]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-ns32k.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / config / tc-ns32k.c
1 /* ns32k.c -- Assemble on the National Semiconductor 32k series
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /*#define SHOW_NUM 1*//* Uncomment for debugging. */
22
23 #include "as.h"
24 #include "opcode/ns32k.h"
25
26 #include "obstack.h"
27
28 /* Macros. */
29 #define IIF_ENTRIES 13 /* Number of entries in iif. */
30 #define PRIVATE_SIZE 256 /* Size of my garbage memory. */
31 #define MAX_ARGS 4
32 #define DEFAULT -1 /* addr_mode returns this value when
33 plain constant or label is
34 encountered. */
35
36 #define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
37 iif.iifP[ptr].type = a1; \
38 iif.iifP[ptr].size = c1; \
39 iif.iifP[ptr].object = e1; \
40 iif.iifP[ptr].object_adjust = g1; \
41 iif.iifP[ptr].pcrel = i1; \
42 iif.iifP[ptr].pcrel_adjust = k1; \
43 iif.iifP[ptr].im_disp = m1; \
44 iif.iifP[ptr].relax_substate = o1; \
45 iif.iifP[ptr].bit_fixP = q1; \
46 iif.iifP[ptr].addr_mode = s1; \
47 iif.iifP[ptr].bsr = u1;
48
49 #ifdef SEQUENT_COMPATABILITY
50 #define LINE_COMMENT_CHARS "|"
51 #define ABSOLUTE_PREFIX '@'
52 #define IMMEDIATE_PREFIX '#'
53 #endif
54
55 #ifndef LINE_COMMENT_CHARS
56 #define LINE_COMMENT_CHARS "#"
57 #endif
58
59 const char comment_chars[] = "#";
60 const char line_comment_chars[] = LINE_COMMENT_CHARS;
61 const char line_separator_chars[] = ";";
62 static int default_disp_size = 4; /* Displacement size for external refs. */
63
64 #if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
65 #define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined. */
66 #endif
67
68 struct addr_mode
69 {
70 signed char mode; /* Addressing mode of operand (0-31). */
71 signed char scaled_mode; /* Mode combined with scaled mode. */
72 char scaled_reg; /* Register used in scaled+1 (1-8). */
73 char float_flag; /* Set if R0..R7 was F0..F7 ie a
74 floating-point-register. */
75 char am_size; /* Estimated max size of general addr-mode
76 parts. */
77 char im_disp; /* If im_disp==1 we have a displacement. */
78 char pcrel; /* 1 if pcrel, this is really redundant info. */
79 char disp_suffix[2]; /* Length of displacement(s), 0=undefined. */
80 char *disp[2]; /* Pointer(s) at displacement(s)
81 or immediates(s) (ascii). */
82 char index_byte; /* Index byte. */
83 };
84 typedef struct addr_mode addr_modeS;
85
86 char *freeptr, *freeptr_static; /* Points at some number of free bytes. */
87 htab_t inst_hash_handle;
88
89 struct ns32k_opcode *desc; /* Pointer at description of instruction. */
90 addr_modeS addr_modeP;
91 const char EXP_CHARS[] = "eE";
92 const char FLT_CHARS[] = "fd"; /* We don't want to support lowercase,
93 do we? */
94
95 /* UPPERCASE denotes live names when an instruction is built, IIF is
96 used as an intermediate form to store the actual parts of the
97 instruction. A ns32k machine instruction can be divided into a
98 couple of sub PARTs. When an instruction is assembled the
99 appropriate PART get an assignment. When an IIF has been completed
100 it is converted to a FRAGment as specified in AS.H. */
101
102 /* Internal structs. */
103 struct ns32k_option
104 {
105 const char *pattern;
106 unsigned long or;
107 unsigned long and;
108 };
109
110 typedef struct
111 {
112 int type; /* How to interpret object. */
113 int size; /* Estimated max size of object. */
114 unsigned long object; /* Binary data. */
115 int object_adjust; /* Number added to object. */
116 int pcrel; /* True if object is pcrel. */
117 int pcrel_adjust; /* Length in bytes from the instruction
118 start to the displacement. */
119 int im_disp; /* True if the object is a displacement. */
120 relax_substateT relax_substate;/*Initial relaxsubstate. */
121 bit_fixS *bit_fixP; /* Pointer at bit_fix struct. */
122 int addr_mode; /* What addrmode do we associate with this
123 iif-entry. */
124 char bsr; /* Sequent hack. */
125 } iif_entryT; /* Internal Instruction Format. */
126
127 struct int_ins_form
128 {
129 int instr_size; /* Max size of instruction in bytes. */
130 iif_entryT iifP[IIF_ENTRIES + 1];
131 };
132
133 struct int_ins_form iif;
134 expressionS exprP;
135
136 /* Description of the PARTs in IIF
137 object[n]:
