]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/som.c
* coff-h8300.c: Fix comment typos.
[thirdparty/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef CPU_PA_RISC2_0
52 #define CPU_PA_RISC2_0 0x214
53 #endif /* CPU_PA_RISC2_0 */
54
55 #ifndef _PA_RISC1_0_ID
56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
57 #endif /* _PA_RISC1_0_ID */
58
59 #ifndef _PA_RISC1_1_ID
60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
61 #endif /* _PA_RISC1_1_ID */
62
63 #ifndef _PA_RISC2_0_ID
64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
65 #endif /* _PA_RISC2_0_ID */
66
67 #ifndef _PA_RISC_MAXID
68 #define _PA_RISC_MAXID 0x2FF
69 #endif /* _PA_RISC_MAXID */
70
71 #ifndef _PA_RISC_ID
72 #define _PA_RISC_ID(__m_num) \
73 (((__m_num) == _PA_RISC1_0_ID) || \
74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
75 #endif /* _PA_RISC_ID */
76
77 /* HIUX in it's infinite stupidity changed the names for several "well
78 known" constants. Work around such braindamage. Try the HPUX version
79 first, then the HIUX version, and finally provide a default. */
80 #ifdef HPUX_AUX_ID
81 #define EXEC_AUX_ID HPUX_AUX_ID
82 #endif
83
84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
85 #define EXEC_AUX_ID HIUX_AUX_ID
86 #endif
87
88 #ifndef EXEC_AUX_ID
89 #define EXEC_AUX_ID 0
90 #endif
91
92 /* Size (in chars) of the temporary buffers used during fixup and string
93 table writes. */
94
95 #define SOM_TMP_BUFSIZE 8192
96
97 /* Size of the hash table in archives. */
98 #define SOM_LST_HASH_SIZE 31
99
100 /* Max number of SOMs to be found in an archive. */
101 #define SOM_LST_MODULE_LIMIT 1024
102
103 /* Generic alignment macro. */
104 #define SOM_ALIGN(val, alignment) \
105 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
106
107 /* SOM allows any one of the four previous relocations to be reused
108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
109 relocations are always a single byte, using a R_PREV_FIXUP instead
110 of some multi-byte relocation makes object files smaller.
111
112 Note one side effect of using a R_PREV_FIXUP is the relocation that
113 is being repeated moves to the front of the queue. */
114 struct reloc_queue {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum {
123 SYMBOL_TYPE_UNKNOWN,
124 SYMBOL_TYPE_ABSOLUTE,
125 SYMBOL_TYPE_CODE,
126 SYMBOL_TYPE_DATA,
127 SYMBOL_TYPE_ENTRY,
128 SYMBOL_TYPE_MILLICODE,
129 SYMBOL_TYPE_PLABEL,
130 SYMBOL_TYPE_PRI_PROG,
131 SYMBOL_TYPE_SEC_PROG,
132 } pa_symbol_type;
133
134 struct section_to_type {
135 char *section;
136 char type;
137 };
138
139 /* Assorted symbol information that needs to be derived from the BFD symbol
140 and/or the BFD backend private symbol data. */
141 struct som_misc_symbol_info {
142 unsigned int symbol_type;
143 unsigned int symbol_scope;
144 unsigned int arg_reloc;
145 unsigned int symbol_info;
146 unsigned int symbol_value;
147 unsigned int priv_level;
148 unsigned int secondary_def;
149 };
150
151 /* Forward declarations */
152
153 static bfd_boolean som_mkobject
154 PARAMS ((bfd *));
155 static const bfd_target * som_object_setup
156 PARAMS ((bfd *, struct header *, struct som_exec_auxhdr *, unsigned long));
157 static bfd_boolean setup_sections
158 PARAMS ((bfd *, struct header *, unsigned long));
159 static const bfd_target * som_object_p
160 PARAMS ((bfd *));
161 static bfd_boolean som_write_object_contents
162 PARAMS ((bfd *));
163 static bfd_boolean som_slurp_string_table
164 PARAMS ((bfd *));
165 static unsigned int som_slurp_symbol_table
166 PARAMS ((bfd *));
167 static long som_get_symtab_upper_bound
168 PARAMS ((bfd *));
169 static long som_canonicalize_reloc
170 PARAMS ((bfd *, sec_ptr, arelent **, asymbol **));
171 static long som_get_reloc_upper_bound
172 PARAMS ((bfd *, sec_ptr));
173 static unsigned int som_set_reloc_info
174 PARAMS ((unsigned char *, unsigned int, arelent *, asection *,
175 asymbol **, bfd_boolean));
176 static bfd_boolean som_slurp_reloc_table
177 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
178 static long som_get_symtab
179 PARAMS ((bfd *, asymbol **));
180 static asymbol * som_make_empty_symbol
181 PARAMS ((bfd *));
182 static void som_print_symbol
183 PARAMS ((bfd *, PTR, asymbol *, bfd_print_symbol_type));
184 static bfd_boolean som_new_section_hook
185 PARAMS ((bfd *, asection *));
186 static bfd_boolean som_bfd_copy_private_symbol_data
187 PARAMS ((bfd *, asymbol *, bfd *, asymbol *));
188 static bfd_boolean som_bfd_copy_private_section_data
189 PARAMS ((bfd *, asection *, bfd *, asection *));
190 static bfd_boolean som_bfd_copy_private_bfd_data
191 PARAMS ((bfd *, bfd *));
192 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
193 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
194 static bfd_boolean som_bfd_is_local_label_name
195 PARAMS ((bfd *, const char *));
196 static bfd_boolean som_set_section_contents
197 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
198 static bfd_boolean som_get_section_contents
199 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
200 static bfd_boolean som_set_arch_mach
201 PARAMS ((bfd *, enum bfd_architecture, unsigned long));
202 static bfd_boolean som_find_nearest_line
203 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
204 const char **, unsigned int *));
205 static void som_get_symbol_info
206 PARAMS ((bfd *, asymbol *, symbol_info *));
207 static asection * bfd_section_from_som_symbol
208 PARAMS ((bfd *, struct symbol_dictionary_record *));
209 static int log2
210 PARAMS ((unsigned int));
211 static bfd_reloc_status_type hppa_som_reloc
212 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
213 static void som_initialize_reloc_queue
214 PARAMS ((struct reloc_queue *));
215 static void som_reloc_queue_insert
216 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
217 static void som_reloc_queue_fix
218 PARAMS ((struct reloc_queue *, unsigned int));
219 static int som_reloc_queue_find
220 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
221 static unsigned char * try_prev_fixup
222 PARAMS ((bfd *, int *, unsigned char *, unsigned int, struct reloc_queue *));
223
224 static unsigned char * som_reloc_skip
225 PARAMS ((bfd *, unsigned int, unsigned char *, unsigned int *,
226 struct reloc_queue *));
227 static unsigned char * som_reloc_addend
228 PARAMS ((bfd *, bfd_vma, unsigned char *, unsigned int *,
229 struct reloc_queue *));
230 static unsigned char * som_reloc_call
231 PARAMS ((bfd *, unsigned char *, unsigned int *, arelent *, int,
232 struct reloc_queue *));
233 static unsigned long som_count_spaces
234 PARAMS ((bfd *));
235 static unsigned long som_count_subspaces
236 PARAMS ((bfd *));
237 static int compare_syms
238 PARAMS ((const void *, const void *));
239 static int compare_subspaces
240 PARAMS ((const void *, const void *));
241 static unsigned long som_compute_checksum
242 PARAMS ((bfd *));
243 static bfd_boolean som_prep_headers
244 PARAMS ((bfd *));
245 static int som_sizeof_headers
246 PARAMS ((bfd *, bfd_boolean));
247 static bfd_boolean som_finish_writing
248 PARAMS ((bfd *));
249 static bfd_boolean som_build_and_write_symbol_table
250 PARAMS ((bfd *));
251 static void som_prep_for_fixups
252 PARAMS ((bfd *, asymbol **, unsigned long));
253 static bfd_boolean som_write_fixups
254 PARAMS ((bfd *, unsigned long, unsigned int *));
255 static bfd_boolean som_write_space_strings
256 PARAMS ((bfd *, unsigned long, unsigned int *));
257 static bfd_boolean som_write_symbol_strings
258 PARAMS ((bfd *, unsigned long, asymbol **, unsigned int, unsigned *,
259 COMPUNIT *));
260 static bfd_boolean som_begin_writing
261 PARAMS ((bfd *));
262 static reloc_howto_type * som_bfd_reloc_type_lookup
263 PARAMS ((bfd *, bfd_reloc_code_real_type));
264 static char som_section_type
265 PARAMS ((const char *));
266 static int som_decode_symclass
267 PARAMS ((asymbol *));
268 static bfd_boolean som_bfd_count_ar_symbols
269 PARAMS ((bfd *, struct lst_header *, symindex *));
270
271 static bfd_boolean som_bfd_fill_in_ar_symbols
272 PARAMS ((bfd *, struct lst_header *, carsym **syms));
273 static bfd_boolean som_slurp_armap
274 PARAMS ((bfd *));
275 static bfd_boolean som_write_armap
276 PARAMS ((bfd *, unsigned int, struct orl *, unsigned int, int));
277 static void som_bfd_derive_misc_symbol_info
278 PARAMS ((bfd *, asymbol *, struct som_misc_symbol_info *));
279 static bfd_boolean som_bfd_prep_for_ar_write
280 PARAMS ((bfd *, unsigned int *, unsigned int *));
281 static unsigned int som_bfd_ar_symbol_hash
282 PARAMS ((asymbol *));
283 static bfd_boolean som_bfd_ar_write_symbol_stuff
284 PARAMS ((bfd *, unsigned int, unsigned int, struct lst_header,
285 unsigned int));
286 static bfd_boolean som_is_space
287 PARAMS ((asection *));
288 static bfd_boolean som_is_subspace
289 PARAMS ((asection *));
290 static bfd_boolean som_is_container
291 PARAMS ((asection *, asection *));
292 static bfd_boolean som_bfd_free_cached_info
293 PARAMS ((bfd *));
294 static bfd_boolean som_bfd_link_split_section
295 PARAMS ((bfd *, asection *));
296
297 /* Map SOM section names to POSIX/BSD single-character symbol types.
298
299 This table includes all the standard subspaces as defined in the
300 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
301 some reason was left out, and sections specific to embedded stabs. */
302
303 static const struct section_to_type stt[] = {
304 {"$TEXT$", 't'},
305 {"$SHLIB_INFO$", 't'},
306 {"$MILLICODE$", 't'},
307 {"$LIT$", 't'},
308 {"$CODE$", 't'},
309 {"$UNWIND_START$", 't'},
310 {"$UNWIND$", 't'},
311 {"$PRIVATE$", 'd'},
312 {"$PLT$", 'd'},
313 {"$SHLIB_DATA$", 'd'},
314 {"$DATA$", 'd'},
315 {"$SHORTDATA$", 'g'},
316 {"$DLT$", 'd'},
317 {"$GLOBAL$", 'g'},
318 {"$SHORTBSS$", 's'},
319 {"$BSS$", 'b'},
320 {"$GDB_STRINGS$", 'N'},
321 {"$GDB_SYMBOLS$", 'N'},
322 {0, 0}
323 };
324
325 /* About the relocation formatting table...
326
327 There are 256 entries in the table, one for each possible
328 relocation opcode available in SOM. We index the table by
329 the relocation opcode. The names and operations are those
330 defined by a.out_800 (4).
331
332 Right now this table is only used to count and perform minimal
333 processing on relocation streams so that they can be internalized
334 into BFD and symbolically printed by utilities. To make actual use
335 of them would be much more difficult, BFD's concept of relocations
336 is far too simple to handle SOM relocations. The basic assumption
337 that a relocation can be completely processed independent of other
338 relocations before an object file is written is invalid for SOM.
339
340 The SOM relocations are meant to be processed as a stream, they
341 specify copying of data from the input section to the output section
342 while possibly modifying the data in some manner. They also can
343 specify that a variable number of zeros or uninitialized data be
344 inserted on in the output segment at the current offset. Some
345 relocations specify that some previous relocation be re-applied at
346 the current location in the input/output sections. And finally a number
347 of relocations have effects on other sections (R_ENTRY, R_EXIT,
348 R_UNWIND_AUX and a variety of others). There isn't even enough room
349 in the BFD relocation data structure to store enough information to
350 perform all the relocations.
351
352 Each entry in the table has three fields.
353
354 The first entry is an index into this "class" of relocations. This
355 index can then be used as a variable within the relocation itself.
356
357 The second field is a format string which actually controls processing
358 of the relocation. It uses a simple postfix machine to do calculations
359 based on variables/constants found in the string and the relocation
360 stream.
361
362 The third field specifys whether or not this relocation may use
363 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
364 stored in the instruction.
365
366 Variables:
367
368 L = input space byte count
369 D = index into class of relocations
370 M = output space byte count
371 N = statement number (unused?)
372 O = stack operation
373 R = parameter relocation bits
374 S = symbol index
375 T = first 32 bits of stack unwind information
376 U = second 32 bits of stack unwind information
377 V = a literal constant (usually used in the next relocation)
378 P = a previous relocation
379
380 Lower case letters (starting with 'b') refer to following
381 bytes in the relocation stream. 'b' is the next 1 byte,
382 c is the next 2 bytes, d is the next 3 bytes, etc...
383 This is the variable part of the relocation entries that
384 makes our life a living hell.
385
386 numerical constants are also used in the format string. Note
387 the constants are represented in decimal.
388
389 '+', "*" and "=" represents the obvious postfix operators.
390 '<' represents a left shift.
391
392 Stack Operations:
393
394 Parameter Relocation Bits:
395
396 Unwind Entries:
397
398 Previous Relocations: The index field represents which in the queue
399 of 4 previous fixups should be re-applied.
400
401 Literal Constants: These are generally used to represent addend
402 parts of relocations when these constants are not stored in the
403 fields of the instructions themselves. For example the instruction
404 addil foo-$global$-0x1234 would use an override for "0x1234" rather
405 than storing it into the addil itself. */
406
407 struct fixup_format {
408 int D;
409 const char *format;
410 };
411
412 static const struct fixup_format som_fixup_formats[256] = {
413 /* R_NO_RELOCATION */
414 { 0, "LD1+4*=" }, /* 0x00 */
415 { 1, "LD1+4*=" }, /* 0x01 */
416 { 2, "LD1+4*=" }, /* 0x02 */
417 { 3, "LD1+4*=" }, /* 0x03 */
418 { 4, "LD1+4*=" }, /* 0x04 */
419 { 5, "LD1+4*=" }, /* 0x05 */
420 { 6, "LD1+4*=" }, /* 0x06 */
421 { 7, "LD1+4*=" }, /* 0x07 */
422 { 8, "LD1+4*=" }, /* 0x08 */
423 { 9, "LD1+4*=" }, /* 0x09 */
424 { 10, "LD1+4*=" }, /* 0x0a */
425 { 11, "LD1+4*=" }, /* 0x0b */
426 { 12, "LD1+4*=" }, /* 0x0c */
427 { 13, "LD1+4*=" }, /* 0x0d */
428 { 14, "LD1+4*=" }, /* 0x0e */
429 { 15, "LD1+4*=" }, /* 0x0f */
430 { 16, "LD1+4*=" }, /* 0x10 */
431 { 17, "LD1+4*=" }, /* 0x11 */
432 { 18, "LD1+4*=" }, /* 0x12 */
433 { 19, "LD1+4*=" }, /* 0x13 */
434 { 20, "LD1+4*=" }, /* 0x14 */
435 { 21, "LD1+4*=" }, /* 0x15 */
436 { 22, "LD1+4*=" }, /* 0x16 */
437 { 23, "LD1+4*=" }, /* 0x17 */
438 { 0, "LD8<b+1+4*=" }, /* 0x18 */
439 { 1, "LD8<b+1+4*=" }, /* 0x19 */
440 { 2, "LD8<b+1+4*=" }, /* 0x1a */
441 { 3, "LD8<b+1+4*=" }, /* 0x1b */
442 { 0, "LD16<c+1+4*=" }, /* 0x1c */
443 { 1, "LD16<c+1+4*=" }, /* 0x1d */
444 { 2, "LD16<c+1+4*=" }, /* 0x1e */
445 { 0, "Ld1+=" }, /* 0x1f */
446 /* R_ZEROES */
447 { 0, "Lb1+4*=" }, /* 0x20 */
448 { 1, "Ld1+=" }, /* 0x21 */
449 /* R_UNINIT */
450 { 0, "Lb1+4*=" }, /* 0x22 */
451 { 1, "Ld1+=" }, /* 0x23 */
452 /* R_RELOCATION */
453 { 0, "L4=" }, /* 0x24 */
454 /* R_DATA_ONE_SYMBOL */
455 { 0, "L4=Sb=" }, /* 0x25 */
456 { 1, "L4=Sd=" }, /* 0x26 */
457 /* R_DATA_PLEBEL */
458 { 0, "L4=Sb=" }, /* 0x27 */
459 { 1, "L4=Sd=" }, /* 0x28 */
460 /* R_SPACE_REF */
461 { 0, "L4=" }, /* 0x29 */
462 /* R_REPEATED_INIT */
463 { 0, "L4=Mb1+4*=" }, /* 0x2a */
464 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
465 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
466 { 3, "Ld1+=Me1+=" }, /* 0x2d */
467 { 0, "" }, /* 0x2e */
468 { 0, "" }, /* 0x2f */
469 /* R_PCREL_CALL */
470 { 0, "L4=RD=Sb=" }, /* 0x30 */
471 { 1, "L4=RD=Sb=" }, /* 0x31 */
472 { 2, "L4=RD=Sb=" }, /* 0x32 */
473 { 3, "L4=RD=Sb=" }, /* 0x33 */
474 { 4, "L4=RD=Sb=" }, /* 0x34 */
475 { 5, "L4=RD=Sb=" }, /* 0x35 */
476 { 6, "L4=RD=Sb=" }, /* 0x36 */
477 { 7, "L4=RD=Sb=" }, /* 0x37 */
478 { 8, "L4=RD=Sb=" }, /* 0x38 */
479 { 9, "L4=RD=Sb=" }, /* 0x39 */
480 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
481 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
482 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
483 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
484 /* R_SHORT_PCREL_MODE */
485 { 0, "" }, /* 0x3e */
486 /* R_LONG_PCREL_MODE */
487 { 0, "" }, /* 0x3f */
488 /* R_ABS_CALL */
489 { 0, "L4=RD=Sb=" }, /* 0x40 */
490 { 1, "L4=RD=Sb=" }, /* 0x41 */
491 { 2, "L4=RD=Sb=" }, /* 0x42 */
492 { 3, "L4=RD=Sb=" }, /* 0x43 */
493 { 4, "L4=RD=Sb=" }, /* 0x44 */
494 { 5, "L4=RD=Sb=" }, /* 0x45 */
495 { 6, "L4=RD=Sb=" }, /* 0x46 */
496 { 7, "L4=RD=Sb=" }, /* 0x47 */
497 { 8, "L4=RD=Sb=" }, /* 0x48 */
498 { 9, "L4=RD=Sb=" }, /* 0x49 */
499 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
500 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
501 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
502 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
503 /* R_RESERVED */
504 { 0, "" }, /* 0x4e */
505 { 0, "" }, /* 0x4f */
506 /* R_DP_RELATIVE */
507 { 0, "L4=SD=" }, /* 0x50 */
508 { 1, "L4=SD=" }, /* 0x51 */
509 { 2, "L4=SD=" }, /* 0x52 */
510 { 3, "L4=SD=" }, /* 0x53 */
511 { 4, "L4=SD=" }, /* 0x54 */
512 { 5, "L4=SD=" }, /* 0x55 */
513 { 6, "L4=SD=" }, /* 0x56 */
514 { 7, "L4=SD=" }, /* 0x57 */
515 { 8, "L4=SD=" }, /* 0x58 */
516 { 9, "L4=SD=" }, /* 0x59 */
517 { 10, "L4=SD=" }, /* 0x5a */
518 { 11, "L4=SD=" }, /* 0x5b */
519 { 12, "L4=SD=" }, /* 0x5c */
520 { 13, "L4=SD=" }, /* 0x5d */
521 { 14, "L4=SD=" }, /* 0x5e */
522 { 15, "L4=SD=" }, /* 0x5f */
523 { 16, "L4=SD=" }, /* 0x60 */
524 { 17, "L4=SD=" }, /* 0x61 */
525 { 18, "L4=SD=" }, /* 0x62 */
526 { 19, "L4=SD=" }, /* 0x63 */
527 { 20, "L4=SD=" }, /* 0x64 */
528 { 21, "L4=SD=" }, /* 0x65 */
529 { 22, "L4=SD=" }, /* 0x66 */
530 { 23, "L4=SD=" }, /* 0x67 */
531 { 24, "L4=SD=" }, /* 0x68 */
532 { 25, "L4=SD=" }, /* 0x69 */
533 { 26, "L4=SD=" }, /* 0x6a */
534 { 27, "L4=SD=" }, /* 0x6b */
535 { 28, "L4=SD=" }, /* 0x6c */
536 { 29, "L4=SD=" }, /* 0x6d */
537 { 30, "L4=SD=" }, /* 0x6e */
538 { 31, "L4=SD=" }, /* 0x6f */
539 { 32, "L4=Sb=" }, /* 0x70 */
540 { 33, "L4=Sd=" }, /* 0x71 */
541 /* R_RESERVED */
542 { 0, "" }, /* 0x72 */
543 { 0, "" }, /* 0x73 */
544 { 0, "" }, /* 0x74 */
545 { 0, "" }, /* 0x75 */
546 { 0, "" }, /* 0x76 */
547 { 0, "" }, /* 0x77 */
548 /* R_DLT_REL */
549 { 0, "L4=Sb=" }, /* 0x78 */
550 { 1, "L4=Sd=" }, /* 0x79 */
551 /* R_RESERVED */
552 { 0, "" }, /* 0x7a */
553 { 0, "" }, /* 0x7b */
554 { 0, "" }, /* 0x7c */
555 { 0, "" }, /* 0x7d */
556 { 0, "" }, /* 0x7e */
557 { 0, "" }, /* 0x7f */
558 /* R_CODE_ONE_SYMBOL */
559 { 0, "L4=SD=" }, /* 0x80 */
560 { 1, "L4=SD=" }, /* 0x81 */
561 { 2, "L4=SD=" }, /* 0x82 */
562 { 3, "L4=SD=" }, /* 0x83 */
563 { 4, "L4=SD=" }, /* 0x84 */
564 { 5, "L4=SD=" }, /* 0x85 */
565 { 6, "L4=SD=" }, /* 0x86 */
566 { 7, "L4=SD=" }, /* 0x87 */
567 { 8, "L4=SD=" }, /* 0x88 */
568 { 9, "L4=SD=" }, /* 0x89 */
569 { 10, "L4=SD=" }, /* 0x8q */
570 { 11, "L4=SD=" }, /* 0x8b */
571 { 12, "L4=SD=" }, /* 0x8c */
572 { 13, "L4=SD=" }, /* 0x8d */
573 { 14, "L4=SD=" }, /* 0x8e */
574 { 15, "L4=SD=" }, /* 0x8f */
575 { 16, "L4=SD=" }, /* 0x90 */
576 { 17, "L4=SD=" }, /* 0x91 */
577 { 18, "L4=SD=" }, /* 0x92 */
578 { 19, "L4=SD=" }, /* 0x93 */
579 { 20, "L4=SD=" }, /* 0x94 */
580 { 21, "L4=SD=" }, /* 0x95 */
581 { 22, "L4=SD=" }, /* 0x96 */
582 { 23, "L4=SD=" }, /* 0x97 */
583 { 24, "L4=SD=" }, /* 0x98 */
584 { 25, "L4=SD=" }, /* 0x99 */
585 { 26, "L4=SD=" }, /* 0x9a */
586 { 27, "L4=SD=" }, /* 0x9b */
587 { 28, "L4=SD=" }, /* 0x9c */
588 { 29, "L4=SD=" }, /* 0x9d */
589 { 30, "L4=SD=" }, /* 0x9e */
590 { 31, "L4=SD=" }, /* 0x9f */
591 { 32, "L4=Sb=" }, /* 0xa0 */
592 { 33, "L4=Sd=" }, /* 0xa1 */
593 /* R_RESERVED */
594 { 0, "" }, /* 0xa2 */
595 { 0, "" }, /* 0xa3 */
596 { 0, "" }, /* 0xa4 */
597 { 0, "" }, /* 0xa5 */
598 { 0, "" }, /* 0xa6 */
599 { 0, "" }, /* 0xa7 */
600 { 0, "" }, /* 0xa8 */
601 { 0, "" }, /* 0xa9 */
602 { 0, "" }, /* 0xaa */
603 { 0, "" }, /* 0xab */
604 { 0, "" }, /* 0xac */
605 { 0, "" }, /* 0xad */
606 /* R_MILLI_REL */
607 { 0, "L4=Sb=" }, /* 0xae */
608 { 1, "L4=Sd=" }, /* 0xaf */
609 /* R_CODE_PLABEL */
610 { 0, "L4=Sb=" }, /* 0xb0 */
611 { 1, "L4=Sd=" }, /* 0xb1 */
612 /* R_BREAKPOINT */
613 { 0, "L4=" }, /* 0xb2 */
614 /* R_ENTRY */
615 { 0, "Te=Ue=" }, /* 0xb3 */
616 { 1, "Uf=" }, /* 0xb4 */
617 /* R_ALT_ENTRY */
618 { 0, "" }, /* 0xb5 */
619 /* R_EXIT */
620 { 0, "" }, /* 0xb6 */
621 /* R_BEGIN_TRY */
622 { 0, "" }, /* 0xb7 */
623 /* R_END_TRY */
624 { 0, "R0=" }, /* 0xb8 */
625 { 1, "Rb4*=" }, /* 0xb9 */
626 { 2, "Rd4*=" }, /* 0xba */
627 /* R_BEGIN_BRTAB */
628 { 0, "" }, /* 0xbb */
629 /* R_END_BRTAB */
630 { 0, "" }, /* 0xbc */
631 /* R_STATEMENT */
632 { 0, "Nb=" }, /* 0xbd */
633 { 1, "Nc=" }, /* 0xbe */
634 { 2, "Nd=" }, /* 0xbf */
635 /* R_DATA_EXPR */
636 { 0, "L4=" }, /* 0xc0 */
637 /* R_CODE_EXPR */
638 { 0, "L4=" }, /* 0xc1 */
639 /* R_FSEL */
640 { 0, "" }, /* 0xc2 */
641 /* R_LSEL */
642 { 0, "" }, /* 0xc3 */
643 /* R_RSEL */
644 { 0, "" }, /* 0xc4 */
645 /* R_N_MODE */
646 { 0, "" }, /* 0xc5 */
647 /* R_S_MODE */
648 { 0, "" }, /* 0xc6 */
649 /* R_D_MODE */
650 { 0, "" }, /* 0xc7 */
651 /* R_R_MODE */
652 { 0, "" }, /* 0xc8 */
653 /* R_DATA_OVERRIDE */
654 { 0, "V0=" }, /* 0xc9 */
655 { 1, "Vb=" }, /* 0xca */
656 { 2, "Vc=" }, /* 0xcb */
657 { 3, "Vd=" }, /* 0xcc */
658 { 4, "Ve=" }, /* 0xcd */
659 /* R_TRANSLATED */
660 { 0, "" }, /* 0xce */
661 /* R_AUX_UNWIND */
662 { 0,"Sd=Vf=Ef=" }, /* 0xcf */
663 /* R_COMP1 */
664 { 0, "Ob=" }, /* 0xd0 */
665 /* R_COMP2 */
666 { 0, "Ob=Sd=" }, /* 0xd1 */
667 /* R_COMP3 */
668 { 0, "Ob=Ve=" }, /* 0xd2 */
669 /* R_PREV_FIXUP */
670 { 0, "P" }, /* 0xd3 */
671 { 1, "P" }, /* 0xd4 */
672 { 2, "P" }, /* 0xd5 */
673 { 3, "P" }, /* 0xd6 */
674 /* R_SEC_STMT */
675 { 0, "" }, /* 0xd7 */
676 /* R_N0SEL */
677 { 0, "" }, /* 0xd8 */
678 /* R_N1SEL */
679 { 0, "" }, /* 0xd9 */
680 /* R_LINETAB */
681 { 0, "Eb=Sd=Ve=" }, /* 0xda */
682 /* R_LINETAB_ESC */
683 { 0, "Eb=Mb=" }, /* 0xdb */
684 /* R_LTP_OVERRIDE */
685 { 0, "" }, /* 0xdc */
686 /* R_COMMENT */
687 { 0, "Ob=Ve=" }, /* 0xdd */
688 /* R_RESERVED */
689 { 0, "" }, /* 0xde */
690 { 0, "" }, /* 0xdf */
691 { 0, "" }, /* 0xe0 */
692 { 0, "" }, /* 0xe1 */
693 { 0, "" }, /* 0xe2 */
694 { 0, "" }, /* 0xe3 */
695 { 0, "" }, /* 0xe4 */
696 { 0, "" }, /* 0xe5 */
697 { 0, "" }, /* 0xe6 */
698 { 0, "" }, /* 0xe7 */
699 { 0, "" }, /* 0xe8 */
700 { 0, "" }, /* 0xe9 */
701 { 0, "" }, /* 0xea */
702 { 0, "" }, /* 0xeb */
703 { 0, "" }, /* 0xec */
704 { 0, "" }, /* 0xed */
705 { 0, "" }, /* 0xee */
706 { 0, "" }, /* 0xef */
707 { 0, "" }, /* 0xf0 */
708 { 0, "" }, /* 0xf1 */
709 { 0, "" }, /* 0xf2 */
710 { 0, "" }, /* 0xf3 */
711 { 0, "" }, /* 0xf4 */
712 { 0, "" }, /* 0xf5 */
713 { 0, "" }, /* 0xf6 */
714 { 0, "" }, /* 0xf7 */
715 { 0, "" }, /* 0xf8 */
716 { 0, "" }, /* 0xf9 */
717 { 0, "" }, /* 0xfa */
718 { 0, "" }, /* 0xfb */
719 { 0, "" }, /* 0xfc */
720 { 0, "" }, /* 0xfd */
721 { 0, "" }, /* 0xfe */
722 { 0, "" }, /* 0xff */
723 };
724
725 static const int comp1_opcodes[] = {
726 0x00,
727 0x40,
728 0x41,
729 0x42,
730 0x43,
731 0x44,
732 0x45,
733 0x46,
734 0x47,
735 0x48,
736 0x49,
737 0x4a,
738 0x4b,
739 0x60,
740 0x80,
741 0xa0,
742 0xc0,
743 -1
744 };
745
746 static const int comp2_opcodes[] = {
747 0x00,
748 0x80,
749 0x82,
750 0xc0,
751 -1
752 };
753
754 static const int comp3_opcodes[] = {
755 0x00,
756 0x02,
757 -1
758 };
759
760 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
761 #ifndef R_DLT_REL
762 #define R_DLT_REL 0x78
763 #endif
764
765 #ifndef R_AUX_UNWIND
766 #define R_AUX_UNWIND 0xcf
767 #endif
768
769 #ifndef R_SEC_STMT
770 #define R_SEC_STMT 0xd7
771 #endif
772
773 /* And these first appeared in hpux10. */
774 #ifndef R_SHORT_PCREL_MODE
775 #define NO_PCREL_MODES
776 #define R_SHORT_PCREL_MODE 0x3e
777 #endif
778
779 #ifndef R_LONG_PCREL_MODE
780 #define R_LONG_PCREL_MODE 0x3f
781 #endif
782
783 #ifndef R_N0SEL
784 #define R_N0SEL 0xd8
785 #endif
786
787 #ifndef R_N1SEL
788 #define R_N1SEL 0xd9
789 #endif
790
791 #ifndef R_LINETAB
792 #define R_LINETAB 0xda
793 #endif
794
795 #ifndef R_LINETAB_ESC
796 #define R_LINETAB_ESC 0xdb
797 #endif
798
799 #ifndef R_LTP_OVERRIDE
800 #define R_LTP_OVERRIDE 0xdc
801 #endif
802
803 #ifndef R_COMMENT
804 #define R_COMMENT 0xdd
805 #endif
806
807 #define SOM_HOWTO(TYPE, NAME) \
808 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
809
810 static reloc_howto_type som_hppa_howto_table[] = {
811 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
812 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
813 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
815 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
816 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
817 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
818 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
819 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
820 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
821 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
822 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
823 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
824 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
825 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
826 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
827 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
828 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
829 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
830 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
831 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
832 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
833 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
834 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
835 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
836 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
837 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
838 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
839 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
840 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
841 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
842 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
843 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
844 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
845 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
846 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
847 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
848 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
849 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
850 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
851 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
852 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
853 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
854 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
855 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
856 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
857 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
858 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
859 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
860 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
861 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
862 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
863 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
864 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
865 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
