]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/som.c
* targets.c (bfd_target): Rearranged fields in target vector.
[thirdparty/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static long som_get_symtab_upper_bound PARAMS ((bfd *));
142 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static long som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
162 file_ptr, bfd_size_type));
163 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
164 unsigned long));
165 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
166 asymbol **, bfd_vma,
167 CONST char **,
168 CONST char **,
169 unsigned int *));
170 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
171 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
172 struct symbol_dictionary_record *));
173 static int log2 PARAMS ((unsigned int));
174 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
175 asymbol *, PTR,
176 asection *, bfd *,
177 char **));
178 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
179 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
180 struct reloc_queue *));
181 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
182 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
183 struct reloc_queue *));
184 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
185 unsigned int,
186 struct reloc_queue *));
187
188 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
189 unsigned char *, unsigned int *,
190 struct reloc_queue *));
191 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
192 unsigned int *,
193 struct reloc_queue *));
194 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
195 unsigned int *,
196 arelent *, int,
197 struct reloc_queue *));
198 static unsigned long som_count_spaces PARAMS ((bfd *));
199 static unsigned long som_count_subspaces PARAMS ((bfd *));
200 static int compare_syms PARAMS ((asymbol **, asymbol **));
201 static unsigned long som_compute_checksum PARAMS ((bfd *));
202 static boolean som_prep_headers PARAMS ((bfd *));
203 static int som_sizeof_headers PARAMS ((bfd *, boolean));
204 static boolean som_write_headers PARAMS ((bfd *));
205 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
206 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
207 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
208 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
209 unsigned int *));
210 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
211 asymbol **, unsigned int,
212 unsigned *));
213 static boolean som_begin_writing PARAMS ((bfd *));
214 static const reloc_howto_type * som_bfd_reloc_type_lookup
215 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
216 static char som_section_type PARAMS ((const char *));
217 static int som_decode_symclass PARAMS ((asymbol *));
218 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
219 symindex *));
220
221 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
222 carsym **syms));
223 static boolean som_slurp_armap PARAMS ((bfd *));
224 static boolean som_write_armap PARAMS ((bfd *));
225 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
226 struct som_misc_symbol_info *));
227 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
228 unsigned int *));
229 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
230 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
231 unsigned int,
232 struct lst_header));
233 static CONST char *normalize PARAMS ((CONST char *file));
234 static boolean som_is_space PARAMS ((asection *));
235 static boolean som_is_subspace PARAMS ((asection *));
236 static boolean som_is_container PARAMS ((asection *, asection *));
237 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
238
239 /* Map SOM section names to POSIX/BSD single-character symbol types.
240
241 This table includes all the standard subspaces as defined in the
242 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
243 some reason was left out, and sections specific to embedded stabs. */
244
245 static const struct section_to_type stt[] = {
246 {"$TEXT$", 't'},
247 {"$SHLIB_INFO$", 't'},
248 {"$MILLICODE$", 't'},
249 {"$LIT$", 't'},
250 {"$CODE$", 't'},
251 {"$UNWIND_START$", 't'},
252 {"$UNWIND$", 't'},
253 {"$PRIVATE$", 'd'},
254 {"$PLT$", 'd'},
255 {"$SHLIB_DATA$", 'd'},
256 {"$DATA$", 'd'},
257 {"$SHORTDATA$", 'g'},
258 {"$DLT$", 'd'},
259 {"$GLOBAL$", 'g'},
260 {"$SHORTBSS$", 's'},
261 {"$BSS$", 'b'},
262 {"$GDB_STRINGS$", 'N'},
263 {"$GDB_SYMBOLS$", 'N'},
264 {0, 0}
265 };
266
267 /* About the relocation formatting table...
268
269 There are 256 entries in the table, one for each possible
270 relocation opcode available in SOM. We index the table by
271 the relocation opcode. The names and operations are those
272 defined by a.out_800 (4).
273
274 Right now this table is only used to count and perform minimal
275 processing on relocation streams so that they can be internalized
276 into BFD and symbolically printed by utilities. To make actual use
277 of them would be much more difficult, BFD's concept of relocations
278 is far too simple to handle SOM relocations. The basic assumption
279 that a relocation can be completely processed independent of other
280 relocations before an object file is written is invalid for SOM.
281
282 The SOM relocations are meant to be processed as a stream, they
283 specify copying of data from the input section to the output section
284 while possibly modifying the data in some manner. They also can
285 specify that a variable number of zeros or uninitialized data be
286 inserted on in the output segment at the current offset. Some
287 relocations specify that some previous relocation be re-applied at
288 the current location in the input/output sections. And finally a number
289 of relocations have effects on other sections (R_ENTRY, R_EXIT,
290 R_UNWIND_AUX and a variety of others). There isn't even enough room
291 in the BFD relocation data structure to store enough information to
292 perform all the relocations.
293
294 Each entry in the table has three fields.
295
296 The first entry is an index into this "class" of relocations. This
297 index can then be used as a variable within the relocation itself.
298
299 The second field is a format string which actually controls processing
300 of the relocation. It uses a simple postfix machine to do calculations
301 based on variables/constants found in the string and the relocation
302 stream.
303
304 The third field specifys whether or not this relocation may use
305 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
306 stored in the instruction.
307
308 Variables:
309
310 L = input space byte count
311 D = index into class of relocations
312 M = output space byte count
313 N = statement number (unused?)
314 O = stack operation
315 R = parameter relocation bits
316 S = symbol index
317 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
318 V = a literal constant (usually used in the next relocation)
319 P = a previous relocation
320
321 Lower case letters (starting with 'b') refer to following
322 bytes in the relocation stream. 'b' is the next 1 byte,
323 c is the next 2 bytes, d is the next 3 bytes, etc...
324 This is the variable part of the relocation entries that
325 makes our life a living hell.
326
327 numerical constants are also used in the format string. Note
328 the constants are represented in decimal.
329
330 '+', "*" and "=" represents the obvious postfix operators.
331 '<' represents a left shift.
332
333 Stack Operations:
334
335 Parameter Relocation Bits:
336
337 Unwind Entries:
338
339 Previous Relocations: The index field represents which in the queue
340 of 4 previous fixups should be re-applied.
341
342 Literal Constants: These are generally used to represent addend
343 parts of relocations when these constants are not stored in the
344 fields of the instructions themselves. For example the instruction
345 addil foo-$global$-0x1234 would use an override for "0x1234" rather
346 than storing it into the addil itself. */
347
348 struct fixup_format
349 {
350 int D;
351 char *format;
352 };
353
354 static const struct fixup_format som_fixup_formats[256] =
355 {
356 /* R_NO_RELOCATION */
357 0, "LD1+4*=", /* 0x00 */
358 1, "LD1+4*=", /* 0x01 */
359 2, "LD1+4*=", /* 0x02 */
360 3, "LD1+4*=", /* 0x03 */
361 4, "LD1+4*=", /* 0x04 */
362 5, "LD1+4*=", /* 0x05 */
363 6, "LD1+4*=", /* 0x06 */
364 7, "LD1+4*=", /* 0x07 */
365 8, "LD1+4*=", /* 0x08 */
366 9, "LD1+4*=", /* 0x09 */
367 10, "LD1+4*=", /* 0x0a */
368 11, "LD1+4*=", /* 0x0b */
369 12, "LD1+4*=", /* 0x0c */
370 13, "LD1+4*=", /* 0x0d */
371 14, "LD1+4*=", /* 0x0e */
372 15, "LD1+4*=", /* 0x0f */
373 16, "LD1+4*=", /* 0x10 */
374 17, "LD1+4*=", /* 0x11 */
375 18, "LD1+4*=", /* 0x12 */
376 19, "LD1+4*=", /* 0x13 */
377 20, "LD1+4*=", /* 0x14 */
378 21, "LD1+4*=", /* 0x15 */
379 22, "LD1+4*=", /* 0x16 */
380 23, "LD1+4*=", /* 0x17 */
381 0, "LD8<b+1+4*=", /* 0x18 */
382 1, "LD8<b+1+4*=", /* 0x19 */
383 2, "LD8<b+1+4*=", /* 0x1a */
384 3, "LD8<b+1+4*=", /* 0x1b */
385 0, "LD16<c+1+4*=", /* 0x1c */
386 1, "LD16<c+1+4*=", /* 0x1d */
387 2, "LD16<c+1+4*=", /* 0x1e */
388 0, "Ld1+=", /* 0x1f */
389 /* R_ZEROES */
390 0, "Lb1+4*=", /* 0x20 */
391 1, "Ld1+=", /* 0x21 */
392 /* R_UNINIT */
393 0, "Lb1+4*=", /* 0x22 */
394 1, "Ld1+=", /* 0x23 */
395 /* R_RELOCATION */
396 0, "L4=", /* 0x24 */
397 /* R_DATA_ONE_SYMBOL */
398 0, "L4=Sb=", /* 0x25 */
399 1, "L4=Sd=", /* 0x26 */
400 /* R_DATA_PLEBEL */
401 0, "L4=Sb=", /* 0x27 */
402 1, "L4=Sd=", /* 0x28 */
403 /* R_SPACE_REF */
404 0, "L4=", /* 0x29 */
405 /* R_REPEATED_INIT */
406 0, "L4=Mb1+4*=", /* 0x2a */
407 1, "Lb4*=Mb1+L*=", /* 0x2b */
408 2, "Lb4*=Md1+4*=", /* 0x2c */
409 3, "Ld1+=Me1+=", /* 0x2d */
410 /* R_RESERVED */
411 0, "", /* 0x2e */
412 0, "", /* 0x2f */
413 /* R_PCREL_CALL */
414 0, "L4=RD=Sb=", /* 0x30 */
415 1, "L4=RD=Sb=", /* 0x31 */
416 2, "L4=RD=Sb=", /* 0x32 */
417 3, "L4=RD=Sb=", /* 0x33 */
418 4, "L4=RD=Sb=", /* 0x34 */
419 5, "L4=RD=Sb=", /* 0x35 */
420 6, "L4=RD=Sb=", /* 0x36 */
421 7, "L4=RD=Sb=", /* 0x37 */
422 8, "L4=RD=Sb=", /* 0x38 */
423 9, "L4=RD=Sb=", /* 0x39 */
424 0, "L4=RD8<b+=Sb=",/* 0x3a */
425 1, "L4=RD8<b+=Sb=",/* 0x3b */
426 0, "L4=RD8<b+=Sd=",/* 0x3c */
427 1, "L4=RD8<b+=Sd=",/* 0x3d */
428 /* R_RESERVED */
429 0, "", /* 0x3e */
430 0, "", /* 0x3f */
431 /* R_ABS_CALL */
432 0, "L4=RD=Sb=", /* 0x40 */
433 1, "L4=RD=Sb=", /* 0x41 */
434 2, "L4=RD=Sb=", /* 0x42 */
435 3, "L4=RD=Sb=", /* 0x43 */
436 4, "L4=RD=Sb=", /* 0x44 */
437 5, "L4=RD=Sb=", /* 0x45 */
438 6, "L4=RD=Sb=", /* 0x46 */
439 7, "L4=RD=Sb=", /* 0x47 */
440 8, "L4=RD=Sb=", /* 0x48 */
441 9, "L4=RD=Sb=", /* 0x49 */
442 0, "L4=RD8<b+=Sb=",/* 0x4a */
443 1, "L4=RD8<b+=Sb=",/* 0x4b */
444 0, "L4=RD8<b+=Sd=",/* 0x4c */
445 1, "L4=RD8<b+=Sd=",/* 0x4d */
446 /* R_RESERVED */
447 0, "", /* 0x4e */
448 0, "", /* 0x4f */
449 /* R_DP_RELATIVE */
450 0, "L4=SD=", /* 0x50 */
451 1, "L4=SD=", /* 0x51 */
452 2, "L4=SD=", /* 0x52 */
453 3, "L4=SD=", /* 0x53 */
454 4, "L4=SD=", /* 0x54 */
455 5, "L4=SD=", /* 0x55 */
456 6, "L4=SD=", /* 0x56 */
457 7, "L4=SD=", /* 0x57 */
458 8, "L4=SD=", /* 0x58 */
459 9, "L4=SD=", /* 0x59 */
460 10, "L4=SD=", /* 0x5a */
461 11, "L4=SD=", /* 0x5b */
462 12, "L4=SD=", /* 0x5c */
463 13, "L4=SD=", /* 0x5d */
464 14, "L4=SD=", /* 0x5e */
465 15, "L4=SD=", /* 0x5f */
466 16, "L4=SD=", /* 0x60 */
467 17, "L4=SD=", /* 0x61 */
468 18, "L4=SD=", /* 0x62 */
469 19, "L4=SD=", /* 0x63 */
470 20, "L4=SD=", /* 0x64 */
471 21, "L4=SD=", /* 0x65 */
472 22, "L4=SD=", /* 0x66 */
473 23, "L4=SD=", /* 0x67 */
474 24, "L4=SD=", /* 0x68 */
475 25, "L4=SD=", /* 0x69 */
476 26, "L4=SD=", /* 0x6a */
477 27, "L4=SD=", /* 0x6b */
478 28, "L4=SD=", /* 0x6c */
479 29, "L4=SD=", /* 0x6d */
480 30, "L4=SD=", /* 0x6e */
481 31, "L4=SD=", /* 0x6f */
482 32, "L4=Sb=", /* 0x70 */
483 33, "L4=Sd=", /* 0x71 */
484 /* R_RESERVED */
485 0, "", /* 0x72 */
486 0, "", /* 0x73 */
487 0, "", /* 0x74 */
488 0, "", /* 0x75 */
489 0, "", /* 0x76 */
490 0, "", /* 0x77 */
491 /* R_DLT_REL */
492 0, "L4=Sb=", /* 0x78 */
493 1, "L4=Sd=", /* 0x79 */
494 /* R_RESERVED */
495 0, "", /* 0x7a */
496 0, "", /* 0x7b */
497 0, "", /* 0x7c */
498 0, "", /* 0x7d */
499 0, "", /* 0x7e */
500 0, "", /* 0x7f */
501 /* R_CODE_ONE_SYMBOL */
502 0, "L4=SD=", /* 0x80 */
503 1, "L4=SD=", /* 0x81 */
504 2, "L4=SD=", /* 0x82 */
505 3, "L4=SD=", /* 0x83 */
506 4, "L4=SD=", /* 0x84 */
507 5, "L4=SD=", /* 0x85 */
508 6, "L4=SD=", /* 0x86 */
509 7, "L4=SD=", /* 0x87 */
510 8, "L4=SD=", /* 0x88 */
511 9, "L4=SD=", /* 0x89 */
512 10, "L4=SD=", /* 0x8q */
513 11, "L4=SD=", /* 0x8b */
514 12, "L4=SD=", /* 0x8c */
515 13, "L4=SD=", /* 0x8d */
516 14, "L4=SD=", /* 0x8e */
517 15, "L4=SD=", /* 0x8f */
518 16, "L4=SD=", /* 0x90 */
519 17, "L4=SD=", /* 0x91 */
520 18, "L4=SD=", /* 0x92 */
521 19, "L4=SD=", /* 0x93 */
522 20, "L4=SD=", /* 0x94 */
523 21, "L4=SD=", /* 0x95 */
524 22, "L4=SD=", /* 0x96 */
525 23, "L4=SD=", /* 0x97 */
526 24, "L4=SD=", /* 0x98 */
527 25, "L4=SD=", /* 0x99 */
528 26, "L4=SD=", /* 0x9a */
529 27, "L4=SD=", /* 0x9b */
530 28, "L4=SD=", /* 0x9c */
531 29, "L4=SD=", /* 0x9d */
532 30, "L4=SD=", /* 0x9e */
533 31, "L4=SD=", /* 0x9f */
534 32, "L4=Sb=", /* 0xa0 */
535 33, "L4=Sd=", /* 0xa1 */
536 /* R_RESERVED */
537 0, "", /* 0xa2 */
538 0, "", /* 0xa3 */
539 0, "", /* 0xa4 */
540 0, "", /* 0xa5 */
541 0, "", /* 0xa6 */
542 0, "", /* 0xa7 */
543 0, "", /* 0xa8 */
544 0, "", /* 0xa9 */
545 0, "", /* 0xaa */
546 0, "", /* 0xab */
547 0, "", /* 0xac */
548 0, "", /* 0xad */
549 /* R_MILLI_REL */
550 0, "L4=Sb=", /* 0xae */
551 1, "L4=Sd=", /* 0xaf */
552 /* R_CODE_PLABEL */
553 0, "L4=Sb=", /* 0xb0 */
554 1, "L4=Sd=", /* 0xb1 */
555 /* R_BREAKPOINT */
556 0, "L4=", /* 0xb2 */
557 /* R_ENTRY */
558 0, "Ui=", /* 0xb3 */
559 1, "Uf=", /* 0xb4 */
560 /* R_ALT_ENTRY */
561 0, "", /* 0xb5 */
562 /* R_EXIT */
563 0, "", /* 0xb6 */
564 /* R_BEGIN_TRY */
565 0, "", /* 0xb7 */
566 /* R_END_TRY */
567 0, "R0=", /* 0xb8 */
568 1, "Rb4*=", /* 0xb9 */
569 2, "Rd4*=", /* 0xba */
570 /* R_BEGIN_BRTAB */
571 0, "", /* 0xbb */
572 /* R_END_BRTAB */
573 0, "", /* 0xbc */
574 /* R_STATEMENT */
575 0, "Nb=", /* 0xbd */
576 1, "Nc=", /* 0xbe */
577 2, "Nd=", /* 0xbf */
578 /* R_DATA_EXPR */
579 0, "L4=", /* 0xc0 */
580 /* R_CODE_EXPR */
581 0, "L4=", /* 0xc1 */
582 /* R_FSEL */
583 0, "", /* 0xc2 */
584 /* R_LSEL */
585 0, "", /* 0xc3 */
586 /* R_RSEL */
587 0, "", /* 0xc4 */
588 /* R_N_MODE */
589 0, "", /* 0xc5 */
590 /* R_S_MODE */
591 0, "", /* 0xc6 */
592 /* R_D_MODE */
593 0, "", /* 0xc7 */
594 /* R_R_MODE */
595 0, "", /* 0xc8 */
596 /* R_DATA_OVERRIDE */
597 0, "V0=", /* 0xc9 */
598 1, "Vb=", /* 0xca */
599 2, "Vc=", /* 0xcb */
600 3, "Vd=", /* 0xcc */
601 4, "Ve=", /* 0xcd */
602 /* R_TRANSLATED */
603 0, "", /* 0xce */
604 /* R_RESERVED */
605 0, "", /* 0xcf */
606 /* R_COMP1 */
607 0, "Ob=", /* 0xd0 */
608 /* R_COMP2 */
609 0, "Ob=Sd=", /* 0xd1 */
610 /* R_COMP3 */
611 0, "Ob=Ve=", /* 0xd2 */
612 /* R_PREV_FIXUP */
613 0, "P", /* 0xd3 */
614 1, "P", /* 0xd4 */
615 2, "P", /* 0xd5 */
616 3, "P", /* 0xd6 */
617 /* R_RESERVED */
618 0, "", /* 0xd7 */
619 0, "", /* 0xd8 */
620 0, "", /* 0xd9 */
621 0, "", /* 0xda */
622 0, "", /* 0xdb */
623 0, "", /* 0xdc */
624 0, "", /* 0xdd */
625 0, "", /* 0xde */
626 0, "", /* 0xdf */
627 0, "", /* 0xe0 */
628 0, "", /* 0xe1 */
629 0, "", /* 0xe2 */
630 0, "", /* 0xe3 */
631 0, "", /* 0xe4 */
632 0, "", /* 0xe5 */
633 0, "", /* 0xe6 */
634 0, "", /* 0xe7 */
635 0, "", /* 0xe8 */
636 0, "", /* 0xe9 */
637 0, "", /* 0xea */
638 0, "", /* 0xeb */
639 0, "", /* 0xec */
640 0, "", /* 0xed */
641 0, "", /* 0xee */
642 0, "", /* 0xef */
643 0, "", /* 0xf0 */
644 0, "", /* 0xf1 */
645 0, "", /* 0xf2 */
646 0, "", /* 0xf3 */
647 0, "", /* 0xf4 */
648 0, "", /* 0xf5 */
649 0, "", /* 0xf6 */
650 0, "", /* 0xf7 */
651 0, "", /* 0xf8 */
652 0, "", /* 0xf9 */
653 0, "", /* 0xfa */
654 0, "", /* 0xfb */
655 0, "", /* 0xfc */
656 0, "", /* 0xfd */
657 0, "", /* 0xfe */
658 0, "", /* 0xff */
659 };
660
661 static const int comp1_opcodes[] =
662 {
663 0x00,
664 0x40,
665 0x41,
666 0x42,
667 0x43,
668 0x44,
669 0x45,
670 0x46,
671 0x47,
672 0x48,
673 0x49,
674 0x4a,
675 0x4b,
676 0x60,
677 0x80,
678 0xa0,
679 0xc0,
680 -1
681 };
682
683 static const int comp2_opcodes[] =
684 {
685 0x00,
686 0x80,
687 0x82,
688 0xc0,
689 -1
690 };
691
692 static const int comp3_opcodes[] =
693 {
694 0x00,
695 0x02,
696 -1
697 };
698
699 /* These apparently are not in older versions of hpux reloc.h. */
700 #ifndef R_DLT_REL
701 #define R_DLT_REL 0x78
702 #endif
703
704 #ifndef R_AUX_UNWIND
705 #define R_AUX_UNWIND 0xcf
706 #endif
707
708 #ifndef R_SEC_STMT
709 #define R_SEC_STMT 0xd7
710 #endif
711
712 static reloc_howto_type som_hppa_howto_table[] =
713 {
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
750 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
755 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
892 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
895 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
896 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
897 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
901 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
902 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
906 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
907 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
908 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
909 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
910 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
911 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
912 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
913 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
914 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
920 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
921 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
922 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
923 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
924 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
929 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
970
971 /* Initialize the SOM relocation queue. By definition the queue holds
972 the last four multibyte fixups. */
973
974 static void
975 som_initialize_reloc_queue (queue)
976 struct reloc_queue *queue;
977 {
978 queue[0].reloc = NULL;
979 queue[0].size = 0;
980 queue[1].reloc = NULL;
981 queue[1].size = 0;
982 queue[2].reloc = NULL;
983 queue[2].size = 0;
984 queue[3].reloc = NULL;
985 queue[3].size = 0;
986 }
987
988 /* Insert a new relocation into the relocation queue. */
989
990 static void
991 som_reloc_queue_insert (p, size, queue)
992 unsigned char *p;
993 unsigned int size;
994 struct reloc_queue *queue;
995 {
996 queue[3].reloc = queue[2].reloc;
997 queue[3].size = queue[2].size;
998 queue[2].reloc = queue[1].reloc;
999 queue[2].size = queue[1].size;
1000 queue[1].reloc = queue[0].reloc;
1001 queue[1].size = queue[0].size;
1002 queue[0].reloc = p;
1003 queue[0].size = size;
1004 }
1005
1006 /* When an entry in the relocation queue is reused, the entry moves
1007 to the front of the queue. */
1008
1009 static void
1010 som_reloc_queue_fix (queue, index)
1011 struct reloc_queue *queue;
1012 unsigned int index;
1013 {
1014 if (index == 0)
1015 return;
1016
1017 if (index == 1)
1018 {
1019 unsigned char *tmp1 = queue[0].reloc;
1020 unsigned int tmp2 = queue[0].size;
1021 queue[0].reloc = queue[1].reloc;
1022 queue[0].size = queue[1].size;
1023 queue[1].reloc = tmp1;
1024 queue[1].size = tmp2;
1025 return;
1026 }
1027
1028 if (index == 2)
1029 {
1030 unsigned char *tmp1 = queue[0].reloc;
1031 unsigned int tmp2 = queue[0].size;
1032 queue[0].reloc = queue[2].reloc;
1033 queue[0].size = queue[2].size;
1034 queue[2].reloc = queue[1].reloc;
1035 queue[2].size = queue[1].size;
1036 queue[1].reloc = tmp1;
1037 queue[1].size = tmp2;
1038 return;
1039 }
1040
1041 if (index == 3)
1042 {
1043 unsigned char *tmp1 = queue[0].reloc;
1044 unsigned int tmp2 = queue[0].size;
1045 queue[0].reloc = queue[3].reloc;
1046 queue[0].size = queue[3].size;
1047 queue[3].reloc = queue[2].reloc;
1048 queue[3].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055 abort();
1056 }
1057
1058 /* Search for a particular relocation in the relocation queue. */
1059
1060 static int
1061 som_reloc_queue_find (p, size, queue)
1062 unsigned char *p;
1063 unsigned int size;
1064 struct reloc_queue *queue;
1065 {
1066 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1067 && size == queue[0].size)
1068 return 0;
1069 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1070 && size == queue[1].size)
1071 return 1;
1072 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1073 && size == queue[2].size)
1074 return 2;
1075 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1076 && size == queue[3].size)
1077 return 3;
1078 return -1;
1079 }
1080
1081 static unsigned char *
1082 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1083 bfd *abfd;
1084 int *subspace_reloc_sizep;
1085 unsigned char *p;
1086 unsigned int size;
1087 struct reloc_queue *queue;
1088 {
1089 int queue_index = som_reloc_queue_find (p, size, queue);
1090
1091 if (queue_index != -1)
1092 {
1093 /* Found this in a previous fixup. Undo the fixup we
1094 just built and use R_PREV_FIXUP instead. We saved
1095 a total of size - 1 bytes in the fixup stream. */
1096 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1097 p += 1;
1098 *subspace_reloc_sizep += 1;
1099 som_reloc_queue_fix (queue, queue_index);
1100 }
1101 else
1102 {
1103 som_reloc_queue_insert (p, size, queue);
1104 *subspace_reloc_sizep += size;
1105 p += size;
1106 }
1107 return p;
1108 }
1109
1110 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1111 bytes without any relocation. Update the size of the subspace
1112 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1113 current pointer into the relocation stream. */
1114
1115 static unsigned char *
1116 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1117 bfd *abfd;
1118 unsigned int skip;
1119 unsigned char *p;
1120 unsigned int *subspace_reloc_sizep;
1121 struct reloc_queue *queue;
1122 {
1123 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1124 then R_PREV_FIXUPs to get the difference down to a
1125 reasonable size. */
1126 if (skip >= 0x1000000)
1127 {
1128 skip -= 0x1000000;
1129 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1130 bfd_put_8 (abfd, 0xff, p + 1);
1131 bfd_put_16 (abfd, 0xffff, p + 2);
1132 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1133 while (skip >= 0x1000000)
1134 {
1135 skip -= 0x1000000;
1136 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1137 p++;
1138 *subspace_reloc_sizep += 1;
1139 /* No need to adjust queue here since we are repeating the
1140 most recent fixup. */
1141 }
1142 }
1143
1144 /* The difference must be less than 0x1000000. Use one
1145 more R_NO_RELOCATION entry to get to the right difference. */
1146 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1147 {
1148 /* Difference can be handled in a simple single-byte
1149 R_NO_RELOCATION entry. */
1150 if (skip <= 0x60)
1151 {
1152 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1153 *subspace_reloc_sizep += 1;
1154 p++;
1155 }
1156 /* Handle it with a two byte R_NO_RELOCATION entry. */
1157 else if (skip <= 0x1000)
1158 {
1159 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1160 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1161 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1162 }
1163 /* Handle it with a three byte R_NO_RELOCATION entry. */
1164 else
1165 {
1166 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1167 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1168 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1169 }
1170 }
1171 /* Ugh. Punt and use a 4 byte entry. */
1172 else if (skip > 0)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1175 bfd_put_8 (abfd, skip >> 16, p + 1);
1176 bfd_put_16 (abfd, skip, p + 2);
1177 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1178 }
1179 return p;
1180 }
1181
1182 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1183 from a BFD relocation. Update the size of the subspace relocation
1184 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1185 into the relocation stream. */
1186
1187 static unsigned char *
1188 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1189 bfd *abfd;
1190 int addend;
1191 unsigned char *p;
1192 unsigned int *subspace_reloc_sizep;
1193 struct reloc_queue *queue;
1194 {
1195 if ((unsigned)(addend) + 0x80 < 0x100)
1196 {
1197 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1198 bfd_put_8 (abfd, addend, p + 1);
1199 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1200 }
1201 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1202 {
1203 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1204 bfd_put_16 (abfd, addend, p + 1);
1205 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1206 }
1207 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1208 {
1209 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1210 bfd_put_8 (abfd, addend >> 16, p + 1);
1211 bfd_put_16 (abfd, addend, p + 2);
1212 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1213 }
1214 else
1215 {
1216 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1217 bfd_put_32 (abfd, addend, p + 1);
1218 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1219 }
1220 return p;
1221 }
1222
1223 /* Handle a single function call relocation. */
1224
1225 static unsigned char *
1226 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1227 bfd *abfd;
1228 unsigned char *p;
1229 unsigned int *subspace_reloc_sizep;
1230 arelent *bfd_reloc;
1231 int sym_num;
1232 struct reloc_queue *queue;
1233 {
1234 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1235 int rtn_bits = arg_bits & 0x3;
1236 int type, done = 0;
1237
1238 /* You'll never believe all this is necessary to handle relocations
1239 for function calls. Having to compute and pack the argument
1240 relocation bits is the real nightmare.
1241
1242 If you're interested in how this works, just forget it. You really
1243 do not want to know about this braindamage. */
1244
1245 /* First see if this can be done with a "simple" relocation. Simple
1246 relocations have a symbol number < 0x100 and have simple encodings
1247 of argument relocations. */
1248
1249 if (sym_num < 0x100)
1250 {
1251 switch (arg_bits)
1252 {
1253 case 0:
1254 case 1:
1255 type = 0;
1256 break;
1257 case 1 << 8:
1258 case 1 << 8 | 1:
1259 type = 1;
1260 break;
1261 case 1 << 8 | 1 << 6:
1262 case 1 << 8 | 1 << 6 | 1:
1263 type = 2;
1264 break;
1265 case 1 << 8 | 1 << 6 | 1 << 4:
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1267 type = 3;
1268 break;
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1270 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1271 type = 4;
1272 break;
1273 default:
1274 /* Not one of the easy encodings. This will have to be
1275 handled by the more complex code below. */
1276 type = -1;
1277 break;
1278 }
1279 if (type != -1)
1280 {
1281 /* Account for the return value too. */
1282 if (rtn_bits)
1283 type += 5;
1284
1285 /* Emit a 2 byte relocation. Then see if it can be handled
1286 with a relocation which is already in the relocation queue. */
1287 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1288 bfd_put_8 (abfd, sym_num, p + 1);
1289 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1290 done = 1;
1291 }
1292 }
1293
1294 /* If this could not be handled with a simple relocation, then do a hard
1295 one. Hard relocations occur if the symbol number was too high or if
1296 the encoding of argument relocation bits is too complex. */
1297 if (! done)
1298 {
1299 /* Don't ask about these magic sequences. I took them straight
1300 from gas-1.36 which took them from the a.out man page. */
1301 type = rtn_bits;
1302 if ((arg_bits >> 6 & 0xf) == 0xe)
1303 type += 9 * 40;
1304 else
1305 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1306 if ((arg_bits >> 2 & 0xf) == 0xe)
1307 type += 9 * 4;
1308 else
1309 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1310
1311 /* Output the first two bytes of the relocation. These describe
1312 the length of the relocation and encoding style. */
1313 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1314 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1315 p);
1316 bfd_put_8 (abfd, type, p + 1);
1317
1318 /* Now output the symbol index and see if this bizarre relocation
1319 just happened to be in the relocation queue. */
1320 if (sym_num < 0x100)
1321 {
1322 bfd_put_8 (abfd, sym_num, p + 2);
1323 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1324 }
1325 else
1326 {
1327 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1328 bfd_put_16 (abfd, sym_num, p + 3);
1329 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1330 }
1331 }
1332 return p;
1333 }
1334
1335
1336 /* Return the logarithm of X, base 2, considering X unsigned.
1337 Abort -1 if X is not a power or two or is zero. */
1338
1339 static int
1340 log2 (x)
1341 unsigned int x;
1342 {
1343 int log = 0;
1344
1345 /* Test for 0 or a power of 2. */
1346 if (x == 0 || x != (x & -x))
1347 return -1;
1348
1349 while ((x >>= 1) != 0)
1350 log++;
1351 return log;
1352 }
1353
1354 static bfd_reloc_status_type
1355 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1356 input_section, output_bfd, error_message)
1357 bfd *abfd;
1358 arelent *reloc_entry;
1359 asymbol *symbol_in;
1360 PTR data;
1361 asection *input_section;
1362 bfd *output_bfd;
1363 char **error_message;
1364 {
1365 if (output_bfd)
1366 {
1367 reloc_entry->address += input_section->output_offset;
1368 return bfd_reloc_ok;
1369 }
1370 return bfd_reloc_ok;
1371 }
1372
1373 /* Given a generic HPPA relocation type, the instruction format,
1374 and a field selector, return one or more appropriate SOM relocations. */
1375
1376 int **
1377 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1378 bfd *abfd;
1379 int base_type;
1380 int format;
1381 enum hppa_reloc_field_selector_type_alt field;
1382 {
1383 int *final_type, **final_types;
1384
1385 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1386 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1387 if (!final_types || !final_type)
1388 {
1389 bfd_set_error (bfd_error_no_memory);
1390 return NULL;
1391 }
1392
1393 /* The field selector may require additional relocations to be
1394 generated. It's impossible to know at this moment if additional
1395 relocations will be needed, so we make them. The code to actually
1396 write the relocation/fixup stream is responsible for removing
1397 any redundant relocations. */
1398 switch (field)
1399 {
1400 case e_fsel:
1401 case e_psel:
1402 case e_lpsel:
1403 case e_rpsel:
1404 final_types[0] = final_type;
1405 final_types[1] = NULL;
1406 final_types[2] = NULL;
1407 *final_type = base_type;
1408 break;
1409
1410 case e_tsel:
1411 case e_ltsel:
1412 case e_rtsel:
1413 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1414 if (!final_types[0])
1415 {
1416 bfd_set_error (bfd_error_no_memory);
1417 return NULL;
1418 }
1419 if (field == e_tsel)
1420 *final_types[0] = R_FSEL;
1421 else if (field == e_ltsel)
1422 *final_types[0] = R_LSEL;
1423 else
1424 *final_types[0] = R_RSEL;
1425 final_types[1] = final_type;
1426 final_types[2] = NULL;
1427 *final_type = base_type;
1428 break;
1429
1430 case e_lssel:
1431 case e_rssel:
1432 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1433 if (!final_types[0])
1434 {
1435 bfd_set_error (bfd_error_no_memory);
1436 return NULL;
1437 }
1438 *final_types[0] = R_S_MODE;
1439 final_types[1] = final_type;
1440 final_types[2] = NULL;
1441 *final_type = base_type;
1442 break;
1443
1444 case e_lsel:
1445 case e_rsel:
1446 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1447 if (!final_types[0])
1448 {
1449 bfd_set_error (bfd_error_no_memory);
1450 return NULL;
1451 }
1452 *final_types[0] = R_N_MODE;
1453 final_types[1] = final_type;
1454 final_types[2] = NULL;
1455 *final_type = base_type;
1456 break;
1457
1458 case e_ldsel:
1459 case e_rdsel:
1460 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1461 if (!final_types[0])
1462 {
1463 bfd_set_error (bfd_error_no_memory);
1464 return NULL;
1465 }
1466 *final_types[0] = R_D_MODE;
1467 final_types[1] = final_type;
1468 final_types[2] = NULL;
1469 *final_type = base_type;
1470 break;
1471
1472 case e_lrsel:
1473 case e_rrsel:
1474 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1475 if (!final_types[0])
1476 {
1477 bfd_set_error (bfd_error_no_memory);
1478 return NULL;
1479 }
1480 *final_types[0] = R_R_MODE;
1481 final_types[1] = final_type;
1482 final_types[2] = NULL;
1483 *final_type = base_type;
1484 break;
1485 }
1486
1487 switch (base_type)
1488 {
1489 case R_HPPA:
1490 /* PLABELs get their own relocation type. */
1491 if (field == e_psel
1492 || field == e_lpsel
1493 || field == e_rpsel)
1494 {
1495 /* A PLABEL relocation that has a size of 32 bits must
1496 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1497 if (format == 32)
1498 *final_type = R_DATA_PLABEL;
1499 else
1500 *final_type = R_CODE_PLABEL;
1501 }
1502 /* PIC stuff. */
1503 else if (field == e_tsel
1504 || field == e_ltsel
1505 || field == e_rtsel)
1506 *final_type = R_DLT_REL;
1507 /* A relocation in the data space is always a full 32bits. */
1508 else if (format == 32)
1509 *final_type = R_DATA_ONE_SYMBOL;
1510
1511 break;
1512
1513 case R_HPPA_GOTOFF:
1514 /* More PLABEL special cases. */
1515 if (field == e_psel
1516 || field == e_lpsel
1517 || field == e_rpsel)
1518 *final_type = R_DATA_PLABEL;
1519 break;
1520
1521 case R_HPPA_NONE:
1522 case R_HPPA_ABS_CALL:
1523 case R_HPPA_PCREL_CALL:
1524 case R_HPPA_COMPLEX:
1525 case R_HPPA_COMPLEX_PCREL_CALL:
1526 case R_HPPA_COMPLEX_ABS_CALL:
1527 /* Right now we can default all these. */
1528 break;
1529 }
1530 return final_types;
1531 }
1532
1533 /* Return the address of the correct entry in the PA SOM relocation
1534 howto table. */
1535
1536 static const reloc_howto_type *
1537 som_bfd_reloc_type_lookup (arch, code)
1538 bfd_arch_info_type *arch;
1539 bfd_reloc_code_real_type code;
1540 {
1541 if ((int) code < (int) R_NO_RELOCATION + 255)
1542 {
1543 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1544 return &som_hppa_howto_table[(int) code];
1545 }
1546
1547 return (reloc_howto_type *) 0;
1548 }
1549
1550 /* Perform some initialization for an object. Save results of this
1551 initialization in the BFD. */
1552
1553 static bfd_target *
1554 som_object_setup (abfd, file_hdrp, aux_hdrp)
1555 bfd *abfd;
1556 struct header *file_hdrp;
1557 struct som_exec_auxhdr *aux_hdrp;
1558 {
1559 /* som_mkobject will set bfd_error if som_mkobject fails. */
1560 if (som_mkobject (abfd) != true)
1561 return 0;
1562
1563 /* Set BFD flags based on what information is available in the SOM. */
1564 abfd->flags = NO_FLAGS;
1565 if (file_hdrp->symbol_total)
1566 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1567
1568 switch (file_hdrp->a_magic)
1569 {
1570 case DEMAND_MAGIC:
1571 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1572 break;
1573 case SHARE_MAGIC:
1574 abfd->flags |= (WP_TEXT | EXEC_P);
1575 break;
1576 case EXEC_MAGIC:
1577 abfd->flags |= (EXEC_P);
1578 break;
1579 case RELOC_MAGIC:
1580 abfd->flags |= HAS_RELOC;
1581 break;
1582 #ifdef SHL_MAGIC
1583 case SHL_MAGIC:
1584 #endif
1585 #ifdef DL_MAGIC
1586 case DL_MAGIC:
1587 #endif
1588 abfd->flags |= DYNAMIC;
1589 break;
1590
1591 default:
1592 break;
1593 }
1594
1595 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1596 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1597 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1598
1599 /* Initialize the saved symbol table and string table to NULL.
1600 Save important offsets and sizes from the SOM header into
1601 the BFD. */
1602 obj_som_stringtab (abfd) = (char *) NULL;
1603 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1604 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1605 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1606 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1607 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1608
1609 obj_som_exec_data (abfd) = (struct som_exec_data *)
1610 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1611 if (obj_som_exec_data (abfd) == NULL)
1612 {
1613 bfd_set_error (bfd_error_no_memory);
1614 return NULL;
1615 }
1616
1617 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1618 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1619 return abfd->xvec;
1620 }
1621
1622 /* Convert all of the space and subspace info into BFD sections. Each space
1623 contains a number of subspaces, which in turn describe the mapping between
1624 regions of the exec file, and the address space that the program runs in.
