]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/som.c
* elf-hppa.h (elf_hppa_reloc_final_type): Handle R_PARISC_GPREL64,
[thirdparty/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "sysdep.h"
27 #include "bfd.h"
28
29 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
30
31 #include "libbfd.h"
32 #include "som.h"
33 #include "safe-ctype.h"
34
35 #include <sys/param.h>
36 #include <signal.h>
37 #include <machine/reg.h>
38 #include <sys/file.h>
39
40 /* This is the code recommended in the autoconf documentation, almost
41 verbatim. */
42
43 #ifndef __GNUC__
44 # if HAVE_ALLOCA_H
45 # include <alloca.h>
46 # else
47 # ifdef _AIX
48 /* Indented so that pre-ansi C compilers will ignore it, rather than
49 choke on it. Some versions of AIX require this to be the first
50 thing in the file. */
51 #pragma alloca
52 # else
53 # ifndef alloca /* predefined by HP cc +Olibcalls */
54 # if !defined (__STDC__) && !defined (__hpux)
55 extern char *alloca ();
56 # else
57 extern void *alloca ();
58 # endif /* __STDC__, __hpux */
59 # endif /* alloca */
60 # endif /* _AIX */
61 # endif /* HAVE_ALLOCA_H */
62 #else
63 extern void *alloca (size_t);
64 #endif /* __GNUC__ */
65
66 static bfd_reloc_status_type hppa_som_reloc
67 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
68 static bfd_boolean som_mkobject (bfd *);
69 static bfd_boolean som_is_space (asection *);
70 static bfd_boolean som_is_subspace (asection *);
71 static int compare_subspaces (const void *, const void *);
72 static unsigned long som_compute_checksum (bfd *);
73 static bfd_boolean som_build_and_write_symbol_table (bfd *);
74 static unsigned int som_slurp_symbol_table (bfd *);
75
76 /* Magic not defined in standard HP-UX header files until 8.0. */
77
78 #ifndef CPU_PA_RISC1_0
79 #define CPU_PA_RISC1_0 0x20B
80 #endif /* CPU_PA_RISC1_0 */
81
82 #ifndef CPU_PA_RISC1_1
83 #define CPU_PA_RISC1_1 0x210
84 #endif /* CPU_PA_RISC1_1 */
85
86 #ifndef CPU_PA_RISC2_0
87 #define CPU_PA_RISC2_0 0x214
88 #endif /* CPU_PA_RISC2_0 */
89
90 #ifndef _PA_RISC1_0_ID
91 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
92 #endif /* _PA_RISC1_0_ID */
93
94 #ifndef _PA_RISC1_1_ID
95 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
96 #endif /* _PA_RISC1_1_ID */
97
98 #ifndef _PA_RISC2_0_ID
99 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
100 #endif /* _PA_RISC2_0_ID */
101
102 #ifndef _PA_RISC_MAXID
103 #define _PA_RISC_MAXID 0x2FF
104 #endif /* _PA_RISC_MAXID */
105
106 #ifndef _PA_RISC_ID
107 #define _PA_RISC_ID(__m_num) \
108 (((__m_num) == _PA_RISC1_0_ID) || \
109 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
110 #endif /* _PA_RISC_ID */
111
112 /* HIUX in it's infinite stupidity changed the names for several "well
113 known" constants. Work around such braindamage. Try the HPUX version
114 first, then the HIUX version, and finally provide a default. */
115 #ifdef HPUX_AUX_ID
116 #define EXEC_AUX_ID HPUX_AUX_ID
117 #endif
118
119 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
120 #define EXEC_AUX_ID HIUX_AUX_ID
121 #endif
122
123 #ifndef EXEC_AUX_ID
124 #define EXEC_AUX_ID 0
125 #endif
126
127 /* Size (in chars) of the temporary buffers used during fixup and string
128 table writes. */
129
130 #define SOM_TMP_BUFSIZE 8192
131
132 /* Size of the hash table in archives. */
133 #define SOM_LST_HASH_SIZE 31
134
135 /* Max number of SOMs to be found in an archive. */
136 #define SOM_LST_MODULE_LIMIT 1024
137
138 /* Generic alignment macro. */
139 #define SOM_ALIGN(val, alignment) \
140 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
141
142 /* SOM allows any one of the four previous relocations to be reused
143 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
144 relocations are always a single byte, using a R_PREV_FIXUP instead
145 of some multi-byte relocation makes object files smaller.
146
147 Note one side effect of using a R_PREV_FIXUP is the relocation that
148 is being repeated moves to the front of the queue. */
149 struct reloc_queue
150 {
151 unsigned char *reloc;
152 unsigned int size;
153 } reloc_queue[4];
154
155 /* This fully describes the symbol types which may be attached to
156 an EXPORT or IMPORT directive. Only SOM uses this formation
157 (ELF has no need for it). */
158 typedef enum
159 {
160 SYMBOL_TYPE_UNKNOWN,
161 SYMBOL_TYPE_ABSOLUTE,
162 SYMBOL_TYPE_CODE,
163 SYMBOL_TYPE_DATA,
164 SYMBOL_TYPE_ENTRY,
165 SYMBOL_TYPE_MILLICODE,
166 SYMBOL_TYPE_PLABEL,
167 SYMBOL_TYPE_PRI_PROG,
168 SYMBOL_TYPE_SEC_PROG,
169 } pa_symbol_type;
170
171 struct section_to_type
172 {
173 char *section;
174 char type;
175 };
176
177 /* Assorted symbol information that needs to be derived from the BFD symbol
178 and/or the BFD backend private symbol data. */
179 struct som_misc_symbol_info
180 {
181 unsigned int symbol_type;
182 unsigned int symbol_scope;
183 unsigned int arg_reloc;
184 unsigned int symbol_info;
185 unsigned int symbol_value;
186 unsigned int priv_level;
187 unsigned int secondary_def;
188 unsigned int is_comdat;
189 unsigned int is_common;
190 unsigned int dup_common;
191 };
192
193 /* Map SOM section names to POSIX/BSD single-character symbol types.
194
195 This table includes all the standard subspaces as defined in the
196 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
197 some reason was left out, and sections specific to embedded stabs. */
198
199 static const struct section_to_type stt[] =
200 {
201 {"$TEXT$", 't'},
202 {"$SHLIB_INFO$", 't'},
203 {"$MILLICODE$", 't'},
204 {"$LIT$", 't'},
205 {"$CODE$", 't'},
206 {"$UNWIND_START$", 't'},
207 {"$UNWIND$", 't'},
208 {"$PRIVATE$", 'd'},
209 {"$PLT$", 'd'},
210 {"$SHLIB_DATA$", 'd'},
211 {"$DATA$", 'd'},
212 {"$SHORTDATA$", 'g'},
213 {"$DLT$", 'd'},
214 {"$GLOBAL$", 'g'},
215 {"$SHORTBSS$", 's'},
216 {"$BSS$", 'b'},
217 {"$GDB_STRINGS$", 'N'},
218 {"$GDB_SYMBOLS$", 'N'},
219 {0, 0}
220 };
221
222 /* About the relocation formatting table...
223
224 There are 256 entries in the table, one for each possible
225 relocation opcode available in SOM. We index the table by
226 the relocation opcode. The names and operations are those
227 defined by a.out_800 (4).
228
229 Right now this table is only used to count and perform minimal
230 processing on relocation streams so that they can be internalized
231 into BFD and symbolically printed by utilities. To make actual use
232 of them would be much more difficult, BFD's concept of relocations
233 is far too simple to handle SOM relocations. The basic assumption
234 that a relocation can be completely processed independent of other
235 relocations before an object file is written is invalid for SOM.
236
237 The SOM relocations are meant to be processed as a stream, they
238 specify copying of data from the input section to the output section
239 while possibly modifying the data in some manner. They also can
240 specify that a variable number of zeros or uninitialized data be
241 inserted on in the output segment at the current offset. Some
242 relocations specify that some previous relocation be re-applied at
243 the current location in the input/output sections. And finally a number
244 of relocations have effects on other sections (R_ENTRY, R_EXIT,
245 R_UNWIND_AUX and a variety of others). There isn't even enough room
246 in the BFD relocation data structure to store enough information to
247 perform all the relocations.
248
249 Each entry in the table has three fields.
250
251 The first entry is an index into this "class" of relocations. This
252 index can then be used as a variable within the relocation itself.
253
254 The second field is a format string which actually controls processing
255 of the relocation. It uses a simple postfix machine to do calculations
256 based on variables/constants found in the string and the relocation
257 stream.
258
259 The third field specifys whether or not this relocation may use
260 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
261 stored in the instruction.
262
263 Variables:
264
265 L = input space byte count
266 D = index into class of relocations
267 M = output space byte count
268 N = statement number (unused?)
269 O = stack operation
270 R = parameter relocation bits
271 S = symbol index
272 T = first 32 bits of stack unwind information
273 U = second 32 bits of stack unwind information
274 V = a literal constant (usually used in the next relocation)
275 P = a previous relocation
276
277 Lower case letters (starting with 'b') refer to following
278 bytes in the relocation stream. 'b' is the next 1 byte,
279 c is the next 2 bytes, d is the next 3 bytes, etc...
280 This is the variable part of the relocation entries that
281 makes our life a living hell.
282
283 numerical constants are also used in the format string. Note
284 the constants are represented in decimal.
285
286 '+', "*" and "=" represents the obvious postfix operators.
287 '<' represents a left shift.
288
289 Stack Operations:
290
291 Parameter Relocation Bits:
292
293 Unwind Entries:
294
295 Previous Relocations: The index field represents which in the queue
296 of 4 previous fixups should be re-applied.
297
298 Literal Constants: These are generally used to represent addend
299 parts of relocations when these constants are not stored in the
300 fields of the instructions themselves. For example the instruction
301 addil foo-$global$-0x1234 would use an override for "0x1234" rather
302 than storing it into the addil itself. */
303
304 struct fixup_format
305 {
306 int D;
307 const char *format;
308 };
309
310 static const struct fixup_format som_fixup_formats[256] =
311 {
312 /* R_NO_RELOCATION. */
313 { 0, "LD1+4*=" }, /* 0x00 */
314 { 1, "LD1+4*=" }, /* 0x01 */
315 { 2, "LD1+4*=" }, /* 0x02 */
316 { 3, "LD1+4*=" }, /* 0x03 */
317 { 4, "LD1+4*=" }, /* 0x04 */
318 { 5, "LD1+4*=" }, /* 0x05 */
319 { 6, "LD1+4*=" }, /* 0x06 */
320 { 7, "LD1+4*=" }, /* 0x07 */
321 { 8, "LD1+4*=" }, /* 0x08 */
322 { 9, "LD1+4*=" }, /* 0x09 */
323 { 10, "LD1+4*=" }, /* 0x0a */
324 { 11, "LD1+4*=" }, /* 0x0b */
325 { 12, "LD1+4*=" }, /* 0x0c */
326 { 13, "LD1+4*=" }, /* 0x0d */
327 { 14, "LD1+4*=" }, /* 0x0e */
328 { 15, "LD1+4*=" }, /* 0x0f */
329 { 16, "LD1+4*=" }, /* 0x10 */
330 { 17, "LD1+4*=" }, /* 0x11 */
331 { 18, "LD1+4*=" }, /* 0x12 */
332 { 19, "LD1+4*=" }, /* 0x13 */
333 { 20, "LD1+4*=" }, /* 0x14 */
334 { 21, "LD1+4*=" }, /* 0x15 */
335 { 22, "LD1+4*=" }, /* 0x16 */
336 { 23, "LD1+4*=" }, /* 0x17 */
337 { 0, "LD8<b+1+4*=" }, /* 0x18 */
338 { 1, "LD8<b+1+4*=" }, /* 0x19 */
339 { 2, "LD8<b+1+4*=" }, /* 0x1a */
340 { 3, "LD8<b+1+4*=" }, /* 0x1b */
341 { 0, "LD16<c+1+4*=" }, /* 0x1c */
342 { 1, "LD16<c+1+4*=" }, /* 0x1d */
343 { 2, "LD16<c+1+4*=" }, /* 0x1e */
344 { 0, "Ld1+=" }, /* 0x1f */
345 /* R_ZEROES. */
346 { 0, "Lb1+4*=" }, /* 0x20 */
347 { 1, "Ld1+=" }, /* 0x21 */
348 /* R_UNINIT. */
349 { 0, "Lb1+4*=" }, /* 0x22 */
350 { 1, "Ld1+=" }, /* 0x23 */
351 /* R_RELOCATION. */
352 { 0, "L4=" }, /* 0x24 */
353 /* R_DATA_ONE_SYMBOL. */
354 { 0, "L4=Sb=" }, /* 0x25 */
355 { 1, "L4=Sd=" }, /* 0x26 */
356 /* R_DATA_PLABEL. */
357 { 0, "L4=Sb=" }, /* 0x27 */
358 { 1, "L4=Sd=" }, /* 0x28 */
359 /* R_SPACE_REF. */
360 { 0, "L4=" }, /* 0x29 */
361 /* R_REPEATED_INIT. */
362 { 0, "L4=Mb1+4*=" }, /* 0x2a */
363 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
364 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
365 { 3, "Ld1+=Me1+=" }, /* 0x2d */
366 { 0, "" }, /* 0x2e */
367 { 0, "" }, /* 0x2f */
368 /* R_PCREL_CALL. */
369 { 0, "L4=RD=Sb=" }, /* 0x30 */
370 { 1, "L4=RD=Sb=" }, /* 0x31 */
371 { 2, "L4=RD=Sb=" }, /* 0x32 */
372 { 3, "L4=RD=Sb=" }, /* 0x33 */
373 { 4, "L4=RD=Sb=" }, /* 0x34 */
374 { 5, "L4=RD=Sb=" }, /* 0x35 */
375 { 6, "L4=RD=Sb=" }, /* 0x36 */
376 { 7, "L4=RD=Sb=" }, /* 0x37 */
377 { 8, "L4=RD=Sb=" }, /* 0x38 */
378 { 9, "L4=RD=Sb=" }, /* 0x39 */
379 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
380 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
381 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
382 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
383 /* R_SHORT_PCREL_MODE. */
384 { 0, "" }, /* 0x3e */
385 /* R_LONG_PCREL_MODE. */
386 { 0, "" }, /* 0x3f */
387 /* R_ABS_CALL. */
388 { 0, "L4=RD=Sb=" }, /* 0x40 */
389 { 1, "L4=RD=Sb=" }, /* 0x41 */
390 { 2, "L4=RD=Sb=" }, /* 0x42 */
391 { 3, "L4=RD=Sb=" }, /* 0x43 */
392 { 4, "L4=RD=Sb=" }, /* 0x44 */
393 { 5, "L4=RD=Sb=" }, /* 0x45 */
394 { 6, "L4=RD=Sb=" }, /* 0x46 */
395 { 7, "L4=RD=Sb=" }, /* 0x47 */
396 { 8, "L4=RD=Sb=" }, /* 0x48 */
397 { 9, "L4=RD=Sb=" }, /* 0x49 */
398 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
399 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
400 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
401 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
402 /* R_RESERVED. */
403 { 0, "" }, /* 0x4e */
404 { 0, "" }, /* 0x4f */
405 /* R_DP_RELATIVE. */
406 { 0, "L4=SD=" }, /* 0x50 */
407 { 1, "L4=SD=" }, /* 0x51 */
408 { 2, "L4=SD=" }, /* 0x52 */
409 { 3, "L4=SD=" }, /* 0x53 */
410 { 4, "L4=SD=" }, /* 0x54 */
411 { 5, "L4=SD=" }, /* 0x55 */
412 { 6, "L4=SD=" }, /* 0x56 */
413 { 7, "L4=SD=" }, /* 0x57 */
414 { 8, "L4=SD=" }, /* 0x58 */
415 { 9, "L4=SD=" }, /* 0x59 */
416 { 10, "L4=SD=" }, /* 0x5a */
417 { 11, "L4=SD=" }, /* 0x5b */
418 { 12, "L4=SD=" }, /* 0x5c */
419 { 13, "L4=SD=" }, /* 0x5d */
420 { 14, "L4=SD=" }, /* 0x5e */
421 { 15, "L4=SD=" }, /* 0x5f */
422 { 16, "L4=SD=" }, /* 0x60 */
423 { 17, "L4=SD=" }, /* 0x61 */
424 { 18, "L4=SD=" }, /* 0x62 */
425 { 19, "L4=SD=" }, /* 0x63 */
426 { 20, "L4=SD=" }, /* 0x64 */
427 { 21, "L4=SD=" }, /* 0x65 */
428 { 22, "L4=SD=" }, /* 0x66 */
429 { 23, "L4=SD=" }, /* 0x67 */
430 { 24, "L4=SD=" }, /* 0x68 */
431 { 25, "L4=SD=" }, /* 0x69 */
432 { 26, "L4=SD=" }, /* 0x6a */
433 { 27, "L4=SD=" }, /* 0x6b */
434 { 28, "L4=SD=" }, /* 0x6c */
435 { 29, "L4=SD=" }, /* 0x6d */
436 { 30, "L4=SD=" }, /* 0x6e */
437 { 31, "L4=SD=" }, /* 0x6f */
438 { 32, "L4=Sb=" }, /* 0x70 */
439 { 33, "L4=Sd=" }, /* 0x71 */
440 /* R_DATA_GPREL. */
441 { 0, "L4=Sd=" }, /* 0x72 */
442 /* R_RESERVED. */
443 { 0, "" }, /* 0x73 */
444 { 0, "" }, /* 0x74 */
445 { 0, "" }, /* 0x75 */
446 { 0, "" }, /* 0x76 */
447 { 0, "" }, /* 0x77 */
448 /* R_DLT_REL. */
449 { 0, "L4=Sb=" }, /* 0x78 */
450 { 1, "L4=Sd=" }, /* 0x79 */
451 /* R_RESERVED. */
452 { 0, "" }, /* 0x7a */
453 { 0, "" }, /* 0x7b */
454 { 0, "" }, /* 0x7c */
455 { 0, "" }, /* 0x7d */
456 { 0, "" }, /* 0x7e */
457 { 0, "" }, /* 0x7f */
458 /* R_CODE_ONE_SYMBOL. */
459 { 0, "L4=SD=" }, /* 0x80 */
460 { 1, "L4=SD=" }, /* 0x81 */
461 { 2, "L4=SD=" }, /* 0x82 */
462 { 3, "L4=SD=" }, /* 0x83 */
463 { 4, "L4=SD=" }, /* 0x84 */
464 { 5, "L4=SD=" }, /* 0x85 */
465 { 6, "L4=SD=" }, /* 0x86 */
466 { 7, "L4=SD=" }, /* 0x87 */
467 { 8, "L4=SD=" }, /* 0x88 */
468 { 9, "L4=SD=" }, /* 0x89 */
469 { 10, "L4=SD=" }, /* 0x8q */
470 { 11, "L4=SD=" }, /* 0x8b */
471 { 12, "L4=SD=" }, /* 0x8c */
472 { 13, "L4=SD=" }, /* 0x8d */
473 { 14, "L4=SD=" }, /* 0x8e */
474 { 15, "L4=SD=" }, /* 0x8f */
475 { 16, "L4=SD=" }, /* 0x90 */
476 { 17, "L4=SD=" }, /* 0x91 */
477 { 18, "L4=SD=" }, /* 0x92 */
478 { 19, "L4=SD=" }, /* 0x93 */
479 { 20, "L4=SD=" }, /* 0x94 */
480 { 21, "L4=SD=" }, /* 0x95 */
481 { 22, "L4=SD=" }, /* 0x96 */
482 { 23, "L4=SD=" }, /* 0x97 */
483 { 24, "L4=SD=" }, /* 0x98 */
484 { 25, "L4=SD=" }, /* 0x99 */
485 { 26, "L4=SD=" }, /* 0x9a */
486 { 27, "L4=SD=" }, /* 0x9b */
487 { 28, "L4=SD=" }, /* 0x9c */
488 { 29, "L4=SD=" }, /* 0x9d */
489 { 30, "L4=SD=" }, /* 0x9e */
490 { 31, "L4=SD=" }, /* 0x9f */
491 { 32, "L4=Sb=" }, /* 0xa0 */
492 { 33, "L4=Sd=" }, /* 0xa1 */
493 /* R_RESERVED. */
494 { 0, "" }, /* 0xa2 */
495 { 0, "" }, /* 0xa3 */
496 { 0, "" }, /* 0xa4 */
497 { 0, "" }, /* 0xa5 */
498 { 0, "" }, /* 0xa6 */
499 { 0, "" }, /* 0xa7 */
500 { 0, "" }, /* 0xa8 */
501 { 0, "" }, /* 0xa9 */
502 { 0, "" }, /* 0xaa */
503 { 0, "" }, /* 0xab */
504 { 0, "" }, /* 0xac */
505 { 0, "" }, /* 0xad */
506 /* R_MILLI_REL. */
507 { 0, "L4=Sb=" }, /* 0xae */
508 { 1, "L4=Sd=" }, /* 0xaf */
509 /* R_CODE_PLABEL. */
510 { 0, "L4=Sb=" }, /* 0xb0 */
511 { 1, "L4=Sd=" }, /* 0xb1 */
512 /* R_BREAKPOINT. */
513 { 0, "L4=" }, /* 0xb2 */
514 /* R_ENTRY. */
515 { 0, "Te=Ue=" }, /* 0xb3 */
516 { 1, "Uf=" }, /* 0xb4 */
517 /* R_ALT_ENTRY. */
518 { 0, "" }, /* 0xb5 */
519 /* R_EXIT. */
520 { 0, "" }, /* 0xb6 */
521 /* R_BEGIN_TRY. */
522 { 0, "" }, /* 0xb7 */
523 /* R_END_TRY. */
524 { 0, "R0=" }, /* 0xb8 */
525 { 1, "Rb4*=" }, /* 0xb9 */
526 { 2, "Rd4*=" }, /* 0xba */
527 /* R_BEGIN_BRTAB. */
528 { 0, "" }, /* 0xbb */
529 /* R_END_BRTAB. */
530 { 0, "" }, /* 0xbc */
531 /* R_STATEMENT. */
532 { 0, "Nb=" }, /* 0xbd */
533 { 1, "Nc=" }, /* 0xbe */
534 { 2, "Nd=" }, /* 0xbf */
535 /* R_DATA_EXPR. */
536 { 0, "L4=" }, /* 0xc0 */
537 /* R_CODE_EXPR. */
538 { 0, "L4=" }, /* 0xc1 */
539 /* R_FSEL. */
540 { 0, "" }, /* 0xc2 */
541 /* R_LSEL. */
542 { 0, "" }, /* 0xc3 */
543 /* R_RSEL. */
544 { 0, "" }, /* 0xc4 */
545 /* R_N_MODE. */
546 { 0, "" }, /* 0xc5 */
547 /* R_S_MODE. */
548 { 0, "" }, /* 0xc6 */
549 /* R_D_MODE. */
550 { 0, "" }, /* 0xc7 */
551 /* R_R_MODE. */
552 { 0, "" }, /* 0xc8 */
553 /* R_DATA_OVERRIDE. */
554 { 0, "V0=" }, /* 0xc9 */
555 { 1, "Vb=" }, /* 0xca */
556 { 2, "Vc=" }, /* 0xcb */
557 { 3, "Vd=" }, /* 0xcc */
558 { 4, "Ve=" }, /* 0xcd */
559 /* R_TRANSLATED. */
560 { 0, "" }, /* 0xce */
561 /* R_AUX_UNWIND. */
562 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
563 /* R_COMP1. */
564 { 0, "Ob=" }, /* 0xd0 */
565 /* R_COMP2. */
566 { 0, "Ob=Sd=" }, /* 0xd1 */
567 /* R_COMP3. */
568 { 0, "Ob=Ve=" }, /* 0xd2 */
569 /* R_PREV_FIXUP. */
570 { 0, "P" }, /* 0xd3 */
571 { 1, "P" }, /* 0xd4 */
572 { 2, "P" }, /* 0xd5 */
573 { 3, "P" }, /* 0xd6 */
574 /* R_SEC_STMT. */
575 { 0, "" }, /* 0xd7 */
576 /* R_N0SEL. */
577 { 0, "" }, /* 0xd8 */
578 /* R_N1SEL. */
579 { 0, "" }, /* 0xd9 */
580 /* R_LINETAB. */
581 { 0, "Eb=Sd=Ve=" }, /* 0xda */
582 /* R_LINETAB_ESC. */
583 { 0, "Eb=Mb=" }, /* 0xdb */
584 /* R_LTP_OVERRIDE. */
585 { 0, "" }, /* 0xdc */
586 /* R_COMMENT. */
587 { 0, "Ob=Vf=" }, /* 0xdd */
588 /* R_RESERVED. */
589 { 0, "" }, /* 0xde */
590 { 0, "" }, /* 0xdf */
591 { 0, "" }, /* 0xe0 */
592 { 0, "" }, /* 0xe1 */
593 { 0, "" }, /* 0xe2 */
594 { 0, "" }, /* 0xe3 */
595 { 0, "" }, /* 0xe4 */
596 { 0, "" }, /* 0xe5 */
597 { 0, "" }, /* 0xe6 */
598 { 0, "" }, /* 0xe7 */
599 { 0, "" }, /* 0xe8 */
600 { 0, "" }, /* 0xe9 */
601 { 0, "" }, /* 0xea */
602 { 0, "" }, /* 0xeb */
603 { 0, "" }, /* 0xec */
604 { 0, "" }, /* 0xed */
605 { 0, "" }, /* 0xee */
606 { 0, "" }, /* 0xef */
607 { 0, "" }, /* 0xf0 */
608 { 0, "" }, /* 0xf1 */
609 { 0, "" }, /* 0xf2 */
610 { 0, "" }, /* 0xf3 */
611 { 0, "" }, /* 0xf4 */
612 { 0, "" }, /* 0xf5 */
613 { 0, "" }, /* 0xf6 */
614 { 0, "" }, /* 0xf7 */
615 { 0, "" }, /* 0xf8 */
616 { 0, "" }, /* 0xf9 */
617 { 0, "" }, /* 0xfa */
618 { 0, "" }, /* 0xfb */
619 { 0, "" }, /* 0xfc */
620 { 0, "" }, /* 0xfd */
621 { 0, "" }, /* 0xfe */
622 { 0, "" }, /* 0xff */
623 };
624
625 static const int comp1_opcodes[] =
626 {
627 0x00,
628 0x40,
629 0x41,
630 0x42,
631 0x43,
632 0x44,
633 0x45,
634 0x46,
635 0x47,
636 0x48,
637 0x49,
638 0x4a,
639 0x4b,
640 0x60,
641 0x80,
642 0xa0,
643 0xc0,
644 -1
645 };
646
647 static const int comp2_opcodes[] =
648 {
649 0x00,
650 0x80,
651 0x82,
652 0xc0,
653 -1
654 };
655
656 static const int comp3_opcodes[] =
657 {
658 0x00,
659 0x02,
660 -1
661 };
662
663 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
664 #ifndef R_DLT_REL
665 #define R_DLT_REL 0x78
666 #endif
667
668 #ifndef R_AUX_UNWIND
669 #define R_AUX_UNWIND 0xcf
670 #endif
671
672 #ifndef R_SEC_STMT
673 #define R_SEC_STMT 0xd7
674 #endif
675
676 /* And these first appeared in hpux10. */
677 #ifndef R_SHORT_PCREL_MODE
678 #define NO_PCREL_MODES
679 #define R_SHORT_PCREL_MODE 0x3e
680 #endif
681
682 #ifndef R_LONG_PCREL_MODE
683 #define R_LONG_PCREL_MODE 0x3f
684 #endif
685
686 #ifndef R_N0SEL
687 #define R_N0SEL 0xd8
688 #endif
689
690 #ifndef R_N1SEL
691 #define R_N1SEL 0xd9
692 #endif
693
694 #ifndef R_LINETAB
695 #define R_LINETAB 0xda
696 #endif
697
698 #ifndef R_LINETAB_ESC
699 #define R_LINETAB_ESC 0xdb
700 #endif
701
702 #ifndef R_LTP_OVERRIDE
703 #define R_LTP_OVERRIDE 0xdc
704 #endif
705
706 #ifndef R_COMMENT
707 #define R_COMMENT 0xdd
708 #endif
709
710 #define SOM_HOWTO(TYPE, NAME) \
711 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
712
713 static reloc_howto_type som_hppa_howto_table[] =
714 {
715 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
716 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
717 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
718 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
719 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
720 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
721 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
722 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
723 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
724 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
725 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
726 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
727 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
728 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
729 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
730 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
731 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
732 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
733 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
734 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
735 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
736 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
737 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
738 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
739 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
740 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
741 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
742 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
743 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
744 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
745 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
746 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
747 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
748 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
749 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
750 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
751 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
752 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
753 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
754 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
755 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
756 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
757 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
758 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
759 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
760 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
761 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
762 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
763 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
764 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
765 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
766 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
767 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
768 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
769 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
770 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
771 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
772 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
773 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
774 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
775 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
776 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
777 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
778 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
779 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
780 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
781 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
782 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
783 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
784 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
785 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
786 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
787 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
788 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
789 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
790 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
791 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
792 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
793 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
794 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
795 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
796 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
797 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
798 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
799 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
800 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
801 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
802 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
803 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
804 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
805 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
806 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
807 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
808 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
809 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
810 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
811 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
812 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
813 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
814 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
815 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
816 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
817 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
818 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
819 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
820 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
821 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
822 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
823 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
824 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
825 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
826 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
827 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
828 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
829 SOM_HOWTO (R_DATA_GPREL, "R_DATA_GPREL"),
830 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
831 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
832 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
833 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
834 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
835 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
836 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
837 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
838 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
839 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
840 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
841 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
842 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
843 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
844 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
845 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
846 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
847 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
848 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
849 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
850 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
851 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
852 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
853 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
854 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
855 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
856 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
857 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
858 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
859 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
860 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
861 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
862 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
863 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
864 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
865 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
866 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
867 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
868 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
869 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
870 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
871 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
872 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
873 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
874 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
875 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
876 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
877 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
878 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
879 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
880 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
881 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
882 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
883 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
884 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
885 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
886 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
887 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
888 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
889 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
890 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
891 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
892 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
893 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
894 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
895 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
896 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
897 SOM_HOWTO (R_EXIT, "R_EXIT"),
898 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
899 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
900 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
901 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
902 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
903 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
904 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
905 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
906 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
907 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
908 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
909 SOM_HOWTO (R_FSEL, "R_FSEL"),
910 SOM_HOWTO (R_LSEL, "R_LSEL"),
911 SOM_HOWTO (R_RSEL, "R_RSEL"),
912 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
913 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
914 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
915 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
916 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
917 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
918 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
919 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
920 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
921 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
922 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
923 SOM_HOWTO (R_COMP1, "R_COMP1"),
924 SOM_HOWTO (R_COMP2, "R_COMP2"),
925 SOM_HOWTO (R_COMP3, "R_COMP3"),
926 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
927 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
928 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
929 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
930 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
931 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
932 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
933 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
934 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
935 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
936 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
937 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
938 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
940 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
941 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
942 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
943 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
944 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
945 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
946 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
947 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
948 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
949 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
950 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
951 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
952 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
953 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
954 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
955 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
956 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
957 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
958 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
959 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
960 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
961 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
962 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
963 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
964 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
965 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
966 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
967 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
968 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
969 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
970 SOM_HOWTO (R_RESERVED, "R_RESERVED")
971 };
972
973 /* Initialize the SOM relocation queue. By definition the queue holds
974 the last four multibyte fixups. */
975
976 static void
977 som_initialize_reloc_queue (struct reloc_queue *queue)
978 {
979 queue[0].reloc = NULL;
980 queue[0].size = 0;
981 queue[1].reloc = NULL;
982 queue[1].size = 0;
983 queue[2].reloc = NULL;
984 queue[2].size = 0;
985 queue[3].reloc = NULL;
986 queue[3].size = 0;
987 }
988
989 /* Insert a new relocation into the relocation queue. */
990
991 static void
992 som_reloc_queue_insert (unsigned char *p,
993 unsigned int size,
994 struct reloc_queue *queue)
995 {
996 queue[3].reloc = queue[2].reloc;
997 queue[3].size = queue[2].size;
998 queue[2].reloc = queue[1].reloc;
999 queue[2].size = queue[1].size;
1000 queue[1].reloc = queue[0].reloc;
1001 queue[1].size = queue[0].size;
1002 queue[0].reloc = p;
1003 queue[0].size = size;
1004 }
1005
1006 /* When an entry in the relocation queue is reused, the entry moves
1007 to the front of the queue. */
1008
1009 static void
1010 som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index)
1011 {
1012 if (index == 0)
1013 return;
1014
1015 if (index == 1)
1016 {
1017 unsigned char *tmp1 = queue[0].reloc;
1018 unsigned int tmp2 = queue[0].size;
1019
1020 queue[0].reloc = queue[1].reloc;
1021 queue[0].size = queue[1].size;
1022 queue[1].reloc = tmp1;
1023 queue[1].size = tmp2;
1024 return;
1025 }
1026
1027 if (index == 2)
1028 {
1029 unsigned char *tmp1 = queue[0].reloc;
1030 unsigned int tmp2 = queue[0].size;
1031
1032 queue[0].reloc = queue[2].reloc;
1033 queue[0].size = queue[2].size;
1034 queue[2].reloc = queue[1].reloc;
1035 queue[2].size = queue[1].size;
1036 queue[1].reloc = tmp1;
1037 queue[1].size = tmp2;
1038 return;
1039 }
1040
1041 if (index == 3)
1042 {
1043 unsigned char *tmp1 = queue[0].reloc;
1044 unsigned int tmp2 = queue[0].size;
1045
1046 queue[0].reloc = queue[3].reloc;
1047 queue[0].size = queue[3].size;
1048 queue[3].reloc = queue[2].reloc;
1049 queue[3].size = queue[2].size;
1050 queue[2].reloc = queue[1].reloc;
1051 queue[2].size = queue[1].size;
1052 queue[1].reloc = tmp1;
1053 queue[1].size = tmp2;
1054 return;
1055 }
1056 abort ();
1057 }
1058
1059 /* Search for a particular relocation in the relocation queue. */
1060
1061 static int
1062 som_reloc_queue_find (unsigned char *p,
1063 unsigned int size,
1064 struct reloc_queue *queue)
1065 {
1066 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1067 && size == queue[0].size)
1068 return 0;
1069 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1070 && size == queue[1].size)
1071 return 1;
1072 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1073 && size == queue[2].size)
1074 return 2;
1075 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1076 && size == queue[3].size)
1077 return 3;
1078 return -1;
1079 }
1080
1081 static unsigned char *
1082 try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
1083 unsigned int *subspace_reloc_sizep,
1084 unsigned char *p,
1085 unsigned int size,
1086 struct reloc_queue *queue)
1087 {
1088 int queue_index = som_reloc_queue_find (p, size, queue);
1089
1090 if (queue_index != -1)
1091 {
1092 /* Found this in a previous fixup. Undo the fixup we
1093 just built and use R_PREV_FIXUP instead. We saved
1094 a total of size - 1 bytes in the fixup stream. */
1095 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1096 p += 1;
1097 *subspace_reloc_sizep += 1;
1098 som_reloc_queue_fix (queue, queue_index);
1099 }
1100 else
1101 {
1102 som_reloc_queue_insert (p, size, queue);
1103 *subspace_reloc_sizep += size;
1104 p += size;
1105 }
1106 return p;
1107 }
1108
1109 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1110 bytes without any relocation. Update the size of the subspace
1111 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1112 current pointer into the relocation stream. */
1113
1114 static unsigned char *
1115 som_reloc_skip (bfd *abfd,
1116 unsigned int skip,
1117 unsigned char *p,
1118 unsigned int *subspace_reloc_sizep,
1119 struct reloc_queue *queue)
1120 {
1121 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1122 then R_PREV_FIXUPs to get the difference down to a
1123 reasonable size. */
1124 if (skip >= 0x1000000)
1125 {
1126 skip -= 0x1000000;
1127 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1128 bfd_put_8 (abfd, 0xff, p + 1);
1129 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1130 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1131 while (skip >= 0x1000000)
1132 {
1133 skip -= 0x1000000;
1134 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1135 p++;
1136 *subspace_reloc_sizep += 1;
1137 /* No need to adjust queue here since we are repeating the
1138 most recent fixup. */
1139 }
1140 }
1141
1142 /* The difference must be less than 0x1000000. Use one
1143 more R_NO_RELOCATION entry to get to the right difference. */
1144 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1145 {
1146 /* Difference can be handled in a simple single-byte
1147 R_NO_RELOCATION entry. */
1148 if (skip <= 0x60)
1149 {
1150 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1151 *subspace_reloc_sizep += 1;
1152 p++;
1153 }
1154 /* Handle it with a two byte R_NO_RELOCATION entry. */
1155 else if (skip <= 0x1000)
1156 {
1157 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1158 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1159 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1160 }
1161 /* Handle it with a three byte R_NO_RELOCATION entry. */
1162 else
1163 {
1164 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1165 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1166 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1167 }
1168 }
1169 /* Ugh. Punt and use a 4 byte entry. */
1170 else if (skip > 0)
1171 {
1172 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1173 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1174 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1175 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1176 }
1177 return p;
1178 }
1179
1180 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1181 from a BFD relocation. Update the size of the subspace relocation
1182 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1183 into the relocation stream. */
1184
1185 static unsigned char *
1186 som_reloc_addend (bfd *abfd,
1187 bfd_vma addend,
1188 unsigned char *p,
1189 unsigned int *subspace_reloc_sizep,
1190 struct reloc_queue *queue)
1191 {
1192 if (addend + 0x80 < 0x100)
1193 {
1194 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1195 bfd_put_8 (abfd, addend, p + 1);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1197 }
1198 else if (addend + 0x8000 < 0x10000)
1199 {
1200 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1201 bfd_put_16 (abfd, addend, p + 1);
1202 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1203 }
1204 else if (addend + 0x800000 < 0x1000000)
1205 {
1206 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1207 bfd_put_8 (abfd, addend >> 16, p + 1);
1208 bfd_put_16 (abfd, addend, p + 2);
1209 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1210 }
1211 else
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1214 bfd_put_32 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1216 }
1217 return p;
1218 }
1219
1220 /* Handle a single function call relocation. */
1221
1222 static unsigned char *
1223 som_reloc_call (bfd *abfd,
1224 unsigned char *p,
1225 unsigned int *subspace_reloc_sizep,
1226 arelent *bfd_reloc,
1227 int sym_num,
1228 struct reloc_queue *queue)
1229 {
1230 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1231 int rtn_bits = arg_bits & 0x3;
1232 int type, done = 0;
1233
1234 /* You'll never believe all this is necessary to handle relocations
1235 for function calls. Having to compute and pack the argument
1236 relocation bits is the real nightmare.
1237
1238 If you're interested in how this works, just forget it. You really
1239 do not want to know about this braindamage. */
1240
1241 /* First see if this can be done with a "simple" relocation. Simple
1242 relocations have a symbol number < 0x100 and have simple encodings
1243 of argument relocations. */
1244
1245 if (sym_num < 0x100)
1246 {
1247 switch (arg_bits)
1248 {
1249 case 0:
1250 case 1:
1251 type = 0;
1252 break;
1253 case 1 << 8:
1254 case 1 << 8 | 1:
1255 type = 1;
1256 break;
1257 case 1 << 8 | 1 << 6:
1258 case 1 << 8 | 1 << 6 | 1:
1259 type = 2;
1260 break;
1261 case 1 << 8 | 1 << 6 | 1 << 4:
1262 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1263 type = 3;
1264 break;
1265 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1267 type = 4;
1268 break;
1269 default:
1270 /* Not one of the easy encodings. This will have to be
1271 handled by the more complex code below. */
1272 type = -1;
1273 break;
1274 }
1275 if (type != -1)
1276 {
1277 /* Account for the return value too. */
1278 if (rtn_bits)
1279 type += 5;
1280
1281 /* Emit a 2 byte relocation. Then see if it can be handled
1282 with a relocation which is already in the relocation queue. */
1283 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1284 bfd_put_8 (abfd, sym_num, p + 1);
1285 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1286 done = 1;
1287 }
1288 }
1289
1290 /* If this could not be handled with a simple relocation, then do a hard
1291 one. Hard relocations occur if the symbol number was too high or if
1292 the encoding of argument relocation bits is too complex. */
1293 if (! done)
1294 {
1295 /* Don't ask about these magic sequences. I took them straight
1296 from gas-1.36 which took them from the a.out man page. */
1297 type = rtn_bits;
1298 if ((arg_bits >> 6 & 0xf) == 0xe)
1299 type += 9 * 40;
1300 else
1301 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1302 if ((arg_bits >> 2 & 0xf) == 0xe)
1303 type += 9 * 4;
1304 else
1305 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1306
1307 /* Output the first two bytes of the relocation. These describe
1308 the length of the relocation and encoding style. */
1309 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1310 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1311 p);
1312 bfd_put_8 (abfd, type, p + 1);
1313
1314 /* Now output the symbol index and see if this bizarre relocation
1315 just happened to be in the relocation queue. */
1316 if (sym_num < 0x100)
1317 {
1318 bfd_put_8 (abfd, sym_num, p + 2);
1319 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1320 }
1321 else
1322 {
1323 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1324 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1325 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1326 }
1327 }
1328 return p;
1329 }
1330
1331 /* Return the logarithm of X, base 2, considering X unsigned,
1332 if X is a power of 2. Otherwise, returns -1. */
1333
1334 static int
1335 exact_log2 (unsigned int x)
1336 {
1337 int log = 0;
1338
1339 /* Test for 0 or a power of 2. */
1340 if (x == 0 || x != (x & -x))
1341 return -1;
1342
1343 while ((x >>= 1) != 0)
1344 log++;
1345 return log;
1346 }
1347
1348 static bfd_reloc_status_type
1349 hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1350 arelent *reloc_entry,
1351 asymbol *symbol_in ATTRIBUTE_UNUSED,
1352 void *data ATTRIBUTE_UNUSED,
1353 asection *input_section,
1354 bfd *output_bfd,
1355 char **error_message ATTRIBUTE_UNUSED)
1356 {
1357 if (output_bfd)
1358 reloc_entry->address += input_section->output_offset;
1359
1360 return bfd_reloc_ok;
1361 }
1362
1363 /* Given a generic HPPA relocation type, the instruction format,
1364 and a field selector, return one or more appropriate SOM relocations. */
1365
1366 int **
1367 hppa_som_gen_reloc_type (bfd *abfd,
1368 int base_type,
1369 int format,
1370 enum hppa_reloc_field_selector_type_alt field,
1371 int sym_diff,
1372 asymbol *sym)
1373 {
1374 int *final_type, **final_types;
1375
1376 final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1377 final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1378 if (!final_types || !final_type)
1379 return NULL;
1380
1381 /* The field selector may require additional relocations to be
1382 generated. It's impossible to know at this moment if additional
1383 relocations will be needed, so we make them. The code to actually
1384 write the relocation/fixup stream is responsible for removing
1385 any redundant relocations. */
1386 switch (field)
1387 {
1388 case e_fsel:
1389 case e_psel:
1390 case e_lpsel:
1391 case e_rpsel:
1392 final_types[0] = final_type;
1393 final_types[1] = NULL;
1394 final_types[2] = NULL;
1395 *final_type = base_type;
1396 break;
1397
1398 case e_tsel:
1399 case e_ltsel:
1400 case e_rtsel:
1401 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1402 if (!final_types[0])
1403 return NULL;
1404 if (field == e_tsel)
1405 *final_types[0] = R_FSEL;
1406 else if (field == e_ltsel)
1407 *final_types[0] = R_LSEL;
1408 else
1409 *final_types[0] = R_RSEL;
1410 final_types[1] = final_type;
1411 final_types[2] = NULL;
1412 *final_type = base_type;
1413 break;
1414
1415 case e_lssel:
1416 case e_rssel:
1417 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1418 if (!final_types[0])
1419 return NULL;
1420 *final_types[0] = R_S_MODE;
1421 final_types[1] = final_type;
1422 final_types[2] = NULL;
1423 *final_type = base_type;
1424 break;
1425
1426 case e_lsel:
1427 case e_rsel:
1428 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1429 if (!final_types[0])
1430 return NULL;
1431 *final_types[0] = R_N_MODE;
1432 final_types[1] = final_type;
1433 final_types[2] = NULL;
1434 *final_type = base_type;
1435 break;
1436
1437 case e_ldsel:
1438 case e_rdsel:
1439 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1440 if (!final_types[0])
1441 return NULL;
1442 *final_types[0] = R_D_MODE;
1443 final_types[1] = final_type;
1444 final_types[2] = NULL;
1445 *final_type = base_type;
1446 break;
1447
1448 case e_lrsel:
1449 case e_rrsel:
1450 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1451 if (!final_types[0])
1452 return NULL;
1453 *final_types[0] = R_R_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_nsel:
1460 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1461 if (!final_types[0])
1462 return NULL;
1463 *final_types[0] = R_N1SEL;
1464 final_types[1] = final_type;
1465 final_types[2] = NULL;
1466 *final_type = base_type;
1467 break;
1468
1469 case e_nlsel:
1470 case e_nlrsel:
1471 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1472 if (!final_types[0])
1473 return NULL;
1474 *final_types[0] = R_N0SEL;
1475 final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1476 if (!final_types[1])
1477 return NULL;
1478 if (field == e_nlsel)
1479 *final_types[1] = R_N_MODE;
1480 else
1481 *final_types[1] = R_R_MODE;
1482 final_types[2] = final_type;
1483 final_types[3] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 /* FIXME: These two field selectors are not currently supported. */
1488 case e_ltpsel:
1489 case e_rtpsel:
1490 abort ();
1491 }
1492
1493 switch (base_type)
1494 {
1495 case R_HPPA:
1496 /* The difference of two symbols needs *very* special handling. */
1497 if (sym_diff)
1498 {
1499 bfd_size_type amt = sizeof (int);
1500
1501 final_types[0] = bfd_alloc (abfd, amt);
1502 final_types[1] = bfd_alloc (abfd, amt);
1503 final_types[2] = bfd_alloc (abfd, amt);
1504 final_types[3] = bfd_alloc (abfd, amt);
1505 if (!final_types[0] || !final_types[1] || !final_types[2])
1506 return NULL;
1507 if (field == e_fsel)
1508 *final_types[0] = R_FSEL;
1509 else if (field == e_rsel)
1510 *final_types[0] = R_RSEL;
1511 else if (field == e_lsel)
1512 *final_types[0] = R_LSEL;
1513 *final_types[1] = R_COMP2;
1514 *final_types[2] = R_COMP2;
1515 *final_types[3] = R_COMP1;
1516 final_types[4] = final_type;
1517 if (format == 32)
1518 *final_types[4] = R_DATA_EXPR;
1519 else
1520 *final_types[4] = R_CODE_EXPR;
1521 final_types[5] = NULL;
1522 break;
1523 }
1524 /* PLABELs get their own relocation type. */
1525 else if (field == e_psel
1526 || field == e_lpsel
1527 || field == e_rpsel)
1528 {
1529 /* A PLABEL relocation that has a size of 32 bits must
1530 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1531 if (format == 32)
1532 *final_type = R_DATA_PLABEL;
1533 else
1534 *final_type = R_CODE_PLABEL;
1535 }
1536 /* PIC stuff. */
1537 else if (field == e_tsel
1538 || field == e_ltsel
1539 || field == e_rtsel)
1540 *final_type = R_DLT_REL;
1541 /* A relocation in the data space is always a full 32bits. */
1542 else if (format == 32)
1543 {
1544 *final_type = R_DATA_ONE_SYMBOL;
1545
1546 /* If there's no SOM symbol type associated with this BFD
1547 symbol, then set the symbol type to ST_DATA.
1548
1549 Only do this if the type is going to default later when
1550 we write the object file.
1551
1552 This is done so that the linker never encounters an
1553 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1554
1555 This allows the compiler to generate exception handling
1556 tables.
1557
1558 Note that one day we may need to also emit BEGIN_BRTAB and
1559 END_BRTAB to prevent the linker from optimizing away insns
1560 in exception handling regions. */
1561 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1562 && (sym->flags & BSF_SECTION_SYM) == 0
1563 && (sym->flags & BSF_FUNCTION) == 0
1564 && ! bfd_is_com_section (sym->section))
1565 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1566 }
1567 break;
1568
1569 case R_HPPA_GOTOFF:
1570 /* More PLABEL special cases. */
1571 if (field == e_psel
1572 || field == e_lpsel
1573 || field == e_rpsel)
1574 *final_type = R_DATA_PLABEL;
1575 else if (field == e_fsel && format == 32)
1576 *final_type = R_DATA_GPREL;
1577 break;
1578
1579 case R_HPPA_COMPLEX:
1580 /* The difference of two symbols needs *very* special handling. */
1581 if (sym_diff)
1582 {
1583 bfd_size_type amt = sizeof (int);
1584
1585 final_types[0] = bfd_alloc (abfd, amt);
1586 final_types[1] = bfd_alloc (abfd, amt);
1587 final_types[2] = bfd_alloc (abfd, amt);
1588 final_types[3] = bfd_alloc (abfd, amt);
1589 if (!final_types[0] || !final_types[1] || !final_types[2])
1590 return NULL;
1591 if (field == e_fsel)
1592 *final_types[0] = R_FSEL;
1593 else if (field == e_rsel)
1594 *final_types[0] = R_RSEL;
1595 else if (field == e_lsel)
1596 *final_types[0] = R_LSEL;
1597 *final_types[1] = R_COMP2;
1598 *final_types[2] = R_COMP2;
1599 *final_types[3] = R_COMP1;
1600 final_types[4] = final_type;
1601 if (format == 32)
1602 *final_types[4] = R_DATA_EXPR;
1603 else
1604 *final_types[4] = R_CODE_EXPR;
1605 final_types[5] = NULL;
1606 break;
1607 }
1608 else
1609 break;
1610
1611 case R_HPPA_NONE:
1612 case R_HPPA_ABS_CALL:
1613 /* Right now we can default all these. */
1614 break;
1615
1616 case R_HPPA_PCREL_CALL:
1617 {
1618 #ifndef NO_PCREL_MODES
1619 /* If we have short and long pcrel modes, then generate the proper
1620 mode selector, then the pcrel relocation. Redundant selectors
1621 will be eliminated as the relocs are sized and emitted. */
1622 bfd_size_type amt = sizeof (int);
1623
1624 final_types[0] = bfd_alloc (abfd, amt);
1625 if (!final_types[0])
1626 return NULL;
1627 if (format == 17)
1628 *final_types[0] = R_SHORT_PCREL_MODE;
1629 else
1630 *final_types[0] = R_LONG_PCREL_MODE;
1631 final_types[1] = final_type;
1632 final_types[2] = NULL;
1633 *final_type = base_type;
1634 #endif
1635 break;
1636 }
1637 }
1638 return final_types;
1639 }
1640
1641 /* Return the address of the correct entry in the PA SOM relocation
1642 howto table. */
1643
1644 static reloc_howto_type *
1645 som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1646 bfd_reloc_code_real_type code)
1647 {
1648 if ((int) code < (int) R_NO_RELOCATION + 255)
1649 {
1650 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1651 return &som_hppa_howto_table[(int) code];
1652 }
1653
1654 return NULL;
1655 }
1656
1657 static reloc_howto_type *
1658 som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1659 const char *r_name)
1660 {
1661 unsigned int i;
1662
1663 for (i = 0;
1664 i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]);
1665 i++)
1666 if (som_hppa_howto_table[i].name != NULL
1667 && strcasecmp (som_hppa_howto_table[i].name, r_name) == 0)
1668 return &som_hppa_howto_table[i];
1669
1670 return NULL;
1671 }
1672
1673 /* Perform some initialization for an object. Save results of this
1674 initialization in the BFD. */
1675
1676 static const bfd_target *
1677 som_object_setup (bfd *abfd,
1678 struct header *file_hdrp,
1679 struct som_exec_auxhdr *aux_hdrp,
1680 unsigned long current_offset)
1681 {
1682 asection *section;
1683
1684 /* som_mkobject will set bfd_error if som_mkobject fails. */
1685 if (! som_mkobject (abfd))
1686 return NULL;
1687
1688 /* Set BFD flags based on what information is available in the SOM. */
1689 abfd->flags = BFD_NO_FLAGS;
1690 if (file_hdrp->symbol_total)
1691 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1692
1693 switch (file_hdrp->a_magic)
1694 {
1695 case DEMAND_MAGIC:
1696 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1697 break;
1698 case SHARE_MAGIC:
1699 abfd->flags |= (WP_TEXT | EXEC_P);
1700 break;
1701 case EXEC_MAGIC:
1702 abfd->flags |= (EXEC_P);
1703 break;
1704 case RELOC_MAGIC:
1705 abfd->flags |= HAS_RELOC;
1706 break;
1707 #ifdef SHL_MAGIC
1708 case SHL_MAGIC:
1709 #endif
1710 #ifdef DL_MAGIC
1711 case DL_MAGIC:
1712 #endif
1713 abfd->flags |= DYNAMIC;
1714 break;
1715
1716 default:
1717 break;
1718 }
1719
1720 /* Save the auxiliary header. */
1721 obj_som_exec_hdr (abfd) = aux_hdrp;
1722
1723 /* Allocate space to hold the saved exec header information. */
1724 obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1725 if (obj_som_exec_data (abfd) == NULL)
1726 return NULL;
1727
1728 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1729
1730 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1731 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1732
1733 It's about time, OSF has used the new id since at least 1992;
1734 HPUX didn't start till nearly 1995!.
1735
1736 The new approach examines the entry field for an executable. If
1737 it is not 4-byte aligned then it's not a proper code address and
1738 we guess it's really the executable flags. For a main program,
1739 we also consider zero to be indicative of a buggy linker, since
1740 that is not a valid entry point. The entry point for a shared
1741 library, however, can be zero so we do not consider that to be
1742 indicative of a buggy linker. */
1743 if (aux_hdrp)
1744 {
1745 int found = 0;
1746
1747 for (section = abfd->sections; section; section = section->next)
1748 {
1749 bfd_vma entry;
1750
1751 if ((section->flags & SEC_CODE) == 0)
1752 continue;
1753 entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
1754 if (entry >= section->vma
1755 && entry < section->vma + section->size)
1756 found = 1;
1757 }
1758 if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
1759 || (aux_hdrp->exec_entry & 0x3) != 0
1760 || ! found)
1761 {
1762 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1763 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1764 }
1765 else
1766 {
1767 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1768 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1769 }
1770 }
1771
1772 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1773
1774 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1775 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1776
1777 /* Initialize the saved symbol table and string table to NULL.
1778 Save important offsets and sizes from the SOM header into
1779 the BFD. */
1780 obj_som_stringtab (abfd) = NULL;
1781 obj_som_symtab (abfd) = NULL;
1782 obj_som_sorted_syms (abfd) = NULL;
1783 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1784 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1785 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1786 + current_offset);
1787 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1788 + current_offset);
1789 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1790
1791 return abfd->xvec;
1792 }
1793
1794 /* Convert all of the space and subspace info into BFD sections. Each space
1795 contains a number of subspaces, which in turn describe the mapping between
1796 regions of the exec file, and the address space that the program runs in.
1797 BFD sections which correspond to spaces will overlap the sections for the
1798 associated subspaces. */
1799
1800 static bfd_boolean
1801 setup_sections (bfd *abfd,
1802 struct header *file_hdr,
1803 unsigned long current_offset)
1804 {
1805 char *space_strings;
1806 unsigned int space_index, i;
1807 unsigned int total_subspaces = 0;
1808 asection **subspace_sections = NULL;
1809 asection *section;
1810 bfd_size_type amt;
1811
1812 /* First, read in space names. */
1813 amt = file_hdr->space_strings_size;
1814 space_strings = bfd_malloc (amt);
1815 if (!space_strings && amt != 0)
1816 goto error_return;
1817
1818 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1819 SEEK_SET) != 0)
1820 goto error_return;
1821 if (bfd_bread (space_strings, amt, abfd) != amt)
1822 goto error_return;
1823
1824 /* Loop over all of the space dictionaries, building up sections. */
1825 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1826 {
1827 struct space_dictionary_record space;
1828 struct som_subspace_dictionary_record subspace, save_subspace;
1829 unsigned int subspace_index;
1830 asection *space_asect;
1831 bfd_size_type space_size = 0;
1832 char *newname;
1833
1834 /* Read the space dictionary element. */
1835 if (bfd_seek (abfd,
1836 (current_offset + file_hdr->space_location
1837 + space_index * sizeof space),
1838 SEEK_SET) != 0)
1839 goto error_return;
1840 amt = sizeof space;
1841 if (bfd_bread (&space, amt, abfd) != amt)
1842 goto error_return;
1843
1844 /* Setup the space name string. */
1845 space.name.n_name = space.name.n_strx + space_strings;
1846
1847 /* Make a section out of it. */
1848 amt = strlen (space.name.n_name) + 1;
1849 newname = bfd_alloc (abfd, amt);
1850 if (!newname)
1851 goto error_return;
1852 strcpy (newname, space.name.n_name);
1853
1854 space_asect = bfd_make_section_anyway (abfd, newname);
1855 if (!space_asect)
1856 goto error_return;
1857
1858 if (space.is_loadable == 0)
1859 space_asect->flags |= SEC_DEBUGGING;
1860
1861 /* Set up all the attributes for the space. */
1862 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1863 space.is_private, space.sort_key,
1864 space.space_number))
1865 goto error_return;
1866
1867 /* If the space has no subspaces, then we're done. */
1868 if (space.subspace_quantity == 0)
1869 continue;
1870
1871 /* Now, read in the first subspace for this space. */
1872 if (bfd_seek (abfd,
1873 (current_offset + file_hdr->subspace_location
1874 + space.subspace_index * sizeof subspace),
1875 SEEK_SET) != 0)
1876 goto error_return;
1877 amt = sizeof subspace;
1878 if (bfd_bread (&subspace, amt, abfd) != amt)
1879 goto error_return;
1880 /* Seek back to the start of the subspaces for loop below. */
1881 if (bfd_seek (abfd,
1882 (current_offset + file_hdr->subspace_location
1883 + space.subspace_index * sizeof subspace),
1884 SEEK_SET) != 0)
1885 goto error_return;
1886
1887 /* Setup the start address and file loc from the first subspace
1888 record. */
1889 space_asect->vma = subspace.subspace_start;
1890 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1891 space_asect->alignment_power = exact_log2 (subspace.alignment);
1892 if (space_asect->alignment_power == (unsigned) -1)
1893 goto error_return;
1894
1895 /* Initialize save_subspace so we can reliably determine if this
1896 loop placed any useful values into it. */
1897 memset (&save_subspace, 0, sizeof (save_subspace));
1898
1899 /* Loop over the rest of the subspaces, building up more sections. */
1900 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1901 subspace_index++)
1902 {
1903 asection *subspace_asect;
1904
1905 /* Read in the next subspace. */
1906 amt = sizeof subspace;
1907 if (bfd_bread (&subspace, amt, abfd) != amt)
1908 goto error_return;
1909
1910 /* Setup the subspace name string. */
1911 subspace.name.n_name = subspace.name.n_strx + space_strings;
1912
1913 amt = strlen (subspace.name.n_name) + 1;
1914 newname = bfd_alloc (abfd, amt);
1915 if (!newname)
1916 goto error_return;
1917 strcpy (newname, subspace.name.n_name);
1918
1919 /* Make a section out of this subspace. */
1920 subspace_asect = bfd_make_section_anyway (abfd, newname);
1921 if (!subspace_asect)
1922 goto error_return;
1923
1924 /* Store private information about the section. */
1925 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1926 subspace.access_control_bits,
1927 subspace.sort_key,
1928 subspace.quadrant,
1929 subspace.is_comdat,
1930 subspace.is_common,
1931 subspace.dup_common))
1932 goto error_return;
1933
1934 /* Keep an easy mapping between subspaces and sections.
1935 Note we do not necessarily read the subspaces in the
1936 same order in which they appear in the object file.
1937
1938 So to make the target index come out correctly, we
1939 store the location of the subspace header in target
1940 index, then sort using the location of the subspace
1941 header as the key. Then we can assign correct
1942 subspace indices. */
1943 total_subspaces++;
1944 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1945
1946 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1947 by the access_control_bits in the subspace header. */
1948 switch (subspace.access_control_bits >> 4)
1949 {
1950 /* Readonly data. */
1951 case 0x0:
1952 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1953 break;
1954
1955 /* Normal data. */
1956 case 0x1:
1957 subspace_asect->flags |= SEC_DATA;
1958 break;
1959
1960 /* Readonly code and the gateways.
1961 Gateways have other attributes which do not map
1962 into anything BFD knows about. */
1963 case 0x2:
1964 case 0x4:
1965 case 0x5:
1966 case 0x6:
1967 case 0x7:
1968 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1969 break;
1970
1971 /* dynamic (writable) code. */
1972 case 0x3:
1973 subspace_asect->flags |= SEC_CODE;
1974 break;
1975 }
1976
1977 if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
1978 subspace_asect->flags |= SEC_LINK_ONCE;
1979
1980 if (subspace.subspace_length > 0)
1981 subspace_asect->flags |= SEC_HAS_CONTENTS;
1982
1983 if (subspace.is_loadable)
1984 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1985 else
1986 subspace_asect->flags |= SEC_DEBUGGING;
1987
1988 if (subspace.code_only)
1989 subspace_asect->flags |= SEC_CODE;
1990
1991 /* Both file_loc_init_value and initialization_length will
1992 be zero for a BSS like subspace. */
1993 if (subspace.file_loc_init_value == 0
1994 && subspace.initialization_length == 0)
1995 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1996
1997 /* This subspace has relocations.
1998 The fixup_request_quantity is a byte count for the number of
1999 entries in the relocation stream; it is not the actual number
2000 of relocations in the subspace. */
2001 if (subspace.fixup_request_quantity != 0)
2002 {
2003 subspace_asect->flags |= SEC_RELOC;
2004 subspace_asect->rel_filepos = subspace.fixup_request_index;
2005 som_section_data (subspace_asect)->reloc_size
2006 = subspace.fixup_request_quantity;
2007 /* We can not determine this yet. When we read in the
2008 relocation table the correct value will be filled in. */
2009 subspace_asect->reloc_count = (unsigned) -1;
2010 }
2011
2012 /* Update save_subspace if appropriate. */
2013 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2014 save_subspace = subspace;
2015
2016 subspace_asect->vma = subspace.subspace_start;
2017 subspace_asect->size = subspace.subspace_length;
2018 subspace_asect->filepos = (subspace.file_loc_init_value
2019 + current_offset);
2020 subspace_asect->alignment_power = exact_log2 (subspace.alignment);
2021 if (subspace_asect->alignment_power == (unsigned) -1)
2022 goto error_return;
2023
2024 /* Keep track of the accumulated sizes of the sections. */
2025 space_size += subspace.subspace_length;
2026 }
2027
2028 /* This can happen for a .o which defines symbols in otherwise
2029 empty subspaces. */
2030 if (!save_subspace.file_loc_init_value)
2031 space_asect->size = 0;
2032 else
2033 {
2034 if (file_hdr->a_magic != RELOC_MAGIC)
2035 {
2036 /* Setup the size for the space section based upon the info
2037 in the last subspace of the space. */
2038 space_asect->size = (save_subspace.subspace_start
2039 - space_asect->vma
2040 + save_subspace.subspace_length);
2041 }
2042 else
2043 {
2044 /* The subspace_start field is not initialised in relocatable
2045 only objects, so it cannot be used for length calculations.
2046 Instead we use the space_size value which we have been
2047 accumulating. This isn't an accurate estimate since it
2048 ignores alignment and ordering issues. */
2049 space_asect->size = space_size;
2050 }
2051 }
2052 }
2053 /* Now that we've read in all the subspace records, we need to assign
2054 a target index to each subspace. */
2055 amt = total_subspaces;
2056 amt *= sizeof (asection *);
2057 subspace_sections = bfd_malloc (amt);
2058 if (subspace_sections == NULL)
2059 goto error_return;
2060
2061 for (i = 0, section = abfd->sections; section; section = section->next)
2062 {
2063 if (!som_is_subspace (section))
2064 continue;
2065
2066 subspace_sections[i] = section;
2067 i++;
2068 }
2069 qsort (subspace_sections, total_subspaces,
2070 sizeof (asection *), compare_subspaces);
2071
2072 /* subspace_sections is now sorted in the order in which the subspaces
2073 appear in the object file. Assign an index to each one now. */
2074 for (i = 0; i < total_subspaces; i++)
2075 subspace_sections[i]->target_index = i;
2076
2077 if (space_strings != NULL)
2078 free (space_strings);
2079
2080 if (subspace_sections != NULL)
2081 free (subspace_sections);
2082
2083 return TRUE;
2084
2085 error_return:
2086 if (space_strings != NULL)
2087 free (space_strings);
2088
2089 if (subspace_sections != NULL)
2090 free (subspace_sections);
2091 return FALSE;
2092 }
2093
2094 /* Read in a SOM object and make it into a BFD. */
2095
2096 static const bfd_target *
2097 som_object_p (bfd *abfd)
2098 {
2099 struct header file_hdr;
2100 struct som_exec_auxhdr *aux_hdr_ptr = NULL;
2101 unsigned long current_offset = 0;
2102 struct lst_header lst_header;
2103 struct som_entry som_entry;
2104 bfd_size_type amt;
2105 #define ENTRY_SIZE sizeof (struct som_entry)
2106
2107 amt = FILE_HDR_SIZE;
2108 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2109 {
2110 if (bfd_get_error () != bfd_error_system_call)
2111 bfd_set_error (bfd_error_wrong_format);
2112 return NULL;
2113 }
2114
2115 if (!_PA_RISC_ID (file_hdr.system_id))
2116 {
2117 bfd_set_error (bfd_error_wrong_format);
2118 return NULL;
2119 }
2120
2121 switch (file_hdr.a_magic)
2122 {
2123 case RELOC_MAGIC:
2124 case EXEC_MAGIC:
2125 case SHARE_MAGIC:
2126 case DEMAND_MAGIC:
2127 #ifdef DL_MAGIC
2128 case DL_MAGIC:
2129 #endif
2130 #ifdef SHL_MAGIC
2131 case SHL_MAGIC:
2132 #endif
2133 #ifdef SHARED_MAGIC_CNX
2134 case SHARED_MAGIC_CNX:
2135 #endif
2136 break;
2137
2138 #ifdef EXECLIBMAGIC
2139 case EXECLIBMAGIC:
2140 /* Read the lst header and determine where the SOM directory begins. */
2141
2142 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2143 {
2144 if (bfd_get_error () != bfd_error_system_call)
2145 bfd_set_error (bfd_error_wrong_format);
2146 return NULL;
2147 }
2148
2149 amt = SLSTHDR;
2150 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
2151 {
2152 if (bfd_get_error () != bfd_error_system_call)
2153 bfd_set_error (bfd_error_wrong_format);
2154 return NULL;
2155 }
2156
2157 /* Position to and read the first directory entry. */
2158
2159 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2160 {
2161 if (bfd_get_error () != bfd_error_system_call)
2162 bfd_set_error (bfd_error_wrong_format);
2163 return NULL;
2164 }
2165
2166 amt = ENTRY_SIZE;
2167 if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
2168 {
2169 if (bfd_get_error () != bfd_error_system_call)
2170 bfd_set_error (bfd_error_wrong_format);
2171 return NULL;
2172 }
2173
2174 /* Now position to the first SOM. */
2175
2176 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2177 {
2178 if (bfd_get_error () != bfd_error_system_call)
2179 bfd_set_error (bfd_error_wrong_format);
2180 return NULL;
2181 }
2182
2183 current_offset = som_entry.location;
2184
2185 /* And finally, re-read the som header. */
2186 amt = FILE_HDR_SIZE;
2187 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2188 {
2189 if (bfd_get_error () != bfd_error_system_call)
2190 bfd_set_error (bfd_error_wrong_format);
2191 return NULL;
2192 }
2193
2194 break;
2195 #endif
2196
2197 default:
2198 bfd_set_error (bfd_error_wrong_format);
2199 return NULL;
2200 }
2201
2202 if (file_hdr.version_id != VERSION_ID
2203 && file_hdr.version_id != NEW_VERSION_ID)
2204 {
2205 bfd_set_error (bfd_error_wrong_format);
2206 return NULL;
2207 }
2208
2209 /* If the aux_header_size field in the file header is zero, then this
2210 object is an incomplete executable (a .o file). Do not try to read
2211 a non-existant auxiliary header. */
2212 if (file_hdr.aux_header_size != 0)
2213 {
2214 aux_hdr_ptr = bfd_zalloc (abfd,
2215 (bfd_size_type) sizeof (*aux_hdr_ptr));
2216 if (aux_hdr_ptr == NULL)
2217 return NULL;
2218 amt = AUX_HDR_SIZE;
2219 if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
2220 {
2221 if (bfd_get_error () != bfd_error_system_call)
2222 bfd_set_error (bfd_error_wrong_format);
2223 return NULL;
2224 }
2225 }
2226
2227 if (!setup_sections (abfd, &file_hdr, current_offset))
2228 {
2229 /* setup_sections does not bubble up a bfd error code. */
2230 bfd_set_error (bfd_error_bad_value);
2231 return NULL;
2232 }
2233
2234 /* This appears to be a valid SOM object. Do some initialization. */
2235 return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
2236 }
2237
2238 /* Create a SOM object. */
2239
2240 static bfd_boolean
2241 som_mkobject (bfd *abfd)
2242 {
2243 /* Allocate memory to hold backend information. */
2244 abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2245 if (abfd->tdata.som_data == NULL)
2246 return FALSE;
2247 return TRUE;
2248 }
2249
2250 /* Initialize some information in the file header. This routine makes
2251 not attempt at doing the right thing for a full executable; it
2252 is only meant to handle relocatable objects. */
2253
2254 static bfd_boolean
2255 som_prep_headers (bfd *abfd)
2256 {
2257 struct header *file_hdr;
2258 asection *section;
2259 bfd_size_type amt = sizeof (struct header);
2260
2261 /* Make and attach a file header to the BFD. */
2262 file_hdr = bfd_zalloc (abfd, amt);
2263 if (file_hdr == NULL)
2264 return FALSE;
2265 obj_som_file_hdr (abfd) = file_hdr;
2266
2267 if (abfd->flags & (EXEC_P | DYNAMIC))
2268 {
2269 /* Make and attach an exec header to the BFD. */
2270 amt = sizeof (struct som_exec_auxhdr);
2271 obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
2272 if (obj_som_exec_hdr (abfd) == NULL)
2273 return FALSE;
2274
2275 if (abfd->flags & D_PAGED)
2276 file_hdr->a_magic = DEMAND_MAGIC;
2277 else if (abfd->flags & WP_TEXT)
2278 file_hdr->a_magic = SHARE_MAGIC;
2279 #ifdef SHL_MAGIC
2280 else if (abfd->flags & DYNAMIC)
2281 file_hdr->a_magic = SHL_MAGIC;
2282 #endif
2283 else
2284 file_hdr->a_magic = EXEC_MAGIC;
2285 }
2286 else
2287 file_hdr->a_magic = RELOC_MAGIC;
2288
2289 /* These fields are optional, and embedding timestamps is not always
2290 a wise thing to do, it makes comparing objects during a multi-stage
2291 bootstrap difficult. */
2292 file_hdr->file_time.secs = 0;
2293 file_hdr->file_time.nanosecs = 0;
2294
2295 file_hdr->entry_space = 0;
2296 file_hdr->entry_subspace = 0;
2297 file_hdr->entry_offset = 0;
2298 file_hdr->presumed_dp = 0;
2299
2300 /* Now iterate over the sections translating information from
2301 BFD sections to SOM spaces/subspaces. */
2302 for (section = abfd->sections; section != NULL; section = section->next)
2303 {
2304 /* Ignore anything which has not been marked as a space or
2305 subspace. */
2306 if (!som_is_space (section) && !som_is_subspace (section))
2307 continue;
2308
2309 if (som_is_space (section))
2310 {
2311 /* Allocate space for the space dictionary. */
2312 amt = sizeof (struct space_dictionary_record);
2313 som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
2314 if (som_section_data (section)->space_dict == NULL)
2315 return FALSE;
2316 /* Set space attributes. Note most attributes of SOM spaces
2317 are set based on the subspaces it contains. */
2318 som_section_data (section)->space_dict->loader_fix_index = -1;
2319 som_section_data (section)->space_dict->init_pointer_index = -1;
2320
2321 /* Set more attributes that were stuffed away in private data. */
2322 som_section_data (section)->space_dict->sort_key =
2323 som_section_data (section)->copy_data->sort_key;
2324 som_section_data (section)->space_dict->is_defined =
2325 som_section_data (section)->copy_data->is_defined;
2326 som_section_data (section)->space_dict->is_private =
2327 som_section_data (section)->copy_data->is_private;
2328 som_section_data (section)->space_dict->space_number =
2329 som_section_data (section)->copy_data->space_number;
2330 }
2331 else
2332 {
2333 /* Allocate space for the subspace dictionary. */
2334 amt = sizeof (struct som_subspace_dictionary_record);
2335 som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
2336 if (som_section_data (section)->subspace_dict == NULL)
2337 return FALSE;
2338
2339 /* Set subspace attributes. Basic stuff is done here, additional
2340 attributes are filled in later as more information becomes
2341 available. */
2342 if (section->flags & SEC_ALLOC)
2343 som_section_data (section)->subspace_dict->is_loadable = 1;
2344
2345 if (section->flags & SEC_CODE)
2346 som_section_data (section)->subspace_dict->code_only = 1;
2347
2348 som_section_data (section)->subspace_dict->subspace_start =
2349 section->vma;
2350 som_section_data (section)->subspace_dict->subspace_length =
2351 section->size;
2352 som_section_data (section)->subspace_dict->initialization_length =
2353 section->size;
2354 som_section_data (section)->subspace_dict->alignment =
2355 1 << section->alignment_power;
2356
2357 /* Set more attributes that were stuffed away in private data. */
2358 som_section_data (section)->subspace_dict->sort_key =
2359 som_section_data (section)->copy_data->sort_key;
2360 som_section_data (section)->subspace_dict->access_control_bits =
2361 som_section_data (section)->copy_data->access_control_bits;
2362 som_section_data (section)->subspace_dict->quadrant =
2363 som_section_data (section)->copy_data->quadrant;
2364 som_section_data (section)->subspace_dict->is_comdat =
2365 som_section_data (section)->copy_data->is_comdat;
2366 som_section_data (section)->subspace_dict->is_common =
2367 som_section_data (section)->copy_data->is_common;
2368 som_section_data (section)->subspace_dict->dup_common =
2369 som_section_data (section)->copy_data->dup_common;
2370 }
2371 }
2372 return TRUE;
2373 }
2374
2375 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2376
2377 static bfd_boolean
2378 som_is_space (asection *section)
2379 {
2380 /* If no copy data is available, then it's neither a space nor a
2381 subspace. */
2382 if (som_section_data (section)->copy_data == NULL)
2383 return FALSE;
2384
2385 /* If the containing space isn't the same as the given section,
2386 then this isn't a space. */
2387 if (som_section_data (section)->copy_data->container != section
2388 && (som_section_data (section)->copy_data->container->output_section
2389 != section))
2390 return FALSE;
2391
2392 /* OK. Must be a space. */
2393 return TRUE;
2394 }
2395
2396 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2397
2398 static bfd_boolean
2399 som_is_subspace (asection *section)
2400 {
2401 /* If no copy data is available, then it's neither a space nor a
2402 subspace. */
2403 if (som_section_data (section)->copy_data == NULL)
2404 return FALSE;
2405
2406 /* If the containing space is the same as the given section,
2407 then this isn't a subspace. */
2408 if (som_section_data (section)->copy_data->container == section
2409 || (som_section_data (section)->copy_data->container->output_section
2410 == section))
2411 return FALSE;
2412
2413 /* OK. Must be a subspace. */
2414 return TRUE;
2415 }
2416
2417 /* Return TRUE if the given space contains the given subspace. It
2418 is safe to assume space really is a space, and subspace really
2419 is a subspace. */
2420
2421 static bfd_boolean
2422 som_is_container (asection *space, asection *subspace)
2423 {
2424 return (som_section_data (subspace)->copy_data->container == space)
2425 || (som_section_data (subspace)->copy_data->container->output_section
2426 == space);
2427 }
2428
2429 /* Count and return the number of spaces attached to the given BFD. */
2430
2431 static unsigned long
2432 som_count_spaces (bfd *abfd)
2433 {
2434 int count = 0;
2435 asection *section;
2436
2437 for (section = abfd->sections; section != NULL; section = section->next)
2438 count += som_is_space (section);
2439
2440 return count;
2441 }
2442
2443 /* Count the number of subspaces attached to the given BFD. */
2444
2445 static unsigned long
2446 som_count_subspaces (bfd *abfd)
2447 {
2448 int count = 0;
2449 asection *section;
2450
2451 for (section = abfd->sections; section != NULL; section = section->next)
2452 count += som_is_subspace (section);
2453
2454 return count;
2455 }
2456
2457 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2458
2459 We desire symbols to be ordered starting with the symbol with the
2460 highest relocation count down to the symbol with the lowest relocation
2461 count. Doing so compacts the relocation stream. */
2462
2463 static int
2464 compare_syms (const void *arg1, const void *arg2)
2465 {
2466 asymbol **sym1 = (asymbol **) arg1;
2467 asymbol **sym2 = (asymbol **) arg2;
2468 unsigned int count1, count2;
2469
2470 /* Get relocation count for each symbol. Note that the count
2471 is stored in the udata pointer for section symbols! */
2472 if ((*sym1)->flags & BSF_SECTION_SYM)
2473 count1 = (*sym1)->udata.i;
2474 else
2475 count1 = som_symbol_data (*sym1)->reloc_count;
2476
2477 if ((*sym2)->flags & BSF_SECTION_SYM)
2478 count2 = (*sym2)->udata.i;
2479 else
2480 count2 = som_symbol_data (*sym2)->reloc_count;
2481
2482 /* Return the appropriate value. */
2483 if (count1 < count2)
2484 return 1;
2485 else if (count1 > count2)
2486 return -1;
2487 return 0;
2488 }
2489
2490 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2491 and subspace. */
2492
2493 static int
2494 compare_subspaces (const void *arg1, const void *arg2)
2495 {
2496 asection **subspace1 = (asection **) arg1;
2497 asection **subspace2 = (asection **) arg2;
2498
2499 if ((*subspace1)->target_index < (*subspace2)->target_index)
2500 return -1;
2501 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2502 return 1;
2503 else
2504 return 0;
2505 }
2506
2507 /* Perform various work in preparation for emitting the fixup stream. */
2508
2509 static void
2510 som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
2511 {
2512 unsigned long i;
2513 asection *section;
2514 asymbol **sorted_syms;
2515 bfd_size_type amt;
2516
2517 /* Most SOM relocations involving a symbol have a length which is
2518 dependent on the index of the symbol. So symbols which are
2519 used often in relocations should have a small index. */
2520
2521 /* First initialize the counters for each symbol. */
2522 for (i = 0; i < num_syms; i++)
2523 {
2524 /* Handle a section symbol; these have no pointers back to the
2525 SOM symbol info. So we just use the udata field to hold the
2526 relocation count. */
2527 if (som_symbol_data (syms[i]) == NULL
2528 || syms[i]->flags & BSF_SECTION_SYM)
2529 {
2530 syms[i]->flags |= BSF_SECTION_SYM;
2531 syms[i]->udata.i = 0;
2532 }
2533 else
2534 som_symbol_data (syms[i])->reloc_count = 0;
2535 }
2536
2537 /* Now that the counters are initialized, make a weighted count
2538 of how often a given symbol is used in a relocation. */
2539 for (section = abfd->sections; section != NULL; section = section->next)
2540 {
2541 int j;
2542
2543 /* Does this section have any relocations? */
2544 if ((int) section->reloc_count <= 0)
2545 continue;
2546
2547 /* Walk through each relocation for this section. */
2548 for (j = 1; j < (int) section->reloc_count; j++)
2549 {
2550 arelent *reloc = section->orelocation[j];
2551 int scale;
2552
2553 /* A relocation against a symbol in the *ABS* section really
2554 does not have a symbol. Likewise if the symbol isn't associated
2555 with any section. */
2556 if (reloc->sym_ptr_ptr == NULL
2557 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2558 continue;
2559
2560 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2561 and R_CODE_ONE_SYMBOL relocations to come first. These
2562 two relocations have single byte versions if the symbol
2563 index is very small. */
2564 if (reloc->howto->type == R_DP_RELATIVE
2565 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2566 scale = 2;
2567 else
2568 scale = 1;
2569
2570 /* Handle section symbols by storing the count in the udata
2571 field. It will not be used and the count is very important
2572 for these symbols. */
2573 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2574 {
2575 (*reloc->sym_ptr_ptr)->udata.i =
2576 (*reloc->sym_ptr_ptr)->udata.i + scale;
2577 continue;
2578 }
2579
2580 /* A normal symbol. Increment the count. */
2581 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2582 }
2583 }
2584
2585 /* Sort a copy of the symbol table, rather than the canonical
2586 output symbol table. */
2587 amt = num_syms;
2588 amt *= sizeof (asymbol *);
2589 sorted_syms = bfd_zalloc (abfd, amt);
2590 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2591 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2592 obj_som_sorted_syms (abfd) = sorted_syms;
2593
2594 /* Compute the symbol indexes, they will be needed by the relocation
2595 code. */
2596 for (i = 0; i < num_syms; i++)
2597 {
2598 /* A section symbol. Again, there is no pointer to backend symbol
2599 information, so we reuse the udata field again. */
2600 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2601 sorted_syms[i]->udata.i = i;
2602 else
2603 som_symbol_data (sorted_syms[i])->index = i;
2604 }
2605 }
2606
2607 static bfd_boolean
2608 som_write_fixups (bfd *abfd,
2609 unsigned long current_offset,
2610 unsigned int *total_reloc_sizep)
2611 {
2612 unsigned int i, j;
2613 /* Chunk of memory that we can use as buffer space, then throw
2614 away. */
2615 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2616 unsigned char *p;
2617 unsigned int total_reloc_size = 0;
2618 unsigned int subspace_reloc_size = 0;
2619 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2620 asection *section = abfd->sections;
2621 bfd_size_type amt;
2622
2623 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2624 p = tmp_space;
2625
2626 /* All the fixups for a particular subspace are emitted in a single
2627 stream. All the subspaces for a particular space are emitted
2628 as a single stream.
2629
2630 So, to get all the locations correct one must iterate through all the
2631 spaces, for each space iterate through its subspaces and output a
2632 fixups stream. */
2633 for (i = 0; i < num_spaces; i++)
2634 {
2635 asection *subsection;
2636
2637 /* Find a space. */
2638 while (!som_is_space (section))
2639 section = section->next;
2640
2641 /* Now iterate through each of its subspaces. */
2642 for (subsection = abfd->sections;
2643 subsection != NULL;
2644 subsection = subsection->next)
2645 {
2646 int reloc_offset;
2647 unsigned int current_rounding_mode;
2648 #ifndef NO_PCREL_MODES
2649 unsigned int current_call_mode;
2650 #endif
2651
2652 /* Find a subspace of this space. */
2653 if (!som_is_subspace (subsection)
2654 || !som_is_container (section, subsection))
2655 continue;
2656
2657 /* If this subspace does not have real data, then we are
2658 finished with it. */
2659 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2660 {
2661 som_section_data (subsection)->subspace_dict->fixup_request_index
2662 = -1;
2663 continue;
2664 }
2665
2666 /* This subspace has some relocations. Put the relocation stream
2667 index into the subspace record. */
2668 som_section_data (subsection)->subspace_dict->fixup_request_index
2669 = total_reloc_size;
2670
2671 /* To make life easier start over with a clean slate for
2672 each subspace. Seek to the start of the relocation stream
2673 for this subspace in preparation for writing out its fixup
2674 stream. */
2675 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2676 return FALSE;
2677
2678 /* Buffer space has already been allocated. Just perform some
2679 initialization here. */
2680 p = tmp_space;
2681 subspace_reloc_size = 0;
2682 reloc_offset = 0;
2683 som_initialize_reloc_queue (reloc_queue);
2684 current_rounding_mode = R_N_MODE;
2685 #ifndef NO_PCREL_MODES
2686 current_call_mode = R_SHORT_PCREL_MODE;
2687 #endif
2688
2689 /* Translate each BFD relocation into one or more SOM
2690 relocations. */
2691 for (j = 0; j < subsection->reloc_count; j++)
2692 {
2693 arelent *bfd_reloc = subsection->orelocation[j];
2694 unsigned int skip;
2695 int sym_num;
2696
2697 /* Get the symbol number. Remember it's stored in a
2698 special place for section symbols. */
2699 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2700 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2701 else
2702 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2703
2704 /* If there is not enough room for the next couple relocations,
2705 then dump the current buffer contents now. Also reinitialize
2706 the relocation queue.
2707
2708 No single BFD relocation could ever translate into more
2709 than 100 bytes of SOM relocations (20bytes is probably the
2710 upper limit, but leave lots of space for growth). */
2711 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2712 {
2713 amt = p - tmp_space;
2714 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2715 return FALSE;
2716
2717 p = tmp_space;
2718 som_initialize_reloc_queue (reloc_queue);
2719 }
2720
2721 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2722 skipped. */
2723 skip = bfd_reloc->address - reloc_offset;
2724 p = som_reloc_skip (abfd, skip, p,
2725 &subspace_reloc_size, reloc_queue);
2726
2727 /* Update reloc_offset for the next iteration.
2728
2729 Many relocations do not consume input bytes. They
2730 are markers, or set state necessary to perform some
2731 later relocation. */
2732 switch (bfd_reloc->howto->type)
2733 {
2734 case R_ENTRY:
2735 case R_ALT_ENTRY:
2736 case R_EXIT:
2737 case R_N_MODE:
2738 case R_S_MODE:
2739 case R_D_MODE:
2740 case R_R_MODE:
2741 case R_FSEL:
2742 case R_LSEL:
2743 case R_RSEL:
2744 case R_COMP1:
2745 case R_COMP2:
2746 case R_BEGIN_BRTAB:
2747 case R_END_BRTAB:
2748 case R_BEGIN_TRY:
2749 case R_END_TRY:
2750 case R_N0SEL:
2751 case R_N1SEL:
2752 #ifndef NO_PCREL_MODES
2753 case R_SHORT_PCREL_MODE:
2754 case R_LONG_PCREL_MODE:
2755 #endif
2756 reloc_offset = bfd_reloc->address;
2757 break;
2758
2759 default:
2760 reloc_offset = bfd_reloc->address + 4;
2761 break;
2762 }
2763
2764 /* Now the actual relocation we care about. */
2765 switch (bfd_reloc->howto->type)
2766 {
2767 case R_PCREL_CALL:
2768 case R_ABS_CALL:
2769 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2770 bfd_reloc, sym_num, reloc_queue);
2771 break;
2772
2773 case R_CODE_ONE_SYMBOL:
2774 case R_DP_RELATIVE:
2775 /* Account for any addend. */
2776 if (bfd_reloc->addend)
2777 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2778 &subspace_reloc_size, reloc_queue);
2779
2780 if (sym_num < 0x20)
2781 {
2782 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2783 subspace_reloc_size += 1;
2784 p += 1;
2785 }
2786 else if (sym_num < 0x100)
2787 {
2788 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2789 bfd_put_8 (abfd, sym_num, p + 1);
2790 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2791 2, reloc_queue);
2792 }
2793 else if (sym_num < 0x10000000)
2794 {
2795 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2796 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2797 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2798 p = try_prev_fixup (abfd, &subspace_reloc_size,
2799 p, 4, reloc_queue);
2800 }
2801 else
2802 abort ();
2803 break;
2804
2805 case R_DATA_GPREL:
2806 /* Account for any addend. */
2807 if (bfd_reloc->addend)
2808 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2809 &subspace_reloc_size, reloc_queue);
2810
2811 if (sym_num < 0x10000000)
2812 {
2813 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2814 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2815 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2816 p = try_prev_fixup (abfd, &subspace_reloc_size,
2817 p, 4, reloc_queue);
2818 }
2819 else
2820 abort ();
2821 break;
2822
2823 case R_DATA_ONE_SYMBOL:
2824 case R_DATA_PLABEL:
2825 case R_CODE_PLABEL:
2826 case R_DLT_REL:
2827 /* Account for any addend using R_DATA_OVERRIDE. */
2828 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2829 && bfd_reloc->addend)
2830 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2831 &subspace_reloc_size, reloc_queue);
2832
2833 if (sym_num < 0x100)
2834 {
2835 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2836 bfd_put_8 (abfd, sym_num, p + 1);
2837 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2838 2, reloc_queue);
2839 }
2840 else if (sym_num < 0x10000000)
2841 {
2842 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2843 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2844 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2845 p = try_prev_fixup (abfd, &subspace_reloc_size,
2846 p, 4, reloc_queue);
2847 }
2848 else
2849 abort ();
2850 break;
2851
2852 case R_ENTRY:
2853 {
2854 unsigned int tmp;
2855 arelent *tmp_reloc = NULL;
2856 bfd_put_8 (abfd, R_ENTRY, p);
2857
2858 /* R_ENTRY relocations have 64 bits of associated
2859 data. Unfortunately the addend field of a bfd
2860 relocation is only 32 bits. So, we split up
2861 the 64bit unwind information and store part in
2862 the R_ENTRY relocation, and the rest in the R_EXIT
2863 relocation. */
2864 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2865
2866 /* Find the next R_EXIT relocation. */
2867 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2868 {
2869 tmp_reloc = subsection->orelocation[tmp];
2870 if (tmp_reloc->howto->type == R_EXIT)
2871 break;
2872 }
2873
2874 if (tmp == subsection->reloc_count)
2875 abort ();
2876
2877 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2878 p = try_prev_fixup (abfd, &subspace_reloc_size,
2879 p, 9, reloc_queue);
2880 break;
2881 }
2882
2883 case R_N_MODE:
2884 case R_S_MODE:
2885 case R_D_MODE:
2886 case R_R_MODE:
2887 /* If this relocation requests the current rounding
2888 mode, then it is redundant. */
2889 if (bfd_reloc->howto->type != current_rounding_mode)
2890 {
2891 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2892 subspace_reloc_size += 1;
2893 p += 1;
2894 current_rounding_mode = bfd_reloc->howto->type;
2895 }
2896 break;
2897
2898 #ifndef NO_PCREL_MODES
2899 case R_LONG_PCREL_MODE:
2900 case R_SHORT_PCREL_MODE:
2901 if (bfd_reloc->howto->type != current_call_mode)
2902 {
2903 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2904 subspace_reloc_size += 1;
2905 p += 1;
2906 current_call_mode = bfd_reloc->howto->type;
2907 }
2908 break;
2909 #endif
2910
2911 case R_EXIT:
2912 case R_ALT_ENTRY:
2913 case R_FSEL:
2914 case R_LSEL:
2915 case R_RSEL:
2916 case R_BEGIN_BRTAB:
2917 case R_END_BRTAB:
2918 case R_BEGIN_TRY:
2919 case R_N0SEL:
2920 case R_N1SEL:
2921 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2922 subspace_reloc_size += 1;
2923 p += 1;
2924 break;
2925
2926 case R_END_TRY:
2927 /* The end of an exception handling region. The reloc's
2928 addend contains the offset of the exception handling
2929 code. */
2930 if (bfd_reloc->addend == 0)
2931 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2932 else if (bfd_reloc->addend < 1024)
2933 {
2934 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2935 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2936 p = try_prev_fixup (abfd, &subspace_reloc_size,
2937 p, 2, reloc_queue);
2938 }
2939 else
2940 {
2941 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2942 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2943 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2944 p = try_prev_fixup (abfd, &subspace_reloc_size,
2945 p, 4, reloc_queue);
2946 }
2947 break;
2948
2949 case R_COMP1:
2950 /* The only time we generate R_COMP1, R_COMP2 and
2951 R_CODE_EXPR relocs is for the difference of two
2952 symbols. Hence we can cheat here. */
2953 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2954 bfd_put_8 (abfd, 0x44, p + 1);
2955 p = try_prev_fixup (abfd, &subspace_reloc_size,
2956 p, 2, reloc_queue);
2957 break;
2958
2959 case R_COMP2:
2960 /* The only time we generate R_COMP1, R_COMP2 and
2961 R_CODE_EXPR relocs is for the difference of two
2962 symbols. Hence we can cheat here. */
2963 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2964 bfd_put_8 (abfd, 0x80, p + 1);
2965 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2966 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
2967 p = try_prev_fixup (abfd, &subspace_reloc_size,
2968 p, 5, reloc_queue);
2969 break;
2970
2971 case R_CODE_EXPR:
2972 case R_DATA_EXPR:
2973 /* The only time we generate R_COMP1, R_COMP2 and
2974 R_CODE_EXPR relocs is for the difference of two
2975 symbols. Hence we can cheat here. */
2976 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2977 subspace_reloc_size += 1;
2978 p += 1;
2979 break;
2980
2981 /* Put a "R_RESERVED" relocation in the stream if
2982 we hit something we do not understand. The linker
2983 will complain loudly if this ever happens. */
2984 default:
2985 bfd_put_8 (abfd, 0xff, p);
2986 subspace_reloc_size += 1;
2987 p += 1;
2988 break;
2989 }
2990 }
2991
2992 /* Last BFD relocation for a subspace has been processed.
2993 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2994 p = som_reloc_skip (abfd, subsection->size - reloc_offset,
2995 p, &subspace_reloc_size, reloc_queue);
2996
2997 /* Scribble out the relocations. */
2998 amt = p - tmp_space;
2999 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
3000 return FALSE;
3001 p = tmp_space;
3002
3003 total_reloc_size += subspace_reloc_size;
3004 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3005 = subspace_reloc_size;
3006 }
3007 section = section->next;
3008 }
3009 *total_reloc_sizep = total_reloc_size;
3010 return TRUE;
3011 }
3012
3013 /* Write out the space/subspace string table. */
3014
3015 static bfd_boolean
3016 som_write_space_strings (bfd *abfd,
3017 unsigned long current_offset,
3018 unsigned int *string_sizep)
3019 {
3020 /* Chunk of memory that we can use as buffer space, then throw
3021 away. */
3022 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3023 char *tmp_space = alloca (tmp_space_size);
3024 char *p = tmp_space;
3025 unsigned int strings_size = 0;
3026 asection *section;
3027 bfd_size_type amt;
3028
3029 /* Seek to the start of the space strings in preparation for writing
3030 them out. */
3031 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3032 return FALSE;
3033
3034 /* Walk through all the spaces and subspaces (order is not important)
3035 building up and writing string table entries for their names. */
3036 for (section = abfd->sections; section != NULL; section = section->next)
3037 {
3038 size_t length;
3039
3040 /* Only work with space/subspaces; avoid any other sections
3041 which might have been made (.text for example). */
3042 if (!som_is_space (section) && !som_is_subspace (section))
3043 continue;
3044
3045 /* Get the length of the space/subspace name. */
3046 length = strlen (section->name);
3047
3048 /* If there is not enough room for the next entry, then dump the
3049 current buffer contents now and maybe allocate a larger
3050 buffer. Each entry will take 4 bytes to hold the string
3051 length + the string itself + null terminator. */
3052 if (p - tmp_space + 5 + length > tmp_space_size)
3053 {
3054 /* Flush buffer before refilling or reallocating. */
3055 amt = p - tmp_space;
3056 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3057 return FALSE;
3058
3059 /* Reallocate if now empty buffer still too small. */
3060 if (5 + length > tmp_space_size)
3061 {
3062 /* Ensure a minimum growth factor to avoid O(n**2) space
3063 consumption for n strings. The optimal minimum
3064 factor seems to be 2, as no other value can guarantee
3065 wasting less than 50% space. (Note that we cannot
3066 deallocate space allocated by `alloca' without
3067 returning from this function.) The same technique is
3068 used a few more times below when a buffer is
3069 reallocated. */
3070 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3071 tmp_space = alloca (tmp_space_size);
3072 }
3073
3074 /* Reset to beginning of the (possibly new) buffer space. */
3075 p = tmp_space;
3076 }
3077
3078 /* First element in a string table entry is the length of the
3079 string. Alignment issues are already handled. */
3080 bfd_put_32 (abfd, (bfd_vma) length, p);
3081 p += 4;
3082 strings_size += 4;
3083
3084 /* Record the index in the space/subspace records. */
3085 if (som_is_space (section))
3086 som_section_data (section)->space_dict->name.n_strx = strings_size;
3087 else
3088 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3089
3090 /* Next comes the string itself + a null terminator. */
3091 strcpy (p, section->name);
3092 p += length + 1;
3093 strings_size += length + 1;
3094
3095 /* Always align up to the next word boundary. */
3096 while (strings_size % 4)
3097 {
3098 bfd_put_8 (abfd, 0, p);
3099 p++;
3100 strings_size++;
3101 }
3102 }
3103
3104 /* Done with the space/subspace strings. Write out any information
3105 contained in a partial block. */
3106 amt = p - tmp_space;
3107 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3108 return FALSE;
3109 *string_sizep = strings_size;
3110 return TRUE;
3111 }
3112
3113 /* Write out the symbol string table. */
3114
3115 static bfd_boolean
3116 som_write_symbol_strings (bfd *abfd,
3117 unsigned long current_offset,
3118 asymbol **syms,
3119 unsigned int num_syms,
3120 unsigned int *string_sizep,
3121 COMPUNIT *compilation_unit)
3122 {
3123 unsigned int i;
3124
3125 /* Chunk of memory that we can use as buffer space, then throw
3126 away. */
3127 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3128 char *tmp_space = alloca (tmp_space_size);
3129 char *p = tmp_space;
3130
3131 unsigned int strings_size = 0;
3132 char *comp[4];
3133 bfd_size_type amt;
3134
3135 /* This gets a bit gruesome because of the compilation unit. The
3136 strings within the compilation unit are part of the symbol
3137 strings, but don't have symbol_dictionary entries. So, manually
3138 write them and update the compilation unit header. On input, the
3139 compilation unit header contains local copies of the strings.
3140 Move them aside. */
3141 if (compilation_unit)
3142 {
3143 comp[0] = compilation_unit->name.n_name;
3144 comp[1] = compilation_unit->language_name.n_name;
3145 comp[2] = compilation_unit->product_id.n_name;
3146 comp[3] = compilation_unit->version_id.n_name;
3147 }
3148
3149 /* Seek to the start of the space strings in preparation for writing
3150 them out. */
3151 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3152 return FALSE;
3153
3154 if (compilation_unit)
3155 {
3156 for (i = 0; i < 4; i++)
3157 {
3158 size_t length = strlen (comp[i]);
3159
3160 /* If there is not enough room for the next entry, then dump
3161 the current buffer contents now and maybe allocate a
3162 larger buffer. */
3163 if (p - tmp_space + 5 + length > tmp_space_size)
3164 {
3165 /* Flush buffer before refilling or reallocating. */
3166 amt = p - tmp_space;
3167 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3168 return FALSE;
3169
3170 /* Reallocate if now empty buffer still too small. */
3171 if (5 + length > tmp_space_size)
3172 {
3173 /* See alloca above for discussion of new size. */
3174 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3175 tmp_space = alloca (tmp_space_size);
3176 }
3177
3178 /* Reset to beginning of the (possibly new) buffer
3179 space. */
3180 p = tmp_space;
3181 }
3182
3183 /* First element in a string table entry is the length of
3184 the string. This must always be 4 byte aligned. This is
3185 also an appropriate time to fill in the string index
3186 field in the symbol table entry. */
3187 bfd_put_32 (abfd, (bfd_vma) length, p);
3188 strings_size += 4;
3189 p += 4;
3190
3191 /* Next comes the string itself + a null terminator. */
3192 strcpy (p, comp[i]);
3193
3194 switch (i)
3195 {
3196 case 0:
3197 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3198 break;
3199 case 1:
3200 obj_som_compilation_unit (abfd)->language_name.n_strx =
3201 strings_size;
3202 break;
3203 case 2:
3204 obj_som_compilation_unit (abfd)->product_id.n_strx =
3205 strings_size;
3206 break;
3207 case 3:
3208 obj_som_compilation_unit (abfd)->version_id.n_strx =
3209 strings_size;
3210 break;
3211 }
3212
3213 p += length + 1;
3214 strings_size += length + 1;
3215
3216 /* Always align up to the next word boundary. */
3217 while (strings_size % 4)
3218 {
3219 bfd_put_8 (abfd, 0, p);
3220 strings_size++;
3221 p++;
3222 }
3223 }
3224 }
3225
3226 for (i = 0; i < num_syms; i++)
3227 {
3228 size_t length = strlen (syms[i]->name);
3229
3230 /* If there is not enough room for the next entry, then dump the
3231 current buffer contents now and maybe allocate a larger buffer. */
3232 if (p - tmp_space + 5 + length > tmp_space_size)
3233 {
3234 /* Flush buffer before refilling or reallocating. */
3235 amt = p - tmp_space;
3236 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3237 return FALSE;
3238
3239 /* Reallocate if now empty buffer still too small. */
3240 if (5 + length > tmp_space_size)
3241 {
3242 /* See alloca above for discussion of new size. */
3243 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3244 tmp_space = alloca (tmp_space_size);
3245 }
3246
3247 /* Reset to beginning of the (possibly new) buffer space. */
3248 p = tmp_space;
3249 }
3250
3251 /* First element in a string table entry is the length of the
3252 string. This must always be 4 byte aligned. This is also
3253 an appropriate time to fill in the string index field in the
3254 symbol table entry. */
3255 bfd_put_32 (abfd, (bfd_vma) length, p);
3256 strings_size += 4;
3257 p += 4;
3258
3259 /* Next comes the string itself + a null terminator. */
3260 strcpy (p, syms[i]->name);
3261
3262 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3263 p += length + 1;
3264 strings_size += length + 1;
3265
3266 /* Always align up to the next word boundary. */
3267 while (strings_size % 4)
3268 {
3269 bfd_put_8 (abfd, 0, p);
3270 strings_size++;
3271 p++;
3272 }
3273 }
3274
3275 /* Scribble out any partial block. */
3276 amt = p - tmp_space;
3277 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3278 return FALSE;
3279
3280 *string_sizep = strings_size;
3281 return TRUE;
3282 }
3283
3284 /* Compute variable information to be placed in the SOM headers,
3285 space/subspace dictionaries, relocation streams, etc. Begin
3286 writing parts of the object file. */
3287
3288 static bfd_boolean
3289 som_begin_writing (bfd *abfd)
3290 {
3291 unsigned long current_offset = 0;
3292 unsigned int strings_size = 0;
3293 unsigned long num_spaces, num_subspaces, i;
3294 asection *section;
3295 unsigned int total_subspaces = 0;
3296 struct som_exec_auxhdr *exec_header = NULL;
3297
3298 /* The file header will always be first in an object file,
3299 everything else can be in random locations. To keep things
3300 "simple" BFD will lay out the object file in the manner suggested
3301 by the PRO ABI for PA-RISC Systems. */
3302
3303 /* Before any output can really begin offsets for all the major
3304 portions of the object file must be computed. So, starting
3305 with the initial file header compute (and sometimes write)
3306 each portion of the object file. */
3307
3308 /* Make room for the file header, it's contents are not complete
3309 yet, so it can not be written at this time. */
3310 current_offset += sizeof (struct header);
3311
3312 /* Any auxiliary headers will follow the file header. Right now
3313 we support only the copyright and version headers. */
3314 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3315 obj_som_file_hdr (abfd)->aux_header_size = 0;
3316 if (abfd->flags & (EXEC_P | DYNAMIC))
3317 {
3318 /* Parts of the exec header will be filled in later, so
3319 delay writing the header itself. Fill in the defaults,
3320 and write it later. */
3321 current_offset += sizeof (struct som_exec_auxhdr);
3322 obj_som_file_hdr (abfd)->aux_header_size
3323 += sizeof (struct som_exec_auxhdr);
3324 exec_header = obj_som_exec_hdr (abfd);
3325 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3326 exec_header->som_auxhdr.length = 40;
3327 }
3328 if (obj_som_version_hdr (abfd) != NULL)
3329 {
3330 bfd_size_type len;
3331
3332 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3333 return FALSE;
3334
3335 /* Write the aux_id structure and the string length. */
3336 len = sizeof (struct aux_id) + sizeof (unsigned int);
3337 obj_som_file_hdr (abfd)->aux_header_size += len;
3338 current_offset += len;
3339 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
3340 return FALSE;
3341
3342 /* Write the version string. */
3343 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3344 obj_som_file_hdr (abfd)->aux_header_size += len;
3345 current_offset += len;
3346 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
3347 != len)
3348 return FALSE;
3349 }
3350
3351 if (obj_som_copyright_hdr (abfd) != NULL)
3352 {
3353 bfd_size_type len;
3354
3355 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3356 return FALSE;
3357
3358 /* Write the aux_id structure and the string length. */
3359 len = sizeof (struct aux_id) + sizeof (unsigned int);
3360 obj_som_file_hdr (abfd)->aux_header_size += len;
3361 current_offset += len;
3362 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
3363 return FALSE;
3364
3365 /* Write the copyright string. */
3366 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3367 obj_som_file_hdr (abfd)->aux_header_size += len;
3368 current_offset += len;
3369 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3370 != len)
3371 return FALSE;
3372 }
3373
3374 /* Next comes the initialization pointers; we have no initialization
3375 pointers, so current offset does not change. */
3376 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3377 obj_som_file_hdr (abfd)->init_array_total = 0;
3378
3379 /* Next are the space records. These are fixed length records.
3380
3381 Count the number of spaces to determine how much room is needed
3382 in the object file for the space records.
3383
3384 The names of the spaces are stored in a separate string table,
3385 and the index for each space into the string table is computed
3386 below. Therefore, it is not possible to write the space headers
3387 at this time. */
3388 num_spaces = som_count_spaces (abfd);
3389 obj_som_file_hdr (abfd)->space_location = current_offset;
3390 obj_som_file_hdr (abfd)->space_total = num_spaces;
3391 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3392
3393 /* Next are the subspace records. These are fixed length records.
3394
3395 Count the number of subspaes to determine how much room is needed
3396 in the object file for the subspace records.
3397
3398 A variety if fields in the subspace record are still unknown at
3399 this time (index into string table, fixup stream location/size, etc). */
3400 num_subspaces = som_count_subspaces (abfd);
3401 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3402 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3403 current_offset
3404 += num_subspaces * sizeof (struct som_subspace_dictionary_record);
3405
3406 /* Next is the string table for the space/subspace names. We will
3407 build and write the string table on the fly. At the same time
3408 we will fill in the space/subspace name index fields. */
3409
3410 /* The string table needs to be aligned on a word boundary. */
3411 if (current_offset % 4)
3412 current_offset += (4 - (current_offset % 4));
3413
3414 /* Mark the offset of the space/subspace string table in the
3415 file header. */
3416 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3417
3418 /* Scribble out the space strings. */
3419 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3420 return FALSE;
3421
3422 /* Record total string table size in the header and update the
3423 current offset. */
3424 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3425 current_offset += strings_size;
3426
3427 /* Next is the compilation unit. */
3428 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3429 obj_som_file_hdr (abfd)->compiler_total = 0;
3430 if (obj_som_compilation_unit (abfd))
3431 {
3432 obj_som_file_hdr (abfd)->compiler_total = 1;
3433 current_offset += COMPUNITSZ;
3434 }
3435
3436 /* Now compute the file positions for the loadable subspaces, taking
3437 care to make sure everything stays properly aligned. */
3438
3439 section = abfd->sections;
3440 for (i = 0; i < num_spaces; i++)
3441 {
3442 asection *subsection;
3443 int first_subspace;
3444 unsigned int subspace_offset = 0;
3445
3446 /* Find a space. */
3447 while (!som_is_space (section))
3448 section = section->next;
3449
3450 first_subspace = 1;
3451 /* Now look for all its subspaces. */
3452 for (subsection = abfd->sections;
3453 subsection != NULL;
3454 subsection = subsection->next)
3455 {
3456
3457 if (!som_is_subspace (subsection)
3458 || !som_is_container (section, subsection)
3459 || (subsection->flags & SEC_ALLOC) == 0)
3460 continue;
3461
3462 /* If this is the first subspace in the space, and we are
3463 building an executable, then take care to make sure all
3464 the alignments are correct and update the exec header. */
3465 if (first_subspace
3466 && (abfd->flags & (EXEC_P | DYNAMIC)))
3467 {
3468 /* Demand paged executables have each space aligned to a
3469 page boundary. Sharable executables (write-protected
3470 text) have just the private (aka data & bss) space aligned
3471 to a page boundary. Ugh. Not true for HPUX.
3472
3473 The HPUX kernel requires the text to always be page aligned
3474 within the file regardless of the executable's type. */
3475 if (abfd->flags & (D_PAGED | DYNAMIC)
3476 || (subsection->flags & SEC_CODE)
3477 || ((abfd->flags & WP_TEXT)
3478 && (subsection->flags & SEC_DATA)))
3479 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3480
3481 /* Update the exec header. */
3482 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3483 {
3484 exec_header->exec_tmem = section->vma;
3485 exec_header->exec_tfile = current_offset;
3486 }
3487 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3488 {
3489 exec_header->exec_dmem = section->vma;
3490 exec_header->exec_dfile = current_offset;
3491 }
3492
3493 /* Keep track of exactly where we are within a particular
3494 space. This is necessary as the braindamaged HPUX
3495 loader will create holes between subspaces *and*
3496 subspace alignments are *NOT* preserved. What a crock. */
3497 subspace_offset = subsection->vma;
3498
3499 /* Only do this for the first subspace within each space. */
3500 first_subspace = 0;
3501 }
3502 else if (abfd->flags & (EXEC_P | DYNAMIC))
3503 {
3504 /* The braindamaged HPUX loader may have created a hole
3505 between two subspaces. It is *not* sufficient to use
3506 the alignment specifications within the subspaces to
3507 account for these holes -- I've run into at least one
3508 case where the loader left one code subspace unaligned
3509 in a final executable.
3510
3511 To combat this we keep a current offset within each space,
3512 and use the subspace vma fields to detect and preserve
3513 holes. What a crock!
3514
3515 ps. This is not necessary for unloadable space/subspaces. */
3516 current_offset += subsection->vma - subspace_offset;
3517 if (subsection->flags & SEC_CODE)
3518 exec_header->exec_tsize += subsection->vma - subspace_offset;
3519 else
3520 exec_header->exec_dsize += subsection->vma - subspace_offset;
3521 subspace_offset += subsection->vma - subspace_offset;
3522 }
3523
3524 subsection->target_index = total_subspaces++;
3525 /* This is real data to be loaded from the file. */
3526 if (subsection->flags & SEC_LOAD)
3527 {
3528 /* Update the size of the code & data. */
3529 if (abfd->flags & (EXEC_P | DYNAMIC)
3530 && subsection->flags & SEC_CODE)
3531 exec_header->exec_tsize += subsection->size;
3532 else if (abfd->flags & (EXEC_P | DYNAMIC)
3533 && subsection->flags & SEC_DATA)
3534 exec_header->exec_dsize += subsection->size;
3535 som_section_data (subsection)->subspace_dict->file_loc_init_value
3536 = current_offset;
3537 subsection->filepos = current_offset;
3538 current_offset += subsection->size;
3539 subspace_offset += subsection->size;
3540 }
3541 /* Looks like uninitialized data. */
3542 else
3543 {
3544 /* Update the size of the bss section. */
3545 if (abfd->flags & (EXEC_P | DYNAMIC))
3546 exec_header->exec_bsize += subsection->size;
3547
3548 som_section_data (subsection)->subspace_dict->file_loc_init_value
3549 = 0;
3550 som_section_data (subsection)->subspace_dict->
3551 initialization_length = 0;
3552 }
3553 }
3554 /* Goto the next section. */
3555 section = section->next;
3556 }
3557
3558 /* Finally compute the file positions for unloadable subspaces.
3559 If building an executable, start the unloadable stuff on its
3560 own page. */
3561
3562 if (abfd->flags & (EXEC_P | DYNAMIC))
3563 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3564
3565 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3566 section = abfd->sections;
3567 for (i = 0; i < num_spaces; i++)
3568 {
3569 asection *subsection;
3570
3571 /* Find a space. */
3572 while (!som_is_space (section))
3573 section = section->next;
3574
3575 if (abfd->flags & (EXEC_P | DYNAMIC))
3576 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3577
3578 /* Now look for all its subspaces. */
3579 for (subsection = abfd->sections;
3580 subsection != NULL;
3581 subsection = subsection->next)
3582 {
3583
3584 if (!som_is_subspace (subsection)
3585 || !som_is_container (section, subsection)
3586 || (subsection->flags & SEC_ALLOC) != 0)
3587 continue;
3588
3589 subsection->target_index = total_subspaces++;
3590 /* This is real data to be loaded from the file. */
3591 if ((subsection->flags & SEC_LOAD) == 0)
3592 {
3593 som_section_data (subsection)->subspace_dict->file_loc_init_value
3594 = current_offset;
3595 subsection->filepos = current_offset;
3596 current_offset += subsection->size;
3597 }
3598 /* Looks like uninitialized data. */
3599 else
3600 {
3601 som_section_data (subsection)->subspace_dict->file_loc_init_value
3602 = 0;
3603 som_section_data (subsection)->subspace_dict->
3604 initialization_length = subsection->size;
3605 }
3606 }
3607 /* Goto the next section. */
3608 section = section->next;
3609 }
3610
3611 /* If building an executable, then make sure to seek to and write
3612 one byte at the end of the file to make sure any necessary
3613 zeros are filled in. Ugh. */
3614 if (abfd->flags & (EXEC_P | DYNAMIC))
3615 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3616 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3617 return FALSE;
3618 if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
3619 return FALSE;
3620
3621 obj_som_file_hdr (abfd)->unloadable_sp_size
3622 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3623
3624 /* Loader fixups are not supported in any way shape or form. */
3625 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3626 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3627
3628 /* Done. Store the total size of the SOM so far. */
3629 obj_som_file_hdr (abfd)->som_length = current_offset;
3630
3631 return TRUE;
3632 }
3633
3634 /* Finally, scribble out the various headers to the disk. */
3635
3636 static bfd_boolean
3637 som_finish_writing (bfd *abfd)
3638 {
3639 int num_spaces = som_count_spaces (abfd);
3640 asymbol **syms = bfd_get_outsymbols (abfd);
3641 int i, num_syms;
3642 int subspace_index = 0;
3643 file_ptr location;
3644 asection *section;
3645 unsigned long current_offset;
3646 unsigned int strings_size, total_reloc_size;
3647 bfd_size_type amt;
3648
3649 /* We must set up the version identifier here as objcopy/strip copy
3650 private BFD data too late for us to handle this in som_begin_writing. */
3651 if (obj_som_exec_data (abfd)
3652 && obj_som_exec_data (abfd)->version_id)
3653 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3654 else
3655 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3656
3657 /* Next is the symbol table. These are fixed length records.
3658
3659 Count the number of symbols to determine how much room is needed
3660 in the object file for the symbol table.
3661
3662 The names of the symbols are stored in a separate string table,
3663 and the index for each symbol name into the string table is computed
3664 below. Therefore, it is not possible to write the symbol table
3665 at this time.
3666
3667 These used to be output before the subspace contents, but they
3668 were moved here to work around a stupid bug in the hpux linker
3669 (fixed in hpux10). */
3670 current_offset = obj_som_file_hdr (abfd)->som_length;
3671
3672 /* Make sure we're on a word boundary. */
3673 if (current_offset % 4)
3674 current_offset += (4 - (current_offset % 4));
3675
3676 num_syms = bfd_get_symcount (abfd);
3677 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3678 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3679 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3680
3681 /* Next are the symbol strings.
3682 Align them to a word boundary. */
3683 if (current_offset % 4)
3684 current_offset += (4 - (current_offset % 4));
3685 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3686
3687 /* Scribble out the symbol strings. */
3688 if (! som_write_symbol_strings (abfd, current_offset, syms,
3689 num_syms, &strings_size,
3690 obj_som_compilation_unit (abfd)))
3691 return FALSE;
3692
3693 /* Record total string table size in header and update the
3694 current offset. */
3695 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3696 current_offset += strings_size;
3697
3698 /* Do prep work before handling fixups. */
3699 som_prep_for_fixups (abfd,
3700 bfd_get_outsymbols (abfd),
3701 bfd_get_symcount (abfd));
3702
3703 /* At the end of the file is the fixup stream which starts on a
3704 word boundary. */
3705 if (current_offset % 4)
3706 current_offset += (4 - (current_offset % 4));
3707 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3708
3709 /* Write the fixups and update fields in subspace headers which
3710 relate to the fixup stream. */
3711 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3712 return FALSE;
3713
3714 /* Record the total size of the fixup stream in the file header. */
3715 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3716
3717 /* Done. Store the total size of the SOM. */
3718 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3719
3720 /* Now that the symbol table information is complete, build and
3721 write the symbol table. */
3722 if (! som_build_and_write_symbol_table (abfd))
3723 return FALSE;
3724
3725 /* Subspaces are written first so that we can set up information
3726 about them in their containing spaces as the subspace is written. */
3727
3728 /* Seek to the start of the subspace dictionary records. */
3729 location = obj_som_file_hdr (abfd)->subspace_location;
3730 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3731 return FALSE;
3732
3733 section = abfd->sections;
3734 /* Now for each loadable space write out records for its subspaces. */
3735 for (i = 0; i < num_spaces; i++)
3736 {
3737 asection *subsection;
3738
3739 /* Find a space. */
3740 while (!som_is_space (section))
3741 section = section->next;
3742
3743 /* Now look for all its subspaces. */
3744 for (subsection = abfd->sections;
3745 subsection != NULL;
3746 subsection = subsection->next)
3747 {
3748
3749 /* Skip any section which does not correspond to a space
3750 or subspace. Or does not have SEC_ALLOC set (and therefore
3751 has no real bits on the disk). */
3752 if (!som_is_subspace (subsection)
3753 || !som_is_container (section, subsection)
3754 || (subsection->flags & SEC_ALLOC) == 0)
3755 continue;
3756
3757 /* If this is the first subspace for this space, then save
3758 the index of the subspace in its containing space. Also
3759 set "is_loadable" in the containing space. */
3760
3761 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3762 {
3763 som_section_data (section)->space_dict->is_loadable = 1;
3764 som_section_data (section)->space_dict->subspace_index
3765 = subspace_index;
3766 }
3767
3768 /* Increment the number of subspaces seen and the number of
3769 subspaces contained within the current space. */
3770 subspace_index++;
3771 som_section_data (section)->space_dict->subspace_quantity++;
3772
3773 /* Mark the index of the current space within the subspace's
3774 dictionary record. */
3775 som_section_data (subsection)->subspace_dict->space_index = i;
3776
3777 /* Dump the current subspace header. */
3778 amt = sizeof (struct som_subspace_dictionary_record);
3779 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3780 amt, abfd) != amt)
3781 return FALSE;
3782 }
3783 /* Goto the next section. */
3784 section = section->next;
3785 }
3786
3787 /* Now repeat the process for unloadable subspaces. */
3788 section = abfd->sections;
3789 /* Now for each space write out records for its subspaces. */
3790 for (i = 0; i < num_spaces; i++)
3791 {
3792 asection *subsection;
3793
3794 /* Find a space. */
3795 while (!som_is_space (section))
3796 section = section->next;
3797
3798 /* Now look for all its subspaces. */
3799 for (subsection = abfd->sections;
3800 subsection != NULL;
3801 subsection = subsection->next)
3802 {
3803
3804 /* Skip any section which does not correspond to a space or
3805 subspace, or which SEC_ALLOC set (and therefore handled
3806 in the loadable spaces/subspaces code above). */
3807
3808 if (!som_is_subspace (subsection)
3809 || !som_is_container (section, subsection)
3810 || (subsection->flags & SEC_ALLOC) != 0)
3811 continue;
3812
3813 /* If this is the first subspace for this space, then save
3814 the index of the subspace in its containing space. Clear
3815 "is_loadable". */
3816
3817 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3818 {
3819 som_section_data (section)->space_dict->is_loadable = 0;
3820 som_section_data (section)->space_dict->subspace_index
3821 = subspace_index;
3822 }
3823
3824 /* Increment the number of subspaces seen and the number of
3825 subspaces contained within the current space. */
3826 som_section_data (section)->space_dict->subspace_quantity++;
3827 subspace_index++;
3828
3829 /* Mark the index of the current space within the subspace's
3830 dictionary record. */
3831 som_section_data (subsection)->subspace_dict->space_index = i;
3832
3833 /* Dump this subspace header. */
3834 amt = sizeof (struct som_subspace_dictionary_record);
3835 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3836 amt, abfd) != amt)
3837 return FALSE;
3838 }
3839 /* Goto the next section. */
3840 section = section->next;
3841 }
3842
3843 /* All the subspace dictionary records are written, and all the
3844 fields are set up in the space dictionary records.
3845
3846 Seek to the right location and start writing the space
3847 dictionary records. */
3848 location = obj_som_file_hdr (abfd)->space_location;
3849 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3850 return FALSE;
3851
3852 section = abfd->sections;
3853 for (i = 0; i < num_spaces; i++)
3854 {
3855 /* Find a space. */
3856 while (!som_is_space (section))
3857 section = section->next;
3858
3859 /* Dump its header. */
3860 amt = sizeof (struct space_dictionary_record);
3861 if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
3862 amt, abfd) != amt)
3863 return FALSE;
3864
3865 /* Goto the next section. */
3866 section = section->next;
3867 }
3868
3869 /* Write the compilation unit record if there is one. */
3870 if (obj_som_compilation_unit (abfd))
3871 {
3872 location = obj_som_file_hdr (abfd)->compiler_location;
3873 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3874 return FALSE;
3875
3876 amt = COMPUNITSZ;
3877 if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3878 return FALSE;
3879 }
3880
3881 /* Setting of the system_id has to happen very late now that copying of
3882 BFD private data happens *after* section contents are set. */
3883 if (abfd->flags & (EXEC_P | DYNAMIC))
3884 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3885 else if (bfd_get_mach (abfd) == pa20)
3886 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3887 else if (bfd_get_mach (abfd) == pa11)
3888 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3889 else
3890 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3891
3892 /* Compute the checksum for the file header just before writing
3893 the header to disk. */
3894 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3895
3896 /* Only thing left to do is write out the file header. It is always
3897 at location zero. Seek there and write it. */
3898 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3899 return FALSE;
3900 amt = sizeof (struct header);
3901 if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
3902 return FALSE;
3903
3904 /* Now write the exec header. */
3905 if (abfd->flags & (EXEC_P | DYNAMIC))
3906 {
3907 long tmp, som_length;
3908 struct som_exec_auxhdr *exec_header;
3909
3910 exec_header = obj_som_exec_hdr (abfd);
3911 exec_header->exec_entry = bfd_get_start_address (abfd);
3912 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3913
3914 /* Oh joys. Ram some of the BSS data into the DATA section
3915 to be compatible with how the hp linker makes objects
3916 (saves memory space). */
3917 tmp = exec_header->exec_dsize;
3918 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3919 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3920 if (exec_header->exec_bsize < 0)
3921 exec_header->exec_bsize = 0;
3922 exec_header->exec_dsize = tmp;
3923
3924 /* Now perform some sanity checks. The idea is to catch bogons now and
3925 inform the user, instead of silently generating a bogus file. */
3926 som_length = obj_som_file_hdr (abfd)->som_length;
3927 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3928 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3929 {
3930 bfd_set_error (bfd_error_bad_value);
3931 return FALSE;
3932 }
3933
3934 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3935 SEEK_SET) != 0)
3936 return FALSE;
3937
3938 amt = AUX_HDR_SIZE;
3939 if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
3940 return FALSE;
3941 }
3942 return TRUE;
3943 }
3944
3945 /* Compute and return the checksum for a SOM file header. */
3946
3947 static unsigned long
3948 som_compute_checksum (bfd *abfd)
3949 {
3950 unsigned long checksum, count, i;
3951 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3952
3953 checksum = 0;
3954 count = sizeof (struct header) / sizeof (unsigned long);
3955 for (i = 0; i < count; i++)
3956 checksum ^= *(buffer + i);
3957
3958 return checksum;
3959 }
3960
3961 static void
3962 som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
3963 asymbol *sym,
3964 struct som_misc_symbol_info *info)
3965 {
3966 /* Initialize. */
3967 memset (info, 0, sizeof (struct som_misc_symbol_info));
3968
3969 /* The HP SOM linker requires detailed type information about
3970 all symbols (including undefined symbols!). Unfortunately,
3971 the type specified in an import/export statement does not
3972 always match what the linker wants. Severe braindamage. */
3973
3974 /* Section symbols will not have a SOM symbol type assigned to
3975 them yet. Assign all section symbols type ST_DATA. */
3976 if (sym->flags & BSF_SECTION_SYM)
3977 info->symbol_type = ST_DATA;
3978 else
3979 {
3980 /* For BFD style common, the linker will choke unless we set the
3981 type and scope to ST_STORAGE and SS_UNSAT, respectively. */
3982 if (bfd_is_com_section (sym->section))
3983 {
3984 info->symbol_type = ST_STORAGE;
3985 info->symbol_scope = SS_UNSAT;
3986 }
3987
3988 /* It is possible to have a symbol without an associated
3989 type. This happens if the user imported the symbol
3990 without a type and the symbol was never defined
3991 locally. If BSF_FUNCTION is set for this symbol, then
3992 assign it type ST_CODE (the HP linker requires undefined
3993 external functions to have type ST_CODE rather than ST_ENTRY). */
3994 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3995 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3996 && bfd_is_und_section (sym->section)
3997 && sym->flags & BSF_FUNCTION)
3998 info->symbol_type = ST_CODE;
3999
4000 /* Handle function symbols which were defined in this file.
4001 They should have type ST_ENTRY. Also retrieve the argument
4002 relocation bits from the SOM backend information. */
4003 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4004 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4005 && (sym->flags & BSF_FUNCTION))
4006 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4007 && (sym->flags & BSF_FUNCTION)))
4008 {
4009 info->symbol_type = ST_ENTRY;
4010 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4011 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4012 }
4013
4014 /* For unknown symbols set the symbol's type based on the symbol's
4015 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4016 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4017 {
4018 if (sym->section->flags & SEC_CODE)
4019 info->symbol_type = ST_CODE;
4020 else
4021 info->symbol_type = ST_DATA;
4022 }
4023
4024 /* From now on it's a very simple mapping. */
4025 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4026 info->symbol_type = ST_ABSOLUTE;
4027 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4028 info->symbol_type = ST_CODE;
4029 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4030 info->symbol_type = ST_DATA;
4031 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4032 info->symbol_type = ST_MILLICODE;
4033 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4034 info->symbol_type = ST_PLABEL;
4035 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4036 info->symbol_type = ST_PRI_PROG;
4037 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4038 info->symbol_type = ST_SEC_PROG;
4039 }
4040
4041 /* Now handle the symbol's scope. Exported data which is not
4042 in the common section has scope SS_UNIVERSAL. Note scope
4043 of common symbols was handled earlier! */
4044 if (bfd_is_com_section (sym->section))
4045 ;
4046 else if (bfd_is_und_section (sym->section))
4047 info->symbol_scope = SS_UNSAT;
4048 else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
4049 info->symbol_scope = SS_UNIVERSAL;
4050 /* Anything else which is not in the common section has scope
4051 SS_LOCAL. */
4052 else
4053 info->symbol_scope = SS_LOCAL;
4054
4055 /* Now set the symbol_info field. It has no real meaning
4056 for undefined or common symbols, but the HP linker will
4057 choke if it's not set to some "reasonable" value. We
4058 use zero as a reasonable value. */
4059 if (bfd_is_com_section (sym->section)
4060 || bfd_is_und_section (sym->section)
4061 || bfd_is_abs_section (sym->section))
4062 info->symbol_info = 0;
4063 /* For all other symbols, the symbol_info field contains the
4064 subspace index of the space this symbol is contained in. */
4065 else
4066 info->symbol_info = sym->section->target_index;
4067
4068 /* Set the symbol's value. */
4069 info->symbol_value = sym->value + sym->section->vma;
4070
4071 /* The secondary_def field is for "weak" symbols. */
4072 if (sym->flags & BSF_WEAK)
4073 info->secondary_def = TRUE;
4074 else
4075 info->secondary_def = FALSE;
4076
4077 /* The is_comdat, is_common and dup_common fields provide various
4078 flavors of common.
4079
4080 For data symbols, setting IS_COMMON provides Fortran style common
4081 (duplicate definitions and overlapped initialization). Setting both
4082 IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
4083 definitions as long as they are all the same length). In a shared
4084 link data symbols retain their IS_COMMON and DUP_COMMON flags.
4085 An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
4086 symbol except in that it loses its IS_COMDAT flag in a shared link.
4087
4088 For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal
4089 DUP_COMMON code symbols are not exported from shared libraries.
4090 IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
4091
4092 We take a simplified approach to setting the is_comdat, is_common
4093 and dup_common flags in symbols based on the flag settings of their
4094 subspace. This avoids having to add directives like `.comdat' but
4095 the linker behavior is probably undefined if there is more than one
4096 universal symbol (comdat key sysmbol) in a subspace.
4097
4098 The behavior of these flags is not well documentmented, so there
4099 may be bugs and some surprising interactions with other flags. */
4100 if (som_section_data (sym->section)
4101 && som_section_data (sym->section)->subspace_dict
4102 && info->symbol_scope == SS_UNIVERSAL
4103 && (info->symbol_type == ST_ENTRY
4104 || info->symbol_type == ST_CODE
4105 || info->symbol_type == ST_DATA))
4106 {
4107 info->is_comdat
4108 = som_section_data (sym->section)->subspace_dict->is_comdat;
4109 info->is_common
4110 = som_section_data (sym->section)->subspace_dict->is_common;
4111 info->dup_common
4112 = som_section_data (sym->section)->subspace_dict->dup_common;
4113 }
4114 }
4115
4116 /* Build and write, in one big chunk, the entire symbol table for
4117 this BFD. */
4118
4119 static bfd_boolean
4120 som_build_and_write_symbol_table (bfd *abfd)
4121 {
4122 unsigned int num_syms = bfd_get_symcount (abfd);
4123 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4124 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4125 struct symbol_dictionary_record *som_symtab = NULL;
4126 unsigned int i;
4127 bfd_size_type symtab_size;
4128
4129 /* Compute total symbol table size and allocate a chunk of memory
4130 to hold the symbol table as we build it. */
4131 symtab_size = num_syms;
4132 symtab_size *= sizeof (struct symbol_dictionary_record);
4133 som_symtab = bfd_zmalloc (symtab_size);
4134 if (som_symtab == NULL && symtab_size != 0)
4135 goto error_return;
4136
4137 /* Walk over each symbol. */
4138 for (i = 0; i < num_syms; i++)
4139 {
4140 struct som_misc_symbol_info info;
4141
4142 /* This is really an index into the symbol strings table.
4143 By the time we get here, the index has already been
4144 computed and stored into the name field in the BFD symbol. */
4145 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4146
4147 /* Derive SOM information from the BFD symbol. */
4148 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4149
4150 /* Now use it. */
4151 som_symtab[i].symbol_type = info.symbol_type;
4152 som_symtab[i].symbol_scope = info.symbol_scope;
4153 som_symtab[i].arg_reloc = info.arg_reloc;
4154 som_symtab[i].symbol_info = info.symbol_info;
4155 som_symtab[i].xleast = 3;
4156 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4157 som_symtab[i].secondary_def = info.secondary_def;
4158 som_symtab[i].is_comdat = info.is_comdat;
4159 som_symtab[i].is_common = info.is_common;
4160 som_symtab[i].dup_common = info.dup_common;
4161 }
4162
4163 /* Everything is ready, seek to the right location and
4164 scribble out the symbol table. */
4165 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4166 return FALSE;
4167
4168 if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
4169 goto error_return;
4170
4171 if (som_symtab != NULL)
4172 free (som_symtab);
4173 return TRUE;
4174 error_return:
4175 if (som_symtab != NULL)
4176 free (som_symtab);
4177 return FALSE;
4178 }
4179
4180 /* Write an object in SOM format. */
4181
4182 static bfd_boolean
4183 som_write_object_contents (bfd *abfd)
4184 {
4185 if (! abfd->output_has_begun)
4186 {
4187 /* Set up fixed parts of the file, space, and subspace headers.
4188 Notify the world that output has begun. */
4189 som_prep_headers (abfd);
4190 abfd->output_has_begun = TRUE;
4191 /* Start writing the object file. This include all the string
4192 tables, fixup streams, and other portions of the object file. */
4193 som_begin_writing (abfd);
4194 }
4195
4196 return som_finish_writing (abfd);
4197 }
4198 \f
4199 /* Read and save the string table associated with the given BFD. */
4200
4201 static bfd_boolean
4202 som_slurp_string_table (bfd *abfd)
4203 {
4204 char *stringtab;
4205 bfd_size_type amt;
4206
4207 /* Use the saved version if its available. */
4208 if (obj_som_stringtab (abfd) != NULL)
4209 return TRUE;
4210
4211 /* I don't think this can currently happen, and I'm not sure it should
4212 really be an error, but it's better than getting unpredictable results
4213 from the host's malloc when passed a size of zero. */
4214 if (obj_som_stringtab_size (abfd) == 0)
4215 {
4216 bfd_set_error (bfd_error_no_symbols);
4217 return FALSE;
4218 }
4219
4220 /* Allocate and read in the string table. */
4221 amt = obj_som_stringtab_size (abfd);
4222 stringtab = bfd_zmalloc (amt);
4223 if (stringtab == NULL)
4224 return FALSE;
4225
4226 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4227 return FALSE;
4228
4229 if (bfd_bread (stringtab, amt, abfd) != amt)
4230 return FALSE;
4231
4232 /* Save our results and return success. */
4233 obj_som_stringtab (abfd) = stringtab;
4234 return TRUE;
4235 }
4236
4237 /* Return the amount of data (in bytes) required to hold the symbol
4238 table for this object. */
4239
4240 static long
4241 som_get_symtab_upper_bound (bfd *abfd)
4242 {
4243 if (!som_slurp_symbol_table (abfd))
4244 return -1;
4245
4246 return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
4247 }
4248
4249 /* Convert from a SOM subspace index to a BFD section. */
4250
4251 static asection *
4252 bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
4253 {
4254 asection *section;
4255
4256 /* The meaning of the symbol_info field changes for functions
4257 within executables. So only use the quick symbol_info mapping for
4258 incomplete objects and non-function symbols in executables. */
4259 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4260 || (symbol->symbol_type != ST_ENTRY
4261 && symbol->symbol_type != ST_PRI_PROG
4262 && symbol->symbol_type != ST_SEC_PROG
4263 && symbol->symbol_type != ST_MILLICODE))
4264 {
4265 int index = symbol->symbol_info;
4266
4267 for (section = abfd->sections; section != NULL; section = section->next)
4268 if (section->target_index == index && som_is_subspace (section))
4269 return section;
4270 }
4271 else
4272 {
4273 unsigned int value = symbol->symbol_value;
4274
4275 /* For executables we will have to use the symbol's address and
4276 find out what section would contain that address. Yuk. */
4277 for (section = abfd->sections; section; section = section->next)
4278 if (value >= section->vma
4279 && value <= section->vma + section->size
4280 && som_is_subspace (section))
4281 return section;
4282 }
4283
4284 /* Could be a symbol from an external library (such as an OMOS
4285 shared library). Don't abort. */
4286 return bfd_abs_section_ptr;
4287 }
4288
4289 /* Read and save the symbol table associated with the given BFD. */
4290
4291 static unsigned int
4292 som_slurp_symbol_table (bfd *abfd)
4293 {
4294 int symbol_count = bfd_get_symcount (abfd);
4295 int symsize = sizeof (struct symbol_dictionary_record);
4296 char *stringtab;
4297 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4298 som_symbol_type *sym, *symbase;
4299 bfd_size_type amt;
4300
4301 /* Return saved value if it exists. */
4302 if (obj_som_symtab (abfd) != NULL)
4303 goto successful_return;
4304
4305 /* Special case. This is *not* an error. */
4306 if (symbol_count == 0)
4307 goto successful_return;
4308
4309 if (!som_slurp_string_table (abfd))
4310 goto error_return;
4311
4312 stringtab = obj_som_stringtab (abfd);
4313
4314 amt = symbol_count;
4315 amt *= sizeof (som_symbol_type);
4316 symbase = bfd_zmalloc (amt);
4317 if (symbase == NULL)
4318 goto error_return;
4319
4320 /* Read in the external SOM representation. */
4321 amt = symbol_count;
4322 amt *= symsize;
4323 buf = bfd_malloc (amt);
4324 if (buf == NULL && amt != 0)
4325 goto error_return;
4326 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4327 goto error_return;
4328 if (bfd_bread (buf, amt, abfd) != amt)
4329 goto error_return;
4330
4331 /* Iterate over all the symbols and internalize them. */
4332 endbufp = buf + symbol_count;
4333 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4334 {
4335 /* I don't think we care about these. */
4336 if (bufp->symbol_type == ST_SYM_EXT
4337 || bufp->symbol_type == ST_ARG_EXT)
4338 continue;
4339
4340 /* Set some private data we care about. */
4341 if (bufp->symbol_type == ST_NULL)
4342 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4343 else if (bufp->symbol_type == ST_ABSOLUTE)
4344 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4345 else if (bufp->symbol_type == ST_DATA)
4346 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4347 else if (bufp->symbol_type == ST_CODE)
4348 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4349 else if (bufp->symbol_type == ST_PRI_PROG)
4350 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4351 else if (bufp->symbol_type == ST_SEC_PROG)
4352 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4353 else if (bufp->symbol_type == ST_ENTRY)
4354 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4355 else if (bufp->symbol_type == ST_MILLICODE)
4356 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4357 else if (bufp->symbol_type == ST_PLABEL)
4358 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4359 else
4360 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4361 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4362
4363 /* Some reasonable defaults. */
4364 sym->symbol.the_bfd = abfd;
4365 sym->symbol.name = bufp->name.n_strx + stringtab;
4366 sym->symbol.value = bufp->symbol_value;
4367 sym->symbol.section = 0;
4368 sym->symbol.flags = 0;
4369
4370 switch (bufp->symbol_type)
4371 {
4372 case ST_ENTRY:
4373 case ST_MILLICODE:
4374 sym->symbol.flags |= BSF_FUNCTION;
4375 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4376 sym->symbol.value & 0x3;
4377 sym->symbol.value &= ~0x3;
4378 break;
4379
4380 case ST_STUB:
4381 case ST_CODE:
4382 case ST_PRI_PROG:
4383 case ST_SEC_PROG:
4384 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4385 sym->symbol.value & 0x3;
4386 sym->symbol.value &= ~0x3;
4387 /* If the symbol's scope is SS_UNSAT, then these are
4388 undefined function symbols. */
4389 if (bufp->symbol_scope == SS_UNSAT)
4390 sym->symbol.flags |= BSF_FUNCTION;
4391
4392 default:
4393 break;
4394 }
4395
4396 /* Handle scoping and section information. */
4397 switch (bufp->symbol_scope)
4398 {
4399 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4400 so the section associated with this symbol can't be known. */
4401 case SS_EXTERNAL:
4402 if (bufp->symbol_type != ST_STORAGE)
4403 sym->symbol.section = bfd_und_section_ptr;
4404 else
4405 sym->symbol.section = bfd_com_section_ptr;
4406 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4407 break;
4408
4409 case SS_UNSAT:
4410 if (bufp->symbol_type != ST_STORAGE)
4411 sym->symbol.section = bfd_und_section_ptr;
4412 else
4413 sym->symbol.section = bfd_com_section_ptr;
4414 break;
4415
4416 case SS_UNIVERSAL:
4417 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4418 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4419 sym->symbol.value -= sym->symbol.section->vma;
4420 break;
4421
4422 case SS_LOCAL:
4423 sym->symbol.flags |= BSF_LOCAL;
4424 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4425 sym->symbol.value -= sym->symbol.section->vma;
4426 break;
4427 }
4428
4429 /* Check for a weak symbol. */
4430 if (bufp->secondary_def)
4431 sym->symbol.flags |= BSF_WEAK;
4432
4433 /* Mark section symbols and symbols used by the debugger.
4434 Note $START$ is a magic code symbol, NOT a section symbol. */
4435 if (sym->symbol.name[0] == '$'
4436 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4437 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4438 sym->symbol.flags |= BSF_SECTION_SYM;
4439 else if (CONST_STRNEQ (sym->symbol.name, "L$0\002"))
4440 {
4441 sym->symbol.flags |= BSF_SECTION_SYM;
4442 sym->symbol.name = sym->symbol.section->name;
4443 }
4444 else if (CONST_STRNEQ (sym->symbol.name, "L$0\001"))
4445 sym->symbol.flags |= BSF_DEBUGGING;
4446
4447 /* Note increment at bottom of loop, since we skip some symbols
4448 we can not include it as part of the for statement. */
4449 sym++;
4450 }
4451
4452 /* We modify the symbol count to record the number of BFD symbols we
4453 created. */
4454 bfd_get_symcount (abfd) = sym - symbase;
4455
4456 /* Save our results and return success. */
4457 obj_som_symtab (abfd) = symbase;
4458 successful_return:
4459 if (buf != NULL)
4460 free (buf);
4461 return (TRUE);
4462
4463 error_return:
4464 if (buf != NULL)
4465 free (buf);
4466 return FALSE;
4467 }
4468
4469 /* Canonicalize a SOM symbol table. Return the number of entries
4470 in the symbol table. */
4471
4472 static long
4473 som_canonicalize_symtab (bfd *abfd, asymbol **location)
4474 {
4475 int i;
4476 som_symbol_type *symbase;
4477
4478 if (!som_slurp_symbol_table (abfd))
4479 return -1;
4480
4481 i = bfd_get_symcount (abfd);
4482 symbase = obj_som_symtab (abfd);
4483
4484 for (; i > 0; i--, location++, symbase++)
4485 *location = &symbase->symbol;
4486
4487 /* Final null pointer. */
4488 *location = 0;
4489 return (bfd_get_symcount (abfd));
4490 }
4491
4492 /* Make a SOM symbol. There is nothing special to do here. */
4493
4494 static asymbol *
4495 som_make_empty_symbol (bfd *abfd)
4496 {
4497 bfd_size_type amt = sizeof (som_symbol_type);
4498 som_symbol_type *new = bfd_zalloc (abfd, amt);
4499
4500 if (new == NULL)
4501 return NULL;
4502 new->symbol.the_bfd = abfd;
4503
4504 return &new->symbol;
4505 }
4506
4507 /* Print symbol information. */
4508
4509 static void
4510 som_print_symbol (bfd *abfd,
4511 void *afile,
4512 asymbol *symbol,
4513 bfd_print_symbol_type how)
4514 {
4515 FILE *file = (FILE *) afile;
4516
4517 switch (how)
4518 {
4519 case bfd_print_symbol_name:
4520 fprintf (file, "%s", symbol->name);
4521 break;
4522 case bfd_print_symbol_more:
4523 fprintf (file, "som ");
4524 fprintf_vma (file, symbol->value);
4525 fprintf (file, " %lx", (long) symbol->flags);
4526 break;
4527 case bfd_print_symbol_all:
4528 {
4529 const char *section_name;
4530
4531 section_name = symbol->section ? symbol->section->name : "(*none*)";
4532 bfd_print_symbol_vandf (abfd, (void *) file, symbol);
4533 fprintf (file, " %s\t%s", section_name, symbol->name);
4534 break;
4535 }
4536 }
4537 }
4538
4539 static bfd_boolean
4540 som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
4541 const char *name)
4542 {
4543 return name[0] == 'L' && name[1] == '$';
4544 }
4545
4546 /* Count or process variable-length SOM fixup records.
4547
4548 To avoid code duplication we use this code both to compute the number
4549 of relocations requested by a stream, and to internalize the stream.
4550
4551 When computing the number of relocations requested by a stream the
4552 variables rptr, section, and symbols have no meaning.
4553
4554 Return the number of relocations requested by the fixup stream. When
4555 not just counting
4556
4557 This needs at least two or three more passes to get it cleaned up. */
4558
4559 static unsigned int
4560 som_set_reloc_info (unsigned char *fixup,
4561 unsigned int end,
4562 arelent *internal_relocs,
4563 asection *section,
4564 asymbol **symbols,
4565 bfd_boolean just_count)
4566 {
4567 unsigned int op, varname, deallocate_contents = 0;
4568 unsigned char *end_fixups = &fixup[end];
4569 const struct fixup_format *fp;
4570 const char *cp;
4571 unsigned char *save_fixup;
4572 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4573 const int *subop;
4574 arelent *rptr = internal_relocs;
4575 unsigned int offset = 0;
4576
4577 #define var(c) variables[(c) - 'A']
4578 #define push(v) (*sp++ = (v))
4579 #define pop() (*--sp)
4580 #define emptystack() (sp == stack)
4581
4582 som_initialize_reloc_queue (reloc_queue);
4583 memset (variables, 0, sizeof (variables));
4584 memset (stack, 0, sizeof (stack));
4585 count = 0;
4586 prev_fixup = 0;
4587 saved_unwind_bits = 0;
4588 sp = stack;
4589
4590 while (fixup < end_fixups)
4591 {
4592 /* Save pointer to the start of this fixup. We'll use
4593 it later to determine if it is necessary to put this fixup
4594 on the queue. */
4595 save_fixup = fixup;
4596
4597 /* Get the fixup code and its associated format. */
4598 op = *fixup++;
4599 fp = &som_fixup_formats[op];
4600
4601 /* Handle a request for a previous fixup. */
4602 if (*fp->format == 'P')
4603 {
4604 /* Get pointer to the beginning of the prev fixup, move
4605 the repeated fixup to the head of the queue. */
4606 fixup = reloc_queue[fp->D].reloc;
4607 som_reloc_queue_fix (reloc_queue, fp->D);
4608 prev_fixup = 1;
4609
4610 /* Get the fixup code and its associated format. */
4611 op = *fixup++;
4612 fp = &som_fixup_formats[op];
4613 }
4614
4615 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4616 if (! just_count
4617 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4618 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4619 {
4620 rptr->address = offset;
4621 rptr->howto = &som_hppa_howto_table[op];
4622 rptr->addend = 0;
4623 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4624 }
4625
4626 /* Set default input length to 0. Get the opcode class index
4627 into D. */
4628 var ('L') = 0;
4629 var ('D') = fp->D;
4630 var ('U') = saved_unwind_bits;
4631
4632 /* Get the opcode format. */
4633 cp = fp->format;
4634
4635 /* Process the format string. Parsing happens in two phases,
4636 parse RHS, then assign to LHS. Repeat until no more
4637 characters in the format string. */
4638 while (*cp)
4639 {
4640 /* The variable this pass is going to compute a value for. */
4641 varname = *cp++;
4642
4643 /* Start processing RHS. Continue until a NULL or '=' is found. */
4644 do
4645 {
4646 c = *cp++;
4647
4648 /* If this is a variable, push it on the stack. */
4649 if (ISUPPER (c))
4650 push (var (c));
4651
4652 /* If this is a lower case letter, then it represents
4653 additional data from the fixup stream to be pushed onto
4654 the stack. */
4655 else if (ISLOWER (c))
4656 {
4657 int bits = (c - 'a') * 8;
4658 for (v = 0; c > 'a'; --c)
4659 v = (v << 8) | *fixup++;
4660 if (varname == 'V')
4661 v = sign_extend (v, bits);
4662 push (v);
4663 }
4664
4665 /* A decimal constant. Push it on the stack. */
4666 else if (ISDIGIT (c))
4667 {
4668 v = c - '0';
4669 while (ISDIGIT (*cp))
4670 v = (v * 10) + (*cp++ - '0');
4671 push (v);
4672 }
4673 else
4674 /* An operator. Pop two two values from the stack and
4675 use them as operands to the given operation. Push
4676 the result of the operation back on the stack. */
4677 switch (c)
4678 {
4679 case '+':
4680 v = pop ();
4681 v += pop ();
4682 push (v);
4683 break;
4684 case '*':
4685 v = pop ();
4686 v *= pop ();
4687 push (v);
4688 break;
4689 case '<':
4690 v = pop ();
4691 v = pop () << v;
4692 push (v);
4693 break;
4694 default:
4695 abort ();
4696 }
4697 }
4698 while (*cp && *cp != '=');
4699
4700 /* Move over the equal operator. */
4701 cp++;
4702
4703 /* Pop the RHS off the stack. */
4704 c = pop ();
4705
4706 /* Perform the assignment. */
4707 var (varname) = c;
4708
4709 /* Handle side effects. and special 'O' stack cases. */
4710 switch (varname)
4711 {
4712 /* Consume some bytes from the input space. */
4713 case 'L':
4714 offset += c;
4715 break;
4716 /* A symbol to use in the relocation. Make a note
4717 of this if we are not just counting. */
4718 case 'S':
4719 if (! just_count)
4720 rptr->sym_ptr_ptr = &symbols[c];
4721 break;
4722 /* Argument relocation bits for a function call. */
4723 case 'R':
4724 if (! just_count)
4725 {
4726 unsigned int tmp = var ('R');
4727 rptr->addend = 0;
4728
4729 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4730 && R_PCREL_CALL + 10 > op)
4731 || (som_hppa_howto_table[op].type == R_ABS_CALL
4732 && R_ABS_CALL + 10 > op))
4733 {
4734 /* Simple encoding. */
4735 if (tmp > 4)
4736 {
4737 tmp -= 5;
4738 rptr->addend |= 1;
4739 }
4740 if (tmp == 4)
4741 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4742 else if (tmp == 3)
4743 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4744 else if (tmp == 2)
4745 rptr->addend |= 1 << 8 | 1 << 6;
4746 else if (tmp == 1)
4747 rptr->addend |= 1 << 8;
4748 }
4749 else
4750 {
4751 unsigned int tmp1, tmp2;
4752
4753 /* First part is easy -- low order two bits are
4754 directly copied, then shifted away. */
4755 rptr->addend = tmp & 0x3;
4756 tmp >>= 2;
4757
4758 /* Diving the result by 10 gives us the second
4759 part. If it is 9, then the first two words
4760 are a double precision paramater, else it is
4761 3 * the first arg bits + the 2nd arg bits. */
4762 tmp1 = tmp / 10;
4763 tmp -= tmp1 * 10;
4764 if (tmp1 == 9)
4765 rptr->addend += (0xe << 6);
4766 else
4767 {
4768 /* Get the two pieces. */
4769 tmp2 = tmp1 / 3;
4770 tmp1 -= tmp2 * 3;
4771 /* Put them in the addend. */
4772 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4773 }
4774
4775 /* What's left is the third part. It's unpacked
4776 just like the second. */
4777 if (tmp == 9)
4778 rptr->addend += (0xe << 2);
4779 else
4780 {
4781 tmp2 = tmp / 3;
4782 tmp -= tmp2 * 3;
4783 rptr->addend += (tmp2 << 4) + (tmp << 2);
4784 }
4785 }
4786 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4787 }
4788 break;
4789 /* Handle the linker expression stack. */
4790 case 'O':
4791 switch (op)
4792 {
4793 case R_COMP1:
4794 subop = comp1_opcodes;
4795 break;
4796 case R_COMP2:
4797 subop = comp2_opcodes;
4798 break;
4799 case R_COMP3:
4800 subop = comp3_opcodes;
4801 break;
4802 default:
4803 abort ();
4804 }
4805 while (*subop <= (unsigned char) c)
4806 ++subop;
4807 --subop;
4808 break;
4809 /* The lower 32unwind bits must be persistent. */
4810 case 'U':
4811 saved_unwind_bits = var ('U');
4812 break;
4813
4814 default:
4815 break;
4816 }
4817 }
4818
4819 /* If we used a previous fixup, clean up after it. */
4820 if (prev_fixup)
4821 {
4822 fixup = save_fixup + 1;
4823 prev_fixup = 0;
4824 }
4825 /* Queue it. */
4826 else if (fixup > save_fixup + 1)
4827 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4828
4829 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4830 fixups to BFD. */
4831 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4832 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4833 {
4834 /* Done with a single reloction. Loop back to the top. */
4835 if (! just_count)
4836 {
4837 if (som_hppa_howto_table[op].type == R_ENTRY)
4838 rptr->addend = var ('T');
4839 else if (som_hppa_howto_table[op].type == R_EXIT)
4840 rptr->addend = var ('U');
4841 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4842 || som_hppa_howto_table[op].type == R_ABS_CALL)
4843 ;
4844 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4845 {
4846 /* Try what was specified in R_DATA_OVERRIDE first
4847 (if anything). Then the hard way using the
4848 section contents. */
4849 rptr->addend = var ('V');
4850
4851 if (rptr->addend == 0 && !section->contents)
4852 {
4853 /* Got to read the damn contents first. We don't
4854 bother saving the contents (yet). Add it one
4855 day if the need arises. */
4856 bfd_byte *contents;
4857 if (!bfd_malloc_and_get_section (section->owner, section,
4858 &contents))
4859 {
4860 if (contents != NULL)
4861 free (contents);
4862 return (unsigned) -1;
4863 }
4864 section->contents = contents;
4865 deallocate_contents = 1;
4866 }
4867 else if (rptr->addend == 0)
4868 rptr->addend = bfd_get_32 (section->owner,
4869 (section->contents
4870 + offset - var ('L')));
4871
4872 }
4873 else
4874 rptr->addend = var ('V');
4875 rptr++;
4876 }
4877 count++;
4878 /* Now that we've handled a "full" relocation, reset
4879 some state. */
4880 memset (variables, 0, sizeof (variables));
4881 memset (stack, 0, sizeof (stack));
4882 }
4883 }
4884 if (deallocate_contents)
4885 free (section->contents);
4886
4887 return count;
4888
4889 #undef var
4890 #undef push
4891 #undef pop
4892 #undef emptystack
4893 }
4894
4895 /* Read in the relocs (aka fixups in SOM terms) for a section.
4896
4897 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4898 set to TRUE to indicate it only needs a count of the number
4899 of actual relocations. */
4900
4901 static bfd_boolean
4902 som_slurp_reloc_table (bfd *abfd,
4903 asection *section,
4904 asymbol **symbols,
4905 bfd_boolean just_count)
4906 {
4907 unsigned char *external_relocs;
4908 unsigned int fixup_stream_size;
4909 arelent *internal_relocs;
4910 unsigned int num_relocs;
4911 bfd_size_type amt;
4912
4913 fixup_stream_size = som_section_data (section)->reloc_size;
4914 /* If there were no relocations, then there is nothing to do. */
4915 if (section->reloc_count == 0)
4916 return TRUE;
4917
4918 /* If reloc_count is -1, then the relocation stream has not been
4919 parsed. We must do so now to know how many relocations exist. */
4920 if (section->reloc_count == (unsigned) -1)
4921 {
4922 amt = fixup_stream_size;
4923 external_relocs = bfd_malloc (amt);
4924 if (external_relocs == NULL)
4925 return FALSE;
4926 /* Read in the external forms. */
4927 if (bfd_seek (abfd,
4928 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4929 SEEK_SET)
4930 != 0)
4931 return FALSE;
4932 if (bfd_bread (external_relocs, amt, abfd) != amt)
4933 return FALSE;
4934
4935 /* Let callers know how many relocations found.
4936 also save the relocation stream as we will
4937 need it again. */
4938 section->reloc_count = som_set_reloc_info (external_relocs,
4939 fixup_stream_size,
4940 NULL, NULL, NULL, TRUE);
4941
4942 som_section_data (section)->reloc_stream = external_relocs;
4943 }
4944
4945 /* If the caller only wanted a count, then return now. */
4946 if (just_count)
4947 return TRUE;
4948
4949 num_relocs = section->reloc_count;
4950 external_relocs = som_section_data (section)->reloc_stream;
4951 /* Return saved information about the relocations if it is available. */
4952 if (section->relocation != NULL)
4953 return TRUE;
4954
4955 amt = num_relocs;
4956 amt *= sizeof (arelent);
4957 internal_relocs = bfd_zalloc (abfd, (amt));
4958 if (internal_relocs == NULL)
4959 return FALSE;
4960
4961 /* Process and internalize the relocations. */
4962 som_set_reloc_info (external_relocs, fixup_stream_size,
4963 internal_relocs, section, symbols, FALSE);
4964
4965 /* We're done with the external relocations. Free them. */
4966 free (external_relocs);
4967 som_section_data (section)->reloc_stream = NULL;
4968
4969 /* Save our results and return success. */
4970 section->relocation = internal_relocs;
4971 return TRUE;
4972 }
4973
4974 /* Return the number of bytes required to store the relocation
4975 information associated with the given section. */
4976
4977 static long
4978 som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
4979 {
4980 /* If section has relocations, then read in the relocation stream
4981 and parse it to determine how many relocations exist. */
4982 if (asect->flags & SEC_RELOC)
4983 {
4984 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
4985 return -1;
4986 return (asect->reloc_count + 1) * sizeof (arelent *);
4987 }
4988
4989 /* There are no relocations. Return enough space to hold the
4990 NULL pointer which will be installed if som_canonicalize_reloc
4991 is called. */
4992 return sizeof (arelent *);
4993 }
4994
4995 /* Convert relocations from SOM (external) form into BFD internal
4996 form. Return the number of relocations. */
4997
4998 static long
4999 som_canonicalize_reloc (bfd *abfd,
5000 sec_ptr section,
5001 arelent **relptr,
5002 asymbol **symbols)
5003 {
5004 arelent *tblptr;
5005 int count;
5006
5007 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
5008 return -1;
5009
5010 count = section->reloc_count;
5011 tblptr = section->relocation;
5012
5013 while (count--)
5014 *relptr++ = tblptr++;
5015
5016 *relptr = NULL;
5017 return section->reloc_count;
5018 }
5019
5020 extern const bfd_target som_vec;
5021
5022 /* A hook to set up object file dependent section information. */
5023
5024 static bfd_boolean
5025 som_new_section_hook (bfd *abfd, asection *newsect)
5026 {
5027 if (!newsect->used_by_bfd)
5028 {
5029 bfd_size_type amt = sizeof (struct som_section_data_struct);
5030
5031 newsect->used_by_bfd = bfd_zalloc (abfd, amt);
5032 if (!newsect->used_by_bfd)
5033 return FALSE;
5034 }
5035 newsect->alignment_power = 3;
5036
5037 /* We allow more than three sections internally. */
5038 return _bfd_generic_new_section_hook (abfd, newsect);
5039 }
5040
5041 /* Copy any private info we understand from the input symbol
5042 to the output symbol. */
5043
5044 static bfd_boolean
5045 som_bfd_copy_private_symbol_data (bfd *ibfd,
5046 asymbol *isymbol,
5047 bfd *obfd,
5048 asymbol *osymbol)
5049 {
5050 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5051 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5052
5053 /* One day we may try to grok other private data. */
5054 if (ibfd->xvec->flavour != bfd_target_som_flavour
5055 || obfd->xvec->flavour != bfd_target_som_flavour)
5056 return FALSE;
5057
5058 /* The only private information we need to copy is the argument relocation
5059 bits. */
5060 output_symbol->tc_data.ap.hppa_arg_reloc =
5061 input_symbol->tc_data.ap.hppa_arg_reloc;
5062
5063 return TRUE;
5064 }
5065
5066 /* Copy any private info we understand from the input section
5067 to the output section. */
5068
5069 static bfd_boolean
5070 som_bfd_copy_private_section_data (bfd *ibfd,
5071 asection *isection,
5072 bfd *obfd,
5073 asection *osection)
5074 {
5075 bfd_size_type amt;
5076
5077 /* One day we may try to grok other private data. */
5078 if (ibfd->xvec->flavour != bfd_target_som_flavour
5079 || obfd->xvec->flavour != bfd_target_som_flavour
5080 || (!som_is_space (isection) && !som_is_subspace (isection)))
5081 return TRUE;
5082
5083 amt = sizeof (struct som_copyable_section_data_struct);
5084 som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
5085 if (som_section_data (osection)->copy_data == NULL)
5086 return FALSE;
5087
5088 memcpy (som_section_data (osection)->copy_data,
5089 som_section_data (isection)->copy_data,
5090 sizeof (struct som_copyable_section_data_struct));
5091
5092 /* Reparent if necessary. */
5093 if (som_section_data (osection)->copy_data->container)
5094 som_section_data (osection)->copy_data->container =
5095 som_section_data (osection)->copy_data->container->output_section;
5096
5097 return TRUE;
5098 }
5099
5100 /* Copy any private info we understand from the input bfd
5101 to the output bfd. */
5102
5103 static bfd_boolean
5104 som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5105 {
5106 /* One day we may try to grok other private data. */
5107 if (ibfd->xvec->flavour != bfd_target_som_flavour
5108 || obfd->xvec->flavour != bfd_target_som_flavour)
5109 return TRUE;
5110
5111 /* Allocate some memory to hold the data we need. */
5112 obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5113 if (obj_som_exec_data (obfd) == NULL)
5114 return FALSE;
5115
5116 /* Now copy the data. */
5117 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5118 sizeof (struct som_exec_data));
5119
5120 return TRUE;
5121 }
5122
5123 /* Display the SOM header. */
5124
5125 static bfd_boolean
5126 som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
5127 {
5128 struct som_exec_auxhdr *exec_header;
5129 struct aux_id* auxhdr;
5130 FILE *f;
5131
5132 f = (FILE *) farg;
5133
5134 exec_header = obj_som_exec_hdr (abfd);
5135 if (exec_header)
5136 {
5137 fprintf (f, _("\nExec Auxiliary Header\n"));
5138 fprintf (f, " flags ");
5139 auxhdr = &exec_header->som_auxhdr;
5140 if (auxhdr->mandatory)
5141 fprintf (f, "mandatory ");
5142 if (auxhdr->copy)
5143 fprintf (f, "copy ");
5144 if (auxhdr->append)
5145 fprintf (f, "append ");
5146 if (auxhdr->ignore)
5147 fprintf (f, "ignore ");
5148 fprintf (f, "\n");
5149 fprintf (f, " type %#x\n", auxhdr->type);
5150 fprintf (f, " length %#x\n", auxhdr->length);
5151
5152 /* Note that, depending on the HP-UX version, the following fields can be
5153 either ints, or longs. */
5154
5155 fprintf (f, " text size %#lx\n", (long) exec_header->exec_tsize);
5156 fprintf (f, " text memory offset %#lx\n", (long) exec_header->exec_tmem);
5157 fprintf (f, " text file offset %#lx\n", (long) exec_header->exec_tfile);
5158 fprintf (f, " data size %#lx\n", (long) exec_header->exec_dsize);
5159 fprintf (f, " data memory offset %#lx\n", (long) exec_header->exec_dmem);
5160 fprintf (f, " data file offset %#lx\n", (long) exec_header->exec_dfile);
5161 fprintf (f, " bss size %#lx\n", (long) exec_header->exec_bsize);
5162 fprintf (f, " entry point %#lx\n", (long) exec_header->exec_entry);
5163 fprintf (f, " loader flags %#lx\n", (long) exec_header->exec_flags);
5164 fprintf (f, " bss initializer %#lx\n", (long) exec_header->exec_bfill);
5165 }
5166
5167 return TRUE;
5168 }
5169
5170 /* Set backend info for sections which can not be described
5171 in the BFD data structures. */
5172
5173 bfd_boolean
5174 bfd_som_set_section_attributes (asection *section,
5175 int defined,
5176 int private,
5177 unsigned int sort_key,
5178 int spnum)
5179 {
5180 /* Allocate memory to hold the magic information. */
5181 if (som_section_data (section)->copy_data == NULL)
5182 {
5183 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5184
5185 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5186 if (som_section_data (section)->copy_data == NULL)
5187 return FALSE;
5188 }
5189 som_section_data (section)->copy_data->sort_key = sort_key;
5190 som_section_data (section)->copy_data->is_defined = defined;
5191 som_section_data (section)->copy_data->is_private = private;
5192 som_section_data (section)->copy_data->container = section;
5193 som_section_data (section)->copy_data->space_number = spnum;
5194 return TRUE;
5195 }
5196
5197 /* Set backend info for subsections which can not be described
5198 in the BFD data structures. */
5199
5200 bfd_boolean
5201 bfd_som_set_subsection_attributes (asection *section,
5202 asection *container,
5203 int access,
5204 unsigned int sort_key,
5205 int quadrant,
5206 int comdat,
5207 int common,
5208 int dup_common)
5209 {
5210 /* Allocate memory to hold the magic information. */
5211 if (som_section_data (section)->copy_data == NULL)
5212 {
5213 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5214
5215 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5216 if (som_section_data (section)->copy_data == NULL)
5217 return FALSE;
5218 }
5219 som_section_data (section)->copy_data->sort_key = sort_key;
5220 som_section_data (section)->copy_data->access_control_bits = access;
5221 som_section_data (section)->copy_data->quadrant = quadrant;
5222 som_section_data (section)->copy_data->container = container;
5223 som_section_data (section)->copy_data->is_comdat = comdat;
5224 som_section_data (section)->copy_data->is_common = common;
5225 som_section_data (section)->copy_data->dup_common = dup_common;
5226 return TRUE;
5227 }
5228
5229 /* Set the full SOM symbol type. SOM needs far more symbol information
5230 than any other object file format I'm aware of. It is mandatory
5231 to be able to know if a symbol is an entry point, millicode, data,
5232 code, absolute, storage request, or procedure label. If you get
5233 the symbol type wrong your program will not link. */
5234
5235 void
5236 bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
5237 {
5238 som_symbol_data (symbol)->som_type = type;
5239 }
5240
5241 /* Attach an auxiliary header to the BFD backend so that it may be
5242 written into the object file. */
5243
5244 bfd_boolean
5245 bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
5246 {
5247 bfd_size_type amt;
5248
5249 if (type == VERSION_AUX_ID)
5250 {
5251 size_t len = strlen (string);
5252 int pad = 0;
5253
5254 if (len % 4)
5255 pad = (4 - (len % 4));
5256 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5257 obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
5258 if (!obj_som_version_hdr (abfd))
5259 return FALSE;
5260 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5261 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5262 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5263 obj_som_version_hdr (abfd)->string_length = len;
5264 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5265 }
5266 else if (type == COPYRIGHT_AUX_ID)
5267 {
5268 int len = strlen (string);
5269 int pad = 0;
5270
5271 if (len % 4)
5272 pad = (4 - (len % 4));
5273 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5274 obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
5275 if (!obj_som_copyright_hdr (abfd))
5276 return FALSE;
5277 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5278 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5279 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5280 obj_som_copyright_hdr (abfd)->string_length = len;
5281 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5282 }
5283 return TRUE;
5284 }
5285
5286 /* Attach a compilation unit header to the BFD backend so that it may be
5287 written into the object file. */
5288
5289 bfd_boolean
5290 bfd_som_attach_compilation_unit (bfd *abfd,
5291 const char *name,
5292 const char *language_name,
5293 const char *product_id,
5294 const char *version_id)
5295 {
5296 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5297
5298 if (n == NULL)
5299 return FALSE;
5300
5301 #define STRDUP(f) \
5302 if (f != NULL) \
5303 { \
5304 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5305 if (n->f.n_name == NULL) \
5306 return FALSE; \
5307 strcpy (n->f.n_name, f); \
5308 }
5309
5310 STRDUP (name);
5311 STRDUP (language_name);
5312 STRDUP (product_id);
5313 STRDUP (version_id);
5314
5315 #undef STRDUP
5316
5317 obj_som_compilation_unit (abfd) = n;
5318
5319 return TRUE;
5320 }
5321
5322 static bfd_boolean
5323 som_get_section_contents (bfd *abfd,
5324 sec_ptr section,
5325 void *location,
5326 file_ptr offset,
5327 bfd_size_type count)
5328 {
5329 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5330 return TRUE;
5331 if ((bfd_size_type) (offset+count) > section->size
5332 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5333 || bfd_bread (location, count, abfd) != count)
5334 return FALSE; /* On error. */
5335 return TRUE;
5336 }
5337
5338 static bfd_boolean
5339 som_set_section_contents (bfd *abfd,
5340 sec_ptr section,
5341 const void *location,
5342 file_ptr offset,
5343 bfd_size_type count)
5344 {
5345 if (! abfd->output_has_begun)
5346 {
5347 /* Set up fixed parts of the file, space, and subspace headers.
5348 Notify the world that output has begun. */
5349 som_prep_headers (abfd);
5350 abfd->output_has_begun = TRUE;
5351 /* Start writing the object file. This include all the string
5352 tables, fixup streams, and other portions of the object file. */
5353 som_begin_writing (abfd);
5354 }
5355
5356 /* Only write subspaces which have "real" contents (eg. the contents
5357 are not generated at run time by the OS). */
5358 if (!som_is_subspace (section)
5359 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5360 return TRUE;
5361
5362 /* Seek to the proper offset within the object file and write the
5363 data. */
5364 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5365 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5366 return FALSE;
5367
5368 if (bfd_bwrite (location, count, abfd) != count)
5369 return FALSE;
5370 return TRUE;
5371 }
5372
5373 static bfd_boolean
5374 som_set_arch_mach (bfd *abfd,
5375 enum bfd_architecture arch,
5376 unsigned long machine)
5377 {
5378 /* Allow any architecture to be supported by the SOM backend. */
5379 return bfd_default_set_arch_mach (abfd, arch, machine);
5380 }
5381
5382 static bfd_boolean
5383 som_find_nearest_line (bfd *abfd,
5384 asection *section,
5385 asymbol **symbols,
5386 bfd_vma offset,
5387 const char **filename_ptr,
5388 const char **functionname_ptr,
5389 unsigned int *line_ptr)
5390 {
5391 bfd_boolean found;
5392 asymbol *func;
5393 bfd_vma low_func;
5394 asymbol **p;
5395
5396 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5397 & found, filename_ptr,
5398 functionname_ptr, line_ptr,
5399 & somdata (abfd).line_info))
5400 return FALSE;
5401
5402 if (found)
5403 return TRUE;
5404
5405 if (symbols == NULL)
5406 return FALSE;
5407
5408 /* Fallback: find function name from symbols table. */
5409 func = NULL;
5410 low_func = 0;
5411
5412 for (p = symbols; *p != NULL; p++)
5413 {
5414 som_symbol_type *q = (som_symbol_type *) *p;
5415
5416 if (q->som_type == SYMBOL_TYPE_ENTRY
5417 && q->symbol.section == section
5418 && q->symbol.value >= low_func
5419 && q->symbol.value <= offset)
5420 {
5421 func = (asymbol *) q;
5422 low_func = q->symbol.value;
5423 }
5424 }
5425
5426 if (func == NULL)
5427 return FALSE;
5428
5429 *filename_ptr = NULL;
5430 *functionname_ptr = bfd_asymbol_name (func);
5431 *line_ptr = 0;
5432
5433 return TRUE;
5434 }
5435
5436 static int
5437 som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
5438 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5439 {
5440 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5441 fflush (stderr);
5442 abort ();
5443 return 0;
5444 }
5445
5446 /* Return the single-character symbol type corresponding to
5447 SOM section S, or '?' for an unknown SOM section. */
5448
5449 static char
5450 som_section_type (const char *s)
5451 {
5452 const struct section_to_type *t;
5453
5454 for (t = &stt[0]; t->section; t++)
5455 if (!strcmp (s, t->section))
5456 return t->type;
5457 return '?';
5458 }
5459
5460 static int
5461 som_decode_symclass (asymbol *symbol)
5462 {
5463 char c;
5464
5465 if (bfd_is_com_section (symbol->section))
5466 return 'C';
5467 if (bfd_is_und_section (symbol->section))
5468 {
5469 if (symbol->flags & BSF_WEAK)
5470 {
5471 /* If weak, determine if it's specifically an object
5472 or non-object weak. */
5473 if (symbol->flags & BSF_OBJECT)
5474 return 'v';
5475 else
5476 return 'w';
5477 }
5478 else
5479 return 'U';
5480 }
5481 if (bfd_is_ind_section (symbol->section))
5482 return 'I';
5483 if (symbol->flags & BSF_WEAK)
5484 {
5485 /* If weak, determine if it's specifically an object
5486 or non-object weak. */
5487 if (symbol->flags & BSF_OBJECT)
5488 return 'V';
5489 else
5490 return 'W';
5491 }
5492 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5493 return '?';
5494
5495 if (bfd_is_abs_section (symbol->section)
5496 || (som_symbol_data (symbol) != NULL
5497 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5498 c = 'a';
5499 else if (symbol->section)
5500 c = som_section_type (symbol->section->name);
5501 else
5502 return '?';
5503 if (symbol->flags & BSF_GLOBAL)
5504 c = TOUPPER (c);
5505 return c;
5506 }
5507
5508 /* Return information about SOM symbol SYMBOL in RET. */
5509
5510 static void
5511 som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
5512 asymbol *symbol,
5513 symbol_info *ret)
5514 {
5515 ret->type = som_decode_symclass (symbol);
5516 if (ret->type != 'U')
5517 ret->value = symbol->value + symbol->section->vma;
5518 else
5519 ret->value = 0;
5520 ret->name = symbol->name;
5521 }
5522
5523 /* Count the number of symbols in the archive symbol table. Necessary
5524 so that we can allocate space for all the carsyms at once. */
5525
5526 static bfd_boolean
5527 som_bfd_count_ar_symbols (bfd *abfd,
5528 struct lst_header *lst_header,
5529 symindex *count)
5530 {
5531 unsigned int i;
5532 unsigned int *hash_table = NULL;
5533 bfd_size_type amt;
5534 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5535
5536 amt = lst_header->hash_size;
5537 amt *= sizeof (unsigned int);
5538 hash_table = bfd_malloc (amt);
5539 if (hash_table == NULL && lst_header->hash_size != 0)
5540 goto error_return;
5541
5542 /* Don't forget to initialize the counter! */
5543 *count = 0;
5544
5545 /* Read in the hash table. The has table is an array of 32bit file offsets
5546 which point to the hash chains. */
5547 if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5548 goto error_return;
5549
5550 /* Walk each chain counting the number of symbols found on that particular
5551 chain. */
5552 for (i = 0; i < lst_header->hash_size; i++)
5553 {
5554 struct lst_symbol_record lst_symbol;
5555
5556 /* An empty chain has zero as it's file offset. */
5557 if (hash_table[i] == 0)
5558 continue;
5559
5560 /* Seek to the first symbol in this hash chain. */
5561 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5562 goto error_return;
5563
5564 /* Read in this symbol and update the counter. */
5565 amt = sizeof (lst_symbol);
5566 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5567 goto error_return;
5568
5569 (*count)++;
5570
5571 /* Now iterate through the rest of the symbols on this chain. */
5572 while (lst_symbol.next_entry)
5573 {
5574
5575 /* Seek to the next symbol. */
5576 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5577 != 0)
5578 goto error_return;
5579
5580 /* Read the symbol in and update the counter. */
5581 amt = sizeof (lst_symbol);
5582 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5583 goto error_return;
5584
5585 (*count)++;
5586 }
5587 }
5588 if (hash_table != NULL)
5589 free (hash_table);
5590 return TRUE;
5591
5592 error_return:
5593 if (hash_table != NULL)
5594 free (hash_table);
5595 return FALSE;
5596 }
5597
5598 /* Fill in the canonical archive symbols (SYMS) from the archive described
5599 by ABFD and LST_HEADER. */
5600
5601 static bfd_boolean
5602 som_bfd_fill_in_ar_symbols (bfd *abfd,
5603 struct lst_header *lst_header,
5604 carsym **syms)
5605 {
5606 unsigned int i, len;
5607 carsym *set = syms[0];
5608 unsigned int *hash_table = NULL;
5609 struct som_entry *som_dict = NULL;
5610 bfd_size_type amt;
5611 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5612
5613 amt = lst_header->hash_size;
5614 amt *= sizeof (unsigned int);
5615 hash_table = bfd_malloc (amt);
5616 if (hash_table == NULL && lst_header->hash_size != 0)
5617 goto error_return;
5618
5619 /* Read in the hash table. The has table is an array of 32bit file offsets
5620 which point to the hash chains. */
5621 if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5622 goto error_return;
5623
5624 /* Seek to and read in the SOM dictionary. We will need this to fill
5625 in the carsym's filepos field. */
5626 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5627 goto error_return;
5628
5629 amt = lst_header->module_count;
5630 amt *= sizeof (struct som_entry);
5631 som_dict = bfd_malloc (amt);
5632 if (som_dict == NULL && lst_header->module_count != 0)
5633 goto error_return;
5634
5635 if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
5636 goto error_return;
5637
5638 /* Walk each chain filling in the carsyms as we go along. */
5639 for (i = 0; i < lst_header->hash_size; i++)
5640 {
5641 struct lst_symbol_record lst_symbol;
5642
5643 /* An empty chain has zero as it's file offset. */
5644 if (hash_table[i] == 0)
5645 continue;
5646
5647 /* Seek to and read the first symbol on the chain. */
5648 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5649 goto error_return;
5650
5651 amt = sizeof (lst_symbol);
5652 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5653 goto error_return;
5654
5655 /* Get the name of the symbol, first get the length which is stored
5656 as a 32bit integer just before the symbol.
5657
5658 One might ask why we don't just read in the entire string table
5659 and index into it. Well, according to the SOM ABI the string
5660 index can point *anywhere* in the archive to save space, so just
5661 using the string table would not be safe. */
5662 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5663 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5664 goto error_return;
5665
5666 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5667 goto error_return;
5668
5669 /* Allocate space for the name and null terminate it too. */
5670 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5671 if (!set->name)
5672 goto error_return;
5673 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5674 goto error_return;
5675
5676 set->name[len] = 0;
5677
5678 /* Fill in the file offset. Note that the "location" field points
5679 to the SOM itself, not the ar_hdr in front of it. */
5680 set->file_offset = som_dict[lst_symbol.som_index].location
5681 - sizeof (struct ar_hdr);
5682
5683 /* Go to the next symbol. */
5684 set++;
5685
5686 /* Iterate through the rest of the chain. */
5687 while (lst_symbol.next_entry)
5688 {
5689 /* Seek to the next symbol and read it in. */
5690 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5691 != 0)
5692 goto error_return;
5693
5694 amt = sizeof (lst_symbol);
5695 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5696 goto error_return;
5697
5698 /* Seek to the name length & string and read them in. */
5699 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5700 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5701 goto error_return;
5702
5703 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5704 goto error_return;
5705
5706 /* Allocate space for the name and null terminate it too. */
5707 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5708 if (!set->name)
5709 goto error_return;
5710
5711 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5712 goto error_return;
5713 set->name[len] = 0;
5714
5715 /* Fill in the file offset. Note that the "location" field points
5716 to the SOM itself, not the ar_hdr in front of it. */
5717 set->file_offset = som_dict[lst_symbol.som_index].location
5718 - sizeof (struct ar_hdr);
5719
5720 /* Go on to the next symbol. */
5721 set++;
5722 }
5723 }
5724 /* If we haven't died by now, then we successfully read the entire
5725 archive symbol table. */
5726 if (hash_table != NULL)
5727 free (hash_table);
5728 if (som_dict != NULL)
5729 free (som_dict);
5730 return TRUE;
5731
5732 error_return:
5733 if (hash_table != NULL)
5734 free (hash_table);
5735 if (som_dict != NULL)
5736 free (som_dict);
5737 return FALSE;
5738 }
5739
5740 /* Read in the LST from the archive. */
5741
5742 static bfd_boolean
5743 som_slurp_armap (bfd *abfd)
5744 {
5745 struct lst_header lst_header;
5746 struct ar_hdr ar_header;
5747 unsigned int parsed_size;
5748 struct artdata *ardata = bfd_ardata (abfd);
5749 char nextname[17];
5750 bfd_size_type amt = 16;
5751 int i = bfd_bread ((void *) nextname, amt, abfd);
5752
5753 /* Special cases. */
5754 if (i == 0)
5755 return TRUE;
5756 if (i != 16)
5757 return FALSE;
5758
5759 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5760 return FALSE;
5761
5762 /* For archives without .o files there is no symbol table. */
5763 if (! CONST_STRNEQ (nextname, "/ "))
5764 {
5765 bfd_has_map (abfd) = FALSE;
5766 return TRUE;
5767 }
5768
5769 /* Read in and sanity check the archive header. */
5770 amt = sizeof (struct ar_hdr);
5771 if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
5772 return FALSE;
5773
5774 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5775 {
5776 bfd_set_error (bfd_error_malformed_archive);
5777 return FALSE;
5778 }
5779
5780 /* How big is the archive symbol table entry? */
5781 errno = 0;
5782 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5783 if (errno != 0)
5784 {
5785 bfd_set_error (bfd_error_malformed_archive);
5786 return FALSE;
5787 }
5788
5789 /* Save off the file offset of the first real user data. */
5790 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5791
5792 /* Read in the library symbol table. We'll make heavy use of this
5793 in just a minute. */
5794 amt = sizeof (struct lst_header);
5795 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
5796 return FALSE;
5797
5798 /* Sanity check. */
5799 if (lst_header.a_magic != LIBMAGIC)
5800 {
5801 bfd_set_error (bfd_error_malformed_archive);
5802 return FALSE;
5803 }
5804
5805 /* Count the number of symbols in the library symbol table. */
5806 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5807 return FALSE;
5808
5809 /* Get back to the start of the library symbol table. */
5810 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5811 + sizeof (struct lst_header)), SEEK_SET) != 0)
5812 return FALSE;
5813
5814 /* Initialize the cache and allocate space for the library symbols. */
5815 ardata->cache = 0;
5816 amt = ardata->symdef_count;
5817 amt *= sizeof (carsym);
5818 ardata->symdefs = bfd_alloc (abfd, amt);
5819 if (!ardata->symdefs)
5820 return FALSE;
5821
5822 /* Now fill in the canonical archive symbols. */
5823 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5824 return FALSE;
5825
5826 /* Seek back to the "first" file in the archive. Note the "first"
5827 file may be the extended name table. */
5828 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5829 return FALSE;
5830
5831 /* Notify the generic archive code that we have a symbol map. */
5832 bfd_has_map (abfd) = TRUE;
5833 return TRUE;
5834 }
5835
5836 /* Begin preparing to write a SOM library symbol table.
5837
5838 As part of the prep work we need to determine the number of symbols
5839 and the size of the associated string section. */
5840
5841 static bfd_boolean
5842 som_bfd_prep_for_ar_write (bfd *abfd,
5843 unsigned int *num_syms,
5844 unsigned int *stringsize)
5845 {
5846 bfd *curr_bfd = abfd->archive_head;
5847
5848 /* Some initialization. */
5849 *num_syms = 0;
5850 *stringsize = 0;
5851
5852 /* Iterate over each BFD within this archive. */
5853 while (curr_bfd != NULL)
5854 {
5855 unsigned int curr_count, i;
5856 som_symbol_type *sym;
5857
5858 /* Don't bother for non-SOM objects. */
5859 if (curr_bfd->format != bfd_object
5860 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5861 {
5862 curr_bfd = curr_bfd->archive_next;
5863 continue;
5864 }
5865
5866 /* Make sure the symbol table has been read, then snag a pointer
5867 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5868 but doing so avoids allocating lots of extra memory. */
5869 if (! som_slurp_symbol_table (curr_bfd))
5870 return FALSE;
5871
5872 sym = obj_som_symtab (curr_bfd);
5873 curr_count = bfd_get_symcount (curr_bfd);
5874
5875 /* Examine each symbol to determine if it belongs in the
5876 library symbol table. */
5877 for (i = 0; i < curr_count; i++, sym++)
5878 {
5879 struct som_misc_symbol_info info;
5880
5881 /* Derive SOM information from the BFD symbol. */
5882 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5883
5884 /* Should we include this symbol? */
5885 if (info.symbol_type == ST_NULL
5886 || info.symbol_type == ST_SYM_EXT
5887 || info.symbol_type == ST_ARG_EXT)
5888 continue;
5889
5890 /* Only global symbols and unsatisfied commons. */
5891 if (info.symbol_scope != SS_UNIVERSAL
5892 && info.symbol_type != ST_STORAGE)
5893 continue;
5894
5895 /* Do no include undefined symbols. */
5896 if (bfd_is_und_section (sym->symbol.section))
5897 continue;
5898
5899 /* Bump the various counters, being careful to honor
5900 alignment considerations in the string table. */
5901 (*num_syms)++;
5902 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5903 while (*stringsize % 4)
5904 (*stringsize)++;
5905 }
5906
5907 curr_bfd = curr_bfd->archive_next;
5908 }
5909 return TRUE;
5910 }
5911
5912 /* Hash a symbol name based on the hashing algorithm presented in the
5913 SOM ABI. */
5914
5915 static unsigned int
5916 som_bfd_ar_symbol_hash (asymbol *symbol)
5917 {
5918 unsigned int len = strlen (symbol->name);
5919
5920 /* Names with length 1 are special. */
5921 if (len == 1)
5922 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5923
5924 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5925 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5926 }
5927
5928 /* Do the bulk of the work required to write the SOM library
5929 symbol table. */
5930
5931 static bfd_boolean
5932 som_bfd_ar_write_symbol_stuff (bfd *abfd,
5933 unsigned int nsyms,
5934 unsigned int string_size,
5935 struct lst_header lst,
5936 unsigned elength)
5937 {
5938 file_ptr lst_filepos;
5939 char *strings = NULL, *p;
5940 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5941 bfd *curr_bfd;
5942 unsigned int *hash_table = NULL;
5943 struct som_entry *som_dict = NULL;
5944 struct lst_symbol_record **last_hash_entry = NULL;
5945 unsigned int curr_som_offset, som_index = 0;
5946 bfd_size_type amt;
5947
5948 amt = lst.hash_size;
5949 amt *= sizeof (unsigned int);
5950 hash_table = bfd_zmalloc (amt);
5951 if (hash_table == NULL && lst.hash_size != 0)
5952 goto error_return;
5953
5954 amt = lst.module_count;
5955 amt *= sizeof (struct som_entry);
5956 som_dict = bfd_zmalloc (amt);
5957 if (som_dict == NULL && lst.module_count != 0)
5958 goto error_return;
5959
5960 amt = lst.hash_size;
5961 amt *= sizeof (struct lst_symbol_record *);
5962 last_hash_entry = bfd_zmalloc (amt);
5963 if (last_hash_entry == NULL && lst.hash_size != 0)
5964 goto error_return;
5965
5966 /* Lots of fields are file positions relative to the start
5967 of the lst record. So save its location. */
5968 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5969
5970 /* Symbols have som_index fields, so we have to keep track of the
5971 index of each SOM in the archive.
5972
5973 The SOM dictionary has (among other things) the absolute file
5974 position for the SOM which a particular dictionary entry
5975 describes. We have to compute that information as we iterate
5976 through the SOMs/symbols. */
5977 som_index = 0;
5978
5979 /* We add in the size of the archive header twice as the location
5980 in the SOM dictionary is the actual offset of the SOM, not the
5981 archive header before the SOM. */
5982 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5983
5984 /* Make room for the archive header and the contents of the
5985 extended string table. Note that elength includes the size
5986 of the archive header for the extended name table! */
5987 if (elength)
5988 curr_som_offset += elength;
5989
5990 /* Make sure we're properly aligned. */
5991 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5992
5993 /* FIXME should be done with buffers just like everything else... */
5994 amt = nsyms;
5995 amt *= sizeof (struct lst_symbol_record);
5996 lst_syms = bfd_malloc (amt);
5997 if (lst_syms == NULL && nsyms != 0)
5998 goto error_return;
5999 strings = bfd_malloc ((bfd_size_type) string_size);
6000 if (strings == NULL && string_size != 0)
6001 goto error_return;
6002
6003 p = strings;
6004 curr_lst_sym = lst_syms;
6005
6006 curr_bfd = abfd->archive_head;
6007 while (curr_bfd != NULL)
6008 {
6009 unsigned int curr_count, i;
6010 som_symbol_type *sym;
6011
6012 /* Don't bother for non-SOM objects. */
6013 if (curr_bfd->format != bfd_object
6014 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
6015 {
6016 curr_bfd = curr_bfd->archive_next;
6017 continue;
6018 }
6019
6020 /* Make sure the symbol table has been read, then snag a pointer
6021 to it. It's a little slimey to grab the symbols via obj_som_symtab,
6022 but doing so avoids allocating lots of extra memory. */
6023 if (! som_slurp_symbol_table (curr_bfd))
6024 goto error_return;
6025
6026 sym = obj_som_symtab (curr_bfd);
6027 curr_count = bfd_get_symcount (curr_bfd);
6028
6029 for (i = 0; i < curr_count; i++, sym++)
6030 {
6031 struct som_misc_symbol_info info;
6032
6033 /* Derive SOM information from the BFD symbol. */
6034 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6035
6036 /* Should we include this symbol? */
6037 if (info.symbol_type == ST_NULL
6038 || info.symbol_type == ST_SYM_EXT
6039 || info.symbol_type == ST_ARG_EXT)
6040 continue;
6041
6042 /* Only global symbols and unsatisfied commons. */
6043 if (info.symbol_scope != SS_UNIVERSAL
6044 && info.symbol_type != ST_STORAGE)
6045 continue;
6046
6047 /* Do no include undefined symbols. */
6048 if (bfd_is_und_section (sym->symbol.section))
6049 continue;
6050
6051 /* If this is the first symbol from this SOM, then update
6052 the SOM dictionary too. */
6053 if (som_dict[som_index].location == 0)
6054 {
6055 som_dict[som_index].location = curr_som_offset;
6056 som_dict[som_index].length = arelt_size (curr_bfd);
6057 }
6058
6059 /* Fill in the lst symbol record. */
6060 curr_lst_sym->hidden = 0;
6061 curr_lst_sym->secondary_def = info.secondary_def;
6062 curr_lst_sym->symbol_type = info.symbol_type;
6063 curr_lst_sym->symbol_scope = info.symbol_scope;
6064 curr_lst_sym->check_level = 0;
6065 curr_lst_sym->must_qualify = 0;
6066 curr_lst_sym->initially_frozen = 0;
6067 curr_lst_sym->memory_resident = 0;
6068 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6069 curr_lst_sym->dup_common = info.dup_common;
6070 curr_lst_sym->xleast = 3;
6071 curr_lst_sym->arg_reloc = info.arg_reloc;
6072 curr_lst_sym->name.n_strx = p - strings + 4;
6073 curr_lst_sym->qualifier_name.n_strx = 0;
6074 curr_lst_sym->symbol_info = info.symbol_info;
6075 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6076 curr_lst_sym->symbol_descriptor = 0;
6077 curr_lst_sym->reserved = 0;
6078 curr_lst_sym->som_index = som_index;
6079 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6080 curr_lst_sym->next_entry = 0;
6081
6082 /* Insert into the hash table. */
6083 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6084 {
6085 struct lst_symbol_record *tmp;
6086
6087 /* There is already something at the head of this hash chain,
6088 so tack this symbol onto the end of the chain. */
6089 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6090 tmp->next_entry
6091 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6092 + lst.hash_size * 4
6093 + lst.module_count * sizeof (struct som_entry)
6094 + sizeof (struct lst_header);
6095 }
6096 else
6097 /* First entry in this hash chain. */
6098 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6099 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6100 + lst.hash_size * 4
6101 + lst.module_count * sizeof (struct som_entry)
6102 + sizeof (struct lst_header);
6103
6104 /* Keep track of the last symbol we added to this chain so we can
6105 easily update its next_entry pointer. */
6106 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6107 = curr_lst_sym;
6108
6109 /* Update the string table. */
6110 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6111 p += 4;
6112 strcpy (p, sym->symbol.name);
6113 p += strlen (sym->symbol.name) + 1;
6114 while ((int) p % 4)
6115 {
6116 bfd_put_8 (abfd, 0, p);
6117 p++;
6118 }
6119
6120 /* Head to the next symbol. */
6121 curr_lst_sym++;
6122 }
6123
6124 /* Keep track of where each SOM will finally reside; then look
6125 at the next BFD. */
6126 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6127
6128 /* A particular object in the archive may have an odd length; the
6129 linker requires objects begin on an even boundary. So round
6130 up the current offset as necessary. */
6131 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6132 curr_bfd = curr_bfd->archive_next;
6133 som_index++;
6134 }
6135
6136 /* Now scribble out the hash table. */
6137 amt = lst.hash_size * 4;
6138 if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
6139 goto error_return;
6140
6141 /* Then the SOM dictionary. */
6142 amt = lst.module_count * sizeof (struct som_entry);
6143 if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
6144 goto error_return;
6145
6146 /* The library symbols. */
6147 amt = nsyms * sizeof (struct lst_symbol_record);
6148 if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
6149 goto error_return;
6150
6151 /* And finally the strings. */
6152 amt = string_size;
6153 if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
6154 goto error_return;
6155
6156 if (hash_table != NULL)
6157 free (hash_table);
6158 if (som_dict != NULL)
6159 free (som_dict);
6160 if (last_hash_entry != NULL)
6161 free (last_hash_entry);
6162 if (lst_syms != NULL)
6163 free (lst_syms);
6164 if (strings != NULL)
6165 free (strings);
6166 return TRUE;
6167
6168 error_return:
6169 if (hash_table != NULL)
6170 free (hash_table);
6171 if (som_dict != NULL)
6172 free (som_dict);
6173 if (last_hash_entry != NULL)
6174 free (last_hash_entry);
6175 if (lst_syms != NULL)
6176 free (lst_syms);
6177 if (strings != NULL)
6178 free (strings);
6179
6180 return FALSE;
6181 }
6182
6183 /* Write out the LST for the archive.
6184
6185 You'll never believe this is really how armaps are handled in SOM... */
6186
6187 static bfd_boolean
6188 som_write_armap (bfd *abfd,
6189 unsigned int elength,
6190 struct orl *map ATTRIBUTE_UNUSED,
6191 unsigned int orl_count ATTRIBUTE_UNUSED,
6192 int stridx ATTRIBUTE_UNUSED)
6193 {
6194 bfd *curr_bfd;
6195 struct stat statbuf;
6196 unsigned int i, lst_size, nsyms, stringsize;
6197 struct ar_hdr hdr;
6198 struct lst_header lst;
6199 int *p;
6200 bfd_size_type amt;
6201
6202 /* We'll use this for the archive's date and mode later. */
6203 if (stat (abfd->filename, &statbuf) != 0)
6204 {
6205 bfd_set_error (bfd_error_system_call);
6206 return FALSE;
6207 }
6208 /* Fudge factor. */
6209 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6210
6211 /* Account for the lst header first. */
6212 lst_size = sizeof (struct lst_header);
6213
6214 /* Start building the LST header. */
6215 /* FIXME: Do we need to examine each element to determine the
6216 largest id number? */
6217 lst.system_id = CPU_PA_RISC1_0;
6218 lst.a_magic = LIBMAGIC;
6219 lst.version_id = VERSION_ID;
6220 lst.file_time.secs = 0;
6221 lst.file_time.nanosecs = 0;
6222
6223 lst.hash_loc = lst_size;
6224 lst.hash_size = SOM_LST_HASH_SIZE;
6225
6226 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6227 lst_size += 4 * SOM_LST_HASH_SIZE;
6228
6229 /* We need to count the number of SOMs in this archive. */
6230 curr_bfd = abfd->archive_head;
6231 lst.module_count = 0;
6232 while (curr_bfd != NULL)
6233 {
6234 /* Only true SOM objects count. */
6235 if (curr_bfd->format == bfd_object
6236 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6237 lst.module_count++;
6238 curr_bfd = curr_bfd->archive_next;
6239 }
6240 lst.module_limit = lst.module_count;
6241 lst.dir_loc = lst_size;
6242 lst_size += sizeof (struct som_entry) * lst.module_count;
6243
6244 /* We don't support import/export tables, auxiliary headers,
6245 or free lists yet. Make the linker work a little harder
6246 to make our life easier. */
6247
6248 lst.export_loc = 0;
6249 lst.export_count = 0;
6250 lst.import_loc = 0;
6251 lst.aux_loc = 0;
6252 lst.aux_size = 0;
6253
6254 /* Count how many symbols we will have on the hash chains and the
6255 size of the associated string table. */
6256 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6257 return FALSE;
6258
6259 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6260
6261 /* For the string table. One day we might actually use this info
6262 to avoid small seeks/reads when reading archives. */
6263 lst.string_loc = lst_size;
6264 lst.string_size = stringsize;
6265 lst_size += stringsize;
6266
6267 /* SOM ABI says this must be zero. */
6268 lst.free_list = 0;
6269 lst.file_end = lst_size;
6270
6271 /* Compute the checksum. Must happen after the entire lst header
6272 has filled in. */
6273 p = (int *) &lst;
6274 lst.checksum = 0;
6275 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6276 lst.checksum ^= *p++;
6277
6278 sprintf (hdr.ar_name, "/ ");
6279 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6280 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6281 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6282 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6283 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6284 hdr.ar_fmag[0] = '`';
6285 hdr.ar_fmag[1] = '\012';
6286
6287 /* Turn any nulls into spaces. */
6288 for (i = 0; i < sizeof (struct ar_hdr); i++)
6289 if (((char *) (&hdr))[i] == '\0')
6290 (((char *) (&hdr))[i]) = ' ';
6291
6292 /* Scribble out the ar header. */
6293 amt = sizeof (struct ar_hdr);
6294 if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
6295 return FALSE;
6296
6297 /* Now scribble out the lst header. */
6298 amt = sizeof (struct lst_header);
6299 if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
6300 return FALSE;
6301
6302 /* Build and write the armap. */
6303 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6304 return FALSE;
6305
6306 /* Done. */
6307 return TRUE;
6308 }
6309
6310 /* Free all information we have cached for this BFD. We can always
6311 read it again later if we need it. */
6312
6313 static bfd_boolean
6314 som_bfd_free_cached_info (bfd *abfd)
6315 {
6316 asection *o;
6317
6318 if (bfd_get_format (abfd) != bfd_object)
6319 return TRUE;
6320
6321 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6322 /* Free the native string and symbol tables. */
6323 FREE (obj_som_symtab (abfd));
6324 FREE (obj_som_stringtab (abfd));
6325 for (o = abfd->sections; o != NULL; o = o->next)
6326 {
6327 /* Free the native relocations. */
6328 o->reloc_count = (unsigned) -1;
6329 FREE (som_section_data (o)->reloc_stream);
6330 /* Free the generic relocations. */
6331 FREE (o->relocation);
6332 }
6333 #undef FREE
6334
6335 return TRUE;
6336 }
6337
6338 /* End of miscellaneous support functions. */
6339
6340 /* Linker support functions. */
6341
6342 static bfd_boolean
6343 som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
6344 {
6345 return som_is_subspace (sec) && sec->size > 240000;
6346 }
6347
6348 #define som_close_and_cleanup som_bfd_free_cached_info
6349 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6350 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6351 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6352 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6353 #define som_truncate_arname bfd_bsd_truncate_arname
6354 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6355 #define som_construct_extended_name_table _bfd_archive_coff_construct_extended_name_table
6356 #define som_update_armap_timestamp bfd_true
6357 #define som_bfd_is_target_special_symbol ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
6358 #define som_get_lineno _bfd_nosymbols_get_lineno
6359 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6360 #define som_read_minisymbols _bfd_generic_read_minisymbols
6361 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6362 #define som_get_section_contents_in_window _bfd_generic_get_section_contents_in_window
6363 #define som_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents
6364 #define som_bfd_relax_section bfd_generic_relax_section
6365 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6366 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6367 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6368 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6369 #define som_bfd_final_link _bfd_generic_final_link
6370 #define som_bfd_gc_sections bfd_generic_gc_sections
6371 #define som_bfd_merge_sections bfd_generic_merge_sections
6372 #define som_bfd_is_group_section bfd_generic_is_group_section
6373 #define som_bfd_discard_group bfd_generic_discard_group
6374 #define som_section_already_linked _bfd_generic_section_already_linked
6375 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
6376 #define som_bfd_copy_private_header_data _bfd_generic_bfd_copy_private_header_data
6377 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
6378 #define som_find_inliner_info _bfd_nosymbols_find_inliner_info
6379
6380 const bfd_target som_vec =
6381 {
6382 "som", /* Name. */
6383 bfd_target_som_flavour,
6384 BFD_ENDIAN_BIG, /* Target byte order. */
6385 BFD_ENDIAN_BIG, /* Target headers byte order. */
6386 (HAS_RELOC | EXEC_P | /* Object flags. */
6387 HAS_LINENO | HAS_DEBUG |
6388 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6389 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
6390 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */
6391
6392 /* Leading_symbol_char: is the first char of a user symbol
6393 predictable, and if so what is it. */
6394 0,
6395 '/', /* AR_pad_char. */
6396 14, /* AR_max_namelen. */
6397 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6398 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6399 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */
6400 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6401 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6402 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */
6403 {_bfd_dummy_target,
6404 som_object_p, /* bfd_check_format. */
6405 bfd_generic_archive_p,
6406 _bfd_dummy_target
6407 },
6408 {
6409 bfd_false,
6410 som_mkobject,
6411 _bfd_generic_mkarchive,
6412 bfd_false
6413 },
6414 {
6415 bfd_false,
6416 som_write_object_contents,
6417 _bfd_write_archive_contents,
6418 bfd_false,
6419 },
6420 #undef som
6421
6422 BFD_JUMP_TABLE_GENERIC (som),
6423 BFD_JUMP_TABLE_COPY (som),
6424 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6425 BFD_JUMP_TABLE_ARCHIVE (som),
6426 BFD_JUMP_TABLE_SYMBOLS (som),
6427 BFD_JUMP_TABLE_RELOCS (som),
6428 BFD_JUMP_TABLE_WRITE (som),
6429 BFD_JUMP_TABLE_LINK (som),
6430 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6431
6432 NULL,
6433
6434 NULL
6435 };
6436
6437 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */