]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arm.c
* elf32-spu.c (struct spu_link_hash_table): Remove overlay_fixed,
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 #if defined __XSCALE__
101 #define CPU_DEFAULT ARM_ARCH_XSCALE
102 #else
103 #if defined __thumb__
104 #define CPU_DEFAULT ARM_ARCH_V5T
105 #endif
106 #endif
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 static arm_feature_set cpu_variant;
130 static arm_feature_set arm_arch_used;
131 static arm_feature_set thumb_arch_used;
132
133 /* Flags stored in private area of BFD structure. */
134 static int uses_apcs_26 = FALSE;
135 static int atpcs = FALSE;
136 static int support_interwork = FALSE;
137 static int uses_apcs_float = FALSE;
138 static int pic_code = FALSE;
139 static int fix_v4bx = FALSE;
140 /* Warn on using deprecated features. */
141 static int warn_on_deprecated = TRUE;
142
143
144 /* Variables that we set while parsing command-line options. Once all
145 options have been read we re-process these values to set the real
146 assembly flags. */
147 static const arm_feature_set *legacy_cpu = NULL;
148 static const arm_feature_set *legacy_fpu = NULL;
149
150 static const arm_feature_set *mcpu_cpu_opt = NULL;
151 static const arm_feature_set *mcpu_fpu_opt = NULL;
152 static const arm_feature_set *march_cpu_opt = NULL;
153 static const arm_feature_set *march_fpu_opt = NULL;
154 static const arm_feature_set *mfpu_opt = NULL;
155 static const arm_feature_set *object_arch = NULL;
156
157 /* Constants for known architecture features. */
158 static const arm_feature_set fpu_default = FPU_DEFAULT;
159 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
160 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
161 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
162 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
163 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
164 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
165 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
166 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
167
168 #ifdef CPU_DEFAULT
169 static const arm_feature_set cpu_default = CPU_DEFAULT;
170 #endif
171
172 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
174 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
175 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
176 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
177 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
178 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
179 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
180 static const arm_feature_set arm_ext_v4t_5 =
181 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
183 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
184 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
185 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
186 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
187 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
188 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
189 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
190 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_m =
198 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
199
200 static const arm_feature_set arm_arch_any = ARM_ANY;
201 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
205 static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
207 static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209 static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211 static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215 static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
219 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
220 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
221 static const arm_feature_set fpu_vfp_ext_d32 =
222 ARM_FEATURE (0, FPU_VFP_EXT_D32);
223 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
224 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
225 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
226 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
227 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
228 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
229
230 static int mfloat_abi_opt = -1;
231 /* Record user cpu selection for object attributes. */
232 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
233 /* Must be long enough to hold any of the names in arm_cpus. */
234 static char selected_cpu_name[16];
235 #ifdef OBJ_ELF
236 # ifdef EABI_DEFAULT
237 static int meabi_flags = EABI_DEFAULT;
238 # else
239 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
240 # endif
241
242 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
243
244 bfd_boolean
245 arm_is_eabi (void)
246 {
247 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
248 }
249 #endif
250
251 #ifdef OBJ_ELF
252 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
253 symbolS * GOT_symbol;
254 #endif
255
256 /* 0: assemble for ARM,
257 1: assemble for Thumb,
258 2: assemble for Thumb even though target CPU does not support thumb
259 instructions. */
260 static int thumb_mode = 0;
261 /* A value distinct from the possible values for thumb_mode that we
262 can use to record whether thumb_mode has been copied into the
263 tc_frag_data field of a frag. */
264 #define MODE_RECORDED (1 << 4)
265
266 /* Specifies the intrinsic IT insn behavior mode. */
267 enum implicit_it_mode
268 {
269 IMPLICIT_IT_MODE_NEVER = 0x00,
270 IMPLICIT_IT_MODE_ARM = 0x01,
271 IMPLICIT_IT_MODE_THUMB = 0x02,
272 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
273 };
274 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
275
276 /* If unified_syntax is true, we are processing the new unified
277 ARM/Thumb syntax. Important differences from the old ARM mode:
278
279 - Immediate operands do not require a # prefix.
280 - Conditional affixes always appear at the end of the
281 instruction. (For backward compatibility, those instructions
282 that formerly had them in the middle, continue to accept them
283 there.)
284 - The IT instruction may appear, and if it does is validated
285 against subsequent conditional affixes. It does not generate
286 machine code.
287
288 Important differences from the old Thumb mode:
289
290 - Immediate operands do not require a # prefix.
291 - Most of the V6T2 instructions are only available in unified mode.
292 - The .N and .W suffixes are recognized and honored (it is an error
293 if they cannot be honored).
294 - All instructions set the flags if and only if they have an 's' affix.
295 - Conditional affixes may be used. They are validated against
296 preceding IT instructions. Unlike ARM mode, you cannot use a
297 conditional affix except in the scope of an IT instruction. */
298
299 static bfd_boolean unified_syntax = FALSE;
300
301 enum neon_el_type
302 {
303 NT_invtype,
304 NT_untyped,
305 NT_integer,
306 NT_float,
307 NT_poly,
308 NT_signed,
309 NT_unsigned
310 };
311
312 struct neon_type_el
313 {
314 enum neon_el_type type;
315 unsigned size;
316 };
317
318 #define NEON_MAX_TYPE_ELS 4
319
320 struct neon_type
321 {
322 struct neon_type_el el[NEON_MAX_TYPE_ELS];
323 unsigned elems;
324 };
325
326 enum it_instruction_type
327 {
328 OUTSIDE_IT_INSN,
329 INSIDE_IT_INSN,
330 INSIDE_IT_LAST_INSN,
331 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
332 if inside, should be the last one. */
333 NEUTRAL_IT_INSN, /* This could be either inside or outside,
334 i.e. BKPT and NOP. */
335 IT_INSN /* The IT insn has been parsed. */
336 };
337
338 struct arm_it
339 {
340 const char * error;
341 unsigned long instruction;
342 int size;
343 int size_req;
344 int cond;
345 /* "uncond_value" is set to the value in place of the conditional field in
346 unconditional versions of the instruction, or -1 if nothing is
347 appropriate. */
348 int uncond_value;
349 struct neon_type vectype;
350 /* Set to the opcode if the instruction needs relaxation.
351 Zero if the instruction is not relaxed. */
352 unsigned long relax;
353 struct
354 {
355 bfd_reloc_code_real_type type;
356 expressionS exp;
357 int pc_rel;
358 } reloc;
359
360 enum it_instruction_type it_insn_type;
361
362 struct
363 {
364 unsigned reg;
365 signed int imm;
366 struct neon_type_el vectype;
367 unsigned present : 1; /* Operand present. */
368 unsigned isreg : 1; /* Operand was a register. */
369 unsigned immisreg : 1; /* .imm field is a second register. */
370 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
371 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
372 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
373 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
374 instructions. This allows us to disambiguate ARM <-> vector insns. */
375 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
376 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
377 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
378 unsigned issingle : 1; /* Operand is VFP single-precision register. */
379 unsigned hasreloc : 1; /* Operand has relocation suffix. */
380 unsigned writeback : 1; /* Operand has trailing ! */
381 unsigned preind : 1; /* Preindexed address. */
382 unsigned postind : 1; /* Postindexed address. */
383 unsigned negative : 1; /* Index register was negated. */
384 unsigned shifted : 1; /* Shift applied to operation. */
385 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
386 } operands[6];
387 };
388
389 static struct arm_it inst;
390
391 #define NUM_FLOAT_VALS 8
392
393 const char * fp_const[] =
394 {
395 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
396 };
397
398 /* Number of littlenums required to hold an extended precision number. */
399 #define MAX_LITTLENUMS 6
400
401 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
402
403 #define FAIL (-1)
404 #define SUCCESS (0)
405
406 #define SUFF_S 1
407 #define SUFF_D 2
408 #define SUFF_E 3
409 #define SUFF_P 4
410
411 #define CP_T_X 0x00008000
412 #define CP_T_Y 0x00400000
413
414 #define CONDS_BIT 0x00100000
415 #define LOAD_BIT 0x00100000
416
417 #define DOUBLE_LOAD_FLAG 0x00000001
418
419 struct asm_cond
420 {
421 const char * template_name;
422 unsigned long value;
423 };
424
425 #define COND_ALWAYS 0xE
426
427 struct asm_psr
428 {
429 const char * template_name;
430 unsigned long field;
431 };
432
433 struct asm_barrier_opt
434 {
435 const char * template_name;
436 unsigned long value;
437 };
438
439 /* The bit that distinguishes CPSR and SPSR. */
440 #define SPSR_BIT (1 << 22)
441
442 /* The individual PSR flag bits. */
443 #define PSR_c (1 << 16)
444 #define PSR_x (1 << 17)
445 #define PSR_s (1 << 18)
446 #define PSR_f (1 << 19)
447
448 struct reloc_entry
449 {
450 char * name;
451 bfd_reloc_code_real_type reloc;
452 };
453
454 enum vfp_reg_pos
455 {
456 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
457 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
458 };
459
460 enum vfp_ldstm_type
461 {
462 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
463 };
464
465 /* Bits for DEFINED field in neon_typed_alias. */
466 #define NTA_HASTYPE 1
467 #define NTA_HASINDEX 2
468
469 struct neon_typed_alias
470 {
471 unsigned char defined;
472 unsigned char index;
473 struct neon_type_el eltype;
474 };
475
476 /* ARM register categories. This includes coprocessor numbers and various
477 architecture extensions' registers. */
478 enum arm_reg_type
479 {
480 REG_TYPE_RN,
481 REG_TYPE_CP,
482 REG_TYPE_CN,
483 REG_TYPE_FN,
484 REG_TYPE_VFS,
485 REG_TYPE_VFD,
486 REG_TYPE_NQ,
487 REG_TYPE_VFSD,
488 REG_TYPE_NDQ,
489 REG_TYPE_NSDQ,
490 REG_TYPE_VFC,
491 REG_TYPE_MVF,
492 REG_TYPE_MVD,
493 REG_TYPE_MVFX,
494 REG_TYPE_MVDX,
495 REG_TYPE_MVAX,
496 REG_TYPE_DSPSC,
497 REG_TYPE_MMXWR,
498 REG_TYPE_MMXWC,
499 REG_TYPE_MMXWCG,
500 REG_TYPE_XSCALE,
501 };
502
503 /* Structure for a hash table entry for a register.
504 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
505 information which states whether a vector type or index is specified (for a
506 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
507 struct reg_entry
508 {
509 const char * name;
510 unsigned char number;
511 unsigned char type;
512 unsigned char builtin;
513 struct neon_typed_alias * neon;
514 };
515
516 /* Diagnostics used when we don't get a register of the expected type. */
517 const char * const reg_expected_msgs[] =
518 {
519 N_("ARM register expected"),
520 N_("bad or missing co-processor number"),
521 N_("co-processor register expected"),
522 N_("FPA register expected"),
523 N_("VFP single precision register expected"),
524 N_("VFP/Neon double precision register expected"),
525 N_("Neon quad precision register expected"),
526 N_("VFP single or double precision register expected"),
527 N_("Neon double or quad precision register expected"),
528 N_("VFP single, double or Neon quad precision register expected"),
529 N_("VFP system register expected"),
530 N_("Maverick MVF register expected"),
531 N_("Maverick MVD register expected"),
532 N_("Maverick MVFX register expected"),
533 N_("Maverick MVDX register expected"),
534 N_("Maverick MVAX register expected"),
535 N_("Maverick DSPSC register expected"),
536 N_("iWMMXt data register expected"),
537 N_("iWMMXt control register expected"),
538 N_("iWMMXt scalar register expected"),
539 N_("XScale accumulator register expected"),
540 };
541
542 /* Some well known registers that we refer to directly elsewhere. */
543 #define REG_SP 13
544 #define REG_LR 14
545 #define REG_PC 15
546
547 /* ARM instructions take 4bytes in the object file, Thumb instructions
548 take 2: */
549 #define INSN_SIZE 4
550
551 struct asm_opcode
552 {
553 /* Basic string to match. */
554 const char * template_name;
555
556 /* Parameters to instruction. */
557 unsigned char operands[8];
558
559 /* Conditional tag - see opcode_lookup. */
560 unsigned int tag : 4;
561
562 /* Basic instruction code. */
563 unsigned int avalue : 28;
564
565 /* Thumb-format instruction code. */
566 unsigned int tvalue;
567
568 /* Which architecture variant provides this instruction. */
569 const arm_feature_set * avariant;
570 const arm_feature_set * tvariant;
571
572 /* Function to call to encode instruction in ARM format. */
573 void (* aencode) (void);
574
575 /* Function to call to encode instruction in Thumb format. */
576 void (* tencode) (void);
577 };
578
579 /* Defines for various bits that we will want to toggle. */
580 #define INST_IMMEDIATE 0x02000000
581 #define OFFSET_REG 0x02000000
582 #define HWOFFSET_IMM 0x00400000
583 #define SHIFT_BY_REG 0x00000010
584 #define PRE_INDEX 0x01000000
585 #define INDEX_UP 0x00800000
586 #define WRITE_BACK 0x00200000
587 #define LDM_TYPE_2_OR_3 0x00400000
588 #define CPSI_MMOD 0x00020000
589
590 #define LITERAL_MASK 0xf000f000
591 #define OPCODE_MASK 0xfe1fffff
592 #define V4_STR_BIT 0x00000020
593
594 #define T2_SUBS_PC_LR 0xf3de8f00
595
596 #define DATA_OP_SHIFT 21
597
598 #define T2_OPCODE_MASK 0xfe1fffff
599 #define T2_DATA_OP_SHIFT 21
600
601 /* Codes to distinguish the arithmetic instructions. */
602 #define OPCODE_AND 0
603 #define OPCODE_EOR 1
604 #define OPCODE_SUB 2
605 #define OPCODE_RSB 3
606 #define OPCODE_ADD 4
607 #define OPCODE_ADC 5
608 #define OPCODE_SBC 6
609 #define OPCODE_RSC 7
610 #define OPCODE_TST 8
611 #define OPCODE_TEQ 9
612 #define OPCODE_CMP 10
613 #define OPCODE_CMN 11
614 #define OPCODE_ORR 12
615 #define OPCODE_MOV 13
616 #define OPCODE_BIC 14
617 #define OPCODE_MVN 15
618
619 #define T2_OPCODE_AND 0
620 #define T2_OPCODE_BIC 1
621 #define T2_OPCODE_ORR 2
622 #define T2_OPCODE_ORN 3
623 #define T2_OPCODE_EOR 4
624 #define T2_OPCODE_ADD 8
625 #define T2_OPCODE_ADC 10
626 #define T2_OPCODE_SBC 11
627 #define T2_OPCODE_SUB 13
628 #define T2_OPCODE_RSB 14
629
630 #define T_OPCODE_MUL 0x4340
631 #define T_OPCODE_TST 0x4200
632 #define T_OPCODE_CMN 0x42c0
633 #define T_OPCODE_NEG 0x4240
634 #define T_OPCODE_MVN 0x43c0
635
636 #define T_OPCODE_ADD_R3 0x1800
637 #define T_OPCODE_SUB_R3 0x1a00
638 #define T_OPCODE_ADD_HI 0x4400
639 #define T_OPCODE_ADD_ST 0xb000
640 #define T_OPCODE_SUB_ST 0xb080
641 #define T_OPCODE_ADD_SP 0xa800
642 #define T_OPCODE_ADD_PC 0xa000
643 #define T_OPCODE_ADD_I8 0x3000
644 #define T_OPCODE_SUB_I8 0x3800
645 #define T_OPCODE_ADD_I3 0x1c00
646 #define T_OPCODE_SUB_I3 0x1e00
647
648 #define T_OPCODE_ASR_R 0x4100
649 #define T_OPCODE_LSL_R 0x4080
650 #define T_OPCODE_LSR_R 0x40c0
651 #define T_OPCODE_ROR_R 0x41c0
652 #define T_OPCODE_ASR_I 0x1000
653 #define T_OPCODE_LSL_I 0x0000
654 #define T_OPCODE_LSR_I 0x0800
655
656 #define T_OPCODE_MOV_I8 0x2000
657 #define T_OPCODE_CMP_I8 0x2800
658 #define T_OPCODE_CMP_LR 0x4280
659 #define T_OPCODE_MOV_HR 0x4600
660 #define T_OPCODE_CMP_HR 0x4500
661
662 #define T_OPCODE_LDR_PC 0x4800
663 #define T_OPCODE_LDR_SP 0x9800
664 #define T_OPCODE_STR_SP 0x9000
665 #define T_OPCODE_LDR_IW 0x6800
666 #define T_OPCODE_STR_IW 0x6000
667 #define T_OPCODE_LDR_IH 0x8800
668 #define T_OPCODE_STR_IH 0x8000
669 #define T_OPCODE_LDR_IB 0x7800
670 #define T_OPCODE_STR_IB 0x7000
671 #define T_OPCODE_LDR_RW 0x5800
672 #define T_OPCODE_STR_RW 0x5000
673 #define T_OPCODE_LDR_RH 0x5a00
674 #define T_OPCODE_STR_RH 0x5200
675 #define T_OPCODE_LDR_RB 0x5c00
676 #define T_OPCODE_STR_RB 0x5400
677
678 #define T_OPCODE_PUSH 0xb400
679 #define T_OPCODE_POP 0xbc00
680
681 #define T_OPCODE_BRANCH 0xe000
682
683 #define THUMB_SIZE 2 /* Size of thumb instruction. */
684 #define THUMB_PP_PC_LR 0x0100
685 #define THUMB_LOAD_BIT 0x0800
686 #define THUMB2_LOAD_BIT 0x00100000
687
688 #define BAD_ARGS _("bad arguments to instruction")
689 #define BAD_SP _("r13 not allowed here")
690 #define BAD_PC _("r15 not allowed here")
691 #define BAD_COND _("instruction cannot be conditional")
692 #define BAD_OVERLAP _("registers may not be the same")
693 #define BAD_HIREG _("lo register required")
694 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
695 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
696 #define BAD_BRANCH _("branch must be last instruction in IT block")
697 #define BAD_NOT_IT _("instruction not allowed in IT block")
698 #define BAD_FPU _("selected FPU does not support instruction")
699 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
700 #define BAD_IT_COND _("incorrect condition in IT block")
701 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
702 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
703
704 static struct hash_control * arm_ops_hsh;
705 static struct hash_control * arm_cond_hsh;
706 static struct hash_control * arm_shift_hsh;
707 static struct hash_control * arm_psr_hsh;
708 static struct hash_control * arm_v7m_psr_hsh;
709 static struct hash_control * arm_reg_hsh;
710 static struct hash_control * arm_reloc_hsh;
711 static struct hash_control * arm_barrier_opt_hsh;
712
713 /* Stuff needed to resolve the label ambiguity
714 As:
715 ...
716 label: <insn>
717 may differ from:
718 ...
719 label:
720 <insn> */
721
722 symbolS * last_label_seen;
723 static int label_is_thumb_function_name = FALSE;
724
725 /* Literal pool structure. Held on a per-section
726 and per-sub-section basis. */
727
728 #define MAX_LITERAL_POOL_SIZE 1024
729 typedef struct literal_pool
730 {
731 expressionS literals [MAX_LITERAL_POOL_SIZE];
732 unsigned int next_free_entry;
733 unsigned int id;
734 symbolS * symbol;
735 segT section;
736 subsegT sub_section;
737 struct literal_pool * next;
738 } literal_pool;
739
740 /* Pointer to a linked list of literal pools. */
741 literal_pool * list_of_pools = NULL;
742
743 #ifdef OBJ_ELF
744 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
745 #else
746 static struct current_it now_it;
747 #endif
748
749 static inline int
750 now_it_compatible (int cond)
751 {
752 return (cond & ~1) == (now_it.cc & ~1);
753 }
754
755 static inline int
756 conditional_insn (void)
757 {
758 return inst.cond != COND_ALWAYS;
759 }
760
761 static int in_it_block (void);
762
763 static int handle_it_state (void);
764
765 static void force_automatic_it_block_close (void);
766
767 static void it_fsm_post_encode (void);
768
769 #define set_it_insn_type(type) \
770 do \
771 { \
772 inst.it_insn_type = type; \
773 if (handle_it_state () == FAIL) \
774 return; \
775 } \
776 while (0)
777
778 #define set_it_insn_type_nonvoid(type, failret) \
779 do \
780 { \
781 inst.it_insn_type = type; \
782 if (handle_it_state () == FAIL) \
783 return failret; \
784 } \
785 while(0)
786
787 #define set_it_insn_type_last() \
788 do \
789 { \
790 if (inst.cond == COND_ALWAYS) \
791 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
792 else \
793 set_it_insn_type (INSIDE_IT_LAST_INSN); \
794 } \
795 while (0)
796
797 /* Pure syntax. */
798
799 /* This array holds the chars that always start a comment. If the
800 pre-processor is disabled, these aren't very useful. */
801 const char comment_chars[] = "@";
802
803 /* This array holds the chars that only start a comment at the beginning of
804 a line. If the line seems to have the form '# 123 filename'
805 .line and .file directives will appear in the pre-processed output. */
806 /* Note that input_file.c hand checks for '#' at the beginning of the
807 first line of the input file. This is because the compiler outputs
808 #NO_APP at the beginning of its output. */
809 /* Also note that comments like this one will always work. */
810 const char line_comment_chars[] = "#";
811
812 const char line_separator_chars[] = ";";
813
814 /* Chars that can be used to separate mant
815 from exp in floating point numbers. */
816 const char EXP_CHARS[] = "eE";
817
818 /* Chars that mean this number is a floating point constant. */
819 /* As in 0f12.456 */
820 /* or 0d1.2345e12 */
821
822 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
823
824 /* Prefix characters that indicate the start of an immediate
825 value. */
826 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
827
828 /* Separator character handling. */
829
830 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
831
832 static inline int
833 skip_past_char (char ** str, char c)
834 {
835 if (**str == c)
836 {
837 (*str)++;
838 return SUCCESS;
839 }
840 else
841 return FAIL;
842 }
843
844 #define skip_past_comma(str) skip_past_char (str, ',')
845
846 /* Arithmetic expressions (possibly involving symbols). */
847
848 /* Return TRUE if anything in the expression is a bignum. */
849
850 static int
851 walk_no_bignums (symbolS * sp)
852 {
853 if (symbol_get_value_expression (sp)->X_op == O_big)
854 return 1;
855
856 if (symbol_get_value_expression (sp)->X_add_symbol)
857 {
858 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
859 || (symbol_get_value_expression (sp)->X_op_symbol
860 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
861 }
862
863 return 0;
864 }
865
866 static int in_my_get_expression = 0;
867
868 /* Third argument to my_get_expression. */
869 #define GE_NO_PREFIX 0
870 #define GE_IMM_PREFIX 1
871 #define GE_OPT_PREFIX 2
872 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
873 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
874 #define GE_OPT_PREFIX_BIG 3
875
876 static int
877 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
878 {
879 char * save_in;
880 segT seg;
881
882 /* In unified syntax, all prefixes are optional. */
883 if (unified_syntax)
884 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
885 : GE_OPT_PREFIX;
886
887 switch (prefix_mode)
888 {
889 case GE_NO_PREFIX: break;
890 case GE_IMM_PREFIX:
891 if (!is_immediate_prefix (**str))
892 {
893 inst.error = _("immediate expression requires a # prefix");
894 return FAIL;
895 }
896 (*str)++;
897 break;
898 case GE_OPT_PREFIX:
899 case GE_OPT_PREFIX_BIG:
900 if (is_immediate_prefix (**str))
901 (*str)++;
902 break;
903 default: abort ();
904 }
905
906 memset (ep, 0, sizeof (expressionS));
907
908 save_in = input_line_pointer;
909 input_line_pointer = *str;
910 in_my_get_expression = 1;
911 seg = expression (ep);
912 in_my_get_expression = 0;
913
914 if (ep->X_op == O_illegal || ep->X_op == O_absent)
915 {
916 /* We found a bad or missing expression in md_operand(). */
917 *str = input_line_pointer;
918 input_line_pointer = save_in;
919 if (inst.error == NULL)
920 inst.error = (ep->X_op == O_absent
921 ? _("missing expression") :_("bad expression"));
922 return 1;
923 }
924
925 #ifdef OBJ_AOUT
926 if (seg != absolute_section
927 && seg != text_section
928 && seg != data_section
929 && seg != bss_section
930 && seg != undefined_section)
931 {
932 inst.error = _("bad segment");
933 *str = input_line_pointer;
934 input_line_pointer = save_in;
935 return 1;
936 }
937 #endif
938
939 /* Get rid of any bignums now, so that we don't generate an error for which
940 we can't establish a line number later on. Big numbers are never valid
941 in instructions, which is where this routine is always called. */
942 if (prefix_mode != GE_OPT_PREFIX_BIG
943 && (ep->X_op == O_big
944 || (ep->X_add_symbol
945 && (walk_no_bignums (ep->X_add_symbol)
946 || (ep->X_op_symbol
947 && walk_no_bignums (ep->X_op_symbol))))))
948 {
949 inst.error = _("invalid constant");
950 *str = input_line_pointer;
951 input_line_pointer = save_in;
952 return 1;
953 }
954
955 *str = input_line_pointer;
956 input_line_pointer = save_in;
957 return 0;
958 }
959
960 /* Turn a string in input_line_pointer into a floating point constant
961 of type TYPE, and store the appropriate bytes in *LITP. The number
962 of LITTLENUMS emitted is stored in *SIZEP. An error message is
963 returned, or NULL on OK.
964
965 Note that fp constants aren't represent in the normal way on the ARM.
966 In big endian mode, things are as expected. However, in little endian
967 mode fp constants are big-endian word-wise, and little-endian byte-wise
968 within the words. For example, (double) 1.1 in big endian mode is
969 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
970 the byte sequence 99 99 f1 3f 9a 99 99 99.
971
972 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
973
974 char *
975 md_atof (int type, char * litP, int * sizeP)
976 {
977 int prec;
978 LITTLENUM_TYPE words[MAX_LITTLENUMS];
979 char *t;
980 int i;
981
982 switch (type)
983 {
984 case 'f':
985 case 'F':
986 case 's':
987 case 'S':
988 prec = 2;
989 break;
990
991 case 'd':
992 case 'D':
993 case 'r':
994 case 'R':
995 prec = 4;
996 break;
997
998 case 'x':
999 case 'X':
1000 prec = 5;
1001 break;
1002
1003 case 'p':
1004 case 'P':
1005 prec = 5;
1006 break;
1007
1008 default:
1009 *sizeP = 0;
1010 return _("Unrecognized or unsupported floating point constant");
1011 }
1012
1013 t = atof_ieee (input_line_pointer, type, words);
1014 if (t)
1015 input_line_pointer = t;
1016 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1017
1018 if (target_big_endian)
1019 {
1020 for (i = 0; i < prec; i++)
1021 {
1022 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1023 litP += sizeof (LITTLENUM_TYPE);
1024 }
1025 }
1026 else
1027 {
1028 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1029 for (i = prec - 1; i >= 0; i--)
1030 {
1031 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1032 litP += sizeof (LITTLENUM_TYPE);
1033 }
1034 else
1035 /* For a 4 byte float the order of elements in `words' is 1 0.
1036 For an 8 byte float the order is 1 0 3 2. */
1037 for (i = 0; i < prec; i += 2)
1038 {
1039 md_number_to_chars (litP, (valueT) words[i + 1],
1040 sizeof (LITTLENUM_TYPE));
1041 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1042 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1043 litP += 2 * sizeof (LITTLENUM_TYPE);
1044 }
1045 }
1046
1047 return NULL;
1048 }
1049
1050 /* We handle all bad expressions here, so that we can report the faulty
1051 instruction in the error message. */
1052 void
1053 md_operand (expressionS * expr)
1054 {
1055 if (in_my_get_expression)
1056 expr->X_op = O_illegal;
1057 }
1058
1059 /* Immediate values. */
1060
1061 /* Generic immediate-value read function for use in directives.
1062 Accepts anything that 'expression' can fold to a constant.
1063 *val receives the number. */
1064 #ifdef OBJ_ELF
1065 static int
1066 immediate_for_directive (int *val)
1067 {
1068 expressionS exp;
1069 exp.X_op = O_illegal;
1070
1071 if (is_immediate_prefix (*input_line_pointer))
1072 {
1073 input_line_pointer++;
1074 expression (&exp);
1075 }
1076
1077 if (exp.X_op != O_constant)
1078 {
1079 as_bad (_("expected #constant"));
1080 ignore_rest_of_line ();
1081 return FAIL;
1082 }
1083 *val = exp.X_add_number;
1084 return SUCCESS;
1085 }
1086 #endif
1087
1088 /* Register parsing. */
1089
1090 /* Generic register parser. CCP points to what should be the
1091 beginning of a register name. If it is indeed a valid register
1092 name, advance CCP over it and return the reg_entry structure;
1093 otherwise return NULL. Does not issue diagnostics. */
1094
1095 static struct reg_entry *
1096 arm_reg_parse_multi (char **ccp)
1097 {
1098 char *start = *ccp;
1099 char *p;
1100 struct reg_entry *reg;
1101
1102 #ifdef REGISTER_PREFIX
1103 if (*start != REGISTER_PREFIX)
1104 return NULL;
1105 start++;
1106 #endif
1107 #ifdef OPTIONAL_REGISTER_PREFIX
1108 if (*start == OPTIONAL_REGISTER_PREFIX)
1109 start++;
1110 #endif
1111
1112 p = start;
1113 if (!ISALPHA (*p) || !is_name_beginner (*p))
1114 return NULL;
1115
1116 do
1117 p++;
1118 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1119
1120 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1121
1122 if (!reg)
1123 return NULL;
1124
1125 *ccp = p;
1126 return reg;
1127 }
1128
1129 static int
1130 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1131 enum arm_reg_type type)
1132 {
1133 /* Alternative syntaxes are accepted for a few register classes. */
1134 switch (type)
1135 {
1136 case REG_TYPE_MVF:
1137 case REG_TYPE_MVD:
1138 case REG_TYPE_MVFX:
1139 case REG_TYPE_MVDX:
1140 /* Generic coprocessor register names are allowed for these. */
1141 if (reg && reg->type == REG_TYPE_CN)
1142 return reg->number;
1143 break;
1144
1145 case REG_TYPE_CP:
1146 /* For backward compatibility, a bare number is valid here. */
1147 {
1148 unsigned long processor = strtoul (start, ccp, 10);
1149 if (*ccp != start && processor <= 15)
1150 return processor;
1151 }
1152
1153 case REG_TYPE_MMXWC:
1154 /* WC includes WCG. ??? I'm not sure this is true for all
1155 instructions that take WC registers. */
1156 if (reg && reg->type == REG_TYPE_MMXWCG)
1157 return reg->number;
1158 break;
1159
1160 default:
1161 break;
1162 }
1163
1164 return FAIL;
1165 }
1166
1167 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1168 return value is the register number or FAIL. */
1169
1170 static int
1171 arm_reg_parse (char **ccp, enum arm_reg_type type)
1172 {
1173 char *start = *ccp;
1174 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1175 int ret;
1176
1177 /* Do not allow a scalar (reg+index) to parse as a register. */
1178 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1179 return FAIL;
1180
1181 if (reg && reg->type == type)
1182 return reg->number;
1183
1184 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1185 return ret;
1186
1187 *ccp = start;
1188 return FAIL;
1189 }
1190
1191 /* Parse a Neon type specifier. *STR should point at the leading '.'
1192 character. Does no verification at this stage that the type fits the opcode
1193 properly. E.g.,
1194
1195 .i32.i32.s16
1196 .s32.f32
1197 .u16
1198
1199 Can all be legally parsed by this function.
1200
1201 Fills in neon_type struct pointer with parsed information, and updates STR
1202 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1203 type, FAIL if not. */
1204
1205 static int
1206 parse_neon_type (struct neon_type *type, char **str)
1207 {
1208 char *ptr = *str;
1209
1210 if (type)
1211 type->elems = 0;
1212
1213 while (type->elems < NEON_MAX_TYPE_ELS)
1214 {
1215 enum neon_el_type thistype = NT_untyped;
1216 unsigned thissize = -1u;
1217
1218 if (*ptr != '.')
1219 break;
1220
1221 ptr++;
1222
1223 /* Just a size without an explicit type. */
1224 if (ISDIGIT (*ptr))
1225 goto parsesize;
1226
1227 switch (TOLOWER (*ptr))
1228 {
1229 case 'i': thistype = NT_integer; break;
1230 case 'f': thistype = NT_float; break;
1231 case 'p': thistype = NT_poly; break;
1232 case 's': thistype = NT_signed; break;
1233 case 'u': thistype = NT_unsigned; break;
1234 case 'd':
1235 thistype = NT_float;
1236 thissize = 64;
1237 ptr++;
1238 goto done;
1239 default:
1240 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1241 return FAIL;
1242 }
1243
1244 ptr++;
1245
1246 /* .f is an abbreviation for .f32. */
1247 if (thistype == NT_float && !ISDIGIT (*ptr))
1248 thissize = 32;
1249 else
1250 {
1251 parsesize:
1252 thissize = strtoul (ptr, &ptr, 10);
1253
1254 if (thissize != 8 && thissize != 16 && thissize != 32
1255 && thissize != 64)
1256 {
1257 as_bad (_("bad size %d in type specifier"), thissize);
1258 return FAIL;
1259 }
1260 }
1261
1262 done:
1263 if (type)
1264 {
1265 type->el[type->elems].type = thistype;
1266 type->el[type->elems].size = thissize;
1267 type->elems++;
1268 }
1269 }
1270
1271 /* Empty/missing type is not a successful parse. */
1272 if (type->elems == 0)
1273 return FAIL;
1274
1275 *str = ptr;
1276
1277 return SUCCESS;
1278 }
1279
1280 /* Errors may be set multiple times during parsing or bit encoding
1281 (particularly in the Neon bits), but usually the earliest error which is set
1282 will be the most meaningful. Avoid overwriting it with later (cascading)
1283 errors by calling this function. */
1284
1285 static void
1286 first_error (const char *err)
1287 {
1288 if (!inst.error)
1289 inst.error = err;
1290 }
1291
1292 /* Parse a single type, e.g. ".s32", leading period included. */
1293 static int
1294 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1295 {
1296 char *str = *ccp;
1297 struct neon_type optype;
1298
1299 if (*str == '.')
1300 {
1301 if (parse_neon_type (&optype, &str) == SUCCESS)
1302 {
1303 if (optype.elems == 1)
1304 *vectype = optype.el[0];
1305 else
1306 {
1307 first_error (_("only one type should be specified for operand"));
1308 return FAIL;
1309 }
1310 }
1311 else
1312 {
1313 first_error (_("vector type expected"));
1314 return FAIL;
1315 }
1316 }
1317 else
1318 return FAIL;
1319
1320 *ccp = str;
1321
1322 return SUCCESS;
1323 }
1324
1325 /* Special meanings for indices (which have a range of 0-7), which will fit into
1326 a 4-bit integer. */
1327
1328 #define NEON_ALL_LANES 15
1329 #define NEON_INTERLEAVE_LANES 14
1330
1331 /* Parse either a register or a scalar, with an optional type. Return the
1332 register number, and optionally fill in the actual type of the register
1333 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1334 type/index information in *TYPEINFO. */
1335
1336 static int
1337 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1338 enum arm_reg_type *rtype,
1339 struct neon_typed_alias *typeinfo)
1340 {
1341 char *str = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (&str);
1343 struct neon_typed_alias atype;
1344 struct neon_type_el parsetype;
1345
1346 atype.defined = 0;
1347 atype.index = -1;
1348 atype.eltype.type = NT_invtype;
1349 atype.eltype.size = -1;
1350
1351 /* Try alternate syntax for some types of register. Note these are mutually
1352 exclusive with the Neon syntax extensions. */
1353 if (reg == NULL)
1354 {
1355 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1356 if (altreg != FAIL)
1357 *ccp = str;
1358 if (typeinfo)
1359 *typeinfo = atype;
1360 return altreg;
1361 }
1362
1363 /* Undo polymorphism when a set of register types may be accepted. */
1364 if ((type == REG_TYPE_NDQ
1365 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1366 || (type == REG_TYPE_VFSD
1367 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1368 || (type == REG_TYPE_NSDQ
1369 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1370 || reg->type == REG_TYPE_NQ))
1371 || (type == REG_TYPE_MMXWC
1372 && (reg->type == REG_TYPE_MMXWCG)))
1373 type = (enum arm_reg_type) reg->type;
1374
1375 if (type != reg->type)
1376 return FAIL;
1377
1378 if (reg->neon)
1379 atype = *reg->neon;
1380
1381 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1382 {
1383 if ((atype.defined & NTA_HASTYPE) != 0)
1384 {
1385 first_error (_("can't redefine type for operand"));
1386 return FAIL;
1387 }
1388 atype.defined |= NTA_HASTYPE;
1389 atype.eltype = parsetype;
1390 }
1391
1392 if (skip_past_char (&str, '[') == SUCCESS)
1393 {
1394 if (type != REG_TYPE_VFD)
1395 {
1396 first_error (_("only D registers may be indexed"));
1397 return FAIL;
1398 }
1399
1400 if ((atype.defined & NTA_HASINDEX) != 0)
1401 {
1402 first_error (_("can't change index for operand"));
1403 return FAIL;
1404 }
1405
1406 atype.defined |= NTA_HASINDEX;
1407
1408 if (skip_past_char (&str, ']') == SUCCESS)
1409 atype.index = NEON_ALL_LANES;
1410 else
1411 {
1412 expressionS exp;
1413
1414 my_get_expression (&exp, &str, GE_NO_PREFIX);
1415
1416 if (exp.X_op != O_constant)
1417 {
1418 first_error (_("constant expression required"));
1419 return FAIL;
1420 }
1421
1422 if (skip_past_char (&str, ']') == FAIL)
1423 return FAIL;
1424
1425 atype.index = exp.X_add_number;
1426 }
1427 }
1428
1429 if (typeinfo)
1430 *typeinfo = atype;
1431
1432 if (rtype)
1433 *rtype = type;
1434
1435 *ccp = str;
1436
1437 return reg->number;
1438 }
1439
1440 /* Like arm_reg_parse, but allow allow the following extra features:
1441 - If RTYPE is non-zero, return the (possibly restricted) type of the
1442 register (e.g. Neon double or quad reg when either has been requested).
1443 - If this is a Neon vector type with additional type information, fill
1444 in the struct pointed to by VECTYPE (if non-NULL).
1445 This function will fault on encountering a scalar. */
1446
1447 static int
1448 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1449 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1450 {
1451 struct neon_typed_alias atype;
1452 char *str = *ccp;
1453 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1454
1455 if (reg == FAIL)
1456 return FAIL;
1457
1458 /* Do not allow a scalar (reg+index) to parse as a register. */
1459 if ((atype.defined & NTA_HASINDEX) != 0)
1460 {
1461 first_error (_("register operand expected, but got scalar"));
1462 return FAIL;
1463 }
1464
1465 if (vectype)
1466 *vectype = atype.eltype;
1467
1468 *ccp = str;
1469
1470 return reg;
1471 }
1472
1473 #define NEON_SCALAR_REG(X) ((X) >> 4)
1474 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1475
1476 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1477 have enough information to be able to do a good job bounds-checking. So, we
1478 just do easy checks here, and do further checks later. */
1479
1480 static int
1481 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1482 {
1483 int reg;
1484 char *str = *ccp;
1485 struct neon_typed_alias atype;
1486
1487 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1488
1489 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1490 return FAIL;
1491
1492 if (atype.index == NEON_ALL_LANES)
1493 {
1494 first_error (_("scalar must have an index"));
1495 return FAIL;
1496 }
1497 else if (atype.index >= 64 / elsize)
1498 {
1499 first_error (_("scalar index out of range"));
1500 return FAIL;
1501 }
1502
1503 if (type)
1504 *type = atype.eltype;
1505
1506 *ccp = str;
1507
1508 return reg * 16 + atype.index;
1509 }
1510
1511 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1512
1513 static long
1514 parse_reg_list (char ** strp)
1515 {
1516 char * str = * strp;
1517 long range = 0;
1518 int another_range;
1519
1520 /* We come back here if we get ranges concatenated by '+' or '|'. */
1521 do
1522 {
1523 another_range = 0;
1524
1525 if (*str == '{')
1526 {
1527 int in_range = 0;
1528 int cur_reg = -1;
1529
1530 str++;
1531 do
1532 {
1533 int reg;
1534
1535 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1536 {
1537 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1538 return FAIL;
1539 }
1540
1541 if (in_range)
1542 {
1543 int i;
1544
1545 if (reg <= cur_reg)
1546 {
1547 first_error (_("bad range in register list"));
1548 return FAIL;
1549 }
1550
1551 for (i = cur_reg + 1; i < reg; i++)
1552 {
1553 if (range & (1 << i))
1554 as_tsktsk
1555 (_("Warning: duplicated register (r%d) in register list"),
1556 i);
1557 else
1558 range |= 1 << i;
1559 }
1560 in_range = 0;
1561 }
1562
1563 if (range & (1 << reg))
1564 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1565 reg);
1566 else if (reg <= cur_reg)
1567 as_tsktsk (_("Warning: register range not in ascending order"));
1568
1569 range |= 1 << reg;
1570 cur_reg = reg;
1571 }
1572 while (skip_past_comma (&str) != FAIL
1573 || (in_range = 1, *str++ == '-'));
1574 str--;
1575
1576 if (*str++ != '}')
1577 {
1578 first_error (_("missing `}'"));
1579 return FAIL;
1580 }
1581 }
1582 else
1583 {
1584 expressionS expr;
1585
1586 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1587 return FAIL;
1588
1589 if (expr.X_op == O_constant)
1590 {
1591 if (expr.X_add_number
1592 != (expr.X_add_number & 0x0000ffff))
1593 {
1594 inst.error = _("invalid register mask");
1595 return FAIL;
1596 }
1597
1598 if ((range & expr.X_add_number) != 0)
1599 {
1600 int regno = range & expr.X_add_number;
1601
1602 regno &= -regno;
1603 regno = (1 << regno) - 1;
1604 as_tsktsk
1605 (_("Warning: duplicated register (r%d) in register list"),
1606 regno);
1607 }
1608
1609 range |= expr.X_add_number;
1610 }
1611 else
1612 {
1613 if (inst.reloc.type != 0)
1614 {
1615 inst.error = _("expression too complex");
1616 return FAIL;
1617 }
1618
1619 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1620 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1621 inst.reloc.pc_rel = 0;
1622 }
1623 }
1624
1625 if (*str == '|' || *str == '+')
1626 {
1627 str++;
1628 another_range = 1;
1629 }
1630 }
1631 while (another_range);
1632
1633 *strp = str;
1634 return range;
1635 }
1636
1637 /* Types of registers in a list. */
1638
1639 enum reg_list_els
1640 {
1641 REGLIST_VFP_S,
1642 REGLIST_VFP_D,
1643 REGLIST_NEON_D
1644 };
1645
1646 /* Parse a VFP register list. If the string is invalid return FAIL.
1647 Otherwise return the number of registers, and set PBASE to the first
1648 register. Parses registers of type ETYPE.
1649 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1650 - Q registers can be used to specify pairs of D registers
1651 - { } can be omitted from around a singleton register list
1652 FIXME: This is not implemented, as it would require backtracking in
1653 some cases, e.g.:
1654 vtbl.8 d3,d4,d5
1655 This could be done (the meaning isn't really ambiguous), but doesn't
1656 fit in well with the current parsing framework.
1657 - 32 D registers may be used (also true for VFPv3).
1658 FIXME: Types are ignored in these register lists, which is probably a
1659 bug. */
1660
1661 static int
1662 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1663 {
1664 char *str = *ccp;
1665 int base_reg;
1666 int new_base;
1667 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1668 int max_regs = 0;
1669 int count = 0;
1670 int warned = 0;
1671 unsigned long mask = 0;
1672 int i;
1673
1674 if (*str != '{')
1675 {
1676 inst.error = _("expecting {");
1677 return FAIL;
1678 }
1679
1680 str++;
1681
1682 switch (etype)
1683 {
1684 case REGLIST_VFP_S:
1685 regtype = REG_TYPE_VFS;
1686 max_regs = 32;
1687 break;
1688
1689 case REGLIST_VFP_D:
1690 regtype = REG_TYPE_VFD;
1691 break;
1692
1693 case REGLIST_NEON_D:
1694 regtype = REG_TYPE_NDQ;
1695 break;
1696 }
1697
1698 if (etype != REGLIST_VFP_S)
1699 {
1700 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1701 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1702 {
1703 max_regs = 32;
1704 if (thumb_mode)
1705 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1706 fpu_vfp_ext_d32);
1707 else
1708 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1709 fpu_vfp_ext_d32);
1710 }
1711 else
1712 max_regs = 16;
1713 }
1714
1715 base_reg = max_regs;
1716
1717 do
1718 {
1719 int setmask = 1, addregs = 1;
1720
1721 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1722
1723 if (new_base == FAIL)
1724 {
1725 first_error (_(reg_expected_msgs[regtype]));
1726 return FAIL;
1727 }
1728
1729 if (new_base >= max_regs)
1730 {
1731 first_error (_("register out of range in list"));
1732 return FAIL;
1733 }
1734
1735 /* Note: a value of 2 * n is returned for the register Q<n>. */
1736 if (regtype == REG_TYPE_NQ)
1737 {
1738 setmask = 3;
1739 addregs = 2;
1740 }
1741
1742 if (new_base < base_reg)
1743 base_reg = new_base;
1744
1745 if (mask & (setmask << new_base))
1746 {
1747 first_error (_("invalid register list"));
1748 return FAIL;
1749 }
1750
1751 if ((mask >> new_base) != 0 && ! warned)
1752 {
1753 as_tsktsk (_("register list not in ascending order"));
1754 warned = 1;
1755 }
1756
1757 mask |= setmask << new_base;
1758 count += addregs;
1759
1760 if (*str == '-') /* We have the start of a range expression */
1761 {
1762 int high_range;
1763
1764 str++;
1765
1766 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1767 == FAIL)
1768 {
1769 inst.error = gettext (reg_expected_msgs[regtype]);
1770 return FAIL;
1771 }
1772
1773 if (high_range >= max_regs)
1774 {
1775 first_error (_("register out of range in list"));
1776 return FAIL;
1777 }
1778
1779 if (regtype == REG_TYPE_NQ)
1780 high_range = high_range + 1;
1781
1782 if (high_range <= new_base)
1783 {
1784 inst.error = _("register range not in ascending order");
1785 return FAIL;
1786 }
1787
1788 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1789 {
1790 if (mask & (setmask << new_base))
1791 {
1792 inst.error = _("invalid register list");
1793 return FAIL;
1794 }
1795
1796 mask |= setmask << new_base;
1797 count += addregs;
1798 }
1799 }
1800 }
1801 while (skip_past_comma (&str) != FAIL);
1802
1803 str++;
1804
1805 /* Sanity check -- should have raised a parse error above. */
1806 if (count == 0 || count > max_regs)
1807 abort ();
1808
1809 *pbase = base_reg;
1810
1811 /* Final test -- the registers must be consecutive. */
1812 mask >>= base_reg;
1813 for (i = 0; i < count; i++)
1814 {
1815 if ((mask & (1u << i)) == 0)
1816 {
1817 inst.error = _("non-contiguous register range");
1818 return FAIL;
1819 }
1820 }
1821
1822 *ccp = str;
1823
1824 return count;
1825 }
1826
1827 /* True if two alias types are the same. */
1828
1829 static bfd_boolean
1830 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1831 {
1832 if (!a && !b)
1833 return TRUE;
1834
1835 if (!a || !b)
1836 return FALSE;
1837
1838 if (a->defined != b->defined)
1839 return FALSE;
1840
1841 if ((a->defined & NTA_HASTYPE) != 0
1842 && (a->eltype.type != b->eltype.type
1843 || a->eltype.size != b->eltype.size))
1844 return FALSE;
1845
1846 if ((a->defined & NTA_HASINDEX) != 0
1847 && (a->index != b->index))
1848 return FALSE;
1849
1850 return TRUE;
1851 }
1852
1853 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1854 The base register is put in *PBASE.
1855 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1856 the return value.
1857 The register stride (minus one) is put in bit 4 of the return value.
1858 Bits [6:5] encode the list length (minus one).
1859 The type of the list elements is put in *ELTYPE, if non-NULL. */
1860
1861 #define NEON_LANE(X) ((X) & 0xf)
1862 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1863 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1864
1865 static int
1866 parse_neon_el_struct_list (char **str, unsigned *pbase,
1867 struct neon_type_el *eltype)
1868 {
1869 char *ptr = *str;
1870 int base_reg = -1;
1871 int reg_incr = -1;
1872 int count = 0;
1873 int lane = -1;
1874 int leading_brace = 0;
1875 enum arm_reg_type rtype = REG_TYPE_NDQ;
1876 int addregs = 1;
1877 const char *const incr_error = _("register stride must be 1 or 2");
1878 const char *const type_error = _("mismatched element/structure types in list");
1879 struct neon_typed_alias firsttype;
1880
1881 if (skip_past_char (&ptr, '{') == SUCCESS)
1882 leading_brace = 1;
1883
1884 do
1885 {
1886 struct neon_typed_alias atype;
1887 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1888
1889 if (getreg == FAIL)
1890 {
1891 first_error (_(reg_expected_msgs[rtype]));
1892 return FAIL;
1893 }
1894
1895 if (base_reg == -1)
1896 {
1897 base_reg = getreg;
1898 if (rtype == REG_TYPE_NQ)
1899 {
1900 reg_incr = 1;
1901 addregs = 2;
1902 }
1903 firsttype = atype;
1904 }
1905 else if (reg_incr == -1)
1906 {
1907 reg_incr = getreg - base_reg;
1908 if (reg_incr < 1 || reg_incr > 2)
1909 {
1910 first_error (_(incr_error));
1911 return FAIL;
1912 }
1913 }
1914 else if (getreg != base_reg + reg_incr * count)
1915 {
1916 first_error (_(incr_error));
1917 return FAIL;
1918 }
1919
1920 if (! neon_alias_types_same (&atype, &firsttype))
1921 {
1922 first_error (_(type_error));
1923 return FAIL;
1924 }
1925
1926 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1927 modes. */
1928 if (ptr[0] == '-')
1929 {
1930 struct neon_typed_alias htype;
1931 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1932 if (lane == -1)
1933 lane = NEON_INTERLEAVE_LANES;
1934 else if (lane != NEON_INTERLEAVE_LANES)
1935 {
1936 first_error (_(type_error));
1937 return FAIL;
1938 }
1939 if (reg_incr == -1)
1940 reg_incr = 1;
1941 else if (reg_incr != 1)
1942 {
1943 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1944 return FAIL;
1945 }
1946 ptr++;
1947 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1948 if (hireg == FAIL)
1949 {
1950 first_error (_(reg_expected_msgs[rtype]));
1951 return FAIL;
1952 }
1953 if (! neon_alias_types_same (&htype, &firsttype))
1954 {
1955 first_error (_(type_error));
1956 return FAIL;
1957 }
1958 count += hireg + dregs - getreg;
1959 continue;
1960 }
1961
1962 /* If we're using Q registers, we can't use [] or [n] syntax. */
1963 if (rtype == REG_TYPE_NQ)
1964 {
1965 count += 2;
1966 continue;
1967 }
1968
1969 if ((atype.defined & NTA_HASINDEX) != 0)
1970 {
1971 if (lane == -1)
1972 lane = atype.index;
1973 else if (lane != atype.index)
1974 {
1975 first_error (_(type_error));
1976 return FAIL;
1977 }
1978 }
1979 else if (lane == -1)
1980 lane = NEON_INTERLEAVE_LANES;
1981 else if (lane != NEON_INTERLEAVE_LANES)
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 count++;
1987 }
1988 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1989
1990 /* No lane set by [x]. We must be interleaving structures. */
1991 if (lane == -1)
1992 lane = NEON_INTERLEAVE_LANES;
1993
1994 /* Sanity check. */
1995 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1996 || (count > 1 && reg_incr == -1))
1997 {
1998 first_error (_("error parsing element/structure list"));
1999 return FAIL;
2000 }
2001
2002 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2003 {
2004 first_error (_("expected }"));
2005 return FAIL;
2006 }
2007
2008 if (reg_incr == -1)
2009 reg_incr = 1;
2010
2011 if (eltype)
2012 *eltype = firsttype.eltype;
2013
2014 *pbase = base_reg;
2015 *str = ptr;
2016
2017 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2018 }
2019
2020 /* Parse an explicit relocation suffix on an expression. This is
2021 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2022 arm_reloc_hsh contains no entries, so this function can only
2023 succeed if there is no () after the word. Returns -1 on error,
2024 BFD_RELOC_UNUSED if there wasn't any suffix. */
2025 static int
2026 parse_reloc (char **str)
2027 {
2028 struct reloc_entry *r;
2029 char *p, *q;
2030
2031 if (**str != '(')
2032 return BFD_RELOC_UNUSED;
2033
2034 p = *str + 1;
2035 q = p;
2036
2037 while (*q && *q != ')' && *q != ',')
2038 q++;
2039 if (*q != ')')
2040 return -1;
2041
2042 if ((r = (struct reloc_entry *)
2043 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2044 return -1;
2045
2046 *str = q + 1;
2047 return r->reloc;
2048 }
2049
2050 /* Directives: register aliases. */
2051
2052 static struct reg_entry *
2053 insert_reg_alias (char *str, int number, int type)
2054 {
2055 struct reg_entry *new_reg;
2056 const char *name;
2057
2058 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2059 {
2060 if (new_reg->builtin)
2061 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2062
2063 /* Only warn about a redefinition if it's not defined as the
2064 same register. */
2065 else if (new_reg->number != number || new_reg->type != type)
2066 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2067
2068 return NULL;
2069 }
2070
2071 name = xstrdup (str);
2072 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2073
2074 new_reg->name = name;
2075 new_reg->number = number;
2076 new_reg->type = type;
2077 new_reg->builtin = FALSE;
2078 new_reg->neon = NULL;
2079
2080 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2081 abort ();
2082
2083 return new_reg;
2084 }
2085
2086 static void
2087 insert_neon_reg_alias (char *str, int number, int type,
2088 struct neon_typed_alias *atype)
2089 {
2090 struct reg_entry *reg = insert_reg_alias (str, number, type);
2091
2092 if (!reg)
2093 {
2094 first_error (_("attempt to redefine typed alias"));
2095 return;
2096 }
2097
2098 if (atype)
2099 {
2100 reg->neon = (struct neon_typed_alias *)
2101 xmalloc (sizeof (struct neon_typed_alias));
2102 *reg->neon = *atype;
2103 }
2104 }
2105
2106 /* Look for the .req directive. This is of the form:
2107
2108 new_register_name .req existing_register_name
2109
2110 If we find one, or if it looks sufficiently like one that we want to
2111 handle any error here, return TRUE. Otherwise return FALSE. */
2112
2113 static bfd_boolean
2114 create_register_alias (char * newname, char *p)
2115 {
2116 struct reg_entry *old;
2117 char *oldname, *nbuf;
2118 size_t nlen;
2119
2120 /* The input scrubber ensures that whitespace after the mnemonic is
2121 collapsed to single spaces. */
2122 oldname = p;
2123 if (strncmp (oldname, " .req ", 6) != 0)
2124 return FALSE;
2125
2126 oldname += 6;
2127 if (*oldname == '\0')
2128 return FALSE;
2129
2130 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2131 if (!old)
2132 {
2133 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2134 return TRUE;
2135 }
2136
2137 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2138 the desired alias name, and p points to its end. If not, then
2139 the desired alias name is in the global original_case_string. */
2140 #ifdef TC_CASE_SENSITIVE
2141 nlen = p - newname;
2142 #else
2143 newname = original_case_string;
2144 nlen = strlen (newname);
2145 #endif
2146
2147 nbuf = (char *) alloca (nlen + 1);
2148 memcpy (nbuf, newname, nlen);
2149 nbuf[nlen] = '\0';
2150
2151 /* Create aliases under the new name as stated; an all-lowercase
2152 version of the new name; and an all-uppercase version of the new
2153 name. */
2154 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2155 {
2156 for (p = nbuf; *p; p++)
2157 *p = TOUPPER (*p);
2158
2159 if (strncmp (nbuf, newname, nlen))
2160 {
2161 /* If this attempt to create an additional alias fails, do not bother
2162 trying to create the all-lower case alias. We will fail and issue
2163 a second, duplicate error message. This situation arises when the
2164 programmer does something like:
2165 foo .req r0
2166 Foo .req r1
2167 The second .req creates the "Foo" alias but then fails to create
2168 the artificial FOO alias because it has already been created by the
2169 first .req. */
2170 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2171 return TRUE;
2172 }
2173
2174 for (p = nbuf; *p; p++)
2175 *p = TOLOWER (*p);
2176
2177 if (strncmp (nbuf, newname, nlen))
2178 insert_reg_alias (nbuf, old->number, old->type);
2179 }
2180
2181 return TRUE;
2182 }
2183
2184 /* Create a Neon typed/indexed register alias using directives, e.g.:
2185 X .dn d5.s32[1]
2186 Y .qn 6.s16
2187 Z .dn d7
2188 T .dn Z[0]
2189 These typed registers can be used instead of the types specified after the
2190 Neon mnemonic, so long as all operands given have types. Types can also be
2191 specified directly, e.g.:
2192 vadd d0.s32, d1.s32, d2.s32 */
2193
2194 static bfd_boolean
2195 create_neon_reg_alias (char *newname, char *p)
2196 {
2197 enum arm_reg_type basetype;
2198 struct reg_entry *basereg;
2199 struct reg_entry mybasereg;
2200 struct neon_type ntype;
2201 struct neon_typed_alias typeinfo;
2202 char *namebuf, *nameend;
2203 int namelen;
2204
2205 typeinfo.defined = 0;
2206 typeinfo.eltype.type = NT_invtype;
2207 typeinfo.eltype.size = -1;
2208 typeinfo.index = -1;
2209
2210 nameend = p;
2211
2212 if (strncmp (p, " .dn ", 5) == 0)
2213 basetype = REG_TYPE_VFD;
2214 else if (strncmp (p, " .qn ", 5) == 0)
2215 basetype = REG_TYPE_NQ;
2216 else
2217 return FALSE;
2218
2219 p += 5;
2220
2221 if (*p == '\0')
2222 return FALSE;
2223
2224 basereg = arm_reg_parse_multi (&p);
2225
2226 if (basereg && basereg->type != basetype)
2227 {
2228 as_bad (_("bad type for register"));
2229 return FALSE;
2230 }
2231
2232 if (basereg == NULL)
2233 {
2234 expressionS exp;
2235 /* Try parsing as an integer. */
2236 my_get_expression (&exp, &p, GE_NO_PREFIX);
2237 if (exp.X_op != O_constant)
2238 {
2239 as_bad (_("expression must be constant"));
2240 return FALSE;
2241 }
2242 basereg = &mybasereg;
2243 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2244 : exp.X_add_number;
2245 basereg->neon = 0;
2246 }
2247
2248 if (basereg->neon)
2249 typeinfo = *basereg->neon;
2250
2251 if (parse_neon_type (&ntype, &p) == SUCCESS)
2252 {
2253 /* We got a type. */
2254 if (typeinfo.defined & NTA_HASTYPE)
2255 {
2256 as_bad (_("can't redefine the type of a register alias"));
2257 return FALSE;
2258 }
2259
2260 typeinfo.defined |= NTA_HASTYPE;
2261 if (ntype.elems != 1)
2262 {
2263 as_bad (_("you must specify a single type only"));
2264 return FALSE;
2265 }
2266 typeinfo.eltype = ntype.el[0];
2267 }
2268
2269 if (skip_past_char (&p, '[') == SUCCESS)
2270 {
2271 expressionS exp;
2272 /* We got a scalar index. */
2273
2274 if (typeinfo.defined & NTA_HASINDEX)
2275 {
2276 as_bad (_("can't redefine the index of a scalar alias"));
2277 return FALSE;
2278 }
2279
2280 my_get_expression (&exp, &p, GE_NO_PREFIX);
2281
2282 if (exp.X_op != O_constant)
2283 {
2284 as_bad (_("scalar index must be constant"));
2285 return FALSE;
2286 }
2287
2288 typeinfo.defined |= NTA_HASINDEX;
2289 typeinfo.index = exp.X_add_number;
2290
2291 if (skip_past_char (&p, ']') == FAIL)
2292 {
2293 as_bad (_("expecting ]"));
2294 return FALSE;
2295 }
2296 }
2297
2298 namelen = nameend - newname;
2299 namebuf = (char *) alloca (namelen + 1);
2300 strncpy (namebuf, newname, namelen);
2301 namebuf[namelen] = '\0';
2302
2303 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2304 typeinfo.defined != 0 ? &typeinfo : NULL);
2305
2306 /* Insert name in all uppercase. */
2307 for (p = namebuf; *p; p++)
2308 *p = TOUPPER (*p);
2309
2310 if (strncmp (namebuf, newname, namelen))
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
2313
2314 /* Insert name in all lowercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOLOWER (*p);
2317
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
2321
2322 return TRUE;
2323 }
2324
2325 /* Should never be called, as .req goes between the alias and the
2326 register name, not at the beginning of the line. */
2327
2328 static void
2329 s_req (int a ATTRIBUTE_UNUSED)
2330 {
2331 as_bad (_("invalid syntax for .req directive"));
2332 }
2333
2334 static void
2335 s_dn (int a ATTRIBUTE_UNUSED)
2336 {
2337 as_bad (_("invalid syntax for .dn directive"));
2338 }
2339
2340 static void
2341 s_qn (int a ATTRIBUTE_UNUSED)
2342 {
2343 as_bad (_("invalid syntax for .qn directive"));
2344 }
2345
2346 /* The .unreq directive deletes an alias which was previously defined
2347 by .req. For example:
2348
2349 my_alias .req r11
2350 .unreq my_alias */
2351
2352 static void
2353 s_unreq (int a ATTRIBUTE_UNUSED)
2354 {
2355 char * name;
2356 char saved_char;
2357
2358 name = input_line_pointer;
2359
2360 while (*input_line_pointer != 0
2361 && *input_line_pointer != ' '
2362 && *input_line_pointer != '\n')
2363 ++input_line_pointer;
2364
2365 saved_char = *input_line_pointer;
2366 *input_line_pointer = 0;
2367
2368 if (!*name)
2369 as_bad (_("invalid syntax for .unreq directive"));
2370 else
2371 {
2372 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2373 name);
2374
2375 if (!reg)
2376 as_bad (_("unknown register alias '%s'"), name);
2377 else if (reg->builtin)
2378 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2379 name);
2380 else
2381 {
2382 char * p;
2383 char * nbuf;
2384
2385 hash_delete (arm_reg_hsh, name, FALSE);
2386 free ((char *) reg->name);
2387 if (reg->neon)
2388 free (reg->neon);
2389 free (reg);
2390
2391 /* Also locate the all upper case and all lower case versions.
2392 Do not complain if we cannot find one or the other as it
2393 was probably deleted above. */
2394
2395 nbuf = strdup (name);
2396 for (p = nbuf; *p; p++)
2397 *p = TOUPPER (*p);
2398 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2399 if (reg)
2400 {
2401 hash_delete (arm_reg_hsh, nbuf, FALSE);
2402 free ((char *) reg->name);
2403 if (reg->neon)
2404 free (reg->neon);
2405 free (reg);
2406 }
2407
2408 for (p = nbuf; *p; p++)
2409 *p = TOLOWER (*p);
2410 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2411 if (reg)
2412 {
2413 hash_delete (arm_reg_hsh, nbuf, FALSE);
2414 free ((char *) reg->name);
2415 if (reg->neon)
2416 free (reg->neon);
2417 free (reg);
2418 }
2419
2420 free (nbuf);
2421 }
2422 }
2423
2424 *input_line_pointer = saved_char;
2425 demand_empty_rest_of_line ();
2426 }
2427
2428 /* Directives: Instruction set selection. */
2429
2430 #ifdef OBJ_ELF
2431 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2432 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2433 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2434 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2435
2436 /* Create a new mapping symbol for the transition to STATE. */
2437
2438 static void
2439 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2440 {
2441 symbolS * symbolP;
2442 const char * symname;
2443 int type;
2444
2445 switch (state)
2446 {
2447 case MAP_DATA:
2448 symname = "$d";
2449 type = BSF_NO_FLAGS;
2450 break;
2451 case MAP_ARM:
2452 symname = "$a";
2453 type = BSF_NO_FLAGS;
2454 break;
2455 case MAP_THUMB:
2456 symname = "$t";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 default:
2460 abort ();
2461 }
2462
2463 symbolP = symbol_new (symname, now_seg, value, frag);
2464 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2465
2466 switch (state)
2467 {
2468 case MAP_ARM:
2469 THUMB_SET_FUNC (symbolP, 0);
2470 ARM_SET_THUMB (symbolP, 0);
2471 ARM_SET_INTERWORK (symbolP, support_interwork);
2472 break;
2473
2474 case MAP_THUMB:
2475 THUMB_SET_FUNC (symbolP, 1);
2476 ARM_SET_THUMB (symbolP, 1);
2477 ARM_SET_INTERWORK (symbolP, support_interwork);
2478 break;
2479
2480 case MAP_DATA:
2481 default:
2482 break;
2483 }
2484
2485 /* Save the mapping symbols for future reference. Also check that
2486 we do not place two mapping symbols at the same offset within a
2487 frag. We'll handle overlap between frags in
2488 check_mapping_symbols. */
2489 if (value == 0)
2490 {
2491 know (frag->tc_frag_data.first_map == NULL);
2492 frag->tc_frag_data.first_map = symbolP;
2493 }
2494 if (frag->tc_frag_data.last_map != NULL)
2495 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
2496 frag->tc_frag_data.last_map = symbolP;
2497 }
2498
2499 /* We must sometimes convert a region marked as code to data during
2500 code alignment, if an odd number of bytes have to be padded. The
2501 code mapping symbol is pushed to an aligned address. */
2502
2503 static void
2504 insert_data_mapping_symbol (enum mstate state,
2505 valueT value, fragS *frag, offsetT bytes)
2506 {
2507 /* If there was already a mapping symbol, remove it. */
2508 if (frag->tc_frag_data.last_map != NULL
2509 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2510 {
2511 symbolS *symp = frag->tc_frag_data.last_map;
2512
2513 if (value == 0)
2514 {
2515 know (frag->tc_frag_data.first_map == symp);
2516 frag->tc_frag_data.first_map = NULL;
2517 }
2518 frag->tc_frag_data.last_map = NULL;
2519 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2520 }
2521
2522 make_mapping_symbol (MAP_DATA, value, frag);
2523 make_mapping_symbol (state, value + bytes, frag);
2524 }
2525
2526 static void mapping_state_2 (enum mstate state, int max_chars);
2527
2528 /* Set the mapping state to STATE. Only call this when about to
2529 emit some STATE bytes to the file. */
2530
2531 void
2532 mapping_state (enum mstate state)
2533 {
2534 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2535
2536 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2537
2538 if (mapstate == state)
2539 /* The mapping symbol has already been emitted.
2540 There is nothing else to do. */
2541 return;
2542 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2543 /* This case will be evaluated later in the next else. */
2544 return;
2545 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2546 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2547 {
2548 /* Only add the symbol if the offset is > 0:
2549 if we're at the first frag, check it's size > 0;
2550 if we're not at the first frag, then for sure
2551 the offset is > 0. */
2552 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2553 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2554
2555 if (add_symbol)
2556 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2557 }
2558
2559 mapping_state_2 (state, 0);
2560 #undef TRANSITION
2561 }
2562
2563 /* Same as mapping_state, but MAX_CHARS bytes have already been
2564 allocated. Put the mapping symbol that far back. */
2565
2566 static void
2567 mapping_state_2 (enum mstate state, int max_chars)
2568 {
2569 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2570
2571 if (!SEG_NORMAL (now_seg))
2572 return;
2573
2574 if (mapstate == state)
2575 /* The mapping symbol has already been emitted.
2576 There is nothing else to do. */
2577 return;
2578
2579 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2580 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2581 }
2582 #else
2583 #define mapping_state(x) ((void)0)
2584 #define mapping_state_2(x, y) ((void)0)
2585 #endif
2586
2587 /* Find the real, Thumb encoded start of a Thumb function. */
2588
2589 #ifdef OBJ_COFF
2590 static symbolS *
2591 find_real_start (symbolS * symbolP)
2592 {
2593 char * real_start;
2594 const char * name = S_GET_NAME (symbolP);
2595 symbolS * new_target;
2596
2597 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2598 #define STUB_NAME ".real_start_of"
2599
2600 if (name == NULL)
2601 abort ();
2602
2603 /* The compiler may generate BL instructions to local labels because
2604 it needs to perform a branch to a far away location. These labels
2605 do not have a corresponding ".real_start_of" label. We check
2606 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2607 the ".real_start_of" convention for nonlocal branches. */
2608 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2609 return symbolP;
2610
2611 real_start = ACONCAT ((STUB_NAME, name, NULL));
2612 new_target = symbol_find (real_start);
2613
2614 if (new_target == NULL)
2615 {
2616 as_warn (_("Failed to find real start of function: %s\n"), name);
2617 new_target = symbolP;
2618 }
2619
2620 return new_target;
2621 }
2622 #endif
2623
2624 static void
2625 opcode_select (int width)
2626 {
2627 switch (width)
2628 {
2629 case 16:
2630 if (! thumb_mode)
2631 {
2632 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2633 as_bad (_("selected processor does not support THUMB opcodes"));
2634
2635 thumb_mode = 1;
2636 /* No need to force the alignment, since we will have been
2637 coming from ARM mode, which is word-aligned. */
2638 record_alignment (now_seg, 1);
2639 }
2640 break;
2641
2642 case 32:
2643 if (thumb_mode)
2644 {
2645 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2646 as_bad (_("selected processor does not support ARM opcodes"));
2647
2648 thumb_mode = 0;
2649
2650 if (!need_pass_2)
2651 frag_align (2, 0, 0);
2652
2653 record_alignment (now_seg, 1);
2654 }
2655 break;
2656
2657 default:
2658 as_bad (_("invalid instruction size selected (%d)"), width);
2659 }
2660 }
2661
2662 static void
2663 s_arm (int ignore ATTRIBUTE_UNUSED)
2664 {
2665 opcode_select (32);
2666 demand_empty_rest_of_line ();
2667 }
2668
2669 static void
2670 s_thumb (int ignore ATTRIBUTE_UNUSED)
2671 {
2672 opcode_select (16);
2673 demand_empty_rest_of_line ();
2674 }
2675
2676 static void
2677 s_code (int unused ATTRIBUTE_UNUSED)
2678 {
2679 int temp;
2680
2681 temp = get_absolute_expression ();
2682 switch (temp)
2683 {
2684 case 16:
2685 case 32:
2686 opcode_select (temp);
2687 break;
2688
2689 default:
2690 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2691 }
2692 }
2693
2694 static void
2695 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2696 {
2697 /* If we are not already in thumb mode go into it, EVEN if
2698 the target processor does not support thumb instructions.
2699 This is used by gcc/config/arm/lib1funcs.asm for example
2700 to compile interworking support functions even if the
2701 target processor should not support interworking. */
2702 if (! thumb_mode)
2703 {
2704 thumb_mode = 2;
2705 record_alignment (now_seg, 1);
2706 }
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 static void
2712 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2713 {
2714 s_thumb (0);
2715
2716 /* The following label is the name/address of the start of a Thumb function.
2717 We need to know this for the interworking support. */
2718 label_is_thumb_function_name = TRUE;
2719 }
2720
2721 /* Perform a .set directive, but also mark the alias as
2722 being a thumb function. */
2723
2724 static void
2725 s_thumb_set (int equiv)
2726 {
2727 /* XXX the following is a duplicate of the code for s_set() in read.c
2728 We cannot just call that code as we need to get at the symbol that
2729 is created. */
2730 char * name;
2731 char delim;
2732 char * end_name;
2733 symbolS * symbolP;
2734
2735 /* Especial apologies for the random logic:
2736 This just grew, and could be parsed much more simply!
2737 Dean - in haste. */
2738 name = input_line_pointer;
2739 delim = get_symbol_end ();
2740 end_name = input_line_pointer;
2741 *end_name = delim;
2742
2743 if (*input_line_pointer != ',')
2744 {
2745 *end_name = 0;
2746 as_bad (_("expected comma after name \"%s\""), name);
2747 *end_name = delim;
2748 ignore_rest_of_line ();
2749 return;
2750 }
2751
2752 input_line_pointer++;
2753 *end_name = 0;
2754
2755 if (name[0] == '.' && name[1] == '\0')
2756 {
2757 /* XXX - this should not happen to .thumb_set. */
2758 abort ();
2759 }
2760
2761 if ((symbolP = symbol_find (name)) == NULL
2762 && (symbolP = md_undefined_symbol (name)) == NULL)
2763 {
2764 #ifndef NO_LISTING
2765 /* When doing symbol listings, play games with dummy fragments living
2766 outside the normal fragment chain to record the file and line info
2767 for this symbol. */
2768 if (listing & LISTING_SYMBOLS)
2769 {
2770 extern struct list_info_struct * listing_tail;
2771 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2772
2773 memset (dummy_frag, 0, sizeof (fragS));
2774 dummy_frag->fr_type = rs_fill;
2775 dummy_frag->line = listing_tail;
2776 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2777 dummy_frag->fr_symbol = symbolP;
2778 }
2779 else
2780 #endif
2781 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2782
2783 #ifdef OBJ_COFF
2784 /* "set" symbols are local unless otherwise specified. */
2785 SF_SET_LOCAL (symbolP);
2786 #endif /* OBJ_COFF */
2787 } /* Make a new symbol. */
2788
2789 symbol_table_insert (symbolP);
2790
2791 * end_name = delim;
2792
2793 if (equiv
2794 && S_IS_DEFINED (symbolP)
2795 && S_GET_SEGMENT (symbolP) != reg_section)
2796 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2797
2798 pseudo_set (symbolP);
2799
2800 demand_empty_rest_of_line ();
2801
2802 /* XXX Now we come to the Thumb specific bit of code. */
2803
2804 THUMB_SET_FUNC (symbolP, 1);
2805 ARM_SET_THUMB (symbolP, 1);
2806 #if defined OBJ_ELF || defined OBJ_COFF
2807 ARM_SET_INTERWORK (symbolP, support_interwork);
2808 #endif
2809 }
2810
2811 /* Directives: Mode selection. */
2812
2813 /* .syntax [unified|divided] - choose the new unified syntax
2814 (same for Arm and Thumb encoding, modulo slight differences in what
2815 can be represented) or the old divergent syntax for each mode. */
2816 static void
2817 s_syntax (int unused ATTRIBUTE_UNUSED)
2818 {
2819 char *name, delim;
2820
2821 name = input_line_pointer;
2822 delim = get_symbol_end ();
2823
2824 if (!strcasecmp (name, "unified"))
2825 unified_syntax = TRUE;
2826 else if (!strcasecmp (name, "divided"))
2827 unified_syntax = FALSE;
2828 else
2829 {
2830 as_bad (_("unrecognized syntax mode \"%s\""), name);
2831 return;
2832 }
2833 *input_line_pointer = delim;
2834 demand_empty_rest_of_line ();
2835 }
2836
2837 /* Directives: sectioning and alignment. */
2838
2839 /* Same as s_align_ptwo but align 0 => align 2. */
2840
2841 static void
2842 s_align (int unused ATTRIBUTE_UNUSED)
2843 {
2844 int temp;
2845 bfd_boolean fill_p;
2846 long temp_fill;
2847 long max_alignment = 15;
2848
2849 temp = get_absolute_expression ();
2850 if (temp > max_alignment)
2851 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2852 else if (temp < 0)
2853 {
2854 as_bad (_("alignment negative. 0 assumed."));
2855 temp = 0;
2856 }
2857
2858 if (*input_line_pointer == ',')
2859 {
2860 input_line_pointer++;
2861 temp_fill = get_absolute_expression ();
2862 fill_p = TRUE;
2863 }
2864 else
2865 {
2866 fill_p = FALSE;
2867 temp_fill = 0;
2868 }
2869
2870 if (!temp)
2871 temp = 2;
2872
2873 /* Only make a frag if we HAVE to. */
2874 if (temp && !need_pass_2)
2875 {
2876 if (!fill_p && subseg_text_p (now_seg))
2877 frag_align_code (temp, 0);
2878 else
2879 frag_align (temp, (int) temp_fill, 0);
2880 }
2881 demand_empty_rest_of_line ();
2882
2883 record_alignment (now_seg, temp);
2884 }
2885
2886 static void
2887 s_bss (int ignore ATTRIBUTE_UNUSED)
2888 {
2889 /* We don't support putting frags in the BSS segment, we fake it by
2890 marking in_bss, then looking at s_skip for clues. */
2891 subseg_set (bss_section, 0);
2892 demand_empty_rest_of_line ();
2893
2894 #ifdef md_elf_section_change_hook
2895 md_elf_section_change_hook ();
2896 #endif
2897 }
2898
2899 static void
2900 s_even (int ignore ATTRIBUTE_UNUSED)
2901 {
2902 /* Never make frag if expect extra pass. */
2903 if (!need_pass_2)
2904 frag_align (1, 0, 0);
2905
2906 record_alignment (now_seg, 1);
2907
2908 demand_empty_rest_of_line ();
2909 }
2910
2911 /* Directives: Literal pools. */
2912
2913 static literal_pool *
2914 find_literal_pool (void)
2915 {
2916 literal_pool * pool;
2917
2918 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2919 {
2920 if (pool->section == now_seg
2921 && pool->sub_section == now_subseg)
2922 break;
2923 }
2924
2925 return pool;
2926 }
2927
2928 static literal_pool *
2929 find_or_make_literal_pool (void)
2930 {
2931 /* Next literal pool ID number. */
2932 static unsigned int latest_pool_num = 1;
2933 literal_pool * pool;
2934
2935 pool = find_literal_pool ();
2936
2937 if (pool == NULL)
2938 {
2939 /* Create a new pool. */
2940 pool = (literal_pool *) xmalloc (sizeof (* pool));
2941 if (! pool)
2942 return NULL;
2943
2944 pool->next_free_entry = 0;
2945 pool->section = now_seg;
2946 pool->sub_section = now_subseg;
2947 pool->next = list_of_pools;
2948 pool->symbol = NULL;
2949
2950 /* Add it to the list. */
2951 list_of_pools = pool;
2952 }
2953
2954 /* New pools, and emptied pools, will have a NULL symbol. */
2955 if (pool->symbol == NULL)
2956 {
2957 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2958 (valueT) 0, &zero_address_frag);
2959 pool->id = latest_pool_num ++;
2960 }
2961
2962 /* Done. */
2963 return pool;
2964 }
2965
2966 /* Add the literal in the global 'inst'
2967 structure to the relevant literal pool. */
2968
2969 static int
2970 add_to_lit_pool (void)
2971 {
2972 literal_pool * pool;
2973 unsigned int entry;
2974
2975 pool = find_or_make_literal_pool ();
2976
2977 /* Check if this literal value is already in the pool. */
2978 for (entry = 0; entry < pool->next_free_entry; entry ++)
2979 {
2980 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2981 && (inst.reloc.exp.X_op == O_constant)
2982 && (pool->literals[entry].X_add_number
2983 == inst.reloc.exp.X_add_number)
2984 && (pool->literals[entry].X_unsigned
2985 == inst.reloc.exp.X_unsigned))
2986 break;
2987
2988 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2989 && (inst.reloc.exp.X_op == O_symbol)
2990 && (pool->literals[entry].X_add_number
2991 == inst.reloc.exp.X_add_number)
2992 && (pool->literals[entry].X_add_symbol
2993 == inst.reloc.exp.X_add_symbol)
2994 && (pool->literals[entry].X_op_symbol
2995 == inst.reloc.exp.X_op_symbol))
2996 break;
2997 }
2998
2999 /* Do we need to create a new entry? */
3000 if (entry == pool->next_free_entry)
3001 {
3002 if (entry >= MAX_LITERAL_POOL_SIZE)
3003 {
3004 inst.error = _("literal pool overflow");
3005 return FAIL;
3006 }
3007
3008 pool->literals[entry] = inst.reloc.exp;
3009 pool->next_free_entry += 1;
3010 }
3011
3012 inst.reloc.exp.X_op = O_symbol;
3013 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3014 inst.reloc.exp.X_add_symbol = pool->symbol;
3015
3016 return SUCCESS;
3017 }
3018
3019 /* Can't use symbol_new here, so have to create a symbol and then at
3020 a later date assign it a value. Thats what these functions do. */
3021
3022 static void
3023 symbol_locate (symbolS * symbolP,
3024 const char * name, /* It is copied, the caller can modify. */
3025 segT segment, /* Segment identifier (SEG_<something>). */
3026 valueT valu, /* Symbol value. */
3027 fragS * frag) /* Associated fragment. */
3028 {
3029 unsigned int name_length;
3030 char * preserved_copy_of_name;
3031
3032 name_length = strlen (name) + 1; /* +1 for \0. */
3033 obstack_grow (&notes, name, name_length);
3034 preserved_copy_of_name = (char *) obstack_finish (&notes);
3035
3036 #ifdef tc_canonicalize_symbol_name
3037 preserved_copy_of_name =
3038 tc_canonicalize_symbol_name (preserved_copy_of_name);
3039 #endif
3040
3041 S_SET_NAME (symbolP, preserved_copy_of_name);
3042
3043 S_SET_SEGMENT (symbolP, segment);
3044 S_SET_VALUE (symbolP, valu);
3045 symbol_clear_list_pointers (symbolP);
3046
3047 symbol_set_frag (symbolP, frag);
3048
3049 /* Link to end of symbol chain. */
3050 {
3051 extern int symbol_table_frozen;
3052
3053 if (symbol_table_frozen)
3054 abort ();
3055 }
3056
3057 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3058
3059 obj_symbol_new_hook (symbolP);
3060
3061 #ifdef tc_symbol_new_hook
3062 tc_symbol_new_hook (symbolP);
3063 #endif
3064
3065 #ifdef DEBUG_SYMS
3066 verify_symbol_chain (symbol_rootP, symbol_lastP);
3067 #endif /* DEBUG_SYMS */
3068 }
3069
3070
3071 static void
3072 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3073 {
3074 unsigned int entry;
3075 literal_pool * pool;
3076 char sym_name[20];
3077
3078 pool = find_literal_pool ();
3079 if (pool == NULL
3080 || pool->symbol == NULL
3081 || pool->next_free_entry == 0)
3082 return;
3083
3084 mapping_state (MAP_DATA);
3085
3086 /* Align pool as you have word accesses.
3087 Only make a frag if we have to. */
3088 if (!need_pass_2)
3089 frag_align (2, 0, 0);
3090
3091 record_alignment (now_seg, 2);
3092
3093 sprintf (sym_name, "$$lit_\002%x", pool->id);
3094
3095 symbol_locate (pool->symbol, sym_name, now_seg,
3096 (valueT) frag_now_fix (), frag_now);
3097 symbol_table_insert (pool->symbol);
3098
3099 ARM_SET_THUMB (pool->symbol, thumb_mode);
3100
3101 #if defined OBJ_COFF || defined OBJ_ELF
3102 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3103 #endif
3104
3105 for (entry = 0; entry < pool->next_free_entry; entry ++)
3106 /* First output the expression in the instruction to the pool. */
3107 emit_expr (&(pool->literals[entry]), 4); /* .word */
3108
3109 /* Mark the pool as empty. */
3110 pool->next_free_entry = 0;
3111 pool->symbol = NULL;
3112 }
3113
3114 #ifdef OBJ_ELF
3115 /* Forward declarations for functions below, in the MD interface
3116 section. */
3117 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3118 static valueT create_unwind_entry (int);
3119 static void start_unwind_section (const segT, int);
3120 static void add_unwind_opcode (valueT, int);
3121 static void flush_pending_unwind (void);
3122
3123 /* Directives: Data. */
3124
3125 static void
3126 s_arm_elf_cons (int nbytes)
3127 {
3128 expressionS exp;
3129
3130 #ifdef md_flush_pending_output
3131 md_flush_pending_output ();
3132 #endif
3133
3134 if (is_it_end_of_statement ())
3135 {
3136 demand_empty_rest_of_line ();
3137 return;
3138 }
3139
3140 #ifdef md_cons_align
3141 md_cons_align (nbytes);
3142 #endif
3143
3144 mapping_state (MAP_DATA);
3145 do
3146 {
3147 int reloc;
3148 char *base = input_line_pointer;
3149
3150 expression (& exp);
3151
3152 if (exp.X_op != O_symbol)
3153 emit_expr (&exp, (unsigned int) nbytes);
3154 else
3155 {
3156 char *before_reloc = input_line_pointer;
3157 reloc = parse_reloc (&input_line_pointer);
3158 if (reloc == -1)
3159 {
3160 as_bad (_("unrecognized relocation suffix"));
3161 ignore_rest_of_line ();
3162 return;
3163 }
3164 else if (reloc == BFD_RELOC_UNUSED)
3165 emit_expr (&exp, (unsigned int) nbytes);
3166 else
3167 {
3168 reloc_howto_type *howto = (reloc_howto_type *)
3169 bfd_reloc_type_lookup (stdoutput,
3170 (bfd_reloc_code_real_type) reloc);
3171 int size = bfd_get_reloc_size (howto);
3172
3173 if (reloc == BFD_RELOC_ARM_PLT32)
3174 {
3175 as_bad (_("(plt) is only valid on branch targets"));
3176 reloc = BFD_RELOC_UNUSED;
3177 size = 0;
3178 }
3179
3180 if (size > nbytes)
3181 as_bad (_("%s relocations do not fit in %d bytes"),
3182 howto->name, nbytes);
3183 else
3184 {
3185 /* We've parsed an expression stopping at O_symbol.
3186 But there may be more expression left now that we
3187 have parsed the relocation marker. Parse it again.
3188 XXX Surely there is a cleaner way to do this. */
3189 char *p = input_line_pointer;
3190 int offset;
3191 char *save_buf = (char *) alloca (input_line_pointer - base);
3192 memcpy (save_buf, base, input_line_pointer - base);
3193 memmove (base + (input_line_pointer - before_reloc),
3194 base, before_reloc - base);
3195
3196 input_line_pointer = base + (input_line_pointer-before_reloc);
3197 expression (&exp);
3198 memcpy (base, save_buf, p - base);
3199
3200 offset = nbytes - size;
3201 p = frag_more ((int) nbytes);
3202 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3203 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3204 }
3205 }
3206 }
3207 }
3208 while (*input_line_pointer++ == ',');
3209
3210 /* Put terminator back into stream. */
3211 input_line_pointer --;
3212 demand_empty_rest_of_line ();
3213 }
3214
3215 /* Emit an expression containing a 32-bit thumb instruction.
3216 Implementation based on put_thumb32_insn. */
3217
3218 static void
3219 emit_thumb32_expr (expressionS * exp)
3220 {
3221 expressionS exp_high = *exp;
3222
3223 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3224 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3225 exp->X_add_number &= 0xffff;
3226 emit_expr (exp, (unsigned int) THUMB_SIZE);
3227 }
3228
3229 /* Guess the instruction size based on the opcode. */
3230
3231 static int
3232 thumb_insn_size (int opcode)
3233 {
3234 if ((unsigned int) opcode < 0xe800u)
3235 return 2;
3236 else if ((unsigned int) opcode >= 0xe8000000u)
3237 return 4;
3238 else
3239 return 0;
3240 }
3241
3242 static bfd_boolean
3243 emit_insn (expressionS *exp, int nbytes)
3244 {
3245 int size = 0;
3246
3247 if (exp->X_op == O_constant)
3248 {
3249 size = nbytes;
3250
3251 if (size == 0)
3252 size = thumb_insn_size (exp->X_add_number);
3253
3254 if (size != 0)
3255 {
3256 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3257 {
3258 as_bad (_(".inst.n operand too big. "\
3259 "Use .inst.w instead"));
3260 size = 0;
3261 }
3262 else
3263 {
3264 if (now_it.state == AUTOMATIC_IT_BLOCK)
3265 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3266 else
3267 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3268
3269 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3270 emit_thumb32_expr (exp);
3271 else
3272 emit_expr (exp, (unsigned int) size);
3273
3274 it_fsm_post_encode ();
3275 }
3276 }
3277 else
3278 as_bad (_("cannot determine Thumb instruction size. " \
3279 "Use .inst.n/.inst.w instead"));
3280 }
3281 else
3282 as_bad (_("constant expression required"));
3283
3284 return (size != 0);
3285 }
3286
3287 /* Like s_arm_elf_cons but do not use md_cons_align and
3288 set the mapping state to MAP_ARM/MAP_THUMB. */
3289
3290 static void
3291 s_arm_elf_inst (int nbytes)
3292 {
3293 if (is_it_end_of_statement ())
3294 {
3295 demand_empty_rest_of_line ();
3296 return;
3297 }
3298
3299 /* Calling mapping_state () here will not change ARM/THUMB,
3300 but will ensure not to be in DATA state. */
3301
3302 if (thumb_mode)
3303 mapping_state (MAP_THUMB);
3304 else
3305 {
3306 if (nbytes != 0)
3307 {
3308 as_bad (_("width suffixes are invalid in ARM mode"));
3309 ignore_rest_of_line ();
3310 return;
3311 }
3312
3313 nbytes = 4;
3314
3315 mapping_state (MAP_ARM);
3316 }
3317
3318 do
3319 {
3320 expressionS exp;
3321
3322 expression (& exp);
3323
3324 if (! emit_insn (& exp, nbytes))
3325 {
3326 ignore_rest_of_line ();
3327 return;
3328 }
3329 }
3330 while (*input_line_pointer++ == ',');
3331
3332 /* Put terminator back into stream. */
3333 input_line_pointer --;
3334 demand_empty_rest_of_line ();
3335 }
3336
3337 /* Parse a .rel31 directive. */
3338
3339 static void
3340 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3341 {
3342 expressionS exp;
3343 char *p;
3344 valueT highbit;
3345
3346 highbit = 0;
3347 if (*input_line_pointer == '1')
3348 highbit = 0x80000000;
3349 else if (*input_line_pointer != '0')
3350 as_bad (_("expected 0 or 1"));
3351
3352 input_line_pointer++;
3353 if (*input_line_pointer != ',')
3354 as_bad (_("missing comma"));
3355 input_line_pointer++;
3356
3357 #ifdef md_flush_pending_output
3358 md_flush_pending_output ();
3359 #endif
3360
3361 #ifdef md_cons_align
3362 md_cons_align (4);
3363 #endif
3364
3365 mapping_state (MAP_DATA);
3366
3367 expression (&exp);
3368
3369 p = frag_more (4);
3370 md_number_to_chars (p, highbit, 4);
3371 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3372 BFD_RELOC_ARM_PREL31);
3373
3374 demand_empty_rest_of_line ();
3375 }
3376
3377 /* Directives: AEABI stack-unwind tables. */
3378
3379 /* Parse an unwind_fnstart directive. Simply records the current location. */
3380
3381 static void
3382 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3383 {
3384 demand_empty_rest_of_line ();
3385 if (unwind.proc_start)
3386 {
3387 as_bad (_("duplicate .fnstart directive"));
3388 return;
3389 }
3390
3391 /* Mark the start of the function. */
3392 unwind.proc_start = expr_build_dot ();
3393
3394 /* Reset the rest of the unwind info. */
3395 unwind.opcode_count = 0;
3396 unwind.table_entry = NULL;
3397 unwind.personality_routine = NULL;
3398 unwind.personality_index = -1;
3399 unwind.frame_size = 0;
3400 unwind.fp_offset = 0;
3401 unwind.fp_reg = REG_SP;
3402 unwind.fp_used = 0;
3403 unwind.sp_restored = 0;
3404 }
3405
3406
3407 /* Parse a handlerdata directive. Creates the exception handling table entry
3408 for the function. */
3409
3410 static void
3411 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3412 {
3413 demand_empty_rest_of_line ();
3414 if (!unwind.proc_start)
3415 as_bad (MISSING_FNSTART);
3416
3417 if (unwind.table_entry)
3418 as_bad (_("duplicate .handlerdata directive"));
3419
3420 create_unwind_entry (1);
3421 }
3422
3423 /* Parse an unwind_fnend directive. Generates the index table entry. */
3424
3425 static void
3426 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3427 {
3428 long where;
3429 char *ptr;
3430 valueT val;
3431 unsigned int marked_pr_dependency;
3432
3433 demand_empty_rest_of_line ();
3434
3435 if (!unwind.proc_start)
3436 {
3437 as_bad (_(".fnend directive without .fnstart"));
3438 return;
3439 }
3440
3441 /* Add eh table entry. */
3442 if (unwind.table_entry == NULL)
3443 val = create_unwind_entry (0);
3444 else
3445 val = 0;
3446
3447 /* Add index table entry. This is two words. */
3448 start_unwind_section (unwind.saved_seg, 1);
3449 frag_align (2, 0, 0);
3450 record_alignment (now_seg, 2);
3451
3452 ptr = frag_more (8);
3453 where = frag_now_fix () - 8;
3454
3455 /* Self relative offset of the function start. */
3456 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3457 BFD_RELOC_ARM_PREL31);
3458
3459 /* Indicate dependency on EHABI-defined personality routines to the
3460 linker, if it hasn't been done already. */
3461 marked_pr_dependency
3462 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3463 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3464 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3465 {
3466 static const char *const name[] =
3467 {
3468 "__aeabi_unwind_cpp_pr0",
3469 "__aeabi_unwind_cpp_pr1",
3470 "__aeabi_unwind_cpp_pr2"
3471 };
3472 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3473 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3474 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3475 |= 1 << unwind.personality_index;
3476 }
3477
3478 if (val)
3479 /* Inline exception table entry. */
3480 md_number_to_chars (ptr + 4, val, 4);
3481 else
3482 /* Self relative offset of the table entry. */
3483 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3484 BFD_RELOC_ARM_PREL31);
3485
3486 /* Restore the original section. */
3487 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3488
3489 unwind.proc_start = NULL;
3490 }
3491
3492
3493 /* Parse an unwind_cantunwind directive. */
3494
3495 static void
3496 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3497 {
3498 demand_empty_rest_of_line ();
3499 if (!unwind.proc_start)
3500 as_bad (MISSING_FNSTART);
3501
3502 if (unwind.personality_routine || unwind.personality_index != -1)
3503 as_bad (_("personality routine specified for cantunwind frame"));
3504
3505 unwind.personality_index = -2;
3506 }
3507
3508
3509 /* Parse a personalityindex directive. */
3510
3511 static void
3512 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3513 {
3514 expressionS exp;
3515
3516 if (!unwind.proc_start)
3517 as_bad (MISSING_FNSTART);
3518
3519 if (unwind.personality_routine || unwind.personality_index != -1)
3520 as_bad (_("duplicate .personalityindex directive"));
3521
3522 expression (&exp);
3523
3524 if (exp.X_op != O_constant
3525 || exp.X_add_number < 0 || exp.X_add_number > 15)
3526 {
3527 as_bad (_("bad personality routine number"));
3528 ignore_rest_of_line ();
3529 return;
3530 }
3531
3532 unwind.personality_index = exp.X_add_number;
3533
3534 demand_empty_rest_of_line ();
3535 }
3536
3537
3538 /* Parse a personality directive. */
3539
3540 static void
3541 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3542 {
3543 char *name, *p, c;
3544
3545 if (!unwind.proc_start)
3546 as_bad (MISSING_FNSTART);
3547
3548 if (unwind.personality_routine || unwind.personality_index != -1)
3549 as_bad (_("duplicate .personality directive"));
3550
3551 name = input_line_pointer;
3552 c = get_symbol_end ();
3553 p = input_line_pointer;
3554 unwind.personality_routine = symbol_find_or_make (name);
3555 *p = c;
3556 demand_empty_rest_of_line ();
3557 }
3558
3559
3560 /* Parse a directive saving core registers. */
3561
3562 static void
3563 s_arm_unwind_save_core (void)
3564 {
3565 valueT op;
3566 long range;
3567 int n;
3568
3569 range = parse_reg_list (&input_line_pointer);
3570 if (range == FAIL)
3571 {
3572 as_bad (_("expected register list"));
3573 ignore_rest_of_line ();
3574 return;
3575 }
3576
3577 demand_empty_rest_of_line ();
3578
3579 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3580 into .unwind_save {..., sp...}. We aren't bothered about the value of
3581 ip because it is clobbered by calls. */
3582 if (unwind.sp_restored && unwind.fp_reg == 12
3583 && (range & 0x3000) == 0x1000)
3584 {
3585 unwind.opcode_count--;
3586 unwind.sp_restored = 0;
3587 range = (range | 0x2000) & ~0x1000;
3588 unwind.pending_offset = 0;
3589 }
3590
3591 /* Pop r4-r15. */
3592 if (range & 0xfff0)
3593 {
3594 /* See if we can use the short opcodes. These pop a block of up to 8
3595 registers starting with r4, plus maybe r14. */
3596 for (n = 0; n < 8; n++)
3597 {
3598 /* Break at the first non-saved register. */
3599 if ((range & (1 << (n + 4))) == 0)
3600 break;
3601 }
3602 /* See if there are any other bits set. */
3603 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3604 {
3605 /* Use the long form. */
3606 op = 0x8000 | ((range >> 4) & 0xfff);
3607 add_unwind_opcode (op, 2);
3608 }
3609 else
3610 {
3611 /* Use the short form. */
3612 if (range & 0x4000)
3613 op = 0xa8; /* Pop r14. */
3614 else
3615 op = 0xa0; /* Do not pop r14. */
3616 op |= (n - 1);
3617 add_unwind_opcode (op, 1);
3618 }
3619 }
3620
3621 /* Pop r0-r3. */
3622 if (range & 0xf)
3623 {
3624 op = 0xb100 | (range & 0xf);
3625 add_unwind_opcode (op, 2);
3626 }
3627
3628 /* Record the number of bytes pushed. */
3629 for (n = 0; n < 16; n++)
3630 {
3631 if (range & (1 << n))
3632 unwind.frame_size += 4;
3633 }
3634 }
3635
3636
3637 /* Parse a directive saving FPA registers. */
3638
3639 static void
3640 s_arm_unwind_save_fpa (int reg)
3641 {
3642 expressionS exp;
3643 int num_regs;
3644 valueT op;
3645
3646 /* Get Number of registers to transfer. */
3647 if (skip_past_comma (&input_line_pointer) != FAIL)
3648 expression (&exp);
3649 else
3650 exp.X_op = O_illegal;
3651
3652 if (exp.X_op != O_constant)
3653 {
3654 as_bad (_("expected , <constant>"));
3655 ignore_rest_of_line ();
3656 return;
3657 }
3658
3659 num_regs = exp.X_add_number;
3660
3661 if (num_regs < 1 || num_regs > 4)
3662 {
3663 as_bad (_("number of registers must be in the range [1:4]"));
3664 ignore_rest_of_line ();
3665 return;
3666 }
3667
3668 demand_empty_rest_of_line ();
3669
3670 if (reg == 4)
3671 {
3672 /* Short form. */
3673 op = 0xb4 | (num_regs - 1);
3674 add_unwind_opcode (op, 1);
3675 }
3676 else
3677 {
3678 /* Long form. */
3679 op = 0xc800 | (reg << 4) | (num_regs - 1);
3680 add_unwind_opcode (op, 2);
3681 }
3682 unwind.frame_size += num_regs * 12;
3683 }
3684
3685
3686 /* Parse a directive saving VFP registers for ARMv6 and above. */
3687
3688 static void
3689 s_arm_unwind_save_vfp_armv6 (void)
3690 {
3691 int count;
3692 unsigned int start;
3693 valueT op;
3694 int num_vfpv3_regs = 0;
3695 int num_regs_below_16;
3696
3697 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3698 if (count == FAIL)
3699 {
3700 as_bad (_("expected register list"));
3701 ignore_rest_of_line ();
3702 return;
3703 }
3704
3705 demand_empty_rest_of_line ();
3706
3707 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3708 than FSTMX/FLDMX-style ones). */
3709
3710 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3711 if (start >= 16)
3712 num_vfpv3_regs = count;
3713 else if (start + count > 16)
3714 num_vfpv3_regs = start + count - 16;
3715
3716 if (num_vfpv3_regs > 0)
3717 {
3718 int start_offset = start > 16 ? start - 16 : 0;
3719 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3720 add_unwind_opcode (op, 2);
3721 }
3722
3723 /* Generate opcode for registers numbered in the range 0 .. 15. */
3724 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3725 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3726 if (num_regs_below_16 > 0)
3727 {
3728 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3729 add_unwind_opcode (op, 2);
3730 }
3731
3732 unwind.frame_size += count * 8;
3733 }
3734
3735
3736 /* Parse a directive saving VFP registers for pre-ARMv6. */
3737
3738 static void
3739 s_arm_unwind_save_vfp (void)
3740 {
3741 int count;
3742 unsigned int reg;
3743 valueT op;
3744
3745 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3746 if (count == FAIL)
3747 {
3748 as_bad (_("expected register list"));
3749 ignore_rest_of_line ();
3750 return;
3751 }
3752
3753 demand_empty_rest_of_line ();
3754
3755 if (reg == 8)
3756 {
3757 /* Short form. */
3758 op = 0xb8 | (count - 1);
3759 add_unwind_opcode (op, 1);
3760 }
3761 else
3762 {
3763 /* Long form. */
3764 op = 0xb300 | (reg << 4) | (count - 1);
3765 add_unwind_opcode (op, 2);
3766 }
3767 unwind.frame_size += count * 8 + 4;
3768 }
3769
3770
3771 /* Parse a directive saving iWMMXt data registers. */
3772
3773 static void
3774 s_arm_unwind_save_mmxwr (void)
3775 {
3776 int reg;
3777 int hi_reg;
3778 int i;
3779 unsigned mask = 0;
3780 valueT op;
3781
3782 if (*input_line_pointer == '{')
3783 input_line_pointer++;
3784
3785 do
3786 {
3787 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3788
3789 if (reg == FAIL)
3790 {
3791 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3792 goto error;
3793 }
3794
3795 if (mask >> reg)
3796 as_tsktsk (_("register list not in ascending order"));
3797 mask |= 1 << reg;
3798
3799 if (*input_line_pointer == '-')
3800 {
3801 input_line_pointer++;
3802 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3803 if (hi_reg == FAIL)
3804 {
3805 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3806 goto error;
3807 }
3808 else if (reg >= hi_reg)
3809 {
3810 as_bad (_("bad register range"));
3811 goto error;
3812 }
3813 for (; reg < hi_reg; reg++)
3814 mask |= 1 << reg;
3815 }
3816 }
3817 while (skip_past_comma (&input_line_pointer) != FAIL);
3818
3819 if (*input_line_pointer == '}')
3820 input_line_pointer++;
3821
3822 demand_empty_rest_of_line ();
3823
3824 /* Generate any deferred opcodes because we're going to be looking at
3825 the list. */
3826 flush_pending_unwind ();
3827
3828 for (i = 0; i < 16; i++)
3829 {
3830 if (mask & (1 << i))
3831 unwind.frame_size += 8;
3832 }
3833
3834 /* Attempt to combine with a previous opcode. We do this because gcc
3835 likes to output separate unwind directives for a single block of
3836 registers. */
3837 if (unwind.opcode_count > 0)
3838 {
3839 i = unwind.opcodes[unwind.opcode_count - 1];
3840 if ((i & 0xf8) == 0xc0)
3841 {
3842 i &= 7;
3843 /* Only merge if the blocks are contiguous. */
3844 if (i < 6)
3845 {
3846 if ((mask & 0xfe00) == (1 << 9))
3847 {
3848 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3849 unwind.opcode_count--;
3850 }
3851 }
3852 else if (i == 6 && unwind.opcode_count >= 2)
3853 {
3854 i = unwind.opcodes[unwind.opcode_count - 2];
3855 reg = i >> 4;
3856 i &= 0xf;
3857
3858 op = 0xffff << (reg - 1);
3859 if (reg > 0
3860 && ((mask & op) == (1u << (reg - 1))))
3861 {
3862 op = (1 << (reg + i + 1)) - 1;
3863 op &= ~((1 << reg) - 1);
3864 mask |= op;
3865 unwind.opcode_count -= 2;
3866 }
3867 }
3868 }
3869 }
3870
3871 hi_reg = 15;
3872 /* We want to generate opcodes in the order the registers have been
3873 saved, ie. descending order. */
3874 for (reg = 15; reg >= -1; reg--)
3875 {
3876 /* Save registers in blocks. */
3877 if (reg < 0
3878 || !(mask & (1 << reg)))
3879 {
3880 /* We found an unsaved reg. Generate opcodes to save the
3881 preceding block. */
3882 if (reg != hi_reg)
3883 {
3884 if (reg == 9)
3885 {
3886 /* Short form. */
3887 op = 0xc0 | (hi_reg - 10);
3888 add_unwind_opcode (op, 1);
3889 }
3890 else
3891 {
3892 /* Long form. */
3893 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3894 add_unwind_opcode (op, 2);
3895 }
3896 }
3897 hi_reg = reg - 1;
3898 }
3899 }
3900
3901 return;
3902 error:
3903 ignore_rest_of_line ();
3904 }
3905
3906 static void
3907 s_arm_unwind_save_mmxwcg (void)
3908 {
3909 int reg;
3910 int hi_reg;
3911 unsigned mask = 0;
3912 valueT op;
3913
3914 if (*input_line_pointer == '{')
3915 input_line_pointer++;
3916
3917 do
3918 {
3919 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3920
3921 if (reg == FAIL)
3922 {
3923 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3924 goto error;
3925 }
3926
3927 reg -= 8;
3928 if (mask >> reg)
3929 as_tsktsk (_("register list not in ascending order"));
3930 mask |= 1 << reg;
3931
3932 if (*input_line_pointer == '-')
3933 {
3934 input_line_pointer++;
3935 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3936 if (hi_reg == FAIL)
3937 {
3938 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3939 goto error;
3940 }
3941 else if (reg >= hi_reg)
3942 {
3943 as_bad (_("bad register range"));
3944 goto error;
3945 }
3946 for (; reg < hi_reg; reg++)
3947 mask |= 1 << reg;
3948 }
3949 }
3950 while (skip_past_comma (&input_line_pointer) != FAIL);
3951
3952 if (*input_line_pointer == '}')
3953 input_line_pointer++;
3954
3955 demand_empty_rest_of_line ();
3956
3957 /* Generate any deferred opcodes because we're going to be looking at
3958 the list. */
3959 flush_pending_unwind ();
3960
3961 for (reg = 0; reg < 16; reg++)
3962 {
3963 if (mask & (1 << reg))
3964 unwind.frame_size += 4;
3965 }
3966 op = 0xc700 | mask;
3967 add_unwind_opcode (op, 2);
3968 return;
3969 error:
3970 ignore_rest_of_line ();
3971 }
3972
3973
3974 /* Parse an unwind_save directive.
3975 If the argument is non-zero, this is a .vsave directive. */
3976
3977 static void
3978 s_arm_unwind_save (int arch_v6)
3979 {
3980 char *peek;
3981 struct reg_entry *reg;
3982 bfd_boolean had_brace = FALSE;
3983
3984 if (!unwind.proc_start)
3985 as_bad (MISSING_FNSTART);
3986
3987 /* Figure out what sort of save we have. */
3988 peek = input_line_pointer;
3989
3990 if (*peek == '{')
3991 {
3992 had_brace = TRUE;
3993 peek++;
3994 }
3995
3996 reg = arm_reg_parse_multi (&peek);
3997
3998 if (!reg)
3999 {
4000 as_bad (_("register expected"));
4001 ignore_rest_of_line ();
4002 return;
4003 }
4004
4005 switch (reg->type)
4006 {
4007 case REG_TYPE_FN:
4008 if (had_brace)
4009 {
4010 as_bad (_("FPA .unwind_save does not take a register list"));
4011 ignore_rest_of_line ();
4012 return;
4013 }
4014 input_line_pointer = peek;
4015 s_arm_unwind_save_fpa (reg->number);
4016 return;
4017
4018 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4019 case REG_TYPE_VFD:
4020 if (arch_v6)
4021 s_arm_unwind_save_vfp_armv6 ();
4022 else
4023 s_arm_unwind_save_vfp ();
4024 return;
4025 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4026 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4027
4028 default:
4029 as_bad (_(".unwind_save does not support this kind of register"));
4030 ignore_rest_of_line ();
4031 }
4032 }
4033
4034
4035 /* Parse an unwind_movsp directive. */
4036
4037 static void
4038 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4039 {
4040 int reg;
4041 valueT op;
4042 int offset;
4043
4044 if (!unwind.proc_start)
4045 as_bad (MISSING_FNSTART);
4046
4047 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4048 if (reg == FAIL)
4049 {
4050 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4051 ignore_rest_of_line ();
4052 return;
4053 }
4054
4055 /* Optional constant. */
4056 if (skip_past_comma (&input_line_pointer) != FAIL)
4057 {
4058 if (immediate_for_directive (&offset) == FAIL)
4059 return;
4060 }
4061 else
4062 offset = 0;
4063
4064 demand_empty_rest_of_line ();
4065
4066 if (reg == REG_SP || reg == REG_PC)
4067 {
4068 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4069 return;
4070 }
4071
4072 if (unwind.fp_reg != REG_SP)
4073 as_bad (_("unexpected .unwind_movsp directive"));
4074
4075 /* Generate opcode to restore the value. */
4076 op = 0x90 | reg;
4077 add_unwind_opcode (op, 1);
4078
4079 /* Record the information for later. */
4080 unwind.fp_reg = reg;
4081 unwind.fp_offset = unwind.frame_size - offset;
4082 unwind.sp_restored = 1;
4083 }
4084
4085 /* Parse an unwind_pad directive. */
4086
4087 static void
4088 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4089 {
4090 int offset;
4091
4092 if (!unwind.proc_start)
4093 as_bad (MISSING_FNSTART);
4094
4095 if (immediate_for_directive (&offset) == FAIL)
4096 return;
4097
4098 if (offset & 3)
4099 {
4100 as_bad (_("stack increment must be multiple of 4"));
4101 ignore_rest_of_line ();
4102 return;
4103 }
4104
4105 /* Don't generate any opcodes, just record the details for later. */
4106 unwind.frame_size += offset;
4107 unwind.pending_offset += offset;
4108
4109 demand_empty_rest_of_line ();
4110 }
4111
4112 /* Parse an unwind_setfp directive. */
4113
4114 static void
4115 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4116 {
4117 int sp_reg;
4118 int fp_reg;
4119 int offset;
4120
4121 if (!unwind.proc_start)
4122 as_bad (MISSING_FNSTART);
4123
4124 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4125 if (skip_past_comma (&input_line_pointer) == FAIL)
4126 sp_reg = FAIL;
4127 else
4128 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4129
4130 if (fp_reg == FAIL || sp_reg == FAIL)
4131 {
4132 as_bad (_("expected <reg>, <reg>"));
4133 ignore_rest_of_line ();
4134 return;
4135 }
4136
4137 /* Optional constant. */
4138 if (skip_past_comma (&input_line_pointer) != FAIL)
4139 {
4140 if (immediate_for_directive (&offset) == FAIL)
4141 return;
4142 }
4143 else
4144 offset = 0;
4145
4146 demand_empty_rest_of_line ();
4147
4148 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4149 {
4150 as_bad (_("register must be either sp or set by a previous"
4151 "unwind_movsp directive"));
4152 return;
4153 }
4154
4155 /* Don't generate any opcodes, just record the information for later. */
4156 unwind.fp_reg = fp_reg;
4157 unwind.fp_used = 1;
4158 if (sp_reg == REG_SP)
4159 unwind.fp_offset = unwind.frame_size - offset;
4160 else
4161 unwind.fp_offset -= offset;
4162 }
4163
4164 /* Parse an unwind_raw directive. */
4165
4166 static void
4167 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4168 {
4169 expressionS exp;
4170 /* This is an arbitrary limit. */
4171 unsigned char op[16];
4172 int count;
4173
4174 if (!unwind.proc_start)
4175 as_bad (MISSING_FNSTART);
4176
4177 expression (&exp);
4178 if (exp.X_op == O_constant
4179 && skip_past_comma (&input_line_pointer) != FAIL)
4180 {
4181 unwind.frame_size += exp.X_add_number;
4182 expression (&exp);
4183 }
4184 else
4185 exp.X_op = O_illegal;
4186
4187 if (exp.X_op != O_constant)
4188 {
4189 as_bad (_("expected <offset>, <opcode>"));
4190 ignore_rest_of_line ();
4191 return;
4192 }
4193
4194 count = 0;
4195
4196 /* Parse the opcode. */
4197 for (;;)
4198 {
4199 if (count >= 16)
4200 {
4201 as_bad (_("unwind opcode too long"));
4202 ignore_rest_of_line ();
4203 }
4204 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4205 {
4206 as_bad (_("invalid unwind opcode"));
4207 ignore_rest_of_line ();
4208 return;
4209 }
4210 op[count++] = exp.X_add_number;
4211
4212 /* Parse the next byte. */
4213 if (skip_past_comma (&input_line_pointer) == FAIL)
4214 break;
4215
4216 expression (&exp);
4217 }
4218
4219 /* Add the opcode bytes in reverse order. */
4220 while (count--)
4221 add_unwind_opcode (op[count], 1);
4222
4223 demand_empty_rest_of_line ();
4224 }
4225
4226
4227 /* Parse a .eabi_attribute directive. */
4228
4229 static void
4230 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4231 {
4232 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4233
4234 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4235 attributes_set_explicitly[tag] = 1;
4236 }
4237 #endif /* OBJ_ELF */
4238
4239 static void s_arm_arch (int);
4240 static void s_arm_object_arch (int);
4241 static void s_arm_cpu (int);
4242 static void s_arm_fpu (int);
4243
4244 #ifdef TE_PE
4245
4246 static void
4247 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4248 {
4249 expressionS exp;
4250
4251 do
4252 {
4253 expression (&exp);
4254 if (exp.X_op == O_symbol)
4255 exp.X_op = O_secrel;
4256
4257 emit_expr (&exp, 4);
4258 }
4259 while (*input_line_pointer++ == ',');
4260
4261 input_line_pointer--;
4262 demand_empty_rest_of_line ();
4263 }
4264 #endif /* TE_PE */
4265
4266 /* This table describes all the machine specific pseudo-ops the assembler
4267 has to support. The fields are:
4268 pseudo-op name without dot
4269 function to call to execute this pseudo-op
4270 Integer arg to pass to the function. */
4271
4272 const pseudo_typeS md_pseudo_table[] =
4273 {
4274 /* Never called because '.req' does not start a line. */
4275 { "req", s_req, 0 },
4276 /* Following two are likewise never called. */
4277 { "dn", s_dn, 0 },
4278 { "qn", s_qn, 0 },
4279 { "unreq", s_unreq, 0 },
4280 { "bss", s_bss, 0 },
4281 { "align", s_align, 0 },
4282 { "arm", s_arm, 0 },
4283 { "thumb", s_thumb, 0 },
4284 { "code", s_code, 0 },
4285 { "force_thumb", s_force_thumb, 0 },
4286 { "thumb_func", s_thumb_func, 0 },
4287 { "thumb_set", s_thumb_set, 0 },
4288 { "even", s_even, 0 },
4289 { "ltorg", s_ltorg, 0 },
4290 { "pool", s_ltorg, 0 },
4291 { "syntax", s_syntax, 0 },
4292 { "cpu", s_arm_cpu, 0 },
4293 { "arch", s_arm_arch, 0 },
4294 { "object_arch", s_arm_object_arch, 0 },
4295 { "fpu", s_arm_fpu, 0 },
4296 #ifdef OBJ_ELF
4297 { "word", s_arm_elf_cons, 4 },
4298 { "long", s_arm_elf_cons, 4 },
4299 { "inst.n", s_arm_elf_inst, 2 },
4300 { "inst.w", s_arm_elf_inst, 4 },
4301 { "inst", s_arm_elf_inst, 0 },
4302 { "rel31", s_arm_rel31, 0 },
4303 { "fnstart", s_arm_unwind_fnstart, 0 },
4304 { "fnend", s_arm_unwind_fnend, 0 },
4305 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4306 { "personality", s_arm_unwind_personality, 0 },
4307 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4308 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4309 { "save", s_arm_unwind_save, 0 },
4310 { "vsave", s_arm_unwind_save, 1 },
4311 { "movsp", s_arm_unwind_movsp, 0 },
4312 { "pad", s_arm_unwind_pad, 0 },
4313 { "setfp", s_arm_unwind_setfp, 0 },
4314 { "unwind_raw", s_arm_unwind_raw, 0 },
4315 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4316 #else
4317 { "word", cons, 4},
4318
4319 /* These are used for dwarf. */
4320 {"2byte", cons, 2},
4321 {"4byte", cons, 4},
4322 {"8byte", cons, 8},
4323 /* These are used for dwarf2. */
4324 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4325 { "loc", dwarf2_directive_loc, 0 },
4326 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4327 #endif
4328 { "extend", float_cons, 'x' },
4329 { "ldouble", float_cons, 'x' },
4330 { "packed", float_cons, 'p' },
4331 #ifdef TE_PE
4332 {"secrel32", pe_directive_secrel, 0},
4333 #endif
4334 { 0, 0, 0 }
4335 };
4336 \f
4337 /* Parser functions used exclusively in instruction operands. */
4338
4339 /* Generic immediate-value read function for use in insn parsing.
4340 STR points to the beginning of the immediate (the leading #);
4341 VAL receives the value; if the value is outside [MIN, MAX]
4342 issue an error. PREFIX_OPT is true if the immediate prefix is
4343 optional. */
4344
4345 static int
4346 parse_immediate (char **str, int *val, int min, int max,
4347 bfd_boolean prefix_opt)
4348 {
4349 expressionS exp;
4350 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4351 if (exp.X_op != O_constant)
4352 {
4353 inst.error = _("constant expression required");
4354 return FAIL;
4355 }
4356
4357 if (exp.X_add_number < min || exp.X_add_number > max)
4358 {
4359 inst.error = _("immediate value out of range");
4360 return FAIL;
4361 }
4362
4363 *val = exp.X_add_number;
4364 return SUCCESS;
4365 }
4366
4367 /* Less-generic immediate-value read function with the possibility of loading a
4368 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4369 instructions. Puts the result directly in inst.operands[i]. */
4370
4371 static int
4372 parse_big_immediate (char **str, int i)
4373 {
4374 expressionS exp;
4375 char *ptr = *str;
4376
4377 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4378
4379 if (exp.X_op == O_constant)
4380 {
4381 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4382 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4383 O_constant. We have to be careful not to break compilation for
4384 32-bit X_add_number, though. */
4385 if ((exp.X_add_number & ~0xffffffffl) != 0)
4386 {
4387 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4388 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4389 inst.operands[i].regisimm = 1;
4390 }
4391 }
4392 else if (exp.X_op == O_big
4393 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4394 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4395 {
4396 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4397 /* Bignums have their least significant bits in
4398 generic_bignum[0]. Make sure we put 32 bits in imm and
4399 32 bits in reg, in a (hopefully) portable way. */
4400 gas_assert (parts != 0);
4401 inst.operands[i].imm = 0;
4402 for (j = 0; j < parts; j++, idx++)
4403 inst.operands[i].imm |= generic_bignum[idx]
4404 << (LITTLENUM_NUMBER_OF_BITS * j);
4405 inst.operands[i].reg = 0;
4406 for (j = 0; j < parts; j++, idx++)
4407 inst.operands[i].reg |= generic_bignum[idx]
4408 << (LITTLENUM_NUMBER_OF_BITS * j);
4409 inst.operands[i].regisimm = 1;
4410 }
4411 else
4412 return FAIL;
4413
4414 *str = ptr;
4415
4416 return SUCCESS;
4417 }
4418
4419 /* Returns the pseudo-register number of an FPA immediate constant,
4420 or FAIL if there isn't a valid constant here. */
4421
4422 static int
4423 parse_fpa_immediate (char ** str)
4424 {
4425 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4426 char * save_in;
4427 expressionS exp;
4428 int i;
4429 int j;
4430
4431 /* First try and match exact strings, this is to guarantee
4432 that some formats will work even for cross assembly. */
4433
4434 for (i = 0; fp_const[i]; i++)
4435 {
4436 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4437 {
4438 char *start = *str;
4439
4440 *str += strlen (fp_const[i]);
4441 if (is_end_of_line[(unsigned char) **str])
4442 return i + 8;
4443 *str = start;
4444 }
4445 }
4446
4447 /* Just because we didn't get a match doesn't mean that the constant
4448 isn't valid, just that it is in a format that we don't
4449 automatically recognize. Try parsing it with the standard
4450 expression routines. */
4451
4452 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4453
4454 /* Look for a raw floating point number. */
4455 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4456 && is_end_of_line[(unsigned char) *save_in])
4457 {
4458 for (i = 0; i < NUM_FLOAT_VALS; i++)
4459 {
4460 for (j = 0; j < MAX_LITTLENUMS; j++)
4461 {
4462 if (words[j] != fp_values[i][j])
4463 break;
4464 }
4465
4466 if (j == MAX_LITTLENUMS)
4467 {
4468 *str = save_in;
4469 return i + 8;
4470 }
4471 }
4472 }
4473
4474 /* Try and parse a more complex expression, this will probably fail
4475 unless the code uses a floating point prefix (eg "0f"). */
4476 save_in = input_line_pointer;
4477 input_line_pointer = *str;
4478 if (expression (&exp) == absolute_section
4479 && exp.X_op == O_big
4480 && exp.X_add_number < 0)
4481 {
4482 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4483 Ditto for 15. */
4484 if (gen_to_words (words, 5, (long) 15) == 0)
4485 {
4486 for (i = 0; i < NUM_FLOAT_VALS; i++)
4487 {
4488 for (j = 0; j < MAX_LITTLENUMS; j++)
4489 {
4490 if (words[j] != fp_values[i][j])
4491 break;
4492 }
4493
4494 if (j == MAX_LITTLENUMS)
4495 {
4496 *str = input_line_pointer;
4497 input_line_pointer = save_in;
4498 return i + 8;
4499 }
4500 }
4501 }
4502 }
4503
4504 *str = input_line_pointer;
4505 input_line_pointer = save_in;
4506 inst.error = _("invalid FPA immediate expression");
4507 return FAIL;
4508 }
4509
4510 /* Returns 1 if a number has "quarter-precision" float format
4511 0baBbbbbbc defgh000 00000000 00000000. */
4512
4513 static int
4514 is_quarter_float (unsigned imm)
4515 {
4516 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4517 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4518 }
4519
4520 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4521 0baBbbbbbc defgh000 00000000 00000000.
4522 The zero and minus-zero cases need special handling, since they can't be
4523 encoded in the "quarter-precision" float format, but can nonetheless be
4524 loaded as integer constants. */
4525
4526 static unsigned
4527 parse_qfloat_immediate (char **ccp, int *immed)
4528 {
4529 char *str = *ccp;
4530 char *fpnum;
4531 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4532 int found_fpchar = 0;
4533
4534 skip_past_char (&str, '#');
4535
4536 /* We must not accidentally parse an integer as a floating-point number. Make
4537 sure that the value we parse is not an integer by checking for special
4538 characters '.' or 'e'.
4539 FIXME: This is a horrible hack, but doing better is tricky because type
4540 information isn't in a very usable state at parse time. */
4541 fpnum = str;
4542 skip_whitespace (fpnum);
4543
4544 if (strncmp (fpnum, "0x", 2) == 0)
4545 return FAIL;
4546 else
4547 {
4548 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4549 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4550 {
4551 found_fpchar = 1;
4552 break;
4553 }
4554
4555 if (!found_fpchar)
4556 return FAIL;
4557 }
4558
4559 if ((str = atof_ieee (str, 's', words)) != NULL)
4560 {
4561 unsigned fpword = 0;
4562 int i;
4563
4564 /* Our FP word must be 32 bits (single-precision FP). */
4565 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4566 {
4567 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4568 fpword |= words[i];
4569 }
4570
4571 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4572 *immed = fpword;
4573 else
4574 return FAIL;
4575
4576 *ccp = str;
4577
4578 return SUCCESS;
4579 }
4580
4581 return FAIL;
4582 }
4583
4584 /* Shift operands. */
4585 enum shift_kind
4586 {
4587 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4588 };
4589
4590 struct asm_shift_name
4591 {
4592 const char *name;
4593 enum shift_kind kind;
4594 };
4595
4596 /* Third argument to parse_shift. */
4597 enum parse_shift_mode
4598 {
4599 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4600 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4601 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4602 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4603 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4604 };
4605
4606 /* Parse a <shift> specifier on an ARM data processing instruction.
4607 This has three forms:
4608
4609 (LSL|LSR|ASL|ASR|ROR) Rs
4610 (LSL|LSR|ASL|ASR|ROR) #imm
4611 RRX
4612
4613 Note that ASL is assimilated to LSL in the instruction encoding, and
4614 RRX to ROR #0 (which cannot be written as such). */
4615
4616 static int
4617 parse_shift (char **str, int i, enum parse_shift_mode mode)
4618 {
4619 const struct asm_shift_name *shift_name;
4620 enum shift_kind shift;
4621 char *s = *str;
4622 char *p = s;
4623 int reg;
4624
4625 for (p = *str; ISALPHA (*p); p++)
4626 ;
4627
4628 if (p == *str)
4629 {
4630 inst.error = _("shift expression expected");
4631 return FAIL;
4632 }
4633
4634 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4635 p - *str);
4636
4637 if (shift_name == NULL)
4638 {
4639 inst.error = _("shift expression expected");
4640 return FAIL;
4641 }
4642
4643 shift = shift_name->kind;
4644
4645 switch (mode)
4646 {
4647 case NO_SHIFT_RESTRICT:
4648 case SHIFT_IMMEDIATE: break;
4649
4650 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4651 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4652 {
4653 inst.error = _("'LSL' or 'ASR' required");
4654 return FAIL;
4655 }
4656 break;
4657
4658 case SHIFT_LSL_IMMEDIATE:
4659 if (shift != SHIFT_LSL)
4660 {
4661 inst.error = _("'LSL' required");
4662 return FAIL;
4663 }
4664 break;
4665
4666 case SHIFT_ASR_IMMEDIATE:
4667 if (shift != SHIFT_ASR)
4668 {
4669 inst.error = _("'ASR' required");
4670 return FAIL;
4671 }
4672 break;
4673
4674 default: abort ();
4675 }
4676
4677 if (shift != SHIFT_RRX)
4678 {
4679 /* Whitespace can appear here if the next thing is a bare digit. */
4680 skip_whitespace (p);
4681
4682 if (mode == NO_SHIFT_RESTRICT
4683 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4684 {
4685 inst.operands[i].imm = reg;
4686 inst.operands[i].immisreg = 1;
4687 }
4688 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4689 return FAIL;
4690 }
4691 inst.operands[i].shift_kind = shift;
4692 inst.operands[i].shifted = 1;
4693 *str = p;
4694 return SUCCESS;
4695 }
4696
4697 /* Parse a <shifter_operand> for an ARM data processing instruction:
4698
4699 #<immediate>
4700 #<immediate>, <rotate>
4701 <Rm>
4702 <Rm>, <shift>
4703
4704 where <shift> is defined by parse_shift above, and <rotate> is a
4705 multiple of 2 between 0 and 30. Validation of immediate operands
4706 is deferred to md_apply_fix. */
4707
4708 static int
4709 parse_shifter_operand (char **str, int i)
4710 {
4711 int value;
4712 expressionS expr;
4713
4714 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4715 {
4716 inst.operands[i].reg = value;
4717 inst.operands[i].isreg = 1;
4718
4719 /* parse_shift will override this if appropriate */
4720 inst.reloc.exp.X_op = O_constant;
4721 inst.reloc.exp.X_add_number = 0;
4722
4723 if (skip_past_comma (str) == FAIL)
4724 return SUCCESS;
4725
4726 /* Shift operation on register. */
4727 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4728 }
4729
4730 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4731 return FAIL;
4732
4733 if (skip_past_comma (str) == SUCCESS)
4734 {
4735 /* #x, y -- ie explicit rotation by Y. */
4736 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4737 return FAIL;
4738
4739 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4740 {
4741 inst.error = _("constant expression expected");
4742 return FAIL;
4743 }
4744
4745 value = expr.X_add_number;
4746 if (value < 0 || value > 30 || value % 2 != 0)
4747 {
4748 inst.error = _("invalid rotation");
4749 return FAIL;
4750 }
4751 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4752 {
4753 inst.error = _("invalid constant");
4754 return FAIL;
4755 }
4756
4757 /* Convert to decoded value. md_apply_fix will put it back. */
4758 inst.reloc.exp.X_add_number
4759 = (((inst.reloc.exp.X_add_number << (32 - value))
4760 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4761 }
4762
4763 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4764 inst.reloc.pc_rel = 0;
4765 return SUCCESS;
4766 }
4767
4768 /* Group relocation information. Each entry in the table contains the
4769 textual name of the relocation as may appear in assembler source
4770 and must end with a colon.
4771 Along with this textual name are the relocation codes to be used if
4772 the corresponding instruction is an ALU instruction (ADD or SUB only),
4773 an LDR, an LDRS, or an LDC. */
4774
4775 struct group_reloc_table_entry
4776 {
4777 const char *name;
4778 int alu_code;
4779 int ldr_code;
4780 int ldrs_code;
4781 int ldc_code;
4782 };
4783
4784 typedef enum
4785 {
4786 /* Varieties of non-ALU group relocation. */
4787
4788 GROUP_LDR,
4789 GROUP_LDRS,
4790 GROUP_LDC
4791 } group_reloc_type;
4792
4793 static struct group_reloc_table_entry group_reloc_table[] =
4794 { /* Program counter relative: */
4795 { "pc_g0_nc",
4796 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4797 0, /* LDR */
4798 0, /* LDRS */
4799 0 }, /* LDC */
4800 { "pc_g0",
4801 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4802 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4803 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4804 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4805 { "pc_g1_nc",
4806 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4807 0, /* LDR */
4808 0, /* LDRS */
4809 0 }, /* LDC */
4810 { "pc_g1",
4811 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4812 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4813 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4814 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4815 { "pc_g2",
4816 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4817 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4818 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4819 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4820 /* Section base relative */
4821 { "sb_g0_nc",
4822 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4823 0, /* LDR */
4824 0, /* LDRS */
4825 0 }, /* LDC */
4826 { "sb_g0",
4827 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4828 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4829 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4830 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4831 { "sb_g1_nc",
4832 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4833 0, /* LDR */
4834 0, /* LDRS */
4835 0 }, /* LDC */
4836 { "sb_g1",
4837 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4838 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4839 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4840 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4841 { "sb_g2",
4842 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4843 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4844 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4845 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4846
4847 /* Given the address of a pointer pointing to the textual name of a group
4848 relocation as may appear in assembler source, attempt to find its details
4849 in group_reloc_table. The pointer will be updated to the character after
4850 the trailing colon. On failure, FAIL will be returned; SUCCESS
4851 otherwise. On success, *entry will be updated to point at the relevant
4852 group_reloc_table entry. */
4853
4854 static int
4855 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4856 {
4857 unsigned int i;
4858 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4859 {
4860 int length = strlen (group_reloc_table[i].name);
4861
4862 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4863 && (*str)[length] == ':')
4864 {
4865 *out = &group_reloc_table[i];
4866 *str += (length + 1);
4867 return SUCCESS;
4868 }
4869 }
4870
4871 return FAIL;
4872 }
4873
4874 /* Parse a <shifter_operand> for an ARM data processing instruction
4875 (as for parse_shifter_operand) where group relocations are allowed:
4876
4877 #<immediate>
4878 #<immediate>, <rotate>
4879 #:<group_reloc>:<expression>
4880 <Rm>
4881 <Rm>, <shift>
4882
4883 where <group_reloc> is one of the strings defined in group_reloc_table.
4884 The hashes are optional.
4885
4886 Everything else is as for parse_shifter_operand. */
4887
4888 static parse_operand_result
4889 parse_shifter_operand_group_reloc (char **str, int i)
4890 {
4891 /* Determine if we have the sequence of characters #: or just :
4892 coming next. If we do, then we check for a group relocation.
4893 If we don't, punt the whole lot to parse_shifter_operand. */
4894
4895 if (((*str)[0] == '#' && (*str)[1] == ':')
4896 || (*str)[0] == ':')
4897 {
4898 struct group_reloc_table_entry *entry;
4899
4900 if ((*str)[0] == '#')
4901 (*str) += 2;
4902 else
4903 (*str)++;
4904
4905 /* Try to parse a group relocation. Anything else is an error. */
4906 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4907 {
4908 inst.error = _("unknown group relocation");
4909 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4910 }
4911
4912 /* We now have the group relocation table entry corresponding to
4913 the name in the assembler source. Next, we parse the expression. */
4914 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4916
4917 /* Record the relocation type (always the ALU variant here). */
4918 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4919 gas_assert (inst.reloc.type != 0);
4920
4921 return PARSE_OPERAND_SUCCESS;
4922 }
4923 else
4924 return parse_shifter_operand (str, i) == SUCCESS
4925 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4926
4927 /* Never reached. */
4928 }
4929
4930 /* Parse all forms of an ARM address expression. Information is written
4931 to inst.operands[i] and/or inst.reloc.
4932
4933 Preindexed addressing (.preind=1):
4934
4935 [Rn, #offset] .reg=Rn .reloc.exp=offset
4936 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4937 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4938 .shift_kind=shift .reloc.exp=shift_imm
4939
4940 These three may have a trailing ! which causes .writeback to be set also.
4941
4942 Postindexed addressing (.postind=1, .writeback=1):
4943
4944 [Rn], #offset .reg=Rn .reloc.exp=offset
4945 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4946 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4947 .shift_kind=shift .reloc.exp=shift_imm
4948
4949 Unindexed addressing (.preind=0, .postind=0):
4950
4951 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4952
4953 Other:
4954
4955 [Rn]{!} shorthand for [Rn,#0]{!}
4956 =immediate .isreg=0 .reloc.exp=immediate
4957 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4958
4959 It is the caller's responsibility to check for addressing modes not
4960 supported by the instruction, and to set inst.reloc.type. */
4961
4962 static parse_operand_result
4963 parse_address_main (char **str, int i, int group_relocations,
4964 group_reloc_type group_type)
4965 {
4966 char *p = *str;
4967 int reg;
4968
4969 if (skip_past_char (&p, '[') == FAIL)
4970 {
4971 if (skip_past_char (&p, '=') == FAIL)
4972 {
4973 /* bare address - translate to PC-relative offset */
4974 inst.reloc.pc_rel = 1;
4975 inst.operands[i].reg = REG_PC;
4976 inst.operands[i].isreg = 1;
4977 inst.operands[i].preind = 1;
4978 }
4979 /* else a load-constant pseudo op, no special treatment needed here */
4980
4981 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4982 return PARSE_OPERAND_FAIL;
4983
4984 *str = p;
4985 return PARSE_OPERAND_SUCCESS;
4986 }
4987
4988 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4989 {
4990 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4991 return PARSE_OPERAND_FAIL;
4992 }
4993 inst.operands[i].reg = reg;
4994 inst.operands[i].isreg = 1;
4995
4996 if (skip_past_comma (&p) == SUCCESS)
4997 {
4998 inst.operands[i].preind = 1;
4999
5000 if (*p == '+') p++;
5001 else if (*p == '-') p++, inst.operands[i].negative = 1;
5002
5003 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5004 {
5005 inst.operands[i].imm = reg;
5006 inst.operands[i].immisreg = 1;
5007
5008 if (skip_past_comma (&p) == SUCCESS)
5009 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5010 return PARSE_OPERAND_FAIL;
5011 }
5012 else if (skip_past_char (&p, ':') == SUCCESS)
5013 {
5014 /* FIXME: '@' should be used here, but it's filtered out by generic
5015 code before we get to see it here. This may be subject to
5016 change. */
5017 expressionS exp;
5018 my_get_expression (&exp, &p, GE_NO_PREFIX);
5019 if (exp.X_op != O_constant)
5020 {
5021 inst.error = _("alignment must be constant");
5022 return PARSE_OPERAND_FAIL;
5023 }
5024 inst.operands[i].imm = exp.X_add_number << 8;
5025 inst.operands[i].immisalign = 1;
5026 /* Alignments are not pre-indexes. */
5027 inst.operands[i].preind = 0;
5028 }
5029 else
5030 {
5031 if (inst.operands[i].negative)
5032 {
5033 inst.operands[i].negative = 0;
5034 p--;
5035 }
5036
5037 if (group_relocations
5038 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5039 {
5040 struct group_reloc_table_entry *entry;
5041
5042 /* Skip over the #: or : sequence. */
5043 if (*p == '#')
5044 p += 2;
5045 else
5046 p++;
5047
5048 /* Try to parse a group relocation. Anything else is an
5049 error. */
5050 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5051 {
5052 inst.error = _("unknown group relocation");
5053 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5054 }
5055
5056 /* We now have the group relocation table entry corresponding to
5057 the name in the assembler source. Next, we parse the
5058 expression. */
5059 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061
5062 /* Record the relocation type. */
5063 switch (group_type)
5064 {
5065 case GROUP_LDR:
5066 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5067 break;
5068
5069 case GROUP_LDRS:
5070 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5071 break;
5072
5073 case GROUP_LDC:
5074 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5075 break;
5076
5077 default:
5078 gas_assert (0);
5079 }
5080
5081 if (inst.reloc.type == 0)
5082 {
5083 inst.error = _("this group relocation is not allowed on this instruction");
5084 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5085 }
5086 }
5087 else
5088 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5089 return PARSE_OPERAND_FAIL;
5090 }
5091 }
5092
5093 if (skip_past_char (&p, ']') == FAIL)
5094 {
5095 inst.error = _("']' expected");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 if (skip_past_char (&p, '!') == SUCCESS)
5100 inst.operands[i].writeback = 1;
5101
5102 else if (skip_past_comma (&p) == SUCCESS)
5103 {
5104 if (skip_past_char (&p, '{') == SUCCESS)
5105 {
5106 /* [Rn], {expr} - unindexed, with option */
5107 if (parse_immediate (&p, &inst.operands[i].imm,
5108 0, 255, TRUE) == FAIL)
5109 return PARSE_OPERAND_FAIL;
5110
5111 if (skip_past_char (&p, '}') == FAIL)
5112 {
5113 inst.error = _("'}' expected at end of 'option' field");
5114 return PARSE_OPERAND_FAIL;
5115 }
5116 if (inst.operands[i].preind)
5117 {
5118 inst.error = _("cannot combine index with option");
5119 return PARSE_OPERAND_FAIL;
5120 }
5121 *str = p;
5122 return PARSE_OPERAND_SUCCESS;
5123 }
5124 else
5125 {
5126 inst.operands[i].postind = 1;
5127 inst.operands[i].writeback = 1;
5128
5129 if (inst.operands[i].preind)
5130 {
5131 inst.error = _("cannot combine pre- and post-indexing");
5132 return PARSE_OPERAND_FAIL;
5133 }
5134
5135 if (*p == '+') p++;
5136 else if (*p == '-') p++, inst.operands[i].negative = 1;
5137
5138 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5139 {
5140 /* We might be using the immediate for alignment already. If we
5141 are, OR the register number into the low-order bits. */
5142 if (inst.operands[i].immisalign)
5143 inst.operands[i].imm |= reg;
5144 else
5145 inst.operands[i].imm = reg;
5146 inst.operands[i].immisreg = 1;
5147
5148 if (skip_past_comma (&p) == SUCCESS)
5149 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5150 return PARSE_OPERAND_FAIL;
5151 }
5152 else
5153 {
5154 if (inst.operands[i].negative)
5155 {
5156 inst.operands[i].negative = 0;
5157 p--;
5158 }
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161 }
5162 }
5163 }
5164
5165 /* If at this point neither .preind nor .postind is set, we have a
5166 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5167 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5168 {
5169 inst.operands[i].preind = 1;
5170 inst.reloc.exp.X_op = O_constant;
5171 inst.reloc.exp.X_add_number = 0;
5172 }
5173 *str = p;
5174 return PARSE_OPERAND_SUCCESS;
5175 }
5176
5177 static int
5178 parse_address (char **str, int i)
5179 {
5180 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5181 ? SUCCESS : FAIL;
5182 }
5183
5184 static parse_operand_result
5185 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5186 {
5187 return parse_address_main (str, i, 1, type);
5188 }
5189
5190 /* Parse an operand for a MOVW or MOVT instruction. */
5191 static int
5192 parse_half (char **str)
5193 {
5194 char * p;
5195
5196 p = *str;
5197 skip_past_char (&p, '#');
5198 if (strncasecmp (p, ":lower16:", 9) == 0)
5199 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5200 else if (strncasecmp (p, ":upper16:", 9) == 0)
5201 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5202
5203 if (inst.reloc.type != BFD_RELOC_UNUSED)
5204 {
5205 p += 9;
5206 skip_whitespace (p);
5207 }
5208
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return FAIL;
5211
5212 if (inst.reloc.type == BFD_RELOC_UNUSED)
5213 {
5214 if (inst.reloc.exp.X_op != O_constant)
5215 {
5216 inst.error = _("constant expression expected");
5217 return FAIL;
5218 }
5219 if (inst.reloc.exp.X_add_number < 0
5220 || inst.reloc.exp.X_add_number > 0xffff)
5221 {
5222 inst.error = _("immediate value out of range");
5223 return FAIL;
5224 }
5225 }
5226 *str = p;
5227 return SUCCESS;
5228 }
5229
5230 /* Miscellaneous. */
5231
5232 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5233 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5234 static int
5235 parse_psr (char **str)
5236 {
5237 char *p;
5238 unsigned long psr_field;
5239 const struct asm_psr *psr;
5240 char *start;
5241
5242 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5243 feature for ease of use and backwards compatibility. */
5244 p = *str;
5245 if (strncasecmp (p, "SPSR", 4) == 0)
5246 psr_field = SPSR_BIT;
5247 else if (strncasecmp (p, "CPSR", 4) == 0)
5248 psr_field = 0;
5249 else
5250 {
5251 start = p;
5252 do
5253 p++;
5254 while (ISALNUM (*p) || *p == '_');
5255
5256 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5257 p - start);
5258 if (!psr)
5259 return FAIL;
5260
5261 *str = p;
5262 return psr->field;
5263 }
5264
5265 p += 4;
5266 if (*p == '_')
5267 {
5268 /* A suffix follows. */
5269 p++;
5270 start = p;
5271
5272 do
5273 p++;
5274 while (ISALNUM (*p) || *p == '_');
5275
5276 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5277 p - start);
5278 if (!psr)
5279 goto error;
5280
5281 psr_field |= psr->field;
5282 }
5283 else
5284 {
5285 if (ISALNUM (*p))
5286 goto error; /* Garbage after "[CS]PSR". */
5287
5288 psr_field |= (PSR_c | PSR_f);
5289 }
5290 *str = p;
5291 return psr_field;
5292
5293 error:
5294 inst.error = _("flag for {c}psr instruction expected");
5295 return FAIL;
5296 }
5297
5298 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5299 value suitable for splatting into the AIF field of the instruction. */
5300
5301 static int
5302 parse_cps_flags (char **str)
5303 {
5304 int val = 0;
5305 int saw_a_flag = 0;
5306 char *s = *str;
5307
5308 for (;;)
5309 switch (*s++)
5310 {
5311 case '\0': case ',':
5312 goto done;
5313
5314 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5315 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5316 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5317
5318 default:
5319 inst.error = _("unrecognized CPS flag");
5320 return FAIL;
5321 }
5322
5323 done:
5324 if (saw_a_flag == 0)
5325 {
5326 inst.error = _("missing CPS flags");
5327 return FAIL;
5328 }
5329
5330 *str = s - 1;
5331 return val;
5332 }
5333
5334 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5335 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5336
5337 static int
5338 parse_endian_specifier (char **str)
5339 {
5340 int little_endian;
5341 char *s = *str;
5342
5343 if (strncasecmp (s, "BE", 2))
5344 little_endian = 0;
5345 else if (strncasecmp (s, "LE", 2))
5346 little_endian = 1;
5347 else
5348 {
5349 inst.error = _("valid endian specifiers are be or le");
5350 return FAIL;
5351 }
5352
5353 if (ISALNUM (s[2]) || s[2] == '_')
5354 {
5355 inst.error = _("valid endian specifiers are be or le");
5356 return FAIL;
5357 }
5358
5359 *str = s + 2;
5360 return little_endian;
5361 }
5362
5363 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5364 value suitable for poking into the rotate field of an sxt or sxta
5365 instruction, or FAIL on error. */
5366
5367 static int
5368 parse_ror (char **str)
5369 {
5370 int rot;
5371 char *s = *str;
5372
5373 if (strncasecmp (s, "ROR", 3) == 0)
5374 s += 3;
5375 else
5376 {
5377 inst.error = _("missing rotation field after comma");
5378 return FAIL;
5379 }
5380
5381 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5382 return FAIL;
5383
5384 switch (rot)
5385 {
5386 case 0: *str = s; return 0x0;
5387 case 8: *str = s; return 0x1;
5388 case 16: *str = s; return 0x2;
5389 case 24: *str = s; return 0x3;
5390
5391 default:
5392 inst.error = _("rotation can only be 0, 8, 16, or 24");
5393 return FAIL;
5394 }
5395 }
5396
5397 /* Parse a conditional code (from conds[] below). The value returned is in the
5398 range 0 .. 14, or FAIL. */
5399 static int
5400 parse_cond (char **str)
5401 {
5402 char *q;
5403 const struct asm_cond *c;
5404 int n;
5405 /* Condition codes are always 2 characters, so matching up to
5406 3 characters is sufficient. */
5407 char cond[3];
5408
5409 q = *str;
5410 n = 0;
5411 while (ISALPHA (*q) && n < 3)
5412 {
5413 cond[n] = TOLOWER (*q);
5414 q++;
5415 n++;
5416 }
5417
5418 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5419 if (!c)
5420 {
5421 inst.error = _("condition required");
5422 return FAIL;
5423 }
5424
5425 *str = q;
5426 return c->value;
5427 }
5428
5429 /* Parse an option for a barrier instruction. Returns the encoding for the
5430 option, or FAIL. */
5431 static int
5432 parse_barrier (char **str)
5433 {
5434 char *p, *q;
5435 const struct asm_barrier_opt *o;
5436
5437 p = q = *str;
5438 while (ISALPHA (*q))
5439 q++;
5440
5441 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5442 q - p);
5443 if (!o)
5444 return FAIL;
5445
5446 *str = q;
5447 return o->value;
5448 }
5449
5450 /* Parse the operands of a table branch instruction. Similar to a memory
5451 operand. */
5452 static int
5453 parse_tb (char **str)
5454 {
5455 char * p = *str;
5456 int reg;
5457
5458 if (skip_past_char (&p, '[') == FAIL)
5459 {
5460 inst.error = _("'[' expected");
5461 return FAIL;
5462 }
5463
5464 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5465 {
5466 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5467 return FAIL;
5468 }
5469 inst.operands[0].reg = reg;
5470
5471 if (skip_past_comma (&p) == FAIL)
5472 {
5473 inst.error = _("',' expected");
5474 return FAIL;
5475 }
5476
5477 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5478 {
5479 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5480 return FAIL;
5481 }
5482 inst.operands[0].imm = reg;
5483
5484 if (skip_past_comma (&p) == SUCCESS)
5485 {
5486 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5487 return FAIL;
5488 if (inst.reloc.exp.X_add_number != 1)
5489 {
5490 inst.error = _("invalid shift");
5491 return FAIL;
5492 }
5493 inst.operands[0].shifted = 1;
5494 }
5495
5496 if (skip_past_char (&p, ']') == FAIL)
5497 {
5498 inst.error = _("']' expected");
5499 return FAIL;
5500 }
5501 *str = p;
5502 return SUCCESS;
5503 }
5504
5505 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5506 information on the types the operands can take and how they are encoded.
5507 Up to four operands may be read; this function handles setting the
5508 ".present" field for each read operand itself.
5509 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5510 else returns FAIL. */
5511
5512 static int
5513 parse_neon_mov (char **str, int *which_operand)
5514 {
5515 int i = *which_operand, val;
5516 enum arm_reg_type rtype;
5517 char *ptr = *str;
5518 struct neon_type_el optype;
5519
5520 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5521 {
5522 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5523 inst.operands[i].reg = val;
5524 inst.operands[i].isscalar = 1;
5525 inst.operands[i].vectype = optype;
5526 inst.operands[i++].present = 1;
5527
5528 if (skip_past_comma (&ptr) == FAIL)
5529 goto wanted_comma;
5530
5531 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5532 goto wanted_arm;
5533
5534 inst.operands[i].reg = val;
5535 inst.operands[i].isreg = 1;
5536 inst.operands[i].present = 1;
5537 }
5538 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5539 != FAIL)
5540 {
5541 /* Cases 0, 1, 2, 3, 5 (D only). */
5542 if (skip_past_comma (&ptr) == FAIL)
5543 goto wanted_comma;
5544
5545 inst.operands[i].reg = val;
5546 inst.operands[i].isreg = 1;
5547 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5548 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5549 inst.operands[i].isvec = 1;
5550 inst.operands[i].vectype = optype;
5551 inst.operands[i++].present = 1;
5552
5553 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5554 {
5555 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5556 Case 13: VMOV <Sd>, <Rm> */
5557 inst.operands[i].reg = val;
5558 inst.operands[i].isreg = 1;
5559 inst.operands[i].present = 1;
5560
5561 if (rtype == REG_TYPE_NQ)
5562 {
5563 first_error (_("can't use Neon quad register here"));
5564 return FAIL;
5565 }
5566 else if (rtype != REG_TYPE_VFS)
5567 {
5568 i++;
5569 if (skip_past_comma (&ptr) == FAIL)
5570 goto wanted_comma;
5571 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5572 goto wanted_arm;
5573 inst.operands[i].reg = val;
5574 inst.operands[i].isreg = 1;
5575 inst.operands[i].present = 1;
5576 }
5577 }
5578 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5579 &optype)) != FAIL)
5580 {
5581 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5582 Case 1: VMOV<c><q> <Dd>, <Dm>
5583 Case 8: VMOV.F32 <Sd>, <Sm>
5584 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5585
5586 inst.operands[i].reg = val;
5587 inst.operands[i].isreg = 1;
5588 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5589 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5590 inst.operands[i].isvec = 1;
5591 inst.operands[i].vectype = optype;
5592 inst.operands[i].present = 1;
5593
5594 if (skip_past_comma (&ptr) == SUCCESS)
5595 {
5596 /* Case 15. */
5597 i++;
5598
5599 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5600 goto wanted_arm;
5601
5602 inst.operands[i].reg = val;
5603 inst.operands[i].isreg = 1;
5604 inst.operands[i++].present = 1;
5605
5606 if (skip_past_comma (&ptr) == FAIL)
5607 goto wanted_comma;
5608
5609 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5610 goto wanted_arm;
5611
5612 inst.operands[i].reg = val;
5613 inst.operands[i].isreg = 1;
5614 inst.operands[i++].present = 1;
5615 }
5616 }
5617 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5618 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5619 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5620 Case 10: VMOV.F32 <Sd>, #<imm>
5621 Case 11: VMOV.F64 <Dd>, #<imm> */
5622 inst.operands[i].immisfloat = 1;
5623 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5624 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5625 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5626 ;
5627 else
5628 {
5629 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5630 return FAIL;
5631 }
5632 }
5633 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5634 {
5635 /* Cases 6, 7. */
5636 inst.operands[i].reg = val;
5637 inst.operands[i].isreg = 1;
5638 inst.operands[i++].present = 1;
5639
5640 if (skip_past_comma (&ptr) == FAIL)
5641 goto wanted_comma;
5642
5643 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5644 {
5645 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5646 inst.operands[i].reg = val;
5647 inst.operands[i].isscalar = 1;
5648 inst.operands[i].present = 1;
5649 inst.operands[i].vectype = optype;
5650 }
5651 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5652 {
5653 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5654 inst.operands[i].reg = val;
5655 inst.operands[i].isreg = 1;
5656 inst.operands[i++].present = 1;
5657
5658 if (skip_past_comma (&ptr) == FAIL)
5659 goto wanted_comma;
5660
5661 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5662 == FAIL)
5663 {
5664 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5665 return FAIL;
5666 }
5667
5668 inst.operands[i].reg = val;
5669 inst.operands[i].isreg = 1;
5670 inst.operands[i].isvec = 1;
5671 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5672 inst.operands[i].vectype = optype;
5673 inst.operands[i].present = 1;
5674
5675 if (rtype == REG_TYPE_VFS)
5676 {
5677 /* Case 14. */
5678 i++;
5679 if (skip_past_comma (&ptr) == FAIL)
5680 goto wanted_comma;
5681 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5682 &optype)) == FAIL)
5683 {
5684 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5685 return FAIL;
5686 }
5687 inst.operands[i].reg = val;
5688 inst.operands[i].isreg = 1;
5689 inst.operands[i].isvec = 1;
5690 inst.operands[i].issingle = 1;
5691 inst.operands[i].vectype = optype;
5692 inst.operands[i].present = 1;
5693 }
5694 }
5695 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5696 != FAIL)
5697 {
5698 /* Case 13. */
5699 inst.operands[i].reg = val;
5700 inst.operands[i].isreg = 1;
5701 inst.operands[i].isvec = 1;
5702 inst.operands[i].issingle = 1;
5703 inst.operands[i].vectype = optype;
5704 inst.operands[i++].present = 1;
5705 }
5706 }
5707 else
5708 {
5709 first_error (_("parse error"));
5710 return FAIL;
5711 }
5712
5713 /* Successfully parsed the operands. Update args. */
5714 *which_operand = i;
5715 *str = ptr;
5716 return SUCCESS;
5717
5718 wanted_comma:
5719 first_error (_("expected comma"));
5720 return FAIL;
5721
5722 wanted_arm:
5723 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5724 return FAIL;
5725 }
5726
5727 /* Matcher codes for parse_operands. */
5728 enum operand_parse_code
5729 {
5730 OP_stop, /* end of line */
5731
5732 OP_RR, /* ARM register */
5733 OP_RRnpc, /* ARM register, not r15 */
5734 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5735 OP_RRw, /* ARM register, not r15, optional trailing ! */
5736 OP_RCP, /* Coprocessor number */
5737 OP_RCN, /* Coprocessor register */
5738 OP_RF, /* FPA register */
5739 OP_RVS, /* VFP single precision register */
5740 OP_RVD, /* VFP double precision register (0..15) */
5741 OP_RND, /* Neon double precision register (0..31) */
5742 OP_RNQ, /* Neon quad precision register */
5743 OP_RVSD, /* VFP single or double precision register */
5744 OP_RNDQ, /* Neon double or quad precision register */
5745 OP_RNSDQ, /* Neon single, double or quad precision register */
5746 OP_RNSC, /* Neon scalar D[X] */
5747 OP_RVC, /* VFP control register */
5748 OP_RMF, /* Maverick F register */
5749 OP_RMD, /* Maverick D register */
5750 OP_RMFX, /* Maverick FX register */
5751 OP_RMDX, /* Maverick DX register */
5752 OP_RMAX, /* Maverick AX register */
5753 OP_RMDS, /* Maverick DSPSC register */
5754 OP_RIWR, /* iWMMXt wR register */
5755 OP_RIWC, /* iWMMXt wC register */
5756 OP_RIWG, /* iWMMXt wCG register */
5757 OP_RXA, /* XScale accumulator register */
5758
5759 OP_REGLST, /* ARM register list */
5760 OP_VRSLST, /* VFP single-precision register list */
5761 OP_VRDLST, /* VFP double-precision register list */
5762 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5763 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5764 OP_NSTRLST, /* Neon element/structure list */
5765
5766 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5767 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5768 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5769 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5770 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5771 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5772 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5773 OP_VMOV, /* Neon VMOV operands. */
5774 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5775 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5776 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5777
5778 OP_I0, /* immediate zero */
5779 OP_I7, /* immediate value 0 .. 7 */
5780 OP_I15, /* 0 .. 15 */
5781 OP_I16, /* 1 .. 16 */
5782 OP_I16z, /* 0 .. 16 */
5783 OP_I31, /* 0 .. 31 */
5784 OP_I31w, /* 0 .. 31, optional trailing ! */
5785 OP_I32, /* 1 .. 32 */
5786 OP_I32z, /* 0 .. 32 */
5787 OP_I63, /* 0 .. 63 */
5788 OP_I63s, /* -64 .. 63 */
5789 OP_I64, /* 1 .. 64 */
5790 OP_I64z, /* 0 .. 64 */
5791 OP_I255, /* 0 .. 255 */
5792
5793 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5794 OP_I7b, /* 0 .. 7 */
5795 OP_I15b, /* 0 .. 15 */
5796 OP_I31b, /* 0 .. 31 */
5797
5798 OP_SH, /* shifter operand */
5799 OP_SHG, /* shifter operand with possible group relocation */
5800 OP_ADDR, /* Memory address expression (any mode) */
5801 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5802 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5803 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5804 OP_EXP, /* arbitrary expression */
5805 OP_EXPi, /* same, with optional immediate prefix */
5806 OP_EXPr, /* same, with optional relocation suffix */
5807 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5808
5809 OP_CPSF, /* CPS flags */
5810 OP_ENDI, /* Endianness specifier */
5811 OP_PSR, /* CPSR/SPSR mask for msr */
5812 OP_COND, /* conditional code */
5813 OP_TB, /* Table branch. */
5814
5815 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5816 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5817
5818 OP_RRnpc_I0, /* ARM register or literal 0 */
5819 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5820 OP_RR_EXi, /* ARM register or expression with imm prefix */
5821 OP_RF_IF, /* FPA register or immediate */
5822 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5823 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5824
5825 /* Optional operands. */
5826 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5827 OP_oI31b, /* 0 .. 31 */
5828 OP_oI32b, /* 1 .. 32 */
5829 OP_oIffffb, /* 0 .. 65535 */
5830 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5831
5832 OP_oRR, /* ARM register */
5833 OP_oRRnpc, /* ARM register, not the PC */
5834 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5835 OP_oRND, /* Optional Neon double precision register */
5836 OP_oRNQ, /* Optional Neon quad precision register */
5837 OP_oRNDQ, /* Optional Neon double or quad precision register */
5838 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5839 OP_oSHll, /* LSL immediate */
5840 OP_oSHar, /* ASR immediate */
5841 OP_oSHllar, /* LSL or ASR immediate */
5842 OP_oROR, /* ROR 0/8/16/24 */
5843 OP_oBARRIER, /* Option argument for a barrier instruction. */
5844
5845 OP_FIRST_OPTIONAL = OP_oI7b
5846 };
5847
5848 /* Generic instruction operand parser. This does no encoding and no
5849 semantic validation; it merely squirrels values away in the inst
5850 structure. Returns SUCCESS or FAIL depending on whether the
5851 specified grammar matched. */
5852 static int
5853 parse_operands (char *str, const unsigned char *pattern)
5854 {
5855 unsigned const char *upat = pattern;
5856 char *backtrack_pos = 0;
5857 const char *backtrack_error = 0;
5858 int i, val, backtrack_index = 0;
5859 enum arm_reg_type rtype;
5860 parse_operand_result result;
5861
5862 #define po_char_or_fail(chr) \
5863 do \
5864 { \
5865 if (skip_past_char (&str, chr) == FAIL) \
5866 goto bad_args; \
5867 } \
5868 while (0)
5869
5870 #define po_reg_or_fail(regtype) \
5871 do \
5872 { \
5873 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5874 & inst.operands[i].vectype); \
5875 if (val == FAIL) \
5876 { \
5877 first_error (_(reg_expected_msgs[regtype])); \
5878 goto failure; \
5879 } \
5880 inst.operands[i].reg = val; \
5881 inst.operands[i].isreg = 1; \
5882 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5883 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5884 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5885 || rtype == REG_TYPE_VFD \
5886 || rtype == REG_TYPE_NQ); \
5887 } \
5888 while (0)
5889
5890 #define po_reg_or_goto(regtype, label) \
5891 do \
5892 { \
5893 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5894 & inst.operands[i].vectype); \
5895 if (val == FAIL) \
5896 goto label; \
5897 \
5898 inst.operands[i].reg = val; \
5899 inst.operands[i].isreg = 1; \
5900 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5901 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5902 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5903 || rtype == REG_TYPE_VFD \
5904 || rtype == REG_TYPE_NQ); \
5905 } \
5906 while (0)
5907
5908 #define po_imm_or_fail(min, max, popt) \
5909 do \
5910 { \
5911 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5912 goto failure; \
5913 inst.operands[i].imm = val; \
5914 } \
5915 while (0)
5916
5917 #define po_scalar_or_goto(elsz, label) \
5918 do \
5919 { \
5920 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5921 if (val == FAIL) \
5922 goto label; \
5923 inst.operands[i].reg = val; \
5924 inst.operands[i].isscalar = 1; \
5925 } \
5926 while (0)
5927
5928 #define po_misc_or_fail(expr) \
5929 do \
5930 { \
5931 if (expr) \
5932 goto failure; \
5933 } \
5934 while (0)
5935
5936 #define po_misc_or_fail_no_backtrack(expr) \
5937 do \
5938 { \
5939 result = expr; \
5940 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5941 backtrack_pos = 0; \
5942 if (result != PARSE_OPERAND_SUCCESS) \
5943 goto failure; \
5944 } \
5945 while (0)
5946
5947 skip_whitespace (str);
5948
5949 for (i = 0; upat[i] != OP_stop; i++)
5950 {
5951 if (upat[i] >= OP_FIRST_OPTIONAL)
5952 {
5953 /* Remember where we are in case we need to backtrack. */
5954 gas_assert (!backtrack_pos);
5955 backtrack_pos = str;
5956 backtrack_error = inst.error;
5957 backtrack_index = i;
5958 }
5959
5960 if (i > 0 && (i > 1 || inst.operands[0].present))
5961 po_char_or_fail (',');
5962
5963 switch (upat[i])
5964 {
5965 /* Registers */
5966 case OP_oRRnpc:
5967 case OP_RRnpc:
5968 case OP_oRR:
5969 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5970 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5971 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5972 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5973 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5974 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5975 case OP_oRND:
5976 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5977 case OP_RVC:
5978 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5979 break;
5980 /* Also accept generic coprocessor regs for unknown registers. */
5981 coproc_reg:
5982 po_reg_or_fail (REG_TYPE_CN);
5983 break;
5984 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5985 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5986 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5987 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5988 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5989 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5990 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5991 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5992 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5993 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5994 case OP_oRNQ:
5995 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5996 case OP_oRNDQ:
5997 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5998 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5999 case OP_oRNSDQ:
6000 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6001
6002 /* Neon scalar. Using an element size of 8 means that some invalid
6003 scalars are accepted here, so deal with those in later code. */
6004 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6005
6006 /* WARNING: We can expand to two operands here. This has the potential
6007 to totally confuse the backtracking mechanism! It will be OK at
6008 least as long as we don't try to use optional args as well,
6009 though. */
6010 case OP_NILO:
6011 {
6012 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
6013 inst.operands[i].present = 1;
6014 i++;
6015 skip_past_comma (&str);
6016 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
6017 break;
6018 one_reg_only:
6019 /* Optional register operand was omitted. Unfortunately, it's in
6020 operands[i-1] and we need it to be in inst.operands[i]. Fix that
6021 here (this is a bit grotty). */
6022 inst.operands[i] = inst.operands[i-1];
6023 inst.operands[i-1].present = 0;
6024 break;
6025 try_imm:
6026 /* There's a possibility of getting a 64-bit immediate here, so
6027 we need special handling. */
6028 if (parse_big_immediate (&str, i) == FAIL)
6029 {
6030 inst.error = _("immediate value is out of range");
6031 goto failure;
6032 }
6033 }
6034 break;
6035
6036 case OP_RNDQ_I0:
6037 {
6038 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6039 break;
6040 try_imm0:
6041 po_imm_or_fail (0, 0, TRUE);
6042 }
6043 break;
6044
6045 case OP_RVSD_I0:
6046 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6047 break;
6048
6049 case OP_RR_RNSC:
6050 {
6051 po_scalar_or_goto (8, try_rr);
6052 break;
6053 try_rr:
6054 po_reg_or_fail (REG_TYPE_RN);
6055 }
6056 break;
6057
6058 case OP_RNSDQ_RNSC:
6059 {
6060 po_scalar_or_goto (8, try_nsdq);
6061 break;
6062 try_nsdq:
6063 po_reg_or_fail (REG_TYPE_NSDQ);
6064 }
6065 break;
6066
6067 case OP_RNDQ_RNSC:
6068 {
6069 po_scalar_or_goto (8, try_ndq);
6070 break;
6071 try_ndq:
6072 po_reg_or_fail (REG_TYPE_NDQ);
6073 }
6074 break;
6075
6076 case OP_RND_RNSC:
6077 {
6078 po_scalar_or_goto (8, try_vfd);
6079 break;
6080 try_vfd:
6081 po_reg_or_fail (REG_TYPE_VFD);
6082 }
6083 break;
6084
6085 case OP_VMOV:
6086 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6087 not careful then bad things might happen. */
6088 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6089 break;
6090
6091 case OP_RNDQ_IMVNb:
6092 {
6093 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
6094 break;
6095 try_mvnimm:
6096 /* There's a possibility of getting a 64-bit immediate here, so
6097 we need special handling. */
6098 if (parse_big_immediate (&str, i) == FAIL)
6099 {
6100 inst.error = _("immediate value is out of range");
6101 goto failure;
6102 }
6103 }
6104 break;
6105
6106 case OP_RNDQ_I63b:
6107 {
6108 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6109 break;
6110 try_shimm:
6111 po_imm_or_fail (0, 63, TRUE);
6112 }
6113 break;
6114
6115 case OP_RRnpcb:
6116 po_char_or_fail ('[');
6117 po_reg_or_fail (REG_TYPE_RN);
6118 po_char_or_fail (']');
6119 break;
6120
6121 case OP_RRw:
6122 case OP_oRRw:
6123 po_reg_or_fail (REG_TYPE_RN);
6124 if (skip_past_char (&str, '!') == SUCCESS)
6125 inst.operands[i].writeback = 1;
6126 break;
6127
6128 /* Immediates */
6129 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6130 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6131 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6132 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6133 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6134 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6135 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6136 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6137 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6138 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6139 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6140 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6141
6142 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6143 case OP_oI7b:
6144 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6145 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6146 case OP_oI31b:
6147 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6148 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6149 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6150
6151 /* Immediate variants */
6152 case OP_oI255c:
6153 po_char_or_fail ('{');
6154 po_imm_or_fail (0, 255, TRUE);
6155 po_char_or_fail ('}');
6156 break;
6157
6158 case OP_I31w:
6159 /* The expression parser chokes on a trailing !, so we have
6160 to find it first and zap it. */
6161 {
6162 char *s = str;
6163 while (*s && *s != ',')
6164 s++;
6165 if (s[-1] == '!')
6166 {
6167 s[-1] = '\0';
6168 inst.operands[i].writeback = 1;
6169 }
6170 po_imm_or_fail (0, 31, TRUE);
6171 if (str == s - 1)
6172 str = s;
6173 }
6174 break;
6175
6176 /* Expressions */
6177 case OP_EXPi: EXPi:
6178 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6179 GE_OPT_PREFIX));
6180 break;
6181
6182 case OP_EXP:
6183 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6184 GE_NO_PREFIX));
6185 break;
6186
6187 case OP_EXPr: EXPr:
6188 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6189 GE_NO_PREFIX));
6190 if (inst.reloc.exp.X_op == O_symbol)
6191 {
6192 val = parse_reloc (&str);
6193 if (val == -1)
6194 {
6195 inst.error = _("unrecognized relocation suffix");
6196 goto failure;
6197 }
6198 else if (val != BFD_RELOC_UNUSED)
6199 {
6200 inst.operands[i].imm = val;
6201 inst.operands[i].hasreloc = 1;
6202 }
6203 }
6204 break;
6205
6206 /* Operand for MOVW or MOVT. */
6207 case OP_HALF:
6208 po_misc_or_fail (parse_half (&str));
6209 break;
6210
6211 /* Register or expression. */
6212 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6213 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6214
6215 /* Register or immediate. */
6216 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6217 I0: po_imm_or_fail (0, 0, FALSE); break;
6218
6219 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6220 IF:
6221 if (!is_immediate_prefix (*str))
6222 goto bad_args;
6223 str++;
6224 val = parse_fpa_immediate (&str);
6225 if (val == FAIL)
6226 goto failure;
6227 /* FPA immediates are encoded as registers 8-15.
6228 parse_fpa_immediate has already applied the offset. */
6229 inst.operands[i].reg = val;
6230 inst.operands[i].isreg = 1;
6231 break;
6232
6233 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6234 I32z: po_imm_or_fail (0, 32, FALSE); break;
6235
6236 /* Two kinds of register. */
6237 case OP_RIWR_RIWC:
6238 {
6239 struct reg_entry *rege = arm_reg_parse_multi (&str);
6240 if (!rege
6241 || (rege->type != REG_TYPE_MMXWR
6242 && rege->type != REG_TYPE_MMXWC
6243 && rege->type != REG_TYPE_MMXWCG))
6244 {
6245 inst.error = _("iWMMXt data or control register expected");
6246 goto failure;
6247 }
6248 inst.operands[i].reg = rege->number;
6249 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6250 }
6251 break;
6252
6253 case OP_RIWC_RIWG:
6254 {
6255 struct reg_entry *rege = arm_reg_parse_multi (&str);
6256 if (!rege
6257 || (rege->type != REG_TYPE_MMXWC
6258 && rege->type != REG_TYPE_MMXWCG))
6259 {
6260 inst.error = _("iWMMXt control register expected");
6261 goto failure;
6262 }
6263 inst.operands[i].reg = rege->number;
6264 inst.operands[i].isreg = 1;
6265 }
6266 break;
6267
6268 /* Misc */
6269 case OP_CPSF: val = parse_cps_flags (&str); break;
6270 case OP_ENDI: val = parse_endian_specifier (&str); break;
6271 case OP_oROR: val = parse_ror (&str); break;
6272 case OP_PSR: val = parse_psr (&str); break;
6273 case OP_COND: val = parse_cond (&str); break;
6274 case OP_oBARRIER:val = parse_barrier (&str); break;
6275
6276 case OP_RVC_PSR:
6277 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6278 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6279 break;
6280 try_psr:
6281 val = parse_psr (&str);
6282 break;
6283
6284 case OP_APSR_RR:
6285 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6286 break;
6287 try_apsr:
6288 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6289 instruction). */
6290 if (strncasecmp (str, "APSR_", 5) == 0)
6291 {
6292 unsigned found = 0;
6293 str += 5;
6294 while (found < 15)
6295 switch (*str++)
6296 {
6297 case 'c': found = (found & 1) ? 16 : found | 1; break;
6298 case 'n': found = (found & 2) ? 16 : found | 2; break;
6299 case 'z': found = (found & 4) ? 16 : found | 4; break;
6300 case 'v': found = (found & 8) ? 16 : found | 8; break;
6301 default: found = 16;
6302 }
6303 if (found != 15)
6304 goto failure;
6305 inst.operands[i].isvec = 1;
6306 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6307 inst.operands[i].reg = REG_PC;
6308 }
6309 else
6310 goto failure;
6311 break;
6312
6313 case OP_TB:
6314 po_misc_or_fail (parse_tb (&str));
6315 break;
6316
6317 /* Register lists. */
6318 case OP_REGLST:
6319 val = parse_reg_list (&str);
6320 if (*str == '^')
6321 {
6322 inst.operands[1].writeback = 1;
6323 str++;
6324 }
6325 break;
6326
6327 case OP_VRSLST:
6328 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6329 break;
6330
6331 case OP_VRDLST:
6332 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6333 break;
6334
6335 case OP_VRSDLST:
6336 /* Allow Q registers too. */
6337 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6338 REGLIST_NEON_D);
6339 if (val == FAIL)
6340 {
6341 inst.error = NULL;
6342 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6343 REGLIST_VFP_S);
6344 inst.operands[i].issingle = 1;
6345 }
6346 break;
6347
6348 case OP_NRDLST:
6349 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6350 REGLIST_NEON_D);
6351 break;
6352
6353 case OP_NSTRLST:
6354 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6355 &inst.operands[i].vectype);
6356 break;
6357
6358 /* Addressing modes */
6359 case OP_ADDR:
6360 po_misc_or_fail (parse_address (&str, i));
6361 break;
6362
6363 case OP_ADDRGLDR:
6364 po_misc_or_fail_no_backtrack (
6365 parse_address_group_reloc (&str, i, GROUP_LDR));
6366 break;
6367
6368 case OP_ADDRGLDRS:
6369 po_misc_or_fail_no_backtrack (
6370 parse_address_group_reloc (&str, i, GROUP_LDRS));
6371 break;
6372
6373 case OP_ADDRGLDC:
6374 po_misc_or_fail_no_backtrack (
6375 parse_address_group_reloc (&str, i, GROUP_LDC));
6376 break;
6377
6378 case OP_SH:
6379 po_misc_or_fail (parse_shifter_operand (&str, i));
6380 break;
6381
6382 case OP_SHG:
6383 po_misc_or_fail_no_backtrack (
6384 parse_shifter_operand_group_reloc (&str, i));
6385 break;
6386
6387 case OP_oSHll:
6388 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6389 break;
6390
6391 case OP_oSHar:
6392 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6393 break;
6394
6395 case OP_oSHllar:
6396 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6397 break;
6398
6399 default:
6400 as_fatal (_("unhandled operand code %d"), upat[i]);
6401 }
6402
6403 /* Various value-based sanity checks and shared operations. We
6404 do not signal immediate failures for the register constraints;
6405 this allows a syntax error to take precedence. */
6406 switch (upat[i])
6407 {
6408 case OP_oRRnpc:
6409 case OP_RRnpc:
6410 case OP_RRnpcb:
6411 case OP_RRw:
6412 case OP_oRRw:
6413 case OP_RRnpc_I0:
6414 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6415 inst.error = BAD_PC;
6416 break;
6417
6418 case OP_CPSF:
6419 case OP_ENDI:
6420 case OP_oROR:
6421 case OP_PSR:
6422 case OP_RVC_PSR:
6423 case OP_COND:
6424 case OP_oBARRIER:
6425 case OP_REGLST:
6426 case OP_VRSLST:
6427 case OP_VRDLST:
6428 case OP_VRSDLST:
6429 case OP_NRDLST:
6430 case OP_NSTRLST:
6431 if (val == FAIL)
6432 goto failure;
6433 inst.operands[i].imm = val;
6434 break;
6435
6436 default:
6437 break;
6438 }
6439
6440 /* If we get here, this operand was successfully parsed. */
6441 inst.operands[i].present = 1;
6442 continue;
6443
6444 bad_args:
6445 inst.error = BAD_ARGS;
6446
6447 failure:
6448 if (!backtrack_pos)
6449 {
6450 /* The parse routine should already have set inst.error, but set a
6451 default here just in case. */
6452 if (!inst.error)
6453 inst.error = _("syntax error");
6454 return FAIL;
6455 }
6456
6457 /* Do not backtrack over a trailing optional argument that
6458 absorbed some text. We will only fail again, with the
6459 'garbage following instruction' error message, which is
6460 probably less helpful than the current one. */
6461 if (backtrack_index == i && backtrack_pos != str
6462 && upat[i+1] == OP_stop)
6463 {
6464 if (!inst.error)
6465 inst.error = _("syntax error");
6466 return FAIL;
6467 }
6468
6469 /* Try again, skipping the optional argument at backtrack_pos. */
6470 str = backtrack_pos;
6471 inst.error = backtrack_error;
6472 inst.operands[backtrack_index].present = 0;
6473 i = backtrack_index;
6474 backtrack_pos = 0;
6475 }
6476
6477 /* Check that we have parsed all the arguments. */
6478 if (*str != '\0' && !inst.error)
6479 inst.error = _("garbage following instruction");
6480
6481 return inst.error ? FAIL : SUCCESS;
6482 }
6483
6484 #undef po_char_or_fail
6485 #undef po_reg_or_fail
6486 #undef po_reg_or_goto
6487 #undef po_imm_or_fail
6488 #undef po_scalar_or_fail
6489
6490 /* Shorthand macro for instruction encoding functions issuing errors. */
6491 #define constraint(expr, err) \
6492 do \
6493 { \
6494 if (expr) \
6495 { \
6496 inst.error = err; \
6497 return; \
6498 } \
6499 } \
6500 while (0)
6501
6502 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6503 instructions are unpredictable if these registers are used. This
6504 is the BadReg predicate in ARM's Thumb-2 documentation. */
6505 #define reject_bad_reg(reg) \
6506 do \
6507 if (reg == REG_SP || reg == REG_PC) \
6508 { \
6509 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6510 return; \
6511 } \
6512 while (0)
6513
6514 /* If REG is R13 (the stack pointer), warn that its use is
6515 deprecated. */
6516 #define warn_deprecated_sp(reg) \
6517 do \
6518 if (warn_on_deprecated && reg == REG_SP) \
6519 as_warn (_("use of r13 is deprecated")); \
6520 while (0)
6521
6522 /* Functions for operand encoding. ARM, then Thumb. */
6523
6524 #define rotate_left(v, n) (v << n | v >> (32 - n))
6525
6526 /* If VAL can be encoded in the immediate field of an ARM instruction,
6527 return the encoded form. Otherwise, return FAIL. */
6528
6529 static unsigned int
6530 encode_arm_immediate (unsigned int val)
6531 {
6532 unsigned int a, i;
6533
6534 for (i = 0; i < 32; i += 2)
6535 if ((a = rotate_left (val, i)) <= 0xff)
6536 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6537
6538 return FAIL;
6539 }
6540
6541 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6542 return the encoded form. Otherwise, return FAIL. */
6543 static unsigned int
6544 encode_thumb32_immediate (unsigned int val)
6545 {
6546 unsigned int a, i;
6547
6548 if (val <= 0xff)
6549 return val;
6550
6551 for (i = 1; i <= 24; i++)
6552 {
6553 a = val >> i;
6554 if ((val & ~(0xff << i)) == 0)
6555 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6556 }
6557
6558 a = val & 0xff;
6559 if (val == ((a << 16) | a))
6560 return 0x100 | a;
6561 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6562 return 0x300 | a;
6563
6564 a = val & 0xff00;
6565 if (val == ((a << 16) | a))
6566 return 0x200 | (a >> 8);
6567
6568 return FAIL;
6569 }
6570 /* Encode a VFP SP or DP register number into inst.instruction. */
6571
6572 static void
6573 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6574 {
6575 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6576 && reg > 15)
6577 {
6578 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6579 {
6580 if (thumb_mode)
6581 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6582 fpu_vfp_ext_d32);
6583 else
6584 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6585 fpu_vfp_ext_d32);
6586 }
6587 else
6588 {
6589 first_error (_("D register out of range for selected VFP version"));
6590 return;
6591 }
6592 }
6593
6594 switch (pos)
6595 {
6596 case VFP_REG_Sd:
6597 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6598 break;
6599
6600 case VFP_REG_Sn:
6601 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6602 break;
6603
6604 case VFP_REG_Sm:
6605 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6606 break;
6607
6608 case VFP_REG_Dd:
6609 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6610 break;
6611
6612 case VFP_REG_Dn:
6613 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6614 break;
6615
6616 case VFP_REG_Dm:
6617 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6618 break;
6619
6620 default:
6621 abort ();
6622 }
6623 }
6624
6625 /* Encode a <shift> in an ARM-format instruction. The immediate,
6626 if any, is handled by md_apply_fix. */
6627 static void
6628 encode_arm_shift (int i)
6629 {
6630 if (inst.operands[i].shift_kind == SHIFT_RRX)
6631 inst.instruction |= SHIFT_ROR << 5;
6632 else
6633 {
6634 inst.instruction |= inst.operands[i].shift_kind << 5;
6635 if (inst.operands[i].immisreg)
6636 {
6637 inst.instruction |= SHIFT_BY_REG;
6638 inst.instruction |= inst.operands[i].imm << 8;
6639 }
6640 else
6641 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6642 }
6643 }
6644
6645 static void
6646 encode_arm_shifter_operand (int i)
6647 {
6648 if (inst.operands[i].isreg)
6649 {
6650 inst.instruction |= inst.operands[i].reg;
6651 encode_arm_shift (i);
6652 }
6653 else
6654 inst.instruction |= INST_IMMEDIATE;
6655 }
6656
6657 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6658 static void
6659 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6660 {
6661 gas_assert (inst.operands[i].isreg);
6662 inst.instruction |= inst.operands[i].reg << 16;
6663
6664 if (inst.operands[i].preind)
6665 {
6666 if (is_t)
6667 {
6668 inst.error = _("instruction does not accept preindexed addressing");
6669 return;
6670 }
6671 inst.instruction |= PRE_INDEX;
6672 if (inst.operands[i].writeback)
6673 inst.instruction |= WRITE_BACK;
6674
6675 }
6676 else if (inst.operands[i].postind)
6677 {
6678 gas_assert (inst.operands[i].writeback);
6679 if (is_t)
6680 inst.instruction |= WRITE_BACK;
6681 }
6682 else /* unindexed - only for coprocessor */
6683 {
6684 inst.error = _("instruction does not accept unindexed addressing");
6685 return;
6686 }
6687
6688 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6689 && (((inst.instruction & 0x000f0000) >> 16)
6690 == ((inst.instruction & 0x0000f000) >> 12)))
6691 as_warn ((inst.instruction & LOAD_BIT)
6692 ? _("destination register same as write-back base")
6693 : _("source register same as write-back base"));
6694 }
6695
6696 /* inst.operands[i] was set up by parse_address. Encode it into an
6697 ARM-format mode 2 load or store instruction. If is_t is true,
6698 reject forms that cannot be used with a T instruction (i.e. not
6699 post-indexed). */
6700 static void
6701 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6702 {
6703 encode_arm_addr_mode_common (i, is_t);
6704
6705 if (inst.operands[i].immisreg)
6706 {
6707 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6708 inst.instruction |= inst.operands[i].imm;
6709 if (!inst.operands[i].negative)
6710 inst.instruction |= INDEX_UP;
6711 if (inst.operands[i].shifted)
6712 {
6713 if (inst.operands[i].shift_kind == SHIFT_RRX)
6714 inst.instruction |= SHIFT_ROR << 5;
6715 else
6716 {
6717 inst.instruction |= inst.operands[i].shift_kind << 5;
6718 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6719 }
6720 }
6721 }
6722 else /* immediate offset in inst.reloc */
6723 {
6724 if (inst.reloc.type == BFD_RELOC_UNUSED)
6725 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6726 }
6727 }
6728
6729 /* inst.operands[i] was set up by parse_address. Encode it into an
6730 ARM-format mode 3 load or store instruction. Reject forms that
6731 cannot be used with such instructions. If is_t is true, reject
6732 forms that cannot be used with a T instruction (i.e. not
6733 post-indexed). */
6734 static void
6735 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6736 {
6737 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6738 {
6739 inst.error = _("instruction does not accept scaled register index");
6740 return;
6741 }
6742
6743 encode_arm_addr_mode_common (i, is_t);
6744
6745 if (inst.operands[i].immisreg)
6746 {
6747 inst.instruction |= inst.operands[i].imm;
6748 if (!inst.operands[i].negative)
6749 inst.instruction |= INDEX_UP;
6750 }
6751 else /* immediate offset in inst.reloc */
6752 {
6753 inst.instruction |= HWOFFSET_IMM;
6754 if (inst.reloc.type == BFD_RELOC_UNUSED)
6755 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6756 }
6757 }
6758
6759 /* inst.operands[i] was set up by parse_address. Encode it into an
6760 ARM-format instruction. Reject all forms which cannot be encoded
6761 into a coprocessor load/store instruction. If wb_ok is false,
6762 reject use of writeback; if unind_ok is false, reject use of
6763 unindexed addressing. If reloc_override is not 0, use it instead
6764 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6765 (in which case it is preserved). */
6766
6767 static int
6768 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6769 {
6770 inst.instruction |= inst.operands[i].reg << 16;
6771
6772 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6773
6774 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6775 {
6776 gas_assert (!inst.operands[i].writeback);
6777 if (!unind_ok)
6778 {
6779 inst.error = _("instruction does not support unindexed addressing");
6780 return FAIL;
6781 }
6782 inst.instruction |= inst.operands[i].imm;
6783 inst.instruction |= INDEX_UP;
6784 return SUCCESS;
6785 }
6786
6787 if (inst.operands[i].preind)
6788 inst.instruction |= PRE_INDEX;
6789
6790 if (inst.operands[i].writeback)
6791 {
6792 if (inst.operands[i].reg == REG_PC)
6793 {
6794 inst.error = _("pc may not be used with write-back");
6795 return FAIL;
6796 }
6797 if (!wb_ok)
6798 {
6799 inst.error = _("instruction does not support writeback");
6800 return FAIL;
6801 }
6802 inst.instruction |= WRITE_BACK;
6803 }
6804
6805 if (reloc_override)
6806 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6807 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6808 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6809 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6810 {
6811 if (thumb_mode)
6812 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6813 else
6814 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6815 }
6816
6817 return SUCCESS;
6818 }
6819
6820 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6821 Determine whether it can be performed with a move instruction; if
6822 it can, convert inst.instruction to that move instruction and
6823 return TRUE; if it can't, convert inst.instruction to a literal-pool
6824 load and return FALSE. If this is not a valid thing to do in the
6825 current context, set inst.error and return TRUE.
6826
6827 inst.operands[i] describes the destination register. */
6828
6829 static bfd_boolean
6830 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6831 {
6832 unsigned long tbit;
6833
6834 if (thumb_p)
6835 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6836 else
6837 tbit = LOAD_BIT;
6838
6839 if ((inst.instruction & tbit) == 0)
6840 {
6841 inst.error = _("invalid pseudo operation");
6842 return TRUE;
6843 }
6844 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6845 {
6846 inst.error = _("constant expression expected");
6847 return TRUE;
6848 }
6849 if (inst.reloc.exp.X_op == O_constant)
6850 {
6851 if (thumb_p)
6852 {
6853 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6854 {
6855 /* This can be done with a mov(1) instruction. */
6856 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6857 inst.instruction |= inst.reloc.exp.X_add_number;
6858 return TRUE;
6859 }
6860 }
6861 else
6862 {
6863 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6864 if (value != FAIL)
6865 {
6866 /* This can be done with a mov instruction. */
6867 inst.instruction &= LITERAL_MASK;
6868 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6869 inst.instruction |= value & 0xfff;
6870 return TRUE;
6871 }
6872
6873 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6874 if (value != FAIL)
6875 {
6876 /* This can be done with a mvn instruction. */
6877 inst.instruction &= LITERAL_MASK;
6878 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6879 inst.instruction |= value & 0xfff;
6880 return TRUE;
6881 }
6882 }
6883 }
6884
6885 if (add_to_lit_pool () == FAIL)
6886 {
6887 inst.error = _("literal pool insertion failed");
6888 return TRUE;
6889 }
6890 inst.operands[1].reg = REG_PC;
6891 inst.operands[1].isreg = 1;
6892 inst.operands[1].preind = 1;
6893 inst.reloc.pc_rel = 1;
6894 inst.reloc.type = (thumb_p
6895 ? BFD_RELOC_ARM_THUMB_OFFSET
6896 : (mode_3
6897 ? BFD_RELOC_ARM_HWLITERAL
6898 : BFD_RELOC_ARM_LITERAL));
6899 return FALSE;
6900 }
6901
6902 /* Functions for instruction encoding, sorted by sub-architecture.
6903 First some generics; their names are taken from the conventional
6904 bit positions for register arguments in ARM format instructions. */
6905
6906 static void
6907 do_noargs (void)
6908 {
6909 }
6910
6911 static void
6912 do_rd (void)
6913 {
6914 inst.instruction |= inst.operands[0].reg << 12;
6915 }
6916
6917 static void
6918 do_rd_rm (void)
6919 {
6920 inst.instruction |= inst.operands[0].reg << 12;
6921 inst.instruction |= inst.operands[1].reg;
6922 }
6923
6924 static void
6925 do_rd_rn (void)
6926 {
6927 inst.instruction |= inst.operands[0].reg << 12;
6928 inst.instruction |= inst.operands[1].reg << 16;
6929 }
6930
6931 static void
6932 do_rn_rd (void)
6933 {
6934 inst.instruction |= inst.operands[0].reg << 16;
6935 inst.instruction |= inst.operands[1].reg << 12;
6936 }
6937
6938 static void
6939 do_rd_rm_rn (void)
6940 {
6941 unsigned Rn = inst.operands[2].reg;
6942 /* Enforce restrictions on SWP instruction. */
6943 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6944 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6945 _("Rn must not overlap other operands"));
6946 inst.instruction |= inst.operands[0].reg << 12;
6947 inst.instruction |= inst.operands[1].reg;
6948 inst.instruction |= Rn << 16;
6949 }
6950
6951 static void
6952 do_rd_rn_rm (void)
6953 {
6954 inst.instruction |= inst.operands[0].reg << 12;
6955 inst.instruction |= inst.operands[1].reg << 16;
6956 inst.instruction |= inst.operands[2].reg;
6957 }
6958
6959 static void
6960 do_rm_rd_rn (void)
6961 {
6962 inst.instruction |= inst.operands[0].reg;
6963 inst.instruction |= inst.operands[1].reg << 12;
6964 inst.instruction |= inst.operands[2].reg << 16;
6965 }
6966
6967 static void
6968 do_imm0 (void)
6969 {
6970 inst.instruction |= inst.operands[0].imm;
6971 }
6972
6973 static void
6974 do_rd_cpaddr (void)
6975 {
6976 inst.instruction |= inst.operands[0].reg << 12;
6977 encode_arm_cp_address (1, TRUE, TRUE, 0);
6978 }
6979
6980 /* ARM instructions, in alphabetical order by function name (except
6981 that wrapper functions appear immediately after the function they
6982 wrap). */
6983
6984 /* This is a pseudo-op of the form "adr rd, label" to be converted
6985 into a relative address of the form "add rd, pc, #label-.-8". */
6986
6987 static void
6988 do_adr (void)
6989 {
6990 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6991
6992 /* Frag hacking will turn this into a sub instruction if the offset turns
6993 out to be negative. */
6994 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6995 inst.reloc.pc_rel = 1;
6996 inst.reloc.exp.X_add_number -= 8;
6997 }
6998
6999 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7000 into a relative address of the form:
7001 add rd, pc, #low(label-.-8)"
7002 add rd, rd, #high(label-.-8)" */
7003
7004 static void
7005 do_adrl (void)
7006 {
7007 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7008
7009 /* Frag hacking will turn this into a sub instruction if the offset turns
7010 out to be negative. */
7011 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7012 inst.reloc.pc_rel = 1;
7013 inst.size = INSN_SIZE * 2;
7014 inst.reloc.exp.X_add_number -= 8;
7015 }
7016
7017 static void
7018 do_arit (void)
7019 {
7020 if (!inst.operands[1].present)
7021 inst.operands[1].reg = inst.operands[0].reg;
7022 inst.instruction |= inst.operands[0].reg << 12;
7023 inst.instruction |= inst.operands[1].reg << 16;
7024 encode_arm_shifter_operand (2);
7025 }
7026
7027 static void
7028 do_barrier (void)
7029 {
7030 if (inst.operands[0].present)
7031 {
7032 constraint ((inst.instruction & 0xf0) != 0x40
7033 && inst.operands[0].imm != 0xf,
7034 _("bad barrier type"));
7035 inst.instruction |= inst.operands[0].imm;
7036 }
7037 else
7038 inst.instruction |= 0xf;
7039 }
7040
7041 static void
7042 do_bfc (void)
7043 {
7044 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7045 constraint (msb > 32, _("bit-field extends past end of register"));
7046 /* The instruction encoding stores the LSB and MSB,
7047 not the LSB and width. */
7048 inst.instruction |= inst.operands[0].reg << 12;
7049 inst.instruction |= inst.operands[1].imm << 7;
7050 inst.instruction |= (msb - 1) << 16;
7051 }
7052
7053 static void
7054 do_bfi (void)
7055 {
7056 unsigned int msb;
7057
7058 /* #0 in second position is alternative syntax for bfc, which is
7059 the same instruction but with REG_PC in the Rm field. */
7060 if (!inst.operands[1].isreg)
7061 inst.operands[1].reg = REG_PC;
7062
7063 msb = inst.operands[2].imm + inst.operands[3].imm;
7064 constraint (msb > 32, _("bit-field extends past end of register"));
7065 /* The instruction encoding stores the LSB and MSB,
7066 not the LSB and width. */
7067 inst.instruction |= inst.operands[0].reg << 12;
7068 inst.instruction |= inst.operands[1].reg;
7069 inst.instruction |= inst.operands[2].imm << 7;
7070 inst.instruction |= (msb - 1) << 16;
7071 }
7072
7073 static void
7074 do_bfx (void)
7075 {
7076 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7077 _("bit-field extends past end of register"));
7078 inst.instruction |= inst.operands[0].reg << 12;
7079 inst.instruction |= inst.operands[1].reg;
7080 inst.instruction |= inst.operands[2].imm << 7;
7081 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7082 }
7083
7084 /* ARM V5 breakpoint instruction (argument parse)
7085 BKPT <16 bit unsigned immediate>
7086 Instruction is not conditional.
7087 The bit pattern given in insns[] has the COND_ALWAYS condition,
7088 and it is an error if the caller tried to override that. */
7089
7090 static void
7091 do_bkpt (void)
7092 {
7093 /* Top 12 of 16 bits to bits 19:8. */
7094 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7095
7096 /* Bottom 4 of 16 bits to bits 3:0. */
7097 inst.instruction |= inst.operands[0].imm & 0xf;
7098 }
7099
7100 static void
7101 encode_branch (int default_reloc)
7102 {
7103 if (inst.operands[0].hasreloc)
7104 {
7105 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7106 _("the only suffix valid here is '(plt)'"));
7107 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7108 }
7109 else
7110 {
7111 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7112 }
7113 inst.reloc.pc_rel = 1;
7114 }
7115
7116 static void
7117 do_branch (void)
7118 {
7119 #ifdef OBJ_ELF
7120 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7121 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7122 else
7123 #endif
7124 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7125 }
7126
7127 static void
7128 do_bl (void)
7129 {
7130 #ifdef OBJ_ELF
7131 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7132 {
7133 if (inst.cond == COND_ALWAYS)
7134 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7135 else
7136 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7137 }
7138 else
7139 #endif
7140 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7141 }
7142
7143 /* ARM V5 branch-link-exchange instruction (argument parse)
7144 BLX <target_addr> ie BLX(1)
7145 BLX{<condition>} <Rm> ie BLX(2)
7146 Unfortunately, there are two different opcodes for this mnemonic.
7147 So, the insns[].value is not used, and the code here zaps values
7148 into inst.instruction.
7149 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7150
7151 static void
7152 do_blx (void)
7153 {
7154 if (inst.operands[0].isreg)
7155 {
7156 /* Arg is a register; the opcode provided by insns[] is correct.
7157 It is not illegal to do "blx pc", just useless. */
7158 if (inst.operands[0].reg == REG_PC)
7159 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7160
7161 inst.instruction |= inst.operands[0].reg;
7162 }
7163 else
7164 {
7165 /* Arg is an address; this instruction cannot be executed
7166 conditionally, and the opcode must be adjusted.
7167 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7168 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7169 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7170 inst.instruction = 0xfa000000;
7171 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7172 }
7173 }
7174
7175 static void
7176 do_bx (void)
7177 {
7178 bfd_boolean want_reloc;
7179
7180 if (inst.operands[0].reg == REG_PC)
7181 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7182
7183 inst.instruction |= inst.operands[0].reg;
7184 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7185 it is for ARMv4t or earlier. */
7186 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7187 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7188 want_reloc = TRUE;
7189
7190 #ifdef OBJ_ELF
7191 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7192 #endif
7193 want_reloc = FALSE;
7194
7195 if (want_reloc)
7196 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7197 }
7198
7199
7200 /* ARM v5TEJ. Jump to Jazelle code. */
7201
7202 static void
7203 do_bxj (void)
7204 {
7205 if (inst.operands[0].reg == REG_PC)
7206 as_tsktsk (_("use of r15 in bxj is not really useful"));
7207
7208 inst.instruction |= inst.operands[0].reg;
7209 }
7210
7211 /* Co-processor data operation:
7212 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7213 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7214 static void
7215 do_cdp (void)
7216 {
7217 inst.instruction |= inst.operands[0].reg << 8;
7218 inst.instruction |= inst.operands[1].imm << 20;
7219 inst.instruction |= inst.operands[2].reg << 12;
7220 inst.instruction |= inst.operands[3].reg << 16;
7221 inst.instruction |= inst.operands[4].reg;
7222 inst.instruction |= inst.operands[5].imm << 5;
7223 }
7224
7225 static void
7226 do_cmp (void)
7227 {
7228 inst.instruction |= inst.operands[0].reg << 16;
7229 encode_arm_shifter_operand (1);
7230 }
7231
7232 /* Transfer between coprocessor and ARM registers.
7233 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7234 MRC2
7235 MCR{cond}
7236 MCR2
7237
7238 No special properties. */
7239
7240 static void
7241 do_co_reg (void)
7242 {
7243 unsigned Rd;
7244
7245 Rd = inst.operands[2].reg;
7246 if (thumb_mode)
7247 {
7248 if (inst.instruction == 0xee000010
7249 || inst.instruction == 0xfe000010)
7250 /* MCR, MCR2 */
7251 reject_bad_reg (Rd);
7252 else
7253 /* MRC, MRC2 */
7254 constraint (Rd == REG_SP, BAD_SP);
7255 }
7256 else
7257 {
7258 /* MCR */
7259 if (inst.instruction == 0xe000010)
7260 constraint (Rd == REG_PC, BAD_PC);
7261 }
7262
7263
7264 inst.instruction |= inst.operands[0].reg << 8;
7265 inst.instruction |= inst.operands[1].imm << 21;
7266 inst.instruction |= Rd << 12;
7267 inst.instruction |= inst.operands[3].reg << 16;
7268 inst.instruction |= inst.operands[4].reg;
7269 inst.instruction |= inst.operands[5].imm << 5;
7270 }
7271
7272 /* Transfer between coprocessor register and pair of ARM registers.
7273 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7274 MCRR2
7275 MRRC{cond}
7276 MRRC2
7277
7278 Two XScale instructions are special cases of these:
7279
7280 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7281 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7282
7283 Result unpredictable if Rd or Rn is R15. */
7284
7285 static void
7286 do_co_reg2c (void)
7287 {
7288 unsigned Rd, Rn;
7289
7290 Rd = inst.operands[2].reg;
7291 Rn = inst.operands[3].reg;
7292
7293 if (thumb_mode)
7294 {
7295 reject_bad_reg (Rd);
7296 reject_bad_reg (Rn);
7297 }
7298 else
7299 {
7300 constraint (Rd == REG_PC, BAD_PC);
7301 constraint (Rn == REG_PC, BAD_PC);
7302 }
7303
7304 inst.instruction |= inst.operands[0].reg << 8;
7305 inst.instruction |= inst.operands[1].imm << 4;
7306 inst.instruction |= Rd << 12;
7307 inst.instruction |= Rn << 16;
7308 inst.instruction |= inst.operands[4].reg;
7309 }
7310
7311 static void
7312 do_cpsi (void)
7313 {
7314 inst.instruction |= inst.operands[0].imm << 6;
7315 if (inst.operands[1].present)
7316 {
7317 inst.instruction |= CPSI_MMOD;
7318 inst.instruction |= inst.operands[1].imm;
7319 }
7320 }
7321
7322 static void
7323 do_dbg (void)
7324 {
7325 inst.instruction |= inst.operands[0].imm;
7326 }
7327
7328 static void
7329 do_it (void)
7330 {
7331 /* There is no IT instruction in ARM mode. We
7332 process it to do the validation as if in
7333 thumb mode, just in case the code gets
7334 assembled for thumb using the unified syntax. */
7335
7336 inst.size = 0;
7337 if (unified_syntax)
7338 {
7339 set_it_insn_type (IT_INSN);
7340 now_it.mask = (inst.instruction & 0xf) | 0x10;
7341 now_it.cc = inst.operands[0].imm;
7342 }
7343 }
7344
7345 static void
7346 do_ldmstm (void)
7347 {
7348 int base_reg = inst.operands[0].reg;
7349 int range = inst.operands[1].imm;
7350
7351 inst.instruction |= base_reg << 16;
7352 inst.instruction |= range;
7353
7354 if (inst.operands[1].writeback)
7355 inst.instruction |= LDM_TYPE_2_OR_3;
7356
7357 if (inst.operands[0].writeback)
7358 {
7359 inst.instruction |= WRITE_BACK;
7360 /* Check for unpredictable uses of writeback. */
7361 if (inst.instruction & LOAD_BIT)
7362 {
7363 /* Not allowed in LDM type 2. */
7364 if ((inst.instruction & LDM_TYPE_2_OR_3)
7365 && ((range & (1 << REG_PC)) == 0))
7366 as_warn (_("writeback of base register is UNPREDICTABLE"));
7367 /* Only allowed if base reg not in list for other types. */
7368 else if (range & (1 << base_reg))
7369 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7370 }
7371 else /* STM. */
7372 {
7373 /* Not allowed for type 2. */
7374 if (inst.instruction & LDM_TYPE_2_OR_3)
7375 as_warn (_("writeback of base register is UNPREDICTABLE"));
7376 /* Only allowed if base reg not in list, or first in list. */
7377 else if ((range & (1 << base_reg))
7378 && (range & ((1 << base_reg) - 1)))
7379 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7380 }
7381 }
7382 }
7383
7384 /* ARMv5TE load-consecutive (argument parse)
7385 Mode is like LDRH.
7386
7387 LDRccD R, mode
7388 STRccD R, mode. */
7389
7390 static void
7391 do_ldrd (void)
7392 {
7393 constraint (inst.operands[0].reg % 2 != 0,
7394 _("first destination register must be even"));
7395 constraint (inst.operands[1].present
7396 && inst.operands[1].reg != inst.operands[0].reg + 1,
7397 _("can only load two consecutive registers"));
7398 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7399 constraint (!inst.operands[2].isreg, _("'[' expected"));
7400
7401 if (!inst.operands[1].present)
7402 inst.operands[1].reg = inst.operands[0].reg + 1;
7403
7404 if (inst.instruction & LOAD_BIT)
7405 {
7406 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7407 register and the first register written; we have to diagnose
7408 overlap between the base and the second register written here. */
7409
7410 if (inst.operands[2].reg == inst.operands[1].reg
7411 && (inst.operands[2].writeback || inst.operands[2].postind))
7412 as_warn (_("base register written back, and overlaps "
7413 "second destination register"));
7414
7415 /* For an index-register load, the index register must not overlap the
7416 destination (even if not write-back). */
7417 else if (inst.operands[2].immisreg
7418 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7419 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7420 as_warn (_("index register overlaps destination register"));
7421 }
7422
7423 inst.instruction |= inst.operands[0].reg << 12;
7424 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7425 }
7426
7427 static void
7428 do_ldrex (void)
7429 {
7430 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7431 || inst.operands[1].postind || inst.operands[1].writeback
7432 || inst.operands[1].immisreg || inst.operands[1].shifted
7433 || inst.operands[1].negative
7434 /* This can arise if the programmer has written
7435 strex rN, rM, foo
7436 or if they have mistakenly used a register name as the last
7437 operand, eg:
7438 strex rN, rM, rX
7439 It is very difficult to distinguish between these two cases
7440 because "rX" might actually be a label. ie the register
7441 name has been occluded by a symbol of the same name. So we
7442 just generate a general 'bad addressing mode' type error
7443 message and leave it up to the programmer to discover the
7444 true cause and fix their mistake. */
7445 || (inst.operands[1].reg == REG_PC),
7446 BAD_ADDR_MODE);
7447
7448 constraint (inst.reloc.exp.X_op != O_constant
7449 || inst.reloc.exp.X_add_number != 0,
7450 _("offset must be zero in ARM encoding"));
7451
7452 inst.instruction |= inst.operands[0].reg << 12;
7453 inst.instruction |= inst.operands[1].reg << 16;
7454 inst.reloc.type = BFD_RELOC_UNUSED;
7455 }
7456
7457 static void
7458 do_ldrexd (void)
7459 {
7460 constraint (inst.operands[0].reg % 2 != 0,
7461 _("even register required"));
7462 constraint (inst.operands[1].present
7463 && inst.operands[1].reg != inst.operands[0].reg + 1,
7464 _("can only load two consecutive registers"));
7465 /* If op 1 were present and equal to PC, this function wouldn't
7466 have been called in the first place. */
7467 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7468
7469 inst.instruction |= inst.operands[0].reg << 12;
7470 inst.instruction |= inst.operands[2].reg << 16;
7471 }
7472
7473 static void
7474 do_ldst (void)
7475 {
7476 inst.instruction |= inst.operands[0].reg << 12;
7477 if (!inst.operands[1].isreg)
7478 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7479 return;
7480 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7481 }
7482
7483 static void
7484 do_ldstt (void)
7485 {
7486 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7487 reject [Rn,...]. */
7488 if (inst.operands[1].preind)
7489 {
7490 constraint (inst.reloc.exp.X_op != O_constant
7491 || inst.reloc.exp.X_add_number != 0,
7492 _("this instruction requires a post-indexed address"));
7493
7494 inst.operands[1].preind = 0;
7495 inst.operands[1].postind = 1;
7496 inst.operands[1].writeback = 1;
7497 }
7498 inst.instruction |= inst.operands[0].reg << 12;
7499 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7500 }
7501
7502 /* Halfword and signed-byte load/store operations. */
7503
7504 static void
7505 do_ldstv4 (void)
7506 {
7507 inst.instruction |= inst.operands[0].reg << 12;
7508 if (!inst.operands[1].isreg)
7509 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7510 return;
7511 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7512 }
7513
7514 static void
7515 do_ldsttv4 (void)
7516 {
7517 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7518 reject [Rn,...]. */
7519 if (inst.operands[1].preind)
7520 {
7521 constraint (inst.reloc.exp.X_op != O_constant
7522 || inst.reloc.exp.X_add_number != 0,
7523 _("this instruction requires a post-indexed address"));
7524
7525 inst.operands[1].preind = 0;
7526 inst.operands[1].postind = 1;
7527 inst.operands[1].writeback = 1;
7528 }
7529 inst.instruction |= inst.operands[0].reg << 12;
7530 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7531 }
7532
7533 /* Co-processor register load/store.
7534 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7535 static void
7536 do_lstc (void)
7537 {
7538 inst.instruction |= inst.operands[0].reg << 8;
7539 inst.instruction |= inst.operands[1].reg << 12;
7540 encode_arm_cp_address (2, TRUE, TRUE, 0);
7541 }
7542
7543 static void
7544 do_mlas (void)
7545 {
7546 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7547 if (inst.operands[0].reg == inst.operands[1].reg
7548 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7549 && !(inst.instruction & 0x00400000))
7550 as_tsktsk (_("Rd and Rm should be different in mla"));
7551
7552 inst.instruction |= inst.operands[0].reg << 16;
7553 inst.instruction |= inst.operands[1].reg;
7554 inst.instruction |= inst.operands[2].reg << 8;
7555 inst.instruction |= inst.operands[3].reg << 12;
7556 }
7557
7558 static void
7559 do_mov (void)
7560 {
7561 inst.instruction |= inst.operands[0].reg << 12;
7562 encode_arm_shifter_operand (1);
7563 }
7564
7565 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7566 static void
7567 do_mov16 (void)
7568 {
7569 bfd_vma imm;
7570 bfd_boolean top;
7571
7572 top = (inst.instruction & 0x00400000) != 0;
7573 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7574 _(":lower16: not allowed this instruction"));
7575 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7576 _(":upper16: not allowed instruction"));
7577 inst.instruction |= inst.operands[0].reg << 12;
7578 if (inst.reloc.type == BFD_RELOC_UNUSED)
7579 {
7580 imm = inst.reloc.exp.X_add_number;
7581 /* The value is in two pieces: 0:11, 16:19. */
7582 inst.instruction |= (imm & 0x00000fff);
7583 inst.instruction |= (imm & 0x0000f000) << 4;
7584 }
7585 }
7586
7587 static void do_vfp_nsyn_opcode (const char *);
7588
7589 static int
7590 do_vfp_nsyn_mrs (void)
7591 {
7592 if (inst.operands[0].isvec)
7593 {
7594 if (inst.operands[1].reg != 1)
7595 first_error (_("operand 1 must be FPSCR"));
7596 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7597 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7598 do_vfp_nsyn_opcode ("fmstat");
7599 }
7600 else if (inst.operands[1].isvec)
7601 do_vfp_nsyn_opcode ("fmrx");
7602 else
7603 return FAIL;
7604
7605 return SUCCESS;
7606 }
7607
7608 static int
7609 do_vfp_nsyn_msr (void)
7610 {
7611 if (inst.operands[0].isvec)
7612 do_vfp_nsyn_opcode ("fmxr");
7613 else
7614 return FAIL;
7615
7616 return SUCCESS;
7617 }
7618
7619 static void
7620 do_vmrs (void)
7621 {
7622 unsigned Rt = inst.operands[0].reg;
7623
7624 if (thumb_mode && inst.operands[0].reg == REG_SP)
7625 {
7626 inst.error = BAD_SP;
7627 return;
7628 }
7629
7630 /* APSR_ sets isvec. All other refs to PC are illegal. */
7631 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7632 {
7633 inst.error = BAD_PC;
7634 return;
7635 }
7636
7637 if (inst.operands[1].reg != 1)
7638 first_error (_("operand 1 must be FPSCR"));
7639
7640 inst.instruction |= (Rt << 12);
7641 }
7642
7643 static void
7644 do_vmsr (void)
7645 {
7646 unsigned Rt = inst.operands[1].reg;
7647
7648 if (thumb_mode)
7649 reject_bad_reg (Rt);
7650 else if (Rt == REG_PC)
7651 {
7652 inst.error = BAD_PC;
7653 return;
7654 }
7655
7656 if (inst.operands[0].reg != 1)
7657 first_error (_("operand 0 must be FPSCR"));
7658
7659 inst.instruction |= (Rt << 12);
7660 }
7661
7662 static void
7663 do_mrs (void)
7664 {
7665 if (do_vfp_nsyn_mrs () == SUCCESS)
7666 return;
7667
7668 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7669 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7670 != (PSR_c|PSR_f),
7671 _("'CPSR' or 'SPSR' expected"));
7672 inst.instruction |= inst.operands[0].reg << 12;
7673 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7674 }
7675
7676 /* Two possible forms:
7677 "{C|S}PSR_<field>, Rm",
7678 "{C|S}PSR_f, #expression". */
7679
7680 static void
7681 do_msr (void)
7682 {
7683 if (do_vfp_nsyn_msr () == SUCCESS)
7684 return;
7685
7686 inst.instruction |= inst.operands[0].imm;
7687 if (inst.operands[1].isreg)
7688 inst.instruction |= inst.operands[1].reg;
7689 else
7690 {
7691 inst.instruction |= INST_IMMEDIATE;
7692 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7693 inst.reloc.pc_rel = 0;
7694 }
7695 }
7696
7697 static void
7698 do_mul (void)
7699 {
7700 if (!inst.operands[2].present)
7701 inst.operands[2].reg = inst.operands[0].reg;
7702 inst.instruction |= inst.operands[0].reg << 16;
7703 inst.instruction |= inst.operands[1].reg;
7704 inst.instruction |= inst.operands[2].reg << 8;
7705
7706 if (inst.operands[0].reg == inst.operands[1].reg
7707 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7708 as_tsktsk (_("Rd and Rm should be different in mul"));
7709 }
7710
7711 /* Long Multiply Parser
7712 UMULL RdLo, RdHi, Rm, Rs
7713 SMULL RdLo, RdHi, Rm, Rs
7714 UMLAL RdLo, RdHi, Rm, Rs
7715 SMLAL RdLo, RdHi, Rm, Rs. */
7716
7717 static void
7718 do_mull (void)
7719 {
7720 inst.instruction |= inst.operands[0].reg << 12;
7721 inst.instruction |= inst.operands[1].reg << 16;
7722 inst.instruction |= inst.operands[2].reg;
7723 inst.instruction |= inst.operands[3].reg << 8;
7724
7725 /* rdhi and rdlo must be different. */
7726 if (inst.operands[0].reg == inst.operands[1].reg)
7727 as_tsktsk (_("rdhi and rdlo must be different"));
7728
7729 /* rdhi, rdlo and rm must all be different before armv6. */
7730 if ((inst.operands[0].reg == inst.operands[2].reg
7731 || inst.operands[1].reg == inst.operands[2].reg)
7732 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7733 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7734 }
7735
7736 static void
7737 do_nop (void)
7738 {
7739 if (inst.operands[0].present
7740 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7741 {
7742 /* Architectural NOP hints are CPSR sets with no bits selected. */
7743 inst.instruction &= 0xf0000000;
7744 inst.instruction |= 0x0320f000;
7745 if (inst.operands[0].present)
7746 inst.instruction |= inst.operands[0].imm;
7747 }
7748 }
7749
7750 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7751 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7752 Condition defaults to COND_ALWAYS.
7753 Error if Rd, Rn or Rm are R15. */
7754
7755 static void
7756 do_pkhbt (void)
7757 {
7758 inst.instruction |= inst.operands[0].reg << 12;
7759 inst.instruction |= inst.operands[1].reg << 16;
7760 inst.instruction |= inst.operands[2].reg;
7761 if (inst.operands[3].present)
7762 encode_arm_shift (3);
7763 }
7764
7765 /* ARM V6 PKHTB (Argument Parse). */
7766
7767 static void
7768 do_pkhtb (void)
7769 {
7770 if (!inst.operands[3].present)
7771 {
7772 /* If the shift specifier is omitted, turn the instruction
7773 into pkhbt rd, rm, rn. */
7774 inst.instruction &= 0xfff00010;
7775 inst.instruction |= inst.operands[0].reg << 12;
7776 inst.instruction |= inst.operands[1].reg;
7777 inst.instruction |= inst.operands[2].reg << 16;
7778 }
7779 else
7780 {
7781 inst.instruction |= inst.operands[0].reg << 12;
7782 inst.instruction |= inst.operands[1].reg << 16;
7783 inst.instruction |= inst.operands[2].reg;
7784 encode_arm_shift (3);
7785 }
7786 }
7787
7788 /* ARMv5TE: Preload-Cache
7789
7790 PLD <addr_mode>
7791
7792 Syntactically, like LDR with B=1, W=0, L=1. */
7793
7794 static void
7795 do_pld (void)
7796 {
7797 constraint (!inst.operands[0].isreg,
7798 _("'[' expected after PLD mnemonic"));
7799 constraint (inst.operands[0].postind,
7800 _("post-indexed expression used in preload instruction"));
7801 constraint (inst.operands[0].writeback,
7802 _("writeback used in preload instruction"));
7803 constraint (!inst.operands[0].preind,
7804 _("unindexed addressing used in preload instruction"));
7805 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7806 }
7807
7808 /* ARMv7: PLI <addr_mode> */
7809 static void
7810 do_pli (void)
7811 {
7812 constraint (!inst.operands[0].isreg,
7813 _("'[' expected after PLI mnemonic"));
7814 constraint (inst.operands[0].postind,
7815 _("post-indexed expression used in preload instruction"));
7816 constraint (inst.operands[0].writeback,
7817 _("writeback used in preload instruction"));
7818 constraint (!inst.operands[0].preind,
7819 _("unindexed addressing used in preload instruction"));
7820 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7821 inst.instruction &= ~PRE_INDEX;
7822 }
7823
7824 static void
7825 do_push_pop (void)
7826 {
7827 inst.operands[1] = inst.operands[0];
7828 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7829 inst.operands[0].isreg = 1;
7830 inst.operands[0].writeback = 1;
7831 inst.operands[0].reg = REG_SP;
7832 do_ldmstm ();
7833 }
7834
7835 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7836 word at the specified address and the following word
7837 respectively.
7838 Unconditionally executed.
7839 Error if Rn is R15. */
7840
7841 static void
7842 do_rfe (void)
7843 {
7844 inst.instruction |= inst.operands[0].reg << 16;
7845 if (inst.operands[0].writeback)
7846 inst.instruction |= WRITE_BACK;
7847 }
7848
7849 /* ARM V6 ssat (argument parse). */
7850
7851 static void
7852 do_ssat (void)
7853 {
7854 inst.instruction |= inst.operands[0].reg << 12;
7855 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7856 inst.instruction |= inst.operands[2].reg;
7857
7858 if (inst.operands[3].present)
7859 encode_arm_shift (3);
7860 }
7861
7862 /* ARM V6 usat (argument parse). */
7863
7864 static void
7865 do_usat (void)
7866 {
7867 inst.instruction |= inst.operands[0].reg << 12;
7868 inst.instruction |= inst.operands[1].imm << 16;
7869 inst.instruction |= inst.operands[2].reg;
7870
7871 if (inst.operands[3].present)
7872 encode_arm_shift (3);
7873 }
7874
7875 /* ARM V6 ssat16 (argument parse). */
7876
7877 static void
7878 do_ssat16 (void)
7879 {
7880 inst.instruction |= inst.operands[0].reg << 12;
7881 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7882 inst.instruction |= inst.operands[2].reg;
7883 }
7884
7885 static void
7886 do_usat16 (void)
7887 {
7888 inst.instruction |= inst.operands[0].reg << 12;
7889 inst.instruction |= inst.operands[1].imm << 16;
7890 inst.instruction |= inst.operands[2].reg;
7891 }
7892
7893 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7894 preserving the other bits.
7895
7896 setend <endian_specifier>, where <endian_specifier> is either
7897 BE or LE. */
7898
7899 static void
7900 do_setend (void)
7901 {
7902 if (inst.operands[0].imm)
7903 inst.instruction |= 0x200;
7904 }
7905
7906 static void
7907 do_shift (void)
7908 {
7909 unsigned int Rm = (inst.operands[1].present
7910 ? inst.operands[1].reg
7911 : inst.operands[0].reg);
7912
7913 inst.instruction |= inst.operands[0].reg << 12;
7914 inst.instruction |= Rm;
7915 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7916 {
7917 inst.instruction |= inst.operands[2].reg << 8;
7918 inst.instruction |= SHIFT_BY_REG;
7919 }
7920 else
7921 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7922 }
7923
7924 static void
7925 do_smc (void)
7926 {
7927 inst.reloc.type = BFD_RELOC_ARM_SMC;
7928 inst.reloc.pc_rel = 0;
7929 }
7930
7931 static void
7932 do_swi (void)
7933 {
7934 inst.reloc.type = BFD_RELOC_ARM_SWI;
7935 inst.reloc.pc_rel = 0;
7936 }
7937
7938 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7939 SMLAxy{cond} Rd,Rm,Rs,Rn
7940 SMLAWy{cond} Rd,Rm,Rs,Rn
7941 Error if any register is R15. */
7942
7943 static void
7944 do_smla (void)
7945 {
7946 inst.instruction |= inst.operands[0].reg << 16;
7947 inst.instruction |= inst.operands[1].reg;
7948 inst.instruction |= inst.operands[2].reg << 8;
7949 inst.instruction |= inst.operands[3].reg << 12;
7950 }
7951
7952 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7953 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7954 Error if any register is R15.
7955 Warning if Rdlo == Rdhi. */
7956
7957 static void
7958 do_smlal (void)
7959 {
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 inst.instruction |= inst.operands[1].reg << 16;
7962 inst.instruction |= inst.operands[2].reg;
7963 inst.instruction |= inst.operands[3].reg << 8;
7964
7965 if (inst.operands[0].reg == inst.operands[1].reg)
7966 as_tsktsk (_("rdhi and rdlo must be different"));
7967 }
7968
7969 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7970 SMULxy{cond} Rd,Rm,Rs
7971 Error if any register is R15. */
7972
7973 static void
7974 do_smul (void)
7975 {
7976 inst.instruction |= inst.operands[0].reg << 16;
7977 inst.instruction |= inst.operands[1].reg;
7978 inst.instruction |= inst.operands[2].reg << 8;
7979 }
7980
7981 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7982 the same for both ARM and Thumb-2. */
7983
7984 static void
7985 do_srs (void)
7986 {
7987 int reg;
7988
7989 if (inst.operands[0].present)
7990 {
7991 reg = inst.operands[0].reg;
7992 constraint (reg != REG_SP, _("SRS base register must be r13"));
7993 }
7994 else
7995 reg = REG_SP;
7996
7997 inst.instruction |= reg << 16;
7998 inst.instruction |= inst.operands[1].imm;
7999 if (inst.operands[0].writeback || inst.operands[1].writeback)
8000 inst.instruction |= WRITE_BACK;
8001 }
8002
8003 /* ARM V6 strex (argument parse). */
8004
8005 static void
8006 do_strex (void)
8007 {
8008 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8009 || inst.operands[2].postind || inst.operands[2].writeback
8010 || inst.operands[2].immisreg || inst.operands[2].shifted
8011 || inst.operands[2].negative
8012 /* See comment in do_ldrex(). */
8013 || (inst.operands[2].reg == REG_PC),
8014 BAD_ADDR_MODE);
8015
8016 constraint (inst.operands[0].reg == inst.operands[1].reg
8017 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8018
8019 constraint (inst.reloc.exp.X_op != O_constant
8020 || inst.reloc.exp.X_add_number != 0,
8021 _("offset must be zero in ARM encoding"));
8022
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 inst.instruction |= inst.operands[1].reg;
8025 inst.instruction |= inst.operands[2].reg << 16;
8026 inst.reloc.type = BFD_RELOC_UNUSED;
8027 }
8028
8029 static void
8030 do_strexd (void)
8031 {
8032 constraint (inst.operands[1].reg % 2 != 0,
8033 _("even register required"));
8034 constraint (inst.operands[2].present
8035 && inst.operands[2].reg != inst.operands[1].reg + 1,
8036 _("can only store two consecutive registers"));
8037 /* If op 2 were present and equal to PC, this function wouldn't
8038 have been called in the first place. */
8039 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8040
8041 constraint (inst.operands[0].reg == inst.operands[1].reg
8042 || inst.operands[0].reg == inst.operands[1].reg + 1
8043 || inst.operands[0].reg == inst.operands[3].reg,
8044 BAD_OVERLAP);
8045
8046 inst.instruction |= inst.operands[0].reg << 12;
8047 inst.instruction |= inst.operands[1].reg;
8048 inst.instruction |= inst.operands[3].reg << 16;
8049 }
8050
8051 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8052 extends it to 32-bits, and adds the result to a value in another
8053 register. You can specify a rotation by 0, 8, 16, or 24 bits
8054 before extracting the 16-bit value.
8055 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8056 Condition defaults to COND_ALWAYS.
8057 Error if any register uses R15. */
8058
8059 static void
8060 do_sxtah (void)
8061 {
8062 inst.instruction |= inst.operands[0].reg << 12;
8063 inst.instruction |= inst.operands[1].reg << 16;
8064 inst.instruction |= inst.operands[2].reg;
8065 inst.instruction |= inst.operands[3].imm << 10;
8066 }
8067
8068 /* ARM V6 SXTH.
8069
8070 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8071 Condition defaults to COND_ALWAYS.
8072 Error if any register uses R15. */
8073
8074 static void
8075 do_sxth (void)
8076 {
8077 inst.instruction |= inst.operands[0].reg << 12;
8078 inst.instruction |= inst.operands[1].reg;
8079 inst.instruction |= inst.operands[2].imm << 10;
8080 }
8081 \f
8082 /* VFP instructions. In a logical order: SP variant first, monad
8083 before dyad, arithmetic then move then load/store. */
8084
8085 static void
8086 do_vfp_sp_monadic (void)
8087 {
8088 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8089 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8090 }
8091
8092 static void
8093 do_vfp_sp_dyadic (void)
8094 {
8095 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8096 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8097 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8098 }
8099
8100 static void
8101 do_vfp_sp_compare_z (void)
8102 {
8103 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8104 }
8105
8106 static void
8107 do_vfp_dp_sp_cvt (void)
8108 {
8109 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8110 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8111 }
8112
8113 static void
8114 do_vfp_sp_dp_cvt (void)
8115 {
8116 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8117 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8118 }
8119
8120 static void
8121 do_vfp_reg_from_sp (void)
8122 {
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8125 }
8126
8127 static void
8128 do_vfp_reg2_from_sp2 (void)
8129 {
8130 constraint (inst.operands[2].imm != 2,
8131 _("only two consecutive VFP SP registers allowed here"));
8132 inst.instruction |= inst.operands[0].reg << 12;
8133 inst.instruction |= inst.operands[1].reg << 16;
8134 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8135 }
8136
8137 static void
8138 do_vfp_sp_from_reg (void)
8139 {
8140 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8141 inst.instruction |= inst.operands[1].reg << 12;
8142 }
8143
8144 static void
8145 do_vfp_sp2_from_reg2 (void)
8146 {
8147 constraint (inst.operands[0].imm != 2,
8148 _("only two consecutive VFP SP registers allowed here"));
8149 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8150 inst.instruction |= inst.operands[1].reg << 12;
8151 inst.instruction |= inst.operands[2].reg << 16;
8152 }
8153
8154 static void
8155 do_vfp_sp_ldst (void)
8156 {
8157 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8158 encode_arm_cp_address (1, FALSE, TRUE, 0);
8159 }
8160
8161 static void
8162 do_vfp_dp_ldst (void)
8163 {
8164 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8165 encode_arm_cp_address (1, FALSE, TRUE, 0);
8166 }
8167
8168
8169 static void
8170 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8171 {
8172 if (inst.operands[0].writeback)
8173 inst.instruction |= WRITE_BACK;
8174 else
8175 constraint (ldstm_type != VFP_LDSTMIA,
8176 _("this addressing mode requires base-register writeback"));
8177 inst.instruction |= inst.operands[0].reg << 16;
8178 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8179 inst.instruction |= inst.operands[1].imm;
8180 }
8181
8182 static void
8183 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8184 {
8185 int count;
8186
8187 if (inst.operands[0].writeback)
8188 inst.instruction |= WRITE_BACK;
8189 else
8190 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8191 _("this addressing mode requires base-register writeback"));
8192
8193 inst.instruction |= inst.operands[0].reg << 16;
8194 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8195
8196 count = inst.operands[1].imm << 1;
8197 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8198 count += 1;
8199
8200 inst.instruction |= count;
8201 }
8202
8203 static void
8204 do_vfp_sp_ldstmia (void)
8205 {
8206 vfp_sp_ldstm (VFP_LDSTMIA);
8207 }
8208
8209 static void
8210 do_vfp_sp_ldstmdb (void)
8211 {
8212 vfp_sp_ldstm (VFP_LDSTMDB);
8213 }
8214
8215 static void
8216 do_vfp_dp_ldstmia (void)
8217 {
8218 vfp_dp_ldstm (VFP_LDSTMIA);
8219 }
8220
8221 static void
8222 do_vfp_dp_ldstmdb (void)
8223 {
8224 vfp_dp_ldstm (VFP_LDSTMDB);
8225 }
8226
8227 static void
8228 do_vfp_xp_ldstmia (void)
8229 {
8230 vfp_dp_ldstm (VFP_LDSTMIAX);
8231 }
8232
8233 static void
8234 do_vfp_xp_ldstmdb (void)
8235 {
8236 vfp_dp_ldstm (VFP_LDSTMDBX);
8237 }
8238
8239 static void
8240 do_vfp_dp_rd_rm (void)
8241 {
8242 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8243 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8244 }
8245
8246 static void
8247 do_vfp_dp_rn_rd (void)
8248 {
8249 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8250 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8251 }
8252
8253 static void
8254 do_vfp_dp_rd_rn (void)
8255 {
8256 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8257 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8258 }
8259
8260 static void
8261 do_vfp_dp_rd_rn_rm (void)
8262 {
8263 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8264 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8265 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8266 }
8267
8268 static void
8269 do_vfp_dp_rd (void)
8270 {
8271 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8272 }
8273
8274 static void
8275 do_vfp_dp_rm_rd_rn (void)
8276 {
8277 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8278 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8279 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8280 }
8281
8282 /* VFPv3 instructions. */
8283 static void
8284 do_vfp_sp_const (void)
8285 {
8286 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8287 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8288 inst.instruction |= (inst.operands[1].imm & 0x0f);
8289 }
8290
8291 static void
8292 do_vfp_dp_const (void)
8293 {
8294 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8295 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8296 inst.instruction |= (inst.operands[1].imm & 0x0f);
8297 }
8298
8299 static void
8300 vfp_conv (int srcsize)
8301 {
8302 unsigned immbits = srcsize - inst.operands[1].imm;
8303 inst.instruction |= (immbits & 1) << 5;
8304 inst.instruction |= (immbits >> 1);
8305 }
8306
8307 static void
8308 do_vfp_sp_conv_16 (void)
8309 {
8310 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8311 vfp_conv (16);
8312 }
8313
8314 static void
8315 do_vfp_dp_conv_16 (void)
8316 {
8317 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8318 vfp_conv (16);
8319 }
8320
8321 static void
8322 do_vfp_sp_conv_32 (void)
8323 {
8324 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8325 vfp_conv (32);
8326 }
8327
8328 static void
8329 do_vfp_dp_conv_32 (void)
8330 {
8331 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8332 vfp_conv (32);
8333 }
8334 \f
8335 /* FPA instructions. Also in a logical order. */
8336
8337 static void
8338 do_fpa_cmp (void)
8339 {
8340 inst.instruction |= inst.operands[0].reg << 16;
8341 inst.instruction |= inst.operands[1].reg;
8342 }
8343
8344 static void
8345 do_fpa_ldmstm (void)
8346 {
8347 inst.instruction |= inst.operands[0].reg << 12;
8348 switch (inst.operands[1].imm)
8349 {
8350 case 1: inst.instruction |= CP_T_X; break;
8351 case 2: inst.instruction |= CP_T_Y; break;
8352 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8353 case 4: break;
8354 default: abort ();
8355 }
8356
8357 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8358 {
8359 /* The instruction specified "ea" or "fd", so we can only accept
8360 [Rn]{!}. The instruction does not really support stacking or
8361 unstacking, so we have to emulate these by setting appropriate
8362 bits and offsets. */
8363 constraint (inst.reloc.exp.X_op != O_constant
8364 || inst.reloc.exp.X_add_number != 0,
8365 _("this instruction does not support indexing"));
8366
8367 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8368 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8369
8370 if (!(inst.instruction & INDEX_UP))
8371 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8372
8373 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8374 {
8375 inst.operands[2].preind = 0;
8376 inst.operands[2].postind = 1;
8377 }
8378 }
8379
8380 encode_arm_cp_address (2, TRUE, TRUE, 0);
8381 }
8382 \f
8383 /* iWMMXt instructions: strictly in alphabetical order. */
8384
8385 static void
8386 do_iwmmxt_tandorc (void)
8387 {
8388 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8389 }
8390
8391 static void
8392 do_iwmmxt_textrc (void)
8393 {
8394 inst.instruction |= inst.operands[0].reg << 12;
8395 inst.instruction |= inst.operands[1].imm;
8396 }
8397
8398 static void
8399 do_iwmmxt_textrm (void)
8400 {
8401 inst.instruction |= inst.operands[0].reg << 12;
8402 inst.instruction |= inst.operands[1].reg << 16;
8403 inst.instruction |= inst.operands[2].imm;
8404 }
8405
8406 static void
8407 do_iwmmxt_tinsr (void)
8408 {
8409 inst.instruction |= inst.operands[0].reg << 16;
8410 inst.instruction |= inst.operands[1].reg << 12;
8411 inst.instruction |= inst.operands[2].imm;
8412 }
8413
8414 static void
8415 do_iwmmxt_tmia (void)
8416 {
8417 inst.instruction |= inst.operands[0].reg << 5;
8418 inst.instruction |= inst.operands[1].reg;
8419 inst.instruction |= inst.operands[2].reg << 12;
8420 }
8421
8422 static void
8423 do_iwmmxt_waligni (void)
8424 {
8425 inst.instruction |= inst.operands[0].reg << 12;
8426 inst.instruction |= inst.operands[1].reg << 16;
8427 inst.instruction |= inst.operands[2].reg;
8428 inst.instruction |= inst.operands[3].imm << 20;
8429 }
8430
8431 static void
8432 do_iwmmxt_wmerge (void)
8433 {
8434 inst.instruction |= inst.operands[0].reg << 12;
8435 inst.instruction |= inst.operands[1].reg << 16;
8436 inst.instruction |= inst.operands[2].reg;
8437 inst.instruction |= inst.operands[3].imm << 21;
8438 }
8439
8440 static void
8441 do_iwmmxt_wmov (void)
8442 {
8443 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8444 inst.instruction |= inst.operands[0].reg << 12;
8445 inst.instruction |= inst.operands[1].reg << 16;
8446 inst.instruction |= inst.operands[1].reg;
8447 }
8448
8449 static void
8450 do_iwmmxt_wldstbh (void)
8451 {
8452 int reloc;
8453 inst.instruction |= inst.operands[0].reg << 12;
8454 if (thumb_mode)
8455 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8456 else
8457 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8458 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8459 }
8460
8461 static void
8462 do_iwmmxt_wldstw (void)
8463 {
8464 /* RIWR_RIWC clears .isreg for a control register. */
8465 if (!inst.operands[0].isreg)
8466 {
8467 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8468 inst.instruction |= 0xf0000000;
8469 }
8470
8471 inst.instruction |= inst.operands[0].reg << 12;
8472 encode_arm_cp_address (1, TRUE, TRUE, 0);
8473 }
8474
8475 static void
8476 do_iwmmxt_wldstd (void)
8477 {
8478 inst.instruction |= inst.operands[0].reg << 12;
8479 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8480 && inst.operands[1].immisreg)
8481 {
8482 inst.instruction &= ~0x1a000ff;
8483 inst.instruction |= (0xf << 28);
8484 if (inst.operands[1].preind)
8485 inst.instruction |= PRE_INDEX;
8486 if (!inst.operands[1].negative)
8487 inst.instruction |= INDEX_UP;
8488 if (inst.operands[1].writeback)
8489 inst.instruction |= WRITE_BACK;
8490 inst.instruction |= inst.operands[1].reg << 16;
8491 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8492 inst.instruction |= inst.operands[1].imm;
8493 }
8494 else
8495 encode_arm_cp_address (1, TRUE, FALSE, 0);
8496 }
8497
8498 static void
8499 do_iwmmxt_wshufh (void)
8500 {
8501 inst.instruction |= inst.operands[0].reg << 12;
8502 inst.instruction |= inst.operands[1].reg << 16;
8503 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8504 inst.instruction |= (inst.operands[2].imm & 0x0f);
8505 }
8506
8507 static void
8508 do_iwmmxt_wzero (void)
8509 {
8510 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8511 inst.instruction |= inst.operands[0].reg;
8512 inst.instruction |= inst.operands[0].reg << 12;
8513 inst.instruction |= inst.operands[0].reg << 16;
8514 }
8515
8516 static void
8517 do_iwmmxt_wrwrwr_or_imm5 (void)
8518 {
8519 if (inst.operands[2].isreg)
8520 do_rd_rn_rm ();
8521 else {
8522 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8523 _("immediate operand requires iWMMXt2"));
8524 do_rd_rn ();
8525 if (inst.operands[2].imm == 0)
8526 {
8527 switch ((inst.instruction >> 20) & 0xf)
8528 {
8529 case 4:
8530 case 5:
8531 case 6:
8532 case 7:
8533 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8534 inst.operands[2].imm = 16;
8535 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8536 break;
8537 case 8:
8538 case 9:
8539 case 10:
8540 case 11:
8541 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8542 inst.operands[2].imm = 32;
8543 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8544 break;
8545 case 12:
8546 case 13:
8547 case 14:
8548 case 15:
8549 {
8550 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8551 unsigned long wrn;
8552 wrn = (inst.instruction >> 16) & 0xf;
8553 inst.instruction &= 0xff0fff0f;
8554 inst.instruction |= wrn;
8555 /* Bail out here; the instruction is now assembled. */
8556 return;
8557 }
8558 }
8559 }
8560 /* Map 32 -> 0, etc. */
8561 inst.operands[2].imm &= 0x1f;
8562 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8563 }
8564 }
8565 \f
8566 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8567 operations first, then control, shift, and load/store. */
8568
8569 /* Insns like "foo X,Y,Z". */
8570
8571 static void
8572 do_mav_triple (void)
8573 {
8574 inst.instruction |= inst.operands[0].reg << 16;
8575 inst.instruction |= inst.operands[1].reg;
8576 inst.instruction |= inst.operands[2].reg << 12;
8577 }
8578
8579 /* Insns like "foo W,X,Y,Z".
8580 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8581
8582 static void
8583 do_mav_quad (void)
8584 {
8585 inst.instruction |= inst.operands[0].reg << 5;
8586 inst.instruction |= inst.operands[1].reg << 12;
8587 inst.instruction |= inst.operands[2].reg << 16;
8588 inst.instruction |= inst.operands[3].reg;
8589 }
8590
8591 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8592 static void
8593 do_mav_dspsc (void)
8594 {
8595 inst.instruction |= inst.operands[1].reg << 12;
8596 }
8597
8598 /* Maverick shift immediate instructions.
8599 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8600 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8601
8602 static void
8603 do_mav_shift (void)
8604 {
8605 int imm = inst.operands[2].imm;
8606
8607 inst.instruction |= inst.operands[0].reg << 12;
8608 inst.instruction |= inst.operands[1].reg << 16;
8609
8610 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8611 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8612 Bit 4 should be 0. */
8613 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8614
8615 inst.instruction |= imm;
8616 }
8617 \f
8618 /* XScale instructions. Also sorted arithmetic before move. */
8619
8620 /* Xscale multiply-accumulate (argument parse)
8621 MIAcc acc0,Rm,Rs
8622 MIAPHcc acc0,Rm,Rs
8623 MIAxycc acc0,Rm,Rs. */
8624
8625 static void
8626 do_xsc_mia (void)
8627 {
8628 inst.instruction |= inst.operands[1].reg;
8629 inst.instruction |= inst.operands[2].reg << 12;
8630 }
8631
8632 /* Xscale move-accumulator-register (argument parse)
8633
8634 MARcc acc0,RdLo,RdHi. */
8635
8636 static void
8637 do_xsc_mar (void)
8638 {
8639 inst.instruction |= inst.operands[1].reg << 12;
8640 inst.instruction |= inst.operands[2].reg << 16;
8641 }
8642
8643 /* Xscale move-register-accumulator (argument parse)
8644
8645 MRAcc RdLo,RdHi,acc0. */
8646
8647 static void
8648 do_xsc_mra (void)
8649 {
8650 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8651 inst.instruction |= inst.operands[0].reg << 12;
8652 inst.instruction |= inst.operands[1].reg << 16;
8653 }
8654 \f
8655 /* Encoding functions relevant only to Thumb. */
8656
8657 /* inst.operands[i] is a shifted-register operand; encode
8658 it into inst.instruction in the format used by Thumb32. */
8659
8660 static void
8661 encode_thumb32_shifted_operand (int i)
8662 {
8663 unsigned int value = inst.reloc.exp.X_add_number;
8664 unsigned int shift = inst.operands[i].shift_kind;
8665
8666 constraint (inst.operands[i].immisreg,
8667 _("shift by register not allowed in thumb mode"));
8668 inst.instruction |= inst.operands[i].reg;
8669 if (shift == SHIFT_RRX)
8670 inst.instruction |= SHIFT_ROR << 4;
8671 else
8672 {
8673 constraint (inst.reloc.exp.X_op != O_constant,
8674 _("expression too complex"));
8675
8676 constraint (value > 32
8677 || (value == 32 && (shift == SHIFT_LSL
8678 || shift == SHIFT_ROR)),
8679 _("shift expression is too large"));
8680
8681 if (value == 0)
8682 shift = SHIFT_LSL;
8683 else if (value == 32)
8684 value = 0;
8685
8686 inst.instruction |= shift << 4;
8687 inst.instruction |= (value & 0x1c) << 10;
8688 inst.instruction |= (value & 0x03) << 6;
8689 }
8690 }
8691
8692
8693 /* inst.operands[i] was set up by parse_address. Encode it into a
8694 Thumb32 format load or store instruction. Reject forms that cannot
8695 be used with such instructions. If is_t is true, reject forms that
8696 cannot be used with a T instruction; if is_d is true, reject forms
8697 that cannot be used with a D instruction. */
8698
8699 static void
8700 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8701 {
8702 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8703
8704 constraint (!inst.operands[i].isreg,
8705 _("Instruction does not support =N addresses"));
8706
8707 inst.instruction |= inst.operands[i].reg << 16;
8708 if (inst.operands[i].immisreg)
8709 {
8710 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8711 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8712 constraint (inst.operands[i].negative,
8713 _("Thumb does not support negative register indexing"));
8714 constraint (inst.operands[i].postind,
8715 _("Thumb does not support register post-indexing"));
8716 constraint (inst.operands[i].writeback,
8717 _("Thumb does not support register indexing with writeback"));
8718 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8719 _("Thumb supports only LSL in shifted register indexing"));
8720
8721 inst.instruction |= inst.operands[i].imm;
8722 if (inst.operands[i].shifted)
8723 {
8724 constraint (inst.reloc.exp.X_op != O_constant,
8725 _("expression too complex"));
8726 constraint (inst.reloc.exp.X_add_number < 0
8727 || inst.reloc.exp.X_add_number > 3,
8728 _("shift out of range"));
8729 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8730 }
8731 inst.reloc.type = BFD_RELOC_UNUSED;
8732 }
8733 else if (inst.operands[i].preind)
8734 {
8735 constraint (is_pc && inst.operands[i].writeback,
8736 _("cannot use writeback with PC-relative addressing"));
8737 constraint (is_t && inst.operands[i].writeback,
8738 _("cannot use writeback with this instruction"));
8739
8740 if (is_d)
8741 {
8742 inst.instruction |= 0x01000000;
8743 if (inst.operands[i].writeback)
8744 inst.instruction |= 0x00200000;
8745 }
8746 else
8747 {
8748 inst.instruction |= 0x00000c00;
8749 if (inst.operands[i].writeback)
8750 inst.instruction |= 0x00000100;
8751 }
8752 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8753 }
8754 else if (inst.operands[i].postind)
8755 {
8756 gas_assert (inst.operands[i].writeback);
8757 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8758 constraint (is_t, _("cannot use post-indexing with this instruction"));
8759
8760 if (is_d)
8761 inst.instruction |= 0x00200000;
8762 else
8763 inst.instruction |= 0x00000900;
8764 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8765 }
8766 else /* unindexed - only for coprocessor */
8767 inst.error = _("instruction does not accept unindexed addressing");
8768 }
8769
8770 /* Table of Thumb instructions which exist in both 16- and 32-bit
8771 encodings (the latter only in post-V6T2 cores). The index is the
8772 value used in the insns table below. When there is more than one
8773 possible 16-bit encoding for the instruction, this table always
8774 holds variant (1).
8775 Also contains several pseudo-instructions used during relaxation. */
8776 #define T16_32_TAB \
8777 X(_adc, 4140, eb400000), \
8778 X(_adcs, 4140, eb500000), \
8779 X(_add, 1c00, eb000000), \
8780 X(_adds, 1c00, eb100000), \
8781 X(_addi, 0000, f1000000), \
8782 X(_addis, 0000, f1100000), \
8783 X(_add_pc,000f, f20f0000), \
8784 X(_add_sp,000d, f10d0000), \
8785 X(_adr, 000f, f20f0000), \
8786 X(_and, 4000, ea000000), \
8787 X(_ands, 4000, ea100000), \
8788 X(_asr, 1000, fa40f000), \
8789 X(_asrs, 1000, fa50f000), \
8790 X(_b, e000, f000b000), \
8791 X(_bcond, d000, f0008000), \
8792 X(_bic, 4380, ea200000), \
8793 X(_bics, 4380, ea300000), \
8794 X(_cmn, 42c0, eb100f00), \
8795 X(_cmp, 2800, ebb00f00), \
8796 X(_cpsie, b660, f3af8400), \
8797 X(_cpsid, b670, f3af8600), \
8798 X(_cpy, 4600, ea4f0000), \
8799 X(_dec_sp,80dd, f1ad0d00), \
8800 X(_eor, 4040, ea800000), \
8801 X(_eors, 4040, ea900000), \
8802 X(_inc_sp,00dd, f10d0d00), \
8803 X(_ldmia, c800, e8900000), \
8804 X(_ldr, 6800, f8500000), \
8805 X(_ldrb, 7800, f8100000), \
8806 X(_ldrh, 8800, f8300000), \
8807 X(_ldrsb, 5600, f9100000), \
8808 X(_ldrsh, 5e00, f9300000), \
8809 X(_ldr_pc,4800, f85f0000), \
8810 X(_ldr_pc2,4800, f85f0000), \
8811 X(_ldr_sp,9800, f85d0000), \
8812 X(_lsl, 0000, fa00f000), \
8813 X(_lsls, 0000, fa10f000), \
8814 X(_lsr, 0800, fa20f000), \
8815 X(_lsrs, 0800, fa30f000), \
8816 X(_mov, 2000, ea4f0000), \
8817 X(_movs, 2000, ea5f0000), \
8818 X(_mul, 4340, fb00f000), \
8819 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8820 X(_mvn, 43c0, ea6f0000), \
8821 X(_mvns, 43c0, ea7f0000), \
8822 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8823 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8824 X(_orr, 4300, ea400000), \
8825 X(_orrs, 4300, ea500000), \
8826 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8827 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8828 X(_rev, ba00, fa90f080), \
8829 X(_rev16, ba40, fa90f090), \
8830 X(_revsh, bac0, fa90f0b0), \
8831 X(_ror, 41c0, fa60f000), \
8832 X(_rors, 41c0, fa70f000), \
8833 X(_sbc, 4180, eb600000), \
8834 X(_sbcs, 4180, eb700000), \
8835 X(_stmia, c000, e8800000), \
8836 X(_str, 6000, f8400000), \
8837 X(_strb, 7000, f8000000), \
8838 X(_strh, 8000, f8200000), \
8839 X(_str_sp,9000, f84d0000), \
8840 X(_sub, 1e00, eba00000), \
8841 X(_subs, 1e00, ebb00000), \
8842 X(_subi, 8000, f1a00000), \
8843 X(_subis, 8000, f1b00000), \
8844 X(_sxtb, b240, fa4ff080), \
8845 X(_sxth, b200, fa0ff080), \
8846 X(_tst, 4200, ea100f00), \
8847 X(_uxtb, b2c0, fa5ff080), \
8848 X(_uxth, b280, fa1ff080), \
8849 X(_nop, bf00, f3af8000), \
8850 X(_yield, bf10, f3af8001), \
8851 X(_wfe, bf20, f3af8002), \
8852 X(_wfi, bf30, f3af8003), \
8853 X(_sev, bf40, f3af8004),
8854
8855 /* To catch errors in encoding functions, the codes are all offset by
8856 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8857 as 16-bit instructions. */
8858 #define X(a,b,c) T_MNEM##a
8859 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8860 #undef X
8861
8862 #define X(a,b,c) 0x##b
8863 static const unsigned short thumb_op16[] = { T16_32_TAB };
8864 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8865 #undef X
8866
8867 #define X(a,b,c) 0x##c
8868 static const unsigned int thumb_op32[] = { T16_32_TAB };
8869 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8870 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8871 #undef X
8872 #undef T16_32_TAB
8873
8874 /* Thumb instruction encoders, in alphabetical order. */
8875
8876 /* ADDW or SUBW. */
8877
8878 static void
8879 do_t_add_sub_w (void)
8880 {
8881 int Rd, Rn;
8882
8883 Rd = inst.operands[0].reg;
8884 Rn = inst.operands[1].reg;
8885
8886 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8887 is the SP-{plus,minus}-immediate form of the instruction. */
8888 if (Rn == REG_SP)
8889 constraint (Rd == REG_PC, BAD_PC);
8890 else
8891 reject_bad_reg (Rd);
8892
8893 inst.instruction |= (Rn << 16) | (Rd << 8);
8894 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8895 }
8896
8897 /* Parse an add or subtract instruction. We get here with inst.instruction
8898 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8899
8900 static void
8901 do_t_add_sub (void)
8902 {
8903 int Rd, Rs, Rn;
8904
8905 Rd = inst.operands[0].reg;
8906 Rs = (inst.operands[1].present
8907 ? inst.operands[1].reg /* Rd, Rs, foo */
8908 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8909
8910 if (Rd == REG_PC)
8911 set_it_insn_type_last ();
8912
8913 if (unified_syntax)
8914 {
8915 bfd_boolean flags;
8916 bfd_boolean narrow;
8917 int opcode;
8918
8919 flags = (inst.instruction == T_MNEM_adds
8920 || inst.instruction == T_MNEM_subs);
8921 if (flags)
8922 narrow = !in_it_block ();
8923 else
8924 narrow = in_it_block ();
8925 if (!inst.operands[2].isreg)
8926 {
8927 int add;
8928
8929 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8930
8931 add = (inst.instruction == T_MNEM_add
8932 || inst.instruction == T_MNEM_adds);
8933 opcode = 0;
8934 if (inst.size_req != 4)
8935 {
8936 /* Attempt to use a narrow opcode, with relaxation if
8937 appropriate. */
8938 if (Rd == REG_SP && Rs == REG_SP && !flags)
8939 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8940 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8941 opcode = T_MNEM_add_sp;
8942 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8943 opcode = T_MNEM_add_pc;
8944 else if (Rd <= 7 && Rs <= 7 && narrow)
8945 {
8946 if (flags)
8947 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8948 else
8949 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8950 }
8951 if (opcode)
8952 {
8953 inst.instruction = THUMB_OP16(opcode);
8954 inst.instruction |= (Rd << 4) | Rs;
8955 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8956 if (inst.size_req != 2)
8957 inst.relax = opcode;
8958 }
8959 else
8960 constraint (inst.size_req == 2, BAD_HIREG);
8961 }
8962 if (inst.size_req == 4
8963 || (inst.size_req != 2 && !opcode))
8964 {
8965 if (Rd == REG_PC)
8966 {
8967 constraint (add, BAD_PC);
8968 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8969 _("only SUBS PC, LR, #const allowed"));
8970 constraint (inst.reloc.exp.X_op != O_constant,
8971 _("expression too complex"));
8972 constraint (inst.reloc.exp.X_add_number < 0
8973 || inst.reloc.exp.X_add_number > 0xff,
8974 _("immediate value out of range"));
8975 inst.instruction = T2_SUBS_PC_LR
8976 | inst.reloc.exp.X_add_number;
8977 inst.reloc.type = BFD_RELOC_UNUSED;
8978 return;
8979 }
8980 else if (Rs == REG_PC)
8981 {
8982 /* Always use addw/subw. */
8983 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8984 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8985 }
8986 else
8987 {
8988 inst.instruction = THUMB_OP32 (inst.instruction);
8989 inst.instruction = (inst.instruction & 0xe1ffffff)
8990 | 0x10000000;
8991 if (flags)
8992 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8993 else
8994 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8995 }
8996 inst.instruction |= Rd << 8;
8997 inst.instruction |= Rs << 16;
8998 }
8999 }
9000 else
9001 {
9002 Rn = inst.operands[2].reg;
9003 /* See if we can do this with a 16-bit instruction. */
9004 if (!inst.operands[2].shifted && inst.size_req != 4)
9005 {
9006 if (Rd > 7 || Rs > 7 || Rn > 7)
9007 narrow = FALSE;
9008
9009 if (narrow)
9010 {
9011 inst.instruction = ((inst.instruction == T_MNEM_adds
9012 || inst.instruction == T_MNEM_add)
9013 ? T_OPCODE_ADD_R3
9014 : T_OPCODE_SUB_R3);
9015 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9016 return;
9017 }
9018
9019 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9020 {
9021 /* Thumb-1 cores (except v6-M) require at least one high
9022 register in a narrow non flag setting add. */
9023 if (Rd > 7 || Rn > 7
9024 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9025 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9026 {
9027 if (Rd == Rn)
9028 {
9029 Rn = Rs;
9030 Rs = Rd;
9031 }
9032 inst.instruction = T_OPCODE_ADD_HI;
9033 inst.instruction |= (Rd & 8) << 4;
9034 inst.instruction |= (Rd & 7);
9035 inst.instruction |= Rn << 3;
9036 return;
9037 }
9038 }
9039 }
9040
9041 constraint (Rd == REG_PC, BAD_PC);
9042 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9043 constraint (Rs == REG_PC, BAD_PC);
9044 reject_bad_reg (Rn);
9045
9046 /* If we get here, it can't be done in 16 bits. */
9047 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9048 _("shift must be constant"));
9049 inst.instruction = THUMB_OP32 (inst.instruction);
9050 inst.instruction |= Rd << 8;
9051 inst.instruction |= Rs << 16;
9052 encode_thumb32_shifted_operand (2);
9053 }
9054 }
9055 else
9056 {
9057 constraint (inst.instruction == T_MNEM_adds
9058 || inst.instruction == T_MNEM_subs,
9059 BAD_THUMB32);
9060
9061 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9062 {
9063 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9064 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9065 BAD_HIREG);
9066
9067 inst.instruction = (inst.instruction == T_MNEM_add
9068 ? 0x0000 : 0x8000);
9069 inst.instruction |= (Rd << 4) | Rs;
9070 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9071 return;
9072 }
9073
9074 Rn = inst.operands[2].reg;
9075 constraint (inst.operands[2].shifted, _("unshifted register required"));
9076
9077 /* We now have Rd, Rs, and Rn set to registers. */
9078 if (Rd > 7 || Rs > 7 || Rn > 7)
9079 {
9080 /* Can't do this for SUB. */
9081 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9082 inst.instruction = T_OPCODE_ADD_HI;
9083 inst.instruction |= (Rd & 8) << 4;
9084 inst.instruction |= (Rd & 7);
9085 if (Rs == Rd)
9086 inst.instruction |= Rn << 3;
9087 else if (Rn == Rd)
9088 inst.instruction |= Rs << 3;
9089 else
9090 constraint (1, _("dest must overlap one source register"));
9091 }
9092 else
9093 {
9094 inst.instruction = (inst.instruction == T_MNEM_add
9095 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9096 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9097 }
9098 }
9099 }
9100
9101 static void
9102 do_t_adr (void)
9103 {
9104 unsigned Rd;
9105
9106 Rd = inst.operands[0].reg;
9107 reject_bad_reg (Rd);
9108
9109 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9110 {
9111 /* Defer to section relaxation. */
9112 inst.relax = inst.instruction;
9113 inst.instruction = THUMB_OP16 (inst.instruction);
9114 inst.instruction |= Rd << 4;
9115 }
9116 else if (unified_syntax && inst.size_req != 2)
9117 {
9118 /* Generate a 32-bit opcode. */
9119 inst.instruction = THUMB_OP32 (inst.instruction);
9120 inst.instruction |= Rd << 8;
9121 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9122 inst.reloc.pc_rel = 1;
9123 }
9124 else
9125 {
9126 /* Generate a 16-bit opcode. */
9127 inst.instruction = THUMB_OP16 (inst.instruction);
9128 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9129 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9130 inst.reloc.pc_rel = 1;
9131
9132 inst.instruction |= Rd << 4;
9133 }
9134 }
9135
9136 /* Arithmetic instructions for which there is just one 16-bit
9137 instruction encoding, and it allows only two low registers.
9138 For maximal compatibility with ARM syntax, we allow three register
9139 operands even when Thumb-32 instructions are not available, as long
9140 as the first two are identical. For instance, both "sbc r0,r1" and
9141 "sbc r0,r0,r1" are allowed. */
9142 static void
9143 do_t_arit3 (void)
9144 {
9145 int Rd, Rs, Rn;
9146
9147 Rd = inst.operands[0].reg;
9148 Rs = (inst.operands[1].present
9149 ? inst.operands[1].reg /* Rd, Rs, foo */
9150 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9151 Rn = inst.operands[2].reg;
9152
9153 reject_bad_reg (Rd);
9154 reject_bad_reg (Rs);
9155 if (inst.operands[2].isreg)
9156 reject_bad_reg (Rn);
9157
9158 if (unified_syntax)
9159 {
9160 if (!inst.operands[2].isreg)
9161 {
9162 /* For an immediate, we always generate a 32-bit opcode;
9163 section relaxation will shrink it later if possible. */
9164 inst.instruction = THUMB_OP32 (inst.instruction);
9165 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9166 inst.instruction |= Rd << 8;
9167 inst.instruction |= Rs << 16;
9168 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9169 }
9170 else
9171 {
9172 bfd_boolean narrow;
9173
9174 /* See if we can do this with a 16-bit instruction. */
9175 if (THUMB_SETS_FLAGS (inst.instruction))
9176 narrow = !in_it_block ();
9177 else
9178 narrow = in_it_block ();
9179
9180 if (Rd > 7 || Rn > 7 || Rs > 7)
9181 narrow = FALSE;
9182 if (inst.operands[2].shifted)
9183 narrow = FALSE;
9184 if (inst.size_req == 4)
9185 narrow = FALSE;
9186
9187 if (narrow
9188 && Rd == Rs)
9189 {
9190 inst.instruction = THUMB_OP16 (inst.instruction);
9191 inst.instruction |= Rd;
9192 inst.instruction |= Rn << 3;
9193 return;
9194 }
9195
9196 /* If we get here, it can't be done in 16 bits. */
9197 constraint (inst.operands[2].shifted
9198 && inst.operands[2].immisreg,
9199 _("shift must be constant"));
9200 inst.instruction = THUMB_OP32 (inst.instruction);
9201 inst.instruction |= Rd << 8;
9202 inst.instruction |= Rs << 16;
9203 encode_thumb32_shifted_operand (2);
9204 }
9205 }
9206 else
9207 {
9208 /* On its face this is a lie - the instruction does set the
9209 flags. However, the only supported mnemonic in this mode
9210 says it doesn't. */
9211 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9212
9213 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9214 _("unshifted register required"));
9215 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9216 constraint (Rd != Rs,
9217 _("dest and source1 must be the same register"));
9218
9219 inst.instruction = THUMB_OP16 (inst.instruction);
9220 inst.instruction |= Rd;
9221 inst.instruction |= Rn << 3;
9222 }
9223 }
9224
9225 /* Similarly, but for instructions where the arithmetic operation is
9226 commutative, so we can allow either of them to be different from
9227 the destination operand in a 16-bit instruction. For instance, all
9228 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9229 accepted. */
9230 static void
9231 do_t_arit3c (void)
9232 {
9233 int Rd, Rs, Rn;
9234
9235 Rd = inst.operands[0].reg;
9236 Rs = (inst.operands[1].present
9237 ? inst.operands[1].reg /* Rd, Rs, foo */
9238 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9239 Rn = inst.operands[2].reg;
9240
9241 reject_bad_reg (Rd);
9242 reject_bad_reg (Rs);
9243 if (inst.operands[2].isreg)
9244 reject_bad_reg (Rn);
9245
9246 if (unified_syntax)
9247 {
9248 if (!inst.operands[2].isreg)
9249 {
9250 /* For an immediate, we always generate a 32-bit opcode;
9251 section relaxation will shrink it later if possible. */
9252 inst.instruction = THUMB_OP32 (inst.instruction);
9253 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9254 inst.instruction |= Rd << 8;
9255 inst.instruction |= Rs << 16;
9256 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9257 }
9258 else
9259 {
9260 bfd_boolean narrow;
9261
9262 /* See if we can do this with a 16-bit instruction. */
9263 if (THUMB_SETS_FLAGS (inst.instruction))
9264 narrow = !in_it_block ();
9265 else
9266 narrow = in_it_block ();
9267
9268 if (Rd > 7 || Rn > 7 || Rs > 7)
9269 narrow = FALSE;
9270 if (inst.operands[2].shifted)
9271 narrow = FALSE;
9272 if (inst.size_req == 4)
9273 narrow = FALSE;
9274
9275 if (narrow)
9276 {
9277 if (Rd == Rs)
9278 {
9279 inst.instruction = THUMB_OP16 (inst.instruction);
9280 inst.instruction |= Rd;
9281 inst.instruction |= Rn << 3;
9282 return;
9283 }
9284 if (Rd == Rn)
9285 {
9286 inst.instruction = THUMB_OP16 (inst.instruction);
9287 inst.instruction |= Rd;
9288 inst.instruction |= Rs << 3;
9289 return;
9290 }
9291 }
9292
9293 /* If we get here, it can't be done in 16 bits. */
9294 constraint (inst.operands[2].shifted
9295 && inst.operands[2].immisreg,
9296 _("shift must be constant"));
9297 inst.instruction = THUMB_OP32 (inst.instruction);
9298 inst.instruction |= Rd << 8;
9299 inst.instruction |= Rs << 16;
9300 encode_thumb32_shifted_operand (2);
9301 }
9302 }
9303 else
9304 {
9305 /* On its face this is a lie - the instruction does set the
9306 flags. However, the only supported mnemonic in this mode
9307 says it doesn't. */
9308 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9309
9310 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9311 _("unshifted register required"));
9312 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9313
9314 inst.instruction = THUMB_OP16 (inst.instruction);
9315 inst.instruction |= Rd;
9316
9317 if (Rd == Rs)
9318 inst.instruction |= Rn << 3;
9319 else if (Rd == Rn)
9320 inst.instruction |= Rs << 3;
9321 else
9322 constraint (1, _("dest must overlap one source register"));
9323 }
9324 }
9325
9326 static void
9327 do_t_barrier (void)
9328 {
9329 if (inst.operands[0].present)
9330 {
9331 constraint ((inst.instruction & 0xf0) != 0x40
9332 && inst.operands[0].imm != 0xf,
9333 _("bad barrier type"));
9334 inst.instruction |= inst.operands[0].imm;
9335 }
9336 else
9337 inst.instruction |= 0xf;
9338 }
9339
9340 static void
9341 do_t_bfc (void)
9342 {
9343 unsigned Rd;
9344 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9345 constraint (msb > 32, _("bit-field extends past end of register"));
9346 /* The instruction encoding stores the LSB and MSB,
9347 not the LSB and width. */
9348 Rd = inst.operands[0].reg;
9349 reject_bad_reg (Rd);
9350 inst.instruction |= Rd << 8;
9351 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9352 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9353 inst.instruction |= msb - 1;
9354 }
9355
9356 static void
9357 do_t_bfi (void)
9358 {
9359 int Rd, Rn;
9360 unsigned int msb;
9361
9362 Rd = inst.operands[0].reg;
9363 reject_bad_reg (Rd);
9364
9365 /* #0 in second position is alternative syntax for bfc, which is
9366 the same instruction but with REG_PC in the Rm field. */
9367 if (!inst.operands[1].isreg)
9368 Rn = REG_PC;
9369 else
9370 {
9371 Rn = inst.operands[1].reg;
9372 reject_bad_reg (Rn);
9373 }
9374
9375 msb = inst.operands[2].imm + inst.operands[3].imm;
9376 constraint (msb > 32, _("bit-field extends past end of register"));
9377 /* The instruction encoding stores the LSB and MSB,
9378 not the LSB and width. */
9379 inst.instruction |= Rd << 8;
9380 inst.instruction |= Rn << 16;
9381 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9382 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9383 inst.instruction |= msb - 1;
9384 }
9385
9386 static void
9387 do_t_bfx (void)
9388 {
9389 unsigned Rd, Rn;
9390
9391 Rd = inst.operands[0].reg;
9392 Rn = inst.operands[1].reg;
9393
9394 reject_bad_reg (Rd);
9395 reject_bad_reg (Rn);
9396
9397 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9398 _("bit-field extends past end of register"));
9399 inst.instruction |= Rd << 8;
9400 inst.instruction |= Rn << 16;
9401 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9402 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9403 inst.instruction |= inst.operands[3].imm - 1;
9404 }
9405
9406 /* ARM V5 Thumb BLX (argument parse)
9407 BLX <target_addr> which is BLX(1)
9408 BLX <Rm> which is BLX(2)
9409 Unfortunately, there are two different opcodes for this mnemonic.
9410 So, the insns[].value is not used, and the code here zaps values
9411 into inst.instruction.
9412
9413 ??? How to take advantage of the additional two bits of displacement
9414 available in Thumb32 mode? Need new relocation? */
9415
9416 static void
9417 do_t_blx (void)
9418 {
9419 set_it_insn_type_last ();
9420
9421 if (inst.operands[0].isreg)
9422 {
9423 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9424 /* We have a register, so this is BLX(2). */
9425 inst.instruction |= inst.operands[0].reg << 3;
9426 }
9427 else
9428 {
9429 /* No register. This must be BLX(1). */
9430 inst.instruction = 0xf000e800;
9431 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9432 inst.reloc.pc_rel = 1;
9433 }
9434 }
9435
9436 static void
9437 do_t_branch (void)
9438 {
9439 int opcode;
9440 int cond;
9441
9442 cond = inst.cond;
9443 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9444
9445 if (in_it_block ())
9446 {
9447 /* Conditional branches inside IT blocks are encoded as unconditional
9448 branches. */
9449 cond = COND_ALWAYS;
9450 }
9451 else
9452 cond = inst.cond;
9453
9454 if (cond != COND_ALWAYS)
9455 opcode = T_MNEM_bcond;
9456 else
9457 opcode = inst.instruction;
9458
9459 if (unified_syntax && inst.size_req == 4)
9460 {
9461 inst.instruction = THUMB_OP32(opcode);
9462 if (cond == COND_ALWAYS)
9463 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9464 else
9465 {
9466 gas_assert (cond != 0xF);
9467 inst.instruction |= cond << 22;
9468 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9469 }
9470 }
9471 else
9472 {
9473 inst.instruction = THUMB_OP16(opcode);
9474 if (cond == COND_ALWAYS)
9475 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9476 else
9477 {
9478 inst.instruction |= cond << 8;
9479 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9480 }
9481 /* Allow section relaxation. */
9482 if (unified_syntax && inst.size_req != 2)
9483 inst.relax = opcode;
9484 }
9485
9486 inst.reloc.pc_rel = 1;
9487 }
9488
9489 static void
9490 do_t_bkpt (void)
9491 {
9492 constraint (inst.cond != COND_ALWAYS,
9493 _("instruction is always unconditional"));
9494 if (inst.operands[0].present)
9495 {
9496 constraint (inst.operands[0].imm > 255,
9497 _("immediate value out of range"));
9498 inst.instruction |= inst.operands[0].imm;
9499 set_it_insn_type (NEUTRAL_IT_INSN);
9500 }
9501 }
9502
9503 static void
9504 do_t_branch23 (void)
9505 {
9506 set_it_insn_type_last ();
9507 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9508 inst.reloc.pc_rel = 1;
9509
9510 #if defined(OBJ_COFF)
9511 /* If the destination of the branch is a defined symbol which does not have
9512 the THUMB_FUNC attribute, then we must be calling a function which has
9513 the (interfacearm) attribute. We look for the Thumb entry point to that
9514 function and change the branch to refer to that function instead. */
9515 if ( inst.reloc.exp.X_op == O_symbol
9516 && inst.reloc.exp.X_add_symbol != NULL
9517 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9518 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9519 inst.reloc.exp.X_add_symbol =
9520 find_real_start (inst.reloc.exp.X_add_symbol);
9521 #endif
9522 }
9523
9524 static void
9525 do_t_bx (void)
9526 {
9527 set_it_insn_type_last ();
9528 inst.instruction |= inst.operands[0].reg << 3;
9529 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9530 should cause the alignment to be checked once it is known. This is
9531 because BX PC only works if the instruction is word aligned. */
9532 }
9533
9534 static void
9535 do_t_bxj (void)
9536 {
9537 int Rm;
9538
9539 set_it_insn_type_last ();
9540 Rm = inst.operands[0].reg;
9541 reject_bad_reg (Rm);
9542 inst.instruction |= Rm << 16;
9543 }
9544
9545 static void
9546 do_t_clz (void)
9547 {
9548 unsigned Rd;
9549 unsigned Rm;
9550
9551 Rd = inst.operands[0].reg;
9552 Rm = inst.operands[1].reg;
9553
9554 reject_bad_reg (Rd);
9555 reject_bad_reg (Rm);
9556
9557 inst.instruction |= Rd << 8;
9558 inst.instruction |= Rm << 16;
9559 inst.instruction |= Rm;
9560 }
9561
9562 static void
9563 do_t_cps (void)
9564 {
9565 set_it_insn_type (OUTSIDE_IT_INSN);
9566 inst.instruction |= inst.operands[0].imm;
9567 }
9568
9569 static void
9570 do_t_cpsi (void)
9571 {
9572 set_it_insn_type (OUTSIDE_IT_INSN);
9573 if (unified_syntax
9574 && (inst.operands[1].present || inst.size_req == 4)
9575 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9576 {
9577 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9578 inst.instruction = 0xf3af8000;
9579 inst.instruction |= imod << 9;
9580 inst.instruction |= inst.operands[0].imm << 5;
9581 if (inst.operands[1].present)
9582 inst.instruction |= 0x100 | inst.operands[1].imm;
9583 }
9584 else
9585 {
9586 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9587 && (inst.operands[0].imm & 4),
9588 _("selected processor does not support 'A' form "
9589 "of this instruction"));
9590 constraint (inst.operands[1].present || inst.size_req == 4,
9591 _("Thumb does not support the 2-argument "
9592 "form of this instruction"));
9593 inst.instruction |= inst.operands[0].imm;
9594 }
9595 }
9596
9597 /* THUMB CPY instruction (argument parse). */
9598
9599 static void
9600 do_t_cpy (void)
9601 {
9602 if (inst.size_req == 4)
9603 {
9604 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9605 inst.instruction |= inst.operands[0].reg << 8;
9606 inst.instruction |= inst.operands[1].reg;
9607 }
9608 else
9609 {
9610 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9611 inst.instruction |= (inst.operands[0].reg & 0x7);
9612 inst.instruction |= inst.operands[1].reg << 3;
9613 }
9614 }
9615
9616 static void
9617 do_t_cbz (void)
9618 {
9619 set_it_insn_type (OUTSIDE_IT_INSN);
9620 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9621 inst.instruction |= inst.operands[0].reg;
9622 inst.reloc.pc_rel = 1;
9623 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9624 }
9625
9626 static void
9627 do_t_dbg (void)
9628 {
9629 inst.instruction |= inst.operands[0].imm;
9630 }
9631
9632 static void
9633 do_t_div (void)
9634 {
9635 unsigned Rd, Rn, Rm;
9636
9637 Rd = inst.operands[0].reg;
9638 Rn = (inst.operands[1].present
9639 ? inst.operands[1].reg : Rd);
9640 Rm = inst.operands[2].reg;
9641
9642 reject_bad_reg (Rd);
9643 reject_bad_reg (Rn);
9644 reject_bad_reg (Rm);
9645
9646 inst.instruction |= Rd << 8;
9647 inst.instruction |= Rn << 16;
9648 inst.instruction |= Rm;
9649 }
9650
9651 static void
9652 do_t_hint (void)
9653 {
9654 if (unified_syntax && inst.size_req == 4)
9655 inst.instruction = THUMB_OP32 (inst.instruction);
9656 else
9657 inst.instruction = THUMB_OP16 (inst.instruction);
9658 }
9659
9660 static void
9661 do_t_it (void)
9662 {
9663 unsigned int cond = inst.operands[0].imm;
9664
9665 set_it_insn_type (IT_INSN);
9666 now_it.mask = (inst.instruction & 0xf) | 0x10;
9667 now_it.cc = cond;
9668
9669 /* If the condition is a negative condition, invert the mask. */
9670 if ((cond & 0x1) == 0x0)
9671 {
9672 unsigned int mask = inst.instruction & 0x000f;
9673
9674 if ((mask & 0x7) == 0)
9675 /* no conversion needed */;
9676 else if ((mask & 0x3) == 0)
9677 mask ^= 0x8;
9678 else if ((mask & 0x1) == 0)
9679 mask ^= 0xC;
9680 else
9681 mask ^= 0xE;
9682
9683 inst.instruction &= 0xfff0;
9684 inst.instruction |= mask;
9685 }
9686
9687 inst.instruction |= cond << 4;
9688 }
9689
9690 /* Helper function used for both push/pop and ldm/stm. */
9691 static void
9692 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9693 {
9694 bfd_boolean load;
9695
9696 load = (inst.instruction & (1 << 20)) != 0;
9697
9698 if (mask & (1 << 13))
9699 inst.error = _("SP not allowed in register list");
9700 if (load)
9701 {
9702 if (mask & (1 << 15))
9703 {
9704 if (mask & (1 << 14))
9705 inst.error = _("LR and PC should not both be in register list");
9706 else
9707 set_it_insn_type_last ();
9708 }
9709
9710 if ((mask & (1 << base)) != 0
9711 && writeback)
9712 as_warn (_("base register should not be in register list "
9713 "when written back"));
9714 }
9715 else
9716 {
9717 if (mask & (1 << 15))
9718 inst.error = _("PC not allowed in register list");
9719
9720 if (mask & (1 << base))
9721 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9722 }
9723
9724 if ((mask & (mask - 1)) == 0)
9725 {
9726 /* Single register transfers implemented as str/ldr. */
9727 if (writeback)
9728 {
9729 if (inst.instruction & (1 << 23))
9730 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9731 else
9732 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9733 }
9734 else
9735 {
9736 if (inst.instruction & (1 << 23))
9737 inst.instruction = 0x00800000; /* ia -> [base] */
9738 else
9739 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9740 }
9741
9742 inst.instruction |= 0xf8400000;
9743 if (load)
9744 inst.instruction |= 0x00100000;
9745
9746 mask = ffs (mask) - 1;
9747 mask <<= 12;
9748 }
9749 else if (writeback)
9750 inst.instruction |= WRITE_BACK;
9751
9752 inst.instruction |= mask;
9753 inst.instruction |= base << 16;
9754 }
9755
9756 static void
9757 do_t_ldmstm (void)
9758 {
9759 /* This really doesn't seem worth it. */
9760 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9761 _("expression too complex"));
9762 constraint (inst.operands[1].writeback,
9763 _("Thumb load/store multiple does not support {reglist}^"));
9764
9765 if (unified_syntax)
9766 {
9767 bfd_boolean narrow;
9768 unsigned mask;
9769
9770 narrow = FALSE;
9771 /* See if we can use a 16-bit instruction. */
9772 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9773 && inst.size_req != 4
9774 && !(inst.operands[1].imm & ~0xff))
9775 {
9776 mask = 1 << inst.operands[0].reg;
9777
9778 if (inst.operands[0].reg <= 7
9779 && (inst.instruction == T_MNEM_stmia
9780 ? inst.operands[0].writeback
9781 : (inst.operands[0].writeback
9782 == !(inst.operands[1].imm & mask))))
9783 {
9784 if (inst.instruction == T_MNEM_stmia
9785 && (inst.operands[1].imm & mask)
9786 && (inst.operands[1].imm & (mask - 1)))
9787 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9788 inst.operands[0].reg);
9789
9790 inst.instruction = THUMB_OP16 (inst.instruction);
9791 inst.instruction |= inst.operands[0].reg << 8;
9792 inst.instruction |= inst.operands[1].imm;
9793 narrow = TRUE;
9794 }
9795 else if (inst.operands[0] .reg == REG_SP
9796 && inst.operands[0].writeback)
9797 {
9798 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9799 ? T_MNEM_push : T_MNEM_pop);
9800 inst.instruction |= inst.operands[1].imm;
9801 narrow = TRUE;
9802 }
9803 }
9804
9805 if (!narrow)
9806 {
9807 if (inst.instruction < 0xffff)
9808 inst.instruction = THUMB_OP32 (inst.instruction);
9809
9810 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9811 inst.operands[0].writeback);
9812 }
9813 }
9814 else
9815 {
9816 constraint (inst.operands[0].reg > 7
9817 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9818 constraint (inst.instruction != T_MNEM_ldmia
9819 && inst.instruction != T_MNEM_stmia,
9820 _("Thumb-2 instruction only valid in unified syntax"));
9821 if (inst.instruction == T_MNEM_stmia)
9822 {
9823 if (!inst.operands[0].writeback)
9824 as_warn (_("this instruction will write back the base register"));
9825 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9826 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9827 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9828 inst.operands[0].reg);
9829 }
9830 else
9831 {
9832 if (!inst.operands[0].writeback
9833 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9834 as_warn (_("this instruction will write back the base register"));
9835 else if (inst.operands[0].writeback
9836 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9837 as_warn (_("this instruction will not write back the base register"));
9838 }
9839
9840 inst.instruction = THUMB_OP16 (inst.instruction);
9841 inst.instruction |= inst.operands[0].reg << 8;
9842 inst.instruction |= inst.operands[1].imm;
9843 }
9844 }
9845
9846 static void
9847 do_t_ldrex (void)
9848 {
9849 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9850 || inst.operands[1].postind || inst.operands[1].writeback
9851 || inst.operands[1].immisreg || inst.operands[1].shifted
9852 || inst.operands[1].negative,
9853 BAD_ADDR_MODE);
9854
9855 inst.instruction |= inst.operands[0].reg << 12;
9856 inst.instruction |= inst.operands[1].reg << 16;
9857 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9858 }
9859
9860 static void
9861 do_t_ldrexd (void)
9862 {
9863 if (!inst.operands[1].present)
9864 {
9865 constraint (inst.operands[0].reg == REG_LR,
9866 _("r14 not allowed as first register "
9867 "when second register is omitted"));
9868 inst.operands[1].reg = inst.operands[0].reg + 1;
9869 }
9870 constraint (inst.operands[0].reg == inst.operands[1].reg,
9871 BAD_OVERLAP);
9872
9873 inst.instruction |= inst.operands[0].reg << 12;
9874 inst.instruction |= inst.operands[1].reg << 8;
9875 inst.instruction |= inst.operands[2].reg << 16;
9876 }
9877
9878 static void
9879 do_t_ldst (void)
9880 {
9881 unsigned long opcode;
9882 int Rn;
9883
9884 if (inst.operands[0].isreg
9885 && !inst.operands[0].preind
9886 && inst.operands[0].reg == REG_PC)
9887 set_it_insn_type_last ();
9888
9889 opcode = inst.instruction;
9890 if (unified_syntax)
9891 {
9892 if (!inst.operands[1].isreg)
9893 {
9894 if (opcode <= 0xffff)
9895 inst.instruction = THUMB_OP32 (opcode);
9896 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9897 return;
9898 }
9899 if (inst.operands[1].isreg
9900 && !inst.operands[1].writeback
9901 && !inst.operands[1].shifted && !inst.operands[1].postind
9902 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9903 && opcode <= 0xffff
9904 && inst.size_req != 4)
9905 {
9906 /* Insn may have a 16-bit form. */
9907 Rn = inst.operands[1].reg;
9908 if (inst.operands[1].immisreg)
9909 {
9910 inst.instruction = THUMB_OP16 (opcode);
9911 /* [Rn, Rik] */
9912 if (Rn <= 7 && inst.operands[1].imm <= 7)
9913 goto op16;
9914 }
9915 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9916 && opcode != T_MNEM_ldrsb)
9917 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9918 || (Rn == REG_SP && opcode == T_MNEM_str))
9919 {
9920 /* [Rn, #const] */
9921 if (Rn > 7)
9922 {
9923 if (Rn == REG_PC)
9924 {
9925 if (inst.reloc.pc_rel)
9926 opcode = T_MNEM_ldr_pc2;
9927 else
9928 opcode = T_MNEM_ldr_pc;
9929 }
9930 else
9931 {
9932 if (opcode == T_MNEM_ldr)
9933 opcode = T_MNEM_ldr_sp;
9934 else
9935 opcode = T_MNEM_str_sp;
9936 }
9937 inst.instruction = inst.operands[0].reg << 8;
9938 }
9939 else
9940 {
9941 inst.instruction = inst.operands[0].reg;
9942 inst.instruction |= inst.operands[1].reg << 3;
9943 }
9944 inst.instruction |= THUMB_OP16 (opcode);
9945 if (inst.size_req == 2)
9946 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9947 else
9948 inst.relax = opcode;
9949 return;
9950 }
9951 }
9952 /* Definitely a 32-bit variant. */
9953 inst.instruction = THUMB_OP32 (opcode);
9954 inst.instruction |= inst.operands[0].reg << 12;
9955 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9956 return;
9957 }
9958
9959 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9960
9961 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9962 {
9963 /* Only [Rn,Rm] is acceptable. */
9964 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9965 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9966 || inst.operands[1].postind || inst.operands[1].shifted
9967 || inst.operands[1].negative,
9968 _("Thumb does not support this addressing mode"));
9969 inst.instruction = THUMB_OP16 (inst.instruction);
9970 goto op16;
9971 }
9972
9973 inst.instruction = THUMB_OP16 (inst.instruction);
9974 if (!inst.operands[1].isreg)
9975 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9976 return;
9977
9978 constraint (!inst.operands[1].preind
9979 || inst.operands[1].shifted
9980 || inst.operands[1].writeback,
9981 _("Thumb does not support this addressing mode"));
9982 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9983 {
9984 constraint (inst.instruction & 0x0600,
9985 _("byte or halfword not valid for base register"));
9986 constraint (inst.operands[1].reg == REG_PC
9987 && !(inst.instruction & THUMB_LOAD_BIT),
9988 _("r15 based store not allowed"));
9989 constraint (inst.operands[1].immisreg,
9990 _("invalid base register for register offset"));
9991
9992 if (inst.operands[1].reg == REG_PC)
9993 inst.instruction = T_OPCODE_LDR_PC;
9994 else if (inst.instruction & THUMB_LOAD_BIT)
9995 inst.instruction = T_OPCODE_LDR_SP;
9996 else
9997 inst.instruction = T_OPCODE_STR_SP;
9998
9999 inst.instruction |= inst.operands[0].reg << 8;
10000 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10001 return;
10002 }
10003
10004 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10005 if (!inst.operands[1].immisreg)
10006 {
10007 /* Immediate offset. */
10008 inst.instruction |= inst.operands[0].reg;
10009 inst.instruction |= inst.operands[1].reg << 3;
10010 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10011 return;
10012 }
10013
10014 /* Register offset. */
10015 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10016 constraint (inst.operands[1].negative,
10017 _("Thumb does not support this addressing mode"));
10018
10019 op16:
10020 switch (inst.instruction)
10021 {
10022 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10023 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10024 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10025 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10026 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10027 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10028 case 0x5600 /* ldrsb */:
10029 case 0x5e00 /* ldrsh */: break;
10030 default: abort ();
10031 }
10032
10033 inst.instruction |= inst.operands[0].reg;
10034 inst.instruction |= inst.operands[1].reg << 3;
10035 inst.instruction |= inst.operands[1].imm << 6;
10036 }
10037
10038 static void
10039 do_t_ldstd (void)
10040 {
10041 if (!inst.operands[1].present)
10042 {
10043 inst.operands[1].reg = inst.operands[0].reg + 1;
10044 constraint (inst.operands[0].reg == REG_LR,
10045 _("r14 not allowed here"));
10046 }
10047 inst.instruction |= inst.operands[0].reg << 12;
10048 inst.instruction |= inst.operands[1].reg << 8;
10049 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10050 }
10051
10052 static void
10053 do_t_ldstt (void)
10054 {
10055 inst.instruction |= inst.operands[0].reg << 12;
10056 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10057 }
10058
10059 static void
10060 do_t_mla (void)
10061 {
10062 unsigned Rd, Rn, Rm, Ra;
10063
10064 Rd = inst.operands[0].reg;
10065 Rn = inst.operands[1].reg;
10066 Rm = inst.operands[2].reg;
10067 Ra = inst.operands[3].reg;
10068
10069 reject_bad_reg (Rd);
10070 reject_bad_reg (Rn);
10071 reject_bad_reg (Rm);
10072 reject_bad_reg (Ra);
10073
10074 inst.instruction |= Rd << 8;
10075 inst.instruction |= Rn << 16;
10076 inst.instruction |= Rm;
10077 inst.instruction |= Ra << 12;
10078 }
10079
10080 static void
10081 do_t_mlal (void)
10082 {
10083 unsigned RdLo, RdHi, Rn, Rm;
10084
10085 RdLo = inst.operands[0].reg;
10086 RdHi = inst.operands[1].reg;
10087 Rn = inst.operands[2].reg;
10088 Rm = inst.operands[3].reg;
10089
10090 reject_bad_reg (RdLo);
10091 reject_bad_reg (RdHi);
10092 reject_bad_reg (Rn);
10093 reject_bad_reg (Rm);
10094
10095 inst.instruction |= RdLo << 12;
10096 inst.instruction |= RdHi << 8;
10097 inst.instruction |= Rn << 16;
10098 inst.instruction |= Rm;
10099 }
10100
10101 static void
10102 do_t_mov_cmp (void)
10103 {
10104 unsigned Rn, Rm;
10105
10106 Rn = inst.operands[0].reg;
10107 Rm = inst.operands[1].reg;
10108
10109 if (Rn == REG_PC)
10110 set_it_insn_type_last ();
10111
10112 if (unified_syntax)
10113 {
10114 int r0off = (inst.instruction == T_MNEM_mov
10115 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10116 unsigned long opcode;
10117 bfd_boolean narrow;
10118 bfd_boolean low_regs;
10119
10120 low_regs = (Rn <= 7 && Rm <= 7);
10121 opcode = inst.instruction;
10122 if (in_it_block ())
10123 narrow = opcode != T_MNEM_movs;
10124 else
10125 narrow = opcode != T_MNEM_movs || low_regs;
10126 if (inst.size_req == 4
10127 || inst.operands[1].shifted)
10128 narrow = FALSE;
10129
10130 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10131 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10132 && !inst.operands[1].shifted
10133 && Rn == REG_PC
10134 && Rm == REG_LR)
10135 {
10136 inst.instruction = T2_SUBS_PC_LR;
10137 return;
10138 }
10139
10140 if (opcode == T_MNEM_cmp)
10141 {
10142 constraint (Rn == REG_PC, BAD_PC);
10143 if (narrow)
10144 {
10145 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10146 but valid. */
10147 warn_deprecated_sp (Rm);
10148 /* R15 was documented as a valid choice for Rm in ARMv6,
10149 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10150 tools reject R15, so we do too. */
10151 constraint (Rm == REG_PC, BAD_PC);
10152 }
10153 else
10154 reject_bad_reg (Rm);
10155 }
10156 else if (opcode == T_MNEM_mov
10157 || opcode == T_MNEM_movs)
10158 {
10159 if (inst.operands[1].isreg)
10160 {
10161 if (opcode == T_MNEM_movs)
10162 {
10163 reject_bad_reg (Rn);
10164 reject_bad_reg (Rm);
10165 }
10166 else if ((Rn == REG_SP || Rn == REG_PC)
10167 && (Rm == REG_SP || Rm == REG_PC))
10168 reject_bad_reg (Rm);
10169 }
10170 else
10171 reject_bad_reg (Rn);
10172 }
10173
10174 if (!inst.operands[1].isreg)
10175 {
10176 /* Immediate operand. */
10177 if (!in_it_block () && opcode == T_MNEM_mov)
10178 narrow = 0;
10179 if (low_regs && narrow)
10180 {
10181 inst.instruction = THUMB_OP16 (opcode);
10182 inst.instruction |= Rn << 8;
10183 if (inst.size_req == 2)
10184 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10185 else
10186 inst.relax = opcode;
10187 }
10188 else
10189 {
10190 inst.instruction = THUMB_OP32 (inst.instruction);
10191 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10192 inst.instruction |= Rn << r0off;
10193 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10194 }
10195 }
10196 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10197 && (inst.instruction == T_MNEM_mov
10198 || inst.instruction == T_MNEM_movs))
10199 {
10200 /* Register shifts are encoded as separate shift instructions. */
10201 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10202
10203 if (in_it_block ())
10204 narrow = !flags;
10205 else
10206 narrow = flags;
10207
10208 if (inst.size_req == 4)
10209 narrow = FALSE;
10210
10211 if (!low_regs || inst.operands[1].imm > 7)
10212 narrow = FALSE;
10213
10214 if (Rn != Rm)
10215 narrow = FALSE;
10216
10217 switch (inst.operands[1].shift_kind)
10218 {
10219 case SHIFT_LSL:
10220 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10221 break;
10222 case SHIFT_ASR:
10223 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10224 break;
10225 case SHIFT_LSR:
10226 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10227 break;
10228 case SHIFT_ROR:
10229 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10230 break;
10231 default:
10232 abort ();
10233 }
10234
10235 inst.instruction = opcode;
10236 if (narrow)
10237 {
10238 inst.instruction |= Rn;
10239 inst.instruction |= inst.operands[1].imm << 3;
10240 }
10241 else
10242 {
10243 if (flags)
10244 inst.instruction |= CONDS_BIT;
10245
10246 inst.instruction |= Rn << 8;
10247 inst.instruction |= Rm << 16;
10248 inst.instruction |= inst.operands[1].imm;
10249 }
10250 }
10251 else if (!narrow)
10252 {
10253 /* Some mov with immediate shift have narrow variants.
10254 Register shifts are handled above. */
10255 if (low_regs && inst.operands[1].shifted
10256 && (inst.instruction == T_MNEM_mov
10257 || inst.instruction == T_MNEM_movs))
10258 {
10259 if (in_it_block ())
10260 narrow = (inst.instruction == T_MNEM_mov);
10261 else
10262 narrow = (inst.instruction == T_MNEM_movs);
10263 }
10264
10265 if (narrow)
10266 {
10267 switch (inst.operands[1].shift_kind)
10268 {
10269 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10270 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10271 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10272 default: narrow = FALSE; break;
10273 }
10274 }
10275
10276 if (narrow)
10277 {
10278 inst.instruction |= Rn;
10279 inst.instruction |= Rm << 3;
10280 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10281 }
10282 else
10283 {
10284 inst.instruction = THUMB_OP32 (inst.instruction);
10285 inst.instruction |= Rn << r0off;
10286 encode_thumb32_shifted_operand (1);
10287 }
10288 }
10289 else
10290 switch (inst.instruction)
10291 {
10292 case T_MNEM_mov:
10293 inst.instruction = T_OPCODE_MOV_HR;
10294 inst.instruction |= (Rn & 0x8) << 4;
10295 inst.instruction |= (Rn & 0x7);
10296 inst.instruction |= Rm << 3;
10297 break;
10298
10299 case T_MNEM_movs:
10300 /* We know we have low registers at this point.
10301 Generate ADD Rd, Rs, #0. */
10302 inst.instruction = T_OPCODE_ADD_I3;
10303 inst.instruction |= Rn;
10304 inst.instruction |= Rm << 3;
10305 break;
10306
10307 case T_MNEM_cmp:
10308 if (low_regs)
10309 {
10310 inst.instruction = T_OPCODE_CMP_LR;
10311 inst.instruction |= Rn;
10312 inst.instruction |= Rm << 3;
10313 }
10314 else
10315 {
10316 inst.instruction = T_OPCODE_CMP_HR;
10317 inst.instruction |= (Rn & 0x8) << 4;
10318 inst.instruction |= (Rn & 0x7);
10319 inst.instruction |= Rm << 3;
10320 }
10321 break;
10322 }
10323 return;
10324 }
10325
10326 inst.instruction = THUMB_OP16 (inst.instruction);
10327
10328 /* PR 10443: Do not silently ignore shifted operands. */
10329 constraint (inst.operands[1].shifted,
10330 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10331
10332 if (inst.operands[1].isreg)
10333 {
10334 if (Rn < 8 && Rm < 8)
10335 {
10336 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10337 since a MOV instruction produces unpredictable results. */
10338 if (inst.instruction == T_OPCODE_MOV_I8)
10339 inst.instruction = T_OPCODE_ADD_I3;
10340 else
10341 inst.instruction = T_OPCODE_CMP_LR;
10342
10343 inst.instruction |= Rn;
10344 inst.instruction |= Rm << 3;
10345 }
10346 else
10347 {
10348 if (inst.instruction == T_OPCODE_MOV_I8)
10349 inst.instruction = T_OPCODE_MOV_HR;
10350 else
10351 inst.instruction = T_OPCODE_CMP_HR;
10352 do_t_cpy ();
10353 }
10354 }
10355 else
10356 {
10357 constraint (Rn > 7,
10358 _("only lo regs allowed with immediate"));
10359 inst.instruction |= Rn << 8;
10360 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10361 }
10362 }
10363
10364 static void
10365 do_t_mov16 (void)
10366 {
10367 unsigned Rd;
10368 bfd_vma imm;
10369 bfd_boolean top;
10370
10371 top = (inst.instruction & 0x00800000) != 0;
10372 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10373 {
10374 constraint (top, _(":lower16: not allowed this instruction"));
10375 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10376 }
10377 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10378 {
10379 constraint (!top, _(":upper16: not allowed this instruction"));
10380 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10381 }
10382
10383 Rd = inst.operands[0].reg;
10384 reject_bad_reg (Rd);
10385
10386 inst.instruction |= Rd << 8;
10387 if (inst.reloc.type == BFD_RELOC_UNUSED)
10388 {
10389 imm = inst.reloc.exp.X_add_number;
10390 inst.instruction |= (imm & 0xf000) << 4;
10391 inst.instruction |= (imm & 0x0800) << 15;
10392 inst.instruction |= (imm & 0x0700) << 4;
10393 inst.instruction |= (imm & 0x00ff);
10394 }
10395 }
10396
10397 static void
10398 do_t_mvn_tst (void)
10399 {
10400 unsigned Rn, Rm;
10401
10402 Rn = inst.operands[0].reg;
10403 Rm = inst.operands[1].reg;
10404
10405 if (inst.instruction == T_MNEM_cmp
10406 || inst.instruction == T_MNEM_cmn)
10407 constraint (Rn == REG_PC, BAD_PC);
10408 else
10409 reject_bad_reg (Rn);
10410 reject_bad_reg (Rm);
10411
10412 if (unified_syntax)
10413 {
10414 int r0off = (inst.instruction == T_MNEM_mvn
10415 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10416 bfd_boolean narrow;
10417
10418 if (inst.size_req == 4
10419 || inst.instruction > 0xffff
10420 || inst.operands[1].shifted
10421 || Rn > 7 || Rm > 7)
10422 narrow = FALSE;
10423 else if (inst.instruction == T_MNEM_cmn)
10424 narrow = TRUE;
10425 else if (THUMB_SETS_FLAGS (inst.instruction))
10426 narrow = !in_it_block ();
10427 else
10428 narrow = in_it_block ();
10429
10430 if (!inst.operands[1].isreg)
10431 {
10432 /* For an immediate, we always generate a 32-bit opcode;
10433 section relaxation will shrink it later if possible. */
10434 if (inst.instruction < 0xffff)
10435 inst.instruction = THUMB_OP32 (inst.instruction);
10436 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10437 inst.instruction |= Rn << r0off;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10439 }
10440 else
10441 {
10442 /* See if we can do this with a 16-bit instruction. */
10443 if (narrow)
10444 {
10445 inst.instruction = THUMB_OP16 (inst.instruction);
10446 inst.instruction |= Rn;
10447 inst.instruction |= Rm << 3;
10448 }
10449 else
10450 {
10451 constraint (inst.operands[1].shifted
10452 && inst.operands[1].immisreg,
10453 _("shift must be constant"));
10454 if (inst.instruction < 0xffff)
10455 inst.instruction = THUMB_OP32 (inst.instruction);
10456 inst.instruction |= Rn << r0off;
10457 encode_thumb32_shifted_operand (1);
10458 }
10459 }
10460 }
10461 else
10462 {
10463 constraint (inst.instruction > 0xffff
10464 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10465 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10466 _("unshifted register required"));
10467 constraint (Rn > 7 || Rm > 7,
10468 BAD_HIREG);
10469
10470 inst.instruction = THUMB_OP16 (inst.instruction);
10471 inst.instruction |= Rn;
10472 inst.instruction |= Rm << 3;
10473 }
10474 }
10475
10476 static void
10477 do_t_mrs (void)
10478 {
10479 unsigned Rd;
10480 int flags;
10481
10482 if (do_vfp_nsyn_mrs () == SUCCESS)
10483 return;
10484
10485 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10486 if (flags == 0)
10487 {
10488 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10489 _("selected processor does not support "
10490 "requested special purpose register"));
10491 }
10492 else
10493 {
10494 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10495 _("selected processor does not support "
10496 "requested special purpose register"));
10497 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10498 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10499 _("'CPSR' or 'SPSR' expected"));
10500 }
10501
10502 Rd = inst.operands[0].reg;
10503 reject_bad_reg (Rd);
10504
10505 inst.instruction |= Rd << 8;
10506 inst.instruction |= (flags & SPSR_BIT) >> 2;
10507 inst.instruction |= inst.operands[1].imm & 0xff;
10508 }
10509
10510 static void
10511 do_t_msr (void)
10512 {
10513 int flags;
10514 unsigned Rn;
10515
10516 if (do_vfp_nsyn_msr () == SUCCESS)
10517 return;
10518
10519 constraint (!inst.operands[1].isreg,
10520 _("Thumb encoding does not support an immediate here"));
10521 flags = inst.operands[0].imm;
10522 if (flags & ~0xff)
10523 {
10524 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10525 _("selected processor does not support "
10526 "requested special purpose register"));
10527 }
10528 else
10529 {
10530 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10531 _("selected processor does not support "
10532 "requested special purpose register"));
10533 flags |= PSR_f;
10534 }
10535
10536 Rn = inst.operands[1].reg;
10537 reject_bad_reg (Rn);
10538
10539 inst.instruction |= (flags & SPSR_BIT) >> 2;
10540 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10541 inst.instruction |= (flags & 0xff);
10542 inst.instruction |= Rn << 16;
10543 }
10544
10545 static void
10546 do_t_mul (void)
10547 {
10548 bfd_boolean narrow;
10549 unsigned Rd, Rn, Rm;
10550
10551 if (!inst.operands[2].present)
10552 inst.operands[2].reg = inst.operands[0].reg;
10553
10554 Rd = inst.operands[0].reg;
10555 Rn = inst.operands[1].reg;
10556 Rm = inst.operands[2].reg;
10557
10558 if (unified_syntax)
10559 {
10560 if (inst.size_req == 4
10561 || (Rd != Rn
10562 && Rd != Rm)
10563 || Rn > 7
10564 || Rm > 7)
10565 narrow = FALSE;
10566 else if (inst.instruction == T_MNEM_muls)
10567 narrow = !in_it_block ();
10568 else
10569 narrow = in_it_block ();
10570 }
10571 else
10572 {
10573 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10574 constraint (Rn > 7 || Rm > 7,
10575 BAD_HIREG);
10576 narrow = TRUE;
10577 }
10578
10579 if (narrow)
10580 {
10581 /* 16-bit MULS/Conditional MUL. */
10582 inst.instruction = THUMB_OP16 (inst.instruction);
10583 inst.instruction |= Rd;
10584
10585 if (Rd == Rn)
10586 inst.instruction |= Rm << 3;
10587 else if (Rd == Rm)
10588 inst.instruction |= Rn << 3;
10589 else
10590 constraint (1, _("dest must overlap one source register"));
10591 }
10592 else
10593 {
10594 constraint (inst.instruction != T_MNEM_mul,
10595 _("Thumb-2 MUL must not set flags"));
10596 /* 32-bit MUL. */
10597 inst.instruction = THUMB_OP32 (inst.instruction);
10598 inst.instruction |= Rd << 8;
10599 inst.instruction |= Rn << 16;
10600 inst.instruction |= Rm << 0;
10601
10602 reject_bad_reg (Rd);
10603 reject_bad_reg (Rn);
10604 reject_bad_reg (Rm);
10605 }
10606 }
10607
10608 static void
10609 do_t_mull (void)
10610 {
10611 unsigned RdLo, RdHi, Rn, Rm;
10612
10613 RdLo = inst.operands[0].reg;
10614 RdHi = inst.operands[1].reg;
10615 Rn = inst.operands[2].reg;
10616 Rm = inst.operands[3].reg;
10617
10618 reject_bad_reg (RdLo);
10619 reject_bad_reg (RdHi);
10620 reject_bad_reg (Rn);
10621 reject_bad_reg (Rm);
10622
10623 inst.instruction |= RdLo << 12;
10624 inst.instruction |= RdHi << 8;
10625 inst.instruction |= Rn << 16;
10626 inst.instruction |= Rm;
10627
10628 if (RdLo == RdHi)
10629 as_tsktsk (_("rdhi and rdlo must be different"));
10630 }
10631
10632 static void
10633 do_t_nop (void)
10634 {
10635 set_it_insn_type (NEUTRAL_IT_INSN);
10636
10637 if (unified_syntax)
10638 {
10639 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10640 {
10641 inst.instruction = THUMB_OP32 (inst.instruction);
10642 inst.instruction |= inst.operands[0].imm;
10643 }
10644 else
10645 {
10646 /* PR9722: Check for Thumb2 availability before
10647 generating a thumb2 nop instruction. */
10648 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10649 {
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].imm << 4;
10652 }
10653 else
10654 inst.instruction = 0x46c0;
10655 }
10656 }
10657 else
10658 {
10659 constraint (inst.operands[0].present,
10660 _("Thumb does not support NOP with hints"));
10661 inst.instruction = 0x46c0;
10662 }
10663 }
10664
10665 static void
10666 do_t_neg (void)
10667 {
10668 if (unified_syntax)
10669 {
10670 bfd_boolean narrow;
10671
10672 if (THUMB_SETS_FLAGS (inst.instruction))
10673 narrow = !in_it_block ();
10674 else
10675 narrow = in_it_block ();
10676 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10677 narrow = FALSE;
10678 if (inst.size_req == 4)
10679 narrow = FALSE;
10680
10681 if (!narrow)
10682 {
10683 inst.instruction = THUMB_OP32 (inst.instruction);
10684 inst.instruction |= inst.operands[0].reg << 8;
10685 inst.instruction |= inst.operands[1].reg << 16;
10686 }
10687 else
10688 {
10689 inst.instruction = THUMB_OP16 (inst.instruction);
10690 inst.instruction |= inst.operands[0].reg;
10691 inst.instruction |= inst.operands[1].reg << 3;
10692 }
10693 }
10694 else
10695 {
10696 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10697 BAD_HIREG);
10698 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10699
10700 inst.instruction = THUMB_OP16 (inst.instruction);
10701 inst.instruction |= inst.operands[0].reg;
10702 inst.instruction |= inst.operands[1].reg << 3;
10703 }
10704 }
10705
10706 static void
10707 do_t_orn (void)
10708 {
10709 unsigned Rd, Rn;
10710
10711 Rd = inst.operands[0].reg;
10712 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10713
10714 reject_bad_reg (Rd);
10715 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10716 reject_bad_reg (Rn);
10717
10718 inst.instruction |= Rd << 8;
10719 inst.instruction |= Rn << 16;
10720
10721 if (!inst.operands[2].isreg)
10722 {
10723 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10724 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10725 }
10726 else
10727 {
10728 unsigned Rm;
10729
10730 Rm = inst.operands[2].reg;
10731 reject_bad_reg (Rm);
10732
10733 constraint (inst.operands[2].shifted
10734 && inst.operands[2].immisreg,
10735 _("shift must be constant"));
10736 encode_thumb32_shifted_operand (2);
10737 }
10738 }
10739
10740 static void
10741 do_t_pkhbt (void)
10742 {
10743 unsigned Rd, Rn, Rm;
10744
10745 Rd = inst.operands[0].reg;
10746 Rn = inst.operands[1].reg;
10747 Rm = inst.operands[2].reg;
10748
10749 reject_bad_reg (Rd);
10750 reject_bad_reg (Rn);
10751 reject_bad_reg (Rm);
10752
10753 inst.instruction |= Rd << 8;
10754 inst.instruction |= Rn << 16;
10755 inst.instruction |= Rm;
10756 if (inst.operands[3].present)
10757 {
10758 unsigned int val = inst.reloc.exp.X_add_number;
10759 constraint (inst.reloc.exp.X_op != O_constant,
10760 _("expression too complex"));
10761 inst.instruction |= (val & 0x1c) << 10;
10762 inst.instruction |= (val & 0x03) << 6;
10763 }
10764 }
10765
10766 static void
10767 do_t_pkhtb (void)
10768 {
10769 if (!inst.operands[3].present)
10770 {
10771 unsigned Rtmp;
10772
10773 inst.instruction &= ~0x00000020;
10774
10775 /* PR 10168. Swap the Rm and Rn registers. */
10776 Rtmp = inst.operands[1].reg;
10777 inst.operands[1].reg = inst.operands[2].reg;
10778 inst.operands[2].reg = Rtmp;
10779 }
10780 do_t_pkhbt ();
10781 }
10782
10783 static void
10784 do_t_pld (void)
10785 {
10786 if (inst.operands[0].immisreg)
10787 reject_bad_reg (inst.operands[0].imm);
10788
10789 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10790 }
10791
10792 static void
10793 do_t_push_pop (void)
10794 {
10795 unsigned mask;
10796
10797 constraint (inst.operands[0].writeback,
10798 _("push/pop do not support {reglist}^"));
10799 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10800 _("expression too complex"));
10801
10802 mask = inst.operands[0].imm;
10803 if ((mask & ~0xff) == 0)
10804 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10805 else if ((inst.instruction == T_MNEM_push
10806 && (mask & ~0xff) == 1 << REG_LR)
10807 || (inst.instruction == T_MNEM_pop
10808 && (mask & ~0xff) == 1 << REG_PC))
10809 {
10810 inst.instruction = THUMB_OP16 (inst.instruction);
10811 inst.instruction |= THUMB_PP_PC_LR;
10812 inst.instruction |= mask & 0xff;
10813 }
10814 else if (unified_syntax)
10815 {
10816 inst.instruction = THUMB_OP32 (inst.instruction);
10817 encode_thumb2_ldmstm (13, mask, TRUE);
10818 }
10819 else
10820 {
10821 inst.error = _("invalid register list to push/pop instruction");
10822 return;
10823 }
10824 }
10825
10826 static void
10827 do_t_rbit (void)
10828 {
10829 unsigned Rd, Rm;
10830
10831 Rd = inst.operands[0].reg;
10832 Rm = inst.operands[1].reg;
10833
10834 reject_bad_reg (Rd);
10835 reject_bad_reg (Rm);
10836
10837 inst.instruction |= Rd << 8;
10838 inst.instruction |= Rm << 16;
10839 inst.instruction |= Rm;
10840 }
10841
10842 static void
10843 do_t_rev (void)
10844 {
10845 unsigned Rd, Rm;
10846
10847 Rd = inst.operands[0].reg;
10848 Rm = inst.operands[1].reg;
10849
10850 reject_bad_reg (Rd);
10851 reject_bad_reg (Rm);
10852
10853 if (Rd <= 7 && Rm <= 7
10854 && inst.size_req != 4)
10855 {
10856 inst.instruction = THUMB_OP16 (inst.instruction);
10857 inst.instruction |= Rd;
10858 inst.instruction |= Rm << 3;
10859 }
10860 else if (unified_syntax)
10861 {
10862 inst.instruction = THUMB_OP32 (inst.instruction);
10863 inst.instruction |= Rd << 8;
10864 inst.instruction |= Rm << 16;
10865 inst.instruction |= Rm;
10866 }
10867 else
10868 inst.error = BAD_HIREG;
10869 }
10870
10871 static void
10872 do_t_rrx (void)
10873 {
10874 unsigned Rd, Rm;
10875
10876 Rd = inst.operands[0].reg;
10877 Rm = inst.operands[1].reg;
10878
10879 reject_bad_reg (Rd);
10880 reject_bad_reg (Rm);
10881
10882 inst.instruction |= Rd << 8;
10883 inst.instruction |= Rm;
10884 }
10885
10886 static void
10887 do_t_rsb (void)
10888 {
10889 unsigned Rd, Rs;
10890
10891 Rd = inst.operands[0].reg;
10892 Rs = (inst.operands[1].present
10893 ? inst.operands[1].reg /* Rd, Rs, foo */
10894 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10895
10896 reject_bad_reg (Rd);
10897 reject_bad_reg (Rs);
10898 if (inst.operands[2].isreg)
10899 reject_bad_reg (inst.operands[2].reg);
10900
10901 inst.instruction |= Rd << 8;
10902 inst.instruction |= Rs << 16;
10903 if (!inst.operands[2].isreg)
10904 {
10905 bfd_boolean narrow;
10906
10907 if ((inst.instruction & 0x00100000) != 0)
10908 narrow = !in_it_block ();
10909 else
10910 narrow = in_it_block ();
10911
10912 if (Rd > 7 || Rs > 7)
10913 narrow = FALSE;
10914
10915 if (inst.size_req == 4 || !unified_syntax)
10916 narrow = FALSE;
10917
10918 if (inst.reloc.exp.X_op != O_constant
10919 || inst.reloc.exp.X_add_number != 0)
10920 narrow = FALSE;
10921
10922 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10923 relaxation, but it doesn't seem worth the hassle. */
10924 if (narrow)
10925 {
10926 inst.reloc.type = BFD_RELOC_UNUSED;
10927 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10928 inst.instruction |= Rs << 3;
10929 inst.instruction |= Rd;
10930 }
10931 else
10932 {
10933 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10934 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10935 }
10936 }
10937 else
10938 encode_thumb32_shifted_operand (2);
10939 }
10940
10941 static void
10942 do_t_setend (void)
10943 {
10944 set_it_insn_type (OUTSIDE_IT_INSN);
10945 if (inst.operands[0].imm)
10946 inst.instruction |= 0x8;
10947 }
10948
10949 static void
10950 do_t_shift (void)
10951 {
10952 if (!inst.operands[1].present)
10953 inst.operands[1].reg = inst.operands[0].reg;
10954
10955 if (unified_syntax)
10956 {
10957 bfd_boolean narrow;
10958 int shift_kind;
10959
10960 switch (inst.instruction)
10961 {
10962 case T_MNEM_asr:
10963 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10964 case T_MNEM_lsl:
10965 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10966 case T_MNEM_lsr:
10967 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10968 case T_MNEM_ror:
10969 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10970 default: abort ();
10971 }
10972
10973 if (THUMB_SETS_FLAGS (inst.instruction))
10974 narrow = !in_it_block ();
10975 else
10976 narrow = in_it_block ();
10977 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10978 narrow = FALSE;
10979 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10980 narrow = FALSE;
10981 if (inst.operands[2].isreg
10982 && (inst.operands[1].reg != inst.operands[0].reg
10983 || inst.operands[2].reg > 7))
10984 narrow = FALSE;
10985 if (inst.size_req == 4)
10986 narrow = FALSE;
10987
10988 reject_bad_reg (inst.operands[0].reg);
10989 reject_bad_reg (inst.operands[1].reg);
10990
10991 if (!narrow)
10992 {
10993 if (inst.operands[2].isreg)
10994 {
10995 reject_bad_reg (inst.operands[2].reg);
10996 inst.instruction = THUMB_OP32 (inst.instruction);
10997 inst.instruction |= inst.operands[0].reg << 8;
10998 inst.instruction |= inst.operands[1].reg << 16;
10999 inst.instruction |= inst.operands[2].reg;
11000 }
11001 else
11002 {
11003 inst.operands[1].shifted = 1;
11004 inst.operands[1].shift_kind = shift_kind;
11005 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11006 ? T_MNEM_movs : T_MNEM_mov);
11007 inst.instruction |= inst.operands[0].reg << 8;
11008 encode_thumb32_shifted_operand (1);
11009 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11010 inst.reloc.type = BFD_RELOC_UNUSED;
11011 }
11012 }
11013 else
11014 {
11015 if (inst.operands[2].isreg)
11016 {
11017 switch (shift_kind)
11018 {
11019 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11020 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11021 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11022 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11023 default: abort ();
11024 }
11025
11026 inst.instruction |= inst.operands[0].reg;
11027 inst.instruction |= inst.operands[2].reg << 3;
11028 }
11029 else
11030 {
11031 switch (shift_kind)
11032 {
11033 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11034 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11035 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11036 default: abort ();
11037 }
11038 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11039 inst.instruction |= inst.operands[0].reg;
11040 inst.instruction |= inst.operands[1].reg << 3;
11041 }
11042 }
11043 }
11044 else
11045 {
11046 constraint (inst.operands[0].reg > 7
11047 || inst.operands[1].reg > 7, BAD_HIREG);
11048 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11049
11050 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11051 {
11052 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11053 constraint (inst.operands[0].reg != inst.operands[1].reg,
11054 _("source1 and dest must be same register"));
11055
11056 switch (inst.instruction)
11057 {
11058 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11059 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11060 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11061 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11062 default: abort ();
11063 }
11064
11065 inst.instruction |= inst.operands[0].reg;
11066 inst.instruction |= inst.operands[2].reg << 3;
11067 }
11068 else
11069 {
11070 switch (inst.instruction)
11071 {
11072 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11073 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11074 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11075 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11076 default: abort ();
11077 }
11078 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11079 inst.instruction |= inst.operands[0].reg;
11080 inst.instruction |= inst.operands[1].reg << 3;
11081 }
11082 }
11083 }
11084
11085 static void
11086 do_t_simd (void)
11087 {
11088 unsigned Rd, Rn, Rm;
11089
11090 Rd = inst.operands[0].reg;
11091 Rn = inst.operands[1].reg;
11092 Rm = inst.operands[2].reg;
11093
11094 reject_bad_reg (Rd);
11095 reject_bad_reg (Rn);
11096 reject_bad_reg (Rm);
11097
11098 inst.instruction |= Rd << 8;
11099 inst.instruction |= Rn << 16;
11100 inst.instruction |= Rm;
11101 }
11102
11103 static void
11104 do_t_smc (void)
11105 {
11106 unsigned int value = inst.reloc.exp.X_add_number;
11107 constraint (inst.reloc.exp.X_op != O_constant,
11108 _("expression too complex"));
11109 inst.reloc.type = BFD_RELOC_UNUSED;
11110 inst.instruction |= (value & 0xf000) >> 12;
11111 inst.instruction |= (value & 0x0ff0);
11112 inst.instruction |= (value & 0x000f) << 16;
11113 }
11114
11115 static void
11116 do_t_ssat_usat (int bias)
11117 {
11118 unsigned Rd, Rn;
11119
11120 Rd = inst.operands[0].reg;
11121 Rn = inst.operands[2].reg;
11122
11123 reject_bad_reg (Rd);
11124 reject_bad_reg (Rn);
11125
11126 inst.instruction |= Rd << 8;
11127 inst.instruction |= inst.operands[1].imm - bias;
11128 inst.instruction |= Rn << 16;
11129
11130 if (inst.operands[3].present)
11131 {
11132 offsetT shift_amount = inst.reloc.exp.X_add_number;
11133
11134 inst.reloc.type = BFD_RELOC_UNUSED;
11135
11136 constraint (inst.reloc.exp.X_op != O_constant,
11137 _("expression too complex"));
11138
11139 if (shift_amount != 0)
11140 {
11141 constraint (shift_amount > 31,
11142 _("shift expression is too large"));
11143
11144 if (inst.operands[3].shift_kind == SHIFT_ASR)
11145 inst.instruction |= 0x00200000; /* sh bit. */
11146
11147 inst.instruction |= (shift_amount & 0x1c) << 10;
11148 inst.instruction |= (shift_amount & 0x03) << 6;
11149 }
11150 }
11151 }
11152
11153 static void
11154 do_t_ssat (void)
11155 {
11156 do_t_ssat_usat (1);
11157 }
11158
11159 static void
11160 do_t_ssat16 (void)
11161 {
11162 unsigned Rd, Rn;
11163
11164 Rd = inst.operands[0].reg;
11165 Rn = inst.operands[2].reg;
11166
11167 reject_bad_reg (Rd);
11168 reject_bad_reg (Rn);
11169
11170 inst.instruction |= Rd << 8;
11171 inst.instruction |= inst.operands[1].imm - 1;
11172 inst.instruction |= Rn << 16;
11173 }
11174
11175 static void
11176 do_t_strex (void)
11177 {
11178 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11179 || inst.operands[2].postind || inst.operands[2].writeback
11180 || inst.operands[2].immisreg || inst.operands[2].shifted
11181 || inst.operands[2].negative,
11182 BAD_ADDR_MODE);
11183
11184 inst.instruction |= inst.operands[0].reg << 8;
11185 inst.instruction |= inst.operands[1].reg << 12;
11186 inst.instruction |= inst.operands[2].reg << 16;
11187 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11188 }
11189
11190 static void
11191 do_t_strexd (void)
11192 {
11193 if (!inst.operands[2].present)
11194 inst.operands[2].reg = inst.operands[1].reg + 1;
11195
11196 constraint (inst.operands[0].reg == inst.operands[1].reg
11197 || inst.operands[0].reg == inst.operands[2].reg
11198 || inst.operands[0].reg == inst.operands[3].reg
11199 || inst.operands[1].reg == inst.operands[2].reg,
11200 BAD_OVERLAP);
11201
11202 inst.instruction |= inst.operands[0].reg;
11203 inst.instruction |= inst.operands[1].reg << 12;
11204 inst.instruction |= inst.operands[2].reg << 8;
11205 inst.instruction |= inst.operands[3].reg << 16;
11206 }
11207
11208 static void
11209 do_t_sxtah (void)
11210 {
11211 unsigned Rd, Rn, Rm;
11212
11213 Rd = inst.operands[0].reg;
11214 Rn = inst.operands[1].reg;
11215 Rm = inst.operands[2].reg;
11216
11217 reject_bad_reg (Rd);
11218 reject_bad_reg (Rn);
11219 reject_bad_reg (Rm);
11220
11221 inst.instruction |= Rd << 8;
11222 inst.instruction |= Rn << 16;
11223 inst.instruction |= Rm;
11224 inst.instruction |= inst.operands[3].imm << 4;
11225 }
11226
11227 static void
11228 do_t_sxth (void)
11229 {
11230 unsigned Rd, Rm;
11231
11232 Rd = inst.operands[0].reg;
11233 Rm = inst.operands[1].reg;
11234
11235 reject_bad_reg (Rd);
11236 reject_bad_reg (Rm);
11237
11238 if (inst.instruction <= 0xffff
11239 && inst.size_req != 4
11240 && Rd <= 7 && Rm <= 7
11241 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11242 {
11243 inst.instruction = THUMB_OP16 (inst.instruction);
11244 inst.instruction |= Rd;
11245 inst.instruction |= Rm << 3;
11246 }
11247 else if (unified_syntax)
11248 {
11249 if (inst.instruction <= 0xffff)
11250 inst.instruction = THUMB_OP32 (inst.instruction);
11251 inst.instruction |= Rd << 8;
11252 inst.instruction |= Rm;
11253 inst.instruction |= inst.operands[2].imm << 4;
11254 }
11255 else
11256 {
11257 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11258 _("Thumb encoding does not support rotation"));
11259 constraint (1, BAD_HIREG);
11260 }
11261 }
11262
11263 static void
11264 do_t_swi (void)
11265 {
11266 inst.reloc.type = BFD_RELOC_ARM_SWI;
11267 }
11268
11269 static void
11270 do_t_tb (void)
11271 {
11272 unsigned Rn, Rm;
11273 int half;
11274
11275 half = (inst.instruction & 0x10) != 0;
11276 set_it_insn_type_last ();
11277 constraint (inst.operands[0].immisreg,
11278 _("instruction requires register index"));
11279
11280 Rn = inst.operands[0].reg;
11281 Rm = inst.operands[0].imm;
11282
11283 constraint (Rn == REG_SP, BAD_SP);
11284 reject_bad_reg (Rm);
11285
11286 constraint (!half && inst.operands[0].shifted,
11287 _("instruction does not allow shifted index"));
11288 inst.instruction |= (Rn << 16) | Rm;
11289 }
11290
11291 static void
11292 do_t_usat (void)
11293 {
11294 do_t_ssat_usat (0);
11295 }
11296
11297 static void
11298 do_t_usat16 (void)
11299 {
11300 unsigned Rd, Rn;
11301
11302 Rd = inst.operands[0].reg;
11303 Rn = inst.operands[2].reg;
11304
11305 reject_bad_reg (Rd);
11306 reject_bad_reg (Rn);
11307
11308 inst.instruction |= Rd << 8;
11309 inst.instruction |= inst.operands[1].imm;
11310 inst.instruction |= Rn << 16;
11311 }
11312
11313 /* Neon instruction encoder helpers. */
11314
11315 /* Encodings for the different types for various Neon opcodes. */
11316
11317 /* An "invalid" code for the following tables. */
11318 #define N_INV -1u
11319
11320 struct neon_tab_entry
11321 {
11322 unsigned integer;
11323 unsigned float_or_poly;
11324 unsigned scalar_or_imm;
11325 };
11326
11327 /* Map overloaded Neon opcodes to their respective encodings. */
11328 #define NEON_ENC_TAB \
11329 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11330 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11331 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11332 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11333 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11334 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11335 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11336 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11337 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11338 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11339 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11340 /* Register variants of the following two instructions are encoded as
11341 vcge / vcgt with the operands reversed. */ \
11342 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11343 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11344 X(vfma, N_INV, 0x0000c10, N_INV), \
11345 X(vfms, N_INV, 0x0200c10, N_INV), \
11346 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11347 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11348 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11349 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11350 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11351 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11352 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11353 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11354 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11355 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11356 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11357 X(vshl, 0x0000400, N_INV, 0x0800510), \
11358 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11359 X(vand, 0x0000110, N_INV, 0x0800030), \
11360 X(vbic, 0x0100110, N_INV, 0x0800030), \
11361 X(veor, 0x1000110, N_INV, N_INV), \
11362 X(vorn, 0x0300110, N_INV, 0x0800010), \
11363 X(vorr, 0x0200110, N_INV, 0x0800010), \
11364 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11365 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11366 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11367 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11368 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11369 X(vst1, 0x0000000, 0x0800000, N_INV), \
11370 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11371 X(vst2, 0x0000100, 0x0800100, N_INV), \
11372 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11373 X(vst3, 0x0000200, 0x0800200, N_INV), \
11374 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11375 X(vst4, 0x0000300, 0x0800300, N_INV), \
11376 X(vmovn, 0x1b20200, N_INV, N_INV), \
11377 X(vtrn, 0x1b20080, N_INV, N_INV), \
11378 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11379 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11380 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11381 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11382 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11383 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11384 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11385 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11386 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11387 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11388 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11389
11390 enum neon_opc
11391 {
11392 #define X(OPC,I,F,S) N_MNEM_##OPC
11393 NEON_ENC_TAB
11394 #undef X
11395 };
11396
11397 static const struct neon_tab_entry neon_enc_tab[] =
11398 {
11399 #define X(OPC,I,F,S) { (I), (F), (S) }
11400 NEON_ENC_TAB
11401 #undef X
11402 };
11403
11404 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11405 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11406 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11407 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11408 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11409 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11410 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11411 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11412 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11413 #define NEON_ENC_SINGLE(X) \
11414 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11415 #define NEON_ENC_DOUBLE(X) \
11416 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11417
11418 /* Define shapes for instruction operands. The following mnemonic characters
11419 are used in this table:
11420
11421 F - VFP S<n> register
11422 D - Neon D<n> register
11423 Q - Neon Q<n> register
11424 I - Immediate
11425 S - Scalar
11426 R - ARM register
11427 L - D<n> register list
11428
11429 This table is used to generate various data:
11430 - enumerations of the form NS_DDR to be used as arguments to
11431 neon_select_shape.
11432 - a table classifying shapes into single, double, quad, mixed.
11433 - a table used to drive neon_select_shape. */
11434
11435 #define NEON_SHAPE_DEF \
11436 X(3, (D, D, D), DOUBLE), \
11437 X(3, (Q, Q, Q), QUAD), \
11438 X(3, (D, D, I), DOUBLE), \
11439 X(3, (Q, Q, I), QUAD), \
11440 X(3, (D, D, S), DOUBLE), \
11441 X(3, (Q, Q, S), QUAD), \
11442 X(2, (D, D), DOUBLE), \
11443 X(2, (Q, Q), QUAD), \
11444 X(2, (D, S), DOUBLE), \
11445 X(2, (Q, S), QUAD), \
11446 X(2, (D, R), DOUBLE), \
11447 X(2, (Q, R), QUAD), \
11448 X(2, (D, I), DOUBLE), \
11449 X(2, (Q, I), QUAD), \
11450 X(3, (D, L, D), DOUBLE), \
11451 X(2, (D, Q), MIXED), \
11452 X(2, (Q, D), MIXED), \
11453 X(3, (D, Q, I), MIXED), \
11454 X(3, (Q, D, I), MIXED), \
11455 X(3, (Q, D, D), MIXED), \
11456 X(3, (D, Q, Q), MIXED), \
11457 X(3, (Q, Q, D), MIXED), \
11458 X(3, (Q, D, S), MIXED), \
11459 X(3, (D, Q, S), MIXED), \
11460 X(4, (D, D, D, I), DOUBLE), \
11461 X(4, (Q, Q, Q, I), QUAD), \
11462 X(2, (F, F), SINGLE), \
11463 X(3, (F, F, F), SINGLE), \
11464 X(2, (F, I), SINGLE), \
11465 X(2, (F, D), MIXED), \
11466 X(2, (D, F), MIXED), \
11467 X(3, (F, F, I), MIXED), \
11468 X(4, (R, R, F, F), SINGLE), \
11469 X(4, (F, F, R, R), SINGLE), \
11470 X(3, (D, R, R), DOUBLE), \
11471 X(3, (R, R, D), DOUBLE), \
11472 X(2, (S, R), SINGLE), \
11473 X(2, (R, S), SINGLE), \
11474 X(2, (F, R), SINGLE), \
11475 X(2, (R, F), SINGLE)
11476
11477 #define S2(A,B) NS_##A##B
11478 #define S3(A,B,C) NS_##A##B##C
11479 #define S4(A,B,C,D) NS_##A##B##C##D
11480
11481 #define X(N, L, C) S##N L
11482
11483 enum neon_shape
11484 {
11485 NEON_SHAPE_DEF,
11486 NS_NULL
11487 };
11488
11489 #undef X
11490 #undef S2
11491 #undef S3
11492 #undef S4
11493
11494 enum neon_shape_class
11495 {
11496 SC_SINGLE,
11497 SC_DOUBLE,
11498 SC_QUAD,
11499 SC_MIXED
11500 };
11501
11502 #define X(N, L, C) SC_##C
11503
11504 static enum neon_shape_class neon_shape_class[] =
11505 {
11506 NEON_SHAPE_DEF
11507 };
11508
11509 #undef X
11510
11511 enum neon_shape_el
11512 {
11513 SE_F,
11514 SE_D,
11515 SE_Q,
11516 SE_I,
11517 SE_S,
11518 SE_R,
11519 SE_L
11520 };
11521
11522 /* Register widths of above. */
11523 static unsigned neon_shape_el_size[] =
11524 {
11525 32,
11526 64,
11527 128,
11528 0,
11529 32,
11530 32,
11531 0
11532 };
11533
11534 struct neon_shape_info
11535 {
11536 unsigned els;
11537 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11538 };
11539
11540 #define S2(A,B) { SE_##A, SE_##B }
11541 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11542 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11543
11544 #define X(N, L, C) { N, S##N L }
11545
11546 static struct neon_shape_info neon_shape_tab[] =
11547 {
11548 NEON_SHAPE_DEF
11549 };
11550
11551 #undef X
11552 #undef S2
11553 #undef S3
11554 #undef S4
11555
11556 /* Bit masks used in type checking given instructions.
11557 'N_EQK' means the type must be the same as (or based on in some way) the key
11558 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11559 set, various other bits can be set as well in order to modify the meaning of
11560 the type constraint. */
11561
11562 enum neon_type_mask
11563 {
11564 N_S8 = 0x0000001,
11565 N_S16 = 0x0000002,
11566 N_S32 = 0x0000004,
11567 N_S64 = 0x0000008,
11568 N_U8 = 0x0000010,
11569 N_U16 = 0x0000020,
11570 N_U32 = 0x0000040,
11571 N_U64 = 0x0000080,
11572 N_I8 = 0x0000100,
11573 N_I16 = 0x0000200,
11574 N_I32 = 0x0000400,
11575 N_I64 = 0x0000800,
11576 N_8 = 0x0001000,
11577 N_16 = 0x0002000,
11578 N_32 = 0x0004000,
11579 N_64 = 0x0008000,
11580 N_P8 = 0x0010000,
11581 N_P16 = 0x0020000,
11582 N_F16 = 0x0040000,
11583 N_F32 = 0x0080000,
11584 N_F64 = 0x0100000,
11585 N_KEY = 0x1000000, /* Key element (main type specifier). */
11586 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11587 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11588 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11589 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11590 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11591 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11592 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11593 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11594 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11595 N_UTYP = 0,
11596 N_MAX_NONSPECIAL = N_F64
11597 };
11598
11599 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11600
11601 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11602 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11603 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11604 #define N_SUF_32 (N_SU_32 | N_F32)
11605 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11606 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11607
11608 /* Pass this as the first type argument to neon_check_type to ignore types
11609 altogether. */
11610 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11611
11612 /* Select a "shape" for the current instruction (describing register types or
11613 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11614 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11615 function of operand parsing, so this function doesn't need to be called.
11616 Shapes should be listed in order of decreasing length. */
11617
11618 static enum neon_shape
11619 neon_select_shape (enum neon_shape shape, ...)
11620 {
11621 va_list ap;
11622 enum neon_shape first_shape = shape;
11623
11624 /* Fix missing optional operands. FIXME: we don't know at this point how
11625 many arguments we should have, so this makes the assumption that we have
11626 > 1. This is true of all current Neon opcodes, I think, but may not be
11627 true in the future. */
11628 if (!inst.operands[1].present)
11629 inst.operands[1] = inst.operands[0];
11630
11631 va_start (ap, shape);
11632
11633 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11634 {
11635 unsigned j;
11636 int matches = 1;
11637
11638 for (j = 0; j < neon_shape_tab[shape].els; j++)
11639 {
11640 if (!inst.operands[j].present)
11641 {
11642 matches = 0;
11643 break;
11644 }
11645
11646 switch (neon_shape_tab[shape].el[j])
11647 {
11648 case SE_F:
11649 if (!(inst.operands[j].isreg
11650 && inst.operands[j].isvec
11651 && inst.operands[j].issingle
11652 && !inst.operands[j].isquad))
11653 matches = 0;
11654 break;
11655
11656 case SE_D:
11657 if (!(inst.operands[j].isreg
11658 && inst.operands[j].isvec
11659 && !inst.operands[j].isquad
11660 && !inst.operands[j].issingle))
11661 matches = 0;
11662 break;
11663
11664 case SE_R:
11665 if (!(inst.operands[j].isreg
11666 && !inst.operands[j].isvec))
11667 matches = 0;
11668 break;
11669
11670 case SE_Q:
11671 if (!(inst.operands[j].isreg
11672 && inst.operands[j].isvec
11673 && inst.operands[j].isquad
11674 && !inst.operands[j].issingle))
11675 matches = 0;
11676 break;
11677
11678 case SE_I:
11679 if (!(!inst.operands[j].isreg
11680 && !inst.operands[j].isscalar))
11681 matches = 0;
11682 break;
11683
11684 case SE_S:
11685 if (!(!inst.operands[j].isreg
11686 && inst.operands[j].isscalar))
11687 matches = 0;
11688 break;
11689
11690 case SE_L:
11691 break;
11692 }
11693 }
11694 if (matches)
11695 break;
11696 }
11697
11698 va_end (ap);
11699
11700 if (shape == NS_NULL && first_shape != NS_NULL)
11701 first_error (_("invalid instruction shape"));
11702
11703 return shape;
11704 }
11705
11706 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11707 means the Q bit should be set). */
11708
11709 static int
11710 neon_quad (enum neon_shape shape)
11711 {
11712 return neon_shape_class[shape] == SC_QUAD;
11713 }
11714
11715 static void
11716 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11717 unsigned *g_size)
11718 {
11719 /* Allow modification to be made to types which are constrained to be
11720 based on the key element, based on bits set alongside N_EQK. */
11721 if ((typebits & N_EQK) != 0)
11722 {
11723 if ((typebits & N_HLF) != 0)
11724 *g_size /= 2;
11725 else if ((typebits & N_DBL) != 0)
11726 *g_size *= 2;
11727 if ((typebits & N_SGN) != 0)
11728 *g_type = NT_signed;
11729 else if ((typebits & N_UNS) != 0)
11730 *g_type = NT_unsigned;
11731 else if ((typebits & N_INT) != 0)
11732 *g_type = NT_integer;
11733 else if ((typebits & N_FLT) != 0)
11734 *g_type = NT_float;
11735 else if ((typebits & N_SIZ) != 0)
11736 *g_type = NT_untyped;
11737 }
11738 }
11739
11740 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11741 operand type, i.e. the single type specified in a Neon instruction when it
11742 is the only one given. */
11743
11744 static struct neon_type_el
11745 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11746 {
11747 struct neon_type_el dest = *key;
11748
11749 gas_assert ((thisarg & N_EQK) != 0);
11750
11751 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11752
11753 return dest;
11754 }
11755
11756 /* Convert Neon type and size into compact bitmask representation. */
11757
11758 static enum neon_type_mask
11759 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11760 {
11761 switch (type)
11762 {
11763 case NT_untyped:
11764 switch (size)
11765 {
11766 case 8: return N_8;
11767 case 16: return N_16;
11768 case 32: return N_32;
11769 case 64: return N_64;
11770 default: ;
11771 }
11772 break;
11773
11774 case NT_integer:
11775 switch (size)
11776 {
11777 case 8: return N_I8;
11778 case 16: return N_I16;
11779 case 32: return N_I32;
11780 case 64: return N_I64;
11781 default: ;
11782 }
11783 break;
11784
11785 case NT_float:
11786 switch (size)
11787 {
11788 case 16: return N_F16;
11789 case 32: return N_F32;
11790 case 64: return N_F64;
11791 default: ;
11792 }
11793 break;
11794
11795 case NT_poly:
11796 switch (size)
11797 {
11798 case 8: return N_P8;
11799 case 16: return N_P16;
11800 default: ;
11801 }
11802 break;
11803
11804 case NT_signed:
11805 switch (size)
11806 {
11807 case 8: return N_S8;
11808 case 16: return N_S16;
11809 case 32: return N_S32;
11810 case 64: return N_S64;
11811 default: ;
11812 }
11813 break;
11814
11815 case NT_unsigned:
11816 switch (size)
11817 {
11818 case 8: return N_U8;
11819 case 16: return N_U16;
11820 case 32: return N_U32;
11821 case 64: return N_U64;
11822 default: ;
11823 }
11824 break;
11825
11826 default: ;
11827 }
11828
11829 return N_UTYP;
11830 }
11831
11832 /* Convert compact Neon bitmask type representation to a type and size. Only
11833 handles the case where a single bit is set in the mask. */
11834
11835 static int
11836 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11837 enum neon_type_mask mask)
11838 {
11839 if ((mask & N_EQK) != 0)
11840 return FAIL;
11841
11842 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11843 *size = 8;
11844 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11845 *size = 16;
11846 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11847 *size = 32;
11848 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11849 *size = 64;
11850 else
11851 return FAIL;
11852
11853 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11854 *type = NT_signed;
11855 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11856 *type = NT_unsigned;
11857 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11858 *type = NT_integer;
11859 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11860 *type = NT_untyped;
11861 else if ((mask & (N_P8 | N_P16)) != 0)
11862 *type = NT_poly;
11863 else if ((mask & (N_F32 | N_F64)) != 0)
11864 *type = NT_float;
11865 else
11866 return FAIL;
11867
11868 return SUCCESS;
11869 }
11870
11871 /* Modify a bitmask of allowed types. This is only needed for type
11872 relaxation. */
11873
11874 static unsigned
11875 modify_types_allowed (unsigned allowed, unsigned mods)
11876 {
11877 unsigned size;
11878 enum neon_el_type type;
11879 unsigned destmask;
11880 int i;
11881
11882 destmask = 0;
11883
11884 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11885 {
11886 if (el_type_of_type_chk (&type, &size,
11887 (enum neon_type_mask) (allowed & i)) == SUCCESS)
11888 {
11889 neon_modify_type_size (mods, &type, &size);
11890 destmask |= type_chk_of_el_type (type, size);
11891 }
11892 }
11893
11894 return destmask;
11895 }
11896
11897 /* Check type and return type classification.
11898 The manual states (paraphrase): If one datatype is given, it indicates the
11899 type given in:
11900 - the second operand, if there is one
11901 - the operand, if there is no second operand
11902 - the result, if there are no operands.
11903 This isn't quite good enough though, so we use a concept of a "key" datatype
11904 which is set on a per-instruction basis, which is the one which matters when
11905 only one data type is written.
11906 Note: this function has side-effects (e.g. filling in missing operands). All
11907 Neon instructions should call it before performing bit encoding. */
11908
11909 static struct neon_type_el
11910 neon_check_type (unsigned els, enum neon_shape ns, ...)
11911 {
11912 va_list ap;
11913 unsigned i, pass, key_el = 0;
11914 unsigned types[NEON_MAX_TYPE_ELS];
11915 enum neon_el_type k_type = NT_invtype;
11916 unsigned k_size = -1u;
11917 struct neon_type_el badtype = {NT_invtype, -1};
11918 unsigned key_allowed = 0;
11919
11920 /* Optional registers in Neon instructions are always (not) in operand 1.
11921 Fill in the missing operand here, if it was omitted. */
11922 if (els > 1 && !inst.operands[1].present)
11923 inst.operands[1] = inst.operands[0];
11924
11925 /* Suck up all the varargs. */
11926 va_start (ap, ns);
11927 for (i = 0; i < els; i++)
11928 {
11929 unsigned thisarg = va_arg (ap, unsigned);
11930 if (thisarg == N_IGNORE_TYPE)
11931 {
11932 va_end (ap);
11933 return badtype;
11934 }
11935 types[i] = thisarg;
11936 if ((thisarg & N_KEY) != 0)
11937 key_el = i;
11938 }
11939 va_end (ap);
11940
11941 if (inst.vectype.elems > 0)
11942 for (i = 0; i < els; i++)
11943 if (inst.operands[i].vectype.type != NT_invtype)
11944 {
11945 first_error (_("types specified in both the mnemonic and operands"));
11946 return badtype;
11947 }
11948
11949 /* Duplicate inst.vectype elements here as necessary.
11950 FIXME: No idea if this is exactly the same as the ARM assembler,
11951 particularly when an insn takes one register and one non-register
11952 operand. */
11953 if (inst.vectype.elems == 1 && els > 1)
11954 {
11955 unsigned j;
11956 inst.vectype.elems = els;
11957 inst.vectype.el[key_el] = inst.vectype.el[0];
11958 for (j = 0; j < els; j++)
11959 if (j != key_el)
11960 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11961 types[j]);
11962 }
11963 else if (inst.vectype.elems == 0 && els > 0)
11964 {
11965 unsigned j;
11966 /* No types were given after the mnemonic, so look for types specified
11967 after each operand. We allow some flexibility here; as long as the
11968 "key" operand has a type, we can infer the others. */
11969 for (j = 0; j < els; j++)
11970 if (inst.operands[j].vectype.type != NT_invtype)
11971 inst.vectype.el[j] = inst.operands[j].vectype;
11972
11973 if (inst.operands[key_el].vectype.type != NT_invtype)
11974 {
11975 for (j = 0; j < els; j++)
11976 if (inst.operands[j].vectype.type == NT_invtype)
11977 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11978 types[j]);
11979 }
11980 else
11981 {
11982 first_error (_("operand types can't be inferred"));
11983 return badtype;
11984 }
11985 }
11986 else if (inst.vectype.elems != els)
11987 {
11988 first_error (_("type specifier has the wrong number of parts"));
11989 return badtype;
11990 }
11991
11992 for (pass = 0; pass < 2; pass++)
11993 {
11994 for (i = 0; i < els; i++)
11995 {
11996 unsigned thisarg = types[i];
11997 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11998 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11999 enum neon_el_type g_type = inst.vectype.el[i].type;
12000 unsigned g_size = inst.vectype.el[i].size;
12001
12002 /* Decay more-specific signed & unsigned types to sign-insensitive
12003 integer types if sign-specific variants are unavailable. */
12004 if ((g_type == NT_signed || g_type == NT_unsigned)
12005 && (types_allowed & N_SU_ALL) == 0)
12006 g_type = NT_integer;
12007
12008 /* If only untyped args are allowed, decay any more specific types to
12009 them. Some instructions only care about signs for some element
12010 sizes, so handle that properly. */
12011 if ((g_size == 8 && (types_allowed & N_8) != 0)
12012 || (g_size == 16 && (types_allowed & N_16) != 0)
12013 || (g_size == 32 && (types_allowed & N_32) != 0)
12014 || (g_size == 64 && (types_allowed & N_64) != 0))
12015 g_type = NT_untyped;
12016
12017 if (pass == 0)
12018 {
12019 if ((thisarg & N_KEY) != 0)
12020 {
12021 k_type = g_type;
12022 k_size = g_size;
12023 key_allowed = thisarg & ~N_KEY;
12024 }
12025 }
12026 else
12027 {
12028 if ((thisarg & N_VFP) != 0)
12029 {
12030 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
12031 unsigned regwidth = neon_shape_el_size[regshape], match;
12032
12033 /* In VFP mode, operands must match register widths. If we
12034 have a key operand, use its width, else use the width of
12035 the current operand. */
12036 if (k_size != -1u)
12037 match = k_size;
12038 else
12039 match = g_size;
12040
12041 if (regwidth != match)
12042 {
12043 first_error (_("operand size must match register width"));
12044 return badtype;
12045 }
12046 }
12047
12048 if ((thisarg & N_EQK) == 0)
12049 {
12050 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12051
12052 if ((given_type & types_allowed) == 0)
12053 {
12054 first_error (_("bad type in Neon instruction"));
12055 return badtype;
12056 }
12057 }
12058 else
12059 {
12060 enum neon_el_type mod_k_type = k_type;
12061 unsigned mod_k_size = k_size;
12062 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12063 if (g_type != mod_k_type || g_size != mod_k_size)
12064 {
12065 first_error (_("inconsistent types in Neon instruction"));
12066 return badtype;
12067 }
12068 }
12069 }
12070 }
12071 }
12072
12073 return inst.vectype.el[key_el];
12074 }
12075
12076 /* Neon-style VFP instruction forwarding. */
12077
12078 /* Thumb VFP instructions have 0xE in the condition field. */
12079
12080 static void
12081 do_vfp_cond_or_thumb (void)
12082 {
12083 if (thumb_mode)
12084 inst.instruction |= 0xe0000000;
12085 else
12086 inst.instruction |= inst.cond << 28;
12087 }
12088
12089 /* Look up and encode a simple mnemonic, for use as a helper function for the
12090 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12091 etc. It is assumed that operand parsing has already been done, and that the
12092 operands are in the form expected by the given opcode (this isn't necessarily
12093 the same as the form in which they were parsed, hence some massaging must
12094 take place before this function is called).
12095 Checks current arch version against that in the looked-up opcode. */
12096
12097 static void
12098 do_vfp_nsyn_opcode (const char *opname)
12099 {
12100 const struct asm_opcode *opcode;
12101
12102 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12103
12104 if (!opcode)
12105 abort ();
12106
12107 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12108 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12109 _(BAD_FPU));
12110
12111 if (thumb_mode)
12112 {
12113 inst.instruction = opcode->tvalue;
12114 opcode->tencode ();
12115 }
12116 else
12117 {
12118 inst.instruction = (inst.cond << 28) | opcode->avalue;
12119 opcode->aencode ();
12120 }
12121 }
12122
12123 static void
12124 do_vfp_nsyn_add_sub (enum neon_shape rs)
12125 {
12126 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12127
12128 if (rs == NS_FFF)
12129 {
12130 if (is_add)
12131 do_vfp_nsyn_opcode ("fadds");
12132 else
12133 do_vfp_nsyn_opcode ("fsubs");
12134 }
12135 else
12136 {
12137 if (is_add)
12138 do_vfp_nsyn_opcode ("faddd");
12139 else
12140 do_vfp_nsyn_opcode ("fsubd");
12141 }
12142 }
12143
12144 /* Check operand types to see if this is a VFP instruction, and if so call
12145 PFN (). */
12146
12147 static int
12148 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12149 {
12150 enum neon_shape rs;
12151 struct neon_type_el et;
12152
12153 switch (args)
12154 {
12155 case 2:
12156 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12157 et = neon_check_type (2, rs,
12158 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12159 break;
12160
12161 case 3:
12162 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12163 et = neon_check_type (3, rs,
12164 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12165 break;
12166
12167 default:
12168 abort ();
12169 }
12170
12171 if (et.type != NT_invtype)
12172 {
12173 pfn (rs);
12174 return SUCCESS;
12175 }
12176 else
12177 inst.error = NULL;
12178
12179 return FAIL;
12180 }
12181
12182 static void
12183 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12184 {
12185 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12186
12187 if (rs == NS_FFF)
12188 {
12189 if (is_mla)
12190 do_vfp_nsyn_opcode ("fmacs");
12191 else
12192 do_vfp_nsyn_opcode ("fnmacs");
12193 }
12194 else
12195 {
12196 if (is_mla)
12197 do_vfp_nsyn_opcode ("fmacd");
12198 else
12199 do_vfp_nsyn_opcode ("fnmacd");
12200 }
12201 }
12202
12203 static void
12204 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12205 {
12206 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12207
12208 if (rs == NS_FFF)
12209 {
12210 if (is_fma)
12211 do_vfp_nsyn_opcode ("ffmas");
12212 else
12213 do_vfp_nsyn_opcode ("ffnmas");
12214 }
12215 else
12216 {
12217 if (is_fma)
12218 do_vfp_nsyn_opcode ("ffmad");
12219 else
12220 do_vfp_nsyn_opcode ("ffnmad");
12221 }
12222 }
12223
12224 static void
12225 do_vfp_nsyn_mul (enum neon_shape rs)
12226 {
12227 if (rs == NS_FFF)
12228 do_vfp_nsyn_opcode ("fmuls");
12229 else
12230 do_vfp_nsyn_opcode ("fmuld");
12231 }
12232
12233 static void
12234 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12235 {
12236 int is_neg = (inst.instruction & 0x80) != 0;
12237 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12238
12239 if (rs == NS_FF)
12240 {
12241 if (is_neg)
12242 do_vfp_nsyn_opcode ("fnegs");
12243 else
12244 do_vfp_nsyn_opcode ("fabss");
12245 }
12246 else
12247 {
12248 if (is_neg)
12249 do_vfp_nsyn_opcode ("fnegd");
12250 else
12251 do_vfp_nsyn_opcode ("fabsd");
12252 }
12253 }
12254
12255 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12256 insns belong to Neon, and are handled elsewhere. */
12257
12258 static void
12259 do_vfp_nsyn_ldm_stm (int is_dbmode)
12260 {
12261 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12262 if (is_ldm)
12263 {
12264 if (is_dbmode)
12265 do_vfp_nsyn_opcode ("fldmdbs");
12266 else
12267 do_vfp_nsyn_opcode ("fldmias");
12268 }
12269 else
12270 {
12271 if (is_dbmode)
12272 do_vfp_nsyn_opcode ("fstmdbs");
12273 else
12274 do_vfp_nsyn_opcode ("fstmias");
12275 }
12276 }
12277
12278 static void
12279 do_vfp_nsyn_sqrt (void)
12280 {
12281 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12282 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12283
12284 if (rs == NS_FF)
12285 do_vfp_nsyn_opcode ("fsqrts");
12286 else
12287 do_vfp_nsyn_opcode ("fsqrtd");
12288 }
12289
12290 static void
12291 do_vfp_nsyn_div (void)
12292 {
12293 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12294 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12295 N_F32 | N_F64 | N_KEY | N_VFP);
12296
12297 if (rs == NS_FFF)
12298 do_vfp_nsyn_opcode ("fdivs");
12299 else
12300 do_vfp_nsyn_opcode ("fdivd");
12301 }
12302
12303 static void
12304 do_vfp_nsyn_nmul (void)
12305 {
12306 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12307 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12308 N_F32 | N_F64 | N_KEY | N_VFP);
12309
12310 if (rs == NS_FFF)
12311 {
12312 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12313 do_vfp_sp_dyadic ();
12314 }
12315 else
12316 {
12317 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12318 do_vfp_dp_rd_rn_rm ();
12319 }
12320 do_vfp_cond_or_thumb ();
12321 }
12322
12323 static void
12324 do_vfp_nsyn_cmp (void)
12325 {
12326 if (inst.operands[1].isreg)
12327 {
12328 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12329 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12330
12331 if (rs == NS_FF)
12332 {
12333 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12334 do_vfp_sp_monadic ();
12335 }
12336 else
12337 {
12338 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12339 do_vfp_dp_rd_rm ();
12340 }
12341 }
12342 else
12343 {
12344 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12345 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12346
12347 switch (inst.instruction & 0x0fffffff)
12348 {
12349 case N_MNEM_vcmp:
12350 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12351 break;
12352 case N_MNEM_vcmpe:
12353 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12354 break;
12355 default:
12356 abort ();
12357 }
12358
12359 if (rs == NS_FI)
12360 {
12361 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12362 do_vfp_sp_compare_z ();
12363 }
12364 else
12365 {
12366 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12367 do_vfp_dp_rd ();
12368 }
12369 }
12370 do_vfp_cond_or_thumb ();
12371 }
12372
12373 static void
12374 nsyn_insert_sp (void)
12375 {
12376 inst.operands[1] = inst.operands[0];
12377 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12378 inst.operands[0].reg = REG_SP;
12379 inst.operands[0].isreg = 1;
12380 inst.operands[0].writeback = 1;
12381 inst.operands[0].present = 1;
12382 }
12383
12384 static void
12385 do_vfp_nsyn_push (void)
12386 {
12387 nsyn_insert_sp ();
12388 if (inst.operands[1].issingle)
12389 do_vfp_nsyn_opcode ("fstmdbs");
12390 else
12391 do_vfp_nsyn_opcode ("fstmdbd");
12392 }
12393
12394 static void
12395 do_vfp_nsyn_pop (void)
12396 {
12397 nsyn_insert_sp ();
12398 if (inst.operands[1].issingle)
12399 do_vfp_nsyn_opcode ("fldmias");
12400 else
12401 do_vfp_nsyn_opcode ("fldmiad");
12402 }
12403
12404 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12405 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12406
12407 static unsigned
12408 neon_dp_fixup (unsigned i)
12409 {
12410 if (thumb_mode)
12411 {
12412 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12413 if (i & (1 << 24))
12414 i |= 1 << 28;
12415
12416 i &= ~(1 << 24);
12417
12418 i |= 0xef000000;
12419 }
12420 else
12421 i |= 0xf2000000;
12422
12423 return i;
12424 }
12425
12426 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12427 (0, 1, 2, 3). */
12428
12429 static unsigned
12430 neon_logbits (unsigned x)
12431 {
12432 return ffs (x) - 4;
12433 }
12434
12435 #define LOW4(R) ((R) & 0xf)
12436 #define HI1(R) (((R) >> 4) & 1)
12437
12438 /* Encode insns with bit pattern:
12439
12440 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12441 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12442
12443 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12444 different meaning for some instruction. */
12445
12446 static void
12447 neon_three_same (int isquad, int ubit, int size)
12448 {
12449 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12450 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12451 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12452 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12453 inst.instruction |= LOW4 (inst.operands[2].reg);
12454 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12455 inst.instruction |= (isquad != 0) << 6;
12456 inst.instruction |= (ubit != 0) << 24;
12457 if (size != -1)
12458 inst.instruction |= neon_logbits (size) << 20;
12459
12460 inst.instruction = neon_dp_fixup (inst.instruction);
12461 }
12462
12463 /* Encode instructions of the form:
12464
12465 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12466 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12467
12468 Don't write size if SIZE == -1. */
12469
12470 static void
12471 neon_two_same (int qbit, int ubit, int size)
12472 {
12473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12475 inst.instruction |= LOW4 (inst.operands[1].reg);
12476 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12477 inst.instruction |= (qbit != 0) << 6;
12478 inst.instruction |= (ubit != 0) << 24;
12479
12480 if (size != -1)
12481 inst.instruction |= neon_logbits (size) << 18;
12482
12483 inst.instruction = neon_dp_fixup (inst.instruction);
12484 }
12485
12486 /* Neon instruction encoders, in approximate order of appearance. */
12487
12488 static void
12489 do_neon_dyadic_i_su (void)
12490 {
12491 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12492 struct neon_type_el et = neon_check_type (3, rs,
12493 N_EQK, N_EQK, N_SU_32 | N_KEY);
12494 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12495 }
12496
12497 static void
12498 do_neon_dyadic_i64_su (void)
12499 {
12500 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12501 struct neon_type_el et = neon_check_type (3, rs,
12502 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12503 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12504 }
12505
12506 static void
12507 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12508 unsigned immbits)
12509 {
12510 unsigned size = et.size >> 3;
12511 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12512 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12513 inst.instruction |= LOW4 (inst.operands[1].reg);
12514 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12515 inst.instruction |= (isquad != 0) << 6;
12516 inst.instruction |= immbits << 16;
12517 inst.instruction |= (size >> 3) << 7;
12518 inst.instruction |= (size & 0x7) << 19;
12519 if (write_ubit)
12520 inst.instruction |= (uval != 0) << 24;
12521
12522 inst.instruction = neon_dp_fixup (inst.instruction);
12523 }
12524
12525 static void
12526 do_neon_shl_imm (void)
12527 {
12528 if (!inst.operands[2].isreg)
12529 {
12530 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12531 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12532 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12533 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12534 }
12535 else
12536 {
12537 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12538 struct neon_type_el et = neon_check_type (3, rs,
12539 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12540 unsigned int tmp;
12541
12542 /* VSHL/VQSHL 3-register variants have syntax such as:
12543 vshl.xx Dd, Dm, Dn
12544 whereas other 3-register operations encoded by neon_three_same have
12545 syntax like:
12546 vadd.xx Dd, Dn, Dm
12547 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12548 here. */
12549 tmp = inst.operands[2].reg;
12550 inst.operands[2].reg = inst.operands[1].reg;
12551 inst.operands[1].reg = tmp;
12552 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12553 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12554 }
12555 }
12556
12557 static void
12558 do_neon_qshl_imm (void)
12559 {
12560 if (!inst.operands[2].isreg)
12561 {
12562 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12563 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12564
12565 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12566 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12567 inst.operands[2].imm);
12568 }
12569 else
12570 {
12571 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12572 struct neon_type_el et = neon_check_type (3, rs,
12573 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12574 unsigned int tmp;
12575
12576 /* See note in do_neon_shl_imm. */
12577 tmp = inst.operands[2].reg;
12578 inst.operands[2].reg = inst.operands[1].reg;
12579 inst.operands[1].reg = tmp;
12580 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12581 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12582 }
12583 }
12584
12585 static void
12586 do_neon_rshl (void)
12587 {
12588 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12589 struct neon_type_el et = neon_check_type (3, rs,
12590 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12591 unsigned int tmp;
12592
12593 tmp = inst.operands[2].reg;
12594 inst.operands[2].reg = inst.operands[1].reg;
12595 inst.operands[1].reg = tmp;
12596 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12597 }
12598
12599 static int
12600 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12601 {
12602 /* Handle .I8 pseudo-instructions. */
12603 if (size == 8)
12604 {
12605 /* Unfortunately, this will make everything apart from zero out-of-range.
12606 FIXME is this the intended semantics? There doesn't seem much point in
12607 accepting .I8 if so. */
12608 immediate |= immediate << 8;
12609 size = 16;
12610 }
12611
12612 if (size >= 32)
12613 {
12614 if (immediate == (immediate & 0x000000ff))
12615 {
12616 *immbits = immediate;
12617 return 0x1;
12618 }
12619 else if (immediate == (immediate & 0x0000ff00))
12620 {
12621 *immbits = immediate >> 8;
12622 return 0x3;
12623 }
12624 else if (immediate == (immediate & 0x00ff0000))
12625 {
12626 *immbits = immediate >> 16;
12627 return 0x5;
12628 }
12629 else if (immediate == (immediate & 0xff000000))
12630 {
12631 *immbits = immediate >> 24;
12632 return 0x7;
12633 }
12634 if ((immediate & 0xffff) != (immediate >> 16))
12635 goto bad_immediate;
12636 immediate &= 0xffff;
12637 }
12638
12639 if (immediate == (immediate & 0x000000ff))
12640 {
12641 *immbits = immediate;
12642 return 0x9;
12643 }
12644 else if (immediate == (immediate & 0x0000ff00))
12645 {
12646 *immbits = immediate >> 8;
12647 return 0xb;
12648 }
12649
12650 bad_immediate:
12651 first_error (_("immediate value out of range"));
12652 return FAIL;
12653 }
12654
12655 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12656 A, B, C, D. */
12657
12658 static int
12659 neon_bits_same_in_bytes (unsigned imm)
12660 {
12661 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12662 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12663 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12664 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12665 }
12666
12667 /* For immediate of above form, return 0bABCD. */
12668
12669 static unsigned
12670 neon_squash_bits (unsigned imm)
12671 {
12672 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12673 | ((imm & 0x01000000) >> 21);
12674 }
12675
12676 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12677
12678 static unsigned
12679 neon_qfloat_bits (unsigned imm)
12680 {
12681 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12682 }
12683
12684 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12685 the instruction. *OP is passed as the initial value of the op field, and
12686 may be set to a different value depending on the constant (i.e.
12687 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12688 MVN). If the immediate looks like a repeated pattern then also
12689 try smaller element sizes. */
12690
12691 static int
12692 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12693 unsigned *immbits, int *op, int size,
12694 enum neon_el_type type)
12695 {
12696 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12697 float. */
12698 if (type == NT_float && !float_p)
12699 return FAIL;
12700
12701 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12702 {
12703 if (size != 32 || *op == 1)
12704 return FAIL;
12705 *immbits = neon_qfloat_bits (immlo);
12706 return 0xf;
12707 }
12708
12709 if (size == 64)
12710 {
12711 if (neon_bits_same_in_bytes (immhi)
12712 && neon_bits_same_in_bytes (immlo))
12713 {
12714 if (*op == 1)
12715 return FAIL;
12716 *immbits = (neon_squash_bits (immhi) << 4)
12717 | neon_squash_bits (immlo);
12718 *op = 1;
12719 return 0xe;
12720 }
12721
12722 if (immhi != immlo)
12723 return FAIL;
12724 }
12725
12726 if (size >= 32)
12727 {
12728 if (immlo == (immlo & 0x000000ff))
12729 {
12730 *immbits = immlo;
12731 return 0x0;
12732 }
12733 else if (immlo == (immlo & 0x0000ff00))
12734 {
12735 *immbits = immlo >> 8;
12736 return 0x2;
12737 }
12738 else if (immlo == (immlo & 0x00ff0000))
12739 {
12740 *immbits = immlo >> 16;
12741 return 0x4;
12742 }
12743 else if (immlo == (immlo & 0xff000000))
12744 {
12745 *immbits = immlo >> 24;
12746 return 0x6;
12747 }
12748 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12749 {
12750 *immbits = (immlo >> 8) & 0xff;
12751 return 0xc;
12752 }
12753 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12754 {
12755 *immbits = (immlo >> 16) & 0xff;
12756 return 0xd;
12757 }
12758
12759 if ((immlo & 0xffff) != (immlo >> 16))
12760 return FAIL;
12761 immlo &= 0xffff;
12762 }
12763
12764 if (size >= 16)
12765 {
12766 if (immlo == (immlo & 0x000000ff))
12767 {
12768 *immbits = immlo;
12769 return 0x8;
12770 }
12771 else if (immlo == (immlo & 0x0000ff00))
12772 {
12773 *immbits = immlo >> 8;
12774 return 0xa;
12775 }
12776
12777 if ((immlo & 0xff) != (immlo >> 8))
12778 return FAIL;
12779 immlo &= 0xff;
12780 }
12781
12782 if (immlo == (immlo & 0x000000ff))
12783 {
12784 /* Don't allow MVN with 8-bit immediate. */
12785 if (*op == 1)
12786 return FAIL;
12787 *immbits = immlo;
12788 return 0xe;
12789 }
12790
12791 return FAIL;
12792 }
12793
12794 /* Write immediate bits [7:0] to the following locations:
12795
12796 |28/24|23 19|18 16|15 4|3 0|
12797 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12798
12799 This function is used by VMOV/VMVN/VORR/VBIC. */
12800
12801 static void
12802 neon_write_immbits (unsigned immbits)
12803 {
12804 inst.instruction |= immbits & 0xf;
12805 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12806 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12807 }
12808
12809 /* Invert low-order SIZE bits of XHI:XLO. */
12810
12811 static void
12812 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12813 {
12814 unsigned immlo = xlo ? *xlo : 0;
12815 unsigned immhi = xhi ? *xhi : 0;
12816
12817 switch (size)
12818 {
12819 case 8:
12820 immlo = (~immlo) & 0xff;
12821 break;
12822
12823 case 16:
12824 immlo = (~immlo) & 0xffff;
12825 break;
12826
12827 case 64:
12828 immhi = (~immhi) & 0xffffffff;
12829 /* fall through. */
12830
12831 case 32:
12832 immlo = (~immlo) & 0xffffffff;
12833 break;
12834
12835 default:
12836 abort ();
12837 }
12838
12839 if (xlo)
12840 *xlo = immlo;
12841
12842 if (xhi)
12843 *xhi = immhi;
12844 }
12845
12846 static void
12847 do_neon_logic (void)
12848 {
12849 if (inst.operands[2].present && inst.operands[2].isreg)
12850 {
12851 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12852 neon_check_type (3, rs, N_IGNORE_TYPE);
12853 /* U bit and size field were set as part of the bitmask. */
12854 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12855 neon_three_same (neon_quad (rs), 0, -1);
12856 }
12857 else
12858 {
12859 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12860 struct neon_type_el et = neon_check_type (2, rs,
12861 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12862 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
12863 unsigned immbits;
12864 int cmode;
12865
12866 if (et.type == NT_invtype)
12867 return;
12868
12869 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12870
12871 immbits = inst.operands[1].imm;
12872 if (et.size == 64)
12873 {
12874 /* .i64 is a pseudo-op, so the immediate must be a repeating
12875 pattern. */
12876 if (immbits != (inst.operands[1].regisimm ?
12877 inst.operands[1].reg : 0))
12878 {
12879 /* Set immbits to an invalid constant. */
12880 immbits = 0xdeadbeef;
12881 }
12882 }
12883
12884 switch (opcode)
12885 {
12886 case N_MNEM_vbic:
12887 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12888 break;
12889
12890 case N_MNEM_vorr:
12891 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12892 break;
12893
12894 case N_MNEM_vand:
12895 /* Pseudo-instruction for VBIC. */
12896 neon_invert_size (&immbits, 0, et.size);
12897 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12898 break;
12899
12900 case N_MNEM_vorn:
12901 /* Pseudo-instruction for VORR. */
12902 neon_invert_size (&immbits, 0, et.size);
12903 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12904 break;
12905
12906 default:
12907 abort ();
12908 }
12909
12910 if (cmode == FAIL)
12911 return;
12912
12913 inst.instruction |= neon_quad (rs) << 6;
12914 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12915 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12916 inst.instruction |= cmode << 8;
12917 neon_write_immbits (immbits);
12918
12919 inst.instruction = neon_dp_fixup (inst.instruction);
12920 }
12921 }
12922
12923 static void
12924 do_neon_bitfield (void)
12925 {
12926 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12927 neon_check_type (3, rs, N_IGNORE_TYPE);
12928 neon_three_same (neon_quad (rs), 0, -1);
12929 }
12930
12931 static void
12932 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12933 unsigned destbits)
12934 {
12935 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12936 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12937 types | N_KEY);
12938 if (et.type == NT_float)
12939 {
12940 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12941 neon_three_same (neon_quad (rs), 0, -1);
12942 }
12943 else
12944 {
12945 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12946 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12947 }
12948 }
12949
12950 static void
12951 do_neon_dyadic_if_su (void)
12952 {
12953 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12954 }
12955
12956 static void
12957 do_neon_dyadic_if_su_d (void)
12958 {
12959 /* This version only allow D registers, but that constraint is enforced during
12960 operand parsing so we don't need to do anything extra here. */
12961 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12962 }
12963
12964 static void
12965 do_neon_dyadic_if_i_d (void)
12966 {
12967 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12968 affected if we specify unsigned args. */
12969 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12970 }
12971
12972 enum vfp_or_neon_is_neon_bits
12973 {
12974 NEON_CHECK_CC = 1,
12975 NEON_CHECK_ARCH = 2
12976 };
12977
12978 /* Call this function if an instruction which may have belonged to the VFP or
12979 Neon instruction sets, but turned out to be a Neon instruction (due to the
12980 operand types involved, etc.). We have to check and/or fix-up a couple of
12981 things:
12982
12983 - Make sure the user hasn't attempted to make a Neon instruction
12984 conditional.
12985 - Alter the value in the condition code field if necessary.
12986 - Make sure that the arch supports Neon instructions.
12987
12988 Which of these operations take place depends on bits from enum
12989 vfp_or_neon_is_neon_bits.
12990
12991 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12992 current instruction's condition is COND_ALWAYS, the condition field is
12993 changed to inst.uncond_value. This is necessary because instructions shared
12994 between VFP and Neon may be conditional for the VFP variants only, and the
12995 unconditional Neon version must have, e.g., 0xF in the condition field. */
12996
12997 static int
12998 vfp_or_neon_is_neon (unsigned check)
12999 {
13000 /* Conditions are always legal in Thumb mode (IT blocks). */
13001 if (!thumb_mode && (check & NEON_CHECK_CC))
13002 {
13003 if (inst.cond != COND_ALWAYS)
13004 {
13005 first_error (_(BAD_COND));
13006 return FAIL;
13007 }
13008 if (inst.uncond_value != -1)
13009 inst.instruction |= inst.uncond_value << 28;
13010 }
13011
13012 if ((check & NEON_CHECK_ARCH)
13013 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13014 {
13015 first_error (_(BAD_FPU));
13016 return FAIL;
13017 }
13018
13019 return SUCCESS;
13020 }
13021
13022 static void
13023 do_neon_addsub_if_i (void)
13024 {
13025 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13026 return;
13027
13028 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13029 return;
13030
13031 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13032 affected if we specify unsigned args. */
13033 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13034 }
13035
13036 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13037 result to be:
13038 V<op> A,B (A is operand 0, B is operand 2)
13039 to mean:
13040 V<op> A,B,A
13041 not:
13042 V<op> A,B,B
13043 so handle that case specially. */
13044
13045 static void
13046 neon_exchange_operands (void)
13047 {
13048 void *scratch = alloca (sizeof (inst.operands[0]));
13049 if (inst.operands[1].present)
13050 {
13051 /* Swap operands[1] and operands[2]. */
13052 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13053 inst.operands[1] = inst.operands[2];
13054 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13055 }
13056 else
13057 {
13058 inst.operands[1] = inst.operands[2];
13059 inst.operands[2] = inst.operands[0];
13060 }
13061 }
13062
13063 static void
13064 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13065 {
13066 if (inst.operands[2].isreg)
13067 {
13068 if (invert)
13069 neon_exchange_operands ();
13070 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13071 }
13072 else
13073 {
13074 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13075 struct neon_type_el et = neon_check_type (2, rs,
13076 N_EQK | N_SIZ, immtypes | N_KEY);
13077
13078 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13079 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13081 inst.instruction |= LOW4 (inst.operands[1].reg);
13082 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13083 inst.instruction |= neon_quad (rs) << 6;
13084 inst.instruction |= (et.type == NT_float) << 10;
13085 inst.instruction |= neon_logbits (et.size) << 18;
13086
13087 inst.instruction = neon_dp_fixup (inst.instruction);
13088 }
13089 }
13090
13091 static void
13092 do_neon_cmp (void)
13093 {
13094 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13095 }
13096
13097 static void
13098 do_neon_cmp_inv (void)
13099 {
13100 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13101 }
13102
13103 static void
13104 do_neon_ceq (void)
13105 {
13106 neon_compare (N_IF_32, N_IF_32, FALSE);
13107 }
13108
13109 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13110 scalars, which are encoded in 5 bits, M : Rm.
13111 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13112 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13113 index in M. */
13114
13115 static unsigned
13116 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13117 {
13118 unsigned regno = NEON_SCALAR_REG (scalar);
13119 unsigned elno = NEON_SCALAR_INDEX (scalar);
13120
13121 switch (elsize)
13122 {
13123 case 16:
13124 if (regno > 7 || elno > 3)
13125 goto bad_scalar;
13126 return regno | (elno << 3);
13127
13128 case 32:
13129 if (regno > 15 || elno > 1)
13130 goto bad_scalar;
13131 return regno | (elno << 4);
13132
13133 default:
13134 bad_scalar:
13135 first_error (_("scalar out of range for multiply instruction"));
13136 }
13137
13138 return 0;
13139 }
13140
13141 /* Encode multiply / multiply-accumulate scalar instructions. */
13142
13143 static void
13144 neon_mul_mac (struct neon_type_el et, int ubit)
13145 {
13146 unsigned scalar;
13147
13148 /* Give a more helpful error message if we have an invalid type. */
13149 if (et.type == NT_invtype)
13150 return;
13151
13152 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13153 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13155 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13156 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13157 inst.instruction |= LOW4 (scalar);
13158 inst.instruction |= HI1 (scalar) << 5;
13159 inst.instruction |= (et.type == NT_float) << 8;
13160 inst.instruction |= neon_logbits (et.size) << 20;
13161 inst.instruction |= (ubit != 0) << 24;
13162
13163 inst.instruction = neon_dp_fixup (inst.instruction);
13164 }
13165
13166 static void
13167 do_neon_mac_maybe_scalar (void)
13168 {
13169 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13170 return;
13171
13172 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13173 return;
13174
13175 if (inst.operands[2].isscalar)
13176 {
13177 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13178 struct neon_type_el et = neon_check_type (3, rs,
13179 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13180 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13181 neon_mul_mac (et, neon_quad (rs));
13182 }
13183 else
13184 {
13185 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13186 affected if we specify unsigned args. */
13187 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13188 }
13189 }
13190
13191 static void
13192 do_neon_fmac (void)
13193 {
13194 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13195 return;
13196
13197 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13198 return;
13199
13200 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13201 }
13202
13203 static void
13204 do_neon_tst (void)
13205 {
13206 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13207 struct neon_type_el et = neon_check_type (3, rs,
13208 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13209 neon_three_same (neon_quad (rs), 0, et.size);
13210 }
13211
13212 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13213 same types as the MAC equivalents. The polynomial type for this instruction
13214 is encoded the same as the integer type. */
13215
13216 static void
13217 do_neon_mul (void)
13218 {
13219 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13220 return;
13221
13222 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13223 return;
13224
13225 if (inst.operands[2].isscalar)
13226 do_neon_mac_maybe_scalar ();
13227 else
13228 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13229 }
13230
13231 static void
13232 do_neon_qdmulh (void)
13233 {
13234 if (inst.operands[2].isscalar)
13235 {
13236 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13237 struct neon_type_el et = neon_check_type (3, rs,
13238 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13239 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13240 neon_mul_mac (et, neon_quad (rs));
13241 }
13242 else
13243 {
13244 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13245 struct neon_type_el et = neon_check_type (3, rs,
13246 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13247 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13248 /* The U bit (rounding) comes from bit mask. */
13249 neon_three_same (neon_quad (rs), 0, et.size);
13250 }
13251 }
13252
13253 static void
13254 do_neon_fcmp_absolute (void)
13255 {
13256 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13257 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13258 /* Size field comes from bit mask. */
13259 neon_three_same (neon_quad (rs), 1, -1);
13260 }
13261
13262 static void
13263 do_neon_fcmp_absolute_inv (void)
13264 {
13265 neon_exchange_operands ();
13266 do_neon_fcmp_absolute ();
13267 }
13268
13269 static void
13270 do_neon_step (void)
13271 {
13272 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13273 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13274 neon_three_same (neon_quad (rs), 0, -1);
13275 }
13276
13277 static void
13278 do_neon_abs_neg (void)
13279 {
13280 enum neon_shape rs;
13281 struct neon_type_el et;
13282
13283 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13284 return;
13285
13286 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13287 return;
13288
13289 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13290 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13291
13292 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13294 inst.instruction |= LOW4 (inst.operands[1].reg);
13295 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13296 inst.instruction |= neon_quad (rs) << 6;
13297 inst.instruction |= (et.type == NT_float) << 10;
13298 inst.instruction |= neon_logbits (et.size) << 18;
13299
13300 inst.instruction = neon_dp_fixup (inst.instruction);
13301 }
13302
13303 static void
13304 do_neon_sli (void)
13305 {
13306 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13307 struct neon_type_el et = neon_check_type (2, rs,
13308 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13309 int imm = inst.operands[2].imm;
13310 constraint (imm < 0 || (unsigned)imm >= et.size,
13311 _("immediate out of range for insert"));
13312 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13313 }
13314
13315 static void
13316 do_neon_sri (void)
13317 {
13318 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13319 struct neon_type_el et = neon_check_type (2, rs,
13320 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13321 int imm = inst.operands[2].imm;
13322 constraint (imm < 1 || (unsigned)imm > et.size,
13323 _("immediate out of range for insert"));
13324 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13325 }
13326
13327 static void
13328 do_neon_qshlu_imm (void)
13329 {
13330 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13331 struct neon_type_el et = neon_check_type (2, rs,
13332 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13333 int imm = inst.operands[2].imm;
13334 constraint (imm < 0 || (unsigned)imm >= et.size,
13335 _("immediate out of range for shift"));
13336 /* Only encodes the 'U present' variant of the instruction.
13337 In this case, signed types have OP (bit 8) set to 0.
13338 Unsigned types have OP set to 1. */
13339 inst.instruction |= (et.type == NT_unsigned) << 8;
13340 /* The rest of the bits are the same as other immediate shifts. */
13341 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13342 }
13343
13344 static void
13345 do_neon_qmovn (void)
13346 {
13347 struct neon_type_el et = neon_check_type (2, NS_DQ,
13348 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13349 /* Saturating move where operands can be signed or unsigned, and the
13350 destination has the same signedness. */
13351 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13352 if (et.type == NT_unsigned)
13353 inst.instruction |= 0xc0;
13354 else
13355 inst.instruction |= 0x80;
13356 neon_two_same (0, 1, et.size / 2);
13357 }
13358
13359 static void
13360 do_neon_qmovun (void)
13361 {
13362 struct neon_type_el et = neon_check_type (2, NS_DQ,
13363 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13364 /* Saturating move with unsigned results. Operands must be signed. */
13365 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13366 neon_two_same (0, 1, et.size / 2);
13367 }
13368
13369 static void
13370 do_neon_rshift_sat_narrow (void)
13371 {
13372 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13373 or unsigned. If operands are unsigned, results must also be unsigned. */
13374 struct neon_type_el et = neon_check_type (2, NS_DQI,
13375 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13376 int imm = inst.operands[2].imm;
13377 /* This gets the bounds check, size encoding and immediate bits calculation
13378 right. */
13379 et.size /= 2;
13380
13381 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13382 VQMOVN.I<size> <Dd>, <Qm>. */
13383 if (imm == 0)
13384 {
13385 inst.operands[2].present = 0;
13386 inst.instruction = N_MNEM_vqmovn;
13387 do_neon_qmovn ();
13388 return;
13389 }
13390
13391 constraint (imm < 1 || (unsigned)imm > et.size,
13392 _("immediate out of range"));
13393 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13394 }
13395
13396 static void
13397 do_neon_rshift_sat_narrow_u (void)
13398 {
13399 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13400 or unsigned. If operands are unsigned, results must also be unsigned. */
13401 struct neon_type_el et = neon_check_type (2, NS_DQI,
13402 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13403 int imm = inst.operands[2].imm;
13404 /* This gets the bounds check, size encoding and immediate bits calculation
13405 right. */
13406 et.size /= 2;
13407
13408 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13409 VQMOVUN.I<size> <Dd>, <Qm>. */
13410 if (imm == 0)
13411 {
13412 inst.operands[2].present = 0;
13413 inst.instruction = N_MNEM_vqmovun;
13414 do_neon_qmovun ();
13415 return;
13416 }
13417
13418 constraint (imm < 1 || (unsigned)imm > et.size,
13419 _("immediate out of range"));
13420 /* FIXME: The manual is kind of unclear about what value U should have in
13421 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13422 must be 1. */
13423 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13424 }
13425
13426 static void
13427 do_neon_movn (void)
13428 {
13429 struct neon_type_el et = neon_check_type (2, NS_DQ,
13430 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13431 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13432 neon_two_same (0, 1, et.size / 2);
13433 }
13434
13435 static void
13436 do_neon_rshift_narrow (void)
13437 {
13438 struct neon_type_el et = neon_check_type (2, NS_DQI,
13439 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13440 int imm = inst.operands[2].imm;
13441 /* This gets the bounds check, size encoding and immediate bits calculation
13442 right. */
13443 et.size /= 2;
13444
13445 /* If immediate is zero then we are a pseudo-instruction for
13446 VMOVN.I<size> <Dd>, <Qm> */
13447 if (imm == 0)
13448 {
13449 inst.operands[2].present = 0;
13450 inst.instruction = N_MNEM_vmovn;
13451 do_neon_movn ();
13452 return;
13453 }
13454
13455 constraint (imm < 1 || (unsigned)imm > et.size,
13456 _("immediate out of range for narrowing operation"));
13457 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13458 }
13459
13460 static void
13461 do_neon_shll (void)
13462 {
13463 /* FIXME: Type checking when lengthening. */
13464 struct neon_type_el et = neon_check_type (2, NS_QDI,
13465 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13466 unsigned imm = inst.operands[2].imm;
13467
13468 if (imm == et.size)
13469 {
13470 /* Maximum shift variant. */
13471 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13472 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13474 inst.instruction |= LOW4 (inst.operands[1].reg);
13475 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13476 inst.instruction |= neon_logbits (et.size) << 18;
13477
13478 inst.instruction = neon_dp_fixup (inst.instruction);
13479 }
13480 else
13481 {
13482 /* A more-specific type check for non-max versions. */
13483 et = neon_check_type (2, NS_QDI,
13484 N_EQK | N_DBL, N_SU_32 | N_KEY);
13485 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13486 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13487 }
13488 }
13489
13490 /* Check the various types for the VCVT instruction, and return which version
13491 the current instruction is. */
13492
13493 static int
13494 neon_cvt_flavour (enum neon_shape rs)
13495 {
13496 #define CVT_VAR(C,X,Y) \
13497 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13498 if (et.type != NT_invtype) \
13499 { \
13500 inst.error = NULL; \
13501 return (C); \
13502 }
13503 struct neon_type_el et;
13504 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13505 || rs == NS_FF) ? N_VFP : 0;
13506 /* The instruction versions which take an immediate take one register
13507 argument, which is extended to the width of the full register. Thus the
13508 "source" and "destination" registers must have the same width. Hack that
13509 here by making the size equal to the key (wider, in this case) operand. */
13510 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13511
13512 CVT_VAR (0, N_S32, N_F32);
13513 CVT_VAR (1, N_U32, N_F32);
13514 CVT_VAR (2, N_F32, N_S32);
13515 CVT_VAR (3, N_F32, N_U32);
13516 /* Half-precision conversions. */
13517 CVT_VAR (4, N_F32, N_F16);
13518 CVT_VAR (5, N_F16, N_F32);
13519
13520 whole_reg = N_VFP;
13521
13522 /* VFP instructions. */
13523 CVT_VAR (6, N_F32, N_F64);
13524 CVT_VAR (7, N_F64, N_F32);
13525 CVT_VAR (8, N_S32, N_F64 | key);
13526 CVT_VAR (9, N_U32, N_F64 | key);
13527 CVT_VAR (10, N_F64 | key, N_S32);
13528 CVT_VAR (11, N_F64 | key, N_U32);
13529 /* VFP instructions with bitshift. */
13530 CVT_VAR (12, N_F32 | key, N_S16);
13531 CVT_VAR (13, N_F32 | key, N_U16);
13532 CVT_VAR (14, N_F64 | key, N_S16);
13533 CVT_VAR (15, N_F64 | key, N_U16);
13534 CVT_VAR (16, N_S16, N_F32 | key);
13535 CVT_VAR (17, N_U16, N_F32 | key);
13536 CVT_VAR (18, N_S16, N_F64 | key);
13537 CVT_VAR (19, N_U16, N_F64 | key);
13538
13539 return -1;
13540 #undef CVT_VAR
13541 }
13542
13543 /* Neon-syntax VFP conversions. */
13544
13545 static void
13546 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13547 {
13548 const char *opname = 0;
13549
13550 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13551 {
13552 /* Conversions with immediate bitshift. */
13553 const char *enc[] =
13554 {
13555 "ftosls",
13556 "ftouls",
13557 "fsltos",
13558 "fultos",
13559 NULL,
13560 NULL,
13561 NULL,
13562 NULL,
13563 "ftosld",
13564 "ftould",
13565 "fsltod",
13566 "fultod",
13567 "fshtos",
13568 "fuhtos",
13569 "fshtod",
13570 "fuhtod",
13571 "ftoshs",
13572 "ftouhs",
13573 "ftoshd",
13574 "ftouhd"
13575 };
13576
13577 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13578 {
13579 opname = enc[flavour];
13580 constraint (inst.operands[0].reg != inst.operands[1].reg,
13581 _("operands 0 and 1 must be the same register"));
13582 inst.operands[1] = inst.operands[2];
13583 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13584 }
13585 }
13586 else
13587 {
13588 /* Conversions without bitshift. */
13589 const char *enc[] =
13590 {
13591 "ftosis",
13592 "ftouis",
13593 "fsitos",
13594 "fuitos",
13595 "NULL",
13596 "NULL",
13597 "fcvtsd",
13598 "fcvtds",
13599 "ftosid",
13600 "ftouid",
13601 "fsitod",
13602 "fuitod"
13603 };
13604
13605 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13606 opname = enc[flavour];
13607 }
13608
13609 if (opname)
13610 do_vfp_nsyn_opcode (opname);
13611 }
13612
13613 static void
13614 do_vfp_nsyn_cvtz (void)
13615 {
13616 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13617 int flavour = neon_cvt_flavour (rs);
13618 const char *enc[] =
13619 {
13620 "ftosizs",
13621 "ftouizs",
13622 NULL,
13623 NULL,
13624 NULL,
13625 NULL,
13626 NULL,
13627 NULL,
13628 "ftosizd",
13629 "ftouizd"
13630 };
13631
13632 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13633 do_vfp_nsyn_opcode (enc[flavour]);
13634 }
13635
13636 static void
13637 do_neon_cvt (void)
13638 {
13639 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13640 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13641 int flavour = neon_cvt_flavour (rs);
13642
13643 /* VFP rather than Neon conversions. */
13644 if (flavour >= 6)
13645 {
13646 do_vfp_nsyn_cvt (rs, flavour);
13647 return;
13648 }
13649
13650 switch (rs)
13651 {
13652 case NS_DDI:
13653 case NS_QQI:
13654 {
13655 unsigned immbits;
13656 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13657
13658 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13659 return;
13660
13661 /* Fixed-point conversion with #0 immediate is encoded as an
13662 integer conversion. */
13663 if (inst.operands[2].present && inst.operands[2].imm == 0)
13664 goto int_encode;
13665 immbits = 32 - inst.operands[2].imm;
13666 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13667 if (flavour != -1)
13668 inst.instruction |= enctab[flavour];
13669 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13670 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13671 inst.instruction |= LOW4 (inst.operands[1].reg);
13672 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13673 inst.instruction |= neon_quad (rs) << 6;
13674 inst.instruction |= 1 << 21;
13675 inst.instruction |= immbits << 16;
13676
13677 inst.instruction = neon_dp_fixup (inst.instruction);
13678 }
13679 break;
13680
13681 case NS_DD:
13682 case NS_QQ:
13683 int_encode:
13684 {
13685 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13686
13687 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13688
13689 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13690 return;
13691
13692 if (flavour != -1)
13693 inst.instruction |= enctab[flavour];
13694
13695 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13696 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13697 inst.instruction |= LOW4 (inst.operands[1].reg);
13698 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13699 inst.instruction |= neon_quad (rs) << 6;
13700 inst.instruction |= 2 << 18;
13701
13702 inst.instruction = neon_dp_fixup (inst.instruction);
13703 }
13704 break;
13705
13706 /* Half-precision conversions for Advanced SIMD -- neon. */
13707 case NS_QD:
13708 case NS_DQ:
13709
13710 if ((rs == NS_DQ)
13711 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13712 {
13713 as_bad (_("operand size must match register width"));
13714 break;
13715 }
13716
13717 if ((rs == NS_QD)
13718 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13719 {
13720 as_bad (_("operand size must match register width"));
13721 break;
13722 }
13723
13724 if (rs == NS_DQ)
13725 inst.instruction = 0x3b60600;
13726 else
13727 inst.instruction = 0x3b60700;
13728
13729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13730 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13731 inst.instruction |= LOW4 (inst.operands[1].reg);
13732 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13733 inst.instruction = neon_dp_fixup (inst.instruction);
13734 break;
13735
13736 default:
13737 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13738 do_vfp_nsyn_cvt (rs, flavour);
13739 }
13740 }
13741
13742 static void
13743 do_neon_cvtb (void)
13744 {
13745 inst.instruction = 0xeb20a40;
13746
13747 /* The sizes are attached to the mnemonic. */
13748 if (inst.vectype.el[0].type != NT_invtype
13749 && inst.vectype.el[0].size == 16)
13750 inst.instruction |= 0x00010000;
13751
13752 /* Programmer's syntax: the sizes are attached to the operands. */
13753 else if (inst.operands[0].vectype.type != NT_invtype
13754 && inst.operands[0].vectype.size == 16)
13755 inst.instruction |= 0x00010000;
13756
13757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13759 do_vfp_cond_or_thumb ();
13760 }
13761
13762
13763 static void
13764 do_neon_cvtt (void)
13765 {
13766 do_neon_cvtb ();
13767 inst.instruction |= 0x80;
13768 }
13769
13770 static void
13771 neon_move_immediate (void)
13772 {
13773 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13774 struct neon_type_el et = neon_check_type (2, rs,
13775 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13776 unsigned immlo, immhi = 0, immbits;
13777 int op, cmode, float_p;
13778
13779 constraint (et.type == NT_invtype,
13780 _("operand size must be specified for immediate VMOV"));
13781
13782 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13783 op = (inst.instruction & (1 << 5)) != 0;
13784
13785 immlo = inst.operands[1].imm;
13786 if (inst.operands[1].regisimm)
13787 immhi = inst.operands[1].reg;
13788
13789 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13790 _("immediate has bits set outside the operand size"));
13791
13792 float_p = inst.operands[1].immisfloat;
13793
13794 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13795 et.size, et.type)) == FAIL)
13796 {
13797 /* Invert relevant bits only. */
13798 neon_invert_size (&immlo, &immhi, et.size);
13799 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13800 with one or the other; those cases are caught by
13801 neon_cmode_for_move_imm. */
13802 op = !op;
13803 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13804 &op, et.size, et.type)) == FAIL)
13805 {
13806 first_error (_("immediate out of range"));
13807 return;
13808 }
13809 }
13810
13811 inst.instruction &= ~(1 << 5);
13812 inst.instruction |= op << 5;
13813
13814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13816 inst.instruction |= neon_quad (rs) << 6;
13817 inst.instruction |= cmode << 8;
13818
13819 neon_write_immbits (immbits);
13820 }
13821
13822 static void
13823 do_neon_mvn (void)
13824 {
13825 if (inst.operands[1].isreg)
13826 {
13827 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13828
13829 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13832 inst.instruction |= LOW4 (inst.operands[1].reg);
13833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13834 inst.instruction |= neon_quad (rs) << 6;
13835 }
13836 else
13837 {
13838 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13839 neon_move_immediate ();
13840 }
13841
13842 inst.instruction = neon_dp_fixup (inst.instruction);
13843 }
13844
13845 /* Encode instructions of form:
13846
13847 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13848 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13849
13850 static void
13851 neon_mixed_length (struct neon_type_el et, unsigned size)
13852 {
13853 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13854 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13855 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13856 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13857 inst.instruction |= LOW4 (inst.operands[2].reg);
13858 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13859 inst.instruction |= (et.type == NT_unsigned) << 24;
13860 inst.instruction |= neon_logbits (size) << 20;
13861
13862 inst.instruction = neon_dp_fixup (inst.instruction);
13863 }
13864
13865 static void
13866 do_neon_dyadic_long (void)
13867 {
13868 /* FIXME: Type checking for lengthening op. */
13869 struct neon_type_el et = neon_check_type (3, NS_QDD,
13870 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13871 neon_mixed_length (et, et.size);
13872 }
13873
13874 static void
13875 do_neon_abal (void)
13876 {
13877 struct neon_type_el et = neon_check_type (3, NS_QDD,
13878 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13879 neon_mixed_length (et, et.size);
13880 }
13881
13882 static void
13883 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13884 {
13885 if (inst.operands[2].isscalar)
13886 {
13887 struct neon_type_el et = neon_check_type (3, NS_QDS,
13888 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13889 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13890 neon_mul_mac (et, et.type == NT_unsigned);
13891 }
13892 else
13893 {
13894 struct neon_type_el et = neon_check_type (3, NS_QDD,
13895 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13896 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13897 neon_mixed_length (et, et.size);
13898 }
13899 }
13900
13901 static void
13902 do_neon_mac_maybe_scalar_long (void)
13903 {
13904 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13905 }
13906
13907 static void
13908 do_neon_dyadic_wide (void)
13909 {
13910 struct neon_type_el et = neon_check_type (3, NS_QQD,
13911 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13912 neon_mixed_length (et, et.size);
13913 }
13914
13915 static void
13916 do_neon_dyadic_narrow (void)
13917 {
13918 struct neon_type_el et = neon_check_type (3, NS_QDD,
13919 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13920 /* Operand sign is unimportant, and the U bit is part of the opcode,
13921 so force the operand type to integer. */
13922 et.type = NT_integer;
13923 neon_mixed_length (et, et.size / 2);
13924 }
13925
13926 static void
13927 do_neon_mul_sat_scalar_long (void)
13928 {
13929 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13930 }
13931
13932 static void
13933 do_neon_vmull (void)
13934 {
13935 if (inst.operands[2].isscalar)
13936 do_neon_mac_maybe_scalar_long ();
13937 else
13938 {
13939 struct neon_type_el et = neon_check_type (3, NS_QDD,
13940 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13941 if (et.type == NT_poly)
13942 inst.instruction = NEON_ENC_POLY (inst.instruction);
13943 else
13944 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13945 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13946 zero. Should be OK as-is. */
13947 neon_mixed_length (et, et.size);
13948 }
13949 }
13950
13951 static void
13952 do_neon_ext (void)
13953 {
13954 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13955 struct neon_type_el et = neon_check_type (3, rs,
13956 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13957 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13958
13959 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13960 _("shift out of range"));
13961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13963 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13964 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13965 inst.instruction |= LOW4 (inst.operands[2].reg);
13966 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13967 inst.instruction |= neon_quad (rs) << 6;
13968 inst.instruction |= imm << 8;
13969
13970 inst.instruction = neon_dp_fixup (inst.instruction);
13971 }
13972
13973 static void
13974 do_neon_rev (void)
13975 {
13976 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13977 struct neon_type_el et = neon_check_type (2, rs,
13978 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13979 unsigned op = (inst.instruction >> 7) & 3;
13980 /* N (width of reversed regions) is encoded as part of the bitmask. We
13981 extract it here to check the elements to be reversed are smaller.
13982 Otherwise we'd get a reserved instruction. */
13983 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13984 gas_assert (elsize != 0);
13985 constraint (et.size >= elsize,
13986 _("elements must be smaller than reversal region"));
13987 neon_two_same (neon_quad (rs), 1, et.size);
13988 }
13989
13990 static void
13991 do_neon_dup (void)
13992 {
13993 if (inst.operands[1].isscalar)
13994 {
13995 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13996 struct neon_type_el et = neon_check_type (2, rs,
13997 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13998 unsigned sizebits = et.size >> 3;
13999 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14000 int logsize = neon_logbits (et.size);
14001 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14002
14003 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14004 return;
14005
14006 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
14007 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14008 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14009 inst.instruction |= LOW4 (dm);
14010 inst.instruction |= HI1 (dm) << 5;
14011 inst.instruction |= neon_quad (rs) << 6;
14012 inst.instruction |= x << 17;
14013 inst.instruction |= sizebits << 16;
14014
14015 inst.instruction = neon_dp_fixup (inst.instruction);
14016 }
14017 else
14018 {
14019 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14020 struct neon_type_el et = neon_check_type (2, rs,
14021 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14022 /* Duplicate ARM register to lanes of vector. */
14023 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
14024 switch (et.size)
14025 {
14026 case 8: inst.instruction |= 0x400000; break;
14027 case 16: inst.instruction |= 0x000020; break;
14028 case 32: inst.instruction |= 0x000000; break;
14029 default: break;
14030 }
14031 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14032 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14033 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14034 inst.instruction |= neon_quad (rs) << 21;
14035 /* The encoding for this instruction is identical for the ARM and Thumb
14036 variants, except for the condition field. */
14037 do_vfp_cond_or_thumb ();
14038 }
14039 }
14040
14041 /* VMOV has particularly many variations. It can be one of:
14042 0. VMOV<c><q> <Qd>, <Qm>
14043 1. VMOV<c><q> <Dd>, <Dm>
14044 (Register operations, which are VORR with Rm = Rn.)
14045 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14046 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14047 (Immediate loads.)
14048 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14049 (ARM register to scalar.)
14050 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14051 (Two ARM registers to vector.)
14052 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14053 (Scalar to ARM register.)
14054 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14055 (Vector to two ARM registers.)
14056 8. VMOV.F32 <Sd>, <Sm>
14057 9. VMOV.F64 <Dd>, <Dm>
14058 (VFP register moves.)
14059 10. VMOV.F32 <Sd>, #imm
14060 11. VMOV.F64 <Dd>, #imm
14061 (VFP float immediate load.)
14062 12. VMOV <Rd>, <Sm>
14063 (VFP single to ARM reg.)
14064 13. VMOV <Sd>, <Rm>
14065 (ARM reg to VFP single.)
14066 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14067 (Two ARM regs to two VFP singles.)
14068 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14069 (Two VFP singles to two ARM regs.)
14070
14071 These cases can be disambiguated using neon_select_shape, except cases 1/9
14072 and 3/11 which depend on the operand type too.
14073
14074 All the encoded bits are hardcoded by this function.
14075
14076 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14077 Cases 5, 7 may be used with VFPv2 and above.
14078
14079 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14080 can specify a type where it doesn't make sense to, and is ignored). */
14081
14082 static void
14083 do_neon_mov (void)
14084 {
14085 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14086 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14087 NS_NULL);
14088 struct neon_type_el et;
14089 const char *ldconst = 0;
14090
14091 switch (rs)
14092 {
14093 case NS_DD: /* case 1/9. */
14094 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14095 /* It is not an error here if no type is given. */
14096 inst.error = NULL;
14097 if (et.type == NT_float && et.size == 64)
14098 {
14099 do_vfp_nsyn_opcode ("fcpyd");
14100 break;
14101 }
14102 /* fall through. */
14103
14104 case NS_QQ: /* case 0/1. */
14105 {
14106 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14107 return;
14108 /* The architecture manual I have doesn't explicitly state which
14109 value the U bit should have for register->register moves, but
14110 the equivalent VORR instruction has U = 0, so do that. */
14111 inst.instruction = 0x0200110;
14112 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14113 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14114 inst.instruction |= LOW4 (inst.operands[1].reg);
14115 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14116 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14117 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14118 inst.instruction |= neon_quad (rs) << 6;
14119
14120 inst.instruction = neon_dp_fixup (inst.instruction);
14121 }
14122 break;
14123
14124 case NS_DI: /* case 3/11. */
14125 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14126 inst.error = NULL;
14127 if (et.type == NT_float && et.size == 64)
14128 {
14129 /* case 11 (fconstd). */
14130 ldconst = "fconstd";
14131 goto encode_fconstd;
14132 }
14133 /* fall through. */
14134
14135 case NS_QI: /* case 2/3. */
14136 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14137 return;
14138 inst.instruction = 0x0800010;
14139 neon_move_immediate ();
14140 inst.instruction = neon_dp_fixup (inst.instruction);
14141 break;
14142
14143 case NS_SR: /* case 4. */
14144 {
14145 unsigned bcdebits = 0;
14146 struct neon_type_el et = neon_check_type (2, NS_NULL,
14147 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14148 int logsize = neon_logbits (et.size);
14149 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14150 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14151
14152 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14153 _(BAD_FPU));
14154 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14155 && et.size != 32, _(BAD_FPU));
14156 constraint (et.type == NT_invtype, _("bad type for scalar"));
14157 constraint (x >= 64 / et.size, _("scalar index out of range"));
14158
14159 switch (et.size)
14160 {
14161 case 8: bcdebits = 0x8; break;
14162 case 16: bcdebits = 0x1; break;
14163 case 32: bcdebits = 0x0; break;
14164 default: ;
14165 }
14166
14167 bcdebits |= x << logsize;
14168
14169 inst.instruction = 0xe000b10;
14170 do_vfp_cond_or_thumb ();
14171 inst.instruction |= LOW4 (dn) << 16;
14172 inst.instruction |= HI1 (dn) << 7;
14173 inst.instruction |= inst.operands[1].reg << 12;
14174 inst.instruction |= (bcdebits & 3) << 5;
14175 inst.instruction |= (bcdebits >> 2) << 21;
14176 }
14177 break;
14178
14179 case NS_DRR: /* case 5 (fmdrr). */
14180 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14181 _(BAD_FPU));
14182
14183 inst.instruction = 0xc400b10;
14184 do_vfp_cond_or_thumb ();
14185 inst.instruction |= LOW4 (inst.operands[0].reg);
14186 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14187 inst.instruction |= inst.operands[1].reg << 12;
14188 inst.instruction |= inst.operands[2].reg << 16;
14189 break;
14190
14191 case NS_RS: /* case 6. */
14192 {
14193 struct neon_type_el et = neon_check_type (2, NS_NULL,
14194 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14195 unsigned logsize = neon_logbits (et.size);
14196 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14197 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14198 unsigned abcdebits = 0;
14199
14200 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14201 _(BAD_FPU));
14202 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14203 && et.size != 32, _(BAD_FPU));
14204 constraint (et.type == NT_invtype, _("bad type for scalar"));
14205 constraint (x >= 64 / et.size, _("scalar index out of range"));
14206
14207 switch (et.size)
14208 {
14209 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14210 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14211 case 32: abcdebits = 0x00; break;
14212 default: ;
14213 }
14214
14215 abcdebits |= x << logsize;
14216 inst.instruction = 0xe100b10;
14217 do_vfp_cond_or_thumb ();
14218 inst.instruction |= LOW4 (dn) << 16;
14219 inst.instruction |= HI1 (dn) << 7;
14220 inst.instruction |= inst.operands[0].reg << 12;
14221 inst.instruction |= (abcdebits & 3) << 5;
14222 inst.instruction |= (abcdebits >> 2) << 21;
14223 }
14224 break;
14225
14226 case NS_RRD: /* case 7 (fmrrd). */
14227 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14228 _(BAD_FPU));
14229
14230 inst.instruction = 0xc500b10;
14231 do_vfp_cond_or_thumb ();
14232 inst.instruction |= inst.operands[0].reg << 12;
14233 inst.instruction |= inst.operands[1].reg << 16;
14234 inst.instruction |= LOW4 (inst.operands[2].reg);
14235 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14236 break;
14237
14238 case NS_FF: /* case 8 (fcpys). */
14239 do_vfp_nsyn_opcode ("fcpys");
14240 break;
14241
14242 case NS_FI: /* case 10 (fconsts). */
14243 ldconst = "fconsts";
14244 encode_fconstd:
14245 if (is_quarter_float (inst.operands[1].imm))
14246 {
14247 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14248 do_vfp_nsyn_opcode (ldconst);
14249 }
14250 else
14251 first_error (_("immediate out of range"));
14252 break;
14253
14254 case NS_RF: /* case 12 (fmrs). */
14255 do_vfp_nsyn_opcode ("fmrs");
14256 break;
14257
14258 case NS_FR: /* case 13 (fmsr). */
14259 do_vfp_nsyn_opcode ("fmsr");
14260 break;
14261
14262 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14263 (one of which is a list), but we have parsed four. Do some fiddling to
14264 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14265 expect. */
14266 case NS_RRFF: /* case 14 (fmrrs). */
14267 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14268 _("VFP registers must be adjacent"));
14269 inst.operands[2].imm = 2;
14270 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14271 do_vfp_nsyn_opcode ("fmrrs");
14272 break;
14273
14274 case NS_FFRR: /* case 15 (fmsrr). */
14275 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14276 _("VFP registers must be adjacent"));
14277 inst.operands[1] = inst.operands[2];
14278 inst.operands[2] = inst.operands[3];
14279 inst.operands[0].imm = 2;
14280 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14281 do_vfp_nsyn_opcode ("fmsrr");
14282 break;
14283
14284 default:
14285 abort ();
14286 }
14287 }
14288
14289 static void
14290 do_neon_rshift_round_imm (void)
14291 {
14292 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14293 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14294 int imm = inst.operands[2].imm;
14295
14296 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14297 if (imm == 0)
14298 {
14299 inst.operands[2].present = 0;
14300 do_neon_mov ();
14301 return;
14302 }
14303
14304 constraint (imm < 1 || (unsigned)imm > et.size,
14305 _("immediate out of range for shift"));
14306 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14307 et.size - imm);
14308 }
14309
14310 static void
14311 do_neon_movl (void)
14312 {
14313 struct neon_type_el et = neon_check_type (2, NS_QD,
14314 N_EQK | N_DBL, N_SU_32 | N_KEY);
14315 unsigned sizebits = et.size >> 3;
14316 inst.instruction |= sizebits << 19;
14317 neon_two_same (0, et.type == NT_unsigned, -1);
14318 }
14319
14320 static void
14321 do_neon_trn (void)
14322 {
14323 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14324 struct neon_type_el et = neon_check_type (2, rs,
14325 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14326 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
14327 neon_two_same (neon_quad (rs), 1, et.size);
14328 }
14329
14330 static void
14331 do_neon_zip_uzp (void)
14332 {
14333 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14334 struct neon_type_el et = neon_check_type (2, rs,
14335 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14336 if (rs == NS_DD && et.size == 32)
14337 {
14338 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14339 inst.instruction = N_MNEM_vtrn;
14340 do_neon_trn ();
14341 return;
14342 }
14343 neon_two_same (neon_quad (rs), 1, et.size);
14344 }
14345
14346 static void
14347 do_neon_sat_abs_neg (void)
14348 {
14349 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14350 struct neon_type_el et = neon_check_type (2, rs,
14351 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14352 neon_two_same (neon_quad (rs), 1, et.size);
14353 }
14354
14355 static void
14356 do_neon_pair_long (void)
14357 {
14358 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14359 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14360 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14361 inst.instruction |= (et.type == NT_unsigned) << 7;
14362 neon_two_same (neon_quad (rs), 1, et.size);
14363 }
14364
14365 static void
14366 do_neon_recip_est (void)
14367 {
14368 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14369 struct neon_type_el et = neon_check_type (2, rs,
14370 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14371 inst.instruction |= (et.type == NT_float) << 8;
14372 neon_two_same (neon_quad (rs), 1, et.size);
14373 }
14374
14375 static void
14376 do_neon_cls (void)
14377 {
14378 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14379 struct neon_type_el et = neon_check_type (2, rs,
14380 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14381 neon_two_same (neon_quad (rs), 1, et.size);
14382 }
14383
14384 static void
14385 do_neon_clz (void)
14386 {
14387 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14388 struct neon_type_el et = neon_check_type (2, rs,
14389 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14390 neon_two_same (neon_quad (rs), 1, et.size);
14391 }
14392
14393 static void
14394 do_neon_cnt (void)
14395 {
14396 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14397 struct neon_type_el et = neon_check_type (2, rs,
14398 N_EQK | N_INT, N_8 | N_KEY);
14399 neon_two_same (neon_quad (rs), 1, et.size);
14400 }
14401
14402 static void
14403 do_neon_swp (void)
14404 {
14405 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14406 neon_two_same (neon_quad (rs), 1, -1);
14407 }
14408
14409 static void
14410 do_neon_tbl_tbx (void)
14411 {
14412 unsigned listlenbits;
14413 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14414
14415 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14416 {
14417 first_error (_("bad list length for table lookup"));
14418 return;
14419 }
14420
14421 listlenbits = inst.operands[1].imm - 1;
14422 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14423 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14424 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14425 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14426 inst.instruction |= LOW4 (inst.operands[2].reg);
14427 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14428 inst.instruction |= listlenbits << 8;
14429
14430 inst.instruction = neon_dp_fixup (inst.instruction);
14431 }
14432
14433 static void
14434 do_neon_ldm_stm (void)
14435 {
14436 /* P, U and L bits are part of bitmask. */
14437 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14438 unsigned offsetbits = inst.operands[1].imm * 2;
14439
14440 if (inst.operands[1].issingle)
14441 {
14442 do_vfp_nsyn_ldm_stm (is_dbmode);
14443 return;
14444 }
14445
14446 constraint (is_dbmode && !inst.operands[0].writeback,
14447 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14448
14449 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14450 _("register list must contain at least 1 and at most 16 "
14451 "registers"));
14452
14453 inst.instruction |= inst.operands[0].reg << 16;
14454 inst.instruction |= inst.operands[0].writeback << 21;
14455 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14456 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14457
14458 inst.instruction |= offsetbits;
14459
14460 do_vfp_cond_or_thumb ();
14461 }
14462
14463 static void
14464 do_neon_ldr_str (void)
14465 {
14466 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14467
14468 if (inst.operands[0].issingle)
14469 {
14470 if (is_ldr)
14471 do_vfp_nsyn_opcode ("flds");
14472 else
14473 do_vfp_nsyn_opcode ("fsts");
14474 }
14475 else
14476 {
14477 if (is_ldr)
14478 do_vfp_nsyn_opcode ("fldd");
14479 else
14480 do_vfp_nsyn_opcode ("fstd");
14481 }
14482 }
14483
14484 /* "interleave" version also handles non-interleaving register VLD1/VST1
14485 instructions. */
14486
14487 static void
14488 do_neon_ld_st_interleave (void)
14489 {
14490 struct neon_type_el et = neon_check_type (1, NS_NULL,
14491 N_8 | N_16 | N_32 | N_64);
14492 unsigned alignbits = 0;
14493 unsigned idx;
14494 /* The bits in this table go:
14495 0: register stride of one (0) or two (1)
14496 1,2: register list length, minus one (1, 2, 3, 4).
14497 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14498 We use -1 for invalid entries. */
14499 const int typetable[] =
14500 {
14501 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14502 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14503 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14504 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14505 };
14506 int typebits;
14507
14508 if (et.type == NT_invtype)
14509 return;
14510
14511 if (inst.operands[1].immisalign)
14512 switch (inst.operands[1].imm >> 8)
14513 {
14514 case 64: alignbits = 1; break;
14515 case 128:
14516 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14517 goto bad_alignment;
14518 alignbits = 2;
14519 break;
14520 case 256:
14521 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14522 goto bad_alignment;
14523 alignbits = 3;
14524 break;
14525 default:
14526 bad_alignment:
14527 first_error (_("bad alignment"));
14528 return;
14529 }
14530
14531 inst.instruction |= alignbits << 4;
14532 inst.instruction |= neon_logbits (et.size) << 6;
14533
14534 /* Bits [4:6] of the immediate in a list specifier encode register stride
14535 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14536 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14537 up the right value for "type" in a table based on this value and the given
14538 list style, then stick it back. */
14539 idx = ((inst.operands[0].imm >> 4) & 7)
14540 | (((inst.instruction >> 8) & 3) << 3);
14541
14542 typebits = typetable[idx];
14543
14544 constraint (typebits == -1, _("bad list type for instruction"));
14545
14546 inst.instruction &= ~0xf00;
14547 inst.instruction |= typebits << 8;
14548 }
14549
14550 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14551 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14552 otherwise. The variable arguments are a list of pairs of legal (size, align)
14553 values, terminated with -1. */
14554
14555 static int
14556 neon_alignment_bit (int size, int align, int *do_align, ...)
14557 {
14558 va_list ap;
14559 int result = FAIL, thissize, thisalign;
14560
14561 if (!inst.operands[1].immisalign)
14562 {
14563 *do_align = 0;
14564 return SUCCESS;
14565 }
14566
14567 va_start (ap, do_align);
14568
14569 do
14570 {
14571 thissize = va_arg (ap, int);
14572 if (thissize == -1)
14573 break;
14574 thisalign = va_arg (ap, int);
14575
14576 if (size == thissize && align == thisalign)
14577 result = SUCCESS;
14578 }
14579 while (result != SUCCESS);
14580
14581 va_end (ap);
14582
14583 if (result == SUCCESS)
14584 *do_align = 1;
14585 else
14586 first_error (_("unsupported alignment for instruction"));
14587
14588 return result;
14589 }
14590
14591 static void
14592 do_neon_ld_st_lane (void)
14593 {
14594 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14595 int align_good, do_align = 0;
14596 int logsize = neon_logbits (et.size);
14597 int align = inst.operands[1].imm >> 8;
14598 int n = (inst.instruction >> 8) & 3;
14599 int max_el = 64 / et.size;
14600
14601 if (et.type == NT_invtype)
14602 return;
14603
14604 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14605 _("bad list length"));
14606 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14607 _("scalar index out of range"));
14608 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14609 && et.size == 8,
14610 _("stride of 2 unavailable when element size is 8"));
14611
14612 switch (n)
14613 {
14614 case 0: /* VLD1 / VST1. */
14615 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14616 32, 32, -1);
14617 if (align_good == FAIL)
14618 return;
14619 if (do_align)
14620 {
14621 unsigned alignbits = 0;
14622 switch (et.size)
14623 {
14624 case 16: alignbits = 0x1; break;
14625 case 32: alignbits = 0x3; break;
14626 default: ;
14627 }
14628 inst.instruction |= alignbits << 4;
14629 }
14630 break;
14631
14632 case 1: /* VLD2 / VST2. */
14633 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14634 32, 64, -1);
14635 if (align_good == FAIL)
14636 return;
14637 if (do_align)
14638 inst.instruction |= 1 << 4;
14639 break;
14640
14641 case 2: /* VLD3 / VST3. */
14642 constraint (inst.operands[1].immisalign,
14643 _("can't use alignment with this instruction"));
14644 break;
14645
14646 case 3: /* VLD4 / VST4. */
14647 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14648 16, 64, 32, 64, 32, 128, -1);
14649 if (align_good == FAIL)
14650 return;
14651 if (do_align)
14652 {
14653 unsigned alignbits = 0;
14654 switch (et.size)
14655 {
14656 case 8: alignbits = 0x1; break;
14657 case 16: alignbits = 0x1; break;
14658 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14659 default: ;
14660 }
14661 inst.instruction |= alignbits << 4;
14662 }
14663 break;
14664
14665 default: ;
14666 }
14667
14668 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14669 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14670 inst.instruction |= 1 << (4 + logsize);
14671
14672 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14673 inst.instruction |= logsize << 10;
14674 }
14675
14676 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14677
14678 static void
14679 do_neon_ld_dup (void)
14680 {
14681 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14682 int align_good, do_align = 0;
14683
14684 if (et.type == NT_invtype)
14685 return;
14686
14687 switch ((inst.instruction >> 8) & 3)
14688 {
14689 case 0: /* VLD1. */
14690 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14691 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14692 &do_align, 16, 16, 32, 32, -1);
14693 if (align_good == FAIL)
14694 return;
14695 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14696 {
14697 case 1: break;
14698 case 2: inst.instruction |= 1 << 5; break;
14699 default: first_error (_("bad list length")); return;
14700 }
14701 inst.instruction |= neon_logbits (et.size) << 6;
14702 break;
14703
14704 case 1: /* VLD2. */
14705 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14706 &do_align, 8, 16, 16, 32, 32, 64, -1);
14707 if (align_good == FAIL)
14708 return;
14709 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14710 _("bad list length"));
14711 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14712 inst.instruction |= 1 << 5;
14713 inst.instruction |= neon_logbits (et.size) << 6;
14714 break;
14715
14716 case 2: /* VLD3. */
14717 constraint (inst.operands[1].immisalign,
14718 _("can't use alignment with this instruction"));
14719 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14720 _("bad list length"));
14721 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14722 inst.instruction |= 1 << 5;
14723 inst.instruction |= neon_logbits (et.size) << 6;
14724 break;
14725
14726 case 3: /* VLD4. */
14727 {
14728 int align = inst.operands[1].imm >> 8;
14729 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14730 16, 64, 32, 64, 32, 128, -1);
14731 if (align_good == FAIL)
14732 return;
14733 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14734 _("bad list length"));
14735 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14736 inst.instruction |= 1 << 5;
14737 if (et.size == 32 && align == 128)
14738 inst.instruction |= 0x3 << 6;
14739 else
14740 inst.instruction |= neon_logbits (et.size) << 6;
14741 }
14742 break;
14743
14744 default: ;
14745 }
14746
14747 inst.instruction |= do_align << 4;
14748 }
14749
14750 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14751 apart from bits [11:4]. */
14752
14753 static void
14754 do_neon_ldx_stx (void)
14755 {
14756 switch (NEON_LANE (inst.operands[0].imm))
14757 {
14758 case NEON_INTERLEAVE_LANES:
14759 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14760 do_neon_ld_st_interleave ();
14761 break;
14762
14763 case NEON_ALL_LANES:
14764 inst.instruction = NEON_ENC_DUP (inst.instruction);
14765 do_neon_ld_dup ();
14766 break;
14767
14768 default:
14769 inst.instruction = NEON_ENC_LANE (inst.instruction);
14770 do_neon_ld_st_lane ();
14771 }
14772
14773 /* L bit comes from bit mask. */
14774 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14775 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14776 inst.instruction |= inst.operands[1].reg << 16;
14777
14778 if (inst.operands[1].postind)
14779 {
14780 int postreg = inst.operands[1].imm & 0xf;
14781 constraint (!inst.operands[1].immisreg,
14782 _("post-index must be a register"));
14783 constraint (postreg == 0xd || postreg == 0xf,
14784 _("bad register for post-index"));
14785 inst.instruction |= postreg;
14786 }
14787 else if (inst.operands[1].writeback)
14788 {
14789 inst.instruction |= 0xd;
14790 }
14791 else
14792 inst.instruction |= 0xf;
14793
14794 if (thumb_mode)
14795 inst.instruction |= 0xf9000000;
14796 else
14797 inst.instruction |= 0xf4000000;
14798 }
14799 \f
14800 /* Overall per-instruction processing. */
14801
14802 /* We need to be able to fix up arbitrary expressions in some statements.
14803 This is so that we can handle symbols that are an arbitrary distance from
14804 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14805 which returns part of an address in a form which will be valid for
14806 a data instruction. We do this by pushing the expression into a symbol
14807 in the expr_section, and creating a fix for that. */
14808
14809 static void
14810 fix_new_arm (fragS * frag,
14811 int where,
14812 short int size,
14813 expressionS * exp,
14814 int pc_rel,
14815 int reloc)
14816 {
14817 fixS * new_fix;
14818
14819 switch (exp->X_op)
14820 {
14821 case O_constant:
14822 case O_symbol:
14823 case O_add:
14824 case O_subtract:
14825 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14826 (enum bfd_reloc_code_real) reloc);
14827 break;
14828
14829 default:
14830 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14831 pc_rel, (enum bfd_reloc_code_real) reloc);
14832 break;
14833 }
14834
14835 /* Mark whether the fix is to a THUMB instruction, or an ARM
14836 instruction. */
14837 new_fix->tc_fix_data = thumb_mode;
14838 }
14839
14840 /* Create a frg for an instruction requiring relaxation. */
14841 static void
14842 output_relax_insn (void)
14843 {
14844 char * to;
14845 symbolS *sym;
14846 int offset;
14847
14848 /* The size of the instruction is unknown, so tie the debug info to the
14849 start of the instruction. */
14850 dwarf2_emit_insn (0);
14851
14852 switch (inst.reloc.exp.X_op)
14853 {
14854 case O_symbol:
14855 sym = inst.reloc.exp.X_add_symbol;
14856 offset = inst.reloc.exp.X_add_number;
14857 break;
14858 case O_constant:
14859 sym = NULL;
14860 offset = inst.reloc.exp.X_add_number;
14861 break;
14862 default:
14863 sym = make_expr_symbol (&inst.reloc.exp);
14864 offset = 0;
14865 break;
14866 }
14867 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14868 inst.relax, sym, offset, NULL/*offset, opcode*/);
14869 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14870 }
14871
14872 /* Write a 32-bit thumb instruction to buf. */
14873 static void
14874 put_thumb32_insn (char * buf, unsigned long insn)
14875 {
14876 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14877 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14878 }
14879
14880 static void
14881 output_inst (const char * str)
14882 {
14883 char * to = NULL;
14884
14885 if (inst.error)
14886 {
14887 as_bad ("%s -- `%s'", inst.error, str);
14888 return;
14889 }
14890 if (inst.relax)
14891 {
14892 output_relax_insn ();
14893 return;
14894 }
14895 if (inst.size == 0)
14896 return;
14897
14898 to = frag_more (inst.size);
14899 /* PR 9814: Record the thumb mode into the current frag so that we know
14900 what type of NOP padding to use, if necessary. We override any previous
14901 setting so that if the mode has changed then the NOPS that we use will
14902 match the encoding of the last instruction in the frag. */
14903 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
14904
14905 if (thumb_mode && (inst.size > THUMB_SIZE))
14906 {
14907 gas_assert (inst.size == (2 * THUMB_SIZE));
14908 put_thumb32_insn (to, inst.instruction);
14909 }
14910 else if (inst.size > INSN_SIZE)
14911 {
14912 gas_assert (inst.size == (2 * INSN_SIZE));
14913 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14914 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14915 }
14916 else
14917 md_number_to_chars (to, inst.instruction, inst.size);
14918
14919 if (inst.reloc.type != BFD_RELOC_UNUSED)
14920 fix_new_arm (frag_now, to - frag_now->fr_literal,
14921 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14922 inst.reloc.type);
14923
14924 dwarf2_emit_insn (inst.size);
14925 }
14926
14927 static char *
14928 output_it_inst (int cond, int mask, char * to)
14929 {
14930 unsigned long instruction = 0xbf00;
14931
14932 mask &= 0xf;
14933 instruction |= mask;
14934 instruction |= cond << 4;
14935
14936 if (to == NULL)
14937 {
14938 to = frag_more (2);
14939 #ifdef OBJ_ELF
14940 dwarf2_emit_insn (2);
14941 #endif
14942 }
14943
14944 md_number_to_chars (to, instruction, 2);
14945
14946 return to;
14947 }
14948
14949 /* Tag values used in struct asm_opcode's tag field. */
14950 enum opcode_tag
14951 {
14952 OT_unconditional, /* Instruction cannot be conditionalized.
14953 The ARM condition field is still 0xE. */
14954 OT_unconditionalF, /* Instruction cannot be conditionalized
14955 and carries 0xF in its ARM condition field. */
14956 OT_csuffix, /* Instruction takes a conditional suffix. */
14957 OT_csuffixF, /* Some forms of the instruction take a conditional
14958 suffix, others place 0xF where the condition field
14959 would be. */
14960 OT_cinfix3, /* Instruction takes a conditional infix,
14961 beginning at character index 3. (In
14962 unified mode, it becomes a suffix.) */
14963 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14964 tsts, cmps, cmns, and teqs. */
14965 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14966 character index 3, even in unified mode. Used for
14967 legacy instructions where suffix and infix forms
14968 may be ambiguous. */
14969 OT_csuf_or_in3, /* Instruction takes either a conditional
14970 suffix or an infix at character index 3. */
14971 OT_odd_infix_unc, /* This is the unconditional variant of an
14972 instruction that takes a conditional infix
14973 at an unusual position. In unified mode,
14974 this variant will accept a suffix. */
14975 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14976 are the conditional variants of instructions that
14977 take conditional infixes in unusual positions.
14978 The infix appears at character index
14979 (tag - OT_odd_infix_0). These are not accepted
14980 in unified mode. */
14981 };
14982
14983 /* Subroutine of md_assemble, responsible for looking up the primary
14984 opcode from the mnemonic the user wrote. STR points to the
14985 beginning of the mnemonic.
14986
14987 This is not simply a hash table lookup, because of conditional
14988 variants. Most instructions have conditional variants, which are
14989 expressed with a _conditional affix_ to the mnemonic. If we were
14990 to encode each conditional variant as a literal string in the opcode
14991 table, it would have approximately 20,000 entries.
14992
14993 Most mnemonics take this affix as a suffix, and in unified syntax,
14994 'most' is upgraded to 'all'. However, in the divided syntax, some
14995 instructions take the affix as an infix, notably the s-variants of
14996 the arithmetic instructions. Of those instructions, all but six
14997 have the infix appear after the third character of the mnemonic.
14998
14999 Accordingly, the algorithm for looking up primary opcodes given
15000 an identifier is:
15001
15002 1. Look up the identifier in the opcode table.
15003 If we find a match, go to step U.
15004
15005 2. Look up the last two characters of the identifier in the
15006 conditions table. If we find a match, look up the first N-2
15007 characters of the identifier in the opcode table. If we
15008 find a match, go to step CE.
15009
15010 3. Look up the fourth and fifth characters of the identifier in
15011 the conditions table. If we find a match, extract those
15012 characters from the identifier, and look up the remaining
15013 characters in the opcode table. If we find a match, go
15014 to step CM.
15015
15016 4. Fail.
15017
15018 U. Examine the tag field of the opcode structure, in case this is
15019 one of the six instructions with its conditional infix in an
15020 unusual place. If it is, the tag tells us where to find the
15021 infix; look it up in the conditions table and set inst.cond
15022 accordingly. Otherwise, this is an unconditional instruction.
15023 Again set inst.cond accordingly. Return the opcode structure.
15024
15025 CE. Examine the tag field to make sure this is an instruction that
15026 should receive a conditional suffix. If it is not, fail.
15027 Otherwise, set inst.cond from the suffix we already looked up,
15028 and return the opcode structure.
15029
15030 CM. Examine the tag field to make sure this is an instruction that
15031 should receive a conditional infix after the third character.
15032 If it is not, fail. Otherwise, undo the edits to the current
15033 line of input and proceed as for case CE. */
15034
15035 static const struct asm_opcode *
15036 opcode_lookup (char **str)
15037 {
15038 char *end, *base;
15039 char *affix;
15040 const struct asm_opcode *opcode;
15041 const struct asm_cond *cond;
15042 char save[2];
15043
15044 /* Scan up to the end of the mnemonic, which must end in white space,
15045 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15046 for (base = end = *str; *end != '\0'; end++)
15047 if (*end == ' ' || *end == '.')
15048 break;
15049
15050 if (end == base)
15051 return NULL;
15052
15053 /* Handle a possible width suffix and/or Neon type suffix. */
15054 if (end[0] == '.')
15055 {
15056 int offset = 2;
15057
15058 /* The .w and .n suffixes are only valid if the unified syntax is in
15059 use. */
15060 if (unified_syntax && end[1] == 'w')
15061 inst.size_req = 4;
15062 else if (unified_syntax && end[1] == 'n')
15063 inst.size_req = 2;
15064 else
15065 offset = 0;
15066
15067 inst.vectype.elems = 0;
15068
15069 *str = end + offset;
15070
15071 if (end[offset] == '.')
15072 {
15073 /* See if we have a Neon type suffix (possible in either unified or
15074 non-unified ARM syntax mode). */
15075 if (parse_neon_type (&inst.vectype, str) == FAIL)
15076 return NULL;
15077 }
15078 else if (end[offset] != '\0' && end[offset] != ' ')
15079 return NULL;
15080 }
15081 else
15082 *str = end;
15083
15084 /* Look for unaffixed or special-case affixed mnemonic. */
15085 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15086 end - base);
15087 if (opcode)
15088 {
15089 /* step U */
15090 if (opcode->tag < OT_odd_infix_0)
15091 {
15092 inst.cond = COND_ALWAYS;
15093 return opcode;
15094 }
15095
15096 if (warn_on_deprecated && unified_syntax)
15097 as_warn (_("conditional infixes are deprecated in unified syntax"));
15098 affix = base + (opcode->tag - OT_odd_infix_0);
15099 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15100 gas_assert (cond);
15101
15102 inst.cond = cond->value;
15103 return opcode;
15104 }
15105
15106 /* Cannot have a conditional suffix on a mnemonic of less than two
15107 characters. */
15108 if (end - base < 3)
15109 return NULL;
15110
15111 /* Look for suffixed mnemonic. */
15112 affix = end - 2;
15113 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15114 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15115 affix - base);
15116 if (opcode && cond)
15117 {
15118 /* step CE */
15119 switch (opcode->tag)
15120 {
15121 case OT_cinfix3_legacy:
15122 /* Ignore conditional suffixes matched on infix only mnemonics. */
15123 break;
15124
15125 case OT_cinfix3:
15126 case OT_cinfix3_deprecated:
15127 case OT_odd_infix_unc:
15128 if (!unified_syntax)
15129 return 0;
15130 /* else fall through */
15131
15132 case OT_csuffix:
15133 case OT_csuffixF:
15134 case OT_csuf_or_in3:
15135 inst.cond = cond->value;
15136 return opcode;
15137
15138 case OT_unconditional:
15139 case OT_unconditionalF:
15140 if (thumb_mode)
15141 inst.cond = cond->value;
15142 else
15143 {
15144 /* Delayed diagnostic. */
15145 inst.error = BAD_COND;
15146 inst.cond = COND_ALWAYS;
15147 }
15148 return opcode;
15149
15150 default:
15151 return NULL;
15152 }
15153 }
15154
15155 /* Cannot have a usual-position infix on a mnemonic of less than
15156 six characters (five would be a suffix). */
15157 if (end - base < 6)
15158 return NULL;
15159
15160 /* Look for infixed mnemonic in the usual position. */
15161 affix = base + 3;
15162 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15163 if (!cond)
15164 return NULL;
15165
15166 memcpy (save, affix, 2);
15167 memmove (affix, affix + 2, (end - affix) - 2);
15168 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15169 (end - base) - 2);
15170 memmove (affix + 2, affix, (end - affix) - 2);
15171 memcpy (affix, save, 2);
15172
15173 if (opcode
15174 && (opcode->tag == OT_cinfix3
15175 || opcode->tag == OT_cinfix3_deprecated
15176 || opcode->tag == OT_csuf_or_in3
15177 || opcode->tag == OT_cinfix3_legacy))
15178 {
15179 /* Step CM. */
15180 if (warn_on_deprecated && unified_syntax
15181 && (opcode->tag == OT_cinfix3
15182 || opcode->tag == OT_cinfix3_deprecated))
15183 as_warn (_("conditional infixes are deprecated in unified syntax"));
15184
15185 inst.cond = cond->value;
15186 return opcode;
15187 }
15188
15189 return NULL;
15190 }
15191
15192 /* This function generates an initial IT instruction, leaving its block
15193 virtually open for the new instructions. Eventually,
15194 the mask will be updated by now_it_add_mask () each time
15195 a new instruction needs to be included in the IT block.
15196 Finally, the block is closed with close_automatic_it_block ().
15197 The block closure can be requested either from md_assemble (),
15198 a tencode (), or due to a label hook. */
15199
15200 static void
15201 new_automatic_it_block (int cond)
15202 {
15203 now_it.state = AUTOMATIC_IT_BLOCK;
15204 now_it.mask = 0x18;
15205 now_it.cc = cond;
15206 now_it.block_length = 1;
15207 mapping_state (MAP_THUMB);
15208 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15209 }
15210
15211 /* Close an automatic IT block.
15212 See comments in new_automatic_it_block (). */
15213
15214 static void
15215 close_automatic_it_block (void)
15216 {
15217 now_it.mask = 0x10;
15218 now_it.block_length = 0;
15219 }
15220
15221 /* Update the mask of the current automatically-generated IT
15222 instruction. See comments in new_automatic_it_block (). */
15223
15224 static void
15225 now_it_add_mask (int cond)
15226 {
15227 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15228 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15229 | ((bitvalue) << (nbit)))
15230 const int resulting_bit = (cond & 1);
15231
15232 now_it.mask &= 0xf;
15233 now_it.mask = SET_BIT_VALUE (now_it.mask,
15234 resulting_bit,
15235 (5 - now_it.block_length));
15236 now_it.mask = SET_BIT_VALUE (now_it.mask,
15237 1,
15238 ((5 - now_it.block_length) - 1) );
15239 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15240
15241 #undef CLEAR_BIT
15242 #undef SET_BIT_VALUE
15243 }
15244
15245 /* The IT blocks handling machinery is accessed through the these functions:
15246 it_fsm_pre_encode () from md_assemble ()
15247 set_it_insn_type () optional, from the tencode functions
15248 set_it_insn_type_last () ditto
15249 in_it_block () ditto
15250 it_fsm_post_encode () from md_assemble ()
15251 force_automatic_it_block_close () from label habdling functions
15252
15253 Rationale:
15254 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15255 initializing the IT insn type with a generic initial value depending
15256 on the inst.condition.
15257 2) During the tencode function, two things may happen:
15258 a) The tencode function overrides the IT insn type by
15259 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15260 b) The tencode function queries the IT block state by
15261 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15262
15263 Both set_it_insn_type and in_it_block run the internal FSM state
15264 handling function (handle_it_state), because: a) setting the IT insn
15265 type may incur in an invalid state (exiting the function),
15266 and b) querying the state requires the FSM to be updated.
15267 Specifically we want to avoid creating an IT block for conditional
15268 branches, so it_fsm_pre_encode is actually a guess and we can't
15269 determine whether an IT block is required until the tencode () routine
15270 has decided what type of instruction this actually it.
15271 Because of this, if set_it_insn_type and in_it_block have to be used,
15272 set_it_insn_type has to be called first.
15273
15274 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15275 determines the insn IT type depending on the inst.cond code.
15276 When a tencode () routine encodes an instruction that can be
15277 either outside an IT block, or, in the case of being inside, has to be
15278 the last one, set_it_insn_type_last () will determine the proper
15279 IT instruction type based on the inst.cond code. Otherwise,
15280 set_it_insn_type can be called for overriding that logic or
15281 for covering other cases.
15282
15283 Calling handle_it_state () may not transition the IT block state to
15284 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15285 still queried. Instead, if the FSM determines that the state should
15286 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15287 after the tencode () function: that's what it_fsm_post_encode () does.
15288
15289 Since in_it_block () calls the state handling function to get an
15290 updated state, an error may occur (due to invalid insns combination).
15291 In that case, inst.error is set.
15292 Therefore, inst.error has to be checked after the execution of
15293 the tencode () routine.
15294
15295 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15296 any pending state change (if any) that didn't take place in
15297 handle_it_state () as explained above. */
15298
15299 static void
15300 it_fsm_pre_encode (void)
15301 {
15302 if (inst.cond != COND_ALWAYS)
15303 inst.it_insn_type = INSIDE_IT_INSN;
15304 else
15305 inst.it_insn_type = OUTSIDE_IT_INSN;
15306
15307 now_it.state_handled = 0;
15308 }
15309
15310 /* IT state FSM handling function. */
15311
15312 static int
15313 handle_it_state (void)
15314 {
15315 now_it.state_handled = 1;
15316
15317 switch (now_it.state)
15318 {
15319 case OUTSIDE_IT_BLOCK:
15320 switch (inst.it_insn_type)
15321 {
15322 case OUTSIDE_IT_INSN:
15323 break;
15324
15325 case INSIDE_IT_INSN:
15326 case INSIDE_IT_LAST_INSN:
15327 if (thumb_mode == 0)
15328 {
15329 if (unified_syntax
15330 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15331 as_tsktsk (_("Warning: conditional outside an IT block"\
15332 " for Thumb."));
15333 }
15334 else
15335 {
15336 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15337 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15338 {
15339 /* Automatically generate the IT instruction. */
15340 new_automatic_it_block (inst.cond);
15341 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15342 close_automatic_it_block ();
15343 }
15344 else
15345 {
15346 inst.error = BAD_OUT_IT;
15347 return FAIL;
15348 }
15349 }
15350 break;
15351
15352 case IF_INSIDE_IT_LAST_INSN:
15353 case NEUTRAL_IT_INSN:
15354 break;
15355
15356 case IT_INSN:
15357 now_it.state = MANUAL_IT_BLOCK;
15358 now_it.block_length = 0;
15359 break;
15360 }
15361 break;
15362
15363 case AUTOMATIC_IT_BLOCK:
15364 /* Three things may happen now:
15365 a) We should increment current it block size;
15366 b) We should close current it block (closing insn or 4 insns);
15367 c) We should close current it block and start a new one (due
15368 to incompatible conditions or
15369 4 insns-length block reached). */
15370
15371 switch (inst.it_insn_type)
15372 {
15373 case OUTSIDE_IT_INSN:
15374 /* The closure of the block shall happen immediatelly,
15375 so any in_it_block () call reports the block as closed. */
15376 force_automatic_it_block_close ();
15377 break;
15378
15379 case INSIDE_IT_INSN:
15380 case INSIDE_IT_LAST_INSN:
15381 case IF_INSIDE_IT_LAST_INSN:
15382 now_it.block_length++;
15383
15384 if (now_it.block_length > 4
15385 || !now_it_compatible (inst.cond))
15386 {
15387 force_automatic_it_block_close ();
15388 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15389 new_automatic_it_block (inst.cond);
15390 }
15391 else
15392 {
15393 now_it_add_mask (inst.cond);
15394 }
15395
15396 if (now_it.state == AUTOMATIC_IT_BLOCK
15397 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15398 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15399 close_automatic_it_block ();
15400 break;
15401
15402 case NEUTRAL_IT_INSN:
15403 now_it.block_length++;
15404
15405 if (now_it.block_length > 4)
15406 force_automatic_it_block_close ();
15407 else
15408 now_it_add_mask (now_it.cc & 1);
15409 break;
15410
15411 case IT_INSN:
15412 close_automatic_it_block ();
15413 now_it.state = MANUAL_IT_BLOCK;
15414 break;
15415 }
15416 break;
15417
15418 case MANUAL_IT_BLOCK:
15419 {
15420 /* Check conditional suffixes. */
15421 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15422 int is_last;
15423 now_it.mask <<= 1;
15424 now_it.mask &= 0x1f;
15425 is_last = (now_it.mask == 0x10);
15426
15427 switch (inst.it_insn_type)
15428 {
15429 case OUTSIDE_IT_INSN:
15430 inst.error = BAD_NOT_IT;
15431 return FAIL;
15432
15433 case INSIDE_IT_INSN:
15434 if (cond != inst.cond)
15435 {
15436 inst.error = BAD_IT_COND;
15437 return FAIL;
15438 }
15439 break;
15440
15441 case INSIDE_IT_LAST_INSN:
15442 case IF_INSIDE_IT_LAST_INSN:
15443 if (cond != inst.cond)
15444 {
15445 inst.error = BAD_IT_COND;
15446 return FAIL;
15447 }
15448 if (!is_last)
15449 {
15450 inst.error = BAD_BRANCH;
15451 return FAIL;
15452 }
15453 break;
15454
15455 case NEUTRAL_IT_INSN:
15456 /* The BKPT instruction is unconditional even in an IT block. */
15457 break;
15458
15459 case IT_INSN:
15460 inst.error = BAD_IT_IT;
15461 return FAIL;
15462 }
15463 }
15464 break;
15465 }
15466
15467 return SUCCESS;
15468 }
15469
15470 static void
15471 it_fsm_post_encode (void)
15472 {
15473 int is_last;
15474
15475 if (!now_it.state_handled)
15476 handle_it_state ();
15477
15478 is_last = (now_it.mask == 0x10);
15479 if (is_last)
15480 {
15481 now_it.state = OUTSIDE_IT_BLOCK;
15482 now_it.mask = 0;
15483 }
15484 }
15485
15486 static void
15487 force_automatic_it_block_close (void)
15488 {
15489 if (now_it.state == AUTOMATIC_IT_BLOCK)
15490 {
15491 close_automatic_it_block ();
15492 now_it.state = OUTSIDE_IT_BLOCK;
15493 now_it.mask = 0;
15494 }
15495 }
15496
15497 static int
15498 in_it_block (void)
15499 {
15500 if (!now_it.state_handled)
15501 handle_it_state ();
15502
15503 return now_it.state != OUTSIDE_IT_BLOCK;
15504 }
15505
15506 void
15507 md_assemble (char *str)
15508 {
15509 char *p = str;
15510 const struct asm_opcode * opcode;
15511
15512 /* Align the previous label if needed. */
15513 if (last_label_seen != NULL)
15514 {
15515 symbol_set_frag (last_label_seen, frag_now);
15516 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15517 S_SET_SEGMENT (last_label_seen, now_seg);
15518 }
15519
15520 memset (&inst, '\0', sizeof (inst));
15521 inst.reloc.type = BFD_RELOC_UNUSED;
15522
15523 opcode = opcode_lookup (&p);
15524 if (!opcode)
15525 {
15526 /* It wasn't an instruction, but it might be a register alias of
15527 the form alias .req reg, or a Neon .dn/.qn directive. */
15528 if (! create_register_alias (str, p)
15529 && ! create_neon_reg_alias (str, p))
15530 as_bad (_("bad instruction `%s'"), str);
15531
15532 return;
15533 }
15534
15535 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15536 as_warn (_("s suffix on comparison instruction is deprecated"));
15537
15538 /* The value which unconditional instructions should have in place of the
15539 condition field. */
15540 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15541
15542 if (thumb_mode)
15543 {
15544 arm_feature_set variant;
15545
15546 variant = cpu_variant;
15547 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15548 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15549 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15550 /* Check that this instruction is supported for this CPU. */
15551 if (!opcode->tvariant
15552 || (thumb_mode == 1
15553 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15554 {
15555 as_bad (_("selected processor does not support `%s'"), str);
15556 return;
15557 }
15558 if (inst.cond != COND_ALWAYS && !unified_syntax
15559 && opcode->tencode != do_t_branch)
15560 {
15561 as_bad (_("Thumb does not support conditional execution"));
15562 return;
15563 }
15564
15565 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15566 {
15567 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15568 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15569 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15570 {
15571 /* Two things are addressed here.
15572 1) Implicit require narrow instructions on Thumb-1.
15573 This avoids relaxation accidentally introducing Thumb-2
15574 instructions.
15575 2) Reject wide instructions in non Thumb-2 cores. */
15576 if (inst.size_req == 0)
15577 inst.size_req = 2;
15578 else if (inst.size_req == 4)
15579 {
15580 as_bad (_("selected processor does not support `%s'"), str);
15581 return;
15582 }
15583 }
15584 }
15585
15586 inst.instruction = opcode->tvalue;
15587
15588 if (!parse_operands (p, opcode->operands))
15589 {
15590 /* Prepare the it_insn_type for those encodings that don't set
15591 it. */
15592 it_fsm_pre_encode ();
15593
15594 opcode->tencode ();
15595
15596 it_fsm_post_encode ();
15597 }
15598
15599 if (!(inst.error || inst.relax))
15600 {
15601 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15602 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15603 if (inst.size_req && inst.size_req != inst.size)
15604 {
15605 as_bad (_("cannot honor width suffix -- `%s'"), str);
15606 return;
15607 }
15608 }
15609
15610 /* Something has gone badly wrong if we try to relax a fixed size
15611 instruction. */
15612 gas_assert (inst.size_req == 0 || !inst.relax);
15613
15614 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15615 *opcode->tvariant);
15616 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15617 set those bits when Thumb-2 32-bit instructions are seen. ie.
15618 anything other than bl/blx and v6-M instructions.
15619 This is overly pessimistic for relaxable instructions. */
15620 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15621 || inst.relax)
15622 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15623 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15624 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15625 arm_ext_v6t2);
15626
15627 if (!inst.error)
15628 {
15629 mapping_state (MAP_THUMB);
15630 }
15631 }
15632 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15633 {
15634 bfd_boolean is_bx;
15635
15636 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15637 is_bx = (opcode->aencode == do_bx);
15638
15639 /* Check that this instruction is supported for this CPU. */
15640 if (!(is_bx && fix_v4bx)
15641 && !(opcode->avariant &&
15642 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15643 {
15644 as_bad (_("selected processor does not support `%s'"), str);
15645 return;
15646 }
15647 if (inst.size_req)
15648 {
15649 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15650 return;
15651 }
15652
15653 inst.instruction = opcode->avalue;
15654 if (opcode->tag == OT_unconditionalF)
15655 inst.instruction |= 0xF << 28;
15656 else
15657 inst.instruction |= inst.cond << 28;
15658 inst.size = INSN_SIZE;
15659 if (!parse_operands (p, opcode->operands))
15660 {
15661 it_fsm_pre_encode ();
15662 opcode->aencode ();
15663 it_fsm_post_encode ();
15664 }
15665 /* Arm mode bx is marked as both v4T and v5 because it's still required
15666 on a hypothetical non-thumb v5 core. */
15667 if (is_bx)
15668 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15669 else
15670 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15671 *opcode->avariant);
15672 if (!inst.error)
15673 {
15674 mapping_state (MAP_ARM);
15675 }
15676 }
15677 else
15678 {
15679 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15680 "-- `%s'"), str);
15681 return;
15682 }
15683 output_inst (str);
15684 }
15685
15686 static void
15687 check_it_blocks_finished (void)
15688 {
15689 #ifdef OBJ_ELF
15690 asection *sect;
15691
15692 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15693 if (seg_info (sect)->tc_segment_info_data.current_it.state
15694 == MANUAL_IT_BLOCK)
15695 {
15696 as_warn (_("section '%s' finished with an open IT block."),
15697 sect->name);
15698 }
15699 #else
15700 if (now_it.state == MANUAL_IT_BLOCK)
15701 as_warn (_("file finished with an open IT block."));
15702 #endif
15703 }
15704
15705 /* Various frobbings of labels and their addresses. */
15706
15707 void
15708 arm_start_line_hook (void)
15709 {
15710 last_label_seen = NULL;
15711 }
15712
15713 void
15714 arm_frob_label (symbolS * sym)
15715 {
15716 last_label_seen = sym;
15717
15718 ARM_SET_THUMB (sym, thumb_mode);
15719
15720 #if defined OBJ_COFF || defined OBJ_ELF
15721 ARM_SET_INTERWORK (sym, support_interwork);
15722 #endif
15723
15724 force_automatic_it_block_close ();
15725
15726 /* Note - do not allow local symbols (.Lxxx) to be labelled
15727 as Thumb functions. This is because these labels, whilst
15728 they exist inside Thumb code, are not the entry points for
15729 possible ARM->Thumb calls. Also, these labels can be used
15730 as part of a computed goto or switch statement. eg gcc
15731 can generate code that looks like this:
15732
15733 ldr r2, [pc, .Laaa]
15734 lsl r3, r3, #2
15735 ldr r2, [r3, r2]
15736 mov pc, r2
15737
15738 .Lbbb: .word .Lxxx
15739 .Lccc: .word .Lyyy
15740 ..etc...
15741 .Laaa: .word Lbbb
15742
15743 The first instruction loads the address of the jump table.
15744 The second instruction converts a table index into a byte offset.
15745 The third instruction gets the jump address out of the table.
15746 The fourth instruction performs the jump.
15747
15748 If the address stored at .Laaa is that of a symbol which has the
15749 Thumb_Func bit set, then the linker will arrange for this address
15750 to have the bottom bit set, which in turn would mean that the
15751 address computation performed by the third instruction would end
15752 up with the bottom bit set. Since the ARM is capable of unaligned
15753 word loads, the instruction would then load the incorrect address
15754 out of the jump table, and chaos would ensue. */
15755 if (label_is_thumb_function_name
15756 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15757 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15758 {
15759 /* When the address of a Thumb function is taken the bottom
15760 bit of that address should be set. This will allow
15761 interworking between Arm and Thumb functions to work
15762 correctly. */
15763
15764 THUMB_SET_FUNC (sym, 1);
15765
15766 label_is_thumb_function_name = FALSE;
15767 }
15768
15769 dwarf2_emit_label (sym);
15770 }
15771
15772 bfd_boolean
15773 arm_data_in_code (void)
15774 {
15775 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15776 {
15777 *input_line_pointer = '/';
15778 input_line_pointer += 5;
15779 *input_line_pointer = 0;
15780 return TRUE;
15781 }
15782
15783 return FALSE;
15784 }
15785
15786 char *
15787 arm_canonicalize_symbol_name (char * name)
15788 {
15789 int len;
15790
15791 if (thumb_mode && (len = strlen (name)) > 5
15792 && streq (name + len - 5, "/data"))
15793 *(name + len - 5) = 0;
15794
15795 return name;
15796 }
15797 \f
15798 /* Table of all register names defined by default. The user can
15799 define additional names with .req. Note that all register names
15800 should appear in both upper and lowercase variants. Some registers
15801 also have mixed-case names. */
15802
15803 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15804 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15805 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15806 #define REGSET(p,t) \
15807 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15808 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15809 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15810 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15811 #define REGSETH(p,t) \
15812 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15813 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15814 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15815 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15816 #define REGSET2(p,t) \
15817 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15818 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15819 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15820 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15821
15822 static const struct reg_entry reg_names[] =
15823 {
15824 /* ARM integer registers. */
15825 REGSET(r, RN), REGSET(R, RN),
15826
15827 /* ATPCS synonyms. */
15828 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15829 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15830 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15831
15832 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15833 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15834 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15835
15836 /* Well-known aliases. */
15837 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15838 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15839
15840 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15841 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15842
15843 /* Coprocessor numbers. */
15844 REGSET(p, CP), REGSET(P, CP),
15845
15846 /* Coprocessor register numbers. The "cr" variants are for backward
15847 compatibility. */
15848 REGSET(c, CN), REGSET(C, CN),
15849 REGSET(cr, CN), REGSET(CR, CN),
15850
15851 /* FPA registers. */
15852 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15853 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15854
15855 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15856 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15857
15858 /* VFP SP registers. */
15859 REGSET(s,VFS), REGSET(S,VFS),
15860 REGSETH(s,VFS), REGSETH(S,VFS),
15861
15862 /* VFP DP Registers. */
15863 REGSET(d,VFD), REGSET(D,VFD),
15864 /* Extra Neon DP registers. */
15865 REGSETH(d,VFD), REGSETH(D,VFD),
15866
15867 /* Neon QP registers. */
15868 REGSET2(q,NQ), REGSET2(Q,NQ),
15869
15870 /* VFP control registers. */
15871 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15872 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15873 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15874 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15875 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15876 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15877
15878 /* Maverick DSP coprocessor registers. */
15879 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15880 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15881
15882 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15883 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15884 REGDEF(dspsc,0,DSPSC),
15885
15886 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15887 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15888 REGDEF(DSPSC,0,DSPSC),
15889
15890 /* iWMMXt data registers - p0, c0-15. */
15891 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15892
15893 /* iWMMXt control registers - p1, c0-3. */
15894 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15895 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15896 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15897 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15898
15899 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15900 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15901 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15902 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15903 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15904
15905 /* XScale accumulator registers. */
15906 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15907 };
15908 #undef REGDEF
15909 #undef REGNUM
15910 #undef REGSET
15911
15912 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15913 within psr_required_here. */
15914 static const struct asm_psr psrs[] =
15915 {
15916 /* Backward compatibility notation. Note that "all" is no longer
15917 truly all possible PSR bits. */
15918 {"all", PSR_c | PSR_f},
15919 {"flg", PSR_f},
15920 {"ctl", PSR_c},
15921
15922 /* Individual flags. */
15923 {"f", PSR_f},
15924 {"c", PSR_c},
15925 {"x", PSR_x},
15926 {"s", PSR_s},
15927 /* Combinations of flags. */
15928 {"fs", PSR_f | PSR_s},
15929 {"fx", PSR_f | PSR_x},
15930 {"fc", PSR_f | PSR_c},
15931 {"sf", PSR_s | PSR_f},
15932 {"sx", PSR_s | PSR_x},
15933 {"sc", PSR_s | PSR_c},
15934 {"xf", PSR_x | PSR_f},
15935 {"xs", PSR_x | PSR_s},
15936 {"xc", PSR_x | PSR_c},
15937 {"cf", PSR_c | PSR_f},
15938 {"cs", PSR_c | PSR_s},
15939 {"cx", PSR_c | PSR_x},
15940 {"fsx", PSR_f | PSR_s | PSR_x},
15941 {"fsc", PSR_f | PSR_s | PSR_c},
15942 {"fxs", PSR_f | PSR_x | PSR_s},
15943 {"fxc", PSR_f | PSR_x | PSR_c},
15944 {"fcs", PSR_f | PSR_c | PSR_s},
15945 {"fcx", PSR_f | PSR_c | PSR_x},
15946 {"sfx", PSR_s | PSR_f | PSR_x},
15947 {"sfc", PSR_s | PSR_f | PSR_c},
15948 {"sxf", PSR_s | PSR_x | PSR_f},
15949 {"sxc", PSR_s | PSR_x | PSR_c},
15950 {"scf", PSR_s | PSR_c | PSR_f},
15951 {"scx", PSR_s | PSR_c | PSR_x},
15952 {"xfs", PSR_x | PSR_f | PSR_s},
15953 {"xfc", PSR_x | PSR_f | PSR_c},
15954 {"xsf", PSR_x | PSR_s | PSR_f},
15955 {"xsc", PSR_x | PSR_s | PSR_c},
15956 {"xcf", PSR_x | PSR_c | PSR_f},
15957 {"xcs", PSR_x | PSR_c | PSR_s},
15958 {"cfs", PSR_c | PSR_f | PSR_s},
15959 {"cfx", PSR_c | PSR_f | PSR_x},
15960 {"csf", PSR_c | PSR_s | PSR_f},
15961 {"csx", PSR_c | PSR_s | PSR_x},
15962 {"cxf", PSR_c | PSR_x | PSR_f},
15963 {"cxs", PSR_c | PSR_x | PSR_s},
15964 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15965 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15966 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15967 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15968 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15969 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15970 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15971 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15972 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15973 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15974 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15975 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15976 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15977 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15978 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15979 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15980 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15981 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15982 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15983 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15984 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15985 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15986 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15987 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15988 };
15989
15990 /* Table of V7M psr names. */
15991 static const struct asm_psr v7m_psrs[] =
15992 {
15993 {"apsr", 0 }, {"APSR", 0 },
15994 {"iapsr", 1 }, {"IAPSR", 1 },
15995 {"eapsr", 2 }, {"EAPSR", 2 },
15996 {"psr", 3 }, {"PSR", 3 },
15997 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15998 {"ipsr", 5 }, {"IPSR", 5 },
15999 {"epsr", 6 }, {"EPSR", 6 },
16000 {"iepsr", 7 }, {"IEPSR", 7 },
16001 {"msp", 8 }, {"MSP", 8 },
16002 {"psp", 9 }, {"PSP", 9 },
16003 {"primask", 16}, {"PRIMASK", 16},
16004 {"basepri", 17}, {"BASEPRI", 17},
16005 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16006 {"faultmask", 19}, {"FAULTMASK", 19},
16007 {"control", 20}, {"CONTROL", 20}
16008 };
16009
16010 /* Table of all shift-in-operand names. */
16011 static const struct asm_shift_name shift_names [] =
16012 {
16013 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16014 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16015 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16016 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16017 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16018 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16019 };
16020
16021 /* Table of all explicit relocation names. */
16022 #ifdef OBJ_ELF
16023 static struct reloc_entry reloc_names[] =
16024 {
16025 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16026 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16027 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16028 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16029 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16030 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16031 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16032 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16033 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16034 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16035 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16036 };
16037 #endif
16038
16039 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16040 static const struct asm_cond conds[] =
16041 {
16042 {"eq", 0x0},
16043 {"ne", 0x1},
16044 {"cs", 0x2}, {"hs", 0x2},
16045 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16046 {"mi", 0x4},
16047 {"pl", 0x5},
16048 {"vs", 0x6},
16049 {"vc", 0x7},
16050 {"hi", 0x8},
16051 {"ls", 0x9},
16052 {"ge", 0xa},
16053 {"lt", 0xb},
16054 {"gt", 0xc},
16055 {"le", 0xd},
16056 {"al", 0xe}
16057 };
16058
16059 static struct asm_barrier_opt barrier_opt_names[] =
16060 {
16061 { "sy", 0xf },
16062 { "un", 0x7 },
16063 { "st", 0xe },
16064 { "unst", 0x6 }
16065 };
16066
16067 /* Table of ARM-format instructions. */
16068
16069 /* Macros for gluing together operand strings. N.B. In all cases
16070 other than OPS0, the trailing OP_stop comes from default
16071 zero-initialization of the unspecified elements of the array. */
16072 #define OPS0() { OP_stop, }
16073 #define OPS1(a) { OP_##a, }
16074 #define OPS2(a,b) { OP_##a,OP_##b, }
16075 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16076 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16077 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16078 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16079
16080 /* These macros abstract out the exact format of the mnemonic table and
16081 save some repeated characters. */
16082
16083 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16084 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16085 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16086 THUMB_VARIANT, do_##ae, do_##te }
16087
16088 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16089 a T_MNEM_xyz enumerator. */
16090 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16091 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16092 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16093 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16094
16095 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16096 infix after the third character. */
16097 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16098 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16099 THUMB_VARIANT, do_##ae, do_##te }
16100 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16101 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16102 THUMB_VARIANT, do_##ae, do_##te }
16103 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16104 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16105 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16106 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16107 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16108 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16109 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16110 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16111
16112 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16113 appear in the condition table. */
16114 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16115 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16116 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16117
16118 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16119 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16120 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16121 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16122 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16123 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16124 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16125 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16126 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16127 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16128 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16129 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16130 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16131 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16132 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16133 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16134 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16135 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16136 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16137 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16138
16139 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16140 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16141 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16142 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16143
16144 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16145 field is still 0xE. Many of the Thumb variants can be executed
16146 conditionally, so this is checked separately. */
16147 #define TUE(mnem, op, top, nops, ops, ae, te) \
16148 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16149 THUMB_VARIANT, do_##ae, do_##te }
16150
16151 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16152 condition code field. */
16153 #define TUF(mnem, op, top, nops, ops, ae, te) \
16154 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16155 THUMB_VARIANT, do_##ae, do_##te }
16156
16157 /* ARM-only variants of all the above. */
16158 #define CE(mnem, op, nops, ops, ae) \
16159 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16160
16161 #define C3(mnem, op, nops, ops, ae) \
16162 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16163
16164 /* Legacy mnemonics that always have conditional infix after the third
16165 character. */
16166 #define CL(mnem, op, nops, ops, ae) \
16167 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16168 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16169
16170 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16171 #define cCE(mnem, op, nops, ops, ae) \
16172 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16173
16174 /* Legacy coprocessor instructions where conditional infix and conditional
16175 suffix are ambiguous. For consistency this includes all FPA instructions,
16176 not just the potentially ambiguous ones. */
16177 #define cCL(mnem, op, nops, ops, ae) \
16178 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16179 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16180
16181 /* Coprocessor, takes either a suffix or a position-3 infix
16182 (for an FPA corner case). */
16183 #define C3E(mnem, op, nops, ops, ae) \
16184 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16185 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16186
16187 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16188 { m1 #m2 m3, OPS##nops ops, \
16189 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16190 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16191
16192 #define CM(m1, m2, op, nops, ops, ae) \
16193 xCM_ (m1, , m2, op, nops, ops, ae), \
16194 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16195 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16196 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16197 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16198 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16199 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16200 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16201 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16202 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16203 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16204 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16205 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16206 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16207 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16208 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16209 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16210 xCM_ (m1, le, m2, op, nops, ops, ae), \
16211 xCM_ (m1, al, m2, op, nops, ops, ae)
16212
16213 #define UE(mnem, op, nops, ops, ae) \
16214 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16215
16216 #define UF(mnem, op, nops, ops, ae) \
16217 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16218
16219 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16220 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16221 use the same encoding function for each. */
16222 #define NUF(mnem, op, nops, ops, enc) \
16223 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16224 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16225
16226 /* Neon data processing, version which indirects through neon_enc_tab for
16227 the various overloaded versions of opcodes. */
16228 #define nUF(mnem, op, nops, ops, enc) \
16229 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16230 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16231
16232 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16233 version. */
16234 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16235 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16236 THUMB_VARIANT, do_##enc, do_##enc }
16237
16238 #define NCE(mnem, op, nops, ops, enc) \
16239 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16240
16241 #define NCEF(mnem, op, nops, ops, enc) \
16242 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16243
16244 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16245 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16246 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16247 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16248
16249 #define nCE(mnem, op, nops, ops, enc) \
16250 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16251
16252 #define nCEF(mnem, op, nops, ops, enc) \
16253 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16254
16255 #define do_0 0
16256
16257 /* Thumb-only, unconditional. */
16258 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16259
16260 static const struct asm_opcode insns[] =
16261 {
16262 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16263 #define THUMB_VARIANT &arm_ext_v4t
16264 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16265 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16266 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16267 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16268 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16269 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16270 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16271 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16272 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16273 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16274 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16275 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16276 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16277 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16278 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16279 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16280
16281 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16282 for setting PSR flag bits. They are obsolete in V6 and do not
16283 have Thumb equivalents. */
16284 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16285 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16286 CL("tstp", 110f000, 2, (RR, SH), cmp),
16287 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16288 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16289 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16290 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16291 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16292 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16293
16294 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16295 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16296 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16297 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16298
16299 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16300 tC3("ldrb", 4500000, _ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16301 tCE("str", 4000000, _str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16302 tC3("strb", 4400000, _strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16303
16304 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16305 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16306 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16307 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16308 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16309 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16310
16311 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16312 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16313 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16314 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16315
16316 /* Pseudo ops. */
16317 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16318 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16319 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16320
16321 /* Thumb-compatibility pseudo ops. */
16322 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16323 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16324 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16325 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16326 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16327 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16328 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16329 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16330 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16331 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16332 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16333 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16334
16335 /* These may simplify to neg. */
16336 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16337 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16338
16339 #undef THUMB_VARIANT
16340 #define THUMB_VARIANT & arm_ext_v6
16341
16342 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16343
16344 /* V1 instructions with no Thumb analogue prior to V6T2. */
16345 #undef THUMB_VARIANT
16346 #define THUMB_VARIANT & arm_ext_v6t2
16347
16348 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16349 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16350 CL("teqp", 130f000, 2, (RR, SH), cmp),
16351
16352 TC3("ldrt", 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16353 TC3("ldrbt", 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16354 TC3("strt", 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16355 TC3("strbt", 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
16356
16357 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16358 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16359
16360 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16361 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16362
16363 /* V1 instructions with no Thumb analogue at all. */
16364 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16365 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16366
16367 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16368 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16369 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16370 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16371 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16372 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16373 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16374 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16375
16376 #undef ARM_VARIANT
16377 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16378 #undef THUMB_VARIANT
16379 #define THUMB_VARIANT & arm_ext_v4t
16380
16381 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16382 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16383
16384 #undef THUMB_VARIANT
16385 #define THUMB_VARIANT & arm_ext_v6t2
16386
16387 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16388 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16389
16390 /* Generic coprocessor instructions. */
16391 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16392 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16393 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16394 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16395 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16396 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16397 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16398
16399 #undef ARM_VARIANT
16400 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16401
16402 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16403 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16404
16405 #undef ARM_VARIANT
16406 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16407 #undef THUMB_VARIANT
16408 #define THUMB_VARIANT & arm_ext_msr
16409
16410 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16411 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16412
16413 #undef ARM_VARIANT
16414 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16415 #undef THUMB_VARIANT
16416 #define THUMB_VARIANT & arm_ext_v6t2
16417
16418 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16419 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16420 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16421 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16422 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16423 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16424 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16425 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16426
16427 #undef ARM_VARIANT
16428 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16429 #undef THUMB_VARIANT
16430 #define THUMB_VARIANT & arm_ext_v4t
16431
16432 tC3("ldrh", 01000b0, _ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16433 tC3("strh", 00000b0, _strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16434 tC3("ldrsh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16435 tC3("ldrsb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16436 tCM("ld","sh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16437 tCM("ld","sb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16438
16439 #undef ARM_VARIANT
16440 #define ARM_VARIANT & arm_ext_v4t_5
16441
16442 /* ARM Architecture 4T. */
16443 /* Note: bx (and blx) are required on V5, even if the processor does
16444 not support Thumb. */
16445 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16446
16447 #undef ARM_VARIANT
16448 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16449 #undef THUMB_VARIANT
16450 #define THUMB_VARIANT & arm_ext_v5t
16451
16452 /* Note: blx has 2 variants; the .value coded here is for
16453 BLX(2). Only this variant has conditional execution. */
16454 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16455 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16456
16457 #undef THUMB_VARIANT
16458 #define THUMB_VARIANT & arm_ext_v6t2
16459
16460 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16461 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16462 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16463 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16464 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16465 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16466 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16467 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16468
16469 #undef ARM_VARIANT
16470 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16471
16472 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16473 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16474 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16475 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16476
16477 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16478 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16479
16480 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16481 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16482 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16483 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16484
16485 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16486 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16487 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16488 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16489
16490 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16491 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16492
16493 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16494 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16495 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16496 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16497
16498 #undef ARM_VARIANT
16499 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16500
16501 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16502 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16503 TC3("strd", 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16504
16505 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16506 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16507
16508 #undef ARM_VARIANT
16509 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16510
16511 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16512
16513 #undef ARM_VARIANT
16514 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16515 #undef THUMB_VARIANT
16516 #define THUMB_VARIANT & arm_ext_v6
16517
16518 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16519 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16520 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16521 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16522 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16523 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16524 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16525 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16526 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16527 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16528
16529 #undef THUMB_VARIANT
16530 #define THUMB_VARIANT & arm_ext_v6t2
16531
16532 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16533 TCE("strex", 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16534 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16535 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16536
16537 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16538 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16539
16540 /* ARM V6 not included in V7M (eg. integer SIMD). */
16541 #undef THUMB_VARIANT
16542 #define THUMB_VARIANT & arm_ext_v6_notm
16543
16544 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16545 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16546 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16547 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16548 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16549 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16550 /* Old name for QASX. */
16551 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16552 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16553 /* Old name for QSAX. */
16554 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16555 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16556 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16557 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16558 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16559 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16560 /* Old name for SASX. */
16561 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16562 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16563 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16564 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16565 /* Old name for SHASX. */
16566 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16567 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16568 /* Old name for SHSAX. */
16569 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16570 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16571 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16572 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16573 /* Old name for SSAX. */
16574 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16575 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16576 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16577 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16578 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16579 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16580 /* Old name for UASX. */
16581 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16582 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16583 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16584 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16585 /* Old name for UHASX. */
16586 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16587 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16588 /* Old name for UHSAX. */
16589 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16590 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16591 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16592 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16593 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16594 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16595 /* Old name for UQASX. */
16596 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16597 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16598 /* Old name for UQSAX. */
16599 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16600 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16601 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16602 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16603 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16604 /* Old name for USAX. */
16605 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16606 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16607 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16608 UF(rfeib, 9900a00, 1, (RRw), rfe),
16609 UF(rfeda, 8100a00, 1, (RRw), rfe),
16610 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16611 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16612 UF(rfefa, 9900a00, 1, (RRw), rfe),
16613 UF(rfeea, 8100a00, 1, (RRw), rfe),
16614 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16615 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16616 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16617 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16618 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16619 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16620 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16621 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16622 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16623 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16624 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16625 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16626 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16627 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16628 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16629 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16630 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16631 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16632 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16633 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16634 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16635 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16636 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16637 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16638 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16639 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16640 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16641 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16642 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16643 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16644 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16645 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16646 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16647 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16648 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16649 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16650 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16651
16652 #undef ARM_VARIANT
16653 #define ARM_VARIANT & arm_ext_v6k
16654 #undef THUMB_VARIANT
16655 #define THUMB_VARIANT & arm_ext_v6k
16656
16657 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16658 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16659 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16660 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16661
16662 #undef THUMB_VARIANT
16663 #define THUMB_VARIANT & arm_ext_v6_notm
16664
16665 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16666 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
16667
16668 #undef THUMB_VARIANT
16669 #define THUMB_VARIANT & arm_ext_v6t2
16670
16671 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16672 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16673 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16674 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16675 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16676
16677 #undef ARM_VARIANT
16678 #define ARM_VARIANT & arm_ext_v6z
16679
16680 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16681
16682 #undef ARM_VARIANT
16683 #define ARM_VARIANT & arm_ext_v6t2
16684
16685 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16686 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16687 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16688 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16689
16690 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16691 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16692 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16693 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16694
16695 TC3("ldrht", 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16696 TC3("ldrsht", 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16697 TC3("ldrsbt", 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16698 TC3("strht", 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16699
16700 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16701 UT("cbz", b100, 2, (RR, EXP), t_cbz),
16702
16703 /* ARM does not really have an IT instruction, so always allow it.
16704 The opcode is copied from Thumb in order to allow warnings in
16705 -mimplicit-it=[never | arm] modes. */
16706 #undef ARM_VARIANT
16707 #define ARM_VARIANT & arm_ext_v1
16708
16709 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16710 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16711 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16712 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16713 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16714 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16715 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16716 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16717 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16718 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16719 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16720 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16721 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16722 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16723 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16724 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16725 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16726 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16727
16728 /* Thumb2 only instructions. */
16729 #undef ARM_VARIANT
16730 #define ARM_VARIANT NULL
16731
16732 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16733 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16734 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16735 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16736 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16737 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16738
16739 /* Thumb-2 hardware division instructions (R and M profiles only). */
16740 #undef THUMB_VARIANT
16741 #define THUMB_VARIANT & arm_ext_div
16742
16743 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16744 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16745
16746 /* ARM V6M/V7 instructions. */
16747 #undef ARM_VARIANT
16748 #define ARM_VARIANT & arm_ext_barrier
16749 #undef THUMB_VARIANT
16750 #define THUMB_VARIANT & arm_ext_barrier
16751
16752 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16753 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16754 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16755
16756 /* ARM V7 instructions. */
16757 #undef ARM_VARIANT
16758 #define ARM_VARIANT & arm_ext_v7
16759 #undef THUMB_VARIANT
16760 #define THUMB_VARIANT & arm_ext_v7
16761
16762 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16763 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16764
16765 #undef ARM_VARIANT
16766 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16767
16768 cCE("wfs", e200110, 1, (RR), rd),
16769 cCE("rfs", e300110, 1, (RR), rd),
16770 cCE("wfc", e400110, 1, (RR), rd),
16771 cCE("rfc", e500110, 1, (RR), rd),
16772
16773 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16774 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16775 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16776 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16777
16778 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16779 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16780 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16781 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16782
16783 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16784 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16785 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16786 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16787 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16788 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16789 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16790 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16791 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16792 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16793 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16794 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16795
16796 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16797 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16798 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16799 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16800 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16801 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16802 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16803 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16804 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16805 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16806 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16807 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16808
16809 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16810 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16811 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16812 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16813 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
16814 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
16815 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
16816 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
16817 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
16818 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
16819 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
16820 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
16821
16822 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
16823 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
16824 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
16825 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
16826 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
16827 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
16828 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
16829 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
16830 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
16831 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
16832 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
16833 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
16834
16835 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
16836 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
16837 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
16838 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
16839 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
16840 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
16841 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
16842 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
16843 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
16844 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
16845 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
16846 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
16847
16848 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
16849 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
16850 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
16851 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
16852 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
16853 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
16854 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
16855 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
16856 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
16857 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
16858 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
16859 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
16860
16861 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
16862 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
16863 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
16864 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
16865 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
16866 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
16867 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
16868 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
16869 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
16870 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
16871 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
16872 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
16873
16874 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
16875 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
16876 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
16877 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
16878 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
16879 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
16880 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
16881 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
16882 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
16883 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
16884 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
16885 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
16886
16887 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
16888 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
16889 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
16890 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
16891 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
16892 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
16893 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
16894 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
16895 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
16896 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
16897 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
16898 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
16899
16900 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
16901 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
16902 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
16903 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
16904 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
16905 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
16906 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
16907 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
16908 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
16909 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
16910 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
16911 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
16912
16913 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
16914 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
16915 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
16916 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
16917 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
16918 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
16919 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
16920 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
16921 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
16922 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
16923 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
16924 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
16925
16926 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
16927 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
16928 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
16929 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
16930 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
16931 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
16932 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
16933 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
16934 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
16935 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
16936 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
16937 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
16938
16939 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
16940 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
16941 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
16942 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
16943 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
16944 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
16945 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
16946 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
16947 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
16948 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
16949 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
16950 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
16951
16952 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
16953 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
16954 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
16955 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
16956 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
16957 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
16958 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
16959 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
16960 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
16961 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
16962 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
16963 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
16964
16965 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
16966 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
16967 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
16968 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
16969 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
16970 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
16971 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
16972 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
16973 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
16974 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
16975 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
16976 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
16977
16978 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
16979 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
16980 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
16981 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
16982 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
16983 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
16984 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
16985 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
16986 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
16987 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
16988 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
16989 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
16990
16991 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16992 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16993 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16994 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16995 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16996 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16997 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16998 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16999 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17000 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17001 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17002 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17003
17004 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17005 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17006 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17007 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17008 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17009 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17010 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17011 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17012 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17013 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17014 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17015 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17016
17017 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17018 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17019 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17020 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17021 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17022 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17023 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17024 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17025 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17026 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17027 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17028 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17029
17030 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17031 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17032 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17033 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17034 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17035 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17036 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17037 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17038 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17039 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17040 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17041 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17042
17043 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17044 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17045 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17046 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17047 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17048 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17049 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17050 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17051 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17052 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17053 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17054 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17055
17056 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17057 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17058 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17059 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17060 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17061 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17062 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17063 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17064 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17065 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17066 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17067 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17068
17069 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17070 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17071 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17072 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17073 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17074 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17075 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17076 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17077 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17078 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17079 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17080 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17081
17082 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17083 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17084 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17085 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17086 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17087 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17088 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17089 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17090 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17091 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17092 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17093 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17094
17095 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17096 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17097 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17098 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17099 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17100 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17101 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17102 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17103 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17104 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17105 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17106 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17107
17108 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17109 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17110 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17111 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17112 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17113 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17114 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17115 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17116 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17117 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17118 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17119 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17120
17121 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17122 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17123 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17124 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17125 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17126 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17127 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17128 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17129 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17130 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17131 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17132 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17133
17134 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17135 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17136 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17137 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17138 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17139 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17140 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17141 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17142 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17143 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17144 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17145 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17146
17147 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17148 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17149 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17150 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17151 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17152 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17153 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17154 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17155 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17156 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17157 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17158 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17159
17160 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17161 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17162 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17163 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17164
17165 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17166 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17167 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17168 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17169 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17170 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17171 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17172 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17173 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17174 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17175 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17176 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17177
17178 /* The implementation of the FIX instruction is broken on some
17179 assemblers, in that it accepts a precision specifier as well as a
17180 rounding specifier, despite the fact that this is meaningless.
17181 To be more compatible, we accept it as well, though of course it
17182 does not set any bits. */
17183 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17184 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17185 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17186 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17187 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17188 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17189 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17190 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17191 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17192 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17193 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17194 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17195 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17196
17197 /* Instructions that were new with the real FPA, call them V2. */
17198 #undef ARM_VARIANT
17199 #define ARM_VARIANT & fpu_fpa_ext_v2
17200
17201 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17202 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17203 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17204 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17205 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17206 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17207
17208 #undef ARM_VARIANT
17209 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17210
17211 /* Moves and type conversions. */
17212 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17213 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17214 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17215 cCE("fmstat", ef1fa10, 0, (), noargs),
17216 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17217 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17218 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17219 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17220 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17221 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17222 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17223 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17224 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17225 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17226
17227 /* Memory operations. */
17228 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17229 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17230 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17231 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17232 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17233 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17234 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17235 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17236 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17237 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17238 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17239 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17240 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17241 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17242 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17243 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17244 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17245 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17246
17247 /* Monadic operations. */
17248 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17249 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17250 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17251
17252 /* Dyadic operations. */
17253 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17254 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17255 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17256 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17257 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17258 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17259 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17260 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17261 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17262
17263 /* Comparisons. */
17264 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17265 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17266 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17267 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17268
17269 /* Double precision load/store are still present on single precision
17270 implementations. */
17271 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17272 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17273 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17274 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17275 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17276 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17277 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17278 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17279 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17280 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17281
17282 #undef ARM_VARIANT
17283 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17284
17285 /* Moves and type conversions. */
17286 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17287 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17288 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17289 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17290 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17291 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17292 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17293 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17294 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17295 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17296 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17297 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17298 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17299
17300 /* Monadic operations. */
17301 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17302 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17303 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17304
17305 /* Dyadic operations. */
17306 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17307 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17308 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17309 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17310 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17311 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17312 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17313 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17314 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17315
17316 /* Comparisons. */
17317 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17318 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17319 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17320 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17321
17322 #undef ARM_VARIANT
17323 #define ARM_VARIANT & fpu_vfp_ext_v2
17324
17325 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17326 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17327 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17328 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17329
17330 /* Instructions which may belong to either the Neon or VFP instruction sets.
17331 Individual encoder functions perform additional architecture checks. */
17332 #undef ARM_VARIANT
17333 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17334 #undef THUMB_VARIANT
17335 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17336
17337 /* These mnemonics are unique to VFP. */
17338 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17339 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17340 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17341 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17342 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17343 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17344 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17345 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17346 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17347 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17348
17349 /* Mnemonics shared by Neon and VFP. */
17350 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17351 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17352 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17353
17354 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17355 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17356
17357 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17358 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17359
17360 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17361 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17362 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17363 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17364 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17365 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17366 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17367 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17368
17369 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17370 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17371 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17372
17373
17374 /* NOTE: All VMOV encoding is special-cased! */
17375 NCE(vmov, 0, 1, (VMOV), neon_mov),
17376 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17377
17378 #undef THUMB_VARIANT
17379 #define THUMB_VARIANT & fpu_neon_ext_v1
17380 #undef ARM_VARIANT
17381 #define ARM_VARIANT & fpu_neon_ext_v1
17382
17383 /* Data processing with three registers of the same length. */
17384 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17385 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17386 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17387 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17388 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17389 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17390 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17391 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17392 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17393 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17394 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17395 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17396 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17397 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17398 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17399 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17400 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17401 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17402 /* If not immediate, fall back to neon_dyadic_i64_su.
17403 shl_imm should accept I8 I16 I32 I64,
17404 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17405 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17406 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17407 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17408 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17409 /* Logic ops, types optional & ignored. */
17410 nUF(vand, _vand, 2, (RNDQ, NILO), neon_logic),
17411 nUF(vandq, _vand, 2, (RNQ, NILO), neon_logic),
17412 nUF(vbic, _vbic, 2, (RNDQ, NILO), neon_logic),
17413 nUF(vbicq, _vbic, 2, (RNQ, NILO), neon_logic),
17414 nUF(vorr, _vorr, 2, (RNDQ, NILO), neon_logic),
17415 nUF(vorrq, _vorr, 2, (RNQ, NILO), neon_logic),
17416 nUF(vorn, _vorn, 2, (RNDQ, NILO), neon_logic),
17417 nUF(vornq, _vorn, 2, (RNQ, NILO), neon_logic),
17418 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17419 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17420 /* Bitfield ops, untyped. */
17421 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17422 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17423 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17424 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17425 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17426 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17427 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17428 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17429 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17430 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17431 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17432 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17433 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17434 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17435 back to neon_dyadic_if_su. */
17436 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17437 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17438 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17439 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17440 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17441 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17442 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17443 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17444 /* Comparison. Type I8 I16 I32 F32. */
17445 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17446 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17447 /* As above, D registers only. */
17448 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17449 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17450 /* Int and float variants, signedness unimportant. */
17451 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17452 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17453 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17454 /* Add/sub take types I8 I16 I32 I64 F32. */
17455 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17456 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17457 /* vtst takes sizes 8, 16, 32. */
17458 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17459 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17460 /* VMUL takes I8 I16 I32 F32 P8. */
17461 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17462 /* VQD{R}MULH takes S16 S32. */
17463 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17464 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17465 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17466 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17467 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17468 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17469 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17470 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17471 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17472 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17473 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17474 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17475 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17476 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17477 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17478 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17479
17480 /* Two address, int/float. Types S8 S16 S32 F32. */
17481 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17482 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17483
17484 /* Data processing with two registers and a shift amount. */
17485 /* Right shifts, and variants with rounding.
17486 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17487 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17488 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17489 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17490 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17491 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17492 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17493 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17494 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17495 /* Shift and insert. Sizes accepted 8 16 32 64. */
17496 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17497 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17498 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17499 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17500 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17501 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17502 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17503 /* Right shift immediate, saturating & narrowing, with rounding variants.
17504 Types accepted S16 S32 S64 U16 U32 U64. */
17505 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17506 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17507 /* As above, unsigned. Types accepted S16 S32 S64. */
17508 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17509 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17510 /* Right shift narrowing. Types accepted I16 I32 I64. */
17511 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17512 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17513 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17514 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17515 /* CVT with optional immediate for fixed-point variant. */
17516 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17517
17518 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
17519 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
17520
17521 /* Data processing, three registers of different lengths. */
17522 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17523 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17524 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17525 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17526 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17527 /* If not scalar, fall back to neon_dyadic_long.
17528 Vector types as above, scalar types S16 S32 U16 U32. */
17529 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17530 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17531 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17532 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17533 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17534 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17535 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17536 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17537 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17538 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17539 /* Saturating doubling multiplies. Types S16 S32. */
17540 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17541 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17542 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17543 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17544 S16 S32 U16 U32. */
17545 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17546
17547 /* Extract. Size 8. */
17548 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17549 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17550
17551 /* Two registers, miscellaneous. */
17552 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17553 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17554 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17555 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17556 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17557 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17558 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17559 /* Vector replicate. Sizes 8 16 32. */
17560 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17561 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17562 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17563 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17564 /* VMOVN. Types I16 I32 I64. */
17565 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17566 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17567 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17568 /* VQMOVUN. Types S16 S32 S64. */
17569 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17570 /* VZIP / VUZP. Sizes 8 16 32. */
17571 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17572 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17573 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17574 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17575 /* VQABS / VQNEG. Types S8 S16 S32. */
17576 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17577 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17578 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17579 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17580 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17581 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17582 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17583 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17584 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17585 /* Reciprocal estimates. Types U32 F32. */
17586 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17587 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17588 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17589 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17590 /* VCLS. Types S8 S16 S32. */
17591 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17592 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17593 /* VCLZ. Types I8 I16 I32. */
17594 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17595 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17596 /* VCNT. Size 8. */
17597 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17598 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17599 /* Two address, untyped. */
17600 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17601 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17602 /* VTRN. Sizes 8 16 32. */
17603 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17604 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17605
17606 /* Table lookup. Size 8. */
17607 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17608 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17609
17610 #undef THUMB_VARIANT
17611 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17612 #undef ARM_VARIANT
17613 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17614
17615 /* Neon element/structure load/store. */
17616 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17617 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17618 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17619 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17620 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17621 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17622 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17623 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17624
17625 #undef THUMB_VARIANT
17626 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17627 #undef ARM_VARIANT
17628 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17629 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17630 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17631 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17632 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17633 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17634 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17635 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17636 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17637 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17638
17639 #undef THUMB_VARIANT
17640 #define THUMB_VARIANT & fpu_vfp_ext_v3
17641 #undef ARM_VARIANT
17642 #define ARM_VARIANT & fpu_vfp_ext_v3
17643
17644 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17645 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17646 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17647 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17648 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17649 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17650 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17651 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17652 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17653
17654 #undef ARM_VARIANT
17655 #define ARM_VARIANT &fpu_vfp_ext_fma
17656 #undef THUMB_VARIANT
17657 #define THUMB_VARIANT &fpu_vfp_ext_fma
17658 /* Mnemonics shared by Neon and VFP. These are included in the
17659 VFP FMA variant; NEON and VFP FMA always includes the NEON
17660 FMA instructions. */
17661 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17662 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17663 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17664 the v form should always be used. */
17665 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17666 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17667 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17668 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17669 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17670 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17671
17672 #undef THUMB_VARIANT
17673 #undef ARM_VARIANT
17674 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17675
17676 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17677 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17678 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17679 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17680 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17681 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17682 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17683 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17684
17685 #undef ARM_VARIANT
17686 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17687
17688 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17689 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17690 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17691 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17692 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17693 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17694 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17695 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17696 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17697 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17698 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17699 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17700 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17701 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17702 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17703 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17704 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17705 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17706 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17707 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17708 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17709 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17710 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17711 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17712 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17713 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17714 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17715 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17716 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17717 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17718 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17719 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17720 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17721 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17722 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17723 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17724 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17725 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17726 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17727 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17728 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17729 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17730 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17731 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17732 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17733 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17734 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17735 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17736 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17737 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17738 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17739 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17740 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17741 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17742 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17743 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17744 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17745 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17746 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17747 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17748 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17749 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17750 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17751 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17752 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17753 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17754 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17755 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17756 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17757 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17758 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17759 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17760 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17761 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17762 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17763 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17764 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17765 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17766 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17767 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17768 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17769 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17770 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17771 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17772 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17773 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17774 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17775 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17776 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17777 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17778 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17779 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17780 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17781 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17782 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17783 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17784 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17785 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17786 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17787 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17788 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17789 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17790 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17791 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17792 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17793 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17794 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17795 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17796 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17797 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17798 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17799 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17800 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17801 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17802 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17803 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17804 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17805 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17806 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17807 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17808 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17809 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17810 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17811 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17812 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17813 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17814 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17815 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17816 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17817 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17818 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17819 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17820 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17821 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17822 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17823 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17824 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17825 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17826 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17827 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17828 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17829 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17830 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
17831 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
17832 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
17833 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
17834 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
17835 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
17836 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17837 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17838 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17839 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
17840 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
17841 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
17842 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
17843 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
17844 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
17845 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17846 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17847 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17848 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17849 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
17850
17851 #undef ARM_VARIANT
17852 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17853
17854 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
17855 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
17856 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
17857 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
17858 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
17859 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
17860 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17861 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17862 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17863 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17864 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17865 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17866 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17867 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17868 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17869 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17870 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17871 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17872 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17873 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17874 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17875 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17876 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17877 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17878 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17879 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17880 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17881 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17882 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17883 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17884 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17885 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17886 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17887 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17888 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17889 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17890 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17891 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17892 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17893 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17894 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17895 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17896 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17897 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17898 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17899 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17900 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17901 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17902 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17903 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17904 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17905 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17906 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17907 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17908 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17909 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17910 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17911
17912 #undef ARM_VARIANT
17913 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17914
17915 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17916 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17917 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17918 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17919 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17920 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17921 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17922 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17923 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
17924 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
17925 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
17926 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
17927 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
17928 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
17929 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
17930 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
17931 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
17932 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
17933 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
17934 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
17935 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
17936 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
17937 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
17938 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
17939 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
17940 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
17941 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
17942 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
17943 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17944 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
17945 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
17946 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
17947 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
17948 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
17949 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
17950 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
17951 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
17952 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
17953 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
17954 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
17955 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
17956 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
17957 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
17958 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
17959 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17960 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17961 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17962 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17963 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17964 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17965 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
17966 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
17967 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
17968 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
17969 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17970 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17971 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17972 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17973 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17974 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17975 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
17976 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
17977 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
17978 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
17979 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17980 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17981 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17982 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17983 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17984 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17985 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17986 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17987 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17988 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17989 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17990 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17991 };
17992 #undef ARM_VARIANT
17993 #undef THUMB_VARIANT
17994 #undef TCE
17995 #undef TCM
17996 #undef TUE
17997 #undef TUF
17998 #undef TCC
17999 #undef cCE
18000 #undef cCL
18001 #undef C3E
18002 #undef CE
18003 #undef CM
18004 #undef UE
18005 #undef UF
18006 #undef UT
18007 #undef NUF
18008 #undef nUF
18009 #undef NCE
18010 #undef nCE
18011 #undef OPS0
18012 #undef OPS1
18013 #undef OPS2
18014 #undef OPS3
18015 #undef OPS4
18016 #undef OPS5
18017 #undef OPS6
18018 #undef do_0
18019 \f
18020 /* MD interface: bits in the object file. */
18021
18022 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18023 for use in the a.out file, and stores them in the array pointed to by buf.
18024 This knows about the endian-ness of the target machine and does
18025 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18026 2 (short) and 4 (long) Floating numbers are put out as a series of
18027 LITTLENUMS (shorts, here at least). */
18028
18029 void
18030 md_number_to_chars (char * buf, valueT val, int n)
18031 {
18032 if (target_big_endian)
18033 number_to_chars_bigendian (buf, val, n);
18034 else
18035 number_to_chars_littleendian (buf, val, n);
18036 }
18037
18038 static valueT
18039 md_chars_to_number (char * buf, int n)
18040 {
18041 valueT result = 0;
18042 unsigned char * where = (unsigned char *) buf;
18043
18044 if (target_big_endian)
18045 {
18046 while (n--)
18047 {
18048 result <<= 8;
18049 result |= (*where++ & 255);
18050 }
18051 }
18052 else
18053 {
18054 while (n--)
18055 {
18056 result <<= 8;
18057 result |= (where[n] & 255);
18058 }
18059 }
18060
18061 return result;
18062 }
18063
18064 /* MD interface: Sections. */
18065
18066 /* Estimate the size of a frag before relaxing. Assume everything fits in
18067 2 bytes. */
18068
18069 int
18070 md_estimate_size_before_relax (fragS * fragp,
18071 segT segtype ATTRIBUTE_UNUSED)
18072 {
18073 fragp->fr_var = 2;
18074 return 2;
18075 }
18076
18077 /* Convert a machine dependent frag. */
18078
18079 void
18080 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18081 {
18082 unsigned long insn;
18083 unsigned long old_op;
18084 char *buf;
18085 expressionS exp;
18086 fixS *fixp;
18087 int reloc_type;
18088 int pc_rel;
18089 int opcode;
18090
18091 buf = fragp->fr_literal + fragp->fr_fix;
18092
18093 old_op = bfd_get_16(abfd, buf);
18094 if (fragp->fr_symbol)
18095 {
18096 exp.X_op = O_symbol;
18097 exp.X_add_symbol = fragp->fr_symbol;
18098 }
18099 else
18100 {
18101 exp.X_op = O_constant;
18102 }
18103 exp.X_add_number = fragp->fr_offset;
18104 opcode = fragp->fr_subtype;
18105 switch (opcode)
18106 {
18107 case T_MNEM_ldr_pc:
18108 case T_MNEM_ldr_pc2:
18109 case T_MNEM_ldr_sp:
18110 case T_MNEM_str_sp:
18111 case T_MNEM_ldr:
18112 case T_MNEM_ldrb:
18113 case T_MNEM_ldrh:
18114 case T_MNEM_str:
18115 case T_MNEM_strb:
18116 case T_MNEM_strh:
18117 if (fragp->fr_var == 4)
18118 {
18119 insn = THUMB_OP32 (opcode);
18120 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18121 {
18122 insn |= (old_op & 0x700) << 4;
18123 }
18124 else
18125 {
18126 insn |= (old_op & 7) << 12;
18127 insn |= (old_op & 0x38) << 13;
18128 }
18129 insn |= 0x00000c00;
18130 put_thumb32_insn (buf, insn);
18131 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18132 }
18133 else
18134 {
18135 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18136 }
18137 pc_rel = (opcode == T_MNEM_ldr_pc2);
18138 break;
18139 case T_MNEM_adr:
18140 if (fragp->fr_var == 4)
18141 {
18142 insn = THUMB_OP32 (opcode);
18143 insn |= (old_op & 0xf0) << 4;
18144 put_thumb32_insn (buf, insn);
18145 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18146 }
18147 else
18148 {
18149 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18150 exp.X_add_number -= 4;
18151 }
18152 pc_rel = 1;
18153 break;
18154 case T_MNEM_mov:
18155 case T_MNEM_movs:
18156 case T_MNEM_cmp:
18157 case T_MNEM_cmn:
18158 if (fragp->fr_var == 4)
18159 {
18160 int r0off = (opcode == T_MNEM_mov
18161 || opcode == T_MNEM_movs) ? 0 : 8;
18162 insn = THUMB_OP32 (opcode);
18163 insn = (insn & 0xe1ffffff) | 0x10000000;
18164 insn |= (old_op & 0x700) << r0off;
18165 put_thumb32_insn (buf, insn);
18166 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18167 }
18168 else
18169 {
18170 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18171 }
18172 pc_rel = 0;
18173 break;
18174 case T_MNEM_b:
18175 if (fragp->fr_var == 4)
18176 {
18177 insn = THUMB_OP32(opcode);
18178 put_thumb32_insn (buf, insn);
18179 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18180 }
18181 else
18182 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18183 pc_rel = 1;
18184 break;
18185 case T_MNEM_bcond:
18186 if (fragp->fr_var == 4)
18187 {
18188 insn = THUMB_OP32(opcode);
18189 insn |= (old_op & 0xf00) << 14;
18190 put_thumb32_insn (buf, insn);
18191 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18192 }
18193 else
18194 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18195 pc_rel = 1;
18196 break;
18197 case T_MNEM_add_sp:
18198 case T_MNEM_add_pc:
18199 case T_MNEM_inc_sp:
18200 case T_MNEM_dec_sp:
18201 if (fragp->fr_var == 4)
18202 {
18203 /* ??? Choose between add and addw. */
18204 insn = THUMB_OP32 (opcode);
18205 insn |= (old_op & 0xf0) << 4;
18206 put_thumb32_insn (buf, insn);
18207 if (opcode == T_MNEM_add_pc)
18208 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18209 else
18210 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18211 }
18212 else
18213 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18214 pc_rel = 0;
18215 break;
18216
18217 case T_MNEM_addi:
18218 case T_MNEM_addis:
18219 case T_MNEM_subi:
18220 case T_MNEM_subis:
18221 if (fragp->fr_var == 4)
18222 {
18223 insn = THUMB_OP32 (opcode);
18224 insn |= (old_op & 0xf0) << 4;
18225 insn |= (old_op & 0xf) << 16;
18226 put_thumb32_insn (buf, insn);
18227 if (insn & (1 << 20))
18228 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18229 else
18230 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18231 }
18232 else
18233 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18234 pc_rel = 0;
18235 break;
18236 default:
18237 abort ();
18238 }
18239 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18240 (enum bfd_reloc_code_real) reloc_type);
18241 fixp->fx_file = fragp->fr_file;
18242 fixp->fx_line = fragp->fr_line;
18243 fragp->fr_fix += fragp->fr_var;
18244 }
18245
18246 /* Return the size of a relaxable immediate operand instruction.
18247 SHIFT and SIZE specify the form of the allowable immediate. */
18248 static int
18249 relax_immediate (fragS *fragp, int size, int shift)
18250 {
18251 offsetT offset;
18252 offsetT mask;
18253 offsetT low;
18254
18255 /* ??? Should be able to do better than this. */
18256 if (fragp->fr_symbol)
18257 return 4;
18258
18259 low = (1 << shift) - 1;
18260 mask = (1 << (shift + size)) - (1 << shift);
18261 offset = fragp->fr_offset;
18262 /* Force misaligned offsets to 32-bit variant. */
18263 if (offset & low)
18264 return 4;
18265 if (offset & ~mask)
18266 return 4;
18267 return 2;
18268 }
18269
18270 /* Get the address of a symbol during relaxation. */
18271 static addressT
18272 relaxed_symbol_addr (fragS *fragp, long stretch)
18273 {
18274 fragS *sym_frag;
18275 addressT addr;
18276 symbolS *sym;
18277
18278 sym = fragp->fr_symbol;
18279 sym_frag = symbol_get_frag (sym);
18280 know (S_GET_SEGMENT (sym) != absolute_section
18281 || sym_frag == &zero_address_frag);
18282 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18283
18284 /* If frag has yet to be reached on this pass, assume it will
18285 move by STRETCH just as we did. If this is not so, it will
18286 be because some frag between grows, and that will force
18287 another pass. */
18288
18289 if (stretch != 0
18290 && sym_frag->relax_marker != fragp->relax_marker)
18291 {
18292 fragS *f;
18293
18294 /* Adjust stretch for any alignment frag. Note that if have
18295 been expanding the earlier code, the symbol may be
18296 defined in what appears to be an earlier frag. FIXME:
18297 This doesn't handle the fr_subtype field, which specifies
18298 a maximum number of bytes to skip when doing an
18299 alignment. */
18300 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18301 {
18302 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18303 {
18304 if (stretch < 0)
18305 stretch = - ((- stretch)
18306 & ~ ((1 << (int) f->fr_offset) - 1));
18307 else
18308 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18309 if (stretch == 0)
18310 break;
18311 }
18312 }
18313 if (f != NULL)
18314 addr += stretch;
18315 }
18316
18317 return addr;
18318 }
18319
18320 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18321 load. */
18322 static int
18323 relax_adr (fragS *fragp, asection *sec, long stretch)
18324 {
18325 addressT addr;
18326 offsetT val;
18327
18328 /* Assume worst case for symbols not known to be in the same section. */
18329 if (!S_IS_DEFINED (fragp->fr_symbol)
18330 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18331 return 4;
18332
18333 val = relaxed_symbol_addr (fragp, stretch);
18334 addr = fragp->fr_address + fragp->fr_fix;
18335 addr = (addr + 4) & ~3;
18336 /* Force misaligned targets to 32-bit variant. */
18337 if (val & 3)
18338 return 4;
18339 val -= addr;
18340 if (val < 0 || val > 1020)
18341 return 4;
18342 return 2;
18343 }
18344
18345 /* Return the size of a relaxable add/sub immediate instruction. */
18346 static int
18347 relax_addsub (fragS *fragp, asection *sec)
18348 {
18349 char *buf;
18350 int op;
18351
18352 buf = fragp->fr_literal + fragp->fr_fix;
18353 op = bfd_get_16(sec->owner, buf);
18354 if ((op & 0xf) == ((op >> 4) & 0xf))
18355 return relax_immediate (fragp, 8, 0);
18356 else
18357 return relax_immediate (fragp, 3, 0);
18358 }
18359
18360
18361 /* Return the size of a relaxable branch instruction. BITS is the
18362 size of the offset field in the narrow instruction. */
18363
18364 static int
18365 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18366 {
18367 addressT addr;
18368 offsetT val;
18369 offsetT limit;
18370
18371 /* Assume worst case for symbols not known to be in the same section. */
18372 if (!S_IS_DEFINED (fragp->fr_symbol)
18373 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18374 return 4;
18375
18376 #ifdef OBJ_ELF
18377 if (S_IS_DEFINED (fragp->fr_symbol)
18378 && ARM_IS_FUNC (fragp->fr_symbol))
18379 return 4;
18380 #endif
18381
18382 val = relaxed_symbol_addr (fragp, stretch);
18383 addr = fragp->fr_address + fragp->fr_fix + 4;
18384 val -= addr;
18385
18386 /* Offset is a signed value *2 */
18387 limit = 1 << bits;
18388 if (val >= limit || val < -limit)
18389 return 4;
18390 return 2;
18391 }
18392
18393
18394 /* Relax a machine dependent frag. This returns the amount by which
18395 the current size of the frag should change. */
18396
18397 int
18398 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18399 {
18400 int oldsize;
18401 int newsize;
18402
18403 oldsize = fragp->fr_var;
18404 switch (fragp->fr_subtype)
18405 {
18406 case T_MNEM_ldr_pc2:
18407 newsize = relax_adr (fragp, sec, stretch);
18408 break;
18409 case T_MNEM_ldr_pc:
18410 case T_MNEM_ldr_sp:
18411 case T_MNEM_str_sp:
18412 newsize = relax_immediate (fragp, 8, 2);
18413 break;
18414 case T_MNEM_ldr:
18415 case T_MNEM_str:
18416 newsize = relax_immediate (fragp, 5, 2);
18417 break;
18418 case T_MNEM_ldrh:
18419 case T_MNEM_strh:
18420 newsize = relax_immediate (fragp, 5, 1);
18421 break;
18422 case T_MNEM_ldrb:
18423 case T_MNEM_strb:
18424 newsize = relax_immediate (fragp, 5, 0);
18425 break;
18426 case T_MNEM_adr:
18427 newsize = relax_adr (fragp, sec, stretch);
18428 break;
18429 case T_MNEM_mov:
18430 case T_MNEM_movs:
18431 case T_MNEM_cmp:
18432 case T_MNEM_cmn:
18433 newsize = relax_immediate (fragp, 8, 0);
18434 break;
18435 case T_MNEM_b:
18436 newsize = relax_branch (fragp, sec, 11, stretch);
18437 break;
18438 case T_MNEM_bcond:
18439 newsize = relax_branch (fragp, sec, 8, stretch);
18440 break;
18441 case T_MNEM_add_sp:
18442 case T_MNEM_add_pc:
18443 newsize = relax_immediate (fragp, 8, 2);
18444 break;
18445 case T_MNEM_inc_sp:
18446 case T_MNEM_dec_sp:
18447 newsize = relax_immediate (fragp, 7, 2);
18448 break;
18449 case T_MNEM_addi:
18450 case T_MNEM_addis:
18451 case T_MNEM_subi:
18452 case T_MNEM_subis:
18453 newsize = relax_addsub (fragp, sec);
18454 break;
18455 default:
18456 abort ();
18457 }
18458
18459 fragp->fr_var = newsize;
18460 /* Freeze wide instructions that are at or before the same location as
18461 in the previous pass. This avoids infinite loops.
18462 Don't freeze them unconditionally because targets may be artificially
18463 misaligned by the expansion of preceding frags. */
18464 if (stretch <= 0 && newsize > 2)
18465 {
18466 md_convert_frag (sec->owner, sec, fragp);
18467 frag_wane (fragp);
18468 }
18469
18470 return newsize - oldsize;
18471 }
18472
18473 /* Round up a section size to the appropriate boundary. */
18474
18475 valueT
18476 md_section_align (segT segment ATTRIBUTE_UNUSED,
18477 valueT size)
18478 {
18479 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18480 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18481 {
18482 /* For a.out, force the section size to be aligned. If we don't do
18483 this, BFD will align it for us, but it will not write out the
18484 final bytes of the section. This may be a bug in BFD, but it is
18485 easier to fix it here since that is how the other a.out targets
18486 work. */
18487 int align;
18488
18489 align = bfd_get_section_alignment (stdoutput, segment);
18490 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18491 }
18492 #endif
18493
18494 return size;
18495 }
18496
18497 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18498 of an rs_align_code fragment. */
18499
18500 void
18501 arm_handle_align (fragS * fragP)
18502 {
18503 static char const arm_noop[2][2][4] =
18504 {
18505 { /* ARMv1 */
18506 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18507 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18508 },
18509 { /* ARMv6k */
18510 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18511 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18512 },
18513 };
18514 static char const thumb_noop[2][2][2] =
18515 {
18516 { /* Thumb-1 */
18517 {0xc0, 0x46}, /* LE */
18518 {0x46, 0xc0}, /* BE */
18519 },
18520 { /* Thumb-2 */
18521 {0x00, 0xbf}, /* LE */
18522 {0xbf, 0x00} /* BE */
18523 }
18524 };
18525 static char const wide_thumb_noop[2][4] =
18526 { /* Wide Thumb-2 */
18527 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18528 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18529 };
18530
18531 unsigned bytes, fix, noop_size;
18532 char * p;
18533 const char * noop;
18534 const char *narrow_noop = NULL;
18535 #ifdef OBJ_ELF
18536 enum mstate state;
18537 #endif
18538
18539 if (fragP->fr_type != rs_align_code)
18540 return;
18541
18542 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18543 p = fragP->fr_literal + fragP->fr_fix;
18544 fix = 0;
18545
18546 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18547 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18548
18549 #ifdef OBJ_ELF
18550 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18551 #endif
18552
18553 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18554 {
18555 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18556 {
18557 narrow_noop = thumb_noop[1][target_big_endian];
18558 noop = wide_thumb_noop[target_big_endian];
18559 }
18560 else
18561 noop = thumb_noop[0][target_big_endian];
18562 noop_size = 2;
18563 #ifdef OBJ_ELF
18564 state = MAP_THUMB;
18565 #endif
18566 }
18567 else
18568 {
18569 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18570 [target_big_endian];
18571 noop_size = 4;
18572 #ifdef OBJ_ELF
18573 state = MAP_ARM;
18574 #endif
18575 }
18576
18577 fragP->fr_var = noop_size;
18578
18579 if (bytes & (noop_size - 1))
18580 {
18581 fix = bytes & (noop_size - 1);
18582 #ifdef OBJ_ELF
18583 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18584 #endif
18585 memset (p, 0, fix);
18586 p += fix;
18587 bytes -= fix;
18588 }
18589
18590 if (narrow_noop)
18591 {
18592 if (bytes & noop_size)
18593 {
18594 /* Insert a narrow noop. */
18595 memcpy (p, narrow_noop, noop_size);
18596 p += noop_size;
18597 bytes -= noop_size;
18598 fix += noop_size;
18599 }
18600
18601 /* Use wide noops for the remainder */
18602 noop_size = 4;
18603 }
18604
18605 while (bytes >= noop_size)
18606 {
18607 memcpy (p, noop, noop_size);
18608 p += noop_size;
18609 bytes -= noop_size;
18610 fix += noop_size;
18611 }
18612
18613 fragP->fr_fix += fix;
18614 }
18615
18616 /* Called from md_do_align. Used to create an alignment
18617 frag in a code section. */
18618
18619 void
18620 arm_frag_align_code (int n, int max)
18621 {
18622 char * p;
18623
18624 /* We assume that there will never be a requirement
18625 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18626 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18627 {
18628 char err_msg[128];
18629
18630 sprintf (err_msg,
18631 _("alignments greater than %d bytes not supported in .text sections."),
18632 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18633 as_fatal ("%s", err_msg);
18634 }
18635
18636 p = frag_var (rs_align_code,
18637 MAX_MEM_FOR_RS_ALIGN_CODE,
18638 1,
18639 (relax_substateT) max,
18640 (symbolS *) NULL,
18641 (offsetT) n,
18642 (char *) NULL);
18643 *p = 0;
18644 }
18645
18646 /* Perform target specific initialisation of a frag.
18647 Note - despite the name this initialisation is not done when the frag
18648 is created, but only when its type is assigned. A frag can be created
18649 and used a long time before its type is set, so beware of assuming that
18650 this initialisationis performed first. */
18651
18652 #ifndef OBJ_ELF
18653 void
18654 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18655 {
18656 /* Record whether this frag is in an ARM or a THUMB area. */
18657 fragP->tc_frag_data.thumb_mode = thumb_mode;
18658 }
18659
18660 #else /* OBJ_ELF is defined. */
18661 void
18662 arm_init_frag (fragS * fragP, int max_chars)
18663 {
18664 /* If the current ARM vs THUMB mode has not already
18665 been recorded into this frag then do so now. */
18666 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18667 {
18668 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18669
18670 /* Record a mapping symbol for alignment frags. We will delete this
18671 later if the alignment ends up empty. */
18672 switch (fragP->fr_type)
18673 {
18674 case rs_align:
18675 case rs_align_test:
18676 case rs_fill:
18677 mapping_state_2 (MAP_DATA, max_chars);
18678 break;
18679 case rs_align_code:
18680 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18681 break;
18682 default:
18683 break;
18684 }
18685 }
18686 }
18687
18688 /* When we change sections we need to issue a new mapping symbol. */
18689
18690 void
18691 arm_elf_change_section (void)
18692 {
18693 /* Link an unlinked unwind index table section to the .text section. */
18694 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18695 && elf_linked_to_section (now_seg) == NULL)
18696 elf_linked_to_section (now_seg) = text_section;
18697 }
18698
18699 int
18700 arm_elf_section_type (const char * str, size_t len)
18701 {
18702 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18703 return SHT_ARM_EXIDX;
18704
18705 return -1;
18706 }
18707 \f
18708 /* Code to deal with unwinding tables. */
18709
18710 static void add_unwind_adjustsp (offsetT);
18711
18712 /* Generate any deferred unwind frame offset. */
18713
18714 static void
18715 flush_pending_unwind (void)
18716 {
18717 offsetT offset;
18718
18719 offset = unwind.pending_offset;
18720 unwind.pending_offset = 0;
18721 if (offset != 0)
18722 add_unwind_adjustsp (offset);
18723 }
18724
18725 /* Add an opcode to this list for this function. Two-byte opcodes should
18726 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18727 order. */
18728
18729 static void
18730 add_unwind_opcode (valueT op, int length)
18731 {
18732 /* Add any deferred stack adjustment. */
18733 if (unwind.pending_offset)
18734 flush_pending_unwind ();
18735
18736 unwind.sp_restored = 0;
18737
18738 if (unwind.opcode_count + length > unwind.opcode_alloc)
18739 {
18740 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18741 if (unwind.opcodes)
18742 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18743 unwind.opcode_alloc);
18744 else
18745 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
18746 }
18747 while (length > 0)
18748 {
18749 length--;
18750 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18751 op >>= 8;
18752 unwind.opcode_count++;
18753 }
18754 }
18755
18756 /* Add unwind opcodes to adjust the stack pointer. */
18757
18758 static void
18759 add_unwind_adjustsp (offsetT offset)
18760 {
18761 valueT op;
18762
18763 if (offset > 0x200)
18764 {
18765 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18766 char bytes[5];
18767 int n;
18768 valueT o;
18769
18770 /* Long form: 0xb2, uleb128. */
18771 /* This might not fit in a word so add the individual bytes,
18772 remembering the list is built in reverse order. */
18773 o = (valueT) ((offset - 0x204) >> 2);
18774 if (o == 0)
18775 add_unwind_opcode (0, 1);
18776
18777 /* Calculate the uleb128 encoding of the offset. */
18778 n = 0;
18779 while (o)
18780 {
18781 bytes[n] = o & 0x7f;
18782 o >>= 7;
18783 if (o)
18784 bytes[n] |= 0x80;
18785 n++;
18786 }
18787 /* Add the insn. */
18788 for (; n; n--)
18789 add_unwind_opcode (bytes[n - 1], 1);
18790 add_unwind_opcode (0xb2, 1);
18791 }
18792 else if (offset > 0x100)
18793 {
18794 /* Two short opcodes. */
18795 add_unwind_opcode (0x3f, 1);
18796 op = (offset - 0x104) >> 2;
18797 add_unwind_opcode (op, 1);
18798 }
18799 else if (offset > 0)
18800 {
18801 /* Short opcode. */
18802 op = (offset - 4) >> 2;
18803 add_unwind_opcode (op, 1);
18804 }
18805 else if (offset < 0)
18806 {
18807 offset = -offset;
18808 while (offset > 0x100)
18809 {
18810 add_unwind_opcode (0x7f, 1);
18811 offset -= 0x100;
18812 }
18813 op = ((offset - 4) >> 2) | 0x40;
18814 add_unwind_opcode (op, 1);
18815 }
18816 }
18817
18818 /* Finish the list of unwind opcodes for this function. */
18819 static void
18820 finish_unwind_opcodes (void)
18821 {
18822 valueT op;
18823
18824 if (unwind.fp_used)
18825 {
18826 /* Adjust sp as necessary. */
18827 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18828 flush_pending_unwind ();
18829
18830 /* After restoring sp from the frame pointer. */
18831 op = 0x90 | unwind.fp_reg;
18832 add_unwind_opcode (op, 1);
18833 }
18834 else
18835 flush_pending_unwind ();
18836 }
18837
18838
18839 /* Start an exception table entry. If idx is nonzero this is an index table
18840 entry. */
18841
18842 static void
18843 start_unwind_section (const segT text_seg, int idx)
18844 {
18845 const char * text_name;
18846 const char * prefix;
18847 const char * prefix_once;
18848 const char * group_name;
18849 size_t prefix_len;
18850 size_t text_len;
18851 char * sec_name;
18852 size_t sec_name_len;
18853 int type;
18854 int flags;
18855 int linkonce;
18856
18857 if (idx)
18858 {
18859 prefix = ELF_STRING_ARM_unwind;
18860 prefix_once = ELF_STRING_ARM_unwind_once;
18861 type = SHT_ARM_EXIDX;
18862 }
18863 else
18864 {
18865 prefix = ELF_STRING_ARM_unwind_info;
18866 prefix_once = ELF_STRING_ARM_unwind_info_once;
18867 type = SHT_PROGBITS;
18868 }
18869
18870 text_name = segment_name (text_seg);
18871 if (streq (text_name, ".text"))
18872 text_name = "";
18873
18874 if (strncmp (text_name, ".gnu.linkonce.t.",
18875 strlen (".gnu.linkonce.t.")) == 0)
18876 {
18877 prefix = prefix_once;
18878 text_name += strlen (".gnu.linkonce.t.");
18879 }
18880
18881 prefix_len = strlen (prefix);
18882 text_len = strlen (text_name);
18883 sec_name_len = prefix_len + text_len;
18884 sec_name = (char *) xmalloc (sec_name_len + 1);
18885 memcpy (sec_name, prefix, prefix_len);
18886 memcpy (sec_name + prefix_len, text_name, text_len);
18887 sec_name[prefix_len + text_len] = '\0';
18888
18889 flags = SHF_ALLOC;
18890 linkonce = 0;
18891 group_name = 0;
18892
18893 /* Handle COMDAT group. */
18894 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
18895 {
18896 group_name = elf_group_name (text_seg);
18897 if (group_name == NULL)
18898 {
18899 as_bad (_("Group section `%s' has no group signature"),
18900 segment_name (text_seg));
18901 ignore_rest_of_line ();
18902 return;
18903 }
18904 flags |= SHF_GROUP;
18905 linkonce = 1;
18906 }
18907
18908 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
18909
18910 /* Set the section link for index tables. */
18911 if (idx)
18912 elf_linked_to_section (now_seg) = text_seg;
18913 }
18914
18915
18916 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18917 personality routine data. Returns zero, or the index table value for
18918 and inline entry. */
18919
18920 static valueT
18921 create_unwind_entry (int have_data)
18922 {
18923 int size;
18924 addressT where;
18925 char *ptr;
18926 /* The current word of data. */
18927 valueT data;
18928 /* The number of bytes left in this word. */
18929 int n;
18930
18931 finish_unwind_opcodes ();
18932
18933 /* Remember the current text section. */
18934 unwind.saved_seg = now_seg;
18935 unwind.saved_subseg = now_subseg;
18936
18937 start_unwind_section (now_seg, 0);
18938
18939 if (unwind.personality_routine == NULL)
18940 {
18941 if (unwind.personality_index == -2)
18942 {
18943 if (have_data)
18944 as_bad (_("handlerdata in cantunwind frame"));
18945 return 1; /* EXIDX_CANTUNWIND. */
18946 }
18947
18948 /* Use a default personality routine if none is specified. */
18949 if (unwind.personality_index == -1)
18950 {
18951 if (unwind.opcode_count > 3)
18952 unwind.personality_index = 1;
18953 else
18954 unwind.personality_index = 0;
18955 }
18956
18957 /* Space for the personality routine entry. */
18958 if (unwind.personality_index == 0)
18959 {
18960 if (unwind.opcode_count > 3)
18961 as_bad (_("too many unwind opcodes for personality routine 0"));
18962
18963 if (!have_data)
18964 {
18965 /* All the data is inline in the index table. */
18966 data = 0x80;
18967 n = 3;
18968 while (unwind.opcode_count > 0)
18969 {
18970 unwind.opcode_count--;
18971 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18972 n--;
18973 }
18974
18975 /* Pad with "finish" opcodes. */
18976 while (n--)
18977 data = (data << 8) | 0xb0;
18978
18979 return data;
18980 }
18981 size = 0;
18982 }
18983 else
18984 /* We get two opcodes "free" in the first word. */
18985 size = unwind.opcode_count - 2;
18986 }
18987 else
18988 /* An extra byte is required for the opcode count. */
18989 size = unwind.opcode_count + 1;
18990
18991 size = (size + 3) >> 2;
18992 if (size > 0xff)
18993 as_bad (_("too many unwind opcodes"));
18994
18995 frag_align (2, 0, 0);
18996 record_alignment (now_seg, 2);
18997 unwind.table_entry = expr_build_dot ();
18998
18999 /* Allocate the table entry. */
19000 ptr = frag_more ((size << 2) + 4);
19001 where = frag_now_fix () - ((size << 2) + 4);
19002
19003 switch (unwind.personality_index)
19004 {
19005 case -1:
19006 /* ??? Should this be a PLT generating relocation? */
19007 /* Custom personality routine. */
19008 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19009 BFD_RELOC_ARM_PREL31);
19010
19011 where += 4;
19012 ptr += 4;
19013
19014 /* Set the first byte to the number of additional words. */
19015 data = size - 1;
19016 n = 3;
19017 break;
19018
19019 /* ABI defined personality routines. */
19020 case 0:
19021 /* Three opcodes bytes are packed into the first word. */
19022 data = 0x80;
19023 n = 3;
19024 break;
19025
19026 case 1:
19027 case 2:
19028 /* The size and first two opcode bytes go in the first word. */
19029 data = ((0x80 + unwind.personality_index) << 8) | size;
19030 n = 2;
19031 break;
19032
19033 default:
19034 /* Should never happen. */
19035 abort ();
19036 }
19037
19038 /* Pack the opcodes into words (MSB first), reversing the list at the same
19039 time. */
19040 while (unwind.opcode_count > 0)
19041 {
19042 if (n == 0)
19043 {
19044 md_number_to_chars (ptr, data, 4);
19045 ptr += 4;
19046 n = 4;
19047 data = 0;
19048 }
19049 unwind.opcode_count--;
19050 n--;
19051 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19052 }
19053
19054 /* Finish off the last word. */
19055 if (n < 4)
19056 {
19057 /* Pad with "finish" opcodes. */
19058 while (n--)
19059 data = (data << 8) | 0xb0;
19060
19061 md_number_to_chars (ptr, data, 4);
19062 }
19063
19064 if (!have_data)
19065 {
19066 /* Add an empty descriptor if there is no user-specified data. */
19067 ptr = frag_more (4);
19068 md_number_to_chars (ptr, 0, 4);
19069 }
19070
19071 return 0;
19072 }
19073
19074
19075 /* Initialize the DWARF-2 unwind information for this procedure. */
19076
19077 void
19078 tc_arm_frame_initial_instructions (void)
19079 {
19080 cfi_add_CFA_def_cfa (REG_SP, 0);
19081 }
19082 #endif /* OBJ_ELF */
19083
19084 /* Convert REGNAME to a DWARF-2 register number. */
19085
19086 int
19087 tc_arm_regname_to_dw2regnum (char *regname)
19088 {
19089 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19090
19091 if (reg == FAIL)
19092 return -1;
19093
19094 return reg;
19095 }
19096
19097 #ifdef TE_PE
19098 void
19099 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19100 {
19101 expressionS expr;
19102
19103 expr.X_op = O_secrel;
19104 expr.X_add_symbol = symbol;
19105 expr.X_add_number = 0;
19106 emit_expr (&expr, size);
19107 }
19108 #endif
19109
19110 /* MD interface: Symbol and relocation handling. */
19111
19112 /* Return the address within the segment that a PC-relative fixup is
19113 relative to. For ARM, PC-relative fixups applied to instructions
19114 are generally relative to the location of the fixup plus 8 bytes.
19115 Thumb branches are offset by 4, and Thumb loads relative to PC
19116 require special handling. */
19117
19118 long
19119 md_pcrel_from_section (fixS * fixP, segT seg)
19120 {
19121 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19122
19123 /* If this is pc-relative and we are going to emit a relocation
19124 then we just want to put out any pipeline compensation that the linker
19125 will need. Otherwise we want to use the calculated base.
19126 For WinCE we skip the bias for externals as well, since this
19127 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19128 if (fixP->fx_pcrel
19129 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19130 || (arm_force_relocation (fixP)
19131 #ifdef TE_WINCE
19132 && !S_IS_EXTERNAL (fixP->fx_addsy)
19133 #endif
19134 )))
19135 base = 0;
19136
19137
19138 switch (fixP->fx_r_type)
19139 {
19140 /* PC relative addressing on the Thumb is slightly odd as the
19141 bottom two bits of the PC are forced to zero for the
19142 calculation. This happens *after* application of the
19143 pipeline offset. However, Thumb adrl already adjusts for
19144 this, so we need not do it again. */
19145 case BFD_RELOC_ARM_THUMB_ADD:
19146 return base & ~3;
19147
19148 case BFD_RELOC_ARM_THUMB_OFFSET:
19149 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19150 case BFD_RELOC_ARM_T32_ADD_PC12:
19151 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19152 return (base + 4) & ~3;
19153
19154 /* Thumb branches are simply offset by +4. */
19155 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19156 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19157 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19158 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19159 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19160 return base + 4;
19161
19162 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19163 if (fixP->fx_addsy
19164 && ARM_IS_FUNC (fixP->fx_addsy)
19165 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19166 base = fixP->fx_where + fixP->fx_frag->fr_address;
19167 return base + 4;
19168
19169 /* BLX is like branches above, but forces the low two bits of PC to
19170 zero. */
19171 case BFD_RELOC_THUMB_PCREL_BLX:
19172 if (fixP->fx_addsy
19173 && THUMB_IS_FUNC (fixP->fx_addsy)
19174 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19175 base = fixP->fx_where + fixP->fx_frag->fr_address;
19176 return (base + 4) & ~3;
19177
19178 /* ARM mode branches are offset by +8. However, the Windows CE
19179 loader expects the relocation not to take this into account. */
19180 case BFD_RELOC_ARM_PCREL_BLX:
19181 if (fixP->fx_addsy
19182 && ARM_IS_FUNC (fixP->fx_addsy)
19183 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19184 base = fixP->fx_where + fixP->fx_frag->fr_address;
19185 return base + 8;
19186
19187 case BFD_RELOC_ARM_PCREL_CALL:
19188 if (fixP->fx_addsy
19189 && THUMB_IS_FUNC (fixP->fx_addsy)
19190 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19191 base = fixP->fx_where + fixP->fx_frag->fr_address;
19192 return base + 8;
19193
19194 case BFD_RELOC_ARM_PCREL_BRANCH:
19195 case BFD_RELOC_ARM_PCREL_JUMP:
19196 case BFD_RELOC_ARM_PLT32:
19197 #ifdef TE_WINCE
19198 /* When handling fixups immediately, because we have already
19199 discovered the value of a symbol, or the address of the frag involved
19200 we must account for the offset by +8, as the OS loader will never see the reloc.
19201 see fixup_segment() in write.c
19202 The S_IS_EXTERNAL test handles the case of global symbols.
19203 Those need the calculated base, not just the pipe compensation the linker will need. */
19204 if (fixP->fx_pcrel
19205 && fixP->fx_addsy != NULL
19206 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19207 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19208 return base + 8;
19209 return base;
19210 #else
19211 return base + 8;
19212 #endif
19213
19214
19215 /* ARM mode loads relative to PC are also offset by +8. Unlike
19216 branches, the Windows CE loader *does* expect the relocation
19217 to take this into account. */
19218 case BFD_RELOC_ARM_OFFSET_IMM:
19219 case BFD_RELOC_ARM_OFFSET_IMM8:
19220 case BFD_RELOC_ARM_HWLITERAL:
19221 case BFD_RELOC_ARM_LITERAL:
19222 case BFD_RELOC_ARM_CP_OFF_IMM:
19223 return base + 8;
19224
19225
19226 /* Other PC-relative relocations are un-offset. */
19227 default:
19228 return base;
19229 }
19230 }
19231
19232 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19233 Otherwise we have no need to default values of symbols. */
19234
19235 symbolS *
19236 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19237 {
19238 #ifdef OBJ_ELF
19239 if (name[0] == '_' && name[1] == 'G'
19240 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19241 {
19242 if (!GOT_symbol)
19243 {
19244 if (symbol_find (name))
19245 as_bad (_("GOT already in the symbol table"));
19246
19247 GOT_symbol = symbol_new (name, undefined_section,
19248 (valueT) 0, & zero_address_frag);
19249 }
19250
19251 return GOT_symbol;
19252 }
19253 #endif
19254
19255 return NULL;
19256 }
19257
19258 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19259 computed as two separate immediate values, added together. We
19260 already know that this value cannot be computed by just one ARM
19261 instruction. */
19262
19263 static unsigned int
19264 validate_immediate_twopart (unsigned int val,
19265 unsigned int * highpart)
19266 {
19267 unsigned int a;
19268 unsigned int i;
19269
19270 for (i = 0; i < 32; i += 2)
19271 if (((a = rotate_left (val, i)) & 0xff) != 0)
19272 {
19273 if (a & 0xff00)
19274 {
19275 if (a & ~ 0xffff)
19276 continue;
19277 * highpart = (a >> 8) | ((i + 24) << 7);
19278 }
19279 else if (a & 0xff0000)
19280 {
19281 if (a & 0xff000000)
19282 continue;
19283 * highpart = (a >> 16) | ((i + 16) << 7);
19284 }
19285 else
19286 {
19287 gas_assert (a & 0xff000000);
19288 * highpart = (a >> 24) | ((i + 8) << 7);
19289 }
19290
19291 return (a & 0xff) | (i << 7);
19292 }
19293
19294 return FAIL;
19295 }
19296
19297 static int
19298 validate_offset_imm (unsigned int val, int hwse)
19299 {
19300 if ((hwse && val > 255) || val > 4095)
19301 return FAIL;
19302 return val;
19303 }
19304
19305 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19306 negative immediate constant by altering the instruction. A bit of
19307 a hack really.
19308 MOV <-> MVN
19309 AND <-> BIC
19310 ADC <-> SBC
19311 by inverting the second operand, and
19312 ADD <-> SUB
19313 CMP <-> CMN
19314 by negating the second operand. */
19315
19316 static int
19317 negate_data_op (unsigned long * instruction,
19318 unsigned long value)
19319 {
19320 int op, new_inst;
19321 unsigned long negated, inverted;
19322
19323 negated = encode_arm_immediate (-value);
19324 inverted = encode_arm_immediate (~value);
19325
19326 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19327 switch (op)
19328 {
19329 /* First negates. */
19330 case OPCODE_SUB: /* ADD <-> SUB */
19331 new_inst = OPCODE_ADD;
19332 value = negated;
19333 break;
19334
19335 case OPCODE_ADD:
19336 new_inst = OPCODE_SUB;
19337 value = negated;
19338 break;
19339
19340 case OPCODE_CMP: /* CMP <-> CMN */
19341 new_inst = OPCODE_CMN;
19342 value = negated;
19343 break;
19344
19345 case OPCODE_CMN:
19346 new_inst = OPCODE_CMP;
19347 value = negated;
19348 break;
19349
19350 /* Now Inverted ops. */
19351 case OPCODE_MOV: /* MOV <-> MVN */
19352 new_inst = OPCODE_MVN;
19353 value = inverted;
19354 break;
19355
19356 case OPCODE_MVN:
19357 new_inst = OPCODE_MOV;
19358 value = inverted;
19359 break;
19360
19361 case OPCODE_AND: /* AND <-> BIC */
19362 new_inst = OPCODE_BIC;
19363 value = inverted;
19364 break;
19365
19366 case OPCODE_BIC:
19367 new_inst = OPCODE_AND;
19368 value = inverted;
19369 break;
19370
19371 case OPCODE_ADC: /* ADC <-> SBC */
19372 new_inst = OPCODE_SBC;
19373 value = inverted;
19374 break;
19375
19376 case OPCODE_SBC:
19377 new_inst = OPCODE_ADC;
19378 value = inverted;
19379 break;
19380
19381 /* We cannot do anything. */
19382 default:
19383 return FAIL;
19384 }
19385
19386 if (value == (unsigned) FAIL)
19387 return FAIL;
19388
19389 *instruction &= OPCODE_MASK;
19390 *instruction |= new_inst << DATA_OP_SHIFT;
19391 return value;
19392 }
19393
19394 /* Like negate_data_op, but for Thumb-2. */
19395
19396 static unsigned int
19397 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19398 {
19399 int op, new_inst;
19400 int rd;
19401 unsigned int negated, inverted;
19402
19403 negated = encode_thumb32_immediate (-value);
19404 inverted = encode_thumb32_immediate (~value);
19405
19406 rd = (*instruction >> 8) & 0xf;
19407 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19408 switch (op)
19409 {
19410 /* ADD <-> SUB. Includes CMP <-> CMN. */
19411 case T2_OPCODE_SUB:
19412 new_inst = T2_OPCODE_ADD;
19413 value = negated;
19414 break;
19415
19416 case T2_OPCODE_ADD:
19417 new_inst = T2_OPCODE_SUB;
19418 value = negated;
19419 break;
19420
19421 /* ORR <-> ORN. Includes MOV <-> MVN. */
19422 case T2_OPCODE_ORR:
19423 new_inst = T2_OPCODE_ORN;
19424 value = inverted;
19425 break;
19426
19427 case T2_OPCODE_ORN:
19428 new_inst = T2_OPCODE_ORR;
19429 value = inverted;
19430 break;
19431
19432 /* AND <-> BIC. TST has no inverted equivalent. */
19433 case T2_OPCODE_AND:
19434 new_inst = T2_OPCODE_BIC;
19435 if (rd == 15)
19436 value = FAIL;
19437 else
19438 value = inverted;
19439 break;
19440
19441 case T2_OPCODE_BIC:
19442 new_inst = T2_OPCODE_AND;
19443 value = inverted;
19444 break;
19445
19446 /* ADC <-> SBC */
19447 case T2_OPCODE_ADC:
19448 new_inst = T2_OPCODE_SBC;
19449 value = inverted;
19450 break;
19451
19452 case T2_OPCODE_SBC:
19453 new_inst = T2_OPCODE_ADC;
19454 value = inverted;
19455 break;
19456
19457 /* We cannot do anything. */
19458 default:
19459 return FAIL;
19460 }
19461
19462 if (value == (unsigned int)FAIL)
19463 return FAIL;
19464
19465 *instruction &= T2_OPCODE_MASK;
19466 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19467 return value;
19468 }
19469
19470 /* Read a 32-bit thumb instruction from buf. */
19471 static unsigned long
19472 get_thumb32_insn (char * buf)
19473 {
19474 unsigned long insn;
19475 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19476 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19477
19478 return insn;
19479 }
19480
19481
19482 /* We usually want to set the low bit on the address of thumb function
19483 symbols. In particular .word foo - . should have the low bit set.
19484 Generic code tries to fold the difference of two symbols to
19485 a constant. Prevent this and force a relocation when the first symbols
19486 is a thumb function. */
19487
19488 bfd_boolean
19489 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19490 {
19491 if (op == O_subtract
19492 && l->X_op == O_symbol
19493 && r->X_op == O_symbol
19494 && THUMB_IS_FUNC (l->X_add_symbol))
19495 {
19496 l->X_op = O_subtract;
19497 l->X_op_symbol = r->X_add_symbol;
19498 l->X_add_number -= r->X_add_number;
19499 return TRUE;
19500 }
19501
19502 /* Process as normal. */
19503 return FALSE;
19504 }
19505
19506 void
19507 md_apply_fix (fixS * fixP,
19508 valueT * valP,
19509 segT seg)
19510 {
19511 offsetT value = * valP;
19512 offsetT newval;
19513 unsigned int newimm;
19514 unsigned long temp;
19515 int sign;
19516 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19517
19518 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19519
19520 /* Note whether this will delete the relocation. */
19521
19522 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19523 fixP->fx_done = 1;
19524
19525 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19526 consistency with the behaviour on 32-bit hosts. Remember value
19527 for emit_reloc. */
19528 value &= 0xffffffff;
19529 value ^= 0x80000000;
19530 value -= 0x80000000;
19531
19532 *valP = value;
19533 fixP->fx_addnumber = value;
19534
19535 /* Same treatment for fixP->fx_offset. */
19536 fixP->fx_offset &= 0xffffffff;
19537 fixP->fx_offset ^= 0x80000000;
19538 fixP->fx_offset -= 0x80000000;
19539
19540 switch (fixP->fx_r_type)
19541 {
19542 case BFD_RELOC_NONE:
19543 /* This will need to go in the object file. */
19544 fixP->fx_done = 0;
19545 break;
19546
19547 case BFD_RELOC_ARM_IMMEDIATE:
19548 /* We claim that this fixup has been processed here,
19549 even if in fact we generate an error because we do
19550 not have a reloc for it, so tc_gen_reloc will reject it. */
19551 fixP->fx_done = 1;
19552
19553 if (fixP->fx_addsy
19554 && ! S_IS_DEFINED (fixP->fx_addsy))
19555 {
19556 as_bad_where (fixP->fx_file, fixP->fx_line,
19557 _("undefined symbol %s used as an immediate value"),
19558 S_GET_NAME (fixP->fx_addsy));
19559 break;
19560 }
19561
19562 if (fixP->fx_addsy
19563 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19564 {
19565 as_bad_where (fixP->fx_file, fixP->fx_line,
19566 _("symbol %s is in a different section"),
19567 S_GET_NAME (fixP->fx_addsy));
19568 break;
19569 }
19570
19571 newimm = encode_arm_immediate (value);
19572 temp = md_chars_to_number (buf, INSN_SIZE);
19573
19574 /* If the instruction will fail, see if we can fix things up by
19575 changing the opcode. */
19576 if (newimm == (unsigned int) FAIL
19577 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19578 {
19579 as_bad_where (fixP->fx_file, fixP->fx_line,
19580 _("invalid constant (%lx) after fixup"),
19581 (unsigned long) value);
19582 break;
19583 }
19584
19585 newimm |= (temp & 0xfffff000);
19586 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19587 break;
19588
19589 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19590 {
19591 unsigned int highpart = 0;
19592 unsigned int newinsn = 0xe1a00000; /* nop. */
19593
19594 if (fixP->fx_addsy
19595 && ! S_IS_DEFINED (fixP->fx_addsy))
19596 {
19597 as_bad_where (fixP->fx_file, fixP->fx_line,
19598 _("undefined symbol %s used as an immediate value"),
19599 S_GET_NAME (fixP->fx_addsy));
19600 break;
19601 }
19602
19603 if (fixP->fx_addsy
19604 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19605 {
19606 as_bad_where (fixP->fx_file, fixP->fx_line,
19607 _("symbol %s is in a different section"),
19608 S_GET_NAME (fixP->fx_addsy));
19609 break;
19610 }
19611
19612 newimm = encode_arm_immediate (value);
19613 temp = md_chars_to_number (buf, INSN_SIZE);
19614
19615 /* If the instruction will fail, see if we can fix things up by
19616 changing the opcode. */
19617 if (newimm == (unsigned int) FAIL
19618 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19619 {
19620 /* No ? OK - try using two ADD instructions to generate
19621 the value. */
19622 newimm = validate_immediate_twopart (value, & highpart);
19623
19624 /* Yes - then make sure that the second instruction is
19625 also an add. */
19626 if (newimm != (unsigned int) FAIL)
19627 newinsn = temp;
19628 /* Still No ? Try using a negated value. */
19629 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19630 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19631 /* Otherwise - give up. */
19632 else
19633 {
19634 as_bad_where (fixP->fx_file, fixP->fx_line,
19635 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19636 (long) value);
19637 break;
19638 }
19639
19640 /* Replace the first operand in the 2nd instruction (which
19641 is the PC) with the destination register. We have
19642 already added in the PC in the first instruction and we
19643 do not want to do it again. */
19644 newinsn &= ~ 0xf0000;
19645 newinsn |= ((newinsn & 0x0f000) << 4);
19646 }
19647
19648 newimm |= (temp & 0xfffff000);
19649 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19650
19651 highpart |= (newinsn & 0xfffff000);
19652 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19653 }
19654 break;
19655
19656 case BFD_RELOC_ARM_OFFSET_IMM:
19657 if (!fixP->fx_done && seg->use_rela_p)
19658 value = 0;
19659
19660 case BFD_RELOC_ARM_LITERAL:
19661 sign = value >= 0;
19662
19663 if (value < 0)
19664 value = - value;
19665
19666 if (validate_offset_imm (value, 0) == FAIL)
19667 {
19668 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19669 as_bad_where (fixP->fx_file, fixP->fx_line,
19670 _("invalid literal constant: pool needs to be closer"));
19671 else
19672 as_bad_where (fixP->fx_file, fixP->fx_line,
19673 _("bad immediate value for offset (%ld)"),
19674 (long) value);
19675 break;
19676 }
19677
19678 newval = md_chars_to_number (buf, INSN_SIZE);
19679 newval &= 0xff7ff000;
19680 newval |= value | (sign ? INDEX_UP : 0);
19681 md_number_to_chars (buf, newval, INSN_SIZE);
19682 break;
19683
19684 case BFD_RELOC_ARM_OFFSET_IMM8:
19685 case BFD_RELOC_ARM_HWLITERAL:
19686 sign = value >= 0;
19687
19688 if (value < 0)
19689 value = - value;
19690
19691 if (validate_offset_imm (value, 1) == FAIL)
19692 {
19693 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19694 as_bad_where (fixP->fx_file, fixP->fx_line,
19695 _("invalid literal constant: pool needs to be closer"));
19696 else
19697 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19698 (long) value);
19699 break;
19700 }
19701
19702 newval = md_chars_to_number (buf, INSN_SIZE);
19703 newval &= 0xff7ff0f0;
19704 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19705 md_number_to_chars (buf, newval, INSN_SIZE);
19706 break;
19707
19708 case BFD_RELOC_ARM_T32_OFFSET_U8:
19709 if (value < 0 || value > 1020 || value % 4 != 0)
19710 as_bad_where (fixP->fx_file, fixP->fx_line,
19711 _("bad immediate value for offset (%ld)"), (long) value);
19712 value /= 4;
19713
19714 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19715 newval |= value;
19716 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19717 break;
19718
19719 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19720 /* This is a complicated relocation used for all varieties of Thumb32
19721 load/store instruction with immediate offset:
19722
19723 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19724 *4, optional writeback(W)
19725 (doubleword load/store)
19726
19727 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19728 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19729 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19730 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19731 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19732
19733 Uppercase letters indicate bits that are already encoded at
19734 this point. Lowercase letters are our problem. For the
19735 second block of instructions, the secondary opcode nybble
19736 (bits 8..11) is present, and bit 23 is zero, even if this is
19737 a PC-relative operation. */
19738 newval = md_chars_to_number (buf, THUMB_SIZE);
19739 newval <<= 16;
19740 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19741
19742 if ((newval & 0xf0000000) == 0xe0000000)
19743 {
19744 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19745 if (value >= 0)
19746 newval |= (1 << 23);
19747 else
19748 value = -value;
19749 if (value % 4 != 0)
19750 {
19751 as_bad_where (fixP->fx_file, fixP->fx_line,
19752 _("offset not a multiple of 4"));
19753 break;
19754 }
19755 value /= 4;
19756 if (value > 0xff)
19757 {
19758 as_bad_where (fixP->fx_file, fixP->fx_line,
19759 _("offset out of range"));
19760 break;
19761 }
19762 newval &= ~0xff;
19763 }
19764 else if ((newval & 0x000f0000) == 0x000f0000)
19765 {
19766 /* PC-relative, 12-bit offset. */
19767 if (value >= 0)
19768 newval |= (1 << 23);
19769 else
19770 value = -value;
19771 if (value > 0xfff)
19772 {
19773 as_bad_where (fixP->fx_file, fixP->fx_line,
19774 _("offset out of range"));
19775 break;
19776 }
19777 newval &= ~0xfff;
19778 }
19779 else if ((newval & 0x00000100) == 0x00000100)
19780 {
19781 /* Writeback: 8-bit, +/- offset. */
19782 if (value >= 0)
19783 newval |= (1 << 9);
19784 else
19785 value = -value;
19786 if (value > 0xff)
19787 {
19788 as_bad_where (fixP->fx_file, fixP->fx_line,
19789 _("offset out of range"));
19790 break;
19791 }
19792 newval &= ~0xff;
19793 }
19794 else if ((newval & 0x00000f00) == 0x00000e00)
19795 {
19796 /* T-instruction: positive 8-bit offset. */
19797 if (value < 0 || value > 0xff)
19798 {
19799 as_bad_where (fixP->fx_file, fixP->fx_line,
19800 _("offset out of range"));
19801 break;
19802 }
19803 newval &= ~0xff;
19804 newval |= value;
19805 }
19806 else
19807 {
19808 /* Positive 12-bit or negative 8-bit offset. */
19809 int limit;
19810 if (value >= 0)
19811 {
19812 newval |= (1 << 23);
19813 limit = 0xfff;
19814 }
19815 else
19816 {
19817 value = -value;
19818 limit = 0xff;
19819 }
19820 if (value > limit)
19821 {
19822 as_bad_where (fixP->fx_file, fixP->fx_line,
19823 _("offset out of range"));
19824 break;
19825 }
19826 newval &= ~limit;
19827 }
19828
19829 newval |= value;
19830 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19831 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19832 break;
19833
19834 case BFD_RELOC_ARM_SHIFT_IMM:
19835 newval = md_chars_to_number (buf, INSN_SIZE);
19836 if (((unsigned long) value) > 32
19837 || (value == 32
19838 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19839 {
19840 as_bad_where (fixP->fx_file, fixP->fx_line,
19841 _("shift expression is too large"));
19842 break;
19843 }
19844
19845 if (value == 0)
19846 /* Shifts of zero must be done as lsl. */
19847 newval &= ~0x60;
19848 else if (value == 32)
19849 value = 0;
19850 newval &= 0xfffff07f;
19851 newval |= (value & 0x1f) << 7;
19852 md_number_to_chars (buf, newval, INSN_SIZE);
19853 break;
19854
19855 case BFD_RELOC_ARM_T32_IMMEDIATE:
19856 case BFD_RELOC_ARM_T32_ADD_IMM:
19857 case BFD_RELOC_ARM_T32_IMM12:
19858 case BFD_RELOC_ARM_T32_ADD_PC12:
19859 /* We claim that this fixup has been processed here,
19860 even if in fact we generate an error because we do
19861 not have a reloc for it, so tc_gen_reloc will reject it. */
19862 fixP->fx_done = 1;
19863
19864 if (fixP->fx_addsy
19865 && ! S_IS_DEFINED (fixP->fx_addsy))
19866 {
19867 as_bad_where (fixP->fx_file, fixP->fx_line,
19868 _("undefined symbol %s used as an immediate value"),
19869 S_GET_NAME (fixP->fx_addsy));
19870 break;
19871 }
19872
19873 newval = md_chars_to_number (buf, THUMB_SIZE);
19874 newval <<= 16;
19875 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
19876
19877 newimm = FAIL;
19878 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19879 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19880 {
19881 newimm = encode_thumb32_immediate (value);
19882 if (newimm == (unsigned int) FAIL)
19883 newimm = thumb32_negate_data_op (&newval, value);
19884 }
19885 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19886 && newimm == (unsigned int) FAIL)
19887 {
19888 /* Turn add/sum into addw/subw. */
19889 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19890 newval = (newval & 0xfeffffff) | 0x02000000;
19891
19892 /* 12 bit immediate for addw/subw. */
19893 if (value < 0)
19894 {
19895 value = -value;
19896 newval ^= 0x00a00000;
19897 }
19898 if (value > 0xfff)
19899 newimm = (unsigned int) FAIL;
19900 else
19901 newimm = value;
19902 }
19903
19904 if (newimm == (unsigned int)FAIL)
19905 {
19906 as_bad_where (fixP->fx_file, fixP->fx_line,
19907 _("invalid constant (%lx) after fixup"),
19908 (unsigned long) value);
19909 break;
19910 }
19911
19912 newval |= (newimm & 0x800) << 15;
19913 newval |= (newimm & 0x700) << 4;
19914 newval |= (newimm & 0x0ff);
19915
19916 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
19917 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
19918 break;
19919
19920 case BFD_RELOC_ARM_SMC:
19921 if (((unsigned long) value) > 0xffff)
19922 as_bad_where (fixP->fx_file, fixP->fx_line,
19923 _("invalid smc expression"));
19924 newval = md_chars_to_number (buf, INSN_SIZE);
19925 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
19926 md_number_to_chars (buf, newval, INSN_SIZE);
19927 break;
19928
19929 case BFD_RELOC_ARM_SWI:
19930 if (fixP->tc_fix_data != 0)
19931 {
19932 if (((unsigned long) value) > 0xff)
19933 as_bad_where (fixP->fx_file, fixP->fx_line,
19934 _("invalid swi expression"));
19935 newval = md_chars_to_number (buf, THUMB_SIZE);
19936 newval |= value;
19937 md_number_to_chars (buf, newval, THUMB_SIZE);
19938 }
19939 else
19940 {
19941 if (((unsigned long) value) > 0x00ffffff)
19942 as_bad_where (fixP->fx_file, fixP->fx_line,
19943 _("invalid swi expression"));
19944 newval = md_chars_to_number (buf, INSN_SIZE);
19945 newval |= value;
19946 md_number_to_chars (buf, newval, INSN_SIZE);
19947 }
19948 break;
19949
19950 case BFD_RELOC_ARM_MULTI:
19951 if (((unsigned long) value) > 0xffff)
19952 as_bad_where (fixP->fx_file, fixP->fx_line,
19953 _("invalid expression in load/store multiple"));
19954 newval = value | md_chars_to_number (buf, INSN_SIZE);
19955 md_number_to_chars (buf, newval, INSN_SIZE);
19956 break;
19957
19958 #ifdef OBJ_ELF
19959 case BFD_RELOC_ARM_PCREL_CALL:
19960
19961 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19962 && fixP->fx_addsy
19963 && !S_IS_EXTERNAL (fixP->fx_addsy)
19964 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19965 && THUMB_IS_FUNC (fixP->fx_addsy))
19966 /* Flip the bl to blx. This is a simple flip
19967 bit here because we generate PCREL_CALL for
19968 unconditional bls. */
19969 {
19970 newval = md_chars_to_number (buf, INSN_SIZE);
19971 newval = newval | 0x10000000;
19972 md_number_to_chars (buf, newval, INSN_SIZE);
19973 temp = 1;
19974 fixP->fx_done = 1;
19975 }
19976 else
19977 temp = 3;
19978 goto arm_branch_common;
19979
19980 case BFD_RELOC_ARM_PCREL_JUMP:
19981 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19982 && fixP->fx_addsy
19983 && !S_IS_EXTERNAL (fixP->fx_addsy)
19984 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19985 && THUMB_IS_FUNC (fixP->fx_addsy))
19986 {
19987 /* This would map to a bl<cond>, b<cond>,
19988 b<always> to a Thumb function. We
19989 need to force a relocation for this particular
19990 case. */
19991 newval = md_chars_to_number (buf, INSN_SIZE);
19992 fixP->fx_done = 0;
19993 }
19994
19995 case BFD_RELOC_ARM_PLT32:
19996 #endif
19997 case BFD_RELOC_ARM_PCREL_BRANCH:
19998 temp = 3;
19999 goto arm_branch_common;
20000
20001 case BFD_RELOC_ARM_PCREL_BLX:
20002
20003 temp = 1;
20004 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20005 && fixP->fx_addsy
20006 && !S_IS_EXTERNAL (fixP->fx_addsy)
20007 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20008 && ARM_IS_FUNC (fixP->fx_addsy))
20009 {
20010 /* Flip the blx to a bl and warn. */
20011 const char *name = S_GET_NAME (fixP->fx_addsy);
20012 newval = 0xeb000000;
20013 as_warn_where (fixP->fx_file, fixP->fx_line,
20014 _("blx to '%s' an ARM ISA state function changed to bl"),
20015 name);
20016 md_number_to_chars (buf, newval, INSN_SIZE);
20017 temp = 3;
20018 fixP->fx_done = 1;
20019 }
20020
20021 #ifdef OBJ_ELF
20022 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20023 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20024 #endif
20025
20026 arm_branch_common:
20027 /* We are going to store value (shifted right by two) in the
20028 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20029 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20030 also be be clear. */
20031 if (value & temp)
20032 as_bad_where (fixP->fx_file, fixP->fx_line,
20033 _("misaligned branch destination"));
20034 if ((value & (offsetT)0xfe000000) != (offsetT)0
20035 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20036 as_bad_where (fixP->fx_file, fixP->fx_line,
20037 _("branch out of range"));
20038
20039 if (fixP->fx_done || !seg->use_rela_p)
20040 {
20041 newval = md_chars_to_number (buf, INSN_SIZE);
20042 newval |= (value >> 2) & 0x00ffffff;
20043 /* Set the H bit on BLX instructions. */
20044 if (temp == 1)
20045 {
20046 if (value & 2)
20047 newval |= 0x01000000;
20048 else
20049 newval &= ~0x01000000;
20050 }
20051 md_number_to_chars (buf, newval, INSN_SIZE);
20052 }
20053 break;
20054
20055 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20056 /* CBZ can only branch forward. */
20057
20058 /* Attempts to use CBZ to branch to the next instruction
20059 (which, strictly speaking, are prohibited) will be turned into
20060 no-ops.
20061
20062 FIXME: It may be better to remove the instruction completely and
20063 perform relaxation. */
20064 if (value == -2)
20065 {
20066 newval = md_chars_to_number (buf, THUMB_SIZE);
20067 newval = 0xbf00; /* NOP encoding T1 */
20068 md_number_to_chars (buf, newval, THUMB_SIZE);
20069 }
20070 else
20071 {
20072 if (value & ~0x7e)
20073 as_bad_where (fixP->fx_file, fixP->fx_line,
20074 _("branch out of range"));
20075
20076 if (fixP->fx_done || !seg->use_rela_p)
20077 {
20078 newval = md_chars_to_number (buf, THUMB_SIZE);
20079 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20080 md_number_to_chars (buf, newval, THUMB_SIZE);
20081 }
20082 }
20083 break;
20084
20085 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20086 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20087 as_bad_where (fixP->fx_file, fixP->fx_line,
20088 _("branch out of range"));
20089
20090 if (fixP->fx_done || !seg->use_rela_p)
20091 {
20092 newval = md_chars_to_number (buf, THUMB_SIZE);
20093 newval |= (value & 0x1ff) >> 1;
20094 md_number_to_chars (buf, newval, THUMB_SIZE);
20095 }
20096 break;
20097
20098 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20099 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20100 as_bad_where (fixP->fx_file, fixP->fx_line,
20101 _("branch out of range"));
20102
20103 if (fixP->fx_done || !seg->use_rela_p)
20104 {
20105 newval = md_chars_to_number (buf, THUMB_SIZE);
20106 newval |= (value & 0xfff) >> 1;
20107 md_number_to_chars (buf, newval, THUMB_SIZE);
20108 }
20109 break;
20110
20111 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20112 if (fixP->fx_addsy
20113 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20114 && !S_IS_EXTERNAL (fixP->fx_addsy)
20115 && S_IS_DEFINED (fixP->fx_addsy)
20116 && ARM_IS_FUNC (fixP->fx_addsy)
20117 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20118 {
20119 /* Force a relocation for a branch 20 bits wide. */
20120 fixP->fx_done = 0;
20121 }
20122 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20123 as_bad_where (fixP->fx_file, fixP->fx_line,
20124 _("conditional branch out of range"));
20125
20126 if (fixP->fx_done || !seg->use_rela_p)
20127 {
20128 offsetT newval2;
20129 addressT S, J1, J2, lo, hi;
20130
20131 S = (value & 0x00100000) >> 20;
20132 J2 = (value & 0x00080000) >> 19;
20133 J1 = (value & 0x00040000) >> 18;
20134 hi = (value & 0x0003f000) >> 12;
20135 lo = (value & 0x00000ffe) >> 1;
20136
20137 newval = md_chars_to_number (buf, THUMB_SIZE);
20138 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20139 newval |= (S << 10) | hi;
20140 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20141 md_number_to_chars (buf, newval, THUMB_SIZE);
20142 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20143 }
20144 break;
20145
20146 case BFD_RELOC_THUMB_PCREL_BLX:
20147
20148 /* If there is a blx from a thumb state function to
20149 another thumb function flip this to a bl and warn
20150 about it. */
20151
20152 if (fixP->fx_addsy
20153 && S_IS_DEFINED (fixP->fx_addsy)
20154 && !S_IS_EXTERNAL (fixP->fx_addsy)
20155 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20156 && THUMB_IS_FUNC (fixP->fx_addsy))
20157 {
20158 const char *name = S_GET_NAME (fixP->fx_addsy);
20159 as_warn_where (fixP->fx_file, fixP->fx_line,
20160 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20161 name);
20162 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20163 newval = newval | 0x1000;
20164 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20165 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20166 fixP->fx_done = 1;
20167 }
20168
20169
20170 goto thumb_bl_common;
20171
20172 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20173
20174 /* A bl from Thumb state ISA to an internal ARM state function
20175 is converted to a blx. */
20176 if (fixP->fx_addsy
20177 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20178 && !S_IS_EXTERNAL (fixP->fx_addsy)
20179 && S_IS_DEFINED (fixP->fx_addsy)
20180 && ARM_IS_FUNC (fixP->fx_addsy)
20181 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20182 {
20183 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20184 newval = newval & ~0x1000;
20185 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20186 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20187 fixP->fx_done = 1;
20188 }
20189
20190 thumb_bl_common:
20191
20192 #ifdef OBJ_ELF
20193 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20194 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20195 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20196 #endif
20197
20198 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20199 as_bad_where (fixP->fx_file, fixP->fx_line,
20200 _("branch out of range"));
20201
20202 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20203 /* For a BLX instruction, make sure that the relocation is rounded up
20204 to a word boundary. This follows the semantics of the instruction
20205 which specifies that bit 1 of the target address will come from bit
20206 1 of the base address. */
20207 value = (value + 1) & ~ 1;
20208
20209 if (fixP->fx_done || !seg->use_rela_p)
20210 {
20211 offsetT newval2;
20212
20213 newval = md_chars_to_number (buf, THUMB_SIZE);
20214 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20215 newval |= (value & 0x7fffff) >> 12;
20216 newval2 |= (value & 0xfff) >> 1;
20217 md_number_to_chars (buf, newval, THUMB_SIZE);
20218 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20219 }
20220 break;
20221
20222 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20223 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20224 as_bad_where (fixP->fx_file, fixP->fx_line,
20225 _("branch out of range"));
20226
20227 if (fixP->fx_done || !seg->use_rela_p)
20228 {
20229 offsetT newval2;
20230 addressT S, I1, I2, lo, hi;
20231
20232 S = (value & 0x01000000) >> 24;
20233 I1 = (value & 0x00800000) >> 23;
20234 I2 = (value & 0x00400000) >> 22;
20235 hi = (value & 0x003ff000) >> 12;
20236 lo = (value & 0x00000ffe) >> 1;
20237
20238 I1 = !(I1 ^ S);
20239 I2 = !(I2 ^ S);
20240
20241 newval = md_chars_to_number (buf, THUMB_SIZE);
20242 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20243 newval |= (S << 10) | hi;
20244 newval2 |= (I1 << 13) | (I2 << 11) | lo;
20245 md_number_to_chars (buf, newval, THUMB_SIZE);
20246 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20247 }
20248 break;
20249
20250 case BFD_RELOC_8:
20251 if (fixP->fx_done || !seg->use_rela_p)
20252 md_number_to_chars (buf, value, 1);
20253 break;
20254
20255 case BFD_RELOC_16:
20256 if (fixP->fx_done || !seg->use_rela_p)
20257 md_number_to_chars (buf, value, 2);
20258 break;
20259
20260 #ifdef OBJ_ELF
20261 case BFD_RELOC_ARM_TLS_GD32:
20262 case BFD_RELOC_ARM_TLS_LE32:
20263 case BFD_RELOC_ARM_TLS_IE32:
20264 case BFD_RELOC_ARM_TLS_LDM32:
20265 case BFD_RELOC_ARM_TLS_LDO32:
20266 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20267 /* fall through */
20268
20269 case BFD_RELOC_ARM_GOT32:
20270 case BFD_RELOC_ARM_GOTOFF:
20271 if (fixP->fx_done || !seg->use_rela_p)
20272 md_number_to_chars (buf, 0, 4);
20273 break;
20274
20275 case BFD_RELOC_ARM_TARGET2:
20276 /* TARGET2 is not partial-inplace, so we need to write the
20277 addend here for REL targets, because it won't be written out
20278 during reloc processing later. */
20279 if (fixP->fx_done || !seg->use_rela_p)
20280 md_number_to_chars (buf, fixP->fx_offset, 4);
20281 break;
20282 #endif
20283
20284 case BFD_RELOC_RVA:
20285 case BFD_RELOC_32:
20286 case BFD_RELOC_ARM_TARGET1:
20287 case BFD_RELOC_ARM_ROSEGREL32:
20288 case BFD_RELOC_ARM_SBREL32:
20289 case BFD_RELOC_32_PCREL:
20290 #ifdef TE_PE
20291 case BFD_RELOC_32_SECREL:
20292 #endif
20293 if (fixP->fx_done || !seg->use_rela_p)
20294 #ifdef TE_WINCE
20295 /* For WinCE we only do this for pcrel fixups. */
20296 if (fixP->fx_done || fixP->fx_pcrel)
20297 #endif
20298 md_number_to_chars (buf, value, 4);
20299 break;
20300
20301 #ifdef OBJ_ELF
20302 case BFD_RELOC_ARM_PREL31:
20303 if (fixP->fx_done || !seg->use_rela_p)
20304 {
20305 newval = md_chars_to_number (buf, 4) & 0x80000000;
20306 if ((value ^ (value >> 1)) & 0x40000000)
20307 {
20308 as_bad_where (fixP->fx_file, fixP->fx_line,
20309 _("rel31 relocation overflow"));
20310 }
20311 newval |= value & 0x7fffffff;
20312 md_number_to_chars (buf, newval, 4);
20313 }
20314 break;
20315 #endif
20316
20317 case BFD_RELOC_ARM_CP_OFF_IMM:
20318 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20319 if (value < -1023 || value > 1023 || (value & 3))
20320 as_bad_where (fixP->fx_file, fixP->fx_line,
20321 _("co-processor offset out of range"));
20322 cp_off_common:
20323 sign = value >= 0;
20324 if (value < 0)
20325 value = -value;
20326 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20327 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20328 newval = md_chars_to_number (buf, INSN_SIZE);
20329 else
20330 newval = get_thumb32_insn (buf);
20331 newval &= 0xff7fff00;
20332 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20333 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20334 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20335 md_number_to_chars (buf, newval, INSN_SIZE);
20336 else
20337 put_thumb32_insn (buf, newval);
20338 break;
20339
20340 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20341 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20342 if (value < -255 || value > 255)
20343 as_bad_where (fixP->fx_file, fixP->fx_line,
20344 _("co-processor offset out of range"));
20345 value *= 4;
20346 goto cp_off_common;
20347
20348 case BFD_RELOC_ARM_THUMB_OFFSET:
20349 newval = md_chars_to_number (buf, THUMB_SIZE);
20350 /* Exactly what ranges, and where the offset is inserted depends
20351 on the type of instruction, we can establish this from the
20352 top 4 bits. */
20353 switch (newval >> 12)
20354 {
20355 case 4: /* PC load. */
20356 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20357 forced to zero for these loads; md_pcrel_from has already
20358 compensated for this. */
20359 if (value & 3)
20360 as_bad_where (fixP->fx_file, fixP->fx_line,
20361 _("invalid offset, target not word aligned (0x%08lX)"),
20362 (((unsigned long) fixP->fx_frag->fr_address
20363 + (unsigned long) fixP->fx_where) & ~3)
20364 + (unsigned long) value);
20365
20366 if (value & ~0x3fc)
20367 as_bad_where (fixP->fx_file, fixP->fx_line,
20368 _("invalid offset, value too big (0x%08lX)"),
20369 (long) value);
20370
20371 newval |= value >> 2;
20372 break;
20373
20374 case 9: /* SP load/store. */
20375 if (value & ~0x3fc)
20376 as_bad_where (fixP->fx_file, fixP->fx_line,
20377 _("invalid offset, value too big (0x%08lX)"),
20378 (long) value);
20379 newval |= value >> 2;
20380 break;
20381
20382 case 6: /* Word load/store. */
20383 if (value & ~0x7c)
20384 as_bad_where (fixP->fx_file, fixP->fx_line,
20385 _("invalid offset, value too big (0x%08lX)"),
20386 (long) value);
20387 newval |= value << 4; /* 6 - 2. */
20388 break;
20389
20390 case 7: /* Byte load/store. */
20391 if (value & ~0x1f)
20392 as_bad_where (fixP->fx_file, fixP->fx_line,
20393 _("invalid offset, value too big (0x%08lX)"),
20394 (long) value);
20395 newval |= value << 6;
20396 break;
20397
20398 case 8: /* Halfword load/store. */
20399 if (value & ~0x3e)
20400 as_bad_where (fixP->fx_file, fixP->fx_line,
20401 _("invalid offset, value too big (0x%08lX)"),
20402 (long) value);
20403 newval |= value << 5; /* 6 - 1. */
20404 break;
20405
20406 default:
20407 as_bad_where (fixP->fx_file, fixP->fx_line,
20408 "Unable to process relocation for thumb opcode: %lx",
20409 (unsigned long) newval);
20410 break;
20411 }
20412 md_number_to_chars (buf, newval, THUMB_SIZE);
20413 break;
20414
20415 case BFD_RELOC_ARM_THUMB_ADD:
20416 /* This is a complicated relocation, since we use it for all of
20417 the following immediate relocations:
20418
20419 3bit ADD/SUB
20420 8bit ADD/SUB
20421 9bit ADD/SUB SP word-aligned
20422 10bit ADD PC/SP word-aligned
20423
20424 The type of instruction being processed is encoded in the
20425 instruction field:
20426
20427 0x8000 SUB
20428 0x00F0 Rd
20429 0x000F Rs
20430 */
20431 newval = md_chars_to_number (buf, THUMB_SIZE);
20432 {
20433 int rd = (newval >> 4) & 0xf;
20434 int rs = newval & 0xf;
20435 int subtract = !!(newval & 0x8000);
20436
20437 /* Check for HI regs, only very restricted cases allowed:
20438 Adjusting SP, and using PC or SP to get an address. */
20439 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20440 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20441 as_bad_where (fixP->fx_file, fixP->fx_line,
20442 _("invalid Hi register with immediate"));
20443
20444 /* If value is negative, choose the opposite instruction. */
20445 if (value < 0)
20446 {
20447 value = -value;
20448 subtract = !subtract;
20449 if (value < 0)
20450 as_bad_where (fixP->fx_file, fixP->fx_line,
20451 _("immediate value out of range"));
20452 }
20453
20454 if (rd == REG_SP)
20455 {
20456 if (value & ~0x1fc)
20457 as_bad_where (fixP->fx_file, fixP->fx_line,
20458 _("invalid immediate for stack address calculation"));
20459 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20460 newval |= value >> 2;
20461 }
20462 else if (rs == REG_PC || rs == REG_SP)
20463 {
20464 if (subtract || value & ~0x3fc)
20465 as_bad_where (fixP->fx_file, fixP->fx_line,
20466 _("invalid immediate for address calculation (value = 0x%08lX)"),
20467 (unsigned long) value);
20468 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20469 newval |= rd << 8;
20470 newval |= value >> 2;
20471 }
20472 else if (rs == rd)
20473 {
20474 if (value & ~0xff)
20475 as_bad_where (fixP->fx_file, fixP->fx_line,
20476 _("immediate value out of range"));
20477 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20478 newval |= (rd << 8) | value;
20479 }
20480 else
20481 {
20482 if (value & ~0x7)
20483 as_bad_where (fixP->fx_file, fixP->fx_line,
20484 _("immediate value out of range"));
20485 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20486 newval |= rd | (rs << 3) | (value << 6);
20487 }
20488 }
20489 md_number_to_chars (buf, newval, THUMB_SIZE);
20490 break;
20491
20492 case BFD_RELOC_ARM_THUMB_IMM:
20493 newval = md_chars_to_number (buf, THUMB_SIZE);
20494 if (value < 0 || value > 255)
20495 as_bad_where (fixP->fx_file, fixP->fx_line,
20496 _("invalid immediate: %ld is out of range"),
20497 (long) value);
20498 newval |= value;
20499 md_number_to_chars (buf, newval, THUMB_SIZE);
20500 break;
20501
20502 case BFD_RELOC_ARM_THUMB_SHIFT:
20503 /* 5bit shift value (0..32). LSL cannot take 32. */
20504 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20505 temp = newval & 0xf800;
20506 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20507 as_bad_where (fixP->fx_file, fixP->fx_line,
20508 _("invalid shift value: %ld"), (long) value);
20509 /* Shifts of zero must be encoded as LSL. */
20510 if (value == 0)
20511 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20512 /* Shifts of 32 are encoded as zero. */
20513 else if (value == 32)
20514 value = 0;
20515 newval |= value << 6;
20516 md_number_to_chars (buf, newval, THUMB_SIZE);
20517 break;
20518
20519 case BFD_RELOC_VTABLE_INHERIT:
20520 case BFD_RELOC_VTABLE_ENTRY:
20521 fixP->fx_done = 0;
20522 return;
20523
20524 case BFD_RELOC_ARM_MOVW:
20525 case BFD_RELOC_ARM_MOVT:
20526 case BFD_RELOC_ARM_THUMB_MOVW:
20527 case BFD_RELOC_ARM_THUMB_MOVT:
20528 if (fixP->fx_done || !seg->use_rela_p)
20529 {
20530 /* REL format relocations are limited to a 16-bit addend. */
20531 if (!fixP->fx_done)
20532 {
20533 if (value < -0x8000 || value > 0x7fff)
20534 as_bad_where (fixP->fx_file, fixP->fx_line,
20535 _("offset out of range"));
20536 }
20537 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20538 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20539 {
20540 value >>= 16;
20541 }
20542
20543 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20544 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20545 {
20546 newval = get_thumb32_insn (buf);
20547 newval &= 0xfbf08f00;
20548 newval |= (value & 0xf000) << 4;
20549 newval |= (value & 0x0800) << 15;
20550 newval |= (value & 0x0700) << 4;
20551 newval |= (value & 0x00ff);
20552 put_thumb32_insn (buf, newval);
20553 }
20554 else
20555 {
20556 newval = md_chars_to_number (buf, 4);
20557 newval &= 0xfff0f000;
20558 newval |= value & 0x0fff;
20559 newval |= (value & 0xf000) << 4;
20560 md_number_to_chars (buf, newval, 4);
20561 }
20562 }
20563 return;
20564
20565 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20566 case BFD_RELOC_ARM_ALU_PC_G0:
20567 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20568 case BFD_RELOC_ARM_ALU_PC_G1:
20569 case BFD_RELOC_ARM_ALU_PC_G2:
20570 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20571 case BFD_RELOC_ARM_ALU_SB_G0:
20572 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20573 case BFD_RELOC_ARM_ALU_SB_G1:
20574 case BFD_RELOC_ARM_ALU_SB_G2:
20575 gas_assert (!fixP->fx_done);
20576 if (!seg->use_rela_p)
20577 {
20578 bfd_vma insn;
20579 bfd_vma encoded_addend;
20580 bfd_vma addend_abs = abs (value);
20581
20582 /* Check that the absolute value of the addend can be
20583 expressed as an 8-bit constant plus a rotation. */
20584 encoded_addend = encode_arm_immediate (addend_abs);
20585 if (encoded_addend == (unsigned int) FAIL)
20586 as_bad_where (fixP->fx_file, fixP->fx_line,
20587 _("the offset 0x%08lX is not representable"),
20588 (unsigned long) addend_abs);
20589
20590 /* Extract the instruction. */
20591 insn = md_chars_to_number (buf, INSN_SIZE);
20592
20593 /* If the addend is positive, use an ADD instruction.
20594 Otherwise use a SUB. Take care not to destroy the S bit. */
20595 insn &= 0xff1fffff;
20596 if (value < 0)
20597 insn |= 1 << 22;
20598 else
20599 insn |= 1 << 23;
20600
20601 /* Place the encoded addend into the first 12 bits of the
20602 instruction. */
20603 insn &= 0xfffff000;
20604 insn |= encoded_addend;
20605
20606 /* Update the instruction. */
20607 md_number_to_chars (buf, insn, INSN_SIZE);
20608 }
20609 break;
20610
20611 case BFD_RELOC_ARM_LDR_PC_G0:
20612 case BFD_RELOC_ARM_LDR_PC_G1:
20613 case BFD_RELOC_ARM_LDR_PC_G2:
20614 case BFD_RELOC_ARM_LDR_SB_G0:
20615 case BFD_RELOC_ARM_LDR_SB_G1:
20616 case BFD_RELOC_ARM_LDR_SB_G2:
20617 gas_assert (!fixP->fx_done);
20618 if (!seg->use_rela_p)
20619 {
20620 bfd_vma insn;
20621 bfd_vma addend_abs = abs (value);
20622
20623 /* Check that the absolute value of the addend can be
20624 encoded in 12 bits. */
20625 if (addend_abs >= 0x1000)
20626 as_bad_where (fixP->fx_file, fixP->fx_line,
20627 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20628 (unsigned long) addend_abs);
20629
20630 /* Extract the instruction. */
20631 insn = md_chars_to_number (buf, INSN_SIZE);
20632
20633 /* If the addend is negative, clear bit 23 of the instruction.
20634 Otherwise set it. */
20635 if (value < 0)
20636 insn &= ~(1 << 23);
20637 else
20638 insn |= 1 << 23;
20639
20640 /* Place the absolute value of the addend into the first 12 bits
20641 of the instruction. */
20642 insn &= 0xfffff000;
20643 insn |= addend_abs;
20644
20645 /* Update the instruction. */
20646 md_number_to_chars (buf, insn, INSN_SIZE);
20647 }
20648 break;
20649
20650 case BFD_RELOC_ARM_LDRS_PC_G0:
20651 case BFD_RELOC_ARM_LDRS_PC_G1:
20652 case BFD_RELOC_ARM_LDRS_PC_G2:
20653 case BFD_RELOC_ARM_LDRS_SB_G0:
20654 case BFD_RELOC_ARM_LDRS_SB_G1:
20655 case BFD_RELOC_ARM_LDRS_SB_G2:
20656 gas_assert (!fixP->fx_done);
20657 if (!seg->use_rela_p)
20658 {
20659 bfd_vma insn;
20660 bfd_vma addend_abs = abs (value);
20661
20662 /* Check that the absolute value of the addend can be
20663 encoded in 8 bits. */
20664 if (addend_abs >= 0x100)
20665 as_bad_where (fixP->fx_file, fixP->fx_line,
20666 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20667 (unsigned long) addend_abs);
20668
20669 /* Extract the instruction. */
20670 insn = md_chars_to_number (buf, INSN_SIZE);
20671
20672 /* If the addend is negative, clear bit 23 of the instruction.
20673 Otherwise set it. */
20674 if (value < 0)
20675 insn &= ~(1 << 23);
20676 else
20677 insn |= 1 << 23;
20678
20679 /* Place the first four bits of the absolute value of the addend
20680 into the first 4 bits of the instruction, and the remaining
20681 four into bits 8 .. 11. */
20682 insn &= 0xfffff0f0;
20683 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20684
20685 /* Update the instruction. */
20686 md_number_to_chars (buf, insn, INSN_SIZE);
20687 }
20688 break;
20689
20690 case BFD_RELOC_ARM_LDC_PC_G0:
20691 case BFD_RELOC_ARM_LDC_PC_G1:
20692 case BFD_RELOC_ARM_LDC_PC_G2:
20693 case BFD_RELOC_ARM_LDC_SB_G0:
20694 case BFD_RELOC_ARM_LDC_SB_G1:
20695 case BFD_RELOC_ARM_LDC_SB_G2:
20696 gas_assert (!fixP->fx_done);
20697 if (!seg->use_rela_p)
20698 {
20699 bfd_vma insn;
20700 bfd_vma addend_abs = abs (value);
20701
20702 /* Check that the absolute value of the addend is a multiple of
20703 four and, when divided by four, fits in 8 bits. */
20704 if (addend_abs & 0x3)
20705 as_bad_where (fixP->fx_file, fixP->fx_line,
20706 _("bad offset 0x%08lX (must be word-aligned)"),
20707 (unsigned long) addend_abs);
20708
20709 if ((addend_abs >> 2) > 0xff)
20710 as_bad_where (fixP->fx_file, fixP->fx_line,
20711 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20712 (unsigned long) addend_abs);
20713
20714 /* Extract the instruction. */
20715 insn = md_chars_to_number (buf, INSN_SIZE);
20716
20717 /* If the addend is negative, clear bit 23 of the instruction.
20718 Otherwise set it. */
20719 if (value < 0)
20720 insn &= ~(1 << 23);
20721 else
20722 insn |= 1 << 23;
20723
20724 /* Place the addend (divided by four) into the first eight
20725 bits of the instruction. */
20726 insn &= 0xfffffff0;
20727 insn |= addend_abs >> 2;
20728
20729 /* Update the instruction. */
20730 md_number_to_chars (buf, insn, INSN_SIZE);
20731 }
20732 break;
20733
20734 case BFD_RELOC_ARM_V4BX:
20735 /* This will need to go in the object file. */
20736 fixP->fx_done = 0;
20737 break;
20738
20739 case BFD_RELOC_UNUSED:
20740 default:
20741 as_bad_where (fixP->fx_file, fixP->fx_line,
20742 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20743 }
20744 }
20745
20746 /* Translate internal representation of relocation info to BFD target
20747 format. */
20748
20749 arelent *
20750 tc_gen_reloc (asection *section, fixS *fixp)
20751 {
20752 arelent * reloc;
20753 bfd_reloc_code_real_type code;
20754
20755 reloc = (arelent *) xmalloc (sizeof (arelent));
20756
20757 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
20758 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20759 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20760
20761 if (fixp->fx_pcrel)
20762 {
20763 if (section->use_rela_p)
20764 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20765 else
20766 fixp->fx_offset = reloc->address;
20767 }
20768 reloc->addend = fixp->fx_offset;
20769
20770 switch (fixp->fx_r_type)
20771 {
20772 case BFD_RELOC_8:
20773 if (fixp->fx_pcrel)
20774 {
20775 code = BFD_RELOC_8_PCREL;
20776 break;
20777 }
20778
20779 case BFD_RELOC_16:
20780 if (fixp->fx_pcrel)
20781 {
20782 code = BFD_RELOC_16_PCREL;
20783 break;
20784 }
20785
20786 case BFD_RELOC_32:
20787 if (fixp->fx_pcrel)
20788 {
20789 code = BFD_RELOC_32_PCREL;
20790 break;
20791 }
20792
20793 case BFD_RELOC_ARM_MOVW:
20794 if (fixp->fx_pcrel)
20795 {
20796 code = BFD_RELOC_ARM_MOVW_PCREL;
20797 break;
20798 }
20799
20800 case BFD_RELOC_ARM_MOVT:
20801 if (fixp->fx_pcrel)
20802 {
20803 code = BFD_RELOC_ARM_MOVT_PCREL;
20804 break;
20805 }
20806
20807 case BFD_RELOC_ARM_THUMB_MOVW:
20808 if (fixp->fx_pcrel)
20809 {
20810 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20811 break;
20812 }
20813
20814 case BFD_RELOC_ARM_THUMB_MOVT:
20815 if (fixp->fx_pcrel)
20816 {
20817 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20818 break;
20819 }
20820
20821 case BFD_RELOC_NONE:
20822 case BFD_RELOC_ARM_PCREL_BRANCH:
20823 case BFD_RELOC_ARM_PCREL_BLX:
20824 case BFD_RELOC_RVA:
20825 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20826 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20827 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20828 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20829 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20830 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20831 case BFD_RELOC_VTABLE_ENTRY:
20832 case BFD_RELOC_VTABLE_INHERIT:
20833 #ifdef TE_PE
20834 case BFD_RELOC_32_SECREL:
20835 #endif
20836 code = fixp->fx_r_type;
20837 break;
20838
20839 case BFD_RELOC_THUMB_PCREL_BLX:
20840 #ifdef OBJ_ELF
20841 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20842 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20843 else
20844 #endif
20845 code = BFD_RELOC_THUMB_PCREL_BLX;
20846 break;
20847
20848 case BFD_RELOC_ARM_LITERAL:
20849 case BFD_RELOC_ARM_HWLITERAL:
20850 /* If this is called then the a literal has
20851 been referenced across a section boundary. */
20852 as_bad_where (fixp->fx_file, fixp->fx_line,
20853 _("literal referenced across section boundary"));
20854 return NULL;
20855
20856 #ifdef OBJ_ELF
20857 case BFD_RELOC_ARM_GOT32:
20858 case BFD_RELOC_ARM_GOTOFF:
20859 case BFD_RELOC_ARM_PLT32:
20860 case BFD_RELOC_ARM_TARGET1:
20861 case BFD_RELOC_ARM_ROSEGREL32:
20862 case BFD_RELOC_ARM_SBREL32:
20863 case BFD_RELOC_ARM_PREL31:
20864 case BFD_RELOC_ARM_TARGET2:
20865 case BFD_RELOC_ARM_TLS_LE32:
20866 case BFD_RELOC_ARM_TLS_LDO32:
20867 case BFD_RELOC_ARM_PCREL_CALL:
20868 case BFD_RELOC_ARM_PCREL_JUMP:
20869 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20870 case BFD_RELOC_ARM_ALU_PC_G0:
20871 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20872 case BFD_RELOC_ARM_ALU_PC_G1:
20873 case BFD_RELOC_ARM_ALU_PC_G2:
20874 case BFD_RELOC_ARM_LDR_PC_G0:
20875 case BFD_RELOC_ARM_LDR_PC_G1:
20876 case BFD_RELOC_ARM_LDR_PC_G2:
20877 case BFD_RELOC_ARM_LDRS_PC_G0:
20878 case BFD_RELOC_ARM_LDRS_PC_G1:
20879 case BFD_RELOC_ARM_LDRS_PC_G2:
20880 case BFD_RELOC_ARM_LDC_PC_G0:
20881 case BFD_RELOC_ARM_LDC_PC_G1:
20882 case BFD_RELOC_ARM_LDC_PC_G2:
20883 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20884 case BFD_RELOC_ARM_ALU_SB_G0:
20885 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20886 case BFD_RELOC_ARM_ALU_SB_G1:
20887 case BFD_RELOC_ARM_ALU_SB_G2:
20888 case BFD_RELOC_ARM_LDR_SB_G0:
20889 case BFD_RELOC_ARM_LDR_SB_G1:
20890 case BFD_RELOC_ARM_LDR_SB_G2:
20891 case BFD_RELOC_ARM_LDRS_SB_G0:
20892 case BFD_RELOC_ARM_LDRS_SB_G1:
20893 case BFD_RELOC_ARM_LDRS_SB_G2:
20894 case BFD_RELOC_ARM_LDC_SB_G0:
20895 case BFD_RELOC_ARM_LDC_SB_G1:
20896 case BFD_RELOC_ARM_LDC_SB_G2:
20897 case BFD_RELOC_ARM_V4BX:
20898 code = fixp->fx_r_type;
20899 break;
20900
20901 case BFD_RELOC_ARM_TLS_GD32:
20902 case BFD_RELOC_ARM_TLS_IE32:
20903 case BFD_RELOC_ARM_TLS_LDM32:
20904 /* BFD will include the symbol's address in the addend.
20905 But we don't want that, so subtract it out again here. */
20906 if (!S_IS_COMMON (fixp->fx_addsy))
20907 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20908 code = fixp->fx_r_type;
20909 break;
20910 #endif
20911
20912 case BFD_RELOC_ARM_IMMEDIATE:
20913 as_bad_where (fixp->fx_file, fixp->fx_line,
20914 _("internal relocation (type: IMMEDIATE) not fixed up"));
20915 return NULL;
20916
20917 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20918 as_bad_where (fixp->fx_file, fixp->fx_line,
20919 _("ADRL used for a symbol not defined in the same file"));
20920 return NULL;
20921
20922 case BFD_RELOC_ARM_OFFSET_IMM:
20923 if (section->use_rela_p)
20924 {
20925 code = fixp->fx_r_type;
20926 break;
20927 }
20928
20929 if (fixp->fx_addsy != NULL
20930 && !S_IS_DEFINED (fixp->fx_addsy)
20931 && S_IS_LOCAL (fixp->fx_addsy))
20932 {
20933 as_bad_where (fixp->fx_file, fixp->fx_line,
20934 _("undefined local label `%s'"),
20935 S_GET_NAME (fixp->fx_addsy));
20936 return NULL;
20937 }
20938
20939 as_bad_where (fixp->fx_file, fixp->fx_line,
20940 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
20941 return NULL;
20942
20943 default:
20944 {
20945 char * type;
20946
20947 switch (fixp->fx_r_type)
20948 {
20949 case BFD_RELOC_NONE: type = "NONE"; break;
20950 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
20951 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
20952 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
20953 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
20954 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
20955 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
20956 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
20957 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
20958 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
20959 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
20960 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
20961 default: type = _("<unknown>"); break;
20962 }
20963 as_bad_where (fixp->fx_file, fixp->fx_line,
20964 _("cannot represent %s relocation in this object file format"),
20965 type);
20966 return NULL;
20967 }
20968 }
20969
20970 #ifdef OBJ_ELF
20971 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
20972 && GOT_symbol
20973 && fixp->fx_addsy == GOT_symbol)
20974 {
20975 code = BFD_RELOC_ARM_GOTPC;
20976 reloc->addend = fixp->fx_offset = reloc->address;
20977 }
20978 #endif
20979
20980 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
20981
20982 if (reloc->howto == NULL)
20983 {
20984 as_bad_where (fixp->fx_file, fixp->fx_line,
20985 _("cannot represent %s relocation in this object file format"),
20986 bfd_get_reloc_code_name (code));
20987 return NULL;
20988 }
20989
20990 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
20991 vtable entry to be used in the relocation's section offset. */
20992 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20993 reloc->address = fixp->fx_offset;
20994
20995 return reloc;
20996 }
20997
20998 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
20999
21000 void
21001 cons_fix_new_arm (fragS * frag,
21002 int where,
21003 int size,
21004 expressionS * exp)
21005 {
21006 bfd_reloc_code_real_type type;
21007 int pcrel = 0;
21008
21009 /* Pick a reloc.
21010 FIXME: @@ Should look at CPU word size. */
21011 switch (size)
21012 {
21013 case 1:
21014 type = BFD_RELOC_8;
21015 break;
21016 case 2:
21017 type = BFD_RELOC_16;
21018 break;
21019 case 4:
21020 default:
21021 type = BFD_RELOC_32;
21022 break;
21023 case 8:
21024 type = BFD_RELOC_64;
21025 break;
21026 }
21027
21028 #ifdef TE_PE
21029 if (exp->X_op == O_secrel)
21030 {
21031 exp->X_op = O_symbol;
21032 type = BFD_RELOC_32_SECREL;
21033 }
21034 #endif
21035
21036 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21037 }
21038
21039 #if defined (OBJ_COFF)
21040 void
21041 arm_validate_fix (fixS * fixP)
21042 {
21043 /* If the destination of the branch is a defined symbol which does not have
21044 the THUMB_FUNC attribute, then we must be calling a function which has
21045 the (interfacearm) attribute. We look for the Thumb entry point to that
21046 function and change the branch to refer to that function instead. */
21047 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21048 && fixP->fx_addsy != NULL
21049 && S_IS_DEFINED (fixP->fx_addsy)
21050 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21051 {
21052 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21053 }
21054 }
21055 #endif
21056
21057
21058 int
21059 arm_force_relocation (struct fix * fixp)
21060 {
21061 #if defined (OBJ_COFF) && defined (TE_PE)
21062 if (fixp->fx_r_type == BFD_RELOC_RVA)
21063 return 1;
21064 #endif
21065
21066 /* In case we have a call or a branch to a function in ARM ISA mode from
21067 a thumb function or vice-versa force the relocation. These relocations
21068 are cleared off for some cores that might have blx and simple transformations
21069 are possible. */
21070
21071 #ifdef OBJ_ELF
21072 switch (fixp->fx_r_type)
21073 {
21074 case BFD_RELOC_ARM_PCREL_JUMP:
21075 case BFD_RELOC_ARM_PCREL_CALL:
21076 case BFD_RELOC_THUMB_PCREL_BLX:
21077 if (THUMB_IS_FUNC (fixp->fx_addsy))
21078 return 1;
21079 break;
21080
21081 case BFD_RELOC_ARM_PCREL_BLX:
21082 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21083 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21084 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21085 if (ARM_IS_FUNC (fixp->fx_addsy))
21086 return 1;
21087 break;
21088
21089 default:
21090 break;
21091 }
21092 #endif
21093
21094 /* Resolve these relocations even if the symbol is extern or weak. */
21095 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21096 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21097 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21098 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21099 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21100 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21101 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21102 return 0;
21103
21104 /* Always leave these relocations for the linker. */
21105 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21106 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21107 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21108 return 1;
21109
21110 /* Always generate relocations against function symbols. */
21111 if (fixp->fx_r_type == BFD_RELOC_32
21112 && fixp->fx_addsy
21113 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21114 return 1;
21115
21116 return generic_force_reloc (fixp);
21117 }
21118
21119 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21120 /* Relocations against function names must be left unadjusted,
21121 so that the linker can use this information to generate interworking
21122 stubs. The MIPS version of this function
21123 also prevents relocations that are mips-16 specific, but I do not
21124 know why it does this.
21125
21126 FIXME:
21127 There is one other problem that ought to be addressed here, but
21128 which currently is not: Taking the address of a label (rather
21129 than a function) and then later jumping to that address. Such
21130 addresses also ought to have their bottom bit set (assuming that
21131 they reside in Thumb code), but at the moment they will not. */
21132
21133 bfd_boolean
21134 arm_fix_adjustable (fixS * fixP)
21135 {
21136 if (fixP->fx_addsy == NULL)
21137 return 1;
21138
21139 /* Preserve relocations against symbols with function type. */
21140 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21141 return FALSE;
21142
21143 if (THUMB_IS_FUNC (fixP->fx_addsy)
21144 && fixP->fx_subsy == NULL)
21145 return FALSE;
21146
21147 /* We need the symbol name for the VTABLE entries. */
21148 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21149 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21150 return FALSE;
21151
21152 /* Don't allow symbols to be discarded on GOT related relocs. */
21153 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21154 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21155 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21156 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21157 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21158 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21159 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21160 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21161 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21162 return FALSE;
21163
21164 /* Similarly for group relocations. */
21165 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21166 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21167 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21168 return FALSE;
21169
21170 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21171 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21172 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21173 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21174 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21175 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21176 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21177 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21178 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21179 return FALSE;
21180
21181 return TRUE;
21182 }
21183 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21184
21185 #ifdef OBJ_ELF
21186
21187 const char *
21188 elf32_arm_target_format (void)
21189 {
21190 #ifdef TE_SYMBIAN
21191 return (target_big_endian
21192 ? "elf32-bigarm-symbian"
21193 : "elf32-littlearm-symbian");
21194 #elif defined (TE_VXWORKS)
21195 return (target_big_endian
21196 ? "elf32-bigarm-vxworks"
21197 : "elf32-littlearm-vxworks");
21198 #else
21199 if (target_big_endian)
21200 return "elf32-bigarm";
21201 else
21202 return "elf32-littlearm";
21203 #endif
21204 }
21205
21206 void
21207 armelf_frob_symbol (symbolS * symp,
21208 int * puntp)
21209 {
21210 elf_frob_symbol (symp, puntp);
21211 }
21212 #endif
21213
21214 /* MD interface: Finalization. */
21215
21216 void
21217 arm_cleanup (void)
21218 {
21219 literal_pool * pool;
21220
21221 /* Ensure that all the IT blocks are properly closed. */
21222 check_it_blocks_finished ();
21223
21224 for (pool = list_of_pools; pool; pool = pool->next)
21225 {
21226 /* Put it at the end of the relevant section. */
21227 subseg_set (pool->section, pool->sub_section);
21228 #ifdef OBJ_ELF
21229 arm_elf_change_section ();
21230 #endif
21231 s_ltorg (0);
21232 }
21233 }
21234
21235 #ifdef OBJ_ELF
21236 /* Remove any excess mapping symbols generated for alignment frags in
21237 SEC. We may have created a mapping symbol before a zero byte
21238 alignment; remove it if there's a mapping symbol after the
21239 alignment. */
21240 static void
21241 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21242 void *dummy ATTRIBUTE_UNUSED)
21243 {
21244 segment_info_type *seginfo = seg_info (sec);
21245 fragS *fragp;
21246
21247 if (seginfo == NULL || seginfo->frchainP == NULL)
21248 return;
21249
21250 for (fragp = seginfo->frchainP->frch_root;
21251 fragp != NULL;
21252 fragp = fragp->fr_next)
21253 {
21254 symbolS *sym = fragp->tc_frag_data.last_map;
21255 fragS *next = fragp->fr_next;
21256
21257 /* Variable-sized frags have been converted to fixed size by
21258 this point. But if this was variable-sized to start with,
21259 there will be a fixed-size frag after it. So don't handle
21260 next == NULL. */
21261 if (sym == NULL || next == NULL)
21262 continue;
21263
21264 if (S_GET_VALUE (sym) < next->fr_address)
21265 /* Not at the end of this frag. */
21266 continue;
21267 know (S_GET_VALUE (sym) == next->fr_address);
21268
21269 do
21270 {
21271 if (next->tc_frag_data.first_map != NULL)
21272 {
21273 /* Next frag starts with a mapping symbol. Discard this
21274 one. */
21275 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21276 break;
21277 }
21278
21279 if (next->fr_next == NULL)
21280 {
21281 /* This mapping symbol is at the end of the section. Discard
21282 it. */
21283 know (next->fr_fix == 0 && next->fr_var == 0);
21284 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21285 break;
21286 }
21287
21288 /* As long as we have empty frags without any mapping symbols,
21289 keep looking. */
21290 /* If the next frag is non-empty and does not start with a
21291 mapping symbol, then this mapping symbol is required. */
21292 if (next->fr_address != next->fr_next->fr_address)
21293 break;
21294
21295 next = next->fr_next;
21296 }
21297 while (next != NULL);
21298 }
21299 }
21300 #endif
21301
21302 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21303 ARM ones. */
21304
21305 void
21306 arm_adjust_symtab (void)
21307 {
21308 #ifdef OBJ_COFF
21309 symbolS * sym;
21310
21311 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21312 {
21313 if (ARM_IS_THUMB (sym))
21314 {
21315 if (THUMB_IS_FUNC (sym))
21316 {
21317 /* Mark the symbol as a Thumb function. */
21318 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21319 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21320 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21321
21322 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21323 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21324 else
21325 as_bad (_("%s: unexpected function type: %d"),
21326 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21327 }
21328 else switch (S_GET_STORAGE_CLASS (sym))
21329 {
21330 case C_EXT:
21331 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21332 break;
21333 case C_STAT:
21334 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21335 break;
21336 case C_LABEL:
21337 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21338 break;
21339 default:
21340 /* Do nothing. */
21341 break;
21342 }
21343 }
21344
21345 if (ARM_IS_INTERWORK (sym))
21346 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21347 }
21348 #endif
21349 #ifdef OBJ_ELF
21350 symbolS * sym;
21351 char bind;
21352
21353 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21354 {
21355 if (ARM_IS_THUMB (sym))
21356 {
21357 elf_symbol_type * elf_sym;
21358
21359 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21360 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21361
21362 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21363 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21364 {
21365 /* If it's a .thumb_func, declare it as so,
21366 otherwise tag label as .code 16. */
21367 if (THUMB_IS_FUNC (sym))
21368 elf_sym->internal_elf_sym.st_info =
21369 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21370 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21371 elf_sym->internal_elf_sym.st_info =
21372 ELF_ST_INFO (bind, STT_ARM_16BIT);
21373 }
21374 }
21375 }
21376
21377 /* Remove any overlapping mapping symbols generated by alignment frags. */
21378 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21379 #endif
21380 }
21381
21382 /* MD interface: Initialization. */
21383
21384 static void
21385 set_constant_flonums (void)
21386 {
21387 int i;
21388
21389 for (i = 0; i < NUM_FLOAT_VALS; i++)
21390 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21391 abort ();
21392 }
21393
21394 /* Auto-select Thumb mode if it's the only available instruction set for the
21395 given architecture. */
21396
21397 static void
21398 autoselect_thumb_from_cpu_variant (void)
21399 {
21400 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21401 opcode_select (16);
21402 }
21403
21404 void
21405 md_begin (void)
21406 {
21407 unsigned mach;
21408 unsigned int i;
21409
21410 if ( (arm_ops_hsh = hash_new ()) == NULL
21411 || (arm_cond_hsh = hash_new ()) == NULL
21412 || (arm_shift_hsh = hash_new ()) == NULL
21413 || (arm_psr_hsh = hash_new ()) == NULL
21414 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21415 || (arm_reg_hsh = hash_new ()) == NULL
21416 || (arm_reloc_hsh = hash_new ()) == NULL
21417 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21418 as_fatal (_("virtual memory exhausted"));
21419
21420 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21421 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21422 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21423 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21424 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21425 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21426 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21427 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21428 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21429 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21430 (void *) (v7m_psrs + i));
21431 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21432 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21433 for (i = 0;
21434 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21435 i++)
21436 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21437 (void *) (barrier_opt_names + i));
21438 #ifdef OBJ_ELF
21439 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21440 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21441 #endif
21442
21443 set_constant_flonums ();
21444
21445 /* Set the cpu variant based on the command-line options. We prefer
21446 -mcpu= over -march= if both are set (as for GCC); and we prefer
21447 -mfpu= over any other way of setting the floating point unit.
21448 Use of legacy options with new options are faulted. */
21449 if (legacy_cpu)
21450 {
21451 if (mcpu_cpu_opt || march_cpu_opt)
21452 as_bad (_("use of old and new-style options to set CPU type"));
21453
21454 mcpu_cpu_opt = legacy_cpu;
21455 }
21456 else if (!mcpu_cpu_opt)
21457 mcpu_cpu_opt = march_cpu_opt;
21458
21459 if (legacy_fpu)
21460 {
21461 if (mfpu_opt)
21462 as_bad (_("use of old and new-style options to set FPU type"));
21463
21464 mfpu_opt = legacy_fpu;
21465 }
21466 else if (!mfpu_opt)
21467 {
21468 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21469 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21470 /* Some environments specify a default FPU. If they don't, infer it
21471 from the processor. */
21472 if (mcpu_fpu_opt)
21473 mfpu_opt = mcpu_fpu_opt;
21474 else
21475 mfpu_opt = march_fpu_opt;
21476 #else
21477 mfpu_opt = &fpu_default;
21478 #endif
21479 }
21480
21481 if (!mfpu_opt)
21482 {
21483 if (mcpu_cpu_opt != NULL)
21484 mfpu_opt = &fpu_default;
21485 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21486 mfpu_opt = &fpu_arch_vfp_v2;
21487 else
21488 mfpu_opt = &fpu_arch_fpa;
21489 }
21490
21491 #ifdef CPU_DEFAULT
21492 if (!mcpu_cpu_opt)
21493 {
21494 mcpu_cpu_opt = &cpu_default;
21495 selected_cpu = cpu_default;
21496 }
21497 #else
21498 if (mcpu_cpu_opt)
21499 selected_cpu = *mcpu_cpu_opt;
21500 else
21501 mcpu_cpu_opt = &arm_arch_any;
21502 #endif
21503
21504 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21505
21506 autoselect_thumb_from_cpu_variant ();
21507
21508 arm_arch_used = thumb_arch_used = arm_arch_none;
21509
21510 #if defined OBJ_COFF || defined OBJ_ELF
21511 {
21512 unsigned int flags = 0;
21513
21514 #if defined OBJ_ELF
21515 flags = meabi_flags;
21516
21517 switch (meabi_flags)
21518 {
21519 case EF_ARM_EABI_UNKNOWN:
21520 #endif
21521 /* Set the flags in the private structure. */
21522 if (uses_apcs_26) flags |= F_APCS26;
21523 if (support_interwork) flags |= F_INTERWORK;
21524 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21525 if (pic_code) flags |= F_PIC;
21526 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21527 flags |= F_SOFT_FLOAT;
21528
21529 switch (mfloat_abi_opt)
21530 {
21531 case ARM_FLOAT_ABI_SOFT:
21532 case ARM_FLOAT_ABI_SOFTFP:
21533 flags |= F_SOFT_FLOAT;
21534 break;
21535
21536 case ARM_FLOAT_ABI_HARD:
21537 if (flags & F_SOFT_FLOAT)
21538 as_bad (_("hard-float conflicts with specified fpu"));
21539 break;
21540 }
21541
21542 /* Using pure-endian doubles (even if soft-float). */
21543 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21544 flags |= F_VFP_FLOAT;
21545
21546 #if defined OBJ_ELF
21547 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21548 flags |= EF_ARM_MAVERICK_FLOAT;
21549 break;
21550
21551 case EF_ARM_EABI_VER4:
21552 case EF_ARM_EABI_VER5:
21553 /* No additional flags to set. */
21554 break;
21555
21556 default:
21557 abort ();
21558 }
21559 #endif
21560 bfd_set_private_flags (stdoutput, flags);
21561
21562 /* We have run out flags in the COFF header to encode the
21563 status of ATPCS support, so instead we create a dummy,
21564 empty, debug section called .arm.atpcs. */
21565 if (atpcs)
21566 {
21567 asection * sec;
21568
21569 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21570
21571 if (sec != NULL)
21572 {
21573 bfd_set_section_flags
21574 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21575 bfd_set_section_size (stdoutput, sec, 0);
21576 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21577 }
21578 }
21579 }
21580 #endif
21581
21582 /* Record the CPU type as well. */
21583 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21584 mach = bfd_mach_arm_iWMMXt2;
21585 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21586 mach = bfd_mach_arm_iWMMXt;
21587 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21588 mach = bfd_mach_arm_XScale;
21589 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21590 mach = bfd_mach_arm_ep9312;
21591 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21592 mach = bfd_mach_arm_5TE;
21593 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21594 {
21595 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21596 mach = bfd_mach_arm_5T;
21597 else
21598 mach = bfd_mach_arm_5;
21599 }
21600 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21601 {
21602 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21603 mach = bfd_mach_arm_4T;
21604 else
21605 mach = bfd_mach_arm_4;
21606 }
21607 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21608 mach = bfd_mach_arm_3M;
21609 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21610 mach = bfd_mach_arm_3;
21611 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21612 mach = bfd_mach_arm_2a;
21613 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21614 mach = bfd_mach_arm_2;
21615 else
21616 mach = bfd_mach_arm_unknown;
21617
21618 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21619 }
21620
21621 /* Command line processing. */
21622
21623 /* md_parse_option
21624 Invocation line includes a switch not recognized by the base assembler.
21625 See if it's a processor-specific option.
21626
21627 This routine is somewhat complicated by the need for backwards
21628 compatibility (since older releases of gcc can't be changed).
21629 The new options try to make the interface as compatible as
21630 possible with GCC.
21631
21632 New options (supported) are:
21633
21634 -mcpu=<cpu name> Assemble for selected processor
21635 -march=<architecture name> Assemble for selected architecture
21636 -mfpu=<fpu architecture> Assemble for selected FPU.
21637 -EB/-mbig-endian Big-endian
21638 -EL/-mlittle-endian Little-endian
21639 -k Generate PIC code
21640 -mthumb Start in Thumb mode
21641 -mthumb-interwork Code supports ARM/Thumb interworking
21642
21643 -m[no-]warn-deprecated Warn about deprecated features
21644
21645 For now we will also provide support for:
21646
21647 -mapcs-32 32-bit Program counter
21648 -mapcs-26 26-bit Program counter
21649 -macps-float Floats passed in FP registers
21650 -mapcs-reentrant Reentrant code
21651 -matpcs
21652 (sometime these will probably be replaced with -mapcs=<list of options>
21653 and -matpcs=<list of options>)
21654
21655 The remaining options are only supported for back-wards compatibility.
21656 Cpu variants, the arm part is optional:
21657 -m[arm]1 Currently not supported.
21658 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21659 -m[arm]3 Arm 3 processor
21660 -m[arm]6[xx], Arm 6 processors
21661 -m[arm]7[xx][t][[d]m] Arm 7 processors
21662 -m[arm]8[10] Arm 8 processors
21663 -m[arm]9[20][tdmi] Arm 9 processors
21664 -mstrongarm[110[0]] StrongARM processors
21665 -mxscale XScale processors
21666 -m[arm]v[2345[t[e]]] Arm architectures
21667 -mall All (except the ARM1)
21668 FP variants:
21669 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21670 -mfpe-old (No float load/store multiples)
21671 -mvfpxd VFP Single precision
21672 -mvfp All VFP
21673 -mno-fpu Disable all floating point instructions
21674
21675 The following CPU names are recognized:
21676 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21677 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21678 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21679 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21680 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21681 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21682 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21683
21684 */
21685
21686 const char * md_shortopts = "m:k";
21687
21688 #ifdef ARM_BI_ENDIAN
21689 #define OPTION_EB (OPTION_MD_BASE + 0)
21690 #define OPTION_EL (OPTION_MD_BASE + 1)
21691 #else
21692 #if TARGET_BYTES_BIG_ENDIAN
21693 #define OPTION_EB (OPTION_MD_BASE + 0)
21694 #else
21695 #define OPTION_EL (OPTION_MD_BASE + 1)
21696 #endif
21697 #endif
21698 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21699
21700 struct option md_longopts[] =
21701 {
21702 #ifdef OPTION_EB
21703 {"EB", no_argument, NULL, OPTION_EB},
21704 #endif
21705 #ifdef OPTION_EL
21706 {"EL", no_argument, NULL, OPTION_EL},
21707 #endif
21708 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21709 {NULL, no_argument, NULL, 0}
21710 };
21711
21712 size_t md_longopts_size = sizeof (md_longopts);
21713
21714 struct arm_option_table
21715 {
21716 char *option; /* Option name to match. */
21717 char *help; /* Help information. */
21718 int *var; /* Variable to change. */
21719 int value; /* What to change it to. */
21720 char *deprecated; /* If non-null, print this message. */
21721 };
21722
21723 struct arm_option_table arm_opts[] =
21724 {
21725 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21726 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21727 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21728 &support_interwork, 1, NULL},
21729 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21730 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21731 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21732 1, NULL},
21733 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21734 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21735 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21736 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21737 NULL},
21738
21739 /* These are recognized by the assembler, but have no affect on code. */
21740 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21741 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21742
21743 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21744 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21745 &warn_on_deprecated, 0, NULL},
21746 {NULL, NULL, NULL, 0, NULL}
21747 };
21748
21749 struct arm_legacy_option_table
21750 {
21751 char *option; /* Option name to match. */
21752 const arm_feature_set **var; /* Variable to change. */
21753 const arm_feature_set value; /* What to change it to. */
21754 char *deprecated; /* If non-null, print this message. */
21755 };
21756
21757 const struct arm_legacy_option_table arm_legacy_opts[] =
21758 {
21759 /* DON'T add any new processors to this list -- we want the whole list
21760 to go away... Add them to the processors table instead. */
21761 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21762 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21763 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21764 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21765 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21766 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21767 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21768 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21769 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21770 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21771 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21772 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21773 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21774 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21775 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21776 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21777 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21778 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21779 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21780 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21781 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21782 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21783 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21784 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21785 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21786 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21787 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21788 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21789 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21790 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21791 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21792 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21793 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21794 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21795 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21796 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21797 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21798 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21799 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21800 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21801 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21802 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21803 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21804 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21805 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21806 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21807 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21808 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21809 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21810 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21811 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21812 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21813 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21814 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21815 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21816 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21817 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21818 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21819 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21820 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21821 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21822 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21823 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21824 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21825 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21826 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21827 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21828 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21829 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21830 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
21831 N_("use -mcpu=strongarm110")},
21832 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
21833 N_("use -mcpu=strongarm1100")},
21834 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
21835 N_("use -mcpu=strongarm1110")},
21836 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21837 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21838 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
21839
21840 /* Architecture variants -- don't add any more to this list either. */
21841 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21842 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21843 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21844 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21845 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21846 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21847 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21848 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21849 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21850 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21851 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21852 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21853 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21854 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21855 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21856 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21857 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21858 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21859
21860 /* Floating point variants -- don't add any more to this list either. */
21861 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21862 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21863 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21864 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
21865 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
21866
21867 {NULL, NULL, ARM_ARCH_NONE, NULL}
21868 };
21869
21870 struct arm_cpu_option_table
21871 {
21872 char *name;
21873 const arm_feature_set value;
21874 /* For some CPUs we assume an FPU unless the user explicitly sets
21875 -mfpu=... */
21876 const arm_feature_set default_fpu;
21877 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21878 case. */
21879 const char *canonical_name;
21880 };
21881
21882 /* This list should, at a minimum, contain all the cpu names
21883 recognized by GCC. */
21884 static const struct arm_cpu_option_table arm_cpus[] =
21885 {
21886 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21887 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21888 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21889 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21890 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21891 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21892 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21893 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21894 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21895 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21896 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21897 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21898 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21899 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21900 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21901 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21902 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21903 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21904 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21905 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21906 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21907 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21908 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21909 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21910 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21911 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21912 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21913 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21914 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21915 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21916 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21917 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21918 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21919 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21920 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21921 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21922 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21923 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21924 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21925 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
21926 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21927 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21928 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21929 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21930 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21931 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21932 /* For V5 or later processors we default to using VFP; but the user
21933 should really set the FPU type explicitly. */
21934 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21935 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21936 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21937 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21938 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21939 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21940 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
21941 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21942 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21943 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
21944 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21945 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21946 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21947 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21948 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21949 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
21950 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21951 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21952 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21953 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
21954 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21955 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
21956 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21957 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
21958 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
21959 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
21960 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
21961 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
21962 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
21963 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
21964 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
21965 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
21966 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
21967 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
21968 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
21969 | FPU_NEON_EXT_V1),
21970 NULL},
21971 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
21972 | FPU_NEON_EXT_V1),
21973 NULL},
21974 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
21975 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
21976 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
21977 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
21978 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
21979 /* ??? XSCALE is really an architecture. */
21980 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
21981 /* ??? iwmmxt is not a processor. */
21982 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
21983 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
21984 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
21985 /* Maverick */
21986 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
21987 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
21988 };
21989
21990 struct arm_arch_option_table
21991 {
21992 char *name;
21993 const arm_feature_set value;
21994 const arm_feature_set default_fpu;
21995 };
21996
21997 /* This list should, at a minimum, contain all the architecture names
21998 recognized by GCC. */
21999 static const struct arm_arch_option_table arm_archs[] =
22000 {
22001 {"all", ARM_ANY, FPU_ARCH_FPA},
22002 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22003 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22004 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22005 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22006 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22007 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22008 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22009 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22010 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22011 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22012 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22013 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22014 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22015 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22016 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22017 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22018 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22019 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22020 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22021 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22022 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22023 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22024 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22025 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22026 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22027 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22028 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22029 /* The official spelling of the ARMv7 profile variants is the dashed form.
22030 Accept the non-dashed form for compatibility with old toolchains. */
22031 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22032 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22033 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22034 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22035 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22036 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22037 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22038 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22039 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22040 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22041 };
22042
22043 /* ISA extensions in the co-processor space. */
22044 struct arm_option_cpu_value_table
22045 {
22046 char *name;
22047 const arm_feature_set value;
22048 };
22049
22050 static const struct arm_option_cpu_value_table arm_extensions[] =
22051 {
22052 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22053 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22054 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22055 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22056 {NULL, ARM_ARCH_NONE}
22057 };
22058
22059 /* This list should, at a minimum, contain all the fpu names
22060 recognized by GCC. */
22061 static const struct arm_option_cpu_value_table arm_fpus[] =
22062 {
22063 {"softfpa", FPU_NONE},
22064 {"fpe", FPU_ARCH_FPE},
22065 {"fpe2", FPU_ARCH_FPE},
22066 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22067 {"fpa", FPU_ARCH_FPA},
22068 {"fpa10", FPU_ARCH_FPA},
22069 {"fpa11", FPU_ARCH_FPA},
22070 {"arm7500fe", FPU_ARCH_FPA},
22071 {"softvfp", FPU_ARCH_VFP},
22072 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22073 {"vfp", FPU_ARCH_VFP_V2},
22074 {"vfp9", FPU_ARCH_VFP_V2},
22075 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22076 {"vfp10", FPU_ARCH_VFP_V2},
22077 {"vfp10-r0", FPU_ARCH_VFP_V1},
22078 {"vfpxd", FPU_ARCH_VFP_V1xD},
22079 {"vfpv2", FPU_ARCH_VFP_V2},
22080 {"vfpv3", FPU_ARCH_VFP_V3},
22081 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22082 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22083 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22084 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22085 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22086 {"arm1020t", FPU_ARCH_VFP_V1},
22087 {"arm1020e", FPU_ARCH_VFP_V2},
22088 {"arm1136jfs", FPU_ARCH_VFP_V2},
22089 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22090 {"maverick", FPU_ARCH_MAVERICK},
22091 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22092 {"neon-fp16", FPU_ARCH_NEON_FP16},
22093 {"vfpv4", FPU_ARCH_VFP_V4},
22094 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22095 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22096 {NULL, ARM_ARCH_NONE}
22097 };
22098
22099 struct arm_option_value_table
22100 {
22101 char *name;
22102 long value;
22103 };
22104
22105 static const struct arm_option_value_table arm_float_abis[] =
22106 {
22107 {"hard", ARM_FLOAT_ABI_HARD},
22108 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22109 {"soft", ARM_FLOAT_ABI_SOFT},
22110 {NULL, 0}
22111 };
22112
22113 #ifdef OBJ_ELF
22114 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22115 static const struct arm_option_value_table arm_eabis[] =
22116 {
22117 {"gnu", EF_ARM_EABI_UNKNOWN},
22118 {"4", EF_ARM_EABI_VER4},
22119 {"5", EF_ARM_EABI_VER5},
22120 {NULL, 0}
22121 };
22122 #endif
22123
22124 struct arm_long_option_table
22125 {
22126 char * option; /* Substring to match. */
22127 char * help; /* Help information. */
22128 int (* func) (char * subopt); /* Function to decode sub-option. */
22129 char * deprecated; /* If non-null, print this message. */
22130 };
22131
22132 static bfd_boolean
22133 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22134 {
22135 arm_feature_set *ext_set = (arm_feature_set *)
22136 xmalloc (sizeof (arm_feature_set));
22137
22138 /* Copy the feature set, so that we can modify it. */
22139 *ext_set = **opt_p;
22140 *opt_p = ext_set;
22141
22142 while (str != NULL && *str != 0)
22143 {
22144 const struct arm_option_cpu_value_table * opt;
22145 char * ext;
22146 int optlen;
22147
22148 if (*str != '+')
22149 {
22150 as_bad (_("invalid architectural extension"));
22151 return FALSE;
22152 }
22153
22154 str++;
22155 ext = strchr (str, '+');
22156
22157 if (ext != NULL)
22158 optlen = ext - str;
22159 else
22160 optlen = strlen (str);
22161
22162 if (optlen == 0)
22163 {
22164 as_bad (_("missing architectural extension"));
22165 return FALSE;
22166 }
22167
22168 for (opt = arm_extensions; opt->name != NULL; opt++)
22169 if (strncmp (opt->name, str, optlen) == 0)
22170 {
22171 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22172 break;
22173 }
22174
22175 if (opt->name == NULL)
22176 {
22177 as_bad (_("unknown architectural extension `%s'"), str);
22178 return FALSE;
22179 }
22180
22181 str = ext;
22182 };
22183
22184 return TRUE;
22185 }
22186
22187 static bfd_boolean
22188 arm_parse_cpu (char * str)
22189 {
22190 const struct arm_cpu_option_table * opt;
22191 char * ext = strchr (str, '+');
22192 int optlen;
22193
22194 if (ext != NULL)
22195 optlen = ext - str;
22196 else
22197 optlen = strlen (str);
22198
22199 if (optlen == 0)
22200 {
22201 as_bad (_("missing cpu name `%s'"), str);
22202 return FALSE;
22203 }
22204
22205 for (opt = arm_cpus; opt->name != NULL; opt++)
22206 if (strncmp (opt->name, str, optlen) == 0)
22207 {
22208 mcpu_cpu_opt = &opt->value;
22209 mcpu_fpu_opt = &opt->default_fpu;
22210 if (opt->canonical_name)
22211 strcpy (selected_cpu_name, opt->canonical_name);
22212 else
22213 {
22214 int i;
22215
22216 for (i = 0; i < optlen; i++)
22217 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22218 selected_cpu_name[i] = 0;
22219 }
22220
22221 if (ext != NULL)
22222 return arm_parse_extension (ext, &mcpu_cpu_opt);
22223
22224 return TRUE;
22225 }
22226
22227 as_bad (_("unknown cpu `%s'"), str);
22228 return FALSE;
22229 }
22230
22231 static bfd_boolean
22232 arm_parse_arch (char * str)
22233 {
22234 const struct arm_arch_option_table *opt;
22235 char *ext = strchr (str, '+');
22236 int optlen;
22237
22238 if (ext != NULL)
22239 optlen = ext - str;
22240 else
22241 optlen = strlen (str);
22242
22243 if (optlen == 0)
22244 {
22245 as_bad (_("missing architecture name `%s'"), str);
22246 return FALSE;
22247 }
22248
22249 for (opt = arm_archs; opt->name != NULL; opt++)
22250 if (streq (opt->name, str))
22251 {
22252 march_cpu_opt = &opt->value;
22253 march_fpu_opt = &opt->default_fpu;
22254 strcpy (selected_cpu_name, opt->name);
22255
22256 if (ext != NULL)
22257 return arm_parse_extension (ext, &march_cpu_opt);
22258
22259 return TRUE;
22260 }
22261
22262 as_bad (_("unknown architecture `%s'\n"), str);
22263 return FALSE;
22264 }
22265
22266 static bfd_boolean
22267 arm_parse_fpu (char * str)
22268 {
22269 const struct arm_option_cpu_value_table * opt;
22270
22271 for (opt = arm_fpus; opt->name != NULL; opt++)
22272 if (streq (opt->name, str))
22273 {
22274 mfpu_opt = &opt->value;
22275 return TRUE;
22276 }
22277
22278 as_bad (_("unknown floating point format `%s'\n"), str);
22279 return FALSE;
22280 }
22281
22282 static bfd_boolean
22283 arm_parse_float_abi (char * str)
22284 {
22285 const struct arm_option_value_table * opt;
22286
22287 for (opt = arm_float_abis; opt->name != NULL; opt++)
22288 if (streq (opt->name, str))
22289 {
22290 mfloat_abi_opt = opt->value;
22291 return TRUE;
22292 }
22293
22294 as_bad (_("unknown floating point abi `%s'\n"), str);
22295 return FALSE;
22296 }
22297
22298 #ifdef OBJ_ELF
22299 static bfd_boolean
22300 arm_parse_eabi (char * str)
22301 {
22302 const struct arm_option_value_table *opt;
22303
22304 for (opt = arm_eabis; opt->name != NULL; opt++)
22305 if (streq (opt->name, str))
22306 {
22307 meabi_flags = opt->value;
22308 return TRUE;
22309 }
22310 as_bad (_("unknown EABI `%s'\n"), str);
22311 return FALSE;
22312 }
22313 #endif
22314
22315 static bfd_boolean
22316 arm_parse_it_mode (char * str)
22317 {
22318 bfd_boolean ret = TRUE;
22319
22320 if (streq ("arm", str))
22321 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22322 else if (streq ("thumb", str))
22323 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22324 else if (streq ("always", str))
22325 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22326 else if (streq ("never", str))
22327 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22328 else
22329 {
22330 as_bad (_("unknown implicit IT mode `%s', should be "\
22331 "arm, thumb, always, or never."), str);
22332 ret = FALSE;
22333 }
22334
22335 return ret;
22336 }
22337
22338 struct arm_long_option_table arm_long_opts[] =
22339 {
22340 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22341 arm_parse_cpu, NULL},
22342 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22343 arm_parse_arch, NULL},
22344 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22345 arm_parse_fpu, NULL},
22346 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22347 arm_parse_float_abi, NULL},
22348 #ifdef OBJ_ELF
22349 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22350 arm_parse_eabi, NULL},
22351 #endif
22352 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22353 arm_parse_it_mode, NULL},
22354 {NULL, NULL, 0, NULL}
22355 };
22356
22357 int
22358 md_parse_option (int c, char * arg)
22359 {
22360 struct arm_option_table *opt;
22361 const struct arm_legacy_option_table *fopt;
22362 struct arm_long_option_table *lopt;
22363
22364 switch (c)
22365 {
22366 #ifdef OPTION_EB
22367 case OPTION_EB:
22368 target_big_endian = 1;
22369 break;
22370 #endif
22371
22372 #ifdef OPTION_EL
22373 case OPTION_EL:
22374 target_big_endian = 0;
22375 break;
22376 #endif
22377
22378 case OPTION_FIX_V4BX:
22379 fix_v4bx = TRUE;
22380 break;
22381
22382 case 'a':
22383 /* Listing option. Just ignore these, we don't support additional
22384 ones. */
22385 return 0;
22386
22387 default:
22388 for (opt = arm_opts; opt->option != NULL; opt++)
22389 {
22390 if (c == opt->option[0]
22391 && ((arg == NULL && opt->option[1] == 0)
22392 || streq (arg, opt->option + 1)))
22393 {
22394 /* If the option is deprecated, tell the user. */
22395 if (warn_on_deprecated && opt->deprecated != NULL)
22396 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22397 arg ? arg : "", _(opt->deprecated));
22398
22399 if (opt->var != NULL)
22400 *opt->var = opt->value;
22401
22402 return 1;
22403 }
22404 }
22405
22406 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22407 {
22408 if (c == fopt->option[0]
22409 && ((arg == NULL && fopt->option[1] == 0)
22410 || streq (arg, fopt->option + 1)))
22411 {
22412 /* If the option is deprecated, tell the user. */
22413 if (warn_on_deprecated && fopt->deprecated != NULL)
22414 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22415 arg ? arg : "", _(fopt->deprecated));
22416
22417 if (fopt->var != NULL)
22418 *fopt->var = &fopt->value;
22419
22420 return 1;
22421 }
22422 }
22423
22424 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22425 {
22426 /* These options are expected to have an argument. */
22427 if (c == lopt->option[0]
22428 && arg != NULL
22429 && strncmp (arg, lopt->option + 1,
22430 strlen (lopt->option + 1)) == 0)
22431 {
22432 /* If the option is deprecated, tell the user. */
22433 if (warn_on_deprecated && lopt->deprecated != NULL)
22434 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22435 _(lopt->deprecated));
22436
22437 /* Call the sup-option parser. */
22438 return lopt->func (arg + strlen (lopt->option) - 1);
22439 }
22440 }
22441
22442 return 0;
22443 }
22444
22445 return 1;
22446 }
22447
22448 void
22449 md_show_usage (FILE * fp)
22450 {
22451 struct arm_option_table *opt;
22452 struct arm_long_option_table *lopt;
22453
22454 fprintf (fp, _(" ARM-specific assembler options:\n"));
22455
22456 for (opt = arm_opts; opt->option != NULL; opt++)
22457 if (opt->help != NULL)
22458 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22459
22460 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22461 if (lopt->help != NULL)
22462 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22463
22464 #ifdef OPTION_EB
22465 fprintf (fp, _("\
22466 -EB assemble code for a big-endian cpu\n"));
22467 #endif
22468
22469 #ifdef OPTION_EL
22470 fprintf (fp, _("\
22471 -EL assemble code for a little-endian cpu\n"));
22472 #endif
22473
22474 fprintf (fp, _("\
22475 --fix-v4bx Allow BX in ARMv4 code\n"));
22476 }
22477
22478
22479 #ifdef OBJ_ELF
22480 typedef struct
22481 {
22482 int val;
22483 arm_feature_set flags;
22484 } cpu_arch_ver_table;
22485
22486 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22487 least features first. */
22488 static const cpu_arch_ver_table cpu_arch_ver[] =
22489 {
22490 {1, ARM_ARCH_V4},
22491 {2, ARM_ARCH_V4T},
22492 {3, ARM_ARCH_V5},
22493 {3, ARM_ARCH_V5T},
22494 {4, ARM_ARCH_V5TE},
22495 {5, ARM_ARCH_V5TEJ},
22496 {6, ARM_ARCH_V6},
22497 {7, ARM_ARCH_V6Z},
22498 {9, ARM_ARCH_V6K},
22499 {11, ARM_ARCH_V6M},
22500 {8, ARM_ARCH_V6T2},
22501 {10, ARM_ARCH_V7A},
22502 {10, ARM_ARCH_V7R},
22503 {10, ARM_ARCH_V7M},
22504 {0, ARM_ARCH_NONE}
22505 };
22506
22507 /* Set an attribute if it has not already been set by the user. */
22508 static void
22509 aeabi_set_attribute_int (int tag, int value)
22510 {
22511 if (tag < 1
22512 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22513 || !attributes_set_explicitly[tag])
22514 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22515 }
22516
22517 static void
22518 aeabi_set_attribute_string (int tag, const char *value)
22519 {
22520 if (tag < 1
22521 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22522 || !attributes_set_explicitly[tag])
22523 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22524 }
22525
22526 /* Set the public EABI object attributes. */
22527 static void
22528 aeabi_set_public_attributes (void)
22529 {
22530 int arch;
22531 arm_feature_set flags;
22532 arm_feature_set tmp;
22533 const cpu_arch_ver_table *p;
22534
22535 /* Choose the architecture based on the capabilities of the requested cpu
22536 (if any) and/or the instructions actually used. */
22537 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22538 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22539 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22540 /*Allow the user to override the reported architecture. */
22541 if (object_arch)
22542 {
22543 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22544 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22545 }
22546
22547 tmp = flags;
22548 arch = 0;
22549 for (p = cpu_arch_ver; p->val; p++)
22550 {
22551 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22552 {
22553 arch = p->val;
22554 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22555 }
22556 }
22557
22558 /* Tag_CPU_name. */
22559 if (selected_cpu_name[0])
22560 {
22561 char *p;
22562
22563 p = selected_cpu_name;
22564 if (strncmp (p, "armv", 4) == 0)
22565 {
22566 int i;
22567
22568 p += 4;
22569 for (i = 0; p[i]; i++)
22570 p[i] = TOUPPER (p[i]);
22571 }
22572 aeabi_set_attribute_string (Tag_CPU_name, p);
22573 }
22574
22575 /* Tag_CPU_arch. */
22576 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22577
22578 /* Tag_CPU_arch_profile. */
22579 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22580 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22581 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22582 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22583 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22584 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22585
22586 /* Tag_ARM_ISA_use. */
22587 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22588 || arch == 0)
22589 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22590
22591 /* Tag_THUMB_ISA_use. */
22592 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22593 || arch == 0)
22594 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22595 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22596
22597 /* Tag_VFP_arch. */
22598 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22599 aeabi_set_attribute_int (Tag_VFP_arch,
22600 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22601 ? 5 : 6);
22602 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22603 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22604 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
22605 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22606 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22607 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22608 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22609 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22610 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22611
22612 /* Tag_WMMX_arch. */
22613 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22614 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22615 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22616 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22617
22618 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22619 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22620 aeabi_set_attribute_int
22621 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22622 ? 2 : 1));
22623
22624 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22625 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
22626 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22627 }
22628
22629 /* Add the default contents for the .ARM.attributes section. */
22630 void
22631 arm_md_end (void)
22632 {
22633 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22634 return;
22635
22636 aeabi_set_public_attributes ();
22637 }
22638 #endif /* OBJ_ELF */
22639
22640
22641 /* Parse a .cpu directive. */
22642
22643 static void
22644 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22645 {
22646 const struct arm_cpu_option_table *opt;
22647 char *name;
22648 char saved_char;
22649
22650 name = input_line_pointer;
22651 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22652 input_line_pointer++;
22653 saved_char = *input_line_pointer;
22654 *input_line_pointer = 0;
22655
22656 /* Skip the first "all" entry. */
22657 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22658 if (streq (opt->name, name))
22659 {
22660 mcpu_cpu_opt = &opt->value;
22661 selected_cpu = opt->value;
22662 if (opt->canonical_name)
22663 strcpy (selected_cpu_name, opt->canonical_name);
22664 else
22665 {
22666 int i;
22667 for (i = 0; opt->name[i]; i++)
22668 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22669 selected_cpu_name[i] = 0;
22670 }
22671 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22672 *input_line_pointer = saved_char;
22673 demand_empty_rest_of_line ();
22674 return;
22675 }
22676 as_bad (_("unknown cpu `%s'"), name);
22677 *input_line_pointer = saved_char;
22678 ignore_rest_of_line ();
22679 }
22680
22681
22682 /* Parse a .arch directive. */
22683
22684 static void
22685 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22686 {
22687 const struct arm_arch_option_table *opt;
22688 char saved_char;
22689 char *name;
22690
22691 name = input_line_pointer;
22692 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22693 input_line_pointer++;
22694 saved_char = *input_line_pointer;
22695 *input_line_pointer = 0;
22696
22697 /* Skip the first "all" entry. */
22698 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22699 if (streq (opt->name, name))
22700 {
22701 mcpu_cpu_opt = &opt->value;
22702 selected_cpu = opt->value;
22703 strcpy (selected_cpu_name, opt->name);
22704 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22705 *input_line_pointer = saved_char;
22706 demand_empty_rest_of_line ();
22707 return;
22708 }
22709
22710 as_bad (_("unknown architecture `%s'\n"), name);
22711 *input_line_pointer = saved_char;
22712 ignore_rest_of_line ();
22713 }
22714
22715
22716 /* Parse a .object_arch directive. */
22717
22718 static void
22719 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22720 {
22721 const struct arm_arch_option_table *opt;
22722 char saved_char;
22723 char *name;
22724
22725 name = input_line_pointer;
22726 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22727 input_line_pointer++;
22728 saved_char = *input_line_pointer;
22729 *input_line_pointer = 0;
22730
22731 /* Skip the first "all" entry. */
22732 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22733 if (streq (opt->name, name))
22734 {
22735 object_arch = &opt->value;
22736 *input_line_pointer = saved_char;
22737 demand_empty_rest_of_line ();
22738 return;
22739 }
22740
22741 as_bad (_("unknown architecture `%s'\n"), name);
22742 *input_line_pointer = saved_char;
22743 ignore_rest_of_line ();
22744 }
22745
22746 /* Parse a .fpu directive. */
22747
22748 static void
22749 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22750 {
22751 const struct arm_option_cpu_value_table *opt;
22752 char saved_char;
22753 char *name;
22754
22755 name = input_line_pointer;
22756 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22757 input_line_pointer++;
22758 saved_char = *input_line_pointer;
22759 *input_line_pointer = 0;
22760
22761 for (opt = arm_fpus; opt->name != NULL; opt++)
22762 if (streq (opt->name, name))
22763 {
22764 mfpu_opt = &opt->value;
22765 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22766 *input_line_pointer = saved_char;
22767 demand_empty_rest_of_line ();
22768 return;
22769 }
22770
22771 as_bad (_("unknown floating point format `%s'\n"), name);
22772 *input_line_pointer = saved_char;
22773 ignore_rest_of_line ();
22774 }
22775
22776 /* Copy symbol information. */
22777
22778 void
22779 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22780 {
22781 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22782 }
22783
22784 #ifdef OBJ_ELF
22785 /* Given a symbolic attribute NAME, return the proper integer value.
22786 Returns -1 if the attribute is not known. */
22787
22788 int
22789 arm_convert_symbolic_attribute (const char *name)
22790 {
22791 static const struct
22792 {
22793 const char * name;
22794 const int tag;
22795 }
22796 attribute_table[] =
22797 {
22798 /* When you modify this table you should
22799 also modify the list in doc/c-arm.texi. */
22800 #define T(tag) {#tag, tag}
22801 T (Tag_CPU_raw_name),
22802 T (Tag_CPU_name),
22803 T (Tag_CPU_arch),
22804 T (Tag_CPU_arch_profile),
22805 T (Tag_ARM_ISA_use),
22806 T (Tag_THUMB_ISA_use),
22807 T (Tag_VFP_arch),
22808 T (Tag_WMMX_arch),
22809 T (Tag_Advanced_SIMD_arch),
22810 T (Tag_PCS_config),
22811 T (Tag_ABI_PCS_R9_use),
22812 T (Tag_ABI_PCS_RW_data),
22813 T (Tag_ABI_PCS_RO_data),
22814 T (Tag_ABI_PCS_GOT_use),
22815 T (Tag_ABI_PCS_wchar_t),
22816 T (Tag_ABI_FP_rounding),
22817 T (Tag_ABI_FP_denormal),
22818 T (Tag_ABI_FP_exceptions),
22819 T (Tag_ABI_FP_user_exceptions),
22820 T (Tag_ABI_FP_number_model),
22821 T (Tag_ABI_align8_needed),
22822 T (Tag_ABI_align8_preserved),
22823 T (Tag_ABI_enum_size),
22824 T (Tag_ABI_HardFP_use),
22825 T (Tag_ABI_VFP_args),
22826 T (Tag_ABI_WMMX_args),
22827 T (Tag_ABI_optimization_goals),
22828 T (Tag_ABI_FP_optimization_goals),
22829 T (Tag_compatibility),
22830 T (Tag_CPU_unaligned_access),
22831 T (Tag_VFP_HP_extension),
22832 T (Tag_ABI_FP_16bit_format),
22833 T (Tag_nodefaults),
22834 T (Tag_also_compatible_with),
22835 T (Tag_conformance),
22836 T (Tag_T2EE_use),
22837 T (Tag_Virtualization_use),
22838 T (Tag_MPextension_use)
22839 #undef T
22840 };
22841 unsigned int i;
22842
22843 if (name == NULL)
22844 return -1;
22845
22846 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
22847 if (streq (name, attribute_table[i].name))
22848 return attribute_table[i].tag;
22849
22850 return -1;
22851 }
22852
22853
22854 /* Apply sym value for relocations only in the case that
22855 they are for local symbols and you have the respective
22856 architectural feature for blx and simple switches. */
22857 int
22858 arm_apply_sym_value (struct fix * fixP)
22859 {
22860 if (fixP->fx_addsy
22861 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22862 && !S_IS_EXTERNAL (fixP->fx_addsy))
22863 {
22864 switch (fixP->fx_r_type)
22865 {
22866 case BFD_RELOC_ARM_PCREL_BLX:
22867 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22868 if (ARM_IS_FUNC (fixP->fx_addsy))
22869 return 1;
22870 break;
22871
22872 case BFD_RELOC_ARM_PCREL_CALL:
22873 case BFD_RELOC_THUMB_PCREL_BLX:
22874 if (THUMB_IS_FUNC (fixP->fx_addsy))
22875 return 1;
22876 break;
22877
22878 default:
22879 break;
22880 }
22881
22882 }
22883 return 0;
22884 }
22885 #endif /* OBJ_ELF */