866 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
867 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
868 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
869 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
870 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
871 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
872 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
873 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
874 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
875 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
876 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
877 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
878 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
879 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
880 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
881 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
882 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
883 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
884 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
885 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
886 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
887 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
888 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
889 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
890 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
891 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
892 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
893 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
900 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
901 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
902 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
903 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
904 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
905 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
906 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
907 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
908 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
909 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
910 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
911 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
912 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
913 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
914 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
915 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
916 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
917 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
918 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
919 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
920 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
921 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
922 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
923 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
924 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
925 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
926 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
927 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
928 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
929 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
930 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
931 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
932 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
938 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
940 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
941 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
948 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
949 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
950 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
951 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
952 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
953 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
954 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
955 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
956 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
957 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
958 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
959 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
960 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
961 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
962 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
963 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
964 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
965 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
966 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
967 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
968 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
969 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
970 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
971 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
972 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
973 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
974 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
975 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
976 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
977 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
978 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
979 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
980 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
981 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
982 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
983 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
984 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
985 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
986 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
987 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
988 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
989 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
990 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
991 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
992 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
993 SOM_HOWTO (R_EXIT, "R_EXIT"),
994 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
995 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
996 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
997 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
998 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
999 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
1000 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1001 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1002 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1003 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
1004 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
1005 SOM_HOWTO (R_FSEL, "R_FSEL"),
1006 SOM_HOWTO (R_LSEL, "R_LSEL"),
1007 SOM_HOWTO (R_RSEL, "R_RSEL"),
1008 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
1009 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
1010 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
1011 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
1012 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1013 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1014 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1015 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1016 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1017 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
1018 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
1019 SOM_HOWTO (R_COMP1, "R_COMP1"),
1020 SOM_HOWTO (R_COMP2, "R_COMP2"),
1021 SOM_HOWTO (R_COMP3, "R_COMP3"),
1022 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1023 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1024 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1025 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1026 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1027 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1028 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1029 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1030 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1031 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1032 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1033 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1034 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1035 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1040 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1041 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1042 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1043 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1044 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1045 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1046 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1047 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1048 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1049 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1050 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1051 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1052 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1053 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1054 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1055 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1056 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1057 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1058 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1059 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1060 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1061 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1062 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1063 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1064 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1065 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1066 SOM_HOWTO (R_RESERVED, "R_RESERVED")
1067 };
1068
1069 /* Initialize the SOM relocation queue. By definition the queue holds
1070 the last four multibyte fixups. */
1071
1072 static void
1073 som_initialize_reloc_queue (queue)
1074 struct reloc_queue *queue;
1075 {
1076 queue[0].reloc = NULL;
1077 queue[0].size = 0;
1078 queue[1].reloc = NULL;
1079 queue[1].size = 0;
1080 queue[2].reloc = NULL;
1081 queue[2].size = 0;
1082 queue[3].reloc = NULL;
1083 queue[3].size = 0;
1084 }
1085
1086 /* Insert a new relocation into the relocation queue. */
1087
1088 static void
1089 som_reloc_queue_insert (p, size, queue)
1090 unsigned char *p;
1091 unsigned int size;
1092 struct reloc_queue *queue;
1093 {
1094 queue[3].reloc = queue[2].reloc;
1095 queue[3].size = queue[2].size;
1096 queue[2].reloc = queue[1].reloc;
1097 queue[2].size = queue[1].size;
1098 queue[1].reloc = queue[0].reloc;
1099 queue[1].size = queue[0].size;
1100 queue[0].reloc = p;
1101 queue[0].size = size;
1102 }
1103
1104 /* When an entry in the relocation queue is reused, the entry moves
1105 to the front of the queue. */
1106
1107 static void
1108 som_reloc_queue_fix (queue, index)
1109 struct reloc_queue *queue;
1110 unsigned int index;
1111 {
1112 if (index == 0)
1113 return;
1114
1115 if (index == 1)
1116 {
1117 unsigned char *tmp1 = queue[0].reloc;
1118 unsigned int tmp2 = queue[0].size;
1119 queue[0].reloc = queue[1].reloc;
1120 queue[0].size = queue[1].size;
1121 queue[1].reloc = tmp1;
1122 queue[1].size = tmp2;
1123 return;
1124 }
1125
1126 if (index == 2)
1127 {
1128 unsigned char *tmp1 = queue[0].reloc;
1129 unsigned int tmp2 = queue[0].size;
1130 queue[0].reloc = queue[2].reloc;
1131 queue[0].size = queue[2].size;
1132 queue[2].reloc = queue[1].reloc;
1133 queue[2].size = queue[1].size;
1134 queue[1].reloc = tmp1;
1135 queue[1].size = tmp2;
1136 return;
1137 }
1138
1139 if (index == 3)
1140 {
1141 unsigned char *tmp1 = queue[0].reloc;
1142 unsigned int tmp2 = queue[0].size;
1143 queue[0].reloc = queue[3].reloc;
1144 queue[0].size = queue[3].size;
1145 queue[3].reloc = queue[2].reloc;
1146 queue[3].size = queue[2].size;
1147 queue[2].reloc = queue[1].reloc;
1148 queue[2].size = queue[1].size;
1149 queue[1].reloc = tmp1;
1150 queue[1].size = tmp2;
1151 return;
1152 }
1153 abort ();
1154 }
1155
1156 /* Search for a particular relocation in the relocation queue. */
1157
1158 static int
1159 som_reloc_queue_find (p, size, queue)
1160 unsigned char *p;
1161 unsigned int size;
1162 struct reloc_queue *queue;
1163 {
1164 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1165 && size == queue[0].size)
1166 return 0;
1167 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1168 && size == queue[1].size)
1169 return 1;
1170 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1171 && size == queue[2].size)
1172 return 2;
1173 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1174 && size == queue[3].size)
1175 return 3;
1176 return -1;
1177 }
1178
1179 static unsigned char *
1180 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1181 bfd *abfd ATTRIBUTE_UNUSED;
1182 int *subspace_reloc_sizep;
1183 unsigned char *p;
1184 unsigned int size;
1185 struct reloc_queue *queue;
1186 {
1187 int queue_index = som_reloc_queue_find (p, size, queue);
1188
1189 if (queue_index != -1)
1190 {
1191 /* Found this in a previous fixup. Undo the fixup we
1192 just built and use R_PREV_FIXUP instead. We saved
1193 a total of size - 1 bytes in the fixup stream. */
1194 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1195 p += 1;
1196 *subspace_reloc_sizep += 1;
1197 som_reloc_queue_fix (queue, queue_index);
1198 }
1199 else
1200 {
1201 som_reloc_queue_insert (p, size, queue);
1202 *subspace_reloc_sizep += size;
1203 p += size;
1204 }
1205 return p;
1206 }
1207
1208 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1209 bytes without any relocation. Update the size of the subspace
1210 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1211 current pointer into the relocation stream. */
1212
1213 static unsigned char *
1214 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1215 bfd *abfd;
1216 unsigned int skip;
1217 unsigned char *p;
1218 unsigned int *subspace_reloc_sizep;
1219 struct reloc_queue *queue;
1220 {
1221 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1222 then R_PREV_FIXUPs to get the difference down to a
1223 reasonable size. */
1224 if (skip >= 0x1000000)
1225 {
1226 skip -= 0x1000000;
1227 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1228 bfd_put_8 (abfd, 0xff, p + 1);
1229 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1230 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1231 while (skip >= 0x1000000)
1232 {
1233 skip -= 0x1000000;
1234 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1235 p++;
1236 *subspace_reloc_sizep += 1;
1237 /* No need to adjust queue here since we are repeating the
1238 most recent fixup. */
1239 }
1240 }
1241
1242 /* The difference must be less than 0x1000000. Use one
1243 more R_NO_RELOCATION entry to get to the right difference. */
1244 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1245 {
1246 /* Difference can be handled in a simple single-byte
1247 R_NO_RELOCATION entry. */
1248 if (skip <= 0x60)
1249 {
1250 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1251 *subspace_reloc_sizep += 1;
1252 p++;
1253 }
1254 /* Handle it with a two byte R_NO_RELOCATION entry. */
1255 else if (skip <= 0x1000)
1256 {
1257 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1258 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1259 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1260 }
1261 /* Handle it with a three byte R_NO_RELOCATION entry. */
1262 else
1263 {
1264 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1265 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1266 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1267 }
1268 }
1269 /* Ugh. Punt and use a 4 byte entry. */
1270 else if (skip > 0)
1271 {
1272 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1273 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1274 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1275 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1276 }
1277 return p;
1278 }
1279
1280 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1281 from a BFD relocation. Update the size of the subspace relocation
1282 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1283 into the relocation stream. */
1284
1285 static unsigned char *
1286 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1287 bfd *abfd;
1288 bfd_vma addend;
1289 unsigned char *p;
1290 unsigned int *subspace_reloc_sizep;
1291 struct reloc_queue *queue;
1292 {
1293 if (addend + 0x80 < 0x100)
1294 {
1295 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1296 bfd_put_8 (abfd, addend, p + 1);
1297 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1298 }
1299 else if (addend + 0x8000 < 0x10000)
1300 {
1301 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1302 bfd_put_16 (abfd, addend, p + 1);
1303 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1304 }
1305 else if (addend + 0x800000 < 0x1000000)
1306 {
1307 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1308 bfd_put_8 (abfd, addend >> 16, p + 1);
1309 bfd_put_16 (abfd, addend, p + 2);
1310 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1311 }
1312 else
1313 {
1314 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1315 bfd_put_32 (abfd, addend, p + 1);
1316 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1317 }
1318 return p;
1319 }
1320
1321 /* Handle a single function call relocation. */
1322
1323 static unsigned char *
1324 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1325 bfd *abfd;
1326 unsigned char *p;
1327 unsigned int *subspace_reloc_sizep;
1328 arelent *bfd_reloc;
1329 int sym_num;
1330 struct reloc_queue *queue;
1331 {
1332 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1333 int rtn_bits = arg_bits & 0x3;
1334 int type, done = 0;
1335
1336 /* You'll never believe all this is necessary to handle relocations
1337 for function calls. Having to compute and pack the argument
1338 relocation bits is the real nightmare.
1339
1340 If you're interested in how this works, just forget it. You really
1341 do not want to know about this braindamage. */
1342
1343 /* First see if this can be done with a "simple" relocation. Simple
1344 relocations have a symbol number < 0x100 and have simple encodings
1345 of argument relocations. */
1346
1347 if (sym_num < 0x100)
1348 {
1349 switch (arg_bits)
1350 {
1351 case 0:
1352 case 1:
1353 type = 0;
1354 break;
1355 case 1 << 8:
1356 case 1 << 8 | 1:
1357 type = 1;
1358 break;
1359 case 1 << 8 | 1 << 6:
1360 case 1 << 8 | 1 << 6 | 1:
1361 type = 2;
1362 break;
1363 case 1 << 8 | 1 << 6 | 1 << 4:
1364 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1365 type = 3;
1366 break;
1367 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1368 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1369 type = 4;
1370 break;
1371 default:
1372 /* Not one of the easy encodings. This will have to be
1373 handled by the more complex code below. */
1374 type = -1;
1375 break;
1376 }
1377 if (type != -1)
1378 {
1379 /* Account for the return value too. */
1380 if (rtn_bits)
1381 type += 5;
1382
1383 /* Emit a 2 byte relocation. Then see if it can be handled
1384 with a relocation which is already in the relocation queue. */
1385 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1386 bfd_put_8 (abfd, sym_num, p + 1);
1387 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1388 done = 1;
1389 }
1390 }
1391
1392 /* If this could not be handled with a simple relocation, then do a hard
1393 one. Hard relocations occur if the symbol number was too high or if
1394 the encoding of argument relocation bits is too complex. */
1395 if (! done)
1396 {
1397 /* Don't ask about these magic sequences. I took them straight
1398 from gas-1.36 which took them from the a.out man page. */
1399 type = rtn_bits;
1400 if ((arg_bits >> 6 & 0xf) == 0xe)
1401 type += 9 * 40;
1402 else
1403 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1404 if ((arg_bits >> 2 & 0xf) == 0xe)
1405 type += 9 * 4;
1406 else
1407 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1408
1409 /* Output the first two bytes of the relocation. These describe
1410 the length of the relocation and encoding style. */
1411 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1412 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1413 p);
1414 bfd_put_8 (abfd, type, p + 1);
1415
1416 /* Now output the symbol index and see if this bizarre relocation
1417 just happened to be in the relocation queue. */
1418 if (sym_num < 0x100)
1419 {
1420 bfd_put_8 (abfd, sym_num, p + 2);
1421 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1422 }
1423 else
1424 {
1425 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1426 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1427 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1428 }
1429 }
1430 return p;
1431 }
1432
1433 /* Return the logarithm of X, base 2, considering X unsigned.
1434 Abort -1 if X is not a power or two or is zero. */
1435
1436 static int
1437 log2 (x)
1438 unsigned int x;
1439 {
1440 int log = 0;
1441
1442 /* Test for 0 or a power of 2. */
1443 if (x == 0 || x != (x & -x))
1444 return -1;
1445
1446 while ((x >>= 1) != 0)
1447 log++;
1448 return log;
1449 }
1450
1451 static bfd_reloc_status_type
1452 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1453 input_section, output_bfd, error_message)
1454 bfd *abfd ATTRIBUTE_UNUSED;
1455 arelent *reloc_entry;
1456 asymbol *symbol_in ATTRIBUTE_UNUSED;
1457 PTR data ATTRIBUTE_UNUSED;
1458 asection *input_section;
1459 bfd *output_bfd;
1460 char **error_message ATTRIBUTE_UNUSED;
1461 {
1462 if (output_bfd)
1463 {
1464 reloc_entry->address += input_section->output_offset;
1465 return bfd_reloc_ok;
1466 }
1467 return bfd_reloc_ok;
1468 }
1469
1470 /* Given a generic HPPA relocation type, the instruction format,
1471 and a field selector, return one or more appropriate SOM relocations. */
1472
1473 int **
1474 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1475 bfd *abfd;
1476 int base_type;
1477 int format;
1478 enum hppa_reloc_field_selector_type_alt field;
1479 int sym_diff;
1480 asymbol *sym;
1481 {
1482 int *final_type, **final_types;
1483
1484 final_types = (int **) bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1485 final_type = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1486 if (!final_types || !final_type)
1487 return NULL;
1488
1489 /* The field selector may require additional relocations to be
1490 generated. It's impossible to know at this moment if additional
1491 relocations will be needed, so we make them. The code to actually
1492 write the relocation/fixup stream is responsible for removing
1493 any redundant relocations. */
1494 switch (field)
1495 {
1496 case e_fsel:
1497 case e_psel:
1498 case e_lpsel:
1499 case e_rpsel:
1500 final_types[0] = final_type;
1501 final_types[1] = NULL;
1502 final_types[2] = NULL;
1503 *final_type = base_type;
1504 break;
1505
1506 case e_tsel:
1507 case e_ltsel:
1508 case e_rtsel:
1509 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1510 if (!final_types[0])
1511 return NULL;
1512 if (field == e_tsel)
1513 *final_types[0] = R_FSEL;
1514 else if (field == e_ltsel)
1515 *final_types[0] = R_LSEL;
1516 else
1517 *final_types[0] = R_RSEL;
1518 final_types[1] = final_type;
1519 final_types[2] = NULL;
1520 *final_type = base_type;
1521 break;
1522
1523 case e_lssel:
1524 case e_rssel:
1525 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1526 if (!final_types[0])
1527 return NULL;
1528 *final_types[0] = R_S_MODE;
1529 final_types[1] = final_type;
1530 final_types[2] = NULL;
1531 *final_type = base_type;
1532 break;
1533
1534 case e_lsel:
1535 case e_rsel:
1536 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1537 if (!final_types[0])
1538 return NULL;
1539 *final_types[0] = R_N_MODE;
1540 final_types[1] = final_type;
1541 final_types[2] = NULL;
1542 *final_type = base_type;
1543 break;
1544
1545 case e_ldsel:
1546 case e_rdsel:
1547 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1548 if (!final_types[0])
1549 return NULL;
1550 *final_types[0] = R_D_MODE;
1551 final_types[1] = final_type;
1552 final_types[2] = NULL;
1553 *final_type = base_type;
1554 break;
1555
1556 case e_lrsel:
1557 case e_rrsel:
1558 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1559 if (!final_types[0])
1560 return NULL;
1561 *final_types[0] = R_R_MODE;
1562 final_types[1] = final_type;
1563 final_types[2] = NULL;
1564 *final_type = base_type;
1565 break;
1566
1567 case e_nsel:
1568 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1569 if (!final_types[0])
1570 return NULL;
1571 *final_types[0] = R_N1SEL;
1572 final_types[1] = final_type;
1573 final_types[2] = NULL;
1574 *final_type = base_type;
1575 break;
1576
1577 case e_nlsel:
1578 case e_nlrsel:
1579 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1580 if (!final_types[0])
1581 return NULL;
1582 *final_types[0] = R_N0SEL;
1583 final_types[1] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1584 if (!final_types[1])
1585 return NULL;
1586 if (field == e_nlsel)
1587 *final_types[1] = R_N_MODE;
1588 else
1589 *final_types[1] = R_R_MODE;
1590 final_types[2] = final_type;
1591 final_types[3] = NULL;
1592 *final_type = base_type;
1593 break;
1594 }
1595
1596 switch (base_type)
1597 {
1598 case R_HPPA:
1599 /* The difference of two symbols needs *very* special handling. */
1600 if (sym_diff)
1601 {
1602 bfd_size_type amt = sizeof (int);
1603 final_types[0] = (int *) bfd_alloc (abfd, amt);
1604 final_types[1] = (int *) bfd_alloc (abfd, amt);
1605 final_types[2] = (int *) bfd_alloc (abfd, amt);
1606 final_types[3] = (int *) bfd_alloc (abfd, amt);
1607 if (!final_types[0] || !final_types[1] || !final_types[2])
1608 return NULL;
1609 if (field == e_fsel)
1610 *final_types[0] = R_FSEL;
1611 else if (field == e_rsel)
1612 *final_types[0] = R_RSEL;
1613 else if (field == e_lsel)
1614 *final_types[0] = R_LSEL;
1615 *final_types[1] = R_COMP2;
1616 *final_types[2] = R_COMP2;
1617 *final_types[3] = R_COMP1;
1618 final_types[4] = final_type;
1619 if (format == 32)
1620 *final_types[4] = R_DATA_EXPR;
1621 else
1622 *final_types[4] = R_CODE_EXPR;
1623 final_types[5] = NULL;
1624 break;
1625 }
1626 /* PLABELs get their own relocation type. */
1627 else if (field == e_psel
1628 || field == e_lpsel
1629 || field == e_rpsel)
1630 {
1631 /* A PLABEL relocation that has a size of 32 bits must
1632 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1633 if (format == 32)
1634 *final_type = R_DATA_PLABEL;
1635 else
1636 *final_type = R_CODE_PLABEL;
1637 }
1638 /* PIC stuff. */
1639 else if (field == e_tsel
1640 || field == e_ltsel
1641 || field == e_rtsel)
1642 *final_type = R_DLT_REL;
1643 /* A relocation in the data space is always a full 32bits. */
1644 else if (format == 32)
1645 {
1646 *final_type = R_DATA_ONE_SYMBOL;
1647
1648 /* If there's no SOM symbol type associated with this BFD
1649 symbol, then set the symbol type to ST_DATA.
1650
1651 Only do this if the type is going to default later when
1652 we write the object file.
1653
1654 This is done so that the linker never encounters an
1655 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1656
1657 This allows the compiler to generate exception handling
1658 tables.
1659
1660 Note that one day we may need to also emit BEGIN_BRTAB and
1661 END_BRTAB to prevent the linker from optimizing away insns
1662 in exception handling regions. */
1663 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1664 && (sym->flags & BSF_SECTION_SYM) == 0
1665 && (sym->flags & BSF_FUNCTION) == 0
1666 && ! bfd_is_com_section (sym->section))
1667 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1668 }
1669 break;
1670
1671 case R_HPPA_GOTOFF:
1672 /* More PLABEL special cases. */
1673 if (field == e_psel
1674 || field == e_lpsel
1675 || field == e_rpsel)
1676 *final_type = R_DATA_PLABEL;
1677 break;
1678
1679 case R_HPPA_COMPLEX:
1680 /* The difference of two symbols needs *very* special handling. */
1681 if (sym_diff)
1682 {
1683 bfd_size_type amt = sizeof (int);
1684 final_types[0] = (int *) bfd_alloc (abfd, amt);
1685 final_types[1] = (int *) bfd_alloc (abfd, amt);
1686 final_types[2] = (int *) bfd_alloc (abfd, amt);
1687 final_types[3] = (int *) bfd_alloc (abfd, amt);
1688 if (!final_types[0] || !final_types[1] || !final_types[2])
1689 return NULL;
1690 if (field == e_fsel)
1691 *final_types[0] = R_FSEL;
1692 else if (field == e_rsel)
1693 *final_types[0] = R_RSEL;
1694 else if (field == e_lsel)
1695 *final_types[0] = R_LSEL;
1696 *final_types[1] = R_COMP2;
1697 *final_types[2] = R_COMP2;
1698 *final_types[3] = R_COMP1;
1699 final_types[4] = final_type;
1700 if (format == 32)
1701 *final_types[4] = R_DATA_EXPR;
1702 else
1703 *final_types[4] = R_CODE_EXPR;
1704 final_types[5] = NULL;
1705 break;
1706 }
1707 else
1708 break;
1709
1710 case R_HPPA_NONE:
1711 case R_HPPA_ABS_CALL:
1712 /* Right now we can default all these. */
1713 break;
1714
1715 case R_HPPA_PCREL_CALL:
1716 {
1717 #ifndef NO_PCREL_MODES
1718 /* If we have short and long pcrel modes, then generate the proper
1719 mode selector, then the pcrel relocation. Redundant selectors
1720 will be eliminted as the relocs are sized and emitted. */
1721 bfd_size_type amt = sizeof (int);
1722 final_types[0] = (int *) bfd_alloc (abfd, amt);
1723 if (!final_types[0])
1724 return NULL;
1725 if (format == 17)
1726 *final_types[0] = R_SHORT_PCREL_MODE;
1727 else
1728 *final_types[0] = R_LONG_PCREL_MODE;
1729 final_types[1] = final_type;
1730 final_types[2] = NULL;
1731 *final_type = base_type;
1732 #endif
1733 break;
1734 }
1735 }
1736 return final_types;
1737 }
1738
1739 /* Return the address of the correct entry in the PA SOM relocation
1740 howto table. */
1741
1742 static reloc_howto_type *
1743 som_bfd_reloc_type_lookup (abfd, code)
1744 bfd *abfd ATTRIBUTE_UNUSED;
1745 bfd_reloc_code_real_type code;
1746 {
1747 if ((int) code < (int) R_NO_RELOCATION + 255)
1748 {
1749 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1750 return &som_hppa_howto_table[(int) code];
1751 }
1752
1753 return (reloc_howto_type *) 0;
1754 }
1755
1756 /* Perform some initialization for an object. Save results of this
1757 initialization in the BFD. */
1758
1759 static const bfd_target *
1760 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1761 bfd *abfd;
1762 struct header *file_hdrp;
1763 struct som_exec_auxhdr *aux_hdrp;
1764 unsigned long current_offset;
1765 {
1766 asection *section;
1767 int found;
1768
1769 /* som_mkobject will set bfd_error if som_mkobject fails. */
1770 if (! som_mkobject (abfd))
1771 return 0;
1772
1773 /* Set BFD flags based on what information is available in the SOM. */
1774 abfd->flags = BFD_NO_FLAGS;
1775 if (file_hdrp->symbol_total)
1776 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1777
1778 switch (file_hdrp->a_magic)
1779 {
1780 case DEMAND_MAGIC:
1781 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1782 break;
1783 case SHARE_MAGIC:
1784 abfd->flags |= (WP_TEXT | EXEC_P);
1785 break;
1786 case EXEC_MAGIC:
1787 abfd->flags |= (EXEC_P);
1788 break;
1789 case RELOC_MAGIC:
1790 abfd->flags |= HAS_RELOC;
1791 break;
1792 #ifdef SHL_MAGIC
1793 case SHL_MAGIC:
1794 #endif
1795 #ifdef DL_MAGIC
1796 case DL_MAGIC:
1797 #endif
1798 abfd->flags |= DYNAMIC;
1799 break;
1800
1801 default:
1802 break;
1803 }
1804
1805 /* Allocate space to hold the saved exec header information. */
1806 obj_som_exec_data (abfd) = (struct som_exec_data *)
1807 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1808 if (obj_som_exec_data (abfd) == NULL)
1809 return NULL;
1810
1811 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1812
1813 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1814 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1815
1816 It's about time, OSF has used the new id since at least 1992;
1817 HPUX didn't start till nearly 1995!.
1818
1819 The new approach examines the entry field. If it's zero or not 4
1820 byte aligned then it's not a proper code address and we guess it's
1821 really the executable flags. */
1822 found = 0;
1823 for (section = abfd->sections; section; section = section->next)
1824 {
1825 if ((section->flags & SEC_CODE) == 0)
1826 continue;
1827 if (aux_hdrp->exec_entry >= section->vma
1828 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1829 found = 1;
1830 }
1831 if (aux_hdrp->exec_entry == 0
1832 || (aux_hdrp->exec_entry & 0x3) != 0
1833 || ! found)
1834 {
1835 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1836 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1837 }
1838 else
1839 {
1840 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1841 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1842 }
1843
1844 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1845
1846 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1847 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1848
1849 /* Initialize the saved symbol table and string table to NULL.
1850 Save important offsets and sizes from the SOM header into
1851 the BFD. */
1852 obj_som_stringtab (abfd) = (char *) NULL;
1853 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1854 obj_som_sorted_syms (abfd) = NULL;
1855 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1856 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1857 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1858 + current_offset);
1859 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1860 + current_offset);
1861 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1862
1863 return abfd->xvec;
1864 }
1865
1866 /* Convert all of the space and subspace info into BFD sections. Each space
1867 contains a number of subspaces, which in turn describe the mapping between
1868 regions of the exec file, and the address space that the program runs in.
1869 BFD sections which correspond to spaces will overlap the sections for the
1870 associated subspaces. */
1871
1872 static bfd_boolean
1873 setup_sections (abfd, file_hdr, current_offset)
1874 bfd *abfd;
1875 struct header *file_hdr;
1876 unsigned long current_offset;
1877 {
1878 char *space_strings;
1879 unsigned int space_index, i;
1880 unsigned int total_subspaces = 0;
1881 asection **subspace_sections = NULL;
1882 asection *section;
1883 bfd_size_type amt;
1884
1885 /* First, read in space names. */
1886
1887 amt = file_hdr->space_strings_size;
1888 space_strings = bfd_malloc (amt);
1889 if (!space_strings && amt != 0)
1890 goto error_return;
1891
1892 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1893 SEEK_SET) != 0)
1894 goto error_return;
1895 if (bfd_bread (space_strings, amt, abfd) != amt)
1896 goto error_return;
1897
1898 /* Loop over all of the space dictionaries, building up sections. */
1899 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1900 {
1901 struct space_dictionary_record space;
1902 struct subspace_dictionary_record subspace, save_subspace;
1903 int subspace_index;
1904 asection *space_asect;
1905 char *newname;
1906
1907 /* Read the space dictionary element. */
1908 if (bfd_seek (abfd,
1909 (current_offset + file_hdr->space_location
1910 + space_index * sizeof space),
1911 SEEK_SET) != 0)
1912 goto error_return;
1913 amt = sizeof space;
1914 if (bfd_bread (&space, amt, abfd) != amt)
1915 goto error_return;
1916
1917 /* Setup the space name string. */
1918 space.name.n_name = space.name.n_strx + space_strings;
1919
1920 /* Make a section out of it. */
1921 amt = strlen (space.name.n_name) + 1;
1922 newname = bfd_alloc (abfd, amt);
1923 if (!newname)
1924 goto error_return;
1925 strcpy (newname, space.name.n_name);
1926
1927 space_asect = bfd_make_section_anyway (abfd, newname);
1928 if (!space_asect)
1929 goto error_return;
1930
1931 if (space.is_loadable == 0)
1932 space_asect->flags |= SEC_DEBUGGING;
1933
1934 /* Set up all the attributes for the space. */
1935 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1936 space.is_private, space.sort_key,
1937 space.space_number))
1938 goto error_return;
1939
1940 /* If the space has no subspaces, then we're done. */
1941 if (space.subspace_quantity == 0)
1942 continue;
1943
1944 /* Now, read in the first subspace for this space. */
1945 if (bfd_seek (abfd,
1946 (current_offset + file_hdr->subspace_location
1947 + space.subspace_index * sizeof subspace),
1948 SEEK_SET) != 0)
1949 goto error_return;
1950 amt = sizeof subspace;
1951 if (bfd_bread (&subspace, amt, abfd) != amt)
1952 goto error_return;
1953 /* Seek back to the start of the subspaces for loop below. */
1954 if (bfd_seek (abfd,
1955 (current_offset + file_hdr->subspace_location
1956 + space.subspace_index * sizeof subspace),
1957 SEEK_SET) != 0)
1958 goto error_return;
1959
1960 /* Setup the start address and file loc from the first subspace
1961 record. */
1962 space_asect->vma = subspace.subspace_start;
1963 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1964 space_asect->alignment_power = log2 (subspace.alignment);
1965 if (space_asect->alignment_power == (unsigned) -1)
1966 goto error_return;
1967
1968 /* Initialize save_subspace so we can reliably determine if this
1969 loop placed any useful values into it. */
1970 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1971
1972 /* Loop over the rest of the subspaces, building up more sections. */
1973 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1974 subspace_index++)
1975 {
1976 asection *subspace_asect;
1977
1978 /* Read in the next subspace. */
1979 amt = sizeof subspace;
1980 if (bfd_bread (&subspace, amt, abfd) != amt)
1981 goto error_return;
1982
1983 /* Setup the subspace name string. */
1984 subspace.name.n_name = subspace.name.n_strx + space_strings;
1985
1986 amt = strlen (subspace.name.n_name) + 1;
1987 newname = bfd_alloc (abfd, amt);
1988 if (!newname)
1989 goto error_return;
1990 strcpy (newname, subspace.name.n_name);
1991
1992 /* Make a section out of this subspace. */
1993 subspace_asect = bfd_make_section_anyway (abfd, newname);
1994 if (!subspace_asect)
1995 goto error_return;
1996
1997 /* Store private information about the section. */
1998 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1999 subspace.access_control_bits,
2000 subspace.sort_key,
2001 subspace.quadrant))
2002 goto error_return;
2003
2004 /* Keep an easy mapping between subspaces and sections.
2005 Note we do not necessarily read the subspaces in the
2006 same order in which they appear in the object file.
2007
2008 So to make the target index come out correctly, we
2009 store the location of the subspace header in target
2010 index, then sort using the location of the subspace
2011 header as the key. Then we can assign correct
2012 subspace indices. */
2013 total_subspaces++;
2014 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
2015
2016 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
2017 by the access_control_bits in the subspace header. */
2018 switch (subspace.access_control_bits >> 4)
2019 {
2020 /* Readonly data. */
2021 case 0x0:
2022 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
2023 break;
2024
2025 /* Normal data. */
2026 case 0x1:
2027 subspace_asect->flags |= SEC_DATA;
2028 break;
2029
2030 /* Readonly code and the gateways.
2031 Gateways have other attributes which do not map
2032 into anything BFD knows about. */
2033 case 0x2:
2034 case 0x4:
2035 case 0x5:
2036 case 0x6:
2037 case 0x7:
2038 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2039 break;
2040
2041 /* dynamic (writable) code. */
2042 case 0x3:
2043 subspace_asect->flags |= SEC_CODE;
2044 break;
2045 }
2046
2047 if (subspace.dup_common || subspace.is_common)
2048 subspace_asect->flags |= SEC_IS_COMMON;
2049 else if (subspace.subspace_length > 0)
2050 subspace_asect->flags |= SEC_HAS_CONTENTS;
2051
2052 if (subspace.is_loadable)
2053 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2054 else
2055 subspace_asect->flags |= SEC_DEBUGGING;
2056
2057 if (subspace.code_only)
2058 subspace_asect->flags |= SEC_CODE;
2059
2060 /* Both file_loc_init_value and initialization_length will
2061 be zero for a BSS like subspace. */
2062 if (subspace.file_loc_init_value == 0
2063 && subspace.initialization_length == 0)
2064 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2065
2066 /* This subspace has relocations.
2067 The fixup_request_quantity is a byte count for the number of
2068 entries in the relocation stream; it is not the actual number
2069 of relocations in the subspace. */
2070 if (subspace.fixup_request_quantity != 0)
2071 {
2072 subspace_asect->flags |= SEC_RELOC;
2073 subspace_asect->rel_filepos = subspace.fixup_request_index;
2074 som_section_data (subspace_asect)->reloc_size
2075 = subspace.fixup_request_quantity;
2076 /* We can not determine this yet. When we read in the
2077 relocation table the correct value will be filled in. */
2078 subspace_asect->reloc_count = (unsigned) -1;
2079 }
2080
2081 /* Update save_subspace if appropriate. */
2082 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2083 save_subspace = subspace;
2084
2085 subspace_asect->vma = subspace.subspace_start;
2086 subspace_asect->_cooked_size = subspace.subspace_length;
2087 subspace_asect->_raw_size = subspace.subspace_length;
2088 subspace_asect->filepos = (subspace.file_loc_init_value
2089 + current_offset);
2090 subspace_asect->alignment_power = log2 (subspace.alignment);
2091 if (subspace_asect->alignment_power == (unsigned) -1)
2092 goto error_return;
2093 }
2094
2095 /* This can happen for a .o which defines symbols in otherwise
2096 empty subspaces. */
2097 if (!save_subspace.file_loc_init_value)
2098 {
2099 space_asect->_cooked_size = 0;
2100 space_asect->_raw_size = 0;
2101 }
2102 else
2103 {
2104 /* Setup the sizes for the space section based upon the info in the
2105 last subspace of the space. */
2106 space_asect->_cooked_size = (save_subspace.subspace_start
2107 - space_asect->vma
2108 + save_subspace.subspace_length);
2109 space_asect->_raw_size = (save_subspace.file_loc_init_value
2110 - space_asect->filepos
2111 + save_subspace.initialization_length);
2112 }
2113 }
2114 /* Now that we've read in all the subspace records, we need to assign
2115 a target index to each subspace. */
2116 amt = total_subspaces;
2117 amt *= sizeof (asection *);
2118 subspace_sections = (asection **) bfd_malloc (amt);
2119 if (subspace_sections == NULL)
2120 goto error_return;
2121
2122 for (i = 0, section = abfd->sections; section; section = section->next)
2123 {
2124 if (!som_is_subspace (section))
2125 continue;
2126
2127 subspace_sections[i] = section;
2128 i++;
2129 }
2130 qsort (subspace_sections, total_subspaces,
2131 sizeof (asection *), compare_subspaces);
2132
2133 /* subspace_sections is now sorted in the order in which the subspaces
2134 appear in the object file. Assign an index to each one now. */
2135 for (i = 0; i < total_subspaces; i++)
2136 subspace_sections[i]->target_index = i;
2137
2138 if (space_strings != NULL)
2139 free (space_strings);
2140
2141 if (subspace_sections != NULL)
2142 free (subspace_sections);
2143
2144 return TRUE;
2145
2146 error_return:
2147 if (space_strings != NULL)
2148 free (space_strings);
2149
2150 if (subspace_sections != NULL)
2151 free (subspace_sections);
2152 return FALSE;
2153 }
2154
2155 /* Read in a SOM object and make it into a BFD. */
2156
2157 static const bfd_target *
2158 som_object_p (abfd)
2159 bfd *abfd;
2160 {
2161 struct header file_hdr;
2162 struct som_exec_auxhdr aux_hdr;
2163 unsigned long current_offset = 0;
2164 struct lst_header lst_header;
2165 struct som_entry som_entry;
2166 bfd_size_type amt;
2167 #define ENTRY_SIZE sizeof (struct som_entry)
2168
2169 amt = FILE_HDR_SIZE;
2170 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2171 {
2172 if (bfd_get_error () != bfd_error_system_call)
2173 bfd_set_error (bfd_error_wrong_format);
2174 return 0;
2175 }
2176
2177 if (!_PA_RISC_ID (file_hdr.system_id))
2178 {
2179 bfd_set_error (bfd_error_wrong_format);
2180 return 0;
2181 }
2182
2183 switch (file_hdr.a_magic)
2184 {
2185 case RELOC_MAGIC:
2186 case EXEC_MAGIC:
2187 case SHARE_MAGIC:
2188 case DEMAND_MAGIC:
2189 #ifdef DL_MAGIC
2190 case DL_MAGIC:
2191 #endif
2192 #ifdef SHL_MAGIC
2193 case SHL_MAGIC:
2194 #endif
2195 #ifdef SHARED_MAGIC_CNX
2196 case SHARED_MAGIC_CNX:
2197 #endif
2198 break;
2199
2200 #ifdef EXECLIBMAGIC
2201 case EXECLIBMAGIC:
2202 /* Read the lst header and determine where the SOM directory begins. */
2203
2204 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2205 {
2206 if (bfd_get_error () != bfd_error_system_call)
2207 bfd_set_error (bfd_error_wrong_format);
2208 return 0;
2209 }
2210
2211 amt = SLSTHDR;
2212 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
2213 {
2214 if (bfd_get_error () != bfd_error_system_call)
2215 bfd_set_error (bfd_error_wrong_format);
2216 return 0;
2217 }
2218
2219 /* Position to and read the first directory entry. */
2220
2221 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2222 {
2223 if (bfd_get_error () != bfd_error_system_call)
2224 bfd_set_error (bfd_error_wrong_format);
2225 return 0;
2226 }
2227
2228 amt = ENTRY_SIZE;
2229 if (bfd_bread ((PTR) &som_entry, amt, abfd) != amt)
2230 {
2231 if (bfd_get_error () != bfd_error_system_call)
2232 bfd_set_error (bfd_error_wrong_format);
2233 return 0;
2234 }
2235
2236 /* Now position to the first SOM. */
2237
2238 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2239 {
2240 if (bfd_get_error () != bfd_error_system_call)
2241 bfd_set_error (bfd_error_wrong_format);
2242 return 0;
2243 }
2244
2245 current_offset = som_entry.location;
2246
2247 /* And finally, re-read the som header. */
2248 amt = FILE_HDR_SIZE;
2249 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2250 {
2251 if (bfd_get_error () != bfd_error_system_call)
2252 bfd_set_error (bfd_error_wrong_format);
2253 return 0;
2254 }
2255
2256 break;
2257 #endif
2258
2259 default:
2260 bfd_set_error (bfd_error_wrong_format);
2261 return 0;
2262 }
2263
2264 if (file_hdr.version_id != VERSION_ID
2265 && file_hdr.version_id != NEW_VERSION_ID)
2266 {
2267 bfd_set_error (bfd_error_wrong_format);
2268 return 0;
2269 }
2270
2271 /* If the aux_header_size field in the file header is zero, then this
2272 object is an incomplete executable (a .o file). Do not try to read
2273 a non-existant auxiliary header. */
2274 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2275 if (file_hdr.aux_header_size != 0)
2276 {
2277 amt = AUX_HDR_SIZE;
2278 if (bfd_bread ((PTR) &aux_hdr, amt, abfd) != amt)
2279 {
2280 if (bfd_get_error () != bfd_error_system_call)
2281 bfd_set_error (bfd_error_wrong_format);
2282 return 0;
2283 }
2284 }
2285
2286 if (!setup_sections (abfd, &file_hdr, current_offset))
2287 {
2288 /* setup_sections does not bubble up a bfd error code. */
2289 bfd_set_error (bfd_error_bad_value);
2290 return 0;
2291 }
2292
2293 /* This appears to be a valid SOM object. Do some initialization. */
2294 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2295 }
2296
2297 /* Create a SOM object. */
2298
2299 static bfd_boolean
2300 som_mkobject (abfd)
2301 bfd *abfd;
2302 {
2303 /* Allocate memory to hold backend information. */
2304 abfd->tdata.som_data = (struct som_data_struct *)
2305 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2306 if (abfd->tdata.som_data == NULL)
2307 return FALSE;
2308 return TRUE;
2309 }
2310
2311 /* Initialize some information in the file header. This routine makes
2312 not attempt at doing the right thing for a full executable; it
2313 is only meant to handle relocatable objects. */
2314
2315 static bfd_boolean
2316 som_prep_headers (abfd)
2317 bfd *abfd;
2318 {
2319 struct header *file_hdr;
2320 asection *section;
2321 bfd_size_type amt = sizeof (struct header);
2322
2323 /* Make and attach a file header to the BFD. */
2324 file_hdr = (struct header *) bfd_zalloc (abfd, amt);
2325 if (file_hdr == NULL)
2326 return FALSE;
2327 obj_som_file_hdr (abfd) = file_hdr;
2328
2329 if (abfd->flags & (EXEC_P | DYNAMIC))
2330 {
2331
2332 /* Make and attach an exec header to the BFD. */
2333 amt = sizeof (struct som_exec_auxhdr);
2334 obj_som_exec_hdr (abfd) =
2335 (struct som_exec_auxhdr *) bfd_zalloc (abfd, amt);
2336 if (obj_som_exec_hdr (abfd) == NULL)
2337 return FALSE;
2338
2339 if (abfd->flags & D_PAGED)
2340 file_hdr->a_magic = DEMAND_MAGIC;
2341 else if (abfd->flags & WP_TEXT)
2342 file_hdr->a_magic = SHARE_MAGIC;
2343 #ifdef SHL_MAGIC
2344 else if (abfd->flags & DYNAMIC)
2345 file_hdr->a_magic = SHL_MAGIC;
2346 #endif
2347 else
2348 file_hdr->a_magic = EXEC_MAGIC;
2349 }
2350 else
2351 file_hdr->a_magic = RELOC_MAGIC;
2352
2353 /* These fields are optional, and embedding timestamps is not always
2354 a wise thing to do, it makes comparing objects during a multi-stage
2355 bootstrap difficult. */
2356 file_hdr->file_time.secs = 0;
2357 file_hdr->file_time.nanosecs = 0;
2358
2359 file_hdr->entry_space = 0;
2360 file_hdr->entry_subspace = 0;
2361 file_hdr->entry_offset = 0;
2362 file_hdr->presumed_dp = 0;
2363
2364 /* Now iterate over the sections translating information from
2365 BFD sections to SOM spaces/subspaces. */
2366
2367 for (section = abfd->sections; section != NULL; section = section->next)
2368 {
2369 /* Ignore anything which has not been marked as a space or
2370 subspace. */
2371 if (!som_is_space (section) && !som_is_subspace (section))
2372 continue;
2373
2374 if (som_is_space (section))
2375 {
2376 /* Allocate space for the space dictionary. */
2377 amt = sizeof (struct space_dictionary_record);
2378 som_section_data (section)->space_dict =
2379 (struct space_dictionary_record *) bfd_zalloc (abfd, amt);
2380 if (som_section_data (section)->space_dict == NULL)
2381 return FALSE;
2382 /* Set space attributes. Note most attributes of SOM spaces
2383 are set based on the subspaces it contains. */
2384 som_section_data (section)->space_dict->loader_fix_index = -1;
2385 som_section_data (section)->space_dict->init_pointer_index = -1;
2386
2387 /* Set more attributes that were stuffed away in private data. */
2388 som_section_data (section)->space_dict->sort_key =
2389 som_section_data (section)->copy_data->sort_key;
2390 som_section_data (section)->space_dict->is_defined =
2391 som_section_data (section)->copy_data->is_defined;
2392 som_section_data (section)->space_dict->is_private =
2393 som_section_data (section)->copy_data->is_private;
2394 som_section_data (section)->space_dict->space_number =
2395 som_section_data (section)->copy_data->space_number;
2396 }
2397 else
2398 {
2399 /* Allocate space for the subspace dictionary. */
2400 amt = sizeof (struct subspace_dictionary_record);
2401 som_section_data (section)->subspace_dict =
2402 (struct subspace_dictionary_record *) bfd_zalloc (abfd, amt);
2403 if (som_section_data (section)->subspace_dict == NULL)
2404 return FALSE;
2405
2406 /* Set subspace attributes. Basic stuff is done here, additional
2407 attributes are filled in later as more information becomes
2408 available. */
2409 if (section->flags & SEC_IS_COMMON)
2410 {
2411 som_section_data (section)->subspace_dict->dup_common = 1;
2412 som_section_data (section)->subspace_dict->is_common = 1;
2413 }
2414
2415 if (section->flags & SEC_ALLOC)
2416 som_section_data (section)->subspace_dict->is_loadable = 1;
2417
2418 if (section->flags & SEC_CODE)
2419 som_section_data (section)->subspace_dict->code_only = 1;
2420
2421 som_section_data (section)->subspace_dict->subspace_start =
2422 section->vma;
2423 som_section_data (section)->subspace_dict->subspace_length =
2424 bfd_section_size (abfd, section);
2425 som_section_data (section)->subspace_dict->initialization_length =
2426 bfd_section_size (abfd, section);
2427 som_section_data (section)->subspace_dict->alignment =
2428 1 << section->alignment_power;
2429
2430 /* Set more attributes that were stuffed away in private data. */
2431 som_section_data (section)->subspace_dict->sort_key =
2432 som_section_data (section)->copy_data->sort_key;
2433 som_section_data (section)->subspace_dict->access_control_bits =
2434 som_section_data (section)->copy_data->access_control_bits;
2435 som_section_data (section)->subspace_dict->quadrant =
2436 som_section_data (section)->copy_data->quadrant;
2437 }
2438 }
2439 return TRUE;
2440 }
2441
2442 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2443
2444 static bfd_boolean
2445 som_is_space (section)
2446 asection *section;
2447 {
2448 /* If no copy data is available, then it's neither a space nor a
2449 subspace. */
2450 if (som_section_data (section)->copy_data == NULL)
2451 return FALSE;
2452
2453 /* If the containing space isn't the same as the given section,
2454 then this isn't a space. */
2455 if (som_section_data (section)->copy_data->container != section
2456 && (som_section_data (section)->copy_data->container->output_section
2457 != section))
2458 return FALSE;
2459
2460 /* OK. Must be a space. */
2461 return TRUE;
2462 }
2463
2464 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2465
2466 static bfd_boolean
2467 som_is_subspace (section)
2468 asection *section;
2469 {
2470 /* If no copy data is available, then it's neither a space nor a
2471 subspace. */
2472 if (som_section_data (section)->copy_data == NULL)
2473 return FALSE;
2474
2475 /* If the containing space is the same as the given section,
2476 then this isn't a subspace. */
2477 if (som_section_data (section)->copy_data->container == section
2478 || (som_section_data (section)->copy_data->container->output_section
2479 == section))
2480 return FALSE;
2481
2482 /* OK. Must be a subspace. */
2483 return TRUE;
2484 }
2485
2486 /* Return TRUE if the given space containins the given subspace. It
2487 is safe to assume space really is a space, and subspace really
2488 is a subspace. */
2489
2490 static bfd_boolean
2491 som_is_container (space, subspace)
2492 asection *space, *subspace;
2493 {
2494 return (som_section_data (subspace)->copy_data->container == space
2495 || (som_section_data (subspace)->copy_data->container->output_section
2496 == space));
2497 }
2498
2499 /* Count and return the number of spaces attached to the given BFD. */
2500
2501 static unsigned long
2502 som_count_spaces (abfd)
2503 bfd *abfd;
2504 {
2505 int count = 0;
2506 asection *section;
2507
2508 for (section = abfd->sections; section != NULL; section = section->next)
2509 count += som_is_space (section);
2510
2511 return count;
2512 }
2513
2514 /* Count the number of subspaces attached to the given BFD. */
2515
2516 static unsigned long
2517 som_count_subspaces (abfd)
2518 bfd *abfd;
2519 {
2520 int count = 0;
2521 asection *section;
2522
2523 for (section = abfd->sections; section != NULL; section = section->next)
2524 count += som_is_subspace (section);
2525
2526 return count;
2527 }
2528
2529 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2530
2531 We desire symbols to be ordered starting with the symbol with the
2532 highest relocation count down to the symbol with the lowest relocation
2533 count. Doing so compacts the relocation stream. */
2534
2535 static int
2536 compare_syms (arg1, arg2)
2537 const PTR arg1;
2538 const PTR arg2;
2539
2540 {
2541 asymbol **sym1 = (asymbol **) arg1;
2542 asymbol **sym2 = (asymbol **) arg2;
2543 unsigned int count1, count2;
2544
2545 /* Get relocation count for each symbol. Note that the count
2546 is stored in the udata pointer for section symbols! */
2547 if ((*sym1)->flags & BSF_SECTION_SYM)
2548 count1 = (*sym1)->udata.i;
2549 else
2550 count1 = som_symbol_data (*sym1)->reloc_count;
2551
2552 if ((*sym2)->flags & BSF_SECTION_SYM)
2553 count2 = (*sym2)->udata.i;
2554 else
2555 count2 = som_symbol_data (*sym2)->reloc_count;
2556
2557 /* Return the appropriate value. */
2558 if (count1 < count2)
2559 return 1;
2560 else if (count1 > count2)
2561 return -1;
2562 return 0;
2563 }
2564
2565 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2566 and subspace. */
2567
2568 static int
2569 compare_subspaces (arg1, arg2)
2570 const PTR arg1;
2571 const PTR arg2;
2572
2573 {
2574 asection **subspace1 = (asection **) arg1;
2575 asection **subspace2 = (asection **) arg2;
2576
2577 if ((*subspace1)->target_index < (*subspace2)->target_index)
2578 return -1;
2579 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2580 return 1;
2581 else
2582 return 0;
2583 }
2584
2585 /* Perform various work in preparation for emitting the fixup stream. */
2586
2587 static void
2588 som_prep_for_fixups (abfd, syms, num_syms)
2589 bfd *abfd;
2590 asymbol **syms;
2591 unsigned long num_syms;
2592 {
2593 unsigned long i;
2594 asection *section;
2595 asymbol **sorted_syms;
2596 bfd_size_type amt;
2597
2598 /* Most SOM relocations involving a symbol have a length which is
2599 dependent on the index of the symbol. So symbols which are
2600 used often in relocations should have a small index. */
2601
2602 /* First initialize the counters for each symbol. */
2603 for (i = 0; i < num_syms; i++)
2604 {
2605 /* Handle a section symbol; these have no pointers back to the
2606 SOM symbol info. So we just use the udata field to hold the
2607 relocation count. */
2608 if (som_symbol_data (syms[i]) == NULL
2609 || syms[i]->flags & BSF_SECTION_SYM)
2610 {
2611 syms[i]->flags |= BSF_SECTION_SYM;
2612 syms[i]->udata.i = 0;
2613 }
2614 else
2615 som_symbol_data (syms[i])->reloc_count = 0;
2616 }
2617
2618 /* Now that the counters are initialized, make a weighted count
2619 of how often a given symbol is used in a relocation. */
2620 for (section = abfd->sections; section != NULL; section = section->next)
2621 {
2622 int j;
2623
2624 /* Does this section have any relocations? */
2625 if ((int) section->reloc_count <= 0)
2626 continue;
2627
2628 /* Walk through each relocation for this section. */
2629 for (j = 1; j < (int) section->reloc_count; j++)
2630 {
2631 arelent *reloc = section->orelocation[j];
2632 int scale;
2633
2634 /* A relocation against a symbol in the *ABS* section really
2635 does not have a symbol. Likewise if the symbol isn't associated
2636 with any section. */
2637 if (reloc->sym_ptr_ptr == NULL
2638 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2639 continue;
2640
2641 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2642 and R_CODE_ONE_SYMBOL relocations to come first. These
2643 two relocations have single byte versions if the symbol
2644 index is very small. */
2645 if (reloc->howto->type == R_DP_RELATIVE
2646 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2647 scale = 2;
2648 else
2649 scale = 1;
2650
2651 /* Handle section symbols by storing the count in the udata
2652 field. It will not be used and the count is very important
2653 for these symbols. */
2654 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2655 {
2656 (*reloc->sym_ptr_ptr)->udata.i =
2657 (*reloc->sym_ptr_ptr)->udata.i + scale;
2658 continue;
2659 }
2660
2661 /* A normal symbol. Increment the count. */
2662 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2663 }
2664 }
2665
2666 /* Sort a copy of the symbol table, rather than the canonical
2667 output symbol table. */
2668 amt = num_syms;
2669 amt *= sizeof (asymbol *);
2670 sorted_syms = (asymbol **) bfd_zalloc (abfd, amt);
2671 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2672 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2673 obj_som_sorted_syms (abfd) = sorted_syms;
2674
2675 /* Compute the symbol indexes, they will be needed by the relocation
2676 code. */
2677 for (i = 0; i < num_syms; i++)
2678 {
2679 /* A section symbol. Again, there is no pointer to backend symbol
2680 information, so we reuse the udata field again. */
2681 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2682 sorted_syms[i]->udata.i = i;
2683 else
2684 som_symbol_data (sorted_syms[i])->index = i;
2685 }
2686 }
2687
2688 static bfd_boolean
2689 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2690 bfd *abfd;
2691 unsigned long current_offset;
2692 unsigned int *total_reloc_sizep;
2693 {
2694 unsigned int i, j;
2695 /* Chunk of memory that we can use as buffer space, then throw
2696 away. */
2697 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2698 unsigned char *p;
2699 unsigned int total_reloc_size = 0;
2700 unsigned int subspace_reloc_size = 0;
2701 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2702 asection *section = abfd->sections;
2703 bfd_size_type amt;
2704
2705 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2706 p = tmp_space;
2707
2708 /* All the fixups for a particular subspace are emitted in a single
2709 stream. All the subspaces for a particular space are emitted
2710 as a single stream.
2711
2712 So, to get all the locations correct one must iterate through all the
2713 spaces, for each space iterate through its subspaces and output a
2714 fixups stream. */
2715 for (i = 0; i < num_spaces; i++)
2716 {
2717 asection *subsection;
2718
2719 /* Find a space. */
2720 while (!som_is_space (section))
2721 section = section->next;
2722
2723 /* Now iterate through each of its subspaces. */
2724 for (subsection = abfd->sections;
2725 subsection != NULL;
2726 subsection = subsection->next)
2727 {
2728 int reloc_offset;
2729 unsigned int current_rounding_mode;
2730 #ifndef NO_PCREL_MODES
2731 int current_call_mode;
2732 #endif
2733
2734 /* Find a subspace of this space. */
2735 if (!som_is_subspace (subsection)
2736 || !som_is_container (section, subsection))
2737 continue;
2738
2739 /* If this subspace does not have real data, then we are
2740 finised with it. */
2741 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2742 {
2743 som_section_data (subsection)->subspace_dict->fixup_request_index
2744 = -1;
2745 continue;
2746 }
2747
2748 /* This subspace has some relocations. Put the relocation stream
2749 index into the subspace record. */
2750 som_section_data (subsection)->subspace_dict->fixup_request_index
2751 = total_reloc_size;
2752
2753 /* To make life easier start over with a clean slate for
2754 each subspace. Seek to the start of the relocation stream
2755 for this subspace in preparation for writing out its fixup
2756 stream. */
2757 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2758 return FALSE;
2759
2760 /* Buffer space has already been allocated. Just perform some
2761 initialization here. */
2762 p = tmp_space;
2763 subspace_reloc_size = 0;
2764 reloc_offset = 0;
2765 som_initialize_reloc_queue (reloc_queue);
2766 current_rounding_mode = R_N_MODE;
2767 #ifndef NO_PCREL_MODES
2768 current_call_mode = R_SHORT_PCREL_MODE;
2769 #endif
2770
2771 /* Translate each BFD relocation into one or more SOM
2772 relocations. */
2773 for (j = 0; j < subsection->reloc_count; j++)
2774 {
2775 arelent *bfd_reloc = subsection->orelocation[j];
2776 unsigned int skip;
2777 int sym_num;
2778
2779 /* Get the symbol number. Remember it's stored in a
2780 special place for section symbols. */
2781 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2782 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2783 else
2784 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2785
2786 /* If there is not enough room for the next couple relocations,
2787 then dump the current buffer contents now. Also reinitialize
2788 the relocation queue.
2789
2790 No single BFD relocation could ever translate into more
2791 than 100 bytes of SOM relocations (20bytes is probably the
2792 upper limit, but leave lots of space for growth). */
2793 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2794 {
2795 amt = p - tmp_space;
2796 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
2797 return FALSE;
2798
2799 p = tmp_space;
2800 som_initialize_reloc_queue (reloc_queue);
2801 }
2802
2803 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2804 skipped. */
2805 skip = bfd_reloc->address - reloc_offset;
2806 p = som_reloc_skip (abfd, skip, p,
2807 &subspace_reloc_size, reloc_queue);
2808
2809 /* Update reloc_offset for the next iteration.
2810
2811 Many relocations do not consume input bytes. They
2812 are markers, or set state necessary to perform some
2813 later relocation. */
2814 switch (bfd_reloc->howto->type)
2815 {
2816 case R_ENTRY:
2817 case R_ALT_ENTRY:
2818 case R_EXIT:
2819 case R_N_MODE:
2820 case R_S_MODE:
2821 case R_D_MODE:
2822 case R_R_MODE:
2823 case R_FSEL:
2824 case R_LSEL:
2825 case R_RSEL:
2826 case R_COMP1:
2827 case R_COMP2:
2828 case R_BEGIN_BRTAB:
2829 case R_END_BRTAB:
2830 case R_BEGIN_TRY:
2831 case R_END_TRY:
2832 case R_N0SEL:
2833 case R_N1SEL:
2834 #ifndef NO_PCREL_MODES
2835 case R_SHORT_PCREL_MODE:
2836 case R_LONG_PCREL_MODE:
2837 #endif
2838 reloc_offset = bfd_reloc->address;
2839 break;
2840
2841 default:
2842 reloc_offset = bfd_reloc->address + 4;
2843 break;
2844 }
2845
2846 /* Now the actual relocation we care about. */
2847 switch (bfd_reloc->howto->type)
2848 {
2849 case R_PCREL_CALL:
2850 case R_ABS_CALL:
2851 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2852 bfd_reloc, sym_num, reloc_queue);
2853 break;
2854
2855 case R_CODE_ONE_SYMBOL:
2856 case R_DP_RELATIVE:
2857 /* Account for any addend. */
2858 if (bfd_reloc->addend)
2859 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2860 &subspace_reloc_size, reloc_queue);
2861
2862 if (sym_num < 0x20)
2863 {
2864 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2865 subspace_reloc_size += 1;
2866 p += 1;
2867 }
2868 else if (sym_num < 0x100)
2869 {
2870 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2871 bfd_put_8 (abfd, sym_num, p + 1);
2872 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2873 2, reloc_queue);
2874 }
2875 else if (sym_num < 0x10000000)
2876 {
2877 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2878 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2879 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2880 p = try_prev_fixup (abfd, &subspace_reloc_size,
2881 p, 4, reloc_queue);
2882 }
2883 else
2884 abort ();
2885 break;
2886
2887 case R_DATA_ONE_SYMBOL:
2888 case R_DATA_PLABEL:
2889 case R_CODE_PLABEL:
2890 case R_DLT_REL:
2891 /* Account for any addend using R_DATA_OVERRIDE. */
2892 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2893 && bfd_reloc->addend)
2894 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2895 &subspace_reloc_size, reloc_queue);
2896
2897 if (sym_num < 0x100)
2898 {
2899 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2900 bfd_put_8 (abfd, sym_num, p + 1);
2901 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2902 2, reloc_queue);
2903 }
2904 else if (sym_num < 0x10000000)
2905 {
2906 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2907 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2908 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2909 p = try_prev_fixup (abfd, &subspace_reloc_size,
2910 p, 4, reloc_queue);
2911 }
2912 else
2913 abort ();
2914 break;
2915
2916 case R_ENTRY:
2917 {
2918 unsigned int tmp;
2919 arelent *tmp_reloc = NULL;
2920 bfd_put_8 (abfd, R_ENTRY, p);
2921
2922 /* R_ENTRY relocations have 64 bits of associated
2923 data. Unfortunately the addend field of a bfd
2924 relocation is only 32 bits. So, we split up
2925 the 64bit unwind information and store part in
2926 the R_ENTRY relocation, and the rest in the R_EXIT
2927 relocation. */
2928 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2929
2930 /* Find the next R_EXIT relocation. */
2931 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2932 {
2933 tmp_reloc = subsection->orelocation[tmp];
2934 if (tmp_reloc->howto->type == R_EXIT)
2935 break;
2936 }
2937
2938 if (tmp == subsection->reloc_count)
2939 abort ();
2940
2941 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2942 p = try_prev_fixup (abfd, &subspace_reloc_size,
2943 p, 9, reloc_queue);
2944 break;
2945 }
2946
2947 case R_N_MODE:
2948 case R_S_MODE:
2949 case R_D_MODE:
2950 case R_R_MODE:
2951 /* If this relocation requests the current rounding
2952 mode, then it is redundant. */
2953 if (bfd_reloc->howto->type != current_rounding_mode)
2954 {
2955 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2956 subspace_reloc_size += 1;
2957 p += 1;
2958 current_rounding_mode = bfd_reloc->howto->type;
2959 }
2960 break;
2961
2962 #ifndef NO_PCREL_MODES
2963 case R_LONG_PCREL_MODE:
2964 case R_SHORT_PCREL_MODE:
2965 if (bfd_reloc->howto->type != current_call_mode)
2966 {
2967 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2968 subspace_reloc_size += 1;
2969 p += 1;
2970 current_call_mode = bfd_reloc->howto->type;
2971 }
2972 break;
2973 #endif
2974
2975 case R_EXIT:
2976 case R_ALT_ENTRY:
2977 case R_FSEL:
2978 case R_LSEL:
2979 case R_RSEL:
2980 case R_BEGIN_BRTAB:
2981 case R_END_BRTAB:
2982 case R_BEGIN_TRY:
2983 case R_N0SEL:
2984 case R_N1SEL:
2985 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2986 subspace_reloc_size += 1;
2987 p += 1;
2988 break;
2989
2990 case R_END_TRY:
2991 /* The end of an exception handling region. The reloc's
2992 addend contains the offset of the exception handling
2993 code. */
2994 if (bfd_reloc->addend == 0)
2995 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2996 else if (bfd_reloc->addend < 1024)
2997 {
2998 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2999 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
3000 p = try_prev_fixup (abfd, &subspace_reloc_size,
3001 p, 2, reloc_queue);
3002 }
3003 else
3004 {
3005 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
3006 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
3007 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
3008 p = try_prev_fixup (abfd, &subspace_reloc_size,
3009 p, 4, reloc_queue);
3010 }
3011 break;
3012
3013 case R_COMP1:
3014 /* The only time we generate R_COMP1, R_COMP2 and
3015 R_CODE_EXPR relocs is for the difference of two
3016 symbols. Hence we can cheat here. */
3017 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3018 bfd_put_8 (abfd, 0x44, p + 1);
3019 p = try_prev_fixup (abfd, &subspace_reloc_size,
3020 p, 2, reloc_queue);
3021 break;
3022
3023 case R_COMP2:
3024 /* The only time we generate R_COMP1, R_COMP2 and
3025 R_CODE_EXPR relocs is for the difference of two
3026 symbols. Hence we can cheat here. */
3027 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3028 bfd_put_8 (abfd, 0x80, p + 1);
3029 bfd_put_8 (abfd, sym_num >> 16, p + 2);
3030 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
3031 p = try_prev_fixup (abfd, &subspace_reloc_size,
3032 p, 5, reloc_queue);
3033 break;
3034
3035 case R_CODE_EXPR:
3036 case R_DATA_EXPR:
3037 /* The only time we generate R_COMP1, R_COMP2 and
3038 R_CODE_EXPR relocs is for the difference of two
3039 symbols. Hence we can cheat here. */
3040 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3041 subspace_reloc_size += 1;
3042 p += 1;
3043 break;
3044
3045 /* Put a "R_RESERVED" relocation in the stream if
3046 we hit something we do not understand. The linker
3047 will complain loudly if this ever happens. */
3048 default:
3049 bfd_put_8 (abfd, 0xff, p);
3050 subspace_reloc_size += 1;
3051 p += 1;
3052 break;
3053 }
3054 }
3055
3056 /* Last BFD relocation for a subspace has been processed.
3057 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3058 p = som_reloc_skip (abfd, (bfd_section_size (abfd, subsection)
3059 - reloc_offset),
3060 p, &subspace_reloc_size, reloc_queue);
3061
3062 /* Scribble out the relocations. */
3063 amt = p - tmp_space;
3064 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
3065 return FALSE;
3066 p = tmp_space;
3067
3068 total_reloc_size += subspace_reloc_size;
3069 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3070 = subspace_reloc_size;
3071 }
3072 section = section->next;
3073 }
3074 *total_reloc_sizep = total_reloc_size;
3075 return TRUE;
3076 }
3077
3078 /* Write out the space/subspace string table. */
3079
3080 static bfd_boolean
3081 som_write_space_strings (abfd, current_offset, string_sizep)
3082 bfd *abfd;
3083 unsigned long current_offset;
3084 unsigned int *string_sizep;
3085 {
3086 /* Chunk of memory that we can use as buffer space, then throw
3087 away. */
3088 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3089 unsigned char *tmp_space = alloca (tmp_space_size);
3090 unsigned char *p = tmp_space;
3091 unsigned int strings_size = 0;
3092 asection *section;
3093 bfd_size_type amt;
3094
3095 /* Seek to the start of the space strings in preparation for writing
3096 them out. */
3097 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3098 return FALSE;
3099
3100 /* Walk through all the spaces and subspaces (order is not important)
3101 building up and writing string table entries for their names. */
3102 for (section = abfd->sections; section != NULL; section = section->next)
3103 {
3104 size_t length;
3105
3106 /* Only work with space/subspaces; avoid any other sections
3107 which might have been made (.text for example). */
3108 if (!som_is_space (section) && !som_is_subspace (section))
3109 continue;
3110
3111 /* Get the length of the space/subspace name. */
3112 length = strlen (section->name);
3113
3114 /* If there is not enough room for the next entry, then dump the
3115 current buffer contents now and maybe allocate a larger
3116 buffer. Each entry will take 4 bytes to hold the string
3117 length + the string itself + null terminator. */
3118 if (p - tmp_space + 5 + length > tmp_space_size)
3119 {
3120 /* Flush buffer before refilling or reallocating. */
3121 amt = p - tmp_space;
3122 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3123 return FALSE;
3124
3125 /* Reallocate if now empty buffer still too small. */
3126 if (5 + length > tmp_space_size)
3127 {
3128 /* Ensure a minimum growth factor to avoid O(n**2) space
3129 consumption for n strings. The optimal minimum
3130 factor seems to be 2, as no other value can guarantee
3131 wasting less than 50% space. (Note that we cannot
3132 deallocate space allocated by `alloca' without
3133 returning from this function.) The same technique is
3134 used a few more times below when a buffer is
3135 reallocated. */
3136 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3137 tmp_space = alloca (tmp_space_size);
3138 }
3139
3140 /* Reset to beginning of the (possibly new) buffer space. */
3141 p = tmp_space;
3142 }
3143
3144 /* First element in a string table entry is the length of the
3145 string. Alignment issues are already handled. */
3146 bfd_put_32 (abfd, (bfd_vma) length, p);
3147 p += 4;
3148 strings_size += 4;
3149
3150 /* Record the index in the space/subspace records. */
3151 if (som_is_space (section))
3152 som_section_data (section)->space_dict->name.n_strx = strings_size;
3153 else
3154 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3155
3156 /* Next comes the string itself + a null terminator. */
3157 strcpy (p, section->name);
3158 p += length + 1;
3159 strings_size += length + 1;
3160
3161 /* Always align up to the next word boundary. */
3162 while (strings_size % 4)
3163 {
3164 bfd_put_8 (abfd, 0, p);
3165 p++;
3166 strings_size++;
3167 }
3168 }
3169
3170 /* Done with the space/subspace strings. Write out any information
3171 contained in a partial block. */
3172 amt = p - tmp_space;
3173 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3174 return FALSE;
3175 *string_sizep = strings_size;
3176 return TRUE;
3177 }
3178
3179 /* Write out the symbol string table. */
3180
3181 static bfd_boolean
3182 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3183 compilation_unit)
3184 bfd *abfd;
3185 unsigned long current_offset;
3186 asymbol **syms;
3187 unsigned int num_syms;
3188 unsigned int *string_sizep;
3189 COMPUNIT *compilation_unit;
3190 {
3191 unsigned int i;
3192
3193 /* Chunk of memory that we can use as buffer space, then throw
3194 away. */
3195 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3196 unsigned char *tmp_space = alloca (tmp_space_size);
3197 unsigned char *p = tmp_space;
3198
3199 unsigned int strings_size = 0;
3200 unsigned char *comp[4];
3201 bfd_size_type amt;
3202
3203 /* This gets a bit gruesome because of the compilation unit. The
3204 strings within the compilation unit are part of the symbol
3205 strings, but don't have symbol_dictionary entries. So, manually
3206 write them and update the compliation unit header. On input, the
3207 compilation unit header contains local copies of the strings.