138 0 total length in bytes of entries in iif
139 1 opcode
140 2 index_byte_a
141 3 index_byte_b
142 4 disp_a_1
143 5 disp_a_2
144 6 disp_b_1
145 7 disp_b_2
146 8 imm_a
147 9 imm_b
148 10 implied1
149 11 implied2
150
151 For every entry there is a data length in bytes. This is stored in size[n].
152 0, the object length is not explicitly given by the instruction
153 and the operand is undefined. This is a case for relaxation.
154 Reserve 4 bytes for the final object.
155
156 1, the entry contains one byte
157 2, the entry contains two bytes
158 3, the entry contains three bytes
159 4, the entry contains four bytes
160 etc
161
162 Furthermore, every entry has a data type identifier in type[n].
163
164 0, the entry is void, ignore it.
165 1, the entry is a binary number.
166 2, the entry is a pointer at an expression.
167 Where expression may be as simple as a single '1',
168 and as complicated as foo-bar+12,
169 foo and bar may be undefined but suffixed by :{b|w|d} to
170 control the length of the object.
171
172 3, the entry is a pointer at a bignum struct
173
174 The low-order-byte corresponds to low physical memory.
175 Obviously a FRAGment must be created for each valid disp in PART whose
176 data length is undefined (to bad) .
177 The case where just the expression is undefined is less severe and is
178 handled by fix. Here the number of bytes in the object file is known.
179 With this representation we simplify the assembly and separates the
180 machine dependent/independent parts in a more clean way (said OE). */
181 \f
182 struct ns32k_option opt1[] = /* restore, exit. */
183 {
184 {"r0", 0x80, 0xff},
185 {"r1", 0x40, 0xff},
186 {"r2", 0x20, 0xff},
187 {"r3", 0x10, 0xff},
188 {"r4", 0x08, 0xff},
189 {"r5", 0x04, 0xff},
190 {"r6", 0x02, 0xff},
191 {"r7", 0x01, 0xff},
192 {0, 0x00, 0xff}
193 };
194 struct ns32k_option opt2[] = /* save, enter. */
195 {
196 {"r0", 0x01, 0xff},
197 {"r1", 0x02, 0xff},
198 {"r2", 0x04, 0xff},
199 {"r3", 0x08, 0xff},
200 {"r4", 0x10, 0xff},
201 {"r5", 0x20, 0xff},
202 {"r6", 0x40, 0xff},
203 {"r7", 0x80, 0xff},
204 {0, 0x00, 0xff}
205 };
206 struct ns32k_option opt3[] = /* setcfg. */
207 {
208 {"c", 0x8, 0xff},
209 {"m", 0x4, 0xff},
210 {"f", 0x2, 0xff},
211 {"i", 0x1, 0xff},
212 {0, 0x0, 0xff}
213 };
214 struct ns32k_option opt4[] = /* cinv. */
215 {
216 {"a", 0x4, 0xff},
217 {"i", 0x2, 0xff},
218 {"d", 0x1, 0xff},
219 {0, 0x0, 0xff}
220 };
221 struct ns32k_option opt5[] = /* String inst. */
222 {
223 {"b", 0x2, 0xff},
224 {"u", 0xc, 0xff},
225 {"w", 0x4, 0xff},
226 {0, 0x0, 0xff}
227 };
228 struct ns32k_option opt6[] = /* Plain reg ext,cvtp etc. */
229 {
230 {"r0", 0x00, 0xff},
231 {"r1", 0x01, 0xff},
232 {"r2", 0x02, 0xff},
233 {"r3", 0x03, 0xff},
234 {"r4", 0x04, 0xff},
235 {"r5", 0x05, 0xff},
236 {"r6", 0x06, 0xff},
237 {"r7", 0x07, 0xff},
238 {0, 0x00, 0xff}
239 };
240
241 #if !defined(NS32032) && !defined(NS32532)
242 #define NS32532
243 #endif
244
245 struct ns32k_option cpureg_532[] = /* lpr spr. */
246 {
247 {"us", 0x0, 0xff},
248 {"dcr", 0x1, 0xff},
249 {"bpc", 0x2, 0xff},
250 {"dsr", 0x3, 0xff},
251 {"car", 0x4, 0xff},
252 {"fp", 0x8, 0xff},
253 {"sp", 0x9, 0xff},
254 {"sb", 0xa, 0xff},
255 {"usp", 0xb, 0xff},
256 {"cfg", 0xc, 0xff},
257 {"psr", 0xd, 0xff},
258 {"intbase", 0xe, 0xff},
259 {"mod", 0xf, 0xff},
260 {0, 0x00, 0xff}
261 };
262 struct ns32k_option mmureg_532[] = /* lmr smr. */
263 {
264 {"mcr", 0x9, 0xff},
265 {"msr", 0xa, 0xff},
266 {"tear", 0xb, 0xff},
267 {"ptb0", 0xc, 0xff},
268 {"ptb1", 0xd, 0xff},
269 {"ivar0", 0xe, 0xff},
270 {"ivar1", 0xf, 0xff},
271 {0, 0x0, 0xff}
272 };
273
274 struct ns32k_option cpureg_032[] = /* lpr spr. */
275 {
276 {"upsr", 0x0, 0xff},
277 {"fp", 0x8, 0xff},
278 {"sp", 0x9, 0xff},
279 {"sb", 0xa, 0xff},
280 {"psr", 0xd, 0xff},
281 {"intbase", 0xe, 0xff},
282 {"mod", 0xf, 0xff},
283 {0, 0x0, 0xff}
284 };
285 struct ns32k_option mmureg_032[] = /* lmr smr. */
286 {
287 {"bpr0", 0x0, 0xff},
288 {"bpr1", 0x1, 0xff},
289 {"pf0", 0x4, 0xff},
290 {"pf1", 0x5, 0xff},
291 {"sc", 0x8, 0xff},
292 {"msr", 0xa, 0xff},
293 {"bcnt", 0xb, 0xff},
294 {"ptb0", 0xc, 0xff},
295 {"ptb1", 0xd, 0xff},
296 {"eia", 0xf, 0xff},
297 {0, 0x0, 0xff}
298 };
299
300 #if defined(NS32532)
301 struct ns32k_option *cpureg = cpureg_532;
302 struct ns32k_option *mmureg = mmureg_532;
303 #else
304 struct ns32k_option *cpureg = cpureg_032;
305 struct ns32k_option *mmureg = mmureg_032;
306 #endif
307 \f
308
309 const pseudo_typeS md_pseudo_table[] =
310 { /* So far empty. */
311 {0, 0, 0}
312 };
313
314 #define IND(x,y) (((x)<<2)+(y))
315
316 /* Those are index's to relax groups in md_relax_table ie it must be
317 multiplied by 4 to point at a group start. Viz IND(x,y) Se function
318 relax_segment in write.c for more info. */
319
320 #define BRANCH 1
321 #define PCREL 2
322
323 /* Those are index's to entries in a relax group. */
324
325 #define BYTE 0
326 #define WORD 1
327 #define DOUBLE 2
328 #define UNDEF 3
329 /* Those limits are calculated from the displacement start in memory.
330 The ns32k uses the beginning of the instruction as displacement
331 base. This type of displacements could be handled here by moving
332 the limit window up or down. I choose to use an internal
333 displacement base-adjust as there are other routines that must
334 consider this. Also, as we have two various offset-adjusts in the
335 ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
336 had to be used. Now we don't have to think about that. */
337
338 const relax_typeS md_relax_table[] =
339 {
340 {1, 1, 0, 0},
341 {1, 1, 0, 0},
342 {1, 1, 0, 0},
343 {1, 1, 0, 0},
344
345 {(63), (-64), 1, IND (BRANCH, WORD)},
346 {(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
347 {0, 0, 4, 0},
348 {1, 1, 0, 0}
349 };
350
351 /* Array used to test if mode contains displacements.
352 Value is true if mode contains displacement. */
353
354 char disp_test[] =
355 {0, 0, 0, 0, 0, 0, 0, 0,
356 1, 1, 1, 1, 1, 1, 1, 1,
357 1, 1, 1, 0, 0, 1, 1, 0,
358 1, 1, 1, 1, 1, 1, 1, 1};
359
360 /* Array used to calculate max size of displacements. */
361
362 char disp_size[] =
363 {4, 1, 2, 0, 4};
364 \f
365 /* Parse a general operand into an addressing mode struct
366
367 In: pointer at operand in ascii form
368 pointer at addr_mode struct for result
369 the level of recursion. (always 0 or 1)
370
371 Out: data in addr_mode struct. */
372
373 static int
374 addr_mode (char *operand,
375 addr_modeS *addrmodeP,
376 int recursive_level)
377 {
378 char *str;
379 int i;
380 int strl;
381 int mode;
382 int j;
383
384 mode = DEFAULT; /* Default. */
385 addrmodeP->scaled_mode = 0; /* Why not. */
386 addrmodeP->scaled_reg = 0; /* If 0, not scaled index. */
387 addrmodeP->float_flag = 0;
388 addrmodeP->am_size = 0;
389 addrmodeP->im_disp = 0;
390 addrmodeP->pcrel = 0; /* Not set in this function. */
391 addrmodeP->disp_suffix[0] = 0;
392 addrmodeP->disp_suffix[1] = 0;
393 addrmodeP->disp[0] = NULL;
394 addrmodeP->disp[1] = NULL;
395 str = operand;
396
397 if (str[0] == 0)
398 return 0;
399
400 strl = strlen (str);
401
402 switch (str[0])
403 {
404 /* The following three case statements controls the mode-chars
405 this is the place to ed if you want to change them. */
406 #ifdef ABSOLUTE_PREFIX
407 case ABSOLUTE_PREFIX:
408 if (str[strl - 1] == ']')
409 break;
410 addrmodeP->mode = 21; /* absolute */
411 addrmodeP->disp[0] = str + 1;
412 return -1;
413 #endif
414 #ifdef IMMEDIATE_PREFIX
415 case IMMEDIATE_PREFIX:
416 if (str[strl - 1] == ']')
417 break;
418 addrmodeP->mode = 20; /* immediate */
419 addrmodeP->disp[0] = str + 1;
420 return -1;
421 #endif
422 case '.':
423 if (str[strl - 1] != ']')
424 {
425 switch (str[1])
426 {
427 case '-':
428 case '+':
429 if (str[2] != '\000')
430 {
431 addrmodeP->mode = 27; /* pc-relative */
432 addrmodeP->disp[0] = str + 2;
433 return -1;
434 }
435 /* Fall through. */
436 default:
437 as_bad (_("Invalid syntax in PC-relative addressing mode"));
438 return 0;
439 }
440 }
441 break;
442 case 'e':
443 if (str[strl - 1] != ']')
444 {
445 if ((startswith (str, "ext(")) && strl > 7)
446 { /* external */
447 addrmodeP->disp[0] = str + 4;
448 i = 0;
449 j = 2;
450 do
451 { /* disp[0]'s termination point. */
452 j += 1;
453 if (str[j] == '(')
454 i++;
455 if (str[j] == ')')
456 i--;
457 }
458 while (j < strl && i != 0);
459 if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
460 {
461 as_bad (_("Invalid syntax in External addressing mode"));
462 return (0);
463 }
464 str[j] = '\000'; /* null terminate disp[0] */
465 addrmodeP->disp[1] = str + j + 2;
466 addrmodeP->mode = 22;
467 return -1;
468 }
469 }
470 break;
471
472 default:
473 ;
474 }
475
476 strl = strlen (str);
477
478 switch (strl)
479 {
480 case 2:
481 switch (str[0])
482 {
483 case 'f':
484 addrmodeP->float_flag = 1;
485 /* Fall through. */
486 case 'r':
487 if (str[1] >= '0' && str[1] < '8')
488 {
489 addrmodeP->mode = str[1] - '0';
490 return -1;
491 }
492 break;
493 default:
494 break;
495 }
496 /* Fall through. */
497
498 case 3:
499 if (startswith (str, "tos"))
500 {
501 addrmodeP->mode = 23; /* TopOfStack */
502 return -1;
503 }
504 break;
505
506 default:
507 break;
508 }
509
510 if (strl > 4)
511 {
512 if (str[strl - 1] == ')')
513 {
514 if (str[strl - 2] == ')')
515 {
516 if (startswith (&str[strl - 5], "(fp"))
517 mode = 16; /* Memory Relative. */
518 else if (startswith (&str[strl - 5], "(sp"))
519 mode = 17;
520 else if (startswith (&str[strl - 5], "(sb"))
521 mode = 18;
522
523 if (mode != DEFAULT)
524 {
525 /* Memory relative. */
526 addrmodeP->mode = mode;
527 j = strl - 5; /* Temp for end of disp[0]. */
528 i = 0;
529
530 do
531 {
532 strl -= 1;
533 if (str[strl] == ')')
534 i++;
535 if (str[strl] == '(')
536 i--;
537 }
538 while (strl > -1 && i != 0);
539
540 if (i != 0)
541 {
542 as_bad (_("Invalid syntax in Memory Relative addressing mode"));
543 return (0);
544 }
545
546 addrmodeP->disp[1] = str;
547 addrmodeP->disp[0] = str + strl + 1;
548 str[j] = '\000'; /* Null terminate disp[0] . */
549 str[strl] = '\000'; /* Null terminate disp[1]. */
550
551 return -1;
552 }
553 }
554
555 switch (str[strl - 3])
556 {
557 case 'r':
558 case 'R':
559 if (str[strl - 2] >= '0'
560 && str[strl - 2] < '8'
561 && str[strl - 4] == '(')
562 {
563 addrmodeP->mode = str[strl - 2] - '0' + 8;
564 addrmodeP->disp[0] = str;
565 str[strl - 4] = 0;
566 return -1; /* reg rel */
567 }
568 /* Fall through. */
569
570 default:
571 if (startswith (&str[strl - 4], "(fp"))
572 mode = 24;
573 else if (startswith (&str[strl - 4], "(sp"))
574 mode = 25;
575 else if (startswith (&str[strl - 4], "(sb"))
576 mode = 26;
577 else if (startswith (&str[strl - 4], "(pc"))
578 mode = 27;
579
580 if (mode != DEFAULT)
581 {
582 addrmodeP->mode = mode;
583 addrmodeP->disp[0] = str;
584 str[strl - 4] = '\0';
585
586 return -1; /* Memory space. */
587 }
588 }
589 }
590
591 /* No trailing ')' do we have a ']' ? */
592 if (str[strl - 1] == ']')
593 {
594 switch (str[strl - 2])
595 {
596 case 'b':
597 mode = 28;
598 break;
599 case 'w':
600 mode = 29;
601 break;
602 case 'd':
603 mode = 30;
604 break;
605 case 'q':
606 mode = 31;
607 break;
608 default:
609 as_bad (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
610
611 if (str[strl - 3] != ':' || str[strl - 6] != '['
612 || str[strl - 5] == 'r' || str[strl - 4] < '0'
613 || str[strl - 4] > '7')
614 as_bad (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
615 } /* Scaled index. */
616
617 if (recursive_level > 0)
618 {
619 as_bad (_("Scaled-indexed addressing mode combined with scaled-index"));
620 return 0;
621 }
622
623 addrmodeP->am_size += 1; /* scaled index byte. */
624 j = str[strl - 4] - '0'; /* store temporary. */
625 str[strl - 6] = '\000'; /* null terminate for recursive call. */
626 i = addr_mode (str, addrmodeP, 1);
627
628 if (!i || addrmodeP->mode == 20)
629 {
630 as_bad (_("Invalid or illegal addressing mode combined with scaled-index"));
631 return 0;
632 }
633
634 addrmodeP->scaled_mode = addrmodeP->mode; /* Store the inferior mode. */
635 addrmodeP->mode = mode;
636 addrmodeP->scaled_reg = j + 1;
637
638 return -1;
639 }
640 }
641
642 addrmodeP->mode = DEFAULT; /* Default to whatever. */
643 addrmodeP->disp[0] = str;
644
645 return -1;
646 }
647 \f
648 static void
649 evaluate_expr (expressionS *resultP, char *ptr)
650 {
651 char *tmp_line;
652
653 tmp_line = input_line_pointer;
654 input_line_pointer = ptr;
655 expression (resultP);
656 input_line_pointer = tmp_line;
657 }
658
659 /* ptr points at string addr_modeP points at struct with result This
660 routine calls addr_mode to determine the general addr.mode of the
661 operand. When this is ready it parses the displacements for size
662 specifying suffixes and determines size of immediate mode via
663 ns32k-opcode. Also builds index bytes if needed. */
664
665 static int
666 get_addr_mode (char *ptr, addr_modeS *addrmodeP)
667 {
668 int tmp;
669
670 addr_mode (ptr, addrmodeP, 0);
671
672 if (addrmodeP->mode == DEFAULT || addrmodeP->scaled_mode == -1)
673 {
674 /* Resolve ambiguous operands, this shouldn't be necessary if
675 one uses standard NSC operand syntax. But the sequent
676 compiler doesn't!!! This finds a proper addressing mode
677 if it is implicitly stated. See ns32k-opcode.h. */
678 (void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh! */
679
680 if (addrmodeP->mode == DEFAULT)
681 {
682 if (exprP.X_add_symbol || exprP.X_op_symbol)
683 addrmodeP->mode = desc->default_model; /* We have a label. */
684 else
685 addrmodeP->mode = desc->default_modec; /* We have a constant. */
686 }
687 else
688 {
689 if (exprP.X_add_symbol || exprP.X_op_symbol)
690 addrmodeP->scaled_mode = desc->default_model;
691 else
692 addrmodeP->scaled_mode = desc->default_modec;
693 }
694
695 /* Must put this mess down in addr_mode to handle the scaled
696 case better. */
697 }
698
699 /* It appears as the sequent compiler wants an absolute when we have
700 a label without @. Constants becomes immediates besides the addr
701 case. Think it does so with local labels too, not optimum, pcrel
702 is better. When I have time I will make gas check this and
703 select pcrel when possible Actually that is trivial. */
704 if ((tmp = addrmodeP->scaled_reg))
705 { /* Build indexbyte. */
706 tmp--; /* Remember regnumber comes incremented for
707 flag purpose. */
708 tmp |= addrmodeP->scaled_mode << 3;
709 addrmodeP->index_byte = (char) tmp;
710 addrmodeP->am_size += 1;
711 }
712
713 gas_assert (addrmodeP->mode >= 0);
714 if (disp_test[(unsigned int) addrmodeP->mode])
715 {
716 char c;
717 char suffix;
718 char suffix_sub;
719 int i;
720 char *toP;
721 char *fromP;
722
723 /* There was a displacement, probe for length specifying suffix. */
724 addrmodeP->pcrel = 0;
725
726 gas_assert (addrmodeP->mode >= 0);
727 if (disp_test[(unsigned int) addrmodeP->mode])
728 {
729 /* There is a displacement. */
730 if (addrmodeP->mode == 27 || addrmodeP->scaled_mode == 27)
731 /* Do we have pcrel. mode. */
732 addrmodeP->pcrel = 1;
733
734 addrmodeP->im_disp = 1;
735
736 for (i = 0; i < 2; i++)
737 {
738 suffix_sub = suffix = 0;
739
740 if ((toP = addrmodeP->disp[i]))
741 {
742 /* Suffix of expression, the largest size rules. */
743 fromP = toP;
744
745 while ((c = *fromP++))
746 {
747 *toP++ = c;
748 if (c == ':')
749 {
750 switch (*fromP)
751 {
752 case '\0':
753 as_warn (_("Premature end of suffix -- Defaulting to d"));
754 suffix = 4;
755 continue;
756 case 'b':
757 suffix_sub = 1;
758 break;
759 case 'w':
760 suffix_sub = 2;
761 break;
762 case 'd':
763 suffix_sub = 4;
764 break;
765 default:
766 as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
767 suffix = 4;
768 }
769
770 fromP ++;
