]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arc.c
arc gas: don't leak arc_opcode_hash memory
[thirdparty/binutils-gdb.git] / gas / config / tc-arc.c
1 /* tc-arc.c -- Assembler for the ARC
2 Copyright (C) 1994-2022 Free Software Foundation, Inc.
3
4 Contributor: Claudiu Zissulescu <claziss@synopsys.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "as.h"
24 #include "subsegs.h"
25 #include "dwarf2dbg.h"
26 #include "dw2gencfi.h"
27 #include "safe-ctype.h"
28
29 #include "opcode/arc.h"
30 #include "opcode/arc-attrs.h"
31 #include "elf/arc.h"
32 #include "../opcodes/arc-ext.h"
33
34 /* Defines section. */
35
36 #define MAX_INSN_FIXUPS 2
37 #define MAX_CONSTR_STR 20
38 #define FRAG_MAX_GROWTH 8
39
40 #ifdef DEBUG
41 # define pr_debug(fmt, args...) fprintf (stderr, fmt, ##args)
42 #else
43 # define pr_debug(fmt, args...)
44 #endif
45
46 #define MAJOR_OPCODE(x) (((x) & 0xF8000000) >> 27)
47 #define SUB_OPCODE(x) (((x) & 0x003F0000) >> 16)
48 #define LP_INSN(x) ((MAJOR_OPCODE (x) == 0x4) \
49 && (SUB_OPCODE (x) == 0x28))
50
51 #ifndef TARGET_WITH_CPU
52 #define TARGET_WITH_CPU "arc700"
53 #endif /* TARGET_WITH_CPU */
54
55 #define ARC_GET_FLAG(s) (*symbol_get_tc (s))
56 #define ARC_SET_FLAG(s,v) (*symbol_get_tc (s) |= (v))
57 #define streq(a, b) (strcmp (a, b) == 0)
58
59 /* Enum used to enumerate the relaxable ins operands. */
60 enum rlx_operand_type
61 {
62 EMPTY = 0,
63 REGISTER,
64 REGISTER_S, /* Register for short instruction(s). */
65 REGISTER_NO_GP, /* Is a register but not gp register specifically. */
66 REGISTER_DUP, /* Duplication of previous operand of type register. */
67 IMMEDIATE,
68 BRACKET
69 };
70
71 enum arc_rlx_types
72 {
73 ARC_RLX_NONE = 0,
74 ARC_RLX_BL_S,
75 ARC_RLX_BL,
76 ARC_RLX_B_S,
77 ARC_RLX_B,
78 ARC_RLX_ADD_U3,
79 ARC_RLX_ADD_U6,
80 ARC_RLX_ADD_LIMM,
81 ARC_RLX_LD_U7,
82 ARC_RLX_LD_S9,
83 ARC_RLX_LD_LIMM,
84 ARC_RLX_MOV_U8,
85 ARC_RLX_MOV_S12,
86 ARC_RLX_MOV_LIMM,
87 ARC_RLX_SUB_U3,
88 ARC_RLX_SUB_U6,
89 ARC_RLX_SUB_LIMM,
90 ARC_RLX_MPY_U6,
91 ARC_RLX_MPY_LIMM,
92 ARC_RLX_MOV_RU6,
93 ARC_RLX_MOV_RLIMM,
94 ARC_RLX_ADD_RRU6,
95 ARC_RLX_ADD_RRLIMM,
96 };
97
98 /* Macros section. */
99
100 #define regno(x) ((x) & 0x3F)
101 #define is_ir_num(x) (((x) & ~0x3F) == 0)
102 #define is_code_density_p(sc) (((sc) == CD1 || (sc) == CD2))
103 #define is_spfp_p(op) (((sc) == SPX))
104 #define is_dpfp_p(op) (((sc) == DPX))
105 #define is_fpuda_p(op) (((sc) == DPA))
106 #define is_br_jmp_insn_p(op) (((op)->insn_class == BRANCH \
107 || (op)->insn_class == JUMP \
108 || (op)->insn_class == BRCC \
109 || (op)->insn_class == BBIT0 \
110 || (op)->insn_class == BBIT1 \
111 || (op)->insn_class == BI \
112 || (op)->insn_class == EI \
113 || (op)->insn_class == ENTER \
114 || (op)->insn_class == JLI \
115 || (op)->insn_class == LOOP \
116 || (op)->insn_class == LEAVE \
117 ))
118 #define is_kernel_insn_p(op) (((op)->insn_class == KERNEL))
119 #define is_nps400_p(op) (((sc) == NPS400))
120
121 /* Generic assembler global variables which must be defined by all
122 targets. */
123
124 /* Characters which always start a comment. */
125 const char comment_chars[] = "#;";
126
127 /* Characters which start a comment at the beginning of a line. */
128 const char line_comment_chars[] = "#";
129
130 /* Characters which may be used to separate multiple commands on a
131 single line. */
132 const char line_separator_chars[] = "`";
133
134 /* Characters which are used to indicate an exponent in a floating
135 point number. */
136 const char EXP_CHARS[] = "eE";
137
138 /* Chars that mean this number is a floating point constant
139 As in 0f12.456 or 0d1.2345e12. */
140 const char FLT_CHARS[] = "rRsSfFdD";
141
142 /* Byte order. */
143 extern int target_big_endian;
144 const char *arc_target_format = DEFAULT_TARGET_FORMAT;
145 static int byte_order = DEFAULT_BYTE_ORDER;
146
147 /* Arc extension section. */
148 static segT arcext_section;
149
150 /* By default relaxation is disabled. */
151 static int relaxation_state = 0;
152
153 extern int arc_get_mach (char *);
154
155 /* Forward declarations. */
156 static void arc_lcomm (int);
157 static void arc_option (int);
158 static void arc_extra_reloc (int);
159 static void arc_extinsn (int);
160 static void arc_extcorereg (int);
161 static void arc_attribute (int);
162
163 const pseudo_typeS md_pseudo_table[] =
164 {
165 /* Make sure that .word is 32 bits. */
166 { "word", cons, 4 },
167
168 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
169 { "lcomm", arc_lcomm, 0 },
170 { "lcommon", arc_lcomm, 0 },
171 { "cpu", arc_option, 0 },
172
173 { "arc_attribute", arc_attribute, 0 },
174 { "extinstruction", arc_extinsn, 0 },
175 { "extcoreregister", arc_extcorereg, EXT_CORE_REGISTER },
176 { "extauxregister", arc_extcorereg, EXT_AUX_REGISTER },
177 { "extcondcode", arc_extcorereg, EXT_COND_CODE },
178
179 { "tls_gd_ld", arc_extra_reloc, BFD_RELOC_ARC_TLS_GD_LD },
180 { "tls_gd_call", arc_extra_reloc, BFD_RELOC_ARC_TLS_GD_CALL },
181
182 { NULL, NULL, 0 }
183 };
184
185 const char *md_shortopts = "";
186
187 enum options
188 {
189 OPTION_EB = OPTION_MD_BASE,
190 OPTION_EL,
191
192 OPTION_ARC600,
193 OPTION_ARC601,
194 OPTION_ARC700,
195 OPTION_ARCEM,
196 OPTION_ARCHS,
197
198 OPTION_MCPU,
199 OPTION_CD,
200 OPTION_RELAX,
201 OPTION_NPS400,
202
203 OPTION_SPFP,
204 OPTION_DPFP,
205 OPTION_FPUDA,
206
207 /* The following options are deprecated and provided here only for
208 compatibility reasons. */
209 OPTION_USER_MODE,
210 OPTION_LD_EXT_MASK,
211 OPTION_SWAP,
212 OPTION_NORM,
213 OPTION_BARREL_SHIFT,
214 OPTION_MIN_MAX,
215 OPTION_NO_MPY,
216 OPTION_EA,
217 OPTION_MUL64,
218 OPTION_SIMD,
219 OPTION_XMAC_D16,
220 OPTION_XMAC_24,
221 OPTION_DSP_PACKA,
222 OPTION_CRC,
223 OPTION_DVBF,
224 OPTION_TELEPHONY,
225 OPTION_XYMEMORY,
226 OPTION_LOCK,
227 OPTION_SWAPE,
228 OPTION_RTSC
229 };
230
231 struct option md_longopts[] =
232 {
233 { "EB", no_argument, NULL, OPTION_EB },
234 { "EL", no_argument, NULL, OPTION_EL },
235 { "mcpu", required_argument, NULL, OPTION_MCPU },
236 { "mA6", no_argument, NULL, OPTION_ARC600 },
237 { "mARC600", no_argument, NULL, OPTION_ARC600 },
238 { "mARC601", no_argument, NULL, OPTION_ARC601 },
239 { "mARC700", no_argument, NULL, OPTION_ARC700 },
240 { "mA7", no_argument, NULL, OPTION_ARC700 },
241 { "mEM", no_argument, NULL, OPTION_ARCEM },
242 { "mHS", no_argument, NULL, OPTION_ARCHS },
243 { "mcode-density", no_argument, NULL, OPTION_CD },
244 { "mrelax", no_argument, NULL, OPTION_RELAX },
245 { "mnps400", no_argument, NULL, OPTION_NPS400 },
246
247 /* Floating point options */
248 { "mspfp", no_argument, NULL, OPTION_SPFP},
249 { "mspfp-compact", no_argument, NULL, OPTION_SPFP},
250 { "mspfp_compact", no_argument, NULL, OPTION_SPFP},
251 { "mspfp-fast", no_argument, NULL, OPTION_SPFP},
252 { "mspfp_fast", no_argument, NULL, OPTION_SPFP},
253 { "mdpfp", no_argument, NULL, OPTION_DPFP},
254 { "mdpfp-compact", no_argument, NULL, OPTION_DPFP},
255 { "mdpfp_compact", no_argument, NULL, OPTION_DPFP},
256 { "mdpfp-fast", no_argument, NULL, OPTION_DPFP},
257 { "mdpfp_fast", no_argument, NULL, OPTION_DPFP},
258 { "mfpuda", no_argument, NULL, OPTION_FPUDA},
259
260 /* The following options are deprecated and provided here only for
261 compatibility reasons. */
262 { "mav2em", no_argument, NULL, OPTION_ARCEM },
263 { "mav2hs", no_argument, NULL, OPTION_ARCHS },
264 { "muser-mode-only", no_argument, NULL, OPTION_USER_MODE },
265 { "mld-extension-reg-mask", required_argument, NULL, OPTION_LD_EXT_MASK },
266 { "mswap", no_argument, NULL, OPTION_SWAP },
267 { "mnorm", no_argument, NULL, OPTION_NORM },
268 { "mbarrel-shifter", no_argument, NULL, OPTION_BARREL_SHIFT },
269 { "mbarrel_shifter", no_argument, NULL, OPTION_BARREL_SHIFT },
270 { "mmin-max", no_argument, NULL, OPTION_MIN_MAX },
271 { "mmin_max", no_argument, NULL, OPTION_MIN_MAX },
272 { "mno-mpy", no_argument, NULL, OPTION_NO_MPY },
273 { "mea", no_argument, NULL, OPTION_EA },
274 { "mEA", no_argument, NULL, OPTION_EA },
275 { "mmul64", no_argument, NULL, OPTION_MUL64 },
276 { "msimd", no_argument, NULL, OPTION_SIMD},
277 { "mmac-d16", no_argument, NULL, OPTION_XMAC_D16},
278 { "mmac_d16", no_argument, NULL, OPTION_XMAC_D16},
279 { "mmac-24", no_argument, NULL, OPTION_XMAC_24},
280 { "mmac_24", no_argument, NULL, OPTION_XMAC_24},
281 { "mdsp-packa", no_argument, NULL, OPTION_DSP_PACKA},
282 { "mdsp_packa", no_argument, NULL, OPTION_DSP_PACKA},
283 { "mcrc", no_argument, NULL, OPTION_CRC},
284 { "mdvbf", no_argument, NULL, OPTION_DVBF},
285 { "mtelephony", no_argument, NULL, OPTION_TELEPHONY},
286 { "mxy", no_argument, NULL, OPTION_XYMEMORY},
287 { "mlock", no_argument, NULL, OPTION_LOCK},
288 { "mswape", no_argument, NULL, OPTION_SWAPE},
289 { "mrtsc", no_argument, NULL, OPTION_RTSC},
290
291 { NULL, no_argument, NULL, 0 }
292 };
293
294 size_t md_longopts_size = sizeof (md_longopts);
295
296 /* Local data and data types. */
297
298 /* Used since new relocation types are introduced in this
299 file (DUMMY_RELOC_LITUSE_*). */
300 typedef int extended_bfd_reloc_code_real_type;
301
302 struct arc_fixup
303 {
304 expressionS exp;
305
306 extended_bfd_reloc_code_real_type reloc;
307
308 /* index into arc_operands. */
309 unsigned int opindex;
310
311 /* PC-relative, used by internals fixups. */
312 unsigned char pcrel;
313
314 /* TRUE if this fixup is for LIMM operand. */
315 bool islong;
316 };
317
318 struct arc_insn
319 {
320 unsigned long long int insn;
321 int nfixups;
322 struct arc_fixup fixups[MAX_INSN_FIXUPS];
323 long limm;
324 unsigned int len; /* Length of instruction in bytes. */
325 bool has_limm; /* Boolean value: TRUE if limm field is valid. */
326 bool relax; /* Boolean value: TRUE if needs relaxation. */
327 };
328
329 /* Structure to hold any last two instructions. */
330 static struct arc_last_insn
331 {
332 /* Saved instruction opcode. */
333 const struct arc_opcode *opcode;
334
335 /* Boolean value: TRUE if current insn is short. */
336 bool has_limm;
337
338 /* Boolean value: TRUE if current insn has delay slot. */
339 bool has_delay_slot;
340 } arc_last_insns[2];
341
342 /* Extension instruction suffix classes. */
343 typedef struct
344 {
345 const char *name;
346 int len;
347 int attr_class;
348 } attributes_t;
349
350 static const attributes_t suffixclass[] =
351 {
352 { "SUFFIX_FLAG", 11, ARC_SUFFIX_FLAG },
353 { "SUFFIX_COND", 11, ARC_SUFFIX_COND },
354 { "SUFFIX_NONE", 11, ARC_SUFFIX_NONE }
355 };
356
357 /* Extension instruction syntax classes. */
358 static const attributes_t syntaxclass[] =
359 {
360 { "SYNTAX_3OP", 10, ARC_SYNTAX_3OP },
361 { "SYNTAX_2OP", 10, ARC_SYNTAX_2OP },
362 { "SYNTAX_1OP", 10, ARC_SYNTAX_1OP },
363 { "SYNTAX_NOP", 10, ARC_SYNTAX_NOP }
364 };
365
366 /* Extension instruction syntax classes modifiers. */
367 static const attributes_t syntaxclassmod[] =
368 {
369 { "OP1_IMM_IMPLIED" , 15, ARC_OP1_IMM_IMPLIED },
370 { "OP1_MUST_BE_IMM" , 15, ARC_OP1_MUST_BE_IMM }
371 };
372
373 /* Extension register type. */
374 typedef struct
375 {
376 char *name;
377 int number;
378 int imode;
379 } extRegister_t;
380
381 /* A structure to hold the additional conditional codes. */
382 static struct
383 {
384 struct arc_flag_operand *arc_ext_condcode;
385 int size;
386 } ext_condcode = { NULL, 0 };
387
388 /* Structure to hold an entry in ARC_OPCODE_HASH. */
389 struct arc_opcode_hash_entry
390 {
391 /* The number of pointers in the OPCODE list. */
392 size_t count;
393
394 /* Points to a list of opcode pointers. */
395 const struct arc_opcode **opcode;
396 };
397
398 /* Structure used for iterating through an arc_opcode_hash_entry. */
399 struct arc_opcode_hash_entry_iterator
400 {
401 /* Index into the OPCODE element of the arc_opcode_hash_entry. */
402 size_t index;
403
404 /* The specific ARC_OPCODE from the ARC_OPCODES table that was last
405 returned by this iterator. */
406 const struct arc_opcode *opcode;
407 };
408
409 /* Forward declaration. */
410 static void assemble_insn
411 (const struct arc_opcode *, const expressionS *, int,
412 const struct arc_flags *, int, struct arc_insn *);
413
414 /* The selection of the machine type can come from different sources. This
415 enum is used to track how the selection was made in order to perform
416 error checks. */
417 enum mach_selection_type
418 {
419 MACH_SELECTION_NONE,
420 MACH_SELECTION_FROM_DEFAULT,
421 MACH_SELECTION_FROM_CPU_DIRECTIVE,
422 MACH_SELECTION_FROM_COMMAND_LINE
423 };
424
425 /* How the current machine type was selected. */
426 static enum mach_selection_type mach_selection_mode = MACH_SELECTION_NONE;
427
428 /* The hash table of instruction opcodes. */
429 static htab_t arc_opcode_hash;
430
431 /* The hash table of register symbols. */
432 static htab_t arc_reg_hash;
433
434 /* The hash table of aux register symbols. */
435 static htab_t arc_aux_hash;
436
437 /* The hash table of address types. */
438 static htab_t arc_addrtype_hash;
439
440 #define ARC_CPU_TYPE_A6xx(NAME,EXTRA) \
441 { #NAME, ARC_OPCODE_ARC600, bfd_mach_arc_arc600, \
442 E_ARC_MACH_ARC600, EXTRA}
443 #define ARC_CPU_TYPE_A7xx(NAME,EXTRA) \
444 { #NAME, ARC_OPCODE_ARC700, bfd_mach_arc_arc700, \
445 E_ARC_MACH_ARC700, EXTRA}
446 #define ARC_CPU_TYPE_AV2EM(NAME,EXTRA) \
447 { #NAME, ARC_OPCODE_ARCv2EM, bfd_mach_arc_arcv2, \
448 EF_ARC_CPU_ARCV2EM, EXTRA}
449 #define ARC_CPU_TYPE_AV2HS(NAME,EXTRA) \
450 { #NAME, ARC_OPCODE_ARCv2HS, bfd_mach_arc_arcv2, \
451 EF_ARC_CPU_ARCV2HS, EXTRA}
452 #define ARC_CPU_TYPE_NONE \
453 { 0, 0, 0, 0, 0 }
454
455 /* A table of CPU names and opcode sets. */
456 static const struct cpu_type
457 {
458 const char *name;
459 unsigned flags;
460 int mach;
461 unsigned eflags;
462 unsigned features;
463 }
464 cpu_types[] =
465 {
466 #include "elf/arc-cpu.def"
467 };
468
469 /* Information about the cpu/variant we're assembling for. */
470 static struct cpu_type selected_cpu = { 0, 0, 0, E_ARC_OSABI_CURRENT, 0 };
471
472 /* TRUE if current assembly code uses RF16 only registers. */
473 static bool rf16_only = true;
474
475 /* MPY option. */
476 static unsigned mpy_option = 0;
477
478 /* Use PIC. */
479 static unsigned pic_option = 0;
480
481 /* Use small data. */
482 static unsigned sda_option = 0;
483
484 /* Use TLS. */
485 static unsigned tls_option = 0;
486
487 /* Command line given features. */
488 static unsigned cl_features = 0;
489
490 /* Used by the arc_reloc_op table. Order is important. */
491 #define O_gotoff O_md1 /* @gotoff relocation. */
492 #define O_gotpc O_md2 /* @gotpc relocation. */
493 #define O_plt O_md3 /* @plt relocation. */
494 #define O_sda O_md4 /* @sda relocation. */
495 #define O_pcl O_md5 /* @pcl relocation. */
496 #define O_tlsgd O_md6 /* @tlsgd relocation. */
497 #define O_tlsie O_md7 /* @tlsie relocation. */
498 #define O_tpoff9 O_md8 /* @tpoff9 relocation. */
499 #define O_tpoff O_md9 /* @tpoff relocation. */
500 #define O_dtpoff9 O_md10 /* @dtpoff9 relocation. */
501 #define O_dtpoff O_md11 /* @dtpoff relocation. */
502 #define O_last O_dtpoff
503
504 /* Used to define a bracket as operand in tokens. */
505 #define O_bracket O_md32
506
507 /* Used to define a colon as an operand in tokens. */
508 #define O_colon O_md31
509
510 /* Used to define address types in nps400. */
511 #define O_addrtype O_md30
512
513 /* Dummy relocation, to be sorted out. */
514 #define DUMMY_RELOC_ARC_ENTRY (BFD_RELOC_UNUSED + 1)
515
516 #define USER_RELOC_P(R) ((R) >= O_gotoff && (R) <= O_last)
517
518 /* A table to map the spelling of a relocation operand into an appropriate
519 bfd_reloc_code_real_type type. The table is assumed to be ordered such
520 that op-O_literal indexes into it. */
521 #define ARC_RELOC_TABLE(op) \
522 (&arc_reloc_op[ ((!USER_RELOC_P (op)) \
523 ? (abort (), 0) \
524 : (int) (op) - (int) O_gotoff) ])
525
526 #define DEF(NAME, RELOC, REQ) \
527 { #NAME, sizeof (#NAME)-1, O_##NAME, RELOC, REQ}
528
529 static const struct arc_reloc_op_tag
530 {
531 /* String to lookup. */
532 const char *name;
533 /* Size of the string. */
534 size_t length;
535 /* Which operator to use. */
536 operatorT op;
537 extended_bfd_reloc_code_real_type reloc;
538 /* Allows complex relocation expression like identifier@reloc +
539 const. */
540 unsigned int complex_expr : 1;
541 }
542 arc_reloc_op[] =
543 {
544 DEF (gotoff, BFD_RELOC_ARC_GOTOFF, 1),
545 DEF (gotpc, BFD_RELOC_ARC_GOTPC32, 0),
546 DEF (plt, BFD_RELOC_ARC_PLT32, 0),
547 DEF (sda, DUMMY_RELOC_ARC_ENTRY, 1),
548 DEF (pcl, BFD_RELOC_ARC_PC32, 1),
549 DEF (tlsgd, BFD_RELOC_ARC_TLS_GD_GOT, 0),
550 DEF (tlsie, BFD_RELOC_ARC_TLS_IE_GOT, 0),
551 DEF (tpoff9, BFD_RELOC_ARC_TLS_LE_S9, 0),
552 DEF (tpoff, BFD_RELOC_ARC_TLS_LE_32, 1),
553 DEF (dtpoff9, BFD_RELOC_ARC_TLS_DTPOFF_S9, 0),
554 DEF (dtpoff, BFD_RELOC_ARC_TLS_DTPOFF, 1),
555 };
556
557 static const int arc_num_reloc_op
558 = sizeof (arc_reloc_op) / sizeof (*arc_reloc_op);
559
560 /* Structure for relaxable instruction that have to be swapped with a
561 smaller alternative instruction. */
562 struct arc_relaxable_ins
563 {
564 /* Mnemonic that should be checked. */
565 const char *mnemonic_r;
566
567 /* Operands that should be checked.
568 Indexes of operands from operand array. */
569 enum rlx_operand_type operands[6];
570
571 /* Flags that should be checked. */
572 unsigned flag_classes[5];
573
574 /* Mnemonic (smaller) alternative to be used later for relaxation. */
575 const char *mnemonic_alt;
576
577 /* Index of operand that generic relaxation has to check. */
578 unsigned opcheckidx;
579
580 /* Base subtype index used. */
581 enum arc_rlx_types subtype;
582 };
583
584 #define RELAX_TABLE_ENTRY(BITS, ISSIGNED, SIZE, NEXT) \
585 { (ISSIGNED) ? ((1 << ((BITS) - 1)) - 1) : ((1 << (BITS)) - 1), \
586 (ISSIGNED) ? -(1 << ((BITS) - 1)) : 0, \
587 (SIZE), \
588 (NEXT) } \
589
590 #define RELAX_TABLE_ENTRY_MAX(ISSIGNED, SIZE, NEXT) \
591 { (ISSIGNED) ? 0x7FFFFFFF : 0xFFFFFFFF, \
592 (ISSIGNED) ? -(0x7FFFFFFF) : 0, \
593 (SIZE), \
594 (NEXT) } \
595
596
597 /* ARC relaxation table. */
598 const relax_typeS md_relax_table[] =
599 {
600 /* Fake entry. */
601 {0, 0, 0, 0},
602
603 /* BL_S s13 ->
604 BL s25. */
605 RELAX_TABLE_ENTRY (13, 1, 2, ARC_RLX_BL),
606 RELAX_TABLE_ENTRY (25, 1, 4, ARC_RLX_NONE),
607
608 /* B_S s10 ->
609 B s25. */
610 RELAX_TABLE_ENTRY (10, 1, 2, ARC_RLX_B),
611 RELAX_TABLE_ENTRY (25, 1, 4, ARC_RLX_NONE),
612
613 /* ADD_S c,b, u3 ->
614 ADD<.f> a,b,u6 ->
615 ADD<.f> a,b,limm. */
616 RELAX_TABLE_ENTRY (3, 0, 2, ARC_RLX_ADD_U6),
617 RELAX_TABLE_ENTRY (6, 0, 4, ARC_RLX_ADD_LIMM),
618 RELAX_TABLE_ENTRY_MAX (0, 8, ARC_RLX_NONE),
619
620 /* LD_S a, [b, u7] ->
621 LD<zz><.x><.aa><.di> a, [b, s9] ->
622 LD<zz><.x><.aa><.di> a, [b, limm] */
623 RELAX_TABLE_ENTRY (7, 0, 2, ARC_RLX_LD_S9),
624 RELAX_TABLE_ENTRY (9, 1, 4, ARC_RLX_LD_LIMM),
625 RELAX_TABLE_ENTRY_MAX (1, 8, ARC_RLX_NONE),
626
627 /* MOV_S b, u8 ->
628 MOV<.f> b, s12 ->
629 MOV<.f> b, limm. */
630 RELAX_TABLE_ENTRY (8, 0, 2, ARC_RLX_MOV_S12),
631 RELAX_TABLE_ENTRY (8, 0, 4, ARC_RLX_MOV_LIMM),
632 RELAX_TABLE_ENTRY_MAX (0, 8, ARC_RLX_NONE),
633
634 /* SUB_S c, b, u3 ->
635 SUB<.f> a, b, u6 ->
636 SUB<.f> a, b, limm. */
637 RELAX_TABLE_ENTRY (3, 0, 2, ARC_RLX_SUB_U6),
638 RELAX_TABLE_ENTRY (6, 0, 4, ARC_RLX_SUB_LIMM),
639 RELAX_TABLE_ENTRY_MAX (0, 8, ARC_RLX_NONE),
640
641 /* MPY<.f> a, b, u6 ->
642 MPY<.f> a, b, limm. */
643 RELAX_TABLE_ENTRY (6, 0, 4, ARC_RLX_MPY_LIMM),
644 RELAX_TABLE_ENTRY_MAX (0, 8, ARC_RLX_NONE),
645
646 /* MOV<.f><.cc> b, u6 ->
647 MOV<.f><.cc> b, limm. */
648 RELAX_TABLE_ENTRY (6, 0, 4, ARC_RLX_MOV_RLIMM),
649 RELAX_TABLE_ENTRY_MAX (0, 8, ARC_RLX_NONE),
650
651 /* ADD<.f><.cc> b, b, u6 ->
652 ADD<.f><.cc> b, b, limm. */
653 RELAX_TABLE_ENTRY (6, 0, 4, ARC_RLX_ADD_RRLIMM),
654 RELAX_TABLE_ENTRY_MAX (0, 8, ARC_RLX_NONE),
655 };
656
657 /* Order of this table's entries matters! */
658 const struct arc_relaxable_ins arc_relaxable_insns[] =
659 {
660 { "bl", { IMMEDIATE }, { 0 }, "bl_s", 0, ARC_RLX_BL_S },
661 { "b", { IMMEDIATE }, { 0 }, "b_s", 0, ARC_RLX_B_S },
662 { "add", { REGISTER, REGISTER_DUP, IMMEDIATE }, { 5, 1, 0 }, "add",
663 2, ARC_RLX_ADD_RRU6},
664 { "add", { REGISTER_S, REGISTER_S, IMMEDIATE }, { 0 }, "add_s", 2,
665 ARC_RLX_ADD_U3 },
666 { "add", { REGISTER, REGISTER, IMMEDIATE }, { 5, 0 }, "add", 2,
667 ARC_RLX_ADD_U6 },
668 { "ld", { REGISTER_S, BRACKET, REGISTER_S, IMMEDIATE, BRACKET },
669 { 0 }, "ld_s", 3, ARC_RLX_LD_U7 },
670 { "ld", { REGISTER, BRACKET, REGISTER_NO_GP, IMMEDIATE, BRACKET },
671 { 11, 4, 14, 17, 0 }, "ld", 3, ARC_RLX_LD_S9 },
672 { "mov", { REGISTER_S, IMMEDIATE }, { 0 }, "mov_s", 1, ARC_RLX_MOV_U8 },
673 { "mov", { REGISTER, IMMEDIATE }, { 5, 0 }, "mov", 1, ARC_RLX_MOV_S12 },
674 { "mov", { REGISTER, IMMEDIATE }, { 5, 1, 0 },"mov", 1, ARC_RLX_MOV_RU6 },
675 { "sub", { REGISTER_S, REGISTER_S, IMMEDIATE }, { 0 }, "sub_s", 2,
676 ARC_RLX_SUB_U3 },
677 { "sub", { REGISTER, REGISTER, IMMEDIATE }, { 5, 0 }, "sub", 2,
678 ARC_RLX_SUB_U6 },
679 { "mpy", { REGISTER, REGISTER, IMMEDIATE }, { 5, 0 }, "mpy", 2,
680 ARC_RLX_MPY_U6 },
681 };
682
683 const unsigned arc_num_relaxable_ins = ARRAY_SIZE (arc_relaxable_insns);
684
685 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
686 symbolS * GOT_symbol = 0;
687
688 /* Set to TRUE when we assemble instructions. */
689 static bool assembling_insn = false;
690
691 /* List with attributes set explicitly. */
692 static bool attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
693
694 /* Functions implementation. */
695
696 /* Return a pointer to ARC_OPCODE_HASH_ENTRY that identifies all
697 ARC_OPCODE entries in ARC_OPCODE_HASH that match NAME, or NULL if there
698 are no matching entries in ARC_OPCODE_HASH. */
699
700 static const struct arc_opcode_hash_entry *
701 arc_find_opcode (const char *name)
702 {
703 const struct arc_opcode_hash_entry *entry;
704
705 entry = str_hash_find (arc_opcode_hash, name);
706 return entry;
707 }
708
709 /* Initialise the iterator ITER. */
710
711 static void
712 arc_opcode_hash_entry_iterator_init (struct arc_opcode_hash_entry_iterator *iter)
713 {
714 iter->index = 0;
715 iter->opcode = NULL;
716 }
717
718 /* Return the next ARC_OPCODE from ENTRY, using ITER to hold state between
719 calls to this function. Return NULL when all ARC_OPCODE entries have
720 been returned. */
721
722 static const struct arc_opcode *
723 arc_opcode_hash_entry_iterator_next (const struct arc_opcode_hash_entry *entry,
724 struct arc_opcode_hash_entry_iterator *iter)
725 {
726 if (iter->opcode == NULL && iter->index == 0)
727 {
728 gas_assert (entry->count > 0);
729 iter->opcode = entry->opcode[iter->index];
730 }
731 else if (iter->opcode != NULL)
732 {
733 const char *old_name = iter->opcode->name;
734
735 iter->opcode++;
736 if (iter->opcode->name == NULL
737 || strcmp (old_name, iter->opcode->name) != 0)
738 {
739 iter->index++;
740 if (iter->index == entry->count)
741 iter->opcode = NULL;
742 else
743 iter->opcode = entry->opcode[iter->index];
744 }
745 }
746
747 return iter->opcode;
748 }
749
750 /* Insert an opcode into opcode hash structure. */
751
752 static void
753 arc_insert_opcode (const struct arc_opcode *opcode)
754 {
755 const char *name;
756 struct arc_opcode_hash_entry *entry;
757 name = opcode->name;
758
759 entry = str_hash_find (arc_opcode_hash, name);
760 if (entry == NULL)
761 {
762 entry = XNEW (struct arc_opcode_hash_entry);
763 entry->count = 0;
764 entry->opcode = NULL;
765
766 if (str_hash_insert (arc_opcode_hash, name, entry, 0) != NULL)
767 as_fatal (_("duplicate %s"), name);
768 }
769
770 entry->opcode = XRESIZEVEC (const struct arc_opcode *, entry->opcode,
771 entry->count + 1);
772
773 entry->opcode[entry->count] = opcode;
774 entry->count++;
775 }
776
777 static void
778 arc_opcode_free (void *elt)
779 {
780 string_tuple_t *tuple = (string_tuple_t *) elt;
781 struct arc_opcode_hash_entry *entry = (void *) tuple->value;
782 free (entry->opcode);
783 free (entry);
784 free (tuple);
785 }
786
787 /* Like md_number_to_chars but for middle-endian values. The 4-byte limm
788 value, is encoded as 'middle-endian' for a little-endian target. This
789 function is used for regular 4, 6, and 8 byte instructions as well. */
790
791 static void
792 md_number_to_chars_midend (char *buf, unsigned long long val, int n)
793 {
794 switch (n)
795 {
796 case 2:
797 md_number_to_chars (buf, val, n);
798 break;
799 case 6:
800 md_number_to_chars (buf, (val & 0xffff00000000ull) >> 32, 2);
801 md_number_to_chars_midend (buf + 2, (val & 0xffffffff), 4);
802 break;
803 case 4:
804 md_number_to_chars (buf, (val & 0xffff0000) >> 16, 2);
805 md_number_to_chars (buf + 2, (val & 0xffff), 2);
806 break;
807 case 8:
808 md_number_to_chars_midend (buf, (val & 0xffffffff00000000ull) >> 32, 4);
809 md_number_to_chars_midend (buf + 4, (val & 0xffffffff), 4);
810 break;
811 default:
812 abort ();
813 }
814 }
815
816 /* Check if a feature is allowed for a specific CPU. */
817
818 static void
819 arc_check_feature (void)
820 {
821 unsigned i;
822
823 if (!selected_cpu.features
824 || !selected_cpu.name)
825 return;
826
827 for (i = 0; i < ARRAY_SIZE (feature_list); i++)
828 if ((selected_cpu.features & feature_list[i].feature)
829 && !(selected_cpu.flags & feature_list[i].cpus))
830 as_bad (_("invalid %s option for %s cpu"), feature_list[i].name,
831 selected_cpu.name);
832
833 for (i = 0; i < ARRAY_SIZE (conflict_list); i++)
834 if ((selected_cpu.features & conflict_list[i]) == conflict_list[i])
835 as_bad(_("conflicting ISA extension attributes."));
836 }
837
838 /* Select an appropriate entry from CPU_TYPES based on ARG and initialise
839 the relevant static global variables. Parameter SEL describes where
840 this selection originated from. */
841
842 static void
843 arc_select_cpu (const char *arg, enum mach_selection_type sel)
844 {
845 int i;
846 static struct cpu_type old_cpu = { 0, 0, 0, E_ARC_OSABI_CURRENT, 0 };
847
848 /* We should only set a default if we've not made a selection from some
849 other source. */
850 gas_assert (sel != MACH_SELECTION_FROM_DEFAULT
851 || mach_selection_mode == MACH_SELECTION_NONE);
852
853 if ((mach_selection_mode == MACH_SELECTION_FROM_CPU_DIRECTIVE)
854 && (sel == MACH_SELECTION_FROM_CPU_DIRECTIVE))
855 as_bad (_("Multiple .cpu directives found"));
856
857 /* Look for a matching entry in CPU_TYPES array. */
858 for (i = 0; cpu_types[i].name; ++i)
859 {
860 if (!strcasecmp (cpu_types[i].name, arg))
861 {
862 /* If a previous selection was made on the command line, then we
863 allow later selections on the command line to override earlier
864 ones. However, a selection from a '.cpu NAME' directive must
865 match the command line selection, or we give a warning. */
866 if (mach_selection_mode == MACH_SELECTION_FROM_COMMAND_LINE)
867 {
868 gas_assert (sel == MACH_SELECTION_FROM_COMMAND_LINE
869 || sel == MACH_SELECTION_FROM_CPU_DIRECTIVE);
870 if (sel == MACH_SELECTION_FROM_CPU_DIRECTIVE
871 && selected_cpu.mach != cpu_types[i].mach)
872 {
873 as_warn (_("Command-line value overrides \".cpu\" directive"));
874 }
875 return;
876 }
877 /* Initialise static global data about selected machine type. */
878 selected_cpu.flags = cpu_types[i].flags;
879 selected_cpu.name = cpu_types[i].name;
880 selected_cpu.features = cpu_types[i].features | cl_features;
881 selected_cpu.mach = cpu_types[i].mach;
882 selected_cpu.eflags = ((selected_cpu.eflags & ~EF_ARC_MACH_MSK)
883 | cpu_types[i].eflags);
884 break;
885 }
886 }
887
888 if (!cpu_types[i].name)
889 as_fatal (_("unknown architecture: %s\n"), arg);
890
891 /* Check if set features are compatible with the chosen CPU. */
892 arc_check_feature ();
893
894 /* If we change the CPU, we need to re-init the bfd. */
895 if (mach_selection_mode != MACH_SELECTION_NONE
896 && (old_cpu.mach != selected_cpu.mach))
897 {
898 bfd_find_target (arc_target_format, stdoutput);
899 if (! bfd_set_arch_mach (stdoutput, bfd_arch_arc, selected_cpu.mach))
900 as_warn (_("Could not set architecture and machine"));
901 }
902
903 mach_selection_mode = sel;
904 old_cpu = selected_cpu;
905 }
906
907 /* Here ends all the ARCompact extension instruction assembling
908 stuff. */
909
910 static void
911 arc_extra_reloc (int r_type)
912 {
913 char *sym_name, c;
914 symbolS *sym, *lab = NULL;
915
916 if (*input_line_pointer == '@')
917 input_line_pointer++;
918 c = get_symbol_name (&sym_name);
919 sym = symbol_find_or_make (sym_name);
920 restore_line_pointer (c);
921 if (c == ',' && r_type == BFD_RELOC_ARC_TLS_GD_LD)
922 {
923 ++input_line_pointer;
924 char *lab_name;
925 c = get_symbol_name (&lab_name);
926 lab = symbol_find_or_make (lab_name);
927 restore_line_pointer (c);
928 }
929
930 /* These relocations exist as a mechanism for the compiler to tell the
931 linker how to patch the code if the tls model is optimised. However,
932 the relocation itself does not require any space within the assembler
933 fragment, and so we pass a size of 0.
934
935 The lines that generate these relocations look like this:
936
937 .tls_gd_ld @.tdata`bl __tls_get_addr@plt
938
939 The '.tls_gd_ld @.tdata' is processed first and generates the
940 additional relocation, while the 'bl __tls_get_addr@plt' is processed
941 second and generates the additional branch.
942
943 It is possible that the additional relocation generated by the
944 '.tls_gd_ld @.tdata' will be attached at the very end of one fragment,
945 while the 'bl __tls_get_addr@plt' will be generated as the first thing
946 in the next fragment. This will be fine; both relocations will still
947 appear to be at the same address in the generated object file.
948 However, this only works as the additional relocation is generated
949 with size of 0 bytes. */
950 fixS *fixP
951 = fix_new (frag_now, /* Which frag? */
952 frag_now_fix (), /* Where in that frag? */
953 0, /* size: 1, 2, or 4 usually. */
954 sym, /* X_add_symbol. */
955 0, /* X_add_number. */
956 false, /* TRUE if PC-relative relocation. */
957 r_type /* Relocation type. */);
958 fixP->fx_subsy = lab;
959 }
960
961 static symbolS *
962 arc_lcomm_internal (int ignore ATTRIBUTE_UNUSED,
963 symbolS *symbolP, addressT size)
964 {
965 addressT align = 0;
966 SKIP_WHITESPACE ();
967
968 if (*input_line_pointer == ',')
969 {
970 align = parse_align (1);
971
972 if (align == (addressT) -1)
973 return NULL;
974 }
975 else
976 {
977 if (size >= 8)
978 align = 3;
979 else if (size >= 4)
980 align = 2;
981 else if (size >= 2)
982 align = 1;
983 else
984 align = 0;
985 }
986
987 bss_alloc (symbolP, size, align);
988 S_CLEAR_EXTERNAL (symbolP);
989
990 return symbolP;
991 }
992
993 static void
994 arc_lcomm (int ignore)
995 {
996 symbolS *symbolP = s_comm_internal (ignore, arc_lcomm_internal);
997
998 if (symbolP)
999 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
1000 }
1001
1002 /* Select the cpu we're assembling for. */
1003
1004 static void
1005 arc_option (int ignore ATTRIBUTE_UNUSED)
1006 {
1007 char c;
1008 char *cpu;
1009 const char *cpu_name;
1010
1011 c = get_symbol_name (&cpu);
1012
1013 cpu_name = cpu;
1014 if ((!strcmp ("ARC600", cpu))
1015 || (!strcmp ("ARC601", cpu))
1016 || (!strcmp ("A6", cpu)))
1017 cpu_name = "arc600";
1018 else if ((!strcmp ("ARC700", cpu))
1019 || (!strcmp ("A7", cpu)))
1020 cpu_name = "arc700";
1021 else if (!strcmp ("EM", cpu))
1022 cpu_name = "arcem";
1023 else if (!strcmp ("HS", cpu))
1024 cpu_name = "archs";
1025 else if (!strcmp ("NPS400", cpu))
1026 cpu_name = "nps400";
1027
1028 arc_select_cpu (cpu_name, MACH_SELECTION_FROM_CPU_DIRECTIVE);
1029
1030 restore_line_pointer (c);
1031 demand_empty_rest_of_line ();
1032 }
1033
1034 /* Smartly print an expression. */
1035
1036 static void
1037 debug_exp (expressionS *t)
1038 {
1039 const char *name ATTRIBUTE_UNUSED;
1040 const char *namemd ATTRIBUTE_UNUSED;
1041
1042 pr_debug ("debug_exp: ");
1043
1044 switch (t->X_op)
1045 {
1046 default: name = "unknown"; break;
1047 case O_illegal: name = "O_illegal"; break;
1048 case O_absent: name = "O_absent"; break;
1049 case O_constant: name = "O_constant"; break;
1050 case O_symbol: name = "O_symbol"; break;
1051 case O_symbol_rva: name = "O_symbol_rva"; break;
1052 case O_register: name = "O_register"; break;
1053 case O_big: name = "O_big"; break;
1054 case O_uminus: name = "O_uminus"; break;
1055 case O_bit_not: name = "O_bit_not"; break;
1056 case O_logical_not: name = "O_logical_not"; break;
1057 case O_multiply: name = "O_multiply"; break;
1058 case O_divide: name = "O_divide"; break;
1059 case O_modulus: name = "O_modulus"; break;
1060 case O_left_shift: name = "O_left_shift"; break;
1061 case O_right_shift: name = "O_right_shift"; break;
1062 case O_bit_inclusive_or: name = "O_bit_inclusive_or"; break;
1063 case O_bit_or_not: name = "O_bit_or_not"; break;
1064 case O_bit_exclusive_or: name = "O_bit_exclusive_or"; break;
1065 case O_bit_and: name = "O_bit_and"; break;
1066 case O_add: name = "O_add"; break;
1067 case O_subtract: name = "O_subtract"; break;
1068 case O_eq: name = "O_eq"; break;
1069 case O_ne: name = "O_ne"; break;
1070 case O_lt: name = "O_lt"; break;
1071 case O_le: name = "O_le"; break;
1072 case O_ge: name = "O_ge"; break;
1073 case O_gt: name = "O_gt"; break;
1074 case O_logical_and: name = "O_logical_and"; break;
1075 case O_logical_or: name = "O_logical_or"; break;
1076 case O_index: name = "O_index"; break;
1077 case O_bracket: name = "O_bracket"; break;
1078 case O_colon: name = "O_colon"; break;
1079 case O_addrtype: name = "O_addrtype"; break;
1080 }
1081
1082 switch (t->X_md)
1083 {
1084 default: namemd = "unknown"; break;
1085 case O_gotoff: namemd = "O_gotoff"; break;
1086 case O_gotpc: namemd = "O_gotpc"; break;
1087 case O_plt: namemd = "O_plt"; break;
1088 case O_sda: namemd = "O_sda"; break;
1089 case O_pcl: namemd = "O_pcl"; break;
1090 case O_tlsgd: namemd = "O_tlsgd"; break;
1091 case O_tlsie: namemd = "O_tlsie"; break;
1092 case O_tpoff9: namemd = "O_tpoff9"; break;
1093 case O_tpoff: namemd = "O_tpoff"; break;
1094 case O_dtpoff9: namemd = "O_dtpoff9"; break;
1095 case O_dtpoff: namemd = "O_dtpoff"; break;
1096 }
1097
1098 pr_debug ("%s (%s, %s, %d, %s)", name,
1099 (t->X_add_symbol) ? S_GET_NAME (t->X_add_symbol) : "--",
1100 (t->X_op_symbol) ? S_GET_NAME (t->X_op_symbol) : "--",
1101 (int) t->X_add_number,
1102 (t->X_md) ? namemd : "--");
1103 pr_debug ("\n");
1104 fflush (stderr);
1105 }
1106
1107 /* Helper for parsing an argument, used for sorting out the relocation
1108 type. */
1109
1110 static void
1111 parse_reloc_symbol (expressionS *resultP)
1112 {
1113 char *reloc_name, c, *sym_name;
1114 size_t len;
1115 int i;
1116 const struct arc_reloc_op_tag *r;
1117 expressionS right;
1118 symbolS *base;
1119
1120 /* A relocation operand has the following form
1121 @identifier@relocation_type. The identifier is already in
1122 tok! */
1123 if (resultP->X_op != O_symbol)
1124 {
1125 as_bad (_("No valid label relocation operand"));
1126 resultP->X_op = O_illegal;
1127 return;
1128 }
1129
1130 /* Parse @relocation_type. */
1131 input_line_pointer++;
1132 c = get_symbol_name (&reloc_name);
1133 len = input_line_pointer - reloc_name;
1134 if (len == 0)
1135 {
1136 as_bad (_("No relocation operand"));
1137 resultP->X_op = O_illegal;
1138 return;
1139 }
1140
1141 /* Go through known relocation and try to find a match. */
1142 r = &arc_reloc_op[0];
1143 for (i = arc_num_reloc_op - 1; i >= 0; i--, r++)
1144 if (len == r->length
1145 && memcmp (reloc_name, r->name, len) == 0)
1146 break;
1147 if (i < 0)
1148 {
1149 as_bad (_("Unknown relocation operand: @%s"), reloc_name);
1150 resultP->X_op = O_illegal;
1151 return;
1152 }
1153
1154 *input_line_pointer = c;
1155 SKIP_WHITESPACE_AFTER_NAME ();
1156 /* Extra check for TLS: base. */
1157 if (*input_line_pointer == '@')
1158 {
1159 if (resultP->X_op_symbol != NULL
1160 || resultP->X_op != O_symbol)
1161 {
1162 as_bad (_("Unable to parse TLS base: %s"),
1163 input_line_pointer);
1164 resultP->X_op = O_illegal;
1165 return;
1166 }
1167 input_line_pointer++;
1168 c = get_symbol_name (&sym_name);
1169 base = symbol_find_or_make (sym_name);
1170 resultP->X_op = O_subtract;
1171 resultP->X_op_symbol = base;
1172 restore_line_pointer (c);
1173 right.X_add_number = 0;
1174 }
1175
1176 if ((*input_line_pointer != '+')
1177 && (*input_line_pointer != '-'))
1178 right.X_add_number = 0;
1179 else
1180 {
1181 /* Parse the constant of a complex relocation expression
1182 like @identifier@reloc +/- const. */
1183 if (! r->complex_expr)
1184 {
1185 as_bad (_("@%s is not a complex relocation."), r->name);
1186 resultP->X_op = O_illegal;
1187 return;
1188 }
1189 expression (&right);
1190 if (right.X_op != O_constant)
1191 {
1192 as_bad (_("Bad expression: @%s + %s."),
1193 r->name, input_line_pointer);
1194 resultP->X_op = O_illegal;
1195 return;
1196 }
1197 }
1198
1199 resultP->X_md = r->op;
1200 resultP->X_add_number = right.X_add_number;
1201 }
1202
1203 /* Parse the arguments to an opcode. */
1204
1205 static int
1206 tokenize_arguments (char *str,
1207 expressionS *tok,
1208 int ntok)
1209 {
1210 char *old_input_line_pointer;
1211 bool saw_comma = false;
1212 bool saw_arg = false;
1213 int brk_lvl = 0;
1214 int num_args = 0;
1215
1216 memset (tok, 0, sizeof (*tok) * ntok);
1217
1218 /* Save and restore input_line_pointer around this function. */
1219 old_input_line_pointer = input_line_pointer;
1220 input_line_pointer = str;
1221
1222 while (*input_line_pointer)
1223 {
1224 SKIP_WHITESPACE ();
1225 switch (*input_line_pointer)
1226 {
1227 case '\0':
1228 goto fini;
1229
1230 case ',':
1231 input_line_pointer++;
1232 if (saw_comma || !saw_arg)
1233 goto err;
1234 saw_comma = true;
1235 break;
1236
1237 case '}':
1238 case ']':
1239 ++input_line_pointer;
1240 --brk_lvl;
1241 if (!saw_arg || num_args == ntok)
1242 goto err;
1243 tok->X_op = O_bracket;
1244 ++tok;
1245 ++num_args;
1246 break;
1247
1248 case '{':
1249 case '[':
1250 input_line_pointer++;
1251 if (brk_lvl || num_args == ntok)
1252 goto err;
1253 ++brk_lvl;
1254 tok->X_op = O_bracket;
1255 ++tok;
1256 ++num_args;
1257 break;
1258
1259 case ':':
1260 input_line_pointer++;
1261 if (!saw_arg || num_args == ntok)
1262 goto err;
1263 tok->X_op = O_colon;
1264 saw_arg = false;
1265 ++tok;
1266 ++num_args;
1267 break;
1268
1269 case '@':
1270 /* We have labels, function names and relocations, all
1271 starting with @ symbol. Sort them out. */
1272 if ((saw_arg && !saw_comma) || num_args == ntok)
1273 goto err;
1274
1275 /* Parse @label. */
1276 input_line_pointer++;
1277 tok->X_op = O_symbol;
1278 tok->X_md = O_absent;
1279 expression (tok);
1280
1281 if (*input_line_pointer == '@')
1282 parse_reloc_symbol (tok);
1283
1284 debug_exp (tok);
1285
1286 if (tok->X_op == O_illegal
1287 || tok->X_op == O_absent
1288 || num_args == ntok)
1289 goto err;
1290
1291 saw_comma = false;
1292 saw_arg = true;
1293 tok++;
1294 num_args++;
1295 break;
1296
1297 case '%':
1298 /* Can be a register. */
1299 ++input_line_pointer;
1300 /* Fall through. */
1301 default:
1302
1303 if ((saw_arg && !saw_comma) || num_args == ntok)
1304 goto err;
1305
1306 tok->X_op = O_absent;
1307 tok->X_md = O_absent;
1308 expression (tok);
1309
1310 /* Legacy: There are cases when we have
1311 identifier@relocation_type, if it is the case parse the
1312 relocation type as well. */
1313 if (*input_line_pointer == '@')
1314 parse_reloc_symbol (tok);
1315
1316 debug_exp (tok);
1317
1318 if (tok->X_op == O_illegal
1319 || tok->X_op == O_absent
1320 || num_args == ntok)
1321 goto err;
1322
1323 saw_comma = false;
1324 saw_arg = true;
1325 tok++;
1326 num_args++;
1327 break;
1328 }
1329 }
1330
1331 fini:
1332 if (saw_comma || brk_lvl)
1333 goto err;
1334 input_line_pointer = old_input_line_pointer;
1335
1336 return num_args;
1337
1338 err:
1339 if (brk_lvl)
1340 as_bad (_("Brackets in operand field incorrect"));
1341 else if (saw_comma)
1342 as_bad (_("extra comma"));
1343 else if (!saw_arg)
1344 as_bad (_("missing argument"));
1345 else
1346 as_bad (_("missing comma or colon"));
1347 input_line_pointer = old_input_line_pointer;
1348 return -1;
1349 }
1350
1351 /* Parse the flags to a structure. */
1352
1353 static int
1354 tokenize_flags (const char *str,
1355 struct arc_flags flags[],
1356 int nflg)
1357 {
1358 char *old_input_line_pointer;
1359 bool saw_flg = false;
1360 bool saw_dot = false;
1361 int num_flags = 0;
1362 size_t flgnamelen;
1363
1364 memset (flags, 0, sizeof (*flags) * nflg);
1365
1366 /* Save and restore input_line_pointer around this function. */
1367 old_input_line_pointer = input_line_pointer;
1368 input_line_pointer = (char *) str;
1369
1370 while (*input_line_pointer)
1371 {
1372 switch (*input_line_pointer)
1373 {
1374 case ' ':
1375 case '\0':
1376 goto fini;
1377
1378 case '.':
1379 input_line_pointer++;
1380 if (saw_dot)
1381 goto err;
1382 saw_dot = true;
1383 saw_flg = false;
1384 break;
1385
1386 default:
1387 if (saw_flg && !saw_dot)
1388 goto err;
1389
1390 if (num_flags >= nflg)
1391 goto err;
1392
1393 flgnamelen = strspn (input_line_pointer,
1394 "abcdefghijklmnopqrstuvwxyz0123456789");
1395 if (flgnamelen > MAX_FLAG_NAME_LENGTH)
1396 goto err;
1397
1398 memcpy (flags->name, input_line_pointer, flgnamelen);
1399
1400 input_line_pointer += flgnamelen;
1401 flags++;
1402 saw_dot = false;
1403 saw_flg = true;
1404 num_flags++;
1405 break;
1406 }
1407 }
1408
1409 fini:
1410 input_line_pointer = old_input_line_pointer;
1411 return num_flags;
1412
1413 err:
1414 if (saw_dot)
1415 as_bad (_("extra dot"));
1416 else if (!saw_flg)
1417 as_bad (_("unrecognized flag"));
1418 else
1419 as_bad (_("failed to parse flags"));
1420 input_line_pointer = old_input_line_pointer;
1421 return -1;
1422 }
1423
1424 /* Apply the fixups in order. */
1425
1426 static void
1427 apply_fixups (struct arc_insn *insn, fragS *fragP, int fix)
1428 {
1429 int i;
1430
1431 for (i = 0; i < insn->nfixups; i++)
1432 {
1433 struct arc_fixup *fixup = &insn->fixups[i];
1434 int size, pcrel, offset = 0;
1435
1436 /* FIXME! the reloc size is wrong in the BFD file.
1437 When it is fixed please delete me. */
1438 size = ((insn->len == 2) && !fixup->islong) ? 2 : 4;
1439
1440 if (fixup->islong)
1441 offset = insn->len;
1442
1443 /* Some fixups are only used internally, thus no howto. */
1444 if ((int) fixup->reloc == 0)
1445 as_fatal (_("Unhandled reloc type"));
1446
1447 if ((int) fixup->reloc < 0)
1448 {
1449 /* FIXME! the reloc size is wrong in the BFD file.
1450 When it is fixed please enable me.
1451 size = ((insn->len == 2 && !fixup->islong) ? 2 : 4; */
1452 pcrel = fixup->pcrel;
1453 }
1454 else
1455 {
1456 reloc_howto_type *reloc_howto =
1457 bfd_reloc_type_lookup (stdoutput,
1458 (bfd_reloc_code_real_type) fixup->reloc);
1459 gas_assert (reloc_howto);
1460
1461 /* FIXME! the reloc size is wrong in the BFD file.
1462 When it is fixed please enable me.
1463 size = bfd_get_reloc_size (reloc_howto); */
1464 pcrel = reloc_howto->pc_relative;
1465 }
1466
1467 pr_debug ("%s:%d: apply_fixups: new %s fixup (PCrel:%s) of size %d @ \
1468 offset %d + %d\n",
1469 fragP->fr_file, fragP->fr_line,
1470 (fixup->reloc < 0) ? "Internal" :
1471 bfd_get_reloc_code_name (fixup->reloc),
1472 pcrel ? "Y" : "N",
1473 size, fix, offset);
1474 fix_new_exp (fragP, fix + offset,
1475 size, &fixup->exp, pcrel, fixup->reloc);
1476
1477 /* Check for ZOLs, and update symbol info if any. */
1478 if (LP_INSN (insn->insn))
1479 {
1480 gas_assert (fixup->exp.X_add_symbol);
1481 ARC_SET_FLAG (fixup->exp.X_add_symbol, ARC_FLAG_ZOL);
1482 }
1483 }
1484 }
1485
1486 /* Actually output an instruction with its fixup. */
1487
1488 static void
1489 emit_insn0 (struct arc_insn *insn, char *where, bool relax)
1490 {
1491 char *f = where;
1492 size_t total_len;
1493
1494 pr_debug ("Emit insn : 0x%llx\n", insn->insn);
1495 pr_debug ("\tLength : %d\n", insn->len);
1496 pr_debug ("\tLong imm: 0x%lx\n", insn->limm);
1497
1498 /* Write out the instruction. */
1499 total_len = insn->len + (insn->has_limm ? 4 : 0);
1500 if (!relax)
1501 f = frag_more (total_len);
1502
1503 md_number_to_chars_midend(f, insn->insn, insn->len);
1504
1505 if (insn->has_limm)
1506 md_number_to_chars_midend (f + insn->len, insn->limm, 4);
1507 dwarf2_emit_insn (total_len);
1508
1509 if (!relax)
1510 apply_fixups (insn, frag_now, (f - frag_now->fr_literal));
1511 }
1512
1513 static void
1514 emit_insn1 (struct arc_insn *insn)
1515 {
1516 /* How frag_var's args are currently configured:
1517 - rs_machine_dependent, to dictate it's a relaxation frag.
1518 - FRAG_MAX_GROWTH, maximum size of instruction
1519 - 0, variable size that might grow...unused by generic relaxation.
1520 - frag_now->fr_subtype, fr_subtype starting value, set previously.
1521 - s, opand expression.
1522 - 0, offset but it's unused.
1523 - 0, opcode but it's unused. */
1524 symbolS *s = make_expr_symbol (&insn->fixups[0].exp);
1525 frag_now->tc_frag_data.pcrel = insn->fixups[0].pcrel;
1526
1527 if (frag_room () < FRAG_MAX_GROWTH)
1528 {
1529 /* Handle differently when frag literal memory is exhausted.
1530 This is used because when there's not enough memory left in
1531 the current frag, a new frag is created and the information
1532 we put into frag_now->tc_frag_data is disregarded. */
1533
1534 struct arc_relax_type relax_info_copy;
1535 relax_substateT subtype = frag_now->fr_subtype;
1536
1537 memcpy (&relax_info_copy, &frag_now->tc_frag_data,
1538 sizeof (struct arc_relax_type));
1539
1540 frag_wane (frag_now);
1541 frag_grow (FRAG_MAX_GROWTH);
1542
1543 memcpy (&frag_now->tc_frag_data, &relax_info_copy,
1544 sizeof (struct arc_relax_type));
1545
1546 frag_var (rs_machine_dependent, FRAG_MAX_GROWTH, 0,
1547 subtype, s, 0, 0);
1548 }
1549 else
1550 frag_var (rs_machine_dependent, FRAG_MAX_GROWTH, 0,
1551 frag_now->fr_subtype, s, 0, 0);
1552 }
1553
1554 static void
1555 emit_insn (struct arc_insn *insn)
1556 {
1557 if (insn->relax)
1558 emit_insn1 (insn);
1559 else
1560 emit_insn0 (insn, NULL, false);
1561 }
1562
1563 /* Check whether a symbol involves a register. */
1564
1565 static bool
1566 contains_register (symbolS *sym)
1567 {
1568 if (sym)
1569 {
1570 expressionS *ex = symbol_get_value_expression (sym);
1571
1572 return ((O_register == ex->X_op)
1573 && !contains_register (ex->X_add_symbol)
1574 && !contains_register (ex->X_op_symbol));
1575 }
1576
1577 return false;
1578 }
1579
1580 /* Returns the register number within a symbol. */
1581
1582 static int
1583 get_register (symbolS *sym)
1584 {
1585 if (!contains_register (sym))
1586 return -1;
1587
1588 expressionS *ex = symbol_get_value_expression (sym);
1589 return regno (ex->X_add_number);
1590 }
1591
1592 /* Return true if a RELOC is generic. A generic reloc is PC-rel of a
1593 simple ME relocation (e.g. RELOC_ARC_32_ME, BFD_RELOC_ARC_PC32. */
1594
1595 static bool
1596 generic_reloc_p (extended_bfd_reloc_code_real_type reloc)
1597 {
1598 if (!reloc)
1599 return false;
1600
1601 switch (reloc)
1602 {
1603 case BFD_RELOC_ARC_SDA_LDST:
1604 case BFD_RELOC_ARC_SDA_LDST1:
1605 case BFD_RELOC_ARC_SDA_LDST2:
1606 case BFD_RELOC_ARC_SDA16_LD:
1607 case BFD_RELOC_ARC_SDA16_LD1:
1608 case BFD_RELOC_ARC_SDA16_LD2:
1609 case BFD_RELOC_ARC_SDA16_ST2:
1610 case BFD_RELOC_ARC_SDA32_ME:
1611 return false;
1612 default:
1613 return true;
1614 }
1615 }
1616
1617 /* Allocates a tok entry. */
1618
1619 static int
1620 allocate_tok (expressionS *tok, int ntok, int cidx)
1621 {
1622 if (ntok > MAX_INSN_ARGS - 2)
1623 return 0; /* No space left. */
1624
1625 if (cidx > ntok)
1626 return 0; /* Incorrect args. */
1627
1628 memcpy (&tok[ntok+1], &tok[ntok], sizeof (*tok));
1629
1630 if (cidx == ntok)
1631 return 1; /* Success. */
1632 return allocate_tok (tok, ntok - 1, cidx);
1633 }
1634
1635 /* Check if an particular ARC feature is enabled. */
1636
1637 static bool
1638 check_cpu_feature (insn_subclass_t sc)
1639 {
1640 if (is_code_density_p (sc) && !(selected_cpu.features & CD))
1641 return false;
1642
1643 if (is_spfp_p (sc) && !(selected_cpu.features & SPX))
1644 return false;
1645
1646 if (is_dpfp_p (sc) && !(selected_cpu.features & DPX))
1647 return false;
1648
1649 if (is_fpuda_p (sc) && !(selected_cpu.features & DPA))
1650 return false;
1651
1652 if (is_nps400_p (sc) && !(selected_cpu.features & NPS400))
1653 return false;
1654
1655 return true;
1656 }
1657
1658 /* Parse the flags described by FIRST_PFLAG and NFLGS against the flag
1659 operands in OPCODE. Stores the matching OPCODES into the FIRST_PFLAG
1660 array and returns TRUE if the flag operands all match, otherwise,
1661 returns FALSE, in which case the FIRST_PFLAG array may have been
1662 modified. */
1663
1664 static bool
1665 parse_opcode_flags (const struct arc_opcode *opcode,
1666 int nflgs,
1667 struct arc_flags *first_pflag)
1668 {
1669 int lnflg, i;
1670 const unsigned char *flgidx;
1671
1672 lnflg = nflgs;
1673 for (i = 0; i < nflgs; i++)
1674 first_pflag[i].flgp = NULL;
1675
1676 /* Check the flags. Iterate over the valid flag classes. */
1677 for (flgidx = opcode->flags; *flgidx; ++flgidx)
1678 {
1679 /* Get a valid flag class. */
1680 const struct arc_flag_class *cl_flags = &arc_flag_classes[*flgidx];
1681 const unsigned *flgopridx;
1682 int cl_matches = 0;
1683 struct arc_flags *pflag = NULL;
1684
1685 /* Check if opcode has implicit flag classes. */
1686 if (cl_flags->flag_class & F_CLASS_IMPLICIT)
1687 continue;
1688
1689 /* Check for extension conditional codes. */
1690 if (ext_condcode.arc_ext_condcode
1691 && cl_flags->flag_class & F_CLASS_EXTEND)
1692 {
1693 struct arc_flag_operand *pf = ext_condcode.arc_ext_condcode;
1694 while (pf->name)
1695 {
1696 pflag = first_pflag;
1697 for (i = 0; i < nflgs; i++, pflag++)
1698 {
1699 if (!strcmp (pf->name, pflag->name))
1700 {
1701 if (pflag->flgp != NULL)
1702 return false;
1703 /* Found it. */
1704 cl_matches++;
1705 pflag->flgp = pf;
1706 lnflg--;
1707 break;
1708 }
1709 }
1710 pf++;
1711 }
1712 }
1713
1714 for (flgopridx = cl_flags->flags; *flgopridx; ++flgopridx)
1715 {
1716 const struct arc_flag_operand *flg_operand;
1717
1718 pflag = first_pflag;
1719 flg_operand = &arc_flag_operands[*flgopridx];
1720 for (i = 0; i < nflgs; i++, pflag++)
1721 {
1722 /* Match against the parsed flags. */
1723 if (!strcmp (flg_operand->name, pflag->name))
1724 {
1725 if (pflag->flgp != NULL)
1726 return false;
1727 cl_matches++;
1728 pflag->flgp = flg_operand;
1729 lnflg--;
1730 break; /* goto next flag class and parsed flag. */
1731 }
1732 }
1733 }
1734
1735 if ((cl_flags->flag_class & F_CLASS_REQUIRED) && cl_matches == 0)
1736 return false;
1737 if ((cl_flags->flag_class & F_CLASS_OPTIONAL) && cl_matches > 1)
1738 return false;
1739 }
1740
1741 /* Did I check all the parsed flags? */
1742 return lnflg == 0;
1743 }
1744
1745
1746 /* Search forward through all variants of an opcode looking for a
1747 syntax match. */
1748
1749 static const struct arc_opcode *
1750 find_opcode_match (const struct arc_opcode_hash_entry *entry,
1751 expressionS *tok,
1752 int *pntok,
1753 struct arc_flags *first_pflag,
1754 int nflgs,
1755 int *pcpumatch,
1756 const char **errmsg)
1757 {
1758 const struct arc_opcode *opcode;
1759 struct arc_opcode_hash_entry_iterator iter;
1760 int ntok = *pntok;
1761 int got_cpu_match = 0;
1762 expressionS bktok[MAX_INSN_ARGS];
1763 int bkntok, maxerridx = 0;
1764 expressionS emptyE;
1765 const char *tmpmsg = NULL;
1766
1767 arc_opcode_hash_entry_iterator_init (&iter);
1768 memset (&emptyE, 0, sizeof (emptyE));
1769 memcpy (bktok, tok, MAX_INSN_ARGS * sizeof (*tok));
1770 bkntok = ntok;
1771
1772 for (opcode = arc_opcode_hash_entry_iterator_next (entry, &iter);
1773 opcode != NULL;
1774 opcode = arc_opcode_hash_entry_iterator_next (entry, &iter))
1775 {
1776 const unsigned char *opidx;
1777 int tokidx = 0;
1778 const expressionS *t = &emptyE;
1779
1780 pr_debug ("%s:%d: find_opcode_match: trying opcode 0x%08llX ",
1781 frag_now->fr_file, frag_now->fr_line, opcode->opcode);
1782
1783 /* Don't match opcodes that don't exist on this
1784 architecture. */
1785 if (!(opcode->cpu & selected_cpu.flags))
1786 goto match_failed;
1787
1788 if (!check_cpu_feature (opcode->subclass))
1789 goto match_failed;
1790
1791 got_cpu_match = 1;
1792 pr_debug ("cpu ");
1793
1794 /* Check the operands. */
1795 for (opidx = opcode->operands; *opidx; ++opidx)
1796 {
1797 const struct arc_operand *operand = &arc_operands[*opidx];
1798
1799 /* Only take input from real operands. */
1800 if (ARC_OPERAND_IS_FAKE (operand))
1801 continue;
1802
1803 /* When we expect input, make sure we have it. */
1804 if (tokidx >= ntok)
1805 goto match_failed;
1806
1807 /* Match operand type with expression type. */
1808 switch (operand->flags & ARC_OPERAND_TYPECHECK_MASK)
1809 {
1810 case ARC_OPERAND_ADDRTYPE:
1811 {
1812 tmpmsg = NULL;
1813
1814 /* Check to be an address type. */
1815 if (tok[tokidx].X_op != O_addrtype)
1816 goto match_failed;
1817
1818 /* All address type operands need to have an insert
1819 method in order to check that we have the correct
1820 address type. */
1821 gas_assert (operand->insert != NULL);
1822 (*operand->insert) (0, tok[tokidx].X_add_number,
1823 &tmpmsg);
1824 if (tmpmsg != NULL)
1825 goto match_failed;
1826 }
1827 break;
1828
1829 case ARC_OPERAND_IR:
1830 /* Check to be a register. */
1831 if ((tok[tokidx].X_op != O_register
1832 || !is_ir_num (tok[tokidx].X_add_number))
1833 && !(operand->flags & ARC_OPERAND_IGNORE))
1834 goto match_failed;
1835
1836 /* If expect duplicate, make sure it is duplicate. */
1837 if (operand->flags & ARC_OPERAND_DUPLICATE)
1838 {
1839 /* Check for duplicate. */
1840 if (t->X_op != O_register
1841 || !is_ir_num (t->X_add_number)
1842 || (regno (t->X_add_number) !=
1843 regno (tok[tokidx].X_add_number)))
1844 goto match_failed;
1845 }
1846
1847 /* Special handling? */
1848 if (operand->insert)
1849 {
1850 tmpmsg = NULL;
1851 (*operand->insert)(0,
1852 regno (tok[tokidx].X_add_number),
1853 &tmpmsg);
1854 if (tmpmsg)
1855 {
1856 if (operand->flags & ARC_OPERAND_IGNORE)
1857 {
1858 /* Missing argument, create one. */
1859 if (!allocate_tok (tok, ntok - 1, tokidx))
1860 goto match_failed;
1861
1862 tok[tokidx].X_op = O_absent;
1863 ++ntok;
1864 }
1865 else
1866 goto match_failed;
1867 }
1868 }
1869
1870 t = &tok[tokidx];
1871 break;
1872
1873 case ARC_OPERAND_BRAKET:
1874 /* Check if bracket is also in opcode table as
1875 operand. */
1876 if (tok[tokidx].X_op != O_bracket)
1877 goto match_failed;
1878 break;
1879
1880 case ARC_OPERAND_COLON:
1881 /* Check if colon is also in opcode table as operand. */
1882 if (tok[tokidx].X_op != O_colon)
1883 goto match_failed;
1884 break;
1885
1886 case ARC_OPERAND_LIMM:
1887 case ARC_OPERAND_SIGNED:
1888 case ARC_OPERAND_UNSIGNED:
1889 switch (tok[tokidx].X_op)
1890 {
1891 case O_illegal:
1892 case O_absent:
1893 case O_register:
1894 goto match_failed;
1895
1896 case O_bracket:
1897 /* Got an (too) early bracket, check if it is an
1898 ignored operand. N.B. This procedure works only
1899 when bracket is the last operand! */
1900 if (!(operand->flags & ARC_OPERAND_IGNORE))
1901 goto match_failed;
1902 /* Insert the missing operand. */
1903 if (!allocate_tok (tok, ntok - 1, tokidx))
1904 goto match_failed;
1905
1906 tok[tokidx].X_op = O_absent;
1907 ++ntok;
1908 break;
1909
1910 case O_symbol:
1911 {
1912 const char *p;
1913 char *tmpp, *pp;
1914 const struct arc_aux_reg *auxr;
1915
1916 if (opcode->insn_class != AUXREG)
1917 goto de_fault;
1918 p = S_GET_NAME (tok[tokidx].X_add_symbol);
1919
1920 /* For compatibility reasons, an aux register can
1921 be spelled with upper or lower case
1922 letters. */
1923 tmpp = strdup (p);
1924 for (pp = tmpp; *pp; ++pp) *pp = TOLOWER (*pp);
1925
1926 auxr = str_hash_find (arc_aux_hash, tmpp);
1927 if (auxr)
1928 {
1929 /* We modify the token array here, safe in the
1930 knowledge, that if this was the wrong
1931 choice then the original contents will be
1932 restored from BKTOK. */
1933 tok[tokidx].X_op = O_constant;
1934 tok[tokidx].X_add_number = auxr->address;
1935 ARC_SET_FLAG (tok[tokidx].X_add_symbol, ARC_FLAG_AUX);
1936 }
1937 free (tmpp);
1938
1939 if (tok[tokidx].X_op != O_constant)
1940 goto de_fault;
1941 }
1942 /* Fall through. */
1943 case O_constant:
1944 /* Check the range. */
1945 if (operand->bits != 32
1946 && !(operand->flags & ARC_OPERAND_NCHK))
1947 {
1948 offsetT min, max, val;
1949 val = tok[tokidx].X_add_number;
1950
1951 if (operand->flags & ARC_OPERAND_SIGNED)
1952 {
1953 max = (1 << (operand->bits - 1)) - 1;
1954 min = -(1 << (operand->bits - 1));
1955 }
1956 else
1957 {
1958 max = (1 << operand->bits) - 1;
1959 min = 0;
1960 }
1961
1962 if (val < min || val > max)
1963 {
1964 tmpmsg = _("immediate is out of bounds");
1965 goto match_failed;
1966 }
1967
1968 /* Check alignments. */
1969 if ((operand->flags & ARC_OPERAND_ALIGNED32)
1970 && (val & 0x03))
1971 {
1972 tmpmsg = _("immediate is not 32bit aligned");
1973 goto match_failed;
1974 }
1975
1976 if ((operand->flags & ARC_OPERAND_ALIGNED16)
1977 && (val & 0x01))
1978 {
1979 tmpmsg = _("immediate is not 16bit aligned");
1980 goto match_failed;
1981 }
1982 }
1983 else if (operand->flags & ARC_OPERAND_NCHK)
1984 {
1985 if (operand->insert)
1986 {
1987 tmpmsg = NULL;
1988 (*operand->insert)(0,
1989 tok[tokidx].X_add_number,
1990 &tmpmsg);
1991 if (tmpmsg)
1992 goto match_failed;
1993 }
1994 else if (!(operand->flags & ARC_OPERAND_IGNORE))
1995 goto match_failed;
1996 }
1997 break;
1998
1999 case O_subtract:
2000 /* Check if it is register range. */
2001 if ((tok[tokidx].X_add_number == 0)
2002 && contains_register (tok[tokidx].X_add_symbol)
2003 && contains_register (tok[tokidx].X_op_symbol))
2004 {
2005 int regs;
2006
2007 regs = get_register (tok[tokidx].X_add_symbol);
2008 regs <<= 16;
2009 regs |= get_register (tok[tokidx].X_op_symbol);
2010 if (operand->insert)
2011 {
2012 tmpmsg = NULL;
2013 (*operand->insert)(0,
2014 regs,
2015 &tmpmsg);
2016 if (tmpmsg)
2017 goto match_failed;
2018 }
2019 else
2020 goto match_failed;
2021 break;
2022 }
2023 /* Fall through. */
2024 default:
2025 de_fault:
2026 if (operand->default_reloc == 0)
2027 goto match_failed; /* The operand needs relocation. */
2028
2029 /* Relocs requiring long immediate. FIXME! make it
2030 generic and move it to a function. */
2031 switch (tok[tokidx].X_md)
2032 {
2033 case O_gotoff:
2034 case O_gotpc:
2035 case O_pcl:
2036 case O_tpoff:
2037 case O_dtpoff:
2038 case O_tlsgd:
2039 case O_tlsie:
2040 if (!(operand->flags & ARC_OPERAND_LIMM))
2041 goto match_failed;
2042 /* Fall through. */
2043 case O_absent:
2044 if (!generic_reloc_p (operand->default_reloc))
2045 goto match_failed;
2046 break;
2047 default:
2048 break;
2049 }
2050 break;
2051 }
2052 /* If expect duplicate, make sure it is duplicate. */
2053 if (operand->flags & ARC_OPERAND_DUPLICATE)
2054 {
2055 if (t->X_op == O_illegal
2056 || t->X_op == O_absent
2057 || t->X_op == O_register
2058 || (t->X_add_number != tok[tokidx].X_add_number))
2059 {
2060 tmpmsg = _("operand is not duplicate of the "
2061 "previous one");
2062 goto match_failed;
2063 }
2064 }
2065 t = &tok[tokidx];
2066 break;
2067
2068 default:
2069 /* Everything else should have been fake. */
2070 abort ();
2071 }
2072
2073 ++tokidx;
2074 }
2075 pr_debug ("opr ");
2076
2077 /* Setup ready for flag parsing. */
2078 if (!parse_opcode_flags (opcode, nflgs, first_pflag))
2079 {
2080 tmpmsg = _("flag mismatch");
2081 goto match_failed;
2082 }
2083
2084 pr_debug ("flg");
2085 /* Possible match -- did we use all of our input? */
2086 if (tokidx == ntok)
2087 {
2088 *pntok = ntok;
2089 pr_debug ("\n");
2090 return opcode;
2091 }
2092 tmpmsg = _("too many arguments");
2093
2094 match_failed:;
2095 pr_debug ("\n");
2096 /* Restore the original parameters. */
2097 memcpy (tok, bktok, MAX_INSN_ARGS * sizeof (*tok));
2098 ntok = bkntok;
2099 if (tokidx >= maxerridx
2100 && tmpmsg)
2101 {
2102 maxerridx = tokidx;
2103 *errmsg = tmpmsg;
2104 }
2105 }
2106
2107 if (*pcpumatch)
2108 *pcpumatch = got_cpu_match;
2109
2110 return NULL;
2111 }
2112
2113 /* Swap operand tokens. */
2114
2115 static void
2116 swap_operand (expressionS *operand_array,
2117 unsigned source,
2118 unsigned destination)
2119 {
2120 expressionS cpy_operand;
2121 expressionS *src_operand;
2122 expressionS *dst_operand;
2123 size_t size;
2124
2125 if (source == destination)
2126 return;
2127
2128 src_operand = &operand_array[source];
2129 dst_operand = &operand_array[destination];
2130 size = sizeof (expressionS);
2131
2132 /* Make copy of operand to swap with and swap. */
2133 memcpy (&cpy_operand, dst_operand, size);
2134 memcpy (dst_operand, src_operand, size);
2135 memcpy (src_operand, &cpy_operand, size);
2136 }
2137
2138 /* Check if *op matches *tok type.
2139 Returns FALSE if they don't match, TRUE if they match. */
2140
2141 static bool
2142 pseudo_operand_match (const expressionS *tok,
2143 const struct arc_operand_operation *op)
2144 {
2145 offsetT min, max, val;
2146 bool ret;
2147 const struct arc_operand *operand_real = &arc_operands[op->operand_idx];
2148
2149 ret = false;
2150 switch (tok->X_op)
2151 {
2152 case O_constant:
2153 if (operand_real->bits == 32 && (operand_real->flags & ARC_OPERAND_LIMM))
2154 ret = 1;
2155 else if (!(operand_real->flags & ARC_OPERAND_IR))
2156 {
2157 val = tok->X_add_number + op->count;
2158 if (operand_real->flags & ARC_OPERAND_SIGNED)
2159 {
2160 max = (1 << (operand_real->bits - 1)) - 1;
2161 min = -(1 << (operand_real->bits - 1));
2162 }
2163 else
2164 {
2165 max = (1 << operand_real->bits) - 1;
2166 min = 0;
2167 }
2168 if (min <= val && val <= max)
2169 ret = true;
2170 }
2171 break;
2172
2173 case O_symbol:
2174 /* Handle all symbols as long immediates or signed 9. */
2175 if (operand_real->flags & ARC_OPERAND_LIMM
2176 || ((operand_real->flags & ARC_OPERAND_SIGNED)
2177 && operand_real->bits == 9))
2178 ret = true;
2179 break;
2180
2181 case O_register:
2182 if (operand_real->flags & ARC_OPERAND_IR)
2183 ret = true;
2184 break;
2185
2186 case O_bracket:
2187 if (operand_real->flags & ARC_OPERAND_BRAKET)
2188 ret = true;
2189 break;
2190
2191 default:
2192 /* Unknown. */
2193 break;
2194 }
2195 return ret;
2196 }
2197
2198 /* Find pseudo instruction in array. */
2199
2200 static const struct arc_pseudo_insn *
2201 find_pseudo_insn (const char *opname,
2202 int ntok,
2203 const expressionS *tok)
2204 {
2205 const struct arc_pseudo_insn *pseudo_insn = NULL;
2206 const struct arc_operand_operation *op;
2207 unsigned int i;
2208 int j;
2209
2210 for (i = 0; i < arc_num_pseudo_insn; ++i)
2211 {
2212 pseudo_insn = &arc_pseudo_insns[i];
2213 if (strcmp (pseudo_insn->mnemonic_p, opname) == 0)
2214 {
2215 op = pseudo_insn->operand;
2216 for (j = 0; j < ntok; ++j)
2217 if (!pseudo_operand_match (&tok[j], &op[j]))
2218 break;
2219
2220 /* Found the right instruction. */
2221 if (j == ntok)
2222 return pseudo_insn;
2223 }
2224 }
2225 return NULL;
2226 }
2227
2228 /* Assumes the expressionS *tok is of sufficient size. */
2229
2230 static const struct arc_opcode_hash_entry *
2231 find_special_case_pseudo (const char *opname,
2232 int *ntok,
2233 expressionS *tok,
2234 int *nflgs,
2235 struct arc_flags *pflags)
2236 {
2237 const struct arc_pseudo_insn *pseudo_insn = NULL;
2238 const struct arc_operand_operation *operand_pseudo;
2239 const struct arc_operand *operand_real;
2240 unsigned i;
2241 char construct_operand[MAX_CONSTR_STR];
2242
2243 /* Find whether opname is in pseudo instruction array. */
2244 pseudo_insn = find_pseudo_insn (opname, *ntok, tok);
2245
2246 if (pseudo_insn == NULL)
2247 return NULL;
2248
2249 /* Handle flag, Limited to one flag at the moment. */
2250 if (pseudo_insn->flag_r != NULL)
2251 *nflgs += tokenize_flags (pseudo_insn->flag_r, &pflags[*nflgs],
2252 MAX_INSN_FLGS - *nflgs);
2253
2254 /* Handle operand operations. */
2255 for (i = 0; i < pseudo_insn->operand_cnt; ++i)
2256 {
2257 operand_pseudo = &pseudo_insn->operand[i];
2258 operand_real = &arc_operands[operand_pseudo->operand_idx];
2259
2260 if (operand_real->flags & ARC_OPERAND_BRAKET
2261 && !operand_pseudo->needs_insert)
2262 continue;
2263
2264 /* Has to be inserted (i.e. this token does not exist yet). */
2265 if (operand_pseudo->needs_insert)
2266 {
2267 if (operand_real->flags & ARC_OPERAND_BRAKET)
2268 {
2269 tok[i].X_op = O_bracket;
2270 ++(*ntok);
2271 continue;
2272 }
2273
2274 /* Check if operand is a register or constant and handle it
2275 by type. */
2276 if (operand_real->flags & ARC_OPERAND_IR)
2277 snprintf (construct_operand, MAX_CONSTR_STR, "r%d",
2278 operand_pseudo->count);
2279 else
2280 snprintf (construct_operand, MAX_CONSTR_STR, "%d",
2281 operand_pseudo->count);
2282
2283 tokenize_arguments (construct_operand, &tok[i], 1);
2284 ++(*ntok);
2285 }
2286
2287 else if (operand_pseudo->count)
2288 {
2289 /* Operand number has to be adjusted accordingly (by operand
2290 type). */
2291 switch (tok[i].X_op)
2292 {
2293 case O_constant:
2294 tok[i].X_add_number += operand_pseudo->count;
2295 break;
2296
2297 case O_symbol:
2298 break;
2299
2300 default:
2301 /* Ignored. */
2302 break;
2303 }
2304 }
2305 }
2306
2307 /* Swap operands if necessary. Only supports one swap at the
2308 moment. */
2309 for (i = 0; i < pseudo_insn->operand_cnt; ++i)
2310 {
2311 operand_pseudo = &pseudo_insn->operand[i];
2312
2313 if (operand_pseudo->swap_operand_idx == i)
2314 continue;
2315
2316 swap_operand (tok, i, operand_pseudo->swap_operand_idx);
2317
2318 /* Prevent a swap back later by breaking out. */
2319 break;
2320 }
2321
2322 return arc_find_opcode (pseudo_insn->mnemonic_r);
2323 }
2324
2325 static const struct arc_opcode_hash_entry *
2326 find_special_case_flag (const char *opname,
2327 int *nflgs,
2328 struct arc_flags *pflags)
2329 {
2330 unsigned int i;
2331 const char *flagnm;
2332 unsigned flag_idx, flag_arr_idx;
2333 size_t flaglen, oplen;
2334 const struct arc_flag_special *arc_flag_special_opcode;
2335 const struct arc_opcode_hash_entry *entry;
2336
2337 /* Search for special case instruction. */
2338 for (i = 0; i < arc_num_flag_special; i++)
2339 {
2340 arc_flag_special_opcode = &arc_flag_special_cases[i];
2341 oplen = strlen (arc_flag_special_opcode->name);
2342
2343 if (strncmp (opname, arc_flag_special_opcode->name, oplen) != 0)
2344 continue;
2345
2346 /* Found a potential special case instruction, now test for
2347 flags. */
2348 for (flag_arr_idx = 0;; ++flag_arr_idx)
2349 {
2350 flag_idx = arc_flag_special_opcode->flags[flag_arr_idx];
2351 if (flag_idx == 0)
2352 break; /* End of array, nothing found. */
2353
2354 flagnm = arc_flag_operands[flag_idx].name;
2355 flaglen = strlen (flagnm);
2356 if (strcmp (opname + oplen, flagnm) == 0)
2357 {
2358 entry = arc_find_opcode (arc_flag_special_opcode->name);
2359
2360 if (*nflgs + 1 > MAX_INSN_FLGS)
2361 break;
2362 memcpy (pflags[*nflgs].name, flagnm, flaglen);
2363 pflags[*nflgs].name[flaglen] = '\0';
2364 (*nflgs)++;
2365 return entry;
2366 }
2367 }
2368 }
2369 return NULL;
2370 }
2371
2372 /* Used to find special case opcode. */
2373
2374 static const struct arc_opcode_hash_entry *
2375 find_special_case (const char *opname,
2376 int *nflgs,
2377 struct arc_flags *pflags,
2378 expressionS *tok,
2379 int *ntok)
2380 {
2381 const struct arc_opcode_hash_entry *entry;
2382
2383 entry = find_special_case_pseudo (opname, ntok, tok, nflgs, pflags);
2384
2385 if (entry == NULL)
2386 entry = find_special_case_flag (opname, nflgs, pflags);
2387
2388 return entry;
2389 }
2390
2391 /* Autodetect cpu attribute list. */
2392
2393 static void
2394 autodetect_attributes (const struct arc_opcode *opcode,
2395 const expressionS *tok,
2396 int ntok)
2397 {
2398 unsigned i;
2399 struct mpy_type
2400 {
2401 unsigned feature;
2402 unsigned encoding;
2403 } mpy_list[] = {{ MPY1E, 1 }, { MPY6E, 6 }, { MPY7E, 7 }, { MPY8E, 8 },
2404 { MPY9E, 9 }};
2405
2406 for (i = 0; i < ARRAY_SIZE (feature_list); i++)
2407 if (opcode->subclass == feature_list[i].feature)
2408 selected_cpu.features |= feature_list[i].feature;
2409
2410 for (i = 0; i < ARRAY_SIZE (mpy_list); i++)
2411 if (opcode->subclass == mpy_list[i].feature)
2412 mpy_option = mpy_list[i].encoding;
2413
2414 for (i = 0; i < (unsigned) ntok; i++)
2415 {
2416 switch (tok[i].X_md)
2417 {
2418 case O_gotoff:
2419 case O_gotpc:
2420 case O_plt:
2421 pic_option = 2;
2422 break;
2423 case O_sda:
2424 sda_option = 2;
2425 break;
2426 case O_tlsgd:
2427 case O_tlsie:
2428 case O_tpoff9:
2429 case O_tpoff:
2430 case O_dtpoff9:
2431 case O_dtpoff:
2432 tls_option = 1;
2433 break;
2434 default:
2435 break;
2436 }
2437
2438 switch (tok[i].X_op)
2439 {
2440 case O_register:
2441 if ((tok[i].X_add_number >= 4 && tok[i].X_add_number <= 9)
2442 || (tok[i].X_add_number >= 16 && tok[i].X_add_number <= 25))
2443 rf16_only = false;
2444 break;
2445 default:
2446 break;
2447 }
2448 }
2449 }
2450
2451 /* Given an opcode name, pre-tockenized set of argumenst and the
2452 opcode flags, take it all the way through emission. */
2453
2454 static void
2455 assemble_tokens (const char *opname,
2456 expressionS *tok,
2457 int ntok,
2458 struct arc_flags *pflags,
2459 int nflgs)
2460 {
2461 bool found_something = false;
2462 const struct arc_opcode_hash_entry *entry;
2463 int cpumatch = 1;
2464 const char *errmsg = NULL;
2465
2466 /* Search opcodes. */
2467 entry = arc_find_opcode (opname);
2468
2469 /* Couldn't find opcode conventional way, try special cases. */
2470 if (entry == NULL)
2471 entry = find_special_case (opname, &nflgs, pflags, tok, &ntok);
2472
2473 if (entry != NULL)
2474 {
2475 const struct arc_opcode *opcode;
2476
2477 pr_debug ("%s:%d: assemble_tokens: %s\n",
2478 frag_now->fr_file, frag_now->fr_line, opname);
2479 found_something = true;
2480 opcode = find_opcode_match (entry, tok, &ntok, pflags,
2481 nflgs, &cpumatch, &errmsg);
2482 if (opcode != NULL)
2483 {
2484 struct arc_insn insn;
2485
2486 autodetect_attributes (opcode, tok, ntok);
2487 assemble_insn (opcode, tok, ntok, pflags, nflgs, &insn);
2488 emit_insn (&insn);
2489 return;
2490 }
2491 }
2492
2493 if (found_something)
2494 {
2495 if (cpumatch)
2496 if (errmsg)
2497 as_bad (_("%s for instruction '%s'"), errmsg, opname);
2498 else
2499 as_bad (_("inappropriate arguments for opcode '%s'"), opname);
2500 else
2501 as_bad (_("opcode '%s' not supported for target %s"), opname,
2502 selected_cpu.name);
2503 }
2504 else
2505 as_bad (_("unknown opcode '%s'"), opname);
2506 }
2507
2508 /* The public interface to the instruction assembler. */
2509
2510 void
2511 md_assemble (char *str)
2512 {
2513 char *opname;
2514 expressionS tok[MAX_INSN_ARGS];
2515 int ntok, nflg;
2516 size_t opnamelen;
2517 struct arc_flags flags[MAX_INSN_FLGS];
2518
2519 /* Split off the opcode. */
2520 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_0123468");
2521 opname = xmemdup0 (str, opnamelen);
2522
2523 /* Signalize we are assembling the instructions. */
2524 assembling_insn = true;
2525
2526 /* Tokenize the flags. */
2527 if ((nflg = tokenize_flags (str + opnamelen, flags, MAX_INSN_FLGS)) == -1)
2528 {
2529 as_bad (_("syntax error"));
2530 return;
2531 }
2532
2533 /* Scan up to the end of the mnemonic which must end in space or end
2534 of string. */
2535 str += opnamelen;
2536 for (; *str != '\0'; str++)
2537 if (*str == ' ')
2538 break;
2539
2540 /* Tokenize the rest of the line. */
2541 if ((ntok = tokenize_arguments (str, tok, MAX_INSN_ARGS)) < 0)
2542 {
2543 as_bad (_("syntax error"));
2544 return;
2545 }
2546
2547 /* Finish it off. */
2548 assemble_tokens (opname, tok, ntok, flags, nflg);
2549 assembling_insn = false;
2550 }
2551
2552 /* Callback to insert a register into the hash table. */
2553
2554 static void
2555 declare_register (const char *name, int number)
2556 {
2557 symbolS *regS = symbol_create (name, reg_section,
2558 &zero_address_frag, number);
2559
2560 if (str_hash_insert (arc_reg_hash, S_GET_NAME (regS), regS, 0) != NULL)
2561 as_fatal (_("duplicate %s"), name);
2562 }
2563
2564 /* Construct symbols for each of the general registers. */
2565
2566 static void
2567 declare_register_set (void)
2568 {
2569 int i;
2570 for (i = 0; i < 64; ++i)
2571 {
2572 char name[32];
2573
2574 sprintf (name, "r%d", i);
2575 declare_register (name, i);
2576 if ((i & 0x01) == 0)
2577 {
2578 sprintf (name, "r%dr%d", i, i+1);
2579 declare_register (name, i);
2580 }
2581 }
2582 }
2583
2584 /* Construct a symbol for an address type. */
2585
2586 static void
2587 declare_addrtype (const char *name, int number)
2588 {
2589 symbolS *addrtypeS = symbol_create (name, undefined_section,
2590 &zero_address_frag, number);
2591
2592 if (str_hash_insert (arc_addrtype_hash, S_GET_NAME (addrtypeS), addrtypeS, 0))
2593 as_fatal (_("duplicate %s"), name);
2594 }
2595
2596 /* Port-specific assembler initialization. This function is called
2597 once, at assembler startup time. */
2598
2599 void
2600 md_begin (void)
2601 {
2602 const struct arc_opcode *opcode = arc_opcodes;
2603
2604 if (mach_selection_mode == MACH_SELECTION_NONE)
2605 arc_select_cpu (TARGET_WITH_CPU, MACH_SELECTION_FROM_DEFAULT);
2606
2607 /* The endianness can be chosen "at the factory". */
2608 target_big_endian = byte_order == BIG_ENDIAN;
2609
2610 if (!bfd_set_arch_mach (stdoutput, bfd_arch_arc, selected_cpu.mach))
2611 as_warn (_("could not set architecture and machine"));
2612
2613 /* Set elf header flags. */
2614 bfd_set_private_flags (stdoutput, selected_cpu.eflags);
2615
2616 /* Set up a hash table for the instructions. */
2617 arc_opcode_hash = htab_create_alloc (16, hash_string_tuple, eq_string_tuple,
2618 arc_opcode_free, xcalloc, free);
2619
2620 /* Initialize the hash table with the insns. */
2621 do
2622 {
2623 const char *name = opcode->name;
2624
2625 arc_insert_opcode (opcode);
2626
2627 while (++opcode && opcode->name
2628 && (opcode->name == name
2629 || !strcmp (opcode->name, name)))
2630 continue;
2631 }while (opcode->name);
2632
2633 /* Register declaration. */
2634 arc_reg_hash = str_htab_create ();
2635
2636 declare_register_set ();
2637 declare_register ("gp", 26);
2638 declare_register ("fp", 27);
2639 declare_register ("sp", 28);
2640 declare_register ("ilink", 29);
2641 declare_register ("ilink1", 29);
2642 declare_register ("ilink2", 30);
2643 declare_register ("blink", 31);
2644
2645 /* XY memory registers. */
2646 declare_register ("x0_u0", 32);
2647 declare_register ("x0_u1", 33);
2648 declare_register ("x1_u0", 34);
2649 declare_register ("x1_u1", 35);
2650 declare_register ("x2_u0", 36);
2651 declare_register ("x2_u1", 37);
2652 declare_register ("x3_u0", 38);
2653 declare_register ("x3_u1", 39);
2654 declare_register ("y0_u0", 40);
2655 declare_register ("y0_u1", 41);
2656 declare_register ("y1_u0", 42);
2657 declare_register ("y1_u1", 43);
2658 declare_register ("y2_u0", 44);
2659 declare_register ("y2_u1", 45);
2660 declare_register ("y3_u0", 46);
2661 declare_register ("y3_u1", 47);
2662 declare_register ("x0_nu", 48);
2663 declare_register ("x1_nu", 49);
2664 declare_register ("x2_nu", 50);
2665 declare_register ("x3_nu", 51);
2666 declare_register ("y0_nu", 52);
2667 declare_register ("y1_nu", 53);
2668 declare_register ("y2_nu", 54);
2669 declare_register ("y3_nu", 55);
2670
2671 declare_register ("mlo", 57);
2672 declare_register ("mmid", 58);
2673 declare_register ("mhi", 59);
2674
2675 declare_register ("acc1", 56);
2676 declare_register ("acc2", 57);
2677
2678 declare_register ("lp_count", 60);
2679 declare_register ("pcl", 63);
2680
2681 /* Initialize the last instructions. */
2682 memset (&arc_last_insns[0], 0, sizeof (arc_last_insns));
2683
2684 /* Aux register declaration. */
2685 arc_aux_hash = str_htab_create ();
2686
2687 const struct arc_aux_reg *auxr = &arc_aux_regs[0];
2688 unsigned int i;
2689 for (i = 0; i < arc_num_aux_regs; i++, auxr++)
2690 {
2691 if (!(auxr->cpu & selected_cpu.flags))
2692 continue;
2693
2694 if ((auxr->subclass != NONE)
2695 && !check_cpu_feature (auxr->subclass))
2696 continue;
2697
2698 if (str_hash_insert (arc_aux_hash, auxr->name, auxr, 0) != 0)
2699 as_fatal (_("duplicate %s"), auxr->name);
2700 }
2701
2702 /* Address type declaration. */
2703 arc_addrtype_hash = str_htab_create ();
2704
2705 declare_addrtype ("bd", ARC_NPS400_ADDRTYPE_BD);
2706 declare_addrtype ("jid", ARC_NPS400_ADDRTYPE_JID);
2707 declare_addrtype ("lbd", ARC_NPS400_ADDRTYPE_LBD);
2708 declare_addrtype ("mbd", ARC_NPS400_ADDRTYPE_MBD);
2709 declare_addrtype ("sd", ARC_NPS400_ADDRTYPE_SD);
2710 declare_addrtype ("sm", ARC_NPS400_ADDRTYPE_SM);
2711 declare_addrtype ("xa", ARC_NPS400_ADDRTYPE_XA);
2712 declare_addrtype ("xd", ARC_NPS400_ADDRTYPE_XD);
2713 declare_addrtype ("cd", ARC_NPS400_ADDRTYPE_CD);
2714 declare_addrtype ("cbd", ARC_NPS400_ADDRTYPE_CBD);
2715 declare_addrtype ("cjid", ARC_NPS400_ADDRTYPE_CJID);
2716 declare_addrtype ("clbd", ARC_NPS400_ADDRTYPE_CLBD);
2717 declare_addrtype ("cm", ARC_NPS400_ADDRTYPE_CM);
2718 declare_addrtype ("csd", ARC_NPS400_ADDRTYPE_CSD);
2719 declare_addrtype ("cxa", ARC_NPS400_ADDRTYPE_CXA);
2720 declare_addrtype ("cxd", ARC_NPS400_ADDRTYPE_CXD);
2721 }
2722
2723 void
2724 arc_md_end (void)
2725 {
2726 htab_delete (arc_opcode_hash);
2727 htab_delete (arc_reg_hash);
2728 htab_delete (arc_aux_hash);
2729 htab_delete (arc_addrtype_hash);
2730 }
2731
2732 /* Write a value out to the object file, using the appropriate
2733 endianness. */
2734
2735 void
2736 md_number_to_chars (char *buf,
2737 valueT val,
2738 int n)
2739 {
2740 if (target_big_endian)
2741 number_to_chars_bigendian (buf, val, n);
2742 else
2743 number_to_chars_littleendian (buf, val, n);
2744 }
2745
2746 /* Round up a section size to the appropriate boundary. */
2747
2748 valueT
2749 md_section_align (segT segment,
2750 valueT size)
2751 {
2752 int align = bfd_section_alignment (segment);
2753
2754 return ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
2755 }
2756
2757 /* The location from which a PC relative jump should be calculated,
2758 given a PC relative reloc. */
2759
2760 long
2761 md_pcrel_from_section (fixS *fixP,
2762 segT sec)
2763 {
2764 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
2765
2766 pr_debug ("pcrel_from_section, fx_offset = %d\n", (int) fixP->fx_offset);
2767
2768 if (fixP->fx_addsy != (symbolS *) NULL
2769 && (!S_IS_DEFINED (fixP->fx_addsy)
2770 || S_GET_SEGMENT (fixP->fx_addsy) != sec))
2771 {
2772 pr_debug ("Unknown pcrel symbol: %s\n", S_GET_NAME (fixP->fx_addsy));
2773
2774 /* The symbol is undefined (or is defined but not in this section).
2775 Let the linker figure it out. */
2776 return 0;
2777 }
2778
2779 if ((int) fixP->fx_r_type < 0)
2780 {
2781 /* These are the "internal" relocations. Align them to
2782 32 bit boundary (PCL), for the moment. */
2783 base &= ~3;
2784 }
2785 else
2786 {
2787 switch (fixP->fx_r_type)
2788 {
2789 case BFD_RELOC_ARC_PC32:
2790 /* The hardware calculates relative to the start of the
2791 insn, but this relocation is relative to location of the
2792 LIMM, compensate. The base always needs to be
2793 subtracted by 4 as we do not support this type of PCrel
2794 relocation for short instructions. */
2795 base -= 4;
2796 /* Fall through. */
2797 case BFD_RELOC_ARC_PLT32:
2798 case BFD_RELOC_ARC_S25H_PCREL_PLT:
2799 case BFD_RELOC_ARC_S21H_PCREL_PLT:
2800 case BFD_RELOC_ARC_S25W_PCREL_PLT:
2801 case BFD_RELOC_ARC_S21W_PCREL_PLT:
2802
2803 case BFD_RELOC_ARC_S21H_PCREL:
2804 case BFD_RELOC_ARC_S25H_PCREL:
2805 case BFD_RELOC_ARC_S13_PCREL:
2806 case BFD_RELOC_ARC_S21W_PCREL:
2807 case BFD_RELOC_ARC_S25W_PCREL:
2808 base &= ~3;
2809 break;
2810 default:
2811 as_bad_where (fixP->fx_file, fixP->fx_line,
2812 _("unhandled reloc %s in md_pcrel_from_section"),
2813 bfd_get_reloc_code_name (fixP->fx_r_type));
2814 break;
2815 }
2816 }
2817
2818 pr_debug ("pcrel from %"BFD_VMA_FMT"x + %lx = %"BFD_VMA_FMT"x, "
2819 "symbol: %s (%"BFD_VMA_FMT"x)\n",
2820 fixP->fx_frag->fr_address, fixP->fx_where, base,
2821 fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "(null)",
2822 fixP->fx_addsy ? S_GET_VALUE (fixP->fx_addsy) : 0);
2823
2824 return base;
2825 }
2826
2827 /* Given a BFD relocation find the corresponding operand. */
2828
2829 static const struct arc_operand *
2830 find_operand_for_reloc (extended_bfd_reloc_code_real_type reloc)
2831 {
2832 unsigned i;
2833
2834 for (i = 0; i < arc_num_operands; i++)
2835 if (arc_operands[i].default_reloc == reloc)
2836 return &arc_operands[i];
2837 return NULL;
2838 }
2839
2840 /* Insert an operand value into an instruction. */
2841
2842 static unsigned long long
2843 insert_operand (unsigned long long insn,
2844 const struct arc_operand *operand,
2845 long long val,
2846 const char *file,
2847 unsigned line)
2848 {
2849 offsetT min = 0, max = 0;
2850
2851 if (operand->bits != 32
2852 && !(operand->flags & ARC_OPERAND_NCHK)
2853 && !(operand->flags & ARC_OPERAND_FAKE))
2854 {
2855 if (operand->flags & ARC_OPERAND_SIGNED)
2856 {
2857 max = (1 << (operand->bits - 1)) - 1;
2858 min = -(1 << (operand->bits - 1));
2859 }
2860 else
2861 {
2862 max = (1 << operand->bits) - 1;
2863 min = 0;
2864 }
2865
2866 if (val < min || val > max)
2867 as_bad_value_out_of_range (_("operand"),
2868 val, min, max, file, line);
2869 }
2870
2871 pr_debug ("insert field: %ld <= %lld <= %ld in 0x%08llx\n",
2872 min, val, max, insn);
2873
2874 if ((operand->flags & ARC_OPERAND_ALIGNED32)
2875 && (val & 0x03))
2876 as_bad_where (file, line,
2877 _("Unaligned operand. Needs to be 32bit aligned"));
2878
2879 if ((operand->flags & ARC_OPERAND_ALIGNED16)
2880 && (val & 0x01))
2881 as_bad_where (file, line,
2882 _("Unaligned operand. Needs to be 16bit aligned"));
2883
2884 if (operand->insert)
2885 {
2886 const char *errmsg = NULL;
2887
2888 insn = (*operand->insert) (insn, val, &errmsg);
2889 if (errmsg)
2890 as_warn_where (file, line, "%s", errmsg);
2891 }
2892 else
2893 {
2894 if (operand->flags & ARC_OPERAND_TRUNCATE)
2895 {
2896 if (operand->flags & ARC_OPERAND_ALIGNED32)
2897 val >>= 2;
2898 if (operand->flags & ARC_OPERAND_ALIGNED16)
2899 val >>= 1;
2900 }
2901 insn |= ((val & ((1 << operand->bits) - 1)) << operand->shift);
2902 }
2903 return insn;
2904 }
2905
2906 /* Apply a fixup to the object code. At this point all symbol values
2907 should be fully resolved, and we attempt to completely resolve the
2908 reloc. If we can not do that, we determine the correct reloc code
2909 and put it back in the fixup. To indicate that a fixup has been
2910 eliminated, set fixP->fx_done. */
2911
2912 void
2913 md_apply_fix (fixS *fixP,
2914 valueT *valP,
2915 segT seg)
2916 {
2917 char * const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
2918 valueT value = *valP;
2919 unsigned insn = 0;
2920 symbolS *fx_addsy, *fx_subsy;
2921 offsetT fx_offset;
2922 segT add_symbol_segment = absolute_section;
2923 segT sub_symbol_segment = absolute_section;
2924 const struct arc_operand *operand = NULL;
2925 extended_bfd_reloc_code_real_type reloc;
2926
2927 pr_debug ("%s:%u: apply_fix: r_type=%d (%s) value=0x%lX offset=0x%lX\n",
2928 fixP->fx_file, fixP->fx_line, fixP->fx_r_type,
2929 ((int) fixP->fx_r_type < 0) ? "Internal":
2930 bfd_get_reloc_code_name (fixP->fx_r_type), value,
2931 fixP->fx_offset);
2932
2933 fx_addsy = fixP->fx_addsy;
2934 fx_subsy = fixP->fx_subsy;
2935 fx_offset = 0;
2936
2937 if (fx_addsy)
2938 {
2939 add_symbol_segment = S_GET_SEGMENT (fx_addsy);
2940 }
2941
2942 if (fx_subsy
2943 && fixP->fx_r_type != BFD_RELOC_ARC_TLS_DTPOFF
2944 && fixP->fx_r_type != BFD_RELOC_ARC_TLS_DTPOFF_S9
2945 && fixP->fx_r_type != BFD_RELOC_ARC_TLS_GD_LD)
2946 {
2947 resolve_symbol_value (fx_subsy);
2948 sub_symbol_segment = S_GET_SEGMENT (fx_subsy);
2949
2950 if (sub_symbol_segment == absolute_section)
2951 {
2952 /* The symbol is really a constant. */
2953 fx_offset -= S_GET_VALUE (fx_subsy);
2954 fx_subsy = NULL;
2955 }
2956 else
2957 {
2958 as_bad_subtract (fixP);
2959 return;
2960 }
2961 }
2962
2963 if (fx_addsy
2964 && !S_IS_WEAK (fx_addsy))
2965 {
2966 if (add_symbol_segment == seg
2967 && fixP->fx_pcrel)
2968 {
2969 value += S_GET_VALUE (fx_addsy);
2970 value -= md_pcrel_from_section (fixP, seg);
2971 fx_addsy = NULL;
2972 fixP->fx_pcrel = false;
2973 }
2974 else if (add_symbol_segment == absolute_section)
2975 {
2976 value = fixP->fx_offset;
2977 fx_offset += S_GET_VALUE (fixP->fx_addsy);
2978 fx_addsy = NULL;
2979 fixP->fx_pcrel = false;
2980 }
2981 }
2982
2983 if (!fx_addsy)
2984 fixP->fx_done = true;
2985
2986 if (fixP->fx_pcrel)
2987 {
2988 if (fx_addsy
2989 && ((S_IS_DEFINED (fx_addsy)
2990 && S_GET_SEGMENT (fx_addsy) != seg)
2991 || S_IS_WEAK (fx_addsy)))
2992 value += md_pcrel_from_section (fixP, seg);
2993
2994 switch (fixP->fx_r_type)
2995 {
2996 case BFD_RELOC_ARC_32_ME:
2997 /* This is a pc-relative value in a LIMM. Adjust it to the
2998 address of the instruction not to the address of the
2999 LIMM. Note: it is not any longer valid this affirmation as
3000 the linker consider ARC_PC32 a fixup to entire 64 bit
3001 insn. */
3002 fixP->fx_offset += fixP->fx_frag->fr_address;
3003 /* Fall through. */
3004 case BFD_RELOC_32:
3005 fixP->fx_r_type = BFD_RELOC_ARC_PC32;
3006 /* Fall through. */
3007 case BFD_RELOC_ARC_PC32:
3008 /* fixP->fx_offset += fixP->fx_where - fixP->fx_dot_value; */
3009 break;
3010 default:
3011 if ((int) fixP->fx_r_type < 0)
3012 as_bad_where (fixP->fx_file, fixP->fx_line,
3013 _("PC relative relocation not allowed for (internal)"
3014 " type %d"),
3015 fixP->fx_r_type);
3016 break;
3017 }
3018 }
3019
3020 pr_debug ("%s:%u: apply_fix: r_type=%d (%s) value=0x%lX offset=0x%lX\n",
3021 fixP->fx_file, fixP->fx_line, fixP->fx_r_type,
3022 ((int) fixP->fx_r_type < 0) ? "Internal":
3023 bfd_get_reloc_code_name (fixP->fx_r_type), value,
3024 fixP->fx_offset);
3025
3026
3027 /* Now check for TLS relocations. */
3028 reloc = fixP->fx_r_type;
3029 switch (reloc)
3030 {
3031 case BFD_RELOC_ARC_TLS_DTPOFF:
3032 case BFD_RELOC_ARC_TLS_LE_32:
3033 if (fixP->fx_done)
3034 break;
3035 /* Fall through. */
3036 case BFD_RELOC_ARC_TLS_GD_GOT:
3037 case BFD_RELOC_ARC_TLS_IE_GOT:
3038 S_SET_THREAD_LOCAL (fixP->fx_addsy);
3039 break;
3040
3041 case BFD_RELOC_ARC_TLS_GD_LD:
3042 gas_assert (!fixP->fx_offset);
3043 if (fixP->fx_subsy)
3044 fixP->fx_offset
3045 = (S_GET_VALUE (fixP->fx_subsy)
3046 - fixP->fx_frag->fr_address- fixP->fx_where);
3047 fixP->fx_subsy = NULL;
3048 /* Fall through. */
3049 case BFD_RELOC_ARC_TLS_GD_CALL:
3050 /* These two relocs are there just to allow ld to change the tls
3051 model for this symbol, by patching the code. The offset -
3052 and scale, if any - will be installed by the linker. */
3053 S_SET_THREAD_LOCAL (fixP->fx_addsy);
3054 break;
3055
3056 case BFD_RELOC_ARC_TLS_LE_S9:
3057 case BFD_RELOC_ARC_TLS_DTPOFF_S9:
3058 as_bad (_("TLS_*_S9 relocs are not supported yet"));
3059 break;
3060
3061 default:
3062 break;
3063 }
3064
3065 if (!fixP->fx_done)
3066 {
3067 return;
3068 }
3069
3070 /* Adjust the value if we have a constant. */
3071 value += fx_offset;
3072
3073 /* For hosts with longs bigger than 32-bits make sure that the top
3074 bits of a 32-bit negative value read in by the parser are set,
3075 so that the correct comparisons are made. */
3076 if (value & 0x80000000)
3077 value |= (-1UL << 31);
3078
3079 reloc = fixP->fx_r_type;
3080 switch (reloc)
3081 {
3082 case BFD_RELOC_8:
3083 case BFD_RELOC_16:
3084 case BFD_RELOC_24:
3085 case BFD_RELOC_32:
3086 case BFD_RELOC_64:
3087 case BFD_RELOC_ARC_32_PCREL:
3088 md_number_to_chars (fixpos, value, fixP->fx_size);
3089 return;
3090
3091 case BFD_RELOC_ARC_GOTPC32:
3092 /* I cannot fix an GOTPC relocation because I need to relax it
3093 from ld rx,[pcl,@sym@gotpc] to add rx,pcl,@sym@gotpc. */
3094 as_bad (_("Unsupported operation on reloc"));
3095 return;
3096
3097 case BFD_RELOC_ARC_TLS_DTPOFF:
3098 case BFD_RELOC_ARC_TLS_LE_32:
3099 gas_assert (!fixP->fx_addsy);
3100 gas_assert (!fixP->fx_subsy);
3101 /* Fall through. */
3102
3103 case BFD_RELOC_ARC_GOTOFF:
3104 case BFD_RELOC_ARC_32_ME:
3105 case BFD_RELOC_ARC_PC32:
3106 md_number_to_chars_midend (fixpos, value, fixP->fx_size);
3107 return;
3108
3109 case BFD_RELOC_ARC_PLT32:
3110 md_number_to_chars_midend (fixpos, value, fixP->fx_size);
3111 return;
3112
3113 case BFD_RELOC_ARC_S25H_PCREL_PLT:
3114 reloc = BFD_RELOC_ARC_S25W_PCREL;
3115 goto solve_plt;
3116
3117 case BFD_RELOC_ARC_S21H_PCREL_PLT:
3118 reloc = BFD_RELOC_ARC_S21H_PCREL;
3119 goto solve_plt;
3120
3121 case BFD_RELOC_ARC_S25W_PCREL_PLT:
3122 reloc = BFD_RELOC_ARC_S25W_PCREL;
3123 goto solve_plt;
3124
3125 case BFD_RELOC_ARC_S21W_PCREL_PLT:
3126 reloc = BFD_RELOC_ARC_S21W_PCREL;
3127 /* Fall through. */
3128
3129 case BFD_RELOC_ARC_S25W_PCREL:
3130 case BFD_RELOC_ARC_S21W_PCREL:
3131 case BFD_RELOC_ARC_S21H_PCREL:
3132 case BFD_RELOC_ARC_S25H_PCREL:
3133 case BFD_RELOC_ARC_S13_PCREL:
3134 solve_plt:
3135 operand = find_operand_for_reloc (reloc);
3136 gas_assert (operand);
3137 break;
3138
3139 default:
3140 {
3141 if ((int) fixP->fx_r_type >= 0)
3142 as_fatal (_("unhandled relocation type %s"),
3143 bfd_get_reloc_code_name (fixP->fx_r_type));
3144
3145 /* The rest of these fixups needs to be completely resolved as
3146 constants. */
3147 if (fixP->fx_addsy != 0
3148 && S_GET_SEGMENT (fixP->fx_addsy) != absolute_section)
3149 as_bad_where (fixP->fx_file, fixP->fx_line,
3150 _("non-absolute expression in constant field"));
3151
3152 gas_assert (-(int) fixP->fx_r_type < (int) arc_num_operands);
3153 operand = &arc_operands[-(int) fixP->fx_r_type];
3154 break;
3155 }
3156 }
3157
3158 if (target_big_endian)
3159 {
3160 switch (fixP->fx_size)
3161 {
3162 case 4:
3163 insn = bfd_getb32 (fixpos);
3164 break;
3165 case 2:
3166 insn = bfd_getb16 (fixpos);
3167 break;
3168 default:
3169 as_bad_where (fixP->fx_file, fixP->fx_line,
3170 _("unknown fixup size"));
3171 }
3172 }
3173 else
3174 {
3175 insn = 0;
3176 switch (fixP->fx_size)
3177 {
3178 case 4:
3179 insn = bfd_getl16 (fixpos) << 16 | bfd_getl16 (fixpos + 2);
3180 break;
3181 case 2:
3182 insn = bfd_getl16 (fixpos);
3183 break;
3184 default:
3185 as_bad_where (fixP->fx_file, fixP->fx_line,
3186 _("unknown fixup size"));
3187 }
3188 }
3189
3190 insn = insert_operand (insn, operand, (offsetT) value,
3191 fixP->fx_file, fixP->fx_line);
3192
3193 md_number_to_chars_midend (fixpos, insn, fixP->fx_size);
3194 }
3195
3196 /* Prepare machine-dependent frags for relaxation.
3197
3198 Called just before relaxation starts. Any symbol that is now undefined
3199 will not become defined.
3200
3201 Return the correct fr_subtype in the frag.
3202
3203 Return the initial "guess for fr_var" to caller. The guess for fr_var
3204 is *actually* the growth beyond fr_fix. Whatever we do to grow fr_fix
3205 or fr_var contributes to our returned value.
3206
3207 Although it may not be explicit in the frag, pretend
3208 fr_var starts with a value. */
3209
3210 int
3211 md_estimate_size_before_relax (fragS *fragP,
3212 segT segment)
3213 {
3214 int growth;
3215
3216 /* If the symbol is not located within the same section AND it's not
3217 an absolute section, use the maximum. OR if the symbol is a
3218 constant AND the insn is by nature not pc-rel, use the maximum.
3219 OR if the symbol is being equated against another symbol, use the
3220 maximum. OR if the symbol is weak use the maximum. */
3221 if ((S_GET_SEGMENT (fragP->fr_symbol) != segment
3222 && S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
3223 || (symbol_constant_p (fragP->fr_symbol)
3224 && !fragP->tc_frag_data.pcrel)
3225 || symbol_equated_p (fragP->fr_symbol)
3226 || S_IS_WEAK (fragP->fr_symbol))
3227 {
3228 while (md_relax_table[fragP->fr_subtype].rlx_more != ARC_RLX_NONE)
3229 ++fragP->fr_subtype;
3230 }
3231
3232 growth = md_relax_table[fragP->fr_subtype].rlx_length;
3233 fragP->fr_var = growth;
3234
3235 pr_debug ("%s:%d: md_estimate_size_before_relax: %d\n",
3236 fragP->fr_file, fragP->fr_line, growth);
3237
3238 return growth;
3239 }
3240
3241 /* Translate internal representation of relocation info to BFD target
3242 format. */
3243
3244 arelent *
3245 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED,
3246 fixS *fixP)
3247 {
3248 arelent *reloc;
3249 bfd_reloc_code_real_type code;
3250
3251 reloc = XNEW (arelent);
3252 reloc->sym_ptr_ptr = XNEW (asymbol *);
3253 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
3254 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
3255
3256 /* Make sure none of our internal relocations make it this far.
3257 They'd better have been fully resolved by this point. */
3258 gas_assert ((int) fixP->fx_r_type > 0);
3259
3260 code = fixP->fx_r_type;
3261
3262 /* if we have something like add gp, pcl,
3263 _GLOBAL_OFFSET_TABLE_@gotpc. */
3264 if (code == BFD_RELOC_ARC_GOTPC32
3265 && GOT_symbol
3266 && fixP->fx_addsy == GOT_symbol)
3267 code = BFD_RELOC_ARC_GOTPC;
3268
3269 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
3270 if (reloc->howto == NULL)
3271 {
3272 as_bad_where (fixP->fx_file, fixP->fx_line,
3273 _("cannot represent `%s' relocation in object file"),
3274 bfd_get_reloc_code_name (code));
3275 return NULL;
3276 }
3277
3278 if (!fixP->fx_pcrel != !reloc->howto->pc_relative)
3279 as_fatal (_("internal error? cannot generate `%s' relocation"),
3280 bfd_get_reloc_code_name (code));
3281
3282 gas_assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
3283
3284 reloc->addend = fixP->fx_offset;
3285
3286 return reloc;
3287 }
3288
3289 /* Perform post-processing of machine-dependent frags after relaxation.
3290 Called after relaxation is finished.
3291 In: Address of frag.
3292 fr_type == rs_machine_dependent.
3293 fr_subtype is what the address relaxed to.
3294
3295 Out: Any fixS:s and constants are set up. */
3296
3297 void
3298 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
3299 segT segment ATTRIBUTE_UNUSED,
3300 fragS *fragP)
3301 {
3302 const relax_typeS *table_entry;
3303 char *dest;
3304 const struct arc_opcode *opcode;
3305 struct arc_insn insn;
3306 int size, fix;
3307 struct arc_relax_type *relax_arg = &fragP->tc_frag_data;
3308
3309 fix = fragP->fr_fix;
3310 dest = fragP->fr_literal + fix;
3311 table_entry = TC_GENERIC_RELAX_TABLE + fragP->fr_subtype;
3312
3313 pr_debug ("%s:%d: md_convert_frag, subtype: %d, fix: %d, "
3314 "var: %"BFD_VMA_FMT"d\n",
3315 fragP->fr_file, fragP->fr_line,
3316 fragP->fr_subtype, fix, fragP->fr_var);
3317
3318 if (fragP->fr_subtype <= 0
3319 && fragP->fr_subtype >= arc_num_relax_opcodes)
3320 as_fatal (_("no relaxation found for this instruction."));
3321
3322 opcode = &arc_relax_opcodes[fragP->fr_subtype];
3323
3324 assemble_insn (opcode, relax_arg->tok, relax_arg->ntok, relax_arg->pflags,
3325 relax_arg->nflg, &insn);
3326
3327 apply_fixups (&insn, fragP, fix);
3328
3329 size = insn.len + (insn.has_limm ? 4 : 0);
3330 gas_assert (table_entry->rlx_length == size);
3331 emit_insn0 (&insn, dest, true);
3332
3333 fragP->fr_fix += table_entry->rlx_length;
3334 fragP->fr_var = 0;
3335 }
3336
3337 /* We have no need to default values of symbols. We could catch
3338 register names here, but that is handled by inserting them all in
3339 the symbol table to begin with. */
3340
3341 symbolS *
3342 md_undefined_symbol (char *name)
3343 {
3344 /* The arc abi demands that a GOT[0] should be referencible as
3345 [pc+_DYNAMIC@gotpc]. Hence we convert a _DYNAMIC@gotpc to a
3346 GOTPC reference to _GLOBAL_OFFSET_TABLE_. */
3347 if (((*name == '_')
3348 && (*(name+1) == 'G')
3349 && (strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)))
3350 {
3351 if (!GOT_symbol)
3352 {
3353 if (symbol_find (name))
3354 as_bad ("GOT already in symbol table");
3355
3356 GOT_symbol = symbol_new (GLOBAL_OFFSET_TABLE_NAME, undefined_section,
3357 &zero_address_frag, 0);
3358 };
3359 return GOT_symbol;
3360 }
3361 return NULL;
3362 }
3363
3364 /* Turn a string in input_line_pointer into a floating point constant
3365 of type type, and store the appropriate bytes in *litP. The number
3366 of LITTLENUMS emitted is stored in *sizeP. An error message is
3367 returned, or NULL on OK. */
3368
3369 const char *
3370 md_atof (int type, char *litP, int *sizeP)
3371 {
3372 return ieee_md_atof (type, litP, sizeP, target_big_endian);
3373 }
3374
3375 /* Called for any expression that can not be recognized. When the
3376 function is called, `input_line_pointer' will point to the start of
3377 the expression. We use it when we have complex operations like
3378 @label1 - @label2. */
3379
3380 void
3381 md_operand (expressionS *expressionP)
3382 {
3383 char *p = input_line_pointer;
3384 if (*p == '@')
3385 {
3386 input_line_pointer++;
3387 expressionP->X_op = O_symbol;
3388 expressionP->X_md = O_absent;
3389 expression (expressionP);
3390 }
3391 }
3392
3393 /* This function is called from the function 'expression', it attempts
3394 to parse special names (in our case register names). It fills in
3395 the expression with the identified register. It returns TRUE if
3396 it is a register and FALSE otherwise. */
3397
3398 bool
3399 arc_parse_name (const char *name,
3400 struct expressionS *e)
3401 {
3402 struct symbol *sym;
3403
3404 if (!assembling_insn)
3405 return false;
3406
3407 if (e->X_op == O_symbol
3408 && e->X_md == O_absent)
3409 return false;
3410
3411 sym = str_hash_find (arc_reg_hash, name);
3412 if (sym)
3413 {
3414 e->X_op = O_register;
3415 e->X_add_number = S_GET_VALUE (sym);
3416 return true;
3417 }
3418
3419 sym = str_hash_find (arc_addrtype_hash, name);
3420 if (sym)
3421 {
3422 e->X_op = O_addrtype;
3423 e->X_add_number = S_GET_VALUE (sym);
3424 return true;
3425 }
3426
3427 return false;
3428 }
3429
3430 /* md_parse_option
3431 Invocation line includes a switch not recognized by the base assembler.
3432 See if it's a processor-specific option.
3433
3434 New options (supported) are:
3435
3436 -mcpu=<cpu name> Assemble for selected processor
3437 -EB/-mbig-endian Big-endian
3438 -EL/-mlittle-endian Little-endian
3439 -mrelax Enable relaxation
3440
3441 The following CPU names are recognized:
3442 arc600, arc700, arcem, archs, nps400. */
3443
3444 int
3445 md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED)
3446 {
3447 switch (c)
3448 {
3449 case OPTION_ARC600:
3450 case OPTION_ARC601:
3451 return md_parse_option (OPTION_MCPU, "arc600");
3452
3453 case OPTION_ARC700:
3454 return md_parse_option (OPTION_MCPU, "arc700");
3455
3456 case OPTION_ARCEM:
3457 return md_parse_option (OPTION_MCPU, "arcem");
3458
3459 case OPTION_ARCHS:
3460 return md_parse_option (OPTION_MCPU, "archs");
3461
3462 case OPTION_MCPU:
3463 {
3464 arc_select_cpu (arg, MACH_SELECTION_FROM_COMMAND_LINE);
3465 break;
3466 }
3467
3468 case OPTION_EB:
3469 arc_target_format = "elf32-bigarc";
3470 byte_order = BIG_ENDIAN;
3471 break;
3472
3473 case OPTION_EL:
3474 arc_target_format = "elf32-littlearc";
3475 byte_order = LITTLE_ENDIAN;
3476 break;
3477
3478 case OPTION_CD:
3479 selected_cpu.features |= CD;
3480 cl_features |= CD;
3481 arc_check_feature ();
3482 break;
3483
3484 case OPTION_RELAX:
3485 relaxation_state = 1;
3486 break;
3487
3488 case OPTION_NPS400:
3489 selected_cpu.features |= NPS400;
3490 cl_features |= NPS400;
3491 arc_check_feature ();
3492 break;
3493
3494 case OPTION_SPFP:
3495 selected_cpu.features |= SPX;
3496 cl_features |= SPX;
3497 arc_check_feature ();
3498 break;
3499
3500 case OPTION_DPFP:
3501 selected_cpu.features |= DPX;
3502 cl_features |= DPX;
3503 arc_check_feature ();
3504 break;
3505
3506 case OPTION_FPUDA:
3507 selected_cpu.features |= DPA;
3508 cl_features |= DPA;
3509 arc_check_feature ();
3510 break;
3511
3512 /* Dummy options are accepted but have no effect. */
3513 case OPTION_USER_MODE:
3514 case OPTION_LD_EXT_MASK:
3515 case OPTION_SWAP:
3516 case OPTION_NORM:
3517 case OPTION_BARREL_SHIFT:
3518 case OPTION_MIN_MAX:
3519 case OPTION_NO_MPY:
3520 case OPTION_EA:
3521 case OPTION_MUL64:
3522 case OPTION_SIMD:
3523 case OPTION_XMAC_D16:
3524 case OPTION_XMAC_24:
3525 case OPTION_DSP_PACKA:
3526 case OPTION_CRC:
3527 case OPTION_DVBF:
3528 case OPTION_TELEPHONY:
3529 case OPTION_XYMEMORY:
3530 case OPTION_LOCK:
3531 case OPTION_SWAPE:
3532 case OPTION_RTSC:
3533 break;
3534
3535 default:
3536 return 0;
3537 }
3538
3539 return 1;
3540 }
3541
3542 /* Display the list of cpu names for use in the help text. */
3543
3544 static void
3545 arc_show_cpu_list (FILE *stream)
3546 {
3547 int i, offset;
3548 static const char *space_buf = " ";
3549
3550 fprintf (stream, "%s", space_buf);
3551 offset = strlen (space_buf);
3552 for (i = 0; cpu_types[i].name != NULL; ++i)
3553 {
3554 bool last = (cpu_types[i + 1].name == NULL);
3555
3556 /* If displaying the new cpu name string, and the ', ' (for all
3557 but the last one) will take us past a target width of 80
3558 characters, then it's time for a new line. */
3559 if (offset + strlen (cpu_types[i].name) + (last ? 0 : 2) > 80)
3560 {
3561 fprintf (stream, "\n%s", space_buf);
3562 offset = strlen (space_buf);
3563 }
3564
3565 fprintf (stream, "%s%s", cpu_types[i].name, (last ? "\n" : ", "));
3566 offset += strlen (cpu_types [i].name) + (last ? 0 : 2);
3567 }
3568 }
3569
3570 void
3571 md_show_usage (FILE *stream)
3572 {
3573 fprintf (stream, _("ARC-specific assembler options:\n"));
3574
3575 fprintf (stream, " -mcpu=<cpu name>\t (default: %s), assemble for"
3576 " CPU <cpu name>, one of:\n", TARGET_WITH_CPU);
3577 arc_show_cpu_list (stream);
3578 fprintf (stream, "\n");
3579 fprintf (stream, " -mA6/-mARC600/-mARC601 same as -mcpu=arc600\n");
3580 fprintf (stream, " -mA7/-mARC700\t\t same as -mcpu=arc700\n");
3581 fprintf (stream, " -mEM\t\t\t same as -mcpu=arcem\n");
3582 fprintf (stream, " -mHS\t\t\t same as -mcpu=archs\n");
3583
3584 fprintf (stream, " -mnps400\t\t enable NPS-400 extended instructions\n");
3585 fprintf (stream, " -mspfp\t\t enable single-precision floating point"
3586 " instructions\n");
3587 fprintf (stream, " -mdpfp\t\t enable double-precision floating point"
3588 " instructions\n");
3589 fprintf (stream, " -mfpuda\t\t enable double-precision assist floating "
3590 "point\n\t\t\t instructions for ARC EM\n");
3591
3592 fprintf (stream,
3593 " -mcode-density\t enable code density option for ARC EM\n");
3594
3595 fprintf (stream, _("\
3596 -EB assemble code for a big-endian cpu\n"));
3597 fprintf (stream, _("\
3598 -EL assemble code for a little-endian cpu\n"));
3599 fprintf (stream, _("\
3600 -mrelax enable relaxation\n"));
3601
3602 fprintf (stream, _("The following ARC-specific assembler options are "
3603 "deprecated and are accepted\nfor compatibility only:\n"));
3604
3605 fprintf (stream, _(" -mEA\n"
3606 " -mbarrel-shifter\n"
3607 " -mbarrel_shifter\n"
3608 " -mcrc\n"
3609 " -mdsp-packa\n"
3610 " -mdsp_packa\n"
3611 " -mdvbf\n"
3612 " -mld-extension-reg-mask\n"
3613 " -mlock\n"
3614 " -mmac-24\n"
3615 " -mmac-d16\n"
3616 " -mmac_24\n"
3617 " -mmac_d16\n"
3618 " -mmin-max\n"
3619 " -mmin_max\n"
3620 " -mmul64\n"
3621 " -mno-mpy\n"
3622 " -mnorm\n"
3623 " -mrtsc\n"
3624 " -msimd\n"
3625 " -mswap\n"
3626 " -mswape\n"
3627 " -mtelephony\n"
3628 " -muser-mode-only\n"
3629 " -mxy\n"));
3630 }
3631
3632 /* Find the proper relocation for the given opcode. */
3633
3634 static extended_bfd_reloc_code_real_type
3635 find_reloc (const char *name,
3636 const char *opcodename,
3637 const struct arc_flags *pflags,
3638 int nflg,
3639 extended_bfd_reloc_code_real_type reloc)
3640 {
3641 unsigned int i;
3642 int j;
3643 bool found_flag, tmp;
3644 extended_bfd_reloc_code_real_type ret = BFD_RELOC_UNUSED;
3645
3646 for (i = 0; i < arc_num_equiv_tab; i++)
3647 {
3648 const struct arc_reloc_equiv_tab *r = &arc_reloc_equiv[i];
3649
3650 /* Find the entry. */
3651 if (strcmp (name, r->name))
3652 continue;
3653 if (r->mnemonic && (strcmp (r->mnemonic, opcodename)))
3654 continue;
3655 if (r->flags[0])
3656 {
3657 if (!nflg)
3658 continue;
3659 found_flag = false;
3660 unsigned * psflg = (unsigned *)r->flags;
3661 do
3662 {
3663 tmp = false;
3664 for (j = 0; j < nflg; j++)
3665 if (!strcmp (pflags[j].name,
3666 arc_flag_operands[*psflg].name))
3667 {
3668 tmp = true;
3669 break;
3670 }
3671 if (!tmp)
3672 {
3673 found_flag = false;
3674 break;
3675 }
3676 else
3677 {
3678 found_flag = true;
3679 }
3680 ++ psflg;
3681 } while (*psflg);
3682
3683 if (!found_flag)
3684 continue;
3685 }
3686
3687 if (reloc != r->oldreloc)
3688 continue;
3689 /* Found it. */
3690 ret = r->newreloc;
3691 break;
3692 }
3693
3694 if (ret == BFD_RELOC_UNUSED)
3695 as_bad (_("Unable to find %s relocation for instruction %s"),
3696 name, opcodename);
3697 return ret;
3698 }
3699
3700 /* All the symbol types that are allowed to be used for
3701 relaxation. */
3702
3703 static bool
3704 may_relax_expr (expressionS tok)
3705 {
3706 /* Check if we have unrelaxable relocs. */
3707 switch (tok.X_md)
3708 {
3709 default:
3710 break;
3711 case O_plt:
3712 return false;
3713 }
3714
3715 switch (tok.X_op)
3716 {
3717 case O_symbol:
3718 case O_multiply:
3719 case O_divide:
3720 case O_modulus:
3721 case O_add:
3722 case O_subtract:
3723 break;
3724
3725 default:
3726 return false;
3727 }
3728 return true;
3729 }
3730
3731 /* Checks if flags are in line with relaxable insn. */
3732
3733 static bool
3734 relaxable_flag (const struct arc_relaxable_ins *ins,
3735 const struct arc_flags *pflags,
3736 int nflgs)
3737 {
3738 unsigned flag_class,
3739 flag,
3740 flag_class_idx = 0,
3741 flag_idx = 0;
3742
3743 const struct arc_flag_operand *flag_opand;
3744 int i, counttrue = 0;
3745
3746 /* Iterate through flags classes. */
3747 while ((flag_class = ins->flag_classes[flag_class_idx]) != 0)
3748 {
3749 /* Iterate through flags in flag class. */
3750 while ((flag = arc_flag_classes[flag_class].flags[flag_idx])
3751 != 0)
3752 {
3753 flag_opand = &arc_flag_operands[flag];
3754 /* Iterate through flags in ins to compare. */
3755 for (i = 0; i < nflgs; ++i)
3756 {
3757 if (strcmp (flag_opand->name, pflags[i].name) == 0)
3758 ++counttrue;
3759 }
3760
3761 ++flag_idx;
3762 }
3763
3764 ++flag_class_idx;
3765 flag_idx = 0;
3766 }
3767
3768 /* If counttrue == nflgs, then all flags have been found. */
3769 return counttrue == nflgs;
3770 }
3771
3772 /* Checks if operands are in line with relaxable insn. */
3773
3774 static bool
3775 relaxable_operand (const struct arc_relaxable_ins *ins,
3776 const expressionS *tok,
3777 int ntok)
3778 {
3779 const enum rlx_operand_type *operand = &ins->operands[0];
3780 int i = 0;
3781
3782 while (*operand != EMPTY)
3783 {
3784 const expressionS *epr = &tok[i];
3785
3786 if (i != 0 && i >= ntok)
3787 return false;
3788
3789 switch (*operand)
3790 {
3791 case IMMEDIATE:
3792 if (!(epr->X_op == O_multiply
3793 || epr->X_op == O_divide
3794 || epr->X_op == O_modulus
3795 || epr->X_op == O_add
3796 || epr->X_op == O_subtract
3797 || epr->X_op == O_symbol))
3798 return false;
3799 break;
3800
3801 case REGISTER_DUP:
3802 if ((i <= 0)
3803 || (epr->X_add_number != tok[i - 1].X_add_number))
3804 return false;
3805 /* Fall through. */
3806 case REGISTER:
3807 if (epr->X_op != O_register)
3808 return false;
3809 break;
3810
3811 case REGISTER_S:
3812 if (epr->X_op != O_register)
3813 return false;
3814
3815 switch (epr->X_add_number)
3816 {
3817 case 0: case 1: case 2: case 3:
3818 case 12: case 13: case 14: case 15:
3819 break;
3820 default:
3821 return false;
3822 }
3823 break;
3824
3825 case REGISTER_NO_GP:
3826 if ((epr->X_op != O_register)
3827 || (epr->X_add_number == 26)) /* 26 is the gp register. */
3828 return false;
3829 break;
3830
3831 case BRACKET:
3832 if (epr->X_op != O_bracket)
3833 return false;
3834 break;
3835
3836 default:
3837 /* Don't understand, bail out. */
3838 return false;
3839 break;
3840 }
3841
3842 ++i;
3843 operand = &ins->operands[i];
3844 }
3845
3846 return i == ntok;
3847 }
3848
3849 /* Return TRUE if this OPDCODE is a candidate for relaxation. */
3850
3851 static bool
3852 relax_insn_p (const struct arc_opcode *opcode,
3853 const expressionS *tok,
3854 int ntok,
3855 const struct arc_flags *pflags,
3856 int nflg)
3857 {
3858 unsigned i;
3859 bool rv = false;
3860
3861 /* Check the relaxation table. */
3862 for (i = 0; i < arc_num_relaxable_ins && relaxation_state; ++i)
3863 {
3864 const struct arc_relaxable_ins *arc_rlx_ins = &arc_relaxable_insns[i];
3865
3866 if ((strcmp (opcode->name, arc_rlx_ins->mnemonic_r) == 0)
3867 && may_relax_expr (tok[arc_rlx_ins->opcheckidx])
3868 && relaxable_operand (arc_rlx_ins, tok, ntok)
3869 && relaxable_flag (arc_rlx_ins, pflags, nflg))
3870 {
3871 rv = true;
3872 frag_now->fr_subtype = arc_relaxable_insns[i].subtype;
3873 memcpy (&frag_now->tc_frag_data.tok, tok,
3874 sizeof (expressionS) * ntok);
3875 memcpy (&frag_now->tc_frag_data.pflags, pflags,
3876 sizeof (struct arc_flags) * nflg);
3877 frag_now->tc_frag_data.nflg = nflg;
3878 frag_now->tc_frag_data.ntok = ntok;
3879 break;
3880 }
3881 }
3882
3883 return rv;
3884 }
3885
3886 /* Turn an opcode description and a set of arguments into
3887 an instruction and a fixup. */
3888
3889 static void
3890 assemble_insn (const struct arc_opcode *opcode,
3891 const expressionS *tok,
3892 int ntok,
3893 const struct arc_flags *pflags,
3894 int nflg,
3895 struct arc_insn *insn)
3896 {
3897 const expressionS *reloc_exp = NULL;
3898 unsigned long long image;
3899 const unsigned char *argidx;
3900 int i;
3901 int tokidx = 0;
3902 unsigned char pcrel = 0;
3903 bool needGOTSymbol;
3904 bool has_delay_slot = false;
3905 extended_bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
3906
3907 memset (insn, 0, sizeof (*insn));
3908 image = opcode->opcode;
3909
3910 pr_debug ("%s:%d: assemble_insn: %s using opcode %llx\n",
3911 frag_now->fr_file, frag_now->fr_line, opcode->name,
3912 opcode->opcode);
3913
3914 /* Handle operands. */
3915 for (argidx = opcode->operands; *argidx; ++argidx)
3916 {
3917 const struct arc_operand *operand = &arc_operands[*argidx];
3918 const expressionS *t = (const expressionS *) 0;
3919
3920 if (ARC_OPERAND_IS_FAKE (operand))
3921 continue;
3922
3923 if (operand->flags & ARC_OPERAND_DUPLICATE)
3924 {
3925 /* Duplicate operand, already inserted. */
3926 tokidx ++;
3927 continue;
3928 }
3929
3930 if (tokidx >= ntok)
3931 {
3932 abort ();
3933 }
3934 else
3935 t = &tok[tokidx++];
3936
3937 /* Regardless if we have a reloc or not mark the instruction
3938 limm if it is the case. */
3939 if (operand->flags & ARC_OPERAND_LIMM)
3940 insn->has_limm = true;
3941
3942 switch (t->X_op)
3943 {
3944 case O_register:
3945 image = insert_operand (image, operand, regno (t->X_add_number),
3946 NULL, 0);
3947 break;
3948
3949 case O_constant:
3950 image = insert_operand (image, operand, t->X_add_number, NULL, 0);
3951 reloc_exp = t;
3952 if (operand->flags & ARC_OPERAND_LIMM)
3953 insn->limm = t->X_add_number;
3954 break;
3955
3956 case O_bracket:
3957 case O_colon:
3958 case O_addrtype:
3959 /* Ignore brackets, colons, and address types. */
3960 break;
3961
3962 case O_absent:
3963 gas_assert (operand->flags & ARC_OPERAND_IGNORE);
3964 break;
3965
3966 case O_subtract:
3967 /* Maybe register range. */
3968 if ((t->X_add_number == 0)
3969 && contains_register (t->X_add_symbol)
3970 && contains_register (t->X_op_symbol))
3971 {
3972 int regs;
3973
3974 regs = get_register (t->X_add_symbol);
3975 regs <<= 16;
3976 regs |= get_register (t->X_op_symbol);
3977 image = insert_operand (image, operand, regs, NULL, 0);
3978 break;
3979 }
3980 /* Fall through. */
3981
3982 default:
3983 /* This operand needs a relocation. */
3984 needGOTSymbol = false;
3985
3986 switch (t->X_md)
3987 {
3988 case O_plt:
3989 if (opcode->insn_class == JUMP)
3990 as_bad (_("Unable to use @plt relocation for insn %s"),
3991 opcode->name);
3992 needGOTSymbol = true;
3993 reloc = find_reloc ("plt", opcode->name,
3994 pflags, nflg,
3995 operand->default_reloc);
3996 break;
3997
3998 case O_gotoff:
3999 case O_gotpc:
4000 needGOTSymbol = true;
4001 reloc = ARC_RELOC_TABLE (t->X_md)->reloc;
4002 break;
4003 case O_pcl:
4004 if (operand->flags & ARC_OPERAND_LIMM)
4005 {
4006 reloc = ARC_RELOC_TABLE (t->X_md)->reloc;
4007 if (arc_opcode_len (opcode) == 2
4008 || opcode->insn_class == JUMP)
4009 as_bad (_("Unable to use @pcl relocation for insn %s"),
4010 opcode->name);
4011 }
4012 else
4013 {
4014 /* This is a relaxed operand which initially was
4015 limm, choose whatever we have defined in the
4016 opcode as reloc. */
4017 reloc = operand->default_reloc;
4018 }
4019 break;
4020 case O_sda:
4021 reloc = find_reloc ("sda", opcode->name,
4022 pflags, nflg,
4023 operand->default_reloc);
4024 break;
4025 case O_tlsgd:
4026 case O_tlsie:
4027 needGOTSymbol = true;
4028 /* Fall-through. */
4029
4030 case O_tpoff:
4031 case O_dtpoff:
4032 reloc = ARC_RELOC_TABLE (t->X_md)->reloc;
4033 break;
4034
4035 case O_tpoff9: /*FIXME! Check for the conditionality of
4036 the insn. */
4037 case O_dtpoff9: /*FIXME! Check for the conditionality of
4038 the insn. */
4039 as_bad (_("TLS_*_S9 relocs are not supported yet"));
4040 break;
4041
4042 default:
4043 /* Just consider the default relocation. */
4044 reloc = operand->default_reloc;
4045 break;
4046 }
4047
4048 if (needGOTSymbol && (GOT_symbol == NULL))
4049 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4050
4051 reloc_exp = t;
4052
4053 #if 0
4054 if (reloc > 0)
4055 {
4056 /* sanity checks. */
4057 reloc_howto_type *reloc_howto
4058 = bfd_reloc_type_lookup (stdoutput,
4059 (bfd_reloc_code_real_type) reloc);
4060 unsigned reloc_bitsize = reloc_howto->bitsize;
4061 if (reloc_howto->rightshift)
4062 reloc_bitsize -= reloc_howto->rightshift;
4063 if (reloc_bitsize != operand->bits)
4064 {
4065 as_bad (_("invalid relocation %s for field"),
4066 bfd_get_reloc_code_name (reloc));
4067 return;
4068 }
4069 }
4070 #endif
4071 if (insn->nfixups >= MAX_INSN_FIXUPS)
4072 as_fatal (_("too many fixups"));
4073
4074 struct arc_fixup *fixup;
4075 fixup = &insn->fixups[insn->nfixups++];
4076 fixup->exp = *t;
4077 fixup->reloc = reloc;
4078 if ((int) reloc < 0)
4079 pcrel = (operand->flags & ARC_OPERAND_PCREL) ? 1 : 0;
4080 else
4081 {
4082 reloc_howto_type *reloc_howto =
4083 bfd_reloc_type_lookup (stdoutput,
4084 (bfd_reloc_code_real_type) fixup->reloc);
4085 pcrel = reloc_howto->pc_relative;
4086 }
4087 fixup->pcrel = pcrel;
4088 fixup->islong = (operand->flags & ARC_OPERAND_LIMM) != 0;
4089 break;
4090 }
4091 }
4092
4093 /* Handle flags. */
4094 for (i = 0; i < nflg; i++)
4095 {
4096 const struct arc_flag_operand *flg_operand = pflags[i].flgp;
4097
4098 /* Check if the instruction has a delay slot. */
4099 if (!strcmp (flg_operand->name, "d"))
4100 has_delay_slot = true;
4101
4102 /* There is an exceptional case when we cannot insert a flag just as
4103 it is. On ARCv2 the '.t' and '.nt' flags must be handled in
4104 relation with the relative address. Unfortunately, some of the
4105 ARC700 extensions (NPS400) also have a '.nt' flag that should be
4106 handled in the normal way.
4107
4108 Flag operands don't have an architecture field, so we can't
4109 directly validate that FLAG_OPERAND is valid for the current
4110 architecture, what we do instead is just validate that we're
4111 assembling for an ARCv2 architecture. */
4112 if ((selected_cpu.flags & ARC_OPCODE_ARCV2)
4113 && (!strcmp (flg_operand->name, "t")
4114 || !strcmp (flg_operand->name, "nt")))
4115 {
4116 unsigned bitYoperand = 0;
4117 /* FIXME! move selection bbit/brcc in arc-opc.c. */
4118 if (!strcmp (flg_operand->name, "t"))
4119 if (!strcmp (opcode->name, "bbit0")
4120 || !strcmp (opcode->name, "bbit1"))
4121 bitYoperand = arc_NToperand;
4122 else
4123 bitYoperand = arc_Toperand;
4124 else
4125 if (!strcmp (opcode->name, "bbit0")
4126 || !strcmp (opcode->name, "bbit1"))
4127 bitYoperand = arc_Toperand;
4128 else
4129 bitYoperand = arc_NToperand;
4130
4131 gas_assert (reloc_exp != NULL);
4132 if (reloc_exp->X_op == O_constant)
4133 {
4134 /* Check if we have a constant and solved it
4135 immediately. */
4136 offsetT val = reloc_exp->X_add_number;
4137 image |= insert_operand (image, &arc_operands[bitYoperand],
4138 val, NULL, 0);
4139 }
4140 else
4141 {
4142 struct arc_fixup *fixup;
4143
4144 if (insn->nfixups >= MAX_INSN_FIXUPS)
4145 as_fatal (_("too many fixups"));
4146
4147 fixup = &insn->fixups[insn->nfixups++];
4148 fixup->exp = *reloc_exp;
4149 fixup->reloc = -bitYoperand;
4150 fixup->pcrel = pcrel;
4151 fixup->islong = false;
4152 }
4153 }
4154 else
4155 image |= (flg_operand->code & ((1 << flg_operand->bits) - 1))
4156 << flg_operand->shift;
4157 }
4158
4159 insn->relax = relax_insn_p (opcode, tok, ntok, pflags, nflg);
4160
4161 /* Instruction length. */
4162 insn->len = arc_opcode_len (opcode);
4163
4164 insn->insn = image;
4165
4166 /* Update last insn status. */
4167 arc_last_insns[1] = arc_last_insns[0];
4168 arc_last_insns[0].opcode = opcode;
4169 arc_last_insns[0].has_limm = insn->has_limm;
4170 arc_last_insns[0].has_delay_slot = has_delay_slot;
4171
4172 /* Check if the current instruction is legally used. */
4173 if (arc_last_insns[1].has_delay_slot
4174 && is_br_jmp_insn_p (arc_last_insns[0].opcode))
4175 as_bad (_("Insn %s has a jump/branch instruction %s in its delay slot."),
4176 arc_last_insns[1].opcode->name,
4177 arc_last_insns[0].opcode->name);
4178 if (arc_last_insns[1].has_delay_slot
4179 && arc_last_insns[0].has_limm)
4180 as_bad (_("Insn %s has an instruction %s with limm in its delay slot."),
4181 arc_last_insns[1].opcode->name,
4182 arc_last_insns[0].opcode->name);
4183 }
4184
4185 void
4186 arc_handle_align (fragS* fragP)
4187 {
4188 if ((fragP)->fr_type == rs_align_code)
4189 {
4190 char *dest = (fragP)->fr_literal + (fragP)->fr_fix;
4191 valueT count = ((fragP)->fr_next->fr_address
4192 - (fragP)->fr_address - (fragP)->fr_fix);
4193
4194 (fragP)->fr_var = 2;
4195
4196 if (count & 1)/* Padding in the gap till the next 2-byte
4197 boundary with 0s. */
4198 {
4199 (fragP)->fr_fix++;
4200 *dest++ = 0;
4201 }
4202 /* Writing nop_s. */
4203 md_number_to_chars (dest, NOP_OPCODE_S, 2);
4204 }
4205 }
4206
4207 /* Here we decide which fixups can be adjusted to make them relative
4208 to the beginning of the section instead of the symbol. Basically
4209 we need to make sure that the dynamic relocations are done
4210 correctly, so in some cases we force the original symbol to be
4211 used. */
4212
4213 int
4214 tc_arc_fix_adjustable (fixS *fixP)
4215 {
4216
4217 /* Prevent all adjustments to global symbols. */
4218 if (S_IS_EXTERNAL (fixP->fx_addsy))
4219 return 0;
4220 if (S_IS_WEAK (fixP->fx_addsy))
4221 return 0;
4222
4223 /* Adjust_reloc_syms doesn't know about the GOT. */
4224 switch (fixP->fx_r_type)
4225 {
4226 case BFD_RELOC_ARC_GOTPC32:
4227 case BFD_RELOC_ARC_PLT32:
4228 case BFD_RELOC_ARC_S25H_PCREL_PLT:
4229 case BFD_RELOC_ARC_S21H_PCREL_PLT:
4230 case BFD_RELOC_ARC_S25W_PCREL_PLT:
4231 case BFD_RELOC_ARC_S21W_PCREL_PLT:
4232 return 0;
4233
4234 default:
4235 break;
4236 }
4237
4238 return 1;
4239 }
4240
4241 /* Compute the reloc type of an expression EXP. */
4242
4243 static void
4244 arc_check_reloc (expressionS *exp,
4245 bfd_reloc_code_real_type *r_type_p)
4246 {
4247 if (*r_type_p == BFD_RELOC_32
4248 && exp->X_op == O_subtract
4249 && exp->X_op_symbol != NULL
4250 && S_GET_SEGMENT (exp->X_op_symbol) == now_seg)
4251 *r_type_p = BFD_RELOC_ARC_32_PCREL;
4252 }
4253
4254
4255 /* Add expression EXP of SIZE bytes to offset OFF of fragment FRAG. */
4256
4257 void
4258 arc_cons_fix_new (fragS *frag,
4259 int off,
4260 int size,
4261 expressionS *exp,
4262 bfd_reloc_code_real_type r_type)
4263 {
4264 r_type = BFD_RELOC_UNUSED;
4265
4266 switch (size)
4267 {
4268 case 1:
4269 r_type = BFD_RELOC_8;
4270 break;
4271
4272 case 2:
4273 r_type = BFD_RELOC_16;
4274 break;
4275
4276 case 3:
4277 r_type = BFD_RELOC_24;
4278 break;
4279
4280 case 4:
4281 r_type = BFD_RELOC_32;
4282 arc_check_reloc (exp, &r_type);
4283 break;
4284
4285 case 8:
4286 r_type = BFD_RELOC_64;
4287 break;
4288
4289 default:
4290 as_bad (_("unsupported BFD relocation size %u"), size);
4291 r_type = BFD_RELOC_UNUSED;
4292 }
4293
4294 fix_new_exp (frag, off, size, exp, 0, r_type);
4295 }
4296
4297 /* The actual routine that checks the ZOL conditions. */
4298
4299 static void
4300 check_zol (symbolS *s)
4301 {
4302 switch (selected_cpu.mach)
4303 {
4304 case bfd_mach_arc_arcv2:
4305 if (selected_cpu.flags & ARC_OPCODE_ARCv2EM)
4306 return;
4307
4308 if (is_br_jmp_insn_p (arc_last_insns[0].opcode)
4309 || arc_last_insns[1].has_delay_slot)
4310 as_bad (_("Jump/Branch instruction detected at the end of the ZOL label @%s"),
4311 S_GET_NAME (s));
4312
4313 break;
4314 case bfd_mach_arc_arc600:
4315
4316 if (is_kernel_insn_p (arc_last_insns[0].opcode))
4317 as_bad (_("Kernel instruction detected at the end of the ZOL label @%s"),
4318 S_GET_NAME (s));
4319
4320 if (arc_last_insns[0].has_limm
4321 && is_br_jmp_insn_p (arc_last_insns[0].opcode))
4322 as_bad (_("A jump instruction with long immediate detected at the \
4323 end of the ZOL label @%s"), S_GET_NAME (s));
4324
4325 /* Fall through. */
4326 case bfd_mach_arc_arc700:
4327 if (arc_last_insns[0].has_delay_slot)
4328 as_bad (_("An illegal use of delay slot detected at the end of the ZOL label @%s"),
4329 S_GET_NAME (s));
4330
4331 break;
4332 default:
4333 break;
4334 }
4335 }
4336
4337 /* If ZOL end check the last two instruction for illegals. */
4338 void
4339 arc_frob_label (symbolS * sym)
4340 {
4341 if (ARC_GET_FLAG (sym) & ARC_FLAG_ZOL)
4342 check_zol (sym);
4343
4344 dwarf2_emit_label (sym);
4345 }
4346
4347 /* Used because generic relaxation assumes a pc-rel value whilst we
4348 also relax instructions that use an absolute value resolved out of
4349 relative values (if that makes any sense). An example: 'add r1,
4350 r2, @.L2 - .' The symbols . and @.L2 are relative to the section
4351 but if they're in the same section we can subtract the section
4352 offset relocation which ends up in a resolved value. So if @.L2 is
4353 .text + 0x50 and . is .text + 0x10, we can say that .text + 0x50 -
4354 .text + 0x40 = 0x10. */
4355 int
4356 arc_pcrel_adjust (fragS *fragP)
4357 {
4358 pr_debug ("arc_pcrel_adjust: address=%ld, fix=%ld, PCrel %s\n",
4359 fragP->fr_address, fragP->fr_fix,
4360 fragP->tc_frag_data.pcrel ? "Y" : "N");
4361
4362 if (!fragP->tc_frag_data.pcrel)
4363 return fragP->fr_address + fragP->fr_fix;
4364
4365 /* Take into account the PCL rounding. */
4366 return (fragP->fr_address + fragP->fr_fix) & 0x03;
4367 }
4368
4369 /* Initialize the DWARF-2 unwind information for this procedure. */
4370
4371 void
4372 tc_arc_frame_initial_instructions (void)
4373 {
4374 /* Stack pointer is register 28. */
4375 cfi_add_CFA_def_cfa (28, 0);
4376 }
4377
4378 int
4379 tc_arc_regname_to_dw2regnum (char *regname)
4380 {
4381 struct symbol *sym;
4382
4383 sym = str_hash_find (arc_reg_hash, regname);
4384 if (sym)
4385 return S_GET_VALUE (sym);
4386
4387 return -1;
4388 }
4389
4390 /* Adjust the symbol table. Delete found AUX register symbols. */
4391
4392 void
4393 arc_adjust_symtab (void)
4394 {
4395 symbolS * sym;
4396
4397 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
4398 {
4399 /* I've created a symbol during parsing process. Now, remove
4400 the symbol as it is found to be an AUX register. */
4401 if (ARC_GET_FLAG (sym) & ARC_FLAG_AUX)
4402 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
4403 }
4404
4405 /* Now do generic ELF adjustments. */
4406 elf_adjust_symtab ();
4407 }
4408
4409 static void
4410 tokenize_extinsn (extInstruction_t *einsn)
4411 {
4412 char *p, c;
4413 char *insn_name;
4414 unsigned char major_opcode;
4415 unsigned char sub_opcode;
4416 unsigned char syntax_class = 0;
4417 unsigned char syntax_class_modifiers = 0;
4418 unsigned char suffix_class = 0;
4419 unsigned int i;
4420
4421 SKIP_WHITESPACE ();
4422
4423 /* 1st: get instruction name. */
4424 p = input_line_pointer;
4425 c = get_symbol_name (&p);
4426
4427 insn_name = xstrdup (p);
4428 restore_line_pointer (c);
4429
4430 /* Convert to lower case. */
4431 for (p = insn_name; *p; ++p)
4432 *p = TOLOWER (*p);
4433
4434 /* 2nd: get major opcode. */
4435 if (*input_line_pointer != ',')
4436 {
4437 as_bad (_("expected comma after instruction name"));
4438 ignore_rest_of_line ();
4439 return;
4440 }
4441 input_line_pointer++;
4442 major_opcode = get_absolute_expression ();
4443
4444 /* 3rd: get sub-opcode. */
4445 SKIP_WHITESPACE ();
4446
4447 if (*input_line_pointer != ',')
4448 {
4449 as_bad (_("expected comma after major opcode"));
4450 ignore_rest_of_line ();
4451 return;
4452 }
4453 input_line_pointer++;
4454 sub_opcode = get_absolute_expression ();
4455
4456 /* 4th: get suffix class. */
4457 SKIP_WHITESPACE ();
4458
4459 if (*input_line_pointer != ',')
4460 {
4461 as_bad ("expected comma after sub opcode");
4462 ignore_rest_of_line ();
4463 return;
4464 }
4465 input_line_pointer++;
4466
4467 while (1)
4468 {
4469 SKIP_WHITESPACE ();
4470
4471 for (i = 0; i < ARRAY_SIZE (suffixclass); i++)
4472 {
4473 if (!strncmp (suffixclass[i].name, input_line_pointer,
4474 suffixclass[i].len))
4475 {
4476 suffix_class |= suffixclass[i].attr_class;
4477 input_line_pointer += suffixclass[i].len;
4478 break;
4479 }
4480 }
4481
4482 if (i == ARRAY_SIZE (suffixclass))
4483 {
4484 as_bad ("invalid suffix class");
4485 ignore_rest_of_line ();
4486 return;
4487 }
4488
4489 SKIP_WHITESPACE ();
4490
4491 if (*input_line_pointer == '|')
4492 input_line_pointer++;
4493 else
4494 break;
4495 }
4496
4497 /* 5th: get syntax class and syntax class modifiers. */
4498 if (*input_line_pointer != ',')
4499 {
4500 as_bad ("expected comma after suffix class");
4501 ignore_rest_of_line ();
4502 return;
4503 }
4504 input_line_pointer++;
4505
4506 while (1)
4507 {
4508 SKIP_WHITESPACE ();
4509
4510 for (i = 0; i < ARRAY_SIZE (syntaxclassmod); i++)
4511 {
4512 if (!strncmp (syntaxclassmod[i].name,
4513 input_line_pointer,
4514 syntaxclassmod[i].len))
4515 {
4516 syntax_class_modifiers |= syntaxclassmod[i].attr_class;
4517 input_line_pointer += syntaxclassmod[i].len;
4518 break;
4519 }
4520 }
4521
4522 if (i == ARRAY_SIZE (syntaxclassmod))
4523 {
4524 for (i = 0; i < ARRAY_SIZE (syntaxclass); i++)
4525 {
4526 if (!strncmp (syntaxclass[i].name,
4527 input_line_pointer,
4528 syntaxclass[i].len))
4529 {
4530 syntax_class |= syntaxclass[i].attr_class;
4531 input_line_pointer += syntaxclass[i].len;
4532 break;
4533 }
4534 }
4535
4536 if (i == ARRAY_SIZE (syntaxclass))
4537 {
4538 as_bad ("missing syntax class");
4539 ignore_rest_of_line ();
4540 return;
4541 }
4542 }
4543
4544 SKIP_WHITESPACE ();
4545
4546 if (*input_line_pointer == '|')
4547 input_line_pointer++;
4548 else
4549 break;
4550 }
4551
4552 demand_empty_rest_of_line ();
4553
4554 einsn->name = insn_name;
4555 einsn->major = major_opcode;
4556 einsn->minor = sub_opcode;
4557 einsn->syntax = syntax_class;
4558 einsn->modsyn = syntax_class_modifiers;
4559 einsn->suffix = suffix_class;
4560 einsn->flags = syntax_class
4561 | (syntax_class_modifiers & ARC_OP1_IMM_IMPLIED ? 0x10 : 0);
4562 }
4563
4564 /* Generate an extension section. */
4565
4566 static int
4567 arc_set_ext_seg (void)
4568 {
4569 if (!arcext_section)
4570 {
4571 arcext_section = subseg_new (".arcextmap", 0);
4572 bfd_set_section_flags (arcext_section, SEC_READONLY | SEC_HAS_CONTENTS);
4573 }
4574 else
4575 subseg_set (arcext_section, 0);
4576 return 1;
4577 }
4578
4579 /* Create an extension instruction description in the arc extension
4580 section of the output file.
4581 The structure for an instruction is like this:
4582 [0]: Length of the record.
4583 [1]: Type of the record.
4584
4585 [2]: Major opcode.
4586 [3]: Sub-opcode.
4587 [4]: Syntax (flags).
4588 [5]+ Name instruction.
4589
4590 The sequence is terminated by an empty entry. */
4591
4592 static void
4593 create_extinst_section (extInstruction_t *einsn)
4594 {
4595
4596 segT old_sec = now_seg;
4597 int old_subsec = now_subseg;
4598 char *p;
4599 int name_len = strlen (einsn->name);
4600
4601 arc_set_ext_seg ();
4602
4603 p = frag_more (1);
4604 *p = 5 + name_len + 1;
4605 p = frag_more (1);
4606 *p = EXT_INSTRUCTION;
4607 p = frag_more (1);
4608 *p = einsn->major;
4609 p = frag_more (1);
4610 *p = einsn->minor;
4611 p = frag_more (1);
4612 *p = einsn->flags;
4613 p = frag_more (name_len + 1);
4614 strcpy (p, einsn->name);
4615
4616 subseg_set (old_sec, old_subsec);
4617 }
4618
4619 /* Handler .extinstruction pseudo-op. */
4620
4621 static void
4622 arc_extinsn (int ignore ATTRIBUTE_UNUSED)
4623 {
4624 extInstruction_t einsn;
4625 struct arc_opcode *arc_ext_opcodes;
4626 const char *errmsg = NULL;
4627 unsigned char moplow, mophigh;
4628
4629 memset (&einsn, 0, sizeof (einsn));
4630 tokenize_extinsn (&einsn);
4631
4632 /* Check if the name is already used. */
4633 if (arc_find_opcode (einsn.name))
4634 as_warn (_("Pseudocode already used %s"), einsn.name);
4635
4636 /* Check the opcode ranges. */
4637 moplow = 0x05;
4638 mophigh = (selected_cpu.flags & (ARC_OPCODE_ARCv2EM
4639 | ARC_OPCODE_ARCv2HS)) ? 0x07 : 0x0a;
4640
4641 if ((einsn.major > mophigh) || (einsn.major < moplow))
4642 as_fatal (_("major opcode not in range [0x%02x - 0x%02x]"), moplow, mophigh);
4643
4644 if ((einsn.minor > 0x3f) && (einsn.major != 0x0a)
4645 && (einsn.major != 5) && (einsn.major != 9))
4646 as_fatal (_("minor opcode not in range [0x00 - 0x3f]"));
4647
4648 switch (einsn.syntax & ARC_SYNTAX_MASK)
4649 {
4650 case ARC_SYNTAX_3OP:
4651 if (einsn.modsyn & ARC_OP1_IMM_IMPLIED)
4652 as_fatal (_("Improper use of OP1_IMM_IMPLIED"));
4653 break;
4654 case ARC_SYNTAX_2OP:
4655 case ARC_SYNTAX_1OP:
4656 case ARC_SYNTAX_NOP:
4657 if (einsn.modsyn & ARC_OP1_MUST_BE_IMM)
4658 as_fatal (_("Improper use of OP1_MUST_BE_IMM"));
4659 break;
4660 default:
4661 break;
4662 }
4663
4664 arc_ext_opcodes = arcExtMap_genOpcode (&einsn, selected_cpu.flags, &errmsg);
4665 if (arc_ext_opcodes == NULL)
4666 {
4667 if (errmsg)
4668 as_fatal ("%s", errmsg);
4669 else
4670 as_fatal (_("Couldn't generate extension instruction opcodes"));
4671 }
4672 else if (errmsg)
4673 as_warn ("%s", errmsg);
4674
4675 /* Insert the extension instruction. */
4676 arc_insert_opcode ((const struct arc_opcode *) arc_ext_opcodes);
4677
4678 create_extinst_section (&einsn);
4679 }
4680
4681 static bool
4682 tokenize_extregister (extRegister_t *ereg, int opertype)
4683 {
4684 char *name;
4685 char *mode;
4686 char c;
4687 char *p;
4688 int number, imode = 0;
4689 bool isCore_p = opertype == EXT_CORE_REGISTER;
4690 bool isReg_p = opertype == EXT_CORE_REGISTER || opertype == EXT_AUX_REGISTER;
4691
4692 /* 1st: get register name. */
4693 SKIP_WHITESPACE ();
4694 p = input_line_pointer;
4695 c = get_symbol_name (&p);
4696
4697 name = xstrdup (p);
4698 restore_line_pointer (c);
4699
4700 /* 2nd: get register number. */
4701 SKIP_WHITESPACE ();
4702
4703 if (*input_line_pointer != ',')
4704 {
4705 as_bad (_("expected comma after name"));
4706 ignore_rest_of_line ();
4707 free (name);
4708 return false;
4709 }
4710 input_line_pointer++;
4711 number = get_absolute_expression ();
4712
4713 if ((number < 0)
4714 && (opertype != EXT_AUX_REGISTER))
4715 {
4716 as_bad (_("%s second argument cannot be a negative number %d"),
4717 isCore_p ? "extCoreRegister's" : "extCondCode's",
4718 number);
4719 ignore_rest_of_line ();
4720 free (name);
4721 return false;
4722 }
4723
4724 if (isReg_p)
4725 {
4726 /* 3rd: get register mode. */
4727 SKIP_WHITESPACE ();
4728
4729 if (*input_line_pointer != ',')
4730 {
4731 as_bad (_("expected comma after register number"));
4732 ignore_rest_of_line ();
4733 free (name);
4734 return false;
4735 }
4736
4737 input_line_pointer++;
4738 mode = input_line_pointer;
4739
4740 if (startswith (mode, "r|w"))
4741 {
4742 imode = 0;
4743 input_line_pointer += 3;
4744 }
4745 else if (startswith (mode, "r"))
4746 {
4747 imode = ARC_REGISTER_READONLY;
4748 input_line_pointer += 1;
4749 }
4750 else if (!startswith (mode, "w"))
4751 {
4752 as_bad (_("invalid mode"));
4753 ignore_rest_of_line ();
4754 free (name);
4755 return false;
4756 }
4757 else
4758 {
4759 imode = ARC_REGISTER_WRITEONLY;
4760 input_line_pointer += 1;
4761 }
4762 }
4763
4764 if (isCore_p)
4765 {
4766 /* 4th: get core register shortcut. */
4767 SKIP_WHITESPACE ();
4768 if (*input_line_pointer != ',')
4769 {
4770 as_bad (_("expected comma after register mode"));
4771 ignore_rest_of_line ();
4772 free (name);
4773 return false;
4774 }
4775
4776 input_line_pointer++;
4777
4778 if (startswith (input_line_pointer, "cannot_shortcut"))
4779 {
4780 imode |= ARC_REGISTER_NOSHORT_CUT;
4781 input_line_pointer += 15;
4782 }
4783 else if (!startswith (input_line_pointer, "can_shortcut"))
4784 {
4785 as_bad (_("shortcut designator invalid"));
4786 ignore_rest_of_line ();
4787 free (name);
4788 return false;
4789 }
4790 else
4791 {
4792 input_line_pointer += 12;
4793 }
4794 }
4795 demand_empty_rest_of_line ();
4796
4797 ereg->name = name;
4798 ereg->number = number;
4799 ereg->imode = imode;
4800 return true;
4801 }
4802
4803 /* Create an extension register/condition description in the arc
4804 extension section of the output file.
4805
4806 The structure for an instruction is like this:
4807 [0]: Length of the record.
4808 [1]: Type of the record.
4809
4810 For core regs and condition codes:
4811 [2]: Value.
4812 [3]+ Name.
4813
4814 For auxiliary registers:
4815 [2..5]: Value.
4816 [6]+ Name
4817
4818 The sequence is terminated by an empty entry. */
4819
4820 static void
4821 create_extcore_section (extRegister_t *ereg, int opertype)
4822 {
4823 segT old_sec = now_seg;
4824 int old_subsec = now_subseg;
4825 char *p;
4826 int name_len = strlen (ereg->name);
4827
4828 arc_set_ext_seg ();
4829
4830 switch (opertype)
4831 {
4832 case EXT_COND_CODE:
4833 case EXT_CORE_REGISTER:
4834 p = frag_more (1);
4835 *p = 3 + name_len + 1;
4836 p = frag_more (1);
4837 *p = opertype;
4838 p = frag_more (1);
4839 *p = ereg->number;
4840 break;
4841 case EXT_AUX_REGISTER:
4842 p = frag_more (1);
4843 *p = 6 + name_len + 1;
4844 p = frag_more (1);
4845 *p = EXT_AUX_REGISTER;
4846 p = frag_more (1);
4847 *p = (ereg->number >> 24) & 0xff;
4848 p = frag_more (1);
4849 *p = (ereg->number >> 16) & 0xff;
4850 p = frag_more (1);
4851 *p = (ereg->number >> 8) & 0xff;
4852 p = frag_more (1);
4853 *p = (ereg->number) & 0xff;
4854 break;
4855 default:
4856 break;
4857 }
4858
4859 p = frag_more (name_len + 1);
4860 strcpy (p, ereg->name);
4861
4862 subseg_set (old_sec, old_subsec);
4863 }
4864
4865 /* Handler .extCoreRegister pseudo-op. */
4866
4867 static void
4868 arc_extcorereg (int opertype)
4869 {
4870 extRegister_t ereg;
4871 struct arc_aux_reg *auxr;
4872 struct arc_flag_operand *ccode;
4873
4874 memset (&ereg, 0, sizeof (ereg));
4875 if (!tokenize_extregister (&ereg, opertype))
4876 return;
4877
4878 switch (opertype)
4879 {
4880 case EXT_CORE_REGISTER:
4881 /* Core register. */
4882 if (ereg.number > 60)
4883 as_bad (_("core register %s value (%d) too large"), ereg.name,
4884 ereg.number);
4885 declare_register (ereg.name, ereg.number);
4886 break;
4887 case EXT_AUX_REGISTER:
4888 /* Auxiliary register. */
4889 auxr = XNEW (struct arc_aux_reg);
4890 auxr->name = ereg.name;
4891 auxr->cpu = selected_cpu.flags;
4892 auxr->subclass = NONE;
4893 auxr->address = ereg.number;
4894 if (str_hash_insert (arc_aux_hash, auxr->name, auxr, 0) != NULL)
4895 as_bad (_("duplicate aux register %s"), auxr->name);
4896 break;
4897 case EXT_COND_CODE:
4898 /* Condition code. */
4899 if (ereg.number > 31)
4900 as_bad (_("condition code %s value (%d) too large"), ereg.name,
4901 ereg.number);
4902 ext_condcode.size ++;
4903 ext_condcode.arc_ext_condcode =
4904 XRESIZEVEC (struct arc_flag_operand, ext_condcode.arc_ext_condcode,
4905 ext_condcode.size + 1);
4906
4907 ccode = ext_condcode.arc_ext_condcode + ext_condcode.size - 1;
4908 ccode->name = ereg.name;
4909 ccode->code = ereg.number;
4910 ccode->bits = 5;
4911 ccode->shift = 0;
4912 ccode->favail = 0; /* not used. */
4913 ccode++;
4914 memset (ccode, 0, sizeof (struct arc_flag_operand));
4915 break;
4916 default:
4917 as_bad (_("Unknown extension"));
4918 break;
4919 }
4920 create_extcore_section (&ereg, opertype);
4921 }
4922
4923 /* Parse a .arc_attribute directive. */
4924
4925 static void
4926 arc_attribute (int ignored ATTRIBUTE_UNUSED)
4927 {
4928 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4929
4930 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4931 attributes_set_explicitly[tag] = true;
4932 }
4933
4934 /* Set an attribute if it has not already been set by the user. */
4935
4936 static void
4937 arc_set_attribute_int (int tag, int value)
4938 {
4939 if (tag < 1
4940 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
4941 || !attributes_set_explicitly[tag])
4942 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
4943 }
4944
4945 static void
4946 arc_set_attribute_string (int tag, const char *value)
4947 {
4948 if (tag < 1
4949 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
4950 || !attributes_set_explicitly[tag])
4951 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
4952 }
4953
4954 /* Allocate and concatenate two strings. s1 can be NULL but not
4955 s2. s1 pointer is freed at end of this procedure. */
4956
4957 static char *
4958 arc_stralloc (char * s1, const char * s2)
4959 {
4960 char * p;
4961 int len = 0;
4962
4963 if (s1)
4964 len = strlen (s1) + 1;
4965
4966 /* Only s1 can be null. */
4967 gas_assert (s2);
4968 len += strlen (s2) + 1;
4969
4970 p = (char *) xmalloc (len);
4971
4972 if (s1)
4973 {
4974 strcpy (p, s1);
4975 strcat (p, ",");
4976 strcat (p, s2);
4977 free (s1);
4978 }
4979 else
4980 strcpy (p, s2);
4981
4982 return p;
4983 }
4984
4985 /* Set the public ARC object attributes. */
4986
4987 static void
4988 arc_set_public_attributes (void)
4989 {
4990 int base = 0;
4991 char *s = NULL;
4992 unsigned int i;
4993
4994 /* Tag_ARC_CPU_name. */
4995 arc_set_attribute_string (Tag_ARC_CPU_name, selected_cpu.name);
4996
4997 /* Tag_ARC_CPU_base. */
4998 switch (selected_cpu.eflags & EF_ARC_MACH_MSK)
4999 {
5000 case E_ARC_MACH_ARC600:
5001 case E_ARC_MACH_ARC601:
5002 base = TAG_CPU_ARC6xx;
5003 break;
5004 case E_ARC_MACH_ARC700:
5005 base = TAG_CPU_ARC7xx;
5006 break;
5007 case EF_ARC_CPU_ARCV2EM:
5008 base = TAG_CPU_ARCEM;
5009 break;
5010 case EF_ARC_CPU_ARCV2HS:
5011 base = TAG_CPU_ARCHS;
5012 break;
5013 default:
5014 base = 0;
5015 break;
5016 }
5017 if (attributes_set_explicitly[Tag_ARC_CPU_base]
5018 && (base != bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_PROC,
5019 Tag_ARC_CPU_base)))
5020 as_warn (_("Overwrite explicitly set Tag_ARC_CPU_base"));
5021 bfd_elf_add_proc_attr_int (stdoutput, Tag_ARC_CPU_base, base);
5022
5023 /* Tag_ARC_ABI_osver. */
5024 if (attributes_set_explicitly[Tag_ARC_ABI_osver])
5025 {
5026 int val = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_PROC,
5027 Tag_ARC_ABI_osver);
5028
5029 selected_cpu.eflags = ((selected_cpu.eflags & ~EF_ARC_OSABI_MSK)
5030 | (val & 0x0f << 8));
5031 }
5032 else
5033 {
5034 arc_set_attribute_int (Tag_ARC_ABI_osver, E_ARC_OSABI_CURRENT >> 8);
5035 }
5036
5037 /* Tag_ARC_ISA_config. */
5038 arc_check_feature();
5039
5040 for (i = 0; i < ARRAY_SIZE (feature_list); i++)
5041 if (selected_cpu.features & feature_list[i].feature)
5042 s = arc_stralloc (s, feature_list[i].attr);
5043
5044 if (s)
5045 arc_set_attribute_string (Tag_ARC_ISA_config, s);
5046
5047 /* Tag_ARC_ISA_mpy_option. */
5048 arc_set_attribute_int (Tag_ARC_ISA_mpy_option, mpy_option);
5049
5050 /* Tag_ARC_ABI_pic. */
5051 arc_set_attribute_int (Tag_ARC_ABI_pic, pic_option);
5052
5053 /* Tag_ARC_ABI_sda. */
5054 arc_set_attribute_int (Tag_ARC_ABI_sda, sda_option);
5055
5056 /* Tag_ARC_ABI_tls. */
5057 arc_set_attribute_int (Tag_ARC_ABI_tls, tls_option);
5058
5059 /* Tag_ARC_ATR_version. */
5060 arc_set_attribute_int (Tag_ARC_ATR_version, 1);
5061
5062 /* Tag_ARC_ABI_rf16. */
5063 if (attributes_set_explicitly[Tag_ARC_ABI_rf16]
5064 && bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_PROC,
5065 Tag_ARC_ABI_rf16)
5066 && !rf16_only)
5067 {
5068 as_warn (_("Overwrite explicitly set Tag_ARC_ABI_rf16 to full "
5069 "register file"));
5070 bfd_elf_add_proc_attr_int (stdoutput, Tag_ARC_ABI_rf16, 0);
5071 }
5072 }
5073
5074 /* Add the default contents for the .ARC.attributes section. */
5075
5076 void
5077 arc_md_finish (void)
5078 {
5079 arc_set_public_attributes ();
5080
5081 if (!bfd_set_arch_mach (stdoutput, bfd_arch_arc, selected_cpu.mach))
5082 as_fatal (_("could not set architecture and machine"));
5083
5084 bfd_set_private_flags (stdoutput, selected_cpu.eflags);
5085 }
5086
5087 void arc_copy_symbol_attributes (symbolS *dest, symbolS *src)
5088 {
5089 ARC_GET_FLAG (dest) = ARC_GET_FLAG (src);
5090 }
5091
5092 int arc_convert_symbolic_attribute (const char *name)
5093 {
5094 static const struct
5095 {
5096 const char * name;
5097 const int tag;
5098 }
5099 attribute_table[] =
5100 {
5101 #define T(tag) {#tag, tag}
5102 T (Tag_ARC_PCS_config),
5103 T (Tag_ARC_CPU_base),
5104 T (Tag_ARC_CPU_variation),
5105 T (Tag_ARC_CPU_name),
5106 T (Tag_ARC_ABI_rf16),
5107 T (Tag_ARC_ABI_osver),
5108 T (Tag_ARC_ABI_sda),
5109 T (Tag_ARC_ABI_pic),
5110 T (Tag_ARC_ABI_tls),
5111 T (Tag_ARC_ABI_enumsize),
5112 T (Tag_ARC_ABI_exceptions),
5113 T (Tag_ARC_ABI_double_size),
5114 T (Tag_ARC_ISA_config),
5115 T (Tag_ARC_ISA_apex),
5116 T (Tag_ARC_ISA_mpy_option),
5117 T (Tag_ARC_ATR_version)
5118 #undef T
5119 };
5120 unsigned int i;
5121
5122 if (name == NULL)
5123 return -1;
5124
5125 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
5126 if (streq (name, attribute_table[i].name))
5127 return attribute_table[i].tag;
5128
5129 return -1;
5130 }
5131
5132 /* Local variables:
5133 eval: (c-set-style "gnu")
5134 indent-tabs-mode: t
5135 End: */