3208 Move them aside. */
3209 if (compilation_unit)
3210 {
3211 comp[0] = compilation_unit->name.n_name;
3212 comp[1] = compilation_unit->language_name.n_name;
3213 comp[2] = compilation_unit->product_id.n_name;
3214 comp[3] = compilation_unit->version_id.n_name;
3215 }
3216
3217 /* Seek to the start of the space strings in preparation for writing
3218 them out. */
3219 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3220 return FALSE;
3221
3222 if (compilation_unit)
3223 {
3224 for (i = 0; i < 4; i++)
3225 {
3226 size_t length = strlen (comp[i]);
3227
3228 /* If there is not enough room for the next entry, then dump
3229 the current buffer contents now and maybe allocate a
3230 larger buffer. */
3231 if (p - tmp_space + 5 + length > tmp_space_size)
3232 {
3233 /* Flush buffer before refilling or reallocating. */
3234 amt = p - tmp_space;
3235 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3236 return FALSE;
3237
3238 /* Reallocate if now empty buffer still too small. */
3239 if (5 + length > tmp_space_size)
3240 {
3241 /* See alloca above for discussion of new size. */
3242 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3243 tmp_space = alloca (tmp_space_size);
3244 }
3245
3246 /* Reset to beginning of the (possibly new) buffer
3247 space. */
3248 p = tmp_space;
3249 }
3250
3251 /* First element in a string table entry is the length of
3252 the string. This must always be 4 byte aligned. This is
3253 also an appropriate time to fill in the string index
3254 field in the symbol table entry. */
3255 bfd_put_32 (abfd, (bfd_vma) length, p);
3256 strings_size += 4;
3257 p += 4;
3258
3259 /* Next comes the string itself + a null terminator. */
3260 strcpy (p, comp[i]);
3261
3262 switch (i)
3263 {
3264 case 0:
3265 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3266 break;
3267 case 1:
3268 obj_som_compilation_unit (abfd)->language_name.n_strx =
3269 strings_size;
3270 break;
3271 case 2:
3272 obj_som_compilation_unit (abfd)->product_id.n_strx =
3273 strings_size;
3274 break;
3275 case 3:
3276 obj_som_compilation_unit (abfd)->version_id.n_strx =
3277 strings_size;
3278 break;
3279 }
3280
3281 p += length + 1;
3282 strings_size += length + 1;
3283
3284 /* Always align up to the next word boundary. */
3285 while (strings_size % 4)
3286 {
3287 bfd_put_8 (abfd, 0, p);
3288 strings_size++;
3289 p++;
3290 }
3291 }
3292 }
3293
3294 for (i = 0; i < num_syms; i++)
3295 {
3296 size_t length = strlen (syms[i]->name);
3297
3298 /* If there is not enough room for the next entry, then dump the
3299 current buffer contents now and maybe allocate a larger buffer. */
3300 if (p - tmp_space + 5 + length > tmp_space_size)
3301 {
3302 /* Flush buffer before refilling or reallocating. */
3303 amt = p - tmp_space;
3304 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3305 return FALSE;
3306
3307 /* Reallocate if now empty buffer still too small. */
3308 if (5 + length > tmp_space_size)
3309 {
3310 /* See alloca above for discussion of new size. */
3311 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3312 tmp_space = alloca (tmp_space_size);
3313 }
3314
3315 /* Reset to beginning of the (possibly new) buffer space. */
3316 p = tmp_space;
3317 }
3318
3319 /* First element in a string table entry is the length of the
3320 string. This must always be 4 byte aligned. This is also
3321 an appropriate time to fill in the string index field in the
3322 symbol table entry. */
3323 bfd_put_32 (abfd, (bfd_vma) length, p);
3324 strings_size += 4;
3325 p += 4;
3326
3327 /* Next comes the string itself + a null terminator. */
3328 strcpy (p, syms[i]->name);
3329
3330 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3331 p += length + 1;
3332 strings_size += length + 1;
3333
3334 /* Always align up to the next word boundary. */
3335 while (strings_size % 4)
3336 {
3337 bfd_put_8 (abfd, 0, p);
3338 strings_size++;
3339 p++;
3340 }
3341 }
3342
3343 /* Scribble out any partial block. */
3344 amt = p - tmp_space;
3345 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3346 return FALSE;
3347
3348 *string_sizep = strings_size;
3349 return TRUE;
3350 }
3351
3352 /* Compute variable information to be placed in the SOM headers,
3353 space/subspace dictionaries, relocation streams, etc. Begin
3354 writing parts of the object file. */
3355
3356 static bfd_boolean
3357 som_begin_writing (abfd)
3358 bfd *abfd;
3359 {
3360 unsigned long current_offset = 0;
3361 int strings_size = 0;
3362 unsigned long num_spaces, num_subspaces, i;
3363 asection *section;
3364 unsigned int total_subspaces = 0;
3365 struct som_exec_auxhdr *exec_header = NULL;
3366
3367 /* The file header will always be first in an object file,
3368 everything else can be in random locations. To keep things
3369 "simple" BFD will lay out the object file in the manner suggested
3370 by the PRO ABI for PA-RISC Systems. */
3371
3372 /* Before any output can really begin offsets for all the major
3373 portions of the object file must be computed. So, starting
3374 with the initial file header compute (and sometimes write)
3375 each portion of the object file. */
3376
3377 /* Make room for the file header, it's contents are not complete
3378 yet, so it can not be written at this time. */
3379 current_offset += sizeof (struct header);
3380
3381 /* Any auxiliary headers will follow the file header. Right now
3382 we support only the copyright and version headers. */
3383 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3384 obj_som_file_hdr (abfd)->aux_header_size = 0;
3385 if (abfd->flags & (EXEC_P | DYNAMIC))
3386 {
3387 /* Parts of the exec header will be filled in later, so
3388 delay writing the header itself. Fill in the defaults,
3389 and write it later. */
3390 current_offset += sizeof (struct som_exec_auxhdr);
3391 obj_som_file_hdr (abfd)->aux_header_size
3392 += sizeof (struct som_exec_auxhdr);
3393 exec_header = obj_som_exec_hdr (abfd);
3394 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3395 exec_header->som_auxhdr.length = 40;
3396 }
3397 if (obj_som_version_hdr (abfd) != NULL)
3398 {
3399 bfd_size_type len;
3400
3401 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3402 return FALSE;
3403
3404 /* Write the aux_id structure and the string length. */
3405 len = sizeof (struct aux_id) + sizeof (unsigned int);
3406 obj_som_file_hdr (abfd)->aux_header_size += len;
3407 current_offset += len;
3408 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd), len, abfd) != len)
3409 return FALSE;
3410
3411 /* Write the version string. */
3412 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3413 obj_som_file_hdr (abfd)->aux_header_size += len;
3414 current_offset += len;
3415 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd)->user_string, len, abfd)
3416 != len)
3417 return FALSE;
3418 }
3419
3420 if (obj_som_copyright_hdr (abfd) != NULL)
3421 {
3422 bfd_size_type len;
3423
3424 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3425 return FALSE;
3426
3427 /* Write the aux_id structure and the string length. */
3428 len = sizeof (struct aux_id) + sizeof (unsigned int);
3429 obj_som_file_hdr (abfd)->aux_header_size += len;
3430 current_offset += len;
3431 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd), len, abfd) != len)
3432 return FALSE;
3433
3434 /* Write the copyright string. */
3435 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3436 obj_som_file_hdr (abfd)->aux_header_size += len;
3437 current_offset += len;
3438 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3439 != len)
3440 return FALSE;
3441 }
3442
3443 /* Next comes the initialization pointers; we have no initialization
3444 pointers, so current offset does not change. */
3445 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3446 obj_som_file_hdr (abfd)->init_array_total = 0;
3447
3448 /* Next are the space records. These are fixed length records.
3449
3450 Count the number of spaces to determine how much room is needed
3451 in the object file for the space records.
3452
3453 The names of the spaces are stored in a separate string table,
3454 and the index for each space into the string table is computed
3455 below. Therefore, it is not possible to write the space headers
3456 at this time. */
3457 num_spaces = som_count_spaces (abfd);
3458 obj_som_file_hdr (abfd)->space_location = current_offset;
3459 obj_som_file_hdr (abfd)->space_total = num_spaces;
3460 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3461
3462 /* Next are the subspace records. These are fixed length records.
3463
3464 Count the number of subspaes to determine how much room is needed
3465 in the object file for the subspace records.
3466
3467 A variety if fields in the subspace record are still unknown at
3468 this time (index into string table, fixup stream location/size, etc). */
3469 num_subspaces = som_count_subspaces (abfd);
3470 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3471 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3472 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3473
3474 /* Next is the string table for the space/subspace names. We will
3475 build and write the string table on the fly. At the same time
3476 we will fill in the space/subspace name index fields. */
3477
3478 /* The string table needs to be aligned on a word boundary. */
3479 if (current_offset % 4)
3480 current_offset += (4 - (current_offset % 4));
3481
3482 /* Mark the offset of the space/subspace string table in the
3483 file header. */
3484 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3485
3486 /* Scribble out the space strings. */
3487 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3488 return FALSE;
3489
3490 /* Record total string table size in the header and update the
3491 current offset. */
3492 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3493 current_offset += strings_size;
3494
3495 /* Next is the compilation unit. */
3496 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3497 obj_som_file_hdr (abfd)->compiler_total = 0;
3498 if (obj_som_compilation_unit (abfd))
3499 {
3500 obj_som_file_hdr (abfd)->compiler_total = 1;
3501 current_offset += COMPUNITSZ;
3502 }
3503
3504 /* Now compute the file positions for the loadable subspaces, taking
3505 care to make sure everything stays properly aligned. */
3506
3507 section = abfd->sections;
3508 for (i = 0; i < num_spaces; i++)
3509 {
3510 asection *subsection;
3511 int first_subspace;
3512 unsigned int subspace_offset = 0;
3513
3514 /* Find a space. */
3515 while (!som_is_space (section))
3516 section = section->next;
3517
3518 first_subspace = 1;
3519 /* Now look for all its subspaces. */
3520 for (subsection = abfd->sections;
3521 subsection != NULL;
3522 subsection = subsection->next)
3523 {
3524
3525 if (!som_is_subspace (subsection)
3526 || !som_is_container (section, subsection)
3527 || (subsection->flags & SEC_ALLOC) == 0)
3528 continue;
3529
3530 /* If this is the first subspace in the space, and we are
3531 building an executable, then take care to make sure all
3532 the alignments are correct and update the exec header. */
3533 if (first_subspace
3534 && (abfd->flags & (EXEC_P | DYNAMIC)))
3535 {
3536 /* Demand paged executables have each space aligned to a
3537 page boundary. Sharable executables (write-protected
3538 text) have just the private (aka data & bss) space aligned
3539 to a page boundary. Ugh. Not true for HPUX.
3540
3541 The HPUX kernel requires the text to always be page aligned
3542 within the file regardless of the executable's type. */
3543 if (abfd->flags & (D_PAGED | DYNAMIC)
3544 || (subsection->flags & SEC_CODE)
3545 || ((abfd->flags & WP_TEXT)
3546 && (subsection->flags & SEC_DATA)))
3547 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3548
3549 /* Update the exec header. */
3550 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3551 {
3552 exec_header->exec_tmem = section->vma;
3553 exec_header->exec_tfile = current_offset;
3554 }
3555 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3556 {
3557 exec_header->exec_dmem = section->vma;
3558 exec_header->exec_dfile = current_offset;
3559 }
3560
3561 /* Keep track of exactly where we are within a particular
3562 space. This is necessary as the braindamaged HPUX
3563 loader will create holes between subspaces *and*
3564 subspace alignments are *NOT* preserved. What a crock. */
3565 subspace_offset = subsection->vma;
3566
3567 /* Only do this for the first subspace within each space. */
3568 first_subspace = 0;
3569 }
3570 else if (abfd->flags & (EXEC_P | DYNAMIC))
3571 {
3572 /* The braindamaged HPUX loader may have created a hole
3573 between two subspaces. It is *not* sufficient to use
3574 the alignment specifications within the subspaces to
3575 account for these holes -- I've run into at least one
3576 case where the loader left one code subspace unaligned
3577 in a final executable.
3578
3579 To combat this we keep a current offset within each space,
3580 and use the subspace vma fields to detect and preserve
3581 holes. What a crock!
3582
3583 ps. This is not necessary for unloadable space/subspaces. */
3584 current_offset += subsection->vma - subspace_offset;
3585 if (subsection->flags & SEC_CODE)
3586 exec_header->exec_tsize += subsection->vma - subspace_offset;
3587 else
3588 exec_header->exec_dsize += subsection->vma - subspace_offset;
3589 subspace_offset += subsection->vma - subspace_offset;
3590 }
3591
3592 subsection->target_index = total_subspaces++;
3593 /* This is real data to be loaded from the file. */
3594 if (subsection->flags & SEC_LOAD)
3595 {
3596 /* Update the size of the code & data. */
3597 if (abfd->flags & (EXEC_P | DYNAMIC)
3598 && subsection->flags & SEC_CODE)
3599 exec_header->exec_tsize += subsection->_cooked_size;
3600 else if (abfd->flags & (EXEC_P | DYNAMIC)
3601 && subsection->flags & SEC_DATA)
3602 exec_header->exec_dsize += subsection->_cooked_size;
3603 som_section_data (subsection)->subspace_dict->file_loc_init_value
3604 = current_offset;
3605 subsection->filepos = current_offset;
3606 current_offset += bfd_section_size (abfd, subsection);
3607 subspace_offset += bfd_section_size (abfd, subsection);
3608 }
3609 /* Looks like uninitialized data. */
3610 else
3611 {
3612 /* Update the size of the bss section. */
3613 if (abfd->flags & (EXEC_P | DYNAMIC))
3614 exec_header->exec_bsize += subsection->_cooked_size;
3615
3616 som_section_data (subsection)->subspace_dict->file_loc_init_value
3617 = 0;
3618 som_section_data (subsection)->subspace_dict->
3619 initialization_length = 0;
3620 }
3621 }
3622 /* Goto the next section. */
3623 section = section->next;
3624 }
3625
3626 /* Finally compute the file positions for unloadable subspaces.
3627 If building an executable, start the unloadable stuff on its
3628 own page. */
3629
3630 if (abfd->flags & (EXEC_P | DYNAMIC))
3631 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3632
3633 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3634 section = abfd->sections;
3635 for (i = 0; i < num_spaces; i++)
3636 {
3637 asection *subsection;
3638
3639 /* Find a space. */
3640 while (!som_is_space (section))
3641 section = section->next;
3642
3643 if (abfd->flags & (EXEC_P | DYNAMIC))
3644 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3645
3646 /* Now look for all its subspaces. */
3647 for (subsection = abfd->sections;
3648 subsection != NULL;
3649 subsection = subsection->next)
3650 {
3651
3652 if (!som_is_subspace (subsection)
3653 || !som_is_container (section, subsection)
3654 || (subsection->flags & SEC_ALLOC) != 0)
3655 continue;
3656
3657 subsection->target_index = total_subspaces++;
3658 /* This is real data to be loaded from the file. */
3659 if ((subsection->flags & SEC_LOAD) == 0)
3660 {
3661 som_section_data (subsection)->subspace_dict->file_loc_init_value
3662 = current_offset;
3663 subsection->filepos = current_offset;
3664 current_offset += bfd_section_size (abfd, subsection);
3665 }
3666 /* Looks like uninitialized data. */
3667 else
3668 {
3669 som_section_data (subsection)->subspace_dict->file_loc_init_value
3670 = 0;
3671 som_section_data (subsection)->subspace_dict->
3672 initialization_length = bfd_section_size (abfd, subsection);
3673 }
3674 }
3675 /* Goto the next section. */
3676 section = section->next;
3677 }
3678
3679 /* If building an executable, then make sure to seek to and write
3680 one byte at the end of the file to make sure any necessary
3681 zeros are filled in. Ugh. */
3682 if (abfd->flags & (EXEC_P | DYNAMIC))
3683 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3684 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3685 return FALSE;
3686 if (bfd_bwrite ((PTR) "", (bfd_size_type) 1, abfd) != 1)
3687 return FALSE;
3688
3689 obj_som_file_hdr (abfd)->unloadable_sp_size
3690 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3691
3692 /* Loader fixups are not supported in any way shape or form. */
3693 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3694 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3695
3696 /* Done. Store the total size of the SOM so far. */
3697 obj_som_file_hdr (abfd)->som_length = current_offset;
3698
3699 return TRUE;
3700 }
3701
3702 /* Finally, scribble out the various headers to the disk. */
3703
3704 static bfd_boolean
3705 som_finish_writing (abfd)
3706 bfd *abfd;
3707 {
3708 int num_spaces = som_count_spaces (abfd);
3709 asymbol **syms = bfd_get_outsymbols (abfd);
3710 int i, num_syms, strings_size;
3711 int subspace_index = 0;
3712 file_ptr location;
3713 asection *section;
3714 unsigned long current_offset;
3715 unsigned int total_reloc_size;
3716 bfd_size_type amt;
3717
3718 /* We must set up the version identifier here as objcopy/strip copy
3719 private BFD data too late for us to handle this in som_begin_writing. */
3720 if (obj_som_exec_data (abfd)
3721 && obj_som_exec_data (abfd)->version_id)
3722 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3723 else
3724 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3725
3726 /* Next is the symbol table. These are fixed length records.
3727
3728 Count the number of symbols to determine how much room is needed
3729 in the object file for the symbol table.
3730
3731 The names of the symbols are stored in a separate string table,
3732 and the index for each symbol name into the string table is computed
3733 below. Therefore, it is not possible to write the symbol table
3734 at this time.
3735
3736 These used to be output before the subspace contents, but they
3737 were moved here to work around a stupid bug in the hpux linker
3738 (fixed in hpux10). */
3739 current_offset = obj_som_file_hdr (abfd)->som_length;
3740
3741 /* Make sure we're on a word boundary. */
3742 if (current_offset % 4)
3743 current_offset += (4 - (current_offset % 4));
3744
3745 num_syms = bfd_get_symcount (abfd);
3746 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3747 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3748 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3749
3750 /* Next are the symbol strings.
3751 Align them to a word boundary. */
3752 if (current_offset % 4)
3753 current_offset += (4 - (current_offset % 4));
3754 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3755
3756 /* Scribble out the symbol strings. */
3757 if (! som_write_symbol_strings (abfd, current_offset, syms,
3758 num_syms, &strings_size,
3759 obj_som_compilation_unit (abfd)))
3760 return FALSE;
3761
3762 /* Record total string table size in header and update the
3763 current offset. */
3764 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3765 current_offset += strings_size;
3766
3767 /* Do prep work before handling fixups. */
3768 som_prep_for_fixups (abfd,
3769 bfd_get_outsymbols (abfd),
3770 bfd_get_symcount (abfd));
3771
3772 /* At the end of the file is the fixup stream which starts on a
3773 word boundary. */
3774 if (current_offset % 4)
3775 current_offset += (4 - (current_offset % 4));
3776 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3777
3778 /* Write the fixups and update fields in subspace headers which
3779 relate to the fixup stream. */
3780 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3781 return FALSE;
3782
3783 /* Record the total size of the fixup stream in the file header. */
3784 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3785
3786 /* Done. Store the total size of the SOM. */
3787 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3788
3789 /* Now that the symbol table information is complete, build and
3790 write the symbol table. */
3791 if (! som_build_and_write_symbol_table (abfd))
3792 return FALSE;
3793
3794 /* Subspaces are written first so that we can set up information
3795 about them in their containing spaces as the subspace is written. */
3796
3797 /* Seek to the start of the subspace dictionary records. */
3798 location = obj_som_file_hdr (abfd)->subspace_location;
3799 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3800 return FALSE;
3801
3802 section = abfd->sections;
3803 /* Now for each loadable space write out records for its subspaces. */
3804 for (i = 0; i < num_spaces; i++)
3805 {
3806 asection *subsection;
3807
3808 /* Find a space. */
3809 while (!som_is_space (section))
3810 section = section->next;
3811
3812 /* Now look for all its subspaces. */
3813 for (subsection = abfd->sections;
3814 subsection != NULL;
3815 subsection = subsection->next)
3816 {
3817
3818 /* Skip any section which does not correspond to a space
3819 or subspace. Or does not have SEC_ALLOC set (and therefore
3820 has no real bits on the disk). */
3821 if (!som_is_subspace (subsection)
3822 || !som_is_container (section, subsection)
3823 || (subsection->flags & SEC_ALLOC) == 0)
3824 continue;
3825
3826 /* If this is the first subspace for this space, then save
3827 the index of the subspace in its containing space. Also
3828 set "is_loadable" in the containing space. */
3829
3830 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3831 {
3832 som_section_data (section)->space_dict->is_loadable = 1;
3833 som_section_data (section)->space_dict->subspace_index
3834 = subspace_index;
3835 }
3836
3837 /* Increment the number of subspaces seen and the number of
3838 subspaces contained within the current space. */
3839 subspace_index++;
3840 som_section_data (section)->space_dict->subspace_quantity++;
3841
3842 /* Mark the index of the current space within the subspace's
3843 dictionary record. */
3844 som_section_data (subsection)->subspace_dict->space_index = i;
3845
3846 /* Dump the current subspace header. */
3847 amt = sizeof (struct subspace_dictionary_record);
3848 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3849 amt, abfd) != amt)
3850 return FALSE;
3851 }
3852 /* Goto the next section. */
3853 section = section->next;
3854 }
3855
3856 /* Now repeat the process for unloadable subspaces. */
3857 section = abfd->sections;
3858 /* Now for each space write out records for its subspaces. */
3859 for (i = 0; i < num_spaces; i++)
3860 {
3861 asection *subsection;
3862
3863 /* Find a space. */
3864 while (!som_is_space (section))
3865 section = section->next;
3866
3867 /* Now look for all its subspaces. */
3868 for (subsection = abfd->sections;
3869 subsection != NULL;
3870 subsection = subsection->next)
3871 {
3872
3873 /* Skip any section which does not correspond to a space or
3874 subspace, or which SEC_ALLOC set (and therefore handled
3875 in the loadable spaces/subspaces code above). */
3876
3877 if (!som_is_subspace (subsection)
3878 || !som_is_container (section, subsection)
3879 || (subsection->flags & SEC_ALLOC) != 0)
3880 continue;
3881
3882 /* If this is the first subspace for this space, then save
3883 the index of the subspace in its containing space. Clear
3884 "is_loadable". */
3885
3886 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3887 {
3888 som_section_data (section)->space_dict->is_loadable = 0;
3889 som_section_data (section)->space_dict->subspace_index
3890 = subspace_index;
3891 }
3892
3893 /* Increment the number of subspaces seen and the number of
3894 subspaces contained within the current space. */
3895 som_section_data (section)->space_dict->subspace_quantity++;
3896 subspace_index++;
3897
3898 /* Mark the index of the current space within the subspace's
3899 dictionary record. */
3900 som_section_data (subsection)->subspace_dict->space_index = i;
3901
3902 /* Dump this subspace header. */
3903 amt = sizeof (struct subspace_dictionary_record);
3904 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3905 amt, abfd) != amt)
3906 return FALSE;
3907 }
3908 /* Goto the next section. */
3909 section = section->next;
3910 }
3911
3912 /* All the subspace dictiondary records are written, and all the
3913 fields are set up in the space dictionary records.
3914
3915 Seek to the right location and start writing the space
3916 dictionary records. */
3917 location = obj_som_file_hdr (abfd)->space_location;
3918 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3919 return FALSE;
3920
3921 section = abfd->sections;
3922 for (i = 0; i < num_spaces; i++)
3923 {
3924 /* Find a space. */
3925 while (!som_is_space (section))
3926 section = section->next;
3927
3928 /* Dump its header. */
3929 amt = sizeof (struct space_dictionary_record);
3930 if (bfd_bwrite ((PTR) som_section_data (section)->space_dict,
3931 amt, abfd) != amt)
3932 return FALSE;
3933
3934 /* Goto the next section. */
3935 section = section->next;
3936 }
3937
3938 /* Write the compilation unit record if there is one. */
3939 if (obj_som_compilation_unit (abfd))
3940 {
3941 location = obj_som_file_hdr (abfd)->compiler_location;
3942 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3943 return FALSE;
3944
3945 amt = COMPUNITSZ;
3946 if (bfd_bwrite ((PTR) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3947 return FALSE;
3948 }
3949
3950 /* Setting of the system_id has to happen very late now that copying of
3951 BFD private data happens *after* section contents are set. */
3952 if (abfd->flags & (EXEC_P | DYNAMIC))
3953 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3954 else if (bfd_get_mach (abfd) == pa20)
3955 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3956 else if (bfd_get_mach (abfd) == pa11)
3957 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3958 else
3959 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3960
3961 /* Compute the checksum for the file header just before writing
3962 the header to disk. */
3963 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3964
3965 /* Only thing left to do is write out the file header. It is always
3966 at location zero. Seek there and write it. */
3967 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3968 return FALSE;
3969 amt = sizeof (struct header);
3970 if (bfd_bwrite ((PTR) obj_som_file_hdr (abfd), amt, abfd) != amt)
3971 return FALSE;
3972
3973 /* Now write the exec header. */
3974 if (abfd->flags & (EXEC_P | DYNAMIC))
3975 {
3976 long tmp, som_length;
3977 struct som_exec_auxhdr *exec_header;
3978
3979 exec_header = obj_som_exec_hdr (abfd);
3980 exec_header->exec_entry = bfd_get_start_address (abfd);
3981 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3982
3983 /* Oh joys. Ram some of the BSS data into the DATA section
3984 to be compatable with how the hp linker makes objects
3985 (saves memory space). */
3986 tmp = exec_header->exec_dsize;
3987 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3988 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3989 if (exec_header->exec_bsize < 0)
3990 exec_header->exec_bsize = 0;
3991 exec_header->exec_dsize = tmp;
3992
3993 /* Now perform some sanity checks. The idea is to catch bogons now and
3994 inform the user, instead of silently generating a bogus file. */
3995 som_length = obj_som_file_hdr (abfd)->som_length;
3996 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3997 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3998 {
3999 bfd_set_error (bfd_error_bad_value);
4000 return FALSE;
4001 }
4002
4003 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
4004 SEEK_SET) != 0)
4005 return FALSE;
4006
4007 amt = AUX_HDR_SIZE;
4008 if (bfd_bwrite ((PTR) exec_header, amt, abfd) != amt)
4009 return FALSE;
4010 }
4011 return TRUE;
4012 }
4013
4014 /* Compute and return the checksum for a SOM file header. */
4015
4016 static unsigned long
4017 som_compute_checksum (abfd)
4018 bfd *abfd;
4019 {
4020 unsigned long checksum, count, i;
4021 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
4022
4023 checksum = 0;
4024 count = sizeof (struct header) / sizeof (unsigned long);
4025 for (i = 0; i < count; i++)
4026 checksum ^= *(buffer + i);
4027
4028 return checksum;
4029 }
4030
4031 static void
4032 som_bfd_derive_misc_symbol_info (abfd, sym, info)
4033 bfd *abfd ATTRIBUTE_UNUSED;
4034 asymbol *sym;
4035 struct som_misc_symbol_info *info;
4036 {
4037 /* Initialize. */
4038 memset (info, 0, sizeof (struct som_misc_symbol_info));
4039
4040 /* The HP SOM linker requires detailed type information about
4041 all symbols (including undefined symbols!). Unfortunately,
4042 the type specified in an import/export statement does not
4043 always match what the linker wants. Severe braindamage. */
4044
4045 /* Section symbols will not have a SOM symbol type assigned to
4046 them yet. Assign all section symbols type ST_DATA. */
4047 if (sym->flags & BSF_SECTION_SYM)
4048 info->symbol_type = ST_DATA;
4049 else
4050 {
4051 /* Common symbols must have scope SS_UNSAT and type
4052 ST_STORAGE or the linker will choke. */
4053 if (bfd_is_com_section (sym->section))
4054 {
4055 info->symbol_scope = SS_UNSAT;
4056 info->symbol_type = ST_STORAGE;
4057 }
4058
4059 /* It is possible to have a symbol without an associated
4060 type. This happens if the user imported the symbol
4061 without a type and the symbol was never defined
4062 locally. If BSF_FUNCTION is set for this symbol, then
4063 assign it type ST_CODE (the HP linker requires undefined
4064 external functions to have type ST_CODE rather than ST_ENTRY). */
4065 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4066 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4067 && bfd_is_und_section (sym->section)
4068 && sym->flags & BSF_FUNCTION)
4069 info->symbol_type = ST_CODE;
4070
4071 /* Handle function symbols which were defined in this file.
4072 They should have type ST_ENTRY. Also retrieve the argument
4073 relocation bits from the SOM backend information. */
4074 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4075 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4076 && (sym->flags & BSF_FUNCTION))
4077 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4078 && (sym->flags & BSF_FUNCTION)))
4079 {
4080 info->symbol_type = ST_ENTRY;
4081 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4082 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4083 }
4084
4085 /* For unknown symbols set the symbol's type based on the symbol's
4086 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4087 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4088 {
4089 if (sym->section->flags & SEC_CODE)
4090 info->symbol_type = ST_CODE;
4091 else
4092 info->symbol_type = ST_DATA;
4093 }
4094
4095 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4096 info->symbol_type = ST_DATA;
4097
4098 /* From now on it's a very simple mapping. */
4099 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4100 info->symbol_type = ST_ABSOLUTE;
4101 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4102 info->symbol_type = ST_CODE;
4103 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4104 info->symbol_type = ST_DATA;
4105 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4106 info->symbol_type = ST_MILLICODE;
4107 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4108 info->symbol_type = ST_PLABEL;
4109 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4110 info->symbol_type = ST_PRI_PROG;
4111 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4112 info->symbol_type = ST_SEC_PROG;
4113 }
4114
4115 /* Now handle the symbol's scope. Exported data which is not
4116 in the common section has scope SS_UNIVERSAL. Note scope
4117 of common symbols was handled earlier! */
4118 if (bfd_is_und_section (sym->section))
4119 info->symbol_scope = SS_UNSAT;
4120 else if (sym->flags & (BSF_EXPORT | BSF_WEAK)
4121 && ! bfd_is_com_section (sym->section))
4122 info->symbol_scope = SS_UNIVERSAL;
4123 /* Anything else which is not in the common section has scope
4124 SS_LOCAL. */
4125 else if (! bfd_is_com_section (sym->section))
4126 info->symbol_scope = SS_LOCAL;
4127
4128 /* Now set the symbol_info field. It has no real meaning
4129 for undefined or common symbols, but the HP linker will
4130 choke if it's not set to some "reasonable" value. We
4131 use zero as a reasonable value. */
4132 if (bfd_is_com_section (sym->section)
4133 || bfd_is_und_section (sym->section)
4134 || bfd_is_abs_section (sym->section))
4135 info->symbol_info = 0;
4136 /* For all other symbols, the symbol_info field contains the
4137 subspace index of the space this symbol is contained in. */
4138 else
4139 info->symbol_info = sym->section->target_index;
4140
4141 /* Set the symbol's value. */
4142 info->symbol_value = sym->value + sym->section->vma;
4143
4144 /* The secondary_def field is for weak symbols. */
4145 if (sym->flags & BSF_WEAK)
4146 info->secondary_def = TRUE;
4147 else
4148 info->secondary_def = FALSE;
4149
4150 }
4151
4152 /* Build and write, in one big chunk, the entire symbol table for
4153 this BFD. */
4154
4155 static bfd_boolean
4156 som_build_and_write_symbol_table (abfd)
4157 bfd *abfd;
4158 {
4159 unsigned int num_syms = bfd_get_symcount (abfd);
4160 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4161 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4162 struct symbol_dictionary_record *som_symtab = NULL;
4163 unsigned int i;
4164 bfd_size_type symtab_size;
4165
4166 /* Compute total symbol table size and allocate a chunk of memory
4167 to hold the symbol table as we build it. */
4168 symtab_size = num_syms;
4169 symtab_size *= sizeof (struct symbol_dictionary_record);
4170 som_symtab = (struct symbol_dictionary_record *) bfd_zmalloc (symtab_size);
4171 if (som_symtab == NULL && symtab_size != 0)
4172 goto error_return;
4173
4174 /* Walk over each symbol. */
4175 for (i = 0; i < num_syms; i++)
4176 {
4177 struct som_misc_symbol_info info;
4178
4179 /* This is really an index into the symbol strings table.
4180 By the time we get here, the index has already been
4181 computed and stored into the name field in the BFD symbol. */
4182 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4183
4184 /* Derive SOM information from the BFD symbol. */
4185 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4186
4187 /* Now use it. */
4188 som_symtab[i].symbol_type = info.symbol_type;
4189 som_symtab[i].symbol_scope = info.symbol_scope;
4190 som_symtab[i].arg_reloc = info.arg_reloc;
4191 som_symtab[i].symbol_info = info.symbol_info;
4192 som_symtab[i].xleast = 3;
4193 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4194 som_symtab[i].secondary_def = info.secondary_def;
4195 }
4196
4197 /* Everything is ready, seek to the right location and
4198 scribble out the symbol table. */
4199 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4200 return FALSE;
4201
4202 if (bfd_bwrite ((PTR) som_symtab, symtab_size, abfd) != symtab_size)
4203 goto error_return;
4204
4205 if (som_symtab != NULL)
4206 free (som_symtab);
4207 return TRUE;
4208 error_return:
4209 if (som_symtab != NULL)
4210 free (som_symtab);
4211 return FALSE;
4212 }
4213
4214 /* Write an object in SOM format. */
4215
4216 static bfd_boolean
4217 som_write_object_contents (abfd)
4218 bfd *abfd;
4219 {
4220 if (! abfd->output_has_begun)
4221 {
4222 /* Set up fixed parts of the file, space, and subspace headers.
4223 Notify the world that output has begun. */
4224 som_prep_headers (abfd);
4225 abfd->output_has_begun = TRUE;
4226 /* Start writing the object file. This include all the string
4227 tables, fixup streams, and other portions of the object file. */
4228 som_begin_writing (abfd);
4229 }
4230
4231 return (som_finish_writing (abfd));
4232 }
4233 \f
4234 /* Read and save the string table associated with the given BFD. */
4235
4236 static bfd_boolean
4237 som_slurp_string_table (abfd)
4238 bfd *abfd;
4239 {
4240 char *stringtab;
4241 bfd_size_type amt;
4242
4243 /* Use the saved version if its available. */
4244 if (obj_som_stringtab (abfd) != NULL)
4245 return TRUE;
4246
4247 /* I don't think this can currently happen, and I'm not sure it should
4248 really be an error, but it's better than getting unpredictable results
4249 from the host's malloc when passed a size of zero. */
4250 if (obj_som_stringtab_size (abfd) == 0)
4251 {
4252 bfd_set_error (bfd_error_no_symbols);
4253 return FALSE;
4254 }
4255
4256 /* Allocate and read in the string table. */
4257 amt = obj_som_stringtab_size (abfd);
4258 stringtab = bfd_zmalloc (amt);
4259 if (stringtab == NULL)
4260 return FALSE;
4261
4262 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4263 return FALSE;
4264
4265 if (bfd_bread (stringtab, amt, abfd) != amt)
4266 return FALSE;
4267
4268 /* Save our results and return success. */
4269 obj_som_stringtab (abfd) = stringtab;
4270 return TRUE;
4271 }
4272
4273 /* Return the amount of data (in bytes) required to hold the symbol
4274 table for this object. */
4275
4276 static long
4277 som_get_symtab_upper_bound (abfd)
4278 bfd *abfd;
4279 {
4280 if (!som_slurp_symbol_table (abfd))
4281 return -1;
4282
4283 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4284 }
4285
4286 /* Convert from a SOM subspace index to a BFD section. */
4287
4288 static asection *
4289 bfd_section_from_som_symbol (abfd, symbol)
4290 bfd *abfd;
4291 struct symbol_dictionary_record *symbol;
4292 {
4293 asection *section;
4294
4295 /* The meaning of the symbol_info field changes for functions
4296 within executables. So only use the quick symbol_info mapping for
4297 incomplete objects and non-function symbols in executables. */
4298 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4299 || (symbol->symbol_type != ST_ENTRY
4300 && symbol->symbol_type != ST_PRI_PROG
4301 && symbol->symbol_type != ST_SEC_PROG
4302 && symbol->symbol_type != ST_MILLICODE))
4303 {
4304 unsigned int index = symbol->symbol_info;
4305 for (section = abfd->sections; section != NULL; section = section->next)
4306 if (section->target_index == index && som_is_subspace (section))
4307 return section;
4308
4309 /* Could be a symbol from an external library (such as an OMOS
4310 shared library). Don't abort. */
4311 return bfd_abs_section_ptr;
4312
4313 }
4314 else
4315 {
4316 unsigned int value = symbol->symbol_value;
4317
4318 /* For executables we will have to use the symbol's address and
4319 find out what section would contain that address. Yuk. */
4320 for (section = abfd->sections; section; section = section->next)
4321 {
4322 if (value >= section->vma
4323 && value <= section->vma + section->_cooked_size
4324 && som_is_subspace (section))
4325 return section;
4326 }
4327
4328 /* Could be a symbol from an external library (such as an OMOS
4329 shared library). Don't abort. */
4330 return bfd_abs_section_ptr;
4331
4332 }
4333 }
4334
4335 /* Read and save the symbol table associated with the given BFD. */
4336
4337 static unsigned int
4338 som_slurp_symbol_table (abfd)
4339 bfd *abfd;
4340 {
4341 int symbol_count = bfd_get_symcount (abfd);
4342 int symsize = sizeof (struct symbol_dictionary_record);
4343 char *stringtab;
4344 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4345 som_symbol_type *sym, *symbase;
4346 bfd_size_type amt;
4347
4348 /* Return saved value if it exists. */
4349 if (obj_som_symtab (abfd) != NULL)
4350 goto successful_return;
4351
4352 /* Special case. This is *not* an error. */
4353 if (symbol_count == 0)
4354 goto successful_return;
4355
4356 if (!som_slurp_string_table (abfd))
4357 goto error_return;
4358
4359 stringtab = obj_som_stringtab (abfd);
4360
4361 amt = symbol_count;
4362 amt *= sizeof (som_symbol_type);
4363 symbase = (som_symbol_type *) bfd_zmalloc (amt);
4364 if (symbase == NULL)
4365 goto error_return;
4366
4367 /* Read in the external SOM representation. */
4368 amt = symbol_count;
4369 amt *= symsize;
4370 buf = bfd_malloc (amt);
4371 if (buf == NULL && amt != 0)
4372 goto error_return;
4373 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4374 goto error_return;
4375 if (bfd_bread (buf, amt, abfd) != amt)
4376 goto error_return;
4377
4378 /* Iterate over all the symbols and internalize them. */
4379 endbufp = buf + symbol_count;
4380 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4381 {
4382
4383 /* I don't think we care about these. */
4384 if (bufp->symbol_type == ST_SYM_EXT
4385 || bufp->symbol_type == ST_ARG_EXT)
4386 continue;
4387
4388 /* Set some private data we care about. */
4389 if (bufp->symbol_type == ST_NULL)
4390 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4391 else if (bufp->symbol_type == ST_ABSOLUTE)
4392 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4393 else if (bufp->symbol_type == ST_DATA)
4394 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4395 else if (bufp->symbol_type == ST_CODE)
4396 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4397 else if (bufp->symbol_type == ST_PRI_PROG)
4398 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4399 else if (bufp->symbol_type == ST_SEC_PROG)
4400 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4401 else if (bufp->symbol_type == ST_ENTRY)
4402 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4403 else if (bufp->symbol_type == ST_MILLICODE)
4404 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4405 else if (bufp->symbol_type == ST_PLABEL)
4406 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4407 else
4408 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4409 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4410
4411 /* Some reasonable defaults. */
4412 sym->symbol.the_bfd = abfd;
4413 sym->symbol.name = bufp->name.n_strx + stringtab;
4414 sym->symbol.value = bufp->symbol_value;
4415 sym->symbol.section = 0;
4416 sym->symbol.flags = 0;
4417
4418 switch (bufp->symbol_type)
4419 {
4420 case ST_ENTRY:
4421 case ST_MILLICODE:
4422 sym->symbol.flags |= BSF_FUNCTION;
4423 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4424 sym->symbol.value & 0x3;
4425 sym->symbol.value &= ~0x3;
4426 break;
4427
4428 case ST_STUB:
4429 case ST_CODE:
4430 case ST_PRI_PROG:
4431 case ST_SEC_PROG:
4432 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4433 sym->symbol.value & 0x3;
4434 sym->symbol.value &= ~0x3;
4435 /* If the symbol's scope is SS_UNSAT, then these are
4436 undefined function symbols. */
4437 if (bufp->symbol_scope == SS_UNSAT)
4438 sym->symbol.flags |= BSF_FUNCTION;
4439
4440 default:
4441 break;
4442 }
4443
4444 /* Handle scoping and section information. */
4445 switch (bufp->symbol_scope)
4446 {
4447 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4448 so the section associated with this symbol can't be known. */
4449 case SS_EXTERNAL:
4450 if (bufp->symbol_type != ST_STORAGE)
4451 sym->symbol.section = bfd_und_section_ptr;
4452 else
4453 sym->symbol.section = bfd_com_section_ptr;
4454 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4455 break;
4456
4457 case SS_UNSAT:
4458 if (bufp->symbol_type != ST_STORAGE)
4459 sym->symbol.section = bfd_und_section_ptr;
4460 else
4461 sym->symbol.section = bfd_com_section_ptr;
4462 break;
4463
4464 case SS_UNIVERSAL:
4465 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4466 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4467 sym->symbol.value -= sym->symbol.section->vma;
4468 break;
4469
4470 #if 0
4471 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4472 Sound dumb? It is. */
4473 case SS_GLOBAL:
4474 #endif
4475 case SS_LOCAL:
4476 sym->symbol.flags |= BSF_LOCAL;
4477 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4478 sym->symbol.value -= sym->symbol.section->vma;
4479 break;
4480 }
4481
4482 /* Check for a weak symbol. */
4483 if (bufp->secondary_def)
4484 sym->symbol.flags |= BSF_WEAK;
4485
4486 /* Mark section symbols and symbols used by the debugger.
4487 Note $START$ is a magic code symbol, NOT a section symbol. */
4488 if (sym->symbol.name[0] == '$'
4489 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4490 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4491 sym->symbol.flags |= BSF_SECTION_SYM;
4492 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4493 {
4494 sym->symbol.flags |= BSF_SECTION_SYM;
4495 sym->symbol.name = sym->symbol.section->name;
4496 }
4497 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4498 sym->symbol.flags |= BSF_DEBUGGING;
4499
4500 /* Note increment at bottom of loop, since we skip some symbols
4501 we can not include it as part of the for statement. */
4502 sym++;
4503 }
4504
4505 /* We modify the symbol count to record the number of BFD symbols we
4506 created. */
4507 bfd_get_symcount (abfd) = sym - symbase;
4508
4509 /* Save our results and return success. */
4510 obj_som_symtab (abfd) = symbase;
4511 successful_return:
4512 if (buf != NULL)
4513 free (buf);
4514 return (TRUE);
4515
4516 error_return:
4517 if (buf != NULL)
4518 free (buf);
4519 return FALSE;
4520 }
4521
4522 /* Canonicalize a SOM symbol table. Return the number of entries
4523 in the symbol table. */
4524
4525 static long
4526 som_get_symtab (abfd, location)
4527 bfd *abfd;
4528 asymbol **location;
4529 {
4530 int i;
4531 som_symbol_type *symbase;
4532
4533 if (!som_slurp_symbol_table (abfd))
4534 return -1;
4535
4536 i = bfd_get_symcount (abfd);
4537 symbase = obj_som_symtab (abfd);
4538
4539 for (; i > 0; i--, location++, symbase++)
4540 *location = &symbase->symbol;
4541
4542 /* Final null pointer. */
4543 *location = 0;
4544 return (bfd_get_symcount (abfd));
4545 }
4546
4547 /* Make a SOM symbol. There is nothing special to do here. */
4548
4549 static asymbol *
4550 som_make_empty_symbol (abfd)
4551 bfd *abfd;
4552 {
4553 bfd_size_type amt = sizeof (som_symbol_type);
4554 som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, amt);
4555 if (new == NULL)
4556 return 0;
4557 new->symbol.the_bfd = abfd;
4558
4559 return &new->symbol;
4560 }
4561
4562 /* Print symbol information. */
4563
4564 static void
4565 som_print_symbol (abfd, afile, symbol, how)
4566 bfd *abfd;
4567 PTR afile;
4568 asymbol *symbol;
4569 bfd_print_symbol_type how;
4570 {
4571 FILE *file = (FILE *) afile;
4572 switch (how)
4573 {
4574 case bfd_print_symbol_name:
4575 fprintf (file, "%s", symbol->name);
4576 break;
4577 case bfd_print_symbol_more:
4578 fprintf (file, "som ");
4579 fprintf_vma (file, symbol->value);
4580 fprintf (file, " %lx", (long) symbol->flags);
4581 break;
4582 case bfd_print_symbol_all:
4583 {
4584 const char *section_name;
4585 section_name = symbol->section ? symbol->section->name : "(*none*)";
4586 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
4587 fprintf (file, " %s\t%s", section_name, symbol->name);
4588 break;
4589 }
4590 }
4591 }
4592
4593 static bfd_boolean
4594 som_bfd_is_local_label_name (abfd, name)
4595 bfd *abfd ATTRIBUTE_UNUSED;
4596 const char *name;
4597 {
4598 return (name[0] == 'L' && name[1] == '$');
4599 }
4600
4601 /* Count or process variable-length SOM fixup records.
4602
4603 To avoid code duplication we use this code both to compute the number
4604 of relocations requested by a stream, and to internalize the stream.
4605
4606 When computing the number of relocations requested by a stream the
4607 variables rptr, section, and symbols have no meaning.
