]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/reloc.c
* config.bfd: Add powerpc64 target. Add powerpc64 vectors to
[thirdparty/binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
29 en-masse and translated into an internal form. A common
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40 @menu
41 @* typedef arelent::
42 @* howto manager::
43 @end menu
44
45 */
46
47 /* DO compile in the reloc_code name table from libbfd.h. */
48 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50 #include "bfd.h"
51 #include "sysdep.h"
52 #include "bfdlink.h"
53 #include "libbfd.h"
54 /*
55 DOCDD
56 INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59 SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64 CODE_FRAGMENT
65 .
66 .typedef enum bfd_reloc_status
67 .{
68 . {* No errors detected *}
69 . bfd_reloc_ok,
70 .
71 . {* The relocation was performed, but there was an overflow. *}
72 . bfd_reloc_overflow,
73 .
74 . {* The address to relocate was not within the section supplied. *}
75 . bfd_reloc_outofrange,
76 .
77 . {* Used by special functions *}
78 . bfd_reloc_continue,
79 .
80 . {* Unsupported relocation size requested. *}
81 . bfd_reloc_notsupported,
82 .
83 . {* Unused *}
84 . bfd_reloc_other,
85 .
86 . {* The symbol to relocate against was undefined. *}
87 . bfd_reloc_undefined,
88 .
89 . {* The relocation was performed, but may not be ok - presently
90 . generated only when linking i960 coff files with i960 b.out
91 . symbols. If this type is returned, the error_message argument
92 . to bfd_perform_relocation will be set. *}
93 . bfd_reloc_dangerous
94 . }
95 . bfd_reloc_status_type;
96 .
97 .
98 .typedef struct reloc_cache_entry
99 .{
100 . {* A pointer into the canonical table of pointers *}
101 . struct symbol_cache_entry **sym_ptr_ptr;
102 .
103 . {* offset in section *}
104 . bfd_size_type address;
105 .
106 . {* addend for relocation value *}
107 . bfd_vma addend;
108 .
109 . {* Pointer to how to perform the required relocation *}
110 . reloc_howto_type *howto;
111 .
112 .} arelent;
113
114 */
115
116 /*
117 DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
150 | char foo[];
151 | main()
152 | {
153 | return foo[0x12345678];
154 | }
155
156 Could be compiled into:
157
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
163
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
167 |RELOCATION RECORDS FOR [.text]:
168 |offset type value
169 |00000006 32 _foo
170 |
171 |00000000 4e56 fffc ; linkw fp,#-4
172 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
173 |0000000a 49c0 ; extbl d0
174 |0000000c 4e5e ; unlk fp
175 |0000000e 4e75 ; rts
176
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
181 | or.u r13,r0,hi16(_foo+0x12345678)
182 | ld.b r2,r13,lo16(_foo+0x12345678)
183 | jmp r1
184
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
188 |RELOCATION RECORDS FOR [.text]:
189 |offset type value
190 |00000002 HVRT16 _foo+0x12340000
191 |00000006 LVRT16 _foo+0x12340000
192 |
193 |00000000 5da05678 ; or.u r13,r0,0x5678
194 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
195 |00000008 f400c001 ; jmp r1
196
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210 | save %sp,-112,%sp
211 | sethi %hi(_foo+0x12345678),%g2
212 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
213 | ret
214 | restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
219 |RELOCATION RECORDS FOR [.text]:
220 |offset type value
221 |00000004 HI22 _foo+0x12345678
222 |00000008 LO10 _foo+0x12345678
223 |
224 |00000000 9de3bf90 ; save %sp,-112,%sp
225 |00000004 05000000 ; sethi %hi(_foo+0),%g2
226 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227 |0000000c 81c7e008 ; ret
228 |00000010 81e80000 ; restore
229
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240 */
241
242 /*
243 SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249 CODE_FRAGMENT
250 .
251 .enum complain_overflow
252 .{
253 . {* Do not complain on overflow. *}
254 . complain_overflow_dont,
255 .
256 . {* Complain if the bitfield overflows, whether it is considered
257 . as signed or unsigned. *}
258 . complain_overflow_bitfield,
259 .
260 . {* Complain if the value overflows when considered as signed
261 . number. *}
262 . complain_overflow_signed,
263 .
264 . {* Complain if the value overflows when considered as an
265 . unsigned number. *}
266 . complain_overflow_unsigned
267 .};
268
269 */
270
271 /*
272 SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278 CODE_FRAGMENT
279 .struct symbol_cache_entry; {* Forward declaration *}
280 .
281 .struct reloc_howto_struct
282 .{
283 . {* The type field has mainly a documentary use - the back end can
284 . do what it wants with it, though normally the back end's
285 . external idea of what a reloc number is stored
286 . in this field. For example, a PC relative word relocation
287 . in a coff environment has the type 023 - because that's
288 . what the outside world calls a R_PCRWORD reloc. *}
289 . unsigned int type;
290 .
291 . {* The value the final relocation is shifted right by. This drops
292 . unwanted data from the relocation. *}
293 . unsigned int rightshift;
294 .
295 . {* The size of the item to be relocated. This is *not* a
296 . power-of-two measure. To get the number of bytes operated
297 . on by a type of relocation, use bfd_get_reloc_size. *}
298 . int size;
299 .
300 . {* The number of bits in the item to be relocated. This is used
301 . when doing overflow checking. *}
302 . unsigned int bitsize;
303 .
304 . {* Notes that the relocation is relative to the location in the
305 . data section of the addend. The relocation function will
306 . subtract from the relocation value the address of the location
307 . being relocated. *}
308 . boolean pc_relative;
309 .
310 . {* The bit position of the reloc value in the destination.
311 . The relocated value is left shifted by this amount. *}
312 . unsigned int bitpos;
313 .
314 . {* What type of overflow error should be checked for when
315 . relocating. *}
316 . enum complain_overflow complain_on_overflow;
317 .
318 . {* If this field is non null, then the supplied function is
319 . called rather than the normal function. This allows really
320 . strange relocation methods to be accomodated (e.g., i960 callj
321 . instructions). *}
322 . bfd_reloc_status_type (*special_function)
323 . PARAMS ((bfd *abfd,
324 . arelent *reloc_entry,
325 . struct symbol_cache_entry *symbol,
326 . PTR data,
327 . asection *input_section,
328 . bfd *output_bfd,
329 . char **error_message));
330 .
331 . {* The textual name of the relocation type. *}
332 . char *name;
333 .
334 . {* Some formats record a relocation addend in the section contents
335 . rather than with the relocation. For ELF formats this is the
336 . distinction between USE_REL and USE_RELA (though the code checks
337 . for USE_REL == 1/0). The value of this field is TRUE if the
338 . addend is recorded with the section contents; when performing a
339 . partial link (ld -r) the section contents (the data) will be
340 . modified. The value of this field is FALSE if addends are
341 . recorded with the relocation (in arelent.addend); when performing
342 . a partial link the relocation will be modified.
343 . All relocations for all ELF USE_RELA targets should set this field
344 . to FALSE (values of TRUE should be looked on with suspicion).
345 . However, the converse is not true: not all relocations of all ELF
346 . USE_REL targets set this field to TRUE. Why this is so is peculiar
347 . to each particular target. For relocs that aren't used in partial
348 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
349 . boolean partial_inplace;
350 .
351 . {* The src_mask selects which parts of the read in data
352 . are to be used in the relocation sum. E.g., if this was an 8 bit
353 . byte of data which we read and relocated, this would be
354 . 0x000000ff. When we have relocs which have an addend, such as
355 . sun4 extended relocs, the value in the offset part of a
356 . relocating field is garbage so we never use it. In this case
357 . the mask would be 0x00000000. *}
358 . bfd_vma src_mask;
359 .
360 . {* The dst_mask selects which parts of the instruction are replaced
361 . into the instruction. In most cases src_mask == dst_mask,
362 . except in the above special case, where dst_mask would be
363 . 0x000000ff, and src_mask would be 0x00000000. *}
364 . bfd_vma dst_mask;
365 .
366 . {* When some formats create PC relative instructions, they leave
367 . the value of the pc of the place being relocated in the offset
368 . slot of the instruction, so that a PC relative relocation can
369 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
370 . Some formats leave the displacement part of an instruction
371 . empty (e.g., m88k bcs); this flag signals the fact.*}
372 . boolean pcrel_offset;
373 .
374 .};
375
376 */
377
378 /*
379 FUNCTION
380 The HOWTO Macro
381
382 DESCRIPTION
383 The HOWTO define is horrible and will go away.
384
385 .#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
386 . {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
387
388 DESCRIPTION
389 And will be replaced with the totally magic way. But for the
390 moment, we are compatible, so do it this way.
391
392 .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
393 .
394
395 DESCRIPTION
396 This is used to fill in an empty howto entry in an array.
397
398 .#define EMPTY_HOWTO(C) \
399 . HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
400 .
401
402 DESCRIPTION
403 Helper routine to turn a symbol into a relocation value.
404
405 .#define HOWTO_PREPARE(relocation, symbol) \
406 . { \
407 . if (symbol != (asymbol *)NULL) { \
408 . if (bfd_is_com_section (symbol->section)) { \
409 . relocation = 0; \
410 . } \
411 . else { \
412 . relocation = symbol->value; \
413 . } \
414 . } \
415 .}
416
417 */
418
419 /*
420 FUNCTION
421 bfd_get_reloc_size
422
423 SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426 DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431 unsigned int
432 bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434 {
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446 }
447
448 /*
449 TYPEDEF
450 arelent_chain
451
452 DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
456 .typedef struct relent_chain {
457 . arelent relent;
458 . struct relent_chain *next;
459 .} arelent_chain;
460
461 */
462
463 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
464 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
465
466 /*
467 FUNCTION
468 bfd_check_overflow
469
470 SYNOPSIS
471 bfd_reloc_status_type
472 bfd_check_overflow
473 (enum complain_overflow how,
474 unsigned int bitsize,
475 unsigned int rightshift,
476 unsigned int addrsize,
477 bfd_vma relocation);
478
479 DESCRIPTION
480 Perform overflow checking on @var{relocation} which has
481 @var{bitsize} significant bits and will be shifted right by
482 @var{rightshift} bits, on a machine with addresses containing
483 @var{addrsize} significant bits. The result is either of
484 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
485
486 */
487
488 bfd_reloc_status_type
489 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
490 enum complain_overflow how;
491 unsigned int bitsize;
492 unsigned int rightshift;
493 unsigned int addrsize;
494 bfd_vma relocation;
495 {
496 bfd_vma fieldmask, addrmask, signmask, ss, a;
497 bfd_reloc_status_type flag = bfd_reloc_ok;
498
499 a = relocation;
500
501 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
502 we'll be permissive: extra bits in the field mask will
503 automatically extend the address mask for purposes of the
504 overflow check. */
505 fieldmask = N_ONES (bitsize);
506 addrmask = N_ONES (addrsize) | fieldmask;
507
508 switch (how)
509 {
510 case complain_overflow_dont:
511 break;
512
513 case complain_overflow_signed:
514 /* If any sign bits are set, all sign bits must be set. That
515 is, A must be a valid negative address after shifting. */
516 a = (a & addrmask) >> rightshift;
517 signmask = ~ (fieldmask >> 1);
518 ss = a & signmask;
519 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
520 flag = bfd_reloc_overflow;
521 break;
522
523 case complain_overflow_unsigned:
524 /* We have an overflow if the address does not fit in the field. */
525 a = (a & addrmask) >> rightshift;
526 if ((a & ~ fieldmask) != 0)
527 flag = bfd_reloc_overflow;
528 break;
529
530 case complain_overflow_bitfield:
531 /* Bitfields are sometimes signed, sometimes unsigned. We
532 explicitly allow an address wrap too, which means a bitfield
533 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
534 if the value has some, but not all, bits set outside the
535 field. */
536 a >>= rightshift;
537 ss = a & ~ fieldmask;
538 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
539 flag = bfd_reloc_overflow;
540 break;
541
542 default:
543 abort ();
544 }
545
546 return flag;
547 }
548
549 /*
550 FUNCTION
551 bfd_perform_relocation
552
553 SYNOPSIS
554 bfd_reloc_status_type
555 bfd_perform_relocation
556 (bfd *abfd,
557 arelent *reloc_entry,
558 PTR data,
559 asection *input_section,
560 bfd *output_bfd,
561 char **error_message);
562
563 DESCRIPTION
564 If @var{output_bfd} is supplied to this function, the
565 generated image will be relocatable; the relocations are
566 copied to the output file after they have been changed to
567 reflect the new state of the world. There are two ways of
568 reflecting the results of partial linkage in an output file:
569 by modifying the output data in place, and by modifying the
570 relocation record. Some native formats (e.g., basic a.out and
571 basic coff) have no way of specifying an addend in the
572 relocation type, so the addend has to go in the output data.
573 This is no big deal since in these formats the output data
574 slot will always be big enough for the addend. Complex reloc
575 types with addends were invented to solve just this problem.
576 The @var{error_message} argument is set to an error message if
577 this return @code{bfd_reloc_dangerous}.
578
579 */
580
581 bfd_reloc_status_type
582 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
583 error_message)
584 bfd *abfd;
585 arelent *reloc_entry;
586 PTR data;
587 asection *input_section;
588 bfd *output_bfd;
589 char **error_message;
590 {
591 bfd_vma relocation;
592 bfd_reloc_status_type flag = bfd_reloc_ok;
593 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
594 bfd_vma output_base = 0;
595 reloc_howto_type *howto = reloc_entry->howto;
596 asection *reloc_target_output_section;
597 asymbol *symbol;
598
599 symbol = *(reloc_entry->sym_ptr_ptr);
600 if (bfd_is_abs_section (symbol->section)
601 && output_bfd != (bfd *) NULL)
602 {
603 reloc_entry->address += input_section->output_offset;
604 return bfd_reloc_ok;
605 }
606
607 /* If we are not producing relocateable output, return an error if
608 the symbol is not defined. An undefined weak symbol is
609 considered to have a value of zero (SVR4 ABI, p. 4-27). */
610 if (bfd_is_und_section (symbol->section)
611 && (symbol->flags & BSF_WEAK) == 0
612 && output_bfd == (bfd *) NULL)
613 flag = bfd_reloc_undefined;
614
615 /* If there is a function supplied to handle this relocation type,
616 call it. It'll return `bfd_reloc_continue' if further processing
617 can be done. */
618 if (howto->special_function)
619 {
620 bfd_reloc_status_type cont;
621 cont = howto->special_function (abfd, reloc_entry, symbol, data,
622 input_section, output_bfd,
623 error_message);
624 if (cont != bfd_reloc_continue)
625 return cont;
626 }
627
628 /* Is the address of the relocation really within the section? */
629 if (reloc_entry->address > input_section->_cooked_size /
630 bfd_octets_per_byte (abfd))
631 return bfd_reloc_outofrange;
632
633 /* Work out which section the relocation is targetted at and the
634 initial relocation command value. */
635
636 /* Get symbol value. (Common symbols are special.) */
637 if (bfd_is_com_section (symbol->section))
638 relocation = 0;
639 else
640 relocation = symbol->value;
641
642 reloc_target_output_section = symbol->section->output_section;
643
644 /* Convert input-section-relative symbol value to absolute. */
645 if (output_bfd && howto->partial_inplace == false)
646 output_base = 0;
647 else
648 output_base = reloc_target_output_section->vma;
649
650 relocation += output_base + symbol->section->output_offset;
651
652 /* Add in supplied addend. */
653 relocation += reloc_entry->addend;
654
655 /* Here the variable relocation holds the final address of the
656 symbol we are relocating against, plus any addend. */
657
658 if (howto->pc_relative == true)
659 {
660 /* This is a PC relative relocation. We want to set RELOCATION
661 to the distance between the address of the symbol and the
662 location. RELOCATION is already the address of the symbol.
663
664 We start by subtracting the address of the section containing
665 the location.
666
667 If pcrel_offset is set, we must further subtract the position
668 of the location within the section. Some targets arrange for
669 the addend to be the negative of the position of the location
670 within the section; for example, i386-aout does this. For
671 i386-aout, pcrel_offset is false. Some other targets do not
672 include the position of the location; for example, m88kbcs,
673 or ELF. For those targets, pcrel_offset is true.
674
675 If we are producing relocateable output, then we must ensure
676 that this reloc will be correctly computed when the final
677 relocation is done. If pcrel_offset is false we want to wind
678 up with the negative of the location within the section,
679 which means we must adjust the existing addend by the change
680 in the location within the section. If pcrel_offset is true
681 we do not want to adjust the existing addend at all.
682
683 FIXME: This seems logical to me, but for the case of
684 producing relocateable output it is not what the code
685 actually does. I don't want to change it, because it seems
686 far too likely that something will break. */
687
688 relocation -=
689 input_section->output_section->vma + input_section->output_offset;
690
691 if (howto->pcrel_offset == true)
692 relocation -= reloc_entry->address;
693 }
694
695 if (output_bfd != (bfd *) NULL)
696 {
697 if (howto->partial_inplace == false)
698 {
699 /* This is a partial relocation, and we want to apply the relocation
700 to the reloc entry rather than the raw data. Modify the reloc
701 inplace to reflect what we now know. */
702 reloc_entry->addend = relocation;
703 reloc_entry->address += input_section->output_offset;
704 return flag;
705 }
706 else
707 {
708 /* This is a partial relocation, but inplace, so modify the
709 reloc record a bit.
710
711 If we've relocated with a symbol with a section, change
712 into a ref to the section belonging to the symbol. */
713
714 reloc_entry->address += input_section->output_offset;
715
716 /* WTF?? */
717 if (abfd->xvec->flavour == bfd_target_coff_flavour
718 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
719 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
720 {
721 #if 1
722 /* For m68k-coff, the addend was being subtracted twice during
723 relocation with -r. Removing the line below this comment
724 fixes that problem; see PR 2953.
725
726 However, Ian wrote the following, regarding removing the line below,
727 which explains why it is still enabled: --djm
728
729 If you put a patch like that into BFD you need to check all the COFF
730 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
731 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
732 problem in a different way. There may very well be a reason that the
733 code works as it does.
734
735 Hmmm. The first obvious point is that bfd_perform_relocation should
736 not have any tests that depend upon the flavour. It's seem like
737 entirely the wrong place for such a thing. The second obvious point
738 is that the current code ignores the reloc addend when producing
739 relocateable output for COFF. That's peculiar. In fact, I really
740 have no idea what the point of the line you want to remove is.
741
742 A typical COFF reloc subtracts the old value of the symbol and adds in
743 the new value to the location in the object file (if it's a pc
744 relative reloc it adds the difference between the symbol value and the
745 location). When relocating we need to preserve that property.
746
747 BFD handles this by setting the addend to the negative of the old
748 value of the symbol. Unfortunately it handles common symbols in a
749 non-standard way (it doesn't subtract the old value) but that's a
750 different story (we can't change it without losing backward
751 compatibility with old object files) (coff-i386 does subtract the old
752 value, to be compatible with existing coff-i386 targets, like SCO).
753
754 So everything works fine when not producing relocateable output. When
755 we are producing relocateable output, logically we should do exactly
756 what we do when not producing relocateable output. Therefore, your
757 patch is correct. In fact, it should probably always just set
758 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
759 add the value into the object file. This won't hurt the COFF code,
760 which doesn't use the addend; I'm not sure what it will do to other
761 formats (the thing to check for would be whether any formats both use
762 the addend and set partial_inplace).
763
764 When I wanted to make coff-i386 produce relocateable output, I ran
765 into the problem that you are running into: I wanted to remove that
766 line. Rather than risk it, I made the coff-i386 relocs use a special
767 function; it's coff_i386_reloc in coff-i386.c. The function
768 specifically adds the addend field into the object file, knowing that
769 bfd_perform_relocation is not going to. If you remove that line, then
770 coff-i386.c will wind up adding the addend field in twice. It's
771 trivial to fix; it just needs to be done.
772
773 The problem with removing the line is just that it may break some
774 working code. With BFD it's hard to be sure of anything. The right
775 way to deal with this is simply to build and test at least all the
776 supported COFF targets. It should be straightforward if time and disk
777 space consuming. For each target:
778 1) build the linker
779 2) generate some executable, and link it using -r (I would
780 probably use paranoia.o and link against newlib/libc.a, which
781 for all the supported targets would be available in
782 /usr/cygnus/progressive/H-host/target/lib/libc.a).
783 3) make the change to reloc.c
784 4) rebuild the linker
785 5) repeat step 2
786 6) if the resulting object files are the same, you have at least
787 made it no worse
788 7) if they are different you have to figure out which version is
789 right
790 */
791 relocation -= reloc_entry->addend;
792 #endif
793 reloc_entry->addend = 0;
794 }
795 else
796 {
797 reloc_entry->addend = relocation;
798 }
799 }
800 }
801 else
802 {
803 reloc_entry->addend = 0;
804 }
805
806 /* FIXME: This overflow checking is incomplete, because the value
807 might have overflowed before we get here. For a correct check we
808 need to compute the value in a size larger than bitsize, but we
809 can't reasonably do that for a reloc the same size as a host
810 machine word.
811 FIXME: We should also do overflow checking on the result after
812 adding in the value contained in the object file. */
813 if (howto->complain_on_overflow != complain_overflow_dont
814 && flag == bfd_reloc_ok)
815 flag = bfd_check_overflow (howto->complain_on_overflow,
816 howto->bitsize,
817 howto->rightshift,
818 bfd_arch_bits_per_address (abfd),
819 relocation);
820
821 /*
822 Either we are relocating all the way, or we don't want to apply
823 the relocation to the reloc entry (probably because there isn't
824 any room in the output format to describe addends to relocs)
825 */
826
827 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
828 (OSF version 1.3, compiler version 3.11). It miscompiles the
829 following program:
830
831 struct str
832 {
833 unsigned int i0;
834 } s = { 0 };
835
836 int
837 main ()
838 {
839 unsigned long x;
840
841 x = 0x100000000;
842 x <<= (unsigned long) s.i0;
843 if (x == 0)
844 printf ("failed\n");
845 else
846 printf ("succeeded (%lx)\n", x);
847 }
848 */
849
850 relocation >>= (bfd_vma) howto->rightshift;
851
852 /* Shift everything up to where it's going to be used */
853
854 relocation <<= (bfd_vma) howto->bitpos;
855
856 /* Wait for the day when all have the mask in them */
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
873 and D D D D D to chop to right size
874 -----------------------
875 = A A A A A
876 And this:
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
879 -----------------------
880 = B B B B B
881
882 And then:
883 ( B B B B B
884 or A A A A A)
885 -----------------------
886 = R R R R R R R R R R put into bfd_put<size>
887 */
888
889 #define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
896 char x = bfd_get_8 (abfd, (char *) data + octets);
897 DOIT (x);
898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
899 }
900 break;
901
902 case 1:
903 {
904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
905 DOIT (x);
906 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
907 }
908 break;
909 case 2:
910 {
911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
912 DOIT (x);
913 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
914 }
915 break;
916 case -2:
917 {
918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
919 relocation = -relocation;
920 DOIT (x);
921 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
922 }
923 break;
924
925 case -1:
926 {
927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
928 relocation = -relocation;
929 DOIT (x);
930 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939 #ifdef BFD64
940 {
941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
942 DOIT (x);
943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
944 }
945 #else
946 abort ();
947 #endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954 }
955
956 /*
957 FUNCTION
958 bfd_install_relocation
959
960 SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969 DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
977
978 */
979
980 bfd_reloc_status_type
981 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
982 input_section, error_message)
983 bfd *abfd;
984 arelent *reloc_entry;
985 PTR data_start;
986 bfd_vma data_start_offset;
987 asection *input_section;
988 char **error_message;
989 {
990 bfd_vma relocation;
991 bfd_reloc_status_type flag = bfd_reloc_ok;
992 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
993 bfd_vma output_base = 0;
994 reloc_howto_type *howto = reloc_entry->howto;
995 asection *reloc_target_output_section;
996 asymbol *symbol;
997 bfd_byte *data;
998
999 symbol = *(reloc_entry->sym_ptr_ptr);
1000 if (bfd_is_abs_section (symbol->section))
1001 {
1002 reloc_entry->address += input_section->output_offset;
1003 return bfd_reloc_ok;
1004 }
1005
1006 /* If there is a function supplied to handle this relocation type,
1007 call it. It'll return `bfd_reloc_continue' if further processing
1008 can be done. */
1009 if (howto->special_function)
1010 {
1011 bfd_reloc_status_type cont;
1012
1013 /* XXX - The special_function calls haven't been fixed up to deal
1014 with creating new relocations and section contents. */
1015 cont = howto->special_function (abfd, reloc_entry, symbol,
1016 /* XXX - Non-portable! */
1017 ((bfd_byte *) data_start
1018 - data_start_offset),
1019 input_section, abfd, error_message);
1020 if (cont != bfd_reloc_continue)
1021 return cont;
1022 }
1023
1024 /* Is the address of the relocation really within the section? */
1025 if (reloc_entry->address > input_section->_cooked_size)
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
1106
1107 reloc_entry->address += input_section->output_offset;
1108
1109 /* WTF?? */
1110 if (abfd->xvec->flavour == bfd_target_coff_flavour
1111 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1112 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1113 {
1114 #if 1
1115 /* For m68k-coff, the addend was being subtracted twice during
1116 relocation with -r. Removing the line below this comment
1117 fixes that problem; see PR 2953.
1118
1119 However, Ian wrote the following, regarding removing the line below,
1120 which explains why it is still enabled: --djm
1121
1122 If you put a patch like that into BFD you need to check all the COFF
1123 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1124 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1125 problem in a different way. There may very well be a reason that the
1126 code works as it does.
1127
1128 Hmmm. The first obvious point is that bfd_install_relocation should
1129 not have any tests that depend upon the flavour. It's seem like
1130 entirely the wrong place for such a thing. The second obvious point
1131 is that the current code ignores the reloc addend when producing
1132 relocateable output for COFF. That's peculiar. In fact, I really
1133 have no idea what the point of the line you want to remove is.
1134
1135 A typical COFF reloc subtracts the old value of the symbol and adds in
1136 the new value to the location in the object file (if it's a pc
1137 relative reloc it adds the difference between the symbol value and the
1138 location). When relocating we need to preserve that property.
1139
1140 BFD handles this by setting the addend to the negative of the old
1141 value of the symbol. Unfortunately it handles common symbols in a
1142 non-standard way (it doesn't subtract the old value) but that's a
1143 different story (we can't change it without losing backward
1144 compatibility with old object files) (coff-i386 does subtract the old
1145 value, to be compatible with existing coff-i386 targets, like SCO).
1146
1147 So everything works fine when not producing relocateable output. When
1148 we are producing relocateable output, logically we should do exactly
1149 what we do when not producing relocateable output. Therefore, your
1150 patch is correct. In fact, it should probably always just set
1151 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1152 add the value into the object file. This won't hurt the COFF code,
1153 which doesn't use the addend; I'm not sure what it will do to other
1154 formats (the thing to check for would be whether any formats both use
1155 the addend and set partial_inplace).
1156
1157 When I wanted to make coff-i386 produce relocateable output, I ran
1158 into the problem that you are running into: I wanted to remove that
1159 line. Rather than risk it, I made the coff-i386 relocs use a special
1160 function; it's coff_i386_reloc in coff-i386.c. The function
1161 specifically adds the addend field into the object file, knowing that
1162 bfd_install_relocation is not going to. If you remove that line, then
1163 coff-i386.c will wind up adding the addend field in twice. It's
1164 trivial to fix; it just needs to be done.
1165
1166 The problem with removing the line is just that it may break some
1167 working code. With BFD it's hard to be sure of anything. The right
1168 way to deal with this is simply to build and test at least all the
1169 supported COFF targets. It should be straightforward if time and disk
1170 space consuming. For each target:
1171 1) build the linker
1172 2) generate some executable, and link it using -r (I would
1173 probably use paranoia.o and link against newlib/libc.a, which
1174 for all the supported targets would be available in
1175 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1176 3) make the change to reloc.c
1177 4) rebuild the linker
1178 5) repeat step 2
1179 6) if the resulting object files are the same, you have at least
1180 made it no worse
1181 7) if they are different you have to figure out which version is
1182 right
1183 */
1184 relocation -= reloc_entry->addend;
1185 #endif
1186 reloc_entry->addend = 0;
1187 }
1188 else
1189 {
1190 reloc_entry->addend = relocation;
1191 }
1192 }
1193
1194 /* FIXME: This overflow checking is incomplete, because the value
1195 might have overflowed before we get here. For a correct check we
1196 need to compute the value in a size larger than bitsize, but we
1197 can't reasonably do that for a reloc the same size as a host
1198 machine word.
1199 FIXME: We should also do overflow checking on the result after
1200 adding in the value contained in the object file. */
1201 if (howto->complain_on_overflow != complain_overflow_dont)
1202 flag = bfd_check_overflow (howto->complain_on_overflow,
1203 howto->bitsize,
1204 howto->rightshift,
1205 bfd_arch_bits_per_address (abfd),
1206 relocation);
1207
1208 /*
1209 Either we are relocating all the way, or we don't want to apply
1210 the relocation to the reloc entry (probably because there isn't
1211 any room in the output format to describe addends to relocs)
1212 */
1213
1214 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1215 (OSF version 1.3, compiler version 3.11). It miscompiles the
1216 following program:
1217
1218 struct str
1219 {
1220 unsigned int i0;
1221 } s = { 0 };
1222
1223 int
1224 main ()
1225 {
1226 unsigned long x;
1227
1228 x = 0x100000000;
1229 x <<= (unsigned long) s.i0;
1230 if (x == 0)
1231 printf ("failed\n");
1232 else
1233 printf ("succeeded (%lx)\n", x);
1234 }
1235 */
1236
1237 relocation >>= (bfd_vma) howto->rightshift;
1238
1239 /* Shift everything up to where it's going to be used */
1240
1241 relocation <<= (bfd_vma) howto->bitpos;
1242
1243 /* Wait for the day when all have the mask in them */
1244
1245 /* What we do:
1246 i instruction to be left alone
1247 o offset within instruction
1248 r relocation offset to apply
1249 S src mask
1250 D dst mask
1251 N ~dst mask
1252 A part 1
1253 B part 2
1254 R result
1255
1256 Do this:
1257 (( i i i i i o o o o o from bfd_get<size>
1258 and S S S S S) to get the size offset we want
1259 + r r r r r r r r r r) to get the final value to place
1260 and D D D D D to chop to right size
1261 -----------------------
1262 = A A A A A
1263 And this:
1264 ( i i i i i o o o o o from bfd_get<size>
1265 and N N N N N ) get instruction
1266 -----------------------
1267 = B B B B B
1268
1269 And then:
1270 ( B B B B B
1271 or A A A A A)
1272 -----------------------
1273 = R R R R R R R R R R put into bfd_put<size>
1274 */
1275
1276 #define DOIT(x) \
1277 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1278
1279 data = (bfd_byte *) data_start + (octets - data_start_offset);
1280
1281 switch (howto->size)
1282 {
1283 case 0:
1284 {
1285 char x = bfd_get_8 (abfd, (char *) data);
1286 DOIT (x);
1287 bfd_put_8 (abfd, x, (unsigned char *) data);
1288 }
1289 break;
1290
1291 case 1:
1292 {
1293 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1294 DOIT (x);
1295 bfd_put_16 (abfd, x, (unsigned char *) data);
1296 }
1297 break;
1298 case 2:
1299 {
1300 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1301 DOIT (x);
1302 bfd_put_32 (abfd, x, (bfd_byte *) data);
1303 }
1304 break;
1305 case -2:
1306 {
1307 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1308 relocation = -relocation;
1309 DOIT (x);
1310 bfd_put_32 (abfd, x, (bfd_byte *) data);
1311 }
1312 break;
1313
1314 case 3:
1315 /* Do nothing */
1316 break;
1317
1318 case 4:
1319 {
1320 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1321 DOIT (x);
1322 bfd_put_64 (abfd, x, (bfd_byte *) data);
1323 }
1324 break;
1325 default:
1326 return bfd_reloc_other;
1327 }
1328
1329 return flag;
1330 }
1331
1332 /* This relocation routine is used by some of the backend linkers.
1333 They do not construct asymbol or arelent structures, so there is no
1334 reason for them to use bfd_perform_relocation. Also,
1335 bfd_perform_relocation is so hacked up it is easier to write a new
1336 function than to try to deal with it.
1337
1338 This routine does a final relocation. Whether it is useful for a
1339 relocateable link depends upon how the object format defines
1340 relocations.
1341
1342 FIXME: This routine ignores any special_function in the HOWTO,
1343 since the existing special_function values have been written for
1344 bfd_perform_relocation.
1345
1346 HOWTO is the reloc howto information.
1347 INPUT_BFD is the BFD which the reloc applies to.
1348 INPUT_SECTION is the section which the reloc applies to.
1349 CONTENTS is the contents of the section.
1350 ADDRESS is the address of the reloc within INPUT_SECTION.
1351 VALUE is the value of the symbol the reloc refers to.
1352 ADDEND is the addend of the reloc. */
1353
1354 bfd_reloc_status_type
1355 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1356 value, addend)
1357 reloc_howto_type *howto;
1358 bfd *input_bfd;
1359 asection *input_section;
1360 bfd_byte *contents;
1361 bfd_vma address;
1362 bfd_vma value;
1363 bfd_vma addend;
1364 {
1365 bfd_vma relocation;
1366
1367 /* Sanity check the address. */
1368 if (address > input_section->_raw_size)
1369 return bfd_reloc_outofrange;
1370
1371 /* This function assumes that we are dealing with a basic relocation
1372 against a symbol. We want to compute the value of the symbol to
1373 relocate to. This is just VALUE, the value of the symbol, plus
1374 ADDEND, any addend associated with the reloc. */
1375 relocation = value + addend;
1376
1377 /* If the relocation is PC relative, we want to set RELOCATION to
1378 the distance between the symbol (currently in RELOCATION) and the
1379 location we are relocating. Some targets (e.g., i386-aout)
1380 arrange for the contents of the section to be the negative of the
1381 offset of the location within the section; for such targets
1382 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1383 simply leave the contents of the section as zero; for such
1384 targets pcrel_offset is true. If pcrel_offset is false we do not
1385 need to subtract out the offset of the location within the
1386 section (which is just ADDRESS). */
1387 if (howto->pc_relative)
1388 {
1389 relocation -= (input_section->output_section->vma
1390 + input_section->output_offset);
1391 if (howto->pcrel_offset)
1392 relocation -= address;
1393 }
1394
1395 return _bfd_relocate_contents (howto, input_bfd, relocation,
1396 contents + address);
1397 }
1398
1399 /* Relocate a given location using a given value and howto. */
1400
1401 bfd_reloc_status_type
1402 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1403 reloc_howto_type *howto;
1404 bfd *input_bfd;
1405 bfd_vma relocation;
1406 bfd_byte *location;
1407 {
1408 int size;
1409 bfd_vma x = 0;
1410 bfd_reloc_status_type flag;
1411 unsigned int rightshift = howto->rightshift;
1412 unsigned int bitpos = howto->bitpos;
1413
1414 /* If the size is negative, negate RELOCATION. This isn't very
1415 general. */
1416 if (howto->size < 0)
1417 relocation = -relocation;
1418
1419 /* Get the value we are going to relocate. */
1420 size = bfd_get_reloc_size (howto);
1421 switch (size)
1422 {
1423 default:
1424 case 0:
1425 abort ();
1426 case 1:
1427 x = bfd_get_8 (input_bfd, location);
1428 break;
1429 case 2:
1430 x = bfd_get_16 (input_bfd, location);
1431 break;
1432 case 4:
1433 x = bfd_get_32 (input_bfd, location);
1434 break;
1435 case 8:
1436 #ifdef BFD64
1437 x = bfd_get_64 (input_bfd, location);
1438 #else
1439 abort ();
1440 #endif
1441 break;
1442 }
1443
1444 /* Check for overflow. FIXME: We may drop bits during the addition
1445 which we don't check for. We must either check at every single
1446 operation, which would be tedious, or we must do the computations
1447 in a type larger than bfd_vma, which would be inefficient. */
1448 flag = bfd_reloc_ok;
1449 if (howto->complain_on_overflow != complain_overflow_dont)
1450 {
1451 bfd_vma addrmask, fieldmask, signmask, ss;
1452 bfd_vma a, b, sum;
1453
1454 /* Get the values to be added together. For signed and unsigned
1455 relocations, we assume that all values should be truncated to
1456 the size of an address. For bitfields, all the bits matter.
1457 See also bfd_check_overflow. */
1458 fieldmask = N_ONES (howto->bitsize);
1459 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1460 a = relocation;
1461 b = x & howto->src_mask;
1462
1463 switch (howto->complain_on_overflow)
1464 {
1465 case complain_overflow_signed:
1466 a = (a & addrmask) >> rightshift;
1467
1468 /* If any sign bits are set, all sign bits must be set.
1469 That is, A must be a valid negative address after
1470 shifting. */
1471 signmask = ~ (fieldmask >> 1);
1472 ss = a & signmask;
1473 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1474 flag = bfd_reloc_overflow;
1475
1476 /* We only need this next bit of code if the sign bit of B
1477 is below the sign bit of A. This would only happen if
1478 SRC_MASK had fewer bits than BITSIZE. Note that if
1479 SRC_MASK has more bits than BITSIZE, we can get into
1480 trouble; we would need to verify that B is in range, as
1481 we do for A above. */
1482 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1483
1484 /* Set all the bits above the sign bit. */
1485 b = (b ^ signmask) - signmask;
1486
1487 b = (b & addrmask) >> bitpos;
1488
1489 /* Now we can do the addition. */
1490 sum = a + b;
1491
1492 /* See if the result has the correct sign. Bits above the
1493 sign bit are junk now; ignore them. If the sum is
1494 positive, make sure we did not have all negative inputs;
1495 if the sum is negative, make sure we did not have all
1496 positive inputs. The test below looks only at the sign
1497 bits, and it really just
1498 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1499 */
1500 signmask = (fieldmask >> 1) + 1;
1501 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1502 flag = bfd_reloc_overflow;
1503
1504 break;
1505
1506 case complain_overflow_unsigned:
1507 /* Checking for an unsigned overflow is relatively easy:
1508 trim the addresses and add, and trim the result as well.
1509 Overflow is normally indicated when the result does not
1510 fit in the field. However, we also need to consider the
1511 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1512 input is 0x80000000, and bfd_vma is only 32 bits; then we
1513 will get sum == 0, but there is an overflow, since the
1514 inputs did not fit in the field. Instead of doing a
1515 separate test, we can check for this by or-ing in the
1516 operands when testing for the sum overflowing its final
1517 field. */
1518 a = (a & addrmask) >> rightshift;
1519 b = (b & addrmask) >> bitpos;
1520 sum = (a + b) & addrmask;
1521 if ((a | b | sum) & ~ fieldmask)
1522 flag = bfd_reloc_overflow;
1523
1524 break;
1525
1526 case complain_overflow_bitfield:
1527 /* Much like the signed check, but for a field one bit
1528 wider, and no trimming inputs with addrmask. We allow a
1529 bitfield to represent numbers in the range -2**n to
1530 2**n-1, where n is the number of bits in the field.
1531 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1532 overflow, which is exactly what we want. */
1533 a >>= rightshift;
1534
1535 signmask = ~ fieldmask;
1536 ss = a & signmask;
1537 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1538 flag = bfd_reloc_overflow;
1539
1540 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1541 b = (b ^ signmask) - signmask;
1542
1543 b >>= bitpos;
1544
1545 sum = a + b;
1546
1547 /* We mask with addrmask here to explicitly allow an address
1548 wrap-around. The Linux kernel relies on it, and it is
1549 the only way to write assembler code which can run when
1550 loaded at a location 0x80000000 away from the location at
1551 which it is linked. */
1552 signmask = fieldmask + 1;
1553 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1554 flag = bfd_reloc_overflow;
1555
1556 break;
1557
1558 default:
1559 abort ();
1560 }
1561 }
1562
1563 /* Put RELOCATION in the right bits. */
1564 relocation >>= (bfd_vma) rightshift;
1565 relocation <<= (bfd_vma) bitpos;
1566
1567 /* Add RELOCATION to the right bits of X. */
1568 x = ((x & ~howto->dst_mask)
1569 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1570
1571 /* Put the relocated value back in the object file. */
1572 switch (size)
1573 {
1574 default:
1575 case 0:
1576 abort ();
1577 case 1:
1578 bfd_put_8 (input_bfd, x, location);
1579 break;
1580 case 2:
1581 bfd_put_16 (input_bfd, x, location);
1582 break;
1583 case 4:
1584 bfd_put_32 (input_bfd, x, location);
1585 break;
1586 case 8:
1587 #ifdef BFD64
1588 bfd_put_64 (input_bfd, x, location);
1589 #else
1590 abort ();
1591 #endif
1592 break;
1593 }
1594
1595 return flag;
1596 }
1597
1598 /*
1599 DOCDD
1600 INODE
1601 howto manager, , typedef arelent, Relocations
1602
1603 SECTION
1604 The howto manager
1605
1606 When an application wants to create a relocation, but doesn't
1607 know what the target machine might call it, it can find out by
1608 using this bit of code.
1609
1610 */
1611
1612 /*
1613 TYPEDEF
1614 bfd_reloc_code_type
1615
1616 DESCRIPTION
1617 The insides of a reloc code. The idea is that, eventually, there
1618 will be one enumerator for every type of relocation we ever do.
1619 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1620 return a howto pointer.
1621
1622 This does mean that the application must determine the correct
1623 enumerator value; you can't get a howto pointer from a random set
1624 of attributes.
1625
1626 SENUM
1627 bfd_reloc_code_real
1628
1629 ENUM
1630 BFD_RELOC_64
1631 ENUMX
1632 BFD_RELOC_32
1633 ENUMX
1634 BFD_RELOC_26
1635 ENUMX
1636 BFD_RELOC_24
1637 ENUMX
1638 BFD_RELOC_16
1639 ENUMX
1640 BFD_RELOC_14
1641 ENUMX
1642 BFD_RELOC_8
1643 ENUMDOC
1644 Basic absolute relocations of N bits.
1645
1646 ENUM
1647 BFD_RELOC_64_PCREL
1648 ENUMX
1649 BFD_RELOC_32_PCREL
1650 ENUMX
1651 BFD_RELOC_24_PCREL
1652 ENUMX
1653 BFD_RELOC_16_PCREL
1654 ENUMX
1655 BFD_RELOC_12_PCREL
1656 ENUMX
1657 BFD_RELOC_8_PCREL
1658 ENUMDOC
1659 PC-relative relocations. Sometimes these are relative to the address
1660 of the relocation itself; sometimes they are relative to the start of
1661 the section containing the relocation. It depends on the specific target.
1662
1663 The 24-bit relocation is used in some Intel 960 configurations.
1664
1665 ENUM
1666 BFD_RELOC_32_GOT_PCREL
1667 ENUMX
1668 BFD_RELOC_16_GOT_PCREL
1669 ENUMX
1670 BFD_RELOC_8_GOT_PCREL
1671 ENUMX
1672 BFD_RELOC_32_GOTOFF
1673 ENUMX
1674 BFD_RELOC_16_GOTOFF
1675 ENUMX
1676 BFD_RELOC_LO16_GOTOFF
1677 ENUMX
1678 BFD_RELOC_HI16_GOTOFF
1679 ENUMX
1680 BFD_RELOC_HI16_S_GOTOFF
1681 ENUMX
1682 BFD_RELOC_8_GOTOFF
1683 ENUMX
1684 BFD_RELOC_64_PLT_PCREL
1685 ENUMX
1686 BFD_RELOC_32_PLT_PCREL
1687 ENUMX
1688 BFD_RELOC_24_PLT_PCREL
1689 ENUMX
1690 BFD_RELOC_16_PLT_PCREL
1691 ENUMX
1692 BFD_RELOC_8_PLT_PCREL
1693 ENUMX
1694 BFD_RELOC_64_PLTOFF
1695 ENUMX
1696 BFD_RELOC_32_PLTOFF
1697 ENUMX
1698 BFD_RELOC_16_PLTOFF
1699 ENUMX
1700 BFD_RELOC_LO16_PLTOFF
1701 ENUMX
1702 BFD_RELOC_HI16_PLTOFF
1703 ENUMX
1704 BFD_RELOC_HI16_S_PLTOFF
1705 ENUMX
1706 BFD_RELOC_8_PLTOFF
1707 ENUMDOC
1708 For ELF.
1709
1710 ENUM
1711 BFD_RELOC_68K_GLOB_DAT
1712 ENUMX
1713 BFD_RELOC_68K_JMP_SLOT
1714 ENUMX
1715 BFD_RELOC_68K_RELATIVE
1716 ENUMDOC
1717 Relocations used by 68K ELF.
1718
1719 ENUM
1720 BFD_RELOC_32_BASEREL
1721 ENUMX
1722 BFD_RELOC_16_BASEREL
1723 ENUMX
1724 BFD_RELOC_LO16_BASEREL
1725 ENUMX
1726 BFD_RELOC_HI16_BASEREL
1727 ENUMX
1728 BFD_RELOC_HI16_S_BASEREL
1729 ENUMX
1730 BFD_RELOC_8_BASEREL
1731 ENUMX
1732 BFD_RELOC_RVA
1733 ENUMDOC
1734 Linkage-table relative.
1735
1736 ENUM
1737 BFD_RELOC_8_FFnn
1738 ENUMDOC
1739 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1740
1741 ENUM
1742 BFD_RELOC_32_PCREL_S2
1743 ENUMX
1744 BFD_RELOC_16_PCREL_S2
1745 ENUMX
1746 BFD_RELOC_23_PCREL_S2
1747 ENUMDOC
1748 These PC-relative relocations are stored as word displacements --
1749 i.e., byte displacements shifted right two bits. The 30-bit word
1750 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1751 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1752 signed 16-bit displacement is used on the MIPS, and the 23-bit
1753 displacement is used on the Alpha.
1754
1755 ENUM
1756 BFD_RELOC_HI22
1757 ENUMX
1758 BFD_RELOC_LO10
1759 ENUMDOC
1760 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1761 the target word. These are used on the SPARC.
1762
1763 ENUM
1764 BFD_RELOC_GPREL16
1765 ENUMX
1766 BFD_RELOC_GPREL32
1767 ENUMDOC
1768 For systems that allocate a Global Pointer register, these are
1769 displacements off that register. These relocation types are
1770 handled specially, because the value the register will have is
1771 decided relatively late.
1772
1773 ENUM
1774 BFD_RELOC_I960_CALLJ
1775 ENUMDOC
1776 Reloc types used for i960/b.out.
1777
1778 ENUM
1779 BFD_RELOC_NONE
1780 ENUMX
1781 BFD_RELOC_SPARC_WDISP22
1782 ENUMX
1783 BFD_RELOC_SPARC22
1784 ENUMX
1785 BFD_RELOC_SPARC13
1786 ENUMX
1787 BFD_RELOC_SPARC_GOT10
1788 ENUMX
1789 BFD_RELOC_SPARC_GOT13
1790 ENUMX
1791 BFD_RELOC_SPARC_GOT22
1792 ENUMX
1793 BFD_RELOC_SPARC_PC10
1794 ENUMX
1795 BFD_RELOC_SPARC_PC22
1796 ENUMX
1797 BFD_RELOC_SPARC_WPLT30
1798 ENUMX
1799 BFD_RELOC_SPARC_COPY
1800 ENUMX
1801 BFD_RELOC_SPARC_GLOB_DAT
1802 ENUMX
1803 BFD_RELOC_SPARC_JMP_SLOT
1804 ENUMX
1805 BFD_RELOC_SPARC_RELATIVE
1806 ENUMX
1807 BFD_RELOC_SPARC_UA16
1808 ENUMX
1809 BFD_RELOC_SPARC_UA32
1810 ENUMX
1811 BFD_RELOC_SPARC_UA64
1812 ENUMDOC
1813 SPARC ELF relocations. There is probably some overlap with other
1814 relocation types already defined.
1815
1816 ENUM
1817 BFD_RELOC_SPARC_BASE13
1818 ENUMX
1819 BFD_RELOC_SPARC_BASE22
1820 ENUMDOC
1821 I think these are specific to SPARC a.out (e.g., Sun 4).
1822
1823 ENUMEQ
1824 BFD_RELOC_SPARC_64
1825 BFD_RELOC_64
1826 ENUMX
1827 BFD_RELOC_SPARC_10
1828 ENUMX
1829 BFD_RELOC_SPARC_11
1830 ENUMX
1831 BFD_RELOC_SPARC_OLO10
1832 ENUMX
1833 BFD_RELOC_SPARC_HH22
1834 ENUMX
1835 BFD_RELOC_SPARC_HM10
1836 ENUMX
1837 BFD_RELOC_SPARC_LM22
1838 ENUMX
1839 BFD_RELOC_SPARC_PC_HH22
1840 ENUMX
1841 BFD_RELOC_SPARC_PC_HM10
1842 ENUMX
1843 BFD_RELOC_SPARC_PC_LM22
1844 ENUMX
1845 BFD_RELOC_SPARC_WDISP16
1846 ENUMX
1847 BFD_RELOC_SPARC_WDISP19
1848 ENUMX
1849 BFD_RELOC_SPARC_7
1850 ENUMX
1851 BFD_RELOC_SPARC_6
1852 ENUMX
1853 BFD_RELOC_SPARC_5
1854 ENUMEQX
1855 BFD_RELOC_SPARC_DISP64
1856 BFD_RELOC_64_PCREL
1857 ENUMX
1858 BFD_RELOC_SPARC_PLT64
1859 ENUMX
1860 BFD_RELOC_SPARC_HIX22
1861 ENUMX
1862 BFD_RELOC_SPARC_LOX10
1863 ENUMX
1864 BFD_RELOC_SPARC_H44
1865 ENUMX
1866 BFD_RELOC_SPARC_M44
1867 ENUMX
1868 BFD_RELOC_SPARC_L44
1869 ENUMX
1870 BFD_RELOC_SPARC_REGISTER
1871 ENUMDOC
1872 SPARC64 relocations
1873
1874 ENUM
1875 BFD_RELOC_SPARC_REV32
1876 ENUMDOC
1877 SPARC little endian relocation
1878
1879 ENUM
1880 BFD_RELOC_ALPHA_GPDISP_HI16
1881 ENUMDOC
1882 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1883 "addend" in some special way.
1884 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1885 writing; when reading, it will be the absolute section symbol. The
1886 addend is the displacement in bytes of the "lda" instruction from
1887 the "ldah" instruction (which is at the address of this reloc).
1888 ENUM
1889 BFD_RELOC_ALPHA_GPDISP_LO16
1890 ENUMDOC
1891 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1892 with GPDISP_HI16 relocs. The addend is ignored when writing the
1893 relocations out, and is filled in with the file's GP value on
1894 reading, for convenience.
1895
1896 ENUM
1897 BFD_RELOC_ALPHA_GPDISP
1898 ENUMDOC
1899 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1900 relocation except that there is no accompanying GPDISP_LO16
1901 relocation.
1902
1903 ENUM
1904 BFD_RELOC_ALPHA_LITERAL
1905 ENUMX
1906 BFD_RELOC_ALPHA_ELF_LITERAL
1907 ENUMX
1908 BFD_RELOC_ALPHA_LITUSE
1909 ENUMDOC
1910 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1911 the assembler turns it into a LDQ instruction to load the address of
1912 the symbol, and then fills in a register in the real instruction.
1913
1914 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1915 section symbol. The addend is ignored when writing, but is filled
1916 in with the file's GP value on reading, for convenience, as with the
1917 GPDISP_LO16 reloc.
1918
1919 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1920 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1921 but it generates output not based on the position within the .got
1922 section, but relative to the GP value chosen for the file during the
1923 final link stage.
1924
1925 The LITUSE reloc, on the instruction using the loaded address, gives
1926 information to the linker that it might be able to use to optimize
1927 away some literal section references. The symbol is ignored (read
1928 as the absolute section symbol), and the "addend" indicates the type
1929 of instruction using the register:
1930 1 - "memory" fmt insn
1931 2 - byte-manipulation (byte offset reg)
1932 3 - jsr (target of branch)
1933
1934 The GNU linker currently doesn't do any of this optimizing.
1935
1936 ENUM
1937 BFD_RELOC_ALPHA_USER_LITERAL
1938 ENUMX
1939 BFD_RELOC_ALPHA_USER_LITUSE_BASE
1940 ENUMX
1941 BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1942 ENUMX
1943 BFD_RELOC_ALPHA_USER_LITUSE_JSR
1944 ENUMX
1945 BFD_RELOC_ALPHA_USER_GPDISP
1946 ENUMX
1947 BFD_RELOC_ALPHA_USER_GPRELHIGH
1948 ENUMX
1949 BFD_RELOC_ALPHA_USER_GPRELLOW
1950 ENUMDOC
1951 The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1952 process the explicit !<reloc>!sequence relocations, and are mapped
1953 into the normal relocations at the end of processing.
1954
1955 ENUM
1956 BFD_RELOC_ALPHA_HINT
1957 ENUMDOC
1958 The HINT relocation indicates a value that should be filled into the
1959 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1960 prediction logic which may be provided on some processors.
1961
1962 ENUM
1963 BFD_RELOC_ALPHA_LINKAGE
1964 ENUMDOC
1965 The LINKAGE relocation outputs a linkage pair in the object file,
1966 which is filled by the linker.
1967
1968 ENUM
1969 BFD_RELOC_ALPHA_CODEADDR
1970 ENUMDOC
1971 The CODEADDR relocation outputs a STO_CA in the object file,
1972 which is filled by the linker.
1973
1974 ENUM
1975 BFD_RELOC_MIPS_JMP
1976 ENUMDOC
1977 Bits 27..2 of the relocation address shifted right 2 bits;
1978 simple reloc otherwise.
1979
1980 ENUM
1981 BFD_RELOC_MIPS16_JMP
1982 ENUMDOC
1983 The MIPS16 jump instruction.
1984
1985 ENUM
1986 BFD_RELOC_MIPS16_GPREL
1987 ENUMDOC
1988 MIPS16 GP relative reloc.
1989
1990 ENUM
1991 BFD_RELOC_HI16
1992 ENUMDOC
1993 High 16 bits of 32-bit value; simple reloc.
1994 ENUM
1995 BFD_RELOC_HI16_S
1996 ENUMDOC
1997 High 16 bits of 32-bit value but the low 16 bits will be sign
1998 extended and added to form the final result. If the low 16
1999 bits form a negative number, we need to add one to the high value
2000 to compensate for the borrow when the low bits are added.
2001 ENUM
2002 BFD_RELOC_LO16
2003 ENUMDOC
2004 Low 16 bits.
2005 ENUM
2006 BFD_RELOC_PCREL_HI16_S
2007 ENUMDOC
2008 Like BFD_RELOC_HI16_S, but PC relative.
2009 ENUM
2010 BFD_RELOC_PCREL_LO16
2011 ENUMDOC
2012 Like BFD_RELOC_LO16, but PC relative.
2013
2014 ENUMEQ
2015 BFD_RELOC_MIPS_GPREL
2016 BFD_RELOC_GPREL16
2017 ENUMDOC
2018 Relocation relative to the global pointer.
2019
2020 ENUM
2021 BFD_RELOC_MIPS_LITERAL
2022 ENUMDOC
2023 Relocation against a MIPS literal section.
2024
2025 ENUM
2026 BFD_RELOC_MIPS_GOT16
2027 ENUMX
2028 BFD_RELOC_MIPS_CALL16
2029 ENUMEQX
2030 BFD_RELOC_MIPS_GPREL32
2031 BFD_RELOC_GPREL32
2032 ENUMX
2033 BFD_RELOC_MIPS_GOT_HI16
2034 ENUMX
2035 BFD_RELOC_MIPS_GOT_LO16
2036 ENUMX
2037 BFD_RELOC_MIPS_CALL_HI16
2038 ENUMX
2039 BFD_RELOC_MIPS_CALL_LO16
2040 ENUMX
2041 BFD_RELOC_MIPS_SUB
2042 ENUMX
2043 BFD_RELOC_MIPS_GOT_PAGE
2044 ENUMX
2045 BFD_RELOC_MIPS_GOT_OFST
2046 ENUMX
2047 BFD_RELOC_MIPS_GOT_DISP
2048 ENUMX
2049 BFD_RELOC_MIPS_SHIFT5
2050 ENUMX
2051 BFD_RELOC_MIPS_SHIFT6
2052 ENUMX
2053 BFD_RELOC_MIPS_INSERT_A
2054 ENUMX
2055 BFD_RELOC_MIPS_INSERT_B
2056 ENUMX
2057 BFD_RELOC_MIPS_DELETE
2058 ENUMX
2059 BFD_RELOC_MIPS_HIGHEST
2060 ENUMX
2061 BFD_RELOC_MIPS_HIGHER
2062 ENUMX
2063 BFD_RELOC_MIPS_SCN_DISP
2064 ENUMX
2065 BFD_RELOC_MIPS_REL16
2066 ENUMX
2067 BFD_RELOC_MIPS_RELGOT
2068 ENUMX
2069 BFD_RELOC_MIPS_JALR
2070 COMMENT
2071 ENUMDOC
2072 MIPS ELF relocations.
2073
2074 COMMENT
2075
2076 ENUM
2077 BFD_RELOC_386_GOT32
2078 ENUMX
2079 BFD_RELOC_386_PLT32
2080 ENUMX
2081 BFD_RELOC_386_COPY
2082 ENUMX
2083 BFD_RELOC_386_GLOB_DAT
2084 ENUMX
2085 BFD_RELOC_386_JUMP_SLOT
2086 ENUMX
2087 BFD_RELOC_386_RELATIVE
2088 ENUMX
2089 BFD_RELOC_386_GOTOFF
2090 ENUMX
2091 BFD_RELOC_386_GOTPC
2092 ENUMDOC
2093 i386/elf relocations
2094
2095 ENUM
2096 BFD_RELOC_X86_64_GOT32
2097 ENUMX
2098 BFD_RELOC_X86_64_PLT32
2099 ENUMX
2100 BFD_RELOC_X86_64_COPY
2101 ENUMX
2102 BFD_RELOC_X86_64_GLOB_DAT
2103 ENUMX
2104 BFD_RELOC_X86_64_JUMP_SLOT
2105 ENUMX
2106 BFD_RELOC_X86_64_RELATIVE
2107 ENUMX
2108 BFD_RELOC_X86_64_GOTPCREL
2109 ENUMX
2110 BFD_RELOC_X86_64_32S
2111 ENUMDOC
2112 x86-64/elf relocations
2113
2114 ENUM
2115 BFD_RELOC_NS32K_IMM_8
2116 ENUMX
2117 BFD_RELOC_NS32K_IMM_16
2118 ENUMX
2119 BFD_RELOC_NS32K_IMM_32
2120 ENUMX
2121 BFD_RELOC_NS32K_IMM_8_PCREL
2122 ENUMX
2123 BFD_RELOC_NS32K_IMM_16_PCREL
2124 ENUMX
2125 BFD_RELOC_NS32K_IMM_32_PCREL
2126 ENUMX
2127 BFD_RELOC_NS32K_DISP_8
2128 ENUMX
2129 BFD_RELOC_NS32K_DISP_16
2130 ENUMX
2131 BFD_RELOC_NS32K_DISP_32
2132 ENUMX
2133 BFD_RELOC_NS32K_DISP_8_PCREL
2134 ENUMX
2135 BFD_RELOC_NS32K_DISP_16_PCREL
2136 ENUMX
2137 BFD_RELOC_NS32K_DISP_32_PCREL
2138 ENUMDOC
2139 ns32k relocations
2140
2141 ENUM
2142 BFD_RELOC_PDP11_DISP_8_PCREL
2143 ENUMX
2144 BFD_RELOC_PDP11_DISP_6_PCREL
2145 ENUMDOC
2146 PDP11 relocations
2147
2148 ENUM
2149 BFD_RELOC_PJ_CODE_HI16
2150 ENUMX
2151 BFD_RELOC_PJ_CODE_LO16
2152 ENUMX
2153 BFD_RELOC_PJ_CODE_DIR16
2154 ENUMX
2155 BFD_RELOC_PJ_CODE_DIR32
2156 ENUMX
2157 BFD_RELOC_PJ_CODE_REL16
2158 ENUMX
2159 BFD_RELOC_PJ_CODE_REL32
2160 ENUMDOC
2161 Picojava relocs. Not all of these appear in object files.
2162
2163 ENUM
2164 BFD_RELOC_PPC_B26
2165 ENUMX
2166 BFD_RELOC_PPC_BA26
2167 ENUMX
2168 BFD_RELOC_PPC_TOC16
2169 ENUMX
2170 BFD_RELOC_PPC_B16
2171 ENUMX
2172 BFD_RELOC_PPC_B16_BRTAKEN
2173 ENUMX
2174 BFD_RELOC_PPC_B16_BRNTAKEN
2175 ENUMX
2176 BFD_RELOC_PPC_BA16
2177 ENUMX
2178 BFD_RELOC_PPC_BA16_BRTAKEN
2179 ENUMX
2180 BFD_RELOC_PPC_BA16_BRNTAKEN
2181 ENUMX
2182 BFD_RELOC_PPC_COPY
2183 ENUMX
2184 BFD_RELOC_PPC_GLOB_DAT
2185 ENUMX
2186 BFD_RELOC_PPC_JMP_SLOT
2187 ENUMX
2188 BFD_RELOC_PPC_RELATIVE
2189 ENUMX
2190 BFD_RELOC_PPC_LOCAL24PC
2191 ENUMX
2192 BFD_RELOC_PPC_EMB_NADDR32
2193 ENUMX
2194 BFD_RELOC_PPC_EMB_NADDR16
2195 ENUMX
2196 BFD_RELOC_PPC_EMB_NADDR16_LO
2197 ENUMX
2198 BFD_RELOC_PPC_EMB_NADDR16_HI
2199 ENUMX
2200 BFD_RELOC_PPC_EMB_NADDR16_HA
2201 ENUMX
2202 BFD_RELOC_PPC_EMB_SDAI16
2203 ENUMX
2204 BFD_RELOC_PPC_EMB_SDA2I16
2205 ENUMX
2206 BFD_RELOC_PPC_EMB_SDA2REL
2207 ENUMX
2208 BFD_RELOC_PPC_EMB_SDA21
2209 ENUMX
2210 BFD_RELOC_PPC_EMB_MRKREF
2211 ENUMX
2212 BFD_RELOC_PPC_EMB_RELSEC16
2213 ENUMX
2214 BFD_RELOC_PPC_EMB_RELST_LO
2215 ENUMX
2216 BFD_RELOC_PPC_EMB_RELST_HI
2217 ENUMX
2218 BFD_RELOC_PPC_EMB_RELST_HA
2219 ENUMX
2220 BFD_RELOC_PPC_EMB_BIT_FLD
2221 ENUMX
2222 BFD_RELOC_PPC_EMB_RELSDA
2223 ENUMX
2224 BFD_RELOC_PPC64_HIGHER
2225 ENUMX
2226 BFD_RELOC_PPC64_HIGHER_S
2227 ENUMX
2228 BFD_RELOC_PPC64_HIGHEST
2229 ENUMX
2230 BFD_RELOC_PPC64_HIGHEST_S
2231 ENUMX
2232 BFD_RELOC_PPC64_TOC16_LO
2233 ENUMX
2234 BFD_RELOC_PPC64_TOC16_HI
2235 ENUMX
2236 BFD_RELOC_PPC64_TOC16_HA
2237 ENUMX
2238 BFD_RELOC_PPC64_TOC
2239 ENUMX
2240 BFD_RELOC_PPC64_PLTGOT16
2241 ENUMX
2242 BFD_RELOC_PPC64_PLTGOT16_LO
2243 ENUMX
2244 BFD_RELOC_PPC64_PLTGOT16_HI
2245 ENUMX
2246 BFD_RELOC_PPC64_PLTGOT16_HA
2247 ENUMX
2248 BFD_RELOC_PPC64_ADDR16_DS
2249 ENUMX
2250 BFD_RELOC_PPC64_ADDR16_LO_DS
2251 ENUMX
2252 BFD_RELOC_PPC64_GOT16_DS
2253 ENUMX
2254 BFD_RELOC_PPC64_GOT16_LO_DS
2255 ENUMX
2256 BFD_RELOC_PPC64_PLT16_LO_DS
2257 ENUMX
2258 BFD_RELOC_PPC64_SECTOFF_DS
2259 ENUMX
2260 BFD_RELOC_PPC64_SECTOFF_LO_DS
2261 ENUMX
2262 BFD_RELOC_PPC64_TOC16_DS
2263 ENUMX
2264 BFD_RELOC_PPC64_TOC16_LO_DS
2265 ENUMX
2266 BFD_RELOC_PPC64_PLTGOT16_DS
2267 ENUMX
2268 BFD_RELOC_PPC64_PLTGOT16_LO_DS
2269 ENUMDOC
2270 Power(rs6000) and PowerPC relocations.
2271
2272 ENUM
2273 BFD_RELOC_I370_D12
2274 ENUMDOC
2275 IBM 370/390 relocations
2276
2277 ENUM
2278 BFD_RELOC_CTOR
2279 ENUMDOC
2280 The type of reloc used to build a contructor table - at the moment
2281 probably a 32 bit wide absolute relocation, but the target can choose.
2282 It generally does map to one of the other relocation types.
2283
2284 ENUM
2285 BFD_RELOC_ARM_PCREL_BRANCH
2286 ENUMDOC
2287 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2288 not stored in the instruction.
2289 ENUM
2290 BFD_RELOC_ARM_PCREL_BLX
2291 ENUMDOC
2292 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2293 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2294 field in the instruction.
2295 ENUM
2296 BFD_RELOC_THUMB_PCREL_BLX
2297 ENUMDOC
2298 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2299 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2300 field in the instruction.
2301 ENUM
2302 BFD_RELOC_ARM_IMMEDIATE
2303 ENUMX
2304 BFD_RELOC_ARM_ADRL_IMMEDIATE
2305 ENUMX
2306 BFD_RELOC_ARM_OFFSET_IMM
2307 ENUMX
2308 BFD_RELOC_ARM_SHIFT_IMM
2309 ENUMX
2310 BFD_RELOC_ARM_SWI
2311 ENUMX
2312 BFD_RELOC_ARM_MULTI
2313 ENUMX
2314 BFD_RELOC_ARM_CP_OFF_IMM
2315 ENUMX
2316 BFD_RELOC_ARM_ADR_IMM
2317 ENUMX
2318 BFD_RELOC_ARM_LDR_IMM
2319 ENUMX
2320 BFD_RELOC_ARM_LITERAL
2321 ENUMX
2322 BFD_RELOC_ARM_IN_POOL
2323 ENUMX
2324 BFD_RELOC_ARM_OFFSET_IMM8
2325 ENUMX
2326 BFD_RELOC_ARM_HWLITERAL
2327 ENUMX
2328 BFD_RELOC_ARM_THUMB_ADD
2329 ENUMX
2330 BFD_RELOC_ARM_THUMB_IMM
2331 ENUMX
2332 BFD_RELOC_ARM_THUMB_SHIFT
2333 ENUMX
2334 BFD_RELOC_ARM_THUMB_OFFSET
2335 ENUMX
2336 BFD_RELOC_ARM_GOT12
2337 ENUMX
2338 BFD_RELOC_ARM_GOT32
2339 ENUMX
2340 BFD_RELOC_ARM_JUMP_SLOT
2341 ENUMX
2342 BFD_RELOC_ARM_COPY
2343 ENUMX
2344 BFD_RELOC_ARM_GLOB_DAT
2345 ENUMX
2346 BFD_RELOC_ARM_PLT32
2347 ENUMX
2348 BFD_RELOC_ARM_RELATIVE
2349 ENUMX
2350 BFD_RELOC_ARM_GOTOFF
2351 ENUMX
2352 BFD_RELOC_ARM_GOTPC
2353 ENUMDOC
2354 These relocs are only used within the ARM assembler. They are not
2355 (at present) written to any object files.
2356
2357 ENUM
2358 BFD_RELOC_SH_PCDISP8BY2
2359 ENUMX
2360 BFD_RELOC_SH_PCDISP12BY2
2361 ENUMX
2362 BFD_RELOC_SH_IMM4
2363 ENUMX
2364 BFD_RELOC_SH_IMM4BY2
2365 ENUMX
2366 BFD_RELOC_SH_IMM4BY4
2367 ENUMX
2368 BFD_RELOC_SH_IMM8
2369 ENUMX
2370 BFD_RELOC_SH_IMM8BY2
2371 ENUMX
2372 BFD_RELOC_SH_IMM8BY4
2373 ENUMX
2374 BFD_RELOC_SH_PCRELIMM8BY2
2375 ENUMX
2376 BFD_RELOC_SH_PCRELIMM8BY4
2377 ENUMX
2378 BFD_RELOC_SH_SWITCH16
2379 ENUMX
2380 BFD_RELOC_SH_SWITCH32
2381 ENUMX
2382 BFD_RELOC_SH_USES
2383 ENUMX
2384 BFD_RELOC_SH_COUNT
2385 ENUMX
2386 BFD_RELOC_SH_ALIGN
2387 ENUMX
2388 BFD_RELOC_SH_CODE
2389 ENUMX
2390 BFD_RELOC_SH_DATA
2391 ENUMX
2392 BFD_RELOC_SH_LABEL
2393 ENUMX
2394 BFD_RELOC_SH_LOOP_START
2395 ENUMX
2396 BFD_RELOC_SH_LOOP_END
2397 ENUMX
2398 BFD_RELOC_SH_COPY
2399 ENUMX
2400 BFD_RELOC_SH_GLOB_DAT
2401 ENUMX
2402 BFD_RELOC_SH_JMP_SLOT
2403 ENUMX
2404 BFD_RELOC_SH_RELATIVE
2405 ENUMX
2406 BFD_RELOC_SH_GOTPC
2407 ENUMDOC
2408 Hitachi SH relocs. Not all of these appear in object files.
2409
2410 ENUM
2411 BFD_RELOC_THUMB_PCREL_BRANCH9
2412 ENUMX
2413 BFD_RELOC_THUMB_PCREL_BRANCH12
2414 ENUMX
2415 BFD_RELOC_THUMB_PCREL_BRANCH23
2416 ENUMDOC
2417 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2418 be zero and is not stored in the instruction.
2419
2420 ENUM
2421 BFD_RELOC_ARC_B22_PCREL
2422 ENUMDOC
2423 ARC Cores relocs.
2424 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2425 not stored in the instruction. The high 20 bits are installed in bits 26
2426 through 7 of the instruction.
2427 ENUM
2428 BFD_RELOC_ARC_B26
2429 ENUMDOC
2430 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2431 stored in the instruction. The high 24 bits are installed in bits 23
2432 through 0.
2433
2434 ENUM
2435 BFD_RELOC_D10V_10_PCREL_R
2436 ENUMDOC
2437 Mitsubishi D10V relocs.
2438 This is a 10-bit reloc with the right 2 bits
2439 assumed to be 0.
2440 ENUM
2441 BFD_RELOC_D10V_10_PCREL_L
2442 ENUMDOC
2443 Mitsubishi D10V relocs.
2444 This is a 10-bit reloc with the right 2 bits
2445 assumed to be 0. This is the same as the previous reloc
2446 except it is in the left container, i.e.,
2447 shifted left 15 bits.
2448 ENUM
2449 BFD_RELOC_D10V_18
2450 ENUMDOC
2451 This is an 18-bit reloc with the right 2 bits
2452 assumed to be 0.
2453 ENUM
2454 BFD_RELOC_D10V_18_PCREL
2455 ENUMDOC
2456 This is an 18-bit reloc with the right 2 bits
2457 assumed to be 0.
2458
2459 ENUM
2460 BFD_RELOC_D30V_6
2461 ENUMDOC
2462 Mitsubishi D30V relocs.
2463 This is a 6-bit absolute reloc.
2464 ENUM
2465 BFD_RELOC_D30V_9_PCREL
2466 ENUMDOC
2467 This is a 6-bit pc-relative reloc with
2468 the right 3 bits assumed to be 0.
2469 ENUM
2470 BFD_RELOC_D30V_9_PCREL_R
2471 ENUMDOC
2472 This is a 6-bit pc-relative reloc with
2473 the right 3 bits assumed to be 0. Same
2474 as the previous reloc but on the right side
2475 of the container.
2476 ENUM
2477 BFD_RELOC_D30V_15
2478 ENUMDOC
2479 This is a 12-bit absolute reloc with the
2480 right 3 bitsassumed to be 0.
2481 ENUM
2482 BFD_RELOC_D30V_15_PCREL
2483 ENUMDOC
2484 This is a 12-bit pc-relative reloc with
2485 the right 3 bits assumed to be 0.
2486 ENUM
2487 BFD_RELOC_D30V_15_PCREL_R
2488 ENUMDOC
2489 This is a 12-bit pc-relative reloc with
2490 the right 3 bits assumed to be 0. Same
2491 as the previous reloc but on the right side
2492 of the container.
2493 ENUM
2494 BFD_RELOC_D30V_21
2495 ENUMDOC
2496 This is an 18-bit absolute reloc with
2497 the right 3 bits assumed to be 0.
2498 ENUM
2499 BFD_RELOC_D30V_21_PCREL
2500 ENUMDOC
2501 This is an 18-bit pc-relative reloc with
2502 the right 3 bits assumed to be 0.
2503 ENUM
2504 BFD_RELOC_D30V_21_PCREL_R
2505 ENUMDOC
2506 This is an 18-bit pc-relative reloc with
2507 the right 3 bits assumed to be 0. Same
2508 as the previous reloc but on the right side
2509 of the container.
2510 ENUM
2511 BFD_RELOC_D30V_32
2512 ENUMDOC
2513 This is a 32-bit absolute reloc.
2514 ENUM
2515 BFD_RELOC_D30V_32_PCREL
2516 ENUMDOC
2517 This is a 32-bit pc-relative reloc.
2518
2519 ENUM
2520 BFD_RELOC_M32R_24
2521 ENUMDOC
2522 Mitsubishi M32R relocs.
2523 This is a 24 bit absolute address.
2524 ENUM
2525 BFD_RELOC_M32R_10_PCREL
2526 ENUMDOC
2527 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2528 ENUM
2529 BFD_RELOC_M32R_18_PCREL
2530 ENUMDOC
2531 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2532 ENUM
2533 BFD_RELOC_M32R_26_PCREL
2534 ENUMDOC
2535 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2536 ENUM
2537 BFD_RELOC_M32R_HI16_ULO
2538 ENUMDOC
2539 This is a 16-bit reloc containing the high 16 bits of an address
2540 used when the lower 16 bits are treated as unsigned.
2541 ENUM
2542 BFD_RELOC_M32R_HI16_SLO
2543 ENUMDOC
2544 This is a 16-bit reloc containing the high 16 bits of an address
2545 used when the lower 16 bits are treated as signed.
2546 ENUM
2547 BFD_RELOC_M32R_LO16
2548 ENUMDOC
2549 This is a 16-bit reloc containing the lower 16 bits of an address.
2550 ENUM
2551 BFD_RELOC_M32R_SDA16
2552 ENUMDOC
2553 This is a 16-bit reloc containing the small data area offset for use in
2554 add3, load, and store instructions.
2555
2556 ENUM
2557 BFD_RELOC_V850_9_PCREL
2558 ENUMDOC
2559 This is a 9-bit reloc
2560 ENUM
2561 BFD_RELOC_V850_22_PCREL
2562 ENUMDOC
2563 This is a 22-bit reloc
2564
2565 ENUM
2566 BFD_RELOC_V850_SDA_16_16_OFFSET
2567 ENUMDOC
2568 This is a 16 bit offset from the short data area pointer.
2569 ENUM
2570 BFD_RELOC_V850_SDA_15_16_OFFSET
2571 ENUMDOC
2572 This is a 16 bit offset (of which only 15 bits are used) from the
2573 short data area pointer.
2574 ENUM
2575 BFD_RELOC_V850_ZDA_16_16_OFFSET
2576 ENUMDOC
2577 This is a 16 bit offset from the zero data area pointer.
2578 ENUM
2579 BFD_RELOC_V850_ZDA_15_16_OFFSET
2580 ENUMDOC
2581 This is a 16 bit offset (of which only 15 bits are used) from the
2582 zero data area pointer.
2583 ENUM
2584 BFD_RELOC_V850_TDA_6_8_OFFSET
2585 ENUMDOC
2586 This is an 8 bit offset (of which only 6 bits are used) from the
2587 tiny data area pointer.
2588 ENUM
2589 BFD_RELOC_V850_TDA_7_8_OFFSET
2590 ENUMDOC
2591 This is an 8bit offset (of which only 7 bits are used) from the tiny
2592 data area pointer.
2593 ENUM
2594 BFD_RELOC_V850_TDA_7_7_OFFSET
2595 ENUMDOC
2596 This is a 7 bit offset from the tiny data area pointer.
2597 ENUM
2598 BFD_RELOC_V850_TDA_16_16_OFFSET
2599 ENUMDOC
2600 This is a 16 bit offset from the tiny data area pointer.
2601 COMMENT
2602 ENUM
2603 BFD_RELOC_V850_TDA_4_5_OFFSET
2604 ENUMDOC
2605 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2606 data area pointer.
2607 ENUM
2608 BFD_RELOC_V850_TDA_4_4_OFFSET
2609 ENUMDOC
2610 This is a 4 bit offset from the tiny data area pointer.
2611 ENUM
2612 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2613 ENUMDOC
2614 This is a 16 bit offset from the short data area pointer, with the
2615 bits placed non-contigously in the instruction.
2616 ENUM
2617 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2618 ENUMDOC
2619 This is a 16 bit offset from the zero data area pointer, with the
2620 bits placed non-contigously in the instruction.
2621 ENUM
2622 BFD_RELOC_V850_CALLT_6_7_OFFSET
2623 ENUMDOC
2624 This is a 6 bit offset from the call table base pointer.
2625 ENUM
2626 BFD_RELOC_V850_CALLT_16_16_OFFSET
2627 ENUMDOC
2628 This is a 16 bit offset from the call table base pointer.
2629 COMMENT
2630
2631 ENUM
2632 BFD_RELOC_MN10300_32_PCREL
2633 ENUMDOC
2634 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2635 instruction.
2636 ENUM
2637 BFD_RELOC_MN10300_16_PCREL
2638 ENUMDOC
2639 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2640 instruction.
2641
2642 ENUM
2643 BFD_RELOC_TIC30_LDP
2644 ENUMDOC
2645 This is a 8bit DP reloc for the tms320c30, where the most
2646 significant 8 bits of a 24 bit word are placed into the least
2647 significant 8 bits of the opcode.
2648
2649 ENUM
2650 BFD_RELOC_TIC54X_PARTLS7
2651 ENUMDOC
2652 This is a 7bit reloc for the tms320c54x, where the least
2653 significant 7 bits of a 16 bit word are placed into the least
2654 significant 7 bits of the opcode.
2655
2656 ENUM
2657 BFD_RELOC_TIC54X_PARTMS9
2658 ENUMDOC
2659 This is a 9bit DP reloc for the tms320c54x, where the most
2660 significant 9 bits of a 16 bit word are placed into the least
2661 significant 9 bits of the opcode.
2662
2663 ENUM
2664 BFD_RELOC_TIC54X_23
2665 ENUMDOC
2666 This is an extended address 23-bit reloc for the tms320c54x.
2667
2668 ENUM
2669 BFD_RELOC_TIC54X_16_OF_23
2670 ENUMDOC
2671 This is a 16-bit reloc for the tms320c54x, where the least
2672 significant 16 bits of a 23-bit extended address are placed into
2673 the opcode.
2674
2675 ENUM
2676 BFD_RELOC_TIC54X_MS7_OF_23
2677 ENUMDOC
2678 This is a reloc for the tms320c54x, where the most
2679 significant 7 bits of a 23-bit extended address are placed into
2680 the opcode.
2681
2682 ENUM
2683 BFD_RELOC_FR30_48
2684 ENUMDOC
2685 This is a 48 bit reloc for the FR30 that stores 32 bits.
2686 ENUM
2687 BFD_RELOC_FR30_20
2688 ENUMDOC
2689 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2690 two sections.
2691 ENUM
2692 BFD_RELOC_FR30_6_IN_4
2693 ENUMDOC
2694 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2695 4 bits.
2696 ENUM
2697 BFD_RELOC_FR30_8_IN_8
2698 ENUMDOC
2699 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2700 into 8 bits.
2701 ENUM
2702 BFD_RELOC_FR30_9_IN_8
2703 ENUMDOC
2704 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2705 into 8 bits.
2706 ENUM
2707 BFD_RELOC_FR30_10_IN_8
2708 ENUMDOC
2709 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2710 into 8 bits.
2711 ENUM
2712 BFD_RELOC_FR30_9_PCREL
2713 ENUMDOC
2714 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2715 short offset into 8 bits.
2716 ENUM
2717 BFD_RELOC_FR30_12_PCREL
2718 ENUMDOC
2719 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2720 short offset into 11 bits.
2721
2722 ENUM
2723 BFD_RELOC_MCORE_PCREL_IMM8BY4
2724 ENUMX
2725 BFD_RELOC_MCORE_PCREL_IMM11BY2
2726 ENUMX
2727 BFD_RELOC_MCORE_PCREL_IMM4BY2
2728 ENUMX
2729 BFD_RELOC_MCORE_PCREL_32
2730 ENUMX
2731 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2732 ENUMX
2733 BFD_RELOC_MCORE_RVA
2734 ENUMDOC
2735 Motorola Mcore relocations.
2736
2737 ENUM
2738 BFD_RELOC_AVR_7_PCREL
2739 ENUMDOC
2740 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2741 short offset into 7 bits.
2742 ENUM
2743 BFD_RELOC_AVR_13_PCREL
2744 ENUMDOC
2745 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2746 short offset into 12 bits.
2747 ENUM
2748 BFD_RELOC_AVR_16_PM
2749 ENUMDOC
2750 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2751 program memory address) into 16 bits.
2752 ENUM
2753 BFD_RELOC_AVR_LO8_LDI
2754 ENUMDOC
2755 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2756 data memory address) into 8 bit immediate value of LDI insn.
2757 ENUM
2758 BFD_RELOC_AVR_HI8_LDI
2759 ENUMDOC
2760 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2761 of data memory address) into 8 bit immediate value of LDI insn.
2762 ENUM
2763 BFD_RELOC_AVR_HH8_LDI
2764 ENUMDOC
2765 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2766 of program memory address) into 8 bit immediate value of LDI insn.
2767 ENUM
2768 BFD_RELOC_AVR_LO8_LDI_NEG
2769 ENUMDOC
2770 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2771 (usually data memory address) into 8 bit immediate value of SUBI insn.
2772 ENUM
2773 BFD_RELOC_AVR_HI8_LDI_NEG
2774 ENUMDOC
2775 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2776 (high 8 bit of data memory address) into 8 bit immediate value of
2777 SUBI insn.
2778 ENUM
2779 BFD_RELOC_AVR_HH8_LDI_NEG
2780 ENUMDOC
2781 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2782 (most high 8 bit of program memory address) into 8 bit immediate value
2783 of LDI or SUBI insn.
2784 ENUM
2785 BFD_RELOC_AVR_LO8_LDI_PM
2786 ENUMDOC
2787 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2788 command address) into 8 bit immediate value of LDI insn.
2789 ENUM
2790 BFD_RELOC_AVR_HI8_LDI_PM
2791 ENUMDOC
2792 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2793 of command address) into 8 bit immediate value of LDI insn.
2794 ENUM
2795 BFD_RELOC_AVR_HH8_LDI_PM
2796 ENUMDOC
2797 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2798 of command address) into 8 bit immediate value of LDI insn.
2799 ENUM
2800 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2801 ENUMDOC
2802 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2803 (usually command address) into 8 bit immediate value of SUBI insn.
2804 ENUM
2805 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2806 ENUMDOC
2807 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2808 (high 8 bit of 16 bit command address) into 8 bit immediate value
2809 of SUBI insn.
2810 ENUM
2811 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2812 ENUMDOC
2813 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2814 (high 6 bit of 22 bit command address) into 8 bit immediate
2815 value of SUBI insn.
2816 ENUM
2817 BFD_RELOC_AVR_CALL
2818 ENUMDOC
2819 This is a 32 bit reloc for the AVR that stores 23 bit value
2820 into 22 bits.
2821
2822 ENUM
2823 BFD_RELOC_390_12
2824 ENUMDOC
2825 Direct 12 bit.
2826 ENUM
2827 BFD_RELOC_390_GOT12
2828 ENUMDOC
2829 12 bit GOT offset.
2830 ENUM
2831 BFD_RELOC_390_PLT32
2832 ENUMDOC
2833 32 bit PC relative PLT address.
2834 ENUM
2835 BFD_RELOC_390_COPY
2836 ENUMDOC
2837 Copy symbol at runtime.
2838 ENUM
2839 BFD_RELOC_390_GLOB_DAT
2840 ENUMDOC
2841 Create GOT entry.
2842 ENUM
2843 BFD_RELOC_390_JMP_SLOT
2844 ENUMDOC
2845 Create PLT entry.
2846 ENUM
2847 BFD_RELOC_390_RELATIVE
2848 ENUMDOC
2849 Adjust by program base.
2850 ENUM
2851 BFD_RELOC_390_GOTPC
2852 ENUMDOC
2853 32 bit PC relative offset to GOT.
2854 ENUM
2855 BFD_RELOC_390_GOT16
2856 ENUMDOC
2857 16 bit GOT offset.
2858 ENUM
2859 BFD_RELOC_390_PC16DBL
2860 ENUMDOC
2861 PC relative 16 bit shifted by 1.
2862 ENUM
2863 BFD_RELOC_390_PLT16DBL
2864 ENUMDOC
2865 16 bit PC rel. PLT shifted by 1.
2866 ENUM
2867 BFD_RELOC_390_PC32DBL
2868 ENUMDOC
2869 PC relative 32 bit shifted by 1.
2870 ENUM
2871 BFD_RELOC_390_PLT32DBL
2872 ENUMDOC
2873 32 bit PC rel. PLT shifted by 1.
2874 ENUM
2875 BFD_RELOC_390_GOTPCDBL
2876 ENUMDOC
2877 32 bit PC rel. GOT shifted by 1.
2878 ENUM
2879 BFD_RELOC_390_GOT64
2880 ENUMDOC
2881 64 bit GOT offset.
2882 ENUM
2883 BFD_RELOC_390_PLT64
2884 ENUMDOC
2885 64 bit PC relative PLT address.
2886 ENUM
2887 BFD_RELOC_390_GOTENT
2888 ENUMDOC
2889 32 bit rel. offset to GOT entry.
2890
2891 ENUM
2892 BFD_RELOC_VTABLE_INHERIT
2893 ENUMX
2894 BFD_RELOC_VTABLE_ENTRY
2895 ENUMDOC
2896 These two relocations are used by the linker to determine which of
2897 the entries in a C++ virtual function table are actually used. When
2898 the --gc-sections option is given, the linker will zero out the entries
2899 that are not used, so that the code for those functions need not be
2900 included in the output.
2901
2902 VTABLE_INHERIT is a zero-space relocation used to describe to the
2903 linker the inheritence tree of a C++ virtual function table. The
2904 relocation's symbol should be the parent class' vtable, and the
2905 relocation should be located at the child vtable.
2906
2907 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2908 virtual function table entry. The reloc's symbol should refer to the
2909 table of the class mentioned in the code. Off of that base, an offset
2910 describes the entry that is being used. For Rela hosts, this offset
2911 is stored in the reloc's addend. For Rel hosts, we are forced to put
2912 this offset in the reloc's section offset.
2913
2914 ENUM
2915 BFD_RELOC_IA64_IMM14
2916 ENUMX
2917 BFD_RELOC_IA64_IMM22
2918 ENUMX
2919 BFD_RELOC_IA64_IMM64
2920 ENUMX
2921 BFD_RELOC_IA64_DIR32MSB
2922 ENUMX
2923 BFD_RELOC_IA64_DIR32LSB
2924 ENUMX
2925 BFD_RELOC_IA64_DIR64MSB
2926 ENUMX
2927 BFD_RELOC_IA64_DIR64LSB
2928 ENUMX
2929 BFD_RELOC_IA64_GPREL22
2930 ENUMX
2931 BFD_RELOC_IA64_GPREL64I
2932 ENUMX
2933 BFD_RELOC_IA64_GPREL32MSB
2934 ENUMX
2935 BFD_RELOC_IA64_GPREL32LSB
2936 ENUMX
2937 BFD_RELOC_IA64_GPREL64MSB
2938 ENUMX
2939 BFD_RELOC_IA64_GPREL64LSB
2940 ENUMX
2941 BFD_RELOC_IA64_LTOFF22
2942 ENUMX
2943 BFD_RELOC_IA64_LTOFF64I
2944 ENUMX
2945 BFD_RELOC_IA64_PLTOFF22
2946 ENUMX
2947 BFD_RELOC_IA64_PLTOFF64I
2948 ENUMX
2949 BFD_RELOC_IA64_PLTOFF64MSB
2950 ENUMX
2951 BFD_RELOC_IA64_PLTOFF64LSB
2952 ENUMX
2953 BFD_RELOC_IA64_FPTR64I
2954 ENUMX
2955 BFD_RELOC_IA64_FPTR32MSB
2956 ENUMX
2957 BFD_RELOC_IA64_FPTR32LSB
2958 ENUMX
2959 BFD_RELOC_IA64_FPTR64MSB
2960 ENUMX
2961 BFD_RELOC_IA64_FPTR64LSB
2962 ENUMX
2963 BFD_RELOC_IA64_PCREL21B
2964 ENUMX
2965 BFD_RELOC_IA64_PCREL21BI
2966 ENUMX
2967 BFD_RELOC_IA64_PCREL21M
2968 ENUMX
2969 BFD_RELOC_IA64_PCREL21F
2970 ENUMX
2971 BFD_RELOC_IA64_PCREL22
2972 ENUMX
2973 BFD_RELOC_IA64_PCREL60B
2974 ENUMX
2975 BFD_RELOC_IA64_PCREL64I
2976 ENUMX
2977 BFD_RELOC_IA64_PCREL32MSB
2978 ENUMX
2979 BFD_RELOC_IA64_PCREL32LSB
2980 ENUMX
2981 BFD_RELOC_IA64_PCREL64MSB
2982 ENUMX
2983 BFD_RELOC_IA64_PCREL64LSB
2984 ENUMX
2985 BFD_RELOC_IA64_LTOFF_FPTR22
2986 ENUMX
2987 BFD_RELOC_IA64_LTOFF_FPTR64I
2988 ENUMX
2989 BFD_RELOC_IA64_LTOFF_FPTR32MSB
2990 ENUMX
2991 BFD_RELOC_IA64_LTOFF_FPTR32LSB
2992 ENUMX
2993 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2994 ENUMX
2995 BFD_RELOC_IA64_LTOFF_FPTR64LSB
2996 ENUMX
2997 BFD_RELOC_IA64_SEGREL32MSB
2998 ENUMX
2999 BFD_RELOC_IA64_SEGREL32LSB
3000 ENUMX
3001 BFD_RELOC_IA64_SEGREL64MSB
3002 ENUMX
3003 BFD_RELOC_IA64_SEGREL64LSB
3004 ENUMX
3005 BFD_RELOC_IA64_SECREL32MSB
3006 ENUMX
3007 BFD_RELOC_IA64_SECREL32LSB
3008 ENUMX
3009 BFD_RELOC_IA64_SECREL64MSB
3010 ENUMX
3011 BFD_RELOC_IA64_SECREL64LSB
3012 ENUMX
3013 BFD_RELOC_IA64_REL32MSB
3014 ENUMX
3015 BFD_RELOC_IA64_REL32LSB
3016 ENUMX
3017 BFD_RELOC_IA64_REL64MSB
3018 ENUMX
3019 BFD_RELOC_IA64_REL64LSB
3020 ENUMX
3021 BFD_RELOC_IA64_LTV32MSB
3022 ENUMX
3023 BFD_RELOC_IA64_LTV32LSB
3024 ENUMX
3025 BFD_RELOC_IA64_LTV64MSB
3026 ENUMX
3027 BFD_RELOC_IA64_LTV64LSB
3028 ENUMX
3029 BFD_RELOC_IA64_IPLTMSB
3030 ENUMX
3031 BFD_RELOC_IA64_IPLTLSB
3032 ENUMX
3033 BFD_RELOC_IA64_COPY
3034 ENUMX
3035 BFD_RELOC_IA64_TPREL22
3036 ENUMX
3037 BFD_RELOC_IA64_TPREL64MSB
3038 ENUMX
3039 BFD_RELOC_IA64_TPREL64LSB
3040 ENUMX
3041 BFD_RELOC_IA64_LTOFF_TP22
3042 ENUMX
3043 BFD_RELOC_IA64_LTOFF22X
3044 ENUMX
3045 BFD_RELOC_IA64_LDXMOV
3046 ENUMDOC
3047 Intel IA64 Relocations.
3048
3049 ENUM
3050 BFD_RELOC_M68HC11_HI8
3051 ENUMDOC
3052 Motorola 68HC11 reloc.
3053 This is the 8 bits high part of an absolute address.
3054 ENUM
3055 BFD_RELOC_M68HC11_LO8
3056 ENUMDOC
3057 Motorola 68HC11 reloc.
3058 This is the 8 bits low part of an absolute address.
3059 ENUM
3060 BFD_RELOC_M68HC11_3B
3061 ENUMDOC
3062 Motorola 68HC11 reloc.
3063 This is the 3 bits of a value.
3064
3065 ENUM
3066 BFD_RELOC_CRIS_BDISP8
3067 ENUMX
3068 BFD_RELOC_CRIS_UNSIGNED_5
3069 ENUMX
3070 BFD_RELOC_CRIS_SIGNED_6
3071 ENUMX
3072 BFD_RELOC_CRIS_UNSIGNED_6
3073 ENUMX
3074 BFD_RELOC_CRIS_UNSIGNED_4
3075 ENUMDOC
3076 These relocs are only used within the CRIS assembler. They are not
3077 (at present) written to any object files.
3078 ENUM
3079 BFD_RELOC_CRIS_COPY
3080 ENUMX
3081 BFD_RELOC_CRIS_GLOB_DAT
3082 ENUMX
3083 BFD_RELOC_CRIS_JUMP_SLOT
3084 ENUMX
3085 BFD_RELOC_CRIS_RELATIVE
3086 ENUMDOC
3087 Relocs used in ELF shared libraries for CRIS.
3088 ENUM
3089 BFD_RELOC_CRIS_32_GOT
3090 ENUMDOC
3091 32-bit offset to symbol-entry within GOT.
3092 ENUM
3093 BFD_RELOC_CRIS_16_GOT
3094 ENUMDOC
3095 16-bit offset to symbol-entry within GOT.
3096 ENUM
3097 BFD_RELOC_CRIS_32_GOTPLT
3098 ENUMDOC
3099 32-bit offset to symbol-entry within GOT, with PLT handling.
3100 ENUM
3101 BFD_RELOC_CRIS_16_GOTPLT
3102 ENUMDOC
3103 16-bit offset to symbol-entry within GOT, with PLT handling.
3104 ENUM
3105 BFD_RELOC_CRIS_32_GOTREL
3106 ENUMDOC
3107 32-bit offset to symbol, relative to GOT.
3108 ENUM
3109 BFD_RELOC_CRIS_32_PLT_GOTREL
3110 ENUMDOC
3111 32-bit offset to symbol with PLT entry, relative to GOT.
3112 ENUM
3113 BFD_RELOC_CRIS_32_PLT_PCREL
3114 ENUMDOC
3115 32-bit offset to symbol with PLT entry, relative to this relocation.
3116
3117 ENUM
3118 BFD_RELOC_860_COPY
3119 ENUMX
3120 BFD_RELOC_860_GLOB_DAT
3121 ENUMX
3122 BFD_RELOC_860_JUMP_SLOT
3123 ENUMX
3124 BFD_RELOC_860_RELATIVE
3125 ENUMX
3126 BFD_RELOC_860_PC26
3127 ENUMX
3128 BFD_RELOC_860_PLT26
3129 ENUMX
3130 BFD_RELOC_860_PC16
3131 ENUMX
3132 BFD_RELOC_860_LOW0
3133 ENUMX
3134 BFD_RELOC_860_SPLIT0
3135 ENUMX
3136 BFD_RELOC_860_LOW1
3137 ENUMX
3138 BFD_RELOC_860_SPLIT1
3139 ENUMX
3140 BFD_RELOC_860_LOW2
3141 ENUMX
3142 BFD_RELOC_860_SPLIT2
3143 ENUMX
3144 BFD_RELOC_860_LOW3
3145 ENUMX
3146 BFD_RELOC_860_LOGOT0
3147 ENUMX
3148 BFD_RELOC_860_SPGOT0
3149 ENUMX
3150 BFD_RELOC_860_LOGOT1
3151 ENUMX
3152 BFD_RELOC_860_SPGOT1
3153 ENUMX
3154 BFD_RELOC_860_LOGOTOFF0
3155 ENUMX
3156 BFD_RELOC_860_SPGOTOFF0
3157 ENUMX
3158 BFD_RELOC_860_LOGOTOFF1
3159 ENUMX
3160 BFD_RELOC_860_SPGOTOFF1
3161 ENUMX
3162 BFD_RELOC_860_LOGOTOFF2
3163 ENUMX
3164 BFD_RELOC_860_LOGOTOFF3
3165 ENUMX
3166 BFD_RELOC_860_LOPC
3167 ENUMX
3168 BFD_RELOC_860_HIGHADJ
3169 ENUMX
3170 BFD_RELOC_860_HAGOT
3171 ENUMX
3172 BFD_RELOC_860_HAGOTOFF
3173 ENUMX
3174 BFD_RELOC_860_HAPC
3175 ENUMX
3176 BFD_RELOC_860_HIGH
3177 ENUMX
3178 BFD_RELOC_860_HIGOT
3179 ENUMX
3180 BFD_RELOC_860_HIGOTOFF
3181 ENUMDOC
3182 Intel i860 Relocations.
3183
3184 ENUM
3185 BFD_RELOC_OPENRISC_ABS_26
3186 ENUMX
3187 BFD_RELOC_OPENRISC_REL_26
3188 ENUMDOC
3189 OpenRISC Relocations.
3190
3191 ENDSENUM
3192 BFD_RELOC_UNUSED
3193 CODE_FRAGMENT
3194 .
3195 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3196 */
3197
3198 /*
3199 FUNCTION
3200 bfd_reloc_type_lookup
3201
3202 SYNOPSIS
3203 reloc_howto_type *
3204 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3205
3206 DESCRIPTION
3207 Return a pointer to a howto structure which, when
3208 invoked, will perform the relocation @var{code} on data from the
3209 architecture noted.
3210
3211 */
3212
3213 reloc_howto_type *
3214 bfd_reloc_type_lookup (abfd, code)
3215 bfd *abfd;
3216 bfd_reloc_code_real_type code;
3217 {
3218 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3219 }
3220
3221 static reloc_howto_type bfd_howto_32 =
3222 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3223
3224 /*
3225 INTERNAL_FUNCTION
3226 bfd_default_reloc_type_lookup
3227
3228 SYNOPSIS
3229 reloc_howto_type *bfd_default_reloc_type_lookup
3230 (bfd *abfd, bfd_reloc_code_real_type code);
3231
3232 DESCRIPTION
3233 Provides a default relocation lookup routine for any architecture.
3234
3235 */
3236
3237 reloc_howto_type *
3238 bfd_default_reloc_type_lookup (abfd, code)
3239 bfd *abfd;
3240 bfd_reloc_code_real_type code;
3241 {
3242 switch (code)
3243 {
3244 case BFD_RELOC_CTOR:
3245 /* The type of reloc used in a ctor, which will be as wide as the
3246 address - so either a 64, 32, or 16 bitter. */
3247 switch (bfd_get_arch_info (abfd)->bits_per_address)
3248 {
3249 case 64:
3250 BFD_FAIL ();
3251 case 32:
3252 return &bfd_howto_32;
3253 case 16:
3254 BFD_FAIL ();
3255 default:
3256 BFD_FAIL ();
3257 }
3258 default:
3259 BFD_FAIL ();
3260 }
3261 return (reloc_howto_type *) NULL;
3262 }
3263
3264 /*
3265 FUNCTION
3266 bfd_get_reloc_code_name
3267
3268 SYNOPSIS
3269 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3270
3271 DESCRIPTION
3272 Provides a printable name for the supplied relocation code.
3273 Useful mainly for printing error messages.
3274 */
3275
3276 const char *
3277 bfd_get_reloc_code_name (code)
3278 bfd_reloc_code_real_type code;
3279 {
3280 if (code > BFD_RELOC_UNUSED)
3281 return 0;
3282 return bfd_reloc_code_real_names[(int)code];
3283 }
3284
3285 /*
3286 INTERNAL_FUNCTION
3287 bfd_generic_relax_section
3288
3289 SYNOPSIS
3290 boolean bfd_generic_relax_section
3291 (bfd *abfd,
3292 asection *section,
3293 struct bfd_link_info *,
3294 boolean *);
3295
3296 DESCRIPTION
3297 Provides default handling for relaxing for back ends which
3298 don't do relaxing -- i.e., does nothing.
3299 */
3300
3301 /*ARGSUSED*/
3302 boolean
3303 bfd_generic_relax_section (abfd, section, link_info, again)
3304 bfd *abfd ATTRIBUTE_UNUSED;
3305 asection *section ATTRIBUTE_UNUSED;
3306 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3307 boolean *again;
3308 {
3309 *again = false;
3310 return true;
3311 }
3312
3313 /*
3314 INTERNAL_FUNCTION
3315 bfd_generic_gc_sections
3316
3317 SYNOPSIS
3318 boolean bfd_generic_gc_sections
3319 (bfd *, struct bfd_link_info *);
3320
3321 DESCRIPTION
3322 Provides default handling for relaxing for back ends which
3323 don't do section gc -- i.e., does nothing.
3324 */
3325
3326 /*ARGSUSED*/
3327 boolean
3328 bfd_generic_gc_sections (abfd, link_info)
3329 bfd *abfd ATTRIBUTE_UNUSED;
3330 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3331 {
3332 return true;
3333 }
3334
3335 /*
3336 INTERNAL_FUNCTION
3337 bfd_generic_merge_sections
3338
3339 SYNOPSIS
3340 boolean bfd_generic_merge_sections
3341 (bfd *, struct bfd_link_info *);
3342
3343 DESCRIPTION
3344 Provides default handling for SEC_MERGE section merging for back ends
3345 which don't have SEC_MERGE support -- i.e., does nothing.
3346 */
3347
3348 /*ARGSUSED*/
3349 boolean
3350 bfd_generic_merge_sections (abfd, link_info)
3351 bfd *abfd ATTRIBUTE_UNUSED;
3352 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3353 {
3354 return true;
3355 }
3356
3357 /*
3358 INTERNAL_FUNCTION
3359 bfd_generic_get_relocated_section_contents
3360
3361 SYNOPSIS
3362 bfd_byte *
3363 bfd_generic_get_relocated_section_contents (bfd *abfd,
3364 struct bfd_link_info *link_info,
3365 struct bfd_link_order *link_order,
3366 bfd_byte *data,
3367 boolean relocateable,
3368 asymbol **symbols);
3369
3370 DESCRIPTION
3371 Provides default handling of relocation effort for back ends
3372 which can't be bothered to do it efficiently.
3373
3374 */
3375
3376 bfd_byte *
3377 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3378 relocateable, symbols)
3379 bfd *abfd;
3380 struct bfd_link_info *link_info;
3381 struct bfd_link_order *link_order;
3382 bfd_byte *data;
3383 boolean relocateable;
3384 asymbol **symbols;
3385 {
3386 /* Get enough memory to hold the stuff */
3387 bfd *input_bfd = link_order->u.indirect.section->owner;
3388 asection *input_section = link_order->u.indirect.section;
3389
3390 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3391 arelent **reloc_vector = NULL;
3392 long reloc_count;
3393
3394 if (reloc_size < 0)
3395 goto error_return;
3396
3397 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
3398 if (reloc_vector == NULL && reloc_size != 0)
3399 goto error_return;
3400
3401 /* read in the section */
3402 if (!bfd_get_section_contents (input_bfd,
3403 input_section,
3404 (PTR) data,
3405 0,
3406 input_section->_raw_size))
3407 goto error_return;
3408
3409 /* We're not relaxing the section, so just copy the size info */
3410 input_section->_cooked_size = input_section->_raw_size;
3411 input_section->reloc_done = true;
3412
3413 reloc_count = bfd_canonicalize_reloc (input_bfd,
3414 input_section,
3415 reloc_vector,
3416 symbols);
3417 if (reloc_count < 0)
3418 goto error_return;
3419
3420 if (reloc_count > 0)
3421 {
3422 arelent **parent;
3423 for (parent = reloc_vector; *parent != (arelent *) NULL;
3424 parent++)
3425 {
3426 char *error_message = (char *) NULL;
3427 bfd_reloc_status_type r =
3428 bfd_perform_relocation (input_bfd,
3429 *parent,
3430 (PTR) data,
3431 input_section,
3432 relocateable ? abfd : (bfd *) NULL,
3433 &error_message);
3434
3435 if (relocateable)
3436 {
3437 asection *os = input_section->output_section;
3438
3439 /* A partial link, so keep the relocs */
3440 os->orelocation[os->reloc_count] = *parent;
3441 os->reloc_count++;
3442 }
3443
3444 if (r != bfd_reloc_ok)
3445 {
3446 switch (r)
3447 {
3448 case bfd_reloc_undefined:
3449 if (!((*link_info->callbacks->undefined_symbol)
3450 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3451 input_bfd, input_section, (*parent)->address,
3452 true)))
3453 goto error_return;
3454 break;
3455 case bfd_reloc_dangerous:
3456 BFD_ASSERT (error_message != (char *) NULL);
3457 if (!((*link_info->callbacks->reloc_dangerous)
3458 (link_info, error_message, input_bfd, input_section,
3459 (*parent)->address)))
3460 goto error_return;
3461 break;
3462 case bfd_reloc_overflow:
3463 if (!((*link_info->callbacks->reloc_overflow)
3464 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3465 (*parent)->howto->name, (*parent)->addend,
3466 input_bfd, input_section, (*parent)->address)))
3467 goto error_return;
3468 break;
3469 case bfd_reloc_outofrange:
3470 default:
3471 abort ();
3472 break;
3473 }
3474
3475 }
3476 }
3477 }
3478 if (reloc_vector != NULL)
3479 free (reloc_vector);
3480 return data;
3481
3482 error_return:
3483 if (reloc_vector != NULL)
3484 free (reloc_vector);
3485 return NULL;
3486 }