1625 BFD sections which correspond to spaces will overlap the sections for the
1626 associated subspaces. */
1627
1628 static boolean
1629 setup_sections (abfd, file_hdr)
1630 bfd *abfd;
1631 struct header *file_hdr;
1632 {
1633 char *space_strings;
1634 int space_index;
1635 unsigned int total_subspaces = 0;
1636
1637 /* First, read in space names */
1638
1639 space_strings = malloc (file_hdr->space_strings_size);
1640 if (!space_strings && file_hdr->space_strings_size != 0)
1641 {
1642 bfd_set_error (bfd_error_no_memory);
1643 goto error_return;
1644 }
1645
1646 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1647 goto error_return;
1648 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1649 != file_hdr->space_strings_size)
1650 goto error_return;
1651
1652 /* Loop over all of the space dictionaries, building up sections */
1653 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1654 {
1655 struct space_dictionary_record space;
1656 struct subspace_dictionary_record subspace, save_subspace;
1657 int subspace_index;
1658 asection *space_asect;
1659 char *newname;
1660
1661 /* Read the space dictionary element */
1662 if (bfd_seek (abfd, file_hdr->space_location
1663 + space_index * sizeof space, SEEK_SET) < 0)
1664 goto error_return;
1665 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1666 goto error_return;
1667
1668 /* Setup the space name string */
1669 space.name.n_name = space.name.n_strx + space_strings;
1670
1671 /* Make a section out of it */
1672 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1673 if (!newname)
1674 goto error_return;
1675 strcpy (newname, space.name.n_name);
1676
1677 space_asect = bfd_make_section_anyway (abfd, newname);
1678 if (!space_asect)
1679 goto error_return;
1680
1681 if (space.is_loadable == 0)
1682 space_asect->flags |= SEC_DEBUGGING;
1683
1684 /* Set up all the attributes for the space. */
1685 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1686 space.is_private, space.sort_key,
1687 space.space_number) == false)
1688 goto error_return;
1689
1690 /* Now, read in the first subspace for this space */
1691 if (bfd_seek (abfd, file_hdr->subspace_location
1692 + space.subspace_index * sizeof subspace,
1693 SEEK_SET) < 0)
1694 goto error_return;
1695 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1696 goto error_return;
1697 /* Seek back to the start of the subspaces for loop below */
1698 if (bfd_seek (abfd, file_hdr->subspace_location
1699 + space.subspace_index * sizeof subspace,
1700 SEEK_SET) < 0)
1701 goto error_return;
1702
1703 /* Setup the start address and file loc from the first subspace record */
1704 space_asect->vma = subspace.subspace_start;
1705 space_asect->filepos = subspace.file_loc_init_value;
1706 space_asect->alignment_power = log2 (subspace.alignment);
1707 if (space_asect->alignment_power == -1)
1708 goto error_return;
1709
1710 /* Initialize save_subspace so we can reliably determine if this
1711 loop placed any useful values into it. */
1712 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1713
1714 /* Loop over the rest of the subspaces, building up more sections */
1715 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1716 subspace_index++)
1717 {
1718 asection *subspace_asect;
1719
1720 /* Read in the next subspace */
1721 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1722 != sizeof subspace)
1723 goto error_return;
1724
1725 /* Setup the subspace name string */
1726 subspace.name.n_name = subspace.name.n_strx + space_strings;
1727
1728 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1729 if (!newname)
1730 goto error_return;
1731 strcpy (newname, subspace.name.n_name);
1732
1733 /* Make a section out of this subspace */
1734 subspace_asect = bfd_make_section_anyway (abfd, newname);
1735 if (!subspace_asect)
1736 goto error_return;
1737
1738 /* Store private information about the section. */
1739 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1740 subspace.access_control_bits,
1741 subspace.sort_key,
1742 subspace.quadrant) == false)
1743 goto error_return;
1744
1745 /* Keep an easy mapping between subspaces and sections. */
1746 subspace_asect->target_index = total_subspaces++;
1747
1748 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1749 by the access_control_bits in the subspace header. */
1750 switch (subspace.access_control_bits >> 4)
1751 {
1752 /* Readonly data. */
1753 case 0x0:
1754 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1755 break;
1756
1757 /* Normal data. */
1758 case 0x1:
1759 subspace_asect->flags |= SEC_DATA;
1760 break;
1761
1762 /* Readonly code and the gateways.
1763 Gateways have other attributes which do not map
1764 into anything BFD knows about. */
1765 case 0x2:
1766 case 0x4:
1767 case 0x5:
1768 case 0x6:
1769 case 0x7:
1770 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1771 break;
1772
1773 /* dynamic (writable) code. */
1774 case 0x3:
1775 subspace_asect->flags |= SEC_CODE;
1776 break;
1777 }
1778
1779 if (subspace.dup_common || subspace.is_common)
1780 subspace_asect->flags |= SEC_IS_COMMON;
1781 else if (subspace.subspace_length > 0)
1782 subspace_asect->flags |= SEC_HAS_CONTENTS;
1783
1784 if (subspace.is_loadable)
1785 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1786 else
1787 subspace_asect->flags |= SEC_DEBUGGING;
1788
1789 if (subspace.code_only)
1790 subspace_asect->flags |= SEC_CODE;
1791
1792 /* Both file_loc_init_value and initialization_length will
1793 be zero for a BSS like subspace. */
1794 if (subspace.file_loc_init_value == 0
1795 && subspace.initialization_length == 0)
1796 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1797
1798 /* This subspace has relocations.
1799 The fixup_request_quantity is a byte count for the number of
1800 entries in the relocation stream; it is not the actual number
1801 of relocations in the subspace. */
1802 if (subspace.fixup_request_quantity != 0)
1803 {
1804 subspace_asect->flags |= SEC_RELOC;
1805 subspace_asect->rel_filepos = subspace.fixup_request_index;
1806 som_section_data (subspace_asect)->reloc_size
1807 = subspace.fixup_request_quantity;
1808 /* We can not determine this yet. When we read in the
1809 relocation table the correct value will be filled in. */
1810 subspace_asect->reloc_count = -1;
1811 }
1812
1813 /* Update save_subspace if appropriate. */
1814 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1815 save_subspace = subspace;
1816
1817 subspace_asect->vma = subspace.subspace_start;
1818 subspace_asect->_cooked_size = subspace.subspace_length;
1819 subspace_asect->_raw_size = subspace.subspace_length;
1820 subspace_asect->filepos = subspace.file_loc_init_value;
1821 subspace_asect->alignment_power = log2 (subspace.alignment);
1822 if (subspace_asect->alignment_power == -1)
1823 goto error_return;
1824 }
1825
1826 /* Yow! there is no subspace within the space which actually
1827 has initialized information in it; this should never happen
1828 as far as I know. */
1829 if (!save_subspace.file_loc_init_value)
1830 goto error_return;
1831
1832 /* Setup the sizes for the space section based upon the info in the
1833 last subspace of the space. */
1834 space_asect->_cooked_size = save_subspace.subspace_start
1835 - space_asect->vma + save_subspace.subspace_length;
1836 space_asect->_raw_size = save_subspace.file_loc_init_value
1837 - space_asect->filepos + save_subspace.initialization_length;
1838 }
1839 if (space_strings != NULL)
1840 free (space_strings);
1841 return true;
1842
1843 error_return:
1844 if (space_strings != NULL)
1845 free (space_strings);
1846 return false;
1847 }
1848
1849 /* Read in a SOM object and make it into a BFD. */
1850
1851 static bfd_target *
1852 som_object_p (abfd)
1853 bfd *abfd;
1854 {
1855 struct header file_hdr;
1856 struct som_exec_auxhdr aux_hdr;
1857
1858 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1859 {
1860 if (bfd_get_error () != bfd_error_system_call)
1861 bfd_set_error (bfd_error_wrong_format);
1862 return 0;
1863 }
1864
1865 if (!_PA_RISC_ID (file_hdr.system_id))
1866 {
1867 bfd_set_error (bfd_error_wrong_format);
1868 return 0;
1869 }
1870
1871 switch (file_hdr.a_magic)
1872 {
1873 case RELOC_MAGIC:
1874 case EXEC_MAGIC:
1875 case SHARE_MAGIC:
1876 case DEMAND_MAGIC:
1877 #ifdef DL_MAGIC
1878 case DL_MAGIC:
1879 #endif
1880 #ifdef SHL_MAGIC
1881 case SHL_MAGIC:
1882 #endif
1883 #ifdef EXECLIBMAGIC
1884 case EXECLIBMAGIC:
1885 #endif
1886 #ifdef SHARED_MAGIC_CNX
1887 case SHARED_MAGIC_CNX:
1888 #endif
1889 break;
1890 default:
1891 bfd_set_error (bfd_error_wrong_format);
1892 return 0;
1893 }
1894
1895 if (file_hdr.version_id != VERSION_ID
1896 && file_hdr.version_id != NEW_VERSION_ID)
1897 {
1898 bfd_set_error (bfd_error_wrong_format);
1899 return 0;
1900 }
1901
1902 /* If the aux_header_size field in the file header is zero, then this
1903 object is an incomplete executable (a .o file). Do not try to read
1904 a non-existant auxiliary header. */
1905 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1906 if (file_hdr.aux_header_size != 0)
1907 {
1908 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1909 {
1910 if (bfd_get_error () != bfd_error_system_call)
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914 }
1915
1916 if (!setup_sections (abfd, &file_hdr))
1917 {
1918 /* setup_sections does not bubble up a bfd error code. */
1919 bfd_set_error (bfd_error_bad_value);
1920 return 0;
1921 }
1922
1923 /* This appears to be a valid SOM object. Do some initialization. */
1924 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1925 }
1926
1927 /* Create a SOM object. */
1928
1929 static boolean
1930 som_mkobject (abfd)
1931 bfd *abfd;
1932 {
1933 /* Allocate memory to hold backend information. */
1934 abfd->tdata.som_data = (struct som_data_struct *)
1935 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1936 if (abfd->tdata.som_data == NULL)
1937 {
1938 bfd_set_error (bfd_error_no_memory);
1939 return false;
1940 }
1941 return true;
1942 }
1943
1944 /* Initialize some information in the file header. This routine makes
1945 not attempt at doing the right thing for a full executable; it
1946 is only meant to handle relocatable objects. */
1947
1948 static boolean
1949 som_prep_headers (abfd)
1950 bfd *abfd;
1951 {
1952 struct header *file_hdr;
1953 asection *section;
1954
1955 /* Make and attach a file header to the BFD. */
1956 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1957 if (file_hdr == NULL)
1958
1959 {
1960 bfd_set_error (bfd_error_no_memory);
1961 return false;
1962 }
1963 obj_som_file_hdr (abfd) = file_hdr;
1964
1965 /* FIXME. This should really be conditional based on whether or not
1966 PA1.1 instructions/registers have been used. */
1967 if (abfd->flags & (EXEC_P | DYNAMIC))
1968 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1969 else
1970 file_hdr->system_id = CPU_PA_RISC1_0;
1971
1972 if (abfd->flags & (EXEC_P | DYNAMIC))
1973 {
1974 if (abfd->flags & D_PAGED)
1975 file_hdr->a_magic = DEMAND_MAGIC;
1976 else if (abfd->flags & WP_TEXT)
1977 file_hdr->a_magic = SHARE_MAGIC;
1978 #ifdef SHL_MAGIC
1979 else if (abfd->flags & DYNAMIC)
1980 file_hdr->a_magic = SHL_MAGIC;
1981 #endif
1982 else
1983 file_hdr->a_magic = EXEC_MAGIC;
1984 }
1985 else
1986 file_hdr->a_magic = RELOC_MAGIC;
1987
1988 /* Only new format SOM is supported. */
1989 file_hdr->version_id = NEW_VERSION_ID;
1990
1991 /* These fields are optional, and embedding timestamps is not always
1992 a wise thing to do, it makes comparing objects during a multi-stage
1993 bootstrap difficult. */
1994 file_hdr->file_time.secs = 0;
1995 file_hdr->file_time.nanosecs = 0;
1996
1997 file_hdr->entry_space = 0;
1998 file_hdr->entry_subspace = 0;
1999 file_hdr->entry_offset = 0;
2000 file_hdr->presumed_dp = 0;
2001
2002 /* Now iterate over the sections translating information from
2003 BFD sections to SOM spaces/subspaces. */
2004
2005 for (section = abfd->sections; section != NULL; section = section->next)
2006 {
2007 /* Ignore anything which has not been marked as a space or
2008 subspace. */
2009 if (!som_is_space (section) && !som_is_subspace (section))
2010 continue;
2011
2012 if (som_is_space (section))
2013 {
2014 /* Allocate space for the space dictionary. */
2015 som_section_data (section)->space_dict
2016 = (struct space_dictionary_record *)
2017 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2018 if (som_section_data (section)->space_dict == NULL)
2019 {
2020 bfd_set_error (bfd_error_no_memory);
2021 return false;
2022 }
2023 /* Set space attributes. Note most attributes of SOM spaces
2024 are set based on the subspaces it contains. */
2025 som_section_data (section)->space_dict->loader_fix_index = -1;
2026 som_section_data (section)->space_dict->init_pointer_index = -1;
2027
2028 /* Set more attributes that were stuffed away in private data. */
2029 som_section_data (section)->space_dict->sort_key =
2030 som_section_data (section)->copy_data->sort_key;
2031 som_section_data (section)->space_dict->is_defined =
2032 som_section_data (section)->copy_data->is_defined;
2033 som_section_data (section)->space_dict->is_private =
2034 som_section_data (section)->copy_data->is_private;
2035 som_section_data (section)->space_dict->space_number =
2036 section->target_index;
2037 }
2038 else
2039 {
2040 /* Allocate space for the subspace dictionary. */
2041 som_section_data (section)->subspace_dict
2042 = (struct subspace_dictionary_record *)
2043 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2044 if (som_section_data (section)->subspace_dict == NULL)
2045 {
2046 bfd_set_error (bfd_error_no_memory);
2047 return false;
2048 }
2049
2050 /* Set subspace attributes. Basic stuff is done here, additional
2051 attributes are filled in later as more information becomes
2052 available. */
2053 if (section->flags & SEC_IS_COMMON)
2054 {
2055 som_section_data (section)->subspace_dict->dup_common = 1;
2056 som_section_data (section)->subspace_dict->is_common = 1;
2057 }
2058
2059 if (section->flags & SEC_ALLOC)
2060 som_section_data (section)->subspace_dict->is_loadable = 1;
2061
2062 if (section->flags & SEC_CODE)
2063 som_section_data (section)->subspace_dict->code_only = 1;
2064
2065 som_section_data (section)->subspace_dict->subspace_start =
2066 section->vma;
2067 som_section_data (section)->subspace_dict->subspace_length =
2068 bfd_section_size (abfd, section);
2069 som_section_data (section)->subspace_dict->initialization_length =
2070 bfd_section_size (abfd, section);
2071 som_section_data (section)->subspace_dict->alignment =
2072 1 << section->alignment_power;
2073
2074 /* Set more attributes that were stuffed away in private data. */
2075 som_section_data (section)->subspace_dict->sort_key =
2076 som_section_data (section)->copy_data->sort_key;
2077 som_section_data (section)->subspace_dict->access_control_bits =
2078 som_section_data (section)->copy_data->access_control_bits;
2079 som_section_data (section)->subspace_dict->quadrant =
2080 som_section_data (section)->copy_data->quadrant;
2081 }
2082 }
2083 return true;
2084 }
2085
2086 /* Return true if the given section is a SOM space, false otherwise. */
2087
2088 static boolean
2089 som_is_space (section)
2090 asection *section;
2091 {
2092 /* If no copy data is available, then it's neither a space nor a
2093 subspace. */
2094 if (som_section_data (section)->copy_data == NULL)
2095 return false;
2096
2097 /* If the containing space isn't the same as the given section,
2098 then this isn't a space. */
2099 if (som_section_data (section)->copy_data->container != section)
2100 return false;
2101
2102 /* OK. Must be a space. */
2103 return true;
2104 }
2105
2106 /* Return true if the given section is a SOM subspace, false otherwise. */
2107
2108 static boolean
2109 som_is_subspace (section)
2110 asection *section;
2111 {
2112 /* If no copy data is available, then it's neither a space nor a
2113 subspace. */
2114 if (som_section_data (section)->copy_data == NULL)
2115 return false;
2116
2117 /* If the containing space is the same as the given section,
2118 then this isn't a subspace. */
2119 if (som_section_data (section)->copy_data->container == section)
2120 return false;
2121
2122 /* OK. Must be a subspace. */
2123 return true;
2124 }
2125
2126 /* Return true if the given space containins the given subspace. It
2127 is safe to assume space really is a space, and subspace really
2128 is a subspace. */
2129
2130 static boolean
2131 som_is_container (space, subspace)
2132 asection *space, *subspace;
2133 {
2134 return som_section_data (subspace)->copy_data->container == space;
2135 }
2136
2137 /* Count and return the number of spaces attached to the given BFD. */
2138
2139 static unsigned long
2140 som_count_spaces (abfd)
2141 bfd *abfd;
2142 {
2143 int count = 0;
2144 asection *section;
2145
2146 for (section = abfd->sections; section != NULL; section = section->next)
2147 count += som_is_space (section);
2148
2149 return count;
2150 }
2151
2152 /* Count the number of subspaces attached to the given BFD. */
2153
2154 static unsigned long
2155 som_count_subspaces (abfd)
2156 bfd *abfd;
2157 {
2158 int count = 0;
2159 asection *section;
2160
2161 for (section = abfd->sections; section != NULL; section = section->next)
2162 count += som_is_subspace (section);
2163
2164 return count;
2165 }
2166
2167 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2168
2169 We desire symbols to be ordered starting with the symbol with the
2170 highest relocation count down to the symbol with the lowest relocation
2171 count. Doing so compacts the relocation stream. */
2172
2173 static int
2174 compare_syms (sym1, sym2)
2175 asymbol **sym1;
2176 asymbol **sym2;
2177
2178 {
2179 unsigned int count1, count2;
2180
2181 /* Get relocation count for each symbol. Note that the count
2182 is stored in the udata pointer for section symbols! */
2183 if ((*sym1)->flags & BSF_SECTION_SYM)
2184 count1 = (int)(*sym1)->udata;
2185 else
2186 count1 = som_symbol_data (*sym1)->reloc_count;
2187
2188 if ((*sym2)->flags & BSF_SECTION_SYM)
2189 count2 = (int)(*sym2)->udata;
2190 else
2191 count2 = som_symbol_data (*sym2)->reloc_count;
2192
2193 /* Return the appropriate value. */
2194 if (count1 < count2)
2195 return 1;
2196 else if (count1 > count2)
2197 return -1;
2198 return 0;
2199 }
2200
2201 /* Perform various work in preparation for emitting the fixup stream. */
2202
2203 static void
2204 som_prep_for_fixups (abfd, syms, num_syms)
2205 bfd *abfd;
2206 asymbol **syms;
2207 unsigned long num_syms;
2208 {
2209 int i;
2210 asection *section;
2211
2212 /* Most SOM relocations involving a symbol have a length which is
2213 dependent on the index of the symbol. So symbols which are
2214 used often in relocations should have a small index. */
2215
2216 /* First initialize the counters for each symbol. */
2217 for (i = 0; i < num_syms; i++)
2218 {
2219 /* Handle a section symbol; these have no pointers back to the
2220 SOM symbol info. So we just use the pointer field (udata)
2221 to hold the relocation count. */
2222 if (som_symbol_data (syms[i]) == NULL
2223 || syms[i]->flags & BSF_SECTION_SYM)
2224 {
2225 syms[i]->flags |= BSF_SECTION_SYM;
2226 syms[i]->udata = (PTR) 0;
2227 }
2228 else
2229 som_symbol_data (syms[i])->reloc_count = 0;
2230 }
2231
2232 /* Now that the counters are initialized, make a weighted count
2233 of how often a given symbol is used in a relocation. */
2234 for (section = abfd->sections; section != NULL; section = section->next)
2235 {
2236 int i;
2237
2238 /* Does this section have any relocations? */
2239 if (section->reloc_count <= 0)
2240 continue;
2241
2242 /* Walk through each relocation for this section. */
2243 for (i = 1; i < section->reloc_count; i++)
2244 {
2245 arelent *reloc = section->orelocation[i];
2246 int scale;
2247
2248 /* A relocation against a symbol in the *ABS* section really
2249 does not have a symbol. Likewise if the symbol isn't associated
2250 with any section. */
2251 if (reloc->sym_ptr_ptr == NULL
2252 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2253 continue;
2254
2255 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2256 and R_CODE_ONE_SYMBOL relocations to come first. These
2257 two relocations have single byte versions if the symbol
2258 index is very small. */
2259 if (reloc->howto->type == R_DP_RELATIVE
2260 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2261 scale = 2;
2262 else
2263 scale = 1;
2264
2265 /* Handle section symbols by ramming the count in the udata
2266 field. It will not be used and the count is very important
2267 for these symbols. */
2268 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2269 {
2270 (*reloc->sym_ptr_ptr)->udata =
2271 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2272 continue;
2273 }
2274
2275 /* A normal symbol. Increment the count. */
2276 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2277 }
2278 }
2279
2280 /* Now sort the symbols. */
2281 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2282
2283 /* Compute the symbol indexes, they will be needed by the relocation
2284 code. */
2285 for (i = 0; i < num_syms; i++)
2286 {
2287 /* A section symbol. Again, there is no pointer to backend symbol
2288 information, so we reuse (abuse) the udata field again. */
2289 if (syms[i]->flags & BSF_SECTION_SYM)
2290 syms[i]->udata = (PTR) i;
2291 else
2292 som_symbol_data (syms[i])->index = i;
2293 }
2294 }
2295
2296 static boolean
2297 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2298 bfd *abfd;
2299 unsigned long current_offset;
2300 unsigned int *total_reloc_sizep;
2301 {
2302 unsigned int i, j;
2303 /* Chunk of memory that we can use as buffer space, then throw
2304 away. */
2305 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2306 unsigned char *p;
2307 unsigned int total_reloc_size = 0;
2308 unsigned int subspace_reloc_size = 0;
2309 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2310 asection *section = abfd->sections;
2311
2312 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2313 p = tmp_space;
2314
2315 /* All the fixups for a particular subspace are emitted in a single
2316 stream. All the subspaces for a particular space are emitted
2317 as a single stream.
