]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
Locale changes from Bruno Haible <haible@clisp.cons.org>.
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include "as.h"
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
34
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
37 #endif
38
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
41 #endif
42
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
49 #endif
50
51 #define true 1
52 #define false 0
53
54 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
55 static int fits_in_signed_byte PARAMS ((offsetT));
56 static int fits_in_unsigned_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_word PARAMS ((offsetT));
58 static int fits_in_signed_word PARAMS ((offsetT));
59 static int fits_in_unsigned_long PARAMS ((offsetT));
60 static int fits_in_signed_long PARAMS ((offsetT));
61 static int smallest_imm_type PARAMS ((offsetT));
62 static offsetT offset_in_range PARAMS ((offsetT, int));
63 static int add_prefix PARAMS ((unsigned int));
64 static void set_code_flag PARAMS ((int));
65 static void set_16bit_gcc_code_flag PARAMS ((int));
66 static void set_intel_syntax PARAMS ((int));
67 static void set_cpu_arch PARAMS ((int));
68
69 #ifdef BFD_ASSEMBLER
70 static bfd_reloc_code_real_type reloc
71 PARAMS ((int, int, int, bfd_reloc_code_real_type));
72 #define RELOC_ENUM enum bfd_reloc_code_real
73 #else
74 #define RELOC_ENUM int
75 #endif
76
77 #ifndef DEFAULT_ARCH
78 #define DEFAULT_ARCH "i386"
79 #endif
80 static char *default_arch = DEFAULT_ARCH;
81
82 /* 'md_assemble ()' gathers together information and puts it into a
83 i386_insn. */
84
85 union i386_op
86 {
87 expressionS *disps;
88 expressionS *imms;
89 const reg_entry *regs;
90 };
91
92 struct _i386_insn
93 {
94 /* TM holds the template for the insn were currently assembling. */
95 template tm;
96
97 /* SUFFIX holds the instruction mnemonic suffix if given.
98 (e.g. 'l' for 'movl') */
99 char suffix;
100
101 /* OPERANDS gives the number of given operands. */
102 unsigned int operands;
103
104 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
105 of given register, displacement, memory operands and immediate
106 operands. */
107 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
108
109 /* TYPES [i] is the type (see above #defines) which tells us how to
110 use OP[i] for the corresponding operand. */
111 unsigned int types[MAX_OPERANDS];
112
113 /* Displacement expression, immediate expression, or register for each
114 operand. */
115 union i386_op op[MAX_OPERANDS];
116
117 /* Flags for operands. */
118 unsigned int flags[MAX_OPERANDS];
119 #define Operand_PCrel 1
120
121 /* Relocation type for operand */
122 RELOC_ENUM reloc[MAX_OPERANDS];
123
124 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
125 the base index byte below. */
126 const reg_entry *base_reg;
127 const reg_entry *index_reg;
128 unsigned int log2_scale_factor;
129
130 /* SEG gives the seg_entries of this insn. They are zero unless
131 explicit segment overrides are given. */
132 const seg_entry *seg[2];
133
134 /* PREFIX holds all the given prefix opcodes (usually null).
135 PREFIXES is the number of prefix opcodes. */
136 unsigned int prefixes;
137 unsigned char prefix[MAX_PREFIXES];
138
139 /* RM and SIB are the modrm byte and the sib byte where the
140 addressing modes of this insn are encoded. */
141
142 modrm_byte rm;
143 rex_byte rex;
144 sib_byte sib;
145 };
146
147 typedef struct _i386_insn i386_insn;
148
149 /* List of chars besides those in app.c:symbol_chars that can start an
150 operand. Used to prevent the scrubber eating vital white-space. */
151 #ifdef LEX_AT
152 const char extra_symbol_chars[] = "*%-(@";
153 #else
154 const char extra_symbol_chars[] = "*%-(";
155 #endif
156
157 /* This array holds the chars that always start a comment. If the
158 pre-processor is disabled, these aren't very useful. */
159 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
160 /* Putting '/' here makes it impossible to use the divide operator.
161 However, we need it for compatibility with SVR4 systems. */
162 const char comment_chars[] = "#/";
163 #define PREFIX_SEPARATOR '\\'
164 #else
165 const char comment_chars[] = "#";
166 #define PREFIX_SEPARATOR '/'
167 #endif
168
169 /* This array holds the chars that only start a comment at the beginning of
170 a line. If the line seems to have the form '# 123 filename'
171 .line and .file directives will appear in the pre-processed output.
172 Note that input_file.c hand checks for '#' at the beginning of the
173 first line of the input file. This is because the compiler outputs
174 #NO_APP at the beginning of its output.
175 Also note that comments started like this one will always work if
176 '/' isn't otherwise defined. */
177 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
178 const char line_comment_chars[] = "";
179 #else
180 const char line_comment_chars[] = "/";
181 #endif
182
183 const char line_separator_chars[] = ";";
184
185 /* Chars that can be used to separate mant from exp in floating point
186 nums. */
187 const char EXP_CHARS[] = "eE";
188
189 /* Chars that mean this number is a floating point constant
190 As in 0f12.456
191 or 0d1.2345e12. */
192 const char FLT_CHARS[] = "fFdDxX";
193
194 /* Tables for lexical analysis. */
195 static char mnemonic_chars[256];
196 static char register_chars[256];
197 static char operand_chars[256];
198 static char identifier_chars[256];
199 static char digit_chars[256];
200
201 /* Lexical macros. */
202 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
203 #define is_operand_char(x) (operand_chars[(unsigned char) x])
204 #define is_register_char(x) (register_chars[(unsigned char) x])
205 #define is_space_char(x) ((x) == ' ')
206 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
207 #define is_digit_char(x) (digit_chars[(unsigned char) x])
208
209 /* All non-digit non-letter charcters that may occur in an operand. */
210 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
211
212 /* md_assemble() always leaves the strings it's passed unaltered. To
213 effect this we maintain a stack of saved characters that we've smashed
214 with '\0's (indicating end of strings for various sub-fields of the
215 assembler instruction). */
216 static char save_stack[32];
217 static char *save_stack_p;
218 #define END_STRING_AND_SAVE(s) \
219 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
220 #define RESTORE_END_STRING(s) \
221 do { *(s) = *--save_stack_p; } while (0)
222
223 /* The instruction we're assembling. */
224 static i386_insn i;
225
226 /* Possible templates for current insn. */
227 static const templates *current_templates;
228
229 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
230 static expressionS disp_expressions[2], im_expressions[2];
231
232 /* Current operand we are working on. */
233 static int this_operand;
234
235 /* We support four different modes. FLAG_CODE variable is used to distinguish
236 these. */
237
238 enum flag_code {
239 CODE_32BIT,
240 CODE_16BIT,
241 CODE_64BIT };
242 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
243
244 static enum flag_code flag_code;
245 static int use_rela_relocations = 0;
246
247 /* The names used to print error messages. */
248 static const char *flag_code_names[] =
249 {
250 "32",
251 "16",
252 "64"
253 };
254
255 /* 1 for intel syntax,
256 0 if att syntax. */
257 static int intel_syntax = 0;
258
259 /* 1 if register prefix % not required. */
260 static int allow_naked_reg = 0;
261
262 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
263 leave, push, and pop instructions so that gcc has the same stack
264 frame as in 32 bit mode. */
265 static char stackop_size = '\0';
266
267 /* Non-zero to quieten some warnings. */
268 static int quiet_warnings = 0;
269
270 /* CPU name. */
271 static const char *cpu_arch_name = NULL;
272
273 /* CPU feature flags. */
274 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
275
276 /* If set, conditional jumps are not automatically promoted to handle
277 larger than a byte offset. */
278 static unsigned int no_cond_jump_promotion = 0;
279
280 /* Interface to relax_segment.
281 There are 3 major relax states for 386 jump insns because the
282 different types of jumps add different sizes to frags when we're
283 figuring out what sort of jump to choose to reach a given label. */
284
285 /* Types. */
286 #define UNCOND_JUMP 0
287 #define COND_JUMP 1
288 #define COND_JUMP86 2
289
290 /* Sizes. */
291 #define CODE16 1
292 #define SMALL 0
293 #define SMALL16 (SMALL|CODE16)
294 #define BIG 2
295 #define BIG16 (BIG|CODE16)
296
297 #ifndef INLINE
298 #ifdef __GNUC__
299 #define INLINE __inline__
300 #else
301 #define INLINE
302 #endif
303 #endif
304
305 #define ENCODE_RELAX_STATE(type, size) \
306 ((relax_substateT) (((type) << 2) | (size)))
307 #define TYPE_FROM_RELAX_STATE(s) \
308 ((s) >> 2)
309 #define DISP_SIZE_FROM_RELAX_STATE(s) \
310 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
311
312 /* This table is used by relax_frag to promote short jumps to long
313 ones where necessary. SMALL (short) jumps may be promoted to BIG
314 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
315 don't allow a short jump in a 32 bit code segment to be promoted to
316 a 16 bit offset jump because it's slower (requires data size
317 prefix), and doesn't work, unless the destination is in the bottom
318 64k of the code segment (The top 16 bits of eip are zeroed). */
319
320 const relax_typeS md_relax_table[] =
321 {
322 /* The fields are:
323 1) most positive reach of this state,
324 2) most negative reach of this state,
325 3) how many bytes this mode will have in the variable part of the frag
326 4) which index into the table to try if we can't fit into this one. */
327
328 /* UNCOND_JUMP states. */
329 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
331 /* dword jmp adds 4 bytes to frag:
332 0 extra opcode bytes, 4 displacement bytes. */
333 {0, 0, 4, 0},
334 /* word jmp adds 2 byte2 to frag:
335 0 extra opcode bytes, 2 displacement bytes. */
336 {0, 0, 2, 0},
337
338 /* COND_JUMP states. */
339 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
341 /* dword conditionals adds 5 bytes to frag:
342 1 extra opcode byte, 4 displacement bytes. */
343 {0, 0, 5, 0},
344 /* word conditionals add 3 bytes to frag:
345 1 extra opcode byte, 2 displacement bytes. */
346 {0, 0, 3, 0},
347
348 /* COND_JUMP86 states. */
349 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
351 /* dword conditionals adds 5 bytes to frag:
352 1 extra opcode byte, 4 displacement bytes. */
353 {0, 0, 5, 0},
354 /* word conditionals add 4 bytes to frag:
355 1 displacement byte and a 3 byte long branch insn. */
356 {0, 0, 4, 0}
357 };
358
359 static const arch_entry cpu_arch[] = {
360 {"i8086", Cpu086 },
361 {"i186", Cpu086|Cpu186 },
362 {"i286", Cpu086|Cpu186|Cpu286 },
363 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
364 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
365 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
366 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
367 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
368 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
369 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
370 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
371 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
372 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
373 {NULL, 0 }
374 };
375
376 void
377 i386_align_code (fragP, count)
378 fragS *fragP;
379 int count;
380 {
381 /* Various efficient no-op patterns for aligning code labels.
382 Note: Don't try to assemble the instructions in the comments.
383 0L and 0w are not legal. */
384 static const char f32_1[] =
385 {0x90}; /* nop */
386 static const char f32_2[] =
387 {0x89,0xf6}; /* movl %esi,%esi */
388 static const char f32_3[] =
389 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
390 static const char f32_4[] =
391 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
392 static const char f32_5[] =
393 {0x90, /* nop */
394 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
395 static const char f32_6[] =
396 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
397 static const char f32_7[] =
398 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
399 static const char f32_8[] =
400 {0x90, /* nop */
401 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
402 static const char f32_9[] =
403 {0x89,0xf6, /* movl %esi,%esi */
404 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
405 static const char f32_10[] =
406 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
407 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
408 static const char f32_11[] =
409 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
410 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
411 static const char f32_12[] =
412 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
413 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
414 static const char f32_13[] =
415 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
416 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
417 static const char f32_14[] =
418 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
419 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
420 static const char f32_15[] =
421 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
422 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
423 static const char f16_3[] =
424 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
425 static const char f16_4[] =
426 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
427 static const char f16_5[] =
428 {0x90, /* nop */
429 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
430 static const char f16_6[] =
431 {0x89,0xf6, /* mov %si,%si */
432 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
433 static const char f16_7[] =
434 {0x8d,0x74,0x00, /* lea 0(%si),%si */
435 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
436 static const char f16_8[] =
437 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
438 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
439 static const char *const f32_patt[] = {
440 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
441 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
442 };
443 static const char *const f16_patt[] = {
444 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
445 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
446 };
447
448 /* ??? We can't use these fillers for x86_64, since they often kills the
449 upper halves. Solve later. */
450 if (flag_code == CODE_64BIT)
451 count = 1;
452
453 if (count > 0 && count <= 15)
454 {
455 if (flag_code == CODE_16BIT)
456 {
457 memcpy (fragP->fr_literal + fragP->fr_fix,
458 f16_patt[count - 1], count);
459 if (count > 8)
460 /* Adjust jump offset. */
461 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
462 }
463 else
464 memcpy (fragP->fr_literal + fragP->fr_fix,
465 f32_patt[count - 1], count);
466 fragP->fr_var = count;
467 }
468 }
469
470 static char *output_invalid PARAMS ((int c));
471 static int i386_operand PARAMS ((char *operand_string));
472 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
473 static const reg_entry *parse_register PARAMS ((char *reg_string,
474 char **end_op));
475
476 #ifndef I386COFF
477 static void s_bss PARAMS ((int));
478 #endif
479
480 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
481
482 static INLINE unsigned int
483 mode_from_disp_size (t)
484 unsigned int t;
485 {
486 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
487 }
488
489 static INLINE int
490 fits_in_signed_byte (num)
491 offsetT num;
492 {
493 return (num >= -128) && (num <= 127);
494 }
495
496 static INLINE int
497 fits_in_unsigned_byte (num)
498 offsetT num;
499 {
500 return (num & 0xff) == num;
501 }
502
503 static INLINE int
504 fits_in_unsigned_word (num)
505 offsetT num;
506 {
507 return (num & 0xffff) == num;
508 }
509
510 static INLINE int
511 fits_in_signed_word (num)
512 offsetT num;
513 {
514 return (-32768 <= num) && (num <= 32767);
515 }
516 static INLINE int
517 fits_in_signed_long (num)
518 offsetT num ATTRIBUTE_UNUSED;
519 {
520 #ifndef BFD64
521 return 1;
522 #else
523 return (!(((offsetT) -1 << 31) & num)
524 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
525 #endif
526 } /* fits_in_signed_long() */
527 static INLINE int
528 fits_in_unsigned_long (num)
529 offsetT num ATTRIBUTE_UNUSED;
530 {
531 #ifndef BFD64
532 return 1;
533 #else
534 return (num & (((offsetT) 2 << 31) - 1)) == num;
535 #endif
536 } /* fits_in_unsigned_long() */
537
538 static int
539 smallest_imm_type (num)
540 offsetT num;
541 {
542 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
543 && !(cpu_arch_flags & (CpuUnknown)))
544 {
545 /* This code is disabled on the 486 because all the Imm1 forms
546 in the opcode table are slower on the i486. They're the
547 versions with the implicitly specified single-position
548 displacement, which has another syntax if you really want to
549 use that form. */
550 if (num == 1)
551 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
552 }
553 return (fits_in_signed_byte (num)
554 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
555 : fits_in_unsigned_byte (num)
556 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
557 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
558 ? (Imm16 | Imm32 | Imm32S | Imm64)
559 : fits_in_signed_long (num)
560 ? (Imm32 | Imm32S | Imm64)
561 : fits_in_unsigned_long (num)
562 ? (Imm32 | Imm64)
563 : Imm64);
564 }
565
566 static offsetT
567 offset_in_range (val, size)
568 offsetT val;
569 int size;
570 {
571 addressT mask;
572
573 switch (size)
574 {
575 case 1: mask = ((addressT) 1 << 8) - 1; break;
576 case 2: mask = ((addressT) 1 << 16) - 1; break;
577 case 4: mask = ((addressT) 2 << 31) - 1; break;
578 #ifdef BFD64
579 case 8: mask = ((addressT) 2 << 63) - 1; break;
580 #endif
581 default: abort ();
582 }
583
584 /* If BFD64, sign extend val. */
585 if (!use_rela_relocations)
586 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
587 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
588
589 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
590 {
591 char buf1[40], buf2[40];
592
593 sprint_value (buf1, val);
594 sprint_value (buf2, val & mask);
595 as_warn (_("%s shortened to %s"), buf1, buf2);
596 }
597 return val & mask;
598 }
599
600 /* Returns 0 if attempting to add a prefix where one from the same
601 class already exists, 1 if non rep/repne added, 2 if rep/repne
602 added. */
603 static int
604 add_prefix (prefix)
605 unsigned int prefix;
606 {
607 int ret = 1;
608 int q;
609
610 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
611 q = REX_PREFIX;
612 else
613 switch (prefix)
614 {
615 default:
616 abort ();
617
618 case CS_PREFIX_OPCODE:
619 case DS_PREFIX_OPCODE:
620 case ES_PREFIX_OPCODE:
621 case FS_PREFIX_OPCODE:
622 case GS_PREFIX_OPCODE:
623 case SS_PREFIX_OPCODE:
624 q = SEG_PREFIX;
625 break;
626
627 case REPNE_PREFIX_OPCODE:
628 case REPE_PREFIX_OPCODE:
629 ret = 2;
630 /* fall thru */
631 case LOCK_PREFIX_OPCODE:
632 q = LOCKREP_PREFIX;
633 break;
634
635 case FWAIT_OPCODE:
636 q = WAIT_PREFIX;
637 break;
638
639 case ADDR_PREFIX_OPCODE:
640 q = ADDR_PREFIX;
641 break;
642
643 case DATA_PREFIX_OPCODE:
644 q = DATA_PREFIX;
645 break;
646 }
647
648 if (i.prefix[q])
649 {
650 as_bad (_("same type of prefix used twice"));
651 return 0;
652 }
653
654 i.prefixes += 1;
655 i.prefix[q] = prefix;
656 return ret;
657 }
658
659 static void
660 set_code_flag (value)
661 int value;
662 {
663 flag_code = value;
664 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
665 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
666 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
667 {
668 as_bad (_("64bit mode not supported on this CPU."));
669 }
670 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
671 {
672 as_bad (_("32bit mode not supported on this CPU."));
673 }
674 stackop_size = '\0';
675 }
676
677 static void
678 set_16bit_gcc_code_flag (new_code_flag)
679 int new_code_flag;
680 {
681 flag_code = new_code_flag;
682 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
683 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
684 stackop_size = 'l';
685 }
686
687 static void
688 set_intel_syntax (syntax_flag)
689 int syntax_flag;
690 {
691 /* Find out if register prefixing is specified. */
692 int ask_naked_reg = 0;
693
694 SKIP_WHITESPACE ();
695 if (! is_end_of_line[(unsigned char) *input_line_pointer])
696 {
697 char *string = input_line_pointer;
698 int e = get_symbol_end ();
699
700 if (strcmp (string, "prefix") == 0)
701 ask_naked_reg = 1;
702 else if (strcmp (string, "noprefix") == 0)
703 ask_naked_reg = -1;
704 else
705 as_bad (_("bad argument to syntax directive."));
706 *input_line_pointer = e;
707 }
708 demand_empty_rest_of_line ();
709
710 intel_syntax = syntax_flag;