771 toP --; /* So we write over the ':' */
772
773 if (suffix < suffix_sub)
774 suffix = suffix_sub;
775 }
776 }
777
778 *toP = '\0'; /* Terminate properly. */
779 addrmodeP->disp_suffix[i] = suffix;
780 addrmodeP->am_size += suffix ? suffix : 4;
781 }
782 }
783 }
784 }
785 else
786 {
787 if (addrmodeP->mode == 20)
788 {
789 /* Look in ns32k_opcode for size. */
790 addrmodeP->disp_suffix[0] = addrmodeP->am_size = desc->im_size;
791 addrmodeP->im_disp = 0;
792 }
793 }
794
795 return addrmodeP->mode;
796 }
797
798 /* Read an option list. */
799
800 static void
801 optlist (char *str, /* The string to extract options from. */
802 struct ns32k_option *optionP, /* How to search the string. */
803 unsigned long *default_map) /* Default pattern and output. */
804 {
805 int i, j, k, strlen1, strlen2;
806 const char *patternP, *strP;
807
808 strlen1 = strlen (str);
809
810 if (strlen1 < 1)
811 as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
812
813 for (i = 0; optionP[i].pattern != 0; i++)
814 {
815 strlen2 = strlen (optionP[i].pattern);
816
817 for (j = 0; j < strlen1; j++)
818 {
819 patternP = optionP[i].pattern;
820 strP = &str[j];
821
822 for (k = 0; k < strlen2; k++)
823 {
824 if (*(strP++) != *(patternP++))
825 break;
826 }
827
828 if (k == strlen2)
829 { /* match */
830 *default_map |= optionP[i].or;
831 *default_map &= optionP[i].and;
832 }
833 }
834 }
835 }
836
837 /* Search struct for symbols.
838 This function is used to get the short integer form of reg names in
839 the instructions lmr, smr, lpr, spr return true if str is found in
840 list. */
841
842 static int
843 list_search (char *str, /* The string to match. */
844 struct ns32k_option *optionP, /* List to search. */
845 unsigned long *default_map) /* Default pattern and output. */
846 {
847 int i;
848
849 for (i = 0; optionP[i].pattern != 0; i++)
850 {
851 if (!strncmp (optionP[i].pattern, str, 20))
852 {
853 /* Use strncmp to be safe. */
854 *default_map |= optionP[i].or;
855 *default_map &= optionP[i].and;
856
857 return -1;
858 }
859 }
860
861 as_bad (_("No such entry in list. (cpu/mmu register)"));
862 return 0;
863 }
864 \f
865 /* Create a bit_fixS in obstack 'notes'.
866 This struct is used to profile the normal fix. If the bit_fixP is a
867 valid pointer (not NULL) the bit_fix data will be used to format
868 the fix. */
869
870 static bit_fixS *
871 bit_fix_new (int size, /* Length of bitfield. */
872 int offset, /* Bit offset to bitfield. */
873 long min, /* Signextended min for bitfield. */
874 long max, /* Signextended max for bitfield. */
875 long add, /* Add mask, used for huffman prefix. */
876 long base_type, /* 0 or 1, if 1 it's exploded to opcode ptr. */
877 long base_adj)
878 {
879 bit_fixS *bit_fixP;
880
881 bit_fixP = XOBNEW (&notes, bit_fixS);
882
883 bit_fixP->fx_bit_size = size;
884 bit_fixP->fx_bit_offset = offset;
885 bit_fixP->fx_bit_base = base_type;
886 bit_fixP->fx_bit_base_adj = base_adj;
887 bit_fixP->fx_bit_max = max;
888 bit_fixP->fx_bit_min = min;
889 bit_fixP->fx_bit_add = add;
890
891 return bit_fixP;
892 }
893
894 /* Convert operands to iif-format and adds bitfields to the opcode.
895 Operands are parsed in such an order that the opcode is updated from
896 its most significant bit, that is when the operand need to alter the
897 opcode.