4608
4609 Return the number of relocations requested by the fixup stream. When
4610 not just counting
4611
4612 This needs at least two or three more passes to get it cleaned up. */
4613
4614 static unsigned int
4615 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4616 unsigned char *fixup;
4617 unsigned int end;
4618 arelent *internal_relocs;
4619 asection *section;
4620 asymbol **symbols;
4621 bfd_boolean just_count;
4622 {
4623 unsigned int op, varname, deallocate_contents = 0;
4624 unsigned char *end_fixups = &fixup[end];
4625 const struct fixup_format *fp;
4626 const char *cp;
4627 unsigned char *save_fixup;
4628 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4629 const int *subop;
4630 arelent *rptr = internal_relocs;
4631 unsigned int offset = 0;
4632
4633 #define var(c) variables[(c) - 'A']
4634 #define push(v) (*sp++ = (v))
4635 #define pop() (*--sp)
4636 #define emptystack() (sp == stack)
4637
4638 som_initialize_reloc_queue (reloc_queue);
4639 memset (variables, 0, sizeof (variables));
4640 memset (stack, 0, sizeof (stack));
4641 count = 0;
4642 prev_fixup = 0;
4643 saved_unwind_bits = 0;
4644 sp = stack;
4645
4646 while (fixup < end_fixups)
4647 {
4648
4649 /* Save pointer to the start of this fixup. We'll use
4650 it later to determine if it is necessary to put this fixup
4651 on the queue. */
4652 save_fixup = fixup;
4653
4654 /* Get the fixup code and its associated format. */
4655 op = *fixup++;
4656 fp = &som_fixup_formats[op];
4657
4658 /* Handle a request for a previous fixup. */
4659 if (*fp->format == 'P')
4660 {
4661 /* Get pointer to the beginning of the prev fixup, move
4662 the repeated fixup to the head of the queue. */
4663 fixup = reloc_queue[fp->D].reloc;
4664 som_reloc_queue_fix (reloc_queue, fp->D);
4665 prev_fixup = 1;
4666
4667 /* Get the fixup code and its associated format. */
4668 op = *fixup++;
4669 fp = &som_fixup_formats[op];
4670 }
4671
4672 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4673 if (! just_count
4674 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4675 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4676 {
4677 rptr->address = offset;
4678 rptr->howto = &som_hppa_howto_table[op];
4679 rptr->addend = 0;
4680 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4681 }
4682
4683 /* Set default input length to 0. Get the opcode class index
4684 into D. */
4685 var ('L') = 0;
4686 var ('D') = fp->D;
4687 var ('U') = saved_unwind_bits;
4688
4689 /* Get the opcode format. */
4690 cp = fp->format;
4691
4692 /* Process the format string. Parsing happens in two phases,
4693 parse RHS, then assign to LHS. Repeat until no more
4694 characters in the format string. */
4695 while (*cp)
4696 {
4697 /* The variable this pass is going to compute a value for. */
4698 varname = *cp++;
4699
4700 /* Start processing RHS. Continue until a NULL or '=' is found. */
4701 do
4702 {
4703 c = *cp++;
4704
4705 /* If this is a variable, push it on the stack. */
4706 if (ISUPPER (c))
4707 push (var (c));
4708
4709 /* If this is a lower case letter, then it represents
4710 additional data from the fixup stream to be pushed onto
4711 the stack. */
4712 else if (ISLOWER (c))
4713 {
4714 int bits = (c - 'a') * 8;
4715 for (v = 0; c > 'a'; --c)
4716 v = (v << 8) | *fixup++;
4717 if (varname == 'V')
4718 v = sign_extend (v, bits);
4719 push (v);
4720 }
4721
4722 /* A decimal constant. Push it on the stack. */
4723 else if (ISDIGIT (c))
4724 {
4725 v = c - '0';
4726 while (ISDIGIT (*cp))
4727 v = (v * 10) + (*cp++ - '0');
4728 push (v);
4729 }
4730 else
4731 /* An operator. Pop two two values from the stack and
4732 use them as operands to the given operation. Push
4733 the result of the operation back on the stack. */
4734 switch (c)
4735 {
4736 case '+':
4737 v = pop ();
4738 v += pop ();
4739 push (v);
4740 break;
4741 case '*':
4742 v = pop ();
4743 v *= pop ();
4744 push (v);
4745 break;
4746 case '<':
4747 v = pop ();
4748 v = pop () << v;
4749 push (v);
4750 break;
4751 default:
4752 abort ();
4753 }
4754 }
4755 while (*cp && *cp != '=');
4756
4757 /* Move over the equal operator. */
4758 cp++;
4759
4760 /* Pop the RHS off the stack. */
4761 c = pop ();
4762
4763 /* Perform the assignment. */
4764 var (varname) = c;
4765
4766 /* Handle side effects. and special 'O' stack cases. */
4767 switch (varname)
4768 {
4769 /* Consume some bytes from the input space. */
4770 case 'L':
4771 offset += c;
4772 break;
4773 /* A symbol to use in the relocation. Make a note
4774 of this if we are not just counting. */
4775 case 'S':
4776 if (! just_count)
4777 rptr->sym_ptr_ptr = &symbols[c];
4778 break;
4779 /* Argument relocation bits for a function call. */
4780 case 'R':
4781 if (! just_count)
4782 {
4783 unsigned int tmp = var ('R');
4784 rptr->addend = 0;
4785
4786 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4787 && R_PCREL_CALL + 10 > op)
4788 || (som_hppa_howto_table[op].type == R_ABS_CALL
4789 && R_ABS_CALL + 10 > op))
4790 {
4791 /* Simple encoding. */
4792 if (tmp > 4)
4793 {
4794 tmp -= 5;
4795 rptr->addend |= 1;
4796 }
4797 if (tmp == 4)
4798 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4799 else if (tmp == 3)
4800 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4801 else if (tmp == 2)
4802 rptr->addend |= 1 << 8 | 1 << 6;
4803 else if (tmp == 1)
4804 rptr->addend |= 1 << 8;
4805 }
4806 else
4807 {
4808 unsigned int tmp1, tmp2;
4809
4810 /* First part is easy -- low order two bits are
4811 directly copied, then shifted away. */
4812 rptr->addend = tmp & 0x3;
4813 tmp >>= 2;
4814
4815 /* Diving the result by 10 gives us the second
4816 part. If it is 9, then the first two words
4817 are a double precision paramater, else it is
4818 3 * the first arg bits + the 2nd arg bits. */
4819 tmp1 = tmp / 10;
4820 tmp -= tmp1 * 10;
4821 if (tmp1 == 9)
4822 rptr->addend += (0xe << 6);
4823 else
4824 {
4825 /* Get the two pieces. */
4826 tmp2 = tmp1 / 3;
4827 tmp1 -= tmp2 * 3;
4828 /* Put them in the addend. */
4829 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4830 }
4831
4832 /* What's left is the third part. It's unpacked
4833 just like the second. */
4834 if (tmp == 9)
4835 rptr->addend += (0xe << 2);
4836 else
4837 {
4838 tmp2 = tmp / 3;
4839 tmp -= tmp2 * 3;
4840 rptr->addend += (tmp2 << 4) + (tmp << 2);
4841 }
4842 }
4843 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4844 }
4845 break;
4846 /* Handle the linker expression stack. */
4847 case 'O':
4848 switch (op)
4849 {
4850 case R_COMP1:
4851 subop = comp1_opcodes;
4852 break;
4853 case R_COMP2:
4854 subop = comp2_opcodes;
4855 break;
4856 case R_COMP3:
4857 subop = comp3_opcodes;
4858 break;
4859 default:
4860 abort ();
4861 }
4862 while (*subop <= (unsigned char) c)
4863 ++subop;
4864 --subop;
4865 break;
4866 /* The lower 32unwind bits must be persistent. */
4867 case 'U':
4868 saved_unwind_bits = var ('U');
4869 break;
4870
4871 default:
4872 break;
4873 }
4874 }
4875
4876 /* If we used a previous fixup, clean up after it. */
4877 if (prev_fixup)
4878 {
4879 fixup = save_fixup + 1;
4880 prev_fixup = 0;
4881 }
4882 /* Queue it. */
4883 else if (fixup > save_fixup + 1)
4884 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4885
4886 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4887 fixups to BFD. */
4888 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4889 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4890 {
4891 /* Done with a single reloction. Loop back to the top. */
4892 if (! just_count)
4893 {
4894 if (som_hppa_howto_table[op].type == R_ENTRY)
4895 rptr->addend = var ('T');
4896 else if (som_hppa_howto_table[op].type == R_EXIT)
4897 rptr->addend = var ('U');
4898 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4899 || som_hppa_howto_table[op].type == R_ABS_CALL)
4900 ;
4901 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4902 {
4903 /* Try what was specified in R_DATA_OVERRIDE first
4904 (if anything). Then the hard way using the
4905 section contents. */
4906 rptr->addend = var ('V');
4907
4908 if (rptr->addend == 0 && !section->contents)
4909 {
4910 /* Got to read the damn contents first. We don't
4911 bother saving the contents (yet). Add it one
4912 day if the need arises. */
4913 section->contents = bfd_malloc (section->_raw_size);
4914 if (section->contents == NULL)
4915 return (unsigned) -1;
4916
4917 deallocate_contents = 1;
4918 bfd_get_section_contents (section->owner,
4919 section,
4920 section->contents,
4921 (bfd_vma) 0,
4922 section->_raw_size);
4923 }
4924 else if (rptr->addend == 0)
4925 rptr->addend = bfd_get_32 (section->owner,
4926 (section->contents
4927 + offset - var ('L')));
4928
4929 }
4930 else
4931 rptr->addend = var ('V');
4932 rptr++;
4933 }
4934 count++;
4935 /* Now that we've handled a "full" relocation, reset
4936 some state. */
4937 memset (variables, 0, sizeof (variables));
4938 memset (stack, 0, sizeof (stack));
4939 }
4940 }
4941 if (deallocate_contents)
4942 free (section->contents);
4943
4944 return count;
4945
4946 #undef var
4947 #undef push
4948 #undef pop
4949 #undef emptystack
4950 }
4951
4952 /* Read in the relocs (aka fixups in SOM terms) for a section.
4953
4954 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4955 set to TRUE to indicate it only needs a count of the number
4956 of actual relocations. */
4957
4958 static bfd_boolean
4959 som_slurp_reloc_table (abfd, section, symbols, just_count)
4960 bfd *abfd;
4961 asection *section;
4962 asymbol **symbols;
4963 bfd_boolean just_count;
4964 {
4965 char *external_relocs;
4966 unsigned int fixup_stream_size;
4967 arelent *internal_relocs;
4968 unsigned int num_relocs;
4969 bfd_size_type amt;
4970
4971 fixup_stream_size = som_section_data (section)->reloc_size;
4972 /* If there were no relocations, then there is nothing to do. */
4973 if (section->reloc_count == 0)
4974 return TRUE;
4975
4976 /* If reloc_count is -1, then the relocation stream has not been
4977 parsed. We must do so now to know how many relocations exist. */
4978 if (section->reloc_count == (unsigned) -1)
4979 {
4980 amt = fixup_stream_size;
4981 external_relocs = (char *) bfd_malloc (amt);
4982 if (external_relocs == (char *) NULL)
4983 return FALSE;
4984 /* Read in the external forms. */
4985 if (bfd_seek (abfd,
4986 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4987 SEEK_SET)
4988 != 0)
4989 return FALSE;
4990 if (bfd_bread (external_relocs, amt, abfd) != amt)
4991 return FALSE;
4992
4993 /* Let callers know how many relocations found.
4994 also save the relocation stream as we will
4995 need it again. */
4996 section->reloc_count = som_set_reloc_info (external_relocs,
4997 fixup_stream_size,
4998 NULL, NULL, NULL, TRUE);
4999
5000 som_section_data (section)->reloc_stream = external_relocs;
5001 }
5002
5003 /* If the caller only wanted a count, then return now. */
5004 if (just_count)
5005 return TRUE;
5006
5007 num_relocs = section->reloc_count;
5008 external_relocs = som_section_data (section)->reloc_stream;
5009 /* Return saved information about the relocations if it is available. */
5010 if (section->relocation != (arelent *) NULL)
5011 return TRUE;
5012
5013 amt = num_relocs;
5014 amt *= sizeof (arelent);
5015 internal_relocs = (arelent *) bfd_zalloc (abfd, (amt));
5016 if (internal_relocs == (arelent *) NULL)
5017 return FALSE;
5018
5019 /* Process and internalize the relocations. */
5020 som_set_reloc_info (external_relocs, fixup_stream_size,
5021 internal_relocs, section, symbols, FALSE);
5022
5023 /* We're done with the external relocations. Free them. */
5024 free (external_relocs);
5025 som_section_data (section)->reloc_stream = NULL;
5026
5027 /* Save our results and return success. */
5028 section->relocation = internal_relocs;
5029 return TRUE;
5030 }
5031
5032 /* Return the number of bytes required to store the relocation
5033 information associated with the given section. */
5034
5035 static long
5036 som_get_reloc_upper_bound (abfd, asect)
5037 bfd *abfd;
5038 sec_ptr asect;
5039 {
5040 /* If section has relocations, then read in the relocation stream
5041 and parse it to determine how many relocations exist. */
5042 if (asect->flags & SEC_RELOC)
5043 {
5044 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
5045 return -1;
5046 return (asect->reloc_count + 1) * sizeof (arelent *);
5047 }
5048 /* There are no relocations. */
5049 return 0;
5050 }
5051
5052 /* Convert relocations from SOM (external) form into BFD internal
5053 form. Return the number of relocations. */
5054
5055 static long
5056 som_canonicalize_reloc (abfd, section, relptr, symbols)
5057 bfd *abfd;
5058 sec_ptr section;
5059 arelent **relptr;
5060 asymbol **symbols;
5061 {
5062 arelent *tblptr;
5063 int count;
5064
5065 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
5066 return -1;
5067
5068 count = section->reloc_count;
5069 tblptr = section->relocation;
5070
5071 while (count--)
5072 *relptr++ = tblptr++;
5073
5074 *relptr = (arelent *) NULL;
5075 return section->reloc_count;
5076 }
5077
5078 extern const bfd_target som_vec;
5079
5080 /* A hook to set up object file dependent section information. */
5081
5082 static bfd_boolean
5083 som_new_section_hook (abfd, newsect)
5084 bfd *abfd;
5085 asection *newsect;
5086 {
5087 bfd_size_type amt = sizeof (struct som_section_data_struct);
5088 newsect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
5089 if (!newsect->used_by_bfd)
5090 return FALSE;
5091 newsect->alignment_power = 3;
5092
5093 /* We allow more than three sections internally. */
5094 return TRUE;
5095 }
5096
5097 /* Copy any private info we understand from the input symbol
5098 to the output symbol. */
5099
5100 static bfd_boolean
5101 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5102 bfd *ibfd;
5103 asymbol *isymbol;
5104 bfd *obfd;
5105 asymbol *osymbol;
5106 {
5107 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5108 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5109
5110 /* One day we may try to grok other private data. */
5111 if (ibfd->xvec->flavour != bfd_target_som_flavour
5112 || obfd->xvec->flavour != bfd_target_som_flavour)
5113 return FALSE;
5114
5115 /* The only private information we need to copy is the argument relocation
5116 bits. */
5117 output_symbol->tc_data.ap.hppa_arg_reloc =
5118 input_symbol->tc_data.ap.hppa_arg_reloc;
5119
5120 return TRUE;
5121 }
5122
5123 /* Copy any private info we understand from the input section
5124 to the output section. */
5125
5126 static bfd_boolean
5127 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5128 bfd *ibfd;
5129 asection *isection;
5130 bfd *obfd;
5131 asection *osection;
5132 {
5133 bfd_size_type amt;
5134
5135 /* One day we may try to grok other private data. */
5136 if (ibfd->xvec->flavour != bfd_target_som_flavour
5137 || obfd->xvec->flavour != bfd_target_som_flavour
5138 || (!som_is_space (isection) && !som_is_subspace (isection)))
5139 return TRUE;
5140
5141 amt = sizeof (struct som_copyable_section_data_struct);
5142 som_section_data (osection)->copy_data =
5143 (struct som_copyable_section_data_struct *) bfd_zalloc (obfd, amt);
5144 if (som_section_data (osection)->copy_data == NULL)
5145 return FALSE;
5146
5147 memcpy (som_section_data (osection)->copy_data,
5148 som_section_data (isection)->copy_data,
5149 sizeof (struct som_copyable_section_data_struct));
5150
5151 /* Reparent if necessary. */
5152 if (som_section_data (osection)->copy_data->container)
5153 som_section_data (osection)->copy_data->container =
5154 som_section_data (osection)->copy_data->container->output_section;
5155
5156 return TRUE;
5157 }
5158
5159 /* Copy any private info we understand from the input bfd
5160 to the output bfd. */
5161
5162 static bfd_boolean
5163 som_bfd_copy_private_bfd_data (ibfd, obfd)
5164 bfd *ibfd, *obfd;
5165 {
5166 /* One day we may try to grok other private data. */
5167 if (ibfd->xvec->flavour != bfd_target_som_flavour
5168 || obfd->xvec->flavour != bfd_target_som_flavour)
5169 return TRUE;
5170
5171 /* Allocate some memory to hold the data we need. */
5172 obj_som_exec_data (obfd) = (struct som_exec_data *)
5173 bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5174 if (obj_som_exec_data (obfd) == NULL)
5175 return FALSE;
5176
5177 /* Now copy the data. */
5178 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5179 sizeof (struct som_exec_data));
5180
5181 return TRUE;
5182 }
5183
5184 /* Set backend info for sections which can not be described
5185 in the BFD data structures. */
5186
5187 bfd_boolean
5188 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5189 asection *section;
5190 int defined;
5191 int private;
5192 unsigned int sort_key;
5193 int spnum;
5194 {
5195 /* Allocate memory to hold the magic information. */
5196 if (som_section_data (section)->copy_data == NULL)
5197 {
5198 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5199 som_section_data (section)->copy_data =
5200 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5201 amt);
5202 if (som_section_data (section)->copy_data == NULL)
5203 return FALSE;
5204 }
5205 som_section_data (section)->copy_data->sort_key = sort_key;
5206 som_section_data (section)->copy_data->is_defined = defined;
5207 som_section_data (section)->copy_data->is_private = private;
5208 som_section_data (section)->copy_data->container = section;
5209 som_section_data (section)->copy_data->space_number = spnum;
5210 return TRUE;
5211 }
5212
5213 /* Set backend info for subsections which can not be described
5214 in the BFD data structures. */
5215
5216 bfd_boolean
5217 bfd_som_set_subsection_attributes (section, container, access,
5218 sort_key, quadrant)
5219 asection *section;
5220 asection *container;
5221 int access;
5222 unsigned int sort_key;
5223 int quadrant;
5224 {
5225 /* Allocate memory to hold the magic information. */
5226 if (som_section_data (section)->copy_data == NULL)
5227 {
5228 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5229 som_section_data (section)->copy_data =
5230 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5231 amt);
5232 if (som_section_data (section)->copy_data == NULL)
5233 return FALSE;
5234 }
5235 som_section_data (section)->copy_data->sort_key = sort_key;
5236 som_section_data (section)->copy_data->access_control_bits = access;
5237 som_section_data (section)->copy_data->quadrant = quadrant;
5238 som_section_data (section)->copy_data->container = container;
5239 return TRUE;
5240 }
5241
5242 /* Set the full SOM symbol type. SOM needs far more symbol information
5243 than any other object file format I'm aware of. It is mandatory
5244 to be able to know if a symbol is an entry point, millicode, data,
5245 code, absolute, storage request, or procedure label. If you get
5246 the symbol type wrong your program will not link. */
5247
5248 void
5249 bfd_som_set_symbol_type (symbol, type)
5250 asymbol *symbol;
5251 unsigned int type;
5252 {
5253 som_symbol_data (symbol)->som_type = type;
5254 }
5255
5256 /* Attach an auxiliary header to the BFD backend so that it may be
5257 written into the object file. */
5258
5259 bfd_boolean
5260 bfd_som_attach_aux_hdr (abfd, type, string)
5261 bfd *abfd;
5262 int type;
5263 char *string;
5264 {
5265 bfd_size_type amt;
5266
5267 if (type == VERSION_AUX_ID)
5268 {
5269 size_t len = strlen (string);
5270 int pad = 0;
5271
5272 if (len % 4)
5273 pad = (4 - (len % 4));
5274 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5275 obj_som_version_hdr (abfd) =
5276 (struct user_string_aux_hdr *) bfd_zalloc (abfd, amt);
5277 if (!obj_som_version_hdr (abfd))
5278 return FALSE;
5279 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5280 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5281 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5282 obj_som_version_hdr (abfd)->string_length = len;
5283 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5284 }
5285 else if (type == COPYRIGHT_AUX_ID)
5286 {
5287 int len = strlen (string);
5288 int pad = 0;
5289
5290 if (len % 4)
5291 pad = (4 - (len % 4));
5292 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5293 obj_som_copyright_hdr (abfd) =
5294 (struct copyright_aux_hdr *) bfd_zalloc (abfd, amt);
5295 if (!obj_som_copyright_hdr (abfd))
5296 return FALSE;
5297 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5298 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5299 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5300 obj_som_copyright_hdr (abfd)->string_length = len;
5301 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5302 }
5303 return TRUE;
5304 }
5305
5306 /* Attach a compilation unit header to the BFD backend so that it may be
5307 written into the object file. */
5308
5309 bfd_boolean
5310 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5311 version_id)
5312 bfd *abfd;
5313 const char *name;
5314 const char *language_name;
5315 const char *product_id;
5316 const char *version_id;
5317 {
5318 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5319 if (n == NULL)
5320 return FALSE;
5321
5322 #define STRDUP(f) \
5323 if (f != NULL) \
5324 { \
5325 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5326 if (n->f.n_name == NULL) \
5327 return FALSE; \
5328 strcpy (n->f.n_name, f); \
5329 }
5330
5331 STRDUP (name);
5332 STRDUP (language_name);
5333 STRDUP (product_id);
5334 STRDUP (version_id);
5335
5336 #undef STRDUP
5337
5338 obj_som_compilation_unit (abfd) = n;
5339
5340 return TRUE;
5341 }
5342
5343 static bfd_boolean
5344 som_get_section_contents (abfd, section, location, offset, count)
5345 bfd *abfd;
5346 sec_ptr section;
5347 PTR location;
5348 file_ptr offset;
5349 bfd_size_type count;
5350 {
5351 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5352 return TRUE;
5353 if ((bfd_size_type) (offset+count) > section->_raw_size
5354 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5355 || bfd_bread (location, count, abfd) != count)
5356 return FALSE; /* on error */
5357 return TRUE;
5358 }
5359
5360 static bfd_boolean
5361 som_set_section_contents (abfd, section, location, offset, count)
5362 bfd *abfd;
5363 sec_ptr section;
5364 PTR location;
5365 file_ptr offset;
5366 bfd_size_type count;
5367 {
5368 if (! abfd->output_has_begun)
5369 {
5370 /* Set up fixed parts of the file, space, and subspace headers.
5371 Notify the world that output has begun. */
5372 som_prep_headers (abfd);
5373 abfd->output_has_begun = TRUE;
5374 /* Start writing the object file. This include all the string
5375 tables, fixup streams, and other portions of the object file. */
5376 som_begin_writing (abfd);
5377 }
5378
5379 /* Only write subspaces which have "real" contents (eg. the contents
5380 are not generated at run time by the OS). */
5381 if (!som_is_subspace (section)
5382 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5383 return TRUE;
5384
5385 /* Seek to the proper offset within the object file and write the
5386 data. */
5387 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5388 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5389 return FALSE;
5390
5391 if (bfd_bwrite ((PTR) location, count, abfd) != count)
5392 return FALSE;
5393 return TRUE;
5394 }
5395
5396 static bfd_boolean
5397 som_set_arch_mach (abfd, arch, machine)
5398 bfd *abfd;
5399 enum bfd_architecture arch;
5400 unsigned long machine;
5401 {
5402 /* Allow any architecture to be supported by the SOM backend. */
5403 return bfd_default_set_arch_mach (abfd, arch, machine);
5404 }
5405
5406 static bfd_boolean
5407 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5408 functionname_ptr, line_ptr)
5409 bfd *abfd ATTRIBUTE_UNUSED;
5410 asection *section ATTRIBUTE_UNUSED;
5411 asymbol **symbols ATTRIBUTE_UNUSED;
5412 bfd_vma offset ATTRIBUTE_UNUSED;
5413 const char **filename_ptr ATTRIBUTE_UNUSED;
5414 const char **functionname_ptr ATTRIBUTE_UNUSED;
5415 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5416 {
5417 return FALSE;
5418 }
5419
5420 static int
5421 som_sizeof_headers (abfd, reloc)
5422 bfd *abfd ATTRIBUTE_UNUSED;
5423 bfd_boolean reloc ATTRIBUTE_UNUSED;
5424 {
5425 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5426 fflush (stderr);
5427 abort ();
5428 return 0;
5429 }
5430
5431 /* Return the single-character symbol type corresponding to
5432 SOM section S, or '?' for an unknown SOM section. */
5433
5434 static char
5435 som_section_type (s)
5436 const char *s;
5437 {
5438 const struct section_to_type *t;
5439
5440 for (t = &stt[0]; t->section; t++)
5441 if (!strcmp (s, t->section))
5442 return t->type;
5443 return '?';
5444 }
5445
5446 static int
5447 som_decode_symclass (symbol)
5448 asymbol *symbol;
5449 {
5450 char c;
5451
5452 if (bfd_is_com_section (symbol->section))
5453 return 'C';
5454 if (bfd_is_und_section (symbol->section))
5455 return 'U';
5456 if (bfd_is_ind_section (symbol->section))
5457 return 'I';
5458 if (symbol->flags & BSF_WEAK)
5459 return 'W';
5460 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5461 return '?';
5462
5463 if (bfd_is_abs_section (symbol->section)
5464 || (som_symbol_data (symbol) != NULL
5465 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5466 c = 'a';
5467 else if (symbol->section)
5468 c = som_section_type (symbol->section->name);
5469 else
5470 return '?';
5471 if (symbol->flags & BSF_GLOBAL)
5472 c = TOUPPER (c);
5473 return c;
5474 }
5475
5476 /* Return information about SOM symbol SYMBOL in RET. */
5477
5478 static void
5479 som_get_symbol_info (ignore_abfd, symbol, ret)
5480 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5481 asymbol *symbol;
5482 symbol_info *ret;
5483 {
5484 ret->type = som_decode_symclass (symbol);
5485 if (ret->type != 'U')
5486 ret->value = symbol->value + symbol->section->vma;
5487 else
5488 ret->value = 0;
5489 ret->name = symbol->name;
5490 }
5491
5492 /* Count the number of symbols in the archive symbol table. Necessary
5493 so that we can allocate space for all the carsyms at once. */
5494
5495 static bfd_boolean
5496 som_bfd_count_ar_symbols (abfd, lst_header, count)
5497 bfd *abfd;
5498 struct lst_header *lst_header;
5499 symindex *count;
5500 {
5501 unsigned int i;
5502 unsigned int *hash_table = NULL;
5503 bfd_size_type amt;
5504 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5505
5506 amt = lst_header->hash_size;
5507 amt *= sizeof (unsigned int);
5508 hash_table = (unsigned int *) bfd_malloc (amt);
5509 if (hash_table == NULL && lst_header->hash_size != 0)
5510 goto error_return;
5511
5512 /* Don't forget to initialize the counter! */
5513 *count = 0;
5514
5515 /* Read in the hash table. The has table is an array of 32bit file offsets
5516 which point to the hash chains. */
5517 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5518 goto error_return;
5519
5520 /* Walk each chain counting the number of symbols found on that particular
5521 chain. */
5522 for (i = 0; i < lst_header->hash_size; i++)
5523 {
5524 struct lst_symbol_record lst_symbol;
5525
5526 /* An empty chain has zero as it's file offset. */
5527 if (hash_table[i] == 0)
5528 continue;
5529
5530 /* Seek to the first symbol in this hash chain. */
5531 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5532 goto error_return;
5533
5534 /* Read in this symbol and update the counter. */
5535 amt = sizeof (lst_symbol);
5536 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5537 goto error_return;
5538
5539 (*count)++;
5540
5541 /* Now iterate through the rest of the symbols on this chain. */
5542 while (lst_symbol.next_entry)
5543 {
5544
5545 /* Seek to the next symbol. */
5546 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5547 != 0)
5548 goto error_return;
5549
5550 /* Read the symbol in and update the counter. */
5551 amt = sizeof (lst_symbol);
5552 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5553 goto error_return;
5554
5555 (*count)++;
5556 }
5557 }
5558 if (hash_table != NULL)
5559 free (hash_table);
5560 return TRUE;
5561
5562 error_return:
5563 if (hash_table != NULL)
5564 free (hash_table);
5565 return FALSE;
5566 }
5567
5568 /* Fill in the canonical archive symbols (SYMS) from the archive described
5569 by ABFD and LST_HEADER. */
5570
5571 static bfd_boolean
5572 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5573 bfd *abfd;
5574 struct lst_header *lst_header;
5575 carsym **syms;
5576 {
5577 unsigned int i, len;
5578 carsym *set = syms[0];
5579 unsigned int *hash_table = NULL;
5580 struct som_entry *som_dict = NULL;
5581 bfd_size_type amt;
5582 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5583
5584 amt = lst_header->hash_size;
5585 amt *= sizeof (unsigned int);
5586 hash_table = (unsigned int *) bfd_malloc (amt);
5587 if (hash_table == NULL && lst_header->hash_size != 0)
5588 goto error_return;
5589
5590 /* Read in the hash table. The has table is an array of 32bit file offsets
5591 which point to the hash chains. */
5592 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5593 goto error_return;
5594
5595 /* Seek to and read in the SOM dictionary. We will need this to fill
5596 in the carsym's filepos field. */
5597 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5598 goto error_return;
5599
5600 amt = lst_header->module_count;
5601 amt *= sizeof (struct som_entry);
5602 som_dict = (struct som_entry *) bfd_malloc (amt);
5603 if (som_dict == NULL && lst_header->module_count != 0)
5604 goto error_return;
5605
5606 if (bfd_bread ((PTR) som_dict, amt, abfd) != amt)
5607 goto error_return;
5608
5609 /* Walk each chain filling in the carsyms as we go along. */
5610 for (i = 0; i < lst_header->hash_size; i++)
5611 {
5612 struct lst_symbol_record lst_symbol;
5613
5614 /* An empty chain has zero as it's file offset. */
5615 if (hash_table[i] == 0)
5616 continue;
5617
5618 /* Seek to and read the first symbol on the chain. */
5619 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5620 goto error_return;
5621
5622 amt = sizeof (lst_symbol);
5623 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5624 goto error_return;
5625
5626 /* Get the name of the symbol, first get the length which is stored
5627 as a 32bit integer just before the symbol.
5628
5629 One might ask why we don't just read in the entire string table
5630 and index into it. Well, according to the SOM ABI the string
5631 index can point *anywhere* in the archive to save space, so just
5632 using the string table would not be safe. */
5633 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5634 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5635 goto error_return;
5636
5637 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5638 goto error_return;
5639
5640 /* Allocate space for the name and null terminate it too. */
5641 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5642 if (!set->name)
5643 goto error_return;
5644 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5645 goto error_return;
5646
5647 set->name[len] = 0;
5648
5649 /* Fill in the file offset. Note that the "location" field points
5650 to the SOM itself, not the ar_hdr in front of it. */
5651 set->file_offset = som_dict[lst_symbol.som_index].location
5652 - sizeof (struct ar_hdr);
5653
5654 /* Go to the next symbol. */
5655 set++;
5656
5657 /* Iterate through the rest of the chain. */
5658 while (lst_symbol.next_entry)
5659 {
5660 /* Seek to the next symbol and read it in. */
5661 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5662 != 0)
5663 goto error_return;
5664
5665 amt = sizeof (lst_symbol);
5666 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5667 goto error_return;
5668
5669 /* Seek to the name length & string and read them in. */
5670 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5671 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5672 goto error_return;
5673
5674 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5675 goto error_return;
5676
5677 /* Allocate space for the name and null terminate it too. */
5678 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5679 if (!set->name)
5680 goto error_return;
5681
5682 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5683 goto error_return;
5684 set->name[len] = 0;
5685
5686 /* Fill in the file offset. Note that the "location" field points
5687 to the SOM itself, not the ar_hdr in front of it. */
5688 set->file_offset = som_dict[lst_symbol.som_index].location
5689 - sizeof (struct ar_hdr);
5690
5691 /* Go on to the next symbol. */
5692 set++;
5693 }
5694 }
5695 /* If we haven't died by now, then we successfully read the entire
5696 archive symbol table. */
5697 if (hash_table != NULL)
5698 free (hash_table);
5699 if (som_dict != NULL)
5700 free (som_dict);
5701 return TRUE;
5702
5703 error_return:
5704 if (hash_table != NULL)
5705 free (hash_table);
5706 if (som_dict != NULL)
5707 free (som_dict);
5708 return FALSE;
5709 }
5710
5711 /* Read in the LST from the archive. */
5712
5713 static bfd_boolean
5714 som_slurp_armap (abfd)
5715 bfd *abfd;
5716 {
5717 struct lst_header lst_header;
5718 struct ar_hdr ar_header;
5719 unsigned int parsed_size;
5720 struct artdata *ardata = bfd_ardata (abfd);
5721 char nextname[17];
5722 bfd_size_type amt = 16;
5723 int i = bfd_bread ((PTR) nextname, amt, abfd);
5724
5725 /* Special cases. */
5726 if (i == 0)
5727 return TRUE;
5728 if (i != 16)
5729 return FALSE;
5730
5731 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5732 return FALSE;
5733
5734 /* For archives without .o files there is no symbol table. */
5735 if (strncmp (nextname, "/ ", 16))
5736 {
5737 bfd_has_map (abfd) = FALSE;
5738 return TRUE;
5739 }
5740
5741 /* Read in and sanity check the archive header. */
5742 amt = sizeof (struct ar_hdr);
5743 if (bfd_bread ((PTR) &ar_header, amt, abfd) != amt)
5744 return FALSE;
5745
5746 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5747 {
5748 bfd_set_error (bfd_error_malformed_archive);
5749 return FALSE;
5750 }
5751
5752 /* How big is the archive symbol table entry? */
5753 errno = 0;
5754 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5755 if (errno != 0)
5756 {
5757 bfd_set_error (bfd_error_malformed_archive);
5758 return FALSE;
5759 }
5760
5761 /* Save off the file offset of the first real user data. */
5762 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5763
5764 /* Read in the library symbol table. We'll make heavy use of this
5765 in just a minute. */
5766 amt = sizeof (struct lst_header);
5767 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
5768 return FALSE;
5769
5770 /* Sanity check. */
5771 if (lst_header.a_magic != LIBMAGIC)
5772 {
5773 bfd_set_error (bfd_error_malformed_archive);
5774 return FALSE;
5775 }
5776
5777 /* Count the number of symbols in the library symbol table. */
5778 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5779 return FALSE;
5780
5781 /* Get back to the start of the library symbol table. */
5782 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5783 + sizeof (struct lst_header)), SEEK_SET) != 0)
5784 return FALSE;
5785
5786 /* Initializae the cache and allocate space for the library symbols. */
5787 ardata->cache = 0;
5788 amt = ardata->symdef_count;
5789 amt *= sizeof (carsym);
5790 ardata->symdefs = (carsym *) bfd_alloc (abfd, amt);
5791 if (!ardata->symdefs)
5792 return FALSE;
5793
5794 /* Now fill in the canonical archive symbols. */
5795 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5796 return FALSE;
5797
5798 /* Seek back to the "first" file in the archive. Note the "first"
5799 file may be the extended name table. */
5800 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5801 return FALSE;
5802
5803 /* Notify the generic archive code that we have a symbol map. */
5804 bfd_has_map (abfd) = TRUE;
5805 return TRUE;
5806 }
5807
5808 /* Begin preparing to write a SOM library symbol table.
5809
5810 As part of the prep work we need to determine the number of symbols
5811 and the size of the associated string section. */
5812
5813 static bfd_boolean
5814 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5815 bfd *abfd;
5816 unsigned int *num_syms, *stringsize;
5817 {
5818 bfd *curr_bfd = abfd->archive_head;
5819
5820 /* Some initialization. */
5821 *num_syms = 0;
5822 *stringsize = 0;
5823
5824 /* Iterate over each BFD within this archive. */
5825 while (curr_bfd != NULL)
5826 {
5827 unsigned int curr_count, i;
5828 som_symbol_type *sym;
5829
5830 /* Don't bother for non-SOM objects. */
5831 if (curr_bfd->format != bfd_object
5832 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5833 {
5834 curr_bfd = curr_bfd->next;
5835 continue;
5836 }
5837
5838 /* Make sure the symbol table has been read, then snag a pointer
5839 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5840 but doing so avoids allocating lots of extra memory. */
5841 if (! som_slurp_symbol_table (curr_bfd))
5842 return FALSE;
5843
5844 sym = obj_som_symtab (curr_bfd);
5845 curr_count = bfd_get_symcount (curr_bfd);
5846
5847 /* Examine each symbol to determine if it belongs in the
5848 library symbol table. */
5849 for (i = 0; i < curr_count; i++, sym++)
5850 {
5851 struct som_misc_symbol_info info;
5852
5853 /* Derive SOM information from the BFD symbol. */
5854 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5855
5856 /* Should we include this symbol? */
5857 if (info.symbol_type == ST_NULL
5858 || info.symbol_type == ST_SYM_EXT
5859 || info.symbol_type == ST_ARG_EXT)
5860 continue;
5861
5862 /* Only global symbols and unsatisfied commons. */
5863 if (info.symbol_scope != SS_UNIVERSAL
5864 && info.symbol_type != ST_STORAGE)
5865 continue;
5866
5867 /* Do no include undefined symbols. */
5868 if (bfd_is_und_section (sym->symbol.section))
5869 continue;
5870
5871 /* Bump the various counters, being careful to honor
5872 alignment considerations in the string table. */
5873 (*num_syms)++;
5874 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5875 while (*stringsize % 4)
5876 (*stringsize)++;
5877 }
5878
5879 curr_bfd = curr_bfd->next;
5880 }
5881 return TRUE;
5882 }
5883
5884 /* Hash a symbol name based on the hashing algorithm presented in the
5885 SOM ABI. */
5886
5887 static unsigned int
5888 som_bfd_ar_symbol_hash (symbol)
5889 asymbol *symbol;
5890 {
5891 unsigned int len = strlen (symbol->name);
5892
5893 /* Names with length 1 are special. */
5894 if (len == 1)
5895 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5896
5897 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5898 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5899 }
5900
5901 /* Do the bulk of the work required to write the SOM library
5902 symbol table. */
5903
5904 static bfd_boolean
5905 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5906 bfd *abfd;
5907 unsigned int nsyms, string_size;
5908 struct lst_header lst;
5909 unsigned elength;
5910 {
5911 file_ptr lst_filepos;
5912 char *strings = NULL, *p;
5913 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5914 bfd *curr_bfd;
5915 unsigned int *hash_table = NULL;
5916 struct som_entry *som_dict = NULL;
5917 struct lst_symbol_record **last_hash_entry = NULL;
5918 unsigned int curr_som_offset, som_index = 0;
5919 bfd_size_type amt;
5920
5921 amt = lst.hash_size;
5922 amt *= sizeof (unsigned int);
5923 hash_table = (unsigned int *) bfd_zmalloc (amt);
5924 if (hash_table == NULL && lst.hash_size != 0)
5925 goto error_return;
5926
5927 amt = lst.module_count;
5928 amt *= sizeof (struct som_entry);
5929 som_dict = (struct som_entry *) bfd_zmalloc (amt);
5930 if (som_dict == NULL && lst.module_count != 0)
5931 goto error_return;
5932
5933 amt = lst.hash_size;
5934 amt *= sizeof (struct lst_symbol_record *);
5935 last_hash_entry = ((struct lst_symbol_record **) bfd_zmalloc (amt));
5936 if (last_hash_entry == NULL && lst.hash_size != 0)
5937 goto error_return;
5938
5939 /* Lots of fields are file positions relative to the start
5940 of the lst record. So save its location. */
5941 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5942
5943 /* Symbols have som_index fields, so we have to keep track of the
5944 index of each SOM in the archive.
5945
5946 The SOM dictionary has (among other things) the absolute file
5947 position for the SOM which a particular dictionary entry
5948 describes. We have to compute that information as we iterate
5949 through the SOMs/symbols. */
5950 som_index = 0;
5951
5952 /* We add in the size of the archive header twice as the location
5953 in the SOM dictionary is the actual offset of the SOM, not the
5954 archive header before the SOM. */
5955 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5956
5957 /* Make room for the archive header and the contents of the
5958 extended string table. Note that elength includes the size
5959 of the archive header for the extended name table! */
5960 if (elength)
5961 curr_som_offset += elength;
5962
5963 /* Make sure we're properly aligned. */
5964 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5965
5966 /* FIXME should be done with buffers just like everything else... */
5967 amt = nsyms;
5968 amt *= sizeof (struct lst_symbol_record);
5969 lst_syms = bfd_malloc (amt);
5970 if (lst_syms == NULL && nsyms != 0)
5971 goto error_return;
5972 strings = bfd_malloc ((bfd_size_type) string_size);
5973 if (strings == NULL && string_size != 0)
5974 goto error_return;
5975
5976 p = strings;
5977 curr_lst_sym = lst_syms;
5978
5979 curr_bfd = abfd->archive_head;
5980 while (curr_bfd != NULL)
5981 {
5982 unsigned int curr_count, i;
5983 som_symbol_type *sym;
5984
5985 /* Don't bother for non-SOM objects. */
5986 if (curr_bfd->format != bfd_object
5987 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5988 {
5989 curr_bfd = curr_bfd->next;
5990 continue;
5991 }
5992
5993 /* Make sure the symbol table has been read, then snag a pointer
5994 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5995 but doing so avoids allocating lots of extra memory. */
5996 if (! som_slurp_symbol_table (curr_bfd))
5997 goto error_return;
5998
5999 sym = obj_som_symtab (curr_bfd);
6000 curr_count = bfd_get_symcount (curr_bfd);
6001
6002 for (i = 0; i < curr_count; i++, sym++)
6003 {
6004 struct som_misc_symbol_info info;
6005
6006 /* Derive SOM information from the BFD symbol. */
6007 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6008
6009 /* Should we include this symbol? */
6010 if (info.symbol_type == ST_NULL
6011 || info.symbol_type == ST_SYM_EXT
6012 || info.symbol_type == ST_ARG_EXT)
6013 continue;
6014
6015 /* Only global symbols and unsatisfied commons. */
6016 if (info.symbol_scope != SS_UNIVERSAL
6017 && info.symbol_type != ST_STORAGE)
6018 continue;
6019
6020 /* Do no include undefined symbols. */
6021 if (bfd_is_und_section (sym->symbol.section))
6022 continue;
6023
6024 /* If this is the first symbol from this SOM, then update
6025 the SOM dictionary too. */
6026 if (som_dict[som_index].location == 0)
6027 {
6028 som_dict[som_index].location = curr_som_offset;
6029 som_dict[som_index].length = arelt_size (curr_bfd);
6030 }
6031
6032 /* Fill in the lst symbol record. */
6033 curr_lst_sym->hidden = 0;
6034 curr_lst_sym->secondary_def = info.secondary_def;
6035 curr_lst_sym->symbol_type = info.symbol_type;
6036 curr_lst_sym->symbol_scope = info.symbol_scope;
6037 curr_lst_sym->check_level = 0;
6038 curr_lst_sym->must_qualify = 0;
6039 curr_lst_sym->initially_frozen = 0;
6040 curr_lst_sym->memory_resident = 0;
6041 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6042 curr_lst_sym->dup_common = 0;
6043 curr_lst_sym->xleast = 3;
6044 curr_lst_sym->arg_reloc = info.arg_reloc;
6045 curr_lst_sym->name.n_strx = p - strings + 4;
6046 curr_lst_sym->qualifier_name.n_strx = 0;
6047 curr_lst_sym->symbol_info = info.symbol_info;
6048 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6049 curr_lst_sym->symbol_descriptor = 0;
6050 curr_lst_sym->reserved = 0;
6051 curr_lst_sym->som_index = som_index;
6052 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6053 curr_lst_sym->next_entry = 0;
6054
6055 /* Insert into the hash table. */
6056 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6057 {
6058 struct lst_symbol_record *tmp;
6059
6060 /* There is already something at the head of this hash chain,
6061 so tack this symbol onto the end of the chain. */
6062 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6063 tmp->next_entry
6064 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6065 + lst.hash_size * 4
6066 + lst.module_count * sizeof (struct som_entry)
6067 + sizeof (struct lst_header);
6068 }
6069 else
6070 {
6071 /* First entry in this hash chain. */
6072 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6073 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6074 + lst.hash_size * 4
6075 + lst.module_count * sizeof (struct som_entry)
6076 + sizeof (struct lst_header);
6077 }
6078
6079 /* Keep track of the last symbol we added to this chain so we can
6080 easily update its next_entry pointer. */
6081 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6082 = curr_lst_sym;
6083
6084 /* Update the string table. */
6085 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6086 p += 4;
6087 strcpy (p, sym->symbol.name);
6088 p += strlen (sym->symbol.name) + 1;
6089 while ((int) p % 4)
6090 {
6091 bfd_put_8 (abfd, 0, p);
6092 p++;
6093 }
6094
6095 /* Head to the next symbol. */
6096 curr_lst_sym++;
6097 }
6098
6099 /* Keep track of where each SOM will finally reside; then look
6100 at the next BFD. */
6101 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6102
6103 /* A particular object in the archive may have an odd length; the
6104 linker requires objects begin on an even boundary. So round
6105 up the current offset as necessary. */
6106 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6107 curr_bfd = curr_bfd->next;
6108 som_index++;
6109 }
6110
6111 /* Now scribble out the hash table. */
6112 amt = lst.hash_size * 4;
6113 if (bfd_bwrite ((PTR) hash_table, amt, abfd) != amt)
6114 goto error_return;
6115
6116 /* Then the SOM dictionary. */
6117 amt = lst.module_count * sizeof (struct som_entry);
6118 if (bfd_bwrite ((PTR) som_dict, amt, abfd) != amt)
6119 goto error_return;
6120
6121 /* The library symbols. */
6122 amt = nsyms * sizeof (struct lst_symbol_record);
6123 if (bfd_bwrite ((PTR) lst_syms, amt, abfd) != amt)
6124 goto error_return;
6125
6126 /* And finally the strings. */
6127 amt = string_size;
6128 if (bfd_bwrite ((PTR) strings, amt, abfd) != amt)
6129 goto error_return;
6130
6131 if (hash_table != NULL)
6132 free (hash_table);
6133 if (som_dict != NULL)
6134 free (som_dict);
6135 if (last_hash_entry != NULL)
6136 free (last_hash_entry);
6137 if (lst_syms != NULL)
6138 free (lst_syms);
6139 if (strings != NULL)
6140 free (strings);
6141 return TRUE;
6142
6143 error_return:
6144 if (hash_table != NULL)
6145 free (hash_table);
6146 if (som_dict != NULL)
6147 free (som_dict);
6148 if (last_hash_entry != NULL)
6149 free (last_hash_entry);
6150 if (lst_syms != NULL)
6151 free (lst_syms);
6152 if (strings != NULL)
6153 free (strings);
6154
6155 return FALSE;
6156 }
6157
6158 /* Write out the LST for the archive.
6159
6160 You'll never believe this is really how armaps are handled in SOM... */
6161
6162 static bfd_boolean
6163 som_write_armap (abfd, elength, map, orl_count, stridx)
6164 bfd *abfd;
6165 unsigned int elength;
6166 struct orl *map ATTRIBUTE_UNUSED;
6167 unsigned int orl_count ATTRIBUTE_UNUSED;
6168 int stridx ATTRIBUTE_UNUSED;
6169 {
6170 bfd *curr_bfd;
6171 struct stat statbuf;
6172 unsigned int i, lst_size, nsyms, stringsize;
6173 struct ar_hdr hdr;
6174 struct lst_header lst;
6175 int *p;
6176 bfd_size_type amt;
6177
6178 /* We'll use this for the archive's date and mode later. */
6179 if (stat (abfd->filename, &statbuf) != 0)
6180 {
6181 bfd_set_error (bfd_error_system_call);
6182 return FALSE;
6183 }
6184 /* Fudge factor. */
6185 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6186
6187 /* Account for the lst header first. */
6188 lst_size = sizeof (struct lst_header);
6189
6190 /* Start building the LST header. */
6191 /* FIXME: Do we need to examine each element to determine the
6192 largest id number? */
6193 lst.system_id = CPU_PA_RISC1_0;
6194 lst.a_magic = LIBMAGIC;
6195 lst.version_id = VERSION_ID;
6196 lst.file_time.secs = 0;
6197 lst.file_time.nanosecs = 0;
6198
6199 lst.hash_loc = lst_size;
6200 lst.hash_size = SOM_LST_HASH_SIZE;
6201
6202 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6203 lst_size += 4 * SOM_LST_HASH_SIZE;
6204
6205 /* We need to count the number of SOMs in this archive. */
6206 curr_bfd = abfd->archive_head;
6207 lst.module_count = 0;
6208 while (curr_bfd != NULL)
6209 {
6210 /* Only true SOM objects count. */
6211 if (curr_bfd->format == bfd_object
6212 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6213 lst.module_count++;
6214 curr_bfd = curr_bfd->next;
6215 }
6216 lst.module_limit = lst.module_count;
6217 lst.dir_loc = lst_size;
6218 lst_size += sizeof (struct som_entry) * lst.module_count;
6219
6220 /* We don't support import/export tables, auxiliary headers,
6221 or free lists yet. Make the linker work a little harder
6222 to make our life easier. */
6223
6224 lst.export_loc = 0;
6225 lst.export_count = 0;
6226 lst.import_loc = 0;
6227 lst.aux_loc = 0;
6228 lst.aux_size = 0;
6229
6230 /* Count how many symbols we will have on the hash chains and the
6231 size of the associated string table. */
6232 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6233 return FALSE;
6234
6235 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6236
6237 /* For the string table. One day we might actually use this info
6238 to avoid small seeks/reads when reading archives. */
6239 lst.string_loc = lst_size;
6240 lst.string_size = stringsize;
6241 lst_size += stringsize;
6242
6243 /* SOM ABI says this must be zero. */
6244 lst.free_list = 0;
6245 lst.file_end = lst_size;
6246
6247 /* Compute the checksum. Must happen after the entire lst header
6248 has filled in. */
6249 p = (int *) &lst;
6250 lst.checksum = 0;
6251 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6252 lst.checksum ^= *p++;
6253
6254 sprintf (hdr.ar_name, "/ ");
6255 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6256 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6257 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6258 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6259 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6260 hdr.ar_fmag[0] = '`';
6261 hdr.ar_fmag[1] = '\012';
6262
6263 /* Turn any nulls into spaces. */
6264 for (i = 0; i < sizeof (struct ar_hdr); i++)
6265 if (((char *) (&hdr))[i] == '\0')
6266 (((char *) (&hdr))[i]) = ' ';
6267
6268 /* Scribble out the ar header. */
6269 amt = sizeof (struct ar_hdr);
6270 if (bfd_bwrite ((PTR) &hdr, amt, abfd) != amt)
6271 return FALSE;
6272
6273 /* Now scribble out the lst header. */
6274 amt = sizeof (struct lst_header);
6275 if (bfd_bwrite ((PTR) &lst, amt, abfd) != amt)
6276 return FALSE;
6277
6278 /* Build and write the armap. */
6279 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6280 return FALSE;
6281
6282 /* Done. */
6283 return TRUE;
6284 }
6285
6286 /* Free all information we have cached for this BFD. We can always
6287 read it again later if we need it. */
6288
6289 static bfd_boolean
6290 som_bfd_free_cached_info (abfd)
6291 bfd *abfd;
6292 {
6293 asection *o;
6294
6295 if (bfd_get_format (abfd) != bfd_object)
6296 return TRUE;
6297
6298 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6299 /* Free the native string and symbol tables. */
6300 FREE (obj_som_symtab (abfd));
6301 FREE (obj_som_stringtab (abfd));
6302 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6303 {
6304 /* Free the native relocations. */
6305 o->reloc_count = (unsigned) -1;
6306 FREE (som_section_data (o)->reloc_stream);
6307 /* Free the generic relocations. */
6308 FREE (o->relocation);
6309 }
6310 #undef FREE
6311
6312 return TRUE;
6313 }
6314
6315 /* End of miscellaneous support functions. */
6316
6317 /* Linker support functions. */
6318
6319 static bfd_boolean
6320 som_bfd_link_split_section (abfd, sec)
6321 bfd *abfd ATTRIBUTE_UNUSED;
6322 asection *sec;
6323 {
6324 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6325 }
6326
6327 #define som_close_and_cleanup som_bfd_free_cached_info
6328
6329 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6330 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6331 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6332 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6333 #define som_truncate_arname bfd_bsd_truncate_arname
6334 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6335 #define som_construct_extended_name_table \
6336 _bfd_archive_coff_construct_extended_name_table
6337 #define som_update_armap_timestamp bfd_true
6338 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6339
6340 #define som_get_lineno _bfd_nosymbols_get_lineno
6341 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6342 #define som_read_minisymbols _bfd_generic_read_minisymbols
6343 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6344 #define som_get_section_contents_in_window \
6345 _bfd_generic_get_section_contents_in_window
6346
6347 #define som_bfd_get_relocated_section_contents \
6348 bfd_generic_get_relocated_section_contents
6349 #define som_bfd_relax_section bfd_generic_relax_section
6350 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6351 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6352 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6353 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6354 #define som_bfd_final_link _bfd_generic_final_link
6355
6356 #define som_bfd_gc_sections bfd_generic_gc_sections
6357 #define som_bfd_merge_sections bfd_generic_merge_sections
6358 #define som_bfd_discard_group bfd_generic_discard_group
6359
6360 const bfd_target som_vec = {
6361 "som", /* name */
6362 bfd_target_som_flavour,
6363 BFD_ENDIAN_BIG, /* target byte order */
6364 BFD_ENDIAN_BIG, /* target headers byte order */
6365 (HAS_RELOC | EXEC_P | /* object flags */
6366 HAS_LINENO | HAS_DEBUG |
6367 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6368 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6369 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6370
6371 /* leading_symbol_char: is the first char of a user symbol
6372 predictable, and if so what is it */
6373 0,
6374 '/', /* ar_pad_char */
6375 14, /* ar_max_namelen */
6376 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6377 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6378 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6379 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6380 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6381 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6382 {_bfd_dummy_target,
6383 som_object_p, /* bfd_check_format */
6384 bfd_generic_archive_p,
6385 _bfd_dummy_target
6386 },
6387 {
6388 bfd_false,
6389 som_mkobject,
6390 _bfd_generic_mkarchive,
6391 bfd_false
6392 },
6393 {
6394 bfd_false,
6395 som_write_object_contents,
6396 _bfd_write_archive_contents,
6397 bfd_false,
6398 },
6399 #undef som
6400
6401 BFD_JUMP_TABLE_GENERIC (som),
6402 BFD_JUMP_TABLE_COPY (som),
6403 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6404 BFD_JUMP_TABLE_ARCHIVE (som),
6405 BFD_JUMP_TABLE_SYMBOLS (som),
6406 BFD_JUMP_TABLE_RELOCS (som),
6407 BFD_JUMP_TABLE_WRITE (som),
6408 BFD_JUMP_TABLE_LINK (som),
6409 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6410
6411 NULL,
6412
6413 (PTR) 0
6414 };
6415
6416 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */