]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/som.c
* som.c (som_prep_headers): If writing some form of an executable,
[thirdparty/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, skip >> 16, p + 1);
1191 bfd_put_16 (abfd, skip, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1609 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1610 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1611
1612 /* Initialize the saved symbol table and string table to NULL.
1613 Save important offsets and sizes from the SOM header into
1614 the BFD. */
1615 obj_som_stringtab (abfd) = (char *) NULL;
1616 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1617 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1618 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1619 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1620 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1621
1622 obj_som_exec_data (abfd) = (struct som_exec_data *)
1623 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1624 if (obj_som_exec_data (abfd) == NULL)
1625 {
1626 bfd_set_error (bfd_error_no_memory);
1627 return NULL;
1628 }
1629
1630 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 return abfd->xvec;
1633 }
1634
1635 /* Convert all of the space and subspace info into BFD sections. Each space
1636 contains a number of subspaces, which in turn describe the mapping between
1637 regions of the exec file, and the address space that the program runs in.
1638 BFD sections which correspond to spaces will overlap the sections for the
1639 associated subspaces. */
1640
1641 static boolean
1642 setup_sections (abfd, file_hdr)
1643 bfd *abfd;
1644 struct header *file_hdr;
1645 {
1646 char *space_strings;
1647 int space_index;
1648 unsigned int total_subspaces = 0;
1649
1650 /* First, read in space names */
1651
1652 space_strings = malloc (file_hdr->space_strings_size);
1653 if (!space_strings && file_hdr->space_strings_size != 0)
1654 {
1655 bfd_set_error (bfd_error_no_memory);
1656 goto error_return;
1657 }
1658
1659 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1660 goto error_return;
1661 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1662 != file_hdr->space_strings_size)
1663 goto error_return;
1664
1665 /* Loop over all of the space dictionaries, building up sections */
1666 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1667 {
1668 struct space_dictionary_record space;
1669 struct subspace_dictionary_record subspace, save_subspace;
1670 int subspace_index;
1671 asection *space_asect;
1672 char *newname;
1673
1674 /* Read the space dictionary element */
1675 if (bfd_seek (abfd, file_hdr->space_location
1676 + space_index * sizeof space, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1679 goto error_return;
1680
1681 /* Setup the space name string */
1682 space.name.n_name = space.name.n_strx + space_strings;
1683
1684 /* Make a section out of it */
1685 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1686 if (!newname)
1687 goto error_return;
1688 strcpy (newname, space.name.n_name);
1689
1690 space_asect = bfd_make_section_anyway (abfd, newname);
1691 if (!space_asect)
1692 goto error_return;
1693
1694 if (space.is_loadable == 0)
1695 space_asect->flags |= SEC_DEBUGGING;
1696
1697 /* Set up all the attributes for the space. */
1698 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1699 space.is_private, space.sort_key,
1700 space.space_number) == false)
1701 goto error_return;
1702
1703 /* Now, read in the first subspace for this space */
1704 if (bfd_seek (abfd, file_hdr->subspace_location
1705 + space.subspace_index * sizeof subspace,
1706 SEEK_SET) < 0)
1707 goto error_return;
1708 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1709 goto error_return;
1710 /* Seek back to the start of the subspaces for loop below */
1711 if (bfd_seek (abfd, file_hdr->subspace_location
1712 + space.subspace_index * sizeof subspace,
1713 SEEK_SET) < 0)
1714 goto error_return;
1715
1716 /* Setup the start address and file loc from the first subspace record */
1717 space_asect->vma = subspace.subspace_start;
1718 space_asect->filepos = subspace.file_loc_init_value;
1719 space_asect->alignment_power = log2 (subspace.alignment);
1720 if (space_asect->alignment_power == -1)
1721 goto error_return;
1722
1723 /* Initialize save_subspace so we can reliably determine if this
1724 loop placed any useful values into it. */
1725 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1726
1727 /* Loop over the rest of the subspaces, building up more sections */
1728 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1729 subspace_index++)
1730 {
1731 asection *subspace_asect;
1732
1733 /* Read in the next subspace */
1734 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1735 != sizeof subspace)
1736 goto error_return;
1737
1738 /* Setup the subspace name string */
1739 subspace.name.n_name = subspace.name.n_strx + space_strings;
1740
1741 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1742 if (!newname)
1743 goto error_return;
1744 strcpy (newname, subspace.name.n_name);
1745
1746 /* Make a section out of this subspace */
1747 subspace_asect = bfd_make_section_anyway (abfd, newname);
1748 if (!subspace_asect)
1749 goto error_return;
1750
1751 /* Store private information about the section. */
1752 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1753 subspace.access_control_bits,
1754 subspace.sort_key,
1755 subspace.quadrant) == false)
1756 goto error_return;
1757
1758 /* Keep an easy mapping between subspaces and sections. */
1759 subspace_asect->target_index = total_subspaces++;
1760
1761 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1762 by the access_control_bits in the subspace header. */
1763 switch (subspace.access_control_bits >> 4)
1764 {
1765 /* Readonly data. */
1766 case 0x0:
1767 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1768 break;
1769
1770 /* Normal data. */
1771 case 0x1:
1772 subspace_asect->flags |= SEC_DATA;
1773 break;
1774
1775 /* Readonly code and the gateways.
1776 Gateways have other attributes which do not map
1777 into anything BFD knows about. */
1778 case 0x2:
1779 case 0x4:
1780 case 0x5:
1781 case 0x6:
1782 case 0x7:
1783 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1784 break;
1785
1786 /* dynamic (writable) code. */
1787 case 0x3:
1788 subspace_asect->flags |= SEC_CODE;
1789 break;
1790 }
1791
1792 if (subspace.dup_common || subspace.is_common)
1793 subspace_asect->flags |= SEC_IS_COMMON;
1794 else if (subspace.subspace_length > 0)
1795 subspace_asect->flags |= SEC_HAS_CONTENTS;
1796
1797 if (subspace.is_loadable)
1798 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1799 else
1800 subspace_asect->flags |= SEC_DEBUGGING;
1801
1802 if (subspace.code_only)
1803 subspace_asect->flags |= SEC_CODE;
1804
1805 /* Both file_loc_init_value and initialization_length will
1806 be zero for a BSS like subspace. */
1807 if (subspace.file_loc_init_value == 0
1808 && subspace.initialization_length == 0)
1809 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1810
1811 /* This subspace has relocations.
1812 The fixup_request_quantity is a byte count for the number of
1813 entries in the relocation stream; it is not the actual number
1814 of relocations in the subspace. */
1815 if (subspace.fixup_request_quantity != 0)
1816 {
1817 subspace_asect->flags |= SEC_RELOC;
1818 subspace_asect->rel_filepos = subspace.fixup_request_index;
1819 som_section_data (subspace_asect)->reloc_size
1820 = subspace.fixup_request_quantity;
1821 /* We can not determine this yet. When we read in the
1822 relocation table the correct value will be filled in. */
1823 subspace_asect->reloc_count = -1;
1824 }
1825
1826 /* Update save_subspace if appropriate. */
1827 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1828 save_subspace = subspace;
1829
1830 subspace_asect->vma = subspace.subspace_start;
1831 subspace_asect->_cooked_size = subspace.subspace_length;
1832 subspace_asect->_raw_size = subspace.subspace_length;
1833 subspace_asect->filepos = subspace.file_loc_init_value;
1834 subspace_asect->alignment_power = log2 (subspace.alignment);
1835 if (subspace_asect->alignment_power == -1)
1836 goto error_return;
1837 }
1838
1839 /* Yow! there is no subspace within the space which actually
1840 has initialized information in it; this should never happen
1841 as far as I know. */
1842 if (!save_subspace.file_loc_init_value)
1843 goto error_return;
1844
1845 /* Setup the sizes for the space section based upon the info in the
1846 last subspace of the space. */
1847 space_asect->_cooked_size = save_subspace.subspace_start
1848 - space_asect->vma + save_subspace.subspace_length;
1849 space_asect->_raw_size = save_subspace.file_loc_init_value
1850 - space_asect->filepos + save_subspace.initialization_length;
1851 }
1852 if (space_strings != NULL)
1853 free (space_strings);
1854 return true;
1855
1856 error_return:
1857 if (space_strings != NULL)
1858 free (space_strings);
1859 return false;
1860 }
1861
1862 /* Read in a SOM object and make it into a BFD. */
1863
1864 static const bfd_target *
1865 som_object_p (abfd)
1866 bfd *abfd;
1867 {
1868 struct header file_hdr;
1869 struct som_exec_auxhdr aux_hdr;
1870
1871 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1872 {
1873 if (bfd_get_error () != bfd_error_system_call)
1874 bfd_set_error (bfd_error_wrong_format);
1875 return 0;
1876 }
1877
1878 if (!_PA_RISC_ID (file_hdr.system_id))
1879 {
1880 bfd_set_error (bfd_error_wrong_format);
1881 return 0;
1882 }
1883
1884 switch (file_hdr.a_magic)
1885 {
1886 case RELOC_MAGIC:
1887 case EXEC_MAGIC:
1888 case SHARE_MAGIC:
1889 case DEMAND_MAGIC:
1890 #ifdef DL_MAGIC
1891 case DL_MAGIC:
1892 #endif
1893 #ifdef SHL_MAGIC
1894 case SHL_MAGIC:
1895 #endif
1896 #ifdef EXECLIBMAGIC
1897 case EXECLIBMAGIC:
1898 #endif
1899 #ifdef SHARED_MAGIC_CNX
1900 case SHARED_MAGIC_CNX:
1901 #endif
1902 break;
1903 default:
1904 bfd_set_error (bfd_error_wrong_format);
1905 return 0;
1906 }
1907
1908 if (file_hdr.version_id != VERSION_ID
1909 && file_hdr.version_id != NEW_VERSION_ID)
1910 {
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914
1915 /* If the aux_header_size field in the file header is zero, then this
1916 object is an incomplete executable (a .o file). Do not try to read
1917 a non-existant auxiliary header. */
1918 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1919 if (file_hdr.aux_header_size != 0)
1920 {
1921 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1922 {
1923 if (bfd_get_error () != bfd_error_system_call)
1924 bfd_set_error (bfd_error_wrong_format);
1925 return 0;
1926 }
1927 }
1928
1929 if (!setup_sections (abfd, &file_hdr))
1930 {
1931 /* setup_sections does not bubble up a bfd error code. */
1932 bfd_set_error (bfd_error_bad_value);
1933 return 0;
1934 }
1935
1936 /* This appears to be a valid SOM object. Do some initialization. */
1937 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1938 }
1939
1940 /* Create a SOM object. */
1941
1942 static boolean
1943 som_mkobject (abfd)
1944 bfd *abfd;
1945 {
1946 /* Allocate memory to hold backend information. */
1947 abfd->tdata.som_data = (struct som_data_struct *)
1948 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1949 if (abfd->tdata.som_data == NULL)
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 /* Initialize some information in the file header. This routine makes
1958 not attempt at doing the right thing for a full executable; it
1959 is only meant to handle relocatable objects. */
1960
1961 static boolean
1962 som_prep_headers (abfd)
1963 bfd *abfd;
1964 {
1965 struct header *file_hdr;
1966 asection *section;
1967
1968 /* Make and attach a file header to the BFD. */
1969 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1970 if (file_hdr == NULL)
1971
1972 {
1973 bfd_set_error (bfd_error_no_memory);
1974 return false;
1975 }
1976 obj_som_file_hdr (abfd) = file_hdr;
1977
1978 if (abfd->flags & (EXEC_P | DYNAMIC))
1979 {
1980
1981 /* Make and attach an exec header to the BFD. */
1982 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1983 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1984 if (obj_som_exec_hdr (abfd) == NULL)
1985 {
1986 bfd_set_error (bfd_error_no_memory);
1987 return false;
1988 }
1989
1990 if (abfd->flags & D_PAGED)
1991 file_hdr->a_magic = DEMAND_MAGIC;
1992 else if (abfd->flags & WP_TEXT)
1993 file_hdr->a_magic = SHARE_MAGIC;
1994 #ifdef SHL_MAGIC
1995 else if (abfd->flags & DYNAMIC)
1996 file_hdr->a_magic = SHL_MAGIC;
1997 #endif
1998 else
1999 file_hdr->a_magic = EXEC_MAGIC;
2000 }
2001 else
2002 file_hdr->a_magic = RELOC_MAGIC;
2003
2004 /* Only new format SOM is supported. */
2005 file_hdr->version_id = NEW_VERSION_ID;
2006
2007 /* These fields are optional, and embedding timestamps is not always
2008 a wise thing to do, it makes comparing objects during a multi-stage
2009 bootstrap difficult. */
2010 file_hdr->file_time.secs = 0;
2011 file_hdr->file_time.nanosecs = 0;
2012
2013 file_hdr->entry_space = 0;
2014 file_hdr->entry_subspace = 0;
2015 file_hdr->entry_offset = 0;
2016 file_hdr->presumed_dp = 0;
2017
2018 /* Now iterate over the sections translating information from
2019 BFD sections to SOM spaces/subspaces. */
2020
2021 for (section = abfd->sections; section != NULL; section = section->next)
2022 {
2023 /* Ignore anything which has not been marked as a space or
2024 subspace. */
2025 if (!som_is_space (section) && !som_is_subspace (section))
2026 continue;
2027
2028 if (som_is_space (section))
2029 {
2030 /* Allocate space for the space dictionary. */
2031 som_section_data (section)->space_dict
2032 = (struct space_dictionary_record *)
2033 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2034 if (som_section_data (section)->space_dict == NULL)
2035 {
2036 bfd_set_error (bfd_error_no_memory);
2037 return false;
2038 }
2039 /* Set space attributes. Note most attributes of SOM spaces
2040 are set based on the subspaces it contains. */
2041 som_section_data (section)->space_dict->loader_fix_index = -1;
2042 som_section_data (section)->space_dict->init_pointer_index = -1;
2043
2044 /* Set more attributes that were stuffed away in private data. */
2045 som_section_data (section)->space_dict->sort_key =
2046 som_section_data (section)->copy_data->sort_key;
2047 som_section_data (section)->space_dict->is_defined =
2048 som_section_data (section)->copy_data->is_defined;
2049 som_section_data (section)->space_dict->is_private =
2050 som_section_data (section)->copy_data->is_private;
2051 som_section_data (section)->space_dict->space_number =
2052 som_section_data (section)->copy_data->space_number;
2053 }
2054 else
2055 {
2056 /* Allocate space for the subspace dictionary. */
2057 som_section_data (section)->subspace_dict
2058 = (struct subspace_dictionary_record *)
2059 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2060 if (som_section_data (section)->subspace_dict == NULL)
2061 {
2062 bfd_set_error (bfd_error_no_memory);
2063 return false;
2064 }
2065
2066 /* Set subspace attributes. Basic stuff is done here, additional
2067 attributes are filled in later as more information becomes
2068 available. */
2069 if (section->flags & SEC_IS_COMMON)
2070 {
2071 som_section_data (section)->subspace_dict->dup_common = 1;
2072 som_section_data (section)->subspace_dict->is_common = 1;
2073 }
2074
2075 if (section->flags & SEC_ALLOC)
2076 som_section_data (section)->subspace_dict->is_loadable = 1;
2077
2078 if (section->flags & SEC_CODE)
2079 som_section_data (section)->subspace_dict->code_only = 1;
2080
2081 som_section_data (section)->subspace_dict->subspace_start =
2082 section->vma;
2083 som_section_data (section)->subspace_dict->subspace_length =
2084 bfd_section_size (abfd, section);
2085 som_section_data (section)->subspace_dict->initialization_length =
2086 bfd_section_size (abfd, section);
2087 som_section_data (section)->subspace_dict->alignment =
2088 1 << section->alignment_power;
2089
2090 /* Set more attributes that were stuffed away in private data. */
2091 som_section_data (section)->subspace_dict->sort_key =
2092 som_section_data (section)->copy_data->sort_key;
2093 som_section_data (section)->subspace_dict->access_control_bits =
2094 som_section_data (section)->copy_data->access_control_bits;
2095 som_section_data (section)->subspace_dict->quadrant =
2096 som_section_data (section)->copy_data->quadrant;
2097 }
2098 }
2099 return true;
2100 }
2101
2102 /* Return true if the given section is a SOM space, false otherwise. */
2103
2104 static boolean
2105 som_is_space (section)
2106 asection *section;
2107 {
2108 /* If no copy data is available, then it's neither a space nor a
2109 subspace. */
2110 if (som_section_data (section)->copy_data == NULL)
2111 return false;
2112
2113 /* If the containing space isn't the same as the given section,
2114 then this isn't a space. */
2115 if (som_section_data (section)->copy_data->container != section)
2116 return false;
2117
2118 /* OK. Must be a space. */
2119 return true;
2120 }
2121
2122 /* Return true if the given section is a SOM subspace, false otherwise. */
2123
2124 static boolean
2125 som_is_subspace (section)
2126 asection *section;
2127 {
2128 /* If no copy data is available, then it's neither a space nor a
2129 subspace. */
2130 if (som_section_data (section)->copy_data == NULL)
2131 return false;
2132
2133 /* If the containing space is the same as the given section,
2134 then this isn't a subspace. */
2135 if (som_section_data (section)->copy_data->container == section)
2136 return false;
2137
2138 /* OK. Must be a subspace. */
2139 return true;
2140 }
2141
2142 /* Return true if the given space containins the given subspace. It
2143 is safe to assume space really is a space, and subspace really
2144 is a subspace. */
2145
2146 static boolean
2147 som_is_container (space, subspace)
2148 asection *space, *subspace;
2149 {
2150 return som_section_data (subspace)->copy_data->container == space;
2151 }
2152
2153 /* Count and return the number of spaces attached to the given BFD. */
2154
2155 static unsigned long
2156 som_count_spaces (abfd)
2157 bfd *abfd;
2158 {
2159 int count = 0;
2160 asection *section;
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 count += som_is_space (section);
2164
2165 return count;
2166 }
2167
2168 /* Count the number of subspaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_subspaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_subspace (section);
2179
2180 return count;
2181 }
2182
2183 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2184
2185 We desire symbols to be ordered starting with the symbol with the
2186 highest relocation count down to the symbol with the lowest relocation
2187 count. Doing so compacts the relocation stream. */
2188
2189 static int
2190 compare_syms (arg1, arg2)
2191 const PTR arg1;
2192 const PTR arg2;
2193
2194 {
2195 asymbol **sym1 = (asymbol **) arg1;
2196 asymbol **sym2 = (asymbol **) arg2;
2197 unsigned int count1, count2;
2198
2199 /* Get relocation count for each symbol. Note that the count
2200 is stored in the udata pointer for section symbols! */
2201 if ((*sym1)->flags & BSF_SECTION_SYM)
2202 count1 = (int)(*sym1)->udata;
2203 else
2204 count1 = som_symbol_data (*sym1)->reloc_count;
2205
2206 if ((*sym2)->flags & BSF_SECTION_SYM)
2207 count2 = (int)(*sym2)->udata;
2208 else
2209 count2 = som_symbol_data (*sym2)->reloc_count;
2210
2211 /* Return the appropriate value. */
2212 if (count1 < count2)
2213 return 1;
2214 else if (count1 > count2)
2215 return -1;
2216 return 0;
2217 }
2218
2219 /* Perform various work in preparation for emitting the fixup stream. */
2220
2221 static void
2222 som_prep_for_fixups (abfd, syms, num_syms)
2223 bfd *abfd;
2224 asymbol **syms;
2225 unsigned long num_syms;
2226 {
2227 int i;
2228 asection *section;
2229
2230 /* Most SOM relocations involving a symbol have a length which is
2231 dependent on the index of the symbol. So symbols which are
2232 used often in relocations should have a small index. */
2233
2234 /* First initialize the counters for each symbol. */
2235 for (i = 0; i < num_syms; i++)
2236 {
2237 /* Handle a section symbol; these have no pointers back to the
2238 SOM symbol info. So we just use the pointer field (udata)
2239 to hold the relocation count. */
2240 if (som_symbol_data (syms[i]) == NULL
2241 || syms[i]->flags & BSF_SECTION_SYM)
2242 {
2243 syms[i]->flags |= BSF_SECTION_SYM;
2244 syms[i]->udata = (PTR) 0;
2245 }
2246 else
2247 som_symbol_data (syms[i])->reloc_count = 0;
2248 }
2249
2250 /* Now that the counters are initialized, make a weighted count
2251 of how often a given symbol is used in a relocation. */
2252 for (section = abfd->sections; section != NULL; section = section->next)
2253 {
2254 int i;
2255
2256 /* Does this section have any relocations? */
2257 if (section->reloc_count <= 0)
2258 continue;
2259
2260 /* Walk through each relocation for this section. */
2261 for (i = 1; i < section->reloc_count; i++)
2262 {
2263 arelent *reloc = section->orelocation[i];
2264 int scale;
2265
2266 /* A relocation against a symbol in the *ABS* section really
2267 does not have a symbol. Likewise if the symbol isn't associated
2268 with any section. */
2269 if (reloc->sym_ptr_ptr == NULL
2270 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2271 continue;
2272
2273 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2274 and R_CODE_ONE_SYMBOL relocations to come first. These
2275 two relocations have single byte versions if the symbol
2276 index is very small. */
2277 if (reloc->howto->type == R_DP_RELATIVE
2278 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2279 scale = 2;
2280 else
2281 scale = 1;
2282
2283 /* Handle section symbols by ramming the count in the udata
2284 field. It will not be used and the count is very important
2285 for these symbols. */
2286 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2287 {
2288 (*reloc->sym_ptr_ptr)->udata =
2289 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2290 continue;
2291 }
2292
2293 /* A normal symbol. Increment the count. */
2294 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2295 }
2296 }
2297
2298 /* Now sort the symbols. */
2299 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2300
2301 /* Compute the symbol indexes, they will be needed by the relocation
2302 code. */
2303 for (i = 0; i < num_syms; i++)
2304 {
2305 /* A section symbol. Again, there is no pointer to backend symbol
2306 information, so we reuse (abuse) the udata field again. */
2307 if (syms[i]->flags & BSF_SECTION_SYM)
2308 syms[i]->udata = (PTR) i;
2309 else
2310 som_symbol_data (syms[i])->index = i;
2311 }
2312 }
2313
2314 static boolean
2315 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2316 bfd *abfd;
2317 unsigned long current_offset;
2318 unsigned int *total_reloc_sizep;
2319 {
2320 unsigned int i, j;
2321 /* Chunk of memory that we can use as buffer space, then throw
2322 away. */
2323 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2324 unsigned char *p;
2325 unsigned int total_reloc_size = 0;
2326 unsigned int subspace_reloc_size = 0;
2327 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2328 asection *section = abfd->sections;
2329
2330 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2331 p = tmp_space;
2332
2333 /* All the fixups for a particular subspace are emitted in a single
2334 stream. All the subspaces for a particular space are emitted
2335 as a single stream.
2336
2337 So, to get all the locations correct one must iterate through all the
2338 spaces, for each space iterate through its subspaces and output a
2339 fixups stream. */
2340 for (i = 0; i < num_spaces; i++)
2341 {
2342 asection *subsection;
2343
2344 /* Find a space. */
2345 while (!som_is_space (section))
2346 section = section->next;
2347
2348 /* Now iterate through each of its subspaces. */
2349 for (subsection = abfd->sections;
2350 subsection != NULL;
2351 subsection = subsection->next)
2352 {
2353 int reloc_offset, current_rounding_mode;
2354
2355 /* Find a subspace of this space. */
2356 if (!som_is_subspace (subsection)
2357 || !som_is_container (section, subsection))
2358 continue;
2359
2360 /* If this subspace does not have real data, then we are
2361 finised with it. */
2362 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2363 {
2364 som_section_data (subsection)->subspace_dict->fixup_request_index
2365 = -1;
2366 continue;
2367 }
2368
2369 /* This subspace has some relocations. Put the relocation stream
2370 index into the subspace record. */
2371 som_section_data (subsection)->subspace_dict->fixup_request_index
2372 = total_reloc_size;
2373
2374 /* To make life easier start over with a clean slate for
2375 each subspace. Seek to the start of the relocation stream
2376 for this subspace in preparation for writing out its fixup
2377 stream. */
2378 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2379 return false;
2380
2381 /* Buffer space has already been allocated. Just perform some
2382 initialization here. */
2383 p = tmp_space;
2384 subspace_reloc_size = 0;
2385 reloc_offset = 0;
2386 som_initialize_reloc_queue (reloc_queue);
2387 current_rounding_mode = R_N_MODE;
2388
2389 /* Translate each BFD relocation into one or more SOM
2390 relocations. */
2391 for (j = 0; j < subsection->reloc_count; j++)
2392 {
2393 arelent *bfd_reloc = subsection->orelocation[j];
2394 unsigned int skip;
2395 int sym_num;
2396
2397 /* Get the symbol number. Remember it's stored in a
2398 special place for section symbols. */
2399 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2400 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2401 else
2402 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2403
2404 /* If there is not enough room for the next couple relocations,
2405 then dump the current buffer contents now. Also reinitialize
2406 the relocation queue.
2407
2408 No single BFD relocation could ever translate into more
2409 than 100 bytes of SOM relocations (20bytes is probably the
2410 upper limit, but leave lots of space for growth). */
2411 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2412 {
2413 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2414 != p - tmp_space)
2415 return false;
2416
2417 p = tmp_space;
2418 som_initialize_reloc_queue (reloc_queue);
2419 }
2420
2421 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2422 skipped. */
2423 skip = bfd_reloc->address - reloc_offset;
2424 p = som_reloc_skip (abfd, skip, p,
2425 &subspace_reloc_size, reloc_queue);
2426
2427 /* Update reloc_offset for the next iteration.
2428
2429 Many relocations do not consume input bytes. They
2430 are markers, or set state necessary to perform some
2431 later relocation. */
2432 switch (bfd_reloc->howto->type)
2433 {
2434 /* This only needs to handle relocations that may be
2435 made by hppa_som_gen_reloc. */
2436 case R_ENTRY:
2437 case R_EXIT:
2438 case R_N_MODE:
2439 case R_S_MODE:
2440 case R_D_MODE:
2441 case R_R_MODE:
2442 case R_FSEL:
2443 case R_LSEL:
2444 case R_RSEL:
2445 reloc_offset = bfd_reloc->address;
2446 break;
2447
2448 default:
2449 reloc_offset = bfd_reloc->address + 4;
2450 break;
2451 }
2452
2453 /* Now the actual relocation we care about. */
2454 switch (bfd_reloc->howto->type)
2455 {
2456 case R_PCREL_CALL:
2457 case R_ABS_CALL:
2458 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2459 bfd_reloc, sym_num, reloc_queue);
2460 break;
2461
2462 case R_CODE_ONE_SYMBOL:
2463 case R_DP_RELATIVE:
2464 /* Account for any addend. */
2465 if (bfd_reloc->addend)
2466 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2467 &subspace_reloc_size, reloc_queue);
2468
2469 if (sym_num < 0x20)
2470 {
2471 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2472 subspace_reloc_size += 1;
2473 p += 1;
2474 }
2475 else if (sym_num < 0x100)
2476 {
2477 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2478 bfd_put_8 (abfd, sym_num, p + 1);
2479 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2480 2, reloc_queue);
2481 }
2482 else if (sym_num < 0x10000000)
2483 {
2484 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2485 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2486 bfd_put_16 (abfd, sym_num, p + 2);
2487 p = try_prev_fixup (abfd, &subspace_reloc_size,
2488 p, 4, reloc_queue);
2489 }
2490 else
2491 abort ();
2492 break;
2493
2494 case R_DATA_ONE_SYMBOL:
2495 case R_DATA_PLABEL:
2496 case R_CODE_PLABEL:
2497 case R_DLT_REL:
2498 /* Account for any addend. */
2499 if (bfd_reloc->addend)
2500 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2501 &subspace_reloc_size, reloc_queue);
2502
2503 if (sym_num < 0x100)
2504 {
2505 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2506 bfd_put_8 (abfd, sym_num, p + 1);
2507 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2508 2, reloc_queue);
2509 }
2510 else if (sym_num < 0x10000000)
2511 {
2512 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2513 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2514 bfd_put_16 (abfd, sym_num, p + 2);
2515 p = try_prev_fixup (abfd, &subspace_reloc_size,
2516 p, 4, reloc_queue);
2517 }
2518 else
2519 abort ();
2520 break;
2521
2522 case R_ENTRY:
2523 {
2524 int *descp
2525 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2526 bfd_put_8 (abfd, R_ENTRY, p);
2527 bfd_put_32 (abfd, descp[0], p + 1);
2528 bfd_put_32 (abfd, descp[1], p + 5);
2529 p = try_prev_fixup (abfd, &subspace_reloc_size,
2530 p, 9, reloc_queue);
2531 break;
2532 }
2533
2534 case R_EXIT:
2535 bfd_put_8 (abfd, R_EXIT, p);
2536 subspace_reloc_size += 1;
2537 p += 1;
2538 break;
2539
2540 case R_N_MODE:
2541 case R_S_MODE:
2542 case R_D_MODE:
2543 case R_R_MODE:
2544 /* If this relocation requests the current rounding
2545 mode, then it is redundant. */
2546 if (bfd_reloc->howto->type != current_rounding_mode)
2547 {
2548 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2549 subspace_reloc_size += 1;
2550 p += 1;
2551 current_rounding_mode = bfd_reloc->howto->type;
2552 }
2553 break;
2554
2555 case R_FSEL:
2556 case R_LSEL:
2557 case R_RSEL:
2558 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2559 subspace_reloc_size += 1;
2560 p += 1;
2561 break;
2562
2563 /* Put a "R_RESERVED" relocation in the stream if
2564 we hit something we do not understand. The linker
2565 will complain loudly if this ever happens. */
2566 default:
2567 bfd_put_8 (abfd, 0xff, p);
2568 subspace_reloc_size += 1;
2569 p += 1;
2570 break;
2571 }
2572 }
2573
2574 /* Last BFD relocation for a subspace has been processed.
