]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/reloc.c
Touches most files in bfd/, so likely will be blamed for everything..
[thirdparty/binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
29 en-masse and translated into an internal form. A common
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40 @menu
41 @* typedef arelent::
42 @* howto manager::
43 @end menu
44
45 */
46
47 /* DO compile in the reloc_code name table from libbfd.h. */
48 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50 #include "bfd.h"
51 #include "sysdep.h"
52 #include "bfdlink.h"
53 #include "libbfd.h"
54 /*
55 DOCDD
56 INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59 SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64 CODE_FRAGMENT
65 .
66 .typedef enum bfd_reloc_status
67 .{
68 . {* No errors detected *}
69 . bfd_reloc_ok,
70 .
71 . {* The relocation was performed, but there was an overflow. *}
72 . bfd_reloc_overflow,
73 .
74 . {* The address to relocate was not within the section supplied. *}
75 . bfd_reloc_outofrange,
76 .
77 . {* Used by special functions *}
78 . bfd_reloc_continue,
79 .
80 . {* Unsupported relocation size requested. *}
81 . bfd_reloc_notsupported,
82 .
83 . {* Unused *}
84 . bfd_reloc_other,
85 .
86 . {* The symbol to relocate against was undefined. *}
87 . bfd_reloc_undefined,
88 .
89 . {* The relocation was performed, but may not be ok - presently
90 . generated only when linking i960 coff files with i960 b.out
91 . symbols. If this type is returned, the error_message argument
92 . to bfd_perform_relocation will be set. *}
93 . bfd_reloc_dangerous
94 . }
95 . bfd_reloc_status_type;
96 .
97 .
98 .typedef struct reloc_cache_entry
99 .{
100 . {* A pointer into the canonical table of pointers *}
101 . struct symbol_cache_entry **sym_ptr_ptr;
102 .
103 . {* offset in section *}
104 . bfd_size_type address;
105 .
106 . {* addend for relocation value *}
107 . bfd_vma addend;
108 .
109 . {* Pointer to how to perform the required relocation *}
110 . reloc_howto_type *howto;
111 .
112 .} arelent;
113
114 */
115
116 /*
117 DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
150 | char foo[];
151 | main()
152 | {
153 | return foo[0x12345678];
154 | }
155
156 Could be compiled into:
157
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
163
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
167 |RELOCATION RECORDS FOR [.text]:
168 |offset type value
169 |00000006 32 _foo
170 |
171 |00000000 4e56 fffc ; linkw fp,#-4
172 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
173 |0000000a 49c0 ; extbl d0
174 |0000000c 4e5e ; unlk fp
175 |0000000e 4e75 ; rts
176
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
181 | or.u r13,r0,hi16(_foo+0x12345678)
182 | ld.b r2,r13,lo16(_foo+0x12345678)
183 | jmp r1
184
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
188 |RELOCATION RECORDS FOR [.text]:
189 |offset type value
190 |00000002 HVRT16 _foo+0x12340000
191 |00000006 LVRT16 _foo+0x12340000
192 |
193 |00000000 5da05678 ; or.u r13,r0,0x5678
194 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
195 |00000008 f400c001 ; jmp r1
196
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210 | save %sp,-112,%sp
211 | sethi %hi(_foo+0x12345678),%g2
212 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
213 | ret
214 | restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
219 |RELOCATION RECORDS FOR [.text]:
220 |offset type value
221 |00000004 HI22 _foo+0x12345678
222 |00000008 LO10 _foo+0x12345678
223 |
224 |00000000 9de3bf90 ; save %sp,-112,%sp
225 |00000004 05000000 ; sethi %hi(_foo+0),%g2
226 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227 |0000000c 81c7e008 ; ret
228 |00000010 81e80000 ; restore
229
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240 */
241
242 /*
243 SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249 CODE_FRAGMENT
250 .
251 .enum complain_overflow
252 .{
253 . {* Do not complain on overflow. *}
254 . complain_overflow_dont,
255 .
256 . {* Complain if the bitfield overflows, whether it is considered
257 . as signed or unsigned. *}
258 . complain_overflow_bitfield,
259 .
260 . {* Complain if the value overflows when considered as signed
261 . number. *}
262 . complain_overflow_signed,
263 .
264 . {* Complain if the value overflows when considered as an
265 . unsigned number. *}
266 . complain_overflow_unsigned
267 .};
268
269 */
270
271 /*
272 SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278 CODE_FRAGMENT
279 .struct symbol_cache_entry; {* Forward declaration *}
280 .
281 .struct reloc_howto_struct
282 .{
283 . {* The type field has mainly a documentary use - the back end can
284 . do what it wants with it, though normally the back end's
285 . external idea of what a reloc number is stored
286 . in this field. For example, a PC relative word relocation
287 . in a coff environment has the type 023 - because that's
288 . what the outside world calls a R_PCRWORD reloc. *}
289 . unsigned int type;
290 .
291 . {* The value the final relocation is shifted right by. This drops
292 . unwanted data from the relocation. *}
293 . unsigned int rightshift;
294 .
295 . {* The size of the item to be relocated. This is *not* a
296 . power-of-two measure. To get the number of bytes operated
297 . on by a type of relocation, use bfd_get_reloc_size. *}
298 . int size;
299 .
300 . {* The number of bits in the item to be relocated. This is used
301 . when doing overflow checking. *}
302 . unsigned int bitsize;
303 .
304 . {* Notes that the relocation is relative to the location in the
305 . data section of the addend. The relocation function will
306 . subtract from the relocation value the address of the location
307 . being relocated. *}
308 . boolean pc_relative;
309 .
310 . {* The bit position of the reloc value in the destination.
311 . The relocated value is left shifted by this amount. *}
312 . unsigned int bitpos;
313 .
314 . {* What type of overflow error should be checked for when
315 . relocating. *}
316 . enum complain_overflow complain_on_overflow;
317 .
318 . {* If this field is non null, then the supplied function is
319 . called rather than the normal function. This allows really
320 . strange relocation methods to be accomodated (e.g., i960 callj
321 . instructions). *}
322 . bfd_reloc_status_type (*special_function)
323 . PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
324 . bfd *, char **));
325 .
326 . {* The textual name of the relocation type. *}
327 . char *name;
328 .
329 . {* Some formats record a relocation addend in the section contents
330 . rather than with the relocation. For ELF formats this is the
331 . distinction between USE_REL and USE_RELA (though the code checks
332 . for USE_REL == 1/0). The value of this field is TRUE if the
333 . addend is recorded with the section contents; when performing a
334 . partial link (ld -r) the section contents (the data) will be
335 . modified. The value of this field is FALSE if addends are
336 . recorded with the relocation (in arelent.addend); when performing
337 . a partial link the relocation will be modified.
338 . All relocations for all ELF USE_RELA targets should set this field
339 . to FALSE (values of TRUE should be looked on with suspicion).
340 . However, the converse is not true: not all relocations of all ELF
341 . USE_REL targets set this field to TRUE. Why this is so is peculiar
342 . to each particular target. For relocs that aren't used in partial
343 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
344 . boolean partial_inplace;
345 .
346 . {* The src_mask selects which parts of the read in data
347 . are to be used in the relocation sum. E.g., if this was an 8 bit
348 . byte of data which we read and relocated, this would be
349 . 0x000000ff. When we have relocs which have an addend, such as
350 . sun4 extended relocs, the value in the offset part of a
351 . relocating field is garbage so we never use it. In this case
352 . the mask would be 0x00000000. *}
353 . bfd_vma src_mask;
354 .
355 . {* The dst_mask selects which parts of the instruction are replaced
356 . into the instruction. In most cases src_mask == dst_mask,
357 . except in the above special case, where dst_mask would be
358 . 0x000000ff, and src_mask would be 0x00000000. *}
359 . bfd_vma dst_mask;
360 .
361 . {* When some formats create PC relative instructions, they leave
362 . the value of the pc of the place being relocated in the offset
363 . slot of the instruction, so that a PC relative relocation can
364 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
365 . Some formats leave the displacement part of an instruction
366 . empty (e.g., m88k bcs); this flag signals the fact. *}
367 . boolean pcrel_offset;
368 .};
369
370 */
371
372 /*
373 FUNCTION
374 The HOWTO Macro
375
376 DESCRIPTION
377 The HOWTO define is horrible and will go away.
378
379 .#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
380 . { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
381
382 DESCRIPTION
383 And will be replaced with the totally magic way. But for the
384 moment, we are compatible, so do it this way.
385
386 .#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
387 . HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
388 . NAME, false, 0, 0, IN)
389 .
390
391 DESCRIPTION
392 This is used to fill in an empty howto entry in an array.
393
394 .#define EMPTY_HOWTO(C) \
395 . HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
396 . NULL, false, 0, 0, false)
397 .
398
399 DESCRIPTION
400 Helper routine to turn a symbol into a relocation value.
401
402 .#define HOWTO_PREPARE(relocation, symbol) \
403 . { \
404 . if (symbol != (asymbol *) NULL) \
405 . { \
406 . if (bfd_is_com_section (symbol->section)) \
407 . { \
408 . relocation = 0; \
409 . } \
410 . else \
411 . { \
412 . relocation = symbol->value; \
413 . } \
414 . } \
415 . }
416
417 */
418
419 /*
420 FUNCTION
421 bfd_get_reloc_size
422
423 SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426 DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431 unsigned int
432 bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434 {
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446 }
447
448 /*
449 TYPEDEF
450 arelent_chain
451
452 DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
456 .typedef struct relent_chain
457 .{
458 . arelent relent;
459 . struct relent_chain *next;
460 .} arelent_chain;
461
462 */
463
464 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
465 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
466
467 /*
468 FUNCTION
469 bfd_check_overflow
470
471 SYNOPSIS
472 bfd_reloc_status_type
473 bfd_check_overflow
474 (enum complain_overflow how,
475 unsigned int bitsize,
476 unsigned int rightshift,
477 unsigned int addrsize,
478 bfd_vma relocation);
479
480 DESCRIPTION
481 Perform overflow checking on @var{relocation} which has
482 @var{bitsize} significant bits and will be shifted right by
483 @var{rightshift} bits, on a machine with addresses containing
484 @var{addrsize} significant bits. The result is either of
485 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
486
487 */
488
489 bfd_reloc_status_type
490 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
491 enum complain_overflow how;
492 unsigned int bitsize;
493 unsigned int rightshift;
494 unsigned int addrsize;
495 bfd_vma relocation;
496 {
497 bfd_vma fieldmask, addrmask, signmask, ss, a;
498 bfd_reloc_status_type flag = bfd_reloc_ok;
499
500 a = relocation;
501
502 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
503 we'll be permissive: extra bits in the field mask will
504 automatically extend the address mask for purposes of the
505 overflow check. */
506 fieldmask = N_ONES (bitsize);
507 addrmask = N_ONES (addrsize) | fieldmask;
508
509 switch (how)
510 {
511 case complain_overflow_dont:
512 break;
513
514 case complain_overflow_signed:
515 /* If any sign bits are set, all sign bits must be set. That
516 is, A must be a valid negative address after shifting. */
517 a = (a & addrmask) >> rightshift;
518 signmask = ~ (fieldmask >> 1);
519 ss = a & signmask;
520 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
521 flag = bfd_reloc_overflow;
522 break;
523
524 case complain_overflow_unsigned:
525 /* We have an overflow if the address does not fit in the field. */
526 a = (a & addrmask) >> rightshift;
527 if ((a & ~ fieldmask) != 0)
528 flag = bfd_reloc_overflow;
529 break;
530
531 case complain_overflow_bitfield:
532 /* Bitfields are sometimes signed, sometimes unsigned. We
533 explicitly allow an address wrap too, which means a bitfield
534 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
535 if the value has some, but not all, bits set outside the
536 field. */
537 a >>= rightshift;
538 ss = a & ~ fieldmask;
539 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
540 flag = bfd_reloc_overflow;
541 break;
542
543 default:
544 abort ();
545 }
546
547 return flag;
548 }
549
550 /*
551 FUNCTION
552 bfd_perform_relocation
553
554 SYNOPSIS
555 bfd_reloc_status_type
556 bfd_perform_relocation
557 (bfd *abfd,
558 arelent *reloc_entry,
559 PTR data,
560 asection *input_section,
561 bfd *output_bfd,
562 char **error_message);
563
564 DESCRIPTION
565 If @var{output_bfd} is supplied to this function, the
566 generated image will be relocatable; the relocations are
567 copied to the output file after they have been changed to
568 reflect the new state of the world. There are two ways of
569 reflecting the results of partial linkage in an output file:
570 by modifying the output data in place, and by modifying the
571 relocation record. Some native formats (e.g., basic a.out and
572 basic coff) have no way of specifying an addend in the
573 relocation type, so the addend has to go in the output data.
574 This is no big deal since in these formats the output data
575 slot will always be big enough for the addend. Complex reloc
576 types with addends were invented to solve just this problem.
577 The @var{error_message} argument is set to an error message if
578 this return @code{bfd_reloc_dangerous}.
579
580 */
581
582 bfd_reloc_status_type
583 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
584 error_message)
585 bfd *abfd;
586 arelent *reloc_entry;
587 PTR data;
588 asection *input_section;
589 bfd *output_bfd;
590 char **error_message;
591 {
592 bfd_vma relocation;
593 bfd_reloc_status_type flag = bfd_reloc_ok;
594 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
595 bfd_vma output_base = 0;
596 reloc_howto_type *howto = reloc_entry->howto;
597 asection *reloc_target_output_section;
598 asymbol *symbol;
599
600 symbol = *(reloc_entry->sym_ptr_ptr);
601 if (bfd_is_abs_section (symbol->section)
602 && output_bfd != (bfd *) NULL)
603 {
604 reloc_entry->address += input_section->output_offset;
605 return bfd_reloc_ok;
606 }
607
608 /* If we are not producing relocateable output, return an error if
609 the symbol is not defined. An undefined weak symbol is
610 considered to have a value of zero (SVR4 ABI, p. 4-27). */
611 if (bfd_is_und_section (symbol->section)
612 && (symbol->flags & BSF_WEAK) == 0
613 && output_bfd == (bfd *) NULL)
614 flag = bfd_reloc_undefined;
615
616 /* If there is a function supplied to handle this relocation type,
617 call it. It'll return `bfd_reloc_continue' if further processing
618 can be done. */
619 if (howto->special_function)
620 {
621 bfd_reloc_status_type cont;
622 cont = howto->special_function (abfd, reloc_entry, symbol, data,
623 input_section, output_bfd,
624 error_message);
625 if (cont != bfd_reloc_continue)
626 return cont;
627 }
628
629 /* Is the address of the relocation really within the section? */
630 if (reloc_entry->address > input_section->_cooked_size /
631 bfd_octets_per_byte (abfd))
632 return bfd_reloc_outofrange;
633
634 /* Work out which section the relocation is targetted at and the
635 initial relocation command value. */
636
637 /* Get symbol value. (Common symbols are special.) */
638 if (bfd_is_com_section (symbol->section))
639 relocation = 0;
640 else
641 relocation = symbol->value;
642
643 reloc_target_output_section = symbol->section->output_section;
644
645 /* Convert input-section-relative symbol value to absolute. */
646 if (output_bfd && howto->partial_inplace == false)
647 output_base = 0;
648 else
649 output_base = reloc_target_output_section->vma;
650
651 relocation += output_base + symbol->section->output_offset;
652
653 /* Add in supplied addend. */
654 relocation += reloc_entry->addend;
655
656 /* Here the variable relocation holds the final address of the
657 symbol we are relocating against, plus any addend. */
658
659 if (howto->pc_relative == true)
660 {
661 /* This is a PC relative relocation. We want to set RELOCATION
662 to the distance between the address of the symbol and the
663 location. RELOCATION is already the address of the symbol.
664
665 We start by subtracting the address of the section containing
666 the location.
667
668 If pcrel_offset is set, we must further subtract the position
669 of the location within the section. Some targets arrange for
670 the addend to be the negative of the position of the location
671 within the section; for example, i386-aout does this. For
672 i386-aout, pcrel_offset is false. Some other targets do not
673 include the position of the location; for example, m88kbcs,
674 or ELF. For those targets, pcrel_offset is true.
675
676 If we are producing relocateable output, then we must ensure
677 that this reloc will be correctly computed when the final
678 relocation is done. If pcrel_offset is false we want to wind
679 up with the negative of the location within the section,
680 which means we must adjust the existing addend by the change
681 in the location within the section. If pcrel_offset is true
682 we do not want to adjust the existing addend at all.
683
684 FIXME: This seems logical to me, but for the case of
685 producing relocateable output it is not what the code
686 actually does. I don't want to change it, because it seems
687 far too likely that something will break. */
688
689 relocation -=
690 input_section->output_section->vma + input_section->output_offset;
691
692 if (howto->pcrel_offset == true)
693 relocation -= reloc_entry->address;
694 }
695
696 if (output_bfd != (bfd *) NULL)
697 {
698 if (howto->partial_inplace == false)
699 {
700 /* This is a partial relocation, and we want to apply the relocation
701 to the reloc entry rather than the raw data. Modify the reloc
702 inplace to reflect what we now know. */
703 reloc_entry->addend = relocation;
704 reloc_entry->address += input_section->output_offset;
705 return flag;
706 }
707 else
708 {
709 /* This is a partial relocation, but inplace, so modify the
710 reloc record a bit.
711
712 If we've relocated with a symbol with a section, change
713 into a ref to the section belonging to the symbol. */
714
715 reloc_entry->address += input_section->output_offset;
716
717 /* WTF?? */
718 if (abfd->xvec->flavour == bfd_target_coff_flavour
719 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
720 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
721 {
722 #if 1
723 /* For m68k-coff, the addend was being subtracted twice during
724 relocation with -r. Removing the line below this comment
725 fixes that problem; see PR 2953.
726
727 However, Ian wrote the following, regarding removing the line below,
728 which explains why it is still enabled: --djm
729
730 If you put a patch like that into BFD you need to check all the COFF
731 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
732 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
733 problem in a different way. There may very well be a reason that the
734 code works as it does.
735
736 Hmmm. The first obvious point is that bfd_perform_relocation should
737 not have any tests that depend upon the flavour. It's seem like
738 entirely the wrong place for such a thing. The second obvious point
739 is that the current code ignores the reloc addend when producing
740 relocateable output for COFF. That's peculiar. In fact, I really
741 have no idea what the point of the line you want to remove is.
742
743 A typical COFF reloc subtracts the old value of the symbol and adds in
744 the new value to the location in the object file (if it's a pc
745 relative reloc it adds the difference between the symbol value and the
746 location). When relocating we need to preserve that property.
747
748 BFD handles this by setting the addend to the negative of the old
749 value of the symbol. Unfortunately it handles common symbols in a
750 non-standard way (it doesn't subtract the old value) but that's a
751 different story (we can't change it without losing backward
752 compatibility with old object files) (coff-i386 does subtract the old
753 value, to be compatible with existing coff-i386 targets, like SCO).
754
755 So everything works fine when not producing relocateable output. When
756 we are producing relocateable output, logically we should do exactly
757 what we do when not producing relocateable output. Therefore, your
758 patch is correct. In fact, it should probably always just set
759 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
760 add the value into the object file. This won't hurt the COFF code,
761 which doesn't use the addend; I'm not sure what it will do to other
762 formats (the thing to check for would be whether any formats both use
763 the addend and set partial_inplace).
764
765 When I wanted to make coff-i386 produce relocateable output, I ran
766 into the problem that you are running into: I wanted to remove that
767 line. Rather than risk it, I made the coff-i386 relocs use a special
768 function; it's coff_i386_reloc in coff-i386.c. The function
769 specifically adds the addend field into the object file, knowing that
770 bfd_perform_relocation is not going to. If you remove that line, then
771 coff-i386.c will wind up adding the addend field in twice. It's
772 trivial to fix; it just needs to be done.
773
774 The problem with removing the line is just that it may break some
775 working code. With BFD it's hard to be sure of anything. The right
776 way to deal with this is simply to build and test at least all the
777 supported COFF targets. It should be straightforward if time and disk
778 space consuming. For each target:
779 1) build the linker
780 2) generate some executable, and link it using -r (I would
781 probably use paranoia.o and link against newlib/libc.a, which
782 for all the supported targets would be available in
783 /usr/cygnus/progressive/H-host/target/lib/libc.a).
784 3) make the change to reloc.c
785 4) rebuild the linker
786 5) repeat step 2
787 6) if the resulting object files are the same, you have at least
788 made it no worse
789 7) if they are different you have to figure out which version is
790 right
791 */
792 relocation -= reloc_entry->addend;
793 #endif
794 reloc_entry->addend = 0;
795 }
796 else
797 {
798 reloc_entry->addend = relocation;
799 }
800 }
801 }
802 else
803 {
804 reloc_entry->addend = 0;
805 }
806
807 /* FIXME: This overflow checking is incomplete, because the value
808 might have overflowed before we get here. For a correct check we
809 need to compute the value in a size larger than bitsize, but we
810 can't reasonably do that for a reloc the same size as a host
811 machine word.
812 FIXME: We should also do overflow checking on the result after
813 adding in the value contained in the object file. */
814 if (howto->complain_on_overflow != complain_overflow_dont
815 && flag == bfd_reloc_ok)
816 flag = bfd_check_overflow (howto->complain_on_overflow,
817 howto->bitsize,
818 howto->rightshift,
819 bfd_arch_bits_per_address (abfd),
820 relocation);
821
822 /*
823 Either we are relocating all the way, or we don't want to apply
824 the relocation to the reloc entry (probably because there isn't
825 any room in the output format to describe addends to relocs)
826 */
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
853 /* Shift everything up to where it's going to be used */
854
855 relocation <<= (bfd_vma) howto->bitpos;
856
857 /* Wait for the day when all have the mask in them */
858
859 /* What we do:
860 i instruction to be left alone
861 o offset within instruction
862 r relocation offset to apply
863 S src mask
864 D dst mask
865 N ~dst mask
866 A part 1
867 B part 2
868 R result
869
870 Do this:
871 (( i i i i i o o o o o from bfd_get<size>
872 and S S S S S) to get the size offset we want
873 + r r r r r r r r r r) to get the final value to place
874 and D D D D D to chop to right size
875 -----------------------
876 = A A A A A
877 And this:
878 ( i i i i i o o o o o from bfd_get<size>
879 and N N N N N ) get instruction
880 -----------------------
881 = B B B B B
882
883 And then:
884 ( B B B B B
885 or A A A A A)
886 -----------------------
887 = R R R R R R R R R R put into bfd_put<size>
888 */
889
890 #define DOIT(x) \
891 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
892
893 switch (howto->size)
894 {
895 case 0:
896 {
897 char x = bfd_get_8 (abfd, (char *) data + octets);
898 DOIT (x);
899 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
900 }
901 break;
902
903 case 1:
904 {
905 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
906 DOIT (x);
907 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
908 }
909 break;
910 case 2:
911 {
912 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
913 DOIT (x);
914 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
915 }
916 break;
917 case -2:
918 {
919 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
920 relocation = -relocation;
921 DOIT (x);
922 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
923 }
924 break;
925
926 case -1:
927 {
928 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
929 relocation = -relocation;
930 DOIT (x);
931 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
932 }
933 break;
934
935 case 3:
936 /* Do nothing */
937 break;
938
939 case 4:
940 #ifdef BFD64
941 {
942 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
943 DOIT (x);
944 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
945 }
946 #else
947 abort ();
948 #endif
949 break;
950 default:
951 return bfd_reloc_other;
952 }
953
954 return flag;
955 }
956
957 /*
958 FUNCTION
959 bfd_install_relocation
960
961 SYNOPSIS
962 bfd_reloc_status_type
963 bfd_install_relocation
964 (bfd *abfd,
965 arelent *reloc_entry,
966 PTR data, bfd_vma data_start,
967 asection *input_section,
968 char **error_message);
969
970 DESCRIPTION
971 This looks remarkably like <<bfd_perform_relocation>>, except it
972 does not expect that the section contents have been filled in.
973 I.e., it's suitable for use when creating, rather than applying
974 a relocation.
975
976 For now, this function should be considered reserved for the
977 assembler.
978
979 */
980
981 bfd_reloc_status_type
982 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
983 input_section, error_message)
984 bfd *abfd;
985 arelent *reloc_entry;
986 PTR data_start;
987 bfd_vma data_start_offset;
988 asection *input_section;
989 char **error_message;
990 {
991 bfd_vma relocation;
992 bfd_reloc_status_type flag = bfd_reloc_ok;
993 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
994 bfd_vma output_base = 0;
995 reloc_howto_type *howto = reloc_entry->howto;
996 asection *reloc_target_output_section;
997 asymbol *symbol;
998 bfd_byte *data;
999
1000 symbol = *(reloc_entry->sym_ptr_ptr);
1001 if (bfd_is_abs_section (symbol->section))
1002 {
1003 reloc_entry->address += input_section->output_offset;
1004 return bfd_reloc_ok;
1005 }
1006
1007 /* If there is a function supplied to handle this relocation type,
1008 call it. It'll return `bfd_reloc_continue' if further processing
1009 can be done. */
1010 if (howto->special_function)
1011 {
1012 bfd_reloc_status_type cont;
1013
1014 /* XXX - The special_function calls haven't been fixed up to deal
1015 with creating new relocations and section contents. */
1016 cont = howto->special_function (abfd, reloc_entry, symbol,
1017 /* XXX - Non-portable! */
1018 ((bfd_byte *) data_start
1019 - data_start_offset),
1020 input_section, abfd, error_message);
1021 if (cont != bfd_reloc_continue)
1022 return cont;
1023 }
1024
1025 /* Is the address of the relocation really within the section? */
1026 if (reloc_entry->address > input_section->_cooked_size)
1027 return bfd_reloc_outofrange;
1028
1029 /* Work out which section the relocation is targetted at and the
1030 initial relocation command value. */
1031
1032 /* Get symbol value. (Common symbols are special.) */
1033 if (bfd_is_com_section (symbol->section))
1034 relocation = 0;
1035 else
1036 relocation = symbol->value;
1037
1038 reloc_target_output_section = symbol->section->output_section;
1039
1040 /* Convert input-section-relative symbol value to absolute. */
1041 if (howto->partial_inplace == false)
1042 output_base = 0;
1043 else
1044 output_base = reloc_target_output_section->vma;
1045
1046 relocation += output_base + symbol->section->output_offset;
1047
1048 /* Add in supplied addend. */
1049 relocation += reloc_entry->addend;
1050
1051 /* Here the variable relocation holds the final address of the
1052 symbol we are relocating against, plus any addend. */
1053
1054 if (howto->pc_relative == true)
1055 {
1056 /* This is a PC relative relocation. We want to set RELOCATION
1057 to the distance between the address of the symbol and the
1058 location. RELOCATION is already the address of the symbol.
1059
1060 We start by subtracting the address of the section containing
1061 the location.
1062
1063 If pcrel_offset is set, we must further subtract the position
1064 of the location within the section. Some targets arrange for
1065 the addend to be the negative of the position of the location
1066 within the section; for example, i386-aout does this. For
1067 i386-aout, pcrel_offset is false. Some other targets do not
1068 include the position of the location; for example, m88kbcs,
1069 or ELF. For those targets, pcrel_offset is true.
1070
1071 If we are producing relocateable output, then we must ensure
1072 that this reloc will be correctly computed when the final
1073 relocation is done. If pcrel_offset is false we want to wind
1074 up with the negative of the location within the section,
1075 which means we must adjust the existing addend by the change
1076 in the location within the section. If pcrel_offset is true
1077 we do not want to adjust the existing addend at all.
1078
1079 FIXME: This seems logical to me, but for the case of
1080 producing relocateable output it is not what the code
1081 actually does. I don't want to change it, because it seems
1082 far too likely that something will break. */
1083
1084 relocation -=
1085 input_section->output_section->vma + input_section->output_offset;
1086
1087 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1088 relocation -= reloc_entry->address;
1089 }
1090
1091 if (howto->partial_inplace == false)
1092 {
1093 /* This is a partial relocation, and we want to apply the relocation
1094 to the reloc entry rather than the raw data. Modify the reloc
1095 inplace to reflect what we now know. */
1096 reloc_entry->addend = relocation;
1097 reloc_entry->address += input_section->output_offset;
1098 return flag;
1099 }
1100 else
1101 {
1102 /* This is a partial relocation, but inplace, so modify the
1103 reloc record a bit.
1104
1105 If we've relocated with a symbol with a section, change
1106 into a ref to the section belonging to the symbol. */
1107
1108 reloc_entry->address += input_section->output_offset;
1109
1110 /* WTF?? */
1111 if (abfd->xvec->flavour == bfd_target_coff_flavour
1112 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1113 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1114 {
1115 #if 1
1116 /* For m68k-coff, the addend was being subtracted twice during
1117 relocation with -r. Removing the line below this comment
1118 fixes that problem; see PR 2953.
1119
1120 However, Ian wrote the following, regarding removing the line below,
1121 which explains why it is still enabled: --djm
1122
1123 If you put a patch like that into BFD you need to check all the COFF
1124 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1125 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1126 problem in a different way. There may very well be a reason that the
1127 code works as it does.
1128
1129 Hmmm. The first obvious point is that bfd_install_relocation should
1130 not have any tests that depend upon the flavour. It's seem like
1131 entirely the wrong place for such a thing. The second obvious point
1132 is that the current code ignores the reloc addend when producing
1133 relocateable output for COFF. That's peculiar. In fact, I really
1134 have no idea what the point of the line you want to remove is.
1135
1136 A typical COFF reloc subtracts the old value of the symbol and adds in
1137 the new value to the location in the object file (if it's a pc
1138 relative reloc it adds the difference between the symbol value and the
1139 location). When relocating we need to preserve that property.
1140
1141 BFD handles this by setting the addend to the negative of the old
1142 value of the symbol. Unfortunately it handles common symbols in a
1143 non-standard way (it doesn't subtract the old value) but that's a
1144 different story (we can't change it without losing backward
1145 compatibility with old object files) (coff-i386 does subtract the old
1146 value, to be compatible with existing coff-i386 targets, like SCO).
1147
1148 So everything works fine when not producing relocateable output. When
1149 we are producing relocateable output, logically we should do exactly
1150 what we do when not producing relocateable output. Therefore, your
1151 patch is correct. In fact, it should probably always just set
1152 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1153 add the value into the object file. This won't hurt the COFF code,
1154 which doesn't use the addend; I'm not sure what it will do to other
1155 formats (the thing to check for would be whether any formats both use
1156 the addend and set partial_inplace).
1157
1158 When I wanted to make coff-i386 produce relocateable output, I ran
1159 into the problem that you are running into: I wanted to remove that
1160 line. Rather than risk it, I made the coff-i386 relocs use a special
1161 function; it's coff_i386_reloc in coff-i386.c. The function
1162 specifically adds the addend field into the object file, knowing that
1163 bfd_install_relocation is not going to. If you remove that line, then
1164 coff-i386.c will wind up adding the addend field in twice. It's
1165 trivial to fix; it just needs to be done.
1166
1167 The problem with removing the line is just that it may break some
1168 working code. With BFD it's hard to be sure of anything. The right
1169 way to deal with this is simply to build and test at least all the
1170 supported COFF targets. It should be straightforward if time and disk
1171 space consuming. For each target:
1172 1) build the linker
1173 2) generate some executable, and link it using -r (I would
1174 probably use paranoia.o and link against newlib/libc.a, which
1175 for all the supported targets would be available in
1176 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1177 3) make the change to reloc.c
1178 4) rebuild the linker
1179 5) repeat step 2
1180 6) if the resulting object files are the same, you have at least
1181 made it no worse
1182 7) if they are different you have to figure out which version is
1183 right
1184 */
1185 relocation -= reloc_entry->addend;
1186 #endif
1187 reloc_entry->addend = 0;
1188 }
1189 else
1190 {
1191 reloc_entry->addend = relocation;
1192 }
1193 }
1194
1195 /* FIXME: This overflow checking is incomplete, because the value
1196 might have overflowed before we get here. For a correct check we
1197 need to compute the value in a size larger than bitsize, but we
1198 can't reasonably do that for a reloc the same size as a host
1199 machine word.
1200 FIXME: We should also do overflow checking on the result after
1201 adding in the value contained in the object file. */
1202 if (howto->complain_on_overflow != complain_overflow_dont)
1203 flag = bfd_check_overflow (howto->complain_on_overflow,
1204 howto->bitsize,
1205 howto->rightshift,
1206 bfd_arch_bits_per_address (abfd),
1207 relocation);
1208
1209 /*
1210 Either we are relocating all the way, or we don't want to apply
1211 the relocation to the reloc entry (probably because there isn't
1212 any room in the output format to describe addends to relocs)
1213 */
1214
1215 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1216 (OSF version 1.3, compiler version 3.11). It miscompiles the
1217 following program:
1218
1219 struct str
1220 {
1221 unsigned int i0;
1222 } s = { 0 };
1223
1224 int
1225 main ()
1226 {
1227 unsigned long x;
1228
1229 x = 0x100000000;
1230 x <<= (unsigned long) s.i0;
1231 if (x == 0)
1232 printf ("failed\n");
1233 else
1234 printf ("succeeded (%lx)\n", x);
1235 }
1236 */
1237
1238 relocation >>= (bfd_vma) howto->rightshift;
1239
1240 /* Shift everything up to where it's going to be used */
1241
1242 relocation <<= (bfd_vma) howto->bitpos;
1243
1244 /* Wait for the day when all have the mask in them */
1245
1246 /* What we do:
1247 i instruction to be left alone
1248 o offset within instruction
1249 r relocation offset to apply
1250 S src mask
1251 D dst mask
1252 N ~dst mask
1253 A part 1
1254 B part 2
1255 R result
1256
1257 Do this:
1258 (( i i i i i o o o o o from bfd_get<size>
1259 and S S S S S) to get the size offset we want
1260 + r r r r r r r r r r) to get the final value to place
1261 and D D D D D to chop to right size
1262 -----------------------
1263 = A A A A A
1264 And this:
1265 ( i i i i i o o o o o from bfd_get<size>
1266 and N N N N N ) get instruction
1267 -----------------------
1268 = B B B B B
1269
1270 And then:
1271 ( B B B B B
1272 or A A A A A)
1273 -----------------------
1274 = R R R R R R R R R R put into bfd_put<size>
1275 */
1276
1277 #define DOIT(x) \
1278 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1279
1280 data = (bfd_byte *) data_start + (octets - data_start_offset);
1281
1282 switch (howto->size)
1283 {
1284 case 0:
1285 {
1286 char x = bfd_get_8 (abfd, (char *) data);
1287 DOIT (x);
1288 bfd_put_8 (abfd, x, (unsigned char *) data);
1289 }
1290 break;
1291
1292 case 1:
1293 {
1294 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1295 DOIT (x);
1296 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
1297 }
1298 break;
1299 case 2:
1300 {
1301 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1302 DOIT (x);
1303 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1304 }
1305 break;
1306 case -2:
1307 {
1308 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1309 relocation = -relocation;
1310 DOIT (x);
1311 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1312 }
1313 break;
1314
1315 case 3:
1316 /* Do nothing */
1317 break;
1318
1319 case 4:
1320 {
1321 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1322 DOIT (x);
1323 bfd_put_64 (abfd, x, (bfd_byte *) data);
1324 }
1325 break;
1326 default:
1327 return bfd_reloc_other;
1328 }
1329
1330 return flag;
1331 }
1332
1333 /* This relocation routine is used by some of the backend linkers.
1334 They do not construct asymbol or arelent structures, so there is no
1335 reason for them to use bfd_perform_relocation. Also,
1336 bfd_perform_relocation is so hacked up it is easier to write a new
1337 function than to try to deal with it.
1338
1339 This routine does a final relocation. Whether it is useful for a
1340 relocateable link depends upon how the object format defines
1341 relocations.
1342
1343 FIXME: This routine ignores any special_function in the HOWTO,
1344 since the existing special_function values have been written for
1345 bfd_perform_relocation.
1346
1347 HOWTO is the reloc howto information.
1348 INPUT_BFD is the BFD which the reloc applies to.
1349 INPUT_SECTION is the section which the reloc applies to.
1350 CONTENTS is the contents of the section.
1351 ADDRESS is the address of the reloc within INPUT_SECTION.
1352 VALUE is the value of the symbol the reloc refers to.
1353 ADDEND is the addend of the reloc. */
1354
1355 bfd_reloc_status_type
1356 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1357 value, addend)
1358 reloc_howto_type *howto;
1359 bfd *input_bfd;
1360 asection *input_section;
1361 bfd_byte *contents;
1362 bfd_vma address;
1363 bfd_vma value;
1364 bfd_vma addend;
1365 {
1366 bfd_vma relocation;
1367
1368 /* Sanity check the address. */
1369 if (address > input_section->_raw_size)
1370 return bfd_reloc_outofrange;
1371
1372 /* This function assumes that we are dealing with a basic relocation
1373 against a symbol. We want to compute the value of the symbol to
1374 relocate to. This is just VALUE, the value of the symbol, plus
1375 ADDEND, any addend associated with the reloc. */
1376 relocation = value + addend;
1377
1378 /* If the relocation is PC relative, we want to set RELOCATION to
1379 the distance between the symbol (currently in RELOCATION) and the
1380 location we are relocating. Some targets (e.g., i386-aout)
1381 arrange for the contents of the section to be the negative of the
1382 offset of the location within the section; for such targets
1383 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1384 simply leave the contents of the section as zero; for such
1385 targets pcrel_offset is true. If pcrel_offset is false we do not
1386 need to subtract out the offset of the location within the
1387 section (which is just ADDRESS). */
1388 if (howto->pc_relative)
1389 {
1390 relocation -= (input_section->output_section->vma
1391 + input_section->output_offset);
1392 if (howto->pcrel_offset)
1393 relocation -= address;
1394 }
1395
1396 return _bfd_relocate_contents (howto, input_bfd, relocation,
1397 contents + address);
1398 }
1399
1400 /* Relocate a given location using a given value and howto. */
1401
1402 bfd_reloc_status_type
1403 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1404 reloc_howto_type *howto;
1405 bfd *input_bfd;
1406 bfd_vma relocation;
1407 bfd_byte *location;
1408 {
1409 int size;
1410 bfd_vma x = 0;
1411 bfd_reloc_status_type flag;
1412 unsigned int rightshift = howto->rightshift;
1413 unsigned int bitpos = howto->bitpos;
1414
1415 /* If the size is negative, negate RELOCATION. This isn't very
1416 general. */
1417 if (howto->size < 0)
1418 relocation = -relocation;
1419
1420 /* Get the value we are going to relocate. */
1421 size = bfd_get_reloc_size (howto);
1422 switch (size)
1423 {
1424 default:
1425 case 0:
1426 abort ();
1427 case 1:
1428 x = bfd_get_8 (input_bfd, location);
1429 break;
1430 case 2:
1431 x = bfd_get_16 (input_bfd, location);
1432 break;
1433 case 4:
1434 x = bfd_get_32 (input_bfd, location);
1435 break;
1436 case 8:
1437 #ifdef BFD64
1438 x = bfd_get_64 (input_bfd, location);
1439 #else
1440 abort ();
1441 #endif
1442 break;
1443 }
1444
1445 /* Check for overflow. FIXME: We may drop bits during the addition
1446 which we don't check for. We must either check at every single
1447 operation, which would be tedious, or we must do the computations
1448 in a type larger than bfd_vma, which would be inefficient. */
1449 flag = bfd_reloc_ok;
1450 if (howto->complain_on_overflow != complain_overflow_dont)
1451 {
1452 bfd_vma addrmask, fieldmask, signmask, ss;
1453 bfd_vma a, b, sum;
1454
1455 /* Get the values to be added together. For signed and unsigned
1456 relocations, we assume that all values should be truncated to
1457 the size of an address. For bitfields, all the bits matter.
1458 See also bfd_check_overflow. */
1459 fieldmask = N_ONES (howto->bitsize);
1460 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1461 a = relocation;
1462 b = x & howto->src_mask;
1463
1464 switch (howto->complain_on_overflow)
1465 {
1466 case complain_overflow_signed:
1467 a = (a & addrmask) >> rightshift;
1468
1469 /* If any sign bits are set, all sign bits must be set.
1470 That is, A must be a valid negative address after
1471 shifting. */
1472 signmask = ~ (fieldmask >> 1);
1473 ss = a & signmask;
1474 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1475 flag = bfd_reloc_overflow;
1476
1477 /* We only need this next bit of code if the sign bit of B
1478 is below the sign bit of A. This would only happen if
1479 SRC_MASK had fewer bits than BITSIZE. Note that if
1480 SRC_MASK has more bits than BITSIZE, we can get into
1481 trouble; we would need to verify that B is in range, as
1482 we do for A above. */
1483 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1484
1485 /* Set all the bits above the sign bit. */
1486 b = (b ^ signmask) - signmask;
1487
1488 b = (b & addrmask) >> bitpos;
1489
1490 /* Now we can do the addition. */
1491 sum = a + b;
1492
1493 /* See if the result has the correct sign. Bits above the
1494 sign bit are junk now; ignore them. If the sum is
1495 positive, make sure we did not have all negative inputs;
1496 if the sum is negative, make sure we did not have all
1497 positive inputs. The test below looks only at the sign
1498 bits, and it really just
1499 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1500 */
1501 signmask = (fieldmask >> 1) + 1;
1502 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1503 flag = bfd_reloc_overflow;
1504
1505 break;
1506
1507 case complain_overflow_unsigned:
1508 /* Checking for an unsigned overflow is relatively easy:
1509 trim the addresses and add, and trim the result as well.
