]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/syms.c
Correct spelling of "relocatable".
[thirdparty/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0)
78 | return;
79 |
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++)
89 | process_symbol (symbol_table[i]);
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94 INODE
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96 SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = (asymbol *)0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
224 .
225 . {* The symbol is a debugging record. The value has an arbitary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
228 .
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
232 .
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
236 .
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
240 .
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
244 .
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
248 .
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
251 .
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
258 .
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
261 .
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
267 .
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
271 .
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
275 .
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
278 .
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
282 .
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
287 .
288 . {* This symbol is thread local. Used in ELF. *}
289 .#define BSF_THREAD_LOCAL 0x40000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . }
304 . udata;
305 .}
306 .asymbol;
307 .
308 */
309
310 #include "bfd.h"
311 #include "sysdep.h"
312 #include "libbfd.h"
313 #include "safe-ctype.h"
314 #include "bfdlink.h"
315 #include "aout/stab_gnu.h"
316
317 static char coff_section_type PARAMS ((const char *));
318 static char decode_section_type PARAMS ((const struct sec *));
319 static int cmpindexentry PARAMS ((const PTR, const PTR));
320
321 /*
322 DOCDD
323 INODE
324 symbol handling functions, , typedef asymbol, Symbols
325 SUBSECTION
326 Symbol handling functions
327 */
328
329 /*
330 FUNCTION
331 bfd_get_symtab_upper_bound
332
333 DESCRIPTION
334 Return the number of bytes required to store a vector of pointers
335 to <<asymbols>> for all the symbols in the BFD @var{abfd},
336 including a terminal NULL pointer. If there are no symbols in
337 the BFD, then return 0. If an error occurs, return -1.
338
339 .#define bfd_get_symtab_upper_bound(abfd) \
340 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
341 .
342 */
343
344 /*
345 FUNCTION
346 bfd_is_local_label
347
348 SYNOPSIS
349 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
350
351 DESCRIPTION
352 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
353 a compiler generated local label, else return FALSE.
354 */
355
356 bfd_boolean
357 bfd_is_local_label (abfd, sym)
358 bfd *abfd;
359 asymbol *sym;
360 {
361 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
362 starts with '.' is local. This would accidentally catch section names
363 if we didn't reject them here. */
364 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
365 return FALSE;
366 if (sym->name == NULL)
367 return FALSE;
368 return bfd_is_local_label_name (abfd, sym->name);
369 }
370
371 /*
372 FUNCTION
373 bfd_is_local_label_name
374
375 SYNOPSIS
376 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
377
378 DESCRIPTION
379 Return TRUE if a symbol with the name @var{name} in the BFD
380 @var{abfd} is a compiler generated local label, else return
381 FALSE. This just checks whether the name has the form of a
382 local label.
383
384 .#define bfd_is_local_label_name(abfd, name) \
385 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
386 .
387 */
388
389 /*
390 FUNCTION
391 bfd_canonicalize_symtab
392
393 DESCRIPTION
394 Read the symbols from the BFD @var{abfd}, and fills in
395 the vector @var{location} with pointers to the symbols and
396 a trailing NULL.
397 Return the actual number of symbol pointers, not
398 including the NULL.
399
400 .#define bfd_canonicalize_symtab(abfd, location) \
401 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
402 . (abfd, location))
403 .
404 */
405
406 /*
407 FUNCTION
408 bfd_set_symtab
409
410 SYNOPSIS
411 bfd_boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
412
413 DESCRIPTION
414 Arrange that when the output BFD @var{abfd} is closed,
415 the table @var{location} of @var{count} pointers to symbols
416 will be written.
417 */
418
419 bfd_boolean
420 bfd_set_symtab (abfd, location, symcount)
421 bfd *abfd;
422 asymbol **location;
423 unsigned int symcount;
424 {
425 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
426 {
427 bfd_set_error (bfd_error_invalid_operation);
428 return FALSE;
429 }
430
431 bfd_get_outsymbols (abfd) = location;
432 bfd_get_symcount (abfd) = symcount;
433 return TRUE;
434 }
435
436 /*
437 FUNCTION
438 bfd_print_symbol_vandf
439
440 SYNOPSIS
441 void bfd_print_symbol_vandf (bfd *abfd, PTR file, asymbol *symbol);
442
443 DESCRIPTION
444 Print the value and flags of the @var{symbol} supplied to the
445 stream @var{file}.
446 */
447 void
448 bfd_print_symbol_vandf (abfd, arg, symbol)
449 bfd *abfd;
450 PTR arg;
451 asymbol *symbol;
452 {
453 FILE *file = (FILE *) arg;
454
455 flagword type = symbol->flags;
456
457 if (symbol->section != (asection *) NULL)
458 bfd_fprintf_vma (abfd, file,
459 symbol->value + symbol->section->vma);
460 else
461 bfd_fprintf_vma (abfd, file, symbol->value);
462
463 /* This presumes that a symbol can not be both BSF_DEBUGGING and
464 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
465 BSF_OBJECT. */
466 fprintf (file, " %c%c%c%c%c%c%c",
467 ((type & BSF_LOCAL)
468 ? (type & BSF_GLOBAL) ? '!' : 'l'
469 : (type & BSF_GLOBAL) ? 'g' : ' '),
470 (type & BSF_WEAK) ? 'w' : ' ',
471 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
472 (type & BSF_WARNING) ? 'W' : ' ',
473 (type & BSF_INDIRECT) ? 'I' : ' ',
474 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
475 ((type & BSF_FUNCTION)
476 ? 'F'
477 : ((type & BSF_FILE)
478 ? 'f'
479 : ((type & BSF_OBJECT) ? 'O' : ' '))));
480 }
481
482 /*
483 FUNCTION
484 bfd_make_empty_symbol
485
486 DESCRIPTION
487 Create a new <<asymbol>> structure for the BFD @var{abfd}
488 and return a pointer to it.
489
490 This routine is necessary because each back end has private
491 information surrounding the <<asymbol>>. Building your own
492 <<asymbol>> and pointing to it will not create the private
493 information, and will cause problems later on.
494
495 .#define bfd_make_empty_symbol(abfd) \
496 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
497 .
498 */
499
500 /*
501 FUNCTION
502 _bfd_generic_make_empty_symbol
503
504 SYNOPSIS
505 asymbol * _bfd_generic_make_empty_symbol (bfd *);
506
507 DESCRIPTION
508 Create a new <<asymbol>> structure for the BFD @var{abfd}
509 and return a pointer to it. Used by core file routines,
510 binary back-end and anywhere else where no private info
511 is needed.
512 */
513
514 asymbol *
515 _bfd_generic_make_empty_symbol (abfd)
516 bfd *abfd;
517 {
518 bfd_size_type amt = sizeof (asymbol);
519 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
520 if (new)
521 new->the_bfd = abfd;
522 return new;
523 }
524
525 /*
526 FUNCTION
527 bfd_make_debug_symbol
528
529 DESCRIPTION
530 Create a new <<asymbol>> structure for the BFD @var{abfd},
531 to be used as a debugging symbol. Further details of its use have
532 yet to be worked out.
533
534 .#define bfd_make_debug_symbol(abfd,ptr,size) \
535 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
536 .
537 */
538
539 struct section_to_type
540 {
541 const char *section;
542 char type;
543 };
544
545 /* Map section names to POSIX/BSD single-character symbol types.
546 This table is probably incomplete. It is sorted for convenience of
547 adding entries. Since it is so short, a linear search is used. */
548 static const struct section_to_type stt[] =
549 {
550 {".bss", 'b'},
551 {"code", 't'}, /* MRI .text */
552 {".data", 'd'},
553 {"*DEBUG*", 'N'},
554 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
555 {".drectve", 'i'}, /* MSVC's .drective section */
556 {".edata", 'e'}, /* MSVC's .edata (export) section */
557 {".fini", 't'}, /* ELF fini section */
558 {".idata", 'i'}, /* MSVC's .idata (import) section */
559 {".init", 't'}, /* ELF init section */
560 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
561 {".rdata", 'r'}, /* Read only data. */
562 {".rodata", 'r'}, /* Read only data. */
563 {".sbss", 's'}, /* Small BSS (uninitialized data). */
564 {".scommon", 'c'}, /* Small common. */
565 {".sdata", 'g'}, /* Small initialized data. */
566 {".text", 't'},
567 {"vars", 'd'}, /* MRI .data */
568 {"zerovars", 'b'}, /* MRI .bss */
569 {0, 0}
570 };
571
572 /* Return the single-character symbol type corresponding to
573 section S, or '?' for an unknown COFF section.
574
575 Check for any leading string which matches, so .text5 returns
576 't' as well as .text */
577
578 static char
579 coff_section_type (s)
580 const char *s;
581 {
582 const struct section_to_type *t;
583
584 for (t = &stt[0]; t->section; t++)
585 if (!strncmp (s, t->section, strlen (t->section)))
586 return t->type;
587
588 return '?';
589 }
590
591 /* Return the single-character symbol type corresponding to section
592 SECTION, or '?' for an unknown section. This uses section flags to
593 identify sections.
594
595 FIXME These types are unhandled: c, i, e, p. If we handled these also,
596 we could perhaps obsolete coff_section_type. */
597
598 static char
599 decode_section_type (section)
600 const struct sec *section;
601 {
602 if (section->flags & SEC_CODE)
603 return 't';
604 if (section->flags & SEC_DATA)
605 {
606 if (section->flags & SEC_READONLY)
607 return 'r';
608 else if (section->flags & SEC_SMALL_DATA)
609 return 'g';
610 else
611 return 'd';
612 }
613 if ((section->flags & SEC_HAS_CONTENTS) == 0)
614 {
615 if (section->flags & SEC_SMALL_DATA)
616 return 's';
617 else
618 return 'b';
619 }
620 if (section->flags & SEC_DEBUGGING)
621 return 'N';
622 if ((section->flags & SEC_HAS_CONTENTS) &&
623 (section->flags & SEC_READONLY))
624 return 'n';
625
626 return '?';
627 }
628
629 /*
630 FUNCTION
631 bfd_decode_symclass
632
633 DESCRIPTION
634 Return a character corresponding to the symbol
635 class of @var{symbol}, or '?' for an unknown class.
636
637 SYNOPSIS
638 int bfd_decode_symclass (asymbol *symbol);
639 */
640 int
641 bfd_decode_symclass (symbol)
642 asymbol *symbol;
643 {
644 char c;
645
646 if (bfd_is_com_section (symbol->section))
647 return 'C';
648 if (bfd_is_und_section (symbol->section))
649 {
650 if (symbol->flags & BSF_WEAK)
651 {
652 /* If weak, determine if it's specifically an object
653 or non-object weak. */
654 if (symbol->flags & BSF_OBJECT)
655 return 'v';
656 else
657 return 'w';
658 }
659 else
660 return 'U';
661 }
662 if (bfd_is_ind_section (symbol->section))
663 return 'I';
664 if (symbol->flags & BSF_WEAK)
665 {
666 /* If weak, determine if it's specifically an object
667 or non-object weak. */
668 if (symbol->flags & BSF_OBJECT)
669 return 'V';
670 else
671 return 'W';
672 }
673 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
674 return '?';
675
676 if (bfd_is_abs_section (symbol->section))
677 c = 'a';
678 else if (symbol->section)
679 {
680 c = coff_section_type (symbol->section->name);
681 if (c == '?')
682 c = decode_section_type (symbol->section);
683 }
684 else
685 return '?';
686 if (symbol->flags & BSF_GLOBAL)
687 c = TOUPPER (c);
688 return c;
689
690 /* We don't have to handle these cases just yet, but we will soon:
691 N_SETV: 'v';
692 N_SETA: 'l';
693 N_SETT: 'x';
694 N_SETD: 'z';
695 N_SETB: 's';
696 N_INDR: 'i';
697 */
698 }
699
700 /*
701 FUNCTION
702 bfd_is_undefined_symclass
703
704 DESCRIPTION
705 Returns non-zero if the class symbol returned by
706 bfd_decode_symclass represents an undefined symbol.
707 Returns zero otherwise.
708
709 SYNOPSIS
710 bfd_boolean bfd_is_undefined_symclass (int symclass);
711 */
712
713 bfd_boolean
714 bfd_is_undefined_symclass (symclass)
715 int symclass;
716 {
717 return symclass == 'U' || symclass == 'w' || symclass == 'v';
718 }
719
720 /*
721 FUNCTION
722 bfd_symbol_info
723
724 DESCRIPTION
725 Fill in the basic info about symbol that nm needs.
726 Additional info may be added by the back-ends after
727 calling this function.
728
729 SYNOPSIS
730 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
731 */
732
733 void
734 bfd_symbol_info (symbol, ret)
735 asymbol *symbol;
736 symbol_info *ret;
737 {
738 ret->type = bfd_decode_symclass (symbol);
739
740 if (bfd_is_undefined_symclass (ret->type))
741 ret->value = 0;
742 else
743 ret->value = symbol->value + symbol->section->vma;
744
745 ret->name = symbol->name;
746 }
747
748 /*
749 FUNCTION
750 bfd_copy_private_symbol_data
751
752 SYNOPSIS
753 bfd_boolean bfd_copy_private_symbol_data (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
754
755 DESCRIPTION
756 Copy private symbol information from @var{isym} in the BFD
757 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
758 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
759 returns are:
760
761 o <<bfd_error_no_memory>> -
762 Not enough memory exists to create private data for @var{osec}.
763
764 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
765 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
766 . (ibfd, isymbol, obfd, osymbol))
767 .
768 */
769
770 /* The generic version of the function which returns mini symbols.
771 This is used when the backend does not provide a more efficient
772 version. It just uses BFD asymbol structures as mini symbols. */
773
774 long
775 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
776 bfd *abfd;
777 bfd_boolean dynamic;
778 PTR *minisymsp;
779 unsigned int *sizep;
780 {
781 long storage;
782 asymbol **syms = NULL;
783 long symcount;
784
785 if (dynamic)
786 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
787 else
788 storage = bfd_get_symtab_upper_bound (abfd);
789 if (storage < 0)
790 goto error_return;
791 if (storage == 0)
792 return 0;
793
794 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
795 if (syms == NULL)
796 goto error_return;
797
798 if (dynamic)
799 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
800 else
801 symcount = bfd_canonicalize_symtab (abfd, syms);
802 if (symcount < 0)
803 goto error_return;
804
805 *minisymsp = (PTR) syms;
806 *sizep = sizeof (asymbol *);
807 return symcount;
808
809 error_return:
810 bfd_set_error (bfd_error_no_symbols);
811 if (syms != NULL)
812 free (syms);
813 return -1;
814 }
815
816 /* The generic version of the function which converts a minisymbol to
817 an asymbol. We don't worry about the sym argument we are passed;
818 we just return the asymbol the minisymbol points to. */
819
820 asymbol *
821 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
822 bfd *abfd ATTRIBUTE_UNUSED;
823 bfd_boolean dynamic ATTRIBUTE_UNUSED;
824 const PTR minisym;
825 asymbol *sym ATTRIBUTE_UNUSED;
826 {
827 return *(asymbol **) minisym;
828 }
829
830 /* Look through stabs debugging information in .stab and .stabstr
831 sections to find the source file and line closest to a desired
832 location. This is used by COFF and ELF targets. It sets *pfound
833 to TRUE if it finds some information. The *pinfo field is used to
834 pass cached information in and out of this routine; this first time
835 the routine is called for a BFD, *pinfo should be NULL. The value
836 placed in *pinfo should be saved with the BFD, and passed back each
837 time this function is called. */
838
839 /* We use a cache by default. */
840
841 #define ENABLE_CACHING
842
843 /* We keep an array of indexentry structures to record where in the
844 stabs section we should look to find line number information for a
845 particular address. */
846
847 struct indexentry
848 {
849 bfd_vma val;
850 bfd_byte *stab;
851 bfd_byte *str;
852 char *directory_name;
853 char *file_name;
854 char *function_name;
855 };
856
857 /* Compare two indexentry structures. This is called via qsort. */
858
859 static int
860 cmpindexentry (a, b)
861 const PTR a;
862 const PTR b;
863 {
864 const struct indexentry *contestantA = (const struct indexentry *) a;
865 const struct indexentry *contestantB = (const struct indexentry *) b;
866
867 if (contestantA->val < contestantB->val)
868 return -1;
869 else if (contestantA->val > contestantB->val)
870 return 1;
871 else
872 return 0;
873 }
874
875 /* A pointer to this structure is stored in *pinfo. */
876
877 struct stab_find_info
878 {
879 /* The .stab section. */
880 asection *stabsec;
881 /* The .stabstr section. */
882 asection *strsec;
883 /* The contents of the .stab section. */
884 bfd_byte *stabs;
885 /* The contents of the .stabstr section. */
886 bfd_byte *strs;
887
888 /* A table that indexes stabs by memory address. */
889 struct indexentry *indextable;
890 /* The number of entries in indextable. */
891 int indextablesize;
892
893 #ifdef ENABLE_CACHING
894 /* Cached values to restart quickly. */
895 struct indexentry *cached_indexentry;
896 bfd_vma cached_offset;
897 bfd_byte *cached_stab;
898 char *cached_file_name;
899 #endif
900
901 /* Saved ptr to malloc'ed filename. */
902 char *filename;
903 };
904
905 bfd_boolean
906 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
907 pfilename, pfnname, pline, pinfo)
908 bfd *abfd;
909 asymbol **symbols;
910 asection *section;
911 bfd_vma offset;
912 bfd_boolean *pfound;
913 const char **pfilename;
914 const char **pfnname;
915 unsigned int *pline;
916 PTR *pinfo;
917 {
918 struct stab_find_info *info;
919 bfd_size_type stabsize, strsize;
920 bfd_byte *stab, *str;
921 bfd_byte *last_stab = NULL;
922 bfd_size_type stroff;
923 struct indexentry *indexentry;
924 char *file_name;
925 char *directory_name;
926 int saw_fun;
927 bfd_boolean saw_line, saw_func;
928
929 *pfound = FALSE;
930 *pfilename = bfd_get_filename (abfd);
931 *pfnname = NULL;
932 *pline = 0;
933
934 /* Stabs entries use a 12 byte format:
935 4 byte string table index
936 1 byte stab type
937 1 byte stab other field
938 2 byte stab desc field
939 4 byte stab value
940 FIXME: This will have to change for a 64 bit object format.
941
942 The stabs symbols are divided into compilation units. For the
943 first entry in each unit, the type of 0, the value is the length
944 of the string table for this unit, and the desc field is the
945 number of stabs symbols for this unit. */
946
947 #define STRDXOFF (0)
948 #define TYPEOFF (4)
949 #define OTHEROFF (5)
950 #define DESCOFF (6)
951 #define VALOFF (8)
952 #define STABSIZE (12)
953
954 info = (struct stab_find_info *) *pinfo;
955 if (info != NULL)
956 {
957 if (info->stabsec == NULL || info->strsec == NULL)
958 {
959 /* No stabs debugging information. */
960 return TRUE;
961 }
962
963 stabsize = info->stabsec->_raw_size;
964 strsize = info->strsec->_raw_size;
965 }
966 else
967 {
968 long reloc_size, reloc_count;
969 arelent **reloc_vector;
970 int i;
971 char *name;
972 char *function_name;
973 bfd_size_type amt = sizeof *info;
974
975 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
976 if (info == NULL)
977 return FALSE;
978
979 /* FIXME: When using the linker --split-by-file or
980 --split-by-reloc options, it is possible for the .stab and
981 .stabstr sections to be split. We should handle that. */
982
983 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
984 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
985
986 if (info->stabsec == NULL || info->strsec == NULL)
987 {
988 /* No stabs debugging information. Set *pinfo so that we
989 can return quickly in the info != NULL case above. */
990 *pinfo = (PTR) info;
991 return TRUE;
992 }
993
994 stabsize = info->stabsec->_raw_size;
995 strsize = info->strsec->_raw_size;
996
997 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
998 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
999 if (info->stabs == NULL || info->strs == NULL)
1000 return FALSE;
1001
1002 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1003 (bfd_vma) 0, stabsize)
1004 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1005 (bfd_vma) 0, strsize))
1006 return FALSE;
1007
1008 /* If this is a relocatable object file, we have to relocate
1009 the entries in .stab. This should always be simple 32 bit
1010 relocations against symbols defined in this object file, so
1011 this should be no big deal. */
1012 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1013 if (reloc_size < 0)
1014 return FALSE;
1015 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1016 if (reloc_vector == NULL && reloc_size != 0)
1017 return FALSE;
1018 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1019 symbols);
1020 if (reloc_count < 0)
1021 {
1022 if (reloc_vector != NULL)
1023 free (reloc_vector);
1024 return FALSE;
1025 }
1026 if (reloc_count > 0)
1027 {
1028 arelent **pr;
1029
1030 for (pr = reloc_vector; *pr != NULL; pr++)
1031 {
1032 arelent *r;
1033 unsigned long val;
1034 asymbol *sym;
1035
1036 r = *pr;
1037 if (r->howto->rightshift != 0
1038 || r->howto->size != 2
1039 || r->howto->bitsize != 32
1040 || r->howto->pc_relative
1041 || r->howto->bitpos != 0
1042 || r->howto->dst_mask != 0xffffffff)
1043 {
1044 (*_bfd_error_handler)
1045 (_("Unsupported .stab relocation"));
1046 bfd_set_error (bfd_error_invalid_operation);
1047 if (reloc_vector != NULL)
1048 free (reloc_vector);
1049 return FALSE;
1050 }
1051
1052 val = bfd_get_32 (abfd, info->stabs + r->address);
1053 val &= r->howto->src_mask;
1054 sym = *r->sym_ptr_ptr;
1055 val += sym->value + sym->section->vma + r->addend;
1056 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1057 }
1058 }
1059
1060 if (reloc_vector != NULL)
1061 free (reloc_vector);
1062
1063 /* First time through this function, build a table matching
1064 function VM addresses to stabs, then sort based on starting
1065 VM address. Do this in two passes: once to count how many
1066 table entries we'll need, and a second to actually build the
1067 table. */
1068
1069 info->indextablesize = 0;
1070 saw_fun = 1;
1071 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1072 {
1073 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1074 {
1075 /* N_SO with null name indicates EOF */
1076 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1077 continue;
1078
1079 /* if we did not see a function def, leave space for one. */
1080 if (saw_fun == 0)
1081 ++info->indextablesize;
1082
1083 saw_fun = 0;
1084
1085 /* two N_SO's in a row is a filename and directory. Skip */
1086 if (stab + STABSIZE < info->stabs + stabsize
1087 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1088 {
1089 stab += STABSIZE;
1090 }
1091 }
1092 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1093 {
1094 saw_fun = 1;
1095 ++info->indextablesize;
1096 }
1097 }
1098
1099 if (saw_fun == 0)
1100 ++info->indextablesize;
1101
1102 if (info->indextablesize == 0)
1103 return TRUE;
1104 ++info->indextablesize;
1105
1106 amt = info->indextablesize;
1107 amt *= sizeof (struct indexentry);
1108 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1109 if (info->indextable == NULL)
1110 return FALSE;
1111
1112 file_name = NULL;
1113 directory_name = NULL;
1114 saw_fun = 1;
1115
1116 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1117 i < info->indextablesize && stab < info->stabs + stabsize;
1118 stab += STABSIZE)
1119 {
1120 switch (stab[TYPEOFF])
1121 {
1122 case 0:
1123 /* This is the first entry in a compilation unit. */
1124 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1125 break;
1126 str += stroff;
1127 stroff = bfd_get_32 (abfd, stab + VALOFF);
1128 break;
1129
1130 case N_SO:
1131 /* The main file name. */
1132
1133 /* The following code creates a new indextable entry with
1134 a NULL function name if there were no N_FUNs in a file.
1135 Note that a N_SO without a file name is an EOF and
1136 there could be 2 N_SO following it with the new filename
1137 and directory. */
1138 if (saw_fun == 0)
1139 {
1140 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1141 info->indextable[i].stab = last_stab;
1142 info->indextable[i].str = str;
1143 info->indextable[i].directory_name = directory_name;
1144 info->indextable[i].file_name = file_name;
1145 info->indextable[i].function_name = NULL;
1146 ++i;
1147 }
1148 saw_fun = 0;
1149
1150 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1151 if (*file_name == '\0')
1152 {
1153 directory_name = NULL;
1154 file_name = NULL;
1155 saw_fun = 1;
1156 }
1157 else
1158 {
1159 last_stab = stab;
1160 if (stab + STABSIZE >= info->stabs + stabsize
1161 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1162 {
1163 directory_name = NULL;
1164 }
1165 else
1166 {
1167 /* Two consecutive N_SOs are a directory and a
1168 file name. */
1169 stab += STABSIZE;
1170 directory_name = file_name;
1171 file_name = ((char *) str
1172 + bfd_get_32 (abfd, stab + STRDXOFF));
1173 }
1174 }
1175 break;
1176
1177 case N_SOL:
1178 /* The name of an include file. */
1179 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1180 break;
1181
1182 case N_FUN:
1183 /* A function name. */
1184 saw_fun = 1;
1185 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1186
1187 if (*name == '\0')
1188 name = NULL;
1189
1190 function_name = name;
1191
1192 if (name == NULL)
1193 continue;
1194
1195 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1196 info->indextable[i].stab = stab;
1197 info->indextable[i].str = str;
1198 info->indextable[i].directory_name = directory_name;
1199 info->indextable[i].file_name = file_name;
1200 info->indextable[i].function_name = function_name;
1201 ++i;
1202 break;
1203 }
1204 }
1205
1206 if (saw_fun == 0)
1207 {
1208 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1209 info->indextable[i].stab = last_stab;
1210 info->indextable[i].str = str;
1211 info->indextable[i].directory_name = directory_name;
1212 info->indextable[i].file_name = file_name;
1213 info->indextable[i].function_name = NULL;
1214 ++i;
1215 }
1216
1217 info->indextable[i].val = (bfd_vma) -1;
1218 info->indextable[i].stab = info->stabs + stabsize;
1219 info->indextable[i].str = str;
1220 info->indextable[i].directory_name = NULL;
1221 info->indextable[i].file_name = NULL;
1222 info->indextable[i].function_name = NULL;
1223 ++i;
1224
1225 info->indextablesize = i;
1226 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1227 cmpindexentry);
1228
1229 *pinfo = (PTR) info;
1230 }
1231
1232 /* We are passed a section relative offset. The offsets in the
1233 stabs information are absolute. */
1234 offset += bfd_get_section_vma (abfd, section);
1235
1236 #ifdef ENABLE_CACHING
1237 if (info->cached_indexentry != NULL
1238 && offset >= info->cached_offset
1239 && offset < (info->cached_indexentry + 1)->val)
1240 {
1241 stab = info->cached_stab;
1242 indexentry = info->cached_indexentry;
1243 file_name = info->cached_file_name;
1244 }
1245 else
1246 #endif
1247 {
1248 long low, high;
1249 long mid = -1;
1250
1251 /* Cache non-existant or invalid. Do binary search on
1252 indextable. */
1253 indexentry = NULL;
1254
1255 low = 0;
1256 high = info->indextablesize - 1;
1257 while (low != high)
1258 {
1259 mid = (high + low) / 2;
1260 if (offset >= info->indextable[mid].val
1261 && offset < info->indextable[mid + 1].val)
1262 {
1263 indexentry = &info->indextable[mid];
1264 break;
1265 }
1266
1267 if (info->indextable[mid].val > offset)
1268 high = mid;
1269 else
1270 low = mid + 1;
1271 }
1272
1273 if (indexentry == NULL)
1274 return TRUE;
1275
1276 stab = indexentry->stab + STABSIZE;
1277 file_name = indexentry->file_name;
1278 }
1279
1280 directory_name = indexentry->directory_name;
1281 str = indexentry->str;
1282
1283 saw_line = FALSE;
1284 saw_func = FALSE;
1285 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1286 {
1287 bfd_boolean done;
1288 bfd_vma val;
1289
1290 done = FALSE;
1291
1292 switch (stab[TYPEOFF])
1293 {
1294 case N_SOL:
1295 /* The name of an include file. */
1296 val = bfd_get_32 (abfd, stab + VALOFF);
1297 if (val <= offset)
1298 {
1299 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1300 *pline = 0;
1301 }
1302 break;
1303
1304 case N_SLINE:
1305 case N_DSLINE:
1306 case N_BSLINE:
1307 /* A line number. If the function was specified, then the value
1308 is relative to the start of the function. Otherwise, the
1309 value is an absolute address. */
1310 val = ((indexentry->function_name ? indexentry->val : 0)
1311 + bfd_get_32 (abfd, stab + VALOFF));
1312 /* If this line starts before our desired offset, or if it's
1313 the first line we've been able to find, use it. The
1314 !saw_line check works around a bug in GCC 2.95.3, which emits
1315 the first N_SLINE late. */
1316 if (!saw_line || val <= offset)
1317 {
1318 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1319
1320 #ifdef ENABLE_CACHING
1321 info->cached_stab = stab;
1322 info->cached_offset = val;
1323 info->cached_file_name = file_name;
1324 info->cached_indexentry = indexentry;
1325 #endif
1326 }
1327 if (val > offset)
1328 done = TRUE;
1329 saw_line = TRUE;
1330 break;
1331
1332 case N_FUN:
1333 case N_SO:
1334 if (saw_func || saw_line)
1335 done = TRUE;
1336 saw_func = TRUE;
1337 break;
1338 }
1339
1340 if (done)
1341 break;
1342 }
1343
1344 *pfound = TRUE;
1345
1346 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1347 || directory_name == NULL)
1348 *pfilename = file_name;
1349 else
1350 {
1351 size_t dirlen;
1352
1353 dirlen = strlen (directory_name);
1354 if (info->filename == NULL
1355 || strncmp (info->filename, directory_name, dirlen) != 0
1356 || strcmp (info->filename + dirlen, file_name) != 0)
1357 {
1358 size_t len;
1359
1360 if (info->filename != NULL)
1361 free (info->filename);
1362 len = strlen (file_name) + 1;
1363 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen + len);
1364 if (info->filename == NULL)
1365 return FALSE;
1366 memcpy (info->filename, directory_name, dirlen);
1367 memcpy (info->filename + dirlen, file_name, len);
1368 }
1369
1370 *pfilename = info->filename;
1371 }
1372
1373 if (indexentry->function_name != NULL)
1374 {
1375 char *s;
1376
1377 /* This will typically be something like main:F(0,1), so we want
1378 to clobber the colon. It's OK to change the name, since the
1379 string is in our own local storage anyhow. */
1380 s = strchr (indexentry->function_name, ':');
1381 if (s != NULL)
1382 *s = '\0';
1383
1384 *pfnname = indexentry->function_name;
1385 }
1386
1387 return TRUE;
1388 }