711
712 if (ask_naked_reg == 0)
713 {
714 #ifdef BFD_ASSEMBLER
715 allow_naked_reg = (intel_syntax
716 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
717 #else
718 /* Conservative default. */
719 allow_naked_reg = 0;
720 #endif
721 }
722 else
723 allow_naked_reg = (ask_naked_reg < 0);
724 }
725
726 static void
727 set_cpu_arch (dummy)
728 int dummy ATTRIBUTE_UNUSED;
729 {
730 SKIP_WHITESPACE ();
731
732 if (! is_end_of_line[(unsigned char) *input_line_pointer])
733 {
734 char *string = input_line_pointer;
735 int e = get_symbol_end ();
736 int i;
737
738 for (i = 0; cpu_arch[i].name; i++)
739 {
740 if (strcmp (string, cpu_arch[i].name) == 0)
741 {
742 cpu_arch_name = cpu_arch[i].name;
743 cpu_arch_flags = (cpu_arch[i].flags
744 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
745 break;
746 }
747 }
748 if (!cpu_arch[i].name)
749 as_bad (_("no such architecture: `%s'"), string);
750
751 *input_line_pointer = e;
752 }
753 else
754 as_bad (_("missing cpu architecture"));
755
756 no_cond_jump_promotion = 0;
757 if (*input_line_pointer == ','
758 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
759 {
760 char *string = ++input_line_pointer;
761 int e = get_symbol_end ();
762
763 if (strcmp (string, "nojumps") == 0)
764 no_cond_jump_promotion = 1;
765 else if (strcmp (string, "jumps") == 0)
766 ;
767 else
768 as_bad (_("no such architecture modifier: `%s'"), string);
769
770 *input_line_pointer = e;
771 }
772
773 demand_empty_rest_of_line ();
774 }
775
776 const pseudo_typeS md_pseudo_table[] =
777 {
778 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
779 {"align", s_align_bytes, 0},
780 #else
781 {"align", s_align_ptwo, 0},
782 #endif
783 {"arch", set_cpu_arch, 0},
784 #ifndef I386COFF
785 {"bss", s_bss, 0},
786 #endif
787 {"ffloat", float_cons, 'f'},
788 {"dfloat", float_cons, 'd'},
789 {"tfloat", float_cons, 'x'},
790 {"value", cons, 2},
791 {"noopt", s_ignore, 0},
792 {"optim", s_ignore, 0},
793 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
794 {"code16", set_code_flag, CODE_16BIT},
795 {"code32", set_code_flag, CODE_32BIT},
796 {"code64", set_code_flag, CODE_64BIT},
797 {"intel_syntax", set_intel_syntax, 1},
798 {"att_syntax", set_intel_syntax, 0},
799 {"file", dwarf2_directive_file, 0},
800 {"loc", dwarf2_directive_loc, 0},
801 {0, 0, 0}
802 };
803
804 /* For interface with expression (). */
805 extern char *input_line_pointer;
806
807 /* Hash table for instruction mnemonic lookup. */
808 static struct hash_control *op_hash;
809
810 /* Hash table for register lookup. */
811 static struct hash_control *reg_hash;
812 \f
813 #ifdef BFD_ASSEMBLER
814 unsigned long
815 i386_mach ()
816 {
817 if (!strcmp (default_arch, "x86_64"))
818 return bfd_mach_x86_64;
819 else if (!strcmp (default_arch, "i386"))
820 return bfd_mach_i386_i386;
821 else
822 as_fatal (_("Unknown architecture"));
823 }
824 #endif
825 \f
826 void
827 md_begin ()
828 {
829 const char *hash_err;
830
831 /* Initialize op_hash hash table. */
832 op_hash = hash_new ();
833
834 {
835 register const template *optab;
836 register templates *core_optab;
837
838 /* Setup for loop. */
839 optab = i386_optab;
840 core_optab = (templates *) xmalloc (sizeof (templates));
841 core_optab->start = optab;
842
843 while (1)
844 {
845 ++optab;
846 if (optab->name == NULL
847 || strcmp (optab->name, (optab - 1)->name) != 0)
848 {
849 /* different name --> ship out current template list;
850 add to hash table; & begin anew. */
851 core_optab->end = optab;
852 hash_err = hash_insert (op_hash,
853 (optab - 1)->name,
854 (PTR) core_optab);
855 if (hash_err)
856 {
857 as_fatal (_("Internal Error: Can't hash %s: %s"),
858 (optab - 1)->name,
859 hash_err);
860 }
861 if (optab->name == NULL)
862 break;
863 core_optab = (templates *) xmalloc (sizeof (templates));
864 core_optab->start = optab;
865 }
866 }
867 }
868
869 /* Initialize reg_hash hash table. */
870 reg_hash = hash_new ();
871 {
872 register const reg_entry *regtab;
873
874 for (regtab = i386_regtab;
875 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
876 regtab++)
877 {
878 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
879 if (hash_err)
880 as_fatal (_("Internal Error: Can't hash %s: %s"),
881 regtab->reg_name,
882 hash_err);
883 }
884 }
885
886 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
887 {
888 register int c;
889 register char *p;
890
891 for (c = 0; c < 256; c++)
892 {
893 if (ISDIGIT (c))
894 {
895 digit_chars[c] = c;
896 mnemonic_chars[c] = c;
897 register_chars[c] = c;
898 operand_chars[c] = c;
899 }
900 else if (ISLOWER (c))
901 {
902 mnemonic_chars[c] = c;
903 register_chars[c] = c;
904 operand_chars[c] = c;
905 }
906 else if (ISUPPER (c))
907 {
908 mnemonic_chars[c] = TOLOWER (c);
909 register_chars[c] = mnemonic_chars[c];
910 operand_chars[c] = c;
911 }
912
913 if (ISALPHA (c) || ISDIGIT (c))
914 identifier_chars[c] = c;
915 else if (c >= 128)
916 {
917 identifier_chars[c] = c;
918 operand_chars[c] = c;
919 }
920 }
921
922 #ifdef LEX_AT
923 identifier_chars['@'] = '@';
924 #endif
925 digit_chars['-'] = '-';
926 identifier_chars['_'] = '_';
927 identifier_chars['.'] = '.';
928
929 for (p = operand_special_chars; *p != '\0'; p++)
930 operand_chars[(unsigned char) *p] = *p;
931 }
932
933 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
934 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
935 {
936 record_alignment (text_section, 2);
937 record_alignment (data_section, 2);
938 record_alignment (bss_section, 2);
939 }
940 #endif
941 }
942
943 void
944 i386_print_statistics (file)
945 FILE *file;
946 {
947 hash_print_statistics (file, "i386 opcode", op_hash);
948 hash_print_statistics (file, "i386 register", reg_hash);
949 }
950 \f
951 #ifdef DEBUG386
952
953 /* Debugging routines for md_assemble. */
954 static void pi PARAMS ((char *, i386_insn *));
955 static void pte PARAMS ((template *));
956 static void pt PARAMS ((unsigned int));
957 static void pe PARAMS ((expressionS *));
958 static void ps PARAMS ((symbolS *));
959
960 static void
961 pi (line, x)
962 char *line;
963 i386_insn *x;
964 {
965 unsigned int i;
966
967 fprintf (stdout, "%s: template ", line);
968 pte (&x->tm);
969 fprintf (stdout, " address: base %s index %s scale %x\n",
970 x->base_reg ? x->base_reg->reg_name : "none",
971 x->index_reg ? x->index_reg->reg_name : "none",
972 x->log2_scale_factor);
973 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
974 x->rm.mode, x->rm.reg, x->rm.regmem);
975 fprintf (stdout, " sib: base %x index %x scale %x\n",
976 x->sib.base, x->sib.index, x->sib.scale);
977 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
978 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
979 for (i = 0; i < x->operands; i++)
980 {
981 fprintf (stdout, " #%d: ", i + 1);
982 pt (x->types[i]);
983 fprintf (stdout, "\n");
984 if (x->types[i]
985 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
986 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
987 if (x->types[i] & Imm)
988 pe (x->op[i].imms);
989 if (x->types[i] & Disp)
990 pe (x->op[i].disps);
991 }
992 }
993
994 static void
995 pte (t)
996 template *t;
997 {
998 unsigned int i;
999 fprintf (stdout, " %d operands ", t->operands);
1000 fprintf (stdout, "opcode %x ", t->base_opcode);
1001 if (t->extension_opcode != None)
1002 fprintf (stdout, "ext %x ", t->extension_opcode);
1003 if (t->opcode_modifier & D)
1004 fprintf (stdout, "D");
1005 if (t->opcode_modifier & W)
1006 fprintf (stdout, "W");
1007 fprintf (stdout, "\n");
1008 for (i = 0; i < t->operands; i++)
1009 {
1010 fprintf (stdout, " #%d type ", i + 1);
1011 pt (t->operand_types[i]);
1012 fprintf (stdout, "\n");
1013 }
1014 }
1015
1016 static void
1017 pe (e)
1018 expressionS *e;
1019 {
1020 fprintf (stdout, " operation %d\n", e->X_op);
1021 fprintf (stdout, " add_number %ld (%lx)\n",
1022 (long) e->X_add_number, (long) e->X_add_number);
1023 if (e->X_add_symbol)
1024 {
1025 fprintf (stdout, " add_symbol ");
1026 ps (e->X_add_symbol);
1027 fprintf (stdout, "\n");
1028 }
1029 if (e->X_op_symbol)
1030 {
1031 fprintf (stdout, " op_symbol ");
1032 ps (e->X_op_symbol);
1033 fprintf (stdout, "\n");
1034 }
1035 }
1036
1037 static void
1038 ps (s)
1039 symbolS *s;
1040 {
1041 fprintf (stdout, "%s type %s%s",
1042 S_GET_NAME (s),
1043 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1044 segment_name (S_GET_SEGMENT (s)));
1045 }
1046
1047 struct type_name
1048 {
1049 unsigned int mask;
1050 char *tname;
1051 }
1052
1053 type_names[] =
1054 {
1055 { Reg8, "r8" },
1056 { Reg16, "r16" },
1057 { Reg32, "r32" },
1058 { Reg64, "r64" },
1059 { Imm8, "i8" },
1060 { Imm8S, "i8s" },
1061 { Imm16, "i16" },
1062 { Imm32, "i32" },
1063 { Imm32S, "i32s" },
1064 { Imm64, "i64" },
1065 { Imm1, "i1" },
1066 { BaseIndex, "BaseIndex" },
1067 { Disp8, "d8" },
1068 { Disp16, "d16" },
1069 { Disp32, "d32" },
1070 { Disp32S, "d32s" },
1071 { Disp64, "d64" },
1072 { InOutPortReg, "InOutPortReg" },
1073 { ShiftCount, "ShiftCount" },
1074 { Control, "control reg" },
1075 { Test, "test reg" },
1076 { Debug, "debug reg" },
1077 { FloatReg, "FReg" },
1078 { FloatAcc, "FAcc" },
1079 { SReg2, "SReg2" },
1080 { SReg3, "SReg3" },
1081 { Acc, "Acc" },
1082 { JumpAbsolute, "Jump Absolute" },
1083 { RegMMX, "rMMX" },
1084 { RegXMM, "rXMM" },
1085 { EsSeg, "es" },
1086 { 0, "" }
1087 };
1088
1089 static void
1090 pt (t)
1091 unsigned int t;
1092 {
1093 register struct type_name *ty;
1094
1095 for (ty = type_names; ty->mask; ty++)
1096 if (t & ty->mask)
1097 fprintf (stdout, "%s, ", ty->tname);
1098 fflush (stdout);
1099 }
1100
1101 #endif /* DEBUG386 */
1102 \f
1103 int
1104 tc_i386_force_relocation (fixp)
1105 struct fix *fixp;
1106 {
1107 #ifdef BFD_ASSEMBLER
1108 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1109 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1110 return 1;
1111 return 0;
1112 #else
1113 /* For COFF. */
1114 return fixp->fx_r_type == 7;
1115 #endif
1116 }
1117
1118 #ifdef BFD_ASSEMBLER
1119
1120 static bfd_reloc_code_real_type
1121 reloc (size, pcrel, sign, other)
1122 int size;
1123 int pcrel;
1124 int sign;
1125 bfd_reloc_code_real_type other;
1126 {
1127 if (other != NO_RELOC)
1128 return other;
1129
1130 if (pcrel)
1131 {
1132 if (!sign)
1133 as_bad (_("There are no unsigned pc-relative relocations"));
1134 switch (size)
1135 {
1136 case 1: return BFD_RELOC_8_PCREL;
1137 case 2: return BFD_RELOC_16_PCREL;
1138 case 4: return BFD_RELOC_32_PCREL;
1139 }
1140 as_bad (_("can not do %d byte pc-relative relocation"), size);
1141 }
1142 else
1143 {
1144 if (sign)
1145 switch (size)
1146 {
1147 case 4: return BFD_RELOC_X86_64_32S;
1148 }
1149 else
1150 switch (size)
1151 {
1152 case 1: return BFD_RELOC_8;
1153 case 2: return BFD_RELOC_16;
1154 case 4: return BFD_RELOC_32;
1155 case 8: return BFD_RELOC_64;
1156 }
1157 as_bad (_("can not do %s %d byte relocation"),
1158 sign ? "signed" : "unsigned", size);
1159 }
1160
1161 abort ();
1162 return BFD_RELOC_NONE;
1163 }
1164
1165 /* Here we decide which fixups can be adjusted to make them relative to
1166 the beginning of the section instead of the symbol. Basically we need
1167 to make sure that the dynamic relocations are done correctly, so in
1168 some cases we force the original symbol to be used. */
1169
1170 int
1171 tc_i386_fix_adjustable (fixP)
1172 fixS *fixP;
1173 {
1174 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1175 /* Prevent all adjustments to global symbols, or else dynamic
1176 linking will not work correctly. */
1177 if (S_IS_EXTERNAL (fixP->fx_addsy)
1178 || S_IS_WEAK (fixP->fx_addsy))
1179 return 0;
1180 #endif
1181 /* adjust_reloc_syms doesn't know about the GOT. */
1182 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1183 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1184 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1185 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1188 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1190 return 0;
1191 return 1;
1192 }
1193 #else
1194 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1195 #define BFD_RELOC_16 0
1196 #define BFD_RELOC_32 0
1197 #define BFD_RELOC_16_PCREL 0
1198 #define BFD_RELOC_32_PCREL 0
1199 #define BFD_RELOC_386_PLT32 0
1200 #define BFD_RELOC_386_GOT32 0
1201 #define BFD_RELOC_386_GOTOFF 0
1202 #define BFD_RELOC_X86_64_PLT32 0
1203 #define BFD_RELOC_X86_64_GOT32 0
1204 #define BFD_RELOC_X86_64_GOTPCREL 0
1205 #endif
1206
1207 static int intel_float_operand PARAMS ((char *mnemonic));
1208
1209 static int
1210 intel_float_operand (mnemonic)
1211 char *mnemonic;
1212 {
1213 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1214 return 2;
1215
1216 if (mnemonic[0] == 'f')
1217 return 1;
1218
1219 return 0;
1220 }
1221
1222 /* This is the guts of the machine-dependent assembler. LINE points to a
1223 machine dependent instruction. This function is supposed to emit
1224 the frags/bytes it assembles to. */
1225
1226 void
1227 md_assemble (line)
1228 char *line;
1229 {
1230 /* Points to template once we've found it. */
1231 const template *t;
1232
1233 int j;
1234
1235 char mnemonic[MAX_MNEM_SIZE];
1236
1237 /* Initialize globals. */
1238 memset (&i, '\0', sizeof (i));
1239 for (j = 0; j < MAX_OPERANDS; j++)
1240 i.reloc[j] = NO_RELOC;
1241 memset (disp_expressions, '\0', sizeof (disp_expressions));
1242 memset (im_expressions, '\0', sizeof (im_expressions));
1243 save_stack_p = save_stack;
1244
1245 /* First parse an instruction mnemonic & call i386_operand for the operands.
1246 We assume that the scrubber has arranged it so that line[0] is the valid
1247 start of a (possibly prefixed) mnemonic. */
1248 {
1249 char *l = line;
1250 char *token_start = l;
1251 char *mnem_p;
1252
1253 /* Non-zero if we found a prefix only acceptable with string insns. */
1254 const char *expecting_string_instruction = NULL;
1255
1256 while (1)
1257 {
1258 mnem_p = mnemonic;
1259 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1260 {
1261 mnem_p++;
1262 if (mnem_p >= mnemonic + sizeof (mnemonic))
1263 {
1264 as_bad (_("no such instruction: `%s'"), token_start);
1265 return;
1266 }
1267 l++;
1268 }
1269 if (!is_space_char (*l)
1270 && *l != END_OF_INSN
1271 && *l != PREFIX_SEPARATOR
1272 && *l != ',')
1273 {
1274 as_bad (_("invalid character %s in mnemonic"),
1275 output_invalid (*l));
1276 return;
1277 }
1278 if (token_start == l)
1279 {
1280 if (*l == PREFIX_SEPARATOR)
1281 as_bad (_("expecting prefix; got nothing"));
1282 else
1283 as_bad (_("expecting mnemonic; got nothing"));
1284 return;
1285 }
1286
1287 /* Look up instruction (or prefix) via hash table. */
1288 current_templates = hash_find (op_hash, mnemonic);
1289
1290 if (*l != END_OF_INSN
1291 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1292 && current_templates
1293 && (current_templates->start->opcode_modifier & IsPrefix))
1294 {
1295 /* If we are in 16-bit mode, do not allow addr16 or data16.
1296 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1297 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1298 && (((current_templates->start->opcode_modifier & Size32) != 0)
1299 ^ (flag_code == CODE_16BIT)))
1300 {
1301 as_bad (_("redundant %s prefix"),
1302 current_templates->start->name);
1303 return;
1304 }
1305 /* Add prefix, checking for repeated prefixes. */
1306 switch (add_prefix (current_templates->start->base_opcode))
1307 {
1308 case 0:
1309 return;
1310 case 2:
1311 expecting_string_instruction = current_templates->start->name;
1312 break;
1313 }
1314 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1315 token_start = ++l;
1316 }
1317 else
1318 break;
1319 }
1320
1321 if (!current_templates)
1322 {
1323 /* See if we can get a match by trimming off a suffix. */
1324 switch (mnem_p[-1])
1325 {
1326 case WORD_MNEM_SUFFIX:
1327 case BYTE_MNEM_SUFFIX:
1328 case QWORD_MNEM_SUFFIX:
1329 i.suffix = mnem_p[-1];
1330 mnem_p[-1] = '\0';
1331 current_templates = hash_find (op_hash, mnemonic);
1332 break;
1333 case SHORT_MNEM_SUFFIX:
1334 case LONG_MNEM_SUFFIX:
1335 if (!intel_syntax)
1336 {
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
1340 }
1341 break;
1342
1343 /* Intel Syntax. */
1344 case 'd':
1345 if (intel_syntax)
1346 {
1347 if (intel_float_operand (mnemonic))
1348 i.suffix = SHORT_MNEM_SUFFIX;
1349 else
1350 i.suffix = LONG_MNEM_SUFFIX;
1351 mnem_p[-1] = '\0';
1352 current_templates = hash_find (op_hash, mnemonic);
1353 }
1354 break;
1355 }
1356 if (!current_templates)
1357 {
1358 as_bad (_("no such instruction: `%s'"), token_start);
1359 return;
1360 }
1361 }
1362
1363 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1364 {
1365 /* Check for a branch hint. We allow ",pt" and ",pn" for
1366 predict taken and predict not taken respectively.
1367 I'm not sure that branch hints actually do anything on loop
1368 and jcxz insns (JumpByte) for current Pentium4 chips. They
1369 may work in the future and it doesn't hurt to accept them
1370 now. */
1371 if (l[0] == ',' && l[1] == 'p')
1372 {
1373 if (l[2] == 't')
1374 {
1375 if (! add_prefix (DS_PREFIX_OPCODE))
1376 return;
1377 l += 3;
1378 }
1379 else if (l[2] == 'n')
1380 {
1381 if (! add_prefix (CS_PREFIX_OPCODE))
1382 return;
1383 l += 3;
1384 }
1385 }
1386 }
1387 /* Any other comma loses. */
1388 if (*l == ',')
1389 {
1390 as_bad (_("invalid character %s in mnemonic"),
1391 output_invalid (*l));
1392 return;
1393 }
1394
1395 /* Check if instruction is supported on specified architecture. */
1396 if (cpu_arch_flags != 0)
1397 {
1398 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1399 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1400 {
1401 as_warn (_("`%s' is not supported on `%s'"),
1402 current_templates->start->name, cpu_arch_name);
1403 }
1404 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1405 {
1406 as_warn (_("use .code16 to ensure correct addressing mode"));
1407 }
1408 }
1409
1410 /* Check for rep/repne without a string instruction. */
1411 if (expecting_string_instruction
1412 && !(current_templates->start->opcode_modifier & IsString))
1413 {
1414 as_bad (_("expecting string instruction after `%s'"),
1415 expecting_string_instruction);
1416 return;
1417 }
1418
1419 /* There may be operands to parse. */
1420 if (*l != END_OF_INSN)
1421 {
1422 /* 1 if operand is pending after ','. */
1423 unsigned int expecting_operand = 0;
1424
1425 /* Non-zero if operand parens not balanced. */
1426 unsigned int paren_not_balanced;
1427
1428 do
1429 {
1430 /* Skip optional white space before operand. */
1431 if (is_space_char (*l))
1432 ++l;
1433 if (!is_operand_char (*l) && *l != END_OF_INSN)
1434 {
1435 as_bad (_("invalid character %s before operand %d"),
1436 output_invalid (*l),
1437 i.operands + 1);
1438 return;
1439 }
1440 token_start = l; /* after white space */
1441 paren_not_balanced = 0;
1442 while (paren_not_balanced || *l != ',')
1443 {
1444 if (*l == END_OF_INSN)
1445 {
1446 if (paren_not_balanced)
1447 {
1448 if (!intel_syntax)
1449 as_bad (_("unbalanced parenthesis in operand %d."),
1450 i.operands + 1);
1451 else
1452 as_bad (_("unbalanced brackets in operand %d."),
1453 i.operands + 1);
1454 return;
1455 }
1456 else
1457 break; /* we are done */
1458 }
1459 else if (!is_operand_char (*l) && !is_space_char (*l))
1460 {
1461 as_bad (_("invalid character %s in operand %d"),
1462 output_invalid (*l),
1463 i.operands + 1);
1464 return;
1465 }
1466 if (!intel_syntax)
1467 {
1468 if (*l == '(')
1469 ++paren_not_balanced;
1470 if (*l == ')')
1471 --paren_not_balanced;
1472 }
1473 else
1474 {
1475 if (*l == '[')
1476 ++paren_not_balanced;
1477 if (*l == ']')
1478 --paren_not_balanced;
1479 }
1480 l++;
1481 }
1482 if (l != token_start)
1483 { /* Yes, we've read in another operand. */
1484 unsigned int operand_ok;
1485 this_operand = i.operands++;
1486 if (i.operands > MAX_OPERANDS)
1487 {
1488 as_bad (_("spurious operands; (%d operands/instruction max)"),
1489 MAX_OPERANDS);
1490 return;
1491 }
1492 /* Now parse operand adding info to 'i' as we go along. */
1493 END_STRING_AND_SAVE (l);
1494
1495 if (intel_syntax)
1496 operand_ok =
1497 i386_intel_operand (token_start,
1498 intel_float_operand (mnemonic));
1499 else
1500 operand_ok = i386_operand (token_start);
1501
1502 RESTORE_END_STRING (l);
1503 if (!operand_ok)
1504 return;
1505 }
1506 else
1507 {
1508 if (expecting_operand)
1509 {
1510 expecting_operand_after_comma:
1511 as_bad (_("expecting operand after ','; got nothing"));
1512 return;
1513 }
1514 if (*l == ',')
1515 {
1516 as_bad (_("expecting operand before ','; got nothing"));
1517 return;
1518 }
1519 }
1520
1521 /* Now *l must be either ',' or END_OF_INSN. */
1522 if (*l == ',')
1523 {
1524 if (*++l == END_OF_INSN)
1525 {
1526 /* Just skip it, if it's \n complain. */
1527 goto expecting_operand_after_comma;
1528 }
1529 expecting_operand = 1;
1530 }
1531 }
1532 while (*l != END_OF_INSN);
1533 }
1534 }
1535
1536 /* Now we've parsed the mnemonic into a set of templates, and have the
1537 operands at hand.
1538
1539 Next, we find a template that matches the given insn,
1540 making sure the overlap of the given operands types is consistent
1541 with the template operand types. */
1542
1543 #define MATCH(overlap, given, template) \
1544 ((overlap & ~JumpAbsolute) \
1545 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1546
1547 /* If given types r0 and r1 are registers they must be of the same type
1548 unless the expected operand type register overlap is null.
1549 Note that Acc in a template matches every size of reg. */
1550 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1551 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1552 ((g0) & Reg) == ((g1) & Reg) || \
1553 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1554
1555 {
1556 register unsigned int overlap0, overlap1;
1557 unsigned int overlap2;
1558 unsigned int found_reverse_match;
1559 int suffix_check;
1560
1561 /* All intel opcodes have reversed operands except for "bound" and
1562 "enter". We also don't reverse intersegment "jmp" and "call"
1563 instructions with 2 immediate operands so that the immediate segment
1564 precedes the offset, as it does when in AT&T mode. "enter" and the
1565 intersegment "jmp" and "call" instructions are the only ones that
1566 have two immediate operands. */
1567 if (intel_syntax && i.operands > 1
1568 && (strcmp (mnemonic, "bound") != 0)
1569 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1570 {
1571 union i386_op temp_op;
1572 unsigned int temp_type;
1573 RELOC_ENUM temp_reloc;
1574 int xchg1 = 0;
1575 int xchg2 = 0;
1576
1577 if (i.operands == 2)
1578 {
1579 xchg1 = 0;
1580 xchg2 = 1;
1581 }
1582 else if (i.operands == 3)
1583 {
1584 xchg1 = 0;
1585 xchg2 = 2;
1586 }
1587 temp_type = i.types[xchg2];
1588 i.types[xchg2] = i.types[xchg1];
1589 i.types[xchg1] = temp_type;
1590 temp_op = i.op[xchg2];
1591 i.op[xchg2] = i.op[xchg1];
1592 i.op[xchg1] = temp_op;
1593 temp_reloc = i.reloc[xchg2];
1594 i.reloc[xchg2] = i.reloc[xchg1];
1595 i.reloc[xchg1] = temp_reloc;
1596
1597 if (i.mem_operands == 2)
1598 {
1599 const seg_entry *temp_seg;
1600 temp_seg = i.seg[0];
1601 i.seg[0] = i.seg[1];
1602 i.seg[1] = temp_seg;
1603 }
1604 }
1605
1606 if (i.imm_operands)
1607 {
1608 /* Try to ensure constant immediates are represented in the smallest
1609 opcode possible. */
1610 char guess_suffix = 0;
1611 int op;
1612
1613 if (i.suffix)
1614 guess_suffix = i.suffix;
1615 else if (i.reg_operands)
1616 {
1617 /* Figure out a suffix from the last register operand specified.
1618 We can't do this properly yet, ie. excluding InOutPortReg,
1619 but the following works for instructions with immediates.
1620 In any case, we can't set i.suffix yet. */
1621 for (op = i.operands; --op >= 0;)
1622 if (i.types[op] & Reg)
1623 {
1624 if (i.types[op] & Reg8)
1625 guess_suffix = BYTE_MNEM_SUFFIX;
1626 else if (i.types[op] & Reg16)
1627 guess_suffix = WORD_MNEM_SUFFIX;
1628 else if (i.types[op] & Reg32)
1629 guess_suffix = LONG_MNEM_SUFFIX;
1630 else if (i.types[op] & Reg64)
1631 guess_suffix = QWORD_MNEM_SUFFIX;
1632 break;
1633 }
1634 }
1635 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1636 guess_suffix = WORD_MNEM_SUFFIX;
1637
1638 for (op = i.operands; --op >= 0;)
1639 if (i.types[op] & Imm)
1640 {
1641 switch (i.op[op].imms->X_op)
1642 {
1643 case O_constant:
1644 /* If a suffix is given, this operand may be shortened. */
1645 switch (guess_suffix)
1646 {
1647 case LONG_MNEM_SUFFIX:
1648 i.types[op] |= Imm32 | Imm64;
1649 break;
1650 case WORD_MNEM_SUFFIX:
1651 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1652 break;
1653 case BYTE_MNEM_SUFFIX:
1654 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1655 break;
1656 }
1657
1658 /* If this operand is at most 16 bits, convert it
1659 to a signed 16 bit number before trying to see
1660 whether it will fit in an even smaller size.
1661 This allows a 16-bit operand such as $0xffe0 to
1662 be recognised as within Imm8S range. */
1663 if ((i.types[op] & Imm16)
1664 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1665 {
1666 i.op[op].imms->X_add_number =
1667 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1668 }
1669 if ((i.types[op] & Imm32)
1670 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1671 {
1672 i.op[op].imms->X_add_number =
1673 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1674 }
1675 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1676 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1677 if (guess_suffix == QWORD_MNEM_SUFFIX)
1678 i.types[op] &= ~Imm32;
1679 break;
1680 case O_absent:
1681 case O_register:
1682 abort ();
1683 /* Symbols and expressions. */
1684 default:
1685 /* Convert symbolic operand to proper sizes for matching. */
1686 switch (guess_suffix)
1687 {
1688 case QWORD_MNEM_SUFFIX:
1689 i.types[op] = Imm64 | Imm32S;
1690 break;
1691 case LONG_MNEM_SUFFIX:
1692 i.types[op] = Imm32 | Imm64;
1693 break;
1694 case WORD_MNEM_SUFFIX:
1695 i.types[op] = Imm16 | Imm32 | Imm64;
1696 break;
1697 break;
1698 case BYTE_MNEM_SUFFIX:
1699 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1700 break;
1701 break;
1702 }
1703 break;
1704 }
1705 }
1706 }
1707
1708 if (i.disp_operands)
1709 {
1710 /* Try to use the smallest displacement type too. */
1711 int op;
1712
1713 for (op = i.operands; --op >= 0;)
1714 if ((i.types[op] & Disp)
1715 && i.op[op].disps->X_op == O_constant)
1716 {
1717 offsetT disp = i.op[op].disps->X_add_number;
1718
1719 if (i.types[op] & Disp16)
1720 {
1721 /* We know this operand is at most 16 bits, so
1722 convert to a signed 16 bit number before trying
1723 to see whether it will fit in an even smaller
1724 size. */
1725
1726 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1727 }
1728 else if (i.types[op] & Disp32)
1729 {
1730 /* We know this operand is at most 32 bits, so convert to a
1731 signed 32 bit number before trying to see whether it will
1732 fit in an even smaller size. */
1733 disp &= (((offsetT) 2 << 31) - 1);
1734 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1735 }
1736 if (flag_code == CODE_64BIT)
1737 {
1738 if (fits_in_signed_long (disp))
1739 i.types[op] |= Disp32S;
1740 if (fits_in_unsigned_long (disp))
1741 i.types[op] |= Disp32;
1742 }
1743 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1744 && fits_in_signed_byte (disp))
1745 i.types[op] |= Disp8;
1746 }
1747 }
1748
1749 overlap0 = 0;
1750 overlap1 = 0;
1751 overlap2 = 0;
1752 found_reverse_match = 0;
1753 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1754 ? No_bSuf
1755 : (i.suffix == WORD_MNEM_SUFFIX
1756 ? No_wSuf
1757 : (i.suffix == SHORT_MNEM_SUFFIX
1758 ? No_sSuf
1759 : (i.suffix == LONG_MNEM_SUFFIX
1760 ? No_lSuf
1761 : (i.suffix == QWORD_MNEM_SUFFIX
1762 ? No_qSuf
1763 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1764
1765 for (t = current_templates->start;
1766 t < current_templates->end;
1767 t++)
1768 {
1769 /* Must have right number of operands. */
1770 if (i.operands != t->operands)
1771 continue;
1772
1773 /* Check the suffix, except for some instructions in intel mode. */
1774 if ((t->opcode_modifier & suffix_check)
1775 && !(intel_syntax
1776 && (t->opcode_modifier & IgnoreSize))
1777 && !(intel_syntax
1778 && t->base_opcode == 0xd9
1779 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1780 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1781 continue;
1782
1783 /* Do not verify operands when there are none. */
1784 else if (!t->operands)
1785 {
1786 if (t->cpu_flags & ~cpu_arch_flags)
1787 continue;
1788 /* We've found a match; break out of loop. */
1789 break;
1790 }
1791
1792 overlap0 = i.types[0] & t->operand_types[0];
1793 switch (t->operands)
1794 {
1795 case 1:
1796 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1797 continue;
1798 break;
1799 case 2:
1800 case 3:
1801 overlap1 = i.types[1] & t->operand_types[1];
1802 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1803 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1804 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1805 t->operand_types[0],
1806 overlap1, i.types[1],
1807 t->operand_types[1]))
1808 {
1809 /* Check if other direction is valid ... */
1810 if ((t->opcode_modifier & (D|FloatD)) == 0)
1811 continue;
1812
1813 /* Try reversing direction of operands. */
1814 overlap0 = i.types[0] & t->operand_types[1];
1815 overlap1 = i.types[1] & t->operand_types[0];
1816 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1817 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1818 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1819 t->operand_types[1],
1820 overlap1, i.types[1],
1821 t->operand_types[0]))
1822 {
1823 /* Does not match either direction. */
1824 continue;
1825 }
1826 /* found_reverse_match holds which of D or FloatDR
1827 we've found. */
1828 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1829 }
1830 /* Found a forward 2 operand match here. */
1831 else if (t->operands == 3)
1832 {
1833 /* Here we make use of the fact that there are no
1834 reverse match 3 operand instructions, and all 3
1835 operand instructions only need to be checked for
1836 register consistency between operands 2 and 3. */
1837 overlap2 = i.types[2] & t->operand_types[2];
1838 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1839 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1840 t->operand_types[1],
1841 overlap2, i.types[2],
1842 t->operand_types[2]))
1843
1844 continue;
1845 }
1846 /* Found either forward/reverse 2 or 3 operand match here:
1847 slip through to break. */
1848 }
1849 if (t->cpu_flags & ~cpu_arch_flags)
1850 {
1851 found_reverse_match = 0;
1852 continue;
1853 }
1854 /* We've found a match; break out of loop. */
1855 break;
1856 }
1857 if (t == current_templates->end)
1858 {
1859 /* We found no match. */
1860 as_bad (_("suffix or operands invalid for `%s'"),
1861 current_templates->start->name);
1862 return;
1863 }
1864
1865 if (!quiet_warnings)
1866 {
1867 if (!intel_syntax
1868 && ((i.types[0] & JumpAbsolute)
1869 != (t->operand_types[0] & JumpAbsolute)))
1870 {
1871 as_warn (_("indirect %s without `*'"), t->name);
1872 }
1873
1874 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1875 == (IsPrefix|IgnoreSize))
1876 {
1877 /* Warn them that a data or address size prefix doesn't
1878 affect assembly of the next line of code. */
1879 as_warn (_("stand-alone `%s' prefix"), t->name);
1880 }
1881 }
1882
1883 /* Copy the template we found. */
1884 i.tm = *t;
1885 if (found_reverse_match)
1886 {
1887 /* If we found a reverse match we must alter the opcode
1888 direction bit. found_reverse_match holds bits to change
1889 (different for int & float insns). */
1890
1891 i.tm.base_opcode ^= found_reverse_match;
1892
1893 i.tm.operand_types[0] = t->operand_types[1];
1894 i.tm.operand_types[1] = t->operand_types[0];
1895 }
1896
1897 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1898 if (SYSV386_COMPAT
1899 && intel_syntax
1900 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1901 i.tm.base_opcode ^= FloatR;
1902
1903 if (i.tm.opcode_modifier & FWait)
1904 if (! add_prefix (FWAIT_OPCODE))
1905 return;
1906
1907 /* Check string instruction segment overrides. */
1908 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1909 {
1910 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1911 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1912 {
1913 if (i.seg[0] != NULL && i.seg[0] != &es)
1914 {
1915 as_bad (_("`%s' operand %d must use `%%es' segment"),
1916 i.tm.name,
1917 mem_op + 1);
1918 return;
1919 }
1920 /* There's only ever one segment override allowed per instruction.
1921 This instruction possibly has a legal segment override on the
1922 second operand, so copy the segment to where non-string
1923 instructions store it, allowing common code. */
1924 i.seg[0] = i.seg[1];
1925 }
1926 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1927 {
1928 if (i.seg[1] != NULL && i.seg[1] != &es)
1929 {
1930 as_bad (_("`%s' operand %d must use `%%es' segment"),
1931 i.tm.name,
1932 mem_op + 2);
1933 return;
1934 }
1935 }
1936 }
1937
1938 if (i.reg_operands && flag_code < CODE_64BIT)
1939 {
1940 int op;
1941 for (op = i.operands; --op >= 0;)
1942 if ((i.types[op] & Reg)
1943 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1944 {
1945 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1946 i.op[op].regs->reg_name);
1947 return;
1948 }
1949 }
1950
1951 /* If matched instruction specifies an explicit instruction mnemonic
1952 suffix, use it. */
1953 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1954 {
1955 if (i.tm.opcode_modifier & Size16)
1956 i.suffix = WORD_MNEM_SUFFIX;
1957 else if (i.tm.opcode_modifier & Size64)
1958 i.suffix = QWORD_MNEM_SUFFIX;
1959 else
1960 i.suffix = LONG_MNEM_SUFFIX;
1961 }
1962 else if (i.reg_operands)
1963 {
1964 /* If there's no instruction mnemonic suffix we try to invent one
1965 based on register operands. */
1966 if (!i.suffix)
1967 {
1968 /* We take i.suffix from the last register operand specified,
1969 Destination register type is more significant than source
1970 register type. */
1971 int op;
1972 for (op = i.operands; --op >= 0;)
1973 if ((i.types[op] & Reg)
1974 && !(i.tm.operand_types[op] & InOutPortReg))
1975 {
1976 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1977 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1978 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1979 LONG_MNEM_SUFFIX);
1980 break;
1981 }
1982 }
1983 else if (i.suffix == BYTE_MNEM_SUFFIX)
1984 {
1985 int op;
1986 for (op = i.operands; --op >= 0;)
1987 {
1988 /* If this is an eight bit register, it's OK. If it's
1989 the 16 or 32 bit version of an eight bit register,
1990 we will just use the low portion, and that's OK too. */
1991 if (i.types[op] & Reg8)
1992 continue;
1993
1994 /* movzx and movsx should not generate this warning. */
1995 if (intel_syntax
1996 && (i.tm.base_opcode == 0xfb7
1997 || i.tm.base_opcode == 0xfb6
1998 || i.tm.base_opcode == 0x63
1999 || i.tm.base_opcode == 0xfbe
2000 || i.tm.base_opcode == 0xfbf))
2001 continue;
2002
2003 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2004 #if 0
2005 /* Check that the template allows eight bit regs
2006 This kills insns such as `orb $1,%edx', which
2007 maybe should be allowed. */
2008 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
2009 #endif
2010 )
2011 {
2012 /* Prohibit these changes in the 64bit mode, since
2013 the lowering is more complicated. */
2014 if (flag_code == CODE_64BIT
2015 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2016 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2017 i.op[op].regs->reg_name,
2018 i.suffix);
2019 #if REGISTER_WARNINGS
2020 if (!quiet_warnings
2021 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2022 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2023 (i.op[op].regs
2024 + (i.types[op] & Reg16
2025 ? REGNAM_AL - REGNAM_AX
2026 : REGNAM_AL - REGNAM_EAX))->reg_name,
2027 i.op[op].regs->reg_name,
2028 i.suffix);
2029 #endif
2030 continue;
2031 }
2032 /* Any other register is bad. */
2033 if (i.types[op] & (Reg | RegMMX | RegXMM
2034 | SReg2 | SReg3
2035 | Control | Debug | Test
2036 | FloatReg | FloatAcc))
2037 {
2038 as_bad (_("`%%%s' not allowed with `%s%c'"),
2039 i.op[op].regs->reg_name,
2040 i.tm.name,
2041 i.suffix);
2042 return;
2043 }
2044 }
2045 }
2046 else if (i.suffix == LONG_MNEM_SUFFIX)
2047 {
2048 int op;
2049
2050 for (op = i.operands; --op >= 0;)
2051 /* Reject eight bit registers, except where the template
2052 requires them. (eg. movzb) */
2053 if ((i.types[op] & Reg8) != 0
2054 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2055 {
2056 as_bad (_("`%%%s' not allowed with `%s%c'"),
2057 i.op[op].regs->reg_name,
2058 i.tm.name,
2059 i.suffix);
2060 return;
2061 }
2062 /* Warn if the e prefix on a general reg is missing. */
2063 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2064 && (i.types[op] & Reg16) != 0
2065 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2066 {
2067 /* Prohibit these changes in the 64bit mode, since
2068 the lowering is more complicated. */
2069 if (flag_code == CODE_64BIT)
2070 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2071 i.op[op].regs->reg_name,
2072 i.suffix);
2073 #if REGISTER_WARNINGS
2074 else
2075 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2076 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2077 i.op[op].regs->reg_name,
2078 i.suffix);
2079 #endif
2080 }
2081 /* Warn if the r prefix on a general reg is missing. */
2082 else if ((i.types[op] & Reg64) != 0
2083 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2084 {
2085 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2086 i.op[op].regs->reg_name,
2087 i.suffix);
2088 }
2089 }
2090 else if (i.suffix == QWORD_MNEM_SUFFIX)
2091 {
2092 int op;
2093
2094 for (op = i.operands; --op >= 0; )
2095 /* Reject eight bit registers, except where the template
2096 requires them. (eg. movzb) */
2097 if ((i.types[op] & Reg8) != 0
2098 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2099 {
2100 as_bad (_("`%%%s' not allowed with `%s%c'"),
2101 i.op[op].regs->reg_name,
2102 i.tm.name,
2103 i.suffix);
2104 return;
2105 }
2106 /* Warn if the e prefix on a general reg is missing. */
2107 else if (((i.types[op] & Reg16) != 0
2108 || (i.types[op] & Reg32) != 0)
2109 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2110 {
2111 /* Prohibit these changes in the 64bit mode, since
2112 the lowering is more complicated. */
2113 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2114 i.op[op].regs->reg_name,
2115 i.suffix);
2116 }
2117 }
2118 else if (i.suffix == WORD_MNEM_SUFFIX)
2119 {
2120 int op;
2121 for (op = i.operands; --op >= 0;)
2122 /* Reject eight bit registers, except where the template
2123 requires them. (eg. movzb) */
2124 if ((i.types[op] & Reg8) != 0
2125 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2126 {
2127 as_bad (_("`%%%s' not allowed with `%s%c'"),
2128 i.op[op].regs->reg_name,
2129 i.tm.name,
2130 i.suffix);
2131 return;
2132 }
2133 /* Warn if the e prefix on a general reg is present. */
2134 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2135 && (i.types[op] & Reg32) != 0
2136 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2137 {
2138 /* Prohibit these changes in the 64bit mode, since
2139 the lowering is more complicated. */
2140 if (flag_code == CODE_64BIT)
2141 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2142 i.op[op].regs->reg_name,
2143 i.suffix);
2144 else
2145 #if REGISTER_WARNINGS
2146 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2147 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2148 i.op[op].regs->reg_name,
2149 i.suffix);
2150 #endif
2151 }
2152 }
2153 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2154 /* Do nothing if the instruction is going to ignore the prefix. */
2155 ;
2156 else
2157 abort ();
2158 }
2159 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2160 {
2161 i.suffix = stackop_size;
2162 }
2163 /* Make still unresolved immediate matches conform to size of immediate
2164 given in i.suffix. Note: overlap2 cannot be an immediate! */
2165 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2166 && overlap0 != Imm8 && overlap0 != Imm8S
2167 && overlap0 != Imm16 && overlap0 != Imm32S
2168 && overlap0 != Imm32 && overlap0 != Imm64)
2169 {
2170 if (i.suffix)
2171 {
2172 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2173 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2174 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2175 }
2176 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2177 || overlap0 == (Imm16 | Imm32)
2178 || overlap0 == (Imm16 | Imm32S))
2179 {
2180 overlap0 =
2181 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2182 }
2183 if (overlap0 != Imm8 && overlap0 != Imm8S
2184 && overlap0 != Imm16 && overlap0 != Imm32S
2185 && overlap0 != Imm32 && overlap0 != Imm64)
2186 {
2187 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2188 return;
2189 }
2190 }
2191 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2192 && overlap1 != Imm8 && overlap1 != Imm8S
2193 && overlap1 != Imm16 && overlap1 != Imm32S
2194 && overlap1 != Imm32 && overlap1 != Imm64)
2195 {
2196 if (i.suffix)
2197 {
2198 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2199 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2200 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2201 }
2202 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2203 || overlap1 == (Imm16 | Imm32)
2204 || overlap1 == (Imm16 | Imm32S))
2205 {
2206 overlap1 =
2207 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2208 }
2209 if (overlap1 != Imm8 && overlap1 != Imm8S
2210 && overlap1 != Imm16 && overlap1 != Imm32S
2211 && overlap1 != Imm32 && overlap1 != Imm64)
2212 {
2213 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2214 return;
2215 }
2216 }
2217 assert ((overlap2 & Imm) == 0);
2218
2219 i.types[0] = overlap0;
2220 if (overlap0 & ImplicitRegister)
2221 i.reg_operands--;
2222 if (overlap0 & Imm1)
2223 i.imm_operands = 0; /* kludge for shift insns. */
2224
2225 i.types[1] = overlap1;
2226 if (overlap1 & ImplicitRegister)
2227 i.reg_operands--;
2228
2229 i.types[2] = overlap2;
2230 if (overlap2 & ImplicitRegister)
2231 i.reg_operands--;
2232
2233 /* Finalize opcode. First, we change the opcode based on the operand
2234 size given by i.suffix: We need not change things for byte insns. */
2235
2236 if (!i.suffix && (i.tm.opcode_modifier & W))
2237 {
2238 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2239 return;
2240 }
2241
2242 /* For movzx and movsx, need to check the register type. */
2243 if (intel_syntax
2244 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2245 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2246 {
2247 unsigned int prefix = DATA_PREFIX_OPCODE;
2248
2249 if ((i.op[1].regs->reg_type & Reg16) != 0)
2250 if (!add_prefix (prefix))
2251 return;
2252 }
2253
2254 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2255 {
2256 /* It's not a byte, select word/dword operation. */
2257 if (i.tm.opcode_modifier & W)
2258 {
2259 if (i.tm.opcode_modifier & ShortForm)
2260 i.tm.base_opcode |= 8;
2261 else
2262 i.tm.base_opcode |= 1;
2263 }
2264 /* Now select between word & dword operations via the operand
2265 size prefix, except for instructions that will ignore this
2266 prefix anyway. */
2267 if (i.suffix != QWORD_MNEM_SUFFIX
2268 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2269 && !(i.tm.opcode_modifier & IgnoreSize))
2270 {
2271 unsigned int prefix = DATA_PREFIX_OPCODE;
2272 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2273 prefix = ADDR_PREFIX_OPCODE;
2274
2275 if (! add_prefix (prefix))
2276 return;
2277 }
2278
2279 /* Set mode64 for an operand. */
2280 if (i.suffix == QWORD_MNEM_SUFFIX
2281 && !(i.tm.opcode_modifier & NoRex64))
2282 {
2283 i.rex.mode64 = 1;
2284 if (flag_code < CODE_64BIT)
2285 {
2286 as_bad (_("64bit operations available only in 64bit modes."));
2287 return;
2288 }
2289 }
2290
2291 /* Size floating point instruction. */
2292 if (i.suffix == LONG_MNEM_SUFFIX)
2293 {
2294 if (i.tm.opcode_modifier & FloatMF)
2295 i.tm.base_opcode ^= 4;
2296 }
2297 }
2298
2299 if (i.tm.opcode_modifier & ImmExt)
2300 {
2301 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2302 opcode suffix which is coded in the same place as an 8-bit
2303 immediate field would be. Here we fake an 8-bit immediate
2304 operand from the opcode suffix stored in tm.extension_opcode. */
2305
2306 expressionS *exp;
2307
2308 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2309
2310 exp = &im_expressions[i.imm_operands++];
2311 i.op[i.operands].imms = exp;
2312 i.types[i.operands++] = Imm8;
2313 exp->X_op = O_constant;
2314 exp->X_add_number = i.tm.extension_opcode;
2315 i.tm.extension_opcode = None;
2316 }
2317
2318 /* For insns with operands there are more diddles to do to the opcode. */
2319 if (i.operands)
2320 {
2321 /* Default segment register this instruction will use
2322 for memory accesses. 0 means unknown.
2323 This is only for optimizing out unnecessary segment overrides. */
2324 const seg_entry *default_seg = 0;
2325
2326 /* The imul $imm, %reg instruction is converted into
2327 imul $imm, %reg, %reg, and the clr %reg instruction
2328 is converted into xor %reg, %reg. */
2329 if (i.tm.opcode_modifier & regKludge)
2330 {
2331 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2332 /* Pretend we saw the extra register operand. */
2333 assert (i.op[first_reg_op + 1].regs == 0);
2334 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2335 i.types[first_reg_op + 1] = i.types[first_reg_op];
2336 i.reg_operands = 2;
2337 }
2338
2339 if (i.tm.opcode_modifier & ShortForm)
2340 {
2341 /* The register or float register operand is in operand 0 or 1. */
2342 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2343 /* Register goes in low 3 bits of opcode. */
2344 i.tm.base_opcode |= i.op[op].regs->reg_num;
2345 if (i.op[op].regs->reg_flags & RegRex)
2346 i.rex.extZ = 1;
2347 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2348 {
2349 /* Warn about some common errors, but press on regardless.
2350 The first case can be generated by gcc (<= 2.8.1). */
2351 if (i.operands == 2)
2352 {
2353 /* Reversed arguments on faddp, fsubp, etc. */
2354 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2355 i.op[1].regs->reg_name,
2356 i.op[0].regs->reg_name);
2357 }
2358 else
2359 {
2360 /* Extraneous `l' suffix on fp insn. */
2361 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2362 i.op[0].regs->reg_name);
2363 }
2364 }
2365 }
2366 else if (i.tm.opcode_modifier & Modrm)
2367 {
2368 /* The opcode is completed (modulo i.tm.extension_opcode which
2369 must be put into the modrm byte).
2370 Now, we make the modrm & index base bytes based on all the
2371 info we've collected. */
2372
2373 /* i.reg_operands MUST be the number of real register operands;
2374 implicit registers do not count. */
2375 if (i.reg_operands == 2)
2376 {
2377 unsigned int source, dest;
2378 source = ((i.types[0]
2379 & (Reg | RegMMX | RegXMM
2380 | SReg2 | SReg3
2381 | Control | Debug | Test))
2382 ? 0 : 1);
2383 dest = source + 1;
2384
2385 i.rm.mode = 3;
2386 /* One of the register operands will be encoded in the
2387 i.tm.reg field, the other in the combined i.tm.mode
2388 and i.tm.regmem fields. If no form of this
2389 instruction supports a memory destination operand,
2390 then we assume the source operand may sometimes be
2391 a memory operand and so we need to store the
2392 destination in the i.rm.reg field. */
2393 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2394 {
2395 i.rm.reg = i.op[dest].regs->reg_num;
2396 i.rm.regmem = i.op[source].regs->reg_num;
2397 if (i.op[dest].regs->reg_flags & RegRex)
2398 i.rex.extX = 1;
2399 if (i.op[source].regs->reg_flags & RegRex)
2400 i.rex.extZ = 1;
2401 }
2402 else
2403 {
2404 i.rm.reg = i.op[source].regs->reg_num;
2405 i.rm.regmem = i.op[dest].regs->reg_num;
2406 if (i.op[dest].regs->reg_flags & RegRex)
2407 i.rex.extZ = 1;
2408 if (i.op[source].regs->reg_flags & RegRex)
2409 i.rex.extX = 1;
2410 }
2411 }
2412 else
2413 { /* If it's not 2 reg operands... */
2414 if (i.mem_operands)
2415 {
2416 unsigned int fake_zero_displacement = 0;
2417 unsigned int op = ((i.types[0] & AnyMem)
2418 ? 0
2419 : (i.types[1] & AnyMem) ? 1 : 2);
2420
2421 default_seg = &ds;
2422
2423 if (! i.base_reg)
2424 {
2425 i.rm.mode = 0;
2426 if (! i.disp_operands)
2427 fake_zero_displacement = 1;
2428 if (! i.index_reg)
2429 {
2430 /* Operand is just <disp> */
2431 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2432 {
2433 i.rm.regmem = NO_BASE_REGISTER_16;
2434 i.types[op] &= ~Disp;
2435 i.types[op] |= Disp16;
2436 }
2437 else if (flag_code != CODE_64BIT)
2438 {
2439 i.rm.regmem = NO_BASE_REGISTER;
2440 i.types[op] &= ~Disp;
2441 i.types[op] |= Disp32;
2442 }
2443 else
2444 {
2445 /* 64bit mode overwrites the 32bit
2446 absolute addressing by RIP relative
2447 addressing and absolute addressing
2448 is encoded by one of the redundant
2449 SIB forms. */
2450
2451 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2452 i.sib.base = NO_BASE_REGISTER;
2453 i.sib.index = NO_INDEX_REGISTER;
2454 i.types[op] &= ~Disp;
2455 i.types[op] |= Disp32S;
2456 }
2457 }
2458 else /* ! i.base_reg && i.index_reg */
2459 {
2460 i.sib.index = i.index_reg->reg_num;
2461 i.sib.base = NO_BASE_REGISTER;
2462 i.sib.scale = i.log2_scale_factor;
2463 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2464 i.types[op] &= ~Disp;
2465 if (flag_code != CODE_64BIT)
2466 i.types[op] |= Disp32; /* Must be 32 bit */
2467 else
2468 i.types[op] |= Disp32S;
2469 if (i.index_reg->reg_flags & RegRex)
2470 i.rex.extY = 1;
2471 }
2472 }
2473 /* RIP addressing for 64bit mode. */
2474 else if (i.base_reg->reg_type == BaseIndex)
2475 {
2476 i.rm.regmem = NO_BASE_REGISTER;
2477 i.types[op] &= ~Disp;
2478 i.types[op] |= Disp32S;
2479 i.flags[op] = Operand_PCrel;
2480 }
2481 else if (i.base_reg->reg_type & Reg16)
2482 {
2483 switch (i.base_reg->reg_num)
2484 {
2485 case 3: /* (%bx) */
2486 if (! i.index_reg)
2487 i.rm.regmem = 7;
2488 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2489 i.rm.regmem = i.index_reg->reg_num - 6;
2490 break;
2491 case 5: /* (%bp) */
2492 default_seg = &ss;
2493 if (! i.index_reg)
2494 {
2495 i.rm.regmem = 6;
2496 if ((i.types[op] & Disp) == 0)
2497 {
2498 /* fake (%bp) into 0(%bp) */
2499 i.types[op] |= Disp8;
2500 fake_zero_displacement = 1;
2501 }
2502 }
2503 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2504 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2505 break;
2506 default: /* (%si) -> 4 or (%di) -> 5 */
2507 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2508 }
2509 i.rm.mode = mode_from_disp_size (i.types[op]);
2510 }
2511 else /* i.base_reg and 32/64 bit mode */
2512 {
2513 if (flag_code == CODE_64BIT
2514 && (i.types[op] & Disp))
2515 {
2516 if (i.types[op] & Disp8)
2517 i.types[op] = Disp8 | Disp32S;
2518 else
2519 i.types[op] = Disp32S;
2520 }
2521 i.rm.regmem = i.base_reg->reg_num;
2522 if (i.base_reg->reg_flags & RegRex)
2523 i.rex.extZ = 1;
2524 i.sib.base = i.base_reg->reg_num;
2525 /* x86-64 ignores REX prefix bit here to avoid
2526 decoder complications. */
2527 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2528 {
2529 default_seg = &ss;
2530 if (i.disp_operands == 0)
2531 {
2532 fake_zero_displacement = 1;
2533 i.types[op] |= Disp8;
2534 }
2535 }
2536 else if (i.base_reg->reg_num == ESP_REG_NUM)
2537 {
2538 default_seg = &ss;
2539 }
2540 i.sib.scale = i.log2_scale_factor;
2541 if (! i.index_reg)
2542 {
2543 /* <disp>(%esp) becomes two byte modrm
2544 with no index register. We've already
2545 stored the code for esp in i.rm.regmem
2546 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2547 base register besides %esp will not use
2548 the extra modrm byte. */
2549 i.sib.index = NO_INDEX_REGISTER;
2550 #if ! SCALE1_WHEN_NO_INDEX
2551 /* Another case where we force the second
2552 modrm byte. */
2553 if (i.log2_scale_factor)
2554 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2555 #endif
2556 }
2557 else
2558 {
2559 i.sib.index = i.index_reg->reg_num;
2560 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2561 if (i.index_reg->reg_flags & RegRex)
2562 i.rex.extY = 1;
2563 }
2564 i.rm.mode = mode_from_disp_size (i.types[op]);
2565 }
2566
2567 if (fake_zero_displacement)
2568 {
2569 /* Fakes a zero displacement assuming that i.types[op]
2570 holds the correct displacement size. */
2571 expressionS *exp;
2572
2573 assert (i.op[op].disps == 0);
2574 exp = &disp_expressions[i.disp_operands++];
2575 i.op[op].disps = exp;
2576 exp->X_op = O_constant;
2577 exp->X_add_number = 0;
2578 exp->X_add_symbol = (symbolS *) 0;
2579 exp->X_op_symbol = (symbolS *) 0;
2580 }
2581 }
2582
2583 /* Fill in i.rm.reg or i.rm.regmem field with register
2584 operand (if any) based on i.tm.extension_opcode.
2585 Again, we must be careful to make sure that
2586 segment/control/debug/test/MMX registers are coded
2587 into the i.rm.reg field. */
2588 if (i.reg_operands)
2589 {
2590 unsigned int op =
2591 ((i.types[0]
2592 & (Reg | RegMMX | RegXMM
2593 | SReg2 | SReg3
2594 | Control | Debug | Test))
2595 ? 0
2596 : ((i.types[1]
2597 & (Reg | RegMMX | RegXMM
2598 | SReg2 | SReg3
2599 | Control | Debug | Test))
2600 ? 1
2601 : 2));
2602 /* If there is an extension opcode to put here, the
2603 register number must be put into the regmem field. */
2604 if (i.tm.extension_opcode != None)
2605 {
2606 i.rm.regmem = i.op[op].regs->reg_num;
2607 if (i.op[op].regs->reg_flags & RegRex)
2608 i.rex.extZ = 1;
2609 }
2610 else
2611 {
2612 i.rm.reg = i.op[op].regs->reg_num;
2613 if (i.op[op].regs->reg_flags & RegRex)
2614 i.rex.extX = 1;
2615 }
2616
2617 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2618 we must set it to 3 to indicate this is a register
2619 operand in the regmem field. */
2620 if (!i.mem_operands)
2621 i.rm.mode = 3;
2622 }
2623
2624 /* Fill in i.rm.reg field with extension opcode (if any). */
2625 if (i.tm.extension_opcode != None)
2626 i.rm.reg = i.tm.extension_opcode;
2627 }
2628 }
2629 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2630 {
2631 if (i.tm.base_opcode == POP_SEG_SHORT
2632 && i.op[0].regs->reg_num == 1)
2633 {
2634 as_bad (_("you can't `pop %%cs'"));
2635 return;
2636 }
2637 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2638 if (i.op[0].regs->reg_flags & RegRex)
2639 i.rex.extZ = 1;
2640 }
2641 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2642 {
2643 default_seg = &ds;
2644 }
2645 else if ((i.tm.opcode_modifier & IsString) != 0)
2646 {
2647 /* For the string instructions that allow a segment override
2648 on one of their operands, the default segment is ds. */
2649 default_seg = &ds;
2650 }
2651
2652 /* If a segment was explicitly specified,
2653 and the specified segment is not the default,
2654 use an opcode prefix to select it.
2655 If we never figured out what the default segment is,
2656 then default_seg will be zero at this point,
2657 and the specified segment prefix will always be used. */
2658 if ((i.seg[0]) && (i.seg[0] != default_seg))
2659 {
2660 if (! add_prefix (i.seg[0]->seg_prefix))
2661 return;
2662 }
2663 }
2664 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2665 {
2666 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2667 as_warn (_("translating to `%sp'"), i.tm.name);
2668 }
2669 }
2670
2671 /* Handle conversion of 'int $3' --> special int3 insn. */
2672 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2673 {
2674 i.tm.base_opcode = INT3_OPCODE;
2675 i.imm_operands = 0;
2676 }
2677
2678 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2679 && i.op[0].disps->X_op == O_constant)
2680 {
2681 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2682 the absolute address given by the constant. Since ix86 jumps and
2683 calls are pc relative, we need to generate a reloc. */
2684 i.op[0].disps->X_add_symbol = &abs_symbol;
2685 i.op[0].disps->X_op = O_symbol;
2686 }
2687
2688 if (i.tm.opcode_modifier & Rex64)
2689 i.rex.mode64 = 1;
2690
2691 /* For 8bit registers we would need an empty rex prefix.
2692 Also in the case instruction is already having prefix,
2693 we need to convert old registers to new ones. */
2694
2695 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2696 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2697 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2698 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2699 {
2700 int x;
2701 i.rex.empty = 1;
2702 for (x = 0; x < 2; x++)
2703 {
2704 /* Look for 8bit operand that does use old registers. */
2705 if (i.types[x] & Reg8
2706 && !(i.op[x].regs->reg_flags & RegRex64))
2707 {
2708 /* In case it is "hi" register, give up. */
2709 if (i.op[x].regs->reg_num > 3)
2710 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2711 i.op[x].regs->reg_name);
2712
2713 /* Otherwise it is equivalent to the extended register.
2714 Since the encoding don't change this is merely cosmetical
2715 cleanup for debug output. */
2716
2717 i.op[x].regs = i.op[x].regs + 8;
2718 }
2719 }
2720 }
2721
2722 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2723 add_prefix (0x40
2724 | (i.rex.mode64 ? 8 : 0)
2725 | (i.rex.extX ? 4 : 0)
2726 | (i.rex.extY ? 2 : 0)
2727 | (i.rex.extZ ? 1 : 0));
2728
2729 /* We are ready to output the insn. */
2730 {
2731 register char *p;
2732
2733 /* Tie dwarf2 debug info to the address at the start of the insn.
2734 We can't do this after the insn has been output as the current
2735 frag may have been closed off. eg. by frag_var. */
2736 dwarf2_emit_insn (0);
2737
2738 /* Output jumps. */
2739 if (i.tm.opcode_modifier & Jump)
2740 {
2741 int code16;
2742 int prefix;
2743 relax_substateT subtype;
2744 symbolS *sym;
2745 offsetT off;
2746
2747 code16 = 0;
2748 if (flag_code == CODE_16BIT)
2749 code16 = CODE16;
2750
2751 prefix = 0;
2752 if (i.prefix[DATA_PREFIX])
2753 {
2754 prefix = 1;
2755 i.prefixes -= 1;
2756 code16 ^= CODE16;
2757 }
2758 /* Pentium4 branch hints. */
2759 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2760 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2761 {
2762 prefix++;
2763 i.prefixes--;
2764 }
2765 if (i.prefix[REX_PREFIX])
2766 {
2767 prefix++;
2768 i.prefixes--;
2769 }
2770
2771 if (i.prefixes != 0 && !intel_syntax)
2772 as_warn (_("skipping prefixes on this instruction"));
2773
2774 /* It's always a symbol; End frag & setup for relax.
2775 Make sure there is enough room in this frag for the largest
2776 instruction we may generate in md_convert_frag. This is 2
2777 bytes for the opcode and room for the prefix and largest
2778 displacement. */
2779 frag_grow (prefix + 2 + 4);
2780 /* Prefix and 1 opcode byte go in fr_fix. */
2781 p = frag_more (prefix + 1);
2782 if (i.prefix[DATA_PREFIX])
2783 *p++ = DATA_PREFIX_OPCODE;
2784 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2785 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2786 *p++ = i.prefix[SEG_PREFIX];
2787 if (i.prefix[REX_PREFIX])
2788 *p++ = i.prefix[REX_PREFIX];
2789 *p = i.tm.base_opcode;
2790
2791 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2792 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2793 else if ((cpu_arch_flags & Cpu386) != 0)
2794 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2795 else
2796 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2797 subtype |= code16;
2798
2799 sym = i.op[0].disps->X_add_symbol;
2800 off = i.op[0].disps->X_add_number;
2801
2802 if (i.op[0].disps->X_op != O_constant
2803 && i.op[0].disps->X_op != O_symbol)
2804 {
2805 /* Handle complex expressions. */
2806 sym = make_expr_symbol (i.op[0].disps);
2807 off = 0;
2808 }
2809
2810 /* 1 possible extra opcode + 4 byte displacement go in var part.
2811 Pass reloc in fr_var. */
2812 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
2813 }
2814 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2815 {
2816 int size;
2817
2818 if (i.tm.opcode_modifier & JumpByte)
2819 {
2820 /* This is a loop or jecxz type instruction. */
2821 size = 1;
2822 if (i.prefix[ADDR_PREFIX])
2823 {
2824 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2825 i.prefixes -= 1;
2826 }
2827 /* Pentium4 branch hints. */
2828 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2829 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2830 {
2831 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2832 i.prefixes--;
2833 }
2834 }
2835 else
2836 {
2837 int code16;
2838
2839 code16 = 0;
2840 if (flag_code == CODE_16BIT)
2841 code16 = CODE16;
2842
2843 if (i.prefix[DATA_PREFIX])
2844 {
2845 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2846 i.prefixes -= 1;
2847 code16 ^= CODE16;
2848 }
2849
2850 size = 4;
2851 if (code16)
2852 size = 2;
2853 }
2854
2855 if (i.prefix[REX_PREFIX])
2856 {
2857 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2858 i.prefixes -= 1;
2859 }
2860
2861 if (i.prefixes != 0 && !intel_syntax)
2862 as_warn (_("skipping prefixes on this instruction"));
2863
2864 p = frag_more (1 + size);
2865 *p++ = i.tm.base_opcode;
2866
2867 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2868 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2869 }
2870 else if (i.tm.opcode_modifier & JumpInterSegment)
2871 {
2872 int size;
2873 int prefix;
2874 int code16;
2875
2876 code16 = 0;
2877 if (flag_code == CODE_16BIT)
2878 code16 = CODE16;
2879
2880 prefix = 0;
2881 if (i.prefix[DATA_PREFIX])
2882 {
2883 prefix = 1;
2884 i.prefixes -= 1;
2885 code16 ^= CODE16;
2886 }
2887 if (i.prefix[REX_PREFIX])
2888 {
2889 prefix++;
2890 i.prefixes -= 1;
2891 }
2892
2893 size = 4;
2894 if (code16)
2895 size = 2;
2896
2897 if (i.prefixes != 0 && !intel_syntax)
2898 as_warn (_("skipping prefixes on this instruction"));
2899
2900 /* 1 opcode; 2 segment; offset */
2901 p = frag_more (prefix + 1 + 2 + size);
2902
2903 if (i.prefix[DATA_PREFIX])
2904 *p++ = DATA_PREFIX_OPCODE;
2905
2906 if (i.prefix[REX_PREFIX])
2907 *p++ = i.prefix[REX_PREFIX];
2908
2909 *p++ = i.tm.base_opcode;
2910 if (i.op[1].imms->X_op == O_constant)
2911 {
2912 offsetT n = i.op[1].imms->X_add_number;
2913
2914 if (size == 2
2915 && !fits_in_unsigned_word (n)
2916 && !fits_in_signed_word (n))
2917 {
2918 as_bad (_("16-bit jump out of range"));
2919 return;
2920 }
2921 md_number_to_chars (p, n, size);
2922 }
2923 else
2924 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2925 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2926 if (i.op[0].imms->X_op != O_constant)
2927 as_bad (_("can't handle non absolute segment in `%s'"),
2928 i.tm.name);
2929 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2930 }
2931 else
2932 {
2933 /* Output normal instructions here. */
2934 unsigned char *q;
2935
2936 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2937 byte for the SSE instructions to specify prefix they require. */
2938 if (i.tm.base_opcode & 0xff0000)
2939 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2940
2941 /* The prefix bytes. */
2942 for (q = i.prefix;
2943 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2944 q++)
2945 {
2946 if (*q)
2947 {
2948 p = frag_more (1);
2949 md_number_to_chars (p, (valueT) *q, 1);
2950 }
2951 }
2952
2953 /* Now the opcode; be careful about word order here! */
2954 if (fits_in_unsigned_byte (i.tm.base_opcode))
2955 {
2956 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2957 }
2958 else
2959 {
2960 p = frag_more (2);
2961 /* Put out high byte first: can't use md_number_to_chars! */
2962 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2963 *p = i.tm.base_opcode & 0xff;
2964 }
2965
2966 /* Now the modrm byte and sib byte (if present). */
2967 if (i.tm.opcode_modifier & Modrm)
2968 {
2969 p = frag_more (1);
2970 md_number_to_chars (p,
2971 (valueT) (i.rm.regmem << 0
2972 | i.rm.reg << 3
2973 | i.rm.mode << 6),
2974 1);
2975 /* If i.rm.regmem == ESP (4)
2976 && i.rm.mode != (Register mode)
2977 && not 16 bit
2978 ==> need second modrm byte. */
2979 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2980 && i.rm.mode != 3
2981 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2982 {
2983 p = frag_more (1);
2984 md_number_to_chars (p,
2985 (valueT) (i.sib.base << 0
2986 | i.sib.index << 3
2987 | i.sib.scale << 6),
2988 1);
2989 }
2990 }
2991
2992 if (i.disp_operands)
2993 {
2994 register unsigned int n;
2995
2996 for (n = 0; n < i.operands; n++)
2997 {
2998 if (i.types[n] & Disp)
2999 {
3000 if (i.op[n].disps->X_op == O_constant)
3001 {
3002 int size;
3003 offsetT val;
3004
3005 size = 4;
3006 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3007 {
3008 size = 2;
3009 if (i.types[n] & Disp8)
3010 size = 1;
3011 if (i.types[n] & Disp64)
3012 size = 8;
3013 }
3014 val = offset_in_range (i.op[n].disps->X_add_number,
3015 size);
3016 p = frag_more (size);
3017 md_number_to_chars (p, val, size);
3018 }
3019 else
3020 {
3021 int size = 4;
3022 int sign = 0;
3023 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3024
3025 /* The PC relative address is computed relative
3026 to the instruction boundary, so in case immediate
3027 fields follows, we need to adjust the value. */
3028 if (pcrel && i.imm_operands)
3029 {
3030 int imm_size = 4;
3031 register unsigned int n1;
3032
3033 for (n1 = 0; n1 < i.operands; n1++)
3034 if (i.types[n1] & Imm)
3035 {
3036 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3037 {
3038 imm_size = 2;
3039 if (i.types[n1] & (Imm8 | Imm8S))
3040 imm_size = 1;
3041 if (i.types[n1] & Imm64)
3042 imm_size = 8;
3043 }
3044 break;
3045 }
3046 /* We should find the immediate. */
3047 if (n1 == i.operands)
3048 abort ();
3049 i.op[n].disps->X_add_number -= imm_size;
3050 }
3051
3052 if (i.types[n] & Disp32S)
3053 sign = 1;
3054
3055 if (i.types[n] & (Disp16 | Disp64))
3056 {
3057 size = 2;
3058 if (i.types[n] & Disp64)
3059 size = 8;
3060 }
3061
3062 p = frag_more (size);
3063 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3064 i.op[n].disps, pcrel,
3065 reloc (size, pcrel, sign, i.reloc[n]));
3066 }
3067 }
3068 }
3069 }
3070
3071 /* Output immediate. */
3072 if (i.imm_operands)
3073 {
3074 register unsigned int n;
3075
3076 for (n = 0; n < i.operands; n++)
3077 {
3078 if (i.types[n] & Imm)
3079 {
3080 if (i.op[n].imms->X_op == O_constant)
3081 {
3082 int size;
3083 offsetT val;
3084
3085 size = 4;
3086 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3087 {
3088 size = 2;
3089 if (i.types[n] & (Imm8 | Imm8S))
3090 size = 1;
3091 else if (i.types[n] & Imm64)
3092 size = 8;
3093 }
3094 val = offset_in_range (i.op[n].imms->X_add_number,
3095 size);
3096 p = frag_more (size);
3097 md_number_to_chars (p, val, size);
3098 }
3099 else
3100 {
3101 /* Not absolute_section.
3102 Need a 32-bit fixup (don't support 8bit
3103 non-absolute imms). Try to support other
3104 sizes ... */
3105 RELOC_ENUM reloc_type;
3106 int size = 4;
3107 int sign = 0;
3108
3109 if ((i.types[n] & (Imm32S))
3110 && i.suffix == QWORD_MNEM_SUFFIX)
3111 sign = 1;
3112 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3113 {
3114 size = 2;
3115 if (i.types[n] & (Imm8 | Imm8S))
3116 size = 1;
3117 if (i.types[n] & Imm64)
3118 size = 8;
3119 }
3120
3121 p = frag_more (size);
3122 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3123 #ifdef BFD_ASSEMBLER
3124 if (reloc_type == BFD_RELOC_32
3125 && GOT_symbol
3126 && GOT_symbol == i.op[n].imms->X_add_symbol
3127 && (i.op[n].imms->X_op == O_symbol
3128 || (i.op[n].imms->X_op == O_add
3129 && ((symbol_get_value_expression
3130 (i.op[n].imms->X_op_symbol)->X_op)
3131 == O_subtract))))
3132 {
3133 /* We don't support dynamic linking on x86-64 yet. */
3134 if (flag_code == CODE_64BIT)
3135 abort ();
3136 reloc_type = BFD_RELOC_386_GOTPC;
3137 i.op[n].imms->X_add_number += 3;
3138 }
3139 #endif
3140 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3141 i.op[n].imms, 0, reloc_type);
3142 }
3143 }
3144 }
3145 }
3146 }
3147
3148 #ifdef DEBUG386
3149 if (flag_debug)
3150 {
3151 pi (line, &i);
3152 }
3153 #endif /* DEBUG386 */
3154 }
3155 }
3156 \f
3157 #ifndef LEX_AT
3158 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3159
3160 /* Parse operands of the form
3161 <symbol>@GOTOFF+<nnn>
3162 and similar .plt or .got references.
3163
3164 If we find one, set up the correct relocation in RELOC and copy the
3165 input string, minus the `@GOTOFF' into a malloc'd buffer for
3166 parsing by the calling routine. Return this buffer, and if ADJUST
3167 is non-null set it to the length of the string we removed from the
3168 input line. Otherwise return NULL. */
3169 static char *
3170 lex_got (reloc, adjust)
3171 RELOC_ENUM *reloc;
3172 int *adjust;
3173 {
3174 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3175 static const struct {
3176 const char *str;
3177 const RELOC_ENUM rel[NUM_FLAG_CODE];
3178 } gotrel[] = {
3179 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3180 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3181 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3182 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3183 };
3184 char *cp;
3185 unsigned int j;
3186
3187 for (cp = input_line_pointer; *cp != '@'; cp++)
3188 if (is_end_of_line[(unsigned char) *cp])
3189 return NULL;
3190
3191 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3192 {
3193 int len;
3194
3195 len = strlen (gotrel[j].str);
3196 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3197 {
3198 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3199 {
3200 int first, second;
3201 char *tmpbuf, *past_reloc;
3202
3203 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3204 if (adjust)
3205 *adjust = len;
3206
3207 if (GOT_symbol == NULL)
3208 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3209
3210 /* Replace the relocation token with ' ', so that
3211 errors like foo@GOTOFF1 will be detected. */
3212
3213 /* The length of the first part of our input line. */
3214 first = cp - input_line_pointer;
3215
3216 /* The second part goes from after the reloc token until
3217 (and including) an end_of_line char. Don't use strlen
3218 here as the end_of_line char may not be a NUL. */
3219 past_reloc = cp + 1 + len;
3220 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3221 ;
3222 second = cp - past_reloc;
3223
3224 /* Allocate and copy string. The trailing NUL shouldn't
3225 be necessary, but be safe. */
3226 tmpbuf = xmalloc (first + second + 2);
3227 memcpy (tmpbuf, input_line_pointer, first);
3228 tmpbuf[first] = ' ';
3229 memcpy (tmpbuf + first + 1, past_reloc, second);
3230 tmpbuf[first + second + 1] = '\0';
3231 return tmpbuf;
3232 }
3233
3234 as_bad (_("@%s reloc is not supported in %s bit mode"),
3235 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3236 return NULL;
3237 }
3238 }
3239
3240 /* Might be a symbol version string. Don't as_bad here. */
3241 return NULL;
3242 }
3243
3244 /* x86_cons_fix_new is called via the expression parsing code when a
3245 reloc is needed. We use this hook to get the correct .got reloc. */
3246 static RELOC_ENUM got_reloc = NO_RELOC;
3247
3248 void
3249 x86_cons_fix_new (frag, off, len, exp)
3250 fragS *frag;
3251 unsigned int off;
3252 unsigned int len;
3253 expressionS *exp;
3254 {
3255 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3256 got_reloc = NO_RELOC;
3257 fix_new_exp (frag, off, len, exp, 0, r);
3258 }
3259
3260 void
3261 x86_cons (exp, size)
3262 expressionS *exp;
3263 int size;
3264 {
3265 if (size == 4)
3266 {
3267 /* Handle @GOTOFF and the like in an expression. */
3268 char *save;
3269 char *gotfree_input_line;
3270 int adjust;
3271
3272 save = input_line_pointer;
3273 gotfree_input_line = lex_got (&got_reloc, &adjust);
3274 if (gotfree_input_line)
3275 input_line_pointer = gotfree_input_line;
3276
3277 expression (exp);
3278
3279 if (gotfree_input_line)
3280 {
3281 /* expression () has merrily parsed up to the end of line,
3282 or a comma - in the wrong buffer. Transfer how far
3283 input_line_pointer has moved to the right buffer. */
3284 input_line_pointer = (save
3285 + (input_line_pointer - gotfree_input_line)
3286 + adjust);
3287 free (gotfree_input_line);
3288 }
3289 }
3290 else
3291 expression (exp);
3292 }
3293 #endif
3294
3295 static int i386_immediate PARAMS ((char *));
3296
3297 static int
3298 i386_immediate (imm_start)
3299 char *imm_start;
3300 {
3301 char *save_input_line_pointer;
3302 #ifndef LEX_AT
3303 char *gotfree_input_line;
3304 #endif
3305 segT exp_seg = 0;
3306 expressionS *exp;
3307
3308 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3309 {
3310 as_bad (_("only 1 or 2 immediate operands are allowed"));
3311 return 0;
3312 }
3313
3314 exp = &im_expressions[i.imm_operands++];
3315 i.op[this_operand].imms = exp;
3316
3317 if (is_space_char (*imm_start))
3318 ++imm_start;
3319
3320 save_input_line_pointer = input_line_pointer;
3321 input_line_pointer = imm_start;
3322
3323 #ifndef LEX_AT
3324 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3325 if (gotfree_input_line)
3326 input_line_pointer = gotfree_input_line;
3327 #endif
3328
3329 exp_seg = expression (exp);
3330
3331 SKIP_WHITESPACE ();
3332 if (*input_line_pointer)
3333 as_bad (_("junk `%s' after expression"), input_line_pointer);
3334
3335 input_line_pointer = save_input_line_pointer;
3336 #ifndef LEX_AT
3337 if (gotfree_input_line)
3338 free (gotfree_input_line);
3339 #endif
3340
3341 if (exp->X_op == O_absent || exp->X_op == O_big)
3342 {
3343 /* Missing or bad expr becomes absolute 0. */
3344 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3345 imm_start);
3346 exp->X_op = O_constant;
3347 exp->X_add_number = 0;
3348 exp->X_add_symbol = (symbolS *) 0;
3349 exp->X_op_symbol = (symbolS *) 0;
3350 }
3351 else if (exp->X_op == O_constant)
3352 {
3353 /* Size it properly later. */
3354 i.types[this_operand] |= Imm64;
3355 /* If BFD64, sign extend val. */
3356 if (!use_rela_relocations)
3357 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3358 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3359 }
3360 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3361 else if (1
3362 #ifdef BFD_ASSEMBLER
3363 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3364 #endif
3365 && exp_seg != text_section
3366 && exp_seg != data_section
3367 && exp_seg != bss_section
3368 && exp_seg != undefined_section
3369 #ifdef BFD_ASSEMBLER
3370 && !bfd_is_com_section (exp_seg)
3371 #endif
3372 )
3373 {
3374 #ifdef BFD_ASSEMBLER
3375 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3376 #else
3377 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3378 #endif
3379 return 0;
3380 }
3381 #endif
3382 else
3383 {
3384 /* This is an address. The size of the address will be
3385 determined later, depending on destination register,
3386 suffix, or the default for the section. */
3387 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3388 }
3389
3390 return 1;
3391 }
3392
3393 static char *i386_scale PARAMS ((char *));
3394
3395 static char *
3396 i386_scale (scale)
3397 char *scale;
3398 {
3399 offsetT val;
3400 char *save = input_line_pointer;
3401
3402 input_line_pointer = scale;
3403 val = get_absolute_expression ();
3404
3405 switch (val)
3406 {
3407 case 0:
3408 case 1:
3409 i.log2_scale_factor = 0;
3410 break;
3411 case 2:
3412 i.log2_scale_factor = 1;
3413 break;
3414 case 4:
3415 i.log2_scale_factor = 2;
3416 break;
3417 case 8:
3418 i.log2_scale_factor = 3;
3419 break;
3420 default:
3421 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3422 scale);
3423 input_line_pointer = save;
3424 return NULL;
3425 }
3426 if (i.log2_scale_factor != 0 && ! i.index_reg)
3427 {
3428 as_warn (_("scale factor of %d without an index register"),
3429 1 << i.log2_scale_factor);
3430 #if SCALE1_WHEN_NO_INDEX
3431 i.log2_scale_factor = 0;
3432 #endif
3433 }
3434 scale = input_line_pointer;
3435 input_line_pointer = save;
3436 return scale;
3437 }
3438
3439 static int i386_displacement PARAMS ((char *, char *));
3440
3441 static int
3442 i386_displacement (disp_start, disp_end)
3443 char *disp_start;
3444 char *disp_end;
3445 {
3446 register expressionS *exp;
3447 segT exp_seg = 0;
3448 char *save_input_line_pointer;
3449 #ifndef LEX_AT
3450 char *gotfree_input_line;
3451 #endif
3452 int bigdisp = Disp32;
3453
3454 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3455 bigdisp = Disp16;
3456 if (flag_code == CODE_64BIT)
3457 bigdisp = Disp64;
3458 i.types[this_operand] |= bigdisp;
3459
3460 exp = &disp_expressions[i.disp_operands];
3461 i.op[this_operand].disps = exp;
3462 i.disp_operands++;
3463 save_input_line_pointer = input_line_pointer;
3464 input_line_pointer = disp_start;
3465 END_STRING_AND_SAVE (disp_end);
3466
3467 #ifndef GCC_ASM_O_HACK
3468 #define GCC_ASM_O_HACK 0
3469 #endif
3470 #if GCC_ASM_O_HACK
3471 END_STRING_AND_SAVE (disp_end + 1);
3472 if ((i.types[this_operand] & BaseIndex) != 0
3473 && displacement_string_end[-1] == '+')
3474 {
3475 /* This hack is to avoid a warning when using the "o"
3476 constraint within gcc asm statements.
3477 For instance:
3478
3479 #define _set_tssldt_desc(n,addr,limit,type) \
3480 __asm__ __volatile__ ( \
3481 "movw %w2,%0\n\t" \
3482 "movw %w1,2+%0\n\t" \
3483 "rorl $16,%1\n\t" \
3484 "movb %b1,4+%0\n\t" \
3485 "movb %4,5+%0\n\t" \
3486 "movb $0,6+%0\n\t" \
3487 "movb %h1,7+%0\n\t" \
3488 "rorl $16,%1" \
3489 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3490
3491 This works great except that the output assembler ends
3492 up looking a bit weird if it turns out that there is
3493 no offset. You end up producing code that looks like:
3494
3495 #APP
3496 movw $235,(%eax)
3497 movw %dx,2+(%eax)
3498 rorl $16,%edx
3499 movb %dl,4+(%eax)
3500 movb $137,5+(%eax)
3501 movb $0,6+(%eax)
3502 movb %dh,7+(%eax)
3503 rorl $16,%edx
3504 #NO_APP
3505
3506 So here we provide the missing zero. */
3507
3508 *displacement_string_end = '0';
3509 }
3510 #endif
3511 #ifndef LEX_AT
3512 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3513 if (gotfree_input_line)
3514 input_line_pointer = gotfree_input_line;
3515 #endif
3516
3517 exp_seg = expression (exp);
3518
3519 SKIP_WHITESPACE ();
3520 if (*input_line_pointer)
3521 as_bad (_("junk `%s' after expression"), input_line_pointer);
3522 #if GCC_ASM_O_HACK
3523 RESTORE_END_STRING (disp_end + 1);
3524 #endif
3525 RESTORE_END_STRING (disp_end);
3526 input_line_pointer = save_input_line_pointer;
3527 #ifndef LEX_AT
3528 if (gotfree_input_line)
3529 free (gotfree_input_line);
3530 #endif
3531
3532 #ifdef BFD_ASSEMBLER
3533 /* We do this to make sure that the section symbol is in
3534 the symbol table. We will ultimately change the relocation
3535 to be relative to the beginning of the section. */
3536 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3537 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3538 {
3539 if (exp->X_op != O_symbol)
3540 {
3541 as_bad (_("bad expression used with @%s"),
3542 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3543 ? "GOTPCREL"
3544 : "GOTOFF"));
3545 return 0;
3546 }
3547
3548 if (S_IS_LOCAL (exp->X_add_symbol)
3549 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3550 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3551 exp->X_op = O_subtract;
3552 exp->X_op_symbol = GOT_symbol;
3553 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3554 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3555 else
3556 i.reloc[this_operand] = BFD_RELOC_32;
3557 }
3558 #endif
3559
3560 if (exp->X_op == O_absent || exp->X_op == O_big)
3561 {
3562 /* Missing or bad expr becomes absolute 0. */
3563 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3564 disp_start);
3565 exp->X_op = O_constant;
3566 exp->X_add_number = 0;
3567 exp->X_add_symbol = (symbolS *) 0;
3568 exp->X_op_symbol = (symbolS *) 0;
3569 }
3570
3571 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3572 if (exp->X_op != O_constant
3573 #ifdef BFD_ASSEMBLER
3574 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3575 #endif
3576 && exp_seg != text_section
3577 && exp_seg != data_section
3578 && exp_seg != bss_section
3579 && exp_seg != undefined_section)
3580 {
3581 #ifdef BFD_ASSEMBLER
3582 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3583 #else
3584 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3585 #endif
3586 return 0;
3587 }
3588 #endif
3589 else if (flag_code == CODE_64BIT)
3590 i.types[this_operand] |= Disp32S | Disp32;
3591 return 1;
3592 }
3593
3594 static int i386_index_check PARAMS ((const char *));
3595
3596 /* Make sure the memory operand we've been dealt is valid.
3597 Return 1 on success, 0 on a failure. */
3598
3599 static int
3600 i386_index_check (operand_string)
3601 const char *operand_string;
3602 {
3603 int ok;
3604 #if INFER_ADDR_PREFIX
3605 int fudged = 0;
3606
3607 tryprefix:
3608 #endif
3609 ok = 1;
3610 if (flag_code == CODE_64BIT)
3611 {
3612 /* 64bit checks. */
3613 if ((i.base_reg
3614 && ((i.base_reg->reg_type & Reg64) == 0)
3615 && (i.base_reg->reg_type != BaseIndex
3616 || i.index_reg))
3617 || (i.index_reg
3618 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3619 != (Reg64|BaseIndex))))
3620 ok = 0;
3621 }
3622 else
3623 {
3624 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3625 {
3626 /* 16bit checks. */
3627 if ((i.base_reg
3628 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3629 != (Reg16|BaseIndex)))
3630 || (i.index_reg
3631 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3632 != (Reg16|BaseIndex))
3633 || ! (i.base_reg
3634 && i.base_reg->reg_num < 6
3635 && i.index_reg->reg_num >= 6
3636 && i.log2_scale_factor == 0))))
3637 ok = 0;
3638 }
3639 else
3640 {
3641 /* 32bit checks. */
3642 if ((i.base_reg
3643 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3644 || (i.index_reg
3645 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3646 != (Reg32|BaseIndex))))
3647 ok = 0;
3648 }
3649 }
3650 if (!ok)
3651 {
3652 #if INFER_ADDR_PREFIX
3653 if (flag_code != CODE_64BIT
3654 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3655 {
3656 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3657 i.prefixes += 1;
3658 /* Change the size of any displacement too. At most one of
3659 Disp16 or Disp32 is set.
3660 FIXME. There doesn't seem to be any real need for separate
3661 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3662 Removing them would probably clean up the code quite a lot. */
3663 if (i.types[this_operand] & (Disp16|Disp32))
3664 i.types[this_operand] ^= (Disp16|Disp32);
3665 fudged = 1;
3666 goto tryprefix;
3667 }
3668 if (fudged)
3669 as_bad (_("`%s' is not a valid base/index expression"),
3670 operand_string);
3671 else
3672 #endif
3673 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3674 operand_string,
3675 flag_code_names[flag_code]);
3676 return 0;
3677 }
3678 return 1;
3679 }
3680
3681 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3682 on error. */
3683
3684 static int
3685 i386_operand (operand_string)
3686 char *operand_string;
3687 {
3688 const reg_entry *r;
3689 char *end_op;
3690 char *op_string = operand_string;
3691
3692 if (is_space_char (*op_string))
3693 ++op_string;
3694
3695 /* We check for an absolute prefix (differentiating,
3696 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3697 if (*op_string == ABSOLUTE_PREFIX)
3698 {
3699 ++op_string;
3700 if (is_space_char (*op_string))
3701 ++op_string;
3702 i.types[this_operand] |= JumpAbsolute;
3703 }
3704
3705 /* Check if operand is a register. */
3706 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3707 && (r = parse_register (op_string, &end_op)) != NULL)
3708 {
3709 /* Check for a segment override by searching for ':' after a
3710 segment register. */
3711 op_string = end_op;
3712 if (is_space_char (*op_string))
3713 ++op_string;
3714 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3715 {
3716 switch (r->reg_num)
3717 {
3718 case 0:
3719 i.seg[i.mem_operands] = &es;
3720 break;
3721 case 1:
3722 i.seg[i.mem_operands] = &cs;
3723 break;
3724 case 2:
3725 i.seg[i.mem_operands] = &ss;
3726 break;
3727 case 3:
3728 i.seg[i.mem_operands] = &ds;
3729 break;
3730 case 4:
3731 i.seg[i.mem_operands] = &fs;
3732 break;
3733 case 5:
3734 i.seg[i.mem_operands] = &gs;
3735 break;
3736 }
3737
3738 /* Skip the ':' and whitespace. */
3739 ++op_string;
3740 if (is_space_char (*op_string))
3741 ++op_string;
3742
3743 if (!is_digit_char (*op_string)
3744 && !is_identifier_char (*op_string)
3745 && *op_string != '('
3746 && *op_string != ABSOLUTE_PREFIX)
3747 {
3748 as_bad (_("bad memory operand `%s'"), op_string);
3749 return 0;
3750 }
3751 /* Handle case of %es:*foo. */
3752 if (*op_string == ABSOLUTE_PREFIX)
3753 {
3754 ++op_string;
3755 if (is_space_char (*op_string))
3756 ++op_string;
3757 i.types[this_operand] |= JumpAbsolute;
3758 }
3759 goto do_memory_reference;
3760 }
3761 if (*op_string)
3762 {
3763 as_bad (_("junk `%s' after register"), op_string);
3764 return 0;
3765 }
3766 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3767 i.op[this_operand].regs = r;
3768 i.reg_operands++;
3769 }
3770 else if (*op_string == REGISTER_PREFIX)
3771 {
3772 as_bad (_("bad register name `%s'"), op_string);
3773 return 0;
3774 }
3775 else if (*op_string == IMMEDIATE_PREFIX)
3776 {
3777 ++op_string;
3778 if (i.types[this_operand] & JumpAbsolute)
3779 {
3780 as_bad (_("immediate operand illegal with absolute jump"));
3781 return 0;
3782 }
3783 if (!i386_immediate (op_string))
3784 return 0;
3785 }
3786 else if (is_digit_char (*op_string)
3787 || is_identifier_char (*op_string)
3788 || *op_string == '(')
3789 {
3790 /* This is a memory reference of some sort. */
3791 char *base_string;
3792
3793 /* Start and end of displacement string expression (if found). */
3794 char *displacement_string_start;
3795 char *displacement_string_end;
3796
3797 do_memory_reference:
3798 if ((i.mem_operands == 1
3799 && (current_templates->start->opcode_modifier & IsString) == 0)
3800 || i.mem_operands == 2)
3801 {
3802 as_bad (_("too many memory references for `%s'"),
3803 current_templates->start->name);
3804 return 0;
3805 }
3806
3807 /* Check for base index form. We detect the base index form by
3808 looking for an ')' at the end of the operand, searching
3809 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3810 after the '('. */
3811 base_string = op_string + strlen (op_string);
3812
3813 --base_string;
3814 if (is_space_char (*base_string))
3815 --base_string;
3816
3817 /* If we only have a displacement, set-up for it to be parsed later. */
3818 displacement_string_start = op_string;
3819 displacement_string_end = base_string + 1;
3820
3821 if (*base_string == ')')
3822 {
3823 char *temp_string;
3824 unsigned int parens_balanced = 1;
3825 /* We've already checked that the number of left & right ()'s are
3826 equal, so this loop will not be infinite. */
3827 do
3828 {
3829 base_string--;
3830 if (*base_string == ')')
3831 parens_balanced++;
3832 if (*base_string == '(')
3833 parens_balanced--;
3834 }
3835 while (parens_balanced);
3836
3837 temp_string = base_string;
3838
3839 /* Skip past '(' and whitespace. */
3840 ++base_string;
3841 if (is_space_char (*base_string))
3842 ++base_string;
3843
3844 if (*base_string == ','
3845 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3846 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3847 {
3848 displacement_string_end = temp_string;
3849
3850 i.types[this_operand] |= BaseIndex;
3851
3852 if (i.base_reg)
3853 {
3854 base_string = end_op;
3855 if (is_space_char (*base_string))
3856 ++base_string;
3857 }
3858
3859 /* There may be an index reg or scale factor here. */
3860 if (*base_string == ',')
3861 {
3862 ++base_string;
3863 if (is_space_char (*base_string))
3864 ++base_string;
3865
3866 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3867 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3868 {
3869 base_string = end_op;
3870 if (is_space_char (*base_string))
3871 ++base_string;
3872 if (*base_string == ',')
3873 {
3874 ++base_string;
3875 if (is_space_char (*base_string))
3876 ++base_string;
3877 }
3878 else if (*base_string != ')')
3879 {
3880 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3881 operand_string);
3882 return 0;
3883 }
3884 }
3885 else if (*base_string == REGISTER_PREFIX)
3886 {
3887 as_bad (_("bad register name `%s'"), base_string);
3888 return 0;
3889 }
3890
3891 /* Check for scale factor. */
3892 if (*base_string != ')')
3893 {
3894 char *end_scale = i386_scale (base_string);
3895
3896 if (!end_scale)
3897 return 0;
3898
3899 base_string = end_scale;
3900 if (is_space_char (*base_string))
3901 ++base_string;
3902 if (*base_string != ')')
3903 {
3904 as_bad (_("expecting `)' after scale factor in `%s'"),
3905 operand_string);
3906 return 0;
3907 }
3908 }
3909 else if (!i.index_reg)
3910 {
3911 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3912 *base_string);
3913 return 0;
3914 }
3915 }
3916 else if (*base_string != ')')
3917 {
3918 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3919 operand_string);
3920 return 0;
3921 }
3922 }
3923 else if (*base_string == REGISTER_PREFIX)
3924 {
3925 as_bad (_("bad register name `%s'"), base_string);
3926 return 0;
3927 }
3928 }
3929
3930 /* If there's an expression beginning the operand, parse it,
3931 assuming displacement_string_start and
3932 displacement_string_end are meaningful. */
3933 if (displacement_string_start != displacement_string_end)
3934 {
3935 if (!i386_displacement (displacement_string_start,
3936 displacement_string_end))
3937 return 0;
3938 }
3939
3940 /* Special case for (%dx) while doing input/output op. */
3941 if (i.base_reg
3942 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3943 && i.index_reg == 0
3944 && i.log2_scale_factor == 0
3945 && i.seg[i.mem_operands] == 0
3946 && (i.types[this_operand] & Disp) == 0)
3947 {
3948 i.types[this_operand] = InOutPortReg;
3949 return 1;
3950 }
3951
3952 if (i386_index_check (operand_string) == 0)
3953 return 0;
3954 i.mem_operands++;
3955 }
3956 else
3957 {
3958 /* It's not a memory operand; argh! */
3959 as_bad (_("invalid char %s beginning operand %d `%s'"),
3960 output_invalid (*op_string),
3961 this_operand + 1,
3962 op_string);
3963 return 0;
3964 }
3965 return 1; /* Normal return. */
3966 }
3967 \f
3968 /* md_estimate_size_before_relax()
3969
3970 Called just before relax() for rs_machine_dependent frags. The x86
3971 assembler uses these frags to handle variable size jump
3972 instructions.
3973
3974 Any symbol that is now undefined will not become defined.
3975 Return the correct fr_subtype in the frag.
3976 Return the initial "guess for variable size of frag" to caller.
3977 The guess is actually the growth beyond the fixed part. Whatever
3978 we do to grow the fixed or variable part contributes to our
3979 returned value. */
3980
3981 int
3982 md_estimate_size_before_relax (fragP, segment)
3983 register fragS *fragP;
3984 register segT segment;
3985 {
3986 /* We've already got fragP->fr_subtype right; all we have to do is
3987 check for un-relaxable symbols. On an ELF system, we can't relax
3988 an externally visible symbol, because it may be overridden by a
3989 shared library. */
3990 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3992 || S_IS_EXTERNAL (fragP->fr_symbol)
3993 || S_IS_WEAK (fragP->fr_symbol)
3994 #endif
3995 )
3996 {
3997 /* Symbol is undefined in this segment, or we need to keep a
3998 reloc so that weak symbols can be overridden. */
3999 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4000 RELOC_ENUM reloc_type;
4001 unsigned char *opcode;
4002 int old_fr_fix;
4003
4004 if (fragP->fr_var != NO_RELOC)
4005 reloc_type = fragP->fr_var;
4006 else if (size == 2)
4007 reloc_type = BFD_RELOC_16_PCREL;
4008 else
4009 reloc_type = BFD_RELOC_32_PCREL;
4010
4011 old_fr_fix = fragP->fr_fix;
4012 opcode = (unsigned char *) fragP->fr_opcode;
4013
4014 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4015 {
4016 case UNCOND_JUMP:
4017 /* Make jmp (0xeb) a (d)word displacement jump. */
4018 opcode[0] = 0xe9;
4019 fragP->fr_fix += size;
4020 fix_new (fragP, old_fr_fix, size,
4021 fragP->fr_symbol,
4022 fragP->fr_offset, 1,
4023 reloc_type);
4024 break;
4025
4026 case COND_JUMP86:
4027 if (no_cond_jump_promotion)
4028 goto relax_guess;
4029
4030 if (size == 2)
4031 {
4032 /* Negate the condition, and branch past an
4033 unconditional jump. */
4034 opcode[0] ^= 1;
4035 opcode[1] = 3;
4036 /* Insert an unconditional jump. */
4037 opcode[2] = 0xe9;
4038 /* We added two extra opcode bytes, and have a two byte
4039 offset. */
4040 fragP->fr_fix += 2 + 2;
4041 fix_new (fragP, old_fr_fix + 2, 2,
4042 fragP->fr_symbol,
4043 fragP->fr_offset, 1,
4044 reloc_type);
4045 break;
4046 }
4047 /* Fall through. */
4048
4049 case COND_JUMP:
4050 if (no_cond_jump_promotion)
4051 goto relax_guess;
4052
4053 /* This changes the byte-displacement jump 0x7N
4054 to the (d)word-displacement jump 0x0f,0x8N. */
4055 opcode[1] = opcode[0] + 0x10;
4056 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4057 /* We've added an opcode byte. */
4058 fragP->fr_fix += 1 + size;
4059 fix_new (fragP, old_fr_fix + 1, size,
4060 fragP->fr_symbol,
4061 fragP->fr_offset, 1,
4062 reloc_type);
4063 break;
4064
4065 default:
4066 BAD_CASE (fragP->fr_subtype);
4067 break;
4068 }
4069 frag_wane (fragP);
4070 return fragP->fr_fix - old_fr_fix;
4071 }
4072
4073 relax_guess:
4074 /* Guess size depending on current relax state. Initially the relax
4075 state will correspond to a short jump and we return 1, because
4076 the variable part of the frag (the branch offset) is one byte
4077 long. However, we can relax a section more than once and in that
4078 case we must either set fr_subtype back to the unrelaxed state,
4079 or return the value for the appropriate branch. */
4080 return md_relax_table[fragP->fr_subtype].rlx_length;
4081 }
4082
4083 /* Called after relax() is finished.
4084
4085 In: Address of frag.
4086 fr_type == rs_machine_dependent.
4087 fr_subtype is what the address relaxed to.
4088
4089 Out: Any fixSs and constants are set up.
4090 Caller will turn frag into a ".space 0". */
4091
4092 #ifndef BFD_ASSEMBLER
4093 void
4094 md_convert_frag (headers, sec, fragP)
4095 object_headers *headers ATTRIBUTE_UNUSED;
4096 segT sec ATTRIBUTE_UNUSED;
4097 register fragS *fragP;
4098 #else
4099 void
4100 md_convert_frag (abfd, sec, fragP)
4101 bfd *abfd ATTRIBUTE_UNUSED;
4102 segT sec ATTRIBUTE_UNUSED;
4103 register fragS *fragP;
4104 #endif
4105 {
4106 register unsigned char *opcode;
4107 unsigned char *where_to_put_displacement = NULL;
4108 offsetT target_address;
4109 offsetT opcode_address;
4110 unsigned int extension = 0;
4111 offsetT displacement_from_opcode_start;
4112
4113 opcode = (unsigned char *) fragP->fr_opcode;
4114
4115 /* Address we want to reach in file space. */
4116 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4117
4118 /* Address opcode resides at in file space. */
4119 opcode_address = fragP->fr_address + fragP->fr_fix;
4120
4121 /* Displacement from opcode start to fill into instruction. */
4122 displacement_from_opcode_start = target_address - opcode_address;
4123
4124 if ((fragP->fr_subtype & BIG) == 0)
4125 {
4126 /* Don't have to change opcode. */
4127 extension = 1; /* 1 opcode + 1 displacement */
4128 where_to_put_displacement = &opcode[1];
4129 }
4130 else
4131 {
4132 if (no_cond_jump_promotion
4133 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4134 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4135
4136 switch (fragP->fr_subtype)
4137 {
4138 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4139 extension = 4; /* 1 opcode + 4 displacement */
4140 opcode[0] = 0xe9;
4141 where_to_put_displacement = &opcode[1];
4142 break;
4143
4144 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4145 extension = 2; /* 1 opcode + 2 displacement */
4146 opcode[0] = 0xe9;
4147 where_to_put_displacement = &opcode[1];
4148 break;
4149
4150 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4151 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4152 extension = 5; /* 2 opcode + 4 displacement */
4153 opcode[1] = opcode[0] + 0x10;
4154 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4155 where_to_put_displacement = &opcode[2];
4156 break;
4157
4158 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4159 extension = 3; /* 2 opcode + 2 displacement */
4160 opcode[1] = opcode[0] + 0x10;
4161 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4162 where_to_put_displacement = &opcode[2];
4163 break;
4164
4165 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4166 extension = 4;
4167 opcode[0] ^= 1;
4168 opcode[1] = 3;
4169 opcode[2] = 0xe9;
4170 where_to_put_displacement = &opcode[3];
4171 break;
4172
4173 default:
4174 BAD_CASE (fragP->fr_subtype);
4175 break;
4176 }
4177 }
4178
4179 /* Now put displacement after opcode. */
4180 md_number_to_chars ((char *) where_to_put_displacement,
4181 (valueT) (displacement_from_opcode_start - extension),
4182 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4183 fragP->fr_fix += extension;
4184 }
4185 \f
4186 /* Size of byte displacement jmp. */
4187 int md_short_jump_size = 2;
4188
4189 /* Size of dword displacement jmp. */
4190 int md_long_jump_size = 5;
4191
4192 /* Size of relocation record. */
4193 const int md_reloc_size = 8;
4194
4195 void
4196 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4197 char *ptr;
4198 addressT from_addr, to_addr;
4199 fragS *frag ATTRIBUTE_UNUSED;
4200 symbolS *to_symbol ATTRIBUTE_UNUSED;
4201 {
4202 offsetT offset;
4203
4204 offset = to_addr - (from_addr + 2);
4205 /* Opcode for byte-disp jump. */
4206 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4207 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4208 }
4209
4210 void
4211 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4212 char *ptr;
4213 addressT from_addr, to_addr;
4214 fragS *frag ATTRIBUTE_UNUSED;
4215 symbolS *to_symbol ATTRIBUTE_UNUSED;
4216 {
4217 offsetT offset;
4218
4219 offset = to_addr - (from_addr + 5);
4220 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4221 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4222 }
4223 \f
4224 /* Apply a fixup (fixS) to segment data, once it has been determined
4225 by our caller that we have all the info we need to fix it up.
4226
4227 On the 386, immediates, displacements, and data pointers are all in
4228 the same (little-endian) format, so we don't need to care about which
4229 we are handling. */
4230
4231 int
4232 md_apply_fix3 (fixP, valp, seg)
4233 /* The fix we're to put in. */
4234 fixS *fixP;
4235
4236 /* Pointer to the value of the bits. */
4237 valueT *valp;
4238
4239 /* Segment fix is from. */
4240 segT seg ATTRIBUTE_UNUSED;
4241 {
4242 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4243 valueT value = *valp;
4244
4245 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4246 if (fixP->fx_pcrel)
4247 {
4248 switch (fixP->fx_r_type)
4249 {
4250 default:
4251 break;
4252
4253 case BFD_RELOC_32:
4254 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4255 break;
4256 case BFD_RELOC_16:
4257 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4258 break;
4259 case BFD_RELOC_8:
4260 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4261 break;
4262 }
4263 }
4264
4265 /* This is a hack. There should be a better way to handle this.
4266 This covers for the fact that bfd_install_relocation will
4267 subtract the current location (for partial_inplace, PC relative
4268 relocations); see more below. */
4269 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4270 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4271 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4272 && fixP->fx_addsy && !use_rela_relocations)
4273 {
4274 #ifndef OBJ_AOUT
4275 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4276 #ifdef TE_PE
4277 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4278 #endif
4279 )
4280 value += fixP->fx_where + fixP->fx_frag->fr_address;
4281 #endif
4282 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4283 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4284 {
4285 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4286
4287 if ((fseg == seg
4288 || (symbol_section_p (fixP->fx_addsy)
4289 && fseg != absolute_section))
4290 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4291 && ! S_IS_WEAK (fixP->fx_addsy)
4292 && S_IS_DEFINED (fixP->fx_addsy)
4293 && ! S_IS_COMMON (fixP->fx_addsy))
4294 {
4295 /* Yes, we add the values in twice. This is because
4296 bfd_perform_relocation subtracts them out again. I think
4297 bfd_perform_relocation is broken, but I don't dare change
4298 it. FIXME. */
4299 value += fixP->fx_where + fixP->fx_frag->fr_address;
4300 }
4301 }
4302 #endif
4303 #if defined (OBJ_COFF) && defined (TE_PE)
4304 /* For some reason, the PE format does not store a section
4305 address offset for a PC relative symbol. */
4306 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4307 value += md_pcrel_from (fixP);
4308 #endif
4309 }
4310
4311 /* Fix a few things - the dynamic linker expects certain values here,
4312 and we must not dissappoint it. */
4313 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4314 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4315 && fixP->fx_addsy)
4316 switch (fixP->fx_r_type)
4317 {
4318 case BFD_RELOC_386_PLT32:
4319 case BFD_RELOC_X86_64_PLT32:
4320 /* Make the jump instruction point to the address of the operand. At
4321 runtime we merely add the offset to the actual PLT entry. */
4322 value = -4;
4323 break;
4324 case BFD_RELOC_386_GOTPC:
4325
4326 /* This is tough to explain. We end up with this one if we have
4327 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4328 * here is to obtain the absolute address of the GOT, and it is strongly
4329 * preferable from a performance point of view to avoid using a runtime
4330 * relocation for this. The actual sequence of instructions often look
4331 * something like:
4332 *
4333 * call .L66
4334 * .L66:
4335 * popl %ebx
4336 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4337 *
4338 * The call and pop essentially return the absolute address of
4339 * the label .L66 and store it in %ebx. The linker itself will
4340 * ultimately change the first operand of the addl so that %ebx points to
4341 * the GOT, but to keep things simple, the .o file must have this operand
4342 * set so that it generates not the absolute address of .L66, but the
4343 * absolute address of itself. This allows the linker itself simply
4344 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4345 * added in, and the addend of the relocation is stored in the operand
4346 * field for the instruction itself.
4347 *
4348 * Our job here is to fix the operand so that it would add the correct
4349 * offset so that %ebx would point to itself. The thing that is tricky is
4350 * that .-.L66 will point to the beginning of the instruction, so we need
4351 * to further modify the operand so that it will point to itself.
4352 * There are other cases where you have something like:
4353 *
4354 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4355 *
4356 * and here no correction would be required. Internally in the assembler
4357 * we treat operands of this form as not being pcrel since the '.' is
4358 * explicitly mentioned, and I wonder whether it would simplify matters
4359 * to do it this way. Who knows. In earlier versions of the PIC patches,
4360 * the pcrel_adjust field was used to store the correction, but since the
4361 * expression is not pcrel, I felt it would be confusing to do it this
4362 * way. */
4363
4364 value -= 1;
4365 break;
4366 case BFD_RELOC_386_GOT32:
4367 case BFD_RELOC_X86_64_GOT32:
4368 value = 0; /* Fully resolved at runtime. No addend. */
4369 break;
4370 case BFD_RELOC_386_GOTOFF:
4371 case BFD_RELOC_X86_64_GOTPCREL:
4372 break;
4373
4374 case BFD_RELOC_VTABLE_INHERIT:
4375 case BFD_RELOC_VTABLE_ENTRY:
4376 fixP->fx_done = 0;
4377 return 1;
4378
4379 default:
4380 break;
4381 }
4382 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4383 *valp = value;
4384 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4385
4386 #ifndef BFD_ASSEMBLER
4387 md_number_to_chars (p, value, fixP->fx_size);
4388 #else
4389 /* Are we finished with this relocation now? */
4390 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4391 fixP->fx_done = 1;
4392 else if (use_rela_relocations)
4393 {
4394 fixP->fx_no_overflow = 1;
4395 value = 0;
4396 }
4397 md_number_to_chars (p, value, fixP->fx_size);
4398 #endif
4399
4400 return 1;
4401 }
4402 \f
4403 #define MAX_LITTLENUMS 6
4404
4405 /* Turn the string pointed to by litP into a floating point constant
4406 of type TYPE, and emit the appropriate bytes. The number of
4407 LITTLENUMS emitted is stored in *SIZEP. An error message is
4408 returned, or NULL on OK. */
4409
4410 char *
4411 md_atof (type, litP, sizeP)
4412 int type;
4413 char *litP;
4414 int *sizeP;
4415 {
4416 int prec;
4417 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4418 LITTLENUM_TYPE *wordP;
4419 char *t;
4420
4421 switch (type)
4422 {
4423 case 'f':
4424 case 'F':
4425 prec = 2;
4426 break;
4427
4428 case 'd':
4429 case 'D':
4430 prec = 4;
4431 break;
4432
4433 case 'x':
4434 case 'X':
4435 prec = 5;
4436 break;
4437
4438 default:
4439 *sizeP = 0;
4440 return _("Bad call to md_atof ()");
4441 }
4442 t = atof_ieee (input_line_pointer, type, words);
4443 if (t)
4444 input_line_pointer = t;
4445
4446 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4447 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4448 the bigendian 386. */
4449 for (wordP = words + prec - 1; prec--;)
4450 {
4451 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4452 litP += sizeof (LITTLENUM_TYPE);
4453 }
4454 return 0;
4455 }
4456 \f
4457 char output_invalid_buf[8];
4458
4459 static char *
4460 output_invalid (c)
4461 int c;
4462 {
4463 if (ISPRINT (c))
4464 sprintf (output_invalid_buf, "'%c'", c);
4465 else
4466 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4467 return output_invalid_buf;
4468 }
4469
4470 /* REG_STRING starts *before* REGISTER_PREFIX. */
4471
4472 static const reg_entry *
4473 parse_register (reg_string, end_op)
4474 char *reg_string;
4475 char **end_op;
4476 {
4477 char *s = reg_string;
4478 char *p;
4479 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4480 const reg_entry *r;
4481
4482 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4483 if (*s == REGISTER_PREFIX)
4484 ++s;
4485
4486 if (is_space_char (*s))
4487 ++s;
4488
4489 p = reg_name_given;
4490 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4491 {
4492 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4493 return (const reg_entry *) NULL;
4494 s++;
4495 }
4496
4497 /* For naked regs, make sure that we are not dealing with an identifier.
4498 This prevents confusing an identifier like `eax_var' with register
4499 `eax'. */
4500 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4501 return (const reg_entry *) NULL;
4502
4503 *end_op = s;
4504
4505 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4506
4507 /* Handle floating point regs, allowing spaces in the (i) part. */
4508 if (r == i386_regtab /* %st is first entry of table */)
4509 {
4510 if (is_space_char (*s))
4511 ++s;
4512 if (*s == '(')
4513 {
4514 ++s;
4515 if (is_space_char (*s))
4516 ++s;
4517 if (*s >= '0' && *s <= '7')
4518 {
4519 r = &i386_float_regtab[*s - '0'];
4520 ++s;
4521 if (is_space_char (*s))
4522 ++s;
4523 if (*s == ')')
4524 {
4525 *end_op = s + 1;
4526 return r;
4527 }
4528 }
4529 /* We have "%st(" then garbage. */
4530 return (const reg_entry *) NULL;
4531 }
4532 }
4533
4534 return r;
4535 }
4536 \f
4537 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4538 const char *md_shortopts = "kVQ:sq";
4539 #else
4540 const char *md_shortopts = "q";
4541 #endif
4542
4543 struct option md_longopts[] = {
4544 #define OPTION_32 (OPTION_MD_BASE + 0)
4545 {"32", no_argument, NULL, OPTION_32},
4546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4547 #define OPTION_64 (OPTION_MD_BASE + 1)
4548 {"64", no_argument, NULL, OPTION_64},
4549 #endif
4550 {NULL, no_argument, NULL, 0}
4551 };
4552 size_t md_longopts_size = sizeof (md_longopts);
4553
4554 int
4555 md_parse_option (c, arg)
4556 int c;
4557 char *arg ATTRIBUTE_UNUSED;
4558 {
4559 switch (c)
4560 {
4561 case 'q':
4562 quiet_warnings = 1;
4563 break;
4564
4565 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4566 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4567 should be emitted or not. FIXME: Not implemented. */
4568 case 'Q':
4569 break;
4570
4571 /* -V: SVR4 argument to print version ID. */
4572 case 'V':
4573 print_version_id ();
4574 break;
4575
4576 /* -k: Ignore for FreeBSD compatibility. */
4577 case 'k':
4578 break;
4579
4580 case 's':
4581 /* -s: On i386 Solaris, this tells the native assembler to use
4582 .stab instead of .stab.excl. We always use .stab anyhow. */
4583 break;
4584
4585 case OPTION_64:
4586 {
4587 const char **list, **l;
4588
4589 list = bfd_target_list ();
4590 for (l = list; *l != NULL; l++)
4591 if (strcmp (*l, "elf64-x86-64") == 0)
4592 {
4593 default_arch = "x86_64";
4594 break;
4595 }
4596 if (*l == NULL)
4597 as_fatal (_("No compiled in support for x86_64"));
4598 free (list);
4599 }
4600 break;
4601 #endif
4602
4603 case OPTION_32:
4604 default_arch = "i386";
4605 break;
4606
4607 default:
4608 return 0;
4609 }
4610 return 1;
4611 }
4612
4613 void
4614 md_show_usage (stream)
4615 FILE *stream;
4616 {
4617 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4618 fprintf (stream, _("\
4619 -Q ignored\n\
4620 -V print assembler version number\n\
4621 -k ignored\n\
4622 -q quieten some warnings\n\
4623 -s ignored\n"));
4624 #else
4625 fprintf (stream, _("\
4626 -q quieten some warnings\n"));
4627 #endif
4628 }
4629
4630 #ifdef BFD_ASSEMBLER
4631 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4632 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4633
4634 /* Pick the target format to use. */
4635
4636 const char *
4637 i386_target_format ()
4638 {
4639 if (!strcmp (default_arch, "x86_64"))
4640 set_code_flag (CODE_64BIT);
4641 else if (!strcmp (default_arch, "i386"))
4642 set_code_flag (CODE_32BIT);
4643 else
4644 as_fatal (_("Unknown architecture"));
4645 switch (OUTPUT_FLAVOR)
4646 {
4647 #ifdef OBJ_MAYBE_AOUT
4648 case bfd_target_aout_flavour:
4649 return AOUT_TARGET_FORMAT;
4650 #endif
4651 #ifdef OBJ_MAYBE_COFF
4652 case bfd_target_coff_flavour:
4653 return "coff-i386";
4654 #endif
4655 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4656 case bfd_target_elf_flavour:
4657 {
4658 if (flag_code == CODE_64BIT)
4659 use_rela_relocations = 1;
4660 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4661 }
4662 #endif
4663 default:
4664 abort ();
4665 return NULL;
4666 }
4667 }
4668
4669 #endif /* OBJ_MAYBE_ more than one */
4670 #endif /* BFD_ASSEMBLER */
4671 \f
4672 symbolS *
4673 md_undefined_symbol (name)
4674 char *name;
4675 {
4676 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4677 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4678 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4679 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4680 {
4681 if (!GOT_symbol)
4682 {
4683 if (symbol_find (name))
4684 as_bad (_("GOT already in symbol table"));
4685 GOT_symbol = symbol_new (name, undefined_section,
4686 (valueT) 0, &zero_address_frag);
4687 };
4688 return GOT_symbol;
4689 }
4690 return 0;
4691 }
4692
4693 /* Round up a section size to the appropriate boundary. */
4694
4695 valueT
4696 md_section_align (segment, size)
4697 segT segment ATTRIBUTE_UNUSED;
4698 valueT size;
4699 {
4700 #ifdef BFD_ASSEMBLER
4701 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4702 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4703 {
4704 /* For a.out, force the section size to be aligned. If we don't do
4705 this, BFD will align it for us, but it will not write out the
4706 final bytes of the section. This may be a bug in BFD, but it is
4707 easier to fix it here since that is how the other a.out targets
4708 work. */
4709 int align;
4710
4711 align = bfd_get_section_alignment (stdoutput, segment);
4712 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4713 }
4714 #endif
4715 #endif
4716
4717 return size;
4718 }
4719
4720 /* On the i386, PC-relative offsets are relative to the start of the
4721 next instruction. That is, the address of the offset, plus its
4722 size, since the offset is always the last part of the insn. */
4723
4724 long
4725 md_pcrel_from (fixP)
4726 fixS *fixP;
4727 {
4728 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4729 }
4730
4731 #ifndef I386COFF
4732
4733 static void
4734 s_bss (ignore)
4735 int ignore ATTRIBUTE_UNUSED;
4736 {
4737 register int temp;
4738
4739 temp = get_absolute_expression ();
4740 subseg_set (bss_section, (subsegT) temp);
4741 demand_empty_rest_of_line ();
4742 }
4743
4744 #endif
4745
4746 #ifdef BFD_ASSEMBLER
4747
4748 void
4749 i386_validate_fix (fixp)
4750 fixS *fixp;
4751 {
4752 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4753 {
4754 /* GOTOFF relocation are nonsense in 64bit mode. */
4755 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4756 {
4757 if (flag_code != CODE_64BIT)
4758 abort ();
4759 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4760 }
4761 else
4762 {
4763 if (flag_code == CODE_64BIT)
4764 abort ();
4765 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4766 }
4767 fixp->fx_subsy = 0;
4768 }
4769 }
4770
4771 arelent *
4772 tc_gen_reloc (section, fixp)
4773 asection *section ATTRIBUTE_UNUSED;
4774 fixS *fixp;
4775 {
4776 arelent *rel;
4777 bfd_reloc_code_real_type code;
4778
4779 switch (fixp->fx_r_type)
4780 {
4781 case BFD_RELOC_X86_64_PLT32:
4782 case BFD_RELOC_X86_64_GOT32:
4783 case BFD_RELOC_X86_64_GOTPCREL:
4784 case BFD_RELOC_386_PLT32:
4785 case BFD_RELOC_386_GOT32:
4786 case BFD_RELOC_386_GOTOFF:
4787 case BFD_RELOC_386_GOTPC:
4788 case BFD_RELOC_X86_64_32S:
4789 case BFD_RELOC_RVA:
4790 case BFD_RELOC_VTABLE_ENTRY:
4791 case BFD_RELOC_VTABLE_INHERIT:
4792 code = fixp->fx_r_type;
4793 break;
4794 default:
4795 if (fixp->fx_pcrel)
4796 {
4797 switch (fixp->fx_size)
4798 {
4799 default:
4800 as_bad_where (fixp->fx_file, fixp->fx_line,
4801 _("can not do %d byte pc-relative relocation"),
4802 fixp->fx_size);
4803 code = BFD_RELOC_32_PCREL;
4804 break;
4805 case 1: code = BFD_RELOC_8_PCREL; break;
4806 case 2: code = BFD_RELOC_16_PCREL; break;
4807 case 4: code = BFD_RELOC_32_PCREL; break;
4808 }
4809 }
4810 else
4811 {
4812 switch (fixp->fx_size)
4813 {
4814 default:
4815 as_bad_where (fixp->fx_file, fixp->fx_line,
4816 _("can not do %d byte relocation"),
4817 fixp->fx_size);
4818 code = BFD_RELOC_32;
4819 break;
4820 case 1: code = BFD_RELOC_8; break;
4821 case 2: code = BFD_RELOC_16; break;
4822 case 4: code = BFD_RELOC_32; break;
4823 case 8: code = BFD_RELOC_64; break;
4824 }
4825 }
4826 break;
4827 }
4828
4829 if (code == BFD_RELOC_32
4830 && GOT_symbol
4831 && fixp->fx_addsy == GOT_symbol)
4832 {
4833 /* We don't support GOTPC on 64bit targets. */
4834 if (flag_code == CODE_64BIT)
4835 abort ();
4836 code = BFD_RELOC_386_GOTPC;
4837 }
4838
4839 rel = (arelent *) xmalloc (sizeof (arelent));
4840 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4841 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4842
4843 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4844 if (!use_rela_relocations)
4845 {
4846 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4847 vtable entry to be used in the relocation's section offset. */
4848 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4849 rel->address = fixp->fx_offset;
4850
4851 if (fixp->fx_pcrel)
4852 rel->addend = fixp->fx_addnumber;
4853 else
4854 rel->addend = 0;
4855 }
4856 /* Use the rela in 64bit mode. */
4857 else
4858 {
4859 rel->addend = fixp->fx_offset;
4860 if (fixp->fx_pcrel)
4861 rel->addend -= fixp->fx_size;
4862 }
4863
4864 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4865 if (rel->howto == NULL)
4866 {
4867 as_bad_where (fixp->fx_file, fixp->fx_line,
4868 _("cannot represent relocation type %s"),
4869 bfd_get_reloc_code_name (code));
4870 /* Set howto to a garbage value so that we can keep going. */
4871 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4872 assert (rel->howto != NULL);
4873 }
4874
4875 return rel;
4876 }
4877
4878 #else /* ! BFD_ASSEMBLER */
4879
4880 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4881 void
4882 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4883 char *where;
4884 fixS *fixP;
4885 relax_addressT segment_address_in_file;
4886 {
4887 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4888 Out: GNU LD relocation length code: 0, 1, or 2. */
4889
4890 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4891 long r_symbolnum;
4892
4893 know (fixP->fx_addsy != NULL);
4894
4895 md_number_to_chars (where,
4896 (valueT) (fixP->fx_frag->fr_address
4897 + fixP->fx_where - segment_address_in_file),
4898 4);
4899
4900 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4901 ? S_GET_TYPE (fixP->fx_addsy)
4902 : fixP->fx_addsy->sy_number);
4903
4904 where[6] = (r_symbolnum >> 16) & 0x0ff;
4905 where[5] = (r_symbolnum >> 8) & 0x0ff;
4906 where[4] = r_symbolnum & 0x0ff;
4907 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4908 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4909 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4910 }
4911
4912 #endif /* OBJ_AOUT or OBJ_BOUT. */
4913
4914 #if defined (I386COFF)
4915
4916 short
4917 tc_coff_fix2rtype (fixP)
4918 fixS *fixP;
4919 {
4920 if (fixP->fx_r_type == R_IMAGEBASE)
4921 return R_IMAGEBASE;
4922
4923 return (fixP->fx_pcrel ?
4924 (fixP->fx_size == 1 ? R_PCRBYTE :
4925 fixP->fx_size == 2 ? R_PCRWORD :
4926 R_PCRLONG) :
4927 (fixP->fx_size == 1 ? R_RELBYTE :
4928 fixP->fx_size == 2 ? R_RELWORD :
4929 R_DIR32));
4930 }
4931
4932 int
4933 tc_coff_sizemachdep (frag)
4934 fragS *frag;
4935 {
4936 if (frag->fr_next)
4937 return (frag->fr_next->fr_address - frag->fr_address);
4938 else
4939 return 0;
4940 }
4941
4942 #endif /* I386COFF */
4943
4944 #endif /* ! BFD_ASSEMBLER */
4945 \f
4946 /* Parse operands using Intel syntax. This implements a recursive descent
4947 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4948 Programmer's Guide.
4949
4950 FIXME: We do not recognize the full operand grammar defined in the MASM
4951 documentation. In particular, all the structure/union and
4952 high-level macro operands are missing.
4953
4954 Uppercase words are terminals, lower case words are non-terminals.
4955 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4956 bars '|' denote choices. Most grammar productions are implemented in
4957 functions called 'intel_<production>'.
4958
4959 Initial production is 'expr'.
4960
4961 addOp + | -
4962
4963 alpha [a-zA-Z]
4964
4965 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4966
4967 constant digits [[ radixOverride ]]
4968
4969 dataType BYTE | WORD | DWORD | QWORD | XWORD
4970
4971 digits decdigit
4972 | digits decdigit
4973 | digits hexdigit
4974
4975 decdigit [0-9]
4976
4977 e05 e05 addOp e06
4978 | e06
4979
4980 e06 e06 mulOp e09
4981 | e09
4982
4983 e09 OFFSET e10
4984 | e09 PTR e10
4985 | e09 : e10
4986 | e10
4987
4988 e10 e10 [ expr ]
4989 | e11
4990
4991 e11 ( expr )
4992 | [ expr ]
4993 | constant
4994 | dataType
4995 | id
4996 | $
4997 | register
4998
4999 => expr SHORT e05
5000 | e05
5001
5002 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5003 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5004
5005 hexdigit a | b | c | d | e | f
5006 | A | B | C | D | E | F
5007
5008 id alpha
5009 | id alpha
5010 | id decdigit
5011
5012 mulOp * | / | MOD
5013
5014 quote " | '
5015
5016 register specialRegister
5017 | gpRegister
5018 | byteRegister
5019
5020 segmentRegister CS | DS | ES | FS | GS | SS
5021
5022 specialRegister CR0 | CR2 | CR3
5023 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5024 | TR3 | TR4 | TR5 | TR6 | TR7
5025
5026 We simplify the grammar in obvious places (e.g., register parsing is
5027 done by calling parse_register) and eliminate immediate left recursion
5028 to implement a recursive-descent parser.
5029
5030 expr SHORT e05
5031 | e05
5032
5033 e05 e06 e05'
5034
5035 e05' addOp e06 e05'
5036 | Empty
5037
5038 e06 e09 e06'
5039
5040 e06' mulOp e09 e06'
5041 | Empty
5042
5043 e09 OFFSET e10 e09'
5044 | e10 e09'
5045
5046 e09' PTR e10 e09'
5047 | : e10 e09'
5048 | Empty
5049
5050 e10 e11 e10'
5051
5052 e10' [ expr ] e10'
5053 | Empty
5054
5055 e11 ( expr )
5056 | [ expr ]
5057 | BYTE
5058 | WORD
5059 | DWORD
5060 | QWORD
5061 | XWORD
5062 | .
5063 | $
5064 | register
5065 | id
5066 | constant */
5067
5068 /* Parsing structure for the intel syntax parser. Used to implement the
5069 semantic actions for the operand grammar. */
5070 struct intel_parser_s
5071 {
5072 char *op_string; /* The string being parsed. */
5073 int got_a_float; /* Whether the operand is a float. */
5074 int op_modifier; /* Operand modifier. */
5075 int is_mem; /* 1 if operand is memory reference. */
5076 const reg_entry *reg; /* Last register reference found. */
5077 char *disp; /* Displacement string being built. */
5078 };
5079
5080 static struct intel_parser_s intel_parser;
5081
5082 /* Token structure for parsing intel syntax. */
5083 struct intel_token
5084 {
5085 int code; /* Token code. */
5086 const reg_entry *reg; /* Register entry for register tokens. */
5087 char *str; /* String representation. */
5088 };
5089
5090 static struct intel_token cur_token, prev_token;
5091
5092 /* Token codes for the intel parser. Since T_SHORT is already used
5093 by COFF, undefine it first to prevent a warning. */
5094 #define T_NIL -1
5095 #define T_CONST 1
5096 #define T_REG 2
5097 #define T_BYTE 3
5098 #define T_WORD 4
5099 #define T_DWORD 5
5100 #define T_QWORD 6
5101 #define T_XWORD 7
5102 #undef T_SHORT
5103 #define T_SHORT 8
5104 #define T_OFFSET 9
5105 #define T_PTR 10
5106 #define T_ID 11
5107
5108 /* Prototypes for intel parser functions. */
5109 static int intel_match_token PARAMS ((int code));
5110 static void intel_get_token PARAMS ((void));
5111 static void intel_putback_token PARAMS ((void));
5112 static int intel_expr PARAMS ((void));
5113 static int intel_e05 PARAMS ((void));
5114 static int intel_e05_1 PARAMS ((void));
5115 static int intel_e06 PARAMS ((void));
5116 static int intel_e06_1 PARAMS ((void));
5117 static int intel_e09 PARAMS ((void));
5118 static int intel_e09_1 PARAMS ((void));
5119 static int intel_e10 PARAMS ((void));
5120 static int intel_e10_1 PARAMS ((void));
5121 static int intel_e11 PARAMS ((void));
5122
5123 static int
5124 i386_intel_operand (operand_string, got_a_float)
5125 char *operand_string;
5126 int got_a_float;
5127 {
5128 int ret;
5129 char *p;
5130
5131 /* Initialize token holders. */
5132 cur_token.code = prev_token.code = T_NIL;
5133 cur_token.reg = prev_token.reg = NULL;
5134 cur_token.str = prev_token.str = NULL;
5135
5136 /* Initialize parser structure. */
5137 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5138 if (p == NULL)
5139 abort ();
5140 strcpy (intel_parser.op_string, operand_string);
5141 intel_parser.got_a_float = got_a_float;
5142 intel_parser.op_modifier = -1;
5143 intel_parser.is_mem = 0;
5144 intel_parser.reg = NULL;
5145 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5146 if (intel_parser.disp == NULL)
5147 abort ();
5148 intel_parser.disp[0] = '\0';
5149
5150 /* Read the first token and start the parser. */
5151 intel_get_token ();
5152 ret = intel_expr ();
5153
5154 if (ret)
5155 {
5156 /* If we found a memory reference, hand it over to i386_displacement
5157 to fill in the rest of the operand fields. */
5158 if (intel_parser.is_mem)
5159 {
5160 if ((i.mem_operands == 1
5161 && (current_templates->start->opcode_modifier & IsString) == 0)
5162 || i.mem_operands == 2)
5163 {
5164 as_bad (_("too many memory references for '%s'"),
5165 current_templates->start->name);
5166 ret = 0;
5167 }
5168 else
5169 {
5170 char *s = intel_parser.disp;
5171 i.mem_operands++;
5172
5173 /* Add the displacement expression. */
5174 if (*s != '\0')
5175 ret = i386_displacement (s, s + strlen (s))
5176 && i386_index_check (s);
5177 }
5178 }
5179
5180 /* Constant and OFFSET expressions are handled by i386_immediate. */
5181 else if (intel_parser.op_modifier == OFFSET_FLAT
5182 || intel_parser.reg == NULL)
5183 ret = i386_immediate (intel_parser.disp);
5184 }
5185
5186 free (p);
5187 free (intel_parser.disp);
5188
5189 return ret;
5190 }
5191
5192 /* expr SHORT e05
5193 | e05 */
5194 static int
5195 intel_expr ()
5196 {
5197 /* expr SHORT e05 */
5198 if (cur_token.code == T_SHORT)
5199 {
5200 intel_parser.op_modifier = SHORT;
5201 intel_match_token (T_SHORT);
5202
5203 return (intel_e05 ());
5204 }
5205
5206 /* expr e05 */
5207 else
5208 return intel_e05 ();
5209 }
5210
5211 /* e05 e06 e05'
5212
5213 e05' addOp e06 e05'
5214 | Empty */
5215 static int
5216 intel_e05 ()
5217 {
5218 return (intel_e06 () && intel_e05_1 ());
5219 }
5220
5221 static int
5222 intel_e05_1 ()
5223 {
5224 /* e05' addOp e06 e05' */
5225 if (cur_token.code == '+' || cur_token.code == '-')
5226 {
5227 strcat (intel_parser.disp, cur_token.str);
5228 intel_match_token (cur_token.code);
5229
5230 return (intel_e06 () && intel_e05_1 ());
5231 }
5232
5233 /* e05' Empty */
5234 else
5235 return 1;
5236 }
5237
5238 /* e06 e09 e06'
5239
5240 e06' mulOp e09 e06'
5241 | Empty */
5242 static int
5243 intel_e06 ()
5244 {
5245 return (intel_e09 () && intel_e06_1 ());
5246 }
5247
5248 static int
5249 intel_e06_1 ()
5250 {
5251 /* e06' mulOp e09 e06' */
5252 if (cur_token.code == '*' || cur_token.code == '/')
5253 {
5254 strcat (intel_parser.disp, cur_token.str);
5255 intel_match_token (cur_token.code);
5256
5257 return (intel_e09 () && intel_e06_1 ());
5258 }
5259
5260 /* e06' Empty */
5261 else
5262 return 1;
5263 }
5264
5265 /* e09 OFFSET e10 e09'
5266 | e10 e09'
5267
5268 e09' PTR e10 e09'
5269 | : e10 e09'
5270 | Empty */
5271 static int
5272 intel_e09 ()
5273 {
5274 /* e09 OFFSET e10 e09' */
5275 if (cur_token.code == T_OFFSET)
5276 {
5277 intel_parser.is_mem = 0;
5278 intel_parser.op_modifier = OFFSET_FLAT;
5279 intel_match_token (T_OFFSET);
5280
5281 return (intel_e10 () && intel_e09_1 ());
5282 }
5283
5284 /* e09 e10 e09' */
5285 else
5286 return (intel_e10 () && intel_e09_1 ());
5287 }
5288
5289 static int
5290 intel_e09_1 ()
5291 {
5292 /* e09' PTR e10 e09' */
5293 if (cur_token.code == T_PTR)
5294 {
5295 if (prev_token.code == T_BYTE)
5296 i.suffix = BYTE_MNEM_SUFFIX;
5297
5298 else if (prev_token.code == T_WORD)
5299 {
5300 if (intel_parser.got_a_float == 2) /* "fi..." */
5301 i.suffix = SHORT_MNEM_SUFFIX;
5302 else
5303 i.suffix = WORD_MNEM_SUFFIX;
5304 }
5305
5306 else if (prev_token.code == T_DWORD)
5307 {
5308 if (intel_parser.got_a_float == 1) /* "f..." */
5309 i.suffix = SHORT_MNEM_SUFFIX;
5310 else
5311 i.suffix = LONG_MNEM_SUFFIX;
5312 }
5313
5314 else if (prev_token.code == T_QWORD)
5315 {
5316 if (intel_parser.got_a_float == 1) /* "f..." */
5317 i.suffix = LONG_MNEM_SUFFIX;
5318 else
5319 i.suffix = QWORD_MNEM_SUFFIX;
5320 }
5321
5322 else if (prev_token.code == T_XWORD)
5323 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5324
5325 else
5326 {
5327 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5328 return 0;
5329 }
5330
5331 intel_match_token (T_PTR);
5332
5333 return (intel_e10 () && intel_e09_1 ());
5334 }
5335
5336 /* e09 : e10 e09' */
5337 else if (cur_token.code == ':')
5338 {
5339 /* Mark as a memory operand only if it's not already known to be an
5340 offset expression. */
5341 if (intel_parser.op_modifier != OFFSET_FLAT)
5342 intel_parser.is_mem = 1;
5343
5344 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5345 }
5346
5347 /* e09' Empty */
5348 else
5349 return 1;
5350 }
5351
5352 /* e10 e11 e10'
5353
5354 e10' [ expr ] e10'
5355 | Empty */
5356 static int
5357 intel_e10 ()
5358 {
5359 return (intel_e11 () && intel_e10_1 ());
5360 }
5361
5362 static int
5363 intel_e10_1 ()
5364 {
5365 /* e10' [ expr ] e10' */
5366 if (cur_token.code == '[')
5367 {
5368 intel_match_token ('[');
5369
5370 /* Mark as a memory operand only if it's not already known to be an
5371 offset expression. If it's an offset expression, we need to keep
5372 the brace in. */
5373 if (intel_parser.op_modifier != OFFSET_FLAT)
5374 intel_parser.is_mem = 1;
5375 else
5376 strcat (intel_parser.disp, "[");
5377
5378 /* Add a '+' to the displacement string if necessary. */
5379 if (*intel_parser.disp != '\0'
5380 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5381 strcat (intel_parser.disp, "+");
5382
5383 if (intel_expr () && intel_match_token (']'))
5384 {
5385 /* Preserve brackets when the operand is an offset expression. */
5386 if (intel_parser.op_modifier == OFFSET_FLAT)
5387 strcat (intel_parser.disp, "]");
5388
5389 return intel_e10_1 ();
5390 }
5391 else
5392 return 0;
5393 }
5394
5395 /* e10' Empty */
5396 else
5397 return 1;
5398 }
5399
5400 /* e11 ( expr )
5401 | [ expr ]
5402 | BYTE
5403 | WORD
5404 | DWORD
5405 | QWORD
5406 | XWORD
5407 | $
5408 | .
5409 | register
5410 | id
5411 | constant */
5412 static int
5413 intel_e11 ()
5414 {
5415 /* e11 ( expr ) */
5416 if (cur_token.code == '(')
5417 {
5418 intel_match_token ('(');
5419 strcat (intel_parser.disp, "(");
5420
5421 if (intel_expr () && intel_match_token (')'))
5422 {
5423 strcat (intel_parser.disp, ")");
5424 return 1;
5425 }
5426 else
5427 return 0;
5428 }
5429
5430 /* e11 [ expr ] */
5431 else if (cur_token.code == '[')
5432 {
5433 intel_match_token ('[');
5434
5435 /* Mark as a memory operand only if it's not already known to be an
5436 offset expression. If it's an offset expression, we need to keep
5437 the brace in. */
5438 if (intel_parser.op_modifier != OFFSET_FLAT)
5439 intel_parser.is_mem = 1;
5440 else
5441 strcat (intel_parser.disp, "[");
5442
5443 /* Operands for jump/call inside brackets denote absolute addresses. */
5444 if (current_templates->start->opcode_modifier & Jump
5445 || current_templates->start->opcode_modifier & JumpDword
5446 || current_templates->start->opcode_modifier & JumpByte
5447 || current_templates->start->opcode_modifier & JumpInterSegment)
5448 i.types[this_operand] |= JumpAbsolute;
5449
5450 /* Add a '+' to the displacement string if necessary. */
5451 if (*intel_parser.disp != '\0'
5452 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5453 strcat (intel_parser.disp, "+");
5454
5455 if (intel_expr () && intel_match_token (']'))
5456 {
5457 /* Preserve brackets when the operand is an offset expression. */
5458 if (intel_parser.op_modifier == OFFSET_FLAT)
5459 strcat (intel_parser.disp, "]");
5460
5461 return 1;
5462 }
5463 else
5464 return 0;
5465 }
5466
5467 /* e11 BYTE
5468 | WORD
5469 | DWORD
5470 | QWORD
5471 | XWORD */
5472 else if (cur_token.code == T_BYTE
5473 || cur_token.code == T_WORD
5474 || cur_token.code == T_DWORD
5475 || cur_token.code == T_QWORD
5476 || cur_token.code == T_XWORD)
5477 {
5478 intel_match_token (cur_token.code);
5479
5480 return 1;
5481 }
5482
5483 /* e11 $
5484 | . */
5485 else if (cur_token.code == '$' || cur_token.code == '.')
5486 {
5487 strcat (intel_parser.disp, cur_token.str);
5488 intel_match_token (cur_token.code);
5489
5490 /* Mark as a memory operand only if it's not already known to be an
5491 offset expression. */
5492 if (intel_parser.op_modifier != OFFSET_FLAT)
5493 intel_parser.is_mem = 1;
5494
5495 return 1;
5496 }
5497
5498 /* e11 register */
5499 else if (cur_token.code == T_REG)
5500 {
5501 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5502
5503 intel_match_token (T_REG);
5504
5505 /* Check for segment change. */
5506 if (cur_token.code == ':')
5507 {
5508 if (reg->reg_type & (SReg2 | SReg3))
5509 {
5510 switch (reg->reg_num)
5511 {
5512 case 0:
5513 i.seg[i.mem_operands] = &es;
5514 break;
5515 case 1:
5516 i.seg[i.mem_operands] = &cs;
5517 break;
5518 case 2:
5519 i.seg[i.mem_operands] = &ss;
5520 break;
5521 case 3:
5522 i.seg[i.mem_operands] = &ds;
5523 break;
5524 case 4:
5525 i.seg[i.mem_operands] = &fs;
5526 break;
5527 case 5:
5528 i.seg[i.mem_operands] = &gs;
5529 break;
5530 }
5531 }
5532 else
5533 {
5534 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5535 return 0;
5536 }
5537 }
5538
5539 /* Not a segment register. Check for register scaling. */
5540 else if (cur_token.code == '*')
5541 {
5542 if (!intel_parser.is_mem)
5543 {
5544 as_bad (_("Register scaling only allowed in memory operands."));
5545 return 0;
5546 }
5547
5548 /* What follows must be a valid scale. */
5549 if (intel_match_token ('*')
5550 && strchr ("01248", *cur_token.str))
5551 {
5552 i.index_reg = reg;
5553 i.types[this_operand] |= BaseIndex;
5554
5555 /* Set the scale after setting the register (otherwise,
5556 i386_scale will complain) */
5557 i386_scale (cur_token.str);
5558 intel_match_token (T_CONST);
5559 }
5560 else
5561 {
5562 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5563 cur_token.str);
5564 return 0;
5565 }
5566 }
5567
5568 /* No scaling. If this is a memory operand, the register is either a
5569 base register (first occurrence) or an index register (second
5570 occurrence). */
5571 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5572 {
5573 if (i.base_reg && i.index_reg)
5574 {
5575 as_bad (_("Too many register references in memory operand.\n"));
5576 return 0;
5577 }
5578
5579 if (i.base_reg == NULL)
5580 i.base_reg = reg;
5581 else
5582 i.index_reg = reg;
5583
5584 i.types[this_operand] |= BaseIndex;
5585 }
5586
5587 /* Offset modifier. Add the register to the displacement string to be
5588 parsed as an immediate expression after we're done. */
5589 else if (intel_parser.op_modifier == OFFSET_FLAT)
5590 strcat (intel_parser.disp, reg->reg_name);
5591
5592 /* It's neither base nor index nor offset. */
5593 else
5594 {
5595 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5596 i.op[this_operand].regs = reg;
5597 i.reg_operands++;
5598 }
5599
5600 /* Since registers are not part of the displacement string (except
5601 when we're parsing offset operands), we may need to remove any
5602 preceding '+' from the displacement string. */
5603 if (*intel_parser.disp != '\0'
5604 && intel_parser.op_modifier != OFFSET_FLAT)
5605 {
5606 char *s = intel_parser.disp;
5607 s += strlen (s) - 1;
5608 if (*s == '+')
5609 *s = '\0';
5610 }
5611
5612 return 1;
5613 }
5614
5615 /* e11 id */
5616 else if (cur_token.code == T_ID)
5617 {
5618 /* Add the identifier to the displacement string. */
5619 strcat (intel_parser.disp, cur_token.str);
5620 intel_match_token (T_ID);
5621
5622 /* The identifier represents a memory reference only if it's not
5623 preceded by an offset modifier. */
5624 if (intel_parser.op_modifier != OFFSET_FLAT)
5625 intel_parser.is_mem = 1;
5626
5627 return 1;
5628 }
5629
5630 /* e11 constant */
5631 else if (cur_token.code == T_CONST
5632 || cur_token.code == '-'
5633 || cur_token.code == '+')
5634 {
5635 char *save_str;
5636
5637 /* Allow constants that start with `+' or `-'. */
5638 if (cur_token.code == '-' || cur_token.code == '+')
5639 {
5640 strcat (intel_parser.disp, cur_token.str);
5641 intel_match_token (cur_token.code);
5642 if (cur_token.code != T_CONST)
5643 {
5644 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5645 cur_token.str);
5646 return 0;
5647 }
5648 }
5649
5650 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5651 if (save_str == NULL)
5652 abort ();
5653 strcpy (save_str, cur_token.str);
5654
5655 /* Get the next token to check for register scaling. */
5656 intel_match_token (cur_token.code);
5657
5658 /* Check if this constant is a scaling factor for an index register. */
5659 if (cur_token.code == '*')
5660 {
5661 if (intel_match_token ('*') && cur_token.code == T_REG)
5662 {
5663 if (!intel_parser.is_mem)
5664 {
5665 as_bad (_("Register scaling only allowed in memory operands."));
5666 return 0;
5667 }
5668
5669 /* The constant is followed by `* reg', so it must be
5670 a valid scale. */
5671 if (strchr ("01248", *save_str))
5672 {
5673 i.index_reg = cur_token.reg;
5674 i.types[this_operand] |= BaseIndex;
5675
5676 /* Set the scale after setting the register (otherwise,
5677 i386_scale will complain) */
5678 i386_scale (save_str);
5679 intel_match_token (T_REG);
5680
5681 /* Since registers are not part of the displacement
5682 string, we may need to remove any preceding '+' from
5683 the displacement string. */
5684 if (*intel_parser.disp != '\0')
5685 {
5686 char *s = intel_parser.disp;
5687 s += strlen (s) - 1;
5688 if (*s == '+')
5689 *s = '\0';
5690 }
5691
5692 free (save_str);
5693
5694 return 1;
5695 }
5696 else
5697 return 0;
5698 }
5699
5700 /* The constant was not used for register scaling. Since we have
5701 already consumed the token following `*' we now need to put it
5702 back in the stream. */
5703 else
5704 intel_putback_token ();
5705 }
5706
5707 /* Add the constant to the displacement string. */
5708 strcat (intel_parser.disp, save_str);
5709 free (save_str);
5710
5711 return 1;
5712 }
5713
5714 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5715 return 0;
5716 }
5717
5718 /* Match the given token against cur_token. If they match, read the next
5719 token from the operand string. */
5720 static int
5721 intel_match_token (code)
5722 int code;
5723 {
5724 if (cur_token.code == code)
5725 {
5726 intel_get_token ();
5727 return 1;
5728 }
5729 else
5730 {
5731 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5732 return 0;
5733 }
5734 }
5735
5736 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5737 static void
5738 intel_get_token ()
5739 {
5740 char *end_op;
5741 const reg_entry *reg;
5742 struct intel_token new_token;
5743
5744 new_token.code = T_NIL;
5745 new_token.reg = NULL;
5746 new_token.str = NULL;
5747
5748 /* Free the memory allocated to the previous token and move
5749 cur_token to prev_token. */
5750 if (prev_token.str)
5751 free (prev_token.str);
5752
5753 prev_token = cur_token;
5754
5755 /* Skip whitespace. */
5756 while (is_space_char (*intel_parser.op_string))
5757 intel_parser.op_string++;
5758
5759 /* Return an empty token if we find nothing else on the line. */
5760 if (*intel_parser.op_string == '\0')
5761 {
5762 cur_token = new_token;
5763 return;
5764 }
5765
5766 /* The new token cannot be larger than the remainder of the operand
5767 string. */
5768 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5769 if (new_token.str == NULL)
5770 abort ();
5771 new_token.str[0] = '\0';
5772
5773 if (strchr ("0123456789", *intel_parser.op_string))
5774 {
5775 char *p = new_token.str;
5776 char *q = intel_parser.op_string;
5777 new_token.code = T_CONST;
5778
5779 /* Allow any kind of identifier char to encompass floating point and
5780 hexadecimal numbers. */
5781 while (is_identifier_char (*q))
5782 *p++ = *q++;
5783 *p = '\0';
5784
5785 /* Recognize special symbol names [0-9][bf]. */
5786 if (strlen (intel_parser.op_string) == 2
5787 && (intel_parser.op_string[1] == 'b'
5788 || intel_parser.op_string[1] == 'f'))
5789 new_token.code = T_ID;
5790 }
5791
5792 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5793 {
5794 new_token.code = *intel_parser.op_string;
5795 new_token.str[0] = *intel_parser.op_string;
5796 new_token.str[1] = '\0';
5797 }
5798
5799 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5800 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5801 {
5802 new_token.code = T_REG;
5803 new_token.reg = reg;
5804
5805 if (*intel_parser.op_string == REGISTER_PREFIX)
5806 {
5807 new_token.str[0] = REGISTER_PREFIX;
5808 new_token.str[1] = '\0';
5809 }
5810
5811 strcat (new_token.str, reg->reg_name);
5812 }
5813
5814 else if (is_identifier_char (*intel_parser.op_string))
5815 {
5816 char *p = new_token.str;
5817 char *q = intel_parser.op_string;
5818
5819 /* A '.' or '$' followed by an identifier char is an identifier.
5820 Otherwise, it's operator '.' followed by an expression. */
5821 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5822 {
5823 new_token.code = *q;
5824 new_token.str[0] = *q;
5825 new_token.str[1] = '\0';
5826 }
5827 else
5828 {
5829 while (is_identifier_char (*q) || *q == '@')
5830 *p++ = *q++;
5831 *p = '\0';
5832
5833 if (strcasecmp (new_token.str, "BYTE") == 0)
5834 new_token.code = T_BYTE;
5835
5836 else if (strcasecmp (new_token.str, "WORD") == 0)
5837 new_token.code = T_WORD;
5838
5839 else if (strcasecmp (new_token.str, "DWORD") == 0)
5840 new_token.code = T_DWORD;
5841
5842 else if (strcasecmp (new_token.str, "QWORD") == 0)
5843 new_token.code = T_QWORD;
5844
5845 else if (strcasecmp (new_token.str, "XWORD") == 0)
5846 new_token.code = T_XWORD;
5847
5848 else if (strcasecmp (new_token.str, "PTR") == 0)
5849 new_token.code = T_PTR;
5850
5851 else if (strcasecmp (new_token.str, "SHORT") == 0)
5852 new_token.code = T_SHORT;
5853
5854 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5855 {
5856 new_token.code = T_OFFSET;
5857
5858 /* ??? This is not mentioned in the MASM grammar but gcc
5859 makes use of it with -mintel-syntax. OFFSET may be
5860 followed by FLAT: */
5861 if (strncasecmp (q, " FLAT:", 6) == 0)
5862 strcat (new_token.str, " FLAT:");
5863 }
5864
5865 /* ??? This is not mentioned in the MASM grammar. */
5866 else if (strcasecmp (new_token.str, "FLAT") == 0)
5867 new_token.code = T_OFFSET;
5868
5869 else
5870 new_token.code = T_ID;
5871 }
5872 }
5873
5874 else
5875 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5876
5877 intel_parser.op_string += strlen (new_token.str);
5878 cur_token = new_token;
5879 }
5880
5881 /* Put cur_token back into the token stream and make cur_token point to
5882 prev_token. */
5883 static void
5884 intel_putback_token ()
5885 {
5886 intel_parser.op_string -= strlen (cur_token.str);
5887 free (cur_token.str);
5888 cur_token = prev_token;
5889
5890 /* Forget prev_token. */
5891 prev_token.code = T_NIL;
5892 prev_token.reg = NULL;
5893 prev_token.str = NULL;
5894 }