1510 Overflow is normally indicated when the result does not
1511 fit in the field. However, we also need to consider the
1512 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1513 input is 0x80000000, and bfd_vma is only 32 bits; then we
1514 will get sum == 0, but there is an overflow, since the
1515 inputs did not fit in the field. Instead of doing a
1516 separate test, we can check for this by or-ing in the
1517 operands when testing for the sum overflowing its final
1518 field. */
1519 a = (a & addrmask) >> rightshift;
1520 b = (b & addrmask) >> bitpos;
1521 sum = (a + b) & addrmask;
1522 if ((a | b | sum) & ~ fieldmask)
1523 flag = bfd_reloc_overflow;
1524
1525 break;
1526
1527 case complain_overflow_bitfield:
1528 /* Much like the signed check, but for a field one bit
1529 wider, and no trimming inputs with addrmask. We allow a
1530 bitfield to represent numbers in the range -2**n to
1531 2**n-1, where n is the number of bits in the field.
1532 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1533 overflow, which is exactly what we want. */
1534 a >>= rightshift;
1535
1536 signmask = ~ fieldmask;
1537 ss = a & signmask;
1538 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1539 flag = bfd_reloc_overflow;
1540
1541 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1542 b = (b ^ signmask) - signmask;
1543
1544 b >>= bitpos;
1545
1546 sum = a + b;
1547
1548 /* We mask with addrmask here to explicitly allow an address
1549 wrap-around. The Linux kernel relies on it, and it is
1550 the only way to write assembler code which can run when
1551 loaded at a location 0x80000000 away from the location at
1552 which it is linked. */
1553 signmask = fieldmask + 1;
1554 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1555 flag = bfd_reloc_overflow;
1556
1557 break;
1558
1559 default:
1560 abort ();
1561 }
1562 }
1563
1564 /* Put RELOCATION in the right bits. */
1565 relocation >>= (bfd_vma) rightshift;
1566 relocation <<= (bfd_vma) bitpos;
1567
1568 /* Add RELOCATION to the right bits of X. */
1569 x = ((x & ~howto->dst_mask)
1570 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1571
1572 /* Put the relocated value back in the object file. */
1573 switch (size)
1574 {
1575 default:
1576 case 0:
1577 abort ();
1578 case 1:
1579 bfd_put_8 (input_bfd, x, location);
1580 break;
1581 case 2:
1582 bfd_put_16 (input_bfd, x, location);
1583 break;
1584 case 4:
1585 bfd_put_32 (input_bfd, x, location);
1586 break;
1587 case 8:
1588 #ifdef BFD64
1589 bfd_put_64 (input_bfd, x, location);
1590 #else
1591 abort ();
1592 #endif
1593 break;
1594 }
1595
1596 return flag;
1597 }
1598
1599 /*
1600 DOCDD
1601 INODE
1602 howto manager, , typedef arelent, Relocations
1603
1604 SECTION
1605 The howto manager
1606
1607 When an application wants to create a relocation, but doesn't
1608 know what the target machine might call it, it can find out by
1609 using this bit of code.
1610
1611 */
1612
1613 /*
1614 TYPEDEF
1615 bfd_reloc_code_type
1616
1617 DESCRIPTION
1618 The insides of a reloc code. The idea is that, eventually, there
1619 will be one enumerator for every type of relocation we ever do.
1620 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1621 return a howto pointer.
1622
1623 This does mean that the application must determine the correct
1624 enumerator value; you can't get a howto pointer from a random set
1625 of attributes.
1626
1627 SENUM
1628 bfd_reloc_code_real
1629
1630 ENUM
1631 BFD_RELOC_64
1632 ENUMX
1633 BFD_RELOC_32
1634 ENUMX
1635 BFD_RELOC_26
1636 ENUMX
1637 BFD_RELOC_24
1638 ENUMX
1639 BFD_RELOC_16
1640 ENUMX
1641 BFD_RELOC_14
1642 ENUMX
1643 BFD_RELOC_8
1644 ENUMDOC
1645 Basic absolute relocations of N bits.
1646
1647 ENUM
1648 BFD_RELOC_64_PCREL
1649 ENUMX
1650 BFD_RELOC_32_PCREL
1651 ENUMX
1652 BFD_RELOC_24_PCREL
1653 ENUMX
1654 BFD_RELOC_16_PCREL
1655 ENUMX
1656 BFD_RELOC_12_PCREL
1657 ENUMX
1658 BFD_RELOC_8_PCREL
1659 ENUMDOC
1660 PC-relative relocations. Sometimes these are relative to the address
1661 of the relocation itself; sometimes they are relative to the start of
1662 the section containing the relocation. It depends on the specific target.
1663
1664 The 24-bit relocation is used in some Intel 960 configurations.
1665
1666 ENUM
1667 BFD_RELOC_32_GOT_PCREL
1668 ENUMX
1669 BFD_RELOC_16_GOT_PCREL
1670 ENUMX
1671 BFD_RELOC_8_GOT_PCREL
1672 ENUMX
1673 BFD_RELOC_32_GOTOFF
1674 ENUMX
1675 BFD_RELOC_16_GOTOFF
1676 ENUMX
1677 BFD_RELOC_LO16_GOTOFF
1678 ENUMX
1679 BFD_RELOC_HI16_GOTOFF
1680 ENUMX
1681 BFD_RELOC_HI16_S_GOTOFF
1682 ENUMX
1683 BFD_RELOC_8_GOTOFF
1684 ENUMX
1685 BFD_RELOC_64_PLT_PCREL
1686 ENUMX
1687 BFD_RELOC_32_PLT_PCREL
1688 ENUMX
1689 BFD_RELOC_24_PLT_PCREL
1690 ENUMX
1691 BFD_RELOC_16_PLT_PCREL
1692 ENUMX
1693 BFD_RELOC_8_PLT_PCREL
1694 ENUMX
1695 BFD_RELOC_64_PLTOFF
1696 ENUMX
1697 BFD_RELOC_32_PLTOFF
1698 ENUMX
1699 BFD_RELOC_16_PLTOFF
1700 ENUMX
1701 BFD_RELOC_LO16_PLTOFF
1702 ENUMX
1703 BFD_RELOC_HI16_PLTOFF
1704 ENUMX
1705 BFD_RELOC_HI16_S_PLTOFF
1706 ENUMX
1707 BFD_RELOC_8_PLTOFF
1708 ENUMDOC
1709 For ELF.
1710
1711 ENUM
1712 BFD_RELOC_68K_GLOB_DAT
1713 ENUMX
1714 BFD_RELOC_68K_JMP_SLOT
1715 ENUMX
1716 BFD_RELOC_68K_RELATIVE
1717 ENUMDOC
1718 Relocations used by 68K ELF.
1719
1720 ENUM
1721 BFD_RELOC_32_BASEREL
1722 ENUMX
1723 BFD_RELOC_16_BASEREL
1724 ENUMX
1725 BFD_RELOC_LO16_BASEREL
1726 ENUMX
1727 BFD_RELOC_HI16_BASEREL
1728 ENUMX
1729 BFD_RELOC_HI16_S_BASEREL
1730 ENUMX
1731 BFD_RELOC_8_BASEREL
1732 ENUMX
1733 BFD_RELOC_RVA
1734 ENUMDOC
1735 Linkage-table relative.
1736
1737 ENUM
1738 BFD_RELOC_8_FFnn
1739 ENUMDOC
1740 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1741
1742 ENUM
1743 BFD_RELOC_32_PCREL_S2
1744 ENUMX
1745 BFD_RELOC_16_PCREL_S2
1746 ENUMX
1747 BFD_RELOC_23_PCREL_S2
1748 ENUMDOC
1749 These PC-relative relocations are stored as word displacements --
1750 i.e., byte displacements shifted right two bits. The 30-bit word
1751 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1752 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1753 signed 16-bit displacement is used on the MIPS, and the 23-bit
1754 displacement is used on the Alpha.
1755
1756 ENUM
1757 BFD_RELOC_HI22
1758 ENUMX
1759 BFD_RELOC_LO10
1760 ENUMDOC
1761 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1762 the target word. These are used on the SPARC.
1763
1764 ENUM
1765 BFD_RELOC_GPREL16
1766 ENUMX
1767 BFD_RELOC_GPREL32
1768 ENUMDOC
1769 For systems that allocate a Global Pointer register, these are
1770 displacements off that register. These relocation types are
1771 handled specially, because the value the register will have is
1772 decided relatively late.
1773
1774 ENUM
1775 BFD_RELOC_I960_CALLJ
1776 ENUMDOC
1777 Reloc types used for i960/b.out.
1778
1779 ENUM
1780 BFD_RELOC_NONE
1781 ENUMX
1782 BFD_RELOC_SPARC_WDISP22
1783 ENUMX
1784 BFD_RELOC_SPARC22
1785 ENUMX
1786 BFD_RELOC_SPARC13
1787 ENUMX
1788 BFD_RELOC_SPARC_GOT10
1789 ENUMX
1790 BFD_RELOC_SPARC_GOT13
1791 ENUMX
1792 BFD_RELOC_SPARC_GOT22
1793 ENUMX
1794 BFD_RELOC_SPARC_PC10
1795 ENUMX
1796 BFD_RELOC_SPARC_PC22
1797 ENUMX
1798 BFD_RELOC_SPARC_WPLT30
1799 ENUMX
1800 BFD_RELOC_SPARC_COPY
1801 ENUMX
1802 BFD_RELOC_SPARC_GLOB_DAT
1803 ENUMX
1804 BFD_RELOC_SPARC_JMP_SLOT
1805 ENUMX
1806 BFD_RELOC_SPARC_RELATIVE
1807 ENUMX
1808 BFD_RELOC_SPARC_UA16
1809 ENUMX
1810 BFD_RELOC_SPARC_UA32
1811 ENUMX
1812 BFD_RELOC_SPARC_UA64
1813 ENUMDOC
1814 SPARC ELF relocations. There is probably some overlap with other
1815 relocation types already defined.
1816
1817 ENUM
1818 BFD_RELOC_SPARC_BASE13
1819 ENUMX
1820 BFD_RELOC_SPARC_BASE22
1821 ENUMDOC
1822 I think these are specific to SPARC a.out (e.g., Sun 4).
1823
1824 ENUMEQ
1825 BFD_RELOC_SPARC_64
1826 BFD_RELOC_64
1827 ENUMX
1828 BFD_RELOC_SPARC_10
1829 ENUMX
1830 BFD_RELOC_SPARC_11
1831 ENUMX
1832 BFD_RELOC_SPARC_OLO10
1833 ENUMX
1834 BFD_RELOC_SPARC_HH22
1835 ENUMX
1836 BFD_RELOC_SPARC_HM10
1837 ENUMX
1838 BFD_RELOC_SPARC_LM22
1839 ENUMX
1840 BFD_RELOC_SPARC_PC_HH22
1841 ENUMX
1842 BFD_RELOC_SPARC_PC_HM10
1843 ENUMX
1844 BFD_RELOC_SPARC_PC_LM22
1845 ENUMX
1846 BFD_RELOC_SPARC_WDISP16
1847 ENUMX
1848 BFD_RELOC_SPARC_WDISP19
1849 ENUMX
1850 BFD_RELOC_SPARC_7
1851 ENUMX
1852 BFD_RELOC_SPARC_6
1853 ENUMX
1854 BFD_RELOC_SPARC_5
1855 ENUMEQX
1856 BFD_RELOC_SPARC_DISP64
1857 BFD_RELOC_64_PCREL
1858 ENUMX
1859 BFD_RELOC_SPARC_PLT64
1860 ENUMX
1861 BFD_RELOC_SPARC_HIX22
1862 ENUMX
1863 BFD_RELOC_SPARC_LOX10
1864 ENUMX
1865 BFD_RELOC_SPARC_H44
1866 ENUMX
1867 BFD_RELOC_SPARC_M44
1868 ENUMX
1869 BFD_RELOC_SPARC_L44
1870 ENUMX
1871 BFD_RELOC_SPARC_REGISTER
1872 ENUMDOC
1873 SPARC64 relocations
1874
1875 ENUM
1876 BFD_RELOC_SPARC_REV32
1877 ENUMDOC
1878 SPARC little endian relocation
1879
1880 ENUM
1881 BFD_RELOC_ALPHA_GPDISP_HI16
1882 ENUMDOC
1883 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1884 "addend" in some special way.
1885 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1886 writing; when reading, it will be the absolute section symbol. The
1887 addend is the displacement in bytes of the "lda" instruction from
1888 the "ldah" instruction (which is at the address of this reloc).
1889 ENUM
1890 BFD_RELOC_ALPHA_GPDISP_LO16
1891 ENUMDOC
1892 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1893 with GPDISP_HI16 relocs. The addend is ignored when writing the
1894 relocations out, and is filled in with the file's GP value on
1895 reading, for convenience.
1896
1897 ENUM
1898 BFD_RELOC_ALPHA_GPDISP
1899 ENUMDOC
1900 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1901 relocation except that there is no accompanying GPDISP_LO16
1902 relocation.
1903
1904 ENUM
1905 BFD_RELOC_ALPHA_LITERAL
1906 ENUMX
1907 BFD_RELOC_ALPHA_ELF_LITERAL
1908 ENUMX
1909 BFD_RELOC_ALPHA_LITUSE
1910 ENUMDOC
1911 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1912 the assembler turns it into a LDQ instruction to load the address of
1913 the symbol, and then fills in a register in the real instruction.
1914
1915 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1916 section symbol. The addend is ignored when writing, but is filled
1917 in with the file's GP value on reading, for convenience, as with the
1918 GPDISP_LO16 reloc.
1919
1920 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1921 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1922 but it generates output not based on the position within the .got
1923 section, but relative to the GP value chosen for the file during the
1924 final link stage.
1925
1926 The LITUSE reloc, on the instruction using the loaded address, gives
1927 information to the linker that it might be able to use to optimize
1928 away some literal section references. The symbol is ignored (read
1929 as the absolute section symbol), and the "addend" indicates the type
1930 of instruction using the register:
1931 1 - "memory" fmt insn
1932 2 - byte-manipulation (byte offset reg)
1933 3 - jsr (target of branch)
1934
1935 ENUM
1936 BFD_RELOC_ALPHA_HINT
1937 ENUMDOC
1938 The HINT relocation indicates a value that should be filled into the
1939 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1940 prediction logic which may be provided on some processors.
1941
1942 ENUM
1943 BFD_RELOC_ALPHA_LINKAGE
1944 ENUMDOC
1945 The LINKAGE relocation outputs a linkage pair in the object file,
1946 which is filled by the linker.
1947
1948 ENUM
1949 BFD_RELOC_ALPHA_CODEADDR
1950 ENUMDOC
1951 The CODEADDR relocation outputs a STO_CA in the object file,
1952 which is filled by the linker.
1953
1954 ENUM
1955 BFD_RELOC_ALPHA_GPREL_HI16
1956 ENUMX
1957 BFD_RELOC_ALPHA_GPREL_LO16
1958 ENUMDOC
1959 The GPREL_HI/LO relocations together form a 32-bit offset from the
1960 GP register.
1961
1962 ENUM
1963 BFD_RELOC_MIPS_JMP
1964 ENUMDOC
1965 Bits 27..2 of the relocation address shifted right 2 bits;
1966 simple reloc otherwise.
1967
1968 ENUM
1969 BFD_RELOC_MIPS16_JMP
1970 ENUMDOC
1971 The MIPS16 jump instruction.
1972
1973 ENUM
1974 BFD_RELOC_MIPS16_GPREL
1975 ENUMDOC
1976 MIPS16 GP relative reloc.
1977
1978 ENUM
1979 BFD_RELOC_HI16
1980 ENUMDOC
1981 High 16 bits of 32-bit value; simple reloc.
1982 ENUM
1983 BFD_RELOC_HI16_S
1984 ENUMDOC
1985 High 16 bits of 32-bit value but the low 16 bits will be sign
1986 extended and added to form the final result. If the low 16
1987 bits form a negative number, we need to add one to the high value
1988 to compensate for the borrow when the low bits are added.
1989 ENUM
1990 BFD_RELOC_LO16
1991 ENUMDOC
1992 Low 16 bits.
1993 ENUM
1994 BFD_RELOC_PCREL_HI16_S
1995 ENUMDOC
1996 Like BFD_RELOC_HI16_S, but PC relative.
1997 ENUM
1998 BFD_RELOC_PCREL_LO16
1999 ENUMDOC
2000 Like BFD_RELOC_LO16, but PC relative.
2001
2002 ENUMEQ
2003 BFD_RELOC_MIPS_GPREL
2004 BFD_RELOC_GPREL16
2005 ENUMDOC
2006 Relocation relative to the global pointer.
2007
2008 ENUM
2009 BFD_RELOC_MIPS_LITERAL
2010 ENUMDOC
2011 Relocation against a MIPS literal section.
2012
2013 ENUM
2014 BFD_RELOC_MIPS_GOT16
2015 ENUMX
2016 BFD_RELOC_MIPS_CALL16
2017 ENUMEQX
2018 BFD_RELOC_MIPS_GPREL32
2019 BFD_RELOC_GPREL32
2020 ENUMX
2021 BFD_RELOC_MIPS_GOT_HI16
2022 ENUMX
2023 BFD_RELOC_MIPS_GOT_LO16
2024 ENUMX
2025 BFD_RELOC_MIPS_CALL_HI16
2026 ENUMX
2027 BFD_RELOC_MIPS_CALL_LO16
2028 ENUMX
2029 BFD_RELOC_MIPS_SUB
2030 ENUMX
2031 BFD_RELOC_MIPS_GOT_PAGE
2032 ENUMX
2033 BFD_RELOC_MIPS_GOT_OFST
2034 ENUMX
2035 BFD_RELOC_MIPS_GOT_DISP
2036 ENUMX
2037 BFD_RELOC_MIPS_SHIFT5
2038 ENUMX
2039 BFD_RELOC_MIPS_SHIFT6
2040 ENUMX
2041 BFD_RELOC_MIPS_INSERT_A
2042 ENUMX
2043 BFD_RELOC_MIPS_INSERT_B
2044 ENUMX
2045 BFD_RELOC_MIPS_DELETE
2046 ENUMX
2047 BFD_RELOC_MIPS_HIGHEST
2048 ENUMX
2049 BFD_RELOC_MIPS_HIGHER
2050 ENUMX
2051 BFD_RELOC_MIPS_SCN_DISP
2052 ENUMX
2053 BFD_RELOC_MIPS_REL16
2054 ENUMX
2055 BFD_RELOC_MIPS_RELGOT
2056 ENUMX
2057 BFD_RELOC_MIPS_JALR
2058 COMMENT
2059 ENUMDOC
2060 MIPS ELF relocations.
2061
2062 COMMENT
2063
2064 ENUM
2065 BFD_RELOC_386_GOT32
2066 ENUMX
2067 BFD_RELOC_386_PLT32
2068 ENUMX
2069 BFD_RELOC_386_COPY
2070 ENUMX
2071 BFD_RELOC_386_GLOB_DAT
2072 ENUMX
2073 BFD_RELOC_386_JUMP_SLOT
2074 ENUMX
2075 BFD_RELOC_386_RELATIVE
2076 ENUMX
2077 BFD_RELOC_386_GOTOFF
2078 ENUMX
2079 BFD_RELOC_386_GOTPC
2080 ENUMDOC
2081 i386/elf relocations
2082
2083 ENUM
2084 BFD_RELOC_X86_64_GOT32
2085 ENUMX
2086 BFD_RELOC_X86_64_PLT32
2087 ENUMX
2088 BFD_RELOC_X86_64_COPY
2089 ENUMX
2090 BFD_RELOC_X86_64_GLOB_DAT
2091 ENUMX
2092 BFD_RELOC_X86_64_JUMP_SLOT
2093 ENUMX
2094 BFD_RELOC_X86_64_RELATIVE
2095 ENUMX
2096 BFD_RELOC_X86_64_GOTPCREL
2097 ENUMX
2098 BFD_RELOC_X86_64_32S
2099 ENUMDOC
2100 x86-64/elf relocations
2101
2102 ENUM
2103 BFD_RELOC_NS32K_IMM_8
2104 ENUMX
2105 BFD_RELOC_NS32K_IMM_16
2106 ENUMX
2107 BFD_RELOC_NS32K_IMM_32
2108 ENUMX
2109 BFD_RELOC_NS32K_IMM_8_PCREL
2110 ENUMX
2111 BFD_RELOC_NS32K_IMM_16_PCREL
2112 ENUMX
2113 BFD_RELOC_NS32K_IMM_32_PCREL
2114 ENUMX
2115 BFD_RELOC_NS32K_DISP_8
2116 ENUMX
2117 BFD_RELOC_NS32K_DISP_16
2118 ENUMX
2119 BFD_RELOC_NS32K_DISP_32
2120 ENUMX
2121 BFD_RELOC_NS32K_DISP_8_PCREL
2122 ENUMX
2123 BFD_RELOC_NS32K_DISP_16_PCREL
2124 ENUMX
2125 BFD_RELOC_NS32K_DISP_32_PCREL
2126 ENUMDOC
2127 ns32k relocations
2128
2129 ENUM
2130 BFD_RELOC_PDP11_DISP_8_PCREL
2131 ENUMX
2132 BFD_RELOC_PDP11_DISP_6_PCREL
2133 ENUMDOC
2134 PDP11 relocations
2135
2136 ENUM
2137 BFD_RELOC_PJ_CODE_HI16
2138 ENUMX
2139 BFD_RELOC_PJ_CODE_LO16
2140 ENUMX
2141 BFD_RELOC_PJ_CODE_DIR16
2142 ENUMX
2143 BFD_RELOC_PJ_CODE_DIR32
2144 ENUMX
2145 BFD_RELOC_PJ_CODE_REL16
2146 ENUMX
2147 BFD_RELOC_PJ_CODE_REL32
2148 ENUMDOC
2149 Picojava relocs. Not all of these appear in object files.
2150
2151 ENUM
2152 BFD_RELOC_PPC_B26
2153 ENUMX
2154 BFD_RELOC_PPC_BA26
2155 ENUMX
2156 BFD_RELOC_PPC_TOC16
2157 ENUMX
2158 BFD_RELOC_PPC_B16
2159 ENUMX
2160 BFD_RELOC_PPC_B16_BRTAKEN
2161 ENUMX
2162 BFD_RELOC_PPC_B16_BRNTAKEN
2163 ENUMX
2164 BFD_RELOC_PPC_BA16
2165 ENUMX
2166 BFD_RELOC_PPC_BA16_BRTAKEN
2167 ENUMX
2168 BFD_RELOC_PPC_BA16_BRNTAKEN
2169 ENUMX
2170 BFD_RELOC_PPC_COPY
2171 ENUMX
2172 BFD_RELOC_PPC_GLOB_DAT
2173 ENUMX
2174 BFD_RELOC_PPC_JMP_SLOT
2175 ENUMX
2176 BFD_RELOC_PPC_RELATIVE
2177 ENUMX
2178 BFD_RELOC_PPC_LOCAL24PC
2179 ENUMX
2180 BFD_RELOC_PPC_EMB_NADDR32
2181 ENUMX
2182 BFD_RELOC_PPC_EMB_NADDR16
2183 ENUMX
2184 BFD_RELOC_PPC_EMB_NADDR16_LO
2185 ENUMX
2186 BFD_RELOC_PPC_EMB_NADDR16_HI
2187 ENUMX
2188 BFD_RELOC_PPC_EMB_NADDR16_HA
2189 ENUMX
2190 BFD_RELOC_PPC_EMB_SDAI16
2191 ENUMX
2192 BFD_RELOC_PPC_EMB_SDA2I16
2193 ENUMX
2194 BFD_RELOC_PPC_EMB_SDA2REL
2195 ENUMX
2196 BFD_RELOC_PPC_EMB_SDA21
2197 ENUMX
2198 BFD_RELOC_PPC_EMB_MRKREF
2199 ENUMX
2200 BFD_RELOC_PPC_EMB_RELSEC16
2201 ENUMX
2202 BFD_RELOC_PPC_EMB_RELST_LO
2203 ENUMX
2204 BFD_RELOC_PPC_EMB_RELST_HI
2205 ENUMX
2206 BFD_RELOC_PPC_EMB_RELST_HA
2207 ENUMX
2208 BFD_RELOC_PPC_EMB_BIT_FLD
2209 ENUMX
2210 BFD_RELOC_PPC_EMB_RELSDA
2211 ENUMX
2212 BFD_RELOC_PPC64_HIGHER
2213 ENUMX
2214 BFD_RELOC_PPC64_HIGHER_S
2215 ENUMX
2216 BFD_RELOC_PPC64_HIGHEST
2217 ENUMX
2218 BFD_RELOC_PPC64_HIGHEST_S
2219 ENUMX
2220 BFD_RELOC_PPC64_TOC16_LO
2221 ENUMX
2222 BFD_RELOC_PPC64_TOC16_HI
2223 ENUMX
2224 BFD_RELOC_PPC64_TOC16_HA
2225 ENUMX
2226 BFD_RELOC_PPC64_TOC
2227 ENUMX
2228 BFD_RELOC_PPC64_PLTGOT16
2229 ENUMX
2230 BFD_RELOC_PPC64_PLTGOT16_LO
2231 ENUMX
2232 BFD_RELOC_PPC64_PLTGOT16_HI
2233 ENUMX
2234 BFD_RELOC_PPC64_PLTGOT16_HA
2235 ENUMX
2236 BFD_RELOC_PPC64_ADDR16_DS
2237 ENUMX
2238 BFD_RELOC_PPC64_ADDR16_LO_DS
2239 ENUMX
2240 BFD_RELOC_PPC64_GOT16_DS
2241 ENUMX
2242 BFD_RELOC_PPC64_GOT16_LO_DS
2243 ENUMX
2244 BFD_RELOC_PPC64_PLT16_LO_DS
2245 ENUMX
2246 BFD_RELOC_PPC64_SECTOFF_DS
2247 ENUMX
2248 BFD_RELOC_PPC64_SECTOFF_LO_DS
2249 ENUMX
2250 BFD_RELOC_PPC64_TOC16_DS
2251 ENUMX
2252 BFD_RELOC_PPC64_TOC16_LO_DS
2253 ENUMX
2254 BFD_RELOC_PPC64_PLTGOT16_DS
2255 ENUMX
2256 BFD_RELOC_PPC64_PLTGOT16_LO_DS
2257 ENUMDOC
2258 Power(rs6000) and PowerPC relocations.
2259
2260 ENUM
2261 BFD_RELOC_I370_D12
2262 ENUMDOC
2263 IBM 370/390 relocations
2264
2265 ENUM
2266 BFD_RELOC_CTOR
2267 ENUMDOC
2268 The type of reloc used to build a contructor table - at the moment
2269 probably a 32 bit wide absolute relocation, but the target can choose.
2270 It generally does map to one of the other relocation types.
2271
2272 ENUM
2273 BFD_RELOC_ARM_PCREL_BRANCH
2274 ENUMDOC
2275 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2276 not stored in the instruction.
2277 ENUM
2278 BFD_RELOC_ARM_PCREL_BLX
2279 ENUMDOC
2280 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2281 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2282 field in the instruction.
2283 ENUM
2284 BFD_RELOC_THUMB_PCREL_BLX
2285 ENUMDOC
2286 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2287 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2288 field in the instruction.
2289 ENUM
2290 BFD_RELOC_ARM_IMMEDIATE
2291 ENUMX
2292 BFD_RELOC_ARM_ADRL_IMMEDIATE
2293 ENUMX
2294 BFD_RELOC_ARM_OFFSET_IMM
2295 ENUMX
2296 BFD_RELOC_ARM_SHIFT_IMM
2297 ENUMX
2298 BFD_RELOC_ARM_SWI
2299 ENUMX
2300 BFD_RELOC_ARM_MULTI
2301 ENUMX
2302 BFD_RELOC_ARM_CP_OFF_IMM
2303 ENUMX
2304 BFD_RELOC_ARM_ADR_IMM
2305 ENUMX
2306 BFD_RELOC_ARM_LDR_IMM
2307 ENUMX
2308 BFD_RELOC_ARM_LITERAL
2309 ENUMX
2310 BFD_RELOC_ARM_IN_POOL
2311 ENUMX
2312 BFD_RELOC_ARM_OFFSET_IMM8
2313 ENUMX
2314 BFD_RELOC_ARM_HWLITERAL
2315 ENUMX
2316 BFD_RELOC_ARM_THUMB_ADD
2317 ENUMX
2318 BFD_RELOC_ARM_THUMB_IMM
2319 ENUMX
2320 BFD_RELOC_ARM_THUMB_SHIFT
2321 ENUMX
2322 BFD_RELOC_ARM_THUMB_OFFSET
2323 ENUMX
2324 BFD_RELOC_ARM_GOT12
2325 ENUMX
2326 BFD_RELOC_ARM_GOT32
2327 ENUMX
2328 BFD_RELOC_ARM_JUMP_SLOT
2329 ENUMX
2330 BFD_RELOC_ARM_COPY
2331 ENUMX
2332 BFD_RELOC_ARM_GLOB_DAT
2333 ENUMX
2334 BFD_RELOC_ARM_PLT32
2335 ENUMX
2336 BFD_RELOC_ARM_RELATIVE
2337 ENUMX
2338 BFD_RELOC_ARM_GOTOFF
2339 ENUMX
2340 BFD_RELOC_ARM_GOTPC
2341 ENUMDOC
2342 These relocs are only used within the ARM assembler. They are not
2343 (at present) written to any object files.
2344
2345 ENUM
2346 BFD_RELOC_SH_PCDISP8BY2
2347 ENUMX
2348 BFD_RELOC_SH_PCDISP12BY2
2349 ENUMX
2350 BFD_RELOC_SH_IMM4
2351 ENUMX
2352 BFD_RELOC_SH_IMM4BY2
2353 ENUMX
2354 BFD_RELOC_SH_IMM4BY4
2355 ENUMX
2356 BFD_RELOC_SH_IMM8
2357 ENUMX
2358 BFD_RELOC_SH_IMM8BY2
2359 ENUMX
2360 BFD_RELOC_SH_IMM8BY4
2361 ENUMX
2362 BFD_RELOC_SH_PCRELIMM8BY2
2363 ENUMX
2364 BFD_RELOC_SH_PCRELIMM8BY4
2365 ENUMX
2366 BFD_RELOC_SH_SWITCH16
2367 ENUMX
2368 BFD_RELOC_SH_SWITCH32
2369 ENUMX
2370 BFD_RELOC_SH_USES
2371 ENUMX
2372 BFD_RELOC_SH_COUNT
2373 ENUMX
2374 BFD_RELOC_SH_ALIGN
2375 ENUMX
2376 BFD_RELOC_SH_CODE
2377 ENUMX
2378 BFD_RELOC_SH_DATA
2379 ENUMX
2380 BFD_RELOC_SH_LABEL
2381 ENUMX
2382 BFD_RELOC_SH_LOOP_START
2383 ENUMX
2384 BFD_RELOC_SH_LOOP_END
2385 ENUMX
2386 BFD_RELOC_SH_COPY
2387 ENUMX
2388 BFD_RELOC_SH_GLOB_DAT
2389 ENUMX
2390 BFD_RELOC_SH_JMP_SLOT
2391 ENUMX
2392 BFD_RELOC_SH_RELATIVE
2393 ENUMX
2394 BFD_RELOC_SH_GOTPC
2395 ENUMDOC
2396 Hitachi SH relocs. Not all of these appear in object files.
2397
2398 ENUM
2399 BFD_RELOC_THUMB_PCREL_BRANCH9
2400 ENUMX
2401 BFD_RELOC_THUMB_PCREL_BRANCH12
2402 ENUMX
2403 BFD_RELOC_THUMB_PCREL_BRANCH23
2404 ENUMDOC
2405 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2406 be zero and is not stored in the instruction.
2407
2408 ENUM
2409 BFD_RELOC_ARC_B22_PCREL
2410 ENUMDOC
2411 ARC Cores relocs.
2412 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2413 not stored in the instruction. The high 20 bits are installed in bits 26
2414 through 7 of the instruction.
2415 ENUM
2416 BFD_RELOC_ARC_B26
2417 ENUMDOC
2418 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2419 stored in the instruction. The high 24 bits are installed in bits 23
2420 through 0.
2421
2422 ENUM
2423 BFD_RELOC_D10V_10_PCREL_R
2424 ENUMDOC
2425 Mitsubishi D10V relocs.
2426 This is a 10-bit reloc with the right 2 bits
2427 assumed to be 0.
2428 ENUM
2429 BFD_RELOC_D10V_10_PCREL_L
2430 ENUMDOC
2431 Mitsubishi D10V relocs.
2432 This is a 10-bit reloc with the right 2 bits
2433 assumed to be 0. This is the same as the previous reloc
2434 except it is in the left container, i.e.,
2435 shifted left 15 bits.
2436 ENUM
2437 BFD_RELOC_D10V_18
2438 ENUMDOC
2439 This is an 18-bit reloc with the right 2 bits
2440 assumed to be 0.
2441 ENUM
2442 BFD_RELOC_D10V_18_PCREL
2443 ENUMDOC
2444 This is an 18-bit reloc with the right 2 bits
2445 assumed to be 0.
2446
2447 ENUM
2448 BFD_RELOC_D30V_6
2449 ENUMDOC
2450 Mitsubishi D30V relocs.
2451 This is a 6-bit absolute reloc.
2452 ENUM
2453 BFD_RELOC_D30V_9_PCREL
2454 ENUMDOC
2455 This is a 6-bit pc-relative reloc with
2456 the right 3 bits assumed to be 0.
2457 ENUM
2458 BFD_RELOC_D30V_9_PCREL_R
2459 ENUMDOC
2460 This is a 6-bit pc-relative reloc with
2461 the right 3 bits assumed to be 0. Same
2462 as the previous reloc but on the right side
2463 of the container.
2464 ENUM
2465 BFD_RELOC_D30V_15
2466 ENUMDOC
2467 This is a 12-bit absolute reloc with the
2468 right 3 bitsassumed to be 0.
2469 ENUM
2470 BFD_RELOC_D30V_15_PCREL
2471 ENUMDOC
2472 This is a 12-bit pc-relative reloc with
2473 the right 3 bits assumed to be 0.
2474 ENUM
2475 BFD_RELOC_D30V_15_PCREL_R
2476 ENUMDOC
2477 This is a 12-bit pc-relative reloc with
2478 the right 3 bits assumed to be 0. Same
2479 as the previous reloc but on the right side
2480 of the container.
2481 ENUM
2482 BFD_RELOC_D30V_21
2483 ENUMDOC
2484 This is an 18-bit absolute reloc with
2485 the right 3 bits assumed to be 0.
2486 ENUM
2487 BFD_RELOC_D30V_21_PCREL
2488 ENUMDOC
2489 This is an 18-bit pc-relative reloc with
2490 the right 3 bits assumed to be 0.
2491 ENUM
2492 BFD_RELOC_D30V_21_PCREL_R
2493 ENUMDOC
2494 This is an 18-bit pc-relative reloc with
2495 the right 3 bits assumed to be 0. Same
2496 as the previous reloc but on the right side
2497 of the container.
2498 ENUM
2499 BFD_RELOC_D30V_32
2500 ENUMDOC
2501 This is a 32-bit absolute reloc.
2502 ENUM
2503 BFD_RELOC_D30V_32_PCREL
2504 ENUMDOC
2505 This is a 32-bit pc-relative reloc.
2506
2507 ENUM
2508 BFD_RELOC_M32R_24
2509 ENUMDOC
2510 Mitsubishi M32R relocs.
2511 This is a 24 bit absolute address.
2512 ENUM
2513 BFD_RELOC_M32R_10_PCREL
2514 ENUMDOC
2515 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2516 ENUM
2517 BFD_RELOC_M32R_18_PCREL
2518 ENUMDOC
2519 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2520 ENUM
2521 BFD_RELOC_M32R_26_PCREL
2522 ENUMDOC
2523 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2524 ENUM
2525 BFD_RELOC_M32R_HI16_ULO
2526 ENUMDOC
2527 This is a 16-bit reloc containing the high 16 bits of an address
2528 used when the lower 16 bits are treated as unsigned.
2529 ENUM
2530 BFD_RELOC_M32R_HI16_SLO
2531 ENUMDOC
2532 This is a 16-bit reloc containing the high 16 bits of an address
2533 used when the lower 16 bits are treated as signed.
2534 ENUM
2535 BFD_RELOC_M32R_LO16
2536 ENUMDOC
2537 This is a 16-bit reloc containing the lower 16 bits of an address.
2538 ENUM
2539 BFD_RELOC_M32R_SDA16
2540 ENUMDOC
2541 This is a 16-bit reloc containing the small data area offset for use in
2542 add3, load, and store instructions.
2543
2544 ENUM
2545 BFD_RELOC_V850_9_PCREL
2546 ENUMDOC
2547 This is a 9-bit reloc
2548 ENUM
2549 BFD_RELOC_V850_22_PCREL
2550 ENUMDOC
2551 This is a 22-bit reloc
2552
2553 ENUM
2554 BFD_RELOC_V850_SDA_16_16_OFFSET
2555 ENUMDOC
2556 This is a 16 bit offset from the short data area pointer.
2557 ENUM
2558 BFD_RELOC_V850_SDA_15_16_OFFSET
2559 ENUMDOC
2560 This is a 16 bit offset (of which only 15 bits are used) from the
2561 short data area pointer.
2562 ENUM
2563 BFD_RELOC_V850_ZDA_16_16_OFFSET
2564 ENUMDOC
2565 This is a 16 bit offset from the zero data area pointer.
2566 ENUM
2567 BFD_RELOC_V850_ZDA_15_16_OFFSET
2568 ENUMDOC
2569 This is a 16 bit offset (of which only 15 bits are used) from the
2570 zero data area pointer.
2571 ENUM
2572 BFD_RELOC_V850_TDA_6_8_OFFSET
2573 ENUMDOC
2574 This is an 8 bit offset (of which only 6 bits are used) from the
2575 tiny data area pointer.
2576 ENUM
2577 BFD_RELOC_V850_TDA_7_8_OFFSET
2578 ENUMDOC
2579 This is an 8bit offset (of which only 7 bits are used) from the tiny
2580 data area pointer.
2581 ENUM
2582 BFD_RELOC_V850_TDA_7_7_OFFSET
2583 ENUMDOC
2584 This is a 7 bit offset from the tiny data area pointer.
2585 ENUM
2586 BFD_RELOC_V850_TDA_16_16_OFFSET
2587 ENUMDOC
2588 This is a 16 bit offset from the tiny data area pointer.
2589 COMMENT
2590 ENUM
2591 BFD_RELOC_V850_TDA_4_5_OFFSET
2592 ENUMDOC
2593 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2594 data area pointer.
2595 ENUM
2596 BFD_RELOC_V850_TDA_4_4_OFFSET
2597 ENUMDOC
2598 This is a 4 bit offset from the tiny data area pointer.
2599 ENUM
2600 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2601 ENUMDOC
2602 This is a 16 bit offset from the short data area pointer, with the
2603 bits placed non-contigously in the instruction.
2604 ENUM
2605 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2606 ENUMDOC
2607 This is a 16 bit offset from the zero data area pointer, with the
2608 bits placed non-contigously in the instruction.
2609 ENUM
2610 BFD_RELOC_V850_CALLT_6_7_OFFSET
2611 ENUMDOC
2612 This is a 6 bit offset from the call table base pointer.
2613 ENUM
2614 BFD_RELOC_V850_CALLT_16_16_OFFSET
2615 ENUMDOC
2616 This is a 16 bit offset from the call table base pointer.
2617 COMMENT
2618
2619 ENUM
2620 BFD_RELOC_MN10300_32_PCREL
2621 ENUMDOC
2622 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2623 instruction.
2624 ENUM
2625 BFD_RELOC_MN10300_16_PCREL
2626 ENUMDOC
2627 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2628 instruction.
2629
2630 ENUM
2631 BFD_RELOC_TIC30_LDP
2632 ENUMDOC
2633 This is a 8bit DP reloc for the tms320c30, where the most
2634 significant 8 bits of a 24 bit word are placed into the least
2635 significant 8 bits of the opcode.
2636
2637 ENUM
2638 BFD_RELOC_TIC54X_PARTLS7
2639 ENUMDOC
2640 This is a 7bit reloc for the tms320c54x, where the least
2641 significant 7 bits of a 16 bit word are placed into the least
2642 significant 7 bits of the opcode.
2643
2644 ENUM
2645 BFD_RELOC_TIC54X_PARTMS9
2646 ENUMDOC
2647 This is a 9bit DP reloc for the tms320c54x, where the most
2648 significant 9 bits of a 16 bit word are placed into the least
2649 significant 9 bits of the opcode.
2650
2651 ENUM
2652 BFD_RELOC_TIC54X_23
2653 ENUMDOC
2654 This is an extended address 23-bit reloc for the tms320c54x.
2655
2656 ENUM
2657 BFD_RELOC_TIC54X_16_OF_23
2658 ENUMDOC
2659 This is a 16-bit reloc for the tms320c54x, where the least
2660 significant 16 bits of a 23-bit extended address are placed into
2661 the opcode.
2662
2663 ENUM
2664 BFD_RELOC_TIC54X_MS7_OF_23
2665 ENUMDOC
2666 This is a reloc for the tms320c54x, where the most
2667 significant 7 bits of a 23-bit extended address are placed into
2668 the opcode.
2669
2670 ENUM
2671 BFD_RELOC_FR30_48
2672 ENUMDOC
2673 This is a 48 bit reloc for the FR30 that stores 32 bits.
2674 ENUM
2675 BFD_RELOC_FR30_20
2676 ENUMDOC
2677 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2678 two sections.
2679 ENUM
2680 BFD_RELOC_FR30_6_IN_4
2681 ENUMDOC
2682 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2683 4 bits.
2684 ENUM
2685 BFD_RELOC_FR30_8_IN_8
2686 ENUMDOC
2687 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2688 into 8 bits.
2689 ENUM
2690 BFD_RELOC_FR30_9_IN_8
2691 ENUMDOC
2692 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2693 into 8 bits.
2694 ENUM
2695 BFD_RELOC_FR30_10_IN_8
2696 ENUMDOC
2697 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2698 into 8 bits.
2699 ENUM
2700 BFD_RELOC_FR30_9_PCREL
2701 ENUMDOC
2702 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2703 short offset into 8 bits.
2704 ENUM
2705 BFD_RELOC_FR30_12_PCREL
2706 ENUMDOC
2707 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2708 short offset into 11 bits.
2709
2710 ENUM
2711 BFD_RELOC_MCORE_PCREL_IMM8BY4
2712 ENUMX
2713 BFD_RELOC_MCORE_PCREL_IMM11BY2
2714 ENUMX
2715 BFD_RELOC_MCORE_PCREL_IMM4BY2
2716 ENUMX
2717 BFD_RELOC_MCORE_PCREL_32
2718 ENUMX
2719 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2720 ENUMX
2721 BFD_RELOC_MCORE_RVA
2722 ENUMDOC
2723 Motorola Mcore relocations.
2724
2725 ENUM
2726 BFD_RELOC_AVR_7_PCREL
2727 ENUMDOC
2728 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2729 short offset into 7 bits.
2730 ENUM
2731 BFD_RELOC_AVR_13_PCREL
2732 ENUMDOC
2733 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2734 short offset into 12 bits.
2735 ENUM
2736 BFD_RELOC_AVR_16_PM
2737 ENUMDOC
2738 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2739 program memory address) into 16 bits.
2740 ENUM
2741 BFD_RELOC_AVR_LO8_LDI
2742 ENUMDOC
2743 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2744 data memory address) into 8 bit immediate value of LDI insn.
2745 ENUM
2746 BFD_RELOC_AVR_HI8_LDI
2747 ENUMDOC
2748 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2749 of data memory address) into 8 bit immediate value of LDI insn.
2750 ENUM
2751 BFD_RELOC_AVR_HH8_LDI
2752 ENUMDOC
2753 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2754 of program memory address) into 8 bit immediate value of LDI insn.
2755 ENUM
2756 BFD_RELOC_AVR_LO8_LDI_NEG
2757 ENUMDOC
2758 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2759 (usually data memory address) into 8 bit immediate value of SUBI insn.
2760 ENUM
2761 BFD_RELOC_AVR_HI8_LDI_NEG
2762 ENUMDOC
2763 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2764 (high 8 bit of data memory address) into 8 bit immediate value of
2765 SUBI insn.
2766 ENUM
2767 BFD_RELOC_AVR_HH8_LDI_NEG
2768 ENUMDOC
2769 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2770 (most high 8 bit of program memory address) into 8 bit immediate value
2771 of LDI or SUBI insn.
2772 ENUM
2773 BFD_RELOC_AVR_LO8_LDI_PM
2774 ENUMDOC
2775 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2776 command address) into 8 bit immediate value of LDI insn.
2777 ENUM
2778 BFD_RELOC_AVR_HI8_LDI_PM
2779 ENUMDOC
2780 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2781 of command address) into 8 bit immediate value of LDI insn.
2782 ENUM
2783 BFD_RELOC_AVR_HH8_LDI_PM
2784 ENUMDOC
2785 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2786 of command address) into 8 bit immediate value of LDI insn.
2787 ENUM
2788 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2789 ENUMDOC
2790 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2791 (usually command address) into 8 bit immediate value of SUBI insn.
2792 ENUM
2793 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2794 ENUMDOC
2795 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2796 (high 8 bit of 16 bit command address) into 8 bit immediate value
2797 of SUBI insn.
2798 ENUM
2799 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2800 ENUMDOC
2801 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2802 (high 6 bit of 22 bit command address) into 8 bit immediate
2803 value of SUBI insn.
2804 ENUM
2805 BFD_RELOC_AVR_CALL
2806 ENUMDOC
2807 This is a 32 bit reloc for the AVR that stores 23 bit value
2808 into 22 bits.
2809
2810 ENUM
2811 BFD_RELOC_390_12
2812 ENUMDOC
2813 Direct 12 bit.
2814 ENUM
2815 BFD_RELOC_390_GOT12
2816 ENUMDOC
2817 12 bit GOT offset.
2818 ENUM
2819 BFD_RELOC_390_PLT32
2820 ENUMDOC
2821 32 bit PC relative PLT address.
2822 ENUM
2823 BFD_RELOC_390_COPY
2824 ENUMDOC
2825 Copy symbol at runtime.
2826 ENUM
2827 BFD_RELOC_390_GLOB_DAT
2828 ENUMDOC
2829 Create GOT entry.
2830 ENUM
2831 BFD_RELOC_390_JMP_SLOT
2832 ENUMDOC
2833 Create PLT entry.
2834 ENUM
2835 BFD_RELOC_390_RELATIVE
2836 ENUMDOC
2837 Adjust by program base.
2838 ENUM
2839 BFD_RELOC_390_GOTPC
2840 ENUMDOC
2841 32 bit PC relative offset to GOT.
2842 ENUM
2843 BFD_RELOC_390_GOT16
2844 ENUMDOC
2845 16 bit GOT offset.
2846 ENUM
2847 BFD_RELOC_390_PC16DBL
2848 ENUMDOC
2849 PC relative 16 bit shifted by 1.
2850 ENUM
2851 BFD_RELOC_390_PLT16DBL
2852 ENUMDOC
2853 16 bit PC rel. PLT shifted by 1.
2854 ENUM
2855 BFD_RELOC_390_PC32DBL
2856 ENUMDOC
2857 PC relative 32 bit shifted by 1.
2858 ENUM
2859 BFD_RELOC_390_PLT32DBL
2860 ENUMDOC
2861 32 bit PC rel. PLT shifted by 1.
2862 ENUM
2863 BFD_RELOC_390_GOTPCDBL
2864 ENUMDOC
2865 32 bit PC rel. GOT shifted by 1.
2866 ENUM
2867 BFD_RELOC_390_GOT64
2868 ENUMDOC
2869 64 bit GOT offset.
2870 ENUM
2871 BFD_RELOC_390_PLT64
2872 ENUMDOC
2873 64 bit PC relative PLT address.
2874 ENUM
2875 BFD_RELOC_390_GOTENT
2876 ENUMDOC
2877 32 bit rel. offset to GOT entry.
2878
2879 ENUM
2880 BFD_RELOC_VTABLE_INHERIT
2881 ENUMX
2882 BFD_RELOC_VTABLE_ENTRY
2883 ENUMDOC
2884 These two relocations are used by the linker to determine which of
2885 the entries in a C++ virtual function table are actually used. When
2886 the --gc-sections option is given, the linker will zero out the entries
2887 that are not used, so that the code for those functions need not be
2888 included in the output.
2889
2890 VTABLE_INHERIT is a zero-space relocation used to describe to the
2891 linker the inheritence tree of a C++ virtual function table. The
2892 relocation's symbol should be the parent class' vtable, and the
2893 relocation should be located at the child vtable.
2894
2895 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2896 virtual function table entry. The reloc's symbol should refer to the
2897 table of the class mentioned in the code. Off of that base, an offset
2898 describes the entry that is being used. For Rela hosts, this offset
2899 is stored in the reloc's addend. For Rel hosts, we are forced to put
2900 this offset in the reloc's section offset.
2901
2902 ENUM
2903 BFD_RELOC_IA64_IMM14
2904 ENUMX
2905 BFD_RELOC_IA64_IMM22
2906 ENUMX
2907 BFD_RELOC_IA64_IMM64
2908 ENUMX
2909 BFD_RELOC_IA64_DIR32MSB
2910 ENUMX
2911 BFD_RELOC_IA64_DIR32LSB
2912 ENUMX
2913 BFD_RELOC_IA64_DIR64MSB
2914 ENUMX
2915 BFD_RELOC_IA64_DIR64LSB
2916 ENUMX
2917 BFD_RELOC_IA64_GPREL22
2918 ENUMX
2919 BFD_RELOC_IA64_GPREL64I
2920 ENUMX
2921 BFD_RELOC_IA64_GPREL32MSB
2922 ENUMX
2923 BFD_RELOC_IA64_GPREL32LSB
2924 ENUMX
2925 BFD_RELOC_IA64_GPREL64MSB
2926 ENUMX
2927 BFD_RELOC_IA64_GPREL64LSB
2928 ENUMX
2929 BFD_RELOC_IA64_LTOFF22
2930 ENUMX
2931 BFD_RELOC_IA64_LTOFF64I
2932 ENUMX
2933 BFD_RELOC_IA64_PLTOFF22
2934 ENUMX
2935 BFD_RELOC_IA64_PLTOFF64I
2936 ENUMX
2937 BFD_RELOC_IA64_PLTOFF64MSB
2938 ENUMX
2939 BFD_RELOC_IA64_PLTOFF64LSB
2940 ENUMX
2941 BFD_RELOC_IA64_FPTR64I
2942 ENUMX
2943 BFD_RELOC_IA64_FPTR32MSB
2944 ENUMX
2945 BFD_RELOC_IA64_FPTR32LSB
2946 ENUMX
2947 BFD_RELOC_IA64_FPTR64MSB
2948 ENUMX
2949 BFD_RELOC_IA64_FPTR64LSB
2950 ENUMX
2951 BFD_RELOC_IA64_PCREL21B
2952 ENUMX
2953 BFD_RELOC_IA64_PCREL21BI
2954 ENUMX
2955 BFD_RELOC_IA64_PCREL21M
2956 ENUMX
2957 BFD_RELOC_IA64_PCREL21F
2958 ENUMX
2959 BFD_RELOC_IA64_PCREL22
2960 ENUMX
2961 BFD_RELOC_IA64_PCREL60B
2962 ENUMX
2963 BFD_RELOC_IA64_PCREL64I
2964 ENUMX
2965 BFD_RELOC_IA64_PCREL32MSB
2966 ENUMX
2967 BFD_RELOC_IA64_PCREL32LSB
2968 ENUMX
2969 BFD_RELOC_IA64_PCREL64MSB
2970 ENUMX
2971 BFD_RELOC_IA64_PCREL64LSB
2972 ENUMX
2973 BFD_RELOC_IA64_LTOFF_FPTR22
2974 ENUMX
2975 BFD_RELOC_IA64_LTOFF_FPTR64I
2976 ENUMX
2977 BFD_RELOC_IA64_LTOFF_FPTR32MSB
2978 ENUMX
2979 BFD_RELOC_IA64_LTOFF_FPTR32LSB
2980 ENUMX
2981 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2982 ENUMX
2983 BFD_RELOC_IA64_LTOFF_FPTR64LSB
2984 ENUMX
2985 BFD_RELOC_IA64_SEGREL32MSB
2986 ENUMX
2987 BFD_RELOC_IA64_SEGREL32LSB
2988 ENUMX
2989 BFD_RELOC_IA64_SEGREL64MSB
2990 ENUMX
2991 BFD_RELOC_IA64_SEGREL64LSB
2992 ENUMX
2993 BFD_RELOC_IA64_SECREL32MSB
2994 ENUMX
2995 BFD_RELOC_IA64_SECREL32LSB
2996 ENUMX
2997 BFD_RELOC_IA64_SECREL64MSB
2998 ENUMX
2999 BFD_RELOC_IA64_SECREL64LSB
3000 ENUMX
3001 BFD_RELOC_IA64_REL32MSB
3002 ENUMX
3003 BFD_RELOC_IA64_REL32LSB
3004 ENUMX
3005 BFD_RELOC_IA64_REL64MSB
3006 ENUMX
3007 BFD_RELOC_IA64_REL64LSB
3008 ENUMX
3009 BFD_RELOC_IA64_LTV32MSB
3010 ENUMX
3011 BFD_RELOC_IA64_LTV32LSB
3012 ENUMX
3013 BFD_RELOC_IA64_LTV64MSB
3014 ENUMX
3015 BFD_RELOC_IA64_LTV64LSB
3016 ENUMX
3017 BFD_RELOC_IA64_IPLTMSB
3018 ENUMX
3019 BFD_RELOC_IA64_IPLTLSB
3020 ENUMX
3021 BFD_RELOC_IA64_COPY
3022 ENUMX
3023 BFD_RELOC_IA64_TPREL22
3024 ENUMX
3025 BFD_RELOC_IA64_TPREL64MSB
3026 ENUMX
3027 BFD_RELOC_IA64_TPREL64LSB
3028 ENUMX
3029 BFD_RELOC_IA64_LTOFF_TP22
3030 ENUMX
3031 BFD_RELOC_IA64_LTOFF22X
3032 ENUMX
3033 BFD_RELOC_IA64_LDXMOV
3034 ENUMDOC
3035 Intel IA64 Relocations.
3036
3037 ENUM
3038 BFD_RELOC_M68HC11_HI8
3039 ENUMDOC
3040 Motorola 68HC11 reloc.
3041 This is the 8 bits high part of an absolute address.
3042 ENUM
3043 BFD_RELOC_M68HC11_LO8
3044 ENUMDOC
3045 Motorola 68HC11 reloc.
3046 This is the 8 bits low part of an absolute address.
3047 ENUM
3048 BFD_RELOC_M68HC11_3B
3049 ENUMDOC
3050 Motorola 68HC11 reloc.
3051 This is the 3 bits of a value.
3052
3053 ENUM
3054 BFD_RELOC_CRIS_BDISP8
3055 ENUMX
3056 BFD_RELOC_CRIS_UNSIGNED_5
3057 ENUMX
3058 BFD_RELOC_CRIS_SIGNED_6
3059 ENUMX
3060 BFD_RELOC_CRIS_UNSIGNED_6
3061 ENUMX
3062 BFD_RELOC_CRIS_UNSIGNED_4
3063 ENUMDOC
3064 These relocs are only used within the CRIS assembler. They are not
3065 (at present) written to any object files.
3066 ENUM
3067 BFD_RELOC_CRIS_COPY
3068 ENUMX
3069 BFD_RELOC_CRIS_GLOB_DAT
3070 ENUMX
3071 BFD_RELOC_CRIS_JUMP_SLOT
3072 ENUMX
3073 BFD_RELOC_CRIS_RELATIVE
3074 ENUMDOC
3075 Relocs used in ELF shared libraries for CRIS.
3076 ENUM
3077 BFD_RELOC_CRIS_32_GOT
3078 ENUMDOC
3079 32-bit offset to symbol-entry within GOT.
3080 ENUM
3081 BFD_RELOC_CRIS_16_GOT
3082 ENUMDOC
3083 16-bit offset to symbol-entry within GOT.
3084 ENUM
3085 BFD_RELOC_CRIS_32_GOTPLT
3086 ENUMDOC
3087 32-bit offset to symbol-entry within GOT, with PLT handling.
3088 ENUM
3089 BFD_RELOC_CRIS_16_GOTPLT
3090 ENUMDOC
3091 16-bit offset to symbol-entry within GOT, with PLT handling.
3092 ENUM
3093 BFD_RELOC_CRIS_32_GOTREL
3094 ENUMDOC
3095 32-bit offset to symbol, relative to GOT.
3096 ENUM
3097 BFD_RELOC_CRIS_32_PLT_GOTREL
3098 ENUMDOC
3099 32-bit offset to symbol with PLT entry, relative to GOT.
3100 ENUM
3101 BFD_RELOC_CRIS_32_PLT_PCREL
3102 ENUMDOC
3103 32-bit offset to symbol with PLT entry, relative to this relocation.
3104
3105 ENUM
3106 BFD_RELOC_860_COPY
3107 ENUMX
3108 BFD_RELOC_860_GLOB_DAT
3109 ENUMX
3110 BFD_RELOC_860_JUMP_SLOT
3111 ENUMX
3112 BFD_RELOC_860_RELATIVE
3113 ENUMX
3114 BFD_RELOC_860_PC26
3115 ENUMX
3116 BFD_RELOC_860_PLT26
3117 ENUMX
3118 BFD_RELOC_860_PC16
3119 ENUMX
3120 BFD_RELOC_860_LOW0
3121 ENUMX
3122 BFD_RELOC_860_SPLIT0
3123 ENUMX
3124 BFD_RELOC_860_LOW1
3125 ENUMX
3126 BFD_RELOC_860_SPLIT1
3127 ENUMX
3128 BFD_RELOC_860_LOW2
3129 ENUMX
3130 BFD_RELOC_860_SPLIT2
3131 ENUMX
3132 BFD_RELOC_860_LOW3
3133 ENUMX
3134 BFD_RELOC_860_LOGOT0
3135 ENUMX
3136 BFD_RELOC_860_SPGOT0
3137 ENUMX
3138 BFD_RELOC_860_LOGOT1
3139 ENUMX
3140 BFD_RELOC_860_SPGOT1
3141 ENUMX
3142 BFD_RELOC_860_LOGOTOFF0
3143 ENUMX
3144 BFD_RELOC_860_SPGOTOFF0
3145 ENUMX
3146 BFD_RELOC_860_LOGOTOFF1
3147 ENUMX
3148 BFD_RELOC_860_SPGOTOFF1
3149 ENUMX
3150 BFD_RELOC_860_LOGOTOFF2
3151 ENUMX
3152 BFD_RELOC_860_LOGOTOFF3
3153 ENUMX
3154 BFD_RELOC_860_LOPC
3155 ENUMX
3156 BFD_RELOC_860_HIGHADJ
3157 ENUMX
3158 BFD_RELOC_860_HAGOT
3159 ENUMX
3160 BFD_RELOC_860_HAGOTOFF
3161 ENUMX
3162 BFD_RELOC_860_HAPC
3163 ENUMX
3164 BFD_RELOC_860_HIGH
3165 ENUMX
3166 BFD_RELOC_860_HIGOT
3167 ENUMX
3168 BFD_RELOC_860_HIGOTOFF
3169 ENUMDOC
3170 Intel i860 Relocations.
3171
3172 ENUM
3173 BFD_RELOC_OPENRISC_ABS_26
3174 ENUMX
3175 BFD_RELOC_OPENRISC_REL_26
3176 ENUMDOC
3177 OpenRISC Relocations.
3178
3179 ENUM
3180 BFD_RELOC_H8_DIR16A8
3181 ENUMX
3182 BFD_RELOC_H8_DIR16R8
3183 ENUMX
3184 BFD_RELOC_H8_DIR24A8
3185 ENUMX
3186 BFD_RELOC_H8_DIR24R8
3187 ENUMX
3188 BFD_RELOC_H8_DIR32A16
3189 ENUMDOC
3190 H8 elf Relocations.
3191
3192 ENDSENUM
3193 BFD_RELOC_UNUSED
3194 CODE_FRAGMENT
3195 .
3196 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3197 */
3198
3199 /*
3200 FUNCTION
3201 bfd_reloc_type_lookup
3202
3203 SYNOPSIS
3204 reloc_howto_type *
3205 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3206
3207 DESCRIPTION
3208 Return a pointer to a howto structure which, when
3209 invoked, will perform the relocation @var{code} on data from the
3210 architecture noted.
3211
3212 */
3213
3214 reloc_howto_type *
3215 bfd_reloc_type_lookup (abfd, code)
3216 bfd *abfd;
3217 bfd_reloc_code_real_type code;
3218 {
3219 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3220 }
3221
3222 static reloc_howto_type bfd_howto_32 =
3223 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3224
3225 /*
3226 INTERNAL_FUNCTION
3227 bfd_default_reloc_type_lookup
3228
3229 SYNOPSIS
3230 reloc_howto_type *bfd_default_reloc_type_lookup
3231 (bfd *abfd, bfd_reloc_code_real_type code);
3232
3233 DESCRIPTION
3234 Provides a default relocation lookup routine for any architecture.
3235
3236 */
3237
3238 reloc_howto_type *
3239 bfd_default_reloc_type_lookup (abfd, code)
3240 bfd *abfd;
3241 bfd_reloc_code_real_type code;
3242 {
3243 switch (code)
3244 {
3245 case BFD_RELOC_CTOR:
3246 /* The type of reloc used in a ctor, which will be as wide as the
3247 address - so either a 64, 32, or 16 bitter. */
3248 switch (bfd_get_arch_info (abfd)->bits_per_address)
3249 {
3250 case 64:
3251 BFD_FAIL ();
3252 case 32:
3253 return &bfd_howto_32;
3254 case 16:
3255 BFD_FAIL ();
3256 default:
3257 BFD_FAIL ();
3258 }
3259 default:
3260 BFD_FAIL ();
3261 }
3262 return (reloc_howto_type *) NULL;
3263 }
3264
3265 /*
3266 FUNCTION
3267 bfd_get_reloc_code_name
3268
3269 SYNOPSIS
3270 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3271
3272 DESCRIPTION
3273 Provides a printable name for the supplied relocation code.
3274 Useful mainly for printing error messages.
3275 */
3276
3277 const char *
3278 bfd_get_reloc_code_name (code)
3279 bfd_reloc_code_real_type code;
3280 {
3281 if (code > BFD_RELOC_UNUSED)
3282 return 0;
3283 return bfd_reloc_code_real_names[(int)code];
3284 }
3285
3286 /*
3287 INTERNAL_FUNCTION
3288 bfd_generic_relax_section
3289
3290 SYNOPSIS
3291 boolean bfd_generic_relax_section
3292 (bfd *abfd,
3293 asection *section,
3294 struct bfd_link_info *,
3295 boolean *);
3296
3297 DESCRIPTION
3298 Provides default handling for relaxing for back ends which
3299 don't do relaxing -- i.e., does nothing.
3300 */
3301
3302 /*ARGSUSED*/
3303 boolean
3304 bfd_generic_relax_section (abfd, section, link_info, again)
3305 bfd *abfd ATTRIBUTE_UNUSED;
3306 asection *section ATTRIBUTE_UNUSED;
3307 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3308 boolean *again;
3309 {
3310 *again = false;
3311 return true;
3312 }
3313
3314 /*
3315 INTERNAL_FUNCTION
3316 bfd_generic_gc_sections
3317
3318 SYNOPSIS
3319 boolean bfd_generic_gc_sections
3320 (bfd *, struct bfd_link_info *);
3321
3322 DESCRIPTION
3323 Provides default handling for relaxing for back ends which
3324 don't do section gc -- i.e., does nothing.
3325 */
3326
3327 /*ARGSUSED*/
3328 boolean
3329 bfd_generic_gc_sections (abfd, link_info)
3330 bfd *abfd ATTRIBUTE_UNUSED;
3331 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3332 {
3333 return true;
3334 }
3335
3336 /*
3337 INTERNAL_FUNCTION
3338 bfd_generic_merge_sections
3339
3340 SYNOPSIS
3341 boolean bfd_generic_merge_sections
3342 (bfd *, struct bfd_link_info *);
3343
3344 DESCRIPTION
3345 Provides default handling for SEC_MERGE section merging for back ends
3346 which don't have SEC_MERGE support -- i.e., does nothing.
3347 */
3348
3349 /*ARGSUSED*/
3350 boolean
3351 bfd_generic_merge_sections (abfd, link_info)
3352 bfd *abfd ATTRIBUTE_UNUSED;
3353 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3354 {
3355 return true;
3356 }
3357
3358 /*
3359 INTERNAL_FUNCTION
3360 bfd_generic_get_relocated_section_contents
3361
3362 SYNOPSIS
3363 bfd_byte *
3364 bfd_generic_get_relocated_section_contents (bfd *abfd,
3365 struct bfd_link_info *link_info,
3366 struct bfd_link_order *link_order,
3367 bfd_byte *data,
3368 boolean relocateable,
3369 asymbol **symbols);
3370
3371 DESCRIPTION
3372 Provides default handling of relocation effort for back ends
3373 which can't be bothered to do it efficiently.
3374
3375 */
3376
3377 bfd_byte *
3378 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3379 relocateable, symbols)
3380 bfd *abfd;
3381 struct bfd_link_info *link_info;
3382 struct bfd_link_order *link_order;
3383 bfd_byte *data;
3384 boolean relocateable;
3385 asymbol **symbols;
3386 {
3387 /* Get enough memory to hold the stuff */
3388 bfd *input_bfd = link_order->u.indirect.section->owner;
3389 asection *input_section = link_order->u.indirect.section;
3390
3391 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3392 arelent **reloc_vector = NULL;
3393 long reloc_count;
3394
3395 if (reloc_size < 0)
3396 goto error_return;
3397
3398 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
3399 if (reloc_vector == NULL && reloc_size != 0)
3400 goto error_return;
3401
3402 /* read in the section */
3403 if (!bfd_get_section_contents (input_bfd,
3404 input_section,
3405 (PTR) data,
3406 (bfd_vma) 0,
3407 input_section->_raw_size))
3408 goto error_return;
3409
3410 /* We're not relaxing the section, so just copy the size info */
3411 input_section->_cooked_size = input_section->_raw_size;
3412 input_section->reloc_done = true;
3413
3414 reloc_count = bfd_canonicalize_reloc (input_bfd,
3415 input_section,
3416 reloc_vector,
3417 symbols);
3418 if (reloc_count < 0)
3419 goto error_return;
3420
3421 if (reloc_count > 0)
3422 {
3423 arelent **parent;
3424 for (parent = reloc_vector; *parent != (arelent *) NULL;
3425 parent++)
3426 {
3427 char *error_message = (char *) NULL;
3428 bfd_reloc_status_type r =
3429 bfd_perform_relocation (input_bfd,
3430 *parent,
3431 (PTR) data,
3432 input_section,
3433 relocateable ? abfd : (bfd *) NULL,
3434 &error_message);
3435
3436 if (relocateable)
3437 {
3438 asection *os = input_section->output_section;
3439
3440 /* A partial link, so keep the relocs */
3441 os->orelocation[os->reloc_count] = *parent;
3442 os->reloc_count++;
3443 }
3444
3445 if (r != bfd_reloc_ok)
3446 {
3447 switch (r)
3448 {
3449 case bfd_reloc_undefined:
3450 if (!((*link_info->callbacks->undefined_symbol)
3451 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3452 input_bfd, input_section, (*parent)->address,
3453 true)))
3454 goto error_return;
3455 break;
3456 case bfd_reloc_dangerous:
3457 BFD_ASSERT (error_message != (char *) NULL);
3458 if (!((*link_info->callbacks->reloc_dangerous)
3459 (link_info, error_message, input_bfd, input_section,
3460 (*parent)->address)))
3461 goto error_return;
3462 break;
3463 case bfd_reloc_overflow:
3464 if (!((*link_info->callbacks->reloc_overflow)
3465 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3466 (*parent)->howto->name, (*parent)->addend,
3467 input_bfd, input_section, (*parent)->address)))
3468 goto error_return;
3469 break;
3470 case bfd_reloc_outofrange:
3471 default:
3472 abort ();
3473 break;
3474 }
3475
3476 }
3477 }
3478 }
3479 if (reloc_vector != NULL)
3480 free (reloc_vector);
3481 return data;
3482
3483 error_return:
3484 if (reloc_vector != NULL)
3485 free (reloc_vector);
3486 return NULL;
3487 }