2318
2319 So, to get all the locations correct one must iterate through all the
2320 spaces, for each space iterate through its subspaces and output a
2321 fixups stream. */
2322 for (i = 0; i < num_spaces; i++)
2323 {
2324 asection *subsection;
2325
2326 /* Find a space. */
2327 while (!som_is_space (section))
2328 section = section->next;
2329
2330 /* Now iterate through each of its subspaces. */
2331 for (subsection = abfd->sections;
2332 subsection != NULL;
2333 subsection = subsection->next)
2334 {
2335 int reloc_offset, current_rounding_mode;
2336
2337 /* Find a subspace of this space. */
2338 if (!som_is_subspace (subsection)
2339 || !som_is_container (section, subsection))
2340 continue;
2341
2342 /* If this subspace had no relocations, then we're finished
2343 with it. */
2344 if (subsection->reloc_count <= 0)
2345 {
2346 som_section_data (subsection)->subspace_dict->fixup_request_index
2347 = -1;
2348 continue;
2349 }
2350
2351 /* This subspace has some relocations. Put the relocation stream
2352 index into the subspace record. */
2353 som_section_data (subsection)->subspace_dict->fixup_request_index
2354 = total_reloc_size;
2355
2356 /* To make life easier start over with a clean slate for
2357 each subspace. Seek to the start of the relocation stream
2358 for this subspace in preparation for writing out its fixup
2359 stream. */
2360 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2361 return false;
2362
2363 /* Buffer space has already been allocated. Just perform some
2364 initialization here. */
2365 p = tmp_space;
2366 subspace_reloc_size = 0;
2367 reloc_offset = 0;
2368 som_initialize_reloc_queue (reloc_queue);
2369 current_rounding_mode = R_N_MODE;
2370
2371 /* Translate each BFD relocation into one or more SOM
2372 relocations. */
2373 for (j = 0; j < subsection->reloc_count; j++)
2374 {
2375 arelent *bfd_reloc = subsection->orelocation[j];
2376 unsigned int skip;
2377 int sym_num;
2378
2379 /* Get the symbol number. Remember it's stored in a
2380 special place for section symbols. */
2381 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2382 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2383 else
2384 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2385
2386 /* If there is not enough room for the next couple relocations,
2387 then dump the current buffer contents now. Also reinitialize
2388 the relocation queue.
2389
2390 No single BFD relocation could ever translate into more
2391 than 100 bytes of SOM relocations (20bytes is probably the
2392 upper limit, but leave lots of space for growth). */
2393 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2394 {
2395 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2396 != p - tmp_space)
2397 return false;
2398
2399 p = tmp_space;
2400 som_initialize_reloc_queue (reloc_queue);
2401 }
2402
2403 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2404 skipped. */
2405 skip = bfd_reloc->address - reloc_offset;
2406 p = som_reloc_skip (abfd, skip, p,
2407 &subspace_reloc_size, reloc_queue);
2408
2409 /* Update reloc_offset for the next iteration.
2410
2411 Many relocations do not consume input bytes. They
2412 are markers, or set state necessary to perform some
2413 later relocation. */
2414 switch (bfd_reloc->howto->type)
2415 {
2416 /* This only needs to handle relocations that may be
2417 made by hppa_som_gen_reloc. */
2418 case R_ENTRY:
2419 case R_EXIT:
2420 case R_N_MODE:
2421 case R_S_MODE:
2422 case R_D_MODE:
2423 case R_R_MODE:
2424 case R_FSEL:
2425 case R_LSEL:
2426 case R_RSEL:
2427 reloc_offset = bfd_reloc->address;
2428 break;
2429
2430 default:
2431 reloc_offset = bfd_reloc->address + 4;
2432 break;
2433 }
2434
2435 /* Now the actual relocation we care about. */
2436 switch (bfd_reloc->howto->type)
2437 {
2438 case R_PCREL_CALL:
2439 case R_ABS_CALL:
2440 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2441 bfd_reloc, sym_num, reloc_queue);
2442 break;
2443
2444 case R_CODE_ONE_SYMBOL:
2445 case R_DP_RELATIVE:
2446 /* Account for any addend. */
2447 if (bfd_reloc->addend)
2448 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2449 &subspace_reloc_size, reloc_queue);
2450
2451 if (sym_num < 0x20)
2452 {
2453 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2454 subspace_reloc_size += 1;
2455 p += 1;
2456 }
2457 else if (sym_num < 0x100)
2458 {
2459 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2460 bfd_put_8 (abfd, sym_num, p + 1);
2461 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2462 2, reloc_queue);
2463 }
2464 else if (sym_num < 0x10000000)
2465 {
2466 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2467 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2468 bfd_put_16 (abfd, sym_num, p + 2);
2469 p = try_prev_fixup (abfd, &subspace_reloc_size,
2470 p, 4, reloc_queue);
2471 }
2472 else
2473 abort ();
2474 break;
2475
2476 case R_DATA_ONE_SYMBOL:
2477 case R_DATA_PLABEL:
2478 case R_CODE_PLABEL:
2479 case R_DLT_REL:
2480 /* Account for any addend. */
2481 if (bfd_reloc->addend)
2482 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2483 &subspace_reloc_size, reloc_queue);
2484
2485 if (sym_num < 0x100)
2486 {
2487 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2488 bfd_put_8 (abfd, sym_num, p + 1);
2489 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2490 2, reloc_queue);
2491 }
2492 else if (sym_num < 0x10000000)
2493 {
2494 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2495 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2496 bfd_put_16 (abfd, sym_num, p + 2);
2497 p = try_prev_fixup (abfd, &subspace_reloc_size,
2498 p, 4, reloc_queue);
2499 }
2500 else
2501 abort ();
2502 break;
2503
2504 case R_ENTRY:
2505 {
2506 int *descp
2507 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2508 bfd_put_8 (abfd, R_ENTRY, p);
2509 bfd_put_32 (abfd, descp[0], p + 1);
2510 bfd_put_32 (abfd, descp[1], p + 5);
2511 p = try_prev_fixup (abfd, &subspace_reloc_size,
2512 p, 9, reloc_queue);
2513 break;
2514 }
2515
2516 case R_EXIT:
2517 bfd_put_8 (abfd, R_EXIT, p);
2518 subspace_reloc_size += 1;
2519 p += 1;
2520 break;
2521
2522 case R_N_MODE:
2523 case R_S_MODE:
2524 case R_D_MODE:
2525 case R_R_MODE:
2526 /* If this relocation requests the current rounding
2527 mode, then it is redundant. */
2528 if (bfd_reloc->howto->type != current_rounding_mode)
2529 {
2530 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2531 subspace_reloc_size += 1;
2532 p += 1;
2533 current_rounding_mode = bfd_reloc->howto->type;
2534 }
2535 break;
2536
2537 case R_FSEL:
2538 case R_LSEL:
2539 case R_RSEL:
2540 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2541 subspace_reloc_size += 1;
2542 p += 1;
2543 break;
2544
2545 /* Put a "R_RESERVED" relocation in the stream if
2546 we hit something we do not understand. The linker
2547 will complain loudly if this ever happens. */
2548 default:
2549 bfd_put_8 (abfd, 0xff, p);
2550 subspace_reloc_size += 1;
2551 p += 1;
2552 break;
2553 }
2554 }
2555
2556 /* Last BFD relocation for a subspace has been processed.
2557 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2558 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2559 - reloc_offset,
2560 p, &subspace_reloc_size, reloc_queue);
2561
2562 /* Scribble out the relocations. */
2563 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2564 != p - tmp_space)
2565 return false;
2566 p = tmp_space;
2567
2568 total_reloc_size += subspace_reloc_size;
2569 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2570 = subspace_reloc_size;
2571 }
2572 section = section->next;
2573 }
2574 *total_reloc_sizep = total_reloc_size;
2575 return true;
2576 }
2577
2578 /* Write out the space/subspace string table. */
2579
2580 static boolean
2581 som_write_space_strings (abfd, current_offset, string_sizep)
2582 bfd *abfd;
2583 unsigned long current_offset;
2584 unsigned int *string_sizep;
2585 {
2586 /* Chunk of memory that we can use as buffer space, then throw
2587 away. */
2588 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2589 unsigned char *p;
2590 unsigned int strings_size = 0;
2591 asection *section;
2592
2593 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2594 p = tmp_space;
2595
2596 /* Seek to the start of the space strings in preparation for writing
2597 them out. */
2598 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2599 return false;
2600
2601 /* Walk through all the spaces and subspaces (order is not important)
2602 building up and writing string table entries for their names. */
2603 for (section = abfd->sections; section != NULL; section = section->next)
2604 {
2605 int length;
2606
2607 /* Only work with space/subspaces; avoid any other sections
2608 which might have been made (.text for example). */
2609 if (!som_is_space (section) && !som_is_subspace (section))
2610 continue;
2611
2612 /* Get the length of the space/subspace name. */
2613 length = strlen (section->name);
2614
2615 /* If there is not enough room for the next entry, then dump the
2616 current buffer contents now. Each entry will take 4 bytes to
2617 hold the string length + the string itself + null terminator. */
2618 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2619 {
2620 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2621 != p - tmp_space)
2622 return false;
2623 /* Reset to beginning of the buffer space. */
2624 p = tmp_space;
2625 }
2626
2627 /* First element in a string table entry is the length of the
2628 string. Alignment issues are already handled. */
2629 bfd_put_32 (abfd, length, p);
2630 p += 4;
2631 strings_size += 4;
2632
2633 /* Record the index in the space/subspace records. */
2634 if (som_is_space (section))
2635 som_section_data (section)->space_dict->name.n_strx = strings_size;
2636 else
2637 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2638
2639 /* Next comes the string itself + a null terminator. */
2640 strcpy (p, section->name);
2641 p += length + 1;
2642 strings_size += length + 1;
2643
2644 /* Always align up to the next word boundary. */
2645 while (strings_size % 4)
2646 {
2647 bfd_put_8 (abfd, 0, p);
2648 p++;
2649 strings_size++;
2650 }
2651 }
2652
2653 /* Done with the space/subspace strings. Write out any information
2654 contained in a partial block. */
2655 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2656 return false;
2657 *string_sizep = strings_size;
2658 return true;
2659 }
2660
2661 /* Write out the symbol string table. */
2662
2663 static boolean
2664 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2665 bfd *abfd;
2666 unsigned long current_offset;
2667 asymbol **syms;
2668 unsigned int num_syms;
2669 unsigned int *string_sizep;
2670 {
2671 unsigned int i;
2672
2673 /* Chunk of memory that we can use as buffer space, then throw
2674 away. */
2675 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2676 unsigned char *p;
2677 unsigned int strings_size = 0;
2678
2679 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2680 p = tmp_space;
2681
2682 /* Seek to the start of the space strings in preparation for writing
2683 them out. */
2684 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2685 return false;
2686
2687 for (i = 0; i < num_syms; i++)
2688 {
2689 int length = strlen (syms[i]->name);
2690
2691 /* If there is not enough room for the next entry, then dump the
2692 current buffer contents now. */
2693 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2694 {
2695 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2696 != p - tmp_space)
2697 return false;
2698 /* Reset to beginning of the buffer space. */
2699 p = tmp_space;
2700 }
2701
2702 /* First element in a string table entry is the length of the
2703 string. This must always be 4 byte aligned. This is also
2704 an appropriate time to fill in the string index field in the
2705 symbol table entry. */
2706 bfd_put_32 (abfd, length, p);
2707 strings_size += 4;
2708 p += 4;
2709
2710 /* Next comes the string itself + a null terminator. */
2711 strcpy (p, syms[i]->name);
2712
2713 /* ACK. FIXME. */
2714 syms[i]->name = (char *)strings_size;
2715 p += length + 1;
2716 strings_size += length + 1;
2717
2718 /* Always align up to the next word boundary. */
2719 while (strings_size % 4)
2720 {
2721 bfd_put_8 (abfd, 0, p);
2722 strings_size++;
2723 p++;
2724 }
2725 }
2726
2727 /* Scribble out any partial block. */
2728 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2729 return false;
2730
2731 *string_sizep = strings_size;
2732 return true;
2733 }
2734
2735 /* Compute variable information to be placed in the SOM headers,
2736 space/subspace dictionaries, relocation streams, etc. Begin
2737 writing parts of the object file. */
2738
2739 static boolean
2740 som_begin_writing (abfd)
2741 bfd *abfd;
2742 {
2743 unsigned long current_offset = 0;
2744 int strings_size = 0;
2745 unsigned int total_reloc_size = 0;
2746 unsigned long num_spaces, num_subspaces, num_syms, i;
2747 asection *section;
2748 asymbol **syms = bfd_get_outsymbols (abfd);
2749 unsigned int total_subspaces = 0;
2750 struct som_exec_auxhdr exec_header;
2751
2752 /* The file header will always be first in an object file,
2753 everything else can be in random locations. To keep things
2754 "simple" BFD will lay out the object file in the manner suggested
2755 by the PRO ABI for PA-RISC Systems. */
2756
2757 /* Before any output can really begin offsets for all the major
2758 portions of the object file must be computed. So, starting
2759 with the initial file header compute (and sometimes write)
2760 each portion of the object file. */
2761
2762 /* Make room for the file header, it's contents are not complete
2763 yet, so it can not be written at this time. */
2764 current_offset += sizeof (struct header);
2765
2766 /* Any auxiliary headers will follow the file header. Right now
2767 we support only the copyright and version headers. */
2768 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2769 obj_som_file_hdr (abfd)->aux_header_size = 0;
2770 if (abfd->flags & (EXEC_P | DYNAMIC))
2771 {
2772 /* Parts of the exec header will be filled in later, so
2773 delay writing the header itself. Fill in the defaults,
2774 and write it later. */
2775 current_offset += sizeof (exec_header);
2776 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2777 memset (&exec_header, 0, sizeof (exec_header));
2778 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2779 exec_header.som_auxhdr.length = 40;
2780 }
2781 if (obj_som_version_hdr (abfd) != NULL)
2782 {
2783 unsigned int len;
2784
2785 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2786 return false;
2787
2788 /* Write the aux_id structure and the string length. */
2789 len = sizeof (struct aux_id) + sizeof (unsigned int);
2790 obj_som_file_hdr (abfd)->aux_header_size += len;
2791 current_offset += len;
2792 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2793 return false;
2794
2795 /* Write the version string. */
2796 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2797 obj_som_file_hdr (abfd)->aux_header_size += len;
2798 current_offset += len;
2799 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2800 len, 1, abfd) != len)
2801 return false;
2802 }
2803
2804 if (obj_som_copyright_hdr (abfd) != NULL)
2805 {
2806 unsigned int len;
2807
2808 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2809 return false;
2810
2811 /* Write the aux_id structure and the string length. */
2812 len = sizeof (struct aux_id) + sizeof (unsigned int);
2813 obj_som_file_hdr (abfd)->aux_header_size += len;
2814 current_offset += len;
2815 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2816 return false;
2817
2818 /* Write the copyright string. */
2819 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2820 obj_som_file_hdr (abfd)->aux_header_size += len;
2821 current_offset += len;
2822 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2823 len, 1, abfd) != len)
2824 return false;
2825 }
2826
2827 /* Next comes the initialization pointers; we have no initialization
2828 pointers, so current offset does not change. */
2829 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2830 obj_som_file_hdr (abfd)->init_array_total = 0;
2831
2832 /* Next are the space records. These are fixed length records.
2833
2834 Count the number of spaces to determine how much room is needed
2835 in the object file for the space records.
2836
2837 The names of the spaces are stored in a separate string table,
2838 and the index for each space into the string table is computed
2839 below. Therefore, it is not possible to write the space headers
2840 at this time. */
2841 num_spaces = som_count_spaces (abfd);
2842 obj_som_file_hdr (abfd)->space_location = current_offset;
2843 obj_som_file_hdr (abfd)->space_total = num_spaces;
2844 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2845
2846 /* Next are the subspace records. These are fixed length records.
2847
2848 Count the number of subspaes to determine how much room is needed
2849 in the object file for the subspace records.
2850
2851 A variety if fields in the subspace record are still unknown at
2852 this time (index into string table, fixup stream location/size, etc). */
2853 num_subspaces = som_count_subspaces (abfd);
2854 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2855 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2856 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2857
2858 /* Next is the string table for the space/subspace names. We will
2859 build and write the string table on the fly. At the same time
2860 we will fill in the space/subspace name index fields. */
2861
2862 /* The string table needs to be aligned on a word boundary. */
2863 if (current_offset % 4)
2864 current_offset += (4 - (current_offset % 4));
2865
2866 /* Mark the offset of the space/subspace string table in the
2867 file header. */
2868 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2869
2870 /* Scribble out the space strings. */
2871 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2872 return false;
2873
2874 /* Record total string table size in the header and update the
2875 current offset. */
2876 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2877 current_offset += strings_size;
2878
2879 /* Next is the symbol table. These are fixed length records.
2880
2881 Count the number of symbols to determine how much room is needed
2882 in the object file for the symbol table.
2883
2884 The names of the symbols are stored in a separate string table,
2885 and the index for each symbol name into the string table is computed
2886 below. Therefore, it is not possible to write the symobl table
2887 at this time. */
2888 num_syms = bfd_get_symcount (abfd);
2889 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2890 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2891 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2892
2893 /* Do prep work before handling fixups. */
2894 som_prep_for_fixups (abfd, syms, num_syms);
2895
2896 /* Next comes the fixup stream which starts on a word boundary. */
2897 if (current_offset % 4)
2898 current_offset += (4 - (current_offset % 4));
2899 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2900
2901 /* Write the fixups and update fields in subspace headers which
2902 relate to the fixup stream. */
2903 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2904 return false;
2905
2906 /* Record the total size of the fixup stream in the file header. */
2907 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2908 current_offset += total_reloc_size;
2909
2910 /* Next are the symbol strings.
