]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/reloc16.c
hurd: Add enough auxv support for AT_ENTRY for PIE binaries
[thirdparty/binutils-gdb.git] / bfd / reloc16.c
1 /* 8 and 16 bit COFF relocation functions, for BFD.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain <sac@cygnus.com>. */
24
25 /* These routines are used by coff-h8300 and coff-z8k to do
26 relocation.
27
28 FIXME: This code should be rewritten to support the new COFF
29 linker. Basically, they need to deal with COFF relocs rather than
30 BFD generic relocs. They should store the relocs in some location
31 where coff_link_input_bfd can find them (and coff_link_input_bfd
32 should be changed to use this location rather than rereading the
33 file) (unless info->keep_memory is FALSE, in which case they should
34 free up the relocs after dealing with them). */
35
36 #include "sysdep.h"
37 #include "bfd.h"
38 #include "libbfd.h"
39 #include "bfdlink.h"
40 #include "genlink.h"
41 #include "coff/internal.h"
42 #include "libcoff.h"
43
44 bfd_vma
45 bfd_coff_reloc16_get_value (arelent *reloc,
46 struct bfd_link_info *link_info,
47 asection *input_section)
48 {
49 bfd_vma value;
50 asymbol *symbol = *(reloc->sym_ptr_ptr);
51 /* A symbol holds a pointer to a section, and an offset from the
52 base of the section. To relocate, we find where the section will
53 live in the output and add that in. */
54
55 if (bfd_is_und_section (symbol->section)
56 || bfd_is_com_section (symbol->section))
57 {
58 struct bfd_link_hash_entry *h;
59
60 /* The symbol is undefined in this BFD. Look it up in the
61 global linker hash table. FIXME: This should be changed when
62 we convert this stuff to use a specific final_link function
63 and change the interface to bfd_relax_section to not require
64 the generic symbols. */
65 h = bfd_wrapped_link_hash_lookup (input_section->owner, link_info,
66 bfd_asymbol_name (symbol),
67 FALSE, FALSE, TRUE);
68 if (h != (struct bfd_link_hash_entry *) NULL
69 && (h->type == bfd_link_hash_defined
70 || h->type == bfd_link_hash_defweak))
71 value = (h->u.def.value
72 + h->u.def.section->output_section->vma
73 + h->u.def.section->output_offset);
74 else if (h != (struct bfd_link_hash_entry *) NULL
75 && h->type == bfd_link_hash_common)
76 value = h->u.c.size;
77 else if (h != (struct bfd_link_hash_entry *) NULL
78 && h->type == bfd_link_hash_undefweak)
79 /* This is a GNU extension. */
80 value = 0;
81 else
82 {
83 (*link_info->callbacks->undefined_symbol)
84 (link_info, bfd_asymbol_name (symbol),
85 input_section->owner, input_section, reloc->address, TRUE);
86 value = 0;
87 }
88 }
89 else
90 {
91 value = symbol->value
92 + symbol->section->output_offset
93 + symbol->section->output_section->vma;
94 }
95
96 /* Add the value contained in the relocation. */
97 value += reloc->addend;
98
99 return value;
100 }
101
102 void
103 bfd_perform_slip (bfd *abfd,
104 unsigned int slip,
105 asection *input_section,
106 bfd_vma value)
107 {
108 asymbol **s;
109
110 s = _bfd_generic_link_get_symbols (abfd);
111 BFD_ASSERT (s != (asymbol **) NULL);
112
113 /* Find all symbols past this point, and make them know
114 what's happened. */
115 while (*s)
116 {
117 asymbol *p = *s;
118 if (p->section == input_section)
119 {
120 /* This was pointing into this section, so mangle it. */
121 if (p->value > value)
122 {
123 p->value -= slip;
124 if (p->udata.p != NULL)
125 {
126 struct generic_link_hash_entry *h;
127
128 h = (struct generic_link_hash_entry *) p->udata.p;
129 BFD_ASSERT (h->root.type == bfd_link_hash_defined
130 || h->root.type == bfd_link_hash_defweak);
131 h->root.u.def.value -= slip;
132 BFD_ASSERT (h->root.u.def.value == p->value);
133 }
134 }
135 }
136 s++;
137 }
138 }
139
140 bfd_boolean
141 bfd_coff_reloc16_relax_section (bfd *abfd,
142 asection *input_section,
143 struct bfd_link_info *link_info,
144 bfd_boolean *again)
145 {
146 /* Get enough memory to hold the stuff. */
147 bfd *input_bfd = input_section->owner;
148 unsigned *shrinks;
149 unsigned shrink = 0;
150 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
151 arelent **reloc_vector = NULL;
152 long reloc_count;
153
154 if (bfd_link_relocatable (link_info))
155 (*link_info->callbacks->einfo)
156 (_("%P%F: --relax and -r may not be used together\n"));
157
158 /* We only do global relaxation once. It is not safe to do it multiple
159 times (see discussion of the "shrinks" array below). */
160 *again = FALSE;
161
162 if (reloc_size < 0)
163 return FALSE;
164
165 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
166 if (!reloc_vector && reloc_size > 0)
167 return FALSE;
168
169 /* Get the relocs and think about them. */
170 reloc_count =
171 bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector,
172 _bfd_generic_link_get_symbols (input_bfd));
173 if (reloc_count < 0)
174 {
175 free (reloc_vector);
176 return FALSE;
177 }
178
179 /* The reloc16.c and related relaxing code is very simple, the price
180 for that simplicity is we can only call this function once for
181 each section.
182
183 So, to get the best results within that limitation, we do multiple
184 relaxing passes over each section here. That involves keeping track
185 of the "shrink" at each reloc in the section. This allows us to
186 accurately determine the relative location of two relocs within
187 this section.
188
189 In theory, if we kept the "shrinks" array for each section for the
190 entire link, we could use the generic relaxing code in the linker
191 and get better results, particularly for jsr->bsr and 24->16 bit
192 memory reference relaxations. */
193
194 if (reloc_count > 0)
195 {
196 int another_pass = 0;
197 bfd_size_type amt;
198
199 /* Allocate and initialize the shrinks array for this section.
200 The last element is used as an accumulator of shrinks. */
201 amt = reloc_count + 1;
202 amt *= sizeof (unsigned);
203 shrinks = (unsigned *) bfd_zmalloc (amt);
204
205 /* Loop until nothing changes in this section. */
206 do
207 {
208 arelent **parent;
209 unsigned int i;
210 long j;
211
212 another_pass = 0;
213
214 for (i = 0, parent = reloc_vector; *parent; parent++, i++)
215 {
216 /* Let the target/machine dependent code examine each reloc
217 in this section and attempt to shrink it. */
218 shrink = bfd_coff_reloc16_estimate (abfd, input_section, *parent,
219 shrinks[i], link_info);
220
221 /* If it shrunk, note it in the shrinks array and set up for
222 another pass. */
223 if (shrink != shrinks[i])
224 {
225 another_pass = 1;
226 for (j = i + 1; j <= reloc_count; j++)
227 shrinks[j] += shrink - shrinks[i];
228 }
229 }
230 }
231 while (another_pass);
232
233 shrink = shrinks[reloc_count];
234 free ((char *) shrinks);
235 }
236
237 input_section->rawsize = input_section->size;
238 input_section->size -= shrink;
239 free ((char *) reloc_vector);
240 return TRUE;
241 }
242
243 bfd_byte *
244 bfd_coff_reloc16_get_relocated_section_contents
245 (bfd *in_abfd,
246 struct bfd_link_info *link_info,
247 struct bfd_link_order *link_order,
248 bfd_byte *data,
249 bfd_boolean relocatable,
250 asymbol **symbols)
251 {
252 /* Get enough memory to hold the stuff. */
253 bfd *input_bfd = link_order->u.indirect.section->owner;
254 asection *input_section = link_order->u.indirect.section;
255 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
256 arelent **reloc_vector;
257 long reloc_count;
258 bfd_size_type sz;
259
260 if (reloc_size < 0)
261 return NULL;
262
263 /* If producing relocatable output, don't bother to relax. */
264 if (relocatable)
265 return bfd_generic_get_relocated_section_contents (in_abfd, link_info,
266 link_order,
267 data, relocatable,
268 symbols);
269
270 /* Read in the section. */
271 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
272 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
273 return NULL;
274
275 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
276 if (!reloc_vector && reloc_size != 0)
277 return NULL;
278
279 reloc_count = bfd_canonicalize_reloc (input_bfd,
280 input_section,
281 reloc_vector,
282 symbols);
283 if (reloc_count < 0)
284 {
285 free (reloc_vector);
286 return NULL;
287 }
288
289 if (reloc_count > 0)
290 {
291 arelent **parent = reloc_vector;
292 arelent *reloc;
293 unsigned int dst_address = 0;
294 unsigned int src_address = 0;
295 unsigned int run;
296 unsigned int idx;
297
298 /* Find how long a run we can do. */
299 while (dst_address < link_order->size)
300 {
301 reloc = *parent;
302 if (reloc)
303 {
304 /* Note that the relaxing didn't tie up the addresses in the
305 relocation, so we use the original address to work out the
306 run of non-relocated data. */
307 run = reloc->address - src_address;
308 parent++;
309 }
310 else
311 {
312 run = link_order->size - dst_address;
313 }
314
315 /* Copy the bytes. */
316 for (idx = 0; idx < run; idx++)
317 data[dst_address++] = data[src_address++];
318
319 /* Now do the relocation. */
320 if (reloc)
321 {
322 bfd_coff_reloc16_extra_cases (input_bfd, link_info, link_order,
323 reloc, data, &src_address,
324 &dst_address);
325 }
326 }
327 }
328 free ((char *) reloc_vector);
329 return data;
330 }