]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
* section.c (struct sec): Remove usused flags. Reorganize a little.
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->_raw_size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->_raw_size = 0;
1032 h->fn_stub->_cooked_size = 0;
1033 h->fn_stub->flags &= ~SEC_RELOC;
1034 h->fn_stub->reloc_count = 0;
1035 h->fn_stub->flags |= SEC_EXCLUDE;
1036 }
1037
1038 if (h->call_stub != NULL
1039 && h->root.other == STO_MIPS16)
1040 {
1041 /* We don't need the call_stub; this is a 16 bit function, so
1042 calls from other 16 bit functions are OK. Clobber the size
1043 to 0 to prevent it from being included in the link. */
1044 h->call_stub->_raw_size = 0;
1045 h->call_stub->_cooked_size = 0;
1046 h->call_stub->flags &= ~SEC_RELOC;
1047 h->call_stub->reloc_count = 0;
1048 h->call_stub->flags |= SEC_EXCLUDE;
1049 }
1050
1051 if (h->call_fp_stub != NULL
1052 && h->root.other == STO_MIPS16)
1053 {
1054 /* We don't need the call_stub; this is a 16 bit function, so
1055 calls from other 16 bit functions are OK. Clobber the size
1056 to 0 to prevent it from being included in the link. */
1057 h->call_fp_stub->_raw_size = 0;
1058 h->call_fp_stub->_cooked_size = 0;
1059 h->call_fp_stub->flags &= ~SEC_RELOC;
1060 h->call_fp_stub->reloc_count = 0;
1061 h->call_fp_stub->flags |= SEC_EXCLUDE;
1062 }
1063
1064 return TRUE;
1065 }
1066 \f
1067 bfd_reloc_status_type
1068 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1069 arelent *reloc_entry, asection *input_section,
1070 bfd_boolean relocatable, void *data, bfd_vma gp)
1071 {
1072 bfd_vma relocation;
1073 bfd_signed_vma val;
1074 bfd_reloc_status_type status;
1075
1076 if (bfd_is_com_section (symbol->section))
1077 relocation = 0;
1078 else
1079 relocation = symbol->value;
1080
1081 relocation += symbol->section->output_section->vma;
1082 relocation += symbol->section->output_offset;
1083
1084 if (reloc_entry->address > input_section->_cooked_size)
1085 return bfd_reloc_outofrange;
1086
1087 /* Set val to the offset into the section or symbol. */
1088 val = reloc_entry->addend;
1089
1090 _bfd_mips_elf_sign_extend (val, 16);
1091
1092 /* Adjust val for the final section location and GP value. If we
1093 are producing relocatable output, we don't want to do this for
1094 an external symbol. */
1095 if (! relocatable
1096 || (symbol->flags & BSF_SECTION_SYM) != 0)
1097 val += relocation - gp;
1098
1099 if (reloc_entry->howto->partial_inplace)
1100 {
1101 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1102 (bfd_byte *) data
1103 + reloc_entry->address);
1104 if (status != bfd_reloc_ok)
1105 return status;
1106 }
1107 else
1108 reloc_entry->addend = val;
1109
1110 if (relocatable)
1111 reloc_entry->address += input_section->output_offset;
1112
1113 return bfd_reloc_ok;
1114 }
1115
1116 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1117 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1118 that contains the relocation field and DATA points to the start of
1119 INPUT_SECTION. */
1120
1121 struct mips_hi16
1122 {
1123 struct mips_hi16 *next;
1124 bfd_byte *data;
1125 asection *input_section;
1126 arelent rel;
1127 };
1128
1129 /* FIXME: This should not be a static variable. */
1130
1131 static struct mips_hi16 *mips_hi16_list;
1132
1133 /* A howto special_function for REL *HI16 relocations. We can only
1134 calculate the correct value once we've seen the partnering
1135 *LO16 relocation, so just save the information for later.
1136
1137 The ABI requires that the *LO16 immediately follow the *HI16.
1138 However, as a GNU extension, we permit an arbitrary number of
1139 *HI16s to be associated with a single *LO16. This significantly
1140 simplies the relocation handling in gcc. */
1141
1142 bfd_reloc_status_type
1143 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1144 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1145 asection *input_section, bfd *output_bfd,
1146 char **error_message ATTRIBUTE_UNUSED)
1147 {
1148 struct mips_hi16 *n;
1149
1150 if (reloc_entry->address > input_section->_cooked_size)
1151 return bfd_reloc_outofrange;
1152
1153 n = bfd_malloc (sizeof *n);
1154 if (n == NULL)
1155 return bfd_reloc_outofrange;
1156
1157 n->next = mips_hi16_list;
1158 n->data = data;
1159 n->input_section = input_section;
1160 n->rel = *reloc_entry;
1161 mips_hi16_list = n;
1162
1163 if (output_bfd != NULL)
1164 reloc_entry->address += input_section->output_offset;
1165
1166 return bfd_reloc_ok;
1167 }
1168
1169 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1170 like any other 16-bit relocation when applied to global symbols, but is
1171 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1172
1173 bfd_reloc_status_type
1174 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1175 void *data, asection *input_section,
1176 bfd *output_bfd, char **error_message)
1177 {
1178 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1179 || bfd_is_und_section (bfd_get_section (symbol))
1180 || bfd_is_com_section (bfd_get_section (symbol)))
1181 /* The relocation is against a global symbol. */
1182 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1183 input_section, output_bfd,
1184 error_message);
1185
1186 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1187 input_section, output_bfd, error_message);
1188 }
1189
1190 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1191 is a straightforward 16 bit inplace relocation, but we must deal with
1192 any partnering high-part relocations as well. */
1193
1194 bfd_reloc_status_type
1195 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1196 void *data, asection *input_section,
1197 bfd *output_bfd, char **error_message)
1198 {
1199 bfd_vma vallo;
1200
1201 if (reloc_entry->address > input_section->_cooked_size)
1202 return bfd_reloc_outofrange;
1203
1204 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1205 while (mips_hi16_list != NULL)
1206 {
1207 bfd_reloc_status_type ret;
1208 struct mips_hi16 *hi;
1209
1210 hi = mips_hi16_list;
1211
1212 /* R_MIPS_GOT16 relocations are something of a special case. We
1213 want to install the addend in the same way as for a R_MIPS_HI16
1214 relocation (with a rightshift of 16). However, since GOT16
1215 relocations can also be used with global symbols, their howto
1216 has a rightshift of 0. */
1217 if (hi->rel.howto->type == R_MIPS_GOT16)
1218 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1219
1220 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1221 carry or borrow will induce a change of +1 or -1 in the high part. */
1222 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1223
1224 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1225 hi->input_section, output_bfd,
1226 error_message);
1227 if (ret != bfd_reloc_ok)
1228 return ret;
1229
1230 mips_hi16_list = hi->next;
1231 free (hi);
1232 }
1233
1234 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1235 input_section, output_bfd,
1236 error_message);
1237 }
1238
1239 /* A generic howto special_function. This calculates and installs the
1240 relocation itself, thus avoiding the oft-discussed problems in
1241 bfd_perform_relocation and bfd_install_relocation. */
1242
1243 bfd_reloc_status_type
1244 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1245 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1246 asection *input_section, bfd *output_bfd,
1247 char **error_message ATTRIBUTE_UNUSED)
1248 {
1249 bfd_signed_vma val;
1250 bfd_reloc_status_type status;
1251 bfd_boolean relocatable;
1252
1253 relocatable = (output_bfd != NULL);
1254
1255 if (reloc_entry->address > input_section->_cooked_size)
1256 return bfd_reloc_outofrange;
1257
1258 /* Build up the field adjustment in VAL. */
1259 val = 0;
1260 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1261 {
1262 /* Either we're calculating the final field value or we have a
1263 relocation against a section symbol. Add in the section's
1264 offset or address. */
1265 val += symbol->section->output_section->vma;
1266 val += symbol->section->output_offset;
1267 }
1268
1269 if (!relocatable)
1270 {
1271 /* We're calculating the final field value. Add in the symbol's value
1272 and, if pc-relative, subtract the address of the field itself. */
1273 val += symbol->value;
1274 if (reloc_entry->howto->pc_relative)
1275 {
1276 val -= input_section->output_section->vma;
1277 val -= input_section->output_offset;
1278 val -= reloc_entry->address;
1279 }
1280 }
1281
1282 /* VAL is now the final adjustment. If we're keeping this relocation
1283 in the output file, and if the relocation uses a separate addend,
1284 we just need to add VAL to that addend. Otherwise we need to add
1285 VAL to the relocation field itself. */
1286 if (relocatable && !reloc_entry->howto->partial_inplace)
1287 reloc_entry->addend += val;
1288 else
1289 {
1290 /* Add in the separate addend, if any. */
1291 val += reloc_entry->addend;
1292
1293 /* Add VAL to the relocation field. */
1294 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1295 (bfd_byte *) data
1296 + reloc_entry->address);
1297 if (status != bfd_reloc_ok)
1298 return status;
1299 }
1300
1301 if (relocatable)
1302 reloc_entry->address += input_section->output_offset;
1303
1304 return bfd_reloc_ok;
1305 }
1306 \f
1307 /* Swap an entry in a .gptab section. Note that these routines rely
1308 on the equivalence of the two elements of the union. */
1309
1310 static void
1311 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1312 Elf32_gptab *in)
1313 {
1314 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1315 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1316 }
1317
1318 static void
1319 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1320 Elf32_External_gptab *ex)
1321 {
1322 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1323 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1324 }
1325
1326 static void
1327 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1328 Elf32_External_compact_rel *ex)
1329 {
1330 H_PUT_32 (abfd, in->id1, ex->id1);
1331 H_PUT_32 (abfd, in->num, ex->num);
1332 H_PUT_32 (abfd, in->id2, ex->id2);
1333 H_PUT_32 (abfd, in->offset, ex->offset);
1334 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1335 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1336 }
1337
1338 static void
1339 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1340 Elf32_External_crinfo *ex)
1341 {
1342 unsigned long l;
1343
1344 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1345 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1346 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1347 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1348 H_PUT_32 (abfd, l, ex->info);
1349 H_PUT_32 (abfd, in->konst, ex->konst);
1350 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1351 }
1352 \f
1353 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1354 routines swap this structure in and out. They are used outside of
1355 BFD, so they are globally visible. */
1356
1357 void
1358 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1359 Elf32_RegInfo *in)
1360 {
1361 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1362 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1363 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1364 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1365 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1366 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1367 }
1368
1369 void
1370 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1371 Elf32_External_RegInfo *ex)
1372 {
1373 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1374 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1375 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1376 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1377 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1378 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1379 }
1380
1381 /* In the 64 bit ABI, the .MIPS.options section holds register
1382 information in an Elf64_Reginfo structure. These routines swap
1383 them in and out. They are globally visible because they are used
1384 outside of BFD. These routines are here so that gas can call them
1385 without worrying about whether the 64 bit ABI has been included. */
1386
1387 void
1388 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1389 Elf64_Internal_RegInfo *in)
1390 {
1391 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1392 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1393 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1394 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1395 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1396 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1397 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1398 }
1399
1400 void
1401 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1402 Elf64_External_RegInfo *ex)
1403 {
1404 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1405 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1406 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1407 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1408 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1409 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1410 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1411 }
1412
1413 /* Swap in an options header. */
1414
1415 void
1416 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1417 Elf_Internal_Options *in)
1418 {
1419 in->kind = H_GET_8 (abfd, ex->kind);
1420 in->size = H_GET_8 (abfd, ex->size);
1421 in->section = H_GET_16 (abfd, ex->section);
1422 in->info = H_GET_32 (abfd, ex->info);
1423 }
1424
1425 /* Swap out an options header. */
1426
1427 void
1428 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1429 Elf_External_Options *ex)
1430 {
1431 H_PUT_8 (abfd, in->kind, ex->kind);
1432 H_PUT_8 (abfd, in->size, ex->size);
1433 H_PUT_16 (abfd, in->section, ex->section);
1434 H_PUT_32 (abfd, in->info, ex->info);
1435 }
1436 \f
1437 /* This function is called via qsort() to sort the dynamic relocation
1438 entries by increasing r_symndx value. */
1439
1440 static int
1441 sort_dynamic_relocs (const void *arg1, const void *arg2)
1442 {
1443 Elf_Internal_Rela int_reloc1;
1444 Elf_Internal_Rela int_reloc2;
1445
1446 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1447 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1448
1449 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1450 }
1451
1452 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1453
1454 static int
1455 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1456 {
1457 Elf_Internal_Rela int_reloc1[3];
1458 Elf_Internal_Rela int_reloc2[3];
1459
1460 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1461 (reldyn_sorting_bfd, arg1, int_reloc1);
1462 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1463 (reldyn_sorting_bfd, arg2, int_reloc2);
1464
1465 return (ELF64_R_SYM (int_reloc1[0].r_info)
1466 - ELF64_R_SYM (int_reloc2[0].r_info));
1467 }
1468
1469
1470 /* This routine is used to write out ECOFF debugging external symbol
1471 information. It is called via mips_elf_link_hash_traverse. The
1472 ECOFF external symbol information must match the ELF external
1473 symbol information. Unfortunately, at this point we don't know
1474 whether a symbol is required by reloc information, so the two
1475 tables may wind up being different. We must sort out the external
1476 symbol information before we can set the final size of the .mdebug
1477 section, and we must set the size of the .mdebug section before we
1478 can relocate any sections, and we can't know which symbols are
1479 required by relocation until we relocate the sections.
1480 Fortunately, it is relatively unlikely that any symbol will be
1481 stripped but required by a reloc. In particular, it can not happen
1482 when generating a final executable. */
1483
1484 static bfd_boolean
1485 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1486 {
1487 struct extsym_info *einfo = data;
1488 bfd_boolean strip;
1489 asection *sec, *output_section;
1490
1491 if (h->root.root.type == bfd_link_hash_warning)
1492 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1493
1494 if (h->root.indx == -2)
1495 strip = FALSE;
1496 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1497 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1498 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1499 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1500 strip = TRUE;
1501 else if (einfo->info->strip == strip_all
1502 || (einfo->info->strip == strip_some
1503 && bfd_hash_lookup (einfo->info->keep_hash,
1504 h->root.root.root.string,
1505 FALSE, FALSE) == NULL))
1506 strip = TRUE;
1507 else
1508 strip = FALSE;
1509
1510 if (strip)
1511 return TRUE;
1512
1513 if (h->esym.ifd == -2)
1514 {
1515 h->esym.jmptbl = 0;
1516 h->esym.cobol_main = 0;
1517 h->esym.weakext = 0;
1518 h->esym.reserved = 0;
1519 h->esym.ifd = ifdNil;
1520 h->esym.asym.value = 0;
1521 h->esym.asym.st = stGlobal;
1522
1523 if (h->root.root.type == bfd_link_hash_undefined
1524 || h->root.root.type == bfd_link_hash_undefweak)
1525 {
1526 const char *name;
1527
1528 /* Use undefined class. Also, set class and type for some
1529 special symbols. */
1530 name = h->root.root.root.string;
1531 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1532 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1533 {
1534 h->esym.asym.sc = scData;
1535 h->esym.asym.st = stLabel;
1536 h->esym.asym.value = 0;
1537 }
1538 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1539 {
1540 h->esym.asym.sc = scAbs;
1541 h->esym.asym.st = stLabel;
1542 h->esym.asym.value =
1543 mips_elf_hash_table (einfo->info)->procedure_count;
1544 }
1545 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1546 {
1547 h->esym.asym.sc = scAbs;
1548 h->esym.asym.st = stLabel;
1549 h->esym.asym.value = elf_gp (einfo->abfd);
1550 }
1551 else
1552 h->esym.asym.sc = scUndefined;
1553 }
1554 else if (h->root.root.type != bfd_link_hash_defined
1555 && h->root.root.type != bfd_link_hash_defweak)
1556 h->esym.asym.sc = scAbs;
1557 else
1558 {
1559 const char *name;
1560
1561 sec = h->root.root.u.def.section;
1562 output_section = sec->output_section;
1563
1564 /* When making a shared library and symbol h is the one from
1565 the another shared library, OUTPUT_SECTION may be null. */
1566 if (output_section == NULL)
1567 h->esym.asym.sc = scUndefined;
1568 else
1569 {
1570 name = bfd_section_name (output_section->owner, output_section);
1571
1572 if (strcmp (name, ".text") == 0)
1573 h->esym.asym.sc = scText;
1574 else if (strcmp (name, ".data") == 0)
1575 h->esym.asym.sc = scData;
1576 else if (strcmp (name, ".sdata") == 0)
1577 h->esym.asym.sc = scSData;
1578 else if (strcmp (name, ".rodata") == 0
1579 || strcmp (name, ".rdata") == 0)
1580 h->esym.asym.sc = scRData;
1581 else if (strcmp (name, ".bss") == 0)
1582 h->esym.asym.sc = scBss;
1583 else if (strcmp (name, ".sbss") == 0)
1584 h->esym.asym.sc = scSBss;
1585 else if (strcmp (name, ".init") == 0)
1586 h->esym.asym.sc = scInit;
1587 else if (strcmp (name, ".fini") == 0)
1588 h->esym.asym.sc = scFini;
1589 else
1590 h->esym.asym.sc = scAbs;
1591 }
1592 }
1593
1594 h->esym.asym.reserved = 0;
1595 h->esym.asym.index = indexNil;
1596 }
1597
1598 if (h->root.root.type == bfd_link_hash_common)
1599 h->esym.asym.value = h->root.root.u.c.size;
1600 else if (h->root.root.type == bfd_link_hash_defined
1601 || h->root.root.type == bfd_link_hash_defweak)
1602 {
1603 if (h->esym.asym.sc == scCommon)
1604 h->esym.asym.sc = scBss;
1605 else if (h->esym.asym.sc == scSCommon)
1606 h->esym.asym.sc = scSBss;
1607
1608 sec = h->root.root.u.def.section;
1609 output_section = sec->output_section;
1610 if (output_section != NULL)
1611 h->esym.asym.value = (h->root.root.u.def.value
1612 + sec->output_offset
1613 + output_section->vma);
1614 else
1615 h->esym.asym.value = 0;
1616 }
1617 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1618 {
1619 struct mips_elf_link_hash_entry *hd = h;
1620 bfd_boolean no_fn_stub = h->no_fn_stub;
1621
1622 while (hd->root.root.type == bfd_link_hash_indirect)
1623 {
1624 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1625 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1626 }
1627
1628 if (!no_fn_stub)
1629 {
1630 /* Set type and value for a symbol with a function stub. */
1631 h->esym.asym.st = stProc;
1632 sec = hd->root.root.u.def.section;
1633 if (sec == NULL)
1634 h->esym.asym.value = 0;
1635 else
1636 {
1637 output_section = sec->output_section;
1638 if (output_section != NULL)
1639 h->esym.asym.value = (hd->root.plt.offset
1640 + sec->output_offset
1641 + output_section->vma);
1642 else
1643 h->esym.asym.value = 0;
1644 }
1645 #if 0 /* FIXME? */
1646 h->esym.ifd = 0;
1647 #endif
1648 }
1649 }
1650
1651 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1652 h->root.root.root.string,
1653 &h->esym))
1654 {
1655 einfo->failed = TRUE;
1656 return FALSE;
1657 }
1658
1659 return TRUE;
1660 }
1661
1662 /* A comparison routine used to sort .gptab entries. */
1663
1664 static int
1665 gptab_compare (const void *p1, const void *p2)
1666 {
1667 const Elf32_gptab *a1 = p1;
1668 const Elf32_gptab *a2 = p2;
1669
1670 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1671 }
1672 \f
1673 /* Functions to manage the got entry hash table. */
1674
1675 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1676 hash number. */
1677
1678 static INLINE hashval_t
1679 mips_elf_hash_bfd_vma (bfd_vma addr)
1680 {
1681 #ifdef BFD64
1682 return addr + (addr >> 32);
1683 #else
1684 return addr;
1685 #endif
1686 }
1687
1688 /* got_entries only match if they're identical, except for gotidx, so
1689 use all fields to compute the hash, and compare the appropriate
1690 union members. */
1691
1692 static hashval_t
1693 mips_elf_got_entry_hash (const void *entry_)
1694 {
1695 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1696
1697 return entry->symndx
1698 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1699 : entry->abfd->id
1700 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1701 : entry->d.h->root.root.root.hash));
1702 }
1703
1704 static int
1705 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1706 {
1707 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1708 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1709
1710 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1711 && (! e1->abfd ? e1->d.address == e2->d.address
1712 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1713 : e1->d.h == e2->d.h);
1714 }
1715
1716 /* multi_got_entries are still a match in the case of global objects,
1717 even if the input bfd in which they're referenced differs, so the
1718 hash computation and compare functions are adjusted
1719 accordingly. */
1720
1721 static hashval_t
1722 mips_elf_multi_got_entry_hash (const void *entry_)
1723 {
1724 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1725
1726 return entry->symndx
1727 + (! entry->abfd
1728 ? mips_elf_hash_bfd_vma (entry->d.address)
1729 : entry->symndx >= 0
1730 ? (entry->abfd->id
1731 + mips_elf_hash_bfd_vma (entry->d.addend))
1732 : entry->d.h->root.root.root.hash);
1733 }
1734
1735 static int
1736 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1737 {
1738 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1739 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1740
1741 return e1->symndx == e2->symndx
1742 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1743 : e1->abfd == NULL || e2->abfd == NULL
1744 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1745 : e1->d.h == e2->d.h);
1746 }
1747 \f
1748 /* Returns the dynamic relocation section for DYNOBJ. */
1749
1750 static asection *
1751 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1752 {
1753 static const char dname[] = ".rel.dyn";
1754 asection *sreloc;
1755
1756 sreloc = bfd_get_section_by_name (dynobj, dname);
1757 if (sreloc == NULL && create_p)
1758 {
1759 sreloc = bfd_make_section (dynobj, dname);
1760 if (sreloc == NULL
1761 || ! bfd_set_section_flags (dynobj, sreloc,
1762 (SEC_ALLOC
1763 | SEC_LOAD
1764 | SEC_HAS_CONTENTS
1765 | SEC_IN_MEMORY
1766 | SEC_LINKER_CREATED
1767 | SEC_READONLY))
1768 || ! bfd_set_section_alignment (dynobj, sreloc,
1769 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1770 return NULL;
1771 }
1772 return sreloc;
1773 }
1774
1775 /* Returns the GOT section for ABFD. */
1776
1777 static asection *
1778 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1779 {
1780 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1781 if (sgot == NULL
1782 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1783 return NULL;
1784 return sgot;
1785 }
1786
1787 /* Returns the GOT information associated with the link indicated by
1788 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1789 section. */
1790
1791 static struct mips_got_info *
1792 mips_elf_got_info (bfd *abfd, asection **sgotp)
1793 {
1794 asection *sgot;
1795 struct mips_got_info *g;
1796
1797 sgot = mips_elf_got_section (abfd, TRUE);
1798 BFD_ASSERT (sgot != NULL);
1799 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1800 g = mips_elf_section_data (sgot)->u.got_info;
1801 BFD_ASSERT (g != NULL);
1802
1803 if (sgotp)
1804 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1805
1806 return g;
1807 }
1808
1809 /* Returns the GOT offset at which the indicated address can be found.
1810 If there is not yet a GOT entry for this value, create one. Returns
1811 -1 if no satisfactory GOT offset can be found. */
1812
1813 static bfd_vma
1814 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1815 bfd_vma value)
1816 {
1817 asection *sgot;
1818 struct mips_got_info *g;
1819 struct mips_got_entry *entry;
1820
1821 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1822
1823 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1824 if (entry)
1825 return entry->gotidx;
1826 else
1827 return MINUS_ONE;
1828 }
1829
1830 /* Returns the GOT index for the global symbol indicated by H. */
1831
1832 static bfd_vma
1833 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1834 {
1835 bfd_vma index;
1836 asection *sgot;
1837 struct mips_got_info *g, *gg;
1838 long global_got_dynindx = 0;
1839
1840 gg = g = mips_elf_got_info (abfd, &sgot);
1841 if (g->bfd2got && ibfd)
1842 {
1843 struct mips_got_entry e, *p;
1844
1845 BFD_ASSERT (h->dynindx >= 0);
1846
1847 g = mips_elf_got_for_ibfd (g, ibfd);
1848 if (g->next != gg)
1849 {
1850 e.abfd = ibfd;
1851 e.symndx = -1;
1852 e.d.h = (struct mips_elf_link_hash_entry *)h;
1853
1854 p = htab_find (g->got_entries, &e);
1855
1856 BFD_ASSERT (p->gotidx > 0);
1857 return p->gotidx;
1858 }
1859 }
1860
1861 if (gg->global_gotsym != NULL)
1862 global_got_dynindx = gg->global_gotsym->dynindx;
1863
1864 /* Once we determine the global GOT entry with the lowest dynamic
1865 symbol table index, we must put all dynamic symbols with greater
1866 indices into the GOT. That makes it easy to calculate the GOT
1867 offset. */
1868 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1869 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1870 * MIPS_ELF_GOT_SIZE (abfd));
1871 BFD_ASSERT (index < sgot->_raw_size);
1872
1873 return index;
1874 }
1875
1876 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1877 are supposed to be placed at small offsets in the GOT, i.e.,
1878 within 32KB of GP. Return the index into the GOT for this page,
1879 and store the offset from this entry to the desired address in
1880 OFFSETP, if it is non-NULL. */
1881
1882 static bfd_vma
1883 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1884 bfd_vma value, bfd_vma *offsetp)
1885 {
1886 asection *sgot;
1887 struct mips_got_info *g;
1888 bfd_vma index;
1889 struct mips_got_entry *entry;
1890
1891 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1892
1893 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1894 (value + 0x8000)
1895 & (~(bfd_vma)0xffff));
1896
1897 if (!entry)
1898 return MINUS_ONE;
1899
1900 index = entry->gotidx;
1901
1902 if (offsetp)
1903 *offsetp = value - entry->d.address;
1904
1905 return index;
1906 }
1907
1908 /* Find a GOT entry whose higher-order 16 bits are the same as those
1909 for value. Return the index into the GOT for this entry. */
1910
1911 static bfd_vma
1912 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1913 bfd_vma value, bfd_boolean external)
1914 {
1915 asection *sgot;
1916 struct mips_got_info *g;
1917 struct mips_got_entry *entry;
1918
1919 if (! external)
1920 {
1921 /* Although the ABI says that it is "the high-order 16 bits" that we
1922 want, it is really the %high value. The complete value is
1923 calculated with a `addiu' of a LO16 relocation, just as with a
1924 HI16/LO16 pair. */
1925 value = mips_elf_high (value) << 16;
1926 }
1927
1928 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1929
1930 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1931 if (entry)
1932 return entry->gotidx;
1933 else
1934 return MINUS_ONE;
1935 }
1936
1937 /* Returns the offset for the entry at the INDEXth position
1938 in the GOT. */
1939
1940 static bfd_vma
1941 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1942 bfd *input_bfd, bfd_vma index)
1943 {
1944 asection *sgot;
1945 bfd_vma gp;
1946 struct mips_got_info *g;
1947
1948 g = mips_elf_got_info (dynobj, &sgot);
1949 gp = _bfd_get_gp_value (output_bfd)
1950 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1951
1952 return sgot->output_section->vma + sgot->output_offset + index - gp;
1953 }
1954
1955 /* Create a local GOT entry for VALUE. Return the index of the entry,
1956 or -1 if it could not be created. */
1957
1958 static struct mips_got_entry *
1959 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1960 struct mips_got_info *gg,
1961 asection *sgot, bfd_vma value)
1962 {
1963 struct mips_got_entry entry, **loc;
1964 struct mips_got_info *g;
1965
1966 entry.abfd = NULL;
1967 entry.symndx = -1;
1968 entry.d.address = value;
1969
1970 g = mips_elf_got_for_ibfd (gg, ibfd);
1971 if (g == NULL)
1972 {
1973 g = mips_elf_got_for_ibfd (gg, abfd);
1974 BFD_ASSERT (g != NULL);
1975 }
1976
1977 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1978 INSERT);
1979 if (*loc)
1980 return *loc;
1981
1982 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1983
1984 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1985
1986 if (! *loc)
1987 return NULL;
1988
1989 memcpy (*loc, &entry, sizeof entry);
1990
1991 if (g->assigned_gotno >= g->local_gotno)
1992 {
1993 (*loc)->gotidx = -1;
1994 /* We didn't allocate enough space in the GOT. */
1995 (*_bfd_error_handler)
1996 (_("not enough GOT space for local GOT entries"));
1997 bfd_set_error (bfd_error_bad_value);
1998 return NULL;
1999 }
2000
2001 MIPS_ELF_PUT_WORD (abfd, value,
2002 (sgot->contents + entry.gotidx));
2003
2004 return *loc;
2005 }
2006
2007 /* Sort the dynamic symbol table so that symbols that need GOT entries
2008 appear towards the end. This reduces the amount of GOT space
2009 required. MAX_LOCAL is used to set the number of local symbols
2010 known to be in the dynamic symbol table. During
2011 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2012 section symbols are added and the count is higher. */
2013
2014 static bfd_boolean
2015 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2016 {
2017 struct mips_elf_hash_sort_data hsd;
2018 struct mips_got_info *g;
2019 bfd *dynobj;
2020
2021 dynobj = elf_hash_table (info)->dynobj;
2022
2023 g = mips_elf_got_info (dynobj, NULL);
2024
2025 hsd.low = NULL;
2026 hsd.max_unref_got_dynindx =
2027 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2028 /* In the multi-got case, assigned_gotno of the master got_info
2029 indicate the number of entries that aren't referenced in the
2030 primary GOT, but that must have entries because there are
2031 dynamic relocations that reference it. Since they aren't
2032 referenced, we move them to the end of the GOT, so that they
2033 don't prevent other entries that are referenced from getting
2034 too large offsets. */
2035 - (g->next ? g->assigned_gotno : 0);
2036 hsd.max_non_got_dynindx = max_local;
2037 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2038 elf_hash_table (info)),
2039 mips_elf_sort_hash_table_f,
2040 &hsd);
2041
2042 /* There should have been enough room in the symbol table to
2043 accommodate both the GOT and non-GOT symbols. */
2044 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2045 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2046 <= elf_hash_table (info)->dynsymcount);
2047
2048 /* Now we know which dynamic symbol has the lowest dynamic symbol
2049 table index in the GOT. */
2050 g->global_gotsym = hsd.low;
2051
2052 return TRUE;
2053 }
2054
2055 /* If H needs a GOT entry, assign it the highest available dynamic
2056 index. Otherwise, assign it the lowest available dynamic
2057 index. */
2058
2059 static bfd_boolean
2060 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2061 {
2062 struct mips_elf_hash_sort_data *hsd = data;
2063
2064 if (h->root.root.type == bfd_link_hash_warning)
2065 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2066
2067 /* Symbols without dynamic symbol table entries aren't interesting
2068 at all. */
2069 if (h->root.dynindx == -1)
2070 return TRUE;
2071
2072 /* Global symbols that need GOT entries that are not explicitly
2073 referenced are marked with got offset 2. Those that are
2074 referenced get a 1, and those that don't need GOT entries get
2075 -1. */
2076 if (h->root.got.offset == 2)
2077 {
2078 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2079 hsd->low = (struct elf_link_hash_entry *) h;
2080 h->root.dynindx = hsd->max_unref_got_dynindx++;
2081 }
2082 else if (h->root.got.offset != 1)
2083 h->root.dynindx = hsd->max_non_got_dynindx++;
2084 else
2085 {
2086 h->root.dynindx = --hsd->min_got_dynindx;
2087 hsd->low = (struct elf_link_hash_entry *) h;
2088 }
2089
2090 return TRUE;
2091 }
2092
2093 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2094 symbol table index lower than any we've seen to date, record it for
2095 posterity. */
2096
2097 static bfd_boolean
2098 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2099 bfd *abfd, struct bfd_link_info *info,
2100 struct mips_got_info *g)
2101 {
2102 struct mips_got_entry entry, **loc;
2103
2104 /* A global symbol in the GOT must also be in the dynamic symbol
2105 table. */
2106 if (h->dynindx == -1)
2107 {
2108 switch (ELF_ST_VISIBILITY (h->other))
2109 {
2110 case STV_INTERNAL:
2111 case STV_HIDDEN:
2112 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2113 break;
2114 }
2115 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2116 return FALSE;
2117 }
2118
2119 entry.abfd = abfd;
2120 entry.symndx = -1;
2121 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2122
2123 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2124 INSERT);
2125
2126 /* If we've already marked this entry as needing GOT space, we don't
2127 need to do it again. */
2128 if (*loc)
2129 return TRUE;
2130
2131 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2132
2133 if (! *loc)
2134 return FALSE;
2135
2136 entry.gotidx = -1;
2137 memcpy (*loc, &entry, sizeof entry);
2138
2139 if (h->got.offset != MINUS_ONE)
2140 return TRUE;
2141
2142 /* By setting this to a value other than -1, we are indicating that
2143 there needs to be a GOT entry for H. Avoid using zero, as the
2144 generic ELF copy_indirect_symbol tests for <= 0. */
2145 h->got.offset = 1;
2146
2147 return TRUE;
2148 }
2149
2150 /* Reserve space in G for a GOT entry containing the value of symbol
2151 SYMNDX in input bfd ABDF, plus ADDEND. */
2152
2153 static bfd_boolean
2154 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2155 struct mips_got_info *g)
2156 {
2157 struct mips_got_entry entry, **loc;
2158
2159 entry.abfd = abfd;
2160 entry.symndx = symndx;
2161 entry.d.addend = addend;
2162 loc = (struct mips_got_entry **)
2163 htab_find_slot (g->got_entries, &entry, INSERT);
2164
2165 if (*loc)
2166 return TRUE;
2167
2168 entry.gotidx = g->local_gotno++;
2169
2170 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2171
2172 if (! *loc)
2173 return FALSE;
2174
2175 memcpy (*loc, &entry, sizeof entry);
2176
2177 return TRUE;
2178 }
2179 \f
2180 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2181
2182 static hashval_t
2183 mips_elf_bfd2got_entry_hash (const void *entry_)
2184 {
2185 const struct mips_elf_bfd2got_hash *entry
2186 = (struct mips_elf_bfd2got_hash *)entry_;
2187
2188 return entry->bfd->id;
2189 }
2190
2191 /* Check whether two hash entries have the same bfd. */
2192
2193 static int
2194 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2195 {
2196 const struct mips_elf_bfd2got_hash *e1
2197 = (const struct mips_elf_bfd2got_hash *)entry1;
2198 const struct mips_elf_bfd2got_hash *e2
2199 = (const struct mips_elf_bfd2got_hash *)entry2;
2200
2201 return e1->bfd == e2->bfd;
2202 }
2203
2204 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2205 be the master GOT data. */
2206
2207 static struct mips_got_info *
2208 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2209 {
2210 struct mips_elf_bfd2got_hash e, *p;
2211
2212 if (! g->bfd2got)
2213 return g;
2214
2215 e.bfd = ibfd;
2216 p = htab_find (g->bfd2got, &e);
2217 return p ? p->g : NULL;
2218 }
2219
2220 /* Create one separate got for each bfd that has entries in the global
2221 got, such that we can tell how many local and global entries each
2222 bfd requires. */
2223
2224 static int
2225 mips_elf_make_got_per_bfd (void **entryp, void *p)
2226 {
2227 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2228 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2229 htab_t bfd2got = arg->bfd2got;
2230 struct mips_got_info *g;
2231 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2232 void **bfdgotp;
2233
2234 /* Find the got_info for this GOT entry's input bfd. Create one if
2235 none exists. */
2236 bfdgot_entry.bfd = entry->abfd;
2237 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2238 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2239
2240 if (bfdgot != NULL)
2241 g = bfdgot->g;
2242 else
2243 {
2244 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2245 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2246
2247 if (bfdgot == NULL)
2248 {
2249 arg->obfd = 0;
2250 return 0;
2251 }
2252
2253 *bfdgotp = bfdgot;
2254
2255 bfdgot->bfd = entry->abfd;
2256 bfdgot->g = g = (struct mips_got_info *)
2257 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2258 if (g == NULL)
2259 {
2260 arg->obfd = 0;
2261 return 0;
2262 }
2263
2264 g->global_gotsym = NULL;
2265 g->global_gotno = 0;
2266 g->local_gotno = 0;
2267 g->assigned_gotno = -1;
2268 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2269 mips_elf_multi_got_entry_eq, NULL);
2270 if (g->got_entries == NULL)
2271 {
2272 arg->obfd = 0;
2273 return 0;
2274 }
2275
2276 g->bfd2got = NULL;
2277 g->next = NULL;
2278 }
2279
2280 /* Insert the GOT entry in the bfd's got entry hash table. */
2281 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2282 if (*entryp != NULL)
2283 return 1;
2284
2285 *entryp = entry;
2286
2287 if (entry->symndx >= 0 || entry->d.h->forced_local)
2288 ++g->local_gotno;
2289 else
2290 ++g->global_gotno;
2291
2292 return 1;
2293 }
2294
2295 /* Attempt to merge gots of different input bfds. Try to use as much
2296 as possible of the primary got, since it doesn't require explicit
2297 dynamic relocations, but don't use bfds that would reference global
2298 symbols out of the addressable range. Failing the primary got,
2299 attempt to merge with the current got, or finish the current got
2300 and then make make the new got current. */
2301
2302 static int
2303 mips_elf_merge_gots (void **bfd2got_, void *p)
2304 {
2305 struct mips_elf_bfd2got_hash *bfd2got
2306 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2307 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2308 unsigned int lcount = bfd2got->g->local_gotno;
2309 unsigned int gcount = bfd2got->g->global_gotno;
2310 unsigned int maxcnt = arg->max_count;
2311
2312 /* If we don't have a primary GOT and this is not too big, use it as
2313 a starting point for the primary GOT. */
2314 if (! arg->primary && lcount + gcount <= maxcnt)
2315 {
2316 arg->primary = bfd2got->g;
2317 arg->primary_count = lcount + gcount;
2318 }
2319 /* If it looks like we can merge this bfd's entries with those of
2320 the primary, merge them. The heuristics is conservative, but we
2321 don't have to squeeze it too hard. */
2322 else if (arg->primary
2323 && (arg->primary_count + lcount + gcount) <= maxcnt)
2324 {
2325 struct mips_got_info *g = bfd2got->g;
2326 int old_lcount = arg->primary->local_gotno;
2327 int old_gcount = arg->primary->global_gotno;
2328
2329 bfd2got->g = arg->primary;
2330
2331 htab_traverse (g->got_entries,
2332 mips_elf_make_got_per_bfd,
2333 arg);
2334 if (arg->obfd == NULL)
2335 return 0;
2336
2337 htab_delete (g->got_entries);
2338 /* We don't have to worry about releasing memory of the actual
2339 got entries, since they're all in the master got_entries hash
2340 table anyway. */
2341
2342 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2343 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2344
2345 arg->primary_count = arg->primary->local_gotno
2346 + arg->primary->global_gotno;
2347 }
2348 /* If we can merge with the last-created got, do it. */
2349 else if (arg->current
2350 && arg->current_count + lcount + gcount <= maxcnt)
2351 {
2352 struct mips_got_info *g = bfd2got->g;
2353 int old_lcount = arg->current->local_gotno;
2354 int old_gcount = arg->current->global_gotno;
2355
2356 bfd2got->g = arg->current;
2357
2358 htab_traverse (g->got_entries,
2359 mips_elf_make_got_per_bfd,
2360 arg);
2361 if (arg->obfd == NULL)
2362 return 0;
2363
2364 htab_delete (g->got_entries);
2365
2366 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2367 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2368
2369 arg->current_count = arg->current->local_gotno
2370 + arg->current->global_gotno;
2371 }
2372 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2373 fits; if it turns out that it doesn't, we'll get relocation
2374 overflows anyway. */
2375 else
2376 {
2377 bfd2got->g->next = arg->current;
2378 arg->current = bfd2got->g;
2379
2380 arg->current_count = lcount + gcount;
2381 }
2382
2383 return 1;
2384 }
2385
2386 /* If passed a NULL mips_got_info in the argument, set the marker used
2387 to tell whether a global symbol needs a got entry (in the primary
2388 got) to the given VALUE.
2389
2390 If passed a pointer G to a mips_got_info in the argument (it must
2391 not be the primary GOT), compute the offset from the beginning of
2392 the (primary) GOT section to the entry in G corresponding to the
2393 global symbol. G's assigned_gotno must contain the index of the
2394 first available global GOT entry in G. VALUE must contain the size
2395 of a GOT entry in bytes. For each global GOT entry that requires a
2396 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2397 marked as not eligible for lazy resolution through a function
2398 stub. */
2399 static int
2400 mips_elf_set_global_got_offset (void **entryp, void *p)
2401 {
2402 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2403 struct mips_elf_set_global_got_offset_arg *arg
2404 = (struct mips_elf_set_global_got_offset_arg *)p;
2405 struct mips_got_info *g = arg->g;
2406
2407 if (entry->abfd != NULL && entry->symndx == -1
2408 && entry->d.h->root.dynindx != -1)
2409 {
2410 if (g)
2411 {
2412 BFD_ASSERT (g->global_gotsym == NULL);
2413
2414 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2415 if (arg->info->shared
2416 || (elf_hash_table (arg->info)->dynamic_sections_created
2417 && ((entry->d.h->root.elf_link_hash_flags
2418 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2419 && ((entry->d.h->root.elf_link_hash_flags
2420 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2421 ++arg->needed_relocs;
2422 }
2423 else
2424 entry->d.h->root.got.offset = arg->value;
2425 }
2426
2427 return 1;
2428 }
2429
2430 /* Mark any global symbols referenced in the GOT we are iterating over
2431 as inelligible for lazy resolution stubs. */
2432 static int
2433 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2434 {
2435 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2436
2437 if (entry->abfd != NULL
2438 && entry->symndx == -1
2439 && entry->d.h->root.dynindx != -1)
2440 entry->d.h->no_fn_stub = TRUE;
2441
2442 return 1;
2443 }
2444
2445 /* Follow indirect and warning hash entries so that each got entry
2446 points to the final symbol definition. P must point to a pointer
2447 to the hash table we're traversing. Since this traversal may
2448 modify the hash table, we set this pointer to NULL to indicate
2449 we've made a potentially-destructive change to the hash table, so
2450 the traversal must be restarted. */
2451 static int
2452 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2453 {
2454 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2455 htab_t got_entries = *(htab_t *)p;
2456
2457 if (entry->abfd != NULL && entry->symndx == -1)
2458 {
2459 struct mips_elf_link_hash_entry *h = entry->d.h;
2460
2461 while (h->root.root.type == bfd_link_hash_indirect
2462 || h->root.root.type == bfd_link_hash_warning)
2463 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2464
2465 if (entry->d.h == h)
2466 return 1;
2467
2468 entry->d.h = h;
2469
2470 /* If we can't find this entry with the new bfd hash, re-insert
2471 it, and get the traversal restarted. */
2472 if (! htab_find (got_entries, entry))
2473 {
2474 htab_clear_slot (got_entries, entryp);
2475 entryp = htab_find_slot (got_entries, entry, INSERT);
2476 if (! *entryp)
2477 *entryp = entry;
2478 /* Abort the traversal, since the whole table may have
2479 moved, and leave it up to the parent to restart the
2480 process. */
2481 *(htab_t *)p = NULL;
2482 return 0;
2483 }
2484 /* We might want to decrement the global_gotno count, but it's
2485 either too early or too late for that at this point. */
2486 }
2487
2488 return 1;
2489 }
2490
2491 /* Turn indirect got entries in a got_entries table into their final
2492 locations. */
2493 static void
2494 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2495 {
2496 htab_t got_entries;
2497
2498 do
2499 {
2500 got_entries = g->got_entries;
2501
2502 htab_traverse (got_entries,
2503 mips_elf_resolve_final_got_entry,
2504 &got_entries);
2505 }
2506 while (got_entries == NULL);
2507 }
2508
2509 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2510 the primary GOT. */
2511 static bfd_vma
2512 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2513 {
2514 if (g->bfd2got == NULL)
2515 return 0;
2516
2517 g = mips_elf_got_for_ibfd (g, ibfd);
2518 if (! g)
2519 return 0;
2520
2521 BFD_ASSERT (g->next);
2522
2523 g = g->next;
2524
2525 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2526 }
2527
2528 /* Turn a single GOT that is too big for 16-bit addressing into
2529 a sequence of GOTs, each one 16-bit addressable. */
2530
2531 static bfd_boolean
2532 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2533 struct mips_got_info *g, asection *got,
2534 bfd_size_type pages)
2535 {
2536 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2537 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2538 struct mips_got_info *gg;
2539 unsigned int assign;
2540
2541 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2542 mips_elf_bfd2got_entry_eq, NULL);
2543 if (g->bfd2got == NULL)
2544 return FALSE;
2545
2546 got_per_bfd_arg.bfd2got = g->bfd2got;
2547 got_per_bfd_arg.obfd = abfd;
2548 got_per_bfd_arg.info = info;
2549
2550 /* Count how many GOT entries each input bfd requires, creating a
2551 map from bfd to got info while at that. */
2552 mips_elf_resolve_final_got_entries (g);
2553 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2554 if (got_per_bfd_arg.obfd == NULL)
2555 return FALSE;
2556
2557 got_per_bfd_arg.current = NULL;
2558 got_per_bfd_arg.primary = NULL;
2559 /* Taking out PAGES entries is a worst-case estimate. We could
2560 compute the maximum number of pages that each separate input bfd
2561 uses, but it's probably not worth it. */
2562 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2563 / MIPS_ELF_GOT_SIZE (abfd))
2564 - MIPS_RESERVED_GOTNO - pages);
2565
2566 /* Try to merge the GOTs of input bfds together, as long as they
2567 don't seem to exceed the maximum GOT size, choosing one of them
2568 to be the primary GOT. */
2569 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2570 if (got_per_bfd_arg.obfd == NULL)
2571 return FALSE;
2572
2573 /* If we find any suitable primary GOT, create an empty one. */
2574 if (got_per_bfd_arg.primary == NULL)
2575 {
2576 g->next = (struct mips_got_info *)
2577 bfd_alloc (abfd, sizeof (struct mips_got_info));
2578 if (g->next == NULL)
2579 return FALSE;
2580
2581 g->next->global_gotsym = NULL;
2582 g->next->global_gotno = 0;
2583 g->next->local_gotno = 0;
2584 g->next->assigned_gotno = 0;
2585 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2586 mips_elf_multi_got_entry_eq,
2587 NULL);
2588 if (g->next->got_entries == NULL)
2589 return FALSE;
2590 g->next->bfd2got = NULL;
2591 }
2592 else
2593 g->next = got_per_bfd_arg.primary;
2594 g->next->next = got_per_bfd_arg.current;
2595
2596 /* GG is now the master GOT, and G is the primary GOT. */
2597 gg = g;
2598 g = g->next;
2599
2600 /* Map the output bfd to the primary got. That's what we're going
2601 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2602 didn't mark in check_relocs, and we want a quick way to find it.
2603 We can't just use gg->next because we're going to reverse the
2604 list. */
2605 {
2606 struct mips_elf_bfd2got_hash *bfdgot;
2607 void **bfdgotp;
2608
2609 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2610 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2611
2612 if (bfdgot == NULL)
2613 return FALSE;
2614
2615 bfdgot->bfd = abfd;
2616 bfdgot->g = g;
2617 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2618
2619 BFD_ASSERT (*bfdgotp == NULL);
2620 *bfdgotp = bfdgot;
2621 }
2622
2623 /* The IRIX dynamic linker requires every symbol that is referenced
2624 in a dynamic relocation to be present in the primary GOT, so
2625 arrange for them to appear after those that are actually
2626 referenced.
2627
2628 GNU/Linux could very well do without it, but it would slow down
2629 the dynamic linker, since it would have to resolve every dynamic
2630 symbol referenced in other GOTs more than once, without help from
2631 the cache. Also, knowing that every external symbol has a GOT
2632 helps speed up the resolution of local symbols too, so GNU/Linux
2633 follows IRIX's practice.
2634
2635 The number 2 is used by mips_elf_sort_hash_table_f to count
2636 global GOT symbols that are unreferenced in the primary GOT, with
2637 an initial dynamic index computed from gg->assigned_gotno, where
2638 the number of unreferenced global entries in the primary GOT is
2639 preserved. */
2640 if (1)
2641 {
2642 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2643 g->global_gotno = gg->global_gotno;
2644 set_got_offset_arg.value = 2;
2645 }
2646 else
2647 {
2648 /* This could be used for dynamic linkers that don't optimize
2649 symbol resolution while applying relocations so as to use
2650 primary GOT entries or assuming the symbol is locally-defined.
2651 With this code, we assign lower dynamic indices to global
2652 symbols that are not referenced in the primary GOT, so that
2653 their entries can be omitted. */
2654 gg->assigned_gotno = 0;
2655 set_got_offset_arg.value = -1;
2656 }
2657
2658 /* Reorder dynamic symbols as described above (which behavior
2659 depends on the setting of VALUE). */
2660 set_got_offset_arg.g = NULL;
2661 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2662 &set_got_offset_arg);
2663 set_got_offset_arg.value = 1;
2664 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2665 &set_got_offset_arg);
2666 if (! mips_elf_sort_hash_table (info, 1))
2667 return FALSE;
2668
2669 /* Now go through the GOTs assigning them offset ranges.
2670 [assigned_gotno, local_gotno[ will be set to the range of local
2671 entries in each GOT. We can then compute the end of a GOT by
2672 adding local_gotno to global_gotno. We reverse the list and make
2673 it circular since then we'll be able to quickly compute the
2674 beginning of a GOT, by computing the end of its predecessor. To
2675 avoid special cases for the primary GOT, while still preserving
2676 assertions that are valid for both single- and multi-got links,
2677 we arrange for the main got struct to have the right number of
2678 global entries, but set its local_gotno such that the initial
2679 offset of the primary GOT is zero. Remember that the primary GOT
2680 will become the last item in the circular linked list, so it
2681 points back to the master GOT. */
2682 gg->local_gotno = -g->global_gotno;
2683 gg->global_gotno = g->global_gotno;
2684 assign = 0;
2685 gg->next = gg;
2686
2687 do
2688 {
2689 struct mips_got_info *gn;
2690
2691 assign += MIPS_RESERVED_GOTNO;
2692 g->assigned_gotno = assign;
2693 g->local_gotno += assign + pages;
2694 assign = g->local_gotno + g->global_gotno;
2695
2696 /* Take g out of the direct list, and push it onto the reversed
2697 list that gg points to. */
2698 gn = g->next;
2699 g->next = gg->next;
2700 gg->next = g;
2701 g = gn;
2702
2703 /* Mark global symbols in every non-primary GOT as ineligible for
2704 stubs. */
2705 if (g)
2706 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2707 }
2708 while (g);
2709
2710 got->_raw_size = (gg->next->local_gotno
2711 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2712
2713 return TRUE;
2714 }
2715
2716 \f
2717 /* Returns the first relocation of type r_type found, beginning with
2718 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2719
2720 static const Elf_Internal_Rela *
2721 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2722 const Elf_Internal_Rela *relocation,
2723 const Elf_Internal_Rela *relend)
2724 {
2725 while (relocation < relend)
2726 {
2727 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2728 return relocation;
2729
2730 ++relocation;
2731 }
2732
2733 /* We didn't find it. */
2734 bfd_set_error (bfd_error_bad_value);
2735 return NULL;
2736 }
2737
2738 /* Return whether a relocation is against a local symbol. */
2739
2740 static bfd_boolean
2741 mips_elf_local_relocation_p (bfd *input_bfd,
2742 const Elf_Internal_Rela *relocation,
2743 asection **local_sections,
2744 bfd_boolean check_forced)
2745 {
2746 unsigned long r_symndx;
2747 Elf_Internal_Shdr *symtab_hdr;
2748 struct mips_elf_link_hash_entry *h;
2749 size_t extsymoff;
2750
2751 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2752 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2753 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2754
2755 if (r_symndx < extsymoff)
2756 return TRUE;
2757 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2758 return TRUE;
2759
2760 if (check_forced)
2761 {
2762 /* Look up the hash table to check whether the symbol
2763 was forced local. */
2764 h = (struct mips_elf_link_hash_entry *)
2765 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2766 /* Find the real hash-table entry for this symbol. */
2767 while (h->root.root.type == bfd_link_hash_indirect
2768 || h->root.root.type == bfd_link_hash_warning)
2769 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2770 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2771 return TRUE;
2772 }
2773
2774 return FALSE;
2775 }
2776 \f
2777 /* Sign-extend VALUE, which has the indicated number of BITS. */
2778
2779 bfd_vma
2780 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2781 {
2782 if (value & ((bfd_vma) 1 << (bits - 1)))
2783 /* VALUE is negative. */
2784 value |= ((bfd_vma) - 1) << bits;
2785
2786 return value;
2787 }
2788
2789 /* Return non-zero if the indicated VALUE has overflowed the maximum
2790 range expressible by a signed number with the indicated number of
2791 BITS. */
2792
2793 static bfd_boolean
2794 mips_elf_overflow_p (bfd_vma value, int bits)
2795 {
2796 bfd_signed_vma svalue = (bfd_signed_vma) value;
2797
2798 if (svalue > (1 << (bits - 1)) - 1)
2799 /* The value is too big. */
2800 return TRUE;
2801 else if (svalue < -(1 << (bits - 1)))
2802 /* The value is too small. */
2803 return TRUE;
2804
2805 /* All is well. */
2806 return FALSE;
2807 }
2808
2809 /* Calculate the %high function. */
2810
2811 static bfd_vma
2812 mips_elf_high (bfd_vma value)
2813 {
2814 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2815 }
2816
2817 /* Calculate the %higher function. */
2818
2819 static bfd_vma
2820 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2821 {
2822 #ifdef BFD64
2823 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2824 #else
2825 abort ();
2826 return MINUS_ONE;
2827 #endif
2828 }
2829
2830 /* Calculate the %highest function. */
2831
2832 static bfd_vma
2833 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2834 {
2835 #ifdef BFD64
2836 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2837 #else
2838 abort ();
2839 return MINUS_ONE;
2840 #endif
2841 }
2842 \f
2843 /* Create the .compact_rel section. */
2844
2845 static bfd_boolean
2846 mips_elf_create_compact_rel_section
2847 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2848 {
2849 flagword flags;
2850 register asection *s;
2851
2852 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2853 {
2854 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2855 | SEC_READONLY);
2856
2857 s = bfd_make_section (abfd, ".compact_rel");
2858 if (s == NULL
2859 || ! bfd_set_section_flags (abfd, s, flags)
2860 || ! bfd_set_section_alignment (abfd, s,
2861 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2862 return FALSE;
2863
2864 s->_raw_size = sizeof (Elf32_External_compact_rel);
2865 }
2866
2867 return TRUE;
2868 }
2869
2870 /* Create the .got section to hold the global offset table. */
2871
2872 static bfd_boolean
2873 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2874 bfd_boolean maybe_exclude)
2875 {
2876 flagword flags;
2877 register asection *s;
2878 struct elf_link_hash_entry *h;
2879 struct bfd_link_hash_entry *bh;
2880 struct mips_got_info *g;
2881 bfd_size_type amt;
2882
2883 /* This function may be called more than once. */
2884 s = mips_elf_got_section (abfd, TRUE);
2885 if (s)
2886 {
2887 if (! maybe_exclude)
2888 s->flags &= ~SEC_EXCLUDE;
2889 return TRUE;
2890 }
2891
2892 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2893 | SEC_LINKER_CREATED);
2894
2895 if (maybe_exclude)
2896 flags |= SEC_EXCLUDE;
2897
2898 /* We have to use an alignment of 2**4 here because this is hardcoded
2899 in the function stub generation and in the linker script. */
2900 s = bfd_make_section (abfd, ".got");
2901 if (s == NULL
2902 || ! bfd_set_section_flags (abfd, s, flags)
2903 || ! bfd_set_section_alignment (abfd, s, 4))
2904 return FALSE;
2905
2906 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2907 linker script because we don't want to define the symbol if we
2908 are not creating a global offset table. */
2909 bh = NULL;
2910 if (! (_bfd_generic_link_add_one_symbol
2911 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2912 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2913 return FALSE;
2914
2915 h = (struct elf_link_hash_entry *) bh;
2916 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2917 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2918 h->type = STT_OBJECT;
2919
2920 if (info->shared
2921 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2922 return FALSE;
2923
2924 amt = sizeof (struct mips_got_info);
2925 g = bfd_alloc (abfd, amt);
2926 if (g == NULL)
2927 return FALSE;
2928 g->global_gotsym = NULL;
2929 g->global_gotno = 0;
2930 g->local_gotno = MIPS_RESERVED_GOTNO;
2931 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2932 g->bfd2got = NULL;
2933 g->next = NULL;
2934 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2935 mips_elf_got_entry_eq, NULL);
2936 if (g->got_entries == NULL)
2937 return FALSE;
2938 mips_elf_section_data (s)->u.got_info = g;
2939 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2940 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2941
2942 return TRUE;
2943 }
2944 \f
2945 /* Calculate the value produced by the RELOCATION (which comes from
2946 the INPUT_BFD). The ADDEND is the addend to use for this
2947 RELOCATION; RELOCATION->R_ADDEND is ignored.
2948
2949 The result of the relocation calculation is stored in VALUEP.
2950 REQUIRE_JALXP indicates whether or not the opcode used with this
2951 relocation must be JALX.
2952
2953 This function returns bfd_reloc_continue if the caller need take no
2954 further action regarding this relocation, bfd_reloc_notsupported if
2955 something goes dramatically wrong, bfd_reloc_overflow if an
2956 overflow occurs, and bfd_reloc_ok to indicate success. */
2957
2958 static bfd_reloc_status_type
2959 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2960 asection *input_section,
2961 struct bfd_link_info *info,
2962 const Elf_Internal_Rela *relocation,
2963 bfd_vma addend, reloc_howto_type *howto,
2964 Elf_Internal_Sym *local_syms,
2965 asection **local_sections, bfd_vma *valuep,
2966 const char **namep, bfd_boolean *require_jalxp,
2967 bfd_boolean save_addend)
2968 {
2969 /* The eventual value we will return. */
2970 bfd_vma value;
2971 /* The address of the symbol against which the relocation is
2972 occurring. */
2973 bfd_vma symbol = 0;
2974 /* The final GP value to be used for the relocatable, executable, or
2975 shared object file being produced. */
2976 bfd_vma gp = MINUS_ONE;
2977 /* The place (section offset or address) of the storage unit being
2978 relocated. */
2979 bfd_vma p;
2980 /* The value of GP used to create the relocatable object. */
2981 bfd_vma gp0 = MINUS_ONE;
2982 /* The offset into the global offset table at which the address of
2983 the relocation entry symbol, adjusted by the addend, resides
2984 during execution. */
2985 bfd_vma g = MINUS_ONE;
2986 /* The section in which the symbol referenced by the relocation is
2987 located. */
2988 asection *sec = NULL;
2989 struct mips_elf_link_hash_entry *h = NULL;
2990 /* TRUE if the symbol referred to by this relocation is a local
2991 symbol. */
2992 bfd_boolean local_p, was_local_p;
2993 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2994 bfd_boolean gp_disp_p = FALSE;
2995 Elf_Internal_Shdr *symtab_hdr;
2996 size_t extsymoff;
2997 unsigned long r_symndx;
2998 int r_type;
2999 /* TRUE if overflow occurred during the calculation of the
3000 relocation value. */
3001 bfd_boolean overflowed_p;
3002 /* TRUE if this relocation refers to a MIPS16 function. */
3003 bfd_boolean target_is_16_bit_code_p = FALSE;
3004
3005 /* Parse the relocation. */
3006 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3007 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3008 p = (input_section->output_section->vma
3009 + input_section->output_offset
3010 + relocation->r_offset);
3011
3012 /* Assume that there will be no overflow. */
3013 overflowed_p = FALSE;
3014
3015 /* Figure out whether or not the symbol is local, and get the offset
3016 used in the array of hash table entries. */
3017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3018 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3019 local_sections, FALSE);
3020 was_local_p = local_p;
3021 if (! elf_bad_symtab (input_bfd))
3022 extsymoff = symtab_hdr->sh_info;
3023 else
3024 {
3025 /* The symbol table does not follow the rule that local symbols
3026 must come before globals. */
3027 extsymoff = 0;
3028 }
3029
3030 /* Figure out the value of the symbol. */
3031 if (local_p)
3032 {
3033 Elf_Internal_Sym *sym;
3034
3035 sym = local_syms + r_symndx;
3036 sec = local_sections[r_symndx];
3037
3038 symbol = sec->output_section->vma + sec->output_offset;
3039 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3040 || (sec->flags & SEC_MERGE))
3041 symbol += sym->st_value;
3042 if ((sec->flags & SEC_MERGE)
3043 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3044 {
3045 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3046 addend -= symbol;
3047 addend += sec->output_section->vma + sec->output_offset;
3048 }
3049
3050 /* MIPS16 text labels should be treated as odd. */
3051 if (sym->st_other == STO_MIPS16)
3052 ++symbol;
3053
3054 /* Record the name of this symbol, for our caller. */
3055 *namep = bfd_elf_string_from_elf_section (input_bfd,
3056 symtab_hdr->sh_link,
3057 sym->st_name);
3058 if (*namep == '\0')
3059 *namep = bfd_section_name (input_bfd, sec);
3060
3061 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3062 }
3063 else
3064 {
3065 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3066
3067 /* For global symbols we look up the symbol in the hash-table. */
3068 h = ((struct mips_elf_link_hash_entry *)
3069 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3070 /* Find the real hash-table entry for this symbol. */
3071 while (h->root.root.type == bfd_link_hash_indirect
3072 || h->root.root.type == bfd_link_hash_warning)
3073 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3074
3075 /* Record the name of this symbol, for our caller. */
3076 *namep = h->root.root.root.string;
3077
3078 /* See if this is the special _gp_disp symbol. Note that such a
3079 symbol must always be a global symbol. */
3080 if (strcmp (*namep, "_gp_disp") == 0
3081 && ! NEWABI_P (input_bfd))
3082 {
3083 /* Relocations against _gp_disp are permitted only with
3084 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3085 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3086 return bfd_reloc_notsupported;
3087
3088 gp_disp_p = TRUE;
3089 }
3090 /* If this symbol is defined, calculate its address. Note that
3091 _gp_disp is a magic symbol, always implicitly defined by the
3092 linker, so it's inappropriate to check to see whether or not
3093 its defined. */
3094 else if ((h->root.root.type == bfd_link_hash_defined
3095 || h->root.root.type == bfd_link_hash_defweak)
3096 && h->root.root.u.def.section)
3097 {
3098 sec = h->root.root.u.def.section;
3099 if (sec->output_section)
3100 symbol = (h->root.root.u.def.value
3101 + sec->output_section->vma
3102 + sec->output_offset);
3103 else
3104 symbol = h->root.root.u.def.value;
3105 }
3106 else if (h->root.root.type == bfd_link_hash_undefweak)
3107 /* We allow relocations against undefined weak symbols, giving
3108 it the value zero, so that you can undefined weak functions
3109 and check to see if they exist by looking at their
3110 addresses. */
3111 symbol = 0;
3112 else if (info->unresolved_syms_in_objects == RM_IGNORE
3113 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3114 symbol = 0;
3115 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3116 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
3117 {
3118 /* If this is a dynamic link, we should have created a
3119 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3120 in in _bfd_mips_elf_create_dynamic_sections.
3121 Otherwise, we should define the symbol with a value of 0.
3122 FIXME: It should probably get into the symbol table
3123 somehow as well. */
3124 BFD_ASSERT (! info->shared);
3125 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3126 symbol = 0;
3127 }
3128 else
3129 {
3130 if (! ((*info->callbacks->undefined_symbol)
3131 (info, h->root.root.root.string, input_bfd,
3132 input_section, relocation->r_offset,
3133 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3134 || ELF_ST_VISIBILITY (h->root.other))))
3135 return bfd_reloc_undefined;
3136 symbol = 0;
3137 }
3138
3139 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3140 }
3141
3142 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3143 need to redirect the call to the stub, unless we're already *in*
3144 a stub. */
3145 if (r_type != R_MIPS16_26 && !info->relocatable
3146 && ((h != NULL && h->fn_stub != NULL)
3147 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3148 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3149 && !mips_elf_stub_section_p (input_bfd, input_section))
3150 {
3151 /* This is a 32- or 64-bit call to a 16-bit function. We should
3152 have already noticed that we were going to need the
3153 stub. */
3154 if (local_p)
3155 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3156 else
3157 {
3158 BFD_ASSERT (h->need_fn_stub);
3159 sec = h->fn_stub;
3160 }
3161
3162 symbol = sec->output_section->vma + sec->output_offset;
3163 }
3164 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3165 need to redirect the call to the stub. */
3166 else if (r_type == R_MIPS16_26 && !info->relocatable
3167 && h != NULL
3168 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3169 && !target_is_16_bit_code_p)
3170 {
3171 /* If both call_stub and call_fp_stub are defined, we can figure
3172 out which one to use by seeing which one appears in the input
3173 file. */
3174 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3175 {
3176 asection *o;
3177
3178 sec = NULL;
3179 for (o = input_bfd->sections; o != NULL; o = o->next)
3180 {
3181 if (strncmp (bfd_get_section_name (input_bfd, o),
3182 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3183 {
3184 sec = h->call_fp_stub;
3185 break;
3186 }
3187 }
3188 if (sec == NULL)
3189 sec = h->call_stub;
3190 }
3191 else if (h->call_stub != NULL)
3192 sec = h->call_stub;
3193 else
3194 sec = h->call_fp_stub;
3195
3196 BFD_ASSERT (sec->_raw_size > 0);
3197 symbol = sec->output_section->vma + sec->output_offset;
3198 }
3199
3200 /* Calls from 16-bit code to 32-bit code and vice versa require the
3201 special jalx instruction. */
3202 *require_jalxp = (!info->relocatable
3203 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3204 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3205
3206 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3207 local_sections, TRUE);
3208
3209 /* If we haven't already determined the GOT offset, or the GP value,
3210 and we're going to need it, get it now. */
3211 switch (r_type)
3212 {
3213 case R_MIPS_GOT_PAGE:
3214 case R_MIPS_GOT_OFST:
3215 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3216 bind locally. */
3217 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3218 if (local_p || r_type == R_MIPS_GOT_OFST)
3219 break;
3220 /* Fall through. */
3221
3222 case R_MIPS_CALL16:
3223 case R_MIPS_GOT16:
3224 case R_MIPS_GOT_DISP:
3225 case R_MIPS_GOT_HI16:
3226 case R_MIPS_CALL_HI16:
3227 case R_MIPS_GOT_LO16:
3228 case R_MIPS_CALL_LO16:
3229 /* Find the index into the GOT where this value is located. */
3230 if (!local_p)
3231 {
3232 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3233 GOT_PAGE relocation that decays to GOT_DISP because the
3234 symbol turns out to be global. The addend is then added
3235 as GOT_OFST. */
3236 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3237 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3238 input_bfd,
3239 (struct elf_link_hash_entry *) h);
3240 if (! elf_hash_table(info)->dynamic_sections_created
3241 || (info->shared
3242 && (info->symbolic || h->root.dynindx == -1)
3243 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3244 {
3245 /* This is a static link or a -Bsymbolic link. The
3246 symbol is defined locally, or was forced to be local.
3247 We must initialize this entry in the GOT. */
3248 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3249 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3250 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3251 }
3252 }
3253 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3254 /* There's no need to create a local GOT entry here; the
3255 calculation for a local GOT16 entry does not involve G. */
3256 break;
3257 else
3258 {
3259 g = mips_elf_local_got_index (abfd, input_bfd,
3260 info, symbol + addend);
3261 if (g == MINUS_ONE)
3262 return bfd_reloc_outofrange;
3263 }
3264
3265 /* Convert GOT indices to actual offsets. */
3266 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3267 abfd, input_bfd, g);
3268 break;
3269
3270 case R_MIPS_HI16:
3271 case R_MIPS_LO16:
3272 case R_MIPS16_GPREL:
3273 case R_MIPS_GPREL16:
3274 case R_MIPS_GPREL32:
3275 case R_MIPS_LITERAL:
3276 gp0 = _bfd_get_gp_value (input_bfd);
3277 gp = _bfd_get_gp_value (abfd);
3278 if (elf_hash_table (info)->dynobj)
3279 gp += mips_elf_adjust_gp (abfd,
3280 mips_elf_got_info
3281 (elf_hash_table (info)->dynobj, NULL),
3282 input_bfd);
3283 break;
3284
3285 default:
3286 break;
3287 }
3288
3289 /* Figure out what kind of relocation is being performed. */
3290 switch (r_type)
3291 {
3292 case R_MIPS_NONE:
3293 return bfd_reloc_continue;
3294
3295 case R_MIPS_16:
3296 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3297 overflowed_p = mips_elf_overflow_p (value, 16);
3298 break;
3299
3300 case R_MIPS_32:
3301 case R_MIPS_REL32:
3302 case R_MIPS_64:
3303 if ((info->shared
3304 || (elf_hash_table (info)->dynamic_sections_created
3305 && h != NULL
3306 && ((h->root.elf_link_hash_flags
3307 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3308 && ((h->root.elf_link_hash_flags
3309 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3310 && r_symndx != 0
3311 && (input_section->flags & SEC_ALLOC) != 0)
3312 {
3313 /* If we're creating a shared library, or this relocation is
3314 against a symbol in a shared library, then we can't know
3315 where the symbol will end up. So, we create a relocation
3316 record in the output, and leave the job up to the dynamic
3317 linker. */
3318 value = addend;
3319 if (!mips_elf_create_dynamic_relocation (abfd,
3320 info,
3321 relocation,
3322 h,
3323 sec,
3324 symbol,
3325 &value,
3326 input_section))
3327 return bfd_reloc_undefined;
3328 }
3329 else
3330 {
3331 if (r_type != R_MIPS_REL32)
3332 value = symbol + addend;
3333 else
3334 value = addend;
3335 }
3336 value &= howto->dst_mask;
3337 break;
3338
3339 case R_MIPS_PC32:
3340 value = symbol + addend - p;
3341 value &= howto->dst_mask;
3342 break;
3343
3344 case R_MIPS_GNU_REL16_S2:
3345 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3346 overflowed_p = mips_elf_overflow_p (value, 18);
3347 value = (value >> 2) & howto->dst_mask;
3348 break;
3349
3350 case R_MIPS16_26:
3351 /* The calculation for R_MIPS16_26 is just the same as for an
3352 R_MIPS_26. It's only the storage of the relocated field into
3353 the output file that's different. That's handled in
3354 mips_elf_perform_relocation. So, we just fall through to the
3355 R_MIPS_26 case here. */
3356 case R_MIPS_26:
3357 if (local_p)
3358 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3359 else
3360 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3361 value &= howto->dst_mask;
3362 break;
3363
3364 case R_MIPS_HI16:
3365 if (!gp_disp_p)
3366 {
3367 value = mips_elf_high (addend + symbol);
3368 value &= howto->dst_mask;
3369 }
3370 else
3371 {
3372 value = mips_elf_high (addend + gp - p);
3373 overflowed_p = mips_elf_overflow_p (value, 16);
3374 }
3375 break;
3376
3377 case R_MIPS_LO16:
3378 if (!gp_disp_p)
3379 value = (symbol + addend) & howto->dst_mask;
3380 else
3381 {
3382 value = addend + gp - p + 4;
3383 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3384 for overflow. But, on, say, IRIX5, relocations against
3385 _gp_disp are normally generated from the .cpload
3386 pseudo-op. It generates code that normally looks like
3387 this:
3388
3389 lui $gp,%hi(_gp_disp)
3390 addiu $gp,$gp,%lo(_gp_disp)
3391 addu $gp,$gp,$t9
3392
3393 Here $t9 holds the address of the function being called,
3394 as required by the MIPS ELF ABI. The R_MIPS_LO16
3395 relocation can easily overflow in this situation, but the
3396 R_MIPS_HI16 relocation will handle the overflow.
3397 Therefore, we consider this a bug in the MIPS ABI, and do
3398 not check for overflow here. */
3399 }
3400 break;
3401
3402 case R_MIPS_LITERAL:
3403 /* Because we don't merge literal sections, we can handle this
3404 just like R_MIPS_GPREL16. In the long run, we should merge
3405 shared literals, and then we will need to additional work
3406 here. */
3407
3408 /* Fall through. */
3409
3410 case R_MIPS16_GPREL:
3411 /* The R_MIPS16_GPREL performs the same calculation as
3412 R_MIPS_GPREL16, but stores the relocated bits in a different
3413 order. We don't need to do anything special here; the
3414 differences are handled in mips_elf_perform_relocation. */
3415 case R_MIPS_GPREL16:
3416 /* Only sign-extend the addend if it was extracted from the
3417 instruction. If the addend was separate, leave it alone,
3418 otherwise we may lose significant bits. */
3419 if (howto->partial_inplace)
3420 addend = _bfd_mips_elf_sign_extend (addend, 16);
3421 value = symbol + addend - gp;
3422 /* If the symbol was local, any earlier relocatable links will
3423 have adjusted its addend with the gp offset, so compensate
3424 for that now. Don't do it for symbols forced local in this
3425 link, though, since they won't have had the gp offset applied
3426 to them before. */
3427 if (was_local_p)
3428 value += gp0;
3429 overflowed_p = mips_elf_overflow_p (value, 16);
3430 break;
3431
3432 case R_MIPS_GOT16:
3433 case R_MIPS_CALL16:
3434 if (local_p)
3435 {
3436 bfd_boolean forced;
3437
3438 /* The special case is when the symbol is forced to be local. We
3439 need the full address in the GOT since no R_MIPS_LO16 relocation
3440 follows. */
3441 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3442 local_sections, FALSE);
3443 value = mips_elf_got16_entry (abfd, input_bfd, info,
3444 symbol + addend, forced);
3445 if (value == MINUS_ONE)
3446 return bfd_reloc_outofrange;
3447 value
3448 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3449 abfd, input_bfd, value);
3450 overflowed_p = mips_elf_overflow_p (value, 16);
3451 break;
3452 }
3453
3454 /* Fall through. */
3455
3456 case R_MIPS_GOT_DISP:
3457 got_disp:
3458 value = g;
3459 overflowed_p = mips_elf_overflow_p (value, 16);
3460 break;
3461
3462 case R_MIPS_GPREL32:
3463 value = (addend + symbol + gp0 - gp);
3464 if (!save_addend)
3465 value &= howto->dst_mask;
3466 break;
3467
3468 case R_MIPS_PC16:
3469 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3470 overflowed_p = mips_elf_overflow_p (value, 16);
3471 break;
3472
3473 case R_MIPS_GOT_HI16:
3474 case R_MIPS_CALL_HI16:
3475 /* We're allowed to handle these two relocations identically.
3476 The dynamic linker is allowed to handle the CALL relocations
3477 differently by creating a lazy evaluation stub. */
3478 value = g;
3479 value = mips_elf_high (value);
3480 value &= howto->dst_mask;
3481 break;
3482
3483 case R_MIPS_GOT_LO16:
3484 case R_MIPS_CALL_LO16:
3485 value = g & howto->dst_mask;
3486 break;
3487
3488 case R_MIPS_GOT_PAGE:
3489 /* GOT_PAGE relocations that reference non-local symbols decay
3490 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3491 0. */
3492 if (! local_p)
3493 goto got_disp;
3494 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3495 if (value == MINUS_ONE)
3496 return bfd_reloc_outofrange;
3497 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3498 abfd, input_bfd, value);
3499 overflowed_p = mips_elf_overflow_p (value, 16);
3500 break;
3501
3502 case R_MIPS_GOT_OFST:
3503 if (local_p)
3504 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3505 else
3506 value = addend;
3507 overflowed_p = mips_elf_overflow_p (value, 16);
3508 break;
3509
3510 case R_MIPS_SUB:
3511 value = symbol - addend;
3512 value &= howto->dst_mask;
3513 break;
3514
3515 case R_MIPS_HIGHER:
3516 value = mips_elf_higher (addend + symbol);
3517 value &= howto->dst_mask;
3518 break;
3519
3520 case R_MIPS_HIGHEST:
3521 value = mips_elf_highest (addend + symbol);
3522 value &= howto->dst_mask;
3523 break;
3524
3525 case R_MIPS_SCN_DISP:
3526 value = symbol + addend - sec->output_offset;
3527 value &= howto->dst_mask;
3528 break;
3529
3530 case R_MIPS_PJUMP:
3531 case R_MIPS_JALR:
3532 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3533 hint; we could improve performance by honoring that hint. */
3534 return bfd_reloc_continue;
3535
3536 case R_MIPS_GNU_VTINHERIT:
3537 case R_MIPS_GNU_VTENTRY:
3538 /* We don't do anything with these at present. */
3539 return bfd_reloc_continue;
3540
3541 default:
3542 /* An unrecognized relocation type. */
3543 return bfd_reloc_notsupported;
3544 }
3545
3546 /* Store the VALUE for our caller. */
3547 *valuep = value;
3548 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3549 }
3550
3551 /* Obtain the field relocated by RELOCATION. */
3552
3553 static bfd_vma
3554 mips_elf_obtain_contents (reloc_howto_type *howto,
3555 const Elf_Internal_Rela *relocation,
3556 bfd *input_bfd, bfd_byte *contents)
3557 {
3558 bfd_vma x;
3559 bfd_byte *location = contents + relocation->r_offset;
3560
3561 /* Obtain the bytes. */
3562 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3563
3564 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3565 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3566 && bfd_little_endian (input_bfd))
3567 /* The two 16-bit words will be reversed on a little-endian system.
3568 See mips_elf_perform_relocation for more details. */
3569 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3570
3571 return x;
3572 }
3573
3574 /* It has been determined that the result of the RELOCATION is the
3575 VALUE. Use HOWTO to place VALUE into the output file at the
3576 appropriate position. The SECTION is the section to which the
3577 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3578 for the relocation must be either JAL or JALX, and it is
3579 unconditionally converted to JALX.
3580
3581 Returns FALSE if anything goes wrong. */
3582
3583 static bfd_boolean
3584 mips_elf_perform_relocation (struct bfd_link_info *info,
3585 reloc_howto_type *howto,
3586 const Elf_Internal_Rela *relocation,
3587 bfd_vma value, bfd *input_bfd,
3588 asection *input_section, bfd_byte *contents,
3589 bfd_boolean require_jalx)
3590 {
3591 bfd_vma x;
3592 bfd_byte *location;
3593 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3594
3595 /* Figure out where the relocation is occurring. */
3596 location = contents + relocation->r_offset;
3597
3598 /* Obtain the current value. */
3599 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3600
3601 /* Clear the field we are setting. */
3602 x &= ~howto->dst_mask;
3603
3604 /* If this is the R_MIPS16_26 relocation, we must store the
3605 value in a funny way. */
3606 if (r_type == R_MIPS16_26)
3607 {
3608 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3609 Most mips16 instructions are 16 bits, but these instructions
3610 are 32 bits.
3611
3612 The format of these instructions is:
3613
3614 +--------------+--------------------------------+
3615 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3616 +--------------+--------------------------------+
3617 ! Immediate 15:0 !
3618 +-----------------------------------------------+
3619
3620 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3621 Note that the immediate value in the first word is swapped.
3622
3623 When producing a relocatable object file, R_MIPS16_26 is
3624 handled mostly like R_MIPS_26. In particular, the addend is
3625 stored as a straight 26-bit value in a 32-bit instruction.
3626 (gas makes life simpler for itself by never adjusting a
3627 R_MIPS16_26 reloc to be against a section, so the addend is
3628 always zero). However, the 32 bit instruction is stored as 2
3629 16-bit values, rather than a single 32-bit value. In a
3630 big-endian file, the result is the same; in a little-endian
3631 file, the two 16-bit halves of the 32 bit value are swapped.
3632 This is so that a disassembler can recognize the jal
3633 instruction.
3634
3635 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3636 instruction stored as two 16-bit values. The addend A is the
3637 contents of the targ26 field. The calculation is the same as
3638 R_MIPS_26. When storing the calculated value, reorder the
3639 immediate value as shown above, and don't forget to store the
3640 value as two 16-bit values.
3641
3642 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3643 defined as
3644
3645 big-endian:
3646 +--------+----------------------+
3647 | | |
3648 | | targ26-16 |
3649 |31 26|25 0|
3650 +--------+----------------------+
3651
3652 little-endian:
3653 +----------+------+-------------+
3654 | | | |
3655 | sub1 | | sub2 |
3656 |0 9|10 15|16 31|
3657 +----------+--------------------+
3658 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3659 ((sub1 << 16) | sub2)).
3660
3661 When producing a relocatable object file, the calculation is
3662 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3663 When producing a fully linked file, the calculation is
3664 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3665 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3666
3667 if (!info->relocatable)
3668 /* Shuffle the bits according to the formula above. */
3669 value = (((value & 0x1f0000) << 5)
3670 | ((value & 0x3e00000) >> 5)
3671 | (value & 0xffff));
3672 }
3673 else if (r_type == R_MIPS16_GPREL)
3674 {
3675 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3676 mode. A typical instruction will have a format like this:
3677
3678 +--------------+--------------------------------+
3679 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3680 +--------------+--------------------------------+
3681 ! Major ! rx ! ry ! Imm 4:0 !
3682 +--------------+--------------------------------+
3683
3684 EXTEND is the five bit value 11110. Major is the instruction
3685 opcode.
3686
3687 This is handled exactly like R_MIPS_GPREL16, except that the
3688 addend is retrieved and stored as shown in this diagram; that
3689 is, the Imm fields above replace the V-rel16 field.
3690
3691 All we need to do here is shuffle the bits appropriately. As
3692 above, the two 16-bit halves must be swapped on a
3693 little-endian system. */
3694 value = (((value & 0x7e0) << 16)
3695 | ((value & 0xf800) << 5)
3696 | (value & 0x1f));
3697 }
3698
3699 /* Set the field. */
3700 x |= (value & howto->dst_mask);
3701
3702 /* If required, turn JAL into JALX. */
3703 if (require_jalx)
3704 {
3705 bfd_boolean ok;
3706 bfd_vma opcode = x >> 26;
3707 bfd_vma jalx_opcode;
3708
3709 /* Check to see if the opcode is already JAL or JALX. */
3710 if (r_type == R_MIPS16_26)
3711 {
3712 ok = ((opcode == 0x6) || (opcode == 0x7));
3713 jalx_opcode = 0x7;
3714 }
3715 else
3716 {
3717 ok = ((opcode == 0x3) || (opcode == 0x1d));
3718 jalx_opcode = 0x1d;
3719 }
3720
3721 /* If the opcode is not JAL or JALX, there's a problem. */
3722 if (!ok)
3723 {
3724 (*_bfd_error_handler)
3725 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3726 bfd_archive_filename (input_bfd),
3727 input_section->name,
3728 (unsigned long) relocation->r_offset);
3729 bfd_set_error (bfd_error_bad_value);
3730 return FALSE;
3731 }
3732
3733 /* Make this the JALX opcode. */
3734 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3735 }
3736
3737 /* Swap the high- and low-order 16 bits on little-endian systems
3738 when doing a MIPS16 relocation. */
3739 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3740 && bfd_little_endian (input_bfd))
3741 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3742
3743 /* Put the value into the output. */
3744 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3745 return TRUE;
3746 }
3747
3748 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3749
3750 static bfd_boolean
3751 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3752 {
3753 const char *name = bfd_get_section_name (abfd, section);
3754
3755 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3756 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3757 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3758 }
3759 \f
3760 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3761
3762 static void
3763 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3764 {
3765 asection *s;
3766
3767 s = mips_elf_rel_dyn_section (abfd, FALSE);
3768 BFD_ASSERT (s != NULL);
3769
3770 if (s->_raw_size == 0)
3771 {
3772 /* Make room for a null element. */
3773 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3774 ++s->reloc_count;
3775 }
3776 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3777 }
3778
3779 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3780 is the original relocation, which is now being transformed into a
3781 dynamic relocation. The ADDENDP is adjusted if necessary; the
3782 caller should store the result in place of the original addend. */
3783
3784 static bfd_boolean
3785 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3786 struct bfd_link_info *info,
3787 const Elf_Internal_Rela *rel,
3788 struct mips_elf_link_hash_entry *h,
3789 asection *sec, bfd_vma symbol,
3790 bfd_vma *addendp, asection *input_section)
3791 {
3792 Elf_Internal_Rela outrel[3];
3793 bfd_boolean skip;
3794 asection *sreloc;
3795 bfd *dynobj;
3796 int r_type;
3797
3798 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3799 dynobj = elf_hash_table (info)->dynobj;
3800 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3801 BFD_ASSERT (sreloc != NULL);
3802 BFD_ASSERT (sreloc->contents != NULL);
3803 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3804 < sreloc->_raw_size);
3805
3806 skip = FALSE;
3807 outrel[0].r_offset =
3808 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3809 outrel[1].r_offset =
3810 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3811 outrel[2].r_offset =
3812 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3813
3814 #if 0
3815 /* We begin by assuming that the offset for the dynamic relocation
3816 is the same as for the original relocation. We'll adjust this
3817 later to reflect the correct output offsets. */
3818 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3819 {
3820 outrel[1].r_offset = rel[1].r_offset;
3821 outrel[2].r_offset = rel[2].r_offset;
3822 }
3823 else
3824 {
3825 /* Except that in a stab section things are more complex.
3826 Because we compress stab information, the offset given in the
3827 relocation may not be the one we want; we must let the stabs
3828 machinery tell us the offset. */
3829 outrel[1].r_offset = outrel[0].r_offset;
3830 outrel[2].r_offset = outrel[0].r_offset;
3831 /* If we didn't need the relocation at all, this value will be
3832 -1. */
3833 if (outrel[0].r_offset == MINUS_ONE)
3834 skip = TRUE;
3835 }
3836 #endif
3837
3838 if (outrel[0].r_offset == MINUS_ONE)
3839 /* The relocation field has been deleted. */
3840 skip = TRUE;
3841 else if (outrel[0].r_offset == MINUS_TWO)
3842 {
3843 /* The relocation field has been converted into a relative value of
3844 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3845 the field to be fully relocated, so add in the symbol's value. */
3846 skip = TRUE;
3847 *addendp += symbol;
3848 }
3849
3850 /* If we've decided to skip this relocation, just output an empty
3851 record. Note that R_MIPS_NONE == 0, so that this call to memset
3852 is a way of setting R_TYPE to R_MIPS_NONE. */
3853 if (skip)
3854 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3855 else
3856 {
3857 long indx;
3858 bfd_boolean defined_p;
3859
3860 /* We must now calculate the dynamic symbol table index to use
3861 in the relocation. */
3862 if (h != NULL
3863 && (! info->symbolic || (h->root.elf_link_hash_flags
3864 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3865 /* h->root.dynindx may be -1 if this symbol was marked to
3866 become local. */
3867 && h->root.dynindx != -1)
3868 {
3869 indx = h->root.dynindx;
3870 if (SGI_COMPAT (output_bfd))
3871 defined_p = ((h->root.elf_link_hash_flags
3872 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3873 else
3874 /* ??? glibc's ld.so just adds the final GOT entry to the
3875 relocation field. It therefore treats relocs against
3876 defined symbols in the same way as relocs against
3877 undefined symbols. */
3878 defined_p = FALSE;
3879 }
3880 else
3881 {
3882 if (sec != NULL && bfd_is_abs_section (sec))
3883 indx = 0;
3884 else if (sec == NULL || sec->owner == NULL)
3885 {
3886 bfd_set_error (bfd_error_bad_value);
3887 return FALSE;
3888 }
3889 else
3890 {
3891 indx = elf_section_data (sec->output_section)->dynindx;
3892 if (indx == 0)
3893 abort ();
3894 }
3895
3896 /* Instead of generating a relocation using the section
3897 symbol, we may as well make it a fully relative
3898 relocation. We want to avoid generating relocations to
3899 local symbols because we used to generate them
3900 incorrectly, without adding the original symbol value,
3901 which is mandated by the ABI for section symbols. In
3902 order to give dynamic loaders and applications time to
3903 phase out the incorrect use, we refrain from emitting
3904 section-relative relocations. It's not like they're
3905 useful, after all. This should be a bit more efficient
3906 as well. */
3907 /* ??? Although this behavior is compatible with glibc's ld.so,
3908 the ABI says that relocations against STN_UNDEF should have
3909 a symbol value of 0. Irix rld honors this, so relocations
3910 against STN_UNDEF have no effect. */
3911 if (!SGI_COMPAT (output_bfd))
3912 indx = 0;
3913 defined_p = TRUE;
3914 }
3915
3916 /* If the relocation was previously an absolute relocation and
3917 this symbol will not be referred to by the relocation, we must
3918 adjust it by the value we give it in the dynamic symbol table.
3919 Otherwise leave the job up to the dynamic linker. */
3920 if (defined_p && r_type != R_MIPS_REL32)
3921 *addendp += symbol;
3922
3923 /* The relocation is always an REL32 relocation because we don't
3924 know where the shared library will wind up at load-time. */
3925 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3926 R_MIPS_REL32);
3927 /* For strict adherence to the ABI specification, we should
3928 generate a R_MIPS_64 relocation record by itself before the
3929 _REL32/_64 record as well, such that the addend is read in as
3930 a 64-bit value (REL32 is a 32-bit relocation, after all).
3931 However, since none of the existing ELF64 MIPS dynamic
3932 loaders seems to care, we don't waste space with these
3933 artificial relocations. If this turns out to not be true,
3934 mips_elf_allocate_dynamic_relocation() should be tweaked so
3935 as to make room for a pair of dynamic relocations per
3936 invocation if ABI_64_P, and here we should generate an
3937 additional relocation record with R_MIPS_64 by itself for a
3938 NULL symbol before this relocation record. */
3939 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3940 ABI_64_P (output_bfd)
3941 ? R_MIPS_64
3942 : R_MIPS_NONE);
3943 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3944
3945 /* Adjust the output offset of the relocation to reference the
3946 correct location in the output file. */
3947 outrel[0].r_offset += (input_section->output_section->vma
3948 + input_section->output_offset);
3949 outrel[1].r_offset += (input_section->output_section->vma
3950 + input_section->output_offset);
3951 outrel[2].r_offset += (input_section->output_section->vma
3952 + input_section->output_offset);
3953 }
3954
3955 /* Put the relocation back out. We have to use the special
3956 relocation outputter in the 64-bit case since the 64-bit
3957 relocation format is non-standard. */
3958 if (ABI_64_P (output_bfd))
3959 {
3960 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3961 (output_bfd, &outrel[0],
3962 (sreloc->contents
3963 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3964 }
3965 else
3966 bfd_elf32_swap_reloc_out
3967 (output_bfd, &outrel[0],
3968 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3969
3970 /* We've now added another relocation. */
3971 ++sreloc->reloc_count;
3972
3973 /* Make sure the output section is writable. The dynamic linker
3974 will be writing to it. */
3975 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3976 |= SHF_WRITE;
3977
3978 /* On IRIX5, make an entry of compact relocation info. */
3979 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3980 {
3981 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3982 bfd_byte *cr;
3983
3984 if (scpt)
3985 {
3986 Elf32_crinfo cptrel;
3987
3988 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3989 cptrel.vaddr = (rel->r_offset
3990 + input_section->output_section->vma
3991 + input_section->output_offset);
3992 if (r_type == R_MIPS_REL32)
3993 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3994 else
3995 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3996 mips_elf_set_cr_dist2to (cptrel, 0);
3997 cptrel.konst = *addendp;
3998
3999 cr = (scpt->contents
4000 + sizeof (Elf32_External_compact_rel));
4001 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4002 ((Elf32_External_crinfo *) cr
4003 + scpt->reloc_count));
4004 ++scpt->reloc_count;
4005 }
4006 }
4007
4008 return TRUE;
4009 }
4010 \f
4011 /* Return the MACH for a MIPS e_flags value. */
4012
4013 unsigned long
4014 _bfd_elf_mips_mach (flagword flags)
4015 {
4016 switch (flags & EF_MIPS_MACH)
4017 {
4018 case E_MIPS_MACH_3900:
4019 return bfd_mach_mips3900;
4020
4021 case E_MIPS_MACH_4010:
4022 return bfd_mach_mips4010;
4023
4024 case E_MIPS_MACH_4100:
4025 return bfd_mach_mips4100;
4026
4027 case E_MIPS_MACH_4111:
4028 return bfd_mach_mips4111;
4029
4030 case E_MIPS_MACH_4120:
4031 return bfd_mach_mips4120;
4032
4033 case E_MIPS_MACH_4650:
4034 return bfd_mach_mips4650;
4035
4036 case E_MIPS_MACH_5400:
4037 return bfd_mach_mips5400;
4038
4039 case E_MIPS_MACH_5500:
4040 return bfd_mach_mips5500;
4041
4042 case E_MIPS_MACH_SB1:
4043 return bfd_mach_mips_sb1;
4044
4045 default:
4046 switch (flags & EF_MIPS_ARCH)
4047 {
4048 default:
4049 case E_MIPS_ARCH_1:
4050 return bfd_mach_mips3000;
4051 break;
4052
4053 case E_MIPS_ARCH_2:
4054 return bfd_mach_mips6000;
4055 break;
4056
4057 case E_MIPS_ARCH_3:
4058 return bfd_mach_mips4000;
4059 break;
4060
4061 case E_MIPS_ARCH_4:
4062 return bfd_mach_mips8000;
4063 break;
4064
4065 case E_MIPS_ARCH_5:
4066 return bfd_mach_mips5;
4067 break;
4068
4069 case E_MIPS_ARCH_32:
4070 return bfd_mach_mipsisa32;
4071 break;
4072
4073 case E_MIPS_ARCH_64:
4074 return bfd_mach_mipsisa64;
4075 break;
4076
4077 case E_MIPS_ARCH_32R2:
4078 return bfd_mach_mipsisa32r2;
4079 break;
4080
4081 case E_MIPS_ARCH_64R2:
4082 return bfd_mach_mipsisa64r2;
4083 break;
4084 }
4085 }
4086
4087 return 0;
4088 }
4089
4090 /* Return printable name for ABI. */
4091
4092 static INLINE char *
4093 elf_mips_abi_name (bfd *abfd)
4094 {
4095 flagword flags;
4096
4097 flags = elf_elfheader (abfd)->e_flags;
4098 switch (flags & EF_MIPS_ABI)
4099 {
4100 case 0:
4101 if (ABI_N32_P (abfd))
4102 return "N32";
4103 else if (ABI_64_P (abfd))
4104 return "64";
4105 else
4106 return "none";
4107 case E_MIPS_ABI_O32:
4108 return "O32";
4109 case E_MIPS_ABI_O64:
4110 return "O64";
4111 case E_MIPS_ABI_EABI32:
4112 return "EABI32";
4113 case E_MIPS_ABI_EABI64:
4114 return "EABI64";
4115 default:
4116 return "unknown abi";
4117 }
4118 }
4119 \f
4120 /* MIPS ELF uses two common sections. One is the usual one, and the
4121 other is for small objects. All the small objects are kept
4122 together, and then referenced via the gp pointer, which yields
4123 faster assembler code. This is what we use for the small common
4124 section. This approach is copied from ecoff.c. */
4125 static asection mips_elf_scom_section;
4126 static asymbol mips_elf_scom_symbol;
4127 static asymbol *mips_elf_scom_symbol_ptr;
4128
4129 /* MIPS ELF also uses an acommon section, which represents an
4130 allocated common symbol which may be overridden by a
4131 definition in a shared library. */
4132 static asection mips_elf_acom_section;
4133 static asymbol mips_elf_acom_symbol;
4134 static asymbol *mips_elf_acom_symbol_ptr;
4135
4136 /* Handle the special MIPS section numbers that a symbol may use.
4137 This is used for both the 32-bit and the 64-bit ABI. */
4138
4139 void
4140 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4141 {
4142 elf_symbol_type *elfsym;
4143
4144 elfsym = (elf_symbol_type *) asym;
4145 switch (elfsym->internal_elf_sym.st_shndx)
4146 {
4147 case SHN_MIPS_ACOMMON:
4148 /* This section is used in a dynamically linked executable file.
4149 It is an allocated common section. The dynamic linker can
4150 either resolve these symbols to something in a shared
4151 library, or it can just leave them here. For our purposes,
4152 we can consider these symbols to be in a new section. */
4153 if (mips_elf_acom_section.name == NULL)
4154 {
4155 /* Initialize the acommon section. */
4156 mips_elf_acom_section.name = ".acommon";
4157 mips_elf_acom_section.flags = SEC_ALLOC;
4158 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4159 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4160 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4161 mips_elf_acom_symbol.name = ".acommon";
4162 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4163 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4164 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4165 }
4166 asym->section = &mips_elf_acom_section;
4167 break;
4168
4169 case SHN_COMMON:
4170 /* Common symbols less than the GP size are automatically
4171 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4172 if (asym->value > elf_gp_size (abfd)
4173 || IRIX_COMPAT (abfd) == ict_irix6)
4174 break;
4175 /* Fall through. */
4176 case SHN_MIPS_SCOMMON:
4177 if (mips_elf_scom_section.name == NULL)
4178 {
4179 /* Initialize the small common section. */
4180 mips_elf_scom_section.name = ".scommon";
4181 mips_elf_scom_section.flags = SEC_IS_COMMON;
4182 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4183 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4184 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4185 mips_elf_scom_symbol.name = ".scommon";
4186 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4187 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4188 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4189 }
4190 asym->section = &mips_elf_scom_section;
4191 asym->value = elfsym->internal_elf_sym.st_size;
4192 break;
4193
4194 case SHN_MIPS_SUNDEFINED:
4195 asym->section = bfd_und_section_ptr;
4196 break;
4197
4198 #if 0 /* for SGI_COMPAT */
4199 case SHN_MIPS_TEXT:
4200 asym->section = mips_elf_text_section_ptr;
4201 break;
4202
4203 case SHN_MIPS_DATA:
4204 asym->section = mips_elf_data_section_ptr;
4205 break;
4206 #endif
4207 }
4208 }
4209 \f
4210 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4211 relocations against two unnamed section symbols to resolve to the
4212 same address. For example, if we have code like:
4213
4214 lw $4,%got_disp(.data)($gp)
4215 lw $25,%got_disp(.text)($gp)
4216 jalr $25
4217
4218 then the linker will resolve both relocations to .data and the program
4219 will jump there rather than to .text.
4220
4221 We can work around this problem by giving names to local section symbols.
4222 This is also what the MIPSpro tools do. */
4223
4224 bfd_boolean
4225 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4226 {
4227 return SGI_COMPAT (abfd);
4228 }
4229 \f
4230 /* Work over a section just before writing it out. This routine is
4231 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4232 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4233 a better way. */
4234
4235 bfd_boolean
4236 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4237 {
4238 if (hdr->sh_type == SHT_MIPS_REGINFO
4239 && hdr->sh_size > 0)
4240 {
4241 bfd_byte buf[4];
4242
4243 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4244 BFD_ASSERT (hdr->contents == NULL);
4245
4246 if (bfd_seek (abfd,
4247 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4248 SEEK_SET) != 0)
4249 return FALSE;
4250 H_PUT_32 (abfd, elf_gp (abfd), buf);
4251 if (bfd_bwrite (buf, 4, abfd) != 4)
4252 return FALSE;
4253 }
4254
4255 if (hdr->sh_type == SHT_MIPS_OPTIONS
4256 && hdr->bfd_section != NULL
4257 && mips_elf_section_data (hdr->bfd_section) != NULL
4258 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4259 {
4260 bfd_byte *contents, *l, *lend;
4261
4262 /* We stored the section contents in the tdata field in the
4263 set_section_contents routine. We save the section contents
4264 so that we don't have to read them again.
4265 At this point we know that elf_gp is set, so we can look
4266 through the section contents to see if there is an
4267 ODK_REGINFO structure. */
4268
4269 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4270 l = contents;
4271 lend = contents + hdr->sh_size;
4272 while (l + sizeof (Elf_External_Options) <= lend)
4273 {
4274 Elf_Internal_Options intopt;
4275
4276 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4277 &intopt);
4278 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4279 {
4280 bfd_byte buf[8];
4281
4282 if (bfd_seek (abfd,
4283 (hdr->sh_offset
4284 + (l - contents)
4285 + sizeof (Elf_External_Options)
4286 + (sizeof (Elf64_External_RegInfo) - 8)),
4287 SEEK_SET) != 0)
4288 return FALSE;
4289 H_PUT_64 (abfd, elf_gp (abfd), buf);
4290 if (bfd_bwrite (buf, 8, abfd) != 8)
4291 return FALSE;
4292 }
4293 else if (intopt.kind == ODK_REGINFO)
4294 {
4295 bfd_byte buf[4];
4296
4297 if (bfd_seek (abfd,
4298 (hdr->sh_offset
4299 + (l - contents)
4300 + sizeof (Elf_External_Options)
4301 + (sizeof (Elf32_External_RegInfo) - 4)),
4302 SEEK_SET) != 0)
4303 return FALSE;
4304 H_PUT_32 (abfd, elf_gp (abfd), buf);
4305 if (bfd_bwrite (buf, 4, abfd) != 4)
4306 return FALSE;
4307 }
4308 l += intopt.size;
4309 }
4310 }
4311
4312 if (hdr->bfd_section != NULL)
4313 {
4314 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4315
4316 if (strcmp (name, ".sdata") == 0
4317 || strcmp (name, ".lit8") == 0
4318 || strcmp (name, ".lit4") == 0)
4319 {
4320 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4321 hdr->sh_type = SHT_PROGBITS;
4322 }
4323 else if (strcmp (name, ".sbss") == 0)
4324 {
4325 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4326 hdr->sh_type = SHT_NOBITS;
4327 }
4328 else if (strcmp (name, ".srdata") == 0)
4329 {
4330 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4331 hdr->sh_type = SHT_PROGBITS;
4332 }
4333 else if (strcmp (name, ".compact_rel") == 0)
4334 {
4335 hdr->sh_flags = 0;
4336 hdr->sh_type = SHT_PROGBITS;
4337 }
4338 else if (strcmp (name, ".rtproc") == 0)
4339 {
4340 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4341 {
4342 unsigned int adjust;
4343
4344 adjust = hdr->sh_size % hdr->sh_addralign;
4345 if (adjust != 0)
4346 hdr->sh_size += hdr->sh_addralign - adjust;
4347 }
4348 }
4349 }
4350
4351 return TRUE;
4352 }
4353
4354 /* Handle a MIPS specific section when reading an object file. This
4355 is called when elfcode.h finds a section with an unknown type.
4356 This routine supports both the 32-bit and 64-bit ELF ABI.
4357
4358 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4359 how to. */
4360
4361 bfd_boolean
4362 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4363 const char *name)
4364 {
4365 flagword flags = 0;
4366
4367 /* There ought to be a place to keep ELF backend specific flags, but
4368 at the moment there isn't one. We just keep track of the
4369 sections by their name, instead. Fortunately, the ABI gives
4370 suggested names for all the MIPS specific sections, so we will
4371 probably get away with this. */
4372 switch (hdr->sh_type)
4373 {
4374 case SHT_MIPS_LIBLIST:
4375 if (strcmp (name, ".liblist") != 0)
4376 return FALSE;
4377 break;
4378 case SHT_MIPS_MSYM:
4379 if (strcmp (name, ".msym") != 0)
4380 return FALSE;
4381 break;
4382 case SHT_MIPS_CONFLICT:
4383 if (strcmp (name, ".conflict") != 0)
4384 return FALSE;
4385 break;
4386 case SHT_MIPS_GPTAB:
4387 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4388 return FALSE;
4389 break;
4390 case SHT_MIPS_UCODE:
4391 if (strcmp (name, ".ucode") != 0)
4392 return FALSE;
4393 break;
4394 case SHT_MIPS_DEBUG:
4395 if (strcmp (name, ".mdebug") != 0)
4396 return FALSE;
4397 flags = SEC_DEBUGGING;
4398 break;
4399 case SHT_MIPS_REGINFO:
4400 if (strcmp (name, ".reginfo") != 0
4401 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4402 return FALSE;
4403 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4404 break;
4405 case SHT_MIPS_IFACE:
4406 if (strcmp (name, ".MIPS.interfaces") != 0)
4407 return FALSE;
4408 break;
4409 case SHT_MIPS_CONTENT:
4410 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4411 return FALSE;
4412 break;
4413 case SHT_MIPS_OPTIONS:
4414 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4415 return FALSE;
4416 break;
4417 case SHT_MIPS_DWARF:
4418 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4419 return FALSE;
4420 break;
4421 case SHT_MIPS_SYMBOL_LIB:
4422 if (strcmp (name, ".MIPS.symlib") != 0)
4423 return FALSE;
4424 break;
4425 case SHT_MIPS_EVENTS:
4426 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4427 && strncmp (name, ".MIPS.post_rel",
4428 sizeof ".MIPS.post_rel" - 1) != 0)
4429 return FALSE;
4430 break;
4431 default:
4432 return FALSE;
4433 }
4434
4435 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4436 return FALSE;
4437
4438 if (flags)
4439 {
4440 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4441 (bfd_get_section_flags (abfd,
4442 hdr->bfd_section)
4443 | flags)))
4444 return FALSE;
4445 }
4446
4447 /* FIXME: We should record sh_info for a .gptab section. */
4448
4449 /* For a .reginfo section, set the gp value in the tdata information
4450 from the contents of this section. We need the gp value while
4451 processing relocs, so we just get it now. The .reginfo section
4452 is not used in the 64-bit MIPS ELF ABI. */
4453 if (hdr->sh_type == SHT_MIPS_REGINFO)
4454 {
4455 Elf32_External_RegInfo ext;
4456 Elf32_RegInfo s;
4457
4458 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4459 &ext, 0, sizeof ext))
4460 return FALSE;
4461 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4462 elf_gp (abfd) = s.ri_gp_value;
4463 }
4464
4465 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4466 set the gp value based on what we find. We may see both
4467 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4468 they should agree. */
4469 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4470 {
4471 bfd_byte *contents, *l, *lend;
4472
4473 contents = bfd_malloc (hdr->sh_size);
4474 if (contents == NULL)
4475 return FALSE;
4476 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4477 0, hdr->sh_size))
4478 {
4479 free (contents);
4480 return FALSE;
4481 }
4482 l = contents;
4483 lend = contents + hdr->sh_size;
4484 while (l + sizeof (Elf_External_Options) <= lend)
4485 {
4486 Elf_Internal_Options intopt;
4487
4488 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4489 &intopt);
4490 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4491 {
4492 Elf64_Internal_RegInfo intreg;
4493
4494 bfd_mips_elf64_swap_reginfo_in
4495 (abfd,
4496 ((Elf64_External_RegInfo *)
4497 (l + sizeof (Elf_External_Options))),
4498 &intreg);
4499 elf_gp (abfd) = intreg.ri_gp_value;
4500 }
4501 else if (intopt.kind == ODK_REGINFO)
4502 {
4503 Elf32_RegInfo intreg;
4504
4505 bfd_mips_elf32_swap_reginfo_in
4506 (abfd,
4507 ((Elf32_External_RegInfo *)
4508 (l + sizeof (Elf_External_Options))),
4509 &intreg);
4510 elf_gp (abfd) = intreg.ri_gp_value;
4511 }
4512 l += intopt.size;
4513 }
4514 free (contents);
4515 }
4516
4517 return TRUE;
4518 }
4519
4520 /* Set the correct type for a MIPS ELF section. We do this by the
4521 section name, which is a hack, but ought to work. This routine is
4522 used by both the 32-bit and the 64-bit ABI. */
4523
4524 bfd_boolean
4525 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4526 {
4527 register const char *name;
4528
4529 name = bfd_get_section_name (abfd, sec);
4530
4531 if (strcmp (name, ".liblist") == 0)
4532 {
4533 hdr->sh_type = SHT_MIPS_LIBLIST;
4534 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4535 /* The sh_link field is set in final_write_processing. */
4536 }
4537 else if (strcmp (name, ".conflict") == 0)
4538 hdr->sh_type = SHT_MIPS_CONFLICT;
4539 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4540 {
4541 hdr->sh_type = SHT_MIPS_GPTAB;
4542 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4543 /* The sh_info field is set in final_write_processing. */
4544 }
4545 else if (strcmp (name, ".ucode") == 0)
4546 hdr->sh_type = SHT_MIPS_UCODE;
4547 else if (strcmp (name, ".mdebug") == 0)
4548 {
4549 hdr->sh_type = SHT_MIPS_DEBUG;
4550 /* In a shared object on IRIX 5.3, the .mdebug section has an
4551 entsize of 0. FIXME: Does this matter? */
4552 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4553 hdr->sh_entsize = 0;
4554 else
4555 hdr->sh_entsize = 1;
4556 }
4557 else if (strcmp (name, ".reginfo") == 0)
4558 {
4559 hdr->sh_type = SHT_MIPS_REGINFO;
4560 /* In a shared object on IRIX 5.3, the .reginfo section has an
4561 entsize of 0x18. FIXME: Does this matter? */
4562 if (SGI_COMPAT (abfd))
4563 {
4564 if ((abfd->flags & DYNAMIC) != 0)
4565 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4566 else
4567 hdr->sh_entsize = 1;
4568 }
4569 else
4570 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4571 }
4572 else if (SGI_COMPAT (abfd)
4573 && (strcmp (name, ".hash") == 0
4574 || strcmp (name, ".dynamic") == 0
4575 || strcmp (name, ".dynstr") == 0))
4576 {
4577 if (SGI_COMPAT (abfd))
4578 hdr->sh_entsize = 0;
4579 #if 0
4580 /* This isn't how the IRIX6 linker behaves. */
4581 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4582 #endif
4583 }
4584 else if (strcmp (name, ".got") == 0
4585 || strcmp (name, ".srdata") == 0
4586 || strcmp (name, ".sdata") == 0
4587 || strcmp (name, ".sbss") == 0
4588 || strcmp (name, ".lit4") == 0
4589 || strcmp (name, ".lit8") == 0)
4590 hdr->sh_flags |= SHF_MIPS_GPREL;
4591 else if (strcmp (name, ".MIPS.interfaces") == 0)
4592 {
4593 hdr->sh_type = SHT_MIPS_IFACE;
4594 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4595 }
4596 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4597 {
4598 hdr->sh_type = SHT_MIPS_CONTENT;
4599 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4600 /* The sh_info field is set in final_write_processing. */
4601 }
4602 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4603 {
4604 hdr->sh_type = SHT_MIPS_OPTIONS;
4605 hdr->sh_entsize = 1;
4606 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4607 }
4608 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4609 hdr->sh_type = SHT_MIPS_DWARF;
4610 else if (strcmp (name, ".MIPS.symlib") == 0)
4611 {
4612 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4613 /* The sh_link and sh_info fields are set in
4614 final_write_processing. */
4615 }
4616 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4617 || strncmp (name, ".MIPS.post_rel",
4618 sizeof ".MIPS.post_rel" - 1) == 0)
4619 {
4620 hdr->sh_type = SHT_MIPS_EVENTS;
4621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4622 /* The sh_link field is set in final_write_processing. */
4623 }
4624 else if (strcmp (name, ".msym") == 0)
4625 {
4626 hdr->sh_type = SHT_MIPS_MSYM;
4627 hdr->sh_flags |= SHF_ALLOC;
4628 hdr->sh_entsize = 8;
4629 }
4630
4631 /* The generic elf_fake_sections will set up REL_HDR using the default
4632 kind of relocations. We used to set up a second header for the
4633 non-default kind of relocations here, but only NewABI would use
4634 these, and the IRIX ld doesn't like resulting empty RELA sections.
4635 Thus we create those header only on demand now. */
4636
4637 return TRUE;
4638 }
4639
4640 /* Given a BFD section, try to locate the corresponding ELF section
4641 index. This is used by both the 32-bit and the 64-bit ABI.
4642 Actually, it's not clear to me that the 64-bit ABI supports these,
4643 but for non-PIC objects we will certainly want support for at least
4644 the .scommon section. */
4645
4646 bfd_boolean
4647 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4648 asection *sec, int *retval)
4649 {
4650 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4651 {
4652 *retval = SHN_MIPS_SCOMMON;
4653 return TRUE;
4654 }
4655 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4656 {
4657 *retval = SHN_MIPS_ACOMMON;
4658 return TRUE;
4659 }
4660 return FALSE;
4661 }
4662 \f
4663 /* Hook called by the linker routine which adds symbols from an object
4664 file. We must handle the special MIPS section numbers here. */
4665
4666 bfd_boolean
4667 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4668 Elf_Internal_Sym *sym, const char **namep,
4669 flagword *flagsp ATTRIBUTE_UNUSED,
4670 asection **secp, bfd_vma *valp)
4671 {
4672 if (SGI_COMPAT (abfd)
4673 && (abfd->flags & DYNAMIC) != 0
4674 && strcmp (*namep, "_rld_new_interface") == 0)
4675 {
4676 /* Skip IRIX5 rld entry name. */
4677 *namep = NULL;
4678 return TRUE;
4679 }
4680
4681 switch (sym->st_shndx)
4682 {
4683 case SHN_COMMON:
4684 /* Common symbols less than the GP size are automatically
4685 treated as SHN_MIPS_SCOMMON symbols. */
4686 if (sym->st_size > elf_gp_size (abfd)
4687 || IRIX_COMPAT (abfd) == ict_irix6)
4688 break;
4689 /* Fall through. */
4690 case SHN_MIPS_SCOMMON:
4691 *secp = bfd_make_section_old_way (abfd, ".scommon");
4692 (*secp)->flags |= SEC_IS_COMMON;
4693 *valp = sym->st_size;
4694 break;
4695
4696 case SHN_MIPS_TEXT:
4697 /* This section is used in a shared object. */
4698 if (elf_tdata (abfd)->elf_text_section == NULL)
4699 {
4700 asymbol *elf_text_symbol;
4701 asection *elf_text_section;
4702 bfd_size_type amt = sizeof (asection);
4703
4704 elf_text_section = bfd_zalloc (abfd, amt);
4705 if (elf_text_section == NULL)
4706 return FALSE;
4707
4708 amt = sizeof (asymbol);
4709 elf_text_symbol = bfd_zalloc (abfd, amt);
4710 if (elf_text_symbol == NULL)
4711 return FALSE;
4712
4713 /* Initialize the section. */
4714
4715 elf_tdata (abfd)->elf_text_section = elf_text_section;
4716 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4717
4718 elf_text_section->symbol = elf_text_symbol;
4719 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4720
4721 elf_text_section->name = ".text";
4722 elf_text_section->flags = SEC_NO_FLAGS;
4723 elf_text_section->output_section = NULL;
4724 elf_text_section->owner = abfd;
4725 elf_text_symbol->name = ".text";
4726 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4727 elf_text_symbol->section = elf_text_section;
4728 }
4729 /* This code used to do *secp = bfd_und_section_ptr if
4730 info->shared. I don't know why, and that doesn't make sense,
4731 so I took it out. */
4732 *secp = elf_tdata (abfd)->elf_text_section;
4733 break;
4734
4735 case SHN_MIPS_ACOMMON:
4736 /* Fall through. XXX Can we treat this as allocated data? */
4737 case SHN_MIPS_DATA:
4738 /* This section is used in a shared object. */
4739 if (elf_tdata (abfd)->elf_data_section == NULL)
4740 {
4741 asymbol *elf_data_symbol;
4742 asection *elf_data_section;
4743 bfd_size_type amt = sizeof (asection);
4744
4745 elf_data_section = bfd_zalloc (abfd, amt);
4746 if (elf_data_section == NULL)
4747 return FALSE;
4748
4749 amt = sizeof (asymbol);
4750 elf_data_symbol = bfd_zalloc (abfd, amt);
4751 if (elf_data_symbol == NULL)
4752 return FALSE;
4753
4754 /* Initialize the section. */
4755
4756 elf_tdata (abfd)->elf_data_section = elf_data_section;
4757 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4758
4759 elf_data_section->symbol = elf_data_symbol;
4760 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4761
4762 elf_data_section->name = ".data";
4763 elf_data_section->flags = SEC_NO_FLAGS;
4764 elf_data_section->output_section = NULL;
4765 elf_data_section->owner = abfd;
4766 elf_data_symbol->name = ".data";
4767 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4768 elf_data_symbol->section = elf_data_section;
4769 }
4770 /* This code used to do *secp = bfd_und_section_ptr if
4771 info->shared. I don't know why, and that doesn't make sense,
4772 so I took it out. */
4773 *secp = elf_tdata (abfd)->elf_data_section;
4774 break;
4775
4776 case SHN_MIPS_SUNDEFINED:
4777 *secp = bfd_und_section_ptr;
4778 break;
4779 }
4780
4781 if (SGI_COMPAT (abfd)
4782 && ! info->shared
4783 && info->hash->creator == abfd->xvec
4784 && strcmp (*namep, "__rld_obj_head") == 0)
4785 {
4786 struct elf_link_hash_entry *h;
4787 struct bfd_link_hash_entry *bh;
4788
4789 /* Mark __rld_obj_head as dynamic. */
4790 bh = NULL;
4791 if (! (_bfd_generic_link_add_one_symbol
4792 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4793 get_elf_backend_data (abfd)->collect, &bh)))
4794 return FALSE;
4795
4796 h = (struct elf_link_hash_entry *) bh;
4797 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4798 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4799 h->type = STT_OBJECT;
4800
4801 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4802 return FALSE;
4803
4804 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4805 }
4806
4807 /* If this is a mips16 text symbol, add 1 to the value to make it
4808 odd. This will cause something like .word SYM to come up with
4809 the right value when it is loaded into the PC. */
4810 if (sym->st_other == STO_MIPS16)
4811 ++*valp;
4812
4813 return TRUE;
4814 }
4815
4816 /* This hook function is called before the linker writes out a global
4817 symbol. We mark symbols as small common if appropriate. This is
4818 also where we undo the increment of the value for a mips16 symbol. */
4819
4820 bfd_boolean
4821 _bfd_mips_elf_link_output_symbol_hook
4822 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4823 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4824 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4825 {
4826 /* If we see a common symbol, which implies a relocatable link, then
4827 if a symbol was small common in an input file, mark it as small
4828 common in the output file. */
4829 if (sym->st_shndx == SHN_COMMON
4830 && strcmp (input_sec->name, ".scommon") == 0)
4831 sym->st_shndx = SHN_MIPS_SCOMMON;
4832
4833 if (sym->st_other == STO_MIPS16)
4834 sym->st_value &= ~1;
4835
4836 return TRUE;
4837 }
4838 \f
4839 /* Functions for the dynamic linker. */
4840
4841 /* Create dynamic sections when linking against a dynamic object. */
4842
4843 bfd_boolean
4844 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4845 {
4846 struct elf_link_hash_entry *h;
4847 struct bfd_link_hash_entry *bh;
4848 flagword flags;
4849 register asection *s;
4850 const char * const *namep;
4851
4852 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4853 | SEC_LINKER_CREATED | SEC_READONLY);
4854
4855 /* Mips ABI requests the .dynamic section to be read only. */
4856 s = bfd_get_section_by_name (abfd, ".dynamic");
4857 if (s != NULL)
4858 {
4859 if (! bfd_set_section_flags (abfd, s, flags))
4860 return FALSE;
4861 }
4862
4863 /* We need to create .got section. */
4864 if (! mips_elf_create_got_section (abfd, info, FALSE))
4865 return FALSE;
4866
4867 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4868 return FALSE;
4869
4870 /* Create .stub section. */
4871 if (bfd_get_section_by_name (abfd,
4872 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4873 {
4874 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4875 if (s == NULL
4876 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4877 || ! bfd_set_section_alignment (abfd, s,
4878 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4879 return FALSE;
4880 }
4881
4882 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4883 && !info->shared
4884 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4885 {
4886 s = bfd_make_section (abfd, ".rld_map");
4887 if (s == NULL
4888 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4889 || ! bfd_set_section_alignment (abfd, s,
4890 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4891 return FALSE;
4892 }
4893
4894 /* On IRIX5, we adjust add some additional symbols and change the
4895 alignments of several sections. There is no ABI documentation
4896 indicating that this is necessary on IRIX6, nor any evidence that
4897 the linker takes such action. */
4898 if (IRIX_COMPAT (abfd) == ict_irix5)
4899 {
4900 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4901 {
4902 bh = NULL;
4903 if (! (_bfd_generic_link_add_one_symbol
4904 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4905 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4906 return FALSE;
4907
4908 h = (struct elf_link_hash_entry *) bh;
4909 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4910 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4911 h->type = STT_SECTION;
4912
4913 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4914 return FALSE;
4915 }
4916
4917 /* We need to create a .compact_rel section. */
4918 if (SGI_COMPAT (abfd))
4919 {
4920 if (!mips_elf_create_compact_rel_section (abfd, info))
4921 return FALSE;
4922 }
4923
4924 /* Change alignments of some sections. */
4925 s = bfd_get_section_by_name (abfd, ".hash");
4926 if (s != NULL)
4927 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4928 s = bfd_get_section_by_name (abfd, ".dynsym");
4929 if (s != NULL)
4930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4931 s = bfd_get_section_by_name (abfd, ".dynstr");
4932 if (s != NULL)
4933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4934 s = bfd_get_section_by_name (abfd, ".reginfo");
4935 if (s != NULL)
4936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4937 s = bfd_get_section_by_name (abfd, ".dynamic");
4938 if (s != NULL)
4939 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4940 }
4941
4942 if (!info->shared)
4943 {
4944 const char *name;
4945
4946 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4947 bh = NULL;
4948 if (!(_bfd_generic_link_add_one_symbol
4949 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4950 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4951 return FALSE;
4952
4953 h = (struct elf_link_hash_entry *) bh;
4954 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4955 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4956 h->type = STT_SECTION;
4957
4958 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4959 return FALSE;
4960
4961 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4962 {
4963 /* __rld_map is a four byte word located in the .data section
4964 and is filled in by the rtld to contain a pointer to
4965 the _r_debug structure. Its symbol value will be set in
4966 _bfd_mips_elf_finish_dynamic_symbol. */
4967 s = bfd_get_section_by_name (abfd, ".rld_map");
4968 BFD_ASSERT (s != NULL);
4969
4970 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4971 bh = NULL;
4972 if (!(_bfd_generic_link_add_one_symbol
4973 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4974 get_elf_backend_data (abfd)->collect, &bh)))
4975 return FALSE;
4976
4977 h = (struct elf_link_hash_entry *) bh;
4978 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4979 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4980 h->type = STT_OBJECT;
4981
4982 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4983 return FALSE;
4984 }
4985 }
4986
4987 return TRUE;
4988 }
4989 \f
4990 /* Look through the relocs for a section during the first phase, and
4991 allocate space in the global offset table. */
4992
4993 bfd_boolean
4994 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4995 asection *sec, const Elf_Internal_Rela *relocs)
4996 {
4997 const char *name;
4998 bfd *dynobj;
4999 Elf_Internal_Shdr *symtab_hdr;
5000 struct elf_link_hash_entry **sym_hashes;
5001 struct mips_got_info *g;
5002 size_t extsymoff;
5003 const Elf_Internal_Rela *rel;
5004 const Elf_Internal_Rela *rel_end;
5005 asection *sgot;
5006 asection *sreloc;
5007 const struct elf_backend_data *bed;
5008
5009 if (info->relocatable)
5010 return TRUE;
5011
5012 dynobj = elf_hash_table (info)->dynobj;
5013 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5014 sym_hashes = elf_sym_hashes (abfd);
5015 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5016
5017 /* Check for the mips16 stub sections. */
5018
5019 name = bfd_get_section_name (abfd, sec);
5020 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5021 {
5022 unsigned long r_symndx;
5023
5024 /* Look at the relocation information to figure out which symbol
5025 this is for. */
5026
5027 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5028
5029 if (r_symndx < extsymoff
5030 || sym_hashes[r_symndx - extsymoff] == NULL)
5031 {
5032 asection *o;
5033
5034 /* This stub is for a local symbol. This stub will only be
5035 needed if there is some relocation in this BFD, other
5036 than a 16 bit function call, which refers to this symbol. */
5037 for (o = abfd->sections; o != NULL; o = o->next)
5038 {
5039 Elf_Internal_Rela *sec_relocs;
5040 const Elf_Internal_Rela *r, *rend;
5041
5042 /* We can ignore stub sections when looking for relocs. */
5043 if ((o->flags & SEC_RELOC) == 0
5044 || o->reloc_count == 0
5045 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5046 sizeof FN_STUB - 1) == 0
5047 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5048 sizeof CALL_STUB - 1) == 0
5049 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5050 sizeof CALL_FP_STUB - 1) == 0)
5051 continue;
5052
5053 sec_relocs
5054 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5055 info->keep_memory);
5056 if (sec_relocs == NULL)
5057 return FALSE;
5058
5059 rend = sec_relocs + o->reloc_count;
5060 for (r = sec_relocs; r < rend; r++)
5061 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5062 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5063 break;
5064
5065 if (elf_section_data (o)->relocs != sec_relocs)
5066 free (sec_relocs);
5067
5068 if (r < rend)
5069 break;
5070 }
5071
5072 if (o == NULL)
5073 {
5074 /* There is no non-call reloc for this stub, so we do
5075 not need it. Since this function is called before
5076 the linker maps input sections to output sections, we
5077 can easily discard it by setting the SEC_EXCLUDE
5078 flag. */
5079 sec->flags |= SEC_EXCLUDE;
5080 return TRUE;
5081 }
5082
5083 /* Record this stub in an array of local symbol stubs for
5084 this BFD. */
5085 if (elf_tdata (abfd)->local_stubs == NULL)
5086 {
5087 unsigned long symcount;
5088 asection **n;
5089 bfd_size_type amt;
5090
5091 if (elf_bad_symtab (abfd))
5092 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5093 else
5094 symcount = symtab_hdr->sh_info;
5095 amt = symcount * sizeof (asection *);
5096 n = bfd_zalloc (abfd, amt);
5097 if (n == NULL)
5098 return FALSE;
5099 elf_tdata (abfd)->local_stubs = n;
5100 }
5101
5102 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5103
5104 /* We don't need to set mips16_stubs_seen in this case.
5105 That flag is used to see whether we need to look through
5106 the global symbol table for stubs. We don't need to set
5107 it here, because we just have a local stub. */
5108 }
5109 else
5110 {
5111 struct mips_elf_link_hash_entry *h;
5112
5113 h = ((struct mips_elf_link_hash_entry *)
5114 sym_hashes[r_symndx - extsymoff]);
5115
5116 /* H is the symbol this stub is for. */
5117
5118 h->fn_stub = sec;
5119 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5120 }
5121 }
5122 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5123 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5124 {
5125 unsigned long r_symndx;
5126 struct mips_elf_link_hash_entry *h;
5127 asection **loc;
5128
5129 /* Look at the relocation information to figure out which symbol
5130 this is for. */
5131
5132 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5133
5134 if (r_symndx < extsymoff
5135 || sym_hashes[r_symndx - extsymoff] == NULL)
5136 {
5137 /* This stub was actually built for a static symbol defined
5138 in the same file. We assume that all static symbols in
5139 mips16 code are themselves mips16, so we can simply
5140 discard this stub. Since this function is called before
5141 the linker maps input sections to output sections, we can
5142 easily discard it by setting the SEC_EXCLUDE flag. */
5143 sec->flags |= SEC_EXCLUDE;
5144 return TRUE;
5145 }
5146
5147 h = ((struct mips_elf_link_hash_entry *)
5148 sym_hashes[r_symndx - extsymoff]);
5149
5150 /* H is the symbol this stub is for. */
5151
5152 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5153 loc = &h->call_fp_stub;
5154 else
5155 loc = &h->call_stub;
5156
5157 /* If we already have an appropriate stub for this function, we
5158 don't need another one, so we can discard this one. Since
5159 this function is called before the linker maps input sections
5160 to output sections, we can easily discard it by setting the
5161 SEC_EXCLUDE flag. We can also discard this section if we
5162 happen to already know that this is a mips16 function; it is
5163 not necessary to check this here, as it is checked later, but
5164 it is slightly faster to check now. */
5165 if (*loc != NULL || h->root.other == STO_MIPS16)
5166 {
5167 sec->flags |= SEC_EXCLUDE;
5168 return TRUE;
5169 }
5170
5171 *loc = sec;
5172 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5173 }
5174
5175 if (dynobj == NULL)
5176 {
5177 sgot = NULL;
5178 g = NULL;
5179 }
5180 else
5181 {
5182 sgot = mips_elf_got_section (dynobj, FALSE);
5183 if (sgot == NULL)
5184 g = NULL;
5185 else
5186 {
5187 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5188 g = mips_elf_section_data (sgot)->u.got_info;
5189 BFD_ASSERT (g != NULL);
5190 }
5191 }
5192
5193 sreloc = NULL;
5194 bed = get_elf_backend_data (abfd);
5195 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5196 for (rel = relocs; rel < rel_end; ++rel)
5197 {
5198 unsigned long r_symndx;
5199 unsigned int r_type;
5200 struct elf_link_hash_entry *h;
5201
5202 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5203 r_type = ELF_R_TYPE (abfd, rel->r_info);
5204
5205 if (r_symndx < extsymoff)
5206 h = NULL;
5207 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5208 {
5209 (*_bfd_error_handler)
5210 (_("%s: Malformed reloc detected for section %s"),
5211 bfd_archive_filename (abfd), name);
5212 bfd_set_error (bfd_error_bad_value);
5213 return FALSE;
5214 }
5215 else
5216 {
5217 h = sym_hashes[r_symndx - extsymoff];
5218
5219 /* This may be an indirect symbol created because of a version. */
5220 if (h != NULL)
5221 {
5222 while (h->root.type == bfd_link_hash_indirect)
5223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5224 }
5225 }
5226
5227 /* Some relocs require a global offset table. */
5228 if (dynobj == NULL || sgot == NULL)
5229 {
5230 switch (r_type)
5231 {
5232 case R_MIPS_GOT16:
5233 case R_MIPS_CALL16:
5234 case R_MIPS_CALL_HI16:
5235 case R_MIPS_CALL_LO16:
5236 case R_MIPS_GOT_HI16:
5237 case R_MIPS_GOT_LO16:
5238 case R_MIPS_GOT_PAGE:
5239 case R_MIPS_GOT_OFST:
5240 case R_MIPS_GOT_DISP:
5241 if (dynobj == NULL)
5242 elf_hash_table (info)->dynobj = dynobj = abfd;
5243 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5244 return FALSE;
5245 g = mips_elf_got_info (dynobj, &sgot);
5246 break;
5247
5248 case R_MIPS_32:
5249 case R_MIPS_REL32:
5250 case R_MIPS_64:
5251 if (dynobj == NULL
5252 && (info->shared || h != NULL)
5253 && (sec->flags & SEC_ALLOC) != 0)
5254 elf_hash_table (info)->dynobj = dynobj = abfd;
5255 break;
5256
5257 default:
5258 break;
5259 }
5260 }
5261
5262 if (!h && (r_type == R_MIPS_CALL_LO16
5263 || r_type == R_MIPS_GOT_LO16
5264 || r_type == R_MIPS_GOT_DISP))
5265 {
5266 /* We may need a local GOT entry for this relocation. We
5267 don't count R_MIPS_GOT_PAGE because we can estimate the
5268 maximum number of pages needed by looking at the size of
5269 the segment. Similar comments apply to R_MIPS_GOT16 and
5270 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5271 R_MIPS_CALL_HI16 because these are always followed by an
5272 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5273 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5274 rel->r_addend, g))
5275 return FALSE;
5276 }
5277
5278 switch (r_type)
5279 {
5280 case R_MIPS_CALL16:
5281 if (h == NULL)
5282 {
5283 (*_bfd_error_handler)
5284 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5285 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5286 bfd_set_error (bfd_error_bad_value);
5287 return FALSE;
5288 }
5289 /* Fall through. */
5290
5291 case R_MIPS_CALL_HI16:
5292 case R_MIPS_CALL_LO16:
5293 if (h != NULL)
5294 {
5295 /* This symbol requires a global offset table entry. */
5296 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5297 return FALSE;
5298
5299 /* We need a stub, not a plt entry for the undefined
5300 function. But we record it as if it needs plt. See
5301 _bfd_elf_adjust_dynamic_symbol. */
5302 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5303 h->type = STT_FUNC;
5304 }
5305 break;
5306
5307 case R_MIPS_GOT_PAGE:
5308 /* If this is a global, overridable symbol, GOT_PAGE will
5309 decay to GOT_DISP, so we'll need a GOT entry for it. */
5310 if (h == NULL)
5311 break;
5312 else
5313 {
5314 struct mips_elf_link_hash_entry *hmips =
5315 (struct mips_elf_link_hash_entry *) h;
5316
5317 while (hmips->root.root.type == bfd_link_hash_indirect
5318 || hmips->root.root.type == bfd_link_hash_warning)
5319 hmips = (struct mips_elf_link_hash_entry *)
5320 hmips->root.root.u.i.link;
5321
5322 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5323 && ! (info->shared && ! info->symbolic
5324 && ! (hmips->root.elf_link_hash_flags
5325 & ELF_LINK_FORCED_LOCAL)))
5326 break;
5327 }
5328 /* Fall through. */
5329
5330 case R_MIPS_GOT16:
5331 case R_MIPS_GOT_HI16:
5332 case R_MIPS_GOT_LO16:
5333 case R_MIPS_GOT_DISP:
5334 /* This symbol requires a global offset table entry. */
5335 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5336 return FALSE;
5337 break;
5338
5339 case R_MIPS_32:
5340 case R_MIPS_REL32:
5341 case R_MIPS_64:
5342 if ((info->shared || h != NULL)
5343 && (sec->flags & SEC_ALLOC) != 0)
5344 {
5345 if (sreloc == NULL)
5346 {
5347 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5348 if (sreloc == NULL)
5349 return FALSE;
5350 }
5351 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5352 if (info->shared)
5353 {
5354 /* When creating a shared object, we must copy these
5355 reloc types into the output file as R_MIPS_REL32
5356 relocs. We make room for this reloc in the
5357 .rel.dyn reloc section. */
5358 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5359 if ((sec->flags & MIPS_READONLY_SECTION)
5360 == MIPS_READONLY_SECTION)
5361 /* We tell the dynamic linker that there are
5362 relocations against the text segment. */
5363 info->flags |= DF_TEXTREL;
5364 }
5365 else
5366 {
5367 struct mips_elf_link_hash_entry *hmips;
5368
5369 /* We only need to copy this reloc if the symbol is
5370 defined in a dynamic object. */
5371 hmips = (struct mips_elf_link_hash_entry *) h;
5372 ++hmips->possibly_dynamic_relocs;
5373 if ((sec->flags & MIPS_READONLY_SECTION)
5374 == MIPS_READONLY_SECTION)
5375 /* We need it to tell the dynamic linker if there
5376 are relocations against the text segment. */
5377 hmips->readonly_reloc = TRUE;
5378 }
5379
5380 /* Even though we don't directly need a GOT entry for
5381 this symbol, a symbol must have a dynamic symbol
5382 table index greater that DT_MIPS_GOTSYM if there are
5383 dynamic relocations against it. */
5384 if (h != NULL)
5385 {
5386 if (dynobj == NULL)
5387 elf_hash_table (info)->dynobj = dynobj = abfd;
5388 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5389 return FALSE;
5390 g = mips_elf_got_info (dynobj, &sgot);
5391 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5392 return FALSE;
5393 }
5394 }
5395
5396 if (SGI_COMPAT (abfd))
5397 mips_elf_hash_table (info)->compact_rel_size +=
5398 sizeof (Elf32_External_crinfo);
5399 break;
5400
5401 case R_MIPS_26:
5402 case R_MIPS_GPREL16:
5403 case R_MIPS_LITERAL:
5404 case R_MIPS_GPREL32:
5405 if (SGI_COMPAT (abfd))
5406 mips_elf_hash_table (info)->compact_rel_size +=
5407 sizeof (Elf32_External_crinfo);
5408 break;
5409
5410 /* This relocation describes the C++ object vtable hierarchy.
5411 Reconstruct it for later use during GC. */
5412 case R_MIPS_GNU_VTINHERIT:
5413 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5414 return FALSE;
5415 break;
5416
5417 /* This relocation describes which C++ vtable entries are actually
5418 used. Record for later use during GC. */
5419 case R_MIPS_GNU_VTENTRY:
5420 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5421 return FALSE;
5422 break;
5423
5424 default:
5425 break;
5426 }
5427
5428 /* We must not create a stub for a symbol that has relocations
5429 related to taking the function's address. */
5430 switch (r_type)
5431 {
5432 default:
5433 if (h != NULL)
5434 {
5435 struct mips_elf_link_hash_entry *mh;
5436
5437 mh = (struct mips_elf_link_hash_entry *) h;
5438 mh->no_fn_stub = TRUE;
5439 }
5440 break;
5441 case R_MIPS_CALL16:
5442 case R_MIPS_CALL_HI16:
5443 case R_MIPS_CALL_LO16:
5444 case R_MIPS_JALR:
5445 break;
5446 }
5447
5448 /* If this reloc is not a 16 bit call, and it has a global
5449 symbol, then we will need the fn_stub if there is one.
5450 References from a stub section do not count. */
5451 if (h != NULL
5452 && r_type != R_MIPS16_26
5453 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5454 sizeof FN_STUB - 1) != 0
5455 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5456 sizeof CALL_STUB - 1) != 0
5457 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5458 sizeof CALL_FP_STUB - 1) != 0)
5459 {
5460 struct mips_elf_link_hash_entry *mh;
5461
5462 mh = (struct mips_elf_link_hash_entry *) h;
5463 mh->need_fn_stub = TRUE;
5464 }
5465 }
5466
5467 return TRUE;
5468 }
5469 \f
5470 bfd_boolean
5471 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5472 struct bfd_link_info *link_info,
5473 bfd_boolean *again)
5474 {
5475 Elf_Internal_Rela *internal_relocs;
5476 Elf_Internal_Rela *irel, *irelend;
5477 Elf_Internal_Shdr *symtab_hdr;
5478 bfd_byte *contents = NULL;
5479 bfd_byte *free_contents = NULL;
5480 size_t extsymoff;
5481 bfd_boolean changed_contents = FALSE;
5482 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5483 Elf_Internal_Sym *isymbuf = NULL;
5484
5485 /* We are not currently changing any sizes, so only one pass. */
5486 *again = FALSE;
5487
5488 if (link_info->relocatable)
5489 return TRUE;
5490
5491 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5492 link_info->keep_memory);
5493 if (internal_relocs == NULL)
5494 return TRUE;
5495
5496 irelend = internal_relocs + sec->reloc_count
5497 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5498 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5499 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5500
5501 for (irel = internal_relocs; irel < irelend; irel++)
5502 {
5503 bfd_vma symval;
5504 bfd_signed_vma sym_offset;
5505 unsigned int r_type;
5506 unsigned long r_symndx;
5507 asection *sym_sec;
5508 unsigned long instruction;
5509
5510 /* Turn jalr into bgezal, and jr into beq, if they're marked
5511 with a JALR relocation, that indicate where they jump to.
5512 This saves some pipeline bubbles. */
5513 r_type = ELF_R_TYPE (abfd, irel->r_info);
5514 if (r_type != R_MIPS_JALR)
5515 continue;
5516
5517 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5518 /* Compute the address of the jump target. */
5519 if (r_symndx >= extsymoff)
5520 {
5521 struct mips_elf_link_hash_entry *h
5522 = ((struct mips_elf_link_hash_entry *)
5523 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5524
5525 while (h->root.root.type == bfd_link_hash_indirect
5526 || h->root.root.type == bfd_link_hash_warning)
5527 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5528
5529 /* If a symbol is undefined, or if it may be overridden,
5530 skip it. */
5531 if (! ((h->root.root.type == bfd_link_hash_defined
5532 || h->root.root.type == bfd_link_hash_defweak)
5533 && h->root.root.u.def.section)
5534 || (link_info->shared && ! link_info->symbolic
5535 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5536 continue;
5537
5538 sym_sec = h->root.root.u.def.section;
5539 if (sym_sec->output_section)
5540 symval = (h->root.root.u.def.value
5541 + sym_sec->output_section->vma
5542 + sym_sec->output_offset);
5543 else
5544 symval = h->root.root.u.def.value;
5545 }
5546 else
5547 {
5548 Elf_Internal_Sym *isym;
5549
5550 /* Read this BFD's symbols if we haven't done so already. */
5551 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5552 {
5553 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5554 if (isymbuf == NULL)
5555 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5556 symtab_hdr->sh_info, 0,
5557 NULL, NULL, NULL);
5558 if (isymbuf == NULL)
5559 goto relax_return;
5560 }
5561
5562 isym = isymbuf + r_symndx;
5563 if (isym->st_shndx == SHN_UNDEF)
5564 continue;
5565 else if (isym->st_shndx == SHN_ABS)
5566 sym_sec = bfd_abs_section_ptr;
5567 else if (isym->st_shndx == SHN_COMMON)
5568 sym_sec = bfd_com_section_ptr;
5569 else
5570 sym_sec
5571 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5572 symval = isym->st_value
5573 + sym_sec->output_section->vma
5574 + sym_sec->output_offset;
5575 }
5576
5577 /* Compute branch offset, from delay slot of the jump to the
5578 branch target. */
5579 sym_offset = (symval + irel->r_addend)
5580 - (sec_start + irel->r_offset + 4);
5581
5582 /* Branch offset must be properly aligned. */
5583 if ((sym_offset & 3) != 0)
5584 continue;
5585
5586 sym_offset >>= 2;
5587
5588 /* Check that it's in range. */
5589 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5590 continue;
5591
5592 /* Get the section contents if we haven't done so already. */
5593 if (contents == NULL)
5594 {
5595 /* Get cached copy if it exists. */
5596 if (elf_section_data (sec)->this_hdr.contents != NULL)
5597 contents = elf_section_data (sec)->this_hdr.contents;
5598 else
5599 {
5600 contents = bfd_malloc (sec->_raw_size);
5601 if (contents == NULL)
5602 goto relax_return;
5603
5604 free_contents = contents;
5605 if (! bfd_get_section_contents (abfd, sec, contents,
5606 0, sec->_raw_size))
5607 goto relax_return;
5608 }
5609 }
5610
5611 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5612
5613 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5614 if ((instruction & 0xfc1fffff) == 0x0000f809)
5615 instruction = 0x04110000;
5616 /* If it was jr <reg>, turn it into b <target>. */
5617 else if ((instruction & 0xfc1fffff) == 0x00000008)
5618 instruction = 0x10000000;
5619 else
5620 continue;
5621
5622 instruction |= (sym_offset & 0xffff);
5623 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5624 changed_contents = TRUE;
5625 }
5626
5627 if (contents != NULL
5628 && elf_section_data (sec)->this_hdr.contents != contents)
5629 {
5630 if (!changed_contents && !link_info->keep_memory)
5631 free (contents);
5632 else
5633 {
5634 /* Cache the section contents for elf_link_input_bfd. */
5635 elf_section_data (sec)->this_hdr.contents = contents;
5636 }
5637 }
5638 return TRUE;
5639
5640 relax_return:
5641 if (free_contents != NULL)
5642 free (free_contents);
5643 return FALSE;
5644 }
5645 \f
5646 /* Adjust a symbol defined by a dynamic object and referenced by a
5647 regular object. The current definition is in some section of the
5648 dynamic object, but we're not including those sections. We have to
5649 change the definition to something the rest of the link can
5650 understand. */
5651
5652 bfd_boolean
5653 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5654 struct elf_link_hash_entry *h)
5655 {
5656 bfd *dynobj;
5657 struct mips_elf_link_hash_entry *hmips;
5658 asection *s;
5659
5660 dynobj = elf_hash_table (info)->dynobj;
5661
5662 /* Make sure we know what is going on here. */
5663 BFD_ASSERT (dynobj != NULL
5664 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5665 || h->weakdef != NULL
5666 || ((h->elf_link_hash_flags
5667 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5668 && (h->elf_link_hash_flags
5669 & ELF_LINK_HASH_REF_REGULAR) != 0
5670 && (h->elf_link_hash_flags
5671 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5672
5673 /* If this symbol is defined in a dynamic object, we need to copy
5674 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5675 file. */
5676 hmips = (struct mips_elf_link_hash_entry *) h;
5677 if (! info->relocatable
5678 && hmips->possibly_dynamic_relocs != 0
5679 && (h->root.type == bfd_link_hash_defweak
5680 || (h->elf_link_hash_flags
5681 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5682 {
5683 mips_elf_allocate_dynamic_relocations (dynobj,
5684 hmips->possibly_dynamic_relocs);
5685 if (hmips->readonly_reloc)
5686 /* We tell the dynamic linker that there are relocations
5687 against the text segment. */
5688 info->flags |= DF_TEXTREL;
5689 }
5690
5691 /* For a function, create a stub, if allowed. */
5692 if (! hmips->no_fn_stub
5693 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5694 {
5695 if (! elf_hash_table (info)->dynamic_sections_created)
5696 return TRUE;
5697
5698 /* If this symbol is not defined in a regular file, then set
5699 the symbol to the stub location. This is required to make
5700 function pointers compare as equal between the normal
5701 executable and the shared library. */
5702 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5703 {
5704 /* We need .stub section. */
5705 s = bfd_get_section_by_name (dynobj,
5706 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5707 BFD_ASSERT (s != NULL);
5708
5709 h->root.u.def.section = s;
5710 h->root.u.def.value = s->_raw_size;
5711
5712 /* XXX Write this stub address somewhere. */
5713 h->plt.offset = s->_raw_size;
5714
5715 /* Make room for this stub code. */
5716 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5717
5718 /* The last half word of the stub will be filled with the index
5719 of this symbol in .dynsym section. */
5720 return TRUE;
5721 }
5722 }
5723 else if ((h->type == STT_FUNC)
5724 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5725 {
5726 /* This will set the entry for this symbol in the GOT to 0, and
5727 the dynamic linker will take care of this. */
5728 h->root.u.def.value = 0;
5729 return TRUE;
5730 }
5731
5732 /* If this is a weak symbol, and there is a real definition, the
5733 processor independent code will have arranged for us to see the
5734 real definition first, and we can just use the same value. */
5735 if (h->weakdef != NULL)
5736 {
5737 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5738 || h->weakdef->root.type == bfd_link_hash_defweak);
5739 h->root.u.def.section = h->weakdef->root.u.def.section;
5740 h->root.u.def.value = h->weakdef->root.u.def.value;
5741 return TRUE;
5742 }
5743
5744 /* This is a reference to a symbol defined by a dynamic object which
5745 is not a function. */
5746
5747 return TRUE;
5748 }
5749 \f
5750 /* This function is called after all the input files have been read,
5751 and the input sections have been assigned to output sections. We
5752 check for any mips16 stub sections that we can discard. */
5753
5754 bfd_boolean
5755 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5756 struct bfd_link_info *info)
5757 {
5758 asection *ri;
5759
5760 bfd *dynobj;
5761 asection *s;
5762 struct mips_got_info *g;
5763 int i;
5764 bfd_size_type loadable_size = 0;
5765 bfd_size_type local_gotno;
5766 bfd *sub;
5767
5768 /* The .reginfo section has a fixed size. */
5769 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5770 if (ri != NULL)
5771 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5772
5773 if (! (info->relocatable
5774 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5775 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5776 mips_elf_check_mips16_stubs, NULL);
5777
5778 dynobj = elf_hash_table (info)->dynobj;
5779 if (dynobj == NULL)
5780 /* Relocatable links don't have it. */
5781 return TRUE;
5782
5783 g = mips_elf_got_info (dynobj, &s);
5784 if (s == NULL)
5785 return TRUE;
5786
5787 /* Calculate the total loadable size of the output. That
5788 will give us the maximum number of GOT_PAGE entries
5789 required. */
5790 for (sub = info->input_bfds; sub; sub = sub->link_next)
5791 {
5792 asection *subsection;
5793
5794 for (subsection = sub->sections;
5795 subsection;
5796 subsection = subsection->next)
5797 {
5798 if ((subsection->flags & SEC_ALLOC) == 0)
5799 continue;
5800 loadable_size += ((subsection->_raw_size + 0xf)
5801 &~ (bfd_size_type) 0xf);
5802 }
5803 }
5804
5805 /* There has to be a global GOT entry for every symbol with
5806 a dynamic symbol table index of DT_MIPS_GOTSYM or
5807 higher. Therefore, it make sense to put those symbols
5808 that need GOT entries at the end of the symbol table. We
5809 do that here. */
5810 if (! mips_elf_sort_hash_table (info, 1))
5811 return FALSE;
5812
5813 if (g->global_gotsym != NULL)
5814 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5815 else
5816 /* If there are no global symbols, or none requiring
5817 relocations, then GLOBAL_GOTSYM will be NULL. */
5818 i = 0;
5819
5820 /* In the worst case, we'll get one stub per dynamic symbol, plus
5821 one to account for the dummy entry at the end required by IRIX
5822 rld. */
5823 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5824
5825 /* Assume there are two loadable segments consisting of
5826 contiguous sections. Is 5 enough? */
5827 local_gotno = (loadable_size >> 16) + 5;
5828
5829 g->local_gotno += local_gotno;
5830 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5831
5832 g->global_gotno = i;
5833 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5834
5835 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5836 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5837 return FALSE;
5838
5839 return TRUE;
5840 }
5841
5842 /* Set the sizes of the dynamic sections. */
5843
5844 bfd_boolean
5845 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5846 struct bfd_link_info *info)
5847 {
5848 bfd *dynobj;
5849 asection *s;
5850 bfd_boolean reltext;
5851
5852 dynobj = elf_hash_table (info)->dynobj;
5853 BFD_ASSERT (dynobj != NULL);
5854
5855 if (elf_hash_table (info)->dynamic_sections_created)
5856 {
5857 /* Set the contents of the .interp section to the interpreter. */
5858 if (info->executable)
5859 {
5860 s = bfd_get_section_by_name (dynobj, ".interp");
5861 BFD_ASSERT (s != NULL);
5862 s->_raw_size
5863 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5864 s->contents
5865 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5866 }
5867 }
5868
5869 /* The check_relocs and adjust_dynamic_symbol entry points have
5870 determined the sizes of the various dynamic sections. Allocate
5871 memory for them. */
5872 reltext = FALSE;
5873 for (s = dynobj->sections; s != NULL; s = s->next)
5874 {
5875 const char *name;
5876 bfd_boolean strip;
5877
5878 /* It's OK to base decisions on the section name, because none
5879 of the dynobj section names depend upon the input files. */
5880 name = bfd_get_section_name (dynobj, s);
5881
5882 if ((s->flags & SEC_LINKER_CREATED) == 0)
5883 continue;
5884
5885 strip = FALSE;
5886
5887 if (strncmp (name, ".rel", 4) == 0)
5888 {
5889 if (s->_raw_size == 0)
5890 {
5891 /* We only strip the section if the output section name
5892 has the same name. Otherwise, there might be several
5893 input sections for this output section. FIXME: This
5894 code is probably not needed these days anyhow, since
5895 the linker now does not create empty output sections. */
5896 if (s->output_section != NULL
5897 && strcmp (name,
5898 bfd_get_section_name (s->output_section->owner,
5899 s->output_section)) == 0)
5900 strip = TRUE;
5901 }
5902 else
5903 {
5904 const char *outname;
5905 asection *target;
5906
5907 /* If this relocation section applies to a read only
5908 section, then we probably need a DT_TEXTREL entry.
5909 If the relocation section is .rel.dyn, we always
5910 assert a DT_TEXTREL entry rather than testing whether
5911 there exists a relocation to a read only section or
5912 not. */
5913 outname = bfd_get_section_name (output_bfd,
5914 s->output_section);
5915 target = bfd_get_section_by_name (output_bfd, outname + 4);
5916 if ((target != NULL
5917 && (target->flags & SEC_READONLY) != 0
5918 && (target->flags & SEC_ALLOC) != 0)
5919 || strcmp (outname, ".rel.dyn") == 0)
5920 reltext = TRUE;
5921
5922 /* We use the reloc_count field as a counter if we need
5923 to copy relocs into the output file. */
5924 if (strcmp (name, ".rel.dyn") != 0)
5925 s->reloc_count = 0;
5926
5927 /* If combreloc is enabled, elf_link_sort_relocs() will
5928 sort relocations, but in a different way than we do,
5929 and before we're done creating relocations. Also, it
5930 will move them around between input sections'
5931 relocation's contents, so our sorting would be
5932 broken, so don't let it run. */
5933 info->combreloc = 0;
5934 }
5935 }
5936 else if (strncmp (name, ".got", 4) == 0)
5937 {
5938 /* _bfd_mips_elf_always_size_sections() has already done
5939 most of the work, but some symbols may have been mapped
5940 to versions that we must now resolve in the got_entries
5941 hash tables. */
5942 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5943 struct mips_got_info *g = gg;
5944 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5945 unsigned int needed_relocs = 0;
5946
5947 if (gg->next)
5948 {
5949 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5950 set_got_offset_arg.info = info;
5951
5952 mips_elf_resolve_final_got_entries (gg);
5953 for (g = gg->next; g && g->next != gg; g = g->next)
5954 {
5955 unsigned int save_assign;
5956
5957 mips_elf_resolve_final_got_entries (g);
5958
5959 /* Assign offsets to global GOT entries. */
5960 save_assign = g->assigned_gotno;
5961 g->assigned_gotno = g->local_gotno;
5962 set_got_offset_arg.g = g;
5963 set_got_offset_arg.needed_relocs = 0;
5964 htab_traverse (g->got_entries,
5965 mips_elf_set_global_got_offset,
5966 &set_got_offset_arg);
5967 needed_relocs += set_got_offset_arg.needed_relocs;
5968 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5969 <= g->global_gotno);
5970
5971 g->assigned_gotno = save_assign;
5972 if (info->shared)
5973 {
5974 needed_relocs += g->local_gotno - g->assigned_gotno;
5975 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5976 + g->next->global_gotno
5977 + MIPS_RESERVED_GOTNO);
5978 }
5979 }
5980
5981 if (needed_relocs)
5982 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5983 }
5984 }
5985 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5986 {
5987 /* IRIX rld assumes that the function stub isn't at the end
5988 of .text section. So put a dummy. XXX */
5989 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5990 }
5991 else if (! info->shared
5992 && ! mips_elf_hash_table (info)->use_rld_obj_head
5993 && strncmp (name, ".rld_map", 8) == 0)
5994 {
5995 /* We add a room for __rld_map. It will be filled in by the
5996 rtld to contain a pointer to the _r_debug structure. */
5997 s->_raw_size += 4;
5998 }
5999 else if (SGI_COMPAT (output_bfd)
6000 && strncmp (name, ".compact_rel", 12) == 0)
6001 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6002 else if (strncmp (name, ".init", 5) != 0)
6003 {
6004 /* It's not one of our sections, so don't allocate space. */
6005 continue;
6006 }
6007
6008 if (strip)
6009 {
6010 _bfd_strip_section_from_output (info, s);
6011 continue;
6012 }
6013
6014 /* Allocate memory for the section contents. */
6015 s->contents = bfd_zalloc (dynobj, s->_raw_size);
6016 if (s->contents == NULL && s->_raw_size != 0)
6017 {
6018 bfd_set_error (bfd_error_no_memory);
6019 return FALSE;
6020 }
6021 }
6022
6023 if (elf_hash_table (info)->dynamic_sections_created)
6024 {
6025 /* Add some entries to the .dynamic section. We fill in the
6026 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6027 must add the entries now so that we get the correct size for
6028 the .dynamic section. The DT_DEBUG entry is filled in by the
6029 dynamic linker and used by the debugger. */
6030 if (! info->shared)
6031 {
6032 /* SGI object has the equivalence of DT_DEBUG in the
6033 DT_MIPS_RLD_MAP entry. */
6034 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6035 return FALSE;
6036 if (!SGI_COMPAT (output_bfd))
6037 {
6038 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6039 return FALSE;
6040 }
6041 }
6042 else
6043 {
6044 /* Shared libraries on traditional mips have DT_DEBUG. */
6045 if (!SGI_COMPAT (output_bfd))
6046 {
6047 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6048 return FALSE;
6049 }
6050 }
6051
6052 if (reltext && SGI_COMPAT (output_bfd))
6053 info->flags |= DF_TEXTREL;
6054
6055 if ((info->flags & DF_TEXTREL) != 0)
6056 {
6057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6058 return FALSE;
6059 }
6060
6061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6062 return FALSE;
6063
6064 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6065 {
6066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6067 return FALSE;
6068
6069 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6070 return FALSE;
6071
6072 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6073 return FALSE;
6074 }
6075
6076 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6077 return FALSE;
6078
6079 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6080 return FALSE;
6081
6082 #if 0
6083 /* Time stamps in executable files are a bad idea. */
6084 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6085 return FALSE;
6086 #endif
6087
6088 #if 0 /* FIXME */
6089 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6090 return FALSE;
6091 #endif
6092
6093 #if 0 /* FIXME */
6094 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6095 return FALSE;
6096 #endif
6097
6098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6099 return FALSE;
6100
6101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6102 return FALSE;
6103
6104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6105 return FALSE;
6106
6107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6108 return FALSE;
6109
6110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6111 return FALSE;
6112
6113 if (IRIX_COMPAT (dynobj) == ict_irix5
6114 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6115 return FALSE;
6116
6117 if (IRIX_COMPAT (dynobj) == ict_irix6
6118 && (bfd_get_section_by_name
6119 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6120 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6121 return FALSE;
6122 }
6123
6124 return TRUE;
6125 }
6126 \f
6127 /* Relocate a MIPS ELF section. */
6128
6129 bfd_boolean
6130 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6131 bfd *input_bfd, asection *input_section,
6132 bfd_byte *contents, Elf_Internal_Rela *relocs,
6133 Elf_Internal_Sym *local_syms,
6134 asection **local_sections)
6135 {
6136 Elf_Internal_Rela *rel;
6137 const Elf_Internal_Rela *relend;
6138 bfd_vma addend = 0;
6139 bfd_boolean use_saved_addend_p = FALSE;
6140 const struct elf_backend_data *bed;
6141
6142 bed = get_elf_backend_data (output_bfd);
6143 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6144 for (rel = relocs; rel < relend; ++rel)
6145 {
6146 const char *name;
6147 bfd_vma value;
6148 reloc_howto_type *howto;
6149 bfd_boolean require_jalx;
6150 /* TRUE if the relocation is a RELA relocation, rather than a
6151 REL relocation. */
6152 bfd_boolean rela_relocation_p = TRUE;
6153 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6154 const char *msg;
6155
6156 /* Find the relocation howto for this relocation. */
6157 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6158 {
6159 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6160 64-bit code, but make sure all their addresses are in the
6161 lowermost or uppermost 32-bit section of the 64-bit address
6162 space. Thus, when they use an R_MIPS_64 they mean what is
6163 usually meant by R_MIPS_32, with the exception that the
6164 stored value is sign-extended to 64 bits. */
6165 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6166
6167 /* On big-endian systems, we need to lie about the position
6168 of the reloc. */
6169 if (bfd_big_endian (input_bfd))
6170 rel->r_offset += 4;
6171 }
6172 else
6173 /* NewABI defaults to RELA relocations. */
6174 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6175 NEWABI_P (input_bfd)
6176 && (MIPS_RELOC_RELA_P
6177 (input_bfd, input_section,
6178 rel - relocs)));
6179
6180 if (!use_saved_addend_p)
6181 {
6182 Elf_Internal_Shdr *rel_hdr;
6183
6184 /* If these relocations were originally of the REL variety,
6185 we must pull the addend out of the field that will be
6186 relocated. Otherwise, we simply use the contents of the
6187 RELA relocation. To determine which flavor or relocation
6188 this is, we depend on the fact that the INPUT_SECTION's
6189 REL_HDR is read before its REL_HDR2. */
6190 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6191 if ((size_t) (rel - relocs)
6192 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6193 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6194 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6195 {
6196 /* Note that this is a REL relocation. */
6197 rela_relocation_p = FALSE;
6198
6199 /* Get the addend, which is stored in the input file. */
6200 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6201 contents);
6202 addend &= howto->src_mask;
6203
6204 /* For some kinds of relocations, the ADDEND is a
6205 combination of the addend stored in two different
6206 relocations. */
6207 if (r_type == R_MIPS_HI16
6208 || (r_type == R_MIPS_GOT16
6209 && mips_elf_local_relocation_p (input_bfd, rel,
6210 local_sections, FALSE)))
6211 {
6212 bfd_vma l;
6213 const Elf_Internal_Rela *lo16_relocation;
6214 reloc_howto_type *lo16_howto;
6215
6216 /* The combined value is the sum of the HI16 addend,
6217 left-shifted by sixteen bits, and the LO16
6218 addend, sign extended. (Usually, the code does
6219 a `lui' of the HI16 value, and then an `addiu' of
6220 the LO16 value.)
6221
6222 Scan ahead to find a matching LO16 relocation.
6223
6224 According to the MIPS ELF ABI, the R_MIPS_LO16
6225 relocation must be immediately following.
6226 However, for the IRIX6 ABI, the next relocation
6227 may be a composed relocation consisting of
6228 several relocations for the same address. In
6229 that case, the R_MIPS_LO16 relocation may occur
6230 as one of these. We permit a similar extension
6231 in general, as that is useful for GCC. */
6232 lo16_relocation = mips_elf_next_relocation (input_bfd,
6233 R_MIPS_LO16,
6234 rel, relend);
6235 if (lo16_relocation == NULL)
6236 return FALSE;
6237
6238 /* Obtain the addend kept there. */
6239 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6240 R_MIPS_LO16, FALSE);
6241 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6242 input_bfd, contents);
6243 l &= lo16_howto->src_mask;
6244 l <<= lo16_howto->rightshift;
6245 l = _bfd_mips_elf_sign_extend (l, 16);
6246
6247 addend <<= 16;
6248
6249 /* Compute the combined addend. */
6250 addend += l;
6251 }
6252 else if (r_type == R_MIPS16_GPREL)
6253 {
6254 /* The addend is scrambled in the object file. See
6255 mips_elf_perform_relocation for details on the
6256 format. */
6257 addend = (((addend & 0x1f0000) >> 5)
6258 | ((addend & 0x7e00000) >> 16)
6259 | (addend & 0x1f));
6260 }
6261 else
6262 addend <<= howto->rightshift;
6263 }
6264 else
6265 addend = rel->r_addend;
6266 }
6267
6268 if (info->relocatable)
6269 {
6270 Elf_Internal_Sym *sym;
6271 unsigned long r_symndx;
6272
6273 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6274 && bfd_big_endian (input_bfd))
6275 rel->r_offset -= 4;
6276
6277 /* Since we're just relocating, all we need to do is copy
6278 the relocations back out to the object file, unless
6279 they're against a section symbol, in which case we need
6280 to adjust by the section offset, or unless they're GP
6281 relative in which case we need to adjust by the amount
6282 that we're adjusting GP in this relocatable object. */
6283
6284 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6285 FALSE))
6286 /* There's nothing to do for non-local relocations. */
6287 continue;
6288
6289 if (r_type == R_MIPS16_GPREL
6290 || r_type == R_MIPS_GPREL16
6291 || r_type == R_MIPS_GPREL32
6292 || r_type == R_MIPS_LITERAL)
6293 addend -= (_bfd_get_gp_value (output_bfd)
6294 - _bfd_get_gp_value (input_bfd));
6295
6296 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6297 sym = local_syms + r_symndx;
6298 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6299 /* Adjust the addend appropriately. */
6300 addend += local_sections[r_symndx]->output_offset;
6301
6302 if (rela_relocation_p)
6303 /* If this is a RELA relocation, just update the addend. */
6304 rel->r_addend = addend;
6305 else
6306 {
6307 if (r_type == R_MIPS_HI16
6308 || r_type == R_MIPS_GOT16)
6309 addend = mips_elf_high (addend);
6310 else if (r_type == R_MIPS_HIGHER)
6311 addend = mips_elf_higher (addend);
6312 else if (r_type == R_MIPS_HIGHEST)
6313 addend = mips_elf_highest (addend);
6314 else
6315 addend >>= howto->rightshift;
6316
6317 /* We use the source mask, rather than the destination
6318 mask because the place to which we are writing will be
6319 source of the addend in the final link. */
6320 addend &= howto->src_mask;
6321
6322 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6323 /* See the comment above about using R_MIPS_64 in the 32-bit
6324 ABI. Here, we need to update the addend. It would be
6325 possible to get away with just using the R_MIPS_32 reloc
6326 but for endianness. */
6327 {
6328 bfd_vma sign_bits;
6329 bfd_vma low_bits;
6330 bfd_vma high_bits;
6331
6332 if (addend & ((bfd_vma) 1 << 31))
6333 #ifdef BFD64
6334 sign_bits = ((bfd_vma) 1 << 32) - 1;
6335 #else
6336 sign_bits = -1;
6337 #endif
6338 else
6339 sign_bits = 0;
6340
6341 /* If we don't know that we have a 64-bit type,
6342 do two separate stores. */
6343 if (bfd_big_endian (input_bfd))
6344 {
6345 /* Store the sign-bits (which are most significant)
6346 first. */
6347 low_bits = sign_bits;
6348 high_bits = addend;
6349 }
6350 else
6351 {
6352 low_bits = addend;
6353 high_bits = sign_bits;
6354 }
6355 bfd_put_32 (input_bfd, low_bits,
6356 contents + rel->r_offset);
6357 bfd_put_32 (input_bfd, high_bits,
6358 contents + rel->r_offset + 4);
6359 continue;
6360 }
6361
6362 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6363 input_bfd, input_section,
6364 contents, FALSE))
6365 return FALSE;
6366 }
6367
6368 /* Go on to the next relocation. */
6369 continue;
6370 }
6371
6372 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6373 relocations for the same offset. In that case we are
6374 supposed to treat the output of each relocation as the addend
6375 for the next. */
6376 if (rel + 1 < relend
6377 && rel->r_offset == rel[1].r_offset
6378 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6379 use_saved_addend_p = TRUE;
6380 else
6381 use_saved_addend_p = FALSE;
6382
6383 /* Figure out what value we are supposed to relocate. */
6384 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6385 input_section, info, rel,
6386 addend, howto, local_syms,
6387 local_sections, &value,
6388 &name, &require_jalx,
6389 use_saved_addend_p))
6390 {
6391 case bfd_reloc_continue:
6392 /* There's nothing to do. */
6393 continue;
6394
6395 case bfd_reloc_undefined:
6396 /* mips_elf_calculate_relocation already called the
6397 undefined_symbol callback. There's no real point in
6398 trying to perform the relocation at this point, so we
6399 just skip ahead to the next relocation. */
6400 continue;
6401
6402 case bfd_reloc_notsupported:
6403 msg = _("internal error: unsupported relocation error");
6404 info->callbacks->warning
6405 (info, msg, name, input_bfd, input_section, rel->r_offset);
6406 return FALSE;
6407
6408 case bfd_reloc_overflow:
6409 if (use_saved_addend_p)
6410 /* Ignore overflow until we reach the last relocation for
6411 a given location. */
6412 ;
6413 else
6414 {
6415 BFD_ASSERT (name != NULL);
6416 if (! ((*info->callbacks->reloc_overflow)
6417 (info, name, howto->name, 0,
6418 input_bfd, input_section, rel->r_offset)))
6419 return FALSE;
6420 }
6421 break;
6422
6423 case bfd_reloc_ok:
6424 break;
6425
6426 default:
6427 abort ();
6428 break;
6429 }
6430
6431 /* If we've got another relocation for the address, keep going
6432 until we reach the last one. */
6433 if (use_saved_addend_p)
6434 {
6435 addend = value;
6436 continue;
6437 }
6438
6439 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6440 /* See the comment above about using R_MIPS_64 in the 32-bit
6441 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6442 that calculated the right value. Now, however, we
6443 sign-extend the 32-bit result to 64-bits, and store it as a
6444 64-bit value. We are especially generous here in that we
6445 go to extreme lengths to support this usage on systems with
6446 only a 32-bit VMA. */
6447 {
6448 bfd_vma sign_bits;
6449 bfd_vma low_bits;
6450 bfd_vma high_bits;
6451
6452 if (value & ((bfd_vma) 1 << 31))
6453 #ifdef BFD64
6454 sign_bits = ((bfd_vma) 1 << 32) - 1;
6455 #else
6456 sign_bits = -1;
6457 #endif
6458 else
6459 sign_bits = 0;
6460
6461 /* If we don't know that we have a 64-bit type,
6462 do two separate stores. */
6463 if (bfd_big_endian (input_bfd))
6464 {
6465 /* Undo what we did above. */
6466 rel->r_offset -= 4;
6467 /* Store the sign-bits (which are most significant)
6468 first. */
6469 low_bits = sign_bits;
6470 high_bits = value;
6471 }
6472 else
6473 {
6474 low_bits = value;
6475 high_bits = sign_bits;
6476 }
6477 bfd_put_32 (input_bfd, low_bits,
6478 contents + rel->r_offset);
6479 bfd_put_32 (input_bfd, high_bits,
6480 contents + rel->r_offset + 4);
6481 continue;
6482 }
6483
6484 /* Actually perform the relocation. */
6485 if (! mips_elf_perform_relocation (info, howto, rel, value,
6486 input_bfd, input_section,
6487 contents, require_jalx))
6488 return FALSE;
6489 }
6490
6491 return TRUE;
6492 }
6493 \f
6494 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6495 adjust it appropriately now. */
6496
6497 static void
6498 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6499 const char *name, Elf_Internal_Sym *sym)
6500 {
6501 /* The linker script takes care of providing names and values for
6502 these, but we must place them into the right sections. */
6503 static const char* const text_section_symbols[] = {
6504 "_ftext",
6505 "_etext",
6506 "__dso_displacement",
6507 "__elf_header",
6508 "__program_header_table",
6509 NULL
6510 };
6511
6512 static const char* const data_section_symbols[] = {
6513 "_fdata",
6514 "_edata",
6515 "_end",
6516 "_fbss",
6517 NULL
6518 };
6519
6520 const char* const *p;
6521 int i;
6522
6523 for (i = 0; i < 2; ++i)
6524 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6525 *p;
6526 ++p)
6527 if (strcmp (*p, name) == 0)
6528 {
6529 /* All of these symbols are given type STT_SECTION by the
6530 IRIX6 linker. */
6531 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6532 sym->st_other = STO_PROTECTED;
6533
6534 /* The IRIX linker puts these symbols in special sections. */
6535 if (i == 0)
6536 sym->st_shndx = SHN_MIPS_TEXT;
6537 else
6538 sym->st_shndx = SHN_MIPS_DATA;
6539
6540 break;
6541 }
6542 }
6543
6544 /* Finish up dynamic symbol handling. We set the contents of various
6545 dynamic sections here. */
6546
6547 bfd_boolean
6548 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6549 struct bfd_link_info *info,
6550 struct elf_link_hash_entry *h,
6551 Elf_Internal_Sym *sym)
6552 {
6553 bfd *dynobj;
6554 asection *sgot;
6555 struct mips_got_info *g, *gg;
6556 const char *name;
6557
6558 dynobj = elf_hash_table (info)->dynobj;
6559
6560 if (h->plt.offset != MINUS_ONE)
6561 {
6562 asection *s;
6563 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6564
6565 /* This symbol has a stub. Set it up. */
6566
6567 BFD_ASSERT (h->dynindx != -1);
6568
6569 s = bfd_get_section_by_name (dynobj,
6570 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6571 BFD_ASSERT (s != NULL);
6572
6573 /* FIXME: Can h->dynindex be more than 64K? */
6574 if (h->dynindx & 0xffff0000)
6575 return FALSE;
6576
6577 /* Fill the stub. */
6578 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6579 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6580 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6581 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6582
6583 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6584 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6585
6586 /* Mark the symbol as undefined. plt.offset != -1 occurs
6587 only for the referenced symbol. */
6588 sym->st_shndx = SHN_UNDEF;
6589
6590 /* The run-time linker uses the st_value field of the symbol
6591 to reset the global offset table entry for this external
6592 to its stub address when unlinking a shared object. */
6593 sym->st_value = (s->output_section->vma + s->output_offset
6594 + h->plt.offset);
6595 }
6596
6597 BFD_ASSERT (h->dynindx != -1
6598 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6599
6600 sgot = mips_elf_got_section (dynobj, FALSE);
6601 BFD_ASSERT (sgot != NULL);
6602 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6603 g = mips_elf_section_data (sgot)->u.got_info;
6604 BFD_ASSERT (g != NULL);
6605
6606 /* Run through the global symbol table, creating GOT entries for all
6607 the symbols that need them. */
6608 if (g->global_gotsym != NULL
6609 && h->dynindx >= g->global_gotsym->dynindx)
6610 {
6611 bfd_vma offset;
6612 bfd_vma value;
6613
6614 value = sym->st_value;
6615 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6616 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6617 }
6618
6619 if (g->next && h->dynindx != -1)
6620 {
6621 struct mips_got_entry e, *p;
6622 bfd_vma entry;
6623 bfd_vma offset;
6624
6625 gg = g;
6626
6627 e.abfd = output_bfd;
6628 e.symndx = -1;
6629 e.d.h = (struct mips_elf_link_hash_entry *)h;
6630
6631 for (g = g->next; g->next != gg; g = g->next)
6632 {
6633 if (g->got_entries
6634 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6635 &e)))
6636 {
6637 offset = p->gotidx;
6638 if (info->shared
6639 || (elf_hash_table (info)->dynamic_sections_created
6640 && p->d.h != NULL
6641 && ((p->d.h->root.elf_link_hash_flags
6642 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6643 && ((p->d.h->root.elf_link_hash_flags
6644 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6645 {
6646 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6647 the various compatibility problems, it's easier to mock
6648 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6649 mips_elf_create_dynamic_relocation to calculate the
6650 appropriate addend. */
6651 Elf_Internal_Rela rel[3];
6652
6653 memset (rel, 0, sizeof (rel));
6654 if (ABI_64_P (output_bfd))
6655 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6656 else
6657 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6658 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6659
6660 entry = 0;
6661 if (! (mips_elf_create_dynamic_relocation
6662 (output_bfd, info, rel,
6663 e.d.h, NULL, sym->st_value, &entry, sgot)))
6664 return FALSE;
6665 }
6666 else
6667 entry = sym->st_value;
6668 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6669 }
6670 }
6671 }
6672
6673 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6674 name = h->root.root.string;
6675 if (strcmp (name, "_DYNAMIC") == 0
6676 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6677 sym->st_shndx = SHN_ABS;
6678 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6679 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6680 {
6681 sym->st_shndx = SHN_ABS;
6682 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6683 sym->st_value = 1;
6684 }
6685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6686 {
6687 sym->st_shndx = SHN_ABS;
6688 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6689 sym->st_value = elf_gp (output_bfd);
6690 }
6691 else if (SGI_COMPAT (output_bfd))
6692 {
6693 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6694 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6695 {
6696 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6697 sym->st_other = STO_PROTECTED;
6698 sym->st_value = 0;
6699 sym->st_shndx = SHN_MIPS_DATA;
6700 }
6701 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6702 {
6703 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6704 sym->st_other = STO_PROTECTED;
6705 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6706 sym->st_shndx = SHN_ABS;
6707 }
6708 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6709 {
6710 if (h->type == STT_FUNC)
6711 sym->st_shndx = SHN_MIPS_TEXT;
6712 else if (h->type == STT_OBJECT)
6713 sym->st_shndx = SHN_MIPS_DATA;
6714 }
6715 }
6716
6717 /* Handle the IRIX6-specific symbols. */
6718 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6719 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6720
6721 if (! info->shared)
6722 {
6723 if (! mips_elf_hash_table (info)->use_rld_obj_head
6724 && (strcmp (name, "__rld_map") == 0
6725 || strcmp (name, "__RLD_MAP") == 0))
6726 {
6727 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6728 BFD_ASSERT (s != NULL);
6729 sym->st_value = s->output_section->vma + s->output_offset;
6730 bfd_put_32 (output_bfd, 0, s->contents);
6731 if (mips_elf_hash_table (info)->rld_value == 0)
6732 mips_elf_hash_table (info)->rld_value = sym->st_value;
6733 }
6734 else if (mips_elf_hash_table (info)->use_rld_obj_head
6735 && strcmp (name, "__rld_obj_head") == 0)
6736 {
6737 /* IRIX6 does not use a .rld_map section. */
6738 if (IRIX_COMPAT (output_bfd) == ict_irix5
6739 || IRIX_COMPAT (output_bfd) == ict_none)
6740 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6741 != NULL);
6742 mips_elf_hash_table (info)->rld_value = sym->st_value;
6743 }
6744 }
6745
6746 /* If this is a mips16 symbol, force the value to be even. */
6747 if (sym->st_other == STO_MIPS16)
6748 sym->st_value &= ~1;
6749
6750 return TRUE;
6751 }
6752
6753 /* Finish up the dynamic sections. */
6754
6755 bfd_boolean
6756 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6757 struct bfd_link_info *info)
6758 {
6759 bfd *dynobj;
6760 asection *sdyn;
6761 asection *sgot;
6762 struct mips_got_info *gg, *g;
6763
6764 dynobj = elf_hash_table (info)->dynobj;
6765
6766 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6767
6768 sgot = mips_elf_got_section (dynobj, FALSE);
6769 if (sgot == NULL)
6770 gg = g = NULL;
6771 else
6772 {
6773 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6774 gg = mips_elf_section_data (sgot)->u.got_info;
6775 BFD_ASSERT (gg != NULL);
6776 g = mips_elf_got_for_ibfd (gg, output_bfd);
6777 BFD_ASSERT (g != NULL);
6778 }
6779
6780 if (elf_hash_table (info)->dynamic_sections_created)
6781 {
6782 bfd_byte *b;
6783
6784 BFD_ASSERT (sdyn != NULL);
6785 BFD_ASSERT (g != NULL);
6786
6787 for (b = sdyn->contents;
6788 b < sdyn->contents + sdyn->_raw_size;
6789 b += MIPS_ELF_DYN_SIZE (dynobj))
6790 {
6791 Elf_Internal_Dyn dyn;
6792 const char *name;
6793 size_t elemsize;
6794 asection *s;
6795 bfd_boolean swap_out_p;
6796
6797 /* Read in the current dynamic entry. */
6798 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6799
6800 /* Assume that we're going to modify it and write it out. */
6801 swap_out_p = TRUE;
6802
6803 switch (dyn.d_tag)
6804 {
6805 case DT_RELENT:
6806 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6807 BFD_ASSERT (s != NULL);
6808 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6809 break;
6810
6811 case DT_STRSZ:
6812 /* Rewrite DT_STRSZ. */
6813 dyn.d_un.d_val =
6814 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6815 break;
6816
6817 case DT_PLTGOT:
6818 name = ".got";
6819 s = bfd_get_section_by_name (output_bfd, name);
6820 BFD_ASSERT (s != NULL);
6821 dyn.d_un.d_ptr = s->vma;
6822 break;
6823
6824 case DT_MIPS_RLD_VERSION:
6825 dyn.d_un.d_val = 1; /* XXX */
6826 break;
6827
6828 case DT_MIPS_FLAGS:
6829 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6830 break;
6831
6832 case DT_MIPS_TIME_STAMP:
6833 time ((time_t *) &dyn.d_un.d_val);
6834 break;
6835
6836 case DT_MIPS_ICHECKSUM:
6837 /* XXX FIXME: */
6838 swap_out_p = FALSE;
6839 break;
6840
6841 case DT_MIPS_IVERSION:
6842 /* XXX FIXME: */
6843 swap_out_p = FALSE;
6844 break;
6845
6846 case DT_MIPS_BASE_ADDRESS:
6847 s = output_bfd->sections;
6848 BFD_ASSERT (s != NULL);
6849 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6850 break;
6851
6852 case DT_MIPS_LOCAL_GOTNO:
6853 dyn.d_un.d_val = g->local_gotno;
6854 break;
6855
6856 case DT_MIPS_UNREFEXTNO:
6857 /* The index into the dynamic symbol table which is the
6858 entry of the first external symbol that is not
6859 referenced within the same object. */
6860 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6861 break;
6862
6863 case DT_MIPS_GOTSYM:
6864 if (gg->global_gotsym)
6865 {
6866 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6867 break;
6868 }
6869 /* In case if we don't have global got symbols we default
6870 to setting DT_MIPS_GOTSYM to the same value as
6871 DT_MIPS_SYMTABNO, so we just fall through. */
6872
6873 case DT_MIPS_SYMTABNO:
6874 name = ".dynsym";
6875 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6876 s = bfd_get_section_by_name (output_bfd, name);
6877 BFD_ASSERT (s != NULL);
6878
6879 if (s->_cooked_size != 0)
6880 dyn.d_un.d_val = s->_cooked_size / elemsize;
6881 else
6882 dyn.d_un.d_val = s->_raw_size / elemsize;
6883 break;
6884
6885 case DT_MIPS_HIPAGENO:
6886 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6887 break;
6888
6889 case DT_MIPS_RLD_MAP:
6890 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6891 break;
6892
6893 case DT_MIPS_OPTIONS:
6894 s = (bfd_get_section_by_name
6895 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6896 dyn.d_un.d_ptr = s->vma;
6897 break;
6898
6899 case DT_RELSZ:
6900 /* Reduce DT_RELSZ to account for any relocations we
6901 decided not to make. This is for the n64 irix rld,
6902 which doesn't seem to apply any relocations if there
6903 are trailing null entries. */
6904 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6905 dyn.d_un.d_val = (s->reloc_count
6906 * (ABI_64_P (output_bfd)
6907 ? sizeof (Elf64_Mips_External_Rel)
6908 : sizeof (Elf32_External_Rel)));
6909 break;
6910
6911 default:
6912 swap_out_p = FALSE;
6913 break;
6914 }
6915
6916 if (swap_out_p)
6917 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6918 (dynobj, &dyn, b);
6919 }
6920 }
6921
6922 /* The first entry of the global offset table will be filled at
6923 runtime. The second entry will be used by some runtime loaders.
6924 This isn't the case of IRIX rld. */
6925 if (sgot != NULL && sgot->_raw_size > 0)
6926 {
6927 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6928 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6929 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6930 }
6931
6932 if (sgot != NULL)
6933 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6934 = MIPS_ELF_GOT_SIZE (output_bfd);
6935
6936 /* Generate dynamic relocations for the non-primary gots. */
6937 if (gg != NULL && gg->next)
6938 {
6939 Elf_Internal_Rela rel[3];
6940 bfd_vma addend = 0;
6941
6942 memset (rel, 0, sizeof (rel));
6943 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6944
6945 for (g = gg->next; g->next != gg; g = g->next)
6946 {
6947 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6948
6949 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6950 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6951 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6952 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6953
6954 if (! info->shared)
6955 continue;
6956
6957 while (index < g->assigned_gotno)
6958 {
6959 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6960 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6961 if (!(mips_elf_create_dynamic_relocation
6962 (output_bfd, info, rel, NULL,
6963 bfd_abs_section_ptr,
6964 0, &addend, sgot)))
6965 return FALSE;
6966 BFD_ASSERT (addend == 0);
6967 }
6968 }
6969 }
6970
6971 {
6972 asection *s;
6973 Elf32_compact_rel cpt;
6974
6975 if (SGI_COMPAT (output_bfd))
6976 {
6977 /* Write .compact_rel section out. */
6978 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6979 if (s != NULL)
6980 {
6981 cpt.id1 = 1;
6982 cpt.num = s->reloc_count;
6983 cpt.id2 = 2;
6984 cpt.offset = (s->output_section->filepos
6985 + sizeof (Elf32_External_compact_rel));
6986 cpt.reserved0 = 0;
6987 cpt.reserved1 = 0;
6988 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6989 ((Elf32_External_compact_rel *)
6990 s->contents));
6991
6992 /* Clean up a dummy stub function entry in .text. */
6993 s = bfd_get_section_by_name (dynobj,
6994 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6995 if (s != NULL)
6996 {
6997 file_ptr dummy_offset;
6998
6999 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7000 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7001 memset (s->contents + dummy_offset, 0,
7002 MIPS_FUNCTION_STUB_SIZE);
7003 }
7004 }
7005 }
7006
7007 /* We need to sort the entries of the dynamic relocation section. */
7008
7009 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7010
7011 if (s != NULL
7012 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7013 {
7014 reldyn_sorting_bfd = output_bfd;
7015
7016 if (ABI_64_P (output_bfd))
7017 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7018 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7019 else
7020 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7021 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7022 }
7023 }
7024
7025 return TRUE;
7026 }
7027
7028
7029 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7030
7031 static void
7032 mips_set_isa_flags (bfd *abfd)
7033 {
7034 flagword val;
7035
7036 switch (bfd_get_mach (abfd))
7037 {
7038 default:
7039 case bfd_mach_mips3000:
7040 val = E_MIPS_ARCH_1;
7041 break;
7042
7043 case bfd_mach_mips3900:
7044 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7045 break;
7046
7047 case bfd_mach_mips6000:
7048 val = E_MIPS_ARCH_2;
7049 break;
7050
7051 case bfd_mach_mips4000:
7052 case bfd_mach_mips4300:
7053 case bfd_mach_mips4400:
7054 case bfd_mach_mips4600:
7055 val = E_MIPS_ARCH_3;
7056 break;
7057
7058 case bfd_mach_mips4010:
7059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7060 break;
7061
7062 case bfd_mach_mips4100:
7063 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7064 break;
7065
7066 case bfd_mach_mips4111:
7067 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7068 break;
7069
7070 case bfd_mach_mips4120:
7071 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7072 break;
7073
7074 case bfd_mach_mips4650:
7075 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7076 break;
7077
7078 case bfd_mach_mips5400:
7079 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7080 break;
7081
7082 case bfd_mach_mips5500:
7083 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7084 break;
7085
7086 case bfd_mach_mips5000:
7087 case bfd_mach_mips7000:
7088 case bfd_mach_mips8000:
7089 case bfd_mach_mips10000:
7090 case bfd_mach_mips12000:
7091 val = E_MIPS_ARCH_4;
7092 break;
7093
7094 case bfd_mach_mips5:
7095 val = E_MIPS_ARCH_5;
7096 break;
7097
7098 case bfd_mach_mips_sb1:
7099 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7100 break;
7101
7102 case bfd_mach_mipsisa32:
7103 val = E_MIPS_ARCH_32;
7104 break;
7105
7106 case bfd_mach_mipsisa64:
7107 val = E_MIPS_ARCH_64;
7108 break;
7109
7110 case bfd_mach_mipsisa32r2:
7111 val = E_MIPS_ARCH_32R2;
7112 break;
7113
7114 case bfd_mach_mipsisa64r2:
7115 val = E_MIPS_ARCH_64R2;
7116 break;
7117 }
7118 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7119 elf_elfheader (abfd)->e_flags |= val;
7120
7121 }
7122
7123
7124 /* The final processing done just before writing out a MIPS ELF object
7125 file. This gets the MIPS architecture right based on the machine
7126 number. This is used by both the 32-bit and the 64-bit ABI. */
7127
7128 void
7129 _bfd_mips_elf_final_write_processing (bfd *abfd,
7130 bfd_boolean linker ATTRIBUTE_UNUSED)
7131 {
7132 unsigned int i;
7133 Elf_Internal_Shdr **hdrpp;
7134 const char *name;
7135 asection *sec;
7136
7137 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7138 is nonzero. This is for compatibility with old objects, which used
7139 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7140 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7141 mips_set_isa_flags (abfd);
7142
7143 /* Set the sh_info field for .gptab sections and other appropriate
7144 info for each special section. */
7145 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7146 i < elf_numsections (abfd);
7147 i++, hdrpp++)
7148 {
7149 switch ((*hdrpp)->sh_type)
7150 {
7151 case SHT_MIPS_MSYM:
7152 case SHT_MIPS_LIBLIST:
7153 sec = bfd_get_section_by_name (abfd, ".dynstr");
7154 if (sec != NULL)
7155 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7156 break;
7157
7158 case SHT_MIPS_GPTAB:
7159 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7160 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7161 BFD_ASSERT (name != NULL
7162 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7163 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7164 BFD_ASSERT (sec != NULL);
7165 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7166 break;
7167
7168 case SHT_MIPS_CONTENT:
7169 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7170 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7171 BFD_ASSERT (name != NULL
7172 && strncmp (name, ".MIPS.content",
7173 sizeof ".MIPS.content" - 1) == 0);
7174 sec = bfd_get_section_by_name (abfd,
7175 name + sizeof ".MIPS.content" - 1);
7176 BFD_ASSERT (sec != NULL);
7177 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7178 break;
7179
7180 case SHT_MIPS_SYMBOL_LIB:
7181 sec = bfd_get_section_by_name (abfd, ".dynsym");
7182 if (sec != NULL)
7183 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7184 sec = bfd_get_section_by_name (abfd, ".liblist");
7185 if (sec != NULL)
7186 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7187 break;
7188
7189 case SHT_MIPS_EVENTS:
7190 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7191 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7192 BFD_ASSERT (name != NULL);
7193 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7194 sec = bfd_get_section_by_name (abfd,
7195 name + sizeof ".MIPS.events" - 1);
7196 else
7197 {
7198 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7199 sizeof ".MIPS.post_rel" - 1) == 0);
7200 sec = bfd_get_section_by_name (abfd,
7201 (name
7202 + sizeof ".MIPS.post_rel" - 1));
7203 }
7204 BFD_ASSERT (sec != NULL);
7205 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7206 break;
7207
7208 }
7209 }
7210 }
7211 \f
7212 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7213 segments. */
7214
7215 int
7216 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7217 {
7218 asection *s;
7219 int ret = 0;
7220
7221 /* See if we need a PT_MIPS_REGINFO segment. */
7222 s = bfd_get_section_by_name (abfd, ".reginfo");
7223 if (s && (s->flags & SEC_LOAD))
7224 ++ret;
7225
7226 /* See if we need a PT_MIPS_OPTIONS segment. */
7227 if (IRIX_COMPAT (abfd) == ict_irix6
7228 && bfd_get_section_by_name (abfd,
7229 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7230 ++ret;
7231
7232 /* See if we need a PT_MIPS_RTPROC segment. */
7233 if (IRIX_COMPAT (abfd) == ict_irix5
7234 && bfd_get_section_by_name (abfd, ".dynamic")
7235 && bfd_get_section_by_name (abfd, ".mdebug"))
7236 ++ret;
7237
7238 return ret;
7239 }
7240
7241 /* Modify the segment map for an IRIX5 executable. */
7242
7243 bfd_boolean
7244 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7245 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7246 {
7247 asection *s;
7248 struct elf_segment_map *m, **pm;
7249 bfd_size_type amt;
7250
7251 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7252 segment. */
7253 s = bfd_get_section_by_name (abfd, ".reginfo");
7254 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7255 {
7256 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7257 if (m->p_type == PT_MIPS_REGINFO)
7258 break;
7259 if (m == NULL)
7260 {
7261 amt = sizeof *m;
7262 m = bfd_zalloc (abfd, amt);
7263 if (m == NULL)
7264 return FALSE;
7265
7266 m->p_type = PT_MIPS_REGINFO;
7267 m->count = 1;
7268 m->sections[0] = s;
7269
7270 /* We want to put it after the PHDR and INTERP segments. */
7271 pm = &elf_tdata (abfd)->segment_map;
7272 while (*pm != NULL
7273 && ((*pm)->p_type == PT_PHDR
7274 || (*pm)->p_type == PT_INTERP))
7275 pm = &(*pm)->next;
7276
7277 m->next = *pm;
7278 *pm = m;
7279 }
7280 }
7281
7282 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7283 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7284 PT_MIPS_OPTIONS segment immediately following the program header
7285 table. */
7286 if (NEWABI_P (abfd)
7287 /* On non-IRIX6 new abi, we'll have already created a segment
7288 for this section, so don't create another. I'm not sure this
7289 is not also the case for IRIX 6, but I can't test it right
7290 now. */
7291 && IRIX_COMPAT (abfd) == ict_irix6)
7292 {
7293 for (s = abfd->sections; s; s = s->next)
7294 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7295 break;
7296
7297 if (s)
7298 {
7299 struct elf_segment_map *options_segment;
7300
7301 pm = &elf_tdata (abfd)->segment_map;
7302 while (*pm != NULL
7303 && ((*pm)->p_type == PT_PHDR
7304 || (*pm)->p_type == PT_INTERP))
7305 pm = &(*pm)->next;
7306
7307 amt = sizeof (struct elf_segment_map);
7308 options_segment = bfd_zalloc (abfd, amt);
7309 options_segment->next = *pm;
7310 options_segment->p_type = PT_MIPS_OPTIONS;
7311 options_segment->p_flags = PF_R;
7312 options_segment->p_flags_valid = TRUE;
7313 options_segment->count = 1;
7314 options_segment->sections[0] = s;
7315 *pm = options_segment;
7316 }
7317 }
7318 else
7319 {
7320 if (IRIX_COMPAT (abfd) == ict_irix5)
7321 {
7322 /* If there are .dynamic and .mdebug sections, we make a room
7323 for the RTPROC header. FIXME: Rewrite without section names. */
7324 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7325 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7326 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7327 {
7328 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7329 if (m->p_type == PT_MIPS_RTPROC)
7330 break;
7331 if (m == NULL)
7332 {
7333 amt = sizeof *m;
7334 m = bfd_zalloc (abfd, amt);
7335 if (m == NULL)
7336 return FALSE;
7337
7338 m->p_type = PT_MIPS_RTPROC;
7339
7340 s = bfd_get_section_by_name (abfd, ".rtproc");
7341 if (s == NULL)
7342 {
7343 m->count = 0;
7344 m->p_flags = 0;
7345 m->p_flags_valid = 1;
7346 }
7347 else
7348 {
7349 m->count = 1;
7350 m->sections[0] = s;
7351 }
7352
7353 /* We want to put it after the DYNAMIC segment. */
7354 pm = &elf_tdata (abfd)->segment_map;
7355 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7356 pm = &(*pm)->next;
7357 if (*pm != NULL)
7358 pm = &(*pm)->next;
7359
7360 m->next = *pm;
7361 *pm = m;
7362 }
7363 }
7364 }
7365 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7366 .dynstr, .dynsym, and .hash sections, and everything in
7367 between. */
7368 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7369 pm = &(*pm)->next)
7370 if ((*pm)->p_type == PT_DYNAMIC)
7371 break;
7372 m = *pm;
7373 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7374 {
7375 /* For a normal mips executable the permissions for the PT_DYNAMIC
7376 segment are read, write and execute. We do that here since
7377 the code in elf.c sets only the read permission. This matters
7378 sometimes for the dynamic linker. */
7379 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7380 {
7381 m->p_flags = PF_R | PF_W | PF_X;
7382 m->p_flags_valid = 1;
7383 }
7384 }
7385 if (m != NULL
7386 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7387 {
7388 static const char *sec_names[] =
7389 {
7390 ".dynamic", ".dynstr", ".dynsym", ".hash"
7391 };
7392 bfd_vma low, high;
7393 unsigned int i, c;
7394 struct elf_segment_map *n;
7395
7396 low = ~(bfd_vma) 0;
7397 high = 0;
7398 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7399 {
7400 s = bfd_get_section_by_name (abfd, sec_names[i]);
7401 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7402 {
7403 bfd_size_type sz;
7404
7405 if (low > s->vma)
7406 low = s->vma;
7407 sz = s->_cooked_size;
7408 if (sz == 0)
7409 sz = s->_raw_size;
7410 if (high < s->vma + sz)
7411 high = s->vma + sz;
7412 }
7413 }
7414
7415 c = 0;
7416 for (s = abfd->sections; s != NULL; s = s->next)
7417 if ((s->flags & SEC_LOAD) != 0
7418 && s->vma >= low
7419 && ((s->vma
7420 + (s->_cooked_size !=
7421 0 ? s->_cooked_size : s->_raw_size)) <= high))
7422 ++c;
7423
7424 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7425 n = bfd_zalloc (abfd, amt);
7426 if (n == NULL)
7427 return FALSE;
7428 *n = *m;
7429 n->count = c;
7430
7431 i = 0;
7432 for (s = abfd->sections; s != NULL; s = s->next)
7433 {
7434 if ((s->flags & SEC_LOAD) != 0
7435 && s->vma >= low
7436 && ((s->vma
7437 + (s->_cooked_size != 0 ?
7438 s->_cooked_size : s->_raw_size)) <= high))
7439 {
7440 n->sections[i] = s;
7441 ++i;
7442 }
7443 }
7444
7445 *pm = n;
7446 }
7447 }
7448
7449 return TRUE;
7450 }
7451 \f
7452 /* Return the section that should be marked against GC for a given
7453 relocation. */
7454
7455 asection *
7456 _bfd_mips_elf_gc_mark_hook (asection *sec,
7457 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7458 Elf_Internal_Rela *rel,
7459 struct elf_link_hash_entry *h,
7460 Elf_Internal_Sym *sym)
7461 {
7462 /* ??? Do mips16 stub sections need to be handled special? */
7463
7464 if (h != NULL)
7465 {
7466 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7467 {
7468 case R_MIPS_GNU_VTINHERIT:
7469 case R_MIPS_GNU_VTENTRY:
7470 break;
7471
7472 default:
7473 switch (h->root.type)
7474 {
7475 case bfd_link_hash_defined:
7476 case bfd_link_hash_defweak:
7477 return h->root.u.def.section;
7478
7479 case bfd_link_hash_common:
7480 return h->root.u.c.p->section;
7481
7482 default:
7483 break;
7484 }
7485 }
7486 }
7487 else
7488 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7489
7490 return NULL;
7491 }
7492
7493 /* Update the got entry reference counts for the section being removed. */
7494
7495 bfd_boolean
7496 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7497 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7498 asection *sec ATTRIBUTE_UNUSED,
7499 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7500 {
7501 #if 0
7502 Elf_Internal_Shdr *symtab_hdr;
7503 struct elf_link_hash_entry **sym_hashes;
7504 bfd_signed_vma *local_got_refcounts;
7505 const Elf_Internal_Rela *rel, *relend;
7506 unsigned long r_symndx;
7507 struct elf_link_hash_entry *h;
7508
7509 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7510 sym_hashes = elf_sym_hashes (abfd);
7511 local_got_refcounts = elf_local_got_refcounts (abfd);
7512
7513 relend = relocs + sec->reloc_count;
7514 for (rel = relocs; rel < relend; rel++)
7515 switch (ELF_R_TYPE (abfd, rel->r_info))
7516 {
7517 case R_MIPS_GOT16:
7518 case R_MIPS_CALL16:
7519 case R_MIPS_CALL_HI16:
7520 case R_MIPS_CALL_LO16:
7521 case R_MIPS_GOT_HI16:
7522 case R_MIPS_GOT_LO16:
7523 case R_MIPS_GOT_DISP:
7524 case R_MIPS_GOT_PAGE:
7525 case R_MIPS_GOT_OFST:
7526 /* ??? It would seem that the existing MIPS code does no sort
7527 of reference counting or whatnot on its GOT and PLT entries,
7528 so it is not possible to garbage collect them at this time. */
7529 break;
7530
7531 default:
7532 break;
7533 }
7534 #endif
7535
7536 return TRUE;
7537 }
7538 \f
7539 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7540 hiding the old indirect symbol. Process additional relocation
7541 information. Also called for weakdefs, in which case we just let
7542 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7543
7544 void
7545 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7546 struct elf_link_hash_entry *dir,
7547 struct elf_link_hash_entry *ind)
7548 {
7549 struct mips_elf_link_hash_entry *dirmips, *indmips;
7550
7551 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7552
7553 if (ind->root.type != bfd_link_hash_indirect)
7554 return;
7555
7556 dirmips = (struct mips_elf_link_hash_entry *) dir;
7557 indmips = (struct mips_elf_link_hash_entry *) ind;
7558 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7559 if (indmips->readonly_reloc)
7560 dirmips->readonly_reloc = TRUE;
7561 if (indmips->no_fn_stub)
7562 dirmips->no_fn_stub = TRUE;
7563 }
7564
7565 void
7566 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7567 struct elf_link_hash_entry *entry,
7568 bfd_boolean force_local)
7569 {
7570 bfd *dynobj;
7571 asection *got;
7572 struct mips_got_info *g;
7573 struct mips_elf_link_hash_entry *h;
7574
7575 h = (struct mips_elf_link_hash_entry *) entry;
7576 if (h->forced_local)
7577 return;
7578 h->forced_local = force_local;
7579
7580 dynobj = elf_hash_table (info)->dynobj;
7581 if (dynobj != NULL && force_local)
7582 {
7583 got = mips_elf_got_section (dynobj, FALSE);
7584 g = mips_elf_section_data (got)->u.got_info;
7585
7586 if (g->next)
7587 {
7588 struct mips_got_entry e;
7589 struct mips_got_info *gg = g;
7590
7591 /* Since we're turning what used to be a global symbol into a
7592 local one, bump up the number of local entries of each GOT
7593 that had an entry for it. This will automatically decrease
7594 the number of global entries, since global_gotno is actually
7595 the upper limit of global entries. */
7596 e.abfd = dynobj;
7597 e.symndx = -1;
7598 e.d.h = h;
7599
7600 for (g = g->next; g != gg; g = g->next)
7601 if (htab_find (g->got_entries, &e))
7602 {
7603 BFD_ASSERT (g->global_gotno > 0);
7604 g->local_gotno++;
7605 g->global_gotno--;
7606 }
7607
7608 /* If this was a global symbol forced into the primary GOT, we
7609 no longer need an entry for it. We can't release the entry
7610 at this point, but we must at least stop counting it as one
7611 of the symbols that required a forced got entry. */
7612 if (h->root.got.offset == 2)
7613 {
7614 BFD_ASSERT (gg->assigned_gotno > 0);
7615 gg->assigned_gotno--;
7616 }
7617 }
7618 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7619 /* If we haven't got through GOT allocation yet, just bump up the
7620 number of local entries, as this symbol won't be counted as
7621 global. */
7622 g->local_gotno++;
7623 else if (h->root.got.offset == 1)
7624 {
7625 /* If we're past non-multi-GOT allocation and this symbol had
7626 been marked for a global got entry, give it a local entry
7627 instead. */
7628 BFD_ASSERT (g->global_gotno > 0);
7629 g->local_gotno++;
7630 g->global_gotno--;
7631 }
7632 }
7633
7634 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7635 }
7636 \f
7637 #define PDR_SIZE 32
7638
7639 bfd_boolean
7640 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7641 struct bfd_link_info *info)
7642 {
7643 asection *o;
7644 bfd_boolean ret = FALSE;
7645 unsigned char *tdata;
7646 size_t i, skip;
7647
7648 o = bfd_get_section_by_name (abfd, ".pdr");
7649 if (! o)
7650 return FALSE;
7651 if (o->_raw_size == 0)
7652 return FALSE;
7653 if (o->_raw_size % PDR_SIZE != 0)
7654 return FALSE;
7655 if (o->output_section != NULL
7656 && bfd_is_abs_section (o->output_section))
7657 return FALSE;
7658
7659 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7660 if (! tdata)
7661 return FALSE;
7662
7663 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7664 info->keep_memory);
7665 if (!cookie->rels)
7666 {
7667 free (tdata);
7668 return FALSE;
7669 }
7670
7671 cookie->rel = cookie->rels;
7672 cookie->relend = cookie->rels + o->reloc_count;
7673
7674 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7675 {
7676 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7677 {
7678 tdata[i] = 1;
7679 skip ++;
7680 }
7681 }
7682
7683 if (skip != 0)
7684 {
7685 mips_elf_section_data (o)->u.tdata = tdata;
7686 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7687 ret = TRUE;
7688 }
7689 else
7690 free (tdata);
7691
7692 if (! info->keep_memory)
7693 free (cookie->rels);
7694
7695 return ret;
7696 }
7697
7698 bfd_boolean
7699 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7700 {
7701 if (strcmp (sec->name, ".pdr") == 0)
7702 return TRUE;
7703 return FALSE;
7704 }
7705
7706 bfd_boolean
7707 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7708 bfd_byte *contents)
7709 {
7710 bfd_byte *to, *from, *end;
7711 int i;
7712
7713 if (strcmp (sec->name, ".pdr") != 0)
7714 return FALSE;
7715
7716 if (mips_elf_section_data (sec)->u.tdata == NULL)
7717 return FALSE;
7718
7719 to = contents;
7720 end = contents + sec->_raw_size;
7721 for (from = contents, i = 0;
7722 from < end;
7723 from += PDR_SIZE, i++)
7724 {
7725 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7726 continue;
7727 if (to != from)
7728 memcpy (to, from, PDR_SIZE);
7729 to += PDR_SIZE;
7730 }
7731 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7732 sec->output_offset, sec->_cooked_size);
7733 return TRUE;
7734 }
7735 \f
7736 /* MIPS ELF uses a special find_nearest_line routine in order the
7737 handle the ECOFF debugging information. */
7738
7739 struct mips_elf_find_line
7740 {
7741 struct ecoff_debug_info d;
7742 struct ecoff_find_line i;
7743 };
7744
7745 bfd_boolean
7746 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7747 asymbol **symbols, bfd_vma offset,
7748 const char **filename_ptr,
7749 const char **functionname_ptr,
7750 unsigned int *line_ptr)
7751 {
7752 asection *msec;
7753
7754 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7755 filename_ptr, functionname_ptr,
7756 line_ptr))
7757 return TRUE;
7758
7759 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7760 filename_ptr, functionname_ptr,
7761 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7762 &elf_tdata (abfd)->dwarf2_find_line_info))
7763 return TRUE;
7764
7765 msec = bfd_get_section_by_name (abfd, ".mdebug");
7766 if (msec != NULL)
7767 {
7768 flagword origflags;
7769 struct mips_elf_find_line *fi;
7770 const struct ecoff_debug_swap * const swap =
7771 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7772
7773 /* If we are called during a link, mips_elf_final_link may have
7774 cleared the SEC_HAS_CONTENTS field. We force it back on here
7775 if appropriate (which it normally will be). */
7776 origflags = msec->flags;
7777 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7778 msec->flags |= SEC_HAS_CONTENTS;
7779
7780 fi = elf_tdata (abfd)->find_line_info;
7781 if (fi == NULL)
7782 {
7783 bfd_size_type external_fdr_size;
7784 char *fraw_src;
7785 char *fraw_end;
7786 struct fdr *fdr_ptr;
7787 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7788
7789 fi = bfd_zalloc (abfd, amt);
7790 if (fi == NULL)
7791 {
7792 msec->flags = origflags;
7793 return FALSE;
7794 }
7795
7796 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7797 {
7798 msec->flags = origflags;
7799 return FALSE;
7800 }
7801
7802 /* Swap in the FDR information. */
7803 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7804 fi->d.fdr = bfd_alloc (abfd, amt);
7805 if (fi->d.fdr == NULL)
7806 {
7807 msec->flags = origflags;
7808 return FALSE;
7809 }
7810 external_fdr_size = swap->external_fdr_size;
7811 fdr_ptr = fi->d.fdr;
7812 fraw_src = (char *) fi->d.external_fdr;
7813 fraw_end = (fraw_src
7814 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7815 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7816 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7817
7818 elf_tdata (abfd)->find_line_info = fi;
7819
7820 /* Note that we don't bother to ever free this information.
7821 find_nearest_line is either called all the time, as in
7822 objdump -l, so the information should be saved, or it is
7823 rarely called, as in ld error messages, so the memory
7824 wasted is unimportant. Still, it would probably be a
7825 good idea for free_cached_info to throw it away. */
7826 }
7827
7828 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7829 &fi->i, filename_ptr, functionname_ptr,
7830 line_ptr))
7831 {
7832 msec->flags = origflags;
7833 return TRUE;
7834 }
7835
7836 msec->flags = origflags;
7837 }
7838
7839 /* Fall back on the generic ELF find_nearest_line routine. */
7840
7841 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7842 filename_ptr, functionname_ptr,
7843 line_ptr);
7844 }
7845 \f
7846 /* When are writing out the .options or .MIPS.options section,
7847 remember the bytes we are writing out, so that we can install the
7848 GP value in the section_processing routine. */
7849
7850 bfd_boolean
7851 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7852 const void *location,
7853 file_ptr offset, bfd_size_type count)
7854 {
7855 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7856 {
7857 bfd_byte *c;
7858
7859 if (elf_section_data (section) == NULL)
7860 {
7861 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7862 section->used_by_bfd = bfd_zalloc (abfd, amt);
7863 if (elf_section_data (section) == NULL)
7864 return FALSE;
7865 }
7866 c = mips_elf_section_data (section)->u.tdata;
7867 if (c == NULL)
7868 {
7869 bfd_size_type size;
7870
7871 if (section->_cooked_size != 0)
7872 size = section->_cooked_size;
7873 else
7874 size = section->_raw_size;
7875 c = bfd_zalloc (abfd, size);
7876 if (c == NULL)
7877 return FALSE;
7878 mips_elf_section_data (section)->u.tdata = c;
7879 }
7880
7881 memcpy (c + offset, location, count);
7882 }
7883
7884 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7885 count);
7886 }
7887
7888 /* This is almost identical to bfd_generic_get_... except that some
7889 MIPS relocations need to be handled specially. Sigh. */
7890
7891 bfd_byte *
7892 _bfd_elf_mips_get_relocated_section_contents
7893 (bfd *abfd,
7894 struct bfd_link_info *link_info,
7895 struct bfd_link_order *link_order,
7896 bfd_byte *data,
7897 bfd_boolean relocatable,
7898 asymbol **symbols)
7899 {
7900 /* Get enough memory to hold the stuff */
7901 bfd *input_bfd = link_order->u.indirect.section->owner;
7902 asection *input_section = link_order->u.indirect.section;
7903
7904 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7905 arelent **reloc_vector = NULL;
7906 long reloc_count;
7907
7908 if (reloc_size < 0)
7909 goto error_return;
7910
7911 reloc_vector = bfd_malloc (reloc_size);
7912 if (reloc_vector == NULL && reloc_size != 0)
7913 goto error_return;
7914
7915 /* read in the section */
7916 if (!bfd_get_section_contents (input_bfd, input_section, data, 0,
7917 input_section->_raw_size))
7918 goto error_return;
7919
7920 /* We're not relaxing the section, so just copy the size info */
7921 input_section->_cooked_size = input_section->_raw_size;
7922
7923 reloc_count = bfd_canonicalize_reloc (input_bfd,
7924 input_section,
7925 reloc_vector,
7926 symbols);
7927 if (reloc_count < 0)
7928 goto error_return;
7929
7930 if (reloc_count > 0)
7931 {
7932 arelent **parent;
7933 /* for mips */
7934 int gp_found;
7935 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7936
7937 {
7938 struct bfd_hash_entry *h;
7939 struct bfd_link_hash_entry *lh;
7940 /* Skip all this stuff if we aren't mixing formats. */
7941 if (abfd && input_bfd
7942 && abfd->xvec == input_bfd->xvec)
7943 lh = 0;
7944 else
7945 {
7946 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7947 lh = (struct bfd_link_hash_entry *) h;
7948 }
7949 lookup:
7950 if (lh)
7951 {
7952 switch (lh->type)
7953 {
7954 case bfd_link_hash_undefined:
7955 case bfd_link_hash_undefweak:
7956 case bfd_link_hash_common:
7957 gp_found = 0;
7958 break;
7959 case bfd_link_hash_defined:
7960 case bfd_link_hash_defweak:
7961 gp_found = 1;
7962 gp = lh->u.def.value;
7963 break;
7964 case bfd_link_hash_indirect:
7965 case bfd_link_hash_warning:
7966 lh = lh->u.i.link;
7967 /* @@FIXME ignoring warning for now */
7968 goto lookup;
7969 case bfd_link_hash_new:
7970 default:
7971 abort ();
7972 }
7973 }
7974 else
7975 gp_found = 0;
7976 }
7977 /* end mips */
7978 for (parent = reloc_vector; *parent != NULL; parent++)
7979 {
7980 char *error_message = NULL;
7981 bfd_reloc_status_type r;
7982
7983 /* Specific to MIPS: Deal with relocation types that require
7984 knowing the gp of the output bfd. */
7985 asymbol *sym = *(*parent)->sym_ptr_ptr;
7986 if (bfd_is_abs_section (sym->section) && abfd)
7987 {
7988 /* The special_function wouldn't get called anyway. */
7989 }
7990 else if (!gp_found)
7991 {
7992 /* The gp isn't there; let the special function code
7993 fall over on its own. */
7994 }
7995 else if ((*parent)->howto->special_function
7996 == _bfd_mips_elf32_gprel16_reloc)
7997 {
7998 /* bypass special_function call */
7999 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8000 input_section, relocatable,
8001 data, gp);
8002 goto skip_bfd_perform_relocation;
8003 }
8004 /* end mips specific stuff */
8005
8006 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8007 relocatable ? abfd : NULL,
8008 &error_message);
8009 skip_bfd_perform_relocation:
8010
8011 if (relocatable)
8012 {
8013 asection *os = input_section->output_section;
8014
8015 /* A partial link, so keep the relocs */
8016 os->orelocation[os->reloc_count] = *parent;
8017 os->reloc_count++;
8018 }
8019
8020 if (r != bfd_reloc_ok)
8021 {
8022 switch (r)
8023 {
8024 case bfd_reloc_undefined:
8025 if (!((*link_info->callbacks->undefined_symbol)
8026 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8027 input_bfd, input_section, (*parent)->address,
8028 TRUE)))
8029 goto error_return;
8030 break;
8031 case bfd_reloc_dangerous:
8032 BFD_ASSERT (error_message != NULL);
8033 if (!((*link_info->callbacks->reloc_dangerous)
8034 (link_info, error_message, input_bfd, input_section,
8035 (*parent)->address)))
8036 goto error_return;
8037 break;
8038 case bfd_reloc_overflow:
8039 if (!((*link_info->callbacks->reloc_overflow)
8040 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8041 (*parent)->howto->name, (*parent)->addend,
8042 input_bfd, input_section, (*parent)->address)))
8043 goto error_return;
8044 break;
8045 case bfd_reloc_outofrange:
8046 default:
8047 abort ();
8048 break;
8049 }
8050
8051 }
8052 }
8053 }
8054 if (reloc_vector != NULL)
8055 free (reloc_vector);
8056 return data;
8057
8058 error_return:
8059 if (reloc_vector != NULL)
8060 free (reloc_vector);
8061 return NULL;
8062 }
8063 \f
8064 /* Create a MIPS ELF linker hash table. */
8065
8066 struct bfd_link_hash_table *
8067 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8068 {
8069 struct mips_elf_link_hash_table *ret;
8070 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8071
8072 ret = bfd_malloc (amt);
8073 if (ret == NULL)
8074 return NULL;
8075
8076 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8077 mips_elf_link_hash_newfunc))
8078 {
8079 free (ret);
8080 return NULL;
8081 }
8082
8083 #if 0
8084 /* We no longer use this. */
8085 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8086 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8087 #endif
8088 ret->procedure_count = 0;
8089 ret->compact_rel_size = 0;
8090 ret->use_rld_obj_head = FALSE;
8091 ret->rld_value = 0;
8092 ret->mips16_stubs_seen = FALSE;
8093
8094 return &ret->root.root;
8095 }
8096 \f
8097 /* We need to use a special link routine to handle the .reginfo and
8098 the .mdebug sections. We need to merge all instances of these
8099 sections together, not write them all out sequentially. */
8100
8101 bfd_boolean
8102 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8103 {
8104 asection **secpp;
8105 asection *o;
8106 struct bfd_link_order *p;
8107 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8108 asection *rtproc_sec;
8109 Elf32_RegInfo reginfo;
8110 struct ecoff_debug_info debug;
8111 const struct ecoff_debug_swap *swap
8112 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8113 HDRR *symhdr = &debug.symbolic_header;
8114 void *mdebug_handle = NULL;
8115 asection *s;
8116 EXTR esym;
8117 unsigned int i;
8118 bfd_size_type amt;
8119
8120 static const char * const secname[] =
8121 {
8122 ".text", ".init", ".fini", ".data",
8123 ".rodata", ".sdata", ".sbss", ".bss"
8124 };
8125 static const int sc[] =
8126 {
8127 scText, scInit, scFini, scData,
8128 scRData, scSData, scSBss, scBss
8129 };
8130
8131 /* We'd carefully arranged the dynamic symbol indices, and then the
8132 generic size_dynamic_sections renumbered them out from under us.
8133 Rather than trying somehow to prevent the renumbering, just do
8134 the sort again. */
8135 if (elf_hash_table (info)->dynamic_sections_created)
8136 {
8137 bfd *dynobj;
8138 asection *got;
8139 struct mips_got_info *g;
8140
8141 /* When we resort, we must tell mips_elf_sort_hash_table what
8142 the lowest index it may use is. That's the number of section
8143 symbols we're going to add. The generic ELF linker only
8144 adds these symbols when building a shared object. Note that
8145 we count the sections after (possibly) removing the .options
8146 section above. */
8147 if (! mips_elf_sort_hash_table (info, (info->shared
8148 ? bfd_count_sections (abfd) + 1
8149 : 1)))
8150 return FALSE;
8151
8152 /* Make sure we didn't grow the global .got region. */
8153 dynobj = elf_hash_table (info)->dynobj;
8154 got = mips_elf_got_section (dynobj, FALSE);
8155 g = mips_elf_section_data (got)->u.got_info;
8156
8157 if (g->global_gotsym != NULL)
8158 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8159 - g->global_gotsym->dynindx)
8160 <= g->global_gotno);
8161 }
8162
8163 #if 0
8164 /* We want to set the GP value for ld -r. */
8165 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8166 include it, even though we don't process it quite right. (Some
8167 entries are supposed to be merged.) Empirically, we seem to be
8168 better off including it then not. */
8169 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8170 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8171 {
8172 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8173 {
8174 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8175 if (p->type == bfd_indirect_link_order)
8176 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8177 (*secpp)->link_order_head = NULL;
8178 bfd_section_list_remove (abfd, secpp);
8179 --abfd->section_count;
8180
8181 break;
8182 }
8183 }
8184
8185 /* We include .MIPS.options, even though we don't process it quite right.
8186 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8187 to be better off including it than not. */
8188 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8189 {
8190 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8191 {
8192 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8193 if (p->type == bfd_indirect_link_order)
8194 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8195 (*secpp)->link_order_head = NULL;
8196 bfd_section_list_remove (abfd, secpp);
8197 --abfd->section_count;
8198
8199 break;
8200 }
8201 }
8202 #endif
8203
8204 /* Get a value for the GP register. */
8205 if (elf_gp (abfd) == 0)
8206 {
8207 struct bfd_link_hash_entry *h;
8208
8209 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8210 if (h != NULL && h->type == bfd_link_hash_defined)
8211 elf_gp (abfd) = (h->u.def.value
8212 + h->u.def.section->output_section->vma
8213 + h->u.def.section->output_offset);
8214 else if (info->relocatable)
8215 {
8216 bfd_vma lo = MINUS_ONE;
8217
8218 /* Find the GP-relative section with the lowest offset. */
8219 for (o = abfd->sections; o != NULL; o = o->next)
8220 if (o->vma < lo
8221 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8222 lo = o->vma;
8223
8224 /* And calculate GP relative to that. */
8225 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8226 }
8227 else
8228 {
8229 /* If the relocate_section function needs to do a reloc
8230 involving the GP value, it should make a reloc_dangerous
8231 callback to warn that GP is not defined. */
8232 }
8233 }
8234
8235 /* Go through the sections and collect the .reginfo and .mdebug
8236 information. */
8237 reginfo_sec = NULL;
8238 mdebug_sec = NULL;
8239 gptab_data_sec = NULL;
8240 gptab_bss_sec = NULL;
8241 for (o = abfd->sections; o != NULL; o = o->next)
8242 {
8243 if (strcmp (o->name, ".reginfo") == 0)
8244 {
8245 memset (&reginfo, 0, sizeof reginfo);
8246
8247 /* We have found the .reginfo section in the output file.
8248 Look through all the link_orders comprising it and merge
8249 the information together. */
8250 for (p = o->link_order_head; p != NULL; p = p->next)
8251 {
8252 asection *input_section;
8253 bfd *input_bfd;
8254 Elf32_External_RegInfo ext;
8255 Elf32_RegInfo sub;
8256
8257 if (p->type != bfd_indirect_link_order)
8258 {
8259 if (p->type == bfd_data_link_order)
8260 continue;
8261 abort ();
8262 }
8263
8264 input_section = p->u.indirect.section;
8265 input_bfd = input_section->owner;
8266
8267 /* The linker emulation code has probably clobbered the
8268 size to be zero bytes. */
8269 if (input_section->_raw_size == 0)
8270 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8271
8272 if (! bfd_get_section_contents (input_bfd, input_section,
8273 &ext, 0, sizeof ext))
8274 return FALSE;
8275
8276 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8277
8278 reginfo.ri_gprmask |= sub.ri_gprmask;
8279 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8280 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8281 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8282 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8283
8284 /* ri_gp_value is set by the function
8285 mips_elf32_section_processing when the section is
8286 finally written out. */
8287
8288 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8289 elf_link_input_bfd ignores this section. */
8290 input_section->flags &= ~SEC_HAS_CONTENTS;
8291 }
8292
8293 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8294 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8295
8296 /* Skip this section later on (I don't think this currently
8297 matters, but someday it might). */
8298 o->link_order_head = NULL;
8299
8300 reginfo_sec = o;
8301 }
8302
8303 if (strcmp (o->name, ".mdebug") == 0)
8304 {
8305 struct extsym_info einfo;
8306 bfd_vma last;
8307
8308 /* We have found the .mdebug section in the output file.
8309 Look through all the link_orders comprising it and merge
8310 the information together. */
8311 symhdr->magic = swap->sym_magic;
8312 /* FIXME: What should the version stamp be? */
8313 symhdr->vstamp = 0;
8314 symhdr->ilineMax = 0;
8315 symhdr->cbLine = 0;
8316 symhdr->idnMax = 0;
8317 symhdr->ipdMax = 0;
8318 symhdr->isymMax = 0;
8319 symhdr->ioptMax = 0;
8320 symhdr->iauxMax = 0;
8321 symhdr->issMax = 0;
8322 symhdr->issExtMax = 0;
8323 symhdr->ifdMax = 0;
8324 symhdr->crfd = 0;
8325 symhdr->iextMax = 0;
8326
8327 /* We accumulate the debugging information itself in the
8328 debug_info structure. */
8329 debug.line = NULL;
8330 debug.external_dnr = NULL;
8331 debug.external_pdr = NULL;
8332 debug.external_sym = NULL;
8333 debug.external_opt = NULL;
8334 debug.external_aux = NULL;
8335 debug.ss = NULL;
8336 debug.ssext = debug.ssext_end = NULL;
8337 debug.external_fdr = NULL;
8338 debug.external_rfd = NULL;
8339 debug.external_ext = debug.external_ext_end = NULL;
8340
8341 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8342 if (mdebug_handle == NULL)
8343 return FALSE;
8344
8345 esym.jmptbl = 0;
8346 esym.cobol_main = 0;
8347 esym.weakext = 0;
8348 esym.reserved = 0;
8349 esym.ifd = ifdNil;
8350 esym.asym.iss = issNil;
8351 esym.asym.st = stLocal;
8352 esym.asym.reserved = 0;
8353 esym.asym.index = indexNil;
8354 last = 0;
8355 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8356 {
8357 esym.asym.sc = sc[i];
8358 s = bfd_get_section_by_name (abfd, secname[i]);
8359 if (s != NULL)
8360 {
8361 esym.asym.value = s->vma;
8362 last = s->vma + s->_raw_size;
8363 }
8364 else
8365 esym.asym.value = last;
8366 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8367 secname[i], &esym))
8368 return FALSE;
8369 }
8370
8371 for (p = o->link_order_head; p != NULL; p = p->next)
8372 {
8373 asection *input_section;
8374 bfd *input_bfd;
8375 const struct ecoff_debug_swap *input_swap;
8376 struct ecoff_debug_info input_debug;
8377 char *eraw_src;
8378 char *eraw_end;
8379
8380 if (p->type != bfd_indirect_link_order)
8381 {
8382 if (p->type == bfd_data_link_order)
8383 continue;
8384 abort ();
8385 }
8386
8387 input_section = p->u.indirect.section;
8388 input_bfd = input_section->owner;
8389
8390 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8391 || (get_elf_backend_data (input_bfd)
8392 ->elf_backend_ecoff_debug_swap) == NULL)
8393 {
8394 /* I don't know what a non MIPS ELF bfd would be
8395 doing with a .mdebug section, but I don't really
8396 want to deal with it. */
8397 continue;
8398 }
8399
8400 input_swap = (get_elf_backend_data (input_bfd)
8401 ->elf_backend_ecoff_debug_swap);
8402
8403 BFD_ASSERT (p->size == input_section->_raw_size);
8404
8405 /* The ECOFF linking code expects that we have already
8406 read in the debugging information and set up an
8407 ecoff_debug_info structure, so we do that now. */
8408 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8409 &input_debug))
8410 return FALSE;
8411
8412 if (! (bfd_ecoff_debug_accumulate
8413 (mdebug_handle, abfd, &debug, swap, input_bfd,
8414 &input_debug, input_swap, info)))
8415 return FALSE;
8416
8417 /* Loop through the external symbols. For each one with
8418 interesting information, try to find the symbol in
8419 the linker global hash table and save the information
8420 for the output external symbols. */
8421 eraw_src = input_debug.external_ext;
8422 eraw_end = (eraw_src
8423 + (input_debug.symbolic_header.iextMax
8424 * input_swap->external_ext_size));
8425 for (;
8426 eraw_src < eraw_end;
8427 eraw_src += input_swap->external_ext_size)
8428 {
8429 EXTR ext;
8430 const char *name;
8431 struct mips_elf_link_hash_entry *h;
8432
8433 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8434 if (ext.asym.sc == scNil
8435 || ext.asym.sc == scUndefined
8436 || ext.asym.sc == scSUndefined)
8437 continue;
8438
8439 name = input_debug.ssext + ext.asym.iss;
8440 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8441 name, FALSE, FALSE, TRUE);
8442 if (h == NULL || h->esym.ifd != -2)
8443 continue;
8444
8445 if (ext.ifd != -1)
8446 {
8447 BFD_ASSERT (ext.ifd
8448 < input_debug.symbolic_header.ifdMax);
8449 ext.ifd = input_debug.ifdmap[ext.ifd];
8450 }
8451
8452 h->esym = ext;
8453 }
8454
8455 /* Free up the information we just read. */
8456 free (input_debug.line);
8457 free (input_debug.external_dnr);
8458 free (input_debug.external_pdr);
8459 free (input_debug.external_sym);
8460 free (input_debug.external_opt);
8461 free (input_debug.external_aux);
8462 free (input_debug.ss);
8463 free (input_debug.ssext);
8464 free (input_debug.external_fdr);
8465 free (input_debug.external_rfd);
8466 free (input_debug.external_ext);
8467
8468 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8469 elf_link_input_bfd ignores this section. */
8470 input_section->flags &= ~SEC_HAS_CONTENTS;
8471 }
8472
8473 if (SGI_COMPAT (abfd) && info->shared)
8474 {
8475 /* Create .rtproc section. */
8476 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8477 if (rtproc_sec == NULL)
8478 {
8479 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8480 | SEC_LINKER_CREATED | SEC_READONLY);
8481
8482 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8483 if (rtproc_sec == NULL
8484 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8485 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8486 return FALSE;
8487 }
8488
8489 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8490 info, rtproc_sec,
8491 &debug))
8492 return FALSE;
8493 }
8494
8495 /* Build the external symbol information. */
8496 einfo.abfd = abfd;
8497 einfo.info = info;
8498 einfo.debug = &debug;
8499 einfo.swap = swap;
8500 einfo.failed = FALSE;
8501 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8502 mips_elf_output_extsym, &einfo);
8503 if (einfo.failed)
8504 return FALSE;
8505
8506 /* Set the size of the .mdebug section. */
8507 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8508
8509 /* Skip this section later on (I don't think this currently
8510 matters, but someday it might). */
8511 o->link_order_head = NULL;
8512
8513 mdebug_sec = o;
8514 }
8515
8516 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8517 {
8518 const char *subname;
8519 unsigned int c;
8520 Elf32_gptab *tab;
8521 Elf32_External_gptab *ext_tab;
8522 unsigned int j;
8523
8524 /* The .gptab.sdata and .gptab.sbss sections hold
8525 information describing how the small data area would
8526 change depending upon the -G switch. These sections
8527 not used in executables files. */
8528 if (! info->relocatable)
8529 {
8530 for (p = o->link_order_head; p != NULL; p = p->next)
8531 {
8532 asection *input_section;
8533
8534 if (p->type != bfd_indirect_link_order)
8535 {
8536 if (p->type == bfd_data_link_order)
8537 continue;
8538 abort ();
8539 }
8540
8541 input_section = p->u.indirect.section;
8542
8543 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8544 elf_link_input_bfd ignores this section. */
8545 input_section->flags &= ~SEC_HAS_CONTENTS;
8546 }
8547
8548 /* Skip this section later on (I don't think this
8549 currently matters, but someday it might). */
8550 o->link_order_head = NULL;
8551
8552 /* Really remove the section. */
8553 for (secpp = &abfd->sections;
8554 *secpp != o;
8555 secpp = &(*secpp)->next)
8556 ;
8557 bfd_section_list_remove (abfd, secpp);
8558 --abfd->section_count;
8559
8560 continue;
8561 }
8562
8563 /* There is one gptab for initialized data, and one for
8564 uninitialized data. */
8565 if (strcmp (o->name, ".gptab.sdata") == 0)
8566 gptab_data_sec = o;
8567 else if (strcmp (o->name, ".gptab.sbss") == 0)
8568 gptab_bss_sec = o;
8569 else
8570 {
8571 (*_bfd_error_handler)
8572 (_("%s: illegal section name `%s'"),
8573 bfd_get_filename (abfd), o->name);
8574 bfd_set_error (bfd_error_nonrepresentable_section);
8575 return FALSE;
8576 }
8577
8578 /* The linker script always combines .gptab.data and
8579 .gptab.sdata into .gptab.sdata, and likewise for
8580 .gptab.bss and .gptab.sbss. It is possible that there is
8581 no .sdata or .sbss section in the output file, in which
8582 case we must change the name of the output section. */
8583 subname = o->name + sizeof ".gptab" - 1;
8584 if (bfd_get_section_by_name (abfd, subname) == NULL)
8585 {
8586 if (o == gptab_data_sec)
8587 o->name = ".gptab.data";
8588 else
8589 o->name = ".gptab.bss";
8590 subname = o->name + sizeof ".gptab" - 1;
8591 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8592 }
8593
8594 /* Set up the first entry. */
8595 c = 1;
8596 amt = c * sizeof (Elf32_gptab);
8597 tab = bfd_malloc (amt);
8598 if (tab == NULL)
8599 return FALSE;
8600 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8601 tab[0].gt_header.gt_unused = 0;
8602
8603 /* Combine the input sections. */
8604 for (p = o->link_order_head; p != NULL; p = p->next)
8605 {
8606 asection *input_section;
8607 bfd *input_bfd;
8608 bfd_size_type size;
8609 unsigned long last;
8610 bfd_size_type gpentry;
8611
8612 if (p->type != bfd_indirect_link_order)
8613 {
8614 if (p->type == bfd_data_link_order)
8615 continue;
8616 abort ();
8617 }
8618
8619 input_section = p->u.indirect.section;
8620 input_bfd = input_section->owner;
8621
8622 /* Combine the gptab entries for this input section one
8623 by one. We know that the input gptab entries are
8624 sorted by ascending -G value. */
8625 size = bfd_section_size (input_bfd, input_section);
8626 last = 0;
8627 for (gpentry = sizeof (Elf32_External_gptab);
8628 gpentry < size;
8629 gpentry += sizeof (Elf32_External_gptab))
8630 {
8631 Elf32_External_gptab ext_gptab;
8632 Elf32_gptab int_gptab;
8633 unsigned long val;
8634 unsigned long add;
8635 bfd_boolean exact;
8636 unsigned int look;
8637
8638 if (! (bfd_get_section_contents
8639 (input_bfd, input_section, &ext_gptab, gpentry,
8640 sizeof (Elf32_External_gptab))))
8641 {
8642 free (tab);
8643 return FALSE;
8644 }
8645
8646 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8647 &int_gptab);
8648 val = int_gptab.gt_entry.gt_g_value;
8649 add = int_gptab.gt_entry.gt_bytes - last;
8650
8651 exact = FALSE;
8652 for (look = 1; look < c; look++)
8653 {
8654 if (tab[look].gt_entry.gt_g_value >= val)
8655 tab[look].gt_entry.gt_bytes += add;
8656
8657 if (tab[look].gt_entry.gt_g_value == val)
8658 exact = TRUE;
8659 }
8660
8661 if (! exact)
8662 {
8663 Elf32_gptab *new_tab;
8664 unsigned int max;
8665
8666 /* We need a new table entry. */
8667 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8668 new_tab = bfd_realloc (tab, amt);
8669 if (new_tab == NULL)
8670 {
8671 free (tab);
8672 return FALSE;
8673 }
8674 tab = new_tab;
8675 tab[c].gt_entry.gt_g_value = val;
8676 tab[c].gt_entry.gt_bytes = add;
8677
8678 /* Merge in the size for the next smallest -G
8679 value, since that will be implied by this new
8680 value. */
8681 max = 0;
8682 for (look = 1; look < c; look++)
8683 {
8684 if (tab[look].gt_entry.gt_g_value < val
8685 && (max == 0
8686 || (tab[look].gt_entry.gt_g_value
8687 > tab[max].gt_entry.gt_g_value)))
8688 max = look;
8689 }
8690 if (max != 0)
8691 tab[c].gt_entry.gt_bytes +=
8692 tab[max].gt_entry.gt_bytes;
8693
8694 ++c;
8695 }
8696
8697 last = int_gptab.gt_entry.gt_bytes;
8698 }
8699
8700 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8701 elf_link_input_bfd ignores this section. */
8702 input_section->flags &= ~SEC_HAS_CONTENTS;
8703 }
8704
8705 /* The table must be sorted by -G value. */
8706 if (c > 2)
8707 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8708
8709 /* Swap out the table. */
8710 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8711 ext_tab = bfd_alloc (abfd, amt);
8712 if (ext_tab == NULL)
8713 {
8714 free (tab);
8715 return FALSE;
8716 }
8717
8718 for (j = 0; j < c; j++)
8719 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8720 free (tab);
8721
8722 o->_raw_size = c * sizeof (Elf32_External_gptab);
8723 o->contents = (bfd_byte *) ext_tab;
8724
8725 /* Skip this section later on (I don't think this currently
8726 matters, but someday it might). */
8727 o->link_order_head = NULL;
8728 }
8729 }
8730
8731 /* Invoke the regular ELF backend linker to do all the work. */
8732 if (!bfd_elf_final_link (abfd, info))
8733 return FALSE;
8734
8735 /* Now write out the computed sections. */
8736
8737 if (reginfo_sec != NULL)
8738 {
8739 Elf32_External_RegInfo ext;
8740
8741 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8742 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8743 return FALSE;
8744 }
8745
8746 if (mdebug_sec != NULL)
8747 {
8748 BFD_ASSERT (abfd->output_has_begun);
8749 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8750 swap, info,
8751 mdebug_sec->filepos))
8752 return FALSE;
8753
8754 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8755 }
8756
8757 if (gptab_data_sec != NULL)
8758 {
8759 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8760 gptab_data_sec->contents,
8761 0, gptab_data_sec->_raw_size))
8762 return FALSE;
8763 }
8764
8765 if (gptab_bss_sec != NULL)
8766 {
8767 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8768 gptab_bss_sec->contents,
8769 0, gptab_bss_sec->_raw_size))
8770 return FALSE;
8771 }
8772
8773 if (SGI_COMPAT (abfd))
8774 {
8775 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8776 if (rtproc_sec != NULL)
8777 {
8778 if (! bfd_set_section_contents (abfd, rtproc_sec,
8779 rtproc_sec->contents,
8780 0, rtproc_sec->_raw_size))
8781 return FALSE;
8782 }
8783 }
8784
8785 return TRUE;
8786 }
8787 \f
8788 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8789
8790 struct mips_mach_extension {
8791 unsigned long extension, base;
8792 };
8793
8794
8795 /* An array describing how BFD machines relate to one another. The entries
8796 are ordered topologically with MIPS I extensions listed last. */
8797
8798 static const struct mips_mach_extension mips_mach_extensions[] = {
8799 /* MIPS64 extensions. */
8800 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8801 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8802
8803 /* MIPS V extensions. */
8804 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8805
8806 /* R10000 extensions. */
8807 { bfd_mach_mips12000, bfd_mach_mips10000 },
8808
8809 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8810 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8811 better to allow vr5400 and vr5500 code to be merged anyway, since
8812 many libraries will just use the core ISA. Perhaps we could add
8813 some sort of ASE flag if this ever proves a problem. */
8814 { bfd_mach_mips5500, bfd_mach_mips5400 },
8815 { bfd_mach_mips5400, bfd_mach_mips5000 },
8816
8817 /* MIPS IV extensions. */
8818 { bfd_mach_mips5, bfd_mach_mips8000 },
8819 { bfd_mach_mips10000, bfd_mach_mips8000 },
8820 { bfd_mach_mips5000, bfd_mach_mips8000 },
8821 { bfd_mach_mips7000, bfd_mach_mips8000 },
8822
8823 /* VR4100 extensions. */
8824 { bfd_mach_mips4120, bfd_mach_mips4100 },
8825 { bfd_mach_mips4111, bfd_mach_mips4100 },
8826
8827 /* MIPS III extensions. */
8828 { bfd_mach_mips8000, bfd_mach_mips4000 },
8829 { bfd_mach_mips4650, bfd_mach_mips4000 },
8830 { bfd_mach_mips4600, bfd_mach_mips4000 },
8831 { bfd_mach_mips4400, bfd_mach_mips4000 },
8832 { bfd_mach_mips4300, bfd_mach_mips4000 },
8833 { bfd_mach_mips4100, bfd_mach_mips4000 },
8834 { bfd_mach_mips4010, bfd_mach_mips4000 },
8835
8836 /* MIPS32 extensions. */
8837 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8838
8839 /* MIPS II extensions. */
8840 { bfd_mach_mips4000, bfd_mach_mips6000 },
8841 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8842
8843 /* MIPS I extensions. */
8844 { bfd_mach_mips6000, bfd_mach_mips3000 },
8845 { bfd_mach_mips3900, bfd_mach_mips3000 }
8846 };
8847
8848
8849 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8850
8851 static bfd_boolean
8852 mips_mach_extends_p (unsigned long base, unsigned long extension)
8853 {
8854 size_t i;
8855
8856 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8857 if (extension == mips_mach_extensions[i].extension)
8858 extension = mips_mach_extensions[i].base;
8859
8860 return extension == base;
8861 }
8862
8863
8864 /* Return true if the given ELF header flags describe a 32-bit binary. */
8865
8866 static bfd_boolean
8867 mips_32bit_flags_p (flagword flags)
8868 {
8869 return ((flags & EF_MIPS_32BITMODE) != 0
8870 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8871 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8872 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8873 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8874 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8875 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8876 }
8877
8878
8879 /* Merge backend specific data from an object file to the output
8880 object file when linking. */
8881
8882 bfd_boolean
8883 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8884 {
8885 flagword old_flags;
8886 flagword new_flags;
8887 bfd_boolean ok;
8888 bfd_boolean null_input_bfd = TRUE;
8889 asection *sec;
8890
8891 /* Check if we have the same endianess */
8892 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8893 {
8894 (*_bfd_error_handler)
8895 (_("%s: endianness incompatible with that of the selected emulation"),
8896 bfd_archive_filename (ibfd));
8897 return FALSE;
8898 }
8899
8900 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8901 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8902 return TRUE;
8903
8904 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8905 {
8906 (*_bfd_error_handler)
8907 (_("%s: ABI is incompatible with that of the selected emulation"),
8908 bfd_archive_filename (ibfd));
8909 return FALSE;
8910 }
8911
8912 new_flags = elf_elfheader (ibfd)->e_flags;
8913 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8914 old_flags = elf_elfheader (obfd)->e_flags;
8915
8916 if (! elf_flags_init (obfd))
8917 {
8918 elf_flags_init (obfd) = TRUE;
8919 elf_elfheader (obfd)->e_flags = new_flags;
8920 elf_elfheader (obfd)->e_ident[EI_CLASS]
8921 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8922
8923 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8924 && bfd_get_arch_info (obfd)->the_default)
8925 {
8926 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8927 bfd_get_mach (ibfd)))
8928 return FALSE;
8929 }
8930
8931 return TRUE;
8932 }
8933
8934 /* Check flag compatibility. */
8935
8936 new_flags &= ~EF_MIPS_NOREORDER;
8937 old_flags &= ~EF_MIPS_NOREORDER;
8938
8939 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8940 doesn't seem to matter. */
8941 new_flags &= ~EF_MIPS_XGOT;
8942 old_flags &= ~EF_MIPS_XGOT;
8943
8944 /* MIPSpro generates ucode info in n64 objects. Again, we should
8945 just be able to ignore this. */
8946 new_flags &= ~EF_MIPS_UCODE;
8947 old_flags &= ~EF_MIPS_UCODE;
8948
8949 if (new_flags == old_flags)
8950 return TRUE;
8951
8952 /* Check to see if the input BFD actually contains any sections.
8953 If not, its flags may not have been initialised either, but it cannot
8954 actually cause any incompatibility. */
8955 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8956 {
8957 /* Ignore synthetic sections and empty .text, .data and .bss sections
8958 which are automatically generated by gas. */
8959 if (strcmp (sec->name, ".reginfo")
8960 && strcmp (sec->name, ".mdebug")
8961 && (sec->_raw_size != 0
8962 || (strcmp (sec->name, ".text")
8963 && strcmp (sec->name, ".data")
8964 && strcmp (sec->name, ".bss"))))
8965 {
8966 null_input_bfd = FALSE;
8967 break;
8968 }
8969 }
8970 if (null_input_bfd)
8971 return TRUE;
8972
8973 ok = TRUE;
8974
8975 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8976 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8977 {
8978 (*_bfd_error_handler)
8979 (_("%s: warning: linking PIC files with non-PIC files"),
8980 bfd_archive_filename (ibfd));
8981 ok = TRUE;
8982 }
8983
8984 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8985 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8986 if (! (new_flags & EF_MIPS_PIC))
8987 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8988
8989 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8990 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8991
8992 /* Compare the ISAs. */
8993 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8994 {
8995 (*_bfd_error_handler)
8996 (_("%s: linking 32-bit code with 64-bit code"),
8997 bfd_archive_filename (ibfd));
8998 ok = FALSE;
8999 }
9000 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9001 {
9002 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9003 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9004 {
9005 /* Copy the architecture info from IBFD to OBFD. Also copy
9006 the 32-bit flag (if set) so that we continue to recognise
9007 OBFD as a 32-bit binary. */
9008 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9009 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9010 elf_elfheader (obfd)->e_flags
9011 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9012
9013 /* Copy across the ABI flags if OBFD doesn't use them
9014 and if that was what caused us to treat IBFD as 32-bit. */
9015 if ((old_flags & EF_MIPS_ABI) == 0
9016 && mips_32bit_flags_p (new_flags)
9017 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9018 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9019 }
9020 else
9021 {
9022 /* The ISAs aren't compatible. */
9023 (*_bfd_error_handler)
9024 (_("%s: linking %s module with previous %s modules"),
9025 bfd_archive_filename (ibfd),
9026 bfd_printable_name (ibfd),
9027 bfd_printable_name (obfd));
9028 ok = FALSE;
9029 }
9030 }
9031
9032 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9033 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9034
9035 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9036 does set EI_CLASS differently from any 32-bit ABI. */
9037 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9038 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9039 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9040 {
9041 /* Only error if both are set (to different values). */
9042 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9043 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9044 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9045 {
9046 (*_bfd_error_handler)
9047 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9048 bfd_archive_filename (ibfd),
9049 elf_mips_abi_name (ibfd),
9050 elf_mips_abi_name (obfd));
9051 ok = FALSE;
9052 }
9053 new_flags &= ~EF_MIPS_ABI;
9054 old_flags &= ~EF_MIPS_ABI;
9055 }
9056
9057 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9058 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9059 {
9060 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9061
9062 new_flags &= ~ EF_MIPS_ARCH_ASE;
9063 old_flags &= ~ EF_MIPS_ARCH_ASE;
9064 }
9065
9066 /* Warn about any other mismatches */
9067 if (new_flags != old_flags)
9068 {
9069 (*_bfd_error_handler)
9070 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9071 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9072 (unsigned long) old_flags);
9073 ok = FALSE;
9074 }
9075
9076 if (! ok)
9077 {
9078 bfd_set_error (bfd_error_bad_value);
9079 return FALSE;
9080 }
9081
9082 return TRUE;
9083 }
9084
9085 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9086
9087 bfd_boolean
9088 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9089 {
9090 BFD_ASSERT (!elf_flags_init (abfd)
9091 || elf_elfheader (abfd)->e_flags == flags);
9092
9093 elf_elfheader (abfd)->e_flags = flags;
9094 elf_flags_init (abfd) = TRUE;
9095 return TRUE;
9096 }
9097
9098 bfd_boolean
9099 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9100 {
9101 FILE *file = ptr;
9102
9103 BFD_ASSERT (abfd != NULL && ptr != NULL);
9104
9105 /* Print normal ELF private data. */
9106 _bfd_elf_print_private_bfd_data (abfd, ptr);
9107
9108 /* xgettext:c-format */
9109 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9110
9111 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9112 fprintf (file, _(" [abi=O32]"));
9113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9114 fprintf (file, _(" [abi=O64]"));
9115 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9116 fprintf (file, _(" [abi=EABI32]"));
9117 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9118 fprintf (file, _(" [abi=EABI64]"));
9119 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9120 fprintf (file, _(" [abi unknown]"));
9121 else if (ABI_N32_P (abfd))
9122 fprintf (file, _(" [abi=N32]"));
9123 else if (ABI_64_P (abfd))
9124 fprintf (file, _(" [abi=64]"));
9125 else
9126 fprintf (file, _(" [no abi set]"));
9127
9128 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9129 fprintf (file, _(" [mips1]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9131 fprintf (file, _(" [mips2]"));
9132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9133 fprintf (file, _(" [mips3]"));
9134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9135 fprintf (file, _(" [mips4]"));
9136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9137 fprintf (file, _(" [mips5]"));
9138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9139 fprintf (file, _(" [mips32]"));
9140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9141 fprintf (file, _(" [mips64]"));
9142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9143 fprintf (file, _(" [mips32r2]"));
9144 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9145 fprintf (file, _(" [mips64r2]"));
9146 else
9147 fprintf (file, _(" [unknown ISA]"));
9148
9149 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9150 fprintf (file, _(" [mdmx]"));
9151
9152 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9153 fprintf (file, _(" [mips16]"));
9154
9155 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9156 fprintf (file, _(" [32bitmode]"));
9157 else
9158 fprintf (file, _(" [not 32bitmode]"));
9159
9160 fputc ('\n', file);
9161
9162 return TRUE;
9163 }
9164
9165 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9166 {
9167 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9168 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9169 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9170 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9171 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9172 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9173 { NULL, 0, 0, 0, 0 }
9174 };