2911 Align them to a word boundary. */
2912 if (current_offset % 4)
2913 current_offset += (4 - (current_offset % 4));
2914 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2915
2916 /* Scribble out the symbol strings. */
2917 if (som_write_symbol_strings (abfd, current_offset, syms,
2918 num_syms, &strings_size)
2919 == false)
2920 return false;
2921
2922 /* Record total string table size in header and update the
2923 current offset. */
2924 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2925 current_offset += strings_size;
2926
2927 /* Next is the compiler records. We do not use these. */
2928 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2929 obj_som_file_hdr (abfd)->compiler_total = 0;
2930
2931 /* Now compute the file positions for the loadable subspaces, taking
2932 care to make sure everything stays properly aligned. */
2933
2934 section = abfd->sections;
2935 for (i = 0; i < num_spaces; i++)
2936 {
2937 asection *subsection;
2938 int first_subspace;
2939 unsigned int subspace_offset = 0;
2940
2941 /* Find a space. */
2942 while (!som_is_space (section))
2943 section = section->next;
2944
2945 first_subspace = 1;
2946 /* Now look for all its subspaces. */
2947 for (subsection = abfd->sections;
2948 subsection != NULL;
2949 subsection = subsection->next)
2950 {
2951
2952 if (!som_is_subspace (subsection)
2953 || !som_is_container (section, subsection)
2954 || (subsection->flags & SEC_ALLOC) == 0)
2955 continue;
2956
2957 /* If this is the first subspace in the space, and we are
2958 building an executable, then take care to make sure all
2959 the alignments are correct and update the exec header. */
2960 if (first_subspace
2961 && (abfd->flags & (EXEC_P | DYNAMIC)))
2962 {
2963 /* Demand paged executables have each space aligned to a
2964 page boundary. Sharable executables (write-protected
2965 text) have just the private (aka data & bss) space aligned
2966 to a page boundary. Ugh. Not true for HPUX.
2967
2968 The HPUX kernel requires the text to always be page aligned
2969 within the file regardless of the executable's type. */
2970 if (abfd->flags & (D_PAGED | DYNAMIC)
2971 || (subsection->flags & SEC_CODE)
2972 || ((abfd->flags & WP_TEXT)
2973 && (subsection->flags & SEC_DATA)))
2974 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2975
2976 /* Update the exec header. */
2977 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2978 {
2979 exec_header.exec_tmem = section->vma;
2980 exec_header.exec_tfile = current_offset;
2981 }
2982 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2983 {
2984 exec_header.exec_dmem = section->vma;
2985 exec_header.exec_dfile = current_offset;
2986 }
2987
2988 /* Keep track of exactly where we are within a particular
2989 space. This is necessary as the braindamaged HPUX
2990 loader will create holes between subspaces *and*
2991 subspace alignments are *NOT* preserved. What a crock. */
2992 subspace_offset = subsection->vma;
2993
2994 /* Only do this for the first subspace within each space. */
2995 first_subspace = 0;
2996 }
2997 else if (abfd->flags & (EXEC_P | DYNAMIC))
2998 {
2999 /* The braindamaged HPUX loader may have created a hole
3000 between two subspaces. It is *not* sufficient to use
3001 the alignment specifications within the subspaces to
3002 account for these holes -- I've run into at least one
3003 case where the loader left one code subspace unaligned
3004 in a final executable.
3005
3006 To combat this we keep a current offset within each space,
3007 and use the subspace vma fields to detect and preserve
3008 holes. What a crock!
3009
3010 ps. This is not necessary for unloadable space/subspaces. */
3011 current_offset += subsection->vma - subspace_offset;
3012 if (subsection->flags & SEC_CODE)
3013 exec_header.exec_tsize += subsection->vma - subspace_offset;
3014 else
3015 exec_header.exec_dsize += subsection->vma - subspace_offset;
3016 subspace_offset += subsection->vma - subspace_offset;
3017 }
3018
3019
3020 subsection->target_index = total_subspaces++;
3021 /* This is real data to be loaded from the file. */
3022 if (subsection->flags & SEC_LOAD)
3023 {
3024 /* Update the size of the code & data. */
3025 if (abfd->flags & (EXEC_P | DYNAMIC)
3026 && subsection->flags & SEC_CODE)
3027 exec_header.exec_tsize += subsection->_cooked_size;
3028 else if (abfd->flags & (EXEC_P | DYNAMIC)
3029 && subsection->flags & SEC_DATA)
3030 exec_header.exec_dsize += subsection->_cooked_size;
3031 som_section_data (subsection)->subspace_dict->file_loc_init_value
3032 = current_offset;
3033 subsection->filepos = current_offset;
3034 current_offset += bfd_section_size (abfd, subsection);
3035 subspace_offset += bfd_section_size (abfd, subsection);
3036 }
3037 /* Looks like uninitialized data. */
3038 else
3039 {
3040 /* Update the size of the bss section. */
3041 if (abfd->flags & (EXEC_P | DYNAMIC))
3042 exec_header.exec_bsize += subsection->_cooked_size;
3043
3044 som_section_data (subsection)->subspace_dict->file_loc_init_value
3045 = 0;
3046 som_section_data (subsection)->subspace_dict->
3047 initialization_length = 0;
3048 }
3049 }
3050 /* Goto the next section. */
3051 section = section->next;
3052 }
3053
3054 /* Finally compute the file positions for unloadable subspaces.
3055 If building an executable, start the unloadable stuff on its
3056 own page. */
3057
3058 if (abfd->flags & (EXEC_P | DYNAMIC))
3059 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3060
3061 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3062 section = abfd->sections;
3063 for (i = 0; i < num_spaces; i++)
3064 {
3065 asection *subsection;
3066
3067 /* Find a space. */
3068 while (!som_is_space (section))
3069 section = section->next;
3070
3071 if (abfd->flags & (EXEC_P | DYNAMIC))
3072 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3073
3074 /* Now look for all its subspaces. */
3075 for (subsection = abfd->sections;
3076 subsection != NULL;
3077 subsection = subsection->next)
3078 {
3079
3080 if (!som_is_subspace (subsection)
3081 || !som_is_container (section, subsection)
3082 || (subsection->flags & SEC_ALLOC) != 0)
3083 continue;
3084
3085 subsection->target_index = total_subspaces;
3086 /* This is real data to be loaded from the file. */
3087 if ((subsection->flags & SEC_LOAD) == 0)
3088 {
3089 som_section_data (subsection)->subspace_dict->file_loc_init_value
3090 = current_offset;
3091 subsection->filepos = current_offset;
3092 current_offset += bfd_section_size (abfd, subsection);
3093 }
3094 /* Looks like uninitialized data. */
3095 else
3096 {
3097 som_section_data (subsection)->subspace_dict->file_loc_init_value
3098 = 0;
3099 som_section_data (subsection)->subspace_dict->
3100 initialization_length = bfd_section_size (abfd, subsection);
3101 }
3102 }
3103 /* Goto the next section. */
3104 section = section->next;
3105 }
3106
3107 /* If building an executable, then make sure to seek to and write
3108 one byte at the end of the file to make sure any necessary
3109 zeros are filled in. Ugh. */
3110 if (abfd->flags & (EXEC_P | DYNAMIC))
3111 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3112 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3113 return false;
3114 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3115 return false;
3116
3117 obj_som_file_hdr (abfd)->unloadable_sp_size
3118 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3119
3120 /* Loader fixups are not supported in any way shape or form. */
3121 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3122 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3123
3124 /* Done. Store the total size of the SOM. */
3125 obj_som_file_hdr (abfd)->som_length = current_offset;
3126
3127 /* Now write the exec header. */
3128 if (abfd->flags & (EXEC_P | DYNAMIC))
3129 {
3130 long tmp;
3131
3132 exec_header.exec_entry = bfd_get_start_address (abfd);
3133 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3134
3135 /* Oh joys. Ram some of the BSS data into the DATA section
3136 to be compatable with how the hp linker makes objects
3137 (saves memory space). */
3138 tmp = exec_header.exec_dsize;
3139 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3140 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3141 if (exec_header.exec_bsize < 0)
3142 exec_header.exec_bsize = 0;
3143 exec_header.exec_dsize = tmp;
3144
3145 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3146 SEEK_SET) < 0)
3147 return false;
3148
3149 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3150 != AUX_HDR_SIZE)
3151 return false;
3152 }
3153 return true;
3154 }
3155
3156 /* Finally, scribble out the various headers to the disk. */
3157
3158 static boolean
3159 som_write_headers (abfd)
3160 bfd *abfd;
3161 {
3162 int num_spaces = som_count_spaces (abfd);
3163 int i;
3164 int subspace_index = 0;
3165 file_ptr location;
3166 asection *section;
3167
3168 /* Subspaces are written first so that we can set up information
3169 about them in their containing spaces as the subspace is written. */
3170
3171 /* Seek to the start of the subspace dictionary records. */
3172 location = obj_som_file_hdr (abfd)->subspace_location;
3173 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3174 return false;
3175
3176 section = abfd->sections;
3177 /* Now for each loadable space write out records for its subspaces. */
3178 for (i = 0; i < num_spaces; i++)
3179 {
3180 asection *subsection;
3181
3182 /* Find a space. */
3183 while (!som_is_space (section))
3184 section = section->next;
3185
3186 /* Now look for all its subspaces. */
3187 for (subsection = abfd->sections;
3188 subsection != NULL;
3189 subsection = subsection->next)
3190 {
3191
3192 /* Skip any section which does not correspond to a space
3193 or subspace. Or does not have SEC_ALLOC set (and therefore
3194 has no real bits on the disk). */
3195 if (!som_is_subspace (subsection)
3196 || !som_is_container (section, subsection)
3197 || (subsection->flags & SEC_ALLOC) == 0)
3198 continue;
3199
3200 /* If this is the first subspace for this space, then save
3201 the index of the subspace in its containing space. Also
3202 set "is_loadable" in the containing space. */
3203
3204 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3205 {
3206 som_section_data (section)->space_dict->is_loadable = 1;
3207 som_section_data (section)->space_dict->subspace_index
3208 = subspace_index;
3209 }
3210
3211 /* Increment the number of subspaces seen and the number of
3212 subspaces contained within the current space. */
3213 subspace_index++;
3214 som_section_data (section)->space_dict->subspace_quantity++;
3215
3216 /* Mark the index of the current space within the subspace's
3217 dictionary record. */
3218 som_section_data (subsection)->subspace_dict->space_index = i;
3219
3220 /* Dump the current subspace header. */
3221 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3222 sizeof (struct subspace_dictionary_record), 1, abfd)
3223 != sizeof (struct subspace_dictionary_record))
3224 return false;
3225 }
3226 /* Goto the next section. */
3227 section = section->next;
3228 }
3229
3230 /* Now repeat the process for unloadable subspaces. */
3231 section = abfd->sections;
3232 /* Now for each space write out records for its subspaces. */
3233 for (i = 0; i < num_spaces; i++)
3234 {
3235 asection *subsection;
3236
3237 /* Find a space. */
3238 while (!som_is_space (section))
3239 section = section->next;
3240
3241 /* Now look for all its subspaces. */
3242 for (subsection = abfd->sections;
3243 subsection != NULL;
3244 subsection = subsection->next)
3245 {
3246
3247 /* Skip any section which does not correspond to a space or
3248 subspace, or which SEC_ALLOC set (and therefore handled
3249 in the loadable spaces/subspaces code above). */
3250
3251 if (!som_is_subspace (subsection)
3252 || !som_is_container (section, subsection)
3253 || (subsection->flags & SEC_ALLOC) != 0)
3254 continue;
3255
3256 /* If this is the first subspace for this space, then save
3257 the index of the subspace in its containing space. Clear
3258 "is_loadable". */
3259
3260 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3261 {
3262 som_section_data (section)->space_dict->is_loadable = 0;
3263 som_section_data (section)->space_dict->subspace_index
3264 = subspace_index;
3265 }
3266
3267 /* Increment the number of subspaces seen and the number of
3268 subspaces contained within the current space. */
3269 som_section_data (section)->space_dict->subspace_quantity++;
3270 subspace_index++;
3271
3272 /* Mark the index of the current space within the subspace's
3273 dictionary record. */
3274 som_section_data (subsection)->subspace_dict->space_index = i;
3275
3276 /* Dump this subspace header. */
3277 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3278 sizeof (struct subspace_dictionary_record), 1, abfd)
3279 != sizeof (struct subspace_dictionary_record))
3280 return false;
3281 }
3282 /* Goto the next section. */
3283 section = section->next;
3284 }
3285
3286 /* All the subspace dictiondary records are written, and all the
3287 fields are set up in the space dictionary records.
3288
3289 Seek to the right location and start writing the space
3290 dictionary records. */
3291 location = obj_som_file_hdr (abfd)->space_location;
3292 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3293 return false;
3294
3295 section = abfd->sections;
3296 for (i = 0; i < num_spaces; i++)
3297 {
3298
3299 /* Find a space. */
3300 while (!som_is_space (section))
3301 section = section->next;
3302
3303 /* Dump its header */
3304 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3305 sizeof (struct space_dictionary_record), 1, abfd)
3306 != sizeof (struct space_dictionary_record))
3307 return false;
3308
3309 /* Goto the next section. */
3310 section = section->next;
3311 }
3312
3313 /* Only thing left to do is write out the file header. It is always
3314 at location zero. Seek there and write it. */
3315 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3316 return false;
3317 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3318 sizeof (struct header), 1, abfd)
3319 != sizeof (struct header))
3320 return false;
3321 return true;
3322 }
3323
3324 /* Compute and return the checksum for a SOM file header. */
3325
3326 static unsigned long
3327 som_compute_checksum (abfd)
3328 bfd *abfd;
3329 {
3330 unsigned long checksum, count, i;
3331 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3332
3333 checksum = 0;
3334 count = sizeof (struct header) / sizeof (unsigned long);
3335 for (i = 0; i < count; i++)
3336 checksum ^= *(buffer + i);
3337
3338 return checksum;
3339 }
3340
3341 static void
3342 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3343 bfd *abfd;
3344 asymbol *sym;
3345 struct som_misc_symbol_info *info;
3346 {
3347 /* Initialize. */
3348 memset (info, 0, sizeof (struct som_misc_symbol_info));
3349
3350 /* The HP SOM linker requires detailed type information about
3351 all symbols (including undefined symbols!). Unfortunately,
3352 the type specified in an import/export statement does not
3353 always match what the linker wants. Severe braindamage. */
3354
3355 /* Section symbols will not have a SOM symbol type assigned to
3356 them yet. Assign all section symbols type ST_DATA. */
3357 if (sym->flags & BSF_SECTION_SYM)
3358 info->symbol_type = ST_DATA;
3359 else
3360 {
3361 /* Common symbols must have scope SS_UNSAT and type
3362 ST_STORAGE or the linker will choke. */
3363 if (sym->section == &bfd_com_section)
3364 {
3365 info->symbol_scope = SS_UNSAT;
3366 info->symbol_type = ST_STORAGE;
3367 }
3368
3369 /* It is possible to have a symbol without an associated
3370 type. This happens if the user imported the symbol
3371 without a type and the symbol was never defined
3372 locally. If BSF_FUNCTION is set for this symbol, then
3373 assign it type ST_CODE (the HP linker requires undefined
3374 external functions to have type ST_CODE rather than ST_ENTRY). */
3375 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3376 && sym->section == &bfd_und_section
3377 && sym->flags & BSF_FUNCTION)
3378 info->symbol_type = ST_CODE;
3379
3380 /* Handle function symbols which were defined in this file.
3381 They should have type ST_ENTRY. Also retrieve the argument
3382 relocation bits from the SOM backend information. */
3383 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3384 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3385 && (sym->flags & BSF_FUNCTION))
3386 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3387 && (sym->flags & BSF_FUNCTION)))
3388 {
3389 info->symbol_type = ST_ENTRY;
3390 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3391 }
3392
3393 /* If the type is unknown at this point, it should be
3394 ST_DATA (functions were handled as special cases above). */
3395 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3396 info->symbol_type = ST_DATA;
3397
3398 /* From now on it's a very simple mapping. */
3399 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3400 info->symbol_type = ST_ABSOLUTE;
3401 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3402 info->symbol_type = ST_CODE;
3403 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3404 info->symbol_type = ST_DATA;
3405 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3406 info->symbol_type = ST_MILLICODE;
3407 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3408 info->symbol_type = ST_PLABEL;
3409 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3410 info->symbol_type = ST_PRI_PROG;
3411 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3412 info->symbol_type = ST_SEC_PROG;
3413 }
3414
3415 /* Now handle the symbol's scope. Exported data which is not
3416 in the common section has scope SS_UNIVERSAL. Note scope
3417 of common symbols was handled earlier! */
3418 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3419 info->symbol_scope = SS_UNIVERSAL;
3420 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3421 else if (sym->section == &bfd_und_section)
3422 info->symbol_scope = SS_UNSAT;
3423 /* Anything else which is not in the common section has scope
3424 SS_LOCAL. */
3425 else if (sym->section != &bfd_com_section)
3426 info->symbol_scope = SS_LOCAL;
3427
3428 /* Now set the symbol_info field. It has no real meaning
3429 for undefined or common symbols, but the HP linker will
3430 choke if it's not set to some "reasonable" value. We
3431 use zero as a reasonable value. */
3432 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3433 || sym->section == &bfd_abs_section)
3434 info->symbol_info = 0;
3435 /* For all other symbols, the symbol_info field contains the
3436 subspace index of the space this symbol is contained in. */
3437 else
3438 info->symbol_info = sym->section->target_index;
3439
3440 /* Set the symbol's value. */
3441 info->symbol_value = sym->value + sym->section->vma;
3442 }
3443
3444 /* Build and write, in one big chunk, the entire symbol table for
3445 this BFD. */
3446
3447 static boolean
3448 som_build_and_write_symbol_table (abfd)
3449 bfd *abfd;
3450 {
3451 unsigned int num_syms = bfd_get_symcount (abfd);
3452 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3453 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3454 struct symbol_dictionary_record *som_symtab = NULL;
3455 int i, symtab_size;
3456
3457 /* Compute total symbol table size and allocate a chunk of memory
3458 to hold the symbol table as we build it. */
3459 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3460 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3461 if (som_symtab == NULL && symtab_size != 0)
3462 {
3463 bfd_set_error (bfd_error_no_memory);
3464 goto error_return;
3465 }
3466 memset (som_symtab, 0, symtab_size);
3467
3468 /* Walk over each symbol. */
3469 for (i = 0; i < num_syms; i++)
3470 {
3471 struct som_misc_symbol_info info;
3472
3473 /* This is really an index into the symbol strings table.
3474 By the time we get here, the index has already been
3475 computed and stored into the name field in the BFD symbol. */
3476 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3477
3478 /* Derive SOM information from the BFD symbol. */
3479 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3480
3481 /* Now use it. */
3482 som_symtab[i].symbol_type = info.symbol_type;
3483 som_symtab[i].symbol_scope = info.symbol_scope;
3484 som_symtab[i].arg_reloc = info.arg_reloc;
3485 som_symtab[i].symbol_info = info.symbol_info;
3486 som_symtab[i].symbol_value = info.symbol_value;
3487 }
3488
3489 /* Everything is ready, seek to the right location and
3490 scribble out the symbol table. */
3491 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3492 return false;
3493
3494 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3495 goto error_return;
3496
3497 if (som_symtab != NULL)
3498 free (som_symtab);
3499 return true;
3500 error_return:
3501 if (som_symtab != NULL)
3502 free (som_symtab);
3503 return false;
3504 }
3505
3506 /* Write an object in SOM format. */
3507
3508 static boolean
3509 som_write_object_contents (abfd)
3510 bfd *abfd;
3511 {
3512 if (abfd->output_has_begun == false)
3513 {
3514 /* Set up fixed parts of the file, space, and subspace headers.