2575 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2576 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2577 - reloc_offset,
2578 p, &subspace_reloc_size, reloc_queue);
2579
2580 /* Scribble out the relocations. */
2581 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2582 != p - tmp_space)
2583 return false;
2584 p = tmp_space;
2585
2586 total_reloc_size += subspace_reloc_size;
2587 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2588 = subspace_reloc_size;
2589 }
2590 section = section->next;
2591 }
2592 *total_reloc_sizep = total_reloc_size;
2593 return true;
2594 }
2595
2596 /* Write out the space/subspace string table. */
2597
2598 static boolean
2599 som_write_space_strings (abfd, current_offset, string_sizep)
2600 bfd *abfd;
2601 unsigned long current_offset;
2602 unsigned int *string_sizep;
2603 {
2604 /* Chunk of memory that we can use as buffer space, then throw
2605 away. */
2606 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2607 unsigned char *p;
2608 unsigned int strings_size = 0;
2609 asection *section;
2610
2611 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2612 p = tmp_space;
2613
2614 /* Seek to the start of the space strings in preparation for writing
2615 them out. */
2616 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2617 return false;
2618
2619 /* Walk through all the spaces and subspaces (order is not important)
2620 building up and writing string table entries for their names. */
2621 for (section = abfd->sections; section != NULL; section = section->next)
2622 {
2623 int length;
2624
2625 /* Only work with space/subspaces; avoid any other sections
2626 which might have been made (.text for example). */
2627 if (!som_is_space (section) && !som_is_subspace (section))
2628 continue;
2629
2630 /* Get the length of the space/subspace name. */
2631 length = strlen (section->name);
2632
2633 /* If there is not enough room for the next entry, then dump the
2634 current buffer contents now. Each entry will take 4 bytes to
2635 hold the string length + the string itself + null terminator. */
2636 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2637 {
2638 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2639 != p - tmp_space)
2640 return false;
2641 /* Reset to beginning of the buffer space. */
2642 p = tmp_space;
2643 }
2644
2645 /* First element in a string table entry is the length of the
2646 string. Alignment issues are already handled. */
2647 bfd_put_32 (abfd, length, p);
2648 p += 4;
2649 strings_size += 4;
2650
2651 /* Record the index in the space/subspace records. */
2652 if (som_is_space (section))
2653 som_section_data (section)->space_dict->name.n_strx = strings_size;
2654 else
2655 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2656
2657 /* Next comes the string itself + a null terminator. */
2658 strcpy (p, section->name);
2659 p += length + 1;
2660 strings_size += length + 1;
2661
2662 /* Always align up to the next word boundary. */
2663 while (strings_size % 4)
2664 {
2665 bfd_put_8 (abfd, 0, p);
2666 p++;
2667 strings_size++;
2668 }
2669 }
2670
2671 /* Done with the space/subspace strings. Write out any information
2672 contained in a partial block. */
2673 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2674 return false;
2675 *string_sizep = strings_size;
2676 return true;
2677 }
2678
2679 /* Write out the symbol string table. */
2680
2681 static boolean
2682 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2683 bfd *abfd;
2684 unsigned long current_offset;
2685 asymbol **syms;
2686 unsigned int num_syms;
2687 unsigned int *string_sizep;
2688 {
2689 unsigned int i;
2690
2691 /* Chunk of memory that we can use as buffer space, then throw
2692 away. */
2693 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2694 unsigned char *p;
2695 unsigned int strings_size = 0;
2696
2697 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2698 p = tmp_space;
2699
2700 /* Seek to the start of the space strings in preparation for writing
2701 them out. */
2702 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2703 return false;
2704
2705 for (i = 0; i < num_syms; i++)
2706 {
2707 int length = strlen (syms[i]->name);
2708
2709 /* If there is not enough room for the next entry, then dump the
2710 current buffer contents now. */
2711 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2712 {
2713 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2714 != p - tmp_space)
2715 return false;
2716 /* Reset to beginning of the buffer space. */
2717 p = tmp_space;
2718 }
2719
2720 /* First element in a string table entry is the length of the
2721 string. This must always be 4 byte aligned. This is also
2722 an appropriate time to fill in the string index field in the
2723 symbol table entry. */
2724 bfd_put_32 (abfd, length, p);
2725 strings_size += 4;
2726 p += 4;
2727
2728 /* Next comes the string itself + a null terminator. */
2729 strcpy (p, syms[i]->name);
2730
2731 /* ACK. FIXME. */
2732 syms[i]->name = (char *)strings_size;
2733 p += length + 1;
2734 strings_size += length + 1;
2735
2736 /* Always align up to the next word boundary. */
2737 while (strings_size % 4)
2738 {
2739 bfd_put_8 (abfd, 0, p);
2740 strings_size++;
2741 p++;
2742 }
2743 }
2744
2745 /* Scribble out any partial block. */
2746 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2747 return false;
2748
2749 *string_sizep = strings_size;
2750 return true;
2751 }
2752
2753 /* Compute variable information to be placed in the SOM headers,
2754 space/subspace dictionaries, relocation streams, etc. Begin
2755 writing parts of the object file. */
2756
2757 static boolean
2758 som_begin_writing (abfd)
2759 bfd *abfd;
2760 {
2761 unsigned long current_offset = 0;
2762 int strings_size = 0;
2763 unsigned int total_reloc_size = 0;
2764 unsigned long num_spaces, num_subspaces, num_syms, i;
2765 asection *section;
2766 asymbol **syms = bfd_get_outsymbols (abfd);
2767 unsigned int total_subspaces = 0;
2768 struct som_exec_auxhdr *exec_header;
2769
2770 /* The file header will always be first in an object file,
2771 everything else can be in random locations. To keep things
2772 "simple" BFD will lay out the object file in the manner suggested
2773 by the PRO ABI for PA-RISC Systems. */
2774
2775 /* Before any output can really begin offsets for all the major
2776 portions of the object file must be computed. So, starting
2777 with the initial file header compute (and sometimes write)
2778 each portion of the object file. */
2779
2780 /* Make room for the file header, it's contents are not complete
2781 yet, so it can not be written at this time. */
2782 current_offset += sizeof (struct header);
2783
2784 /* Any auxiliary headers will follow the file header. Right now
2785 we support only the copyright and version headers. */
2786 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2787 obj_som_file_hdr (abfd)->aux_header_size = 0;
2788 if (abfd->flags & (EXEC_P | DYNAMIC))
2789 {
2790 /* Parts of the exec header will be filled in later, so
2791 delay writing the header itself. Fill in the defaults,
2792 and write it later. */
2793 current_offset += sizeof (struct som_exec_auxhdr);
2794 obj_som_file_hdr (abfd)->aux_header_size
2795 += sizeof (struct som_exec_auxhdr);
2796 exec_header = obj_som_exec_hdr (abfd);
2797 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2798 exec_header->som_auxhdr.length = 40;
2799 }
2800 if (obj_som_version_hdr (abfd) != NULL)
2801 {
2802 unsigned int len;
2803
2804 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2805 return false;
2806
2807 /* Write the aux_id structure and the string length. */
2808 len = sizeof (struct aux_id) + sizeof (unsigned int);
2809 obj_som_file_hdr (abfd)->aux_header_size += len;
2810 current_offset += len;
2811 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2812 return false;
2813
2814 /* Write the version string. */
2815 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2816 obj_som_file_hdr (abfd)->aux_header_size += len;
2817 current_offset += len;
2818 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2819 len, 1, abfd) != len)
2820 return false;
2821 }
2822
2823 if (obj_som_copyright_hdr (abfd) != NULL)
2824 {
2825 unsigned int len;
2826
2827 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2828 return false;
2829
2830 /* Write the aux_id structure and the string length. */
2831 len = sizeof (struct aux_id) + sizeof (unsigned int);
2832 obj_som_file_hdr (abfd)->aux_header_size += len;
2833 current_offset += len;
2834 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2835 return false;
2836
2837 /* Write the copyright string. */
2838 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2839 obj_som_file_hdr (abfd)->aux_header_size += len;
2840 current_offset += len;
2841 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2842 len, 1, abfd) != len)
2843 return false;
2844 }
2845
2846 /* Next comes the initialization pointers; we have no initialization
2847 pointers, so current offset does not change. */
2848 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2849 obj_som_file_hdr (abfd)->init_array_total = 0;
2850
2851 /* Next are the space records. These are fixed length records.
2852
2853 Count the number of spaces to determine how much room is needed
2854 in the object file for the space records.
2855
2856 The names of the spaces are stored in a separate string table,
2857 and the index for each space into the string table is computed
2858 below. Therefore, it is not possible to write the space headers
2859 at this time. */
2860 num_spaces = som_count_spaces (abfd);
2861 obj_som_file_hdr (abfd)->space_location = current_offset;
2862 obj_som_file_hdr (abfd)->space_total = num_spaces;
2863 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2864
2865 /* Next are the subspace records. These are fixed length records.
2866
2867 Count the number of subspaes to determine how much room is needed
2868 in the object file for the subspace records.
2869
2870 A variety if fields in the subspace record are still unknown at
2871 this time (index into string table, fixup stream location/size, etc). */
2872 num_subspaces = som_count_subspaces (abfd);
2873 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2874 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2875 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2876
2877 /* Next is the string table for the space/subspace names. We will
2878 build and write the string table on the fly. At the same time
2879 we will fill in the space/subspace name index fields. */
2880
2881 /* The string table needs to be aligned on a word boundary. */
2882 if (current_offset % 4)
2883 current_offset += (4 - (current_offset % 4));
2884
2885 /* Mark the offset of the space/subspace string table in the
2886 file header. */
2887 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2888
2889 /* Scribble out the space strings. */
2890 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2891 return false;
2892
2893 /* Record total string table size in the header and update the
2894 current offset. */
2895 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2896 current_offset += strings_size;
2897
2898 /* Next is the symbol table. These are fixed length records.
2899
2900 Count the number of symbols to determine how much room is needed
2901 in the object file for the symbol table.
2902
2903 The names of the symbols are stored in a separate string table,
2904 and the index for each symbol name into the string table is computed
2905 below. Therefore, it is not possible to write the symobl table
2906 at this time. */
2907 num_syms = bfd_get_symcount (abfd);
2908 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2909 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2910 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2911
2912 /* Do prep work before handling fixups. */
2913 som_prep_for_fixups (abfd, syms, num_syms);
2914
2915 /* Next comes the fixup stream which starts on a word boundary. */
2916 if (current_offset % 4)
2917 current_offset += (4 - (current_offset % 4));
2918 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2919
2920 /* Write the fixups and update fields in subspace headers which
2921 relate to the fixup stream. */
2922 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2923 return false;
2924
2925 /* Record the total size of the fixup stream in the file header. */
2926 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2927 current_offset += total_reloc_size;
2928
2929 /* Next are the symbol strings.
2930 Align them to a word boundary. */
2931 if (current_offset % 4)
2932 current_offset += (4 - (current_offset % 4));
2933 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2934
2935 /* Scribble out the symbol strings. */
2936 if (som_write_symbol_strings (abfd, current_offset, syms,
2937 num_syms, &strings_size)
2938 == false)
2939 return false;
2940
2941 /* Record total string table size in header and update the
2942 current offset. */
2943 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2944 current_offset += strings_size;
2945
2946 /* Next is the compiler records. We do not use these. */
2947 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2948 obj_som_file_hdr (abfd)->compiler_total = 0;
2949
2950 /* Now compute the file positions for the loadable subspaces, taking
2951 care to make sure everything stays properly aligned. */
2952
2953 section = abfd->sections;
2954 for (i = 0; i < num_spaces; i++)
2955 {
2956 asection *subsection;
2957 int first_subspace;
2958 unsigned int subspace_offset = 0;
2959
2960 /* Find a space. */
2961 while (!som_is_space (section))
2962 section = section->next;
2963
2964 first_subspace = 1;
2965 /* Now look for all its subspaces. */
2966 for (subsection = abfd->sections;
2967 subsection != NULL;
2968 subsection = subsection->next)
2969 {
2970
2971 if (!som_is_subspace (subsection)
2972 || !som_is_container (section, subsection)
2973 || (subsection->flags & SEC_ALLOC) == 0)
2974 continue;
2975
2976 /* If this is the first subspace in the space, and we are
2977 building an executable, then take care to make sure all
2978 the alignments are correct and update the exec header. */
2979 if (first_subspace
2980 && (abfd->flags & (EXEC_P | DYNAMIC)))
2981 {
2982 /* Demand paged executables have each space aligned to a
2983 page boundary. Sharable executables (write-protected
2984 text) have just the private (aka data & bss) space aligned
2985 to a page boundary. Ugh. Not true for HPUX.
2986
2987 The HPUX kernel requires the text to always be page aligned
2988 within the file regardless of the executable's type. */
2989 if (abfd->flags & (D_PAGED | DYNAMIC)
2990 || (subsection->flags & SEC_CODE)
2991 || ((abfd->flags & WP_TEXT)
2992 && (subsection->flags & SEC_DATA)))
2993 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2994
2995 /* Update the exec header. */
2996 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
2997 {
2998 exec_header->exec_tmem = section->vma;
2999 exec_header->exec_tfile = current_offset;
3000 }
3001 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3002 {
3003 exec_header->exec_dmem = section->vma;
3004 exec_header->exec_dfile = current_offset;
3005 }
3006
3007 /* Keep track of exactly where we are within a particular
3008 space. This is necessary as the braindamaged HPUX
3009 loader will create holes between subspaces *and*
3010 subspace alignments are *NOT* preserved. What a crock. */
3011 subspace_offset = subsection->vma;
3012
3013 /* Only do this for the first subspace within each space. */
3014 first_subspace = 0;
3015 }
3016 else if (abfd->flags & (EXEC_P | DYNAMIC))
3017 {
3018 /* The braindamaged HPUX loader may have created a hole
3019 between two subspaces. It is *not* sufficient to use
3020 the alignment specifications within the subspaces to
3021 account for these holes -- I've run into at least one
3022 case where the loader left one code subspace unaligned
3023 in a final executable.
3024
3025 To combat this we keep a current offset within each space,
3026 and use the subspace vma fields to detect and preserve
3027 holes. What a crock!
3028
3029 ps. This is not necessary for unloadable space/subspaces. */
3030 current_offset += subsection->vma - subspace_offset;
3031 if (subsection->flags & SEC_CODE)
3032 exec_header->exec_tsize += subsection->vma - subspace_offset;
3033 else
3034 exec_header->exec_dsize += subsection->vma - subspace_offset;
3035 subspace_offset += subsection->vma - subspace_offset;
3036 }
3037
3038
3039 subsection->target_index = total_subspaces++;
3040 /* This is real data to be loaded from the file. */
3041 if (subsection->flags & SEC_LOAD)
3042 {
3043 /* Update the size of the code & data. */
3044 if (abfd->flags & (EXEC_P | DYNAMIC)
3045 && subsection->flags & SEC_CODE)
3046 exec_header->exec_tsize += subsection->_cooked_size;
3047 else if (abfd->flags & (EXEC_P | DYNAMIC)
3048 && subsection->flags & SEC_DATA)
3049 exec_header->exec_dsize += subsection->_cooked_size;
3050 som_section_data (subsection)->subspace_dict->file_loc_init_value
3051 = current_offset;
3052 subsection->filepos = current_offset;
3053 current_offset += bfd_section_size (abfd, subsection);
3054 subspace_offset += bfd_section_size (abfd, subsection);
3055 }
3056 /* Looks like uninitialized data. */
3057 else
3058 {
3059 /* Update the size of the bss section. */
3060 if (abfd->flags & (EXEC_P | DYNAMIC))
3061 exec_header->exec_bsize += subsection->_cooked_size;
3062
3063 som_section_data (subsection)->subspace_dict->file_loc_init_value
3064 = 0;
3065 som_section_data (subsection)->subspace_dict->
3066 initialization_length = 0;
3067 }
3068 }
3069 /* Goto the next section. */
3070 section = section->next;
3071 }
3072
3073 /* Finally compute the file positions for unloadable subspaces.
3074 If building an executable, start the unloadable stuff on its
3075 own page. */
3076
3077 if (abfd->flags & (EXEC_P | DYNAMIC))
3078 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3079
3080 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3081 section = abfd->sections;
3082 for (i = 0; i < num_spaces; i++)
3083 {
3084 asection *subsection;
3085
3086 /* Find a space. */
3087 while (!som_is_space (section))
3088 section = section->next;
3089
3090 if (abfd->flags & (EXEC_P | DYNAMIC))
3091 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3092
3093 /* Now look for all its subspaces. */
3094 for (subsection = abfd->sections;
3095 subsection != NULL;
3096 subsection = subsection->next)
3097 {
3098
3099 if (!som_is_subspace (subsection)
3100 || !som_is_container (section, subsection)
3101 || (subsection->flags & SEC_ALLOC) != 0)
3102 continue;
3103
3104 subsection->target_index = total_subspaces;
3105 /* This is real data to be loaded from the file. */
3106 if ((subsection->flags & SEC_LOAD) == 0)
3107 {
3108 som_section_data (subsection)->subspace_dict->file_loc_init_value
3109 = current_offset;
3110 subsection->filepos = current_offset;
3111 current_offset += bfd_section_size (abfd, subsection);
3112 }
3113 /* Looks like uninitialized data. */
3114 else
3115 {
3116 som_section_data (subsection)->subspace_dict->file_loc_init_value
3117 = 0;
3118 som_section_data (subsection)->subspace_dict->
3119 initialization_length = bfd_section_size (abfd, subsection);
3120 }
3121 }
3122 /* Goto the next section. */
3123 section = section->next;
3124 }
3125
3126 /* If building an executable, then make sure to seek to and write
3127 one byte at the end of the file to make sure any necessary
3128 zeros are filled in. Ugh. */
3129 if (abfd->flags & (EXEC_P | DYNAMIC))
3130 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3131 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3132 return false;
3133 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3134 return false;
3135
3136 obj_som_file_hdr (abfd)->unloadable_sp_size
3137 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3138
3139 /* Loader fixups are not supported in any way shape or form. */
3140 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3141 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3142
3143 /* Done. Store the total size of the SOM. */
3144 obj_som_file_hdr (abfd)->som_length = current_offset;
3145
3146 return true;
3147 }
3148
3149 /* Finally, scribble out the various headers to the disk. */
3150
3151 static boolean
3152 som_write_headers (abfd)
3153 bfd *abfd;
3154 {
3155 int num_spaces = som_count_spaces (abfd);
3156 int i;
3157 int subspace_index = 0;
3158 file_ptr location;
3159 asection *section;
3160
3161 /* Subspaces are written first so that we can set up information
3162 about them in their containing spaces as the subspace is written. */
3163
3164 /* Seek to the start of the subspace dictionary records. */
3165 location = obj_som_file_hdr (abfd)->subspace_location;
3166 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3167 return false;
3168
3169 section = abfd->sections;
3170 /* Now for each loadable space write out records for its subspaces. */
3171 for (i = 0; i < num_spaces; i++)
3172 {
3173 asection *subsection;
3174
3175 /* Find a space. */
3176 while (!som_is_space (section))
3177 section = section->next;
3178
3179 /* Now look for all its subspaces. */
3180 for (subsection = abfd->sections;
3181 subsection != NULL;
3182 subsection = subsection->next)
3183 {
3184
3185 /* Skip any section which does not correspond to a space
3186 or subspace. Or does not have SEC_ALLOC set (and therefore
3187 has no real bits on the disk). */
3188 if (!som_is_subspace (subsection)
3189 || !som_is_container (section, subsection)
3190 || (subsection->flags & SEC_ALLOC) == 0)
3191 continue;
3192
3193 /* If this is the first subspace for this space, then save
3194 the index of the subspace in its containing space. Also
3195 set "is_loadable" in the containing space. */
3196
3197 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3198 {
3199 som_section_data (section)->space_dict->is_loadable = 1;
3200 som_section_data (section)->space_dict->subspace_index
3201 = subspace_index;
3202 }
3203
3204 /* Increment the number of subspaces seen and the number of
3205 subspaces contained within the current space. */
3206 subspace_index++;
3207 som_section_data (section)->space_dict->subspace_quantity++;
3208
3209 /* Mark the index of the current space within the subspace's
3210 dictionary record. */
3211 som_section_data (subsection)->subspace_dict->space_index = i;
3212
3213 /* Dump the current subspace header. */
3214 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3215 sizeof (struct subspace_dictionary_record), 1, abfd)
3216 != sizeof (struct subspace_dictionary_record))
3217 return false;
3218 }
3219 /* Goto the next section. */
3220 section = section->next;
3221 }
3222
3223 /* Now repeat the process for unloadable subspaces. */
3224 section = abfd->sections;
3225 /* Now for each space write out records for its subspaces. */
3226 for (i = 0; i < num_spaces; i++)
3227 {
3228 asection *subsection;
3229
3230 /* Find a space. */
3231 while (!som_is_space (section))
3232 section = section->next;
3233
3234 /* Now look for all its subspaces. */
3235 for (subsection = abfd->sections;
3236 subsection != NULL;
3237 subsection = subsection->next)
3238 {
3239
3240 /* Skip any section which does not correspond to a space or
3241 subspace, or which SEC_ALLOC set (and therefore handled
3242 in the loadable spaces/subspaces code above). */
3243
3244 if (!som_is_subspace (subsection)
3245 || !som_is_container (section, subsection)
3246 || (subsection->flags & SEC_ALLOC) != 0)
3247 continue;
3248
3249 /* If this is the first subspace for this space, then save
3250 the index of the subspace in its containing space. Clear
3251 "is_loadable". */
3252
3253 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3254 {
3255 som_section_data (section)->space_dict->is_loadable = 0;
3256 som_section_data (section)->space_dict->subspace_index
3257 = subspace_index;
3258 }
3259
3260 /* Increment the number of subspaces seen and the number of
3261 subspaces contained within the current space. */
3262 som_section_data (section)->space_dict->subspace_quantity++;
3263 subspace_index++;
3264
3265 /* Mark the index of the current space within the subspace's
3266 dictionary record. */
3267 som_section_data (subsection)->subspace_dict->space_index = i;
3268
3269 /* Dump this subspace header. */
3270 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3271 sizeof (struct subspace_dictionary_record), 1, abfd)
3272 != sizeof (struct subspace_dictionary_record))
3273 return false;
3274 }
3275 /* Goto the next section. */
3276 section = section->next;
3277 }
3278
3279 /* All the subspace dictiondary records are written, and all the
3280 fields are set up in the space dictionary records.
3281
3282 Seek to the right location and start writing the space
3283 dictionary records. */
3284 location = obj_som_file_hdr (abfd)->space_location;
3285 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3286 return false;
3287
3288 section = abfd->sections;
3289 for (i = 0; i < num_spaces; i++)
3290 {
3291
3292 /* Find a space. */
3293 while (!som_is_space (section))
3294 section = section->next;
3295
3296 /* Dump its header */
3297 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3298 sizeof (struct space_dictionary_record), 1, abfd)
3299 != sizeof (struct space_dictionary_record))
3300 return false;
3301
3302 /* Goto the next section. */
3303 section = section->next;
3304 }
3305
3306 /* FIXME. This should really be conditional based on whether or not
3307 PA1.1 instructions/registers have been used.
3308
3309 Setting of the system_id has to happen very late now that copying of
3310 BFD private data happens *after* section contents are set. */
3311 if (abfd->flags & (EXEC_P | DYNAMIC))
3312 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3313 else
3314 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3315
3316 /* Compute the checksum for the file header just before writing
3317 the header to disk. */
3318 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3319
3320 /* Only thing left to do is write out the file header. It is always
3321 at location zero. Seek there and write it. */
3322 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3323 return false;
3324 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3325 sizeof (struct header), 1, abfd)
3326 != sizeof (struct header))
3327 return false;
3328
3329 /* Now write the exec header. */
3330 if (abfd->flags & (EXEC_P | DYNAMIC))
3331 {
3332 long tmp;
3333 struct som_exec_auxhdr *exec_header;
3334
3335 exec_header = obj_som_exec_hdr (abfd);
3336 exec_header->exec_entry = bfd_get_start_address (abfd);
3337 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3338
3339 /* Oh joys. Ram some of the BSS data into the DATA section
3340 to be compatable with how the hp linker makes objects
3341 (saves memory space). */
3342 tmp = exec_header->exec_dsize;
3343 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3344 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3345 if (exec_header->exec_bsize < 0)
3346 exec_header->exec_bsize = 0;
3347 exec_header->exec_dsize = tmp;
3348
3349 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3350 SEEK_SET) < 0)
3351 return false;
3352
3353 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3354 != AUX_HDR_SIZE)
3355 return false;
3356 }
3357 return true;
3358 }
3359
3360 /* Compute and return the checksum for a SOM file header. */
3361
3362 static unsigned long
3363 som_compute_checksum (abfd)
3364 bfd *abfd;
3365 {
3366 unsigned long checksum, count, i;
3367 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3368
3369 checksum = 0;
3370 count = sizeof (struct header) / sizeof (unsigned long);
3371 for (i = 0; i < count; i++)
3372 checksum ^= *(buffer + i);
3373
3374 return checksum;
3375 }
3376
3377 static void
3378 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3379 bfd *abfd;
3380 asymbol *sym;
3381 struct som_misc_symbol_info *info;
3382 {
3383 /* Initialize. */
3384 memset (info, 0, sizeof (struct som_misc_symbol_info));
3385
3386 /* The HP SOM linker requires detailed type information about
3387 all symbols (including undefined symbols!). Unfortunately,
3388 the type specified in an import/export statement does not
3389 always match what the linker wants. Severe braindamage. */
3390
3391 /* Section symbols will not have a SOM symbol type assigned to
3392 them yet. Assign all section symbols type ST_DATA. */
3393 if (sym->flags & BSF_SECTION_SYM)
3394 info->symbol_type = ST_DATA;
3395 else
3396 {
3397 /* Common symbols must have scope SS_UNSAT and type
3398 ST_STORAGE or the linker will choke. */
3399 if (bfd_is_com_section (sym->section))
3400 {
3401 info->symbol_scope = SS_UNSAT;
3402 info->symbol_type = ST_STORAGE;
3403 }
3404
3405 /* It is possible to have a symbol without an associated
3406 type. This happens if the user imported the symbol
3407 without a type and the symbol was never defined
3408 locally. If BSF_FUNCTION is set for this symbol, then
3409 assign it type ST_CODE (the HP linker requires undefined
3410 external functions to have type ST_CODE rather than ST_ENTRY). */
3411 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3412 && bfd_is_und_section (sym->section)
3413 && sym->flags & BSF_FUNCTION)
3414 info->symbol_type = ST_CODE;
3415
3416 /* Handle function symbols which were defined in this file.
3417 They should have type ST_ENTRY. Also retrieve the argument
3418 relocation bits from the SOM backend information. */
3419 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3420 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3421 && (sym->flags & BSF_FUNCTION))
3422 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3423 && (sym->flags & BSF_FUNCTION)))
3424 {
3425 info->symbol_type = ST_ENTRY;
3426 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3427 }
3428
3429 /* If the type is unknown at this point, it should be
3430 ST_DATA (functions were handled as special cases above). */
3431 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3432 info->symbol_type = ST_DATA;
3433
3434 /* From now on it's a very simple mapping. */
3435 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3436 info->symbol_type = ST_ABSOLUTE;
3437 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3438 info->symbol_type = ST_CODE;
3439 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3440 info->symbol_type = ST_DATA;
3441 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3442 info->symbol_type = ST_MILLICODE;
3443 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3444 info->symbol_type = ST_PLABEL;
3445 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3446 info->symbol_type = ST_PRI_PROG;
3447 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3448 info->symbol_type = ST_SEC_PROG;
3449 }
3450
3451 /* Now handle the symbol's scope. Exported data which is not
3452 in the common section has scope SS_UNIVERSAL. Note scope
3453 of common symbols was handled earlier! */
3454 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3455 info->symbol_scope = SS_UNIVERSAL;
3456 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3457 else if (bfd_is_und_section (sym->section))
3458 info->symbol_scope = SS_UNSAT;
3459 /* Anything else which is not in the common section has scope
3460 SS_LOCAL. */
3461 else if (! bfd_is_com_section (sym->section))
3462 info->symbol_scope = SS_LOCAL;
3463
3464 /* Now set the symbol_info field. It has no real meaning
3465 for undefined or common symbols, but the HP linker will
3466 choke if it's not set to some "reasonable" value. We
3467 use zero as a reasonable value. */
3468 if (bfd_is_com_section (sym->section)
3469 || bfd_is_und_section (sym->section)
3470 || bfd_is_abs_section (sym->section))
3471 info->symbol_info = 0;
3472 /* For all other symbols, the symbol_info field contains the
3473 subspace index of the space this symbol is contained in. */
3474 else
3475 info->symbol_info = sym->section->target_index;
3476
3477 /* Set the symbol's value. */
3478 info->symbol_value = sym->value + sym->section->vma;
3479 }
3480
3481 /* Build and write, in one big chunk, the entire symbol table for
3482 this BFD. */
3483
3484 static boolean
3485 som_build_and_write_symbol_table (abfd)
3486 bfd *abfd;
3487 {
3488 unsigned int num_syms = bfd_get_symcount (abfd);
3489 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3490 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3491 struct symbol_dictionary_record *som_symtab = NULL;
3492 int i, symtab_size;
3493
3494 /* Compute total symbol table size and allocate a chunk of memory
3495 to hold the symbol table as we build it. */
3496 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3497 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3498 if (som_symtab == NULL && symtab_size != 0)
3499 {
3500 bfd_set_error (bfd_error_no_memory);
3501 goto error_return;
3502 }
3503 memset (som_symtab, 0, symtab_size);
3504
3505 /* Walk over each symbol. */
3506 for (i = 0; i < num_syms; i++)
3507 {
3508 struct som_misc_symbol_info info;
3509
3510 /* This is really an index into the symbol strings table.
3511 By the time we get here, the index has already been
3512 computed and stored into the name field in the BFD symbol. */
3513 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3514
3515 /* Derive SOM information from the BFD symbol. */
3516 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3517
3518 /* Now use it. */
3519 som_symtab[i].symbol_type = info.symbol_type;
3520 som_symtab[i].symbol_scope = info.symbol_scope;
3521 som_symtab[i].arg_reloc = info.arg_reloc;
3522 som_symtab[i].symbol_info = info.symbol_info;
3523 som_symtab[i].symbol_value = info.symbol_value;
3524 }
3525
3526 /* Everything is ready, seek to the right location and
3527 scribble out the symbol table. */
3528 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3529 return false;
3530
3531 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3532 goto error_return;
3533
3534 if (som_symtab != NULL)
3535 free (som_symtab);
3536 return true;
3537 error_return:
3538 if (som_symtab != NULL)
3539 free (som_symtab);
3540 return false;
3541 }
3542
3543 /* Write an object in SOM format. */
3544
3545 static boolean
3546 som_write_object_contents (abfd)
3547 bfd *abfd;
3548 {
3549 if (abfd->output_has_begun == false)
3550 {
3551 /* Set up fixed parts of the file, space, and subspace headers.
3552 Notify the world that output has begun. */
3553 som_prep_headers (abfd);
3554 abfd->output_has_begun = true;
3555 /* Start writing the object file. This include all the string
3556 tables, fixup streams, and other portions of the object file. */
3557 som_begin_writing (abfd);
3558 }
3559
3560 /* Now that the symbol table information is complete, build and
3561 write the symbol table. */
3562 if (som_build_and_write_symbol_table (abfd) == false)
3563 return false;
3564
3565 return (som_write_headers (abfd));
3566 }
3567
3568 \f
3569 /* Read and save the string table associated with the given BFD. */
3570
3571 static boolean
3572 som_slurp_string_table (abfd)
3573 bfd *abfd;
3574 {
3575 char *stringtab;
3576
3577 /* Use the saved version if its available. */
3578 if (obj_som_stringtab (abfd) != NULL)
3579 return true;
3580
3581 /* I don't think this can currently happen, and I'm not sure it should
3582 really be an error, but it's better than getting unpredictable results
3583 from the host's malloc when passed a size of zero. */
3584 if (obj_som_stringtab_size (abfd) == 0)
3585 {
3586 bfd_set_error (bfd_error_no_symbols);
3587 return false;
3588 }
3589
3590 /* Allocate and read in the string table. */
3591 stringtab = malloc (obj_som_stringtab_size (abfd));
3592 if (stringtab == NULL)
3593 {
3594 bfd_set_error (bfd_error_no_memory);
3595 return false;
3596 }
3597
3598 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3599 return false;
3600
3601 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3602 != obj_som_stringtab_size (abfd))
3603 return false;
3604
3605 /* Save our results and return success. */
3606 obj_som_stringtab (abfd) = stringtab;
3607 return true;
3608 }
3609
3610 /* Return the amount of data (in bytes) required to hold the symbol
3611 table for this object. */
3612
3613 static long
3614 som_get_symtab_upper_bound (abfd)
3615 bfd *abfd;
3616 {
3617 if (!som_slurp_symbol_table (abfd))
3618 return -1;
3619
3620 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3621 }
3622
3623 /* Convert from a SOM subspace index to a BFD section. */
3624
3625 static asection *
3626 bfd_section_from_som_symbol (abfd, symbol)
3627 bfd *abfd;
3628 struct symbol_dictionary_record *symbol;
3629 {
3630 asection *section;
3631
3632 /* The meaning of the symbol_info field changes for functions
3633 within executables. So only use the quick symbol_info mapping for
3634 incomplete objects and non-function symbols in executables. */
3635 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3636 || (symbol->symbol_type != ST_ENTRY
3637 && symbol->symbol_type != ST_PRI_PROG
3638 && symbol->symbol_type != ST_SEC_PROG
3639 && symbol->symbol_type != ST_MILLICODE))
3640 {
3641 unsigned int index = symbol->symbol_info;
3642 for (section = abfd->sections; section != NULL; section = section->next)
3643 if (section->target_index == index)
3644 return section;
3645
3646 /* Should never happen. */
3647 abort();
3648 }
3649 else
3650 {
3651 unsigned int value = symbol->symbol_value;
3652
3653 /* For executables we will have to use the symbol's address and
3654 find out what section would contain that address. Yuk. */
3655 for (section = abfd->sections; section; section = section->next)
3656 {
3657 if (value >= section->vma
3658 && value <= section->vma + section->_cooked_size)
3659 return section;
3660 }
3661
3662 /* Should never happen. */
3663 abort ();
3664 }
3665 }
3666
3667 /* Read and save the symbol table associated with the given BFD. */
3668
3669 static unsigned int
3670 som_slurp_symbol_table (abfd)
3671 bfd *abfd;
3672 {
3673 int symbol_count = bfd_get_symcount (abfd);
3674 int symsize = sizeof (struct symbol_dictionary_record);
3675 char *stringtab;
3676 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3677 som_symbol_type *sym, *symbase;
3678
3679 /* Return saved value if it exists. */
3680 if (obj_som_symtab (abfd) != NULL)
3681 goto successful_return;
3682
3683 /* Special case. This is *not* an error. */
3684 if (symbol_count == 0)
3685 goto successful_return;
3686
3687 if (!som_slurp_string_table (abfd))
3688 goto error_return;
3689
3690 stringtab = obj_som_stringtab (abfd);
3691
3692 symbase = (som_symbol_type *)
3693 malloc (symbol_count * sizeof (som_symbol_type));
3694 if (symbase == NULL)
3695 {
3696 bfd_set_error (bfd_error_no_memory);
3697 goto error_return;
3698 }
3699
3700 /* Read in the external SOM representation. */
3701 buf = malloc (symbol_count * symsize);
3702 if (buf == NULL && symbol_count * symsize != 0)
3703 {
3704 bfd_set_error (bfd_error_no_memory);
3705 goto error_return;
3706 }
3707 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3708 goto error_return;
3709 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3710 != symbol_count * symsize)
3711 goto error_return;
3712
3713 /* Iterate over all the symbols and internalize them. */
3714 endbufp = buf + symbol_count;
3715 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3716 {
3717
3718 /* I don't think we care about these. */
3719 if (bufp->symbol_type == ST_SYM_EXT
3720 || bufp->symbol_type == ST_ARG_EXT)
3721 continue;
3722
3723 /* Set some private data we care about. */
3724 if (bufp->symbol_type == ST_NULL)
3725 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3726 else if (bufp->symbol_type == ST_ABSOLUTE)
3727 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3728 else if (bufp->symbol_type == ST_DATA)
3729 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3730 else if (bufp->symbol_type == ST_CODE)
3731 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3732 else if (bufp->symbol_type == ST_PRI_PROG)
3733 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3734 else if (bufp->symbol_type == ST_SEC_PROG)
3735 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3736 else if (bufp->symbol_type == ST_ENTRY)
3737 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3738 else if (bufp->symbol_type == ST_MILLICODE)
3739 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3740 else if (bufp->symbol_type == ST_PLABEL)
3741 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3742 else
3743 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3744 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3745
3746 /* Some reasonable defaults. */
3747 sym->symbol.the_bfd = abfd;
3748 sym->symbol.name = bufp->name.n_strx + stringtab;
3749 sym->symbol.value = bufp->symbol_value;
3750 sym->symbol.section = 0;
3751 sym->symbol.flags = 0;
3752
3753 switch (bufp->symbol_type)
3754 {
3755 case ST_ENTRY:
3756 case ST_PRI_PROG:
3757 case ST_SEC_PROG:
3758 case ST_MILLICODE:
3759 sym->symbol.flags |= BSF_FUNCTION;
3760 sym->symbol.value &= ~0x3;
3761 break;
3762
3763 case ST_STUB:
3764 case ST_CODE:
3765 sym->symbol.value &= ~0x3;
3766
3767 default:
3768 break;
3769 }
3770
3771 /* Handle scoping and section information. */
3772 switch (bufp->symbol_scope)
3773 {
3774 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3775 so the section associated with this symbol can't be known. */
3776 case SS_EXTERNAL:
3777 if (bufp->symbol_type != ST_STORAGE)
3778 sym->symbol.section = bfd_und_section_ptr;
3779 else
3780 sym->symbol.section = bfd_com_section_ptr;
3781 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3782 break;
3783
3784 case SS_UNSAT:
3785 if (bufp->symbol_type != ST_STORAGE)
3786 sym->symbol.section = bfd_und_section_ptr;
3787 else
3788 sym->symbol.section = bfd_com_section_ptr;
3789 break;
3790
3791 case SS_UNIVERSAL:
3792 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3793 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3794 sym->symbol.value -= sym->symbol.section->vma;
3795 break;
3796
3797 #if 0
3798 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3799 Sound dumb? It is. */
3800 case SS_GLOBAL:
3801 #endif
3802 case SS_LOCAL:
3803 sym->symbol.flags |= BSF_LOCAL;
3804 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3805 sym->symbol.value -= sym->symbol.section->vma;
3806 break;
3807 }
3808
3809 /* Mark section symbols and symbols used by the debugger. */
3810 if (sym->symbol.name[0] == '$'
3811 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3812 sym->symbol.flags |= BSF_SECTION_SYM;
3813 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3814 {
3815 sym->symbol.flags |= BSF_SECTION_SYM;
3816 sym->symbol.name = sym->symbol.section->name;
3817 }
3818 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3819 sym->symbol.flags |= BSF_DEBUGGING;
3820
3821 /* Note increment at bottom of loop, since we skip some symbols
3822 we can not include it as part of the for statement. */
3823 sym++;
3824 }
3825
3826 /* Save our results and return success. */
3827 obj_som_symtab (abfd) = symbase;
3828 successful_return:
3829 if (buf != NULL)
3830 free (buf);
3831 return (true);
3832
3833 error_return:
3834 if (buf != NULL)
3835 free (buf);
3836 return false;
3837 }
3838
3839 /* Canonicalize a SOM symbol table. Return the number of entries
3840 in the symbol table. */
3841
3842 static long
3843 som_get_symtab (abfd, location)
3844 bfd *abfd;
3845 asymbol **location;
3846 {
3847 int i;
3848 som_symbol_type *symbase;
3849
3850 if (!som_slurp_symbol_table (abfd))
3851 return -1;
3852
3853 i = bfd_get_symcount (abfd);
3854 symbase = obj_som_symtab (abfd);
3855
3856 for (; i > 0; i--, location++, symbase++)
3857 *location = &symbase->symbol;
3858
3859 /* Final null pointer. */
3860 *location = 0;
3861 return (bfd_get_symcount (abfd));
3862 }
3863
3864 /* Make a SOM symbol. There is nothing special to do here. */
3865
3866 static asymbol *
3867 som_make_empty_symbol (abfd)
3868 bfd *abfd;
3869 {
3870 som_symbol_type *new =
3871 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3872 if (new == NULL)
3873 {
3874 bfd_set_error (bfd_error_no_memory);
3875 return 0;
3876 }
3877 new->symbol.the_bfd = abfd;
3878
3879 return &new->symbol;
3880 }
3881
3882 /* Print symbol information. */
3883
3884 static void
3885 som_print_symbol (ignore_abfd, afile, symbol, how)
3886 bfd *ignore_abfd;
3887 PTR afile;
3888 asymbol *symbol;
3889 bfd_print_symbol_type how;
3890 {
3891 FILE *file = (FILE *) afile;
3892 switch (how)
3893 {
3894 case bfd_print_symbol_name:
3895 fprintf (file, "%s", symbol->name);
3896 break;
3897 case bfd_print_symbol_more:
3898 fprintf (file, "som ");
3899 fprintf_vma (file, symbol->value);
3900 fprintf (file, " %lx", (long) symbol->flags);
3901 break;
3902 case bfd_print_symbol_all:
3903 {
3904 CONST char *section_name;
3905 section_name = symbol->section ? symbol->section->name : "(*none*)";
3906 bfd_print_symbol_vandf ((PTR) file, symbol);
3907 fprintf (file, " %s\t%s", section_name, symbol->name);
3908 break;
3909 }
3910 }
3911 }
3912
3913 static boolean
3914 som_bfd_is_local_label (abfd, sym)
3915 bfd *abfd;
3916 asymbol *sym;
3917 {
3918 return (sym->name[0] == 'L' && sym->name[1] == '$');
3919 }
3920
3921 /* Count or process variable-length SOM fixup records.
3922
3923 To avoid code duplication we use this code both to compute the number
3924 of relocations requested by a stream, and to internalize the stream.
3925
3926 When computing the number of relocations requested by a stream the
3927 variables rptr, section, and symbols have no meaning.
3928
3929 Return the number of relocations requested by the fixup stream. When
3930 not just counting
3931
3932 This needs at least two or three more passes to get it cleaned up. */
3933
3934 static unsigned int
3935 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3936 unsigned char *fixup;
3937 unsigned int end;
3938 arelent *internal_relocs;
3939 asection *section;
3940 asymbol **symbols;
3941 boolean just_count;
3942 {
3943 unsigned int op, varname;
3944 unsigned char *end_fixups = &fixup[end];
3945 const struct fixup_format *fp;
3946 char *cp;
3947 unsigned char *save_fixup;
3948 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3949 const int *subop;
3950 arelent *rptr= internal_relocs;
3951 unsigned int offset = just_count ? 0 : section->vma;
3952
3953 #define var(c) variables[(c) - 'A']
3954 #define push(v) (*sp++ = (v))
3955 #define pop() (*--sp)
3956 #define emptystack() (sp == stack)
3957
3958 som_initialize_reloc_queue (reloc_queue);
3959 memset (variables, 0, sizeof (variables));
3960 memset (stack, 0, sizeof (stack));
3961 count = 0;
3962 prev_fixup = 0;
3963 sp = stack;
3964
3965 while (fixup < end_fixups)
3966 {
3967
3968 /* Save pointer to the start of this fixup. We'll use
3969 it later to determine if it is necessary to put this fixup
3970 on the queue. */
3971 save_fixup = fixup;
3972
3973 /* Get the fixup code and its associated format. */
3974 op = *fixup++;
3975 fp = &som_fixup_formats[op];
3976
3977 /* Handle a request for a previous fixup. */
3978 if (*fp->format == 'P')
3979 {
3980 /* Get pointer to the beginning of the prev fixup, move
3981 the repeated fixup to the head of the queue. */
3982 fixup = reloc_queue[fp->D].reloc;
3983 som_reloc_queue_fix (reloc_queue, fp->D);
3984 prev_fixup = 1;
3985
3986 /* Get the fixup code and its associated format. */
3987 op = *fixup++;
3988 fp = &som_fixup_formats[op];
3989 }
3990
3991 /* If this fixup will be passed to BFD, set some reasonable defaults. */
3992 if (! just_count
3993 && som_hppa_howto_table[op].type != R_NO_RELOCATION
3994 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
3995 {
3996 rptr->address = offset;
3997 rptr->howto = &som_hppa_howto_table[op];
3998 rptr->addend = 0;
3999 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4000 }
4001
4002 /* Set default input length to 0. Get the opcode class index
4003 into D. */
4004 var ('L') = 0;
4005 var ('D') = fp->D;
4006
4007 /* Get the opcode format. */
4008 cp = fp->format;
4009
4010 /* Process the format string. Parsing happens in two phases,
4011 parse RHS, then assign to LHS. Repeat until no more
4012 characters in the format string. */
4013 while (*cp)
4014 {
4015 /* The variable this pass is going to compute a value for. */
4016 varname = *cp++;
4017
4018 /* Start processing RHS. Continue until a NULL or '=' is found. */
4019 do
4020 {
4021 c = *cp++;
4022
4023 /* If this is a variable, push it on the stack. */
4024 if (isupper (c))
4025 push (var (c));
4026
4027 /* If this is a lower case letter, then it represents
4028 additional data from the fixup stream to be pushed onto
4029 the stack. */
4030 else if (islower (c))
4031 {
4032 for (v = 0; c > 'a'; --c)
4033 v = (v << 8) | *fixup++;
4034 push (v);
4035 }
4036
4037 /* A decimal constant. Push it on the stack. */
4038 else if (isdigit (c))
4039 {
4040 v = c - '0';
4041 while (isdigit (*cp))
4042 v = (v * 10) + (*cp++ - '0');
4043 push (v);
4044 }
4045 else
4046
4047 /* An operator. Pop two two values from the stack and
4048 use them as operands to the given operation. Push
4049 the result of the operation back on the stack. */
4050 switch (c)
4051 {
4052 case '+':
4053 v = pop ();
4054 v += pop ();
4055 push (v);
4056 break;
4057 case '*':
4058 v = pop ();
4059 v *= pop ();
4060 push (v);
4061 break;
4062 case '<':
4063 v = pop ();
4064 v = pop () << v;
4065 push (v);
4066 break;
4067 default:
4068 abort ();
4069 }
4070 }
4071 while (*cp && *cp != '=');
4072
4073 /* Move over the equal operator. */
4074 cp++;
4075
4076 /* Pop the RHS off the stack. */
4077 c = pop ();
4078
4079 /* Perform the assignment. */
4080 var (varname) = c;
4081
4082 /* Handle side effects. and special 'O' stack cases. */
4083 switch (varname)
4084 {
4085 /* Consume some bytes from the input space. */
4086 case 'L':
4087 offset += c;
4088 break;
4089 /* A symbol to use in the relocation. Make a note
4090 of this if we are not just counting. */
4091 case 'S':
4092 if (! just_count)
4093 rptr->sym_ptr_ptr = &symbols[c];
4094 break;
4095 /* Handle the linker expression stack. */
4096 case 'O':
4097 switch (op)
4098 {
4099 case R_COMP1:
4100 subop = comp1_opcodes;
4101 break;
4102 case R_COMP2:
4103 subop = comp2_opcodes;
4104 break;
4105 case R_COMP3:
4106 subop = comp3_opcodes;
4107 break;
4108 default:
4109 abort ();
4110 }
4111 while (*subop <= (unsigned char) c)
4112 ++subop;
4113 --subop;
4114 break;
4115 default:
4116 break;
4117 }
4118 }
4119
4120 /* If we used a previous fixup, clean up after it. */
4121 if (prev_fixup)
4122 {
4123 fixup = save_fixup + 1;
4124 prev_fixup = 0;
4125 }
4126 /* Queue it. */
4127 else if (fixup > save_fixup + 1)
4128 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4129
4130 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4131 fixups to BFD. */
4132 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4133 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4134 {
4135 /* Done with a single reloction. Loop back to the top. */
4136 if (! just_count)
4137 {
4138 rptr->addend = var ('V');
4139 rptr++;
4140 }
4141 count++;
4142 /* Now that we've handled a "full" relocation, reset
4143 some state. */
4144 memset (variables, 0, sizeof (variables));
4145 memset (stack, 0, sizeof (stack));
4146 }
4147 }
4148 return count;
4149
4150 #undef var
4151 #undef push
4152 #undef pop
4153 #undef emptystack
4154 }
4155
4156 /* Read in the relocs (aka fixups in SOM terms) for a section.
4157
4158 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4159 set to true to indicate it only needs a count of the number
4160 of actual relocations. */
4161
4162 static boolean
4163 som_slurp_reloc_table (abfd, section, symbols, just_count)
4164 bfd *abfd;
4165 asection *section;
4166 asymbol **symbols;
4167 boolean just_count;
4168 {
4169 char *external_relocs;
4170 unsigned int fixup_stream_size;
4171 arelent *internal_relocs;
4172 unsigned int num_relocs;
4173
4174 fixup_stream_size = som_section_data (section)->reloc_size;
4175 /* If there were no relocations, then there is nothing to do. */
4176 if (section->reloc_count == 0)
4177 return true;
4178
4179 /* If reloc_count is -1, then the relocation stream has not been
4180 parsed. We must do so now to know how many relocations exist. */
4181 if (section->reloc_count == -1)
4182 {
4183 external_relocs = (char *) malloc (fixup_stream_size);
4184 if (external_relocs == (char *) NULL)
4185 {
4186 bfd_set_error (bfd_error_no_memory);
4187 return false;
4188 }
4189 /* Read in the external forms. */
4190 if (bfd_seek (abfd,
4191 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4192 SEEK_SET)
4193 != 0)
4194 return false;
4195 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4196 != fixup_stream_size)
4197 return false;
4198
4199 /* Let callers know how many relocations found.
4200 also save the relocation stream as we will
4201 need it again. */
4202 section->reloc_count = som_set_reloc_info (external_relocs,
4203 fixup_stream_size,
4204 NULL, NULL, NULL, true);
4205
4206 som_section_data (section)->reloc_stream = external_relocs;
4207 }
4208
4209 /* If the caller only wanted a count, then return now. */
4210 if (just_count)
4211 return true;
4212
4213 num_relocs = section->reloc_count;
4214 external_relocs = som_section_data (section)->reloc_stream;
4215 /* Return saved information about the relocations if it is available. */
4216 if (section->relocation != (arelent *) NULL)
4217 return true;
4218
4219 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4220 if (internal_relocs == (arelent *) NULL)
4221 {
4222 bfd_set_error (bfd_error_no_memory);
4223 return false;
4224 }
4225
4226 /* Process and internalize the relocations. */
4227 som_set_reloc_info (external_relocs, fixup_stream_size,
4228 internal_relocs, section, symbols, false);
4229
4230 /* Save our results and return success. */
4231 section->relocation = internal_relocs;
4232 return (true);
4233 }
4234
4235 /* Return the number of bytes required to store the relocation
4236 information associated with the given section. */
4237
4238 static long
4239 som_get_reloc_upper_bound (abfd, asect)
4240 bfd *abfd;
4241 sec_ptr asect;
4242 {
4243 /* If section has relocations, then read in the relocation stream
4244 and parse it to determine how many relocations exist. */
4245 if (asect->flags & SEC_RELOC)
4246 {
4247 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4248 return false;
4249 return (asect->reloc_count + 1) * sizeof (arelent);
4250 }
4251 /* There are no relocations. */
4252 return 0;
4253 }
4254
4255 /* Convert relocations from SOM (external) form into BFD internal
4256 form. Return the number of relocations. */
4257
4258 static long
4259 som_canonicalize_reloc (abfd, section, relptr, symbols)
4260 bfd *abfd;
4261 sec_ptr section;
4262 arelent **relptr;
4263 asymbol **symbols;
4264 {
4265 arelent *tblptr;
4266 int count;
4267
4268 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4269 return -1;
4270
4271 count = section->reloc_count;
4272 tblptr = section->relocation;
4273
4274 while (count--)
4275 *relptr++ = tblptr++;
4276
4277 *relptr = (arelent *) NULL;
4278 return section->reloc_count;
4279 }
4280
4281 extern const bfd_target som_vec;
4282
4283 /* A hook to set up object file dependent section information. */
4284
4285 static boolean
4286 som_new_section_hook (abfd, newsect)
4287 bfd *abfd;
4288 asection *newsect;
4289 {
4290 newsect->used_by_bfd =
4291 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4292 if (!newsect->used_by_bfd)
4293 {
4294 bfd_set_error (bfd_error_no_memory);
4295 return false;
4296 }
4297 newsect->alignment_power = 3;
4298
4299 /* We allow more than three sections internally */
4300 return true;
4301 }
4302
4303 /* Copy any private info we understand from the input section
4304 to the output section. */
4305 static boolean
4306 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4307 bfd *ibfd;
4308 asection *isection;
4309 bfd *obfd;
4310 asection *osection;
4311 {
4312 /* One day we may try to grok other private data. */
4313 if (ibfd->xvec->flavour != bfd_target_som_flavour
4314 || obfd->xvec->flavour != bfd_target_som_flavour
4315 || (!som_is_space (isection) && !som_is_subspace (isection)))
4316 return false;
4317
4318 som_section_data (osection)->copy_data
4319 = (struct som_copyable_section_data_struct *)
4320 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4321 if (som_section_data (osection)->copy_data == NULL)
4322 {
4323 bfd_set_error (bfd_error_no_memory);
4324 return false;
4325 }
4326
4327 memcpy (som_section_data (osection)->copy_data,
4328 som_section_data (isection)->copy_data,
4329 sizeof (struct som_copyable_section_data_struct));
4330
4331 /* Reparent if necessary. */
4332 if (som_section_data (osection)->copy_data->container)
4333 som_section_data (osection)->copy_data->container =
4334 som_section_data (osection)->copy_data->container->output_section;
4335
4336 return true;
4337 }
4338
4339 /* Copy any private info we understand from the input bfd
4340 to the output bfd. */
4341
4342 static boolean
4343 som_bfd_copy_private_bfd_data (ibfd, obfd)
4344 bfd *ibfd, *obfd;
4345 {
4346 /* One day we may try to grok other private data. */
4347 if (ibfd->xvec->flavour != bfd_target_som_flavour
4348 || obfd->xvec->flavour != bfd_target_som_flavour)
4349 return false;
4350
4351 /* Allocate some memory to hold the data we need. */
4352 obj_som_exec_data (obfd) = (struct som_exec_data *)
4353 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4354 if (obj_som_exec_data (obfd) == NULL)
4355 {
4356 bfd_set_error (bfd_error_no_memory);
4357 return false;
4358 }
4359
4360 /* Now copy the data. */
4361 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4362 sizeof (struct som_exec_data));
4363
4364 return true;
4365 }
4366
4367 /* Set backend info for sections which can not be described
4368 in the BFD data structures. */
4369
4370 boolean
4371 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4372 asection *section;
4373 int defined;
4374 int private;
4375 unsigned int sort_key;
4376 int spnum;
4377 {
4378 /* Allocate memory to hold the magic information. */
4379 if (som_section_data (section)->copy_data == NULL)
4380 {
4381 som_section_data (section)->copy_data
4382 = (struct som_copyable_section_data_struct *)
4383 bfd_zalloc (section->owner,
4384 sizeof (struct som_copyable_section_data_struct));
4385 if (som_section_data (section)->copy_data == NULL)
4386 {
4387 bfd_set_error (bfd_error_no_memory);
4388 return false;
4389 }
4390 }
4391 som_section_data (section)->copy_data->sort_key = sort_key;
4392 som_section_data (section)->copy_data->is_defined = defined;
4393 som_section_data (section)->copy_data->is_private = private;
4394 som_section_data (section)->copy_data->container = section;
4395 som_section_data (section)->copy_data->space_number = spnum;
4396 return true;
4397 }
4398
4399 /* Set backend info for subsections which can not be described
4400 in the BFD data structures. */
4401
4402 boolean
4403 bfd_som_set_subsection_attributes (section, container, access,
4404 sort_key, quadrant)
4405 asection *section;
4406 asection *container;
4407 int access;
4408 unsigned int sort_key;
4409 int quadrant;
4410 {
4411 /* Allocate memory to hold the magic information. */
4412 if (som_section_data (section)->copy_data == NULL)
4413 {
4414 som_section_data (section)->copy_data
4415 = (struct som_copyable_section_data_struct *)
4416 bfd_zalloc (section->owner,
4417 sizeof (struct som_copyable_section_data_struct));
4418 if (som_section_data (section)->copy_data == NULL)
4419 {
4420 bfd_set_error (bfd_error_no_memory);
4421 return false;
4422 }
4423 }
4424 som_section_data (section)->copy_data->sort_key = sort_key;
4425 som_section_data (section)->copy_data->access_control_bits = access;
4426 som_section_data (section)->copy_data->quadrant = quadrant;
4427 som_section_data (section)->copy_data->container = container;
4428 return true;
4429 }
4430
4431 /* Set the full SOM symbol type. SOM needs far more symbol information
4432 than any other object file format I'm aware of. It is mandatory
4433 to be able to know if a symbol is an entry point, millicode, data,
4434 code, absolute, storage request, or procedure label. If you get
4435 the symbol type wrong your program will not link. */
4436
4437 void
4438 bfd_som_set_symbol_type (symbol, type)
4439 asymbol *symbol;
4440 unsigned int type;
4441 {
4442 som_symbol_data (symbol)->som_type = type;
4443 }
4444
4445 /* Attach 64bits of unwind information to a symbol (which hopefully
4446 is a function of some kind!). It would be better to keep this
4447 in the R_ENTRY relocation, but there is not enough space. */
4448
4449 void
4450 bfd_som_attach_unwind_info (symbol, unwind_desc)
4451 asymbol *symbol;
4452 char *unwind_desc;
4453 {
4454 som_symbol_data (symbol)->unwind = unwind_desc;
4455 }
4456
4457 /* Attach an auxiliary header to the BFD backend so that it may be
4458 written into the object file. */
4459 boolean
4460 bfd_som_attach_aux_hdr (abfd, type, string)
4461 bfd *abfd;
4462 int type;
4463 char *string;
4464 {
4465 if (type == VERSION_AUX_ID)
4466 {
4467 int len = strlen (string);
4468 int pad = 0;
4469
4470 if (len % 4)
4471 pad = (4 - (len % 4));
4472 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4473 bfd_zalloc (abfd, sizeof (struct aux_id)
4474 + sizeof (unsigned int) + len + pad);
4475 if (!obj_som_version_hdr (abfd))
4476 {
4477 bfd_set_error (bfd_error_no_memory);
4478 return false;
4479 }
4480 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4481 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4482 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4483 obj_som_version_hdr (abfd)->string_length = len;
4484 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4485 }
4486 else if (type == COPYRIGHT_AUX_ID)
4487 {
4488 int len = strlen (string);
4489 int pad = 0;
4490
4491 if (len % 4)
4492 pad = (4 - (len % 4));
4493 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4494 bfd_zalloc (abfd, sizeof (struct aux_id)
4495 + sizeof (unsigned int) + len + pad);
4496 if (!obj_som_copyright_hdr (abfd))
4497 {
4498 bfd_set_error (bfd_error_no_memory);
4499 return false;
4500 }
4501 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4502 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4503 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4504 obj_som_copyright_hdr (abfd)->string_length = len;
4505 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4506 }
4507 return true;
4508 }
4509
4510 static boolean
4511 som_get_section_contents (abfd, section, location, offset, count)
4512 bfd *abfd;
4513 sec_ptr section;
4514 PTR location;
4515 file_ptr offset;
4516 bfd_size_type count;
4517 {
4518 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4519 return true;
4520 if ((bfd_size_type)(offset+count) > section->_raw_size
4521 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4522 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4523 return (false); /* on error */
4524 return (true);
4525 }
4526
4527 static boolean
4528 som_set_section_contents (abfd, section, location, offset, count)
4529 bfd *abfd;
4530 sec_ptr section;
4531 PTR location;
4532 file_ptr offset;
4533 bfd_size_type count;
4534 {
4535 if (abfd->output_has_begun == false)
4536 {
4537 /* Set up fixed parts of the file, space, and subspace headers.
4538 Notify the world that output has begun. */
4539 som_prep_headers (abfd);
4540 abfd->output_has_begun = true;
4541 /* Start writing the object file. This include all the string
4542 tables, fixup streams, and other portions of the object file. */
4543 som_begin_writing (abfd);
4544 }
4545
4546 /* Only write subspaces which have "real" contents (eg. the contents
4547 are not generated at run time by the OS). */
4548 if (!som_is_subspace (section)
4549 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4550 return true;
4551
4552 /* Seek to the proper offset within the object file and write the
4553 data. */
4554 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4555 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4556 return false;
4557
4558 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4559 return false;
4560 return true;
4561 }
4562
4563 static boolean
4564 som_set_arch_mach (abfd, arch, machine)
4565 bfd *abfd;
4566 enum bfd_architecture arch;
4567 unsigned long machine;
4568 {
4569 /* Allow any architecture to be supported by the SOM backend */
4570 return bfd_default_set_arch_mach (abfd, arch, machine);
4571 }
4572
4573 static boolean
4574 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4575 functionname_ptr, line_ptr)
4576 bfd *abfd;
4577 asection *section;
4578 asymbol **symbols;
4579 bfd_vma offset;
4580 CONST char **filename_ptr;
4581 CONST char **functionname_ptr;
4582 unsigned int *line_ptr;
4583 {
4584 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4585 fflush (stderr);
4586 abort ();
4587 return (false);
4588 }
4589
4590 static int
4591 som_sizeof_headers (abfd, reloc)
4592 bfd *abfd;
4593 boolean reloc;
4594 {
4595 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4596 fflush (stderr);
4597 abort ();
4598 return (0);
4599 }
4600
4601 /* Return the single-character symbol type corresponding to
4602 SOM section S, or '?' for an unknown SOM section. */
4603
4604 static char
4605 som_section_type (s)
4606 const char *s;
4607 {
4608 const struct section_to_type *t;
4609
4610 for (t = &stt[0]; t->section; t++)
4611 if (!strcmp (s, t->section))
4612 return t->type;
4613 return '?';
4614 }
4615
4616 static int
4617 som_decode_symclass (symbol)
4618 asymbol *symbol;
4619 {
4620 char c;
4621
4622 if (bfd_is_com_section (symbol->section))
4623 return 'C';
4624 if (bfd_is_und_section (symbol->section))
4625 return 'U';
4626 if (bfd_is_ind_section (symbol->section))
4627 return 'I';
4628 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4629 return '?';
4630
4631 if (bfd_is_abs_section (symbol->section))
4632 c = 'a';
4633 else if (symbol->section)
4634 c = som_section_type (symbol->section->name);
4635 else
4636 return '?';
4637 if (symbol->flags & BSF_GLOBAL)
4638 c = toupper (c);
4639 return c;
4640 }
4641
4642 /* Return information about SOM symbol SYMBOL in RET. */
4643
4644 static void
4645 som_get_symbol_info (ignore_abfd, symbol, ret)
4646 bfd *ignore_abfd;
4647 asymbol *symbol;
4648 symbol_info *ret;
4649 {
4650 ret->type = som_decode_symclass (symbol);
4651 if (ret->type != 'U')
4652 ret->value = symbol->value+symbol->section->vma;
4653 else
4654 ret->value = 0;
4655 ret->name = symbol->name;
4656 }
4657
4658 /* Count the number of symbols in the archive symbol table. Necessary
4659 so that we can allocate space for all the carsyms at once. */
4660
4661 static boolean
4662 som_bfd_count_ar_symbols (abfd, lst_header, count)
4663 bfd *abfd;
4664 struct lst_header *lst_header;
4665 symindex *count;
4666 {
4667 unsigned int i;
4668 unsigned int *hash_table = NULL;
4669 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4670
4671 hash_table =
4672 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4673 if (hash_table == NULL && lst_header->hash_size != 0)
4674 {
4675 bfd_set_error (bfd_error_no_memory);
4676 goto error_return;
4677 }
4678
4679 /* Don't forget to initialize the counter! */
4680 *count = 0;
4681
4682 /* Read in the hash table. The has table is an array of 32bit file offsets
4683 which point to the hash chains. */
4684 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4685 != lst_header->hash_size * 4)
4686 goto error_return;
4687
4688 /* Walk each chain counting the number of symbols found on that particular
4689 chain. */
4690 for (i = 0; i < lst_header->hash_size; i++)
4691 {
4692 struct lst_symbol_record lst_symbol;
4693
4694 /* An empty chain has zero as it's file offset. */
4695 if (hash_table[i] == 0)
4696 continue;
4697
4698 /* Seek to the first symbol in this hash chain. */
4699 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4700 goto error_return;
4701
4702 /* Read in this symbol and update the counter. */
4703 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4704 != sizeof (lst_symbol))
4705 goto error_return;
4706
4707 (*count)++;
4708
4709 /* Now iterate through the rest of the symbols on this chain. */
4710 while (lst_symbol.next_entry)
4711 {
4712
4713 /* Seek to the next symbol. */
4714 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4715 < 0)
4716 goto error_return;
4717
4718 /* Read the symbol in and update the counter. */
4719 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4720 != sizeof (lst_symbol))
4721 goto error_return;
4722
4723 (*count)++;
4724 }
4725 }
4726 if (hash_table != NULL)
4727 free (hash_table);
4728 return true;
4729
4730 error_return:
4731 if (hash_table != NULL)
4732 free (hash_table);
4733 return false;
4734 }
4735
4736 /* Fill in the canonical archive symbols (SYMS) from the archive described
4737 by ABFD and LST_HEADER. */
4738
4739 static boolean
4740 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4741 bfd *abfd;
4742 struct lst_header *lst_header;
4743 carsym **syms;
4744 {
4745 unsigned int i, len;
4746 carsym *set = syms[0];
4747 unsigned int *hash_table = NULL;
4748 struct som_entry *som_dict = NULL;
4749 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4750
4751 hash_table =
4752 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4753 if (hash_table == NULL && lst_header->hash_size != 0)
4754 {
4755 bfd_set_error (bfd_error_no_memory);
4756 goto error_return;
4757 }
4758
4759 som_dict =
4760 (struct som_entry *) malloc (lst_header->module_count
4761 * sizeof (struct som_entry));
4762 if (som_dict == NULL && lst_header->module_count != 0)
4763 {
4764 bfd_set_error (bfd_error_no_memory);
4765 goto error_return;
4766 }
4767
4768 /* Read in the hash table. The has table is an array of 32bit file offsets
4769 which point to the hash chains. */
4770 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4771 != lst_header->hash_size * 4)
4772 goto error_return;
4773
4774 /* Seek to and read in the SOM dictionary. We will need this to fill
4775 in the carsym's filepos field. */
4776 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4777 goto error_return;
4778
4779 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4780 sizeof (struct som_entry), abfd)
4781 != lst_header->module_count * sizeof (struct som_entry))
4782 goto error_return;
4783
4784 /* Walk each chain filling in the carsyms as we go along. */
4785 for (i = 0; i < lst_header->hash_size; i++)
4786 {
4787 struct lst_symbol_record lst_symbol;
4788
4789 /* An empty chain has zero as it's file offset. */
4790 if (hash_table[i] == 0)
4791 continue;
4792
4793 /* Seek to and read the first symbol on the chain. */
4794 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4795 goto error_return;
4796
4797 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4798 != sizeof (lst_symbol))
4799 goto error_return;
4800
4801 /* Get the name of the symbol, first get the length which is stored
4802 as a 32bit integer just before the symbol.
4803
4804 One might ask why we don't just read in the entire string table
4805 and index into it. Well, according to the SOM ABI the string
4806 index can point *anywhere* in the archive to save space, so just
4807 using the string table would not be safe. */
4808 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4809 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4810 goto error_return;
4811
4812 if (bfd_read (&len, 1, 4, abfd) != 4)
4813 goto error_return;
4814
4815 /* Allocate space for the name and null terminate it too. */
4816 set->name = bfd_zalloc (abfd, len + 1);
4817 if (!set->name)
4818 {
4819 bfd_set_error (bfd_error_no_memory);
4820 goto error_return;
4821 }
4822 if (bfd_read (set->name, 1, len, abfd) != len)
4823 goto error_return;
4824
4825 set->name[len] = 0;
4826
4827 /* Fill in the file offset. Note that the "location" field points
4828 to the SOM itself, not the ar_hdr in front of it. */
4829 set->file_offset = som_dict[lst_symbol.som_index].location
4830 - sizeof (struct ar_hdr);
4831
4832 /* Go to the next symbol. */
4833 set++;
4834
4835 /* Iterate through the rest of the chain. */
4836 while (lst_symbol.next_entry)
4837 {
4838 /* Seek to the next symbol and read it in. */
4839 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4840 goto error_return;
4841
4842 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4843 != sizeof (lst_symbol))
4844 goto error_return;
4845
4846 /* Seek to the name length & string and read them in. */
4847 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4848 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4849 goto error_return;
4850
4851 if (bfd_read (&len, 1, 4, abfd) != 4)
4852 goto error_return;
4853
4854 /* Allocate space for the name and null terminate it too. */
4855 set->name = bfd_zalloc (abfd, len + 1);
4856 if (!set->name)
4857 {
4858 bfd_set_error (bfd_error_no_memory);
4859 goto error_return;
4860 }
4861
4862 if (bfd_read (set->name, 1, len, abfd) != len)
4863 goto error_return;
4864 set->name[len] = 0;
4865
4866 /* Fill in the file offset. Note that the "location" field points
4867 to the SOM itself, not the ar_hdr in front of it. */
4868 set->file_offset = som_dict[lst_symbol.som_index].location
4869 - sizeof (struct ar_hdr);
4870
4871 /* Go on to the next symbol. */
4872 set++;
4873 }
4874 }
4875 /* If we haven't died by now, then we successfully read the entire
4876 archive symbol table. */
4877 if (hash_table != NULL)
4878 free (hash_table);
4879 if (som_dict != NULL)
4880 free (som_dict);
4881 return true;
4882
4883 error_return:
4884 if (hash_table != NULL)
4885 free (hash_table);
4886 if (som_dict != NULL)
4887 free (som_dict);
4888 return false;
4889 }
4890
4891 /* Read in the LST from the archive. */
4892 static boolean
4893 som_slurp_armap (abfd)
4894 bfd *abfd;
4895 {
4896 struct lst_header lst_header;
4897 struct ar_hdr ar_header;
4898 unsigned int parsed_size;
4899 struct artdata *ardata = bfd_ardata (abfd);
4900 char nextname[17];
4901 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4902
4903 /* Special cases. */
4904 if (i == 0)
4905 return true;
4906 if (i != 16)
4907 return false;
4908
4909 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4910 return false;
4911
4912 /* For archives without .o files there is no symbol table. */
4913 if (strncmp (nextname, "/ ", 16))
4914 {
4915 bfd_has_map (abfd) = false;
4916 return true;
4917 }
4918
4919 /* Read in and sanity check the archive header. */
4920 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4921 != sizeof (struct ar_hdr))
4922 return false;
4923
4924 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4925 {
4926 bfd_set_error (bfd_error_malformed_archive);
4927 return false;
4928 }
4929
4930 /* How big is the archive symbol table entry? */
4931 errno = 0;
4932 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4933 if (errno != 0)
4934 {
4935 bfd_set_error (bfd_error_malformed_archive);
4936 return false;
4937 }
4938
4939 /* Save off the file offset of the first real user data. */
4940 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4941
4942 /* Read in the library symbol table. We'll make heavy use of this
4943 in just a minute. */
4944 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4945 != sizeof (struct lst_header))
4946 return false;
4947
4948 /* Sanity check. */
4949 if (lst_header.a_magic != LIBMAGIC)
4950 {
4951 bfd_set_error (bfd_error_malformed_archive);
4952 return false;
4953 }
4954
4955 /* Count the number of symbols in the library symbol table. */
4956 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4957 == false)
4958 return false;
4959
4960 /* Get back to the start of the library symbol table. */
4961 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4962 + sizeof (struct lst_header), SEEK_SET) < 0)
4963 return false;
4964
4965 /* Initializae the cache and allocate space for the library symbols. */
4966 ardata->cache = 0;
4967 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4968 (ardata->symdef_count
4969 * sizeof (carsym)));
4970 if (!ardata->symdefs)
4971 {
4972 bfd_set_error (bfd_error_no_memory);
4973 return false;
4974 }
4975
4976 /* Now fill in the canonical archive symbols. */
4977 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4978 == false)
4979 return false;
4980
4981 /* Seek back to the "first" file in the archive. Note the "first"
4982 file may be the extended name table. */
4983 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4984 return false;
4985
4986 /* Notify the generic archive code that we have a symbol map. */
4987 bfd_has_map (abfd) = true;
4988 return true;
4989 }
4990
4991 /* Begin preparing to write a SOM library symbol table.
4992
4993 As part of the prep work we need to determine the number of symbols
4994 and the size of the associated string section. */
4995
4996 static boolean
4997 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4998 bfd *abfd;
4999 unsigned int *num_syms, *stringsize;
5000 {
5001 bfd *curr_bfd = abfd->archive_head;
5002
5003 /* Some initialization. */
5004 *num_syms = 0;
5005 *stringsize = 0;
5006
5007 /* Iterate over each BFD within this archive. */
5008 while (curr_bfd != NULL)
5009 {
5010 unsigned int curr_count, i;
5011 som_symbol_type *sym;
5012
5013 /* Don't bother for non-SOM objects. */
5014 if (curr_bfd->format != bfd_object
5015 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5016 {
5017 curr_bfd = curr_bfd->next;
5018 continue;
5019 }
5020
5021 /* Make sure the symbol table has been read, then snag a pointer
5022 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5023 but doing so avoids allocating lots of extra memory. */
5024 if (som_slurp_symbol_table (curr_bfd) == false)
5025 return false;
5026
5027 sym = obj_som_symtab (curr_bfd);
5028 curr_count = bfd_get_symcount (curr_bfd);
5029
5030 /* Examine each symbol to determine if it belongs in the
5031 library symbol table. */
5032 for (i = 0; i < curr_count; i++, sym++)
5033 {
5034 struct som_misc_symbol_info info;
5035
5036 /* Derive SOM information from the BFD symbol. */
5037 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5038
5039 /* Should we include this symbol? */
5040 if (info.symbol_type == ST_NULL
5041 || info.symbol_type == ST_SYM_EXT
5042 || info.symbol_type == ST_ARG_EXT)
5043 continue;
5044
5045 /* Only global symbols and unsatisfied commons. */
5046 if (info.symbol_scope != SS_UNIVERSAL
5047 && info.symbol_type != ST_STORAGE)
5048 continue;
5049
5050 /* Do no include undefined symbols. */
5051 if (bfd_is_und_section (sym->symbol.section))
5052 continue;
5053
5054 /* Bump the various counters, being careful to honor
5055 alignment considerations in the string table. */
5056 (*num_syms)++;
5057 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5058 while (*stringsize % 4)
5059 (*stringsize)++;
5060 }
5061
5062 curr_bfd = curr_bfd->next;
5063 }
5064 return true;
5065 }
5066
5067 /* Hash a symbol name based on the hashing algorithm presented in the
5068 SOM ABI. */
5069 static unsigned int
5070 som_bfd_ar_symbol_hash (symbol)
5071 asymbol *symbol;
5072 {
5073 unsigned int len = strlen (symbol->name);
5074
5075 /* Names with length 1 are special. */
5076 if (len == 1)
5077 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5078
5079 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5080 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5081 }
5082
5083 static CONST char *
5084 normalize (file)
5085 CONST char *file;
5086 {
5087 CONST char *filename = strrchr (file, '/');
5088
5089 if (filename != NULL)
5090 filename++;
5091 else
5092 filename = file;
5093 return filename;
5094 }
5095
5096 /* Do the bulk of the work required to write the SOM library
5097 symbol table. */
5098
5099 static boolean
5100 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5101 bfd *abfd;
5102 unsigned int nsyms, string_size;
5103 struct lst_header lst;
5104 {
5105 file_ptr lst_filepos;
5106 char *strings = NULL, *p;
5107 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5108 bfd *curr_bfd;
5109 unsigned int *hash_table = NULL;
5110 struct som_entry *som_dict = NULL;
5111 struct lst_symbol_record **last_hash_entry = NULL;
5112 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5113 unsigned int maxname = abfd->xvec->ar_max_namelen;
5114
5115 hash_table =
5116 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5117 if (hash_table == NULL && lst.hash_size != 0)
5118 {
5119 bfd_set_error (bfd_error_no_memory);
5120 goto error_return;
5121 }
5122 som_dict =
5123 (struct som_entry *) malloc (lst.module_count
5124 * sizeof (struct som_entry));
5125 if (som_dict == NULL && lst.module_count != 0)
5126 {
5127 bfd_set_error (bfd_error_no_memory);
5128 goto error_return;
5129 }
5130
5131 last_hash_entry =
5132 ((struct lst_symbol_record **)
5133 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5134 if (last_hash_entry == NULL && lst.hash_size != 0)
5135 {
5136 bfd_set_error (bfd_error_no_memory);
5137 goto error_return;
5138 }
5139
5140 /* Lots of fields are file positions relative to the start
5141 of the lst record. So save its location. */
5142 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5143
5144 /* Some initialization. */
5145 memset (hash_table, 0, 4 * lst.hash_size);
5146 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5147 memset (last_hash_entry, 0,
5148 lst.hash_size * sizeof (struct lst_symbol_record *));
5149
5150 /* Symbols have som_index fields, so we have to keep track of the
5151 index of each SOM in the archive.
5152
5153 The SOM dictionary has (among other things) the absolute file
5154 position for the SOM which a particular dictionary entry
5155 describes. We have to compute that information as we iterate
5156 through the SOMs/symbols. */
5157 som_index = 0;
5158 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5159
5160 /* Yow! We have to know the size of the extended name table
5161 too. */
5162 for (curr_bfd = abfd->archive_head;
5163 curr_bfd != NULL;
5164 curr_bfd = curr_bfd->next)
5165 {
5166 CONST char *normal = normalize (curr_bfd->filename);
5167 unsigned int thislen;
5168
5169 if (!normal)
5170 {
5171 bfd_set_error (bfd_error_no_memory);
5172 return false;
5173 }
5174 thislen = strlen (normal);
5175 if (thislen > maxname)
5176 extended_name_length += thislen + 1;
5177 }
5178
5179 /* Make room for the archive header and the contents of the
5180 extended string table. */
5181 if (extended_name_length)
5182 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5183
5184 /* Make sure we're properly aligned. */
5185 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5186
5187 /* FIXME should be done with buffers just like everything else... */
5188 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5189 if (lst_syms == NULL && nsyms != 0)
5190 {
5191 bfd_set_error (bfd_error_no_memory);
5192 goto error_return;
5193 }
5194 strings = malloc (string_size);
5195 if (strings == NULL && string_size != 0)
5196 {
5197 bfd_set_error (bfd_error_no_memory);
5198 goto error_return;
5199 }
5200
5201 p = strings;
5202 curr_lst_sym = lst_syms;
5203
5204 curr_bfd = abfd->archive_head;
5205 while (curr_bfd != NULL)
5206 {
5207 unsigned int curr_count, i;
5208 som_symbol_type *sym;
5209
5210 /* Don't bother for non-SOM objects. */
5211 if (curr_bfd->format != bfd_object
5212 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5213 {
5214 curr_bfd = curr_bfd->next;
5215 continue;
5216 }
5217
5218 /* Make sure the symbol table has been read, then snag a pointer
5219 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5220 but doing so avoids allocating lots of extra memory. */
5221 if (som_slurp_symbol_table (curr_bfd) == false)
5222 goto error_return;
5223
5224 sym = obj_som_symtab (curr_bfd);
5225 curr_count = bfd_get_symcount (curr_bfd);
5226
5227 for (i = 0; i < curr_count; i++, sym++)
5228 {
5229 struct som_misc_symbol_info info;
5230
5231 /* Derive SOM information from the BFD symbol. */
5232 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5233
5234 /* Should we include this symbol? */
5235 if (info.symbol_type == ST_NULL
5236 || info.symbol_type == ST_SYM_EXT
5237 || info.symbol_type == ST_ARG_EXT)
5238 continue;
5239
5240 /* Only global symbols and unsatisfied commons. */
5241 if (info.symbol_scope != SS_UNIVERSAL
5242 && info.symbol_type != ST_STORAGE)
5243 continue;
5244
5245 /* Do no include undefined symbols. */
5246 if (bfd_is_und_section (sym->symbol.section))
5247 continue;
5248
5249 /* If this is the first symbol from this SOM, then update
5250 the SOM dictionary too. */
5251 if (som_dict[som_index].location == 0)
5252 {
5253 som_dict[som_index].location = curr_som_offset;
5254 som_dict[som_index].length = arelt_size (curr_bfd);
5255 }
5256
5257 /* Fill in the lst symbol record. */
5258 curr_lst_sym->hidden = 0;
5259 curr_lst_sym->secondary_def = 0;
5260 curr_lst_sym->symbol_type = info.symbol_type;
5261 curr_lst_sym->symbol_scope = info.symbol_scope;
5262 curr_lst_sym->check_level = 0;
5263 curr_lst_sym->must_qualify = 0;
5264 curr_lst_sym->initially_frozen = 0;
5265 curr_lst_sym->memory_resident = 0;
5266 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5267 curr_lst_sym->dup_common = 0;
5268 curr_lst_sym->xleast = 0;
5269 curr_lst_sym->arg_reloc = info.arg_reloc;
5270 curr_lst_sym->name.n_strx = p - strings + 4;
5271 curr_lst_sym->qualifier_name.n_strx = 0;
5272 curr_lst_sym->symbol_info = info.symbol_info;
5273 curr_lst_sym->symbol_value = info.symbol_value;
5274 curr_lst_sym->symbol_descriptor = 0;
5275 curr_lst_sym->reserved = 0;
5276 curr_lst_sym->som_index = som_index;
5277 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5278 curr_lst_sym->next_entry = 0;
5279
5280 /* Insert into the hash table. */
5281 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5282 {
5283 struct lst_symbol_record *tmp;
5284
5285 /* There is already something at the head of this hash chain,
5286 so tack this symbol onto the end of the chain. */
5287 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5288 tmp->next_entry
5289 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5290 + lst.hash_size * 4
5291 + lst.module_count * sizeof (struct som_entry)
5292 + sizeof (struct lst_header);
5293 }
5294 else
5295 {
5296 /* First entry in this hash chain. */
5297 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5298 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5299 + lst.hash_size * 4
5300 + lst.module_count * sizeof (struct som_entry)
5301 + sizeof (struct lst_header);
5302 }
5303
5304 /* Keep track of the last symbol we added to this chain so we can
5305 easily update its next_entry pointer. */
5306 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5307 = curr_lst_sym;
5308
5309
5310 /* Update the string table. */
5311 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5312 p += 4;
5313 strcpy (p, sym->symbol.name);
5314 p += strlen (sym->symbol.name) + 1;
5315 while ((int)p % 4)
5316 {
5317 bfd_put_8 (abfd, 0, p);
5318 p++;
5319 }
5320
5321 /* Head to the next symbol. */
5322 curr_lst_sym++;
5323 }
5324
5325 /* Keep track of where each SOM will finally reside; then look
5326 at the next BFD. */
5327 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5328 curr_bfd = curr_bfd->next;
5329 som_index++;
5330 }
5331
5332 /* Now scribble out the hash table. */
5333 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5334 != lst.hash_size * 4)
5335 goto error_return;
5336
5337 /* Then the SOM dictionary. */
5338 if (bfd_write ((PTR) som_dict, lst.module_count,
5339 sizeof (struct som_entry), abfd)
5340 != lst.module_count * sizeof (struct som_entry))
5341 goto error_return;
5342
5343 /* The library symbols. */
5344 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5345 != nsyms * sizeof (struct lst_symbol_record))
5346 goto error_return;
5347
5348 /* And finally the strings. */
5349 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5350 goto error_return;
5351
5352 if (hash_table != NULL)
5353 free (hash_table);
5354 if (som_dict != NULL)
5355 free (som_dict);
5356 if (last_hash_entry != NULL)
5357 free (last_hash_entry);
5358 if (lst_syms != NULL)
5359 free (lst_syms);
5360 if (strings != NULL)
5361 free (strings);
5362 return true;
5363
5364 error_return:
5365 if (hash_table != NULL)
5366 free (hash_table);
5367 if (som_dict != NULL)
5368 free (som_dict);
5369 if (last_hash_entry != NULL)
5370 free (last_hash_entry);
5371 if (lst_syms != NULL)
5372 free (lst_syms);
5373 if (strings != NULL)
5374 free (strings);
5375
5376 return false;
5377 }
5378
5379 /* Write out the LST for the archive.
5380
5381 You'll never believe this is really how armaps are handled in SOM... */
5382
5383 /*ARGSUSED*/
5384 static boolean
5385 som_write_armap (abfd, elength, map, orl_count, stridx)
5386 bfd *abfd;
5387 unsigned int elength;
5388 struct orl *map;
5389 unsigned int orl_count;
5390 int stridx;
5391 {
5392 bfd *curr_bfd;
5393 struct stat statbuf;
5394 unsigned int i, lst_size, nsyms, stringsize;
5395 struct ar_hdr hdr;
5396 struct lst_header lst;
5397 int *p;
5398
5399 /* We'll use this for the archive's date and mode later. */
5400 if (stat (abfd->filename, &statbuf) != 0)
5401 {
5402 bfd_set_error (bfd_error_system_call);
5403 return false;
5404 }
5405 /* Fudge factor. */
5406 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5407
5408 /* Account for the lst header first. */
5409 lst_size = sizeof (struct lst_header);
5410
5411 /* Start building the LST header. */
5412 lst.system_id = CPU_PA_RISC1_0;
5413 lst.a_magic = LIBMAGIC;
5414 lst.version_id = VERSION_ID;
5415 lst.file_time.secs = 0;
5416 lst.file_time.nanosecs = 0;
5417
5418 lst.hash_loc = lst_size;
5419 lst.hash_size = SOM_LST_HASH_SIZE;
5420
5421 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5422 lst_size += 4 * SOM_LST_HASH_SIZE;
5423
5424 /* We need to count the number of SOMs in this archive. */
5425 curr_bfd = abfd->archive_head;
5426 lst.module_count = 0;
5427 while (curr_bfd != NULL)
5428 {
5429 /* Only true SOM objects count. */
5430 if (curr_bfd->format == bfd_object
5431 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5432 lst.module_count++;
5433 curr_bfd = curr_bfd->next;
5434 }
5435 lst.module_limit = lst.module_count;
5436 lst.dir_loc = lst_size;
5437 lst_size += sizeof (struct som_entry) * lst.module_count;
5438
5439 /* We don't support import/export tables, auxiliary headers,
5440 or free lists yet. Make the linker work a little harder
5441 to make our life easier. */
5442
5443 lst.export_loc = 0;
5444 lst.export_count = 0;
5445 lst.import_loc = 0;
5446 lst.aux_loc = 0;
5447 lst.aux_size = 0;
5448
5449 /* Count how many symbols we will have on the hash chains and the
5450 size of the associated string table. */
5451 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5452 return false;
5453
5454 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5455
5456 /* For the string table. One day we might actually use this info
5457 to avoid small seeks/reads when reading archives. */
5458 lst.string_loc = lst_size;
5459 lst.string_size = stringsize;
5460 lst_size += stringsize;
5461
5462 /* SOM ABI says this must be zero. */
5463 lst.free_list = 0;
5464 lst.file_end = lst_size;
5465
5466 /* Compute the checksum. Must happen after the entire lst header
5467 has filled in. */
5468 p = (int *)&lst;
5469 lst.checksum = 0;
5470 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5471 lst.checksum ^= *p++;
5472
5473 sprintf (hdr.ar_name, "/ ");
5474 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5475 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5476 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5477 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5478 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5479 hdr.ar_fmag[0] = '`';
5480 hdr.ar_fmag[1] = '\012';
5481
5482 /* Turn any nulls into spaces. */
5483 for (i = 0; i < sizeof (struct ar_hdr); i++)
5484 if (((char *) (&hdr))[i] == '\0')
5485 (((char *) (&hdr))[i]) = ' ';
5486
5487 /* Scribble out the ar header. */
5488 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5489 != sizeof (struct ar_hdr))
5490 return false;
5491
5492 /* Now scribble out the lst header. */
5493 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5494 != sizeof (struct lst_header))
5495 return false;
5496
5497 /* Build and write the armap. */
5498 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5499 return false;
5500
5501 /* Done. */
5502 return true;
5503 }
5504
5505 /* Free all information we have cached for this BFD. We can always
5506 read it again later if we need it. */
5507
5508 static boolean
5509 som_bfd_free_cached_info (abfd)
5510 bfd *abfd;
5511 {
5512 asection *o;
5513
5514 if (bfd_get_format (abfd) != bfd_object)
5515 return true;
5516
5517 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5518 /* Free the native string and symbol tables. */
5519 FREE (obj_som_symtab (abfd));
5520 FREE (obj_som_stringtab (abfd));
5521 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5522 {
5523 /* Free the native relocations. */
5524 o->reloc_count = -1;
5525 FREE (som_section_data (o)->reloc_stream);
5526 /* Free the generic relocations. */
5527 FREE (o->relocation);
5528 }
5529 #undef FREE
5530
5531 return true;
5532 }
5533
5534 /* End of miscellaneous support functions. */
5535
5536 #define som_close_and_cleanup som_bfd_free_cached_info
5537
5538 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5539 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5540 #define som_truncate_arname bfd_bsd_truncate_arname
5541 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5542
5543 #define som_get_lineno _bfd_nosymbols_get_lineno
5544 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5545
5546 #define som_bfd_get_relocated_section_contents \
5547 bfd_generic_get_relocated_section_contents
5548 #define som_bfd_relax_section bfd_generic_relax_section
5549 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5550 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5551 #define som_bfd_final_link _bfd_generic_final_link
5552
5553 const bfd_target som_vec =
5554 {
5555 "som", /* name */
5556 bfd_target_som_flavour,
5557 true, /* target byte order */
5558 true, /* target headers byte order */
5559 (HAS_RELOC | EXEC_P | /* object flags */
5560 HAS_LINENO | HAS_DEBUG |
5561 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5562 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5563 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5564
5565 /* leading_symbol_char: is the first char of a user symbol
5566 predictable, and if so what is it */
5567 0,
5568 '/', /* ar_pad_char */
5569 14, /* ar_max_namelen */
5570 3, /* minimum alignment */
5571 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5572 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5573 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5574 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5575 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5576 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5577 {_bfd_dummy_target,
5578 som_object_p, /* bfd_check_format */
5579 bfd_generic_archive_p,
5580 _bfd_dummy_target
5581 },
5582 {
5583 bfd_false,
5584 som_mkobject,
5585 _bfd_generic_mkarchive,
5586 bfd_false
5587 },
5588 {
5589 bfd_false,
5590 som_write_object_contents,
5591 _bfd_write_archive_contents,
5592 bfd_false,
5593 },
5594 #undef som
5595
5596 BFD_JUMP_TABLE_GENERIC (som),
5597 BFD_JUMP_TABLE_COPY (som),
5598 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5599 BFD_JUMP_TABLE_ARCHIVE (som),
5600 BFD_JUMP_TABLE_SYMBOLS (som),
5601 BFD_JUMP_TABLE_RELOCS (som),
5602 BFD_JUMP_TABLE_WRITE (som),
5603 BFD_JUMP_TABLE_LINK (som),
5604 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5605
5606 (PTR) 0
5607 };
5608
5609 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */