1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2025 Free Software Foundation, Inc.
3 Written by Cygnus Support.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
31 Sections are supported in BFD in <<section.c>>.
37 @* section prototypes::
41 Section Input, Section Output, Sections, Sections
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
71 Section Output, typedef asection, Section Input, Sections
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
104 | output_section -----------> section name "O"
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
109 | output_section --------|
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
140 typedef asection, section prototypes, Section Output, Sections
144 Here is the section structure:
147 .{* Linenumber stuff. *}
148 .typedef struct lineno_cache_entry
150 . unsigned int line_number; {* Linenumber from start of function. *}
153 . struct bfd_symbol *sym; {* Function name. *}
154 . bfd_vma offset; {* Offset into section. *}
161 .typedef struct bfd_section
163 . {* The name of the section; the name isn't a copy, the pointer is
164 . the same as that passed to bfd_make_section. *}
167 . {* The next section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *next;
170 . {* The previous section in the list belonging to the BFD, or NULL. *}
171 . struct bfd_section *prev;
173 . {* A unique sequence number. *}
176 . {* A unique section number which can be used by assembler to
177 . distinguish different sections with the same section name. *}
178 . unsigned int section_id;
180 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
181 . unsigned int index;
183 . {* The field flags contains attributes of the section. Some
184 . flags are read in from the object file, and some are
185 . synthesized from other information. *}
188 .#define SEC_NO_FLAGS 0x0
190 . {* Tells the OS to allocate space for this section when loading.
191 . This is clear for a section containing debug information only. *}
192 .#define SEC_ALLOC 0x1
194 . {* Tells the OS to load the section from the file when loading.
195 . This is clear for a .bss section. *}
196 .#define SEC_LOAD 0x2
198 . {* The section contains data still to be relocated, so there is
199 . some relocation information too. *}
200 .#define SEC_RELOC 0x4
202 . {* A signal to the OS that the section contains read only data. *}
203 .#define SEC_READONLY 0x8
205 . {* The section contains code only. *}
206 .#define SEC_CODE 0x10
208 . {* The section contains data only. *}
209 .#define SEC_DATA 0x20
211 . {* The section will reside in ROM. *}
212 .#define SEC_ROM 0x40
214 . {* The section contains constructor information. This section
215 . type is used by the linker to create lists of constructors and
216 . destructors used by <<g++>>. When a back end sees a symbol
217 . which should be used in a constructor list, it creates a new
218 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
219 . the symbol to it, and builds a relocation. To build the lists
220 . of constructors, all the linker has to do is catenate all the
221 . sections called <<__CTOR_LIST__>> and relocate the data
222 . contained within - exactly the operations it would peform on
224 .#define SEC_CONSTRUCTOR 0x80
226 . {* The section has contents - a data section could be
227 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
228 . <<SEC_HAS_CONTENTS>> *}
229 .#define SEC_HAS_CONTENTS 0x100
231 . {* An instruction to the linker to not output the section
232 . even if it has information which would normally be written. *}
233 .#define SEC_NEVER_LOAD 0x200
235 . {* The section contains thread local data. *}
236 .#define SEC_THREAD_LOCAL 0x400
238 . {* The section's size is fixed. Generic linker code will not
239 . recalculate it and it is up to whoever has set this flag to
240 . get the size right. *}
241 .#define SEC_FIXED_SIZE 0x800
243 . {* The section contains common symbols (symbols may be defined
244 . multiple times, the value of a symbol is the amount of
245 . space it requires, and the largest symbol value is the one
246 . used). Most targets have exactly one of these (which we
247 . translate to bfd_com_section_ptr), but ECOFF has two. *}
248 .#define SEC_IS_COMMON 0x1000
250 . {* The section contains only debugging information. For
251 . example, this is set for ELF .debug and .stab sections.
252 . strip tests this flag to see if a section can be
254 .#define SEC_DEBUGGING 0x2000
256 . {* The contents of this section are held in memory pointed to
257 . by the contents field. This is checked by bfd_get_section_contents,
258 . and the data is retrieved from memory if appropriate. *}
259 .#define SEC_IN_MEMORY 0x4000
261 . {* The contents of this section are to be excluded by the
262 . linker for executable and shared objects unless those
263 . objects are to be further relocated. *}
264 .#define SEC_EXCLUDE 0x8000
266 . {* The contents of this section are to be sorted based on the sum of
267 . the symbol and addend values specified by the associated relocation
268 . entries. Entries without associated relocation entries will be
269 . appended to the end of the section in an unspecified order. *}
270 .#define SEC_SORT_ENTRIES 0x10000
272 . {* When linking, duplicate sections of the same name should be
273 . discarded, rather than being combined into a single section as
274 . is usually done. This is similar to how common symbols are
275 . handled. See SEC_LINK_DUPLICATES below. *}
276 .#define SEC_LINK_ONCE 0x20000
278 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
279 . should handle duplicate sections. *}
280 .#define SEC_LINK_DUPLICATES 0xc0000
282 . {* This value for SEC_LINK_DUPLICATES means that duplicate
283 . sections with the same name should simply be discarded. *}
284 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if there are any duplicate sections, although
288 . it should still only link one copy. *}
289 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
291 . {* This value for SEC_LINK_DUPLICATES means that the linker
292 . should warn if any duplicate sections are a different size. *}
293 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
295 . {* This value for SEC_LINK_DUPLICATES means that the linker
296 . should warn if any duplicate sections contain different
298 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
299 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
301 . {* This section was created by the linker as part of dynamic
302 . relocation or other arcane processing. It is skipped when
303 . going through the first-pass output, trusting that someone
304 . else up the line will take care of it later. *}
305 .#define SEC_LINKER_CREATED 0x100000
307 . {* This section contains a section ID to distinguish different
308 . sections with the same section name. *}
309 .#define SEC_ASSEMBLER_SECTION_ID 0x100000
311 . {* This section should not be subject to garbage collection.
312 . Also set to inform the linker that this section should not be
313 . listed in the link map as discarded. *}
314 .#define SEC_KEEP 0x200000
316 . {* This section contains "short" data, and should be placed
318 .#define SEC_SMALL_DATA 0x400000
320 . {* Attempt to merge identical entities in the section.
321 . Entity size is given in the entsize field. *}
322 .#define SEC_MERGE 0x800000
324 . {* If given with SEC_MERGE, entities to merge are zero terminated
325 . strings where entsize specifies character size instead of fixed
327 .#define SEC_STRINGS 0x1000000
329 . {* This section contains data about section groups. *}
330 .#define SEC_GROUP 0x2000000
332 . {* The section is a COFF shared library section. This flag is
333 . only for the linker. If this type of section appears in
334 . the input file, the linker must copy it to the output file
335 . without changing the vma or size. FIXME: Although this
336 . was originally intended to be general, it really is COFF
337 . specific (and the flag was renamed to indicate this). It
338 . might be cleaner to have some more general mechanism to
339 . allow the back end to control what the linker does with
341 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
343 . {* This input section should be copied to output in reverse order
344 . as an array of pointers. This is for ELF linker internal use
346 .#define SEC_ELF_REVERSE_COPY 0x4000000
348 . {* This section contains data which may be shared with other
349 . executables or shared objects. This is for COFF only. *}
350 .#define SEC_COFF_SHARED 0x8000000
352 . {* Indicate that section has the purecode flag set. *}
353 .#define SEC_ELF_PURECODE 0x8000000
355 . {* When a section with this flag is being linked, then if the size of
356 . the input section is less than a page, it should not cross a page
357 . boundary. If the size of the input section is one page or more,
358 . it should be aligned on a page boundary. This is for TI
359 . TMS320C54X only. *}
360 .#define SEC_TIC54X_BLOCK 0x10000000
362 . {* This section has the SHF_X86_64_LARGE flag. This is ELF x86-64 only. *}
363 .#define SEC_ELF_LARGE 0x10000000
365 . {* Conditionally link this section; do not link if there are no
366 . references found to any symbol in the section. This is for TI
367 . TMS320C54X only. *}
368 .#define SEC_TIC54X_CLINK 0x20000000
370 . {* This section contains vliw code. This is for Toshiba MeP only. *}
371 .#define SEC_MEP_VLIW 0x20000000
373 . {* All symbols, sizes and relocations in this section are octets
374 . instead of bytes. Required for DWARF debug sections as DWARF
375 . information is organized in octets, not bytes. *}
376 .#define SEC_ELF_OCTETS 0x40000000
378 . {* Indicate that section has the no read flag set. This happens
379 . when memory read flag isn't set. *}
380 .#define SEC_COFF_NOREAD 0x40000000
382 . {* End of section flags. *}
384 . {* Some internal packed boolean fields. *}
386 . {* See the vma field. *}
387 . unsigned int user_set_vma : 1;
389 . {* A mark flag used by some of the linker backends. *}
390 . unsigned int linker_mark : 1;
392 . {* Another mark flag used by some of the linker backends. Set for
393 . output sections that have an input section. *}
394 . unsigned int linker_has_input : 1;
396 . {* Mark flag used by some linker backends for garbage collection. *}
397 . unsigned int gc_mark : 1;
399 . {* Section compression status. *}
400 . unsigned int compress_status : 2;
401 .#define COMPRESS_SECTION_NONE 0
402 .#define COMPRESS_SECTION_DONE 1
403 .#define DECOMPRESS_SECTION_ZLIB 2
404 .#define DECOMPRESS_SECTION_ZSTD 3
406 . {* The following flags are used by the ELF linker. *}
408 . {* Mark sections which have been allocated to segments. *}
409 . unsigned int segment_mark : 1;
411 . {* Type of sec_info information. *}
412 . unsigned int sec_info_type:3;
413 .#define SEC_INFO_TYPE_NONE 0
414 .#define SEC_INFO_TYPE_STABS 1
415 .#define SEC_INFO_TYPE_MERGE 2
416 .#define SEC_INFO_TYPE_EH_FRAME 3
417 .#define SEC_INFO_TYPE_JUST_SYMS 4
418 .#define SEC_INFO_TYPE_TARGET 5
419 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
420 .#define SEC_INFO_TYPE_SFRAME 7
422 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
423 . unsigned int use_rela_p:1;
425 . {* Nonzero if section contents are mmapped. *}
426 . unsigned int mmapped_p:1;
428 . {* Nonzero if section contents should not be freed. *}
429 . unsigned int alloced:1;
431 . {* Bits used by various backends. The generic code doesn't touch
434 . unsigned int sec_flg0:1;
435 . unsigned int sec_flg1:1;
436 . unsigned int sec_flg2:1;
437 . unsigned int sec_flg3:1;
438 . unsigned int sec_flg4:1;
439 . unsigned int sec_flg5:1;
441 . {* End of internal packed boolean fields. *}
443 . {* The virtual memory address of the section - where it will be
444 . at run time. The symbols are relocated against this. The
445 . user_set_vma flag is maintained by bfd; if it's not set, the
446 . backend can assign addresses (for example, in <<a.out>>, where
447 . the default address for <<.data>> is dependent on the specific
448 . target and various flags). *}
451 . {* The load address of the section - where it would be in a
452 . rom image; really only used for writing section header
456 . {* The size of the section in *octets*, as it will be output.
457 . Contains a value even if the section has no contents (e.g., the
458 . size of <<.bss>>). *}
459 . bfd_size_type size;
461 . {* For input sections, the original size on disk of the section, in
462 . octets. This field should be set for any section whose size is
463 . changed by linker relaxation. It is required for sections where
464 . the linker relaxation scheme doesn't cache altered section and
465 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
466 . targets), and thus the original size needs to be kept to read the
467 . section multiple times. For output sections, rawsize holds the
468 . section size calculated on a previous linker relaxation pass. *}
469 . bfd_size_type rawsize;
471 . {* The compressed size of the section in octets. *}
472 . bfd_size_type compressed_size;
474 . {* If this section is going to be output, then this value is the
475 . offset in *bytes* into the output section of the first byte in the
476 . input section (byte ==> smallest addressable unit on the
477 . target). In most cases, if this was going to start at the
478 . 100th octet (8-bit quantity) in the output section, this value
479 . would be 100. However, if the target byte size is 16 bits
480 . (bfd_octets_per_byte is "2"), this value would be 50. *}
481 . bfd_vma output_offset;
483 . {* The output section through which to map on output. *}
484 . struct bfd_section *output_section;
486 . {* If an input section, a pointer to a vector of relocation
487 . records for the data in this section. *}
488 . struct reloc_cache_entry *relocation;
490 . {* If an output section, a pointer to a vector of pointers to
491 . relocation records for the data in this section. *}
492 . struct reloc_cache_entry **orelocation;
494 . {* The number of relocation records in one of the above. *}
495 . unsigned reloc_count;
497 . {* The alignment requirement of the section, as an exponent of 2 -
498 . e.g., 3 aligns to 2^3 (or 8). *}
499 . unsigned int alignment_power;
501 . {* Information below is back end specific - and not always used
504 . {* File position of section data. *}
507 . {* File position of relocation info. *}
508 . file_ptr rel_filepos;
510 . {* File position of line data. *}
511 . file_ptr line_filepos;
513 . {* Pointer to data for applications. *}
516 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
518 . bfd_byte *contents;
520 . {* Attached line number information. *}
523 . {* Number of line number records. *}
524 . unsigned int lineno_count;
526 . {* Entity size for merging purposes. *}
527 . unsigned int entsize;
529 . {* Points to the kept section if this section is a link-once section,
530 . and is discarded. *}
531 . struct bfd_section *kept_section;
533 . {* When a section is being output, this value changes as more
534 . linenumbers are written out. *}
535 . file_ptr moving_line_filepos;
537 . {* What the section number is in the target world. *}
542 . {* If this is a constructor section then here is a list of the
543 . relocations created to relocate items within it. *}
544 . struct relent_chain *constructor_chain;
546 . {* The BFD which owns the section. *}
549 . {* A symbol which points at this section only. *}
550 . struct bfd_symbol *symbol;
552 . {* Early in the link process, map_head and map_tail are used to build
553 . a list of input sections attached to an output section. Later,
554 . output sections use these fields for a list of bfd_link_order
555 . structs. The linked_to_symbol_name field is for ELF assembler
558 . struct bfd_link_order *link_order;
559 . struct bfd_section *s;
560 . const char *linked_to_symbol_name;
561 . } map_head, map_tail;
563 . {* Points to the output section this section is already assigned to,
564 . if any. This is used when support for non-contiguous memory
565 . regions is enabled. *}
566 . struct bfd_section *already_assigned;
568 . {* Explicitly specified section type, if non-zero. *}
575 .static inline const char *
576 .bfd_section_name (const asection *sec)
581 .static inline bfd_size_type
582 .bfd_section_size (const asection *sec)
587 .static inline bfd_vma
588 .bfd_section_vma (const asection *sec)
593 .static inline bfd_vma
594 .bfd_section_lma (const asection *sec)
599 .static inline unsigned int
600 .bfd_section_alignment (const asection *sec)
602 . return sec->alignment_power;
605 .static inline flagword
606 .bfd_section_flags (const asection *sec)
611 .static inline void *
612 .bfd_section_userdata (const asection *sec)
614 . return sec->userdata;
617 .bfd_is_com_section (const asection *sec)
619 . return (sec->flags & SEC_IS_COMMON) != 0;
622 .{* Note: the following are provided as inline functions rather than macros
623 . because not all callers use the return value. A macro implementation
624 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
625 . compilers will complain about comma expressions that have no effect. *}
627 .bfd_set_section_userdata (asection *sec, void *val)
629 . sec->userdata = val;
634 .bfd_set_section_vma (asection *sec, bfd_vma val)
636 . sec->vma = sec->lma = val;
637 . sec->user_set_vma = true;
642 .bfd_set_section_lma (asection *sec, bfd_vma val)
649 .bfd_set_section_alignment (asection *sec, unsigned int val)
651 . if (val >= sizeof (bfd_vma) * 8 - 1)
653 . sec->alignment_power = val;
657 .{* These sections are global, and are managed by BFD. The application
658 . and target back end are not permitted to change the values in
660 .extern asection _bfd_std_section[4];
662 .#define BFD_ABS_SECTION_NAME "*ABS*"
663 .#define BFD_UND_SECTION_NAME "*UND*"
664 .#define BFD_COM_SECTION_NAME "*COM*"
665 .#define BFD_IND_SECTION_NAME "*IND*"
667 .{* GNU object-only section name. *}
668 .#define GNU_OBJECT_ONLY_SECTION_NAME ".gnu_object_only"
670 .{* Pointer to the common section. *}
671 .#define bfd_com_section_ptr (&_bfd_std_section[0])
672 .{* Pointer to the undefined section. *}
673 .#define bfd_und_section_ptr (&_bfd_std_section[1])
674 .{* Pointer to the absolute section. *}
675 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
676 .{* Pointer to the indirect section. *}
677 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
680 .bfd_is_und_section (const asection *sec)
682 . return sec == bfd_und_section_ptr;
686 .bfd_is_abs_section (const asection *sec)
688 . return sec == bfd_abs_section_ptr;
692 .bfd_is_ind_section (const asection *sec)
694 . return sec == bfd_ind_section_ptr;
698 .bfd_is_const_section (const asection *sec)
700 . return (sec >= _bfd_std_section
701 . && sec < _bfd_std_section + (sizeof (_bfd_std_section)
702 . / sizeof (_bfd_std_section[0])));
705 .{* Return TRUE if input section SEC has been discarded. *}
707 .discarded_section (const asection *sec)
709 . return (!bfd_is_abs_section (sec)
710 . && bfd_is_abs_section (sec->output_section)
711 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
712 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
716 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
717 . {* name, next, prev, id, section_id, index, flags, user_set_vma, *} \
718 . { NAME, NULL, NULL, IDX, 0, 0, FLAGS, 0, \
720 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
723 . {* segment_mark, sec_info_type, use_rela_p, mmapped_p, alloced, *} \
726 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
727 . 0, 0, 0, 0, 0, 0, \
729 . {* vma, lma, size, rawsize, compressed_size, *} \
732 . {* output_offset, output_section, relocation, orelocation, *} \
733 . 0, &SEC, NULL, NULL, \
735 . {* reloc_count, alignment_power, filepos, rel_filepos, *} \
738 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
739 . 0, NULL, NULL, NULL, 0, \
741 . {* entsize, kept_section, moving_line_filepos, *} \
744 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
745 . 0, NULL, NULL, NULL, \
748 . (struct bfd_symbol *) SYM, \
750 . {* map_head, map_tail, already_assigned, type *} \
751 . { NULL }, { NULL }, NULL, 0 \
755 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
756 . {* the_bfd, name, value, attr, section, udata *} \
757 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 } }
761 /* These symbols are global, not specific to any BFD. Therefore, anything
762 that tries to change them is broken, and should be repaired. */
764 static const asymbol global_syms
[] =
766 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME
, bfd_com_section_ptr
),
767 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME
, bfd_und_section_ptr
),
768 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME
, bfd_abs_section_ptr
),
769 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME
, bfd_ind_section_ptr
)
772 #define STD_SECTION(NAME, IDX, FLAGS) \
773 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
775 asection _bfd_std_section
[] = {
776 STD_SECTION (BFD_COM_SECTION_NAME
, 0, SEC_IS_COMMON
),
777 STD_SECTION (BFD_UND_SECTION_NAME
, 1, 0),
778 STD_SECTION (BFD_ABS_SECTION_NAME
, 2, 0),
779 STD_SECTION (BFD_IND_SECTION_NAME
, 3, 0)
783 /* Initialize an entry in the section hash table. */
785 struct bfd_hash_entry
*
786 bfd_section_hash_newfunc (struct bfd_hash_entry
*entry
,
787 struct bfd_hash_table
*table
,
790 /* Allocate the structure if it has not already been allocated by a
794 entry
= (struct bfd_hash_entry
*)
795 bfd_hash_allocate (table
, sizeof (struct section_hash_entry
));
800 /* Call the allocation method of the superclass. */
801 entry
= bfd_hash_newfunc (entry
, table
, string
);
803 memset (&((struct section_hash_entry
*) entry
)->section
, 0,
809 #define section_hash_lookup(table, string, create, copy) \
810 ((struct section_hash_entry *) \
811 bfd_hash_lookup ((table), (string), (create), (copy)))
813 /* Create a symbol whose only job is to point to this section. This
814 is useful for things like relocs which are relative to the base
818 _bfd_generic_new_section_hook (bfd
*abfd
, asection
*newsect
)
820 newsect
->symbol
= bfd_make_empty_symbol (abfd
);
821 if (newsect
->symbol
== NULL
)
824 newsect
->symbol
->name
= newsect
->name
;
825 newsect
->symbol
->value
= 0;
826 newsect
->symbol
->section
= newsect
;
827 newsect
->symbol
->flags
= BSF_SECTION_SYM
;
832 unsigned int _bfd_section_id
= 0x10; /* id 0 to 3 used by STD_SECTION. */
834 /* Initializes a new section. NEWSECT->NAME is already set. */
837 bfd_section_init (bfd
*abfd
, asection
*newsect
)
839 /* Locking needed for the _bfd_section_id access. */
843 newsect
->id
= _bfd_section_id
;
844 newsect
->index
= abfd
->section_count
;
845 newsect
->owner
= abfd
;
847 if (! BFD_SEND (abfd
, _new_section_hook
, (abfd
, newsect
)))
851 abfd
->section_count
++;
852 bfd_section_list_append (abfd
, newsect
);
863 section prototypes, , typedef asection, Sections
867 These are the functions exported by the section handling part of BFD.
872 bfd_section_list_clear
875 void bfd_section_list_clear (bfd *);
878 Clears the section list, and also resets the section count and
883 bfd_section_list_clear (bfd
*abfd
)
885 abfd
->sections
= NULL
;
886 abfd
->section_last
= NULL
;
887 abfd
->section_count
= 0;
888 memset (abfd
->section_htab
.table
, 0,
889 abfd
->section_htab
.size
* sizeof (struct bfd_hash_entry
*));
890 abfd
->section_htab
.count
= 0;
895 bfd_get_section_by_name
898 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
901 Return the most recently created section attached to @var{abfd}
902 named @var{name}. Return NULL if no such section exists.
906 bfd_get_section_by_name (bfd
*abfd
, const char *name
)
908 struct section_hash_entry
*sh
;
913 sh
= section_hash_lookup (&abfd
->section_htab
, name
, false, false);
922 bfd_get_next_section_by_name
925 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
928 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
929 return the next most recently created section attached to the same
930 BFD with the same name, or if no such section exists in the same BFD and
931 IBFD is non-NULL, the next section with the same name in any input
932 BFD following IBFD. Return NULL on finding no section.
936 bfd_get_next_section_by_name (bfd
*ibfd
, asection
*sec
)
938 struct section_hash_entry
*sh
;
942 sh
= ((struct section_hash_entry
*)
943 ((char *) sec
- offsetof (struct section_hash_entry
, section
)));
945 hash
= sh
->root
.hash
;
947 for (sh
= (struct section_hash_entry
*) sh
->root
.next
;
949 sh
= (struct section_hash_entry
*) sh
->root
.next
)
950 if (sh
->root
.hash
== hash
951 && strcmp (sh
->root
.string
, name
) == 0)
956 while ((ibfd
= ibfd
->link
.next
) != NULL
)
958 asection
*s
= bfd_get_section_by_name (ibfd
, name
);
969 bfd_get_linker_section
972 asection *bfd_get_linker_section (bfd *abfd, const char *name);
975 Return the linker created section attached to @var{abfd}
976 named @var{name}. Return NULL if no such section exists.
980 bfd_get_linker_section (bfd
*abfd
, const char *name
)
982 asection
*sec
= bfd_get_section_by_name (abfd
, name
);
984 while (sec
!= NULL
&& (sec
->flags
& SEC_LINKER_CREATED
) == 0)
985 sec
= bfd_get_next_section_by_name (NULL
, sec
);
991 bfd_get_section_by_name_if
994 asection *bfd_get_section_by_name_if
997 bool (*func) (bfd *abfd, asection *sect, void *obj),
1001 Call the provided function @var{func} for each section
1002 attached to the BFD @var{abfd} whose name matches @var{name},
1003 passing @var{obj} as an argument. The function will be called
1006 | func (abfd, the_section, obj);
1008 It returns the first section for which @var{func} returns true,
1014 bfd_get_section_by_name_if (bfd
*abfd
, const char *name
,
1015 bool (*operation
) (bfd
*, asection
*, void *),
1018 struct section_hash_entry
*sh
;
1024 sh
= section_hash_lookup (&abfd
->section_htab
, name
, false, false);
1028 hash
= sh
->root
.hash
;
1029 for (; sh
!= NULL
; sh
= (struct section_hash_entry
*) sh
->root
.next
)
1030 if (sh
->root
.hash
== hash
1031 && strcmp (sh
->root
.string
, name
) == 0
1032 && (*operation
) (abfd
, &sh
->section
, user_storage
))
1033 return &sh
->section
;
1040 bfd_get_unique_section_name
1043 char *bfd_get_unique_section_name
1044 (bfd *abfd, const char *templat, int *count);
1047 Invent a section name that is unique in @var{abfd} by tacking
1048 a dot and a digit suffix onto the original @var{templat}. If
1049 @var{count} is non-NULL, then it specifies the first number
1050 tried as a suffix to generate a unique name. The value
1051 pointed to by @var{count} will be incremented in this case.
1055 bfd_get_unique_section_name (bfd
*abfd
, const char *templat
, int *count
)
1061 len
= strlen (templat
);
1062 sname
= bfd_alloc (abfd
, len
+ 8);
1065 memcpy (sname
, templat
, len
);
1072 /* If we have a million sections, something is badly wrong. */
1075 sprintf (sname
+ len
, ".%d", num
++);
1077 while (section_hash_lookup (&abfd
->section_htab
, sname
, false, false));
1086 bfd_make_section_old_way
1089 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1092 Create a new empty section called @var{name}
1093 and attach it to the end of the chain of sections for the
1094 BFD @var{abfd}. An attempt to create a section with a name which
1095 is already in use returns its pointer without changing the
1098 It has the funny name since this is the way it used to be
1099 before it was rewritten....
1101 Possible errors are:
1102 o <<bfd_error_invalid_operation>> -
1103 If output has already started for this BFD.
1104 o <<bfd_error_no_memory>> -
1105 If memory allocation fails.
1110 bfd_make_section_old_way (bfd
*abfd
, const char *name
)
1114 if (abfd
->output_has_begun
)
1116 bfd_set_error (bfd_error_invalid_operation
);
1120 if (strcmp (name
, BFD_ABS_SECTION_NAME
) == 0)
1121 newsect
= bfd_abs_section_ptr
;
1122 else if (strcmp (name
, BFD_COM_SECTION_NAME
) == 0)
1123 newsect
= bfd_com_section_ptr
;
1124 else if (strcmp (name
, BFD_UND_SECTION_NAME
) == 0)
1125 newsect
= bfd_und_section_ptr
;
1126 else if (strcmp (name
, BFD_IND_SECTION_NAME
) == 0)
1127 newsect
= bfd_ind_section_ptr
;
1130 struct section_hash_entry
*sh
;
1132 sh
= section_hash_lookup (&abfd
->section_htab
, name
, true, false);
1136 newsect
= &sh
->section
;
1137 if (newsect
->name
!= NULL
)
1139 /* Section already exists. */
1143 newsect
->name
= name
;
1144 return bfd_section_init (abfd
, newsect
);
1152 bfd_make_section_anyway_with_flags
1155 asection *bfd_make_section_anyway_with_flags
1156 (bfd *abfd, const char *name, flagword flags);
1159 Create a new empty section called @var{name} and attach it to the end of
1160 the chain of sections for @var{abfd}. Create a new section even if there
1161 is already a section with that name. Also set the attributes of the
1162 new section to the value @var{flags}.
1164 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1165 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1166 o <<bfd_error_no_memory>> - If memory allocation fails.
1170 bfd_make_section_anyway_with_flags (bfd
*abfd
, const char *name
,
1173 struct section_hash_entry
*sh
;
1176 if (abfd
->output_has_begun
)
1178 bfd_set_error (bfd_error_invalid_operation
);
1182 sh
= section_hash_lookup (&abfd
->section_htab
, name
, true, false);
1186 newsect
= &sh
->section
;
1187 if (newsect
->name
!= NULL
)
1189 /* We are making a section of the same name. Put it in the
1190 section hash table. Even though we can't find it directly by a
1191 hash lookup, we'll be able to find the section by traversing
1192 sh->root.next quicker than looking at all the bfd sections. */
1193 struct section_hash_entry
*new_sh
;
1194 new_sh
= (struct section_hash_entry
*)
1195 bfd_section_hash_newfunc (NULL
, &abfd
->section_htab
, name
);
1199 new_sh
->root
= sh
->root
;
1200 sh
->root
.next
= &new_sh
->root
;
1201 newsect
= &new_sh
->section
;
1204 newsect
->flags
= flags
;
1205 newsect
->name
= name
;
1206 return bfd_section_init (abfd
, newsect
);
1211 bfd_make_section_anyway
1214 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1217 Create a new empty section called @var{name} and attach it to the end of
1218 the chain of sections for @var{abfd}. Create a new section even if there
1219 is already a section with that name.
1221 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1222 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1223 o <<bfd_error_no_memory>> - If memory allocation fails.
1227 bfd_make_section_anyway (bfd
*abfd
, const char *name
)
1229 return bfd_make_section_anyway_with_flags (abfd
, name
, 0);
1234 bfd_make_section_with_flags
1237 asection *bfd_make_section_with_flags
1238 (bfd *, const char *name, flagword flags);
1241 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1242 bfd_set_error ()) without changing the section chain if there is already a
1243 section named @var{name}. Also set the attributes of the new section to
1244 the value @var{flags}. If there is an error, return <<NULL>> and set
1249 bfd_make_section_with_flags (bfd
*abfd
, const char *name
,
1252 struct section_hash_entry
*sh
;
1255 if (abfd
== NULL
|| name
== NULL
|| abfd
->output_has_begun
)
1257 bfd_set_error (bfd_error_invalid_operation
);
1261 if (strcmp (name
, BFD_ABS_SECTION_NAME
) == 0
1262 || strcmp (name
, BFD_COM_SECTION_NAME
) == 0
1263 || strcmp (name
, BFD_UND_SECTION_NAME
) == 0
1264 || strcmp (name
, BFD_IND_SECTION_NAME
) == 0)
1267 sh
= section_hash_lookup (&abfd
->section_htab
, name
, true, false);
1271 newsect
= &sh
->section
;
1272 if (newsect
->name
!= NULL
)
1274 /* Section already exists. */
1278 newsect
->name
= name
;
1279 newsect
->flags
= flags
;
1280 return bfd_section_init (abfd
, newsect
);
1288 asection *bfd_make_section (bfd *, const char *name);
1291 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1292 bfd_set_error ()) without changing the section chain if there is already a
1293 section named @var{name}. If there is an error, return <<NULL>> and set
1298 bfd_make_section (bfd
*abfd
, const char *name
)
1300 return bfd_make_section_with_flags (abfd
, name
, 0);
1305 bfd_set_section_flags
1308 bool bfd_set_section_flags (asection *sec, flagword flags);
1311 Set the attributes of the section @var{sec} to the value @var{flags}.
1312 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1315 o <<bfd_error_invalid_operation>> -
1316 The section cannot have one or more of the attributes
1317 requested. For example, a .bss section in <<a.out>> may not
1318 have the <<SEC_HAS_CONTENTS>> field set.
1323 bfd_set_section_flags (asection
*section
, flagword flags
)
1325 section
->flags
= flags
;
1334 void bfd_rename_section
1335 (asection *sec, const char *newname);
1338 Rename section @var{sec} to @var{newname}.
1342 bfd_rename_section (asection
*sec
, const char *newname
)
1344 struct section_hash_entry
*sh
;
1346 sh
= (struct section_hash_entry
*)
1347 ((char *) sec
- offsetof (struct section_hash_entry
, section
));
1348 sh
->section
.name
= newname
;
1349 bfd_hash_rename (&sec
->owner
->section_htab
, newname
, &sh
->root
);
1354 bfd_map_over_sections
1357 void bfd_map_over_sections
1359 void (*func) (bfd *abfd, asection *sect, void *obj),
1363 Call the provided function @var{func} for each section
1364 attached to the BFD @var{abfd}, passing @var{obj} as an
1365 argument. The function will be called as if by
1367 | func (abfd, the_section, obj);
1369 This is the preferred method for iterating over sections; an
1370 alternative would be to use a loop:
1373 | for (p = abfd->sections; p != NULL; p = p->next)
1374 | func (abfd, p, ...)
1379 bfd_map_over_sections (bfd
*abfd
,
1380 void (*operation
) (bfd
*, asection
*, void *),
1386 for (sect
= abfd
->sections
; sect
!= NULL
; i
++, sect
= sect
->next
)
1387 (*operation
) (abfd
, sect
, user_storage
);
1389 if (i
!= abfd
->section_count
) /* Debugging */
1395 bfd_sections_find_if
1398 asection *bfd_sections_find_if
1400 bool (*operation) (bfd *abfd, asection *sect, void *obj),
1404 Call the provided function @var{operation} for each section
1405 attached to the BFD @var{abfd}, passing @var{obj} as an
1406 argument. The function will be called as if by
1408 | operation (abfd, the_section, obj);
1410 It returns the first section for which @var{operation} returns true.
1415 bfd_sections_find_if (bfd
*abfd
,
1416 bool (*operation
) (bfd
*, asection
*, void *),
1421 for (sect
= abfd
->sections
; sect
!= NULL
; sect
= sect
->next
)
1422 if ((*operation
) (abfd
, sect
, user_storage
))
1430 bfd_set_section_size
1433 bool bfd_set_section_size (asection *sec, bfd_size_type val);
1436 Set @var{sec} to the size @var{val}. If the operation is
1437 ok, then <<TRUE>> is returned, else <<FALSE>>.
1439 Possible error returns:
1440 o <<bfd_error_invalid_operation>> -
1441 Writing has started to the BFD, so setting the size is invalid.
1446 bfd_set_section_size (asection
*sec
, bfd_size_type val
)
1448 /* Once you've started writing to any section you cannot create or change
1449 the size of any others. */
1451 if (sec
->owner
== NULL
|| sec
->owner
->output_has_begun
)
1453 bfd_set_error (bfd_error_invalid_operation
);
1463 bfd_set_section_contents
1466 bool bfd_set_section_contents
1467 (bfd *abfd, asection *section, const void *data,
1468 file_ptr offset, bfd_size_type count);
1471 Sets the contents of the section @var{section} in BFD
1472 @var{abfd} to the data starting in memory at @var{location}.
1473 The data is written to the output section starting at offset
1474 @var{offset} for @var{count} octets.
1476 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1477 there was an error. Possible error returns are:
1478 o <<bfd_error_no_contents>> -
1479 The output section does not have the <<SEC_HAS_CONTENTS>>
1480 attribute, so nothing can be written to it.
1481 o <<bfd_error_bad_value>> -
1482 The section is unable to contain all of the data.
1483 o <<bfd_error_invalid_operation>> -
1484 The BFD is not writeable.
1485 o and some more too.
1487 This routine is front end to the back end function
1488 <<_bfd_set_section_contents>>.
1493 bfd_set_section_contents (bfd
*abfd
,
1495 const void *location
,
1497 bfd_size_type count
)
1501 if (!(bfd_section_flags (section
) & SEC_HAS_CONTENTS
))
1503 bfd_set_error (bfd_error_no_contents
);
1508 if ((bfd_size_type
) offset
> sz
1509 || count
> sz
- offset
1510 || count
!= (size_t) count
)
1512 bfd_set_error (bfd_error_bad_value
);
1516 if (!bfd_write_p (abfd
))
1518 bfd_set_error (bfd_error_invalid_operation
);
1522 /* Record a copy of the data in memory if desired. */
1523 if (section
->contents
1524 && location
!= section
->contents
+ offset
)
1525 memcpy (section
->contents
+ offset
, location
, (size_t) count
);
1527 if (BFD_SEND (abfd
, _bfd_set_section_contents
,
1528 (abfd
, section
, location
, offset
, count
)))
1530 abfd
->output_has_begun
= true;
1539 bfd_get_section_contents
1542 bool bfd_get_section_contents
1543 (bfd *abfd, asection *section, void *location, file_ptr offset,
1544 bfd_size_type count);
1547 Read data from @var{section} in BFD @var{abfd}
1548 into memory starting at @var{location}. The data is read at an
1549 offset of @var{offset} from the start of the input section,
1550 and is read for @var{count} bytes.
1552 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1553 flag set are requested or if the section does not have the
1554 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1555 with zeroes. If no errors occur, <<TRUE>> is returned, else
1560 bfd_get_section_contents (bfd
*abfd
,
1564 bfd_size_type count
)
1572 if (section
== NULL
)
1574 bfd_set_error (bfd_error_bad_value
);
1578 if (location
== NULL
)
1580 if (section
->mmapped_p
)
1582 /* Pass this request straight on to the target's function.
1583 All of the code below assumes that location != NULL.
1584 FIXME: Should we still check that count is sane ? */
1585 return BFD_SEND (abfd
, _bfd_get_section_contents
,
1586 (abfd
, section
, location
, offset
, count
));
1589 bfd_set_error (bfd_error_bad_value
);
1593 if (section
->flags
& SEC_CONSTRUCTOR
)
1595 memset (location
, 0, (size_t) count
);
1599 if ((section
->flags
& SEC_HAS_CONTENTS
) == 0)
1601 memset (location
, 0, (size_t) count
);
1608 sz
= bfd_get_section_limit_octets (abfd
, section
);
1609 if ((bfd_size_type
) offset
> sz
1610 || count
> sz
- offset
1611 || count
!= (size_t) count
)
1613 bfd_set_error (bfd_error_bad_value
);
1617 if ((section
->flags
& SEC_IN_MEMORY
) != 0)
1619 if (section
->contents
== NULL
)
1621 /* This can happen because of errors earlier on in the linking process.
1622 We do not want to seg-fault here, so clear the flag and return an
1624 section
->flags
&= ~ SEC_IN_MEMORY
;
1625 bfd_set_error (bfd_error_invalid_operation
);
1629 memmove (location
, section
->contents
+ offset
, (size_t) count
);
1633 return BFD_SEND (abfd
, _bfd_get_section_contents
,
1634 (abfd
, section
, location
, offset
, count
));
1639 bfd_malloc_and_get_section
1642 bool bfd_malloc_and_get_section
1643 (bfd *abfd, asection *section, bfd_byte **buf);
1646 Read all data from @var{section} in BFD @var{abfd}
1647 into a buffer, *@var{buf}, malloc'd by this function.
1648 Return @code{true} on success, @code{false} on failure in which
1649 case *@var{buf} will be NULL.
1653 bfd_malloc_and_get_section (bfd
*abfd
, sec_ptr sec
, bfd_byte
**buf
)
1655 /* FIXME: We sometimes get here when sec->alloced is set.
1656 arm, aarch64, and xtensa targets all abort on some ld tests
1657 if we also test sec->alloced here. We really should not ever be
1658 mallocing a buffer if we already have an alloced one. */
1662 return bfd_get_full_section_contents (abfd
, sec
, buf
);
1666 bfd_copy_private_section_data
1669 bool bfd_copy_private_section_data
1670 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec,
1671 struct bfd_link_info *link_info);
1674 Copy private section information from @var{isec} in the BFD
1675 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1676 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1679 o <<bfd_error_no_memory>> -
1680 Not enough memory exists to create private data for @var{osec}.
1682 .#define bfd_copy_private_section_data(ibfd, isec, obfd, osec, link_info) \
1683 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1684 . (ibfd, isec, obfd, osec, link_info))
1689 bfd_generic_is_group_section
1692 bool bfd_generic_is_group_section (bfd *, const asection *sec);
1695 Returns TRUE if @var{sec} is a member of a group.
1699 bfd_generic_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
,
1700 const asection
*sec ATTRIBUTE_UNUSED
)
1707 bfd_generic_group_name
1710 const char *bfd_generic_group_name (bfd *, const asection *sec);
1713 Returns group name if @var{sec} is a member of a group.
1717 bfd_generic_group_name (bfd
*abfd ATTRIBUTE_UNUSED
,
1718 const asection
*sec ATTRIBUTE_UNUSED
)
1725 bfd_generic_discard_group
1728 bool bfd_generic_discard_group (bfd *abfd, asection *group);
1731 Remove all members of @var{group} from the output.
1735 bfd_generic_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
,
1736 asection
*group ATTRIBUTE_UNUSED
)
1742 _bfd_nowrite_set_section_contents (bfd
*abfd
,
1743 sec_ptr section ATTRIBUTE_UNUSED
,
1744 const void *location ATTRIBUTE_UNUSED
,
1745 file_ptr offset ATTRIBUTE_UNUSED
,
1746 bfd_size_type count ATTRIBUTE_UNUSED
)
1748 return _bfd_bool_bfd_false_error (abfd
);
1753 bfd_section_size_insane
1756 bool bfd_section_size_insane (bfd *abfd, asection *sec);
1759 Returns true if the given section has a size that indicates
1760 it cannot be read from file. Return false if the size is OK
1761 *or* this function can't say one way or the other.
1766 bfd_section_size_insane (bfd
*abfd
, asection
*sec
)
1768 bfd_size_type size
= bfd_get_section_limit_octets (abfd
, sec
);
1772 if ((bfd_section_flags (sec
) & SEC_IN_MEMORY
) != 0
1773 /* PR 24753: Linker created sections can be larger than
1774 the file size, eg if they are being used to hold stubs. */
1775 || (bfd_section_flags (sec
) & SEC_LINKER_CREATED
) != 0
1776 /* PR 24753: Sections which have no content should also be
1777 excluded as they contain no size on disk. */
1778 || (bfd_section_flags (sec
) & SEC_HAS_CONTENTS
) == 0
1779 /* The MMO file format supports its own special compression
1780 technique, but it uses COMPRESS_SECTION_NONE when loading
1781 a section's contents. */
1782 || bfd_get_flavour (abfd
) == bfd_target_mmo_flavour
)
1785 ufile_ptr filesize
= bfd_get_file_size (abfd
);
1789 if (sec
->compress_status
== DECOMPRESS_SECTION_ZSTD
1790 || sec
->compress_status
== DECOMPRESS_SECTION_ZLIB
)
1792 /* PR26946, PR28834: Sanity check compress header uncompressed
1793 size against the original file size, and check that the
1794 compressed section can be read from file. We choose an
1795 arbitrary uncompressed size of 10x the file size, rather than
1796 a compress ratio. The reason being that compiling
1797 "int aaa..a;" with "a" repeated enough times can result in
1798 compression ratios without limit for .debug_str, whereas such
1799 a file will usually also have the enormous symbol
1800 uncompressed in .symtab. */
1801 if (size
/ 10 > filesize
)
1803 bfd_set_error (bfd_error_bad_value
);
1806 size
= sec
->compressed_size
;
1809 if ((ufile_ptr
) sec
->filepos
> filesize
|| size
> filesize
- sec
->filepos
)
1811 bfd_set_error (bfd_error_file_truncated
);