]> git.ipfire.org Git - thirdparty/e2fsprogs.git/blob - e2fsck/revoke.c
e2fsck: remove get_filename_hash() prototype
[thirdparty/e2fsprogs.git] / e2fsck / revoke.c
1 /*
2 * linux/fs/jbd2/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
26 * gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
48 * bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits. As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear: no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 * buffer has not been revoked, and cancel_revoke
59 * need do nothing.
60 * RevokeValid set, Revoked set:
61 * buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table. Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #endif
96
97 static lkmem_cache_t *jbd2_revoke_record_cache;
98 static lkmem_cache_t *jbd2_revoke_table_cache;
99
100 /* Each revoke record represents one single revoked block. During
101 journal replay, this involves recording the transaction ID of the
102 last transaction to revoke this block. */
103
104 struct jbd2_revoke_record_s
105 {
106 struct list_head hash;
107 tid_t sequence; /* Used for recovery only */
108 unsigned long long blocknr;
109 };
110
111
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd2_revoke_table_s
114 {
115 /* It is conceivable that we might want a larger hash table
116 * for recovery. Must be a power of two. */
117 int hash_size;
118 int hash_shift;
119 struct list_head *hash_table;
120 };
121
122
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 struct list_head *,
126 struct buffer_head **, int *,
127 struct jbd2_revoke_record_s *, int);
128 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
129 #endif
130
131 /* Utility functions to maintain the revoke table */
132
133 /* Borrowed from buffer.c: this is a tried and tested block hash function */
134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136 struct jbd2_revoke_table_s *table = journal->j_revoke;
137
138 return (hash_64(block, table->hash_shift));
139 }
140
141 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
142 tid_t seq)
143 {
144 struct list_head *hash_list;
145 struct jbd2_revoke_record_s *record;
146
147 repeat:
148 record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
149 if (!record)
150 goto oom;
151
152 record->sequence = seq;
153 record->blocknr = blocknr;
154 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155 spin_lock(&journal->j_revoke_lock);
156 list_add(&record->hash, hash_list);
157 spin_unlock(&journal->j_revoke_lock);
158 return 0;
159
160 oom:
161 if (!journal_oom_retry)
162 return -ENOMEM;
163 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
164 yield();
165 goto repeat;
166 }
167
168 /* Find a revoke record in the journal's hash table. */
169
170 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
171 unsigned long long blocknr)
172 {
173 struct list_head *hash_list;
174 struct jbd2_revoke_record_s *record;
175
176 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
177
178 spin_lock(&journal->j_revoke_lock);
179 record = (struct jbd2_revoke_record_s *) hash_list->next;
180 while (&(record->hash) != hash_list) {
181 if (record->blocknr == blocknr) {
182 spin_unlock(&journal->j_revoke_lock);
183 return record;
184 }
185 record = (struct jbd2_revoke_record_s *) record->hash.next;
186 }
187 spin_unlock(&journal->j_revoke_lock);
188 return NULL;
189 }
190
191 void journal_destroy_revoke_caches(void)
192 {
193 if (jbd2_revoke_record_cache) {
194 kmem_cache_destroy(jbd2_revoke_record_cache);
195 jbd2_revoke_record_cache = NULL;
196 }
197 if (jbd2_revoke_table_cache) {
198 kmem_cache_destroy(jbd2_revoke_table_cache);
199 jbd2_revoke_table_cache = NULL;
200 }
201 }
202
203 int __init journal_init_revoke_caches(void)
204 {
205 J_ASSERT(!jbd2_revoke_record_cache);
206 J_ASSERT(!jbd2_revoke_table_cache);
207
208 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
209 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
210 if (!jbd2_revoke_record_cache)
211 goto record_cache_failure;
212
213 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
214 SLAB_TEMPORARY);
215 if (!jbd2_revoke_table_cache)
216 goto table_cache_failure;
217 return 0;
218 table_cache_failure:
219 journal_destroy_revoke_caches();
220 record_cache_failure:
221 return -ENOMEM;
222 }
223
224 static struct jbd2_revoke_table_s *journal_init_revoke_table(int hash_size)
225 {
226 int shift = 0;
227 int tmp = hash_size;
228 struct jbd2_revoke_table_s *table;
229
230 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
231 if (!table)
232 goto out;
233
234 while((tmp >>= 1UL) != 0UL)
235 shift++;
236
237 table->hash_size = hash_size;
238 table->hash_shift = shift;
239 table->hash_table =
240 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
241 if (!table->hash_table) {
242 kmem_cache_free(jbd2_revoke_table_cache, table);
243 table = NULL;
244 goto out;
245 }
246
247 for (tmp = 0; tmp < hash_size; tmp++)
248 INIT_LIST_HEAD(&table->hash_table[tmp]);
249
250 out:
251 return table;
252 }
253
254 static void journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
255 {
256 int i;
257 struct list_head *hash_list;
258
259 for (i = 0; i < table->hash_size; i++) {
260 hash_list = &table->hash_table[i];
261 J_ASSERT(list_empty(hash_list));
262 }
263
264 kfree(table->hash_table);
265 kmem_cache_free(jbd2_revoke_table_cache, table);
266 }
267
268 /* Initialise the revoke table for a given journal to a given size. */
269 int journal_init_revoke(journal_t *journal, int hash_size)
270 {
271 J_ASSERT(journal->j_revoke_table[0] == NULL);
272 J_ASSERT(is_power_of_2(hash_size));
273
274 journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
275 if (!journal->j_revoke_table[0])
276 goto fail0;
277
278 journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
279 if (!journal->j_revoke_table[1])
280 goto fail1;
281
282 journal->j_revoke = journal->j_revoke_table[1];
283
284 spin_lock_init(&journal->j_revoke_lock);
285
286 return 0;
287
288 fail1:
289 journal_destroy_revoke_table(journal->j_revoke_table[0]);
290 fail0:
291 return -ENOMEM;
292 }
293
294 /* Destroy a journal's revoke table. The table must already be empty! */
295 void journal_destroy_revoke(journal_t *journal)
296 {
297 journal->j_revoke = NULL;
298 if (journal->j_revoke_table[0])
299 journal_destroy_revoke_table(journal->j_revoke_table[0]);
300 if (journal->j_revoke_table[1])
301 journal_destroy_revoke_table(journal->j_revoke_table[1]);
302 }
303
304
305 #ifdef __KERNEL__
306
307 /*
308 * journal_revoke: revoke a given buffer_head from the journal. This
309 * prevents the block from being replayed during recovery if we take a
310 * crash after this current transaction commits. Any subsequent
311 * metadata writes of the buffer in this transaction cancel the
312 * revoke.
313 *
314 * Note that this call may block --- it is up to the caller to make
315 * sure that there are no further calls to journal_write_metadata
316 * before the revoke is complete. In ext3, this implies calling the
317 * revoke before clearing the block bitmap when we are deleting
318 * metadata.
319 *
320 * Revoke performs a journal_forget on any buffer_head passed in as a
321 * parameter, but does _not_ forget the buffer_head if the bh was only
322 * found implicitly.
323 *
324 * bh_in may not be a journalled buffer - it may have come off
325 * the hash tables without an attached journal_head.
326 *
327 * If bh_in is non-zero, journal_revoke() will decrement its b_count
328 * by one.
329 */
330
331 int journal_revoke(handle_t *handle, unsigned long long blocknr,
332 struct buffer_head *bh_in)
333 {
334 struct buffer_head *bh = NULL;
335 journal_t *journal;
336 struct block_device *bdev;
337 int err;
338
339 might_sleep();
340 if (bh_in)
341 BUFFER_TRACE(bh_in, "enter");
342
343 journal = handle->h_transaction->t_journal;
344 if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
345 J_ASSERT (!"Cannot set revoke feature!");
346 return -EINVAL;
347 }
348
349 bdev = journal->j_fs_dev;
350 bh = bh_in;
351
352 if (!bh) {
353 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
354 if (bh)
355 BUFFER_TRACE(bh, "found on hash");
356 }
357 #ifdef JFS_EXPENSIVE_CHECKING
358 else {
359 struct buffer_head *bh2;
360
361 /* If there is a different buffer_head lying around in
362 * memory anywhere... */
363 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
364 if (bh2) {
365 /* ... and it has RevokeValid status... */
366 if (bh2 != bh && buffer_revokevalid(bh2))
367 /* ...then it better be revoked too,
368 * since it's illegal to create a revoke
369 * record against a buffer_head which is
370 * not marked revoked --- that would
371 * risk missing a subsequent revoke
372 * cancel. */
373 J_ASSERT_BH(bh2, buffer_revoked(bh2));
374 put_bh(bh2);
375 }
376 }
377 #endif
378
379 /* We really ought not ever to revoke twice in a row without
380 first having the revoke cancelled: it's illegal to free a
381 block twice without allocating it in between! */
382 if (bh) {
383 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
384 "inconsistent data on disk")) {
385 if (!bh_in)
386 brelse(bh);
387 return -EIO;
388 }
389 set_buffer_revoked(bh);
390 set_buffer_revokevalid(bh);
391 if (bh_in) {
392 BUFFER_TRACE(bh_in, "call journal_forget");
393 journal_forget(handle, bh_in);
394 } else {
395 BUFFER_TRACE(bh, "call brelse");
396 __brelse(bh);
397 }
398 }
399
400 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
401 err = insert_revoke_hash(journal, blocknr,
402 handle->h_transaction->t_tid);
403 BUFFER_TRACE(bh_in, "exit");
404 return err;
405 }
406
407 /*
408 * Cancel an outstanding revoke. For use only internally by the
409 * journaling code (called from journal_get_write_access).
410 *
411 * We trust buffer_revoked() on the buffer if the buffer is already
412 * being journaled: if there is no revoke pending on the buffer, then we
413 * don't do anything here.
414 *
415 * This would break if it were possible for a buffer to be revoked and
416 * discarded, and then reallocated within the same transaction. In such
417 * a case we would have lost the revoked bit, but when we arrived here
418 * the second time we would still have a pending revoke to cancel. So,
419 * do not trust the Revoked bit on buffers unless RevokeValid is also
420 * set.
421 */
422 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
423 {
424 struct jbd2_revoke_record_s *record;
425 journal_t *journal = handle->h_transaction->t_journal;
426 int need_cancel;
427 int did_revoke = 0; /* akpm: debug */
428 struct buffer_head *bh = jh2bh(jh);
429
430 jbd_debug(4, "journal_head %p, canceling revoke\n", jh);
431
432 /* Is the existing Revoke bit valid? If so, we trust it, and
433 * only perform the full cancel if the revoke bit is set. If
434 * not, we can't trust the revoke bit, and we need to do the
435 * full search for a revoke record. */
436 if (test_set_buffer_revokevalid(bh)) {
437 need_cancel = test_clear_buffer_revoked(bh);
438 } else {
439 need_cancel = 1;
440 clear_buffer_revoked(bh);
441 }
442
443 if (need_cancel) {
444 record = find_revoke_record(journal, bh->b_blocknr);
445 if (record) {
446 jbd_debug(4, "cancelled existing revoke on "
447 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
448 spin_lock(&journal->j_revoke_lock);
449 list_del(&record->hash);
450 spin_unlock(&journal->j_revoke_lock);
451 kmem_cache_free(jbd2_revoke_record_cache, record);
452 did_revoke = 1;
453 }
454 }
455
456 #ifdef JFS_EXPENSIVE_CHECKING
457 /* There better not be one left behind by now! */
458 record = find_revoke_record(journal, bh->b_blocknr);
459 J_ASSERT_JH(jh, record == NULL);
460 #endif
461
462 /* Finally, have we just cleared revoke on an unhashed
463 * buffer_head? If so, we'd better make sure we clear the
464 * revoked status on any hashed alias too, otherwise the revoke
465 * state machine will get very upset later on. */
466 if (need_cancel) {
467 struct buffer_head *bh2;
468 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
469 if (bh2) {
470 if (bh2 != bh)
471 clear_buffer_revoked(bh2);
472 __brelse(bh2);
473 }
474 }
475 return did_revoke;
476 }
477
478 /*
479 * journal_clear_revoked_flag clears revoked flag of buffers in
480 * revoke table to reflect there is no revoked buffers in the next
481 * transaction which is going to be started.
482 */
483 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
484 {
485 struct jbd2_revoke_table_s *revoke = journal->j_revoke;
486 int i = 0;
487
488 for (i = 0; i < revoke->hash_size; i++) {
489 struct list_head *hash_list;
490 struct list_head *list_entry;
491 hash_list = &revoke->hash_table[i];
492
493 list_for_each(list_entry, hash_list) {
494 struct jbd2_revoke_record_s *record;
495 struct buffer_head *bh;
496 record = (struct jbd2_revoke_record_s *)list_entry;
497 bh = __find_get_block(journal->j_fs_dev,
498 record->blocknr,
499 journal->j_blocksize);
500 if (bh) {
501 clear_buffer_revoked(bh);
502 __brelse(bh);
503 }
504 }
505 }
506 }
507
508 /* journal_switch_revoke table select j_revoke for next transaction
509 * we do not want to suspend any processing until all revokes are
510 * written -bzzz
511 */
512 void journal_switch_revoke_table(journal_t *journal)
513 {
514 int i;
515
516 if (journal->j_revoke == journal->j_revoke_table[0])
517 journal->j_revoke = journal->j_revoke_table[1];
518 else
519 journal->j_revoke = journal->j_revoke_table[0];
520
521 for (i = 0; i < journal->j_revoke->hash_size; i++)
522 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
523 }
524
525 /*
526 * Write revoke records to the journal for all entries in the current
527 * revoke hash, deleting the entries as we go.
528 */
529 void journal_write_revoke_records(journal_t *journal,
530 transaction_t *transaction,
531 struct list_head *log_bufs,
532 int write_op)
533 {
534 struct buffer_head *descriptor;
535 struct jbd2_revoke_record_s *record;
536 struct jbd2_revoke_table_s *revoke;
537 struct list_head *hash_list;
538 int i, offset, count;
539
540 descriptor = NULL;
541 offset = 0;
542 count = 0;
543
544 /* select revoke table for committing transaction */
545 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
546 journal->j_revoke_table[1] : journal->j_revoke_table[0];
547
548 for (i = 0; i < revoke->hash_size; i++) {
549 hash_list = &revoke->hash_table[i];
550
551 while (!list_empty(hash_list)) {
552 record = (struct jbd2_revoke_record_s *)
553 hash_list->next;
554 write_one_revoke_record(journal, transaction, log_bufs,
555 &descriptor, &offset,
556 record, write_op);
557 count++;
558 list_del(&record->hash);
559 kmem_cache_free(jbd2_revoke_record_cache, record);
560 }
561 }
562 if (descriptor)
563 flush_descriptor(journal, descriptor, offset, write_op);
564 jbd_debug(1, "Wrote %d revoke records\n", count);
565 }
566
567 /*
568 * Write out one revoke record. We need to create a new descriptor
569 * block if the old one is full or if we have not already created one.
570 */
571
572 static void write_one_revoke_record(journal_t *journal,
573 transaction_t *transaction,
574 struct list_head *log_bufs,
575 struct buffer_head **descriptorp,
576 int *offsetp,
577 struct jbd2_revoke_record_s *record,
578 int write_op)
579 {
580 int csum_size = 0;
581 struct buffer_head *descriptor;
582 int sz, offset;
583 journal_header_t *header;
584
585 /* If we are already aborting, this all becomes a noop. We
586 still need to go round the loop in
587 journal_write_revoke_records in order to free all of the
588 revoke records: only the IO to the journal is omitted. */
589 if (is_journal_aborted(journal))
590 return;
591
592 descriptor = *descriptorp;
593 offset = *offsetp;
594
595 /* Do we need to leave space at the end for a checksum? */
596 if (journal_has_csum_v2or3(journal))
597 csum_size = sizeof(struct journal_revoke_tail);
598
599 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
600 sz = 8;
601 else
602 sz = 4;
603
604 /* Make sure we have a descriptor with space left for the record */
605 if (descriptor) {
606 if (offset + sz > journal->j_blocksize - csum_size) {
607 flush_descriptor(journal, descriptor, offset, write_op);
608 descriptor = NULL;
609 }
610 }
611
612 if (!descriptor) {
613 descriptor = journal_get_descriptor_buffer(journal);
614 if (!descriptor)
615 return;
616 header = (journal_header_t *)descriptor->b_data;
617 header->h_magic = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
618 header->h_blocktype = ext2fs_cpu_to_be32(JFS_REVOKE_BLOCK);
619 header->h_sequence = ext2fs_cpu_to_be32(transaction->t_tid);
620
621 /* Record it so that we can wait for IO completion later */
622 BUFFER_TRACE(descriptor, "file in log_bufs");
623 jbd2_file_log_bh(log_bufs, descriptor);
624
625 offset = sizeof(journal_revoke_header_t);
626 *descriptorp = descriptor;
627 }
628
629 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
630 * ((__be64 *)(&descriptor->b_data[offset])) =
631 cpu_to_be64(record->blocknr);
632 else
633 * ((__be32 *)(&descriptor->b_data[offset])) =
634 cpu_to_be32(record->blocknr);
635 offset += sz;
636
637 *offsetp = offset;
638 }
639
640 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
641 {
642 struct journal_revoke_tail *tail;
643 __u32 csum;
644
645 if (!journal_has_csum_v2or3(j))
646 return;
647
648 tail = (struct journal_revoke_tail *)(bh->b_data + j->j_blocksize -
649 sizeof(struct journal_revoke_tail));
650 tail->r_checksum = 0;
651 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
652 tail->r_checksum = ext2fs_cpu_to_be32(csum);
653 }
654
655 /*
656 * Flush a revoke descriptor out to the journal. If we are aborting,
657 * this is a noop; otherwise we are generating a buffer which needs to
658 * be waited for during commit, so it has to go onto the appropriate
659 * journal buffer list.
660 */
661
662 static void flush_descriptor(journal_t *journal,
663 struct buffer_head *descriptor,
664 int offset, int write_op)
665 {
666 journal_revoke_header_t *header;
667
668 if (is_journal_aborted(journal)) {
669 put_bh(descriptor);
670 return;
671 }
672
673 header = (journal_revoke_header_t *)descriptor->b_data;
674 header->r_count = ext2fs_cpu_to_be32(offset);
675 jbd2_revoke_csum_set(journal, descriptor);
676
677 set_buffer_jwrite(descriptor);
678 BUFFER_TRACE(descriptor, "write");
679 set_buffer_dirty(descriptor);
680 write_dirty_buffer(descriptor, write_op);
681 }
682 #endif
683
684 /*
685 * Revoke support for recovery.
686 *
687 * Recovery needs to be able to:
688 *
689 * record all revoke records, including the tid of the latest instance
690 * of each revoke in the journal
691 *
692 * check whether a given block in a given transaction should be replayed
693 * (ie. has not been revoked by a revoke record in that or a subsequent
694 * transaction)
695 *
696 * empty the revoke table after recovery.
697 */
698
699 /*
700 * First, setting revoke records. We create a new revoke record for
701 * every block ever revoked in the log as we scan it for recovery, and
702 * we update the existing records if we find multiple revokes for a
703 * single block.
704 */
705
706 int journal_set_revoke(journal_t *journal,
707 unsigned long long blocknr,
708 tid_t sequence)
709 {
710 struct jbd2_revoke_record_s *record;
711
712 record = find_revoke_record(journal, blocknr);
713 if (record) {
714 /* If we have multiple occurrences, only record the
715 * latest sequence number in the hashed record */
716 if (tid_gt(sequence, record->sequence))
717 record->sequence = sequence;
718 return 0;
719 }
720 return insert_revoke_hash(journal, blocknr, sequence);
721 }
722
723 /*
724 * Test revoke records. For a given block referenced in the log, has
725 * that block been revoked? A revoke record with a given transaction
726 * sequence number revokes all blocks in that transaction and earlier
727 * ones, but later transactions still need replayed.
728 */
729
730 int journal_test_revoke(journal_t *journal,
731 unsigned long long blocknr,
732 tid_t sequence)
733 {
734 struct jbd2_revoke_record_s *record;
735
736 record = find_revoke_record(journal, blocknr);
737 if (!record)
738 return 0;
739 if (tid_gt(sequence, record->sequence))
740 return 0;
741 return 1;
742 }
743
744 /*
745 * Finally, once recovery is over, we need to clear the revoke table so
746 * that it can be reused by the running filesystem.
747 */
748
749 void journal_clear_revoke(journal_t *journal)
750 {
751 int i;
752 struct list_head *hash_list;
753 struct jbd2_revoke_record_s *record;
754 struct jbd2_revoke_table_s *revoke;
755
756 revoke = journal->j_revoke;
757
758 for (i = 0; i < revoke->hash_size; i++) {
759 hash_list = &revoke->hash_table[i];
760 while (!list_empty(hash_list)) {
761 record = (struct jbd2_revoke_record_s*) hash_list->next;
762 list_del(&record->hash);
763 kmem_cache_free(jbd2_revoke_record_cache, record);
764 }
765 }
766 }