the code for each one. DATA points to a mips_htab_traverse_info. */
10704
10705 static int
10706 mips_elf_create_la25_stub (void **slot, void *data)
10707 {
10708 struct mips_htab_traverse_info *hti;
10709 struct mips_elf_link_hash_table *htab;
10710 struct mips_elf_la25_stub *stub;
10711 asection *s;
10712 bfd_byte *loc;
10713 bfd_vma offset, target, target_high, target_low;
10714 bfd_vma branch_pc;
10715 bfd_signed_vma pcrel_offset = 0;
10716
10717 stub = (struct mips_elf_la25_stub *) *slot;
10718 hti = (struct mips_htab_traverse_info *) data;
10719 htab = mips_elf_hash_table (hti->info);
10720 BFD_ASSERT (htab != NULL);
10721
10722 /* Create the section contents, if we haven't already. */
10723 s = stub->stub_section;
10724 loc = s->contents;
10725 if (loc == NULL)
10726 {
10727 loc = bfd_malloc (s->size);
10728 if (loc == NULL)
10729 {
10730 hti->error = TRUE;
10731 return FALSE;
10732 }
10733 s->contents = loc;
10734 }
10735
10736 /* Work out where in the section this stub should go. */
10737 offset = stub->offset;
10738
10739 /* We add 8 here to account for the LUI/ADDIU instructions
10740 before the branch instruction. This cannot be moved down to
10741 where pcrel_offset is calculated as 's' is updated in
10742 mips_elf_get_la25_target. */
10743 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10744
10745 /* Work out the target address. */
10746 target = mips_elf_get_la25_target (stub, &s);
10747 target += s->output_section->vma + s->output_offset;
10748
10749 target_high = ((target + 0x8000) >> 16) & 0xffff;
10750 target_low = (target & 0xffff);
10751
10752 /* Calculate the PC of the compact branch instruction (for the case where
10753 compact branches are used for either microMIPSR6 or MIPSR6 with
10754 compact branches. Add 4-bytes to account for BC using the PC of the
10755 next instruction as the base. */
10756 pcrel_offset = target - (branch_pc + 4);
10757
10758 if (stub->stub_section != htab->strampoline)
10759 {
10760 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10761 of the section and write the two instructions at the end. */
10762 memset (loc, 0, offset);
10763 loc += offset;
10764 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10765 {
10766 bfd_put_micromips_32 (hti->output_bfd,
10767 LA25_LUI_MICROMIPS (target_high),
10768 loc);
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_ADDIU_MICROMIPS (target_low),
10771 loc + 4);
10772 }
10773 else
10774 {
10775 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10776 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10777 }
10778 }
10779 else
10780 {
10781 /* This is trampoline. */
10782 loc += offset;
10783 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10784 {
10785 bfd_put_micromips_32 (hti->output_bfd,
10786 LA25_LUI_MICROMIPS (target_high), loc);
10787 bfd_put_micromips_32 (hti->output_bfd,
10788 LA25_J_MICROMIPS (target), loc + 4);
10789 bfd_put_micromips_32 (hti->output_bfd,
10790 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10791 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10792 }
10793 else
10794 {
10795 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10796 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10797 {
10798 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10799 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10800 }
10801 else
10802 {
10803 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10804 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10805 }
10806 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10807 }
10808 }
10809 return TRUE;
10810 }
10811
10812 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10813 adjust it appropriately now. */
10814
10815 static void
10816 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10817 const char *name, Elf_Internal_Sym *sym)
10818 {
10819 /* The linker script takes care of providing names and values for
10820 these, but we must place them into the right sections. */
10821 static const char* const text_section_symbols[] = {
10822 "_ftext",
10823 "_etext",
10824 "__dso_displacement",
10825 "__elf_header",
10826 "__program_header_table",
10827 NULL
10828 };
10829
10830 static const char* const data_section_symbols[] = {
10831 "_fdata",
10832 "_edata",
10833 "_end",
10834 "_fbss",
10835 NULL
10836 };
10837
10838 const char* const *p;
10839 int i;
10840
10841 for (i = 0; i < 2; ++i)
10842 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10843 *p;
10844 ++p)
10845 if (strcmp (*p, name) == 0)
10846 {
10847 /* All of these symbols are given type STT_SECTION by the
10848 IRIX6 linker. */
10849 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10850 sym->st_other = STO_PROTECTED;
10851
10852 /* The IRIX linker puts these symbols in special sections. */
10853 if (i == 0)
10854 sym->st_shndx = SHN_MIPS_TEXT;
10855 else
10856 sym->st_shndx = SHN_MIPS_DATA;
10857
10858 break;
10859 }
10860 }
10861
10862 /* Finish up dynamic symbol handling. We set the contents of various
10863 dynamic sections here. */
10864
10865 bfd_boolean
10866 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10867 struct bfd_link_info *info,
10868 struct elf_link_hash_entry *h,
10869 Elf_Internal_Sym *sym)
10870 {
10871 bfd *dynobj;
10872 asection *sgot;
10873 struct mips_got_info *g, *gg;
10874 const char *name;
10875 int idx;
10876 struct mips_elf_link_hash_table *htab;
10877 struct mips_elf_link_hash_entry *hmips;
10878
10879 htab = mips_elf_hash_table (info);
10880 BFD_ASSERT (htab != NULL);
10881 dynobj = elf_hash_table (info)->dynobj;
10882 hmips = (struct mips_elf_link_hash_entry *) h;
10883
10884 BFD_ASSERT (htab->root.target_os != is_vxworks);
10885
10886 if (h->plt.plist != NULL
10887 && (h->plt.plist->mips_offset != MINUS_ONE
10888 || h->plt.plist->comp_offset != MINUS_ONE))
10889 {
10890 /* We've decided to create a PLT entry for this symbol. */
10891 bfd_byte *loc;
10892 bfd_vma header_address, got_address;
10893 bfd_vma got_address_high, got_address_low, load;
10894 bfd_vma got_index;
10895 bfd_vma isa_bit;
10896
10897 got_index = h->plt.plist->gotplt_index;
10898
10899 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10900 BFD_ASSERT (h->dynindx != -1);
10901 BFD_ASSERT (htab->root.splt != NULL);
10902 BFD_ASSERT (got_index != MINUS_ONE);
10903 BFD_ASSERT (!h->def_regular);
10904
10905 /* Calculate the address of the PLT header. */
10906 isa_bit = htab->plt_header_is_comp;
10907 header_address = (htab->root.splt->output_section->vma
10908 + htab->root.splt->output_offset + isa_bit);
10909
10910 /* Calculate the address of the .got.plt entry. */
10911 got_address = (htab->root.sgotplt->output_section->vma
10912 + htab->root.sgotplt->output_offset
10913 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10914
10915 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10916 got_address_low = got_address & 0xffff;
10917
10918 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10919 cannot be loaded in two instructions. */
10920 if (ABI_64_P (output_bfd)
10921 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10922 {
10923 _bfd_error_handler
10924 /* xgettext:c-format */
10925 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10926 "supported; consider using `-Ttext-segment=...'"),
10927 output_bfd,
10928 htab->root.sgotplt->output_section,
10929 (int64_t) got_address);
10930 bfd_set_error (bfd_error_no_error);
10931 return FALSE;
10932 }
10933
10934 /* Initially point the .got.plt entry at the PLT header. */
10935 loc = (htab->root.sgotplt->contents
10936 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10937 if (ABI_64_P (output_bfd))
10938 bfd_put_64 (output_bfd, header_address, loc);
10939 else
10940 bfd_put_32 (output_bfd, header_address, loc);
10941
10942 /* Now handle the PLT itself. First the standard entry (the order
10943 does not matter, we just have to pick one). */
10944 if (h->plt.plist->mips_offset != MINUS_ONE)
10945 {
10946 const bfd_vma *plt_entry;
10947 bfd_vma plt_offset;
10948
10949 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10950
10951 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10952
10953 /* Find out where the .plt entry should go. */
10954 loc = htab->root.splt->contents + plt_offset;
10955
10956 /* Pick the load opcode. */
10957 load = MIPS_ELF_LOAD_WORD (output_bfd);
10958
10959 /* Fill in the PLT entry itself. */
10960
10961 if (MIPSR6_P (output_bfd))
10962 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10963 : mipsr6_exec_plt_entry;
10964 else
10965 plt_entry = mips_exec_plt_entry;
10966 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10967 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10968 loc + 4);
10969
10970 if (! LOAD_INTERLOCKS_P (output_bfd)
10971 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10972 {
10973 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10974 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10975 }
10976 else
10977 {
10978 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10979 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10980 loc + 12);
10981 }
10982 }
10983
10984 /* Now the compressed entry. They come after any standard ones. */
10985 if (h->plt.plist->comp_offset != MINUS_ONE)
10986 {
10987 bfd_vma plt_offset;
10988
10989 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10990 + h->plt.plist->comp_offset);
10991
10992 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10993
10994 /* Find out where the .plt entry should go. */
10995 loc = htab->root.splt->contents + plt_offset;
10996
10997 /* Fill in the PLT entry itself. */
10998 if (!MICROMIPS_P (output_bfd))
10999 {
11000 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11001
11002 bfd_put_16 (output_bfd, plt_entry[0], loc);
11003 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11004 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11005 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11006 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11007 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11008 bfd_put_32 (output_bfd, got_address, loc + 12);
11009 }
11010 else if (htab->insn32)
11011 {
11012 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11013
11014 bfd_put_16 (output_bfd, plt_entry[0], loc);
11015 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11016 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11017 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11018 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11019 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11020 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11021 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11022 }
11023 else
11024 {
11025 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11026 bfd_signed_vma gotpc_offset;
11027 bfd_vma loc_address;
11028
11029 BFD_ASSERT (got_address % 4 == 0);
11030
11031 loc_address = (htab->root.splt->output_section->vma
11032 + htab->root.splt->output_offset + plt_offset);
11033 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11034
11035 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11036 if (gotpc_offset + 0x1000000 >= 0x2000000)
11037 {
11038 _bfd_error_handler
11039 /* xgettext:c-format */
11040 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11041 "beyond the range of ADDIUPC"),
11042 output_bfd,
11043 htab->root.sgotplt->output_section,
11044 (int64_t) gotpc_offset,
11045 htab->root.splt->output_section);
11046 bfd_set_error (bfd_error_no_error);
11047 return FALSE;
11048 }
11049 bfd_put_16 (output_bfd,
11050 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11051 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11052 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11053 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11054 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11055 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11056 }
11057 }
11058
11059 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11060 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11061 got_index - 2, h->dynindx,
11062 R_MIPS_JUMP_SLOT, got_address);
11063
11064 /* We distinguish between PLT entries and lazy-binding stubs by
11065 giving the former an st_other value of STO_MIPS_PLT. Set the
11066 flag and leave the value if there are any relocations in the
11067 binary where pointer equality matters. */
11068 sym->st_shndx = SHN_UNDEF;
11069 if (h->pointer_equality_needed)
11070 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11071 else
11072 {
11073 sym->st_value = 0;
11074 sym->st_other = 0;
11075 }
11076 }
11077
11078 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11079 {
11080 /* We've decided to create a lazy-binding stub. */
11081 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11082 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11083 bfd_vma stub_size = htab->function_stub_size;
11084 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11085 bfd_vma isa_bit = micromips_p;
11086 bfd_vma stub_big_size;
11087
11088 if (!micromips_p)
11089 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11090 else if (htab->insn32)
11091 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11092 else
11093 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11094
11095 /* This symbol has a stub. Set it up. */
11096
11097 BFD_ASSERT (h->dynindx != -1);
11098
11099 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11100
11101 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11102 sign extension at runtime in the stub, resulting in a negative
11103 index value. */
11104 if (h->dynindx & ~0x7fffffff)
11105 return FALSE;
11106
11107 /* Fill the stub. */
11108 if (micromips_p)
11109 {
11110 idx = 0;
11111 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11112 stub + idx);
11113 idx += 4;
11114 if (htab->insn32)
11115 {
11116 bfd_put_micromips_32 (output_bfd,
11117 STUB_MOVE32_MICROMIPS, stub + idx);
11118 idx += 4;
11119 }
11120 else
11121 {
11122 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11123 idx += 2;
11124 }
11125 if (stub_size == stub_big_size)
11126 {
11127 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11128
11129 bfd_put_micromips_32 (output_bfd,
11130 STUB_LUI_MICROMIPS (dynindx_hi),
11131 stub + idx);
11132 idx += 4;
11133 }
11134 if (htab->insn32)
11135 {
11136 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11137 stub + idx);
11138 idx += 4;
11139 }
11140 else
11141 {
11142 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11143 idx += 2;
11144 }
11145
11146 /* If a large stub is not required and sign extension is not a
11147 problem, then use legacy code in the stub. */
11148 if (stub_size == stub_big_size)
11149 bfd_put_micromips_32 (output_bfd,
11150 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11151 stub + idx);
11152 else if (h->dynindx & ~0x7fff)
11153 bfd_put_micromips_32 (output_bfd,
11154 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11155 stub + idx);
11156 else
11157 bfd_put_micromips_32 (output_bfd,
11158 STUB_LI16S_MICROMIPS (output_bfd,
11159 h->dynindx),
11160 stub + idx);
11161 }
11162 else
11163 {
11164 idx = 0;
11165 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11166 idx += 4;
11167 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11168 idx += 4;
11169 if (stub_size == stub_big_size)
11170 {
11171 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11172 stub + idx);
11173 idx += 4;
11174 }
11175
11176 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11177 {
11178 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11179 idx += 4;
11180 }
11181
11182 /* If a large stub is not required and sign extension is not a
11183 problem, then use legacy code in the stub. */
11184 if (stub_size == stub_big_size)
11185 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11186 stub + idx);
11187 else if (h->dynindx & ~0x7fff)
11188 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11189 stub + idx);
11190 else
11191 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11192 stub + idx);
11193 idx += 4;
11194
11195 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11196 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11197 }
11198
11199 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11200 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11201 stub, stub_size);
11202
11203 /* Mark the symbol as undefined. stub_offset != -1 occurs
11204 only for the referenced symbol. */
11205 sym->st_shndx = SHN_UNDEF;
11206
11207 /* The run-time linker uses the st_value field of the symbol
11208 to reset the global offset table entry for this external
11209 to its stub address when unlinking a shared object. */
11210 sym->st_value = (htab->sstubs->output_section->vma
11211 + htab->sstubs->output_offset
11212 + h->plt.plist->stub_offset
11213 + isa_bit);
11214 sym->st_other = other;
11215 }
11216
11217 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11218 refer to the stub, since only the stub uses the standard calling
11219 conventions. */
11220 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11221 {
11222 BFD_ASSERT (hmips->need_fn_stub);
11223 sym->st_value = (hmips->fn_stub->output_section->vma
11224 + hmips->fn_stub->output_offset);
11225 sym->st_size = hmips->fn_stub->size;
11226 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11227 }
11228
11229 BFD_ASSERT (h->dynindx != -1
11230 || h->forced_local);
11231
11232 sgot = htab->root.sgot;
11233 g = htab->got_info;
11234 BFD_ASSERT (g != NULL);
11235
11236 /* Run through the global symbol table, creating GOT entries for all
11237 the symbols that need them. */
11238 if (hmips->global_got_area != GGA_NONE)
11239 {
11240 bfd_vma offset;
11241 bfd_vma value;
11242
11243 value = sym->st_value;
11244 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11245 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11246 }
11247
11248 if (hmips->global_got_area != GGA_NONE && g->next)
11249 {
11250 struct mips_got_entry e, *p;
11251 bfd_vma entry;
11252 bfd_vma offset;
11253
11254 gg = g;
11255
11256 e.abfd = output_bfd;
11257 e.symndx = -1;
11258 e.d.h = hmips;
11259 e.tls_type = GOT_TLS_NONE;
11260
11261 for (g = g->next; g->next != gg; g = g->next)
11262 {
11263 if (g->got_entries
11264 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11265 &e)))
11266 {
11267 offset = p->gotidx;
11268 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11269 if (bfd_link_pic (info)
11270 || (elf_hash_table (info)->dynamic_sections_created
11271 && p->d.h != NULL
11272 && p->d.h->root.def_dynamic
11273 && !p->d.h->root.def_regular))
11274 {
11275 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11276 the various compatibility problems, it's easier to mock
11277 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11278 mips_elf_create_dynamic_relocation to calculate the
11279 appropriate addend. */
11280 Elf_Internal_Rela rel[3];
11281
11282 memset (rel, 0, sizeof (rel));
11283 if (ABI_64_P (output_bfd))
11284 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11285 else
11286 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11287 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11288
11289 entry = 0;
11290 if (! (mips_elf_create_dynamic_relocation
11291 (output_bfd, info, rel,
11292 e.d.h, NULL, sym->st_value, &entry, sgot)))
11293 return FALSE;
11294 }
11295 else
11296 entry = sym->st_value;
11297 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11298 }
11299 }
11300 }
11301
11302 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11303 name = h->root.root.string;
11304 if (h == elf_hash_table (info)->hdynamic
11305 || h == elf_hash_table (info)->hgot)
11306 sym->st_shndx = SHN_ABS;
11307 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11308 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11309 {
11310 sym->st_shndx = SHN_ABS;
11311 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11312 sym->st_value = 1;
11313 }
11314 else if (SGI_COMPAT (output_bfd))
11315 {
11316 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11317 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11318 {
11319 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11320 sym->st_other = STO_PROTECTED;
11321 sym->st_value = 0;
11322 sym->st_shndx = SHN_MIPS_DATA;
11323 }
11324 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11325 {
11326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11327 sym->st_other = STO_PROTECTED;
11328 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11329 sym->st_shndx = SHN_ABS;
11330 }
11331 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11332 {
11333 if (h->type == STT_FUNC)
11334 sym->st_shndx = SHN_MIPS_TEXT;
11335 else if (h->type == STT_OBJECT)
11336 sym->st_shndx = SHN_MIPS_DATA;
11337 }
11338 }
11339
11340 /* Emit a copy reloc, if needed. */
11341 if (h->needs_copy)
11342 {
11343 asection *s;
11344 bfd_vma symval;
11345
11346 BFD_ASSERT (h->dynindx != -1);
11347 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11348
11349 s = mips_elf_rel_dyn_section (info, FALSE);
11350 symval = (h->root.u.def.section->output_section->vma
11351 + h->root.u.def.section->output_offset
11352 + h->root.u.def.value);
11353 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11354 h->dynindx, R_MIPS_COPY, symval);
11355 }
11356
11357 /* Handle the IRIX6-specific symbols. */
11358 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11359 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11360
11361 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11362 to treat compressed symbols like any other. */
11363 if (ELF_ST_IS_MIPS16 (sym->st_other))
11364 {
11365 BFD_ASSERT (sym->st_value & 1);
11366 sym->st_other -= STO_MIPS16;
11367 }
11368 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11369 {
11370 BFD_ASSERT (sym->st_value & 1);
11371 sym->st_other -= STO_MICROMIPS;
11372 }
11373
11374 return TRUE;
11375 }
11376
11377 /* Likewise, for VxWorks. */
11378
11379 bfd_boolean
11380 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11381 struct bfd_link_info *info,
11382 struct elf_link_hash_entry *h,
11383 Elf_Internal_Sym *sym)
11384 {
11385 bfd *dynobj;
11386 asection *sgot;
11387 struct mips_got_info *g;
11388 struct mips_elf_link_hash_table *htab;
11389 struct mips_elf_link_hash_entry *hmips;
11390
11391 htab = mips_elf_hash_table (info);
11392 BFD_ASSERT (htab != NULL);
11393 dynobj = elf_hash_table (info)->dynobj;
11394 hmips = (struct mips_elf_link_hash_entry *) h;
11395
11396 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11397 {
11398 bfd_byte *loc;
11399 bfd_vma plt_address, got_address, got_offset, branch_offset;
11400 Elf_Internal_Rela rel;
11401 static const bfd_vma *plt_entry;
11402 bfd_vma gotplt_index;
11403 bfd_vma plt_offset;
11404
11405 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11406 gotplt_index = h->plt.plist->gotplt_index;
11407
11408 BFD_ASSERT (h->dynindx != -1);
11409 BFD_ASSERT (htab->root.splt != NULL);
11410 BFD_ASSERT (gotplt_index != MINUS_ONE);
11411 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11412
11413 /* Calculate the address of the .plt entry. */
11414 plt_address = (htab->root.splt->output_section->vma
11415 + htab->root.splt->output_offset
11416 + plt_offset);
11417
11418 /* Calculate the address of the .got.plt entry. */
11419 got_address = (htab->root.sgotplt->output_section->vma
11420 + htab->root.sgotplt->output_offset
11421 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11422
11423 /* Calculate the offset of the .got.plt entry from
11424 _GLOBAL_OFFSET_TABLE_. */
11425 got_offset = mips_elf_gotplt_index (info, h);
11426
11427 /* Calculate the offset for the branch at the start of the PLT
11428 entry. The branch jumps to the beginning of .plt. */
11429 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11430
11431 /* Fill in the initial value of the .got.plt entry. */
11432 bfd_put_32 (output_bfd, plt_address,
11433 (htab->root.sgotplt->contents
11434 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11435
11436 /* Find out where the .plt entry should go. */
11437 loc = htab->root.splt->contents + plt_offset;
11438
11439 if (bfd_link_pic (info))
11440 {
11441 plt_entry = mips_vxworks_shared_plt_entry;
11442 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11443 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11444 }
11445 else
11446 {
11447 bfd_vma got_address_high, got_address_low;
11448
11449 plt_entry = mips_vxworks_exec_plt_entry;
11450 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11451 got_address_low = got_address & 0xffff;
11452
11453 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11454 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11455 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11456 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11457 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11458 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11459 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11460 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11461
11462 loc = (htab->srelplt2->contents
11463 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11464
11465 /* Emit a relocation for the .got.plt entry. */
11466 rel.r_offset = got_address;
11467 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11468 rel.r_addend = plt_offset;
11469 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11470
11471 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11472 loc += sizeof (Elf32_External_Rela);
11473 rel.r_offset = plt_address + 8;
11474 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11475 rel.r_addend = got_offset;
11476 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11477
11478 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11479 loc += sizeof (Elf32_External_Rela);
11480 rel.r_offset += 4;
11481 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483 }
11484
11485 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11486 loc = (htab->root.srelplt->contents
11487 + gotplt_index * sizeof (Elf32_External_Rela));
11488 rel.r_offset = got_address;
11489 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11490 rel.r_addend = 0;
11491 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11492
11493 if (!h->def_regular)
11494 sym->st_shndx = SHN_UNDEF;
11495 }
11496
11497 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11498
11499 sgot = htab->root.sgot;
11500 g = htab->got_info;
11501 BFD_ASSERT (g != NULL);
11502
11503 /* See if this symbol has an entry in the GOT. */
11504 if (hmips->global_got_area != GGA_NONE)
11505 {
11506 bfd_vma offset;
11507 Elf_Internal_Rela outrel;
11508 bfd_byte *loc;
11509 asection *s;
11510
11511 /* Install the symbol value in the GOT. */
11512 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11513 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11514
11515 /* Add a dynamic relocation for it. */
11516 s = mips_elf_rel_dyn_section (info, FALSE);
11517 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11518 outrel.r_offset = (sgot->output_section->vma
11519 + sgot->output_offset
11520 + offset);
11521 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11522 outrel.r_addend = 0;
11523 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11524 }
11525
11526 /* Emit a copy reloc, if needed. */
11527 if (h->needs_copy)
11528 {
11529 Elf_Internal_Rela rel;
11530 asection *srel;
11531 bfd_byte *loc;
11532
11533 BFD_ASSERT (h->dynindx != -1);
11534
11535 rel.r_offset = (h->root.u.def.section->output_section->vma
11536 + h->root.u.def.section->output_offset
11537 + h->root.u.def.value);
11538 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11539 rel.r_addend = 0;
11540 if (h->root.u.def.section == htab->root.sdynrelro)
11541 srel = htab->root.sreldynrelro;
11542 else
11543 srel = htab->root.srelbss;
11544 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11545 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11546 ++srel->reloc_count;
11547 }
11548
11549 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11550 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11551 sym->st_value &= ~1;
11552
11553 return TRUE;
11554 }
11555
11556 /* Write out a plt0 entry to the beginning of .plt. */
11557
11558 static bfd_boolean
11559 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11560 {
11561 bfd_byte *loc;
11562 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11563 static const bfd_vma *plt_entry;
11564 struct mips_elf_link_hash_table *htab;
11565
11566 htab = mips_elf_hash_table (info);
11567 BFD_ASSERT (htab != NULL);
11568
11569 if (ABI_64_P (output_bfd))
11570 plt_entry = (htab->compact_branches
11571 ? mipsr6_n64_exec_plt0_entry_compact
11572 : mips_n64_exec_plt0_entry);
11573 else if (ABI_N32_P (output_bfd))
11574 plt_entry = (htab->compact_branches
11575 ? mipsr6_n32_exec_plt0_entry_compact
11576 : mips_n32_exec_plt0_entry);
11577 else if (!htab->plt_header_is_comp)
11578 plt_entry = (htab->compact_branches
11579 ? mipsr6_o32_exec_plt0_entry_compact
11580 : mips_o32_exec_plt0_entry);
11581 else if (htab->insn32)
11582 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11583 else
11584 plt_entry = micromips_o32_exec_plt0_entry;
11585
11586 /* Calculate the value of .got.plt. */
11587 gotplt_value = (htab->root.sgotplt->output_section->vma
11588 + htab->root.sgotplt->output_offset);
11589 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11590 gotplt_value_low = gotplt_value & 0xffff;
11591
11592 /* The PLT sequence is not safe for N64 if .got.plt's address can
11593 not be loaded in two instructions. */
11594 if (ABI_64_P (output_bfd)
11595 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11596 {
11597 _bfd_error_handler
11598 /* xgettext:c-format */
11599 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11600 "supported; consider using `-Ttext-segment=...'"),
11601 output_bfd,
11602 htab->root.sgotplt->output_section,
11603 (int64_t) gotplt_value);
11604 bfd_set_error (bfd_error_no_error);
11605 return FALSE;
11606 }
11607
11608 /* Install the PLT header. */
11609 loc = htab->root.splt->contents;
11610 if (plt_entry == micromips_o32_exec_plt0_entry)
11611 {
11612 bfd_vma gotpc_offset;
11613 bfd_vma loc_address;
11614 size_t i;
11615
11616 BFD_ASSERT (gotplt_value % 4 == 0);
11617
11618 loc_address = (htab->root.splt->output_section->vma
11619 + htab->root.splt->output_offset);
11620 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11621
11622 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11623 if (gotpc_offset + 0x1000000 >= 0x2000000)
11624 {
11625 _bfd_error_handler
11626 /* xgettext:c-format */
11627 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11628 "beyond the range of ADDIUPC"),
11629 output_bfd,
11630 htab->root.sgotplt->output_section,
11631 (int64_t) gotpc_offset,
11632 htab->root.splt->output_section);
11633 bfd_set_error (bfd_error_no_error);
11634 return FALSE;
11635 }
11636 bfd_put_16 (output_bfd,
11637 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11638 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11639 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11640 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11641 }
11642 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11643 {
11644 size_t i;
11645
11646 bfd_put_16 (output_bfd, plt_entry[0], loc);
11647 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11648 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11649 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11650 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11651 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11652 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11653 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11654 }
11655 else
11656 {
11657 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11658 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11659 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11660 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11661 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11662 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11663 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11664 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11665 }
11666
11667 return TRUE;
11668 }
11669
11670 /* Install the PLT header for a VxWorks executable and finalize the
11671 contents of .rela.plt.unloaded. */
11672
11673 static void
11674 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11675 {
11676 Elf_Internal_Rela rela;
11677 bfd_byte *loc;
11678 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11679 static const bfd_vma *plt_entry;
11680 struct mips_elf_link_hash_table *htab;
11681
11682 htab = mips_elf_hash_table (info);
11683 BFD_ASSERT (htab != NULL);
11684
11685 plt_entry = mips_vxworks_exec_plt0_entry;
11686
11687 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11688 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11689 + htab->root.hgot->root.u.def.section->output_offset
11690 + htab->root.hgot->root.u.def.value);
11691
11692 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11693 got_value_low = got_value & 0xffff;
11694
11695 /* Calculate the address of the PLT header. */
11696 plt_address = (htab->root.splt->output_section->vma
11697 + htab->root.splt->output_offset);
11698
11699 /* Install the PLT header. */
11700 loc = htab->root.splt->contents;
11701 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11702 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11703 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11704 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11705 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11706 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11707
11708 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11709 loc = htab->srelplt2->contents;
11710 rela.r_offset = plt_address;
11711 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11712 rela.r_addend = 0;
11713 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11714 loc += sizeof (Elf32_External_Rela);
11715
11716 /* Output the relocation for the following addiu of
11717 %lo(_GLOBAL_OFFSET_TABLE_). */
11718 rela.r_offset += 4;
11719 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11720 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11721 loc += sizeof (Elf32_External_Rela);
11722
11723 /* Fix up the remaining relocations. They may have the wrong
11724 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11725 in which symbols were output. */
11726 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11727 {
11728 Elf_Internal_Rela rel;
11729
11730 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11731 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11732 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11733 loc += sizeof (Elf32_External_Rela);
11734
11735 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11736 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11737 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11738 loc += sizeof (Elf32_External_Rela);
11739
11740 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11741 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11742 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11743 loc += sizeof (Elf32_External_Rela);
11744 }
11745 }
11746
11747 /* Install the PLT header for a VxWorks shared library. */
11748
11749 static void
11750 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11751 {
11752 unsigned int i;
11753 struct mips_elf_link_hash_table *htab;
11754
11755 htab = mips_elf_hash_table (info);
11756 BFD_ASSERT (htab != NULL);
11757
11758 /* We just need to copy the entry byte-by-byte. */
11759 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11760 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11761 htab->root.splt->contents + i * 4);
11762 }
11763
11764 /* Finish up the dynamic sections. */
11765
11766 bfd_boolean
11767 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11768 struct bfd_link_info *info)
11769 {
11770 bfd *dynobj;
11771 asection *sdyn;
11772 asection *sgot;
11773 struct mips_got_info *gg, *g;
11774 struct mips_elf_link_hash_table *htab;
11775
11776 htab = mips_elf_hash_table (info);
11777 BFD_ASSERT (htab != NULL);
11778
11779 dynobj = elf_hash_table (info)->dynobj;
11780
11781 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11782
11783 sgot = htab->root.sgot;
11784 gg = htab->got_info;
11785
11786 if (elf_hash_table (info)->dynamic_sections_created)
11787 {
11788 bfd_byte *b;
11789 int dyn_to_skip = 0, dyn_skipped = 0;
11790
11791 BFD_ASSERT (sdyn != NULL);
11792 BFD_ASSERT (gg != NULL);
11793
11794 g = mips_elf_bfd_got (output_bfd, FALSE);
11795 BFD_ASSERT (g != NULL);
11796
11797 for (b = sdyn->contents;
11798 b < sdyn->contents + sdyn->size;
11799 b += MIPS_ELF_DYN_SIZE (dynobj))
11800 {
11801 Elf_Internal_Dyn dyn;
11802 const char *name;
11803 size_t elemsize;
11804 asection *s;
11805 bfd_boolean swap_out_p;
11806
11807 /* Read in the current dynamic entry. */
11808 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11809
11810 /* Assume that we're going to modify it and write it out. */
11811 swap_out_p = TRUE;
11812
11813 switch (dyn.d_tag)
11814 {
11815 case DT_RELENT:
11816 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11817 break;
11818
11819 case DT_RELAENT:
11820 BFD_ASSERT (htab->root.target_os == is_vxworks);
11821 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11822 break;
11823
11824 case DT_STRSZ:
11825 /* Rewrite DT_STRSZ. */
11826 dyn.d_un.d_val =
11827 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11828 break;
11829
11830 case DT_PLTGOT:
11831 s = htab->root.sgot;
11832 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11833 break;
11834
11835 case DT_MIPS_PLTGOT:
11836 s = htab->root.sgotplt;
11837 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11838 break;
11839
11840 case DT_MIPS_RLD_VERSION:
11841 dyn.d_un.d_val = 1; /* XXX */
11842 break;
11843
11844 case DT_MIPS_FLAGS:
11845 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11846 break;
11847
11848 case DT_MIPS_TIME_STAMP:
11849 {
11850 time_t t;
11851 time (&t);
11852 dyn.d_un.d_val = t;
11853 }
11854 break;
11855
11856 case DT_MIPS_ICHECKSUM:
11857 /* XXX FIXME: */
11858 swap_out_p = FALSE;
11859 break;
11860
11861 case DT_MIPS_IVERSION:
11862 /* XXX FIXME: */
11863 swap_out_p = FALSE;
11864 break;
11865
11866 case DT_MIPS_BASE_ADDRESS:
11867 s = output_bfd->sections;
11868 BFD_ASSERT (s != NULL);
11869 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11870 break;
11871
11872 case DT_MIPS_LOCAL_GOTNO:
11873 dyn.d_un.d_val = g->local_gotno;
11874 break;
11875
11876 case DT_MIPS_UNREFEXTNO:
11877 /* The index into the dynamic symbol table which is the
11878 entry of the first external symbol that is not
11879 referenced within the same object. */
11880 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11881 break;
11882
11883 case DT_MIPS_GOTSYM:
11884 if (htab->global_gotsym)
11885 {
11886 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11887 break;
11888 }
11889 /* In case if we don't have global got symbols we default
11890 to setting DT_MIPS_GOTSYM to the same value as
11891 DT_MIPS_SYMTABNO. */
11892 /* Fall through. */
11893
11894 case DT_MIPS_SYMTABNO:
11895 name = ".dynsym";
11896 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11897 s = bfd_get_linker_section (dynobj, name);
11898
11899 if (s != NULL)
11900 dyn.d_un.d_val = s->size / elemsize;
11901 else
11902 dyn.d_un.d_val = 0;
11903 break;
11904
11905 case DT_MIPS_HIPAGENO:
11906 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11907 break;
11908
11909 case DT_MIPS_RLD_MAP:
11910 {
11911 struct elf_link_hash_entry *h;
11912 h = mips_elf_hash_table (info)->rld_symbol;
11913 if (!h)
11914 {
11915 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11916 swap_out_p = FALSE;
11917 break;
11918 }
11919 s = h->root.u.def.section;
11920
11921 /* The MIPS_RLD_MAP tag stores the absolute address of the
11922 debug pointer. */
11923 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11924 + h->root.u.def.value);
11925 }
11926 break;
11927
11928 case DT_MIPS_RLD_MAP_REL:
11929 {
11930 struct elf_link_hash_entry *h;
11931 bfd_vma dt_addr, rld_addr;
11932 h = mips_elf_hash_table (info)->rld_symbol;
11933 if (!h)
11934 {
11935 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11936 swap_out_p = FALSE;
11937 break;
11938 }
11939 s = h->root.u.def.section;
11940
11941 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11942 pointer, relative to the address of the tag. */
11943 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11944 + (b - sdyn->contents));
11945 rld_addr = (s->output_section->vma + s->output_offset
11946 + h->root.u.def.value);
11947 dyn.d_un.d_ptr = rld_addr - dt_addr;
11948 }
11949 break;
11950
11951 case DT_MIPS_OPTIONS:
11952 s = (bfd_get_section_by_name
11953 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11954 dyn.d_un.d_ptr = s->vma;
11955 break;
11956
11957 case DT_PLTREL:
11958 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11959 if (htab->root.target_os == is_vxworks)
11960 dyn.d_un.d_val = DT_RELA;
11961 else
11962 dyn.d_un.d_val = DT_REL;
11963 break;
11964
11965 case DT_PLTRELSZ:
11966 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11967 dyn.d_un.d_val = htab->root.srelplt->size;
11968 break;
11969
11970 case DT_JMPREL:
11971 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11972 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11973 + htab->root.srelplt->output_offset);
11974 break;
11975
11976 case DT_TEXTREL:
11977 /* If we didn't need any text relocations after all, delete
11978 the dynamic tag. */
11979 if (!(info->flags & DF_TEXTREL))
11980 {
11981 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11982 swap_out_p = FALSE;
11983 }
11984 break;
11985
11986 case DT_FLAGS:
11987 /* If we didn't need any text relocations after all, clear
11988 DF_TEXTREL from DT_FLAGS. */
11989 if (!(info->flags & DF_TEXTREL))
11990 dyn.d_un.d_val &= ~DF_TEXTREL;
11991 else
11992 swap_out_p = FALSE;
11993 break;
11994
11995 case DT_MIPS_XHASH:
11996 name = ".MIPS.xhash";
11997 s = bfd_get_linker_section (dynobj, name);
11998 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11999 break;
12000
12001 default:
12002 swap_out_p = FALSE;
12003 if (htab->root.target_os == is_vxworks
12004 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12005 swap_out_p = TRUE;
12006 break;
12007 }
12008
12009 if (swap_out_p || dyn_skipped)
12010 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12011 (dynobj, &dyn, b - dyn_skipped);
12012
12013 if (dyn_to_skip)
12014 {
12015 dyn_skipped += dyn_to_skip;
12016 dyn_to_skip = 0;
12017 }
12018 }
12019
12020 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12021 if (dyn_skipped > 0)
12022 memset (b - dyn_skipped, 0, dyn_skipped);
12023 }
12024
12025 if (sgot != NULL && sgot->size > 0
12026 && !bfd_is_abs_section (sgot->output_section))
12027 {
12028 if (htab->root.target_os == is_vxworks)
12029 {
12030 /* The first entry of the global offset table points to the
12031 ".dynamic" section. The second is initialized by the
12032 loader and contains the shared library identifier.
12033 The third is also initialized by the loader and points
12034 to the lazy resolution stub. */
12035 MIPS_ELF_PUT_WORD (output_bfd,
12036 sdyn->output_offset + sdyn->output_section->vma,
12037 sgot->contents);
12038 MIPS_ELF_PUT_WORD (output_bfd, 0,
12039 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12040 MIPS_ELF_PUT_WORD (output_bfd, 0,
12041 sgot->contents
12042 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12043 }
12044 else
12045 {
12046 /* The first entry of the global offset table will be filled at
12047 runtime. The second entry will be used by some runtime loaders.
12048 This isn't the case of IRIX rld. */
12049 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12050 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12051 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12052 }
12053
12054 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12055 = MIPS_ELF_GOT_SIZE (output_bfd);
12056 }
12057
12058 /* Generate dynamic relocations for the non-primary gots. */
12059 if (gg != NULL && gg->next)
12060 {
12061 Elf_Internal_Rela rel[3];
12062 bfd_vma addend = 0;
12063
12064 memset (rel, 0, sizeof (rel));
12065 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12066
12067 for (g = gg->next; g->next != gg; g = g->next)
12068 {
12069 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12070 + g->next->tls_gotno;
12071
12072 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12073 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12074 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12075 sgot->contents
12076 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12077
12078 if (! bfd_link_pic (info))
12079 continue;
12080
12081 for (; got_index < g->local_gotno; got_index++)
12082 {
12083 if (got_index >= g->assigned_low_gotno
12084 && got_index <= g->assigned_high_gotno)
12085 continue;
12086
12087 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12088 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12089 if (!(mips_elf_create_dynamic_relocation
12090 (output_bfd, info, rel, NULL,
12091 bfd_abs_section_ptr,
12092 0, &addend, sgot)))
12093 return FALSE;
12094 BFD_ASSERT (addend == 0);
12095 }
12096 }
12097 }
12098
12099 /* The generation of dynamic relocations for the non-primary gots
12100 adds more dynamic relocations. We cannot count them until
12101 here. */
12102
12103 if (elf_hash_table (info)->dynamic_sections_created)
12104 {
12105 bfd_byte *b;
12106 bfd_boolean swap_out_p;
12107
12108 BFD_ASSERT (sdyn != NULL);
12109
12110 for (b = sdyn->contents;
12111 b < sdyn->contents + sdyn->size;
12112 b += MIPS_ELF_DYN_SIZE (dynobj))
12113 {
12114 Elf_Internal_Dyn dyn;
12115 asection *s;
12116
12117 /* Read in the current dynamic entry. */
12118 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12119
12120 /* Assume that we're going to modify it and write it out. */
12121 swap_out_p = TRUE;
12122
12123 switch (dyn.d_tag)
12124 {
12125 case DT_RELSZ:
12126 /* Reduce DT_RELSZ to account for any relocations we
12127 decided not to make. This is for the n64 irix rld,
12128 which doesn't seem to apply any relocations if there
12129 are trailing null entries. */
12130 s = mips_elf_rel_dyn_section (info, FALSE);
12131 dyn.d_un.d_val = (s->reloc_count
12132 * (ABI_64_P (output_bfd)
12133 ? sizeof (Elf64_Mips_External_Rel)
12134 : sizeof (Elf32_External_Rel)));
12135 /* Adjust the section size too. Tools like the prelinker
12136 can reasonably expect the values to the same. */
12137 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12138 elf_section_data (s->output_section)->this_hdr.sh_size
12139 = dyn.d_un.d_val;
12140 break;
12141
12142 default:
12143 swap_out_p = FALSE;
12144 break;
12145 }
12146
12147 if (swap_out_p)
12148 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12149 (dynobj, &dyn, b);
12150 }
12151 }
12152
12153 {
12154 asection *s;
12155 Elf32_compact_rel cpt;
12156
12157 if (SGI_COMPAT (output_bfd))
12158 {
12159 /* Write .compact_rel section out. */
12160 s = bfd_get_linker_section (dynobj, ".compact_rel");
12161 if (s != NULL)
12162 {
12163 cpt.id1 = 1;
12164 cpt.num = s->reloc_count;
12165 cpt.id2 = 2;
12166 cpt.offset = (s->output_section->filepos
12167 + sizeof (Elf32_External_compact_rel));
12168 cpt.reserved0 = 0;
12169 cpt.reserved1 = 0;
12170 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12171 ((Elf32_External_compact_rel *)
12172 s->contents));
12173
12174 /* Clean up a dummy stub function entry in .text. */
12175 if (htab->sstubs != NULL
12176 && htab->sstubs->contents != NULL)
12177 {
12178 file_ptr dummy_offset;
12179
12180 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12181 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12182 memset (htab->sstubs->contents + dummy_offset, 0,
12183 htab->function_stub_size);
12184 }
12185 }
12186 }
12187
12188 /* The psABI says that the dynamic relocations must be sorted in
12189 increasing order of r_symndx. The VxWorks EABI doesn't require
12190 this, and because the code below handles REL rather than RELA
12191 relocations, using it for VxWorks would be outright harmful. */
12192 if (htab->root.target_os != is_vxworks)
12193 {
12194 s = mips_elf_rel_dyn_section (info, FALSE);
12195 if (s != NULL
12196 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12197 {
12198 reldyn_sorting_bfd = output_bfd;
12199
12200 if (ABI_64_P (output_bfd))
12201 qsort ((Elf64_External_Rel *) s->contents + 1,
12202 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12203 sort_dynamic_relocs_64);
12204 else
12205 qsort ((Elf32_External_Rel *) s->contents + 1,
12206 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12207 sort_dynamic_relocs);
12208 }
12209 }
12210 }
12211
12212 if (htab->root.splt && htab->root.splt->size > 0)
12213 {
12214 if (htab->root.target_os == is_vxworks)
12215 {
12216 if (bfd_link_pic (info))
12217 mips_vxworks_finish_shared_plt (output_bfd, info);
12218 else
12219 mips_vxworks_finish_exec_plt (output_bfd, info);
12220 }
12221 else
12222 {
12223 BFD_ASSERT (!bfd_link_pic (info));
12224 if (!mips_finish_exec_plt (output_bfd, info))
12225 return FALSE;
12226 }
12227 }
12228 return TRUE;
12229 }
12230
12231
12232 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12233
12234 static void
12235 mips_set_isa_flags (bfd *abfd)
12236 {
12237 flagword val;
12238
12239 switch (bfd_get_mach (abfd))
12240 {
12241 default:
12242 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12243 val = E_MIPS_ARCH_3;
12244 else
12245 val = E_MIPS_ARCH_1;
12246 break;
12247
12248 case bfd_mach_mips3000:
12249 val = E_MIPS_ARCH_1;
12250 break;
12251
12252 case bfd_mach_mips3900:
12253 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12254 break;
12255
12256 case bfd_mach_mips6000:
12257 val = E_MIPS_ARCH_2;
12258 break;
12259
12260 case bfd_mach_mips4010:
12261 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12262 break;
12263
12264 case bfd_mach_mips4000:
12265 case bfd_mach_mips4300:
12266 case bfd_mach_mips4400:
12267 case bfd_mach_mips4600:
12268 val = E_MIPS_ARCH_3;
12269 break;
12270
12271 case bfd_mach_mips4100:
12272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12273 break;
12274
12275 case bfd_mach_mips4111:
12276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12277 break;
12278
12279 case bfd_mach_mips4120:
12280 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12281 break;
12282
12283 case bfd_mach_mips4650:
12284 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12285 break;
12286
12287 case bfd_mach_mips5400:
12288 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12289 break;
12290
12291 case bfd_mach_mips5500:
12292 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12293 break;
12294
12295 case bfd_mach_mips5900:
12296 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12297 break;
12298
12299 case bfd_mach_mips9000:
12300 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12301 break;
12302
12303 case bfd_mach_mips5000:
12304 case bfd_mach_mips7000:
12305 case bfd_mach_mips8000:
12306 case bfd_mach_mips10000:
12307 case bfd_mach_mips12000:
12308 case bfd_mach_mips14000:
12309 case bfd_mach_mips16000:
12310 val = E_MIPS_ARCH_4;
12311 break;
12312
12313 case bfd_mach_mips5:
12314 val = E_MIPS_ARCH_5;
12315 break;
12316
12317 case bfd_mach_mips_loongson_2e:
12318 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12319 break;
12320
12321 case bfd_mach_mips_loongson_2f:
12322 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12323 break;
12324
12325 case bfd_mach_mips_sb1:
12326 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12327 break;
12328
12329 case bfd_mach_mips_gs464:
12330 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12331 break;
12332
12333 case bfd_mach_mips_gs464e:
12334 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12335 break;
12336
12337 case bfd_mach_mips_gs264e:
12338 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12339 break;
12340
12341 case bfd_mach_mips_octeon:
12342 case bfd_mach_mips_octeonp:
12343 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12344 break;
12345
12346 case bfd_mach_mips_octeon3:
12347 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12348 break;
12349
12350 case bfd_mach_mips_xlr:
12351 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12352 break;
12353
12354 case bfd_mach_mips_octeon2:
12355 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12356 break;
12357
12358 case bfd_mach_mipsisa32:
12359 val = E_MIPS_ARCH_32;
12360 break;
12361
12362 case bfd_mach_mipsisa64:
12363 val = E_MIPS_ARCH_64;
12364 break;
12365
12366 case bfd_mach_mipsisa32r2:
12367 case bfd_mach_mipsisa32r3:
12368 case bfd_mach_mipsisa32r5:
12369 val = E_MIPS_ARCH_32R2;
12370 break;
12371
12372 case bfd_mach_mips_interaptiv_mr2:
12373 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12374 break;
12375
12376 case bfd_mach_mipsisa64r2:
12377 case bfd_mach_mipsisa64r3:
12378 case bfd_mach_mipsisa64r5:
12379 val = E_MIPS_ARCH_64R2;
12380 break;
12381
12382 case bfd_mach_mipsisa32r6:
12383 val = E_MIPS_ARCH_32R6;
12384 break;
12385
12386 case bfd_mach_mipsisa64r6:
12387 val = E_MIPS_ARCH_64R6;
12388 break;
12389 }
12390 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12391 elf_elfheader (abfd)->e_flags |= val;
12392
12393 }
12394
12395
12396 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12397 Don't do so for code sections. We want to keep ordering of HI16/LO16
12398 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12399 relocs to be sorted. */
12400
12401 bfd_boolean
12402 _bfd_mips_elf_sort_relocs_p (asection *sec)
12403 {
12404 return (sec->flags & SEC_CODE) == 0;
12405 }
12406
12407
12408 /* The final processing done just before writing out a MIPS ELF object
12409 file. This gets the MIPS architecture right based on the machine
12410 number. This is used by both the 32-bit and the 64-bit ABI. */
12411
12412 void
12413 _bfd_mips_final_write_processing (bfd *abfd)
12414 {
12415 unsigned int i;
12416 Elf_Internal_Shdr **hdrpp;
12417 const char *name;
12418 asection *sec;
12419
12420 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12421 is nonzero. This is for compatibility with old objects, which used
12422 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12423 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12424 mips_set_isa_flags (abfd);
12425
12426 /* Set the sh_info field for .gptab sections and other appropriate
12427 info for each special section. */
12428 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12429 i < elf_numsections (abfd);
12430 i++, hdrpp++)
12431 {
12432 switch ((*hdrpp)->sh_type)
12433 {
12434 case SHT_MIPS_MSYM:
12435 case SHT_MIPS_LIBLIST:
12436 sec = bfd_get_section_by_name (abfd, ".dynstr");
12437 if (sec != NULL)
12438 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12439 break;
12440
12441 case SHT_MIPS_GPTAB:
12442 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12443 name = bfd_section_name ((*hdrpp)->bfd_section);
12444 BFD_ASSERT (name != NULL
12445 && CONST_STRNEQ (name, ".gptab."));
12446 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12447 BFD_ASSERT (sec != NULL);
12448 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12449 break;
12450
12451 case SHT_MIPS_CONTENT:
12452 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12453 name = bfd_section_name ((*hdrpp)->bfd_section);
12454 BFD_ASSERT (name != NULL
12455 && CONST_STRNEQ (name, ".MIPS.content"));
12456 sec = bfd_get_section_by_name (abfd,
12457 name + sizeof ".MIPS.content" - 1);
12458 BFD_ASSERT (sec != NULL);
12459 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12460 break;
12461
12462 case SHT_MIPS_SYMBOL_LIB:
12463 sec = bfd_get_section_by_name (abfd, ".dynsym");
12464 if (sec != NULL)
12465 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12466 sec = bfd_get_section_by_name (abfd, ".liblist");
12467 if (sec != NULL)
12468 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12469 break;
12470
12471 case SHT_MIPS_EVENTS:
12472 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12473 name = bfd_section_name ((*hdrpp)->bfd_section);
12474 BFD_ASSERT (name != NULL);
12475 if (CONST_STRNEQ (name, ".MIPS.events"))
12476 sec = bfd_get_section_by_name (abfd,
12477 name + sizeof ".MIPS.events" - 1);
12478 else
12479 {
12480 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12481 sec = bfd_get_section_by_name (abfd,
12482 (name
12483 + sizeof ".MIPS.post_rel" - 1));
12484 }
12485 BFD_ASSERT (sec != NULL);
12486 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12487 break;
12488
12489 case SHT_MIPS_XHASH:
12490 sec = bfd_get_section_by_name (abfd, ".dynsym");
12491 if (sec != NULL)
12492 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12493 }
12494 }
12495 }
12496
12497 bfd_boolean
12498 _bfd_mips_elf_final_write_processing (bfd *abfd)
12499 {
12500 _bfd_mips_final_write_processing (abfd);
12501 return _bfd_elf_final_write_processing (abfd);
12502 }
12503 \f
12504 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12505 segments. */
12506
12507 int
12508 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12509 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12510 {
12511 asection *s;
12512 int ret = 0;
12513
12514 /* See if we need a PT_MIPS_REGINFO segment. */
12515 s = bfd_get_section_by_name (abfd, ".reginfo");
12516 if (s && (s->flags & SEC_LOAD))
12517 ++ret;
12518
12519 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12520 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12521 ++ret;
12522
12523 /* See if we need a PT_MIPS_OPTIONS segment. */
12524 if (IRIX_COMPAT (abfd) == ict_irix6
12525 && bfd_get_section_by_name (abfd,
12526 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12527 ++ret;
12528
12529 /* See if we need a PT_MIPS_RTPROC segment. */
12530 if (IRIX_COMPAT (abfd) == ict_irix5
12531 && bfd_get_section_by_name (abfd, ".dynamic")
12532 && bfd_get_section_by_name (abfd, ".mdebug"))
12533 ++ret;
12534
12535 /* Allocate a PT_NULL header in dynamic objects. See
12536 _bfd_mips_elf_modify_segment_map for details. */
12537 if (!SGI_COMPAT (abfd)
12538 && bfd_get_section_by_name (abfd, ".dynamic"))
12539 ++ret;
12540
12541 return ret;
12542 }
12543
12544 /* Modify the segment map for an IRIX5 executable. */
12545
12546 bfd_boolean
12547 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12548 struct bfd_link_info *info)
12549 {
12550 asection *s;
12551 struct elf_segment_map *m, **pm;
12552 size_t amt;
12553
12554 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12555 segment. */
12556 s = bfd_get_section_by_name (abfd, ".reginfo");
12557 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12558 {
12559 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12560 if (m->p_type == PT_MIPS_REGINFO)
12561 break;
12562 if (m == NULL)
12563 {
12564 amt = sizeof *m;
12565 m = bfd_zalloc (abfd, amt);
12566 if (m == NULL)
12567 return FALSE;
12568
12569 m->p_type = PT_MIPS_REGINFO;
12570 m->count = 1;
12571 m->sections[0] = s;
12572
12573 /* We want to put it after the PHDR and INTERP segments. */
12574 pm = &elf_seg_map (abfd);
12575 while (*pm != NULL
12576 && ((*pm)->p_type == PT_PHDR
12577 || (*pm)->p_type == PT_INTERP))
12578 pm = &(*pm)->next;
12579
12580 m->next = *pm;
12581 *pm = m;
12582 }
12583 }
12584
12585 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12586 segment. */
12587 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12588 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12589 {
12590 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12591 if (m->p_type == PT_MIPS_ABIFLAGS)
12592 break;
12593 if (m == NULL)
12594 {
12595 amt = sizeof *m;
12596 m = bfd_zalloc (abfd, amt);
12597 if (m == NULL)
12598 return FALSE;
12599
12600 m->p_type = PT_MIPS_ABIFLAGS;
12601 m->count = 1;
12602 m->sections[0] = s;
12603
12604 /* We want to put it after the PHDR and INTERP segments. */
12605 pm = &elf_seg_map (abfd);
12606 while (*pm != NULL
12607 && ((*pm)->p_type == PT_PHDR
12608 || (*pm)->p_type == PT_INTERP))
12609 pm = &(*pm)->next;
12610
12611 m->next = *pm;
12612 *pm = m;
12613 }
12614 }
12615
12616 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12617 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12618 PT_MIPS_OPTIONS segment immediately following the program header
12619 table. */
12620 if (NEWABI_P (abfd)
12621 /* On non-IRIX6 new abi, we'll have already created a segment
12622 for this section, so don't create another. I'm not sure this
12623 is not also the case for IRIX 6, but I can't test it right
12624 now. */
12625 && IRIX_COMPAT (abfd) == ict_irix6)
12626 {
12627 for (s = abfd->sections; s; s = s->next)
12628 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12629 break;
12630
12631 if (s)
12632 {
12633 struct elf_segment_map *options_segment;
12634
12635 pm = &elf_seg_map (abfd);
12636 while (*pm != NULL
12637 && ((*pm)->p_type == PT_PHDR
12638 || (*pm)->p_type == PT_INTERP))
12639 pm = &(*pm)->next;
12640
12641 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12642 {
12643 amt = sizeof (struct elf_segment_map);
12644 options_segment = bfd_zalloc (abfd, amt);
12645 options_segment->next = *pm;
12646 options_segment->p_type = PT_MIPS_OPTIONS;
12647 options_segment->p_flags = PF_R;
12648 options_segment->p_flags_valid = TRUE;
12649 options_segment->count = 1;
12650 options_segment->sections[0] = s;
12651 *pm = options_segment;
12652 }
12653 }
12654 }
12655 else
12656 {
12657 if (IRIX_COMPAT (abfd) == ict_irix5)
12658 {
12659 /* If there are .dynamic and .mdebug sections, we make a room
12660 for the RTPROC header. FIXME: Rewrite without section names. */
12661 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12662 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12663 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12664 {
12665 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12666 if (m->p_type == PT_MIPS_RTPROC)
12667 break;
12668 if (m == NULL)
12669 {
12670 amt = sizeof *m;
12671 m = bfd_zalloc (abfd, amt);
12672 if (m == NULL)
12673 return FALSE;
12674
12675 m->p_type = PT_MIPS_RTPROC;
12676
12677 s = bfd_get_section_by_name (abfd, ".rtproc");
12678 if (s == NULL)
12679 {
12680 m->count = 0;
12681 m->p_flags = 0;
12682 m->p_flags_valid = 1;
12683 }
12684 else
12685 {
12686 m->count = 1;
12687 m->sections[0] = s;
12688 }
12689
12690 /* We want to put it after the DYNAMIC segment. */
12691 pm = &elf_seg_map (abfd);
12692 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12693 pm = &(*pm)->next;
12694 if (*pm != NULL)
12695 pm = &(*pm)->next;
12696
12697 m->next = *pm;
12698 *pm = m;
12699 }
12700 }
12701 }
12702 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12703 .dynstr, .dynsym, and .hash sections, and everything in
12704 between. */
12705 for (pm = &elf_seg_map (abfd); *pm != NULL;
12706 pm = &(*pm)->next)
12707 if ((*pm)->p_type == PT_DYNAMIC)
12708 break;
12709 m = *pm;
12710 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12711 glibc's dynamic linker has traditionally derived the number of
12712 tags from the p_filesz field, and sometimes allocates stack
12713 arrays of that size. An overly-big PT_DYNAMIC segment can
12714 be actively harmful in such cases. Making PT_DYNAMIC contain
12715 other sections can also make life hard for the prelinker,
12716 which might move one of the other sections to a different
12717 PT_LOAD segment. */
12718 if (SGI_COMPAT (abfd)
12719 && m != NULL
12720 && m->count == 1
12721 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12722 {
12723 static const char *sec_names[] =
12724 {
12725 ".dynamic", ".dynstr", ".dynsym", ".hash"
12726 };
12727 bfd_vma low, high;
12728 unsigned int i, c;
12729 struct elf_segment_map *n;
12730
12731 low = ~(bfd_vma) 0;
12732 high = 0;
12733 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12734 {
12735 s = bfd_get_section_by_name (abfd, sec_names[i]);
12736 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12737 {
12738 bfd_size_type sz;
12739
12740 if (low > s->vma)
12741 low = s->vma;
12742 sz = s->size;
12743 if (high < s->vma + sz)
12744 high = s->vma + sz;
12745 }
12746 }
12747
12748 c = 0;
12749 for (s = abfd->sections; s != NULL; s = s->next)
12750 if ((s->flags & SEC_LOAD) != 0
12751 && s->vma >= low
12752 && s->vma + s->size <= high)
12753 ++c;
12754
12755 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12756 n = bfd_zalloc (abfd, amt);
12757 if (n == NULL)
12758 return FALSE;
12759 *n = *m;
12760 n->count = c;
12761
12762 i = 0;
12763 for (s = abfd->sections; s != NULL; s = s->next)
12764 {
12765 if ((s->flags & SEC_LOAD) != 0
12766 && s->vma >= low
12767 && s->vma + s->size <= high)
12768 {
12769 n->sections[i] = s;
12770 ++i;
12771 }
12772 }
12773
12774 *pm = n;
12775 }
12776 }
12777
12778 /* Allocate a spare program header in dynamic objects so that tools
12779 like the prelinker can add an extra PT_LOAD entry.
12780
12781 If the prelinker needs to make room for a new PT_LOAD entry, its
12782 standard procedure is to move the first (read-only) sections into
12783 the new (writable) segment. However, the MIPS ABI requires
12784 .dynamic to be in a read-only segment, and the section will often
12785 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12786
12787 Although the prelinker could in principle move .dynamic to a
12788 writable segment, it seems better to allocate a spare program
12789 header instead, and avoid the need to move any sections.
12790 There is a long tradition of allocating spare dynamic tags,
12791 so allocating a spare program header seems like a natural
12792 extension.
12793
12794 If INFO is NULL, we may be copying an already prelinked binary
12795 with objcopy or strip, so do not add this header. */
12796 if (info != NULL
12797 && !SGI_COMPAT (abfd)
12798 && bfd_get_section_by_name (abfd, ".dynamic"))
12799 {
12800 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12801 if ((*pm)->p_type == PT_NULL)
12802 break;
12803 if (*pm == NULL)
12804 {
12805 m = bfd_zalloc (abfd, sizeof (*m));
12806 if (m == NULL)
12807 return FALSE;
12808
12809 m->p_type = PT_NULL;
12810 *pm = m;
12811 }
12812 }
12813
12814 return TRUE;
12815 }
12816 \f
12817 /* Return the section that should be marked against GC for a given
12818 relocation. */
12819
12820 asection *
12821 _bfd_mips_elf_gc_mark_hook (asection *sec,
12822 struct bfd_link_info *info,
12823 Elf_Internal_Rela *rel,
12824 struct elf_link_hash_entry *h,
12825 Elf_Internal_Sym *sym)
12826 {
12827 /* ??? Do mips16 stub sections need to be handled special? */
12828
12829 if (h != NULL)
12830 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12831 {
12832 case R_MIPS_GNU_VTINHERIT:
12833 case R_MIPS_GNU_VTENTRY:
12834 return NULL;
12835 }
12836
12837 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12838 }
12839
12840 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12841
12842 bfd_boolean
12843 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12844 elf_gc_mark_hook_fn gc_mark_hook)
12845 {
12846 bfd *sub;
12847
12848 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12849
12850 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12851 {
12852 asection *o;
12853
12854 if (! is_mips_elf (sub))
12855 continue;
12856
12857 for (o = sub->sections; o != NULL; o = o->next)
12858 if (!o->gc_mark
12859 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12860 {
12861 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12862 return FALSE;
12863 }
12864 }
12865
12866 return TRUE;
12867 }
12868 \f
12869 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12870 hiding the old indirect symbol. Process additional relocation
12871 information. Also called for weakdefs, in which case we just let
12872 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12873
12874 void
12875 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12876 struct elf_link_hash_entry *dir,
12877 struct elf_link_hash_entry *ind)
12878 {
12879 struct mips_elf_link_hash_entry *dirmips, *indmips;
12880
12881 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12882
12883 dirmips = (struct mips_elf_link_hash_entry *) dir;
12884 indmips = (struct mips_elf_link_hash_entry *) ind;
12885 /* Any absolute non-dynamic relocations against an indirect or weak
12886 definition will be against the target symbol. */
12887 if (indmips->has_static_relocs)
12888 dirmips->has_static_relocs = TRUE;
12889
12890 if (ind->root.type != bfd_link_hash_indirect)
12891 return;
12892
12893 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12894 if (indmips->readonly_reloc)
12895 dirmips->readonly_reloc = TRUE;
12896 if (indmips->no_fn_stub)
12897 dirmips->no_fn_stub = TRUE;
12898 if (indmips->fn_stub)
12899 {
12900 dirmips->fn_stub = indmips->fn_stub;
12901 indmips->fn_stub = NULL;
12902 }
12903 if (indmips->need_fn_stub)
12904 {
12905 dirmips->need_fn_stub = TRUE;
12906 indmips->need_fn_stub = FALSE;
12907 }
12908 if (indmips->call_stub)
12909 {
12910 dirmips->call_stub = indmips->call_stub;
12911 indmips->call_stub = NULL;
12912 }
12913 if (indmips->call_fp_stub)
12914 {
12915 dirmips->call_fp_stub = indmips->call_fp_stub;
12916 indmips->call_fp_stub = NULL;
12917 }
12918 if (indmips->global_got_area < dirmips->global_got_area)
12919 dirmips->global_got_area = indmips->global_got_area;
12920 if (indmips->global_got_area < GGA_NONE)
12921 indmips->global_got_area = GGA_NONE;
12922 if (indmips->has_nonpic_branches)
12923 dirmips->has_nonpic_branches = TRUE;
12924 }
12925
12926 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12927 to hide it. It has to remain global (it will also be protected) so as to
12928 be assigned a global GOT entry, which will then remain unchanged at load
12929 time. */
12930
12931 void
12932 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12933 struct elf_link_hash_entry *entry,
12934 bfd_boolean force_local)
12935 {
12936 struct mips_elf_link_hash_table *htab;
12937
12938 htab = mips_elf_hash_table (info);
12939 BFD_ASSERT (htab != NULL);
12940 if (htab->use_absolute_zero
12941 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12942 return;
12943
12944 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12945 }
12946 \f
12947 #define PDR_SIZE 32
12948
12949 bfd_boolean
12950 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12951 struct bfd_link_info *info)
12952 {
12953 asection *o;
12954 bfd_boolean ret = FALSE;
12955 unsigned char *tdata;
12956 size_t i, skip;
12957
12958 o = bfd_get_section_by_name (abfd, ".pdr");
12959 if (! o)
12960 return FALSE;
12961 if (o->size == 0)
12962 return FALSE;
12963 if (o->size % PDR_SIZE != 0)
12964 return FALSE;
12965 if (o->output_section != NULL
12966 && bfd_is_abs_section (o->output_section))
12967 return FALSE;
12968
12969 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12970 if (! tdata)
12971 return FALSE;
12972
12973 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12974 info->keep_memory);
12975 if (!cookie->rels)
12976 {
12977 free (tdata);
12978 return FALSE;
12979 }
12980
12981 cookie->rel = cookie->rels;
12982 cookie->relend = cookie->rels + o->reloc_count;
12983
12984 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12985 {
12986 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12987 {
12988 tdata[i] = 1;
12989 skip ++;
12990 }
12991 }
12992
12993 if (skip != 0)
12994 {
12995 mips_elf_section_data (o)->u.tdata = tdata;
12996 if (o->rawsize == 0)
12997 o->rawsize = o->size;
12998 o->size -= skip * PDR_SIZE;
12999 ret = TRUE;
13000 }
13001 else
13002 free (tdata);
13003
13004 if (! info->keep_memory)
13005 free (cookie->rels);
13006
13007 return ret;
13008 }
13009
13010 bfd_boolean
13011 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13012 {
13013 if (strcmp (sec->name, ".pdr") == 0)
13014 return TRUE;
13015 return FALSE;
13016 }
13017
13018 bfd_boolean
13019 _bfd_mips_elf_write_section (bfd *output_bfd,
13020 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13021 asection *sec, bfd_byte *contents)
13022 {
13023 bfd_byte *to, *from, *end;
13024 int i;
13025
13026 if (strcmp (sec->name, ".pdr") != 0)
13027 return FALSE;
13028
13029 if (mips_elf_section_data (sec)->u.tdata == NULL)
13030 return FALSE;
13031
13032 to = contents;
13033 end = contents + sec->size;
13034 for (from = contents, i = 0;
13035 from < end;
13036 from += PDR_SIZE, i++)
13037 {
13038 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13039 continue;
13040 if (to != from)
13041 memcpy (to, from, PDR_SIZE);
13042 to += PDR_SIZE;
13043 }
13044 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13045 sec->output_offset, sec->size);
13046 return TRUE;
13047 }
13048 \f
13049 /* microMIPS code retains local labels for linker relaxation. Omit them
13050 from output by default for clarity. */
13051
13052 bfd_boolean
13053 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13054 {
13055 return _bfd_elf_is_local_label_name (abfd, sym->name);
13056 }
13057
13058 /* MIPS ELF uses a special find_nearest_line routine in order the
13059 handle the ECOFF debugging information. */
13060
13061 struct mips_elf_find_line
13062 {
13063 struct ecoff_debug_info d;
13064 struct ecoff_find_line i;
13065 };
13066
13067 bfd_boolean
13068 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13069 asection *section, bfd_vma offset,
13070 const char **filename_ptr,
13071 const char **functionname_ptr,
13072 unsigned int *line_ptr,
13073 unsigned int *discriminator_ptr)
13074 {
13075 asection *msec;
13076
13077 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13078 filename_ptr, functionname_ptr,
13079 line_ptr, discriminator_ptr,
13080 dwarf_debug_sections,
13081 &elf_tdata (abfd)->dwarf2_find_line_info)
13082 == 1)
13083 return TRUE;
13084
13085 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13086 filename_ptr, functionname_ptr,
13087 line_ptr))
13088 {
13089 if (!*functionname_ptr)
13090 _bfd_elf_find_function (abfd, symbols, section, offset,
13091 *filename_ptr ? NULL : filename_ptr,
13092 functionname_ptr);
13093 return TRUE;
13094 }
13095
13096 msec = bfd_get_section_by_name (abfd, ".mdebug");
13097 if (msec != NULL)
13098 {
13099 flagword origflags;
13100 struct mips_elf_find_line *fi;
13101 const struct ecoff_debug_swap * const swap =
13102 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13103
13104 /* If we are called during a link, mips_elf_final_link may have
13105 cleared the SEC_HAS_CONTENTS field. We force it back on here
13106 if appropriate (which it normally will be). */
13107 origflags = msec->flags;
13108 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13109 msec->flags |= SEC_HAS_CONTENTS;
13110
13111 fi = mips_elf_tdata (abfd)->find_line_info;
13112 if (fi == NULL)
13113 {
13114 bfd_size_type external_fdr_size;
13115 char *fraw_src;
13116 char *fraw_end;
13117 struct fdr *fdr_ptr;
13118 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13119
13120 fi = bfd_zalloc (abfd, amt);
13121 if (fi == NULL)
13122 {
13123 msec->flags = origflags;
13124 return FALSE;
13125 }
13126
13127 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13128 {
13129 msec->flags = origflags;
13130 return FALSE;
13131 }
13132
13133 /* Swap in the FDR information. */
13134 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13135 fi->d.fdr = bfd_alloc (abfd, amt);
13136 if (fi->d.fdr == NULL)
13137 {
13138 msec->flags = origflags;
13139 return FALSE;
13140 }
13141 external_fdr_size = swap->external_fdr_size;
13142 fdr_ptr = fi->d.fdr;
13143 fraw_src = (char *) fi->d.external_fdr;
13144 fraw_end = (fraw_src
13145 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13146 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13147 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13148
13149 mips_elf_tdata (abfd)->find_line_info = fi;
13150
13151 /* Note that we don't bother to ever free this information.
13152 find_nearest_line is either called all the time, as in
13153 objdump -l, so the information should be saved, or it is
13154 rarely called, as in ld error messages, so the memory
13155 wasted is unimportant. Still, it would probably be a
13156 good idea for free_cached_info to throw it away. */
13157 }
13158
13159 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13160 &fi->i, filename_ptr, functionname_ptr,
13161 line_ptr))
13162 {
13163 msec->flags = origflags;
13164 return TRUE;
13165 }
13166
13167 msec->flags = origflags;
13168 }
13169
13170 /* Fall back on the generic ELF find_nearest_line routine. */
13171
13172 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13173 filename_ptr, functionname_ptr,
13174 line_ptr, discriminator_ptr);
13175 }
13176
13177 bfd_boolean
13178 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13179 const char **filename_ptr,
13180 const char **functionname_ptr,
13181 unsigned int *line_ptr)
13182 {
13183 bfd_boolean found;
13184 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13185 functionname_ptr, line_ptr,
13186 & elf_tdata (abfd)->dwarf2_find_line_info);
13187 return found;
13188 }
13189
13190 \f
13191 /* When are writing out the .options or .MIPS.options section,
13192 remember the bytes we are writing out, so that we can install the
13193 GP value in the section_processing routine. */
13194
13195 bfd_boolean
13196 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13197 const void *location,
13198 file_ptr offset, bfd_size_type count)
13199 {
13200 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13201 {
13202 bfd_byte *c;
13203
13204 if (elf_section_data (section) == NULL)
13205 {
13206 size_t amt = sizeof (struct bfd_elf_section_data);
13207 section->used_by_bfd = bfd_zalloc (abfd, amt);
13208 if (elf_section_data (section) == NULL)
13209 return FALSE;
13210 }
13211 c = mips_elf_section_data (section)->u.tdata;
13212 if (c == NULL)
13213 {
13214 c = bfd_zalloc (abfd, section->size);
13215 if (c == NULL)
13216 return FALSE;
13217 mips_elf_section_data (section)->u.tdata = c;
13218 }
13219
13220 memcpy (c + offset, location, count);
13221 }
13222
13223 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13224 count);
13225 }
13226
13227 /* This is almost identical to bfd_generic_get_... except that some
13228 MIPS relocations need to be handled specially. Sigh. */
13229
13230 bfd_byte *
13231 _bfd_elf_mips_get_relocated_section_contents
13232 (bfd *abfd,
13233 struct bfd_link_info *link_info,
13234 struct bfd_link_order *link_order,
13235 bfd_byte *data,
13236 bfd_boolean relocatable,
13237 asymbol **symbols)
13238 {
13239 /* Get enough memory to hold the stuff */
13240 bfd *input_bfd = link_order->u.indirect.section->owner;
13241 asection *input_section = link_order->u.indirect.section;
13242 bfd_size_type sz;
13243
13244 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13245 arelent **reloc_vector = NULL;
13246 long reloc_count;
13247
13248 if (reloc_size < 0)
13249 goto error_return;
13250
13251 reloc_vector = bfd_malloc (reloc_size);
13252 if (reloc_vector == NULL && reloc_size != 0)
13253 goto error_return;
13254
13255 /* read in the section */
13256 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13257 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13258 goto error_return;
13259
13260 reloc_count = bfd_canonicalize_reloc (input_bfd,
13261 input_section,
13262 reloc_vector,
13263 symbols);
13264 if (reloc_count < 0)
13265 goto error_return;
13266
13267 if (reloc_count > 0)
13268 {
13269 arelent **parent;
13270 /* for mips */
13271 int gp_found;
13272 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13273
13274 {
13275 struct bfd_hash_entry *h;
13276 struct bfd_link_hash_entry *lh;
13277 /* Skip all this stuff if we aren't mixing formats. */
13278 if (abfd && input_bfd
13279 && abfd->xvec == input_bfd->xvec)
13280 lh = 0;
13281 else
13282 {
13283 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13284 lh = (struct bfd_link_hash_entry *) h;
13285 }
13286 lookup:
13287 if (lh)
13288 {
13289 switch (lh->type)
13290 {
13291 case bfd_link_hash_undefined:
13292 case bfd_link_hash_undefweak:
13293 case bfd_link_hash_common:
13294 gp_found = 0;
13295 break;
13296 case bfd_link_hash_defined:
13297 case bfd_link_hash_defweak:
13298 gp_found = 1;
13299 gp = lh->u.def.value;
13300 break;
13301 case bfd_link_hash_indirect:
13302 case bfd_link_hash_warning:
13303 lh = lh->u.i.link;
13304 /* @@FIXME ignoring warning for now */
13305 goto lookup;
13306 case bfd_link_hash_new:
13307 default:
13308 abort ();
13309 }
13310 }
13311 else
13312 gp_found = 0;
13313 }
13314 /* end mips */
13315 for (parent = reloc_vector; *parent != NULL; parent++)
13316 {
13317 char *error_message = NULL;
13318 bfd_reloc_status_type r;
13319
13320 /* Specific to MIPS: Deal with relocation types that require
13321 knowing the gp of the output bfd. */
13322 asymbol *sym = *(*parent)->sym_ptr_ptr;
13323
13324 /* If we've managed to find the gp and have a special
13325 function for the relocation then go ahead, else default
13326 to the generic handling. */
13327 if (gp_found
13328 && (*parent)->howto->special_function
13329 == _bfd_mips_elf32_gprel16_reloc)
13330 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13331 input_section, relocatable,
13332 data, gp);
13333 else
13334 r = bfd_perform_relocation (input_bfd, *parent, data,
13335 input_section,
13336 relocatable ? abfd : NULL,
13337 &error_message);
13338
13339 if (relocatable)
13340 {
13341 asection *os = input_section->output_section;
13342
13343 /* A partial link, so keep the relocs */
13344 os->orelocation[os->reloc_count] = *parent;
13345 os->reloc_count++;
13346 }
13347
13348 if (r != bfd_reloc_ok)
13349 {
13350 switch (r)
13351 {
13352 case bfd_reloc_undefined:
13353 (*link_info->callbacks->undefined_symbol)
13354 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13355 input_bfd, input_section, (*parent)->address, TRUE);
13356 break;
13357 case bfd_reloc_dangerous:
13358 BFD_ASSERT (error_message != NULL);
13359 (*link_info->callbacks->reloc_dangerous)
13360 (link_info, error_message,
13361 input_bfd, input_section, (*parent)->address);
13362 break;
13363 case bfd_reloc_overflow:
13364 (*link_info->callbacks->reloc_overflow)
13365 (link_info, NULL,
13366 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13367 (*parent)->howto->name, (*parent)->addend,
13368 input_bfd, input_section, (*parent)->address);
13369 break;
13370 case bfd_reloc_outofrange:
13371 default:
13372 abort ();
13373 break;
13374 }
13375
13376 }
13377 }
13378 }
13379 free (reloc_vector);
13380 return data;
13381
13382 error_return:
13383 free (reloc_vector);
13384 return NULL;
13385 }
13386 \f
13387 static bfd_boolean
13388 mips_elf_relax_delete_bytes (bfd *abfd,
13389 asection *sec, bfd_vma addr, int count)
13390 {
13391 Elf_Internal_Shdr *symtab_hdr;
13392 unsigned int sec_shndx;
13393 bfd_byte *contents;
13394 Elf_Internal_Rela *irel, *irelend;
13395 Elf_Internal_Sym *isym;
13396 Elf_Internal_Sym *isymend;
13397 struct elf_link_hash_entry **sym_hashes;
13398 struct elf_link_hash_entry **end_hashes;
13399 struct elf_link_hash_entry **start_hashes;
13400 unsigned int symcount;
13401
13402 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13403 contents = elf_section_data (sec)->this_hdr.contents;
13404
13405 irel = elf_section_data (sec)->relocs;
13406 irelend = irel + sec->reloc_count;
13407
13408 /* Actually delete the bytes. */
13409 memmove (contents + addr, contents + addr + count,
13410 (size_t) (sec->size - addr - count));
13411 sec->size -= count;
13412
13413 /* Adjust all the relocs. */
13414 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13415 {
13416 /* Get the new reloc address. */
13417 if (irel->r_offset > addr)
13418 irel->r_offset -= count;
13419 }
13420
13421 BFD_ASSERT (addr % 2 == 0);
13422 BFD_ASSERT (count % 2 == 0);
13423
13424 /* Adjust the local symbols defined in this section. */
13425 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13426 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13427 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13428 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13429 isym->st_value -= count;
13430
13431 /* Now adjust the global symbols defined in this section. */
13432 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13433 - symtab_hdr->sh_info);
13434 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13435 end_hashes = sym_hashes + symcount;
13436
13437 for (; sym_hashes < end_hashes; sym_hashes++)
13438 {
13439 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13440
13441 if ((sym_hash->root.type == bfd_link_hash_defined
13442 || sym_hash->root.type == bfd_link_hash_defweak)
13443 && sym_hash->root.u.def.section == sec)
13444 {
13445 bfd_vma value = sym_hash->root.u.def.value;
13446
13447 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13448 value &= MINUS_TWO;
13449 if (value > addr)
13450 sym_hash->root.u.def.value -= count;
13451 }
13452 }
13453
13454 return TRUE;
13455 }
13456
13457
13458 /* Opcodes needed for microMIPS relaxation as found in
13459 opcodes/micromips-opc.c. */
13460
13461 struct opcode_descriptor {
13462 unsigned long match;
13463 unsigned long mask;
13464 };
13465
13466 /* The $ra register aka $31. */
13467
13468 #define RA 31
13469
13470 /* 32-bit instruction format register fields. */
13471
13472 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13473 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13474
13475 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13476
13477 #define OP16_VALID_REG(r) \
13478 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13479
13480
13481 /* 32-bit and 16-bit branches. */
13482
13483 static const struct opcode_descriptor b_insns_32[] = {
13484 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13485 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13486 { 0, 0 } /* End marker for find_match(). */
13487 };
13488
13489 static const struct opcode_descriptor bc_insn_32 =
13490 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13491
13492 static const struct opcode_descriptor bz_insn_32 =
13493 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13494
13495 static const struct opcode_descriptor bzal_insn_32 =
13496 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13497
13498 static const struct opcode_descriptor beq_insn_32 =
13499 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13500
13501 static const struct opcode_descriptor b_insn_16 =
13502 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13503
13504 static const struct opcode_descriptor bz_insn_16 =
13505 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13506
13507
13508 /* 32-bit and 16-bit branch EQ and NE zero. */
13509
13510 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13511 eq and second the ne. This convention is used when replacing a
13512 32-bit BEQ/BNE with the 16-bit version. */
13513
13514 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13515
13516 static const struct opcode_descriptor bz_rs_insns_32[] = {
13517 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13518 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13519 { 0, 0 } /* End marker for find_match(). */
13520 };
13521
13522 static const struct opcode_descriptor bz_rt_insns_32[] = {
13523 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13524 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13525 { 0, 0 } /* End marker for find_match(). */
13526 };
13527
13528 static const struct opcode_descriptor bzc_insns_32[] = {
13529 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13530 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13531 { 0, 0 } /* End marker for find_match(). */
13532 };
13533
13534 static const struct opcode_descriptor bz_insns_16[] = {
13535 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13536 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13537 { 0, 0 } /* End marker for find_match(). */
13538 };
13539
13540 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13541
13542 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13543 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13544
13545
13546 /* 32-bit instructions with a delay slot. */
13547
13548 static const struct opcode_descriptor jal_insn_32_bd16 =
13549 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13550
13551 static const struct opcode_descriptor jal_insn_32_bd32 =
13552 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13553
13554 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13555 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13556
13557 static const struct opcode_descriptor j_insn_32 =
13558 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13559
13560 static const struct opcode_descriptor jalr_insn_32 =
13561 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13562
13563 /* This table can be compacted, because no opcode replacement is made. */
13564
13565 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13566 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13567
13568 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13569 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13570
13571 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13572 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13573 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13574 { 0, 0 } /* End marker for find_match(). */
13575 };
13576
13577 /* This table can be compacted, because no opcode replacement is made. */
13578
13579 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13580 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13581
13582 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13583 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13584 { 0, 0 } /* End marker for find_match(). */
13585 };
13586
13587
13588 /* 16-bit instructions with a delay slot. */
13589
13590 static const struct opcode_descriptor jalr_insn_16_bd16 =
13591 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13592
13593 static const struct opcode_descriptor jalr_insn_16_bd32 =
13594 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13595
13596 static const struct opcode_descriptor jr_insn_16 =
13597 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13598
13599 #define JR16_REG(opcode) ((opcode) & 0x1f)
13600
13601 /* This table can be compacted, because no opcode replacement is made. */
13602
13603 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13604 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13605
13606 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13607 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13608 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13609 { 0, 0 } /* End marker for find_match(). */
13610 };
13611
13612
13613 /* LUI instruction. */
13614
13615 static const struct opcode_descriptor lui_insn =
13616 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13617
13618
13619 /* ADDIU instruction. */
13620
13621 static const struct opcode_descriptor addiu_insn =
13622 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13623
13624 static const struct opcode_descriptor addiupc_insn =
13625 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13626
13627 #define ADDIUPC_REG_FIELD(r) \
13628 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13629
13630
13631 /* Relaxable instructions in a JAL delay slot: MOVE. */
13632
13633 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13634 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13635 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13636 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13637
13638 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13639 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13640
13641 static const struct opcode_descriptor move_insns_32[] = {
13642 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13643 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13644 { 0, 0 } /* End marker for find_match(). */
13645 };
13646
13647 static const struct opcode_descriptor move_insn_16 =
13648 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13649
13650
13651 /* NOP instructions. */
13652
13653 static const struct opcode_descriptor nop_insn_32 =
13654 { /* "nop", "", */ 0x00000000, 0xffffffff };
13655
13656 static const struct opcode_descriptor nop_insn_16 =
13657 { /* "nop", "", */ 0x0c00, 0xffff };
13658
13659
13660 /* Instruction match support. */
13661
13662 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13663
13664 static int
13665 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13666 {
13667 unsigned long indx;
13668
13669 for (indx = 0; insn[indx].mask != 0; indx++)
13670 if (MATCH (opcode, insn[indx]))
13671 return indx;
13672
13673 return -1;
13674 }
13675
13676
13677 /* Branch and delay slot decoding support. */
13678
13679 /* If PTR points to what *might* be a 16-bit branch or jump, then
13680 return the minimum length of its delay slot, otherwise return 0.
13681 Non-zero results are not definitive as we might be checking against
13682 the second half of another instruction. */
13683
13684 static int
13685 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13686 {
13687 unsigned long opcode;
13688 int bdsize;
13689
13690 opcode = bfd_get_16 (abfd, ptr);
13691 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13692 /* 16-bit branch/jump with a 32-bit delay slot. */
13693 bdsize = 4;
13694 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13695 || find_match (opcode, ds_insns_16_bd16) >= 0)
13696 /* 16-bit branch/jump with a 16-bit delay slot. */
13697 bdsize = 2;
13698 else
13699 /* No delay slot. */
13700 bdsize = 0;
13701
13702 return bdsize;
13703 }
13704
13705 /* If PTR points to what *might* be a 32-bit branch or jump, then
13706 return the minimum length of its delay slot, otherwise return 0.
13707 Non-zero results are not definitive as we might be checking against
13708 the second half of another instruction. */
13709
13710 static int
13711 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13712 {
13713 unsigned long opcode;
13714 int bdsize;
13715
13716 opcode = bfd_get_micromips_32 (abfd, ptr);
13717 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13718 /* 32-bit branch/jump with a 32-bit delay slot. */
13719 bdsize = 4;
13720 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13721 /* 32-bit branch/jump with a 16-bit delay slot. */
13722 bdsize = 2;
13723 else
13724 /* No delay slot. */
13725 bdsize = 0;
13726
13727 return bdsize;
13728 }
13729
13730 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13731 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13732
13733 static bfd_boolean
13734 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13735 {
13736 unsigned long opcode;
13737
13738 opcode = bfd_get_16 (abfd, ptr);
13739 if (MATCH (opcode, b_insn_16)
13740 /* B16 */
13741 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13742 /* JR16 */
13743 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13744 /* BEQZ16, BNEZ16 */
13745 || (MATCH (opcode, jalr_insn_16_bd32)
13746 /* JALR16 */
13747 && reg != JR16_REG (opcode) && reg != RA))
13748 return TRUE;
13749
13750 return FALSE;
13751 }
13752
13753 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13754 then return TRUE, otherwise FALSE. */
13755
13756 static bfd_boolean
13757 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13758 {
13759 unsigned long opcode;
13760
13761 opcode = bfd_get_micromips_32 (abfd, ptr);
13762 if (MATCH (opcode, j_insn_32)
13763 /* J */
13764 || MATCH (opcode, bc_insn_32)
13765 /* BC1F, BC1T, BC2F, BC2T */
13766 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13767 /* JAL, JALX */
13768 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13769 /* BGEZ, BGTZ, BLEZ, BLTZ */
13770 || (MATCH (opcode, bzal_insn_32)
13771 /* BGEZAL, BLTZAL */
13772 && reg != OP32_SREG (opcode) && reg != RA)
13773 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13774 /* JALR, JALR.HB, BEQ, BNE */
13775 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13776 return TRUE;
13777
13778 return FALSE;
13779 }
13780
13781 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13782 IRELEND) at OFFSET indicate that there must be a compact branch there,
13783 then return TRUE, otherwise FALSE. */
13784
13785 static bfd_boolean
13786 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13787 const Elf_Internal_Rela *internal_relocs,
13788 const Elf_Internal_Rela *irelend)
13789 {
13790 const Elf_Internal_Rela *irel;
13791 unsigned long opcode;
13792
13793 opcode = bfd_get_micromips_32 (abfd, ptr);
13794 if (find_match (opcode, bzc_insns_32) < 0)
13795 return FALSE;
13796
13797 for (irel = internal_relocs; irel < irelend; irel++)
13798 if (irel->r_offset == offset
13799 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13800 return TRUE;
13801
13802 return FALSE;
13803 }
13804
13805 /* Bitsize checking. */
13806 #define IS_BITSIZE(val, N) \
13807 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13808 - (1ULL << ((N) - 1))) == (val))
13809
13810 \f
13811 bfd_boolean
13812 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13813 struct bfd_link_info *link_info,
13814 bfd_boolean *again)
13815 {
13816 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13817 Elf_Internal_Shdr *symtab_hdr;
13818 Elf_Internal_Rela *internal_relocs;
13819 Elf_Internal_Rela *irel, *irelend;
13820 bfd_byte *contents = NULL;
13821 Elf_Internal_Sym *isymbuf = NULL;
13822
13823 /* Assume nothing changes. */
13824 *again = FALSE;
13825
13826 /* We don't have to do anything for a relocatable link, if
13827 this section does not have relocs, or if this is not a
13828 code section. */
13829
13830 if (bfd_link_relocatable (link_info)
13831 || (sec->flags & SEC_RELOC) == 0
13832 || sec->reloc_count == 0
13833 || (sec->flags & SEC_CODE) == 0)
13834 return TRUE;
13835
13836 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13837
13838 /* Get a copy of the native relocations. */
13839 internal_relocs = (_bfd_elf_link_read_relocs
13840 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13841 link_info->keep_memory));
13842 if (internal_relocs == NULL)
13843 goto error_return;
13844
13845 /* Walk through them looking for relaxing opportunities. */
13846 irelend = internal_relocs + sec->reloc_count;
13847 for (irel = internal_relocs; irel < irelend; irel++)
13848 {
13849 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13850 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13851 bfd_boolean target_is_micromips_code_p;
13852 unsigned long opcode;
13853 bfd_vma symval;
13854 bfd_vma pcrval;
13855 bfd_byte *ptr;
13856 int fndopc;
13857
13858 /* The number of bytes to delete for relaxation and from where
13859 to delete these bytes starting at irel->r_offset. */
13860 int delcnt = 0;
13861 int deloff = 0;
13862
13863 /* If this isn't something that can be relaxed, then ignore
13864 this reloc. */
13865 if (r_type != R_MICROMIPS_HI16
13866 && r_type != R_MICROMIPS_PC16_S1
13867 && r_type != R_MICROMIPS_26_S1)
13868 continue;
13869
13870 /* Get the section contents if we haven't done so already. */
13871 if (contents == NULL)
13872 {
13873 /* Get cached copy if it exists. */
13874 if (elf_section_data (sec)->this_hdr.contents != NULL)
13875 contents = elf_section_data (sec)->this_hdr.contents;
13876 /* Go get them off disk. */
13877 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13878 goto error_return;
13879 }
13880 ptr = contents + irel->r_offset;
13881
13882 /* Read this BFD's local symbols if we haven't done so already. */
13883 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13884 {
13885 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13886 if (isymbuf == NULL)
13887 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13888 symtab_hdr->sh_info, 0,
13889 NULL, NULL, NULL);
13890 if (isymbuf == NULL)
13891 goto error_return;
13892 }
13893
13894 /* Get the value of the symbol referred to by the reloc. */
13895 if (r_symndx < symtab_hdr->sh_info)
13896 {
13897 /* A local symbol. */
13898 Elf_Internal_Sym *isym;
13899 asection *sym_sec;
13900
13901 isym = isymbuf + r_symndx;
13902 if (isym->st_shndx == SHN_UNDEF)
13903 sym_sec = bfd_und_section_ptr;
13904 else if (isym->st_shndx == SHN_ABS)
13905 sym_sec = bfd_abs_section_ptr;
13906 else if (isym->st_shndx == SHN_COMMON)
13907 sym_sec = bfd_com_section_ptr;
13908 else
13909 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13910 symval = (isym->st_value
13911 + sym_sec->output_section->vma
13912 + sym_sec->output_offset);
13913 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13914 }
13915 else
13916 {
13917 unsigned long indx;
13918 struct elf_link_hash_entry *h;
13919
13920 /* An external symbol. */
13921 indx = r_symndx - symtab_hdr->sh_info;
13922 h = elf_sym_hashes (abfd)[indx];
13923 BFD_ASSERT (h != NULL);
13924
13925 if (h->root.type != bfd_link_hash_defined
13926 && h->root.type != bfd_link_hash_defweak)
13927 /* This appears to be a reference to an undefined
13928 symbol. Just ignore it -- it will be caught by the
13929 regular reloc processing. */
13930 continue;
13931
13932 symval = (h->root.u.def.value
13933 + h->root.u.def.section->output_section->vma
13934 + h->root.u.def.section->output_offset);
13935 target_is_micromips_code_p = (!h->needs_plt
13936 && ELF_ST_IS_MICROMIPS (h->other));
13937 }
13938
13939
13940 /* For simplicity of coding, we are going to modify the
13941 section contents, the section relocs, and the BFD symbol
13942 table. We must tell the rest of the code not to free up this
13943 information. It would be possible to instead create a table
13944 of changes which have to be made, as is done in coff-mips.c;
13945 that would be more work, but would require less memory when
13946 the linker is run. */
13947
13948 /* Only 32-bit instructions relaxed. */
13949 if (irel->r_offset + 4 > sec->size)
13950 continue;
13951
13952 opcode = bfd_get_micromips_32 (abfd, ptr);
13953
13954 /* This is the pc-relative distance from the instruction the
13955 relocation is applied to, to the symbol referred. */
13956 pcrval = (symval
13957 - (sec->output_section->vma + sec->output_offset)
13958 - irel->r_offset);
13959
13960 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13961 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13962 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13963
13964 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13965
13966 where pcrval has first to be adjusted to apply against the LO16
13967 location (we make the adjustment later on, when we have figured
13968 out the offset). */
13969 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13970 {
13971 bfd_boolean bzc = FALSE;
13972 unsigned long nextopc;
13973 unsigned long reg;
13974 bfd_vma offset;
13975
13976 /* Give up if the previous reloc was a HI16 against this symbol
13977 too. */
13978 if (irel > internal_relocs
13979 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13980 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13981 continue;
13982
13983 /* Or if the next reloc is not a LO16 against this symbol. */
13984 if (irel + 1 >= irelend
13985 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13986 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13987 continue;
13988
13989 /* Or if the second next reloc is a LO16 against this symbol too. */
13990 if (irel + 2 >= irelend
13991 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13992 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13993 continue;
13994
13995 /* See if the LUI instruction *might* be in a branch delay slot.
13996 We check whether what looks like a 16-bit branch or jump is
13997 actually an immediate argument to a compact branch, and let
13998 it through if so. */
13999 if (irel->r_offset >= 2
14000 && check_br16_dslot (abfd, ptr - 2)
14001 && !(irel->r_offset >= 4
14002 && (bzc = check_relocated_bzc (abfd,
14003 ptr - 4, irel->r_offset - 4,
14004 internal_relocs, irelend))))
14005 continue;
14006 if (irel->r_offset >= 4
14007 && !bzc
14008 && check_br32_dslot (abfd, ptr - 4))
14009 continue;
14010
14011 reg = OP32_SREG (opcode);
14012
14013 /* We only relax adjacent instructions or ones separated with
14014 a branch or jump that has a delay slot. The branch or jump
14015 must not fiddle with the register used to hold the address.
14016 Subtract 4 for the LUI itself. */
14017 offset = irel[1].r_offset - irel[0].r_offset;
14018 switch (offset - 4)
14019 {
14020 case 0:
14021 break;
14022 case 2:
14023 if (check_br16 (abfd, ptr + 4, reg))
14024 break;
14025 continue;
14026 case 4:
14027 if (check_br32 (abfd, ptr + 4, reg))
14028 break;
14029 continue;
14030 default:
14031 continue;
14032 }
14033
14034 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14035
14036 /* Give up unless the same register is used with both
14037 relocations. */
14038 if (OP32_SREG (nextopc) != reg)
14039 continue;
14040
14041 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14042 and rounding up to take masking of the two LSBs into account. */
14043 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14044
14045 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14046 if (IS_BITSIZE (symval, 16))
14047 {
14048 /* Fix the relocation's type. */
14049 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14050
14051 /* Instructions using R_MICROMIPS_LO16 have the base or
14052 source register in bits 20:16. This register becomes $0
14053 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14054 nextopc &= ~0x001f0000;
14055 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14056 contents + irel[1].r_offset);
14057 }
14058
14059 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14060 We add 4 to take LUI deletion into account while checking
14061 the PC-relative distance. */
14062 else if (symval % 4 == 0
14063 && IS_BITSIZE (pcrval + 4, 25)
14064 && MATCH (nextopc, addiu_insn)
14065 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14066 && OP16_VALID_REG (OP32_TREG (nextopc)))
14067 {
14068 /* Fix the relocation's type. */
14069 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14070
14071 /* Replace ADDIU with the ADDIUPC version. */
14072 nextopc = (addiupc_insn.match
14073 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14074
14075 bfd_put_micromips_32 (abfd, nextopc,
14076 contents + irel[1].r_offset);
14077 }
14078
14079 /* Can't do anything, give up, sigh... */
14080 else
14081 continue;
14082
14083 /* Fix the relocation's type. */
14084 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14085
14086 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14087 delcnt = 4;
14088 deloff = 0;
14089 }
14090
14091 /* Compact branch relaxation -- due to the multitude of macros
14092 employed by the compiler/assembler, compact branches are not
14093 always generated. Obviously, this can/will be fixed elsewhere,
14094 but there is no drawback in double checking it here. */
14095 else if (r_type == R_MICROMIPS_PC16_S1
14096 && irel->r_offset + 5 < sec->size
14097 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14098 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14099 && ((!insn32
14100 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14101 nop_insn_16) ? 2 : 0))
14102 || (irel->r_offset + 7 < sec->size
14103 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14104 ptr + 4),
14105 nop_insn_32) ? 4 : 0))))
14106 {
14107 unsigned long reg;
14108
14109 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14110
14111 /* Replace BEQZ/BNEZ with the compact version. */
14112 opcode = (bzc_insns_32[fndopc].match
14113 | BZC32_REG_FIELD (reg)
14114 | (opcode & 0xffff)); /* Addend value. */
14115
14116 bfd_put_micromips_32 (abfd, opcode, ptr);
14117
14118 /* Delete the delay slot NOP: two or four bytes from
14119 irel->offset + 4; delcnt has already been set above. */
14120 deloff = 4;
14121 }
14122
14123 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14124 to check the distance from the next instruction, so subtract 2. */
14125 else if (!insn32
14126 && r_type == R_MICROMIPS_PC16_S1
14127 && IS_BITSIZE (pcrval - 2, 11)
14128 && find_match (opcode, b_insns_32) >= 0)
14129 {
14130 /* Fix the relocation's type. */
14131 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14132
14133 /* Replace the 32-bit opcode with a 16-bit opcode. */
14134 bfd_put_16 (abfd,
14135 (b_insn_16.match
14136 | (opcode & 0x3ff)), /* Addend value. */
14137 ptr);
14138
14139 /* Delete 2 bytes from irel->r_offset + 2. */
14140 delcnt = 2;
14141 deloff = 2;
14142 }
14143
14144 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14145 to check the distance from the next instruction, so subtract 2. */
14146 else if (!insn32
14147 && r_type == R_MICROMIPS_PC16_S1
14148 && IS_BITSIZE (pcrval - 2, 8)
14149 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14150 && OP16_VALID_REG (OP32_SREG (opcode)))
14151 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14152 && OP16_VALID_REG (OP32_TREG (opcode)))))
14153 {
14154 unsigned long reg;
14155
14156 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14157
14158 /* Fix the relocation's type. */
14159 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14160
14161 /* Replace the 32-bit opcode with a 16-bit opcode. */
14162 bfd_put_16 (abfd,
14163 (bz_insns_16[fndopc].match
14164 | BZ16_REG_FIELD (reg)
14165 | (opcode & 0x7f)), /* Addend value. */
14166 ptr);
14167
14168 /* Delete 2 bytes from irel->r_offset + 2. */
14169 delcnt = 2;
14170 deloff = 2;
14171 }
14172
14173 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14174 else if (!insn32
14175 && r_type == R_MICROMIPS_26_S1
14176 && target_is_micromips_code_p
14177 && irel->r_offset + 7 < sec->size
14178 && MATCH (opcode, jal_insn_32_bd32))
14179 {
14180 unsigned long n32opc;
14181 bfd_boolean relaxed = FALSE;
14182
14183 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14184
14185 if (MATCH (n32opc, nop_insn_32))
14186 {
14187 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14188 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14189
14190 relaxed = TRUE;
14191 }
14192 else if (find_match (n32opc, move_insns_32) >= 0)
14193 {
14194 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14195 bfd_put_16 (abfd,
14196 (move_insn_16.match
14197 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14198 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14199 ptr + 4);
14200
14201 relaxed = TRUE;
14202 }
14203 /* Other 32-bit instructions relaxable to 16-bit
14204 instructions will be handled here later. */
14205
14206 if (relaxed)
14207 {
14208 /* JAL with 32-bit delay slot that is changed to a JALS
14209 with 16-bit delay slot. */
14210 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14211
14212 /* Delete 2 bytes from irel->r_offset + 6. */
14213 delcnt = 2;
14214 deloff = 6;
14215 }
14216 }
14217
14218 if (delcnt != 0)
14219 {
14220 /* Note that we've changed the relocs, section contents, etc. */
14221 elf_section_data (sec)->relocs = internal_relocs;
14222 elf_section_data (sec)->this_hdr.contents = contents;
14223 symtab_hdr->contents = (unsigned char *) isymbuf;
14224
14225 /* Delete bytes depending on the delcnt and deloff. */
14226 if (!mips_elf_relax_delete_bytes (abfd, sec,
14227 irel->r_offset + deloff, delcnt))
14228 goto error_return;
14229
14230 /* That will change things, so we should relax again.
14231 Note that this is not required, and it may be slow. */
14232 *again = TRUE;
14233 }
14234 }
14235
14236 if (isymbuf != NULL
14237 && symtab_hdr->contents != (unsigned char *) isymbuf)
14238 {
14239 if (! link_info->keep_memory)
14240 free (isymbuf);
14241 else
14242 {
14243 /* Cache the symbols for elf_link_input_bfd. */
14244 symtab_hdr->contents = (unsigned char *) isymbuf;
14245 }
14246 }
14247
14248 if (contents != NULL
14249 && elf_section_data (sec)->this_hdr.contents != contents)
14250 {
14251 if (! link_info->keep_memory)
14252 free (contents);
14253 else
14254 {
14255 /* Cache the section contents for elf_link_input_bfd. */
14256 elf_section_data (sec)->this_hdr.contents = contents;
14257 }
14258 }
14259
14260 if (elf_section_data (sec)->relocs != internal_relocs)
14261 free (internal_relocs);
14262
14263 return TRUE;
14264
14265 error_return:
14266 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14267 free (isymbuf);
14268 if (elf_section_data (sec)->this_hdr.contents != contents)
14269 free (contents);
14270 if (elf_section_data (sec)->relocs != internal_relocs)
14271 free (internal_relocs);
14272
14273 return FALSE;
14274 }
14275 \f
14276 /* Create a MIPS ELF linker hash table. */
14277
14278 struct bfd_link_hash_table *
14279 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14280 {
14281 struct mips_elf_link_hash_table *ret;
14282 size_t amt = sizeof (struct mips_elf_link_hash_table);
14283
14284 ret = bfd_zmalloc (amt);
14285 if (ret == NULL)
14286 return NULL;
14287
14288 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14289 mips_elf_link_hash_newfunc,
14290 sizeof (struct mips_elf_link_hash_entry),
14291 MIPS_ELF_DATA))
14292 {
14293 free (ret);
14294 return NULL;
14295 }
14296 ret->root.init_plt_refcount.plist = NULL;
14297 ret->root.init_plt_offset.plist = NULL;
14298
14299 return &ret->root.root;
14300 }
14301
14302 /* Likewise, but indicate that the target is VxWorks. */
14303
14304 struct bfd_link_hash_table *
14305 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14306 {
14307 struct bfd_link_hash_table *ret;
14308
14309 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14310 if (ret)
14311 {
14312 struct mips_elf_link_hash_table *htab;
14313
14314 htab = (struct mips_elf_link_hash_table *) ret;
14315 htab->use_plts_and_copy_relocs = TRUE;
14316 }
14317 return ret;
14318 }
14319
14320 /* A function that the linker calls if we are allowed to use PLTs
14321 and copy relocs. */
14322
14323 void
14324 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14325 {
14326 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14327 }
14328
14329 /* A function that the linker calls to select between all or only
14330 32-bit microMIPS instructions, and between making or ignoring
14331 branch relocation checks for invalid transitions between ISA modes.
14332 Also record whether we have been configured for a GNU target. */
14333
14334 void
14335 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14336 bfd_boolean ignore_branch_isa,
14337 bfd_boolean gnu_target)
14338 {
14339 mips_elf_hash_table (info)->insn32 = insn32;
14340 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14341 mips_elf_hash_table (info)->gnu_target = gnu_target;
14342 }
14343
14344 /* A function that the linker calls to enable use of compact branches in
14345 linker generated code for MIPSR6. */
14346
14347 void
14348 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14349 {
14350 mips_elf_hash_table (info)->compact_branches = on;
14351 }
14352
14353 \f
14354 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14355
14356 struct mips_mach_extension
14357 {
14358 unsigned long extension, base;
14359 };
14360
14361
14362 /* An array describing how BFD machines relate to one another. The entries
14363 are ordered topologically with MIPS I extensions listed last. */
14364
14365 static const struct mips_mach_extension mips_mach_extensions[] =
14366 {
14367 /* MIPS64r2 extensions. */
14368 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14369 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14370 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14371 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14372 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14373 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14374 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14375
14376 /* MIPS64 extensions. */
14377 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14378 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14379 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14380
14381 /* MIPS V extensions. */
14382 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14383
14384 /* R10000 extensions. */
14385 { bfd_mach_mips12000, bfd_mach_mips10000 },
14386 { bfd_mach_mips14000, bfd_mach_mips10000 },
14387 { bfd_mach_mips16000, bfd_mach_mips10000 },
14388
14389 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14390 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14391 better to allow vr5400 and vr5500 code to be merged anyway, since
14392 many libraries will just use the core ISA. Perhaps we could add
14393 some sort of ASE flag if this ever proves a problem. */
14394 { bfd_mach_mips5500, bfd_mach_mips5400 },
14395 { bfd_mach_mips5400, bfd_mach_mips5000 },
14396
14397 /* MIPS IV extensions. */
14398 { bfd_mach_mips5, bfd_mach_mips8000 },
14399 { bfd_mach_mips10000, bfd_mach_mips8000 },
14400 { bfd_mach_mips5000, bfd_mach_mips8000 },
14401 { bfd_mach_mips7000, bfd_mach_mips8000 },
14402 { bfd_mach_mips9000, bfd_mach_mips8000 },
14403
14404 /* VR4100 extensions. */
14405 { bfd_mach_mips4120, bfd_mach_mips4100 },
14406 { bfd_mach_mips4111, bfd_mach_mips4100 },
14407
14408 /* MIPS III extensions. */
14409 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14410 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14411 { bfd_mach_mips8000, bfd_mach_mips4000 },
14412 { bfd_mach_mips4650, bfd_mach_mips4000 },
14413 { bfd_mach_mips4600, bfd_mach_mips4000 },
14414 { bfd_mach_mips4400, bfd_mach_mips4000 },
14415 { bfd_mach_mips4300, bfd_mach_mips4000 },
14416 { bfd_mach_mips4100, bfd_mach_mips4000 },
14417 { bfd_mach_mips5900, bfd_mach_mips4000 },
14418
14419 /* MIPS32r3 extensions. */
14420 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14421
14422 /* MIPS32r2 extensions. */
14423 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14424
14425 /* MIPS32 extensions. */
14426 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14427
14428 /* MIPS II extensions. */
14429 { bfd_mach_mips4000, bfd_mach_mips6000 },
14430 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14431 { bfd_mach_mips4010, bfd_mach_mips6000 },
14432
14433 /* MIPS I extensions. */
14434 { bfd_mach_mips6000, bfd_mach_mips3000 },
14435 { bfd_mach_mips3900, bfd_mach_mips3000 }
14436 };
14437
14438 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14439
14440 static bfd_boolean
14441 mips_mach_extends_p (unsigned long base, unsigned long extension)
14442 {
14443 size_t i;
14444
14445 if (extension == base)
14446 return TRUE;
14447
14448 if (base == bfd_mach_mipsisa32
14449 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14450 return TRUE;
14451
14452 if (base == bfd_mach_mipsisa32r2
14453 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14454 return TRUE;
14455
14456 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14457 if (extension == mips_mach_extensions[i].extension)
14458 {
14459 extension = mips_mach_extensions[i].base;
14460 if (extension == base)
14461 return TRUE;
14462 }
14463
14464 return FALSE;
14465 }
14466
14467 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14468
14469 static unsigned long
14470 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14471 {
14472 switch (isa_ext)
14473 {
14474 case AFL_EXT_3900: return bfd_mach_mips3900;
14475 case AFL_EXT_4010: return bfd_mach_mips4010;
14476 case AFL_EXT_4100: return bfd_mach_mips4100;
14477 case AFL_EXT_4111: return bfd_mach_mips4111;
14478 case AFL_EXT_4120: return bfd_mach_mips4120;
14479 case AFL_EXT_4650: return bfd_mach_mips4650;
14480 case AFL_EXT_5400: return bfd_mach_mips5400;
14481 case AFL_EXT_5500: return bfd_mach_mips5500;
14482 case AFL_EXT_5900: return bfd_mach_mips5900;
14483 case AFL_EXT_10000: return bfd_mach_mips10000;
14484 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14485 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14486 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14487 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14488 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14489 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14490 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14491 default: return bfd_mach_mips3000;
14492 }
14493 }
14494
14495 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14496
14497 unsigned int
14498 bfd_mips_isa_ext (bfd *abfd)
14499 {
14500 switch (bfd_get_mach (abfd))
14501 {
14502 case bfd_mach_mips3900: return AFL_EXT_3900;
14503 case bfd_mach_mips4010: return AFL_EXT_4010;
14504 case bfd_mach_mips4100: return AFL_EXT_4100;
14505 case bfd_mach_mips4111: return AFL_EXT_4111;
14506 case bfd_mach_mips4120: return AFL_EXT_4120;
14507 case bfd_mach_mips4650: return AFL_EXT_4650;
14508 case bfd_mach_mips5400: return AFL_EXT_5400;
14509 case bfd_mach_mips5500: return AFL_EXT_5500;
14510 case bfd_mach_mips5900: return AFL_EXT_5900;
14511 case bfd_mach_mips10000: return AFL_EXT_10000;
14512 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14513 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14514 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14515 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14516 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14517 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14518 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14519 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14520 case bfd_mach_mips_interaptiv_mr2:
14521 return AFL_EXT_INTERAPTIV_MR2;
14522 default: return 0;
14523 }
14524 }
14525
14526 /* Encode ISA level and revision as a single value. */
14527 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14528
14529 /* Decode a single value into level and revision. */
14530 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14531 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14532
14533 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14534
14535 static void
14536 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14537 {
14538 int new_isa = 0;
14539 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14540 {
14541 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14542 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14543 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14544 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14545 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14546 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14547 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14548 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14549 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14550 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14551 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14552 default:
14553 _bfd_error_handler
14554 /* xgettext:c-format */
14555 (_("%pB: unknown architecture %s"),
14556 abfd, bfd_printable_name (abfd));
14557 }
14558
14559 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14560 {
14561 abiflags->isa_level = ISA_LEVEL (new_isa);
14562 abiflags->isa_rev = ISA_REV (new_isa);
14563 }
14564
14565 /* Update the isa_ext if ABFD describes a further extension. */
14566 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14567 bfd_get_mach (abfd)))
14568 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14569 }
14570
14571 /* Return true if the given ELF header flags describe a 32-bit binary. */
14572
14573 static bfd_boolean
14574 mips_32bit_flags_p (flagword flags)
14575 {
14576 return ((flags & EF_MIPS_32BITMODE) != 0
14577 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14578 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14579 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14580 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14581 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14582 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14583 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14584 }
14585
14586 /* Infer the content of the ABI flags based on the elf header. */
14587
14588 static void
14589 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14590 {
14591 obj_attribute *in_attr;
14592
14593 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14594 update_mips_abiflags_isa (abfd, abiflags);
14595
14596 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14597 abiflags->gpr_size = AFL_REG_32;
14598 else
14599 abiflags->gpr_size = AFL_REG_64;
14600
14601 abiflags->cpr1_size = AFL_REG_NONE;
14602
14603 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14604 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14605
14606 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14607 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14608 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14609 && abiflags->gpr_size == AFL_REG_32))
14610 abiflags->cpr1_size = AFL_REG_32;
14611 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14612 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14613 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14614 abiflags->cpr1_size = AFL_REG_64;
14615
14616 abiflags->cpr2_size = AFL_REG_NONE;
14617
14618 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14619 abiflags->ases |= AFL_ASE_MDMX;
14620 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14621 abiflags->ases |= AFL_ASE_MIPS16;
14622 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14623 abiflags->ases |= AFL_ASE_MICROMIPS;
14624
14625 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14626 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14627 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14628 && abiflags->isa_level >= 32
14629 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14630 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14631 }
14632
14633 /* We need to use a special link routine to handle the .reginfo and
14634 the .mdebug sections. We need to merge all instances of these
14635 sections together, not write them all out sequentially. */
14636
14637 bfd_boolean
14638 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14639 {
14640 asection *o;
14641 struct bfd_link_order *p;
14642 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14643 asection *rtproc_sec, *abiflags_sec;
14644 Elf32_RegInfo reginfo;
14645 struct ecoff_debug_info debug;
14646 struct mips_htab_traverse_info hti;
14647 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14648 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14649 HDRR *symhdr = &debug.symbolic_header;
14650 void *mdebug_handle = NULL;
14651 asection *s;
14652 EXTR esym;
14653 unsigned int i;
14654 bfd_size_type amt;
14655 struct mips_elf_link_hash_table *htab;
14656
14657 static const char * const secname[] =
14658 {
14659 ".text", ".init", ".fini", ".data",
14660 ".rodata", ".sdata", ".sbss", ".bss"
14661 };
14662 static const int sc[] =
14663 {
14664 scText, scInit, scFini, scData,
14665 scRData, scSData, scSBss, scBss
14666 };
14667
14668 htab = mips_elf_hash_table (info);
14669 BFD_ASSERT (htab != NULL);
14670
14671 /* Sort the dynamic symbols so that those with GOT entries come after
14672 those without. */
14673 if (!mips_elf_sort_hash_table (abfd, info))
14674 return FALSE;
14675
14676 /* Create any scheduled LA25 stubs. */
14677 hti.info = info;
14678 hti.output_bfd = abfd;
14679 hti.error = FALSE;
14680 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14681 if (hti.error)
14682 return FALSE;
14683
14684 /* Get a value for the GP register. */
14685 if (elf_gp (abfd) == 0)
14686 {
14687 struct bfd_link_hash_entry *h;
14688
14689 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14690 if (h != NULL && h->type == bfd_link_hash_defined)
14691 elf_gp (abfd) = (h->u.def.value
14692 + h->u.def.section->output_section->vma
14693 + h->u.def.section->output_offset);
14694 else if (htab->root.target_os == is_vxworks
14695 && (h = bfd_link_hash_lookup (info->hash,
14696 "_GLOBAL_OFFSET_TABLE_",
14697 FALSE, FALSE, TRUE))
14698 && h->type == bfd_link_hash_defined)
14699 elf_gp (abfd) = (h->u.def.section->output_section->vma
14700 + h->u.def.section->output_offset
14701 + h->u.def.value);
14702 else if (bfd_link_relocatable (info))
14703 {
14704 bfd_vma lo = MINUS_ONE;
14705
14706 /* Find the GP-relative section with the lowest offset. */
14707 for (o = abfd->sections; o != NULL; o = o->next)
14708 if (o->vma < lo
14709 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14710 lo = o->vma;
14711
14712 /* And calculate GP relative to that. */
14713 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14714 }
14715 else
14716 {
14717 /* If the relocate_section function needs to do a reloc
14718 involving the GP value, it should make a reloc_dangerous
14719 callback to warn that GP is not defined. */
14720 }
14721 }
14722
14723 /* Go through the sections and collect the .reginfo and .mdebug
14724 information. */
14725 abiflags_sec = NULL;
14726 reginfo_sec = NULL;
14727 mdebug_sec = NULL;
14728 gptab_data_sec = NULL;
14729 gptab_bss_sec = NULL;
14730 for (o = abfd->sections; o != NULL; o = o->next)
14731 {
14732 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14733 {
14734 /* We have found the .MIPS.abiflags section in the output file.
14735 Look through all the link_orders comprising it and remove them.
14736 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14737 for (p = o->map_head.link_order; p != NULL; p = p->next)
14738 {
14739 asection *input_section;
14740
14741 if (p->type != bfd_indirect_link_order)
14742 {
14743 if (p->type == bfd_data_link_order)
14744 continue;
14745 abort ();
14746 }
14747
14748 input_section = p->u.indirect.section;
14749
14750 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14751 elf_link_input_bfd ignores this section. */
14752 input_section->flags &= ~SEC_HAS_CONTENTS;
14753 }
14754
14755 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14756 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14757
14758 /* Skip this section later on (I don't think this currently
14759 matters, but someday it might). */
14760 o->map_head.link_order = NULL;
14761
14762 abiflags_sec = o;
14763 }
14764
14765 if (strcmp (o->name, ".reginfo") == 0)
14766 {
14767 memset (&reginfo, 0, sizeof reginfo);
14768
14769 /* We have found the .reginfo section in the output file.
14770 Look through all the link_orders comprising it and merge
14771 the information together. */
14772 for (p = o->map_head.link_order; p != NULL; p = p->next)
14773 {
14774 asection *input_section;
14775 bfd *input_bfd;
14776 Elf32_External_RegInfo ext;
14777 Elf32_RegInfo sub;
14778 bfd_size_type sz;
14779
14780 if (p->type != bfd_indirect_link_order)
14781 {
14782 if (p->type == bfd_data_link_order)
14783 continue;
14784 abort ();
14785 }
14786
14787 input_section = p->u.indirect.section;
14788 input_bfd = input_section->owner;
14789
14790 sz = (input_section->size < sizeof (ext)
14791 ? input_section->size : sizeof (ext));
14792 memset (&ext, 0, sizeof (ext));
14793 if (! bfd_get_section_contents (input_bfd, input_section,
14794 &ext, 0, sz))
14795 return FALSE;
14796
14797 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14798
14799 reginfo.ri_gprmask |= sub.ri_gprmask;
14800 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14801 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14802 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14803 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14804
14805 /* ri_gp_value is set by the function
14806 `_bfd_mips_elf_section_processing' when the section is
14807 finally written out. */
14808
14809 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14810 elf_link_input_bfd ignores this section. */
14811 input_section->flags &= ~SEC_HAS_CONTENTS;
14812 }
14813
14814 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14815 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14816
14817 /* Skip this section later on (I don't think this currently
14818 matters, but someday it might). */
14819 o->map_head.link_order = NULL;
14820
14821 reginfo_sec = o;
14822 }
14823
14824 if (strcmp (o->name, ".mdebug") == 0)
14825 {
14826 struct extsym_info einfo;
14827 bfd_vma last;
14828
14829 /* We have found the .mdebug section in the output file.
14830 Look through all the link_orders comprising it and merge
14831 the information together. */
14832 symhdr->magic = swap->sym_magic;
14833 /* FIXME: What should the version stamp be? */
14834 symhdr->vstamp = 0;
14835 symhdr->ilineMax = 0;
14836 symhdr->cbLine = 0;
14837 symhdr->idnMax = 0;
14838 symhdr->ipdMax = 0;
14839 symhdr->isymMax = 0;
14840 symhdr->ioptMax = 0;
14841 symhdr->iauxMax = 0;
14842 symhdr->issMax = 0;
14843 symhdr->issExtMax = 0;
14844 symhdr->ifdMax = 0;
14845 symhdr->crfd = 0;
14846 symhdr->iextMax = 0;
14847
14848 /* We accumulate the debugging information itself in the
14849 debug_info structure. */
14850 debug.line = NULL;
14851 debug.external_dnr = NULL;
14852 debug.external_pdr = NULL;
14853 debug.external_sym = NULL;
14854 debug.external_opt = NULL;
14855 debug.external_aux = NULL;
14856 debug.ss = NULL;
14857 debug.ssext = debug.ssext_end = NULL;
14858 debug.external_fdr = NULL;
14859 debug.external_rfd = NULL;
14860 debug.external_ext = debug.external_ext_end = NULL;
14861
14862 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14863 if (mdebug_handle == NULL)
14864 return FALSE;
14865
14866 esym.jmptbl = 0;
14867 esym.cobol_main = 0;
14868 esym.weakext = 0;
14869 esym.reserved = 0;
14870 esym.ifd = ifdNil;
14871 esym.asym.iss = issNil;
14872 esym.asym.st = stLocal;
14873 esym.asym.reserved = 0;
14874 esym.asym.index = indexNil;
14875 last = 0;
14876 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14877 {
14878 esym.asym.sc = sc[i];
14879 s = bfd_get_section_by_name (abfd, secname[i]);
14880 if (s != NULL)
14881 {
14882 esym.asym.value = s->vma;
14883 last = s->vma + s->size;
14884 }
14885 else
14886 esym.asym.value = last;
14887 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14888 secname[i], &esym))
14889 return FALSE;
14890 }
14891
14892 for (p = o->map_head.link_order; p != NULL; p = p->next)
14893 {
14894 asection *input_section;
14895 bfd *input_bfd;
14896 const struct ecoff_debug_swap *input_swap;
14897 struct ecoff_debug_info input_debug;
14898 char *eraw_src;
14899 char *eraw_end;
14900
14901 if (p->type != bfd_indirect_link_order)
14902 {
14903 if (p->type == bfd_data_link_order)
14904 continue;
14905 abort ();
14906 }
14907
14908 input_section = p->u.indirect.section;
14909 input_bfd = input_section->owner;
14910
14911 if (!is_mips_elf (input_bfd))
14912 {
14913 /* I don't know what a non MIPS ELF bfd would be
14914 doing with a .mdebug section, but I don't really
14915 want to deal with it. */
14916 continue;
14917 }
14918
14919 input_swap = (get_elf_backend_data (input_bfd)
14920 ->elf_backend_ecoff_debug_swap);
14921
14922 BFD_ASSERT (p->size == input_section->size);
14923
14924 /* The ECOFF linking code expects that we have already
14925 read in the debugging information and set up an
14926 ecoff_debug_info structure, so we do that now. */
14927 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14928 &input_debug))
14929 return FALSE;
14930
14931 if (! (bfd_ecoff_debug_accumulate
14932 (mdebug_handle, abfd, &debug, swap, input_bfd,
14933 &input_debug, input_swap, info)))
14934 return FALSE;
14935
14936 /* Loop through the external symbols. For each one with
14937 interesting information, try to find the symbol in
14938 the linker global hash table and save the information
14939 for the output external symbols. */
14940 eraw_src = input_debug.external_ext;
14941 eraw_end = (eraw_src
14942 + (input_debug.symbolic_header.iextMax
14943 * input_swap->external_ext_size));
14944 for (;
14945 eraw_src < eraw_end;
14946 eraw_src += input_swap->external_ext_size)
14947 {
14948 EXTR ext;
14949 const char *name;
14950 struct mips_elf_link_hash_entry *h;
14951
14952 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14953 if (ext.asym.sc == scNil
14954 || ext.asym.sc == scUndefined
14955 || ext.asym.sc == scSUndefined)
14956 continue;
14957
14958 name = input_debug.ssext + ext.asym.iss;
14959 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14960 name, FALSE, FALSE, TRUE);
14961 if (h == NULL || h->esym.ifd != -2)
14962 continue;
14963
14964 if (ext.ifd != -1)
14965 {
14966 BFD_ASSERT (ext.ifd
14967 < input_debug.symbolic_header.ifdMax);
14968 ext.ifd = input_debug.ifdmap[ext.ifd];
14969 }
14970
14971 h->esym = ext;
14972 }
14973
14974 /* Free up the information we just read. */
14975 free (input_debug.line);
14976 free (input_debug.external_dnr);
14977 free (input_debug.external_pdr);
14978 free (input_debug.external_sym);
14979 free (input_debug.external_opt);
14980 free (input_debug.external_aux);
14981 free (input_debug.ss);
14982 free (input_debug.ssext);
14983 free (input_debug.external_fdr);
14984 free (input_debug.external_rfd);
14985 free (input_debug.external_ext);
14986
14987 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14988 elf_link_input_bfd ignores this section. */
14989 input_section->flags &= ~SEC_HAS_CONTENTS;
14990 }
14991
14992 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14993 {
14994 /* Create .rtproc section. */
14995 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14996 if (rtproc_sec == NULL)
14997 {
14998 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14999 | SEC_LINKER_CREATED | SEC_READONLY);
15000
15001 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15002 ".rtproc",
15003 flags);
15004 if (rtproc_sec == NULL
15005 || !bfd_set_section_alignment (rtproc_sec, 4))
15006 return FALSE;
15007 }
15008
15009 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15010 info, rtproc_sec,
15011 &debug))
15012 return FALSE;
15013 }
15014
15015 /* Build the external symbol information. */
15016 einfo.abfd = abfd;
15017 einfo.info = info;
15018 einfo.debug = &debug;
15019 einfo.swap = swap;
15020 einfo.failed = FALSE;
15021 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15022 mips_elf_output_extsym, &einfo);
15023 if (einfo.failed)
15024 return FALSE;
15025
15026 /* Set the size of the .mdebug section. */
15027 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15028
15029 /* Skip this section later on (I don't think this currently
15030 matters, but someday it might). */
15031 o->map_head.link_order = NULL;
15032
15033 mdebug_sec = o;
15034 }
15035
15036 if (CONST_STRNEQ (o->name, ".gptab."))
15037 {
15038 const char *subname;
15039 unsigned int c;
15040 Elf32_gptab *tab;
15041 Elf32_External_gptab *ext_tab;
15042 unsigned int j;
15043
15044 /* The .gptab.sdata and .gptab.sbss sections hold
15045 information describing how the small data area would
15046 change depending upon the -G switch. These sections
15047 not used in executables files. */
15048 if (! bfd_link_relocatable (info))
15049 {
15050 for (p = o->map_head.link_order; p != NULL; p = p->next)
15051 {
15052 asection *input_section;
15053
15054 if (p->type != bfd_indirect_link_order)
15055 {
15056 if (p->type == bfd_data_link_order)
15057 continue;
15058 abort ();
15059 }
15060
15061 input_section = p->u.indirect.section;
15062
15063 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15064 elf_link_input_bfd ignores this section. */
15065 input_section->flags &= ~SEC_HAS_CONTENTS;
15066 }
15067
15068 /* Skip this section later on (I don't think this
15069 currently matters, but someday it might). */
15070 o->map_head.link_order = NULL;
15071
15072 /* Really remove the section. */
15073 bfd_section_list_remove (abfd, o);
15074 --abfd->section_count;
15075
15076 continue;
15077 }
15078
15079 /* There is one gptab for initialized data, and one for
15080 uninitialized data. */
15081 if (strcmp (o->name, ".gptab.sdata") == 0)
15082 gptab_data_sec = o;
15083 else if (strcmp (o->name, ".gptab.sbss") == 0)
15084 gptab_bss_sec = o;
15085 else
15086 {
15087 _bfd_error_handler
15088 /* xgettext:c-format */
15089 (_("%pB: illegal section name `%pA'"), abfd, o);
15090 bfd_set_error (bfd_error_nonrepresentable_section);
15091 return FALSE;
15092 }
15093
15094 /* The linker script always combines .gptab.data and
15095 .gptab.sdata into .gptab.sdata, and likewise for
15096 .gptab.bss and .gptab.sbss. It is possible that there is
15097 no .sdata or .sbss section in the output file, in which
15098 case we must change the name of the output section. */
15099 subname = o->name + sizeof ".gptab" - 1;
15100 if (bfd_get_section_by_name (abfd, subname) == NULL)
15101 {
15102 if (o == gptab_data_sec)
15103 o->name = ".gptab.data";
15104 else
15105 o->name = ".gptab.bss";
15106 subname = o->name + sizeof ".gptab" - 1;
15107 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15108 }
15109
15110 /* Set up the first entry. */
15111 c = 1;
15112 amt = c * sizeof (Elf32_gptab);
15113 tab = bfd_malloc (amt);
15114 if (tab == NULL)
15115 return FALSE;
15116 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15117 tab[0].gt_header.gt_unused = 0;
15118
15119 /* Combine the input sections. */
15120 for (p = o->map_head.link_order; p != NULL; p = p->next)
15121 {
15122 asection *input_section;
15123 bfd *input_bfd;
15124 bfd_size_type size;
15125 unsigned long last;
15126 bfd_size_type gpentry;
15127
15128 if (p->type != bfd_indirect_link_order)
15129 {
15130 if (p->type == bfd_data_link_order)
15131 continue;
15132 abort ();
15133 }
15134
15135 input_section = p->u.indirect.section;
15136 input_bfd = input_section->owner;
15137
15138 /* Combine the gptab entries for this input section one
15139 by one. We know that the input gptab entries are
15140 sorted by ascending -G value. */
15141 size = input_section->size;
15142 last = 0;
15143 for (gpentry = sizeof (Elf32_External_gptab);
15144 gpentry < size;
15145 gpentry += sizeof (Elf32_External_gptab))
15146 {
15147 Elf32_External_gptab ext_gptab;
15148 Elf32_gptab int_gptab;
15149 unsigned long val;
15150 unsigned long add;
15151 bfd_boolean exact;
15152 unsigned int look;
15153
15154 if (! (bfd_get_section_contents
15155 (input_bfd, input_section, &ext_gptab, gpentry,
15156 sizeof (Elf32_External_gptab))))
15157 {
15158 free (tab);
15159 return FALSE;
15160 }
15161
15162 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15163 &int_gptab);
15164 val = int_gptab.gt_entry.gt_g_value;
15165 add = int_gptab.gt_entry.gt_bytes - last;
15166
15167 exact = FALSE;
15168 for (look = 1; look < c; look++)
15169 {
15170 if (tab[look].gt_entry.gt_g_value >= val)
15171 tab[look].gt_entry.gt_bytes += add;
15172
15173 if (tab[look].gt_entry.gt_g_value == val)
15174 exact = TRUE;
15175 }
15176
15177 if (! exact)
15178 {
15179 Elf32_gptab *new_tab;
15180 unsigned int max;
15181
15182 /* We need a new table entry. */
15183 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15184 new_tab = bfd_realloc (tab, amt);
15185 if (new_tab == NULL)
15186 {
15187 free (tab);
15188 return FALSE;
15189 }
15190 tab = new_tab;
15191 tab[c].gt_entry.gt_g_value = val;
15192 tab[c].gt_entry.gt_bytes = add;
15193
15194 /* Merge in the size for the next smallest -G
15195 value, since that will be implied by this new
15196 value. */
15197 max = 0;
15198 for (look = 1; look < c; look++)
15199 {
15200 if (tab[look].gt_entry.gt_g_value < val
15201 && (max == 0
15202 || (tab[look].gt_entry.gt_g_value
15203 > tab[max].gt_entry.gt_g_value)))
15204 max = look;
15205 }
15206 if (max != 0)
15207 tab[c].gt_entry.gt_bytes +=
15208 tab[max].gt_entry.gt_bytes;
15209
15210 ++c;
15211 }
15212
15213 last = int_gptab.gt_entry.gt_bytes;
15214 }
15215
15216 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15217 elf_link_input_bfd ignores this section. */
15218 input_section->flags &= ~SEC_HAS_CONTENTS;
15219 }
15220
15221 /* The table must be sorted by -G value. */
15222 if (c > 2)
15223 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15224
15225 /* Swap out the table. */
15226 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15227 ext_tab = bfd_alloc (abfd, amt);
15228 if (ext_tab == NULL)
15229 {
15230 free (tab);
15231 return FALSE;
15232 }
15233
15234 for (j = 0; j < c; j++)
15235 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15236 free (tab);
15237
15238 o->size = c * sizeof (Elf32_External_gptab);
15239 o->contents = (bfd_byte *) ext_tab;
15240
15241 /* Skip this section later on (I don't think this currently
15242 matters, but someday it might). */
15243 o->map_head.link_order = NULL;
15244 }
15245 }
15246
15247 /* Invoke the regular ELF backend linker to do all the work. */
15248 if (!bfd_elf_final_link (abfd, info))
15249 return FALSE;
15250
15251 /* Now write out the computed sections. */
15252
15253 if (abiflags_sec != NULL)
15254 {
15255 Elf_External_ABIFlags_v0 ext;
15256 Elf_Internal_ABIFlags_v0 *abiflags;
15257
15258 abiflags = &mips_elf_tdata (abfd)->abiflags;
15259
15260 /* Set up the abiflags if no valid input sections were found. */
15261 if (!mips_elf_tdata (abfd)->abiflags_valid)
15262 {
15263 infer_mips_abiflags (abfd, abiflags);
15264 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15265 }
15266 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15267 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15268 return FALSE;
15269 }
15270
15271 if (reginfo_sec != NULL)
15272 {
15273 Elf32_External_RegInfo ext;
15274
15275 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15276 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15277 return FALSE;
15278 }
15279
15280 if (mdebug_sec != NULL)
15281 {
15282 BFD_ASSERT (abfd->output_has_begun);
15283 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15284 swap, info,
15285 mdebug_sec->filepos))
15286 return FALSE;
15287
15288 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15289 }
15290
15291 if (gptab_data_sec != NULL)
15292 {
15293 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15294 gptab_data_sec->contents,
15295 0, gptab_data_sec->size))
15296 return FALSE;
15297 }
15298
15299 if (gptab_bss_sec != NULL)
15300 {
15301 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15302 gptab_bss_sec->contents,
15303 0, gptab_bss_sec->size))
15304 return FALSE;
15305 }
15306
15307 if (SGI_COMPAT (abfd))
15308 {
15309 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15310 if (rtproc_sec != NULL)
15311 {
15312 if (! bfd_set_section_contents (abfd, rtproc_sec,
15313 rtproc_sec->contents,
15314 0, rtproc_sec->size))
15315 return FALSE;
15316 }
15317 }
15318
15319 return TRUE;
15320 }
15321 \f
15322 /* Merge object file header flags from IBFD into OBFD. Raise an error
15323 if there are conflicting settings. */
15324
15325 static bfd_boolean
15326 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15327 {
15328 bfd *obfd = info->output_bfd;
15329 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15330 flagword old_flags;
15331 flagword new_flags;
15332 bfd_boolean ok;
15333
15334 new_flags = elf_elfheader (ibfd)->e_flags;
15335 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15336 old_flags = elf_elfheader (obfd)->e_flags;
15337
15338 /* Check flag compatibility. */
15339
15340 new_flags &= ~EF_MIPS_NOREORDER;
15341 old_flags &= ~EF_MIPS_NOREORDER;
15342
15343 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15344 doesn't seem to matter. */
15345 new_flags &= ~EF_MIPS_XGOT;
15346 old_flags &= ~EF_MIPS_XGOT;
15347
15348 /* MIPSpro generates ucode info in n64 objects. Again, we should
15349 just be able to ignore this. */
15350 new_flags &= ~EF_MIPS_UCODE;
15351 old_flags &= ~EF_MIPS_UCODE;
15352
15353 /* DSOs should only be linked with CPIC code. */
15354 if ((ibfd->flags & DYNAMIC) != 0)
15355 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15356
15357 if (new_flags == old_flags)
15358 return TRUE;
15359
15360 ok = TRUE;
15361
15362 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15363 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15364 {
15365 _bfd_error_handler
15366 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15367 ibfd);
15368 ok = TRUE;
15369 }
15370
15371 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15372 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15373 if (! (new_flags & EF_MIPS_PIC))
15374 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15375
15376 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15377 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15378
15379 /* Compare the ISAs. */
15380 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15381 {
15382 _bfd_error_handler
15383 (_("%pB: linking 32-bit code with 64-bit code"),
15384 ibfd);
15385 ok = FALSE;
15386 }
15387 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15388 {
15389 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15390 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15391 {
15392 /* Copy the architecture info from IBFD to OBFD. Also copy
15393 the 32-bit flag (if set) so that we continue to recognise
15394 OBFD as a 32-bit binary. */
15395 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15396 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15397 elf_elfheader (obfd)->e_flags
15398 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15399
15400 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15401 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15402
15403 /* Copy across the ABI flags if OBFD doesn't use them
15404 and if that was what caused us to treat IBFD as 32-bit. */
15405 if ((old_flags & EF_MIPS_ABI) == 0
15406 && mips_32bit_flags_p (new_flags)
15407 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15408 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15409 }
15410 else
15411 {
15412 /* The ISAs aren't compatible. */
15413 _bfd_error_handler
15414 /* xgettext:c-format */
15415 (_("%pB: linking %s module with previous %s modules"),
15416 ibfd,
15417 bfd_printable_name (ibfd),
15418 bfd_printable_name (obfd));
15419 ok = FALSE;
15420 }
15421 }
15422
15423 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15424 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15425
15426 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15427 does set EI_CLASS differently from any 32-bit ABI. */
15428 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15429 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15430 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15431 {
15432 /* Only error if both are set (to different values). */
15433 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15434 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15435 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15436 {
15437 _bfd_error_handler
15438 /* xgettext:c-format */
15439 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15440 ibfd,
15441 elf_mips_abi_name (ibfd),
15442 elf_mips_abi_name (obfd));
15443 ok = FALSE;
15444 }
15445 new_flags &= ~EF_MIPS_ABI;
15446 old_flags &= ~EF_MIPS_ABI;
15447 }
15448
15449 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15450 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15451 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15452 {
15453 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15454 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15455 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15456 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15457 int micro_mis = old_m16 && new_micro;
15458 int m16_mis = old_micro && new_m16;
15459
15460 if (m16_mis || micro_mis)
15461 {
15462 _bfd_error_handler
15463 /* xgettext:c-format */
15464 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15465 ibfd,
15466 m16_mis ? "MIPS16" : "microMIPS",
15467 m16_mis ? "microMIPS" : "MIPS16");
15468 ok = FALSE;
15469 }
15470
15471 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15472
15473 new_flags &= ~ EF_MIPS_ARCH_ASE;
15474 old_flags &= ~ EF_MIPS_ARCH_ASE;
15475 }
15476
15477 /* Compare NaN encodings. */
15478 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15479 {
15480 /* xgettext:c-format */
15481 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15482 ibfd,
15483 (new_flags & EF_MIPS_NAN2008
15484 ? "-mnan=2008" : "-mnan=legacy"),
15485 (old_flags & EF_MIPS_NAN2008
15486 ? "-mnan=2008" : "-mnan=legacy"));
15487 ok = FALSE;
15488 new_flags &= ~EF_MIPS_NAN2008;
15489 old_flags &= ~EF_MIPS_NAN2008;
15490 }
15491
15492 /* Compare FP64 state. */
15493 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15494 {
15495 /* xgettext:c-format */
15496 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15497 ibfd,
15498 (new_flags & EF_MIPS_FP64
15499 ? "-mfp64" : "-mfp32"),
15500 (old_flags & EF_MIPS_FP64
15501 ? "-mfp64" : "-mfp32"));
15502 ok = FALSE;
15503 new_flags &= ~EF_MIPS_FP64;
15504 old_flags &= ~EF_MIPS_FP64;
15505 }
15506
15507 /* Warn about any other mismatches */
15508 if (new_flags != old_flags)
15509 {
15510 /* xgettext:c-format */
15511 _bfd_error_handler
15512 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15513 "(%#x)"),
15514 ibfd, new_flags, old_flags);
15515 ok = FALSE;
15516 }
15517
15518 return ok;
15519 }
15520
15521 /* Merge object attributes from IBFD into OBFD. Raise an error if
15522 there are conflicting attributes. */
15523 static bfd_boolean
15524 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15525 {
15526 bfd *obfd = info->output_bfd;
15527 obj_attribute *in_attr;
15528 obj_attribute *out_attr;
15529 bfd *abi_fp_bfd;
15530 bfd *abi_msa_bfd;
15531
15532 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15533 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15534 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15535 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15536
15537 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15538 if (!abi_msa_bfd
15539 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15540 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15541
15542 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15543 {
15544 /* This is the first object. Copy the attributes. */
15545 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15546
15547 /* Use the Tag_null value to indicate the attributes have been
15548 initialized. */
15549 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15550
15551 return TRUE;
15552 }
15553
15554 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15555 non-conflicting ones. */
15556 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15557 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15558 {
15559 int out_fp, in_fp;
15560
15561 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15562 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15563 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15564 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15565 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15566 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15567 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15568 || in_fp == Val_GNU_MIPS_ABI_FP_64
15569 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15570 {
15571 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15572 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15573 }
15574 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15575 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15576 || out_fp == Val_GNU_MIPS_ABI_FP_64
15577 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15578 /* Keep the current setting. */;
15579 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15580 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15581 {
15582 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15583 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15584 }
15585 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15586 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15587 /* Keep the current setting. */;
15588 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15589 {
15590 const char *out_string, *in_string;
15591
15592 out_string = _bfd_mips_fp_abi_string (out_fp);
15593 in_string = _bfd_mips_fp_abi_string (in_fp);
15594 /* First warn about cases involving unrecognised ABIs. */
15595 if (!out_string && !in_string)
15596 /* xgettext:c-format */
15597 _bfd_error_handler
15598 (_("warning: %pB uses unknown floating point ABI %d "
15599 "(set by %pB), %pB uses unknown floating point ABI %d"),
15600 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15601 else if (!out_string)
15602 _bfd_error_handler
15603 /* xgettext:c-format */
15604 (_("warning: %pB uses unknown floating point ABI %d "
15605 "(set by %pB), %pB uses %s"),
15606 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15607 else if (!in_string)
15608 _bfd_error_handler
15609 /* xgettext:c-format */
15610 (_("warning: %pB uses %s (set by %pB), "
15611 "%pB uses unknown floating point ABI %d"),
15612 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15613 else
15614 {
15615 /* If one of the bfds is soft-float, the other must be
15616 hard-float. The exact choice of hard-float ABI isn't
15617 really relevant to the error message. */
15618 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15619 out_string = "-mhard-float";
15620 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15621 in_string = "-mhard-float";
15622 _bfd_error_handler
15623 /* xgettext:c-format */
15624 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15625 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15626 }
15627 }
15628 }
15629
15630 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15631 non-conflicting ones. */
15632 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15633 {
15634 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15635 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15636 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15637 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15638 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15639 {
15640 case Val_GNU_MIPS_ABI_MSA_128:
15641 _bfd_error_handler
15642 /* xgettext:c-format */
15643 (_("warning: %pB uses %s (set by %pB), "
15644 "%pB uses unknown MSA ABI %d"),
15645 obfd, "-mmsa", abi_msa_bfd,
15646 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15647 break;
15648
15649 default:
15650 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15651 {
15652 case Val_GNU_MIPS_ABI_MSA_128:
15653 _bfd_error_handler
15654 /* xgettext:c-format */
15655 (_("warning: %pB uses unknown MSA ABI %d "
15656 "(set by %pB), %pB uses %s"),
15657 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15658 abi_msa_bfd, ibfd, "-mmsa");
15659 break;
15660
15661 default:
15662 _bfd_error_handler
15663 /* xgettext:c-format */
15664 (_("warning: %pB uses unknown MSA ABI %d "
15665 "(set by %pB), %pB uses unknown MSA ABI %d"),
15666 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15667 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15668 break;
15669 }
15670 }
15671 }
15672
15673 /* Merge Tag_compatibility attributes and any common GNU ones. */
15674 return _bfd_elf_merge_object_attributes (ibfd, info);
15675 }
15676
15677 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15678 there are conflicting settings. */
15679
15680 static bfd_boolean
15681 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15682 {
15683 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15684 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15685 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15686
15687 /* Update the output abiflags fp_abi using the computed fp_abi. */
15688 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15689
15690 #define max(a, b) ((a) > (b) ? (a) : (b))
15691 /* Merge abiflags. */
15692 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15693 in_tdata->abiflags.isa_level);
15694 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15695 in_tdata->abiflags.isa_rev);
15696 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15697 in_tdata->abiflags.gpr_size);
15698 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15699 in_tdata->abiflags.cpr1_size);
15700 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15701 in_tdata->abiflags.cpr2_size);
15702 #undef max
15703 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15704 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15705
15706 return TRUE;
15707 }
15708
15709 /* Merge backend specific data from an object file to the output
15710 object file when linking. */
15711
15712 bfd_boolean
15713 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15714 {
15715 bfd *obfd = info->output_bfd;
15716 struct mips_elf_obj_tdata *out_tdata;
15717 struct mips_elf_obj_tdata *in_tdata;
15718 bfd_boolean null_input_bfd = TRUE;
15719 asection *sec;
15720 bfd_boolean ok;
15721
15722 /* Check if we have the same endianness. */
15723 if (! _bfd_generic_verify_endian_match (ibfd, info))
15724 {
15725 _bfd_error_handler
15726 (_("%pB: endianness incompatible with that of the selected emulation"),
15727 ibfd);
15728 return FALSE;
15729 }
15730
15731 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15732 return TRUE;
15733
15734 in_tdata = mips_elf_tdata (ibfd);
15735 out_tdata = mips_elf_tdata (obfd);
15736
15737 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15738 {
15739 _bfd_error_handler
15740 (_("%pB: ABI is incompatible with that of the selected emulation"),
15741 ibfd);
15742 return FALSE;
15743 }
15744
15745 /* Check to see if the input BFD actually contains any sections. If not,
15746 then it has no attributes, and its flags may not have been initialized
15747 either, but it cannot actually cause any incompatibility. */
15748 /* FIXME: This excludes any input shared library from consideration. */
15749 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15750 {
15751 /* Ignore synthetic sections and empty .text, .data and .bss sections
15752 which are automatically generated by gas. Also ignore fake
15753 (s)common sections, since merely defining a common symbol does
15754 not affect compatibility. */
15755 if ((sec->flags & SEC_IS_COMMON) == 0
15756 && strcmp (sec->name, ".reginfo")
15757 && strcmp (sec->name, ".mdebug")
15758 && (sec->size != 0
15759 || (strcmp (sec->name, ".text")
15760 && strcmp (sec->name, ".data")
15761 && strcmp (sec->name, ".bss"))))
15762 {
15763 null_input_bfd = FALSE;
15764 break;
15765 }
15766 }
15767 if (null_input_bfd)
15768 return TRUE;
15769
15770 /* Populate abiflags using existing information. */
15771 if (in_tdata->abiflags_valid)
15772 {
15773 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15774 Elf_Internal_ABIFlags_v0 in_abiflags;
15775 Elf_Internal_ABIFlags_v0 abiflags;
15776
15777 /* Set up the FP ABI attribute from the abiflags if it is not already
15778 set. */
15779 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15780 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15781
15782 infer_mips_abiflags (ibfd, &abiflags);
15783 in_abiflags = in_tdata->abiflags;
15784
15785 /* It is not possible to infer the correct ISA revision
15786 for R3 or R5 so drop down to R2 for the checks. */
15787 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15788 in_abiflags.isa_rev = 2;
15789
15790 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15791 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15792 _bfd_error_handler
15793 (_("%pB: warning: inconsistent ISA between e_flags and "
15794 ".MIPS.abiflags"), ibfd);
15795 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15796 && in_abiflags.fp_abi != abiflags.fp_abi)
15797 _bfd_error_handler
15798 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15799 ".MIPS.abiflags"), ibfd);
15800 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15801 _bfd_error_handler
15802 (_("%pB: warning: inconsistent ASEs between e_flags and "
15803 ".MIPS.abiflags"), ibfd);
15804 /* The isa_ext is allowed to be an extension of what can be inferred
15805 from e_flags. */
15806 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15807 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15808 _bfd_error_handler
15809 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15810 ".MIPS.abiflags"), ibfd);
15811 if (in_abiflags.flags2 != 0)
15812 _bfd_error_handler
15813 (_("%pB: warning: unexpected flag in the flags2 field of "
15814 ".MIPS.abiflags (0x%lx)"), ibfd,
15815 in_abiflags.flags2);
15816 }
15817 else
15818 {
15819 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15820 in_tdata->abiflags_valid = TRUE;
15821 }
15822
15823 if (!out_tdata->abiflags_valid)
15824 {
15825 /* Copy input abiflags if output abiflags are not already valid. */
15826 out_tdata->abiflags = in_tdata->abiflags;
15827 out_tdata->abiflags_valid = TRUE;
15828 }
15829
15830 if (! elf_flags_init (obfd))
15831 {
15832 elf_flags_init (obfd) = TRUE;
15833 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15834 elf_elfheader (obfd)->e_ident[EI_CLASS]
15835 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15836
15837 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15838 && (bfd_get_arch_info (obfd)->the_default
15839 || mips_mach_extends_p (bfd_get_mach (obfd),
15840 bfd_get_mach (ibfd))))
15841 {
15842 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15843 bfd_get_mach (ibfd)))
15844 return FALSE;
15845
15846 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15847 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15848 }
15849
15850 ok = TRUE;
15851 }
15852 else
15853 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15854
15855 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15856
15857 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15858
15859 if (!ok)
15860 {
15861 bfd_set_error (bfd_error_bad_value);
15862 return FALSE;
15863 }
15864
15865 return TRUE;
15866 }
15867
15868 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15869
15870 bfd_boolean
15871 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15872 {
15873 BFD_ASSERT (!elf_flags_init (abfd)
15874 || elf_elfheader (abfd)->e_flags == flags);
15875
15876 elf_elfheader (abfd)->e_flags = flags;
15877 elf_flags_init (abfd) = TRUE;
15878 return TRUE;
15879 }
15880
15881 char *
15882 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15883 {
15884 switch (dtag)
15885 {
15886 default: return "";
15887 case DT_MIPS_RLD_VERSION:
15888 return "MIPS_RLD_VERSION";
15889 case DT_MIPS_TIME_STAMP:
15890 return "MIPS_TIME_STAMP";
15891 case DT_MIPS_ICHECKSUM:
15892 return "MIPS_ICHECKSUM";
15893 case DT_MIPS_IVERSION:
15894 return "MIPS_IVERSION";
15895 case DT_MIPS_FLAGS:
15896 return "MIPS_FLAGS";
15897 case DT_MIPS_BASE_ADDRESS:
15898 return "MIPS_BASE_ADDRESS";
15899 case DT_MIPS_MSYM:
15900 return "MIPS_MSYM";
15901 case DT_MIPS_CONFLICT:
15902 return "MIPS_CONFLICT";
15903 case DT_MIPS_LIBLIST:
15904 return "MIPS_LIBLIST";
15905 case DT_MIPS_LOCAL_GOTNO:
15906 return "MIPS_LOCAL_GOTNO";
15907 case DT_MIPS_CONFLICTNO:
15908 return "MIPS_CONFLICTNO";
15909 case DT_MIPS_LIBLISTNO:
15910 return "MIPS_LIBLISTNO";
15911 case DT_MIPS_SYMTABNO:
15912 return "MIPS_SYMTABNO";
15913 case DT_MIPS_UNREFEXTNO:
15914 return "MIPS_UNREFEXTNO";
15915 case DT_MIPS_GOTSYM:
15916 return "MIPS_GOTSYM";
15917 case DT_MIPS_HIPAGENO:
15918 return "MIPS_HIPAGENO";
15919 case DT_MIPS_RLD_MAP:
15920 return "MIPS_RLD_MAP";
15921 case DT_MIPS_RLD_MAP_REL:
15922 return "MIPS_RLD_MAP_REL";
15923 case DT_MIPS_DELTA_CLASS:
15924 return "MIPS_DELTA_CLASS";
15925 case DT_MIPS_DELTA_CLASS_NO:
15926 return "MIPS_DELTA_CLASS_NO";
15927 case DT_MIPS_DELTA_INSTANCE:
15928 return "MIPS_DELTA_INSTANCE";
15929 case DT_MIPS_DELTA_INSTANCE_NO:
15930 return "MIPS_DELTA_INSTANCE_NO";
15931 case DT_MIPS_DELTA_RELOC:
15932 return "MIPS_DELTA_RELOC";
15933 case DT_MIPS_DELTA_RELOC_NO:
15934 return "MIPS_DELTA_RELOC_NO";
15935 case DT_MIPS_DELTA_SYM:
15936 return "MIPS_DELTA_SYM";
15937 case DT_MIPS_DELTA_SYM_NO:
15938 return "MIPS_DELTA_SYM_NO";
15939 case DT_MIPS_DELTA_CLASSSYM:
15940 return "MIPS_DELTA_CLASSSYM";
15941 case DT_MIPS_DELTA_CLASSSYM_NO:
15942 return "MIPS_DELTA_CLASSSYM_NO";
15943 case DT_MIPS_CXX_FLAGS:
15944 return "MIPS_CXX_FLAGS";
15945 case DT_MIPS_PIXIE_INIT:
15946 return "MIPS_PIXIE_INIT";
15947 case DT_MIPS_SYMBOL_LIB:
15948 return "MIPS_SYMBOL_LIB";
15949 case DT_MIPS_LOCALPAGE_GOTIDX:
15950 return "MIPS_LOCALPAGE_GOTIDX";
15951 case DT_MIPS_LOCAL_GOTIDX:
15952 return "MIPS_LOCAL_GOTIDX";
15953 case DT_MIPS_HIDDEN_GOTIDX:
15954 return "MIPS_HIDDEN_GOTIDX";
15955 case DT_MIPS_PROTECTED_GOTIDX:
15956 return "MIPS_PROTECTED_GOT_IDX";
15957 case DT_MIPS_OPTIONS:
15958 return "MIPS_OPTIONS";
15959 case DT_MIPS_INTERFACE:
15960 return "MIPS_INTERFACE";
15961 case DT_MIPS_DYNSTR_ALIGN:
15962 return "DT_MIPS_DYNSTR_ALIGN";
15963 case DT_MIPS_INTERFACE_SIZE:
15964 return "DT_MIPS_INTERFACE_SIZE";
15965 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15966 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15967 case DT_MIPS_PERF_SUFFIX:
15968 return "DT_MIPS_PERF_SUFFIX";
15969 case DT_MIPS_COMPACT_SIZE:
15970 return "DT_MIPS_COMPACT_SIZE";
15971 case DT_MIPS_GP_VALUE:
15972 return "DT_MIPS_GP_VALUE";
15973 case DT_MIPS_AUX_DYNAMIC:
15974 return "DT_MIPS_AUX_DYNAMIC";
15975 case DT_MIPS_PLTGOT:
15976 return "DT_MIPS_PLTGOT";
15977 case DT_MIPS_RWPLT:
15978 return "DT_MIPS_RWPLT";
15979 case DT_MIPS_XHASH:
15980 return "DT_MIPS_XHASH";
15981 }
15982 }
15983
15984 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15985 not known. */
15986
15987 const char *
15988 _bfd_mips_fp_abi_string (int fp)
15989 {
15990 switch (fp)
15991 {
15992 /* These strings aren't translated because they're simply
15993 option lists. */
15994 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15995 return "-mdouble-float";
15996
15997 case Val_GNU_MIPS_ABI_FP_SINGLE:
15998 return "-msingle-float";
15999
16000 case Val_GNU_MIPS_ABI_FP_SOFT:
16001 return "-msoft-float";
16002
16003 case Val_GNU_MIPS_ABI_FP_OLD_64:
16004 return _("-mips32r2 -mfp64 (12 callee-saved)");
16005
16006 case Val_GNU_MIPS_ABI_FP_XX:
16007 return "-mfpxx";
16008
16009 case Val_GNU_MIPS_ABI_FP_64:
16010 return "-mgp32 -mfp64";
16011
16012 case Val_GNU_MIPS_ABI_FP_64A:
16013 return "-mgp32 -mfp64 -mno-odd-spreg";
16014
16015 default:
16016 return 0;
16017 }
16018 }
16019
16020 static void
16021 print_mips_ases (FILE *file, unsigned int mask)
16022 {
16023 if (mask & AFL_ASE_DSP)
16024 fputs ("\n\tDSP ASE", file);
16025 if (mask & AFL_ASE_DSPR2)
16026 fputs ("\n\tDSP R2 ASE", file);
16027 if (mask & AFL_ASE_DSPR3)
16028 fputs ("\n\tDSP R3 ASE", file);
16029 if (mask & AFL_ASE_EVA)
16030 fputs ("\n\tEnhanced VA Scheme", file);
16031 if (mask & AFL_ASE_MCU)
16032 fputs ("\n\tMCU (MicroController) ASE", file);
16033 if (mask & AFL_ASE_MDMX)
16034 fputs ("\n\tMDMX ASE", file);
16035 if (mask & AFL_ASE_MIPS3D)
16036 fputs ("\n\tMIPS-3D ASE", file);
16037 if (mask & AFL_ASE_MT)
16038 fputs ("\n\tMT ASE", file);
16039 if (mask & AFL_ASE_SMARTMIPS)
16040 fputs ("\n\tSmartMIPS ASE", file);
16041 if (mask & AFL_ASE_VIRT)
16042 fputs ("\n\tVZ ASE", file);
16043 if (mask & AFL_ASE_MSA)
16044 fputs ("\n\tMSA ASE", file);
16045 if (mask & AFL_ASE_MIPS16)
16046 fputs ("\n\tMIPS16 ASE", file);
16047 if (mask & AFL_ASE_MICROMIPS)
16048 fputs ("\n\tMICROMIPS ASE", file);
16049 if (mask & AFL_ASE_XPA)
16050 fputs ("\n\tXPA ASE", file);
16051 if (mask & AFL_ASE_MIPS16E2)
16052 fputs ("\n\tMIPS16e2 ASE", file);
16053 if (mask & AFL_ASE_CRC)
16054 fputs ("\n\tCRC ASE", file);
16055 if (mask & AFL_ASE_GINV)
16056 fputs ("\n\tGINV ASE", file);
16057 if (mask & AFL_ASE_LOONGSON_MMI)
16058 fputs ("\n\tLoongson MMI ASE", file);
16059 if (mask & AFL_ASE_LOONGSON_CAM)
16060 fputs ("\n\tLoongson CAM ASE", file);
16061 if (mask & AFL_ASE_LOONGSON_EXT)
16062 fputs ("\n\tLoongson EXT ASE", file);
16063 if (mask & AFL_ASE_LOONGSON_EXT2)
16064 fputs ("\n\tLoongson EXT2 ASE", file);
16065 if (mask == 0)
16066 fprintf (file, "\n\t%s", _("None"));
16067 else if ((mask & ~AFL_ASE_MASK) != 0)
16068 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16069 }
16070
16071 static void
16072 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16073 {
16074 switch (isa_ext)
16075 {
16076 case 0:
16077 fputs (_("None"), file);
16078 break;
16079 case AFL_EXT_XLR:
16080 fputs ("RMI XLR", file);
16081 break;
16082 case AFL_EXT_OCTEON3:
16083 fputs ("Cavium Networks Octeon3", file);
16084 break;
16085 case AFL_EXT_OCTEON2:
16086 fputs ("Cavium Networks Octeon2", file);
16087 break;
16088 case AFL_EXT_OCTEONP:
16089 fputs ("Cavium Networks OcteonP", file);
16090 break;
16091 case AFL_EXT_OCTEON:
16092 fputs ("Cavium Networks Octeon", file);
16093 break;
16094 case AFL_EXT_5900:
16095 fputs ("Toshiba R5900", file);
16096 break;
16097 case AFL_EXT_4650:
16098 fputs ("MIPS R4650", file);
16099 break;
16100 case AFL_EXT_4010:
16101 fputs ("LSI R4010", file);
16102 break;
16103 case AFL_EXT_4100:
16104 fputs ("NEC VR4100", file);
16105 break;
16106 case AFL_EXT_3900:
16107 fputs ("Toshiba R3900", file);
16108 break;
16109 case AFL_EXT_10000:
16110 fputs ("MIPS R10000", file);
16111 break;
16112 case AFL_EXT_SB1:
16113 fputs ("Broadcom SB-1", file);
16114 break;
16115 case AFL_EXT_4111:
16116 fputs ("NEC VR4111/VR4181", file);
16117 break;
16118 case AFL_EXT_4120:
16119 fputs ("NEC VR4120", file);
16120 break;
16121 case AFL_EXT_5400:
16122 fputs ("NEC VR5400", file);
16123 break;
16124 case AFL_EXT_5500:
16125 fputs ("NEC VR5500", file);
16126 break;
16127 case AFL_EXT_LOONGSON_2E:
16128 fputs ("ST Microelectronics Loongson 2E", file);
16129 break;
16130 case AFL_EXT_LOONGSON_2F:
16131 fputs ("ST Microelectronics Loongson 2F", file);
16132 break;
16133 case AFL_EXT_INTERAPTIV_MR2:
16134 fputs ("Imagination interAptiv MR2", file);
16135 break;
16136 default:
16137 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16138 break;
16139 }
16140 }
16141
16142 static void
16143 print_mips_fp_abi_value (FILE *file, int val)
16144 {
16145 switch (val)
16146 {
16147 case Val_GNU_MIPS_ABI_FP_ANY:
16148 fprintf (file, _("Hard or soft float\n"));
16149 break;
16150 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16151 fprintf (file, _("Hard float (double precision)\n"));
16152 break;
16153 case Val_GNU_MIPS_ABI_FP_SINGLE:
16154 fprintf (file, _("Hard float (single precision)\n"));
16155 break;
16156 case Val_GNU_MIPS_ABI_FP_SOFT:
16157 fprintf (file, _("Soft float\n"));
16158 break;
16159 case Val_GNU_MIPS_ABI_FP_OLD_64:
16160 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16161 break;
16162 case Val_GNU_MIPS_ABI_FP_XX:
16163 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16164 break;
16165 case Val_GNU_MIPS_ABI_FP_64:
16166 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16167 break;
16168 case Val_GNU_MIPS_ABI_FP_64A:
16169 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16170 break;
16171 default:
16172 fprintf (file, "??? (%d)\n", val);
16173 break;
16174 }
16175 }
16176
16177 static int
16178 get_mips_reg_size (int reg_size)
16179 {
16180 return (reg_size == AFL_REG_NONE) ? 0
16181 : (reg_size == AFL_REG_32) ? 32
16182 : (reg_size == AFL_REG_64) ? 64
16183 : (reg_size == AFL_REG_128) ? 128
16184 : -1;
16185 }
16186
16187 bfd_boolean
16188 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16189 {
16190 FILE *file = ptr;
16191
16192 BFD_ASSERT (abfd != NULL && ptr != NULL);
16193
16194 /* Print normal ELF private data. */
16195 _bfd_elf_print_private_bfd_data (abfd, ptr);
16196
16197 /* xgettext:c-format */
16198 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16199
16200 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16201 fprintf (file, _(" [abi=O32]"));
16202 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16203 fprintf (file, _(" [abi=O64]"));
16204 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16205 fprintf (file, _(" [abi=EABI32]"));
16206 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16207 fprintf (file, _(" [abi=EABI64]"));
16208 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16209 fprintf (file, _(" [abi unknown]"));
16210 else if (ABI_N32_P (abfd))
16211 fprintf (file, _(" [abi=N32]"));
16212 else if (ABI_64_P (abfd))
16213 fprintf (file, _(" [abi=64]"));
16214 else
16215 fprintf (file, _(" [no abi set]"));
16216
16217 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16218 fprintf (file, " [mips1]");
16219 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16220 fprintf (file, " [mips2]");
16221 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16222 fprintf (file, " [mips3]");
16223 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16224 fprintf (file, " [mips4]");
16225 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16226 fprintf (file, " [mips5]");
16227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16228 fprintf (file, " [mips32]");
16229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16230 fprintf (file, " [mips64]");
16231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16232 fprintf (file, " [mips32r2]");
16233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16234 fprintf (file, " [mips64r2]");
16235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16236 fprintf (file, " [mips32r6]");
16237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16238 fprintf (file, " [mips64r6]");
16239 else
16240 fprintf (file, _(" [unknown ISA]"));
16241
16242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16243 fprintf (file, " [mdmx]");
16244
16245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16246 fprintf (file, " [mips16]");
16247
16248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16249 fprintf (file, " [micromips]");
16250
16251 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16252 fprintf (file, " [nan2008]");
16253
16254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16255 fprintf (file, " [old fp64]");
16256
16257 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16258 fprintf (file, " [32bitmode]");
16259 else
16260 fprintf (file, _(" [not 32bitmode]"));
16261
16262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16263 fprintf (file, " [noreorder]");
16264
16265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16266 fprintf (file, " [PIC]");
16267
16268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16269 fprintf (file, " [CPIC]");
16270
16271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16272 fprintf (file, " [XGOT]");
16273
16274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16275 fprintf (file, " [UCODE]");
16276
16277 fputc ('\n', file);
16278
16279 if (mips_elf_tdata (abfd)->abiflags_valid)
16280 {
16281 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16282 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16283 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16284 if (abiflags->isa_rev > 1)
16285 fprintf (file, "r%d", abiflags->isa_rev);
16286 fprintf (file, "\nGPR size: %d",
16287 get_mips_reg_size (abiflags->gpr_size));
16288 fprintf (file, "\nCPR1 size: %d",
16289 get_mips_reg_size (abiflags->cpr1_size));
16290 fprintf (file, "\nCPR2 size: %d",
16291 get_mips_reg_size (abiflags->cpr2_size));
16292 fputs ("\nFP ABI: ", file);
16293 print_mips_fp_abi_value (file, abiflags->fp_abi);
16294 fputs ("ISA Extension: ", file);
16295 print_mips_isa_ext (file, abiflags->isa_ext);
16296 fputs ("\nASEs:", file);
16297 print_mips_ases (file, abiflags->ases);
16298 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16299 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16300 fputc ('\n', file);
16301 }
16302
16303 return TRUE;
16304 }
16305
16306 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16307 {
16308 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16309 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16310 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16311 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16312 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16313 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16314 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16315 { NULL, 0, 0, 0, 0 }
16316 };
16317
16318 /* Merge non visibility st_other attributes. Ensure that the
16319 STO_OPTIONAL flag is copied into h->other, even if this is not a
16320 definiton of the symbol. */
16321 void
16322 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16323 const Elf_Internal_Sym *isym,
16324 bfd_boolean definition,
16325 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16326 {
16327 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16328 {
16329 unsigned char other;
16330
16331 other = (definition ? isym->st_other : h->other);
16332 other &= ~ELF_ST_VISIBILITY (-1);
16333 h->other = other | ELF_ST_VISIBILITY (h->other);
16334 }
16335
16336 if (!definition
16337 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16338 h->other |= STO_OPTIONAL;
16339 }
16340
16341 /* Decide whether an undefined symbol is special and can be ignored.
16342 This is the case for OPTIONAL symbols on IRIX. */
16343 bfd_boolean
16344 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16345 {
16346 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16347 }
16348
16349 bfd_boolean
16350 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16351 {
16352 return (sym->st_shndx == SHN_COMMON
16353 || sym->st_shndx == SHN_MIPS_ACOMMON
16354 || sym->st_shndx == SHN_MIPS_SCOMMON);
16355 }
16356
16357 /* Return address for Ith PLT stub in section PLT, for relocation REL
16358 or (bfd_vma) -1 if it should not be included. */
16359
16360 bfd_vma
16361 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16362 const arelent *rel ATTRIBUTE_UNUSED)
16363 {
16364 return (plt->vma
16365 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16366 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16367 }
16368
16369 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16370 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16371 and .got.plt and also the slots may be of a different size each we walk
16372 the PLT manually fetching instructions and matching them against known
16373 patterns. To make things easier standard MIPS slots, if any, always come
16374 first. As we don't create proper ELF symbols we use the UDATA.I member
16375 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16376 with the ST_OTHER member of the ELF symbol. */
16377
16378 long
16379 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16380 long symcount ATTRIBUTE_UNUSED,
16381 asymbol **syms ATTRIBUTE_UNUSED,
16382 long dynsymcount, asymbol **dynsyms,
16383 asymbol **ret)
16384 {
16385 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16386 static const char microsuffix[] = "@micromipsplt";
16387 static const char m16suffix[] = "@mips16plt";
16388 static const char mipssuffix[] = "@plt";
16389
16390 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16391 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16392 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16393 Elf_Internal_Shdr *hdr;
16394 bfd_byte *plt_data;
16395 bfd_vma plt_offset;
16396 unsigned int other;
16397 bfd_vma entry_size;
16398 bfd_vma plt0_size;
16399 asection *relplt;
16400 bfd_vma opcode;
16401 asection *plt;
16402 asymbol *send;
16403 size_t size;
16404 char *names;
16405 long counti;
16406 arelent *p;
16407 asymbol *s;
16408 char *nend;
16409 long count;
16410 long pi;
16411 long i;
16412 long n;
16413
16414 *ret = NULL;
16415
16416 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16417 return 0;
16418
16419 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16420 if (relplt == NULL)
16421 return 0;
16422
16423 hdr = &elf_section_data (relplt)->this_hdr;
16424 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16425 return 0;
16426
16427 plt = bfd_get_section_by_name (abfd, ".plt");
16428 if (plt == NULL)
16429 return 0;
16430
16431 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16432 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16433 return -1;
16434 p = relplt->relocation;
16435
16436 /* Calculating the exact amount of space required for symbols would
16437 require two passes over the PLT, so just pessimise assuming two
16438 PLT slots per relocation. */
16439 count = relplt->size / hdr->sh_entsize;
16440 counti = count * bed->s->int_rels_per_ext_rel;
16441 size = 2 * count * sizeof (asymbol);
16442 size += count * (sizeof (mipssuffix) +
16443 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16444 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16445 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16446
16447 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16448 size += sizeof (asymbol) + sizeof (pltname);
16449
16450 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16451 return -1;
16452
16453 if (plt->size < 16)
16454 return -1;
16455
16456 s = *ret = bfd_malloc (size);
16457 if (s == NULL)
16458 return -1;
16459 send = s + 2 * count + 1;
16460
16461 names = (char *) send;
16462 nend = (char *) s + size;
16463 n = 0;
16464
16465 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16466 if (opcode == 0x3302fffe)
16467 {
16468 if (!micromips_p)
16469 return -1;
16470 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16471 other = STO_MICROMIPS;
16472 }
16473 else if (opcode == 0x0398c1d0)
16474 {
16475 if (!micromips_p)
16476 return -1;
16477 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16478 other = STO_MICROMIPS;
16479 }
16480 else
16481 {
16482 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16483 other = 0;
16484 }
16485
16486 s->the_bfd = abfd;
16487 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16488 s->section = plt;
16489 s->value = 0;
16490 s->name = names;
16491 s->udata.i = other;
16492 memcpy (names, pltname, sizeof (pltname));
16493 names += sizeof (pltname);
16494 ++s, ++n;
16495
16496 pi = 0;
16497 for (plt_offset = plt0_size;
16498 plt_offset + 8 <= plt->size && s < send;
16499 plt_offset += entry_size)
16500 {
16501 bfd_vma gotplt_addr;
16502 const char *suffix;
16503 bfd_vma gotplt_hi;
16504 bfd_vma gotplt_lo;
16505 size_t suffixlen;
16506
16507 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16508
16509 /* Check if the second word matches the expected MIPS16 instruction. */
16510 if (opcode == 0x651aeb00)
16511 {
16512 if (micromips_p)
16513 return -1;
16514 /* Truncated table??? */
16515 if (plt_offset + 16 > plt->size)
16516 break;
16517 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16518 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16519 suffixlen = sizeof (m16suffix);
16520 suffix = m16suffix;
16521 other = STO_MIPS16;
16522 }
16523 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16524 else if (opcode == 0xff220000)
16525 {
16526 if (!micromips_p)
16527 return -1;
16528 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16529 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16530 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16531 gotplt_lo <<= 2;
16532 gotplt_addr = gotplt_hi + gotplt_lo;
16533 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16534 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16535 suffixlen = sizeof (microsuffix);
16536 suffix = microsuffix;
16537 other = STO_MICROMIPS;
16538 }
16539 /* Likewise the expected microMIPS instruction (insn32 mode). */
16540 else if ((opcode & 0xffff0000) == 0xff2f0000)
16541 {
16542 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16543 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16544 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16545 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16546 gotplt_addr = gotplt_hi + gotplt_lo;
16547 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16548 suffixlen = sizeof (microsuffix);
16549 suffix = microsuffix;
16550 other = STO_MICROMIPS;
16551 }
16552 /* Otherwise assume standard MIPS code. */
16553 else
16554 {
16555 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16556 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16557 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16558 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16559 gotplt_addr = gotplt_hi + gotplt_lo;
16560 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16561 suffixlen = sizeof (mipssuffix);
16562 suffix = mipssuffix;
16563 other = 0;
16564 }
16565 /* Truncated table??? */
16566 if (plt_offset + entry_size > plt->size)
16567 break;
16568
16569 for (i = 0;
16570 i < count && p[pi].address != gotplt_addr;
16571 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16572
16573 if (i < count)
16574 {
16575 size_t namelen;
16576 size_t len;
16577
16578 *s = **p[pi].sym_ptr_ptr;
16579 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16580 we are defining a symbol, ensure one of them is set. */
16581 if ((s->flags & BSF_LOCAL) == 0)
16582 s->flags |= BSF_GLOBAL;
16583 s->flags |= BSF_SYNTHETIC;
16584 s->section = plt;
16585 s->value = plt_offset;
16586 s->name = names;
16587 s->udata.i = other;
16588
16589 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16590 namelen = len + suffixlen;
16591 if (names + namelen > nend)
16592 break;
16593
16594 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16595 names += len;
16596 memcpy (names, suffix, suffixlen);
16597 names += suffixlen;
16598
16599 ++s, ++n;
16600 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16601 }
16602 }
16603
16604 free (plt_data);
16605
16606 return n;
16607 }
16608
16609 /* Return the ABI flags associated with ABFD if available. */
16610
16611 Elf_Internal_ABIFlags_v0 *
16612 bfd_mips_elf_get_abiflags (bfd *abfd)
16613 {
16614 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16615
16616 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16617 }
16618
16619 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16620 field. Taken from `libc-abis.h' generated at GNU libc build time.
16621 Using a MIPS_ prefix as other libc targets use different values. */
16622 enum
16623 {
16624 MIPS_LIBC_ABI_DEFAULT = 0,
16625 MIPS_LIBC_ABI_MIPS_PLT,
16626 MIPS_LIBC_ABI_UNIQUE,
16627 MIPS_LIBC_ABI_MIPS_O32_FP64,
16628 MIPS_LIBC_ABI_ABSOLUTE,
16629 MIPS_LIBC_ABI_XHASH,
16630 MIPS_LIBC_ABI_MAX
16631 };
16632
16633 bfd_boolean
16634 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16635 {
16636 struct mips_elf_link_hash_table *htab = NULL;
16637 Elf_Internal_Ehdr *i_ehdrp;
16638
16639 if (!_bfd_elf_init_file_header (abfd, link_info))
16640 return FALSE;
16641
16642 i_ehdrp = elf_elfheader (abfd);
16643 if (link_info)
16644 {
16645 htab = mips_elf_hash_table (link_info);
16646 BFD_ASSERT (htab != NULL);
16647 }
16648
16649 if (htab != NULL
16650 && htab->use_plts_and_copy_relocs
16651 && htab->root.target_os != is_vxworks)
16652 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16653
16654 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16655 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16656 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16657
16658 /* Mark that we need support for absolute symbols in the dynamic loader. */
16659 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16660 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16661
16662 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16663 if it is the only hash section that will be created. */
16664 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16665 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16666 return TRUE;
16667 }
16668
16669 int
16670 _bfd_mips_elf_compact_eh_encoding
16671 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16672 {
16673 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16674 }
16675
16676 /* Return the opcode for can't unwind. */
16677
16678 int
16679 _bfd_mips_elf_cant_unwind_opcode
16680 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16681 {
16682 return COMPACT_EH_CANT_UNWIND_OPCODE;
16683 }
16684
16685 /* Record a position XLAT_LOC in the xlat translation table, associated with
16686 the hash entry H. The entry in the translation table will later be
16687 populated with the real symbol dynindx. */
16688
16689 void
16690 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16691 bfd_vma xlat_loc)
16692 {
16693 struct mips_elf_link_hash_entry *hmips;
16694
16695 hmips = (struct mips_elf_link_hash_entry *) h;
16696 hmips->mipsxhash_loc = xlat_loc;
16697 }