3515 Notify the world that output has begun. */
3516 som_prep_headers (abfd);
3517 abfd->output_has_begun = true;
3518 /* Start writing the object file. This include all the string
3519 tables, fixup streams, and other portions of the object file. */
3520 som_begin_writing (abfd);
3521 }
3522
3523 /* Now that the symbol table information is complete, build and
3524 write the symbol table. */
3525 if (som_build_and_write_symbol_table (abfd) == false)
3526 return false;
3527
3528 /* Compute the checksum for the file header just before writing
3529 the header to disk. */
3530 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3531 return (som_write_headers (abfd));
3532 }
3533
3534 \f
3535 /* Read and save the string table associated with the given BFD. */
3536
3537 static boolean
3538 som_slurp_string_table (abfd)
3539 bfd *abfd;
3540 {
3541 char *stringtab;
3542
3543 /* Use the saved version if its available. */
3544 if (obj_som_stringtab (abfd) != NULL)
3545 return true;
3546
3547 /* I don't think this can currently happen, and I'm not sure it should
3548 really be an error, but it's better than getting unpredictable results
3549 from the host's malloc when passed a size of zero. */
3550 if (obj_som_stringtab_size (abfd) == 0)
3551 {
3552 bfd_set_error (bfd_error_no_symbols);
3553 return false;
3554 }
3555
3556 /* Allocate and read in the string table. */
3557 stringtab = malloc (obj_som_stringtab_size (abfd));
3558 if (stringtab == NULL)
3559 {
3560 bfd_set_error (bfd_error_no_memory);
3561 return false;
3562 }
3563
3564 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3565 return false;
3566
3567 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3568 != obj_som_stringtab_size (abfd))
3569 return false;
3570
3571 /* Save our results and return success. */
3572 obj_som_stringtab (abfd) = stringtab;
3573 return true;
3574 }
3575
3576 /* Return the amount of data (in bytes) required to hold the symbol
3577 table for this object. */
3578
3579 static long
3580 som_get_symtab_upper_bound (abfd)
3581 bfd *abfd;
3582 {
3583 if (!som_slurp_symbol_table (abfd))
3584 return -1;
3585
3586 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3587 }
3588
3589 /* Convert from a SOM subspace index to a BFD section. */
3590
3591 static asection *
3592 bfd_section_from_som_symbol (abfd, symbol)
3593 bfd *abfd;
3594 struct symbol_dictionary_record *symbol;
3595 {
3596 asection *section;
3597
3598 /* The meaning of the symbol_info field changes for functions
3599 within executables. So only use the quick symbol_info mapping for
3600 incomplete objects and non-function symbols in executables. */
3601 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3602 || (symbol->symbol_type != ST_ENTRY
3603 && symbol->symbol_type != ST_PRI_PROG
3604 && symbol->symbol_type != ST_SEC_PROG
3605 && symbol->symbol_type != ST_MILLICODE))
3606 {
3607 unsigned int index = symbol->symbol_info;
3608 for (section = abfd->sections; section != NULL; section = section->next)
3609 if (section->target_index == index)
3610 return section;
3611
3612 /* Should never happen. */
3613 abort();
3614 }
3615 else
3616 {
3617 unsigned int value = symbol->symbol_value;
3618 unsigned int found = 0;
3619
3620 /* For executables we will have to use the symbol's address and
3621 find out what section would contain that address. Yuk. */
3622 for (section = abfd->sections; section; section = section->next)
3623 {
3624 if (value >= section->vma
3625 && value <= section->vma + section->_cooked_size)
3626 return section;
3627 }
3628
3629 /* Should never happen. */
3630 abort ();
3631 }
3632 }
3633
3634 /* Read and save the symbol table associated with the given BFD. */
3635
3636 static unsigned int
3637 som_slurp_symbol_table (abfd)
3638 bfd *abfd;
3639 {
3640 int symbol_count = bfd_get_symcount (abfd);
3641 int symsize = sizeof (struct symbol_dictionary_record);
3642 char *stringtab;
3643 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3644 som_symbol_type *sym, *symbase;
3645
3646 /* Return saved value if it exists. */
3647 if (obj_som_symtab (abfd) != NULL)
3648 goto successful_return;
3649
3650 /* Special case. This is *not* an error. */
3651 if (symbol_count == 0)
3652 goto successful_return;
3653
3654 if (!som_slurp_string_table (abfd))
3655 goto error_return;
3656
3657 stringtab = obj_som_stringtab (abfd);
3658
3659 symbase = (som_symbol_type *)
3660 malloc (symbol_count * sizeof (som_symbol_type));
3661 if (symbase == NULL)
3662 {
3663 bfd_set_error (bfd_error_no_memory);
3664 goto error_return;
3665 }
3666
3667 /* Read in the external SOM representation. */
3668 buf = malloc (symbol_count * symsize);
3669 if (buf == NULL && symbol_count * symsize != 0)
3670 {
3671 bfd_set_error (bfd_error_no_memory);
3672 goto error_return;
3673 }
3674 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3675 goto error_return;
3676 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3677 != symbol_count * symsize)
3678 goto error_return;
3679
3680 /* Iterate over all the symbols and internalize them. */
3681 endbufp = buf + symbol_count;
3682 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3683 {
3684
3685 /* I don't think we care about these. */
3686 if (bufp->symbol_type == ST_SYM_EXT
3687 || bufp->symbol_type == ST_ARG_EXT)
3688 continue;
3689
3690 /* Set some private data we care about. */
3691 if (bufp->symbol_type == ST_NULL)
3692 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3693 else if (bufp->symbol_type == ST_ABSOLUTE)
3694 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3695 else if (bufp->symbol_type == ST_DATA)
3696 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3697 else if (bufp->symbol_type == ST_CODE)
3698 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3699 else if (bufp->symbol_type == ST_PRI_PROG)
3700 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3701 else if (bufp->symbol_type == ST_SEC_PROG)
3702 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3703 else if (bufp->symbol_type == ST_ENTRY)
3704 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3705 else if (bufp->symbol_type == ST_MILLICODE)
3706 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3707 else if (bufp->symbol_type == ST_PLABEL)
3708 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3709 else
3710 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3711 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3712
3713 /* Some reasonable defaults. */
3714 sym->symbol.the_bfd = abfd;
3715 sym->symbol.name = bufp->name.n_strx + stringtab;
3716 sym->symbol.value = bufp->symbol_value;
3717 sym->symbol.section = 0;
3718 sym->symbol.flags = 0;
3719
3720 switch (bufp->symbol_type)
3721 {
3722 case ST_ENTRY:
3723 case ST_PRI_PROG:
3724 case ST_SEC_PROG:
3725 case ST_MILLICODE:
3726 sym->symbol.flags |= BSF_FUNCTION;
3727 sym->symbol.value &= ~0x3;
3728 break;
3729
3730 case ST_STUB:
3731 case ST_CODE:
3732 sym->symbol.value &= ~0x3;
3733
3734 default:
3735 break;
3736 }
3737
3738 /* Handle scoping and section information. */
3739 switch (bufp->symbol_scope)
3740 {
3741 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3742 so the section associated with this symbol can't be known. */
3743 case SS_EXTERNAL:
3744 if (bufp->symbol_type != ST_STORAGE)
3745 sym->symbol.section = &bfd_und_section;
3746 else
3747 sym->symbol.section = &bfd_com_section;
3748 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3749 break;
3750
3751 case SS_UNSAT:
3752 if (bufp->symbol_type != ST_STORAGE)
3753 sym->symbol.section = &bfd_und_section;
3754 else
3755 sym->symbol.section = &bfd_com_section;
3756 break;
3757
3758 case SS_UNIVERSAL:
3759 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3760 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3761 sym->symbol.value -= sym->symbol.section->vma;
3762 break;
3763
3764 #if 0
3765 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3766 Sound dumb? It is. */
3767 case SS_GLOBAL:
3768 #endif
3769 case SS_LOCAL:
3770 sym->symbol.flags |= BSF_LOCAL;
3771 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3772 sym->symbol.value -= sym->symbol.section->vma;
3773 break;
3774 }
3775
3776 /* Mark section symbols and symbols used by the debugger. */
3777 if (sym->symbol.name[0] == '$'
3778 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3779 sym->symbol.flags |= BSF_SECTION_SYM;
3780 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3781 {
3782 sym->symbol.flags |= BSF_SECTION_SYM;
3783 sym->symbol.name = sym->symbol.section->name;
3784 }
3785 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3786 sym->symbol.flags |= BSF_DEBUGGING;
3787
3788 /* Note increment at bottom of loop, since we skip some symbols
3789 we can not include it as part of the for statement. */
3790 sym++;
3791 }
3792
3793 /* Save our results and return success. */
3794 obj_som_symtab (abfd) = symbase;
3795 successful_return:
3796 if (buf != NULL)
3797 free (buf);
3798 return (true);
3799
3800 error_return:
3801 if (buf != NULL)
3802 free (buf);
3803 return false;
3804 }
3805
3806 /* Canonicalize a SOM symbol table. Return the number of entries
3807 in the symbol table. */
3808
3809 static long
3810 som_get_symtab (abfd, location)
3811 bfd *abfd;
3812 asymbol **location;
3813 {
3814 int i;
3815 som_symbol_type *symbase;
3816
3817 if (!som_slurp_symbol_table (abfd))
3818 return -1;
3819
3820 i = bfd_get_symcount (abfd);
3821 symbase = obj_som_symtab (abfd);
3822
3823 for (; i > 0; i--, location++, symbase++)
3824 *location = &symbase->symbol;
3825
3826 /* Final null pointer. */
3827 *location = 0;
3828 return (bfd_get_symcount (abfd));
3829 }
3830
3831 /* Make a SOM symbol. There is nothing special to do here. */
3832
3833 static asymbol *
3834 som_make_empty_symbol (abfd)
3835 bfd *abfd;
3836 {
3837 som_symbol_type *new =
3838 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3839 if (new == NULL)
3840 {
3841 bfd_set_error (bfd_error_no_memory);
3842 return 0;
3843 }
3844 new->symbol.the_bfd = abfd;
3845
3846 return &new->symbol;
3847 }
3848
3849 /* Print symbol information. */
3850
3851 static void
3852 som_print_symbol (ignore_abfd, afile, symbol, how)
3853 bfd *ignore_abfd;
3854 PTR afile;
3855 asymbol *symbol;
3856 bfd_print_symbol_type how;
3857 {
3858 FILE *file = (FILE *) afile;
3859 switch (how)
3860 {
3861 case bfd_print_symbol_name:
3862 fprintf (file, "%s", symbol->name);
3863 break;
3864 case bfd_print_symbol_more:
3865 fprintf (file, "som ");
3866 fprintf_vma (file, symbol->value);
3867 fprintf (file, " %lx", (long) symbol->flags);
3868 break;
3869 case bfd_print_symbol_all:
3870 {
3871 CONST char *section_name;
3872 section_name = symbol->section ? symbol->section->name : "(*none*)";
3873 bfd_print_symbol_vandf ((PTR) file, symbol);
3874 fprintf (file, " %s\t%s", section_name, symbol->name);
3875 break;
3876 }
3877 }
3878 }
3879
3880 static boolean
3881 som_bfd_is_local_label (abfd, sym)
3882 bfd *abfd;
3883 asymbol *sym;
3884 {
3885 return (sym->name[0] == 'L' && sym->name[1] == '$');
3886 }
3887
3888 /* Count or process variable-length SOM fixup records.
3889
3890 To avoid code duplication we use this code both to compute the number
3891 of relocations requested by a stream, and to internalize the stream.
3892
3893 When computing the number of relocations requested by a stream the
3894 variables rptr, section, and symbols have no meaning.
3895
3896 Return the number of relocations requested by the fixup stream. When
3897 not just counting
3898
3899 This needs at least two or three more passes to get it cleaned up. */
3900
3901 static unsigned int
3902 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3903 unsigned char *fixup;
3904 unsigned int end;
3905 arelent *internal_relocs;
3906 asection *section;
3907 asymbol **symbols;
3908 boolean just_count;
3909 {
3910 unsigned int op, varname;
3911 unsigned char *end_fixups = &fixup[end];
3912 const struct fixup_format *fp;
3913 char *cp;
3914 unsigned char *save_fixup;
3915 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3916 const int *subop;
3917 arelent *rptr= internal_relocs;
3918 unsigned int offset = just_count ? 0 : section->vma;
3919
3920 #define var(c) variables[(c) - 'A']
3921 #define push(v) (*sp++ = (v))
3922 #define pop() (*--sp)
3923 #define emptystack() (sp == stack)
3924
3925 som_initialize_reloc_queue (reloc_queue);
3926 memset (variables, 0, sizeof (variables));
3927 memset (stack, 0, sizeof (stack));
3928 count = 0;
3929 prev_fixup = 0;
3930 sp = stack;
3931
3932 while (fixup < end_fixups)
3933 {
3934
3935 /* Save pointer to the start of this fixup. We'll use
3936 it later to determine if it is necessary to put this fixup
3937 on the queue. */
3938 save_fixup = fixup;
3939
3940 /* Get the fixup code and its associated format. */
3941 op = *fixup++;
3942 fp = &som_fixup_formats[op];
3943
3944 /* Handle a request for a previous fixup. */
3945 if (*fp->format == 'P')
3946 {
3947 /* Get pointer to the beginning of the prev fixup, move
3948 the repeated fixup to the head of the queue. */
3949 fixup = reloc_queue[fp->D].reloc;
3950 som_reloc_queue_fix (reloc_queue, fp->D);
3951 prev_fixup = 1;
3952
3953 /* Get the fixup code and its associated format. */
3954 op = *fixup++;
3955 fp = &som_fixup_formats[op];
3956 }
3957
3958 /* If we are not just counting, set some reasonable defaults. */
3959 if (! just_count)
3960 {
3961 rptr->address = offset;
3962 rptr->howto = &som_hppa_howto_table[op];
3963 rptr->addend = 0;
3964 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3965 }
3966
3967 /* Set default input length to 0. Get the opcode class index
3968 into D. */
3969 var ('L') = 0;
3970 var ('D') = fp->D;
3971
3972 /* Get the opcode format. */
3973 cp = fp->format;
3974
3975 /* Process the format string. Parsing happens in two phases,
3976 parse RHS, then assign to LHS. Repeat until no more
3977 characters in the format string. */
3978 while (*cp)
3979 {
3980 /* The variable this pass is going to compute a value for. */
3981 varname = *cp++;
3982
3983 /* Start processing RHS. Continue until a NULL or '=' is found. */
3984 do
3985 {
3986 c = *cp++;
3987
3988 /* If this is a variable, push it on the stack. */
3989 if (isupper (c))
3990 push (var (c));
3991
3992 /* If this is a lower case letter, then it represents
3993 additional data from the fixup stream to be pushed onto
3994 the stack. */
3995 else if (islower (c))
3996 {
3997 for (v = 0; c > 'a'; --c)
3998 v = (v << 8) | *fixup++;
3999 push (v);
4000 }
4001
4002 /* A decimal constant. Push it on the stack. */
4003 else if (isdigit (c))
4004 {
4005 v = c - '0';
4006 while (isdigit (*cp))
4007 v = (v * 10) + (*cp++ - '0');
4008 push (v);
4009 }
4010 else
4011
4012 /* An operator. Pop two two values from the stack and
4013 use them as operands to the given operation. Push
4014 the result of the operation back on the stack. */
4015 switch (c)
4016 {
4017 case '+':
4018 v = pop ();
4019 v += pop ();
4020 push (v);
4021 break;
4022 case '*':
4023 v = pop ();
4024 v *= pop ();
4025 push (v);
4026 break;
4027 case '<':
4028 v = pop ();
4029 v = pop () << v;
4030 push (v);
4031 break;
4032 default:
4033 abort ();
4034 }
4035 }
4036 while (*cp && *cp != '=');
4037
4038 /* Move over the equal operator. */
4039 cp++;
4040
4041 /* Pop the RHS off the stack. */
4042 c = pop ();
4043
4044 /* Perform the assignment. */
4045 var (varname) = c;
4046
4047 /* Handle side effects. and special 'O' stack cases. */
4048 switch (varname)
4049 {
4050 /* Consume some bytes from the input space. */
4051 case 'L':
4052 offset += c;
4053 break;
4054 /* A symbol to use in the relocation. Make a note
4055 of this if we are not just counting. */
4056 case 'S':
4057 if (! just_count)
4058 rptr->sym_ptr_ptr = &symbols[c];
4059 break;
4060 /* Handle the linker expression stack. */
4061 case 'O':
4062 switch (op)
4063 {
4064 case R_COMP1:
4065 subop = comp1_opcodes;
4066 break;
4067 case R_COMP2:
4068 subop = comp2_opcodes;
4069 break;
4070 case R_COMP3:
4071 subop = comp3_opcodes;
4072 break;
4073 default:
4074 abort ();
4075 }
4076 while (*subop <= (unsigned char) c)
4077 ++subop;
4078 --subop;
4079 break;
4080 default:
4081 break;
4082 }
4083 }
4084
4085 /* If we used a previous fixup, clean up after it. */
4086 if (prev_fixup)
4087 {
4088 fixup = save_fixup + 1;
4089 prev_fixup = 0;
4090 }
4091 /* Queue it. */
4092 else if (fixup > save_fixup + 1)
4093 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4094
4095 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4096 fixups to BFD. */
4097 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4098 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4099 {
4100 /* Done with a single reloction. Loop back to the top. */
4101 if (! just_count)
4102 {
4103 rptr->addend = var ('V');
4104 rptr++;
4105 }
4106 count++;
4107 /* Now that we've handled a "full" relocation, reset
4108 some state. */
4109 memset (variables, 0, sizeof (variables));
4110 memset (stack, 0, sizeof (stack));
4111 }
4112 }
4113 return count;
4114
4115 #undef var
4116 #undef push
4117 #undef pop
4118 #undef emptystack
4119 }
4120
4121 /* Read in the relocs (aka fixups in SOM terms) for a section.
4122
4123 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4124 set to true to indicate it only needs a count of the number
4125 of actual relocations. */
4126
4127 static boolean
4128 som_slurp_reloc_table (abfd, section, symbols, just_count)
4129 bfd *abfd;
4130 asection *section;
4131 asymbol **symbols;
4132 boolean just_count;
4133 {
4134 char *external_relocs;
4135 unsigned int fixup_stream_size;
4136 arelent *internal_relocs;
4137 unsigned int num_relocs;
4138
4139 fixup_stream_size = som_section_data (section)->reloc_size;
4140 /* If there were no relocations, then there is nothing to do. */
4141 if (section->reloc_count == 0)
4142 return true;
4143
4144 /* If reloc_count is -1, then the relocation stream has not been
4145 parsed. We must do so now to know how many relocations exist. */
4146 if (section->reloc_count == -1)
4147 {
4148 external_relocs = (char *) malloc (fixup_stream_size);
4149 if (external_relocs == (char *) NULL)
4150 {
4151 bfd_set_error (bfd_error_no_memory);
4152 return false;
4153 }
4154 /* Read in the external forms. */
4155 if (bfd_seek (abfd,
4156 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4157 SEEK_SET)
4158 != 0)
4159 return false;
4160 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4161 != fixup_stream_size)
4162 return false;
4163
4164 /* Let callers know how many relocations found.
4165 also save the relocation stream as we will
4166 need it again. */
4167 section->reloc_count = som_set_reloc_info (external_relocs,
4168 fixup_stream_size,
4169 NULL, NULL, NULL, true);
4170
4171 som_section_data (section)->reloc_stream = external_relocs;
4172 }
4173
4174 /* If the caller only wanted a count, then return now. */
4175 if (just_count)
4176 return true;
4177
4178 num_relocs = section->reloc_count;
4179 external_relocs = som_section_data (section)->reloc_stream;
4180 /* Return saved information about the relocations if it is available. */
4181 if (section->relocation != (arelent *) NULL)
4182 return true;
4183
4184 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4185 if (internal_relocs == (arelent *) NULL)
4186 {
4187 bfd_set_error (bfd_error_no_memory);
4188 return false;
4189 }
4190
4191 /* Process and internalize the relocations. */
4192 som_set_reloc_info (external_relocs, fixup_stream_size,
4193 internal_relocs, section, symbols, false);
4194
4195 /* Save our results and return success. */
4196 section->relocation = internal_relocs;
4197 return (true);
4198 }
4199
4200 /* Return the number of bytes required to store the relocation
4201 information associated with the given section. */
4202
4203 static long
4204 som_get_reloc_upper_bound (abfd, asect)
4205 bfd *abfd;
4206 sec_ptr asect;
4207 {
4208 /* If section has relocations, then read in the relocation stream
4209 and parse it to determine how many relocations exist. */
4210 if (asect->flags & SEC_RELOC)
4211 {
4212 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4213 return false;
4214 return (asect->reloc_count + 1) * sizeof (arelent);
4215 }
4216 /* There are no relocations. */
4217 return 0;
4218 }
4219
4220 /* Convert relocations from SOM (external) form into BFD internal
4221 form. Return the number of relocations. */
4222
4223 static long
4224 som_canonicalize_reloc (abfd, section, relptr, symbols)
4225 bfd *abfd;
4226 sec_ptr section;
4227 arelent **relptr;
4228 asymbol **symbols;
4229 {
4230 arelent *tblptr;
4231 int count;
4232
4233 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4234 return -1;
4235
4236 count = section->reloc_count;
4237 tblptr = section->relocation;
4238
4239 while (count--)
4240 *relptr++ = tblptr++;
4241
4242 *relptr = (arelent *) NULL;
4243 return section->reloc_count;
4244 }
4245
4246 extern bfd_target som_vec;
4247
4248 /* A hook to set up object file dependent section information. */
4249
4250 static boolean
4251 som_new_section_hook (abfd, newsect)
4252 bfd *abfd;
4253 asection *newsect;
4254 {
4255 newsect->used_by_bfd =
4256 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4257 if (!newsect->used_by_bfd)
4258 {
4259 bfd_set_error (bfd_error_no_memory);
4260 return false;
4261 }
4262 newsect->alignment_power = 3;
4263
4264 /* We allow more than three sections internally */
4265 return true;
4266 }
4267
4268 /* Copy any private info we understand from the input section
4269 to the output section. */
4270 static boolean
4271 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4272 bfd *ibfd;
4273 asection *isection;
4274 bfd *obfd;
4275 asection *osection;
4276 {
4277 /* One day we may try to grok other private data. */
4278 if (ibfd->xvec->flavour != bfd_target_som_flavour
4279 || obfd->xvec->flavour != bfd_target_som_flavour
4280 || (!som_is_space (isection) && !som_is_subspace (isection)))
4281 return false;
4282
4283 som_section_data (osection)->copy_data
4284 = (struct som_copyable_section_data_struct *)
4285 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4286 if (som_section_data (osection)->copy_data == NULL)
4287 {
4288 bfd_set_error (bfd_error_no_memory);
4289 return false;
4290 }
4291
4292 memcpy (som_section_data (osection)->copy_data,
4293 som_section_data (isection)->copy_data,
4294 sizeof (struct som_copyable_section_data_struct));
4295
4296 /* Reparent if necessary. */
4297 if (som_section_data (osection)->copy_data->container)
4298 som_section_data (osection)->copy_data->container =
4299 som_section_data (osection)->copy_data->container->output_section;
4300
4301 return true;
4302 }
4303
4304 /* Copy any private info we understand from the input bfd
4305 to the output bfd. */
4306
4307 static boolean
4308 som_bfd_copy_private_bfd_data (ibfd, obfd)
4309 bfd *ibfd, *obfd;
4310 {
4311 /* One day we may try to grok other private data. */
4312 if (ibfd->xvec->flavour != bfd_target_som_flavour
4313 || obfd->xvec->flavour != bfd_target_som_flavour)
4314 return false;
4315
4316 /* Allocate some memory to hold the data we need. */
4317 obj_som_exec_data (obfd) = (struct som_exec_data *)
4318 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4319 if (obj_som_exec_data (obfd) == NULL)
4320 {
4321 bfd_set_error (bfd_error_no_memory);
4322 return false;
4323 }
4324
4325 /* Now copy the data. */
4326 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4327 sizeof (struct som_exec_data));
4328
4329 return true;
4330 }
4331
4332 /* Set backend info for sections which can not be described
4333 in the BFD data structures. */
4334
4335 boolean
4336 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4337 asection *section;
4338 int defined;
4339 int private;
4340 unsigned int sort_key;
4341 int spnum;
4342 {
4343 /* Allocate memory to hold the magic information. */
4344 if (som_section_data (section)->copy_data == NULL)
4345 {
4346 som_section_data (section)->copy_data
4347 = (struct som_copyable_section_data_struct *)
4348 bfd_zalloc (section->owner,
4349 sizeof (struct som_copyable_section_data_struct));
4350 if (som_section_data (section)->copy_data == NULL)
4351 {
4352 bfd_set_error (bfd_error_no_memory);
4353 return false;
4354 }
4355 }
4356 som_section_data (section)->copy_data->sort_key = sort_key;
4357 som_section_data (section)->copy_data->is_defined = defined;
4358 som_section_data (section)->copy_data->is_private = private;
4359 som_section_data (section)->copy_data->container = section;
4360 section->target_index = spnum;
4361 return true;
4362 }
4363
4364 /* Set backend info for subsections which can not be described
4365 in the BFD data structures. */
4366
4367 boolean
4368 bfd_som_set_subsection_attributes (section, container, access,
4369 sort_key, quadrant)
4370 asection *section;
4371 asection *container;
4372 int access;
4373 unsigned int sort_key;
4374 int quadrant;
4375 {
4376 /* Allocate memory to hold the magic information. */
4377 if (som_section_data (section)->copy_data == NULL)
4378 {
4379 som_section_data (section)->copy_data
4380 = (struct som_copyable_section_data_struct *)
4381 bfd_zalloc (section->owner,
4382 sizeof (struct som_copyable_section_data_struct));
4383 if (som_section_data (section)->copy_data == NULL)
4384 {
4385 bfd_set_error (bfd_error_no_memory);
4386 return false;
4387 }
4388 }
4389 som_section_data (section)->copy_data->sort_key = sort_key;
4390 som_section_data (section)->copy_data->access_control_bits = access;
4391 som_section_data (section)->copy_data->quadrant = quadrant;
4392 som_section_data (section)->copy_data->container = container;
4393 return true;
4394 }
4395
4396 /* Set the full SOM symbol type. SOM needs far more symbol information
4397 than any other object file format I'm aware of. It is mandatory
4398 to be able to know if a symbol is an entry point, millicode, data,
4399 code, absolute, storage request, or procedure label. If you get
4400 the symbol type wrong your program will not link. */
4401
4402 void
4403 bfd_som_set_symbol_type (symbol, type)
4404 asymbol *symbol;
4405 unsigned int type;
4406 {
4407 som_symbol_data (symbol)->som_type = type;
4408 }
4409
4410 /* Attach 64bits of unwind information to a symbol (which hopefully
4411 is a function of some kind!). It would be better to keep this
4412 in the R_ENTRY relocation, but there is not enough space. */
4413
4414 void
4415 bfd_som_attach_unwind_info (symbol, unwind_desc)
4416 asymbol *symbol;
4417 char *unwind_desc;
4418 {
4419 som_symbol_data (symbol)->unwind = unwind_desc;
4420 }
4421
4422 /* Attach an auxiliary header to the BFD backend so that it may be
4423 written into the object file. */
4424 boolean
4425 bfd_som_attach_aux_hdr (abfd, type, string)
4426 bfd *abfd;
4427 int type;
4428 char *string;
4429 {
4430 if (type == VERSION_AUX_ID)
4431 {
4432 int len = strlen (string);
4433 int pad = 0;
4434
4435 if (len % 4)
4436 pad = (4 - (len % 4));
4437 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4438 bfd_zalloc (abfd, sizeof (struct aux_id)
4439 + sizeof (unsigned int) + len + pad);
4440 if (!obj_som_version_hdr (abfd))
4441 {
4442 bfd_set_error (bfd_error_no_memory);
4443 return false;
4444 }
4445 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4446 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4447 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4448 obj_som_version_hdr (abfd)->string_length = len;
4449 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4450 }
4451 else if (type == COPYRIGHT_AUX_ID)
4452 {
4453 int len = strlen (string);
4454 int pad = 0;
4455
4456 if (len % 4)
4457 pad = (4 - (len % 4));
4458 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4459 bfd_zalloc (abfd, sizeof (struct aux_id)
4460 + sizeof (unsigned int) + len + pad);
4461 if (!obj_som_copyright_hdr (abfd))
4462 {
4463 bfd_set_error (bfd_error_no_memory);
4464 return false;
4465 }
4466 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4467 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4468 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4469 obj_som_copyright_hdr (abfd)->string_length = len;
4470 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4471 }
4472 return true;
4473 }
4474
4475 static boolean
4476 som_get_section_contents (abfd, section, location, offset, count)
4477 bfd *abfd;
4478 sec_ptr section;
4479 PTR location;
4480 file_ptr offset;
4481 bfd_size_type count;
4482 {
4483 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4484 return true;
4485 if ((bfd_size_type)(offset+count) > section->_raw_size
4486 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4487 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4488 return (false); /* on error */
4489 return (true);
4490 }
4491
4492 static boolean
4493 som_set_section_contents (abfd, section, location, offset, count)
4494 bfd *abfd;
4495 sec_ptr section;
4496 PTR location;
4497 file_ptr offset;
4498 bfd_size_type count;
4499 {
4500 if (abfd->output_has_begun == false)
4501 {
4502 /* Set up fixed parts of the file, space, and subspace headers.
4503 Notify the world that output has begun. */
4504 som_prep_headers (abfd);
4505 abfd->output_has_begun = true;
4506 /* Start writing the object file. This include all the string
4507 tables, fixup streams, and other portions of the object file. */
4508 som_begin_writing (abfd);
4509 }
4510
4511 /* Only write subspaces which have "real" contents (eg. the contents
4512 are not generated at run time by the OS). */
4513 if (!som_is_subspace (section)
4514 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4515 return true;
4516
4517 /* Seek to the proper offset within the object file and write the
4518 data. */
4519 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4520 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4521 return false;
4522
4523 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4524 return false;
4525 return true;
4526 }
4527
4528 static boolean
4529 som_set_arch_mach (abfd, arch, machine)
4530 bfd *abfd;
4531 enum bfd_architecture arch;
4532 unsigned long machine;
4533 {
4534 /* Allow any architecture to be supported by the SOM backend */
4535 return bfd_default_set_arch_mach (abfd, arch, machine);
4536 }
4537
4538 static boolean
4539 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4540 functionname_ptr, line_ptr)
4541 bfd *abfd;
4542 asection *section;
4543 asymbol **symbols;
4544 bfd_vma offset;
4545 CONST char **filename_ptr;
4546 CONST char **functionname_ptr;
4547 unsigned int *line_ptr;
4548 {
4549 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4550 fflush (stderr);
4551 abort ();
4552 return (false);
4553 }
4554
4555 static int
4556 som_sizeof_headers (abfd, reloc)
4557 bfd *abfd;
4558 boolean reloc;
4559 {
4560 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4561 fflush (stderr);
4562 abort ();
4563 return (0);
4564 }
4565
4566 /* Return the single-character symbol type corresponding to
4567 SOM section S, or '?' for an unknown SOM section. */
4568
4569 static char
4570 som_section_type (s)
4571 const char *s;
4572 {
4573 const struct section_to_type *t;
4574
4575 for (t = &stt[0]; t->section; t++)
4576 if (!strcmp (s, t->section))
4577 return t->type;
4578 return '?';
4579 }
4580
4581 static int
4582 som_decode_symclass (symbol)
4583 asymbol *symbol;
4584 {
4585 char c;
4586
4587 if (bfd_is_com_section (symbol->section))
4588 return 'C';
4589 if (symbol->section == &bfd_und_section)
4590 return 'U';
4591 if (symbol->section == &bfd_ind_section)
4592 return 'I';
4593 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4594 return '?';
4595
4596 if (symbol->section == &bfd_abs_section)
4597 c = 'a';
4598 else if (symbol->section)
4599 c = som_section_type (symbol->section->name);
4600 else
4601 return '?';
4602 if (symbol->flags & BSF_GLOBAL)
4603 c = toupper (c);
4604 return c;
4605 }
4606
4607 /* Return information about SOM symbol SYMBOL in RET. */
4608
4609 static void
4610 som_get_symbol_info (ignore_abfd, symbol, ret)
4611 bfd *ignore_abfd;
4612 asymbol *symbol;
4613 symbol_info *ret;
4614 {
4615 ret->type = som_decode_symclass (symbol);
4616 if (ret->type != 'U')
4617 ret->value = symbol->value+symbol->section->vma;
4618 else
4619 ret->value = 0;
4620 ret->name = symbol->name;
4621 }
4622
4623 /* Count the number of symbols in the archive symbol table. Necessary
4624 so that we can allocate space for all the carsyms at once. */
4625
4626 static boolean
4627 som_bfd_count_ar_symbols (abfd, lst_header, count)
4628 bfd *abfd;
4629 struct lst_header *lst_header;
4630 symindex *count;
4631 {
4632 unsigned int i;
4633 unsigned int *hash_table = NULL;
4634 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4635
4636 hash_table =
4637 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4638 if (hash_table == NULL && lst_header->hash_size != 0)
4639 {
4640 bfd_set_error (bfd_error_no_memory);
4641 goto error_return;
4642 }
4643
4644 /* Don't forget to initialize the counter! */
4645 *count = 0;
4646
4647 /* Read in the hash table. The has table is an array of 32bit file offsets
4648 which point to the hash chains. */
4649 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4650 != lst_header->hash_size * 4)
4651 goto error_return;
4652
4653 /* Walk each chain counting the number of symbols found on that particular
4654 chain. */
4655 for (i = 0; i < lst_header->hash_size; i++)
4656 {
4657 struct lst_symbol_record lst_symbol;
4658
4659 /* An empty chain has zero as it's file offset. */
4660 if (hash_table[i] == 0)
4661 continue;
4662
4663 /* Seek to the first symbol in this hash chain. */
4664 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4665 goto error_return;
4666
4667 /* Read in this symbol and update the counter. */
4668 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4669 != sizeof (lst_symbol))
4670 goto error_return;
4671
4672 (*count)++;
4673
4674 /* Now iterate through the rest of the symbols on this chain. */
4675 while (lst_symbol.next_entry)
4676 {
4677
4678 /* Seek to the next symbol. */
4679 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4680 < 0)
4681 goto error_return;
4682
4683 /* Read the symbol in and update the counter. */
4684 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4685 != sizeof (lst_symbol))
4686 goto error_return;
4687
4688 (*count)++;
4689 }
4690 }
4691 if (hash_table != NULL)
4692 free (hash_table);
4693 return true;
4694
4695 error_return:
4696 if (hash_table != NULL)
4697 free (hash_table);
4698 return false;
4699 }
4700
4701 /* Fill in the canonical archive symbols (SYMS) from the archive described
4702 by ABFD and LST_HEADER. */
4703
4704 static boolean
4705 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4706 bfd *abfd;
4707 struct lst_header *lst_header;
4708 carsym **syms;
4709 {
4710 unsigned int i, len;
4711 carsym *set = syms[0];
4712 unsigned int *hash_table = NULL;
4713 struct som_entry *som_dict = NULL;
4714 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4715
4716 hash_table =
4717 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4718 if (hash_table == NULL && lst_header->hash_size != 0)
4719 {
4720 bfd_set_error (bfd_error_no_memory);
4721 goto error_return;
4722 }
4723
4724 som_dict =
4725 (struct som_entry *) malloc (lst_header->module_count
4726 * sizeof (struct som_entry));
4727 if (som_dict == NULL && lst_header->module_count != 0)
4728 {
4729 bfd_set_error (bfd_error_no_memory);
4730 goto error_return;
4731 }
4732
4733 /* Read in the hash table. The has table is an array of 32bit file offsets
4734 which point to the hash chains. */
4735 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4736 != lst_header->hash_size * 4)
4737 goto error_return;
4738
4739 /* Seek to and read in the SOM dictionary. We will need this to fill
4740 in the carsym's filepos field. */
4741 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4742 goto error_return;
4743
4744 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4745 sizeof (struct som_entry), abfd)
4746 != lst_header->module_count * sizeof (struct som_entry))
4747 goto error_return;
4748
4749 /* Walk each chain filling in the carsyms as we go along. */
4750 for (i = 0; i < lst_header->hash_size; i++)
4751 {
4752 struct lst_symbol_record lst_symbol;
4753
4754 /* An empty chain has zero as it's file offset. */
4755 if (hash_table[i] == 0)
4756 continue;
4757
4758 /* Seek to and read the first symbol on the chain. */
4759 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4760 goto error_return;
4761
4762 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4763 != sizeof (lst_symbol))
4764 goto error_return;
4765
4766 /* Get the name of the symbol, first get the length which is stored
4767 as a 32bit integer just before the symbol.
4768
4769 One might ask why we don't just read in the entire string table
4770 and index into it. Well, according to the SOM ABI the string
4771 index can point *anywhere* in the archive to save space, so just
4772 using the string table would not be safe. */
4773 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4774 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4775 goto error_return;
4776
4777 if (bfd_read (&len, 1, 4, abfd) != 4)
4778 goto error_return;
4779
4780 /* Allocate space for the name and null terminate it too. */
4781 set->name = bfd_zalloc (abfd, len + 1);
4782 if (!set->name)
4783 {
4784 bfd_set_error (bfd_error_no_memory);
4785 goto error_return;
4786 }
4787 if (bfd_read (set->name, 1, len, abfd) != len)
4788 goto error_return;
4789
4790 set->name[len] = 0;
4791
4792 /* Fill in the file offset. Note that the "location" field points
4793 to the SOM itself, not the ar_hdr in front of it. */
4794 set->file_offset = som_dict[lst_symbol.som_index].location
4795 - sizeof (struct ar_hdr);
4796
4797 /* Go to the next symbol. */
4798 set++;
4799
4800 /* Iterate through the rest of the chain. */
4801 while (lst_symbol.next_entry)
4802 {
4803 /* Seek to the next symbol and read it in. */
4804 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4805 goto error_return;
4806
4807 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4808 != sizeof (lst_symbol))
4809 goto error_return;
4810
4811 /* Seek to the name length & string and read them in. */
4812 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4813 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4814 goto error_return;
4815
4816 if (bfd_read (&len, 1, 4, abfd) != 4)
4817 goto error_return;
4818
4819 /* Allocate space for the name and null terminate it too. */
4820 set->name = bfd_zalloc (abfd, len + 1);
4821 if (!set->name)
4822 {
4823 bfd_set_error (bfd_error_no_memory);
4824 goto error_return;
4825 }
4826
4827 if (bfd_read (set->name, 1, len, abfd) != len)
4828 goto error_return;
4829 set->name[len] = 0;
4830
4831 /* Fill in the file offset. Note that the "location" field points
4832 to the SOM itself, not the ar_hdr in front of it. */
4833 set->file_offset = som_dict[lst_symbol.som_index].location
4834 - sizeof (struct ar_hdr);
4835
4836 /* Go on to the next symbol. */
4837 set++;
4838 }
4839 }
4840 /* If we haven't died by now, then we successfully read the entire
4841 archive symbol table. */
4842 if (hash_table != NULL)
4843 free (hash_table);
4844 if (som_dict != NULL)
4845 free (som_dict);
4846 return true;
4847
4848 error_return:
4849 if (hash_table != NULL)
4850 free (hash_table);
4851 if (som_dict != NULL)
4852 free (som_dict);
4853 return false;
4854 }
4855
4856 /* Read in the LST from the archive. */
4857 static boolean
4858 som_slurp_armap (abfd)
4859 bfd *abfd;
4860 {
4861 struct lst_header lst_header;
4862 struct ar_hdr ar_header;
4863 unsigned int parsed_size;
4864 struct artdata *ardata = bfd_ardata (abfd);
4865 char nextname[17];
4866 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4867
4868 /* Special cases. */
4869 if (i == 0)
4870 return true;
4871 if (i != 16)
4872 return false;
4873
4874 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4875 return false;
4876
4877 /* For archives without .o files there is no symbol table. */
4878 if (strncmp (nextname, "/ ", 16))
4879 {
4880 bfd_has_map (abfd) = false;
4881 return true;
4882 }
4883
4884 /* Read in and sanity check the archive header. */
4885 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4886 != sizeof (struct ar_hdr))
4887 return false;
4888
4889 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4890 {
4891 bfd_set_error (bfd_error_malformed_archive);
4892 return false;
4893 }
4894
4895 /* How big is the archive symbol table entry? */
4896 errno = 0;
4897 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4898 if (errno != 0)
4899 {
4900 bfd_set_error (bfd_error_malformed_archive);
4901 return false;
4902 }
4903
4904 /* Save off the file offset of the first real user data. */
4905 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4906
4907 /* Read in the library symbol table. We'll make heavy use of this
4908 in just a minute. */
4909 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4910 != sizeof (struct lst_header))
4911 return false;
4912
4913 /* Sanity check. */
4914 if (lst_header.a_magic != LIBMAGIC)
4915 {
4916 bfd_set_error (bfd_error_malformed_archive);
4917 return false;
4918 }
4919
4920 /* Count the number of symbols in the library symbol table. */
4921 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4922 == false)
4923 return false;
4924
4925 /* Get back to the start of the library symbol table. */
4926 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4927 + sizeof (struct lst_header), SEEK_SET) < 0)
4928 return false;
4929
4930 /* Initializae the cache and allocate space for the library symbols. */
4931 ardata->cache = 0;
4932 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4933 (ardata->symdef_count
4934 * sizeof (carsym)));
4935 if (!ardata->symdefs)
4936 {
4937 bfd_set_error (bfd_error_no_memory);
4938 return false;
4939 }
4940
4941 /* Now fill in the canonical archive symbols. */
4942 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4943 == false)
4944 return false;
4945
4946 /* Seek back to the "first" file in the archive. Note the "first"
4947 file may be the extended name table. */
4948 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4949 return false;
4950
4951 /* Notify the generic archive code that we have a symbol map. */
4952 bfd_has_map (abfd) = true;
4953 return true;
4954 }
4955
4956 /* Begin preparing to write a SOM library symbol table.
4957
4958 As part of the prep work we need to determine the number of symbols
4959 and the size of the associated string section. */
4960
4961 static boolean
4962 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4963 bfd *abfd;
4964 unsigned int *num_syms, *stringsize;
4965 {
4966 bfd *curr_bfd = abfd->archive_head;
4967
4968 /* Some initialization. */
4969 *num_syms = 0;
4970 *stringsize = 0;
4971
4972 /* Iterate over each BFD within this archive. */
4973 while (curr_bfd != NULL)
4974 {
4975 unsigned int curr_count, i;
4976 som_symbol_type *sym;
4977
4978 /* Don't bother for non-SOM objects. */
4979 if (curr_bfd->format != bfd_object
4980 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4981 {
4982 curr_bfd = curr_bfd->next;
4983 continue;
4984 }
4985
4986 /* Make sure the symbol table has been read, then snag a pointer
4987 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4988 but doing so avoids allocating lots of extra memory. */
4989 if (som_slurp_symbol_table (curr_bfd) == false)
4990 return false;
4991
4992 sym = obj_som_symtab (curr_bfd);
4993 curr_count = bfd_get_symcount (curr_bfd);
4994
4995 /* Examine each symbol to determine if it belongs in the
4996 library symbol table. */
4997 for (i = 0; i < curr_count; i++, sym++)
4998 {
4999 struct som_misc_symbol_info info;
5000
5001 /* Derive SOM information from the BFD symbol. */
5002 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5003
5004 /* Should we include this symbol? */
5005 if (info.symbol_type == ST_NULL
5006 || info.symbol_type == ST_SYM_EXT
5007 || info.symbol_type == ST_ARG_EXT)
5008 continue;
5009
5010 /* Only global symbols and unsatisfied commons. */
5011 if (info.symbol_scope != SS_UNIVERSAL
5012 && info.symbol_type != ST_STORAGE)
5013 continue;
5014
5015 /* Do no include undefined symbols. */
5016 if (sym->symbol.section == &bfd_und_section)
5017 continue;
5018
5019 /* Bump the various counters, being careful to honor
5020 alignment considerations in the string table. */
5021 (*num_syms)++;
5022 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5023 while (*stringsize % 4)
5024 (*stringsize)++;
5025 }
5026
5027 curr_bfd = curr_bfd->next;
5028 }
5029 return true;
5030 }
5031
5032 /* Hash a symbol name based on the hashing algorithm presented in the
5033 SOM ABI. */
5034 static unsigned int
5035 som_bfd_ar_symbol_hash (symbol)
5036 asymbol *symbol;
5037 {
5038 unsigned int len = strlen (symbol->name);
5039
5040 /* Names with length 1 are special. */
5041 if (len == 1)
5042 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5043
5044 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5045 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5046 }
5047
5048 static CONST char *
5049 normalize (file)
5050 CONST char *file;
5051 {
5052 CONST char *filename = strrchr (file, '/');
5053
5054 if (filename != NULL)
5055 filename++;
5056 else
5057 filename = file;
5058 return filename;
5059 }
5060
5061 /* Do the bulk of the work required to write the SOM library
5062 symbol table. */
5063
5064 static boolean
5065 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5066 bfd *abfd;
5067 unsigned int nsyms, string_size;
5068 struct lst_header lst;
5069 {
5070 file_ptr lst_filepos;
5071 char *strings = NULL, *p;
5072 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5073 bfd *curr_bfd;
5074 unsigned int *hash_table = NULL;
5075 struct som_entry *som_dict = NULL;
5076 struct lst_symbol_record **last_hash_entry = NULL;
5077 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5078 unsigned int maxname = abfd->xvec->ar_max_namelen;
5079
5080 hash_table =
5081 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5082 if (hash_table == NULL && lst.hash_size != 0)
5083 {
5084 bfd_set_error (bfd_error_no_memory);
5085 goto error_return;
5086 }
5087 som_dict =
5088 (struct som_entry *) malloc (lst.module_count
5089 * sizeof (struct som_entry));
5090 if (som_dict == NULL && lst.module_count != 0)
5091 {
5092 bfd_set_error (bfd_error_no_memory);
5093 goto error_return;
5094 }
5095
5096 last_hash_entry =
5097 ((struct lst_symbol_record **)
5098 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5099 if (last_hash_entry == NULL && lst.hash_size != 0)
5100 {
5101 bfd_set_error (bfd_error_no_memory);
5102 goto error_return;
5103 }
5104
5105 /* Lots of fields are file positions relative to the start
5106 of the lst record. So save its location. */
5107 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5108
5109 /* Some initialization. */
5110 memset (hash_table, 0, 4 * lst.hash_size);
5111 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5112 memset (last_hash_entry, 0,
5113 lst.hash_size * sizeof (struct lst_symbol_record *));
5114
5115 /* Symbols have som_index fields, so we have to keep track of the
5116 index of each SOM in the archive.
5117
5118 The SOM dictionary has (among other things) the absolute file
5119 position for the SOM which a particular dictionary entry
5120 describes. We have to compute that information as we iterate
5121 through the SOMs/symbols. */
5122 som_index = 0;
5123 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5124
5125 /* Yow! We have to know the size of the extended name table
5126 too. */
5127 for (curr_bfd = abfd->archive_head;
5128 curr_bfd != NULL;
5129 curr_bfd = curr_bfd->next)
5130 {
5131 CONST char *normal = normalize (curr_bfd->filename);
5132 unsigned int thislen;
5133
5134 if (!normal)
5135 {
5136 bfd_set_error (bfd_error_no_memory);
5137 return false;
5138 }
5139 thislen = strlen (normal);
5140 if (thislen > maxname)
5141 extended_name_length += thislen + 1;
5142 }
5143
5144 /* Make room for the archive header and the contents of the
5145 extended string table. */
5146 if (extended_name_length)
5147 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5148
5149 /* Make sure we're properly aligned. */
5150 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5151
5152 /* FIXME should be done with buffers just like everything else... */
5153 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5154 if (lst_syms == NULL && nsyms != 0)
5155 {
5156 bfd_set_error (bfd_error_no_memory);
5157 goto error_return;
5158 }
5159 strings = malloc (string_size);
5160 if (strings == NULL && string_size != 0)
5161 {
5162 bfd_set_error (bfd_error_no_memory);
5163 goto error_return;
5164 }
5165
5166 p = strings;
5167 curr_lst_sym = lst_syms;
5168
5169 curr_bfd = abfd->archive_head;
5170 while (curr_bfd != NULL)
5171 {
5172 unsigned int curr_count, i;
5173 som_symbol_type *sym;
5174
5175 /* Don't bother for non-SOM objects. */
5176 if (curr_bfd->format != bfd_object
5177 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5178 {
5179 curr_bfd = curr_bfd->next;
5180 continue;
5181 }
5182
5183 /* Make sure the symbol table has been read, then snag a pointer
5184 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5185 but doing so avoids allocating lots of extra memory. */
5186 if (som_slurp_symbol_table (curr_bfd) == false)
5187 goto error_return;
5188
5189 sym = obj_som_symtab (curr_bfd);
5190 curr_count = bfd_get_symcount (curr_bfd);
5191
5192 for (i = 0; i < curr_count; i++, sym++)
5193 {
5194 struct som_misc_symbol_info info;
5195
5196 /* Derive SOM information from the BFD symbol. */
5197 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5198
5199 /* Should we include this symbol? */
5200 if (info.symbol_type == ST_NULL
5201 || info.symbol_type == ST_SYM_EXT
5202 || info.symbol_type == ST_ARG_EXT)
5203 continue;
5204
5205 /* Only global symbols and unsatisfied commons. */
5206 if (info.symbol_scope != SS_UNIVERSAL
5207 && info.symbol_type != ST_STORAGE)
5208 continue;
5209
5210 /* Do no include undefined symbols. */
5211 if (sym->symbol.section == &bfd_und_section)
5212 continue;
5213
5214 /* If this is the first symbol from this SOM, then update
5215 the SOM dictionary too. */
5216 if (som_dict[som_index].location == 0)
5217 {
5218 som_dict[som_index].location = curr_som_offset;
5219 som_dict[som_index].length = arelt_size (curr_bfd);
5220 }
5221
5222 /* Fill in the lst symbol record. */
5223 curr_lst_sym->hidden = 0;
5224 curr_lst_sym->secondary_def = 0;
5225 curr_lst_sym->symbol_type = info.symbol_type;
5226 curr_lst_sym->symbol_scope = info.symbol_scope;
5227 curr_lst_sym->check_level = 0;
5228 curr_lst_sym->must_qualify = 0;
5229 curr_lst_sym->initially_frozen = 0;
5230 curr_lst_sym->memory_resident = 0;
5231 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5232 curr_lst_sym->dup_common = 0;
5233 curr_lst_sym->xleast = 0;
5234 curr_lst_sym->arg_reloc = info.arg_reloc;
5235 curr_lst_sym->name.n_strx = p - strings + 4;
5236 curr_lst_sym->qualifier_name.n_strx = 0;
5237 curr_lst_sym->symbol_info = info.symbol_info;
5238 curr_lst_sym->symbol_value = info.symbol_value;
5239 curr_lst_sym->symbol_descriptor = 0;
5240 curr_lst_sym->reserved = 0;
5241 curr_lst_sym->som_index = som_index;
5242 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5243 curr_lst_sym->next_entry = 0;
5244
5245 /* Insert into the hash table. */
5246 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5247 {
5248 struct lst_symbol_record *tmp;
5249
5250 /* There is already something at the head of this hash chain,
5251 so tack this symbol onto the end of the chain. */
5252 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5253 tmp->next_entry
5254 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5255 + lst.hash_size * 4
5256 + lst.module_count * sizeof (struct som_entry)
5257 + sizeof (struct lst_header);
5258 }
5259 else
5260 {
5261 /* First entry in this hash chain. */
5262 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5263 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5264 + lst.hash_size * 4
5265 + lst.module_count * sizeof (struct som_entry)
5266 + sizeof (struct lst_header);
5267 }
5268
5269 /* Keep track of the last symbol we added to this chain so we can
5270 easily update its next_entry pointer. */
5271 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5272 = curr_lst_sym;
5273
5274
5275 /* Update the string table. */
5276 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5277 p += 4;
5278 strcpy (p, sym->symbol.name);
5279 p += strlen (sym->symbol.name) + 1;
5280 while ((int)p % 4)
5281 {
5282 bfd_put_8 (abfd, 0, p);
5283 p++;
5284 }
5285
5286 /* Head to the next symbol. */
5287 curr_lst_sym++;
5288 }
5289
5290 /* Keep track of where each SOM will finally reside; then look
5291 at the next BFD. */
5292 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5293 curr_bfd = curr_bfd->next;
5294 som_index++;
5295 }
5296
5297 /* Now scribble out the hash table. */
5298 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5299 != lst.hash_size * 4)
5300 goto error_return;
5301
5302 /* Then the SOM dictionary. */
5303 if (bfd_write ((PTR) som_dict, lst.module_count,
5304 sizeof (struct som_entry), abfd)
5305 != lst.module_count * sizeof (struct som_entry))
5306 goto error_return;
5307
5308 /* The library symbols. */
5309 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5310 != nsyms * sizeof (struct lst_symbol_record))
5311 goto error_return;
5312
5313 /* And finally the strings. */
5314 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5315 goto error_return;
5316
5317 if (hash_table != NULL)
5318 free (hash_table);
5319 if (som_dict != NULL)
5320 free (som_dict);
5321 if (last_hash_entry != NULL)
5322 free (last_hash_entry);
5323 if (lst_syms != NULL)
5324 free (lst_syms);
5325 if (strings != NULL)
5326 free (strings);
5327 return true;
5328
5329 error_return:
5330 if (hash_table != NULL)
5331 free (hash_table);
5332 if (som_dict != NULL)
5333 free (som_dict);
5334 if (last_hash_entry != NULL)
5335 free (last_hash_entry);
5336 if (lst_syms != NULL)
5337 free (lst_syms);
5338 if (strings != NULL)
5339 free (strings);
5340
5341 return false;
5342 }
5343
5344 /* Write out the LST for the archive.
5345
5346 You'll never believe this is really how armaps are handled in SOM... */
5347
5348 static boolean
5349 som_write_armap (abfd)
5350 bfd *abfd;
5351 {
5352 bfd *curr_bfd;
5353 struct stat statbuf;
5354 unsigned int i, lst_size, nsyms, stringsize;
5355 struct ar_hdr hdr;
5356 struct lst_header lst;
5357 int *p;
5358
5359 /* We'll use this for the archive's date and mode later. */
5360 if (stat (abfd->filename, &statbuf) != 0)
5361 {
5362 bfd_set_error (bfd_error_system_call);
5363 return false;
5364 }
5365 /* Fudge factor. */
5366 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5367
5368 /* Account for the lst header first. */
5369 lst_size = sizeof (struct lst_header);
5370
5371 /* Start building the LST header. */
5372 lst.system_id = HP9000S800_ID;
5373 lst.a_magic = LIBMAGIC;
5374 lst.version_id = VERSION_ID;
5375 lst.file_time.secs = 0;
5376 lst.file_time.nanosecs = 0;
5377
5378 lst.hash_loc = lst_size;
5379 lst.hash_size = SOM_LST_HASH_SIZE;
5380
5381 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5382 lst_size += 4 * SOM_LST_HASH_SIZE;
5383
5384 /* We need to count the number of SOMs in this archive. */
5385 curr_bfd = abfd->archive_head;
5386 lst.module_count = 0;
5387 while (curr_bfd != NULL)
5388 {
5389 /* Only true SOM objects count. */
5390 if (curr_bfd->format == bfd_object
5391 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5392 lst.module_count++;
5393 curr_bfd = curr_bfd->next;
5394 }
5395 lst.module_limit = lst.module_count;
5396 lst.dir_loc = lst_size;
5397 lst_size += sizeof (struct som_entry) * lst.module_count;
5398
5399 /* We don't support import/export tables, auxiliary headers,
5400 or free lists yet. Make the linker work a little harder
5401 to make our life easier. */
5402
5403 lst.export_loc = 0;
5404 lst.export_count = 0;
5405 lst.import_loc = 0;
5406 lst.aux_loc = 0;
5407 lst.aux_size = 0;
5408
5409 /* Count how many symbols we will have on the hash chains and the
5410 size of the associated string table. */
5411 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5412 return false;
5413
5414 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5415
5416 /* For the string table. One day we might actually use this info
5417 to avoid small seeks/reads when reading archives. */
5418 lst.string_loc = lst_size;
5419 lst.string_size = stringsize;
5420 lst_size += stringsize;
5421
5422 /* SOM ABI says this must be zero. */
5423 lst.free_list = 0;
5424 lst.file_end = lst_size;
5425
5426 /* Compute the checksum. Must happen after the entire lst header
5427 has filled in. */
5428 p = (int *)&lst;
5429 lst.checksum = 0;
5430 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5431 lst.checksum ^= *p++;
5432
5433 sprintf (hdr.ar_name, "/ ");
5434 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5435 sprintf (hdr.ar_uid, "%d", getuid ());
5436 sprintf (hdr.ar_gid, "%d", getgid ());
5437 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5438 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5439 hdr.ar_fmag[0] = '`';
5440 hdr.ar_fmag[1] = '\012';
5441
5442 /* Turn any nulls into spaces. */
5443 for (i = 0; i < sizeof (struct ar_hdr); i++)
5444 if (((char *) (&hdr))[i] == '\0')
5445 (((char *) (&hdr))[i]) = ' ';
5446
5447 /* Scribble out the ar header. */
5448 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5449 != sizeof (struct ar_hdr))
5450 return false;
5451
5452 /* Now scribble out the lst header. */
5453 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5454 != sizeof (struct lst_header))
5455 return false;
5456
5457 /* Build and write the armap. */
5458 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5459 return false;
5460
5461 /* Done. */
5462 return true;
5463 }
5464
5465 /* Free all information we have cached for this BFD. We can always
5466 read it again later if we need it. */
5467
5468 static boolean
5469 som_bfd_free_cached_info (abfd)
5470 bfd *abfd;
5471 {
5472 asection *o;
5473
5474 if (bfd_get_format (abfd) != bfd_object)
5475 return true;
5476
5477 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5478 /* Free the native string and symbol tables. */
5479 FREE (obj_som_symtab (abfd));
5480 FREE (obj_som_stringtab (abfd));
5481 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5482 {
5483 /* Free the native relocations. */
5484 o->reloc_count = -1;
5485 FREE (som_section_data (o)->reloc_stream);
5486 /* Free the generic relocations. */
5487 FREE (o->relocation);
5488 }
5489 #undef FREE
5490
5491 return true;
5492 }
5493
5494 /* End of miscellaneous support functions. */
5495
5496 #define som_close_and_cleanup som_bfd_free_cached_info
5497
5498 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5499 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5500 #define som_truncate_arname bfd_bsd_truncate_arname
5501 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5502
5503 #define som_get_lineno _bfd_nosymbols_get_lineno
5504 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5505
5506 #define som_bfd_get_relocated_section_contents \
5507 bfd_generic_get_relocated_section_contents
5508 #define som_bfd_relax_section bfd_generic_relax_section
5509 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5510 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5511 #define som_bfd_final_link _bfd_generic_final_link
5512
5513 bfd_target som_vec =
5514 {
5515 "som", /* name */
5516 bfd_target_som_flavour,
5517 true, /* target byte order */
5518 true, /* target headers byte order */
5519 (HAS_RELOC | EXEC_P | /* object flags */
5520 HAS_LINENO | HAS_DEBUG |
5521 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5522 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5523 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5524
5525 /* leading_symbol_char: is the first char of a user symbol
5526 predictable, and if so what is it */
5527 0,
5528 '/', /* ar_pad_char */
5529 14, /* ar_max_namelen */
5530 3, /* minimum alignment */
5531 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5532 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5533 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5534 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5535 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5536 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5537 {_bfd_dummy_target,
5538 som_object_p, /* bfd_check_format */
5539 bfd_generic_archive_p,
5540 _bfd_dummy_target
5541 },
5542 {
5543 bfd_false,
5544 som_mkobject,
5545 _bfd_generic_mkarchive,
5546 bfd_false
5547 },
5548 {
5549 bfd_false,
5550 som_write_object_contents,
5551 _bfd_write_archive_contents,
5552 bfd_false,
5553 },
5554 #undef som
5555
5556 BFD_JUMP_TABLE_GENERIC (som),
5557 BFD_JUMP_TABLE_COPY (som),
5558 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5559 BFD_JUMP_TABLE_ARCHIVE (som),
5560 BFD_JUMP_TABLE_SYMBOLS (som),
5561 BFD_JUMP_TABLE_RELOCS (som),
5562 BFD_JUMP_TABLE_WRITE (som),
5563 BFD_JUMP_TABLE_LINK (som),
5564
5565 (PTR) 0
5566 };
5567
5568 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */