]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/linker.c
Add startswith function and use it instead of CONST_STRNEQ.
[thirdparty/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bfd_boolean create,
506 bfd_boolean copy,
507 bfd_boolean follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bfd_boolean create,
536 bfd_boolean copy,
537 bfd_boolean follow)
538 {
539 size_t amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && startswith (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 FALSE, FALSE) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
602 free (n);
603 return h;
604 }
605
606 #undef REAL
607 }
608
609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613 and the remainder is found in wrap_hash, return the real symbol. */
614
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 bfd *input_bfd,
618 struct bfd_link_hash_entry *h)
619 {
620 const char *l = h->root.string;
621
622 if (*l == bfd_get_symbol_leading_char (input_bfd)
623 || *l == info->wrap_char)
624 ++l;
625
626 if (startswith (l, WRAP))
627 {
628 l += sizeof WRAP - 1;
629
630 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
631 {
632 char save = 0;
633 if (l - (sizeof WRAP - 1) != h->root.string)
634 {
635 --l;
636 save = *l;
637 *(char *) l = *h->root.string;
638 }
639 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
640 if (save)
641 *(char *) l = save;
642 }
643 }
644 return h;
645 }
646 #undef WRAP
647
648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
649 in the treatment of warning symbols. When warning symbols are
650 created they replace the real symbol, so you don't get to see the
651 real symbol in a bfd_hash_traverse. This traversal calls func with
652 the real symbol. */
653
654 void
655 bfd_link_hash_traverse
656 (struct bfd_link_hash_table *htab,
657 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
658 void *info)
659 {
660 unsigned int i;
661
662 htab->table.frozen = 1;
663 for (i = 0; i < htab->table.size; i++)
664 {
665 struct bfd_link_hash_entry *p;
666
667 p = (struct bfd_link_hash_entry *) htab->table.table[i];
668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 goto out;
671 }
672 out:
673 htab->table.frozen = 0;
674 }
675
676 /* Add a symbol to the linker hash table undefs list. */
677
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 struct bfd_link_hash_entry *h)
681 {
682 BFD_ASSERT (h->u.undef.next == NULL);
683 if (table->undefs_tail != NULL)
684 table->undefs_tail->u.undef.next = h;
685 if (table->undefs == NULL)
686 table->undefs = h;
687 table->undefs_tail = h;
688 }
689
690 /* The undefs list was designed so that in normal use we don't need to
691 remove entries. However, if symbols on the list are changed from
692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693 bfd_link_hash_new for some reason, then they must be removed from the
694 list. Failure to do so might result in the linker attempting to add
695 the symbol to the list again at a later stage. */
696
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700 struct bfd_link_hash_entry **pun;
701
702 pun = &table->undefs;
703 while (*pun != NULL)
704 {
705 struct bfd_link_hash_entry *h = *pun;
706
707 if (h->type == bfd_link_hash_new
708 || h->type == bfd_link_hash_undefweak)
709 {
710 *pun = h->u.undef.next;
711 h->u.undef.next = NULL;
712 if (h == table->undefs_tail)
713 {
714 if (pun == &table->undefs)
715 table->undefs_tail = NULL;
716 else
717 /* pun points at an u.undef.next field. Go back to
718 the start of the link_hash_entry. */
719 table->undefs_tail = (struct bfd_link_hash_entry *)
720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 break;
722 }
723 }
724 else
725 pun = &h->u.undef.next;
726 }
727 }
728 \f
729 /* Routine to create an entry in a generic link hash table. */
730
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 struct bfd_hash_table *table,
734 const char *string)
735 {
736 /* Allocate the structure if it has not already been allocated by a
737 subclass. */
738 if (entry == NULL)
739 {
740 entry = (struct bfd_hash_entry *)
741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742 if (entry == NULL)
743 return entry;
744 }
745
746 /* Call the allocation method of the superclass. */
747 entry = _bfd_link_hash_newfunc (entry, table, string);
748 if (entry)
749 {
750 struct generic_link_hash_entry *ret;
751
752 /* Set local fields. */
753 ret = (struct generic_link_hash_entry *) entry;
754 ret->written = FALSE;
755 ret->sym = NULL;
756 }
757
758 return entry;
759 }
760
761 /* Create a generic link hash table. */
762
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766 struct generic_link_hash_table *ret;
767 size_t amt = sizeof (struct generic_link_hash_table);
768
769 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770 if (ret == NULL)
771 return NULL;
772 if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 _bfd_generic_link_hash_newfunc,
774 sizeof (struct generic_link_hash_entry)))
775 {
776 free (ret);
777 return NULL;
778 }
779 return &ret->root;
780 }
781
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785 struct generic_link_hash_table *ret;
786
787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788 ret = (struct generic_link_hash_table *) obfd->link.hash;
789 bfd_hash_table_free (&ret->root.table);
790 free (ret);
791 obfd->link.hash = NULL;
792 obfd->is_linker_output = FALSE;
793 }
794
795 /* Grab the symbols for an object file when doing a generic link. We
796 store the symbols in the outsymbols field. We need to keep them
797 around for the entire link to ensure that we only read them once.
798 If we read them multiple times, we might wind up with relocs and
799 the hash table pointing to different instances of the symbol
800 structure. */
801
802 bfd_boolean
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805 if (bfd_get_outsymbols (abfd) == NULL)
806 {
807 long symsize;
808 long symcount;
809
810 symsize = bfd_get_symtab_upper_bound (abfd);
811 if (symsize < 0)
812 return FALSE;
813 abfd->outsymbols = bfd_alloc (abfd, symsize);
814 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
815 return FALSE;
816 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
817 if (symcount < 0)
818 return FALSE;
819 abfd->symcount = symcount;
820 }
821
822 return TRUE;
823 }
824 \f
825 /* Indicate that we are only retrieving symbol values from this
826 section. We want the symbols to act as though the values in the
827 file are absolute. */
828
829 void
830 _bfd_generic_link_just_syms (asection *sec,
831 struct bfd_link_info *info ATTRIBUTE_UNUSED)
832 {
833 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
834 sec->output_section = bfd_abs_section_ptr;
835 sec->output_offset = sec->vma;
836 }
837
838 /* Copy the symbol type and other attributes for a linker script
839 assignment from HSRC to HDEST.
840 The default implementation does nothing. */
841 void
842 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
843 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
844 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
845 {
846 }
847
848 /* Generic function to add symbols from an object file to the
849 global hash table. */
850
851 bfd_boolean
852 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
853 {
854 bfd_boolean ret;
855
856 switch (bfd_get_format (abfd))
857 {
858 case bfd_object:
859 ret = generic_link_add_object_symbols (abfd, info);
860 break;
861 case bfd_archive:
862 ret = (_bfd_generic_link_add_archive_symbols
863 (abfd, info, generic_link_check_archive_element));
864 break;
865 default:
866 bfd_set_error (bfd_error_wrong_format);
867 ret = FALSE;
868 }
869
870 return ret;
871 }
872
873 /* Add symbols from an object file to the global hash table. */
874
875 static bfd_boolean
876 generic_link_add_object_symbols (bfd *abfd,
877 struct bfd_link_info *info)
878 {
879 bfd_size_type symcount;
880 struct bfd_symbol **outsyms;
881
882 if (!bfd_generic_link_read_symbols (abfd))
883 return FALSE;
884 symcount = _bfd_generic_link_get_symcount (abfd);
885 outsyms = _bfd_generic_link_get_symbols (abfd);
886 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
887 }
888 \f
889 /* Generic function to add symbols from an archive file to the global
890 hash file. This function presumes that the archive symbol table
891 has already been read in (this is normally done by the
892 bfd_check_format entry point). It looks through the archive symbol
893 table for symbols that are undefined or common in the linker global
894 symbol hash table. When one is found, the CHECKFN argument is used
895 to see if an object file should be included. This allows targets
896 to customize common symbol behaviour. CHECKFN should set *PNEEDED
897 to TRUE if the object file should be included, and must also call
898 the bfd_link_info add_archive_element callback function and handle
899 adding the symbols to the global hash table. CHECKFN must notice
900 if the callback indicates a substitute BFD, and arrange to add
901 those symbols instead if it does so. CHECKFN should only return
902 FALSE if some sort of error occurs. */
903
904 bfd_boolean
905 _bfd_generic_link_add_archive_symbols
906 (bfd *abfd,
907 struct bfd_link_info *info,
908 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
909 struct bfd_link_hash_entry *, const char *,
910 bfd_boolean *))
911 {
912 bfd_boolean loop;
913 bfd_size_type amt;
914 unsigned char *included;
915
916 if (! bfd_has_map (abfd))
917 {
918 /* An empty archive is a special case. */
919 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
920 return TRUE;
921 bfd_set_error (bfd_error_no_armap);
922 return FALSE;
923 }
924
925 amt = bfd_ardata (abfd)->symdef_count;
926 if (amt == 0)
927 return TRUE;
928 amt *= sizeof (*included);
929 included = (unsigned char *) bfd_zmalloc (amt);
930 if (included == NULL)
931 return FALSE;
932
933 do
934 {
935 carsym *arsyms;
936 carsym *arsym_end;
937 carsym *arsym;
938 unsigned int indx;
939 file_ptr last_ar_offset = -1;
940 bfd_boolean needed = FALSE;
941 bfd *element = NULL;
942
943 loop = FALSE;
944 arsyms = bfd_ardata (abfd)->symdefs;
945 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
946 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947 {
948 struct bfd_link_hash_entry *h;
949 struct bfd_link_hash_entry *undefs_tail;
950
951 if (included[indx])
952 continue;
953 if (needed && arsym->file_offset == last_ar_offset)
954 {
955 included[indx] = 1;
956 continue;
957 }
958
959 if (arsym->name == NULL)
960 goto error_return;
961
962 h = bfd_link_hash_lookup (info->hash, arsym->name,
963 FALSE, FALSE, TRUE);
964
965 if (h == NULL
966 && info->pei386_auto_import
967 && startswith (arsym->name, "__imp_"))
968 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
969 FALSE, FALSE, TRUE);
970 if (h == NULL)
971 continue;
972
973 if (h->type != bfd_link_hash_undefined
974 && h->type != bfd_link_hash_common)
975 {
976 if (h->type != bfd_link_hash_undefweak)
977 /* Symbol must be defined. Don't check it again. */
978 included[indx] = 1;
979 continue;
980 }
981
982 if (last_ar_offset != arsym->file_offset)
983 {
984 last_ar_offset = arsym->file_offset;
985 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
986 if (element == NULL
987 || !bfd_check_format (element, bfd_object))
988 goto error_return;
989 }
990
991 undefs_tail = info->hash->undefs_tail;
992
993 /* CHECKFN will see if this element should be included, and
994 go ahead and include it if appropriate. */
995 if (! (*checkfn) (element, info, h, arsym->name, &needed))
996 goto error_return;
997
998 if (needed)
999 {
1000 unsigned int mark;
1001
1002 /* Look backward to mark all symbols from this object file
1003 which we have already seen in this pass. */
1004 mark = indx;
1005 do
1006 {
1007 included[mark] = 1;
1008 if (mark == 0)
1009 break;
1010 --mark;
1011 }
1012 while (arsyms[mark].file_offset == last_ar_offset);
1013
1014 if (undefs_tail != info->hash->undefs_tail)
1015 loop = TRUE;
1016 }
1017 }
1018 } while (loop);
1019
1020 free (included);
1021 return TRUE;
1022
1023 error_return:
1024 free (included);
1025 return FALSE;
1026 }
1027 \f
1028 /* See if we should include an archive element. */
1029
1030 static bfd_boolean
1031 generic_link_check_archive_element (bfd *abfd,
1032 struct bfd_link_info *info,
1033 struct bfd_link_hash_entry *h,
1034 const char *name ATTRIBUTE_UNUSED,
1035 bfd_boolean *pneeded)
1036 {
1037 asymbol **pp, **ppend;
1038
1039 *pneeded = FALSE;
1040
1041 if (!bfd_generic_link_read_symbols (abfd))
1042 return FALSE;
1043
1044 pp = _bfd_generic_link_get_symbols (abfd);
1045 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1046 for (; pp < ppend; pp++)
1047 {
1048 asymbol *p;
1049
1050 p = *pp;
1051
1052 /* We are only interested in globally visible symbols. */
1053 if (! bfd_is_com_section (p->section)
1054 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1055 continue;
1056
1057 /* We are only interested if we know something about this
1058 symbol, and it is undefined or common. An undefined weak
1059 symbol (type bfd_link_hash_undefweak) is not considered to be
1060 a reference when pulling files out of an archive. See the
1061 SVR4 ABI, p. 4-27. */
1062 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1063 FALSE, TRUE);
1064 if (h == NULL
1065 || (h->type != bfd_link_hash_undefined
1066 && h->type != bfd_link_hash_common))
1067 continue;
1068
1069 /* P is a symbol we are looking for. */
1070
1071 if (! bfd_is_com_section (p->section)
1072 || (h->type == bfd_link_hash_undefined
1073 && h->u.undef.abfd == NULL))
1074 {
1075 /* P is not a common symbol, or an undefined reference was
1076 created from outside BFD such as from a linker -u option.
1077 This object file defines the symbol, so pull it in. */
1078 *pneeded = TRUE;
1079 if (!(*info->callbacks
1080 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1081 &abfd))
1082 return FALSE;
1083 /* Potentially, the add_archive_element hook may have set a
1084 substitute BFD for us. */
1085 return bfd_link_add_symbols (abfd, info);
1086 }
1087
1088 /* P is a common symbol. */
1089
1090 if (h->type == bfd_link_hash_undefined)
1091 {
1092 bfd *symbfd;
1093 bfd_vma size;
1094 unsigned int power;
1095
1096 /* Turn the symbol into a common symbol but do not link in
1097 the object file. This is how a.out works. Object
1098 formats that require different semantics must implement
1099 this function differently. This symbol is already on the
1100 undefs list. We add the section to a common section
1101 attached to symbfd to ensure that it is in a BFD which
1102 will be linked in. */
1103 symbfd = h->u.undef.abfd;
1104 h->type = bfd_link_hash_common;
1105 h->u.c.p = (struct bfd_link_hash_common_entry *)
1106 bfd_hash_allocate (&info->hash->table,
1107 sizeof (struct bfd_link_hash_common_entry));
1108 if (h->u.c.p == NULL)
1109 return FALSE;
1110
1111 size = bfd_asymbol_value (p);
1112 h->u.c.size = size;
1113
1114 power = bfd_log2 (size);
1115 if (power > 4)
1116 power = 4;
1117 h->u.c.p->alignment_power = power;
1118
1119 if (p->section == bfd_com_section_ptr)
1120 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1121 else
1122 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1123 p->section->name);
1124 h->u.c.p->section->flags |= SEC_ALLOC;
1125 }
1126 else
1127 {
1128 /* Adjust the size of the common symbol if necessary. This
1129 is how a.out works. Object formats that require
1130 different semantics must implement this function
1131 differently. */
1132 if (bfd_asymbol_value (p) > h->u.c.size)
1133 h->u.c.size = bfd_asymbol_value (p);
1134 }
1135 }
1136
1137 /* This archive element is not needed. */
1138 return TRUE;
1139 }
1140
1141 /* Add the symbols from an object file to the global hash table. ABFD
1142 is the object file. INFO is the linker information. SYMBOL_COUNT
1143 is the number of symbols. SYMBOLS is the list of symbols. */
1144
1145 static bfd_boolean
1146 generic_link_add_symbol_list (bfd *abfd,
1147 struct bfd_link_info *info,
1148 bfd_size_type symbol_count,
1149 asymbol **symbols)
1150 {
1151 asymbol **pp, **ppend;
1152
1153 pp = symbols;
1154 ppend = symbols + symbol_count;
1155 for (; pp < ppend; pp++)
1156 {
1157 asymbol *p;
1158
1159 p = *pp;
1160
1161 if ((p->flags & (BSF_INDIRECT
1162 | BSF_WARNING
1163 | BSF_GLOBAL
1164 | BSF_CONSTRUCTOR
1165 | BSF_WEAK)) != 0
1166 || bfd_is_und_section (bfd_asymbol_section (p))
1167 || bfd_is_com_section (bfd_asymbol_section (p))
1168 || bfd_is_ind_section (bfd_asymbol_section (p)))
1169 {
1170 const char *name;
1171 const char *string;
1172 struct generic_link_hash_entry *h;
1173 struct bfd_link_hash_entry *bh;
1174
1175 string = name = bfd_asymbol_name (p);
1176 if (((p->flags & BSF_INDIRECT) != 0
1177 || bfd_is_ind_section (p->section))
1178 && pp + 1 < ppend)
1179 {
1180 pp++;
1181 string = bfd_asymbol_name (*pp);
1182 }
1183 else if ((p->flags & BSF_WARNING) != 0
1184 && pp + 1 < ppend)
1185 {
1186 /* The name of P is actually the warning string, and the
1187 next symbol is the one to warn about. */
1188 pp++;
1189 name = bfd_asymbol_name (*pp);
1190 }
1191
1192 bh = NULL;
1193 if (! (_bfd_generic_link_add_one_symbol
1194 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1195 p->value, string, FALSE, FALSE, &bh)))
1196 return FALSE;
1197 h = (struct generic_link_hash_entry *) bh;
1198
1199 /* If this is a constructor symbol, and the linker didn't do
1200 anything with it, then we want to just pass the symbol
1201 through to the output file. This will happen when
1202 linking with -r. */
1203 if ((p->flags & BSF_CONSTRUCTOR) != 0
1204 && (h == NULL || h->root.type == bfd_link_hash_new))
1205 {
1206 p->udata.p = NULL;
1207 continue;
1208 }
1209
1210 /* Save the BFD symbol so that we don't lose any backend
1211 specific information that may be attached to it. We only
1212 want this one if it gives more information than the
1213 existing one; we don't want to replace a defined symbol
1214 with an undefined one. This routine may be called with a
1215 hash table other than the generic hash table, so we only
1216 do this if we are certain that the hash table is a
1217 generic one. */
1218 if (info->output_bfd->xvec == abfd->xvec)
1219 {
1220 if (h->sym == NULL
1221 || (! bfd_is_und_section (bfd_asymbol_section (p))
1222 && (! bfd_is_com_section (bfd_asymbol_section (p))
1223 || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1224 {
1225 h->sym = p;
1226 /* BSF_OLD_COMMON is a hack to support COFF reloc
1227 reading, and it should go away when the COFF
1228 linker is switched to the new version. */
1229 if (bfd_is_com_section (bfd_asymbol_section (p)))
1230 p->flags |= BSF_OLD_COMMON;
1231 }
1232 }
1233
1234 /* Store a back pointer from the symbol to the hash
1235 table entry for the benefit of relaxation code until
1236 it gets rewritten to not use asymbol structures.
1237 Setting this is also used to check whether these
1238 symbols were set up by the generic linker. */
1239 p->udata.p = h;
1240 }
1241 }
1242
1243 return TRUE;
1244 }
1245 \f
1246 /* We use a state table to deal with adding symbols from an object
1247 file. The first index into the state table describes the symbol
1248 from the object file. The second index into the state table is the
1249 type of the symbol in the hash table. */
1250
1251 /* The symbol from the object file is turned into one of these row
1252 values. */
1253
1254 enum link_row
1255 {
1256 UNDEF_ROW, /* Undefined. */
1257 UNDEFW_ROW, /* Weak undefined. */
1258 DEF_ROW, /* Defined. */
1259 DEFW_ROW, /* Weak defined. */
1260 COMMON_ROW, /* Common. */
1261 INDR_ROW, /* Indirect. */
1262 WARN_ROW, /* Warning. */
1263 SET_ROW /* Member of set. */
1264 };
1265
1266 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1267 #undef FAIL
1268
1269 /* The actions to take in the state table. */
1270
1271 enum link_action
1272 {
1273 FAIL, /* Abort. */
1274 UND, /* Mark symbol undefined. */
1275 WEAK, /* Mark symbol weak undefined. */
1276 DEF, /* Mark symbol defined. */
1277 DEFW, /* Mark symbol weak defined. */
1278 COM, /* Mark symbol common. */
1279 REF, /* Mark defined symbol referenced. */
1280 CREF, /* Possibly warn about common reference to defined symbol. */
1281 CDEF, /* Define existing common symbol. */
1282 NOACT, /* No action. */
1283 BIG, /* Mark symbol common using largest size. */
1284 MDEF, /* Multiple definition error. */
1285 MIND, /* Multiple indirect symbols. */
1286 IND, /* Make indirect symbol. */
1287 CIND, /* Make indirect symbol from existing common symbol. */
1288 SET, /* Add value to set. */
1289 MWARN, /* Make warning symbol. */
1290 WARN, /* Warn if referenced, else MWARN. */
1291 CYCLE, /* Repeat with symbol pointed to. */
1292 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1293 WARNC /* Issue warning and then CYCLE. */
1294 };
1295
1296 /* The state table itself. The first index is a link_row and the
1297 second index is a bfd_link_hash_type. */
1298
1299 static const enum link_action link_action[8][8] =
1300 {
1301 /* current\prev new undef undefw def defw com indr warn */
1302 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1303 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1304 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MIND, CYCLE },
1305 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1306 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1307 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1308 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1309 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1310 };
1311
1312 /* Most of the entries in the LINK_ACTION table are straightforward,
1313 but a few are somewhat subtle.
1314
1315 A reference to an indirect symbol (UNDEF_ROW/indr or
1316 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1317 symbol and to the symbol the indirect symbol points to.
1318
1319 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1320 causes the warning to be issued.
1321
1322 A common definition of an indirect symbol (COMMON_ROW/indr) is
1323 treated as a multiple definition error. Likewise for an indirect
1324 definition of a common symbol (INDR_ROW/com).
1325
1326 An indirect definition of a warning (INDR_ROW/warn) does not cause
1327 the warning to be issued.
1328
1329 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1330 warning is created for the symbol the indirect symbol points to.
1331
1332 Adding an entry to a set does not count as a reference to a set,
1333 and no warning is issued (SET_ROW/warn). */
1334
1335 /* Return the BFD in which a hash entry has been defined, if known. */
1336
1337 static bfd *
1338 hash_entry_bfd (struct bfd_link_hash_entry *h)
1339 {
1340 while (h->type == bfd_link_hash_warning)
1341 h = h->u.i.link;
1342 switch (h->type)
1343 {
1344 default:
1345 return NULL;
1346 case bfd_link_hash_undefined:
1347 case bfd_link_hash_undefweak:
1348 return h->u.undef.abfd;
1349 case bfd_link_hash_defined:
1350 case bfd_link_hash_defweak:
1351 return h->u.def.section->owner;
1352 case bfd_link_hash_common:
1353 return h->u.c.p->section->owner;
1354 }
1355 /*NOTREACHED*/
1356 }
1357
1358 /* Add a symbol to the global hash table.
1359 ABFD is the BFD the symbol comes from.
1360 NAME is the name of the symbol.
1361 FLAGS is the BSF_* bits associated with the symbol.
1362 SECTION is the section in which the symbol is defined; this may be
1363 bfd_und_section_ptr or bfd_com_section_ptr.
1364 VALUE is the value of the symbol, relative to the section.
1365 STRING is used for either an indirect symbol, in which case it is
1366 the name of the symbol to indirect to, or a warning symbol, in
1367 which case it is the warning string.
1368 COPY is TRUE if NAME or STRING must be copied into locally
1369 allocated memory if they need to be saved.
1370 COLLECT is TRUE if we should automatically collect gcc constructor
1371 or destructor names as collect2 does.
1372 HASHP, if not NULL, is a place to store the created hash table
1373 entry; if *HASHP is not NULL, the caller has already looked up
1374 the hash table entry, and stored it in *HASHP. */
1375
1376 bfd_boolean
1377 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1378 bfd *abfd,
1379 const char *name,
1380 flagword flags,
1381 asection *section,
1382 bfd_vma value,
1383 const char *string,
1384 bfd_boolean copy,
1385 bfd_boolean collect,
1386 struct bfd_link_hash_entry **hashp)
1387 {
1388 enum link_row row;
1389 struct bfd_link_hash_entry *h;
1390 struct bfd_link_hash_entry *inh = NULL;
1391 bfd_boolean cycle;
1392
1393 BFD_ASSERT (section != NULL);
1394
1395 if (bfd_is_ind_section (section)
1396 || (flags & BSF_INDIRECT) != 0)
1397 {
1398 row = INDR_ROW;
1399 /* Create the indirect symbol here. This is for the benefit of
1400 the plugin "notice" function.
1401 STRING is the name of the symbol we want to indirect to. */
1402 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1403 copy, FALSE);
1404 if (inh == NULL)
1405 return FALSE;
1406 }
1407 else if ((flags & BSF_WARNING) != 0)
1408 row = WARN_ROW;
1409 else if ((flags & BSF_CONSTRUCTOR) != 0)
1410 row = SET_ROW;
1411 else if (bfd_is_und_section (section))
1412 {
1413 if ((flags & BSF_WEAK) != 0)
1414 row = UNDEFW_ROW;
1415 else
1416 row = UNDEF_ROW;
1417 }
1418 else if ((flags & BSF_WEAK) != 0)
1419 row = DEFW_ROW;
1420 else if (bfd_is_com_section (section))
1421 {
1422 row = COMMON_ROW;
1423 if (!bfd_link_relocatable (info)
1424 && name[0] == '_'
1425 && name[1] == '_'
1426 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1427 _bfd_error_handler
1428 (_("%pB: plugin needed to handle lto object"), abfd);
1429 }
1430 else
1431 row = DEF_ROW;
1432
1433 if (hashp != NULL && *hashp != NULL)
1434 h = *hashp;
1435 else
1436 {
1437 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1438 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1439 else
1440 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1441 if (h == NULL)
1442 {
1443 if (hashp != NULL)
1444 *hashp = NULL;
1445 return FALSE;
1446 }
1447 }
1448
1449 if (info->notice_all
1450 || (info->notice_hash != NULL
1451 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1452 {
1453 if (! (*info->callbacks->notice) (info, h, inh,
1454 abfd, section, value, flags))
1455 return FALSE;
1456 }
1457
1458 if (hashp != NULL)
1459 *hashp = h;
1460
1461 do
1462 {
1463 enum link_action action;
1464 int prev;
1465
1466 prev = h->type;
1467 /* Treat symbols defined by early linker script pass as undefined. */
1468 if (h->ldscript_def)
1469 prev = bfd_link_hash_undefined;
1470 cycle = FALSE;
1471 action = link_action[(int) row][prev];
1472 switch (action)
1473 {
1474 case FAIL:
1475 abort ();
1476
1477 case NOACT:
1478 /* Do nothing. */
1479 break;
1480
1481 case UND:
1482 /* Make a new undefined symbol. */
1483 h->type = bfd_link_hash_undefined;
1484 h->u.undef.abfd = abfd;
1485 bfd_link_add_undef (info->hash, h);
1486 break;
1487
1488 case WEAK:
1489 /* Make a new weak undefined symbol. */
1490 h->type = bfd_link_hash_undefweak;
1491 h->u.undef.abfd = abfd;
1492 break;
1493
1494 case CDEF:
1495 /* We have found a definition for a symbol which was
1496 previously common. */
1497 BFD_ASSERT (h->type == bfd_link_hash_common);
1498 (*info->callbacks->multiple_common) (info, h, abfd,
1499 bfd_link_hash_defined, 0);
1500 /* Fall through. */
1501 case DEF:
1502 case DEFW:
1503 {
1504 enum bfd_link_hash_type oldtype;
1505
1506 /* Define a symbol. */
1507 oldtype = h->type;
1508 if (action == DEFW)
1509 h->type = bfd_link_hash_defweak;
1510 else
1511 h->type = bfd_link_hash_defined;
1512 h->u.def.section = section;
1513 h->u.def.value = value;
1514 h->linker_def = 0;
1515 h->ldscript_def = 0;
1516
1517 /* If we have been asked to, we act like collect2 and
1518 identify all functions that might be global
1519 constructors and destructors and pass them up in a
1520 callback. We only do this for certain object file
1521 types, since many object file types can handle this
1522 automatically. */
1523 if (collect && name[0] == '_')
1524 {
1525 const char *s;
1526
1527 /* A constructor or destructor name starts like this:
1528 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1529 the second are the same character (we accept any
1530 character there, in case a new object file format
1531 comes along with even worse naming restrictions). */
1532
1533 #define CONS_PREFIX "GLOBAL_"
1534 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1535
1536 s = name + 1;
1537 while (*s == '_')
1538 ++s;
1539 if (s[0] == 'G' && startswith (s, CONS_PREFIX))
1540 {
1541 char c;
1542
1543 c = s[CONS_PREFIX_LEN + 1];
1544 if ((c == 'I' || c == 'D')
1545 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1546 {
1547 /* If this is a definition of a symbol which
1548 was previously weakly defined, we are in
1549 trouble. We have already added a
1550 constructor entry for the weak defined
1551 symbol, and now we are trying to add one
1552 for the new symbol. Fortunately, this case
1553 should never arise in practice. */
1554 if (oldtype == bfd_link_hash_defweak)
1555 abort ();
1556
1557 (*info->callbacks->constructor) (info, c == 'I',
1558 h->root.string, abfd,
1559 section, value);
1560 }
1561 }
1562 }
1563 }
1564
1565 break;
1566
1567 case COM:
1568 /* We have found a common definition for a symbol. */
1569 if (h->type == bfd_link_hash_new)
1570 bfd_link_add_undef (info->hash, h);
1571 h->type = bfd_link_hash_common;
1572 h->u.c.p = (struct bfd_link_hash_common_entry *)
1573 bfd_hash_allocate (&info->hash->table,
1574 sizeof (struct bfd_link_hash_common_entry));
1575 if (h->u.c.p == NULL)
1576 return FALSE;
1577
1578 h->u.c.size = value;
1579
1580 /* Select a default alignment based on the size. This may
1581 be overridden by the caller. */
1582 {
1583 unsigned int power;
1584
1585 power = bfd_log2 (value);
1586 if (power > 4)
1587 power = 4;
1588 h->u.c.p->alignment_power = power;
1589 }
1590
1591 /* The section of a common symbol is only used if the common
1592 symbol is actually allocated. It basically provides a
1593 hook for the linker script to decide which output section
1594 the common symbols should be put in. In most cases, the
1595 section of a common symbol will be bfd_com_section_ptr,
1596 the code here will choose a common symbol section named
1597 "COMMON", and the linker script will contain *(COMMON) in
1598 the appropriate place. A few targets use separate common
1599 sections for small symbols, and they require special
1600 handling. */
1601 if (section == bfd_com_section_ptr)
1602 {
1603 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1604 h->u.c.p->section->flags |= SEC_ALLOC;
1605 }
1606 else if (section->owner != abfd)
1607 {
1608 h->u.c.p->section = bfd_make_section_old_way (abfd,
1609 section->name);
1610 h->u.c.p->section->flags |= SEC_ALLOC;
1611 }
1612 else
1613 h->u.c.p->section = section;
1614 h->linker_def = 0;
1615 h->ldscript_def = 0;
1616 break;
1617
1618 case REF:
1619 /* A reference to a defined symbol. */
1620 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1621 h->u.undef.next = h;
1622 break;
1623
1624 case BIG:
1625 /* We have found a common definition for a symbol which
1626 already had a common definition. Use the maximum of the
1627 two sizes, and use the section required by the larger symbol. */
1628 BFD_ASSERT (h->type == bfd_link_hash_common);
1629 (*info->callbacks->multiple_common) (info, h, abfd,
1630 bfd_link_hash_common, value);
1631 if (value > h->u.c.size)
1632 {
1633 unsigned int power;
1634
1635 h->u.c.size = value;
1636
1637 /* Select a default alignment based on the size. This may
1638 be overridden by the caller. */
1639 power = bfd_log2 (value);
1640 if (power > 4)
1641 power = 4;
1642 h->u.c.p->alignment_power = power;
1643
1644 /* Some systems have special treatment for small commons,
1645 hence we want to select the section used by the larger
1646 symbol. This makes sure the symbol does not go in a
1647 small common section if it is now too large. */
1648 if (section == bfd_com_section_ptr)
1649 {
1650 h->u.c.p->section
1651 = bfd_make_section_old_way (abfd, "COMMON");
1652 h->u.c.p->section->flags |= SEC_ALLOC;
1653 }
1654 else if (section->owner != abfd)
1655 {
1656 h->u.c.p->section
1657 = bfd_make_section_old_way (abfd, section->name);
1658 h->u.c.p->section->flags |= SEC_ALLOC;
1659 }
1660 else
1661 h->u.c.p->section = section;
1662 }
1663 break;
1664
1665 case CREF:
1666 /* We have found a common definition for a symbol which
1667 was already defined. */
1668 (*info->callbacks->multiple_common) (info, h, abfd,
1669 bfd_link_hash_common, value);
1670 break;
1671
1672 case MIND:
1673 /* Multiple indirect symbols. This is OK if they both point
1674 to the same symbol. */
1675 if (h->u.i.link->type == bfd_link_hash_defweak)
1676 {
1677 /* It is also OK to redefine a symbol that indirects to
1678 a weak definition. So for sym@ver -> sym@@ver where
1679 sym@@ver is weak and we have a new strong sym@ver,
1680 redefine sym@@ver. Of course if there exists
1681 sym -> sym@@ver then this also redefines sym. */
1682 h = h->u.i.link;
1683 cycle = TRUE;
1684 break;
1685 }
1686 if (strcmp (h->u.i.link->root.string, string) == 0)
1687 break;
1688 /* Fall through. */
1689 case MDEF:
1690 /* Handle a multiple definition. */
1691 (*info->callbacks->multiple_definition) (info, h,
1692 abfd, section, value);
1693 break;
1694
1695 case CIND:
1696 /* Create an indirect symbol from an existing common symbol. */
1697 BFD_ASSERT (h->type == bfd_link_hash_common);
1698 (*info->callbacks->multiple_common) (info, h, abfd,
1699 bfd_link_hash_indirect, 0);
1700 /* Fall through. */
1701 case IND:
1702 if (inh->type == bfd_link_hash_indirect
1703 && inh->u.i.link == h)
1704 {
1705 _bfd_error_handler
1706 /* xgettext:c-format */
1707 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1708 abfd, name, string);
1709 bfd_set_error (bfd_error_invalid_operation);
1710 return FALSE;
1711 }
1712 if (inh->type == bfd_link_hash_new)
1713 {
1714 inh->type = bfd_link_hash_undefined;
1715 inh->u.undef.abfd = abfd;
1716 bfd_link_add_undef (info->hash, inh);
1717 }
1718
1719 /* If the indirect symbol has been referenced, we need to
1720 push the reference down to the symbol we are referencing. */
1721 if (h->type != bfd_link_hash_new)
1722 {
1723 /* ??? If inh->type == bfd_link_hash_undefweak this
1724 converts inh to bfd_link_hash_undefined. */
1725 row = UNDEF_ROW;
1726 cycle = TRUE;
1727 }
1728
1729 h->type = bfd_link_hash_indirect;
1730 h->u.i.link = inh;
1731 /* Not setting h = h->u.i.link here means that when cycle is
1732 set above we'll always go to REFC, and then cycle again
1733 to the indirected symbol. This means that any successful
1734 change of an existing symbol to indirect counts as a
1735 reference. ??? That may not be correct when the existing
1736 symbol was defweak. */
1737 break;
1738
1739 case SET:
1740 /* Add an entry to a set. */
1741 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1742 abfd, section, value);
1743 break;
1744
1745 case WARNC:
1746 /* Issue a warning and cycle, except when the reference is
1747 in LTO IR. */
1748 if (h->u.i.warning != NULL
1749 && (abfd->flags & BFD_PLUGIN) == 0)
1750 {
1751 (*info->callbacks->warning) (info, h->u.i.warning,
1752 h->root.string, abfd, NULL, 0);
1753 /* Only issue a warning once. */
1754 h->u.i.warning = NULL;
1755 }
1756 /* Fall through. */
1757 case CYCLE:
1758 /* Try again with the referenced symbol. */
1759 h = h->u.i.link;
1760 cycle = TRUE;
1761 break;
1762
1763 case REFC:
1764 /* A reference to an indirect symbol. */
1765 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1766 h->u.undef.next = h;
1767 h = h->u.i.link;
1768 cycle = TRUE;
1769 break;
1770
1771 case WARN:
1772 /* Warn if this symbol has been referenced already from non-IR,
1773 otherwise add a warning. */
1774 if ((!info->lto_plugin_active
1775 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1776 || h->non_ir_ref_regular
1777 || h->non_ir_ref_dynamic)
1778 {
1779 (*info->callbacks->warning) (info, string, h->root.string,
1780 hash_entry_bfd (h), NULL, 0);
1781 break;
1782 }
1783 /* Fall through. */
1784 case MWARN:
1785 /* Make a warning symbol. */
1786 {
1787 struct bfd_link_hash_entry *sub;
1788
1789 /* STRING is the warning to give. */
1790 sub = ((struct bfd_link_hash_entry *)
1791 ((*info->hash->table.newfunc)
1792 (NULL, &info->hash->table, h->root.string)));
1793 if (sub == NULL)
1794 return FALSE;
1795 *sub = *h;
1796 sub->type = bfd_link_hash_warning;
1797 sub->u.i.link = h;
1798 if (! copy)
1799 sub->u.i.warning = string;
1800 else
1801 {
1802 char *w;
1803 size_t len = strlen (string) + 1;
1804
1805 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1806 if (w == NULL)
1807 return FALSE;
1808 memcpy (w, string, len);
1809 sub->u.i.warning = w;
1810 }
1811
1812 bfd_hash_replace (&info->hash->table,
1813 (struct bfd_hash_entry *) h,
1814 (struct bfd_hash_entry *) sub);
1815 if (hashp != NULL)
1816 *hashp = sub;
1817 }
1818 break;
1819 }
1820 }
1821 while (cycle);
1822
1823 return TRUE;
1824 }
1825 \f
1826 /* Generic final link routine. */
1827
1828 bfd_boolean
1829 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1830 {
1831 bfd *sub;
1832 asection *o;
1833 struct bfd_link_order *p;
1834 size_t outsymalloc;
1835 struct generic_write_global_symbol_info wginfo;
1836
1837 abfd->outsymbols = NULL;
1838 abfd->symcount = 0;
1839 outsymalloc = 0;
1840
1841 /* Mark all sections which will be included in the output file. */
1842 for (o = abfd->sections; o != NULL; o = o->next)
1843 for (p = o->map_head.link_order; p != NULL; p = p->next)
1844 if (p->type == bfd_indirect_link_order)
1845 p->u.indirect.section->linker_mark = TRUE;
1846
1847 /* Build the output symbol table. */
1848 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1849 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1850 return FALSE;
1851
1852 /* Accumulate the global symbols. */
1853 wginfo.info = info;
1854 wginfo.output_bfd = abfd;
1855 wginfo.psymalloc = &outsymalloc;
1856 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1857 _bfd_generic_link_write_global_symbol,
1858 &wginfo);
1859
1860 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1861 shouldn't really need one, since we have SYMCOUNT, but some old
1862 code still expects one. */
1863 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1864 return FALSE;
1865
1866 if (bfd_link_relocatable (info))
1867 {
1868 /* Allocate space for the output relocs for each section. */
1869 for (o = abfd->sections; o != NULL; o = o->next)
1870 {
1871 o->reloc_count = 0;
1872 for (p = o->map_head.link_order; p != NULL; p = p->next)
1873 {
1874 if (p->type == bfd_section_reloc_link_order
1875 || p->type == bfd_symbol_reloc_link_order)
1876 ++o->reloc_count;
1877 else if (p->type == bfd_indirect_link_order)
1878 {
1879 asection *input_section;
1880 bfd *input_bfd;
1881 long relsize;
1882 arelent **relocs;
1883 asymbol **symbols;
1884 long reloc_count;
1885
1886 input_section = p->u.indirect.section;
1887 input_bfd = input_section->owner;
1888 relsize = bfd_get_reloc_upper_bound (input_bfd,
1889 input_section);
1890 if (relsize < 0)
1891 return FALSE;
1892 relocs = (arelent **) bfd_malloc (relsize);
1893 if (!relocs && relsize != 0)
1894 return FALSE;
1895 symbols = _bfd_generic_link_get_symbols (input_bfd);
1896 reloc_count = bfd_canonicalize_reloc (input_bfd,
1897 input_section,
1898 relocs,
1899 symbols);
1900 free (relocs);
1901 if (reloc_count < 0)
1902 return FALSE;
1903 BFD_ASSERT ((unsigned long) reloc_count
1904 == input_section->reloc_count);
1905 o->reloc_count += reloc_count;
1906 }
1907 }
1908 if (o->reloc_count > 0)
1909 {
1910 bfd_size_type amt;
1911
1912 amt = o->reloc_count;
1913 amt *= sizeof (arelent *);
1914 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1915 if (!o->orelocation)
1916 return FALSE;
1917 o->flags |= SEC_RELOC;
1918 /* Reset the count so that it can be used as an index
1919 when putting in the output relocs. */
1920 o->reloc_count = 0;
1921 }
1922 }
1923 }
1924
1925 /* Handle all the link order information for the sections. */
1926 for (o = abfd->sections; o != NULL; o = o->next)
1927 {
1928 for (p = o->map_head.link_order; p != NULL; p = p->next)
1929 {
1930 switch (p->type)
1931 {
1932 case bfd_section_reloc_link_order:
1933 case bfd_symbol_reloc_link_order:
1934 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1935 return FALSE;
1936 break;
1937 case bfd_indirect_link_order:
1938 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1939 return FALSE;
1940 break;
1941 default:
1942 if (! _bfd_default_link_order (abfd, info, o, p))
1943 return FALSE;
1944 break;
1945 }
1946 }
1947 }
1948
1949 return TRUE;
1950 }
1951
1952 /* Add an output symbol to the output BFD. */
1953
1954 static bfd_boolean
1955 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1956 {
1957 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1958 {
1959 asymbol **newsyms;
1960 bfd_size_type amt;
1961
1962 if (*psymalloc == 0)
1963 *psymalloc = 124;
1964 else
1965 *psymalloc *= 2;
1966 amt = *psymalloc;
1967 amt *= sizeof (asymbol *);
1968 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1969 if (newsyms == NULL)
1970 return FALSE;
1971 output_bfd->outsymbols = newsyms;
1972 }
1973
1974 output_bfd->outsymbols[output_bfd->symcount] = sym;
1975 if (sym != NULL)
1976 ++output_bfd->symcount;
1977
1978 return TRUE;
1979 }
1980
1981 /* Handle the symbols for an input BFD. */
1982
1983 bfd_boolean
1984 _bfd_generic_link_output_symbols (bfd *output_bfd,
1985 bfd *input_bfd,
1986 struct bfd_link_info *info,
1987 size_t *psymalloc)
1988 {
1989 asymbol **sym_ptr;
1990 asymbol **sym_end;
1991
1992 if (!bfd_generic_link_read_symbols (input_bfd))
1993 return FALSE;
1994
1995 /* Create a filename symbol if we are supposed to. */
1996 if (info->create_object_symbols_section != NULL)
1997 {
1998 asection *sec;
1999
2000 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2001 {
2002 if (sec->output_section == info->create_object_symbols_section)
2003 {
2004 asymbol *newsym;
2005
2006 newsym = bfd_make_empty_symbol (input_bfd);
2007 if (!newsym)
2008 return FALSE;
2009 newsym->name = bfd_get_filename (input_bfd);
2010 newsym->value = 0;
2011 newsym->flags = BSF_LOCAL | BSF_FILE;
2012 newsym->section = sec;
2013
2014 if (! generic_add_output_symbol (output_bfd, psymalloc,
2015 newsym))
2016 return FALSE;
2017
2018 break;
2019 }
2020 }
2021 }
2022
2023 /* Adjust the values of the globally visible symbols, and write out
2024 local symbols. */
2025 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2026 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2027 for (; sym_ptr < sym_end; sym_ptr++)
2028 {
2029 asymbol *sym;
2030 struct generic_link_hash_entry *h;
2031 bfd_boolean output;
2032
2033 h = NULL;
2034 sym = *sym_ptr;
2035 if ((sym->flags & (BSF_INDIRECT
2036 | BSF_WARNING
2037 | BSF_GLOBAL
2038 | BSF_CONSTRUCTOR
2039 | BSF_WEAK)) != 0
2040 || bfd_is_und_section (bfd_asymbol_section (sym))
2041 || bfd_is_com_section (bfd_asymbol_section (sym))
2042 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2043 {
2044 if (sym->udata.p != NULL)
2045 h = (struct generic_link_hash_entry *) sym->udata.p;
2046 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2047 {
2048 /* This case normally means that the main linker code
2049 deliberately ignored this constructor symbol. We
2050 should just pass it through. This will screw up if
2051 the constructor symbol is from a different,
2052 non-generic, object file format, but the case will
2053 only arise when linking with -r, which will probably
2054 fail anyhow, since there will be no way to represent
2055 the relocs in the output format being used. */
2056 h = NULL;
2057 }
2058 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2059 h = ((struct generic_link_hash_entry *)
2060 bfd_wrapped_link_hash_lookup (output_bfd, info,
2061 bfd_asymbol_name (sym),
2062 FALSE, FALSE, TRUE));
2063 else
2064 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2065 bfd_asymbol_name (sym),
2066 FALSE, FALSE, TRUE);
2067
2068 if (h != NULL)
2069 {
2070 /* Force all references to this symbol to point to
2071 the same area in memory. It is possible that
2072 this routine will be called with a hash table
2073 other than a generic hash table, so we double
2074 check that. */
2075 if (info->output_bfd->xvec == input_bfd->xvec)
2076 {
2077 if (h->sym != NULL)
2078 *sym_ptr = sym = h->sym;
2079 }
2080
2081 switch (h->root.type)
2082 {
2083 default:
2084 case bfd_link_hash_new:
2085 abort ();
2086 case bfd_link_hash_undefined:
2087 break;
2088 case bfd_link_hash_undefweak:
2089 sym->flags |= BSF_WEAK;
2090 break;
2091 case bfd_link_hash_indirect:
2092 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2093 /* fall through */
2094 case bfd_link_hash_defined:
2095 sym->flags |= BSF_GLOBAL;
2096 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2097 sym->value = h->root.u.def.value;
2098 sym->section = h->root.u.def.section;
2099 break;
2100 case bfd_link_hash_defweak:
2101 sym->flags |= BSF_WEAK;
2102 sym->flags &=~ BSF_CONSTRUCTOR;
2103 sym->value = h->root.u.def.value;
2104 sym->section = h->root.u.def.section;
2105 break;
2106 case bfd_link_hash_common:
2107 sym->value = h->root.u.c.size;
2108 sym->flags |= BSF_GLOBAL;
2109 if (! bfd_is_com_section (sym->section))
2110 {
2111 BFD_ASSERT (bfd_is_und_section (sym->section));
2112 sym->section = bfd_com_section_ptr;
2113 }
2114 /* We do not set the section of the symbol to
2115 h->root.u.c.p->section. That value was saved so
2116 that we would know where to allocate the symbol
2117 if it was defined. In this case the type is
2118 still bfd_link_hash_common, so we did not define
2119 it, so we do not want to use that section. */
2120 break;
2121 }
2122 }
2123 }
2124
2125 if ((sym->flags & BSF_KEEP) == 0
2126 && (info->strip == strip_all
2127 || (info->strip == strip_some
2128 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2129 FALSE, FALSE) == NULL)))
2130 output = FALSE;
2131 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2132 {
2133 /* If this symbol is marked as occurring now, rather
2134 than at the end, output it now. This is used for
2135 COFF C_EXT FCN symbols. FIXME: There must be a
2136 better way. */
2137 if (bfd_asymbol_bfd (sym) == input_bfd
2138 && (sym->flags & BSF_NOT_AT_END) != 0)
2139 output = TRUE;
2140 else
2141 output = FALSE;
2142 }
2143 else if ((sym->flags & BSF_KEEP) != 0)
2144 output = TRUE;
2145 else if (bfd_is_ind_section (sym->section))
2146 output = FALSE;
2147 else if ((sym->flags & BSF_DEBUGGING) != 0)
2148 {
2149 if (info->strip == strip_none)
2150 output = TRUE;
2151 else
2152 output = FALSE;
2153 }
2154 else if (bfd_is_und_section (sym->section)
2155 || bfd_is_com_section (sym->section))
2156 output = FALSE;
2157 else if ((sym->flags & BSF_LOCAL) != 0)
2158 {
2159 if ((sym->flags & BSF_WARNING) != 0)
2160 output = FALSE;
2161 else
2162 {
2163 switch (info->discard)
2164 {
2165 default:
2166 case discard_all:
2167 output = FALSE;
2168 break;
2169 case discard_sec_merge:
2170 output = TRUE;
2171 if (bfd_link_relocatable (info)
2172 || ! (sym->section->flags & SEC_MERGE))
2173 break;
2174 /* FALLTHROUGH */
2175 case discard_l:
2176 if (bfd_is_local_label (input_bfd, sym))
2177 output = FALSE;
2178 else
2179 output = TRUE;
2180 break;
2181 case discard_none:
2182 output = TRUE;
2183 break;
2184 }
2185 }
2186 }
2187 else if ((sym->flags & BSF_CONSTRUCTOR))
2188 {
2189 if (info->strip != strip_all)
2190 output = TRUE;
2191 else
2192 output = FALSE;
2193 }
2194 else if (sym->flags == 0
2195 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2196 /* LTO doesn't set symbol information. We get here with the
2197 generic linker for a symbol that was "common" but no longer
2198 needs to be global. */
2199 output = FALSE;
2200 else
2201 abort ();
2202
2203 /* If this symbol is in a section which is not being included
2204 in the output file, then we don't want to output the
2205 symbol. */
2206 if (!bfd_is_abs_section (sym->section)
2207 && bfd_section_removed_from_list (output_bfd,
2208 sym->section->output_section))
2209 output = FALSE;
2210
2211 if (output)
2212 {
2213 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2214 return FALSE;
2215 if (h != NULL)
2216 h->written = TRUE;
2217 }
2218 }
2219
2220 return TRUE;
2221 }
2222
2223 /* Set the section and value of a generic BFD symbol based on a linker
2224 hash table entry. */
2225
2226 static void
2227 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2228 {
2229 switch (h->type)
2230 {
2231 default:
2232 abort ();
2233 break;
2234 case bfd_link_hash_new:
2235 /* This can happen when a constructor symbol is seen but we are
2236 not building constructors. */
2237 if (sym->section != NULL)
2238 {
2239 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2240 }
2241 else
2242 {
2243 sym->flags |= BSF_CONSTRUCTOR;
2244 sym->section = bfd_abs_section_ptr;
2245 sym->value = 0;
2246 }
2247 break;
2248 case bfd_link_hash_undefined:
2249 sym->section = bfd_und_section_ptr;
2250 sym->value = 0;
2251 break;
2252 case bfd_link_hash_undefweak:
2253 sym->section = bfd_und_section_ptr;
2254 sym->value = 0;
2255 sym->flags |= BSF_WEAK;
2256 break;
2257 case bfd_link_hash_defined:
2258 sym->section = h->u.def.section;
2259 sym->value = h->u.def.value;
2260 break;
2261 case bfd_link_hash_defweak:
2262 sym->flags |= BSF_WEAK;
2263 sym->section = h->u.def.section;
2264 sym->value = h->u.def.value;
2265 break;
2266 case bfd_link_hash_common:
2267 sym->value = h->u.c.size;
2268 if (sym->section == NULL)
2269 sym->section = bfd_com_section_ptr;
2270 else if (! bfd_is_com_section (sym->section))
2271 {
2272 BFD_ASSERT (bfd_is_und_section (sym->section));
2273 sym->section = bfd_com_section_ptr;
2274 }
2275 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2276 break;
2277 case bfd_link_hash_indirect:
2278 case bfd_link_hash_warning:
2279 /* FIXME: What should we do here? */
2280 break;
2281 }
2282 }
2283
2284 /* Write out a global symbol, if it hasn't already been written out.
2285 This is called for each symbol in the hash table. */
2286
2287 bfd_boolean
2288 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2289 void *data)
2290 {
2291 struct generic_write_global_symbol_info *wginfo =
2292 (struct generic_write_global_symbol_info *) data;
2293 asymbol *sym;
2294
2295 if (h->written)
2296 return TRUE;
2297
2298 h->written = TRUE;
2299
2300 if (wginfo->info->strip == strip_all
2301 || (wginfo->info->strip == strip_some
2302 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2303 FALSE, FALSE) == NULL))
2304 return TRUE;
2305
2306 if (h->sym != NULL)
2307 sym = h->sym;
2308 else
2309 {
2310 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2311 if (!sym)
2312 return FALSE;
2313 sym->name = h->root.root.string;
2314 sym->flags = 0;
2315 }
2316
2317 set_symbol_from_hash (sym, &h->root);
2318
2319 sym->flags |= BSF_GLOBAL;
2320
2321 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2322 sym))
2323 {
2324 /* FIXME: No way to return failure. */
2325 abort ();
2326 }
2327
2328 return TRUE;
2329 }
2330
2331 /* Create a relocation. */
2332
2333 bfd_boolean
2334 _bfd_generic_reloc_link_order (bfd *abfd,
2335 struct bfd_link_info *info,
2336 asection *sec,
2337 struct bfd_link_order *link_order)
2338 {
2339 arelent *r;
2340
2341 if (! bfd_link_relocatable (info))
2342 abort ();
2343 if (sec->orelocation == NULL)
2344 abort ();
2345
2346 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2347 if (r == NULL)
2348 return FALSE;
2349
2350 r->address = link_order->offset;
2351 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2352 if (r->howto == 0)
2353 {
2354 bfd_set_error (bfd_error_bad_value);
2355 return FALSE;
2356 }
2357
2358 /* Get the symbol to use for the relocation. */
2359 if (link_order->type == bfd_section_reloc_link_order)
2360 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2361 else
2362 {
2363 struct generic_link_hash_entry *h;
2364
2365 h = ((struct generic_link_hash_entry *)
2366 bfd_wrapped_link_hash_lookup (abfd, info,
2367 link_order->u.reloc.p->u.name,
2368 FALSE, FALSE, TRUE));
2369 if (h == NULL
2370 || ! h->written)
2371 {
2372 (*info->callbacks->unattached_reloc)
2373 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2374 bfd_set_error (bfd_error_bad_value);
2375 return FALSE;
2376 }
2377 r->sym_ptr_ptr = &h->sym;
2378 }
2379
2380 /* If this is an inplace reloc, write the addend to the object file.
2381 Otherwise, store it in the reloc addend. */
2382 if (! r->howto->partial_inplace)
2383 r->addend = link_order->u.reloc.p->addend;
2384 else
2385 {
2386 bfd_size_type size;
2387 bfd_reloc_status_type rstat;
2388 bfd_byte *buf;
2389 bfd_boolean ok;
2390 file_ptr loc;
2391
2392 size = bfd_get_reloc_size (r->howto);
2393 buf = (bfd_byte *) bfd_zmalloc (size);
2394 if (buf == NULL && size != 0)
2395 return FALSE;
2396 rstat = _bfd_relocate_contents (r->howto, abfd,
2397 (bfd_vma) link_order->u.reloc.p->addend,
2398 buf);
2399 switch (rstat)
2400 {
2401 case bfd_reloc_ok:
2402 break;
2403 default:
2404 case bfd_reloc_outofrange:
2405 abort ();
2406 case bfd_reloc_overflow:
2407 (*info->callbacks->reloc_overflow)
2408 (info, NULL,
2409 (link_order->type == bfd_section_reloc_link_order
2410 ? bfd_section_name (link_order->u.reloc.p->u.section)
2411 : link_order->u.reloc.p->u.name),
2412 r->howto->name, link_order->u.reloc.p->addend,
2413 NULL, NULL, 0);
2414 break;
2415 }
2416 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2417 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2418 free (buf);
2419 if (! ok)
2420 return FALSE;
2421
2422 r->addend = 0;
2423 }
2424
2425 sec->orelocation[sec->reloc_count] = r;
2426 ++sec->reloc_count;
2427
2428 return TRUE;
2429 }
2430 \f
2431 /* Allocate a new link_order for a section. */
2432
2433 struct bfd_link_order *
2434 bfd_new_link_order (bfd *abfd, asection *section)
2435 {
2436 size_t amt = sizeof (struct bfd_link_order);
2437 struct bfd_link_order *new_lo;
2438
2439 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2440 if (!new_lo)
2441 return NULL;
2442
2443 new_lo->type = bfd_undefined_link_order;
2444
2445 if (section->map_tail.link_order != NULL)
2446 section->map_tail.link_order->next = new_lo;
2447 else
2448 section->map_head.link_order = new_lo;
2449 section->map_tail.link_order = new_lo;
2450
2451 return new_lo;
2452 }
2453
2454 /* Default link order processing routine. Note that we can not handle
2455 the reloc_link_order types here, since they depend upon the details
2456 of how the particular backends generates relocs. */
2457
2458 bfd_boolean
2459 _bfd_default_link_order (bfd *abfd,
2460 struct bfd_link_info *info,
2461 asection *sec,
2462 struct bfd_link_order *link_order)
2463 {
2464 switch (link_order->type)
2465 {
2466 case bfd_undefined_link_order:
2467 case bfd_section_reloc_link_order:
2468 case bfd_symbol_reloc_link_order:
2469 default:
2470 abort ();
2471 case bfd_indirect_link_order:
2472 return default_indirect_link_order (abfd, info, sec, link_order,
2473 FALSE);
2474 case bfd_data_link_order:
2475 return default_data_link_order (abfd, info, sec, link_order);
2476 }
2477 }
2478
2479 /* Default routine to handle a bfd_data_link_order. */
2480
2481 static bfd_boolean
2482 default_data_link_order (bfd *abfd,
2483 struct bfd_link_info *info,
2484 asection *sec,
2485 struct bfd_link_order *link_order)
2486 {
2487 bfd_size_type size;
2488 size_t fill_size;
2489 bfd_byte *fill;
2490 file_ptr loc;
2491 bfd_boolean result;
2492
2493 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2494
2495 size = link_order->size;
2496 if (size == 0)
2497 return TRUE;
2498
2499 fill = link_order->u.data.contents;
2500 fill_size = link_order->u.data.size;
2501 if (fill_size == 0)
2502 {
2503 fill = abfd->arch_info->fill (size, info->big_endian,
2504 (sec->flags & SEC_CODE) != 0);
2505 if (fill == NULL)
2506 return FALSE;
2507 }
2508 else if (fill_size < size)
2509 {
2510 bfd_byte *p;
2511 fill = (bfd_byte *) bfd_malloc (size);
2512 if (fill == NULL)
2513 return FALSE;
2514 p = fill;
2515 if (fill_size == 1)
2516 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2517 else
2518 {
2519 do
2520 {
2521 memcpy (p, link_order->u.data.contents, fill_size);
2522 p += fill_size;
2523 size -= fill_size;
2524 }
2525 while (size >= fill_size);
2526 if (size != 0)
2527 memcpy (p, link_order->u.data.contents, (size_t) size);
2528 size = link_order->size;
2529 }
2530 }
2531
2532 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2533 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2534
2535 if (fill != link_order->u.data.contents)
2536 free (fill);
2537 return result;
2538 }
2539
2540 /* Default routine to handle a bfd_indirect_link_order. */
2541
2542 static bfd_boolean
2543 default_indirect_link_order (bfd *output_bfd,
2544 struct bfd_link_info *info,
2545 asection *output_section,
2546 struct bfd_link_order *link_order,
2547 bfd_boolean generic_linker)
2548 {
2549 asection *input_section;
2550 bfd *input_bfd;
2551 bfd_byte *contents = NULL;
2552 bfd_byte *new_contents;
2553 bfd_size_type sec_size;
2554 file_ptr loc;
2555
2556 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2557
2558 input_section = link_order->u.indirect.section;
2559 input_bfd = input_section->owner;
2560 if (input_section->size == 0)
2561 return TRUE;
2562
2563 BFD_ASSERT (input_section->output_section == output_section);
2564 BFD_ASSERT (input_section->output_offset == link_order->offset);
2565 BFD_ASSERT (input_section->size == link_order->size);
2566
2567 if (bfd_link_relocatable (info)
2568 && input_section->reloc_count > 0
2569 && output_section->orelocation == NULL)
2570 {
2571 /* Space has not been allocated for the output relocations.
2572 This can happen when we are called by a specific backend
2573 because somebody is attempting to link together different
2574 types of object files. Handling this case correctly is
2575 difficult, and sometimes impossible. */
2576 _bfd_error_handler
2577 /* xgettext:c-format */
2578 (_("attempt to do relocatable link with %s input and %s output"),
2579 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2580 bfd_set_error (bfd_error_wrong_format);
2581 return FALSE;
2582 }
2583
2584 if (! generic_linker)
2585 {
2586 asymbol **sympp;
2587 asymbol **symppend;
2588
2589 /* Get the canonical symbols. The generic linker will always
2590 have retrieved them by this point, but we are being called by
2591 a specific linker, presumably because we are linking
2592 different types of object files together. */
2593 if (!bfd_generic_link_read_symbols (input_bfd))
2594 return FALSE;
2595
2596 /* Since we have been called by a specific linker, rather than
2597 the generic linker, the values of the symbols will not be
2598 right. They will be the values as seen in the input file,
2599 not the values of the final link. We need to fix them up
2600 before we can relocate the section. */
2601 sympp = _bfd_generic_link_get_symbols (input_bfd);
2602 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2603 for (; sympp < symppend; sympp++)
2604 {
2605 asymbol *sym;
2606 struct bfd_link_hash_entry *h;
2607
2608 sym = *sympp;
2609
2610 if ((sym->flags & (BSF_INDIRECT
2611 | BSF_WARNING
2612 | BSF_GLOBAL
2613 | BSF_CONSTRUCTOR
2614 | BSF_WEAK)) != 0
2615 || bfd_is_und_section (bfd_asymbol_section (sym))
2616 || bfd_is_com_section (bfd_asymbol_section (sym))
2617 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2618 {
2619 /* sym->udata may have been set by
2620 generic_link_add_symbol_list. */
2621 if (sym->udata.p != NULL)
2622 h = (struct bfd_link_hash_entry *) sym->udata.p;
2623 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2624 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2625 bfd_asymbol_name (sym),
2626 FALSE, FALSE, TRUE);
2627 else
2628 h = bfd_link_hash_lookup (info->hash,
2629 bfd_asymbol_name (sym),
2630 FALSE, FALSE, TRUE);
2631 if (h != NULL)
2632 set_symbol_from_hash (sym, h);
2633 }
2634 }
2635 }
2636
2637 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2638 && input_section->size != 0)
2639 {
2640 /* Group section contents are set by bfd_elf_set_group_contents. */
2641 if (!output_bfd->output_has_begun)
2642 {
2643 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2644 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2645 goto error_return;
2646 }
2647 new_contents = output_section->contents;
2648 BFD_ASSERT (new_contents != NULL);
2649 BFD_ASSERT (input_section->output_offset == 0);
2650 }
2651 else
2652 {
2653 /* Get and relocate the section contents. */
2654 sec_size = (input_section->rawsize > input_section->size
2655 ? input_section->rawsize
2656 : input_section->size);
2657 contents = (bfd_byte *) bfd_malloc (sec_size);
2658 if (contents == NULL && sec_size != 0)
2659 goto error_return;
2660 new_contents = (bfd_get_relocated_section_contents
2661 (output_bfd, info, link_order, contents,
2662 bfd_link_relocatable (info),
2663 _bfd_generic_link_get_symbols (input_bfd)));
2664 if (!new_contents)
2665 goto error_return;
2666 }
2667
2668 /* Output the section contents. */
2669 loc = (input_section->output_offset
2670 * bfd_octets_per_byte (output_bfd, output_section));
2671 if (! bfd_set_section_contents (output_bfd, output_section,
2672 new_contents, loc, input_section->size))
2673 goto error_return;
2674
2675 free (contents);
2676 return TRUE;
2677
2678 error_return:
2679 free (contents);
2680 return FALSE;
2681 }
2682
2683 /* A little routine to count the number of relocs in a link_order
2684 list. */
2685
2686 unsigned int
2687 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2688 {
2689 register unsigned int c;
2690 register struct bfd_link_order *l;
2691
2692 c = 0;
2693 for (l = link_order; l != NULL; l = l->next)
2694 {
2695 if (l->type == bfd_section_reloc_link_order
2696 || l->type == bfd_symbol_reloc_link_order)
2697 ++c;
2698 }
2699
2700 return c;
2701 }
2702
2703 /*
2704 FUNCTION
2705 bfd_link_split_section
2706
2707 SYNOPSIS
2708 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2709
2710 DESCRIPTION
2711 Return nonzero if @var{sec} should be split during a
2712 reloceatable or final link.
2713
2714 .#define bfd_link_split_section(abfd, sec) \
2715 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2716 .
2717
2718 */
2719
2720 bfd_boolean
2721 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2722 asection *sec ATTRIBUTE_UNUSED)
2723 {
2724 return FALSE;
2725 }
2726
2727 /*
2728 FUNCTION
2729 bfd_section_already_linked
2730
2731 SYNOPSIS
2732 bfd_boolean bfd_section_already_linked (bfd *abfd,
2733 asection *sec,
2734 struct bfd_link_info *info);
2735
2736 DESCRIPTION
2737 Check if @var{data} has been already linked during a reloceatable
2738 or final link. Return TRUE if it has.
2739
2740 .#define bfd_section_already_linked(abfd, sec, info) \
2741 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2742 .
2743
2744 */
2745
2746 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2747 once into the output. This routine checks each section, and
2748 arrange to discard it if a section of the same name has already
2749 been linked. This code assumes that all relevant sections have the
2750 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2751 section name. bfd_section_already_linked is called via
2752 bfd_map_over_sections. */
2753
2754 /* The hash table. */
2755
2756 static struct bfd_hash_table _bfd_section_already_linked_table;
2757
2758 /* Support routines for the hash table used by section_already_linked,
2759 initialize the table, traverse, lookup, fill in an entry and remove
2760 the table. */
2761
2762 void
2763 bfd_section_already_linked_table_traverse
2764 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2765 void *), void *info)
2766 {
2767 bfd_hash_traverse (&_bfd_section_already_linked_table,
2768 (bfd_boolean (*) (struct bfd_hash_entry *,
2769 void *)) func,
2770 info);
2771 }
2772
2773 struct bfd_section_already_linked_hash_entry *
2774 bfd_section_already_linked_table_lookup (const char *name)
2775 {
2776 return ((struct bfd_section_already_linked_hash_entry *)
2777 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2778 TRUE, FALSE));
2779 }
2780
2781 bfd_boolean
2782 bfd_section_already_linked_table_insert
2783 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2784 asection *sec)
2785 {
2786 struct bfd_section_already_linked *l;
2787
2788 /* Allocate the memory from the same obstack as the hash table is
2789 kept in. */
2790 l = (struct bfd_section_already_linked *)
2791 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2792 if (l == NULL)
2793 return FALSE;
2794 l->sec = sec;
2795 l->next = already_linked_list->entry;
2796 already_linked_list->entry = l;
2797 return TRUE;
2798 }
2799
2800 static struct bfd_hash_entry *
2801 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2802 struct bfd_hash_table *table,
2803 const char *string ATTRIBUTE_UNUSED)
2804 {
2805 struct bfd_section_already_linked_hash_entry *ret =
2806 (struct bfd_section_already_linked_hash_entry *)
2807 bfd_hash_allocate (table, sizeof *ret);
2808
2809 if (ret == NULL)
2810 return NULL;
2811
2812 ret->entry = NULL;
2813
2814 return &ret->root;
2815 }
2816
2817 bfd_boolean
2818 bfd_section_already_linked_table_init (void)
2819 {
2820 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2821 already_linked_newfunc,
2822 sizeof (struct bfd_section_already_linked_hash_entry),
2823 42);
2824 }
2825
2826 void
2827 bfd_section_already_linked_table_free (void)
2828 {
2829 bfd_hash_table_free (&_bfd_section_already_linked_table);
2830 }
2831
2832 /* Report warnings as appropriate for duplicate section SEC.
2833 Return FALSE if we decide to keep SEC after all. */
2834
2835 bfd_boolean
2836 _bfd_handle_already_linked (asection *sec,
2837 struct bfd_section_already_linked *l,
2838 struct bfd_link_info *info)
2839 {
2840 switch (sec->flags & SEC_LINK_DUPLICATES)
2841 {
2842 default:
2843 abort ();
2844
2845 case SEC_LINK_DUPLICATES_DISCARD:
2846 /* If we found an LTO IR match for this comdat group on
2847 the first pass, replace it with the LTO output on the
2848 second pass. We can't simply choose real object
2849 files over IR because the first pass may contain a
2850 mix of LTO and normal objects and we must keep the
2851 first match, be it IR or real. */
2852 if (sec->owner->lto_output
2853 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2854 {
2855 l->sec = sec;
2856 return FALSE;
2857 }
2858 break;
2859
2860 case SEC_LINK_DUPLICATES_ONE_ONLY:
2861 info->callbacks->einfo
2862 /* xgettext:c-format */
2863 (_("%pB: ignoring duplicate section `%pA'\n"),
2864 sec->owner, sec);
2865 break;
2866
2867 case SEC_LINK_DUPLICATES_SAME_SIZE:
2868 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2869 ;
2870 else if (sec->size != l->sec->size)
2871 info->callbacks->einfo
2872 /* xgettext:c-format */
2873 (_("%pB: duplicate section `%pA' has different size\n"),
2874 sec->owner, sec);
2875 break;
2876
2877 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2878 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2879 ;
2880 else if (sec->size != l->sec->size)
2881 info->callbacks->einfo
2882 /* xgettext:c-format */
2883 (_("%pB: duplicate section `%pA' has different size\n"),
2884 sec->owner, sec);
2885 else if (sec->size != 0)
2886 {
2887 bfd_byte *sec_contents, *l_sec_contents = NULL;
2888
2889 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2890 info->callbacks->einfo
2891 /* xgettext:c-format */
2892 (_("%pB: could not read contents of section `%pA'\n"),
2893 sec->owner, sec);
2894 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2895 &l_sec_contents))
2896 info->callbacks->einfo
2897 /* xgettext:c-format */
2898 (_("%pB: could not read contents of section `%pA'\n"),
2899 l->sec->owner, l->sec);
2900 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2901 info->callbacks->einfo
2902 /* xgettext:c-format */
2903 (_("%pB: duplicate section `%pA' has different contents\n"),
2904 sec->owner, sec);
2905
2906 free (sec_contents);
2907 free (l_sec_contents);
2908 }
2909 break;
2910 }
2911
2912 /* Set the output_section field so that lang_add_section
2913 does not create a lang_input_section structure for this
2914 section. Since there might be a symbol in the section
2915 being discarded, we must retain a pointer to the section
2916 which we are really going to use. */
2917 sec->output_section = bfd_abs_section_ptr;
2918 sec->kept_section = l->sec;
2919 return TRUE;
2920 }
2921
2922 /* This is used on non-ELF inputs. */
2923
2924 bfd_boolean
2925 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2926 asection *sec,
2927 struct bfd_link_info *info)
2928 {
2929 const char *name;
2930 struct bfd_section_already_linked *l;
2931 struct bfd_section_already_linked_hash_entry *already_linked_list;
2932
2933 if ((sec->flags & SEC_LINK_ONCE) == 0)
2934 return FALSE;
2935
2936 /* The generic linker doesn't handle section groups. */
2937 if ((sec->flags & SEC_GROUP) != 0)
2938 return FALSE;
2939
2940 /* FIXME: When doing a relocatable link, we may have trouble
2941 copying relocations in other sections that refer to local symbols
2942 in the section being discarded. Those relocations will have to
2943 be converted somehow; as of this writing I'm not sure that any of
2944 the backends handle that correctly.
2945
2946 It is tempting to instead not discard link once sections when
2947 doing a relocatable link (technically, they should be discarded
2948 whenever we are building constructors). However, that fails,
2949 because the linker winds up combining all the link once sections
2950 into a single large link once section, which defeats the purpose
2951 of having link once sections in the first place. */
2952
2953 name = bfd_section_name (sec);
2954
2955 already_linked_list = bfd_section_already_linked_table_lookup (name);
2956
2957 l = already_linked_list->entry;
2958 if (l != NULL)
2959 {
2960 /* The section has already been linked. See if we should
2961 issue a warning. */
2962 return _bfd_handle_already_linked (sec, l, info);
2963 }
2964
2965 /* This is the first section with this name. Record it. */
2966 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2967 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2968 return FALSE;
2969 }
2970
2971 /* Choose a neighbouring section to S in OBFD that will be output, or
2972 the absolute section if ADDR is out of bounds of the neighbours. */
2973
2974 asection *
2975 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2976 {
2977 asection *next, *prev, *best;
2978
2979 /* Find preceding kept section. */
2980 for (prev = s->prev; prev != NULL; prev = prev->prev)
2981 if ((prev->flags & SEC_EXCLUDE) == 0
2982 && !bfd_section_removed_from_list (obfd, prev))
2983 break;
2984
2985 /* Find following kept section. Start at prev->next because
2986 other sections may have been added after S was removed. */
2987 if (s->prev != NULL)
2988 next = s->prev->next;
2989 else
2990 next = s->owner->sections;
2991 for (; next != NULL; next = next->next)
2992 if ((next->flags & SEC_EXCLUDE) == 0
2993 && !bfd_section_removed_from_list (obfd, next))
2994 break;
2995
2996 /* Choose better of two sections, based on flags. The idea
2997 is to choose a section that will be in the same segment
2998 as S would have been if it was kept. */
2999 best = next;
3000 if (prev == NULL)
3001 {
3002 if (next == NULL)
3003 best = bfd_abs_section_ptr;
3004 }
3005 else if (next == NULL)
3006 best = prev;
3007 else if (((prev->flags ^ next->flags)
3008 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3009 {
3010 if (((next->flags ^ s->flags)
3011 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3012 /* We prefer to choose a loaded section. Section S
3013 doesn't have SEC_LOAD set (it being excluded, that
3014 part of the flag processing didn't happen) so we
3015 can't compare that flag to those of NEXT and PREV. */
3016 || ((prev->flags & SEC_LOAD) != 0
3017 && (next->flags & SEC_LOAD) == 0))
3018 best = prev;
3019 }
3020 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3021 {
3022 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3023 best = prev;
3024 }
3025 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3026 {
3027 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3028 best = prev;
3029 }
3030 else
3031 {
3032 /* Flags we care about are the same. Prefer the following
3033 section if that will result in a positive valued sym. */
3034 if (addr < next->vma)
3035 best = prev;
3036 }
3037
3038 return best;
3039 }
3040
3041 /* Convert symbols in excluded output sections to use a kept section. */
3042
3043 static bfd_boolean
3044 fix_syms (struct bfd_link_hash_entry *h, void *data)
3045 {
3046 bfd *obfd = (bfd *) data;
3047
3048 if (h->type == bfd_link_hash_defined
3049 || h->type == bfd_link_hash_defweak)
3050 {
3051 asection *s = h->u.def.section;
3052 if (s != NULL
3053 && s->output_section != NULL
3054 && (s->output_section->flags & SEC_EXCLUDE) != 0
3055 && bfd_section_removed_from_list (obfd, s->output_section))
3056 {
3057 asection *op;
3058
3059 h->u.def.value += s->output_offset + s->output_section->vma;
3060 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3061 h->u.def.value -= op->vma;
3062 h->u.def.section = op;
3063 }
3064 }
3065
3066 return TRUE;
3067 }
3068
3069 void
3070 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3071 {
3072 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3073 }
3074
3075 /*
3076 FUNCTION
3077 bfd_generic_define_common_symbol
3078
3079 SYNOPSIS
3080 bfd_boolean bfd_generic_define_common_symbol
3081 (bfd *output_bfd, struct bfd_link_info *info,
3082 struct bfd_link_hash_entry *h);
3083
3084 DESCRIPTION
3085 Convert common symbol @var{h} into a defined symbol.
3086 Return TRUE on success and FALSE on failure.
3087
3088 .#define bfd_define_common_symbol(output_bfd, info, h) \
3089 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3090 .
3091 */
3092
3093 bfd_boolean
3094 bfd_generic_define_common_symbol (bfd *output_bfd,
3095 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3096 struct bfd_link_hash_entry *h)
3097 {
3098 unsigned int power_of_two;
3099 bfd_vma alignment, size;
3100 asection *section;
3101
3102 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3103
3104 size = h->u.c.size;
3105 power_of_two = h->u.c.p->alignment_power;
3106 section = h->u.c.p->section;
3107
3108 /* Increase the size of the section to align the common symbol.
3109 The alignment must be a power of two. But if the section does
3110 not have any alignment requirement then do not increase the
3111 alignment unnecessarily. */
3112 if (power_of_two)
3113 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3114 else
3115 alignment = 1;
3116 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3117 section->size += alignment - 1;
3118 section->size &= -alignment;
3119
3120 /* Adjust the section's overall alignment if necessary. */
3121 if (power_of_two > section->alignment_power)
3122 section->alignment_power = power_of_two;
3123
3124 /* Change the symbol from common to defined. */
3125 h->type = bfd_link_hash_defined;
3126 h->u.def.section = section;
3127 h->u.def.value = section->size;
3128
3129 /* Increase the size of the section. */
3130 section->size += size;
3131
3132 /* Make sure the section is allocated in memory, and make sure that
3133 it is no longer a common section. */
3134 section->flags |= SEC_ALLOC;
3135 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3136 return TRUE;
3137 }
3138
3139 /*
3140 FUNCTION
3141 _bfd_generic_link_hide_symbol
3142
3143 SYNOPSIS
3144 void _bfd_generic_link_hide_symbol
3145 (bfd *output_bfd, struct bfd_link_info *info,
3146 struct bfd_link_hash_entry *h);
3147
3148 DESCRIPTION
3149 Hide symbol @var{h}.
3150 This is an internal function. It should not be called from
3151 outside the BFD library.
3152
3153 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3154 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3155 .
3156 */
3157
3158 void
3159 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3160 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3161 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3162 {
3163 }
3164
3165 /*
3166 FUNCTION
3167 bfd_generic_define_start_stop
3168
3169 SYNOPSIS
3170 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3171 (struct bfd_link_info *info,
3172 const char *symbol, asection *sec);
3173
3174 DESCRIPTION
3175 Define a __start, __stop, .startof. or .sizeof. symbol.
3176 Return the symbol or NULL if no such undefined symbol exists.
3177
3178 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3179 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3180 .
3181 */
3182
3183 struct bfd_link_hash_entry *
3184 bfd_generic_define_start_stop (struct bfd_link_info *info,
3185 const char *symbol, asection *sec)
3186 {
3187 struct bfd_link_hash_entry *h;
3188
3189 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3190 if (h != NULL
3191 && !h->ldscript_def
3192 && (h->type == bfd_link_hash_undefined
3193 || h->type == bfd_link_hash_undefweak))
3194 {
3195 h->type = bfd_link_hash_defined;
3196 h->u.def.section = sec;
3197 h->u.def.value = 0;
3198 return h;
3199 }
3200 return NULL;
3201 }
3202
3203 /*
3204 FUNCTION
3205 bfd_find_version_for_sym
3206
3207 SYNOPSIS
3208 struct bfd_elf_version_tree * bfd_find_version_for_sym
3209 (struct bfd_elf_version_tree *verdefs,
3210 const char *sym_name, bfd_boolean *hide);
3211
3212 DESCRIPTION
3213 Search an elf version script tree for symbol versioning
3214 info and export / don't-export status for a given symbol.
3215 Return non-NULL on success and NULL on failure; also sets
3216 the output @samp{hide} boolean parameter.
3217
3218 */
3219
3220 struct bfd_elf_version_tree *
3221 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3222 const char *sym_name,
3223 bfd_boolean *hide)
3224 {
3225 struct bfd_elf_version_tree *t;
3226 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3227 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3228
3229 local_ver = NULL;
3230 global_ver = NULL;
3231 star_local_ver = NULL;
3232 star_global_ver = NULL;
3233 exist_ver = NULL;
3234 for (t = verdefs; t != NULL; t = t->next)
3235 {
3236 if (t->globals.list != NULL)
3237 {
3238 struct bfd_elf_version_expr *d = NULL;
3239
3240 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3241 {
3242 if (d->literal || strcmp (d->pattern, "*") != 0)
3243 global_ver = t;
3244 else
3245 star_global_ver = t;
3246 if (d->symver)
3247 exist_ver = t;
3248 d->script = 1;
3249 /* If the match is a wildcard pattern, keep looking for
3250 a more explicit, perhaps even local, match. */
3251 if (d->literal)
3252 break;
3253 }
3254
3255 if (d != NULL)
3256 break;
3257 }
3258
3259 if (t->locals.list != NULL)
3260 {
3261 struct bfd_elf_version_expr *d = NULL;
3262
3263 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3264 {
3265 if (d->literal || strcmp (d->pattern, "*") != 0)
3266 local_ver = t;
3267 else
3268 star_local_ver = t;
3269 /* If the match is a wildcard pattern, keep looking for
3270 a more explicit, perhaps even global, match. */
3271 if (d->literal)
3272 {
3273 /* An exact match overrides a global wildcard. */
3274 global_ver = NULL;
3275 star_global_ver = NULL;
3276 break;
3277 }
3278 }
3279
3280 if (d != NULL)
3281 break;
3282 }
3283 }
3284
3285 if (global_ver == NULL && local_ver == NULL)
3286 global_ver = star_global_ver;
3287
3288 if (global_ver != NULL)
3289 {
3290 /* If we already have a versioned symbol that matches the
3291 node for this symbol, then we don't want to create a
3292 duplicate from the unversioned symbol. Instead hide the
3293 unversioned symbol. */
3294 *hide = exist_ver == global_ver;
3295 return global_ver;
3296 }
3297
3298 if (local_ver == NULL)
3299 local_ver = star_local_ver;
3300
3301 if (local_ver != NULL)
3302 {
3303 *hide = TRUE;
3304 return local_ver;
3305 }
3306
3307 return NULL;
3308 }
3309
3310 /*
3311 FUNCTION
3312 bfd_hide_sym_by_version
3313
3314 SYNOPSIS
3315 bfd_boolean bfd_hide_sym_by_version
3316 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3317
3318 DESCRIPTION
3319 Search an elf version script tree for symbol versioning
3320 info for a given symbol. Return TRUE if the symbol is hidden.
3321
3322 */
3323
3324 bfd_boolean
3325 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3326 const char *sym_name)
3327 {
3328 bfd_boolean hidden = FALSE;
3329 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3330 return hidden;
3331 }
3332
3333 /*
3334 FUNCTION
3335 bfd_link_check_relocs
3336
3337 SYNOPSIS
3338 bfd_boolean bfd_link_check_relocs
3339 (bfd *abfd, struct bfd_link_info *info);
3340
3341 DESCRIPTION
3342 Checks the relocs in ABFD for validity.
3343 Does not execute the relocs.
3344 Return TRUE if everything is OK, FALSE otherwise.
3345 This is the external entry point to this code.
3346 */
3347
3348 bfd_boolean
3349 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3350 {
3351 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3352 }
3353
3354 /*
3355 FUNCTION
3356 _bfd_generic_link_check_relocs
3357
3358 SYNOPSIS
3359 bfd_boolean _bfd_generic_link_check_relocs
3360 (bfd *abfd, struct bfd_link_info *info);
3361
3362 DESCRIPTION
3363 Stub function for targets that do not implement reloc checking.
3364 Return TRUE.
3365 This is an internal function. It should not be called from
3366 outside the BFD library.
3367 */
3368
3369 bfd_boolean
3370 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3371 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3372 {
3373 return TRUE;
3374 }
3375
3376 /*
3377 FUNCTION
3378 bfd_merge_private_bfd_data
3379
3380 SYNOPSIS
3381 bfd_boolean bfd_merge_private_bfd_data
3382 (bfd *ibfd, struct bfd_link_info *info);
3383
3384 DESCRIPTION
3385 Merge private BFD information from the BFD @var{ibfd} to the
3386 the output file BFD when linking. Return <<TRUE>> on success,
3387 <<FALSE>> on error. Possible error returns are:
3388
3389 o <<bfd_error_no_memory>> -
3390 Not enough memory exists to create private data for @var{obfd}.
3391
3392 .#define bfd_merge_private_bfd_data(ibfd, info) \
3393 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3394 . (ibfd, info))
3395 */
3396
3397 /*
3398 INTERNAL_FUNCTION
3399 _bfd_generic_verify_endian_match
3400
3401 SYNOPSIS
3402 bfd_boolean _bfd_generic_verify_endian_match
3403 (bfd *ibfd, struct bfd_link_info *info);
3404
3405 DESCRIPTION
3406 Can be used from / for bfd_merge_private_bfd_data to check that
3407 endianness matches between input and output file. Returns
3408 TRUE for a match, otherwise returns FALSE and emits an error.
3409 */
3410
3411 bfd_boolean
3412 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3413 {
3414 bfd *obfd = info->output_bfd;
3415
3416 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3417 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3418 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3419 {
3420 if (bfd_big_endian (ibfd))
3421 _bfd_error_handler (_("%pB: compiled for a big endian system "
3422 "and target is little endian"), ibfd);
3423 else
3424 _bfd_error_handler (_("%pB: compiled for a little endian system "
3425 "and target is big endian"), ibfd);
3426 bfd_set_error (bfd_error_wrong_format);
3427 return FALSE;
3428 }
3429
3430 return TRUE;
3431 }
3432
3433 int
3434 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3435 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3436 {
3437 return 0;
3438 }
3439
3440 bfd_boolean
3441 _bfd_nolink_bfd_relax_section (bfd *abfd,
3442 asection *section ATTRIBUTE_UNUSED,
3443 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3444 bfd_boolean *again ATTRIBUTE_UNUSED)
3445 {
3446 return _bfd_bool_bfd_false_error (abfd);
3447 }
3448
3449 bfd_byte *
3450 _bfd_nolink_bfd_get_relocated_section_contents
3451 (bfd *abfd,
3452 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3453 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3454 bfd_byte *data ATTRIBUTE_UNUSED,
3455 bfd_boolean relocatable ATTRIBUTE_UNUSED,
3456 asymbol **symbols ATTRIBUTE_UNUSED)
3457 {
3458 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3459 }
3460
3461 bfd_boolean
3462 _bfd_nolink_bfd_lookup_section_flags
3463 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3464 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3465 asection *section)
3466 {
3467 return _bfd_bool_bfd_false_error (section->owner);
3468 }
3469
3470 bfd_boolean
3471 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3472 const asection *sec ATTRIBUTE_UNUSED)
3473 {
3474 return _bfd_bool_bfd_false_error (abfd);
3475 }
3476
3477 const char *
3478 _bfd_nolink_bfd_group_name (bfd *abfd,
3479 const asection *sec ATTRIBUTE_UNUSED)
3480 {
3481 return _bfd_ptr_bfd_null_error (abfd);
3482 }
3483
3484 bfd_boolean
3485 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3486 {
3487 return _bfd_bool_bfd_false_error (abfd);
3488 }
3489
3490 struct bfd_link_hash_table *
3491 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3492 {
3493 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3494 }
3495
3496 void
3497 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3498 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3499 {
3500 }
3501
3502 void
3503 _bfd_nolink_bfd_copy_link_hash_symbol_type
3504 (bfd *abfd ATTRIBUTE_UNUSED,
3505 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3506 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3507 {
3508 }
3509
3510 bfd_boolean
3511 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3512 {
3513 return _bfd_bool_bfd_false_error (abfd);
3514 }
3515
3516 bfd_boolean
3517 _bfd_nolink_section_already_linked (bfd *abfd,
3518 asection *sec ATTRIBUTE_UNUSED,
3519 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3520 {
3521 return _bfd_bool_bfd_false_error (abfd);
3522 }
3523
3524 bfd_boolean
3525 _bfd_nolink_bfd_define_common_symbol
3526 (bfd *abfd,
3527 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3528 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3529 {
3530 return _bfd_bool_bfd_false_error (abfd);
3531 }
3532
3533 struct bfd_link_hash_entry *
3534 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3535 const char *name ATTRIBUTE_UNUSED,
3536 asection *sec)
3537 {
3538 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3539 }