898 Be careful not to put to objects in the same iif-slot. */
899
900 static void
901 encode_operand (int argc,
902 char **argv,
903 const char *operandsP,
904 const char *suffixP,
905 char im_size ATTRIBUTE_UNUSED,
906 char opcode_bit_ptr)
907 {
908 int i, j;
909 char d;
910 int pcrel, b, loop, pcrel_adjust;
911 unsigned long tmp;
912
913 for (loop = 0; loop < argc; loop++)
914 {
915 /* What operand are we supposed to work on. */
916 i = operandsP[loop << 1] - '1';
917 if (i > 3)
918 as_fatal (_("Internal consistency error. check ns32k-opcode.h"));
919
920 pcrel = 0;
921 pcrel_adjust = 0;
922 tmp = 0;
923
924 switch ((d = operandsP[(loop << 1) + 1]))
925 {
926 case 'f': /* Operand of sfsr turns out to be a nasty
927 special-case. */
928 opcode_bit_ptr -= 5;
929 /* Fall through. */
930 case 'Z': /* Float not immediate. */
931 case 'F': /* 32 bit float general form. */
932 case 'L': /* 64 bit float. */
933 case 'I': /* Integer not immediate. */
934 case 'B': /* Byte */
935 case 'W': /* Word */
936 case 'D': /* Double-word. */
937 case 'A': /* Double-word gen-address-form ie no regs
938 allowed. */
939 get_addr_mode (argv[i], &addr_modeP);
940
941 if ((addr_modeP.mode == 20) &&
942 (d == 'I' || d == 'Z' || d == 'A'))
943 as_fatal (d == 'A'? _("Address of immediate operand"):
944 _("Invalid immediate write operand."));
945
946 if (opcode_bit_ptr == desc->opcode_size)
947 b = 4;
948 else
949 b = 6;
950
951 for (j = b; j < (b + 2); j++)
952 {
953 if (addr_modeP.disp[j - b])
954 {
955 IIF (j,
956 2,
957 addr_modeP.disp_suffix[j - b],
958 (unsigned long) addr_modeP.disp[j - b],
959 0,
960 addr_modeP.pcrel,
961 iif.instr_size,
962 addr_modeP.im_disp,
963 IND (BRANCH, BYTE),
964 NULL,
965 (addr_modeP.scaled_reg ? addr_modeP.scaled_mode
966 : addr_modeP.mode),
967 0);
968 }
969 }
970
971 opcode_bit_ptr -= 5;
972 iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
973
974 if (addr_modeP.scaled_reg)
975 {
976 j = b / 2;
977 IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
978 0, 0, 0, 0, 0, NULL, -1, 0);
979 }
980 break;
981
982 case 'b': /* Multiple instruction disp. */
983 freeptr++; /* OVE:this is an useful hack. */
984 sprintf (freeptr, "((%s-1)*%d)", argv[i], desc->im_size);
985 argv[i] = freeptr;
986 pcrel -= 1; /* Make pcrel 0 in spite of what case 'p':
987 wants. */
988 /* fallthru */
989 case 'p': /* Displacement - pc relative addressing. */
990 pcrel += 1;
991 /* fallthru */
992 case 'd': /* Displacement. */
993 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
994 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
995 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
996 break;
997 case 'H': /* Sequent-hack: the linker wants a bit set
998 when bsr. */
999 pcrel = 1;
1000 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
1001 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
1002 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
1003 break;
1004 case 'q': /* quick */
1005 opcode_bit_ptr -= 4;
1006 IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
1007 bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
1008 break;
1009 case 'r': /* Register number (3 bits). */
1010 list_search (argv[i], opt6, &tmp);
1011 opcode_bit_ptr -= 3;
1012 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1013 break;
1014 case 'O': /* Setcfg instruction options list. */
1015 optlist (argv[i], opt3, &tmp);
1016 opcode_bit_ptr -= 4;
1017 iif.iifP[1].object |= tmp << 15;
1018 break;
1019 case 'C': /* Cinv instruction options list. */
1020 optlist (argv[i], opt4, &tmp);
1021 opcode_bit_ptr -= 4;
1022 iif.iifP[1].object |= tmp << 15; /* Insert the regtype in opcode. */
1023 break;
1024 case 'S': /* String instruction options list. */
1025 optlist (argv[i], opt5, &tmp);
1026 opcode_bit_ptr -= 4;
1027 iif.iifP[1].object |= tmp << 15;
1028 break;
1029 case 'u':
1030 case 'U': /* Register list. */
1031 IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
1032 switch (operandsP[(i << 1) + 1])
1033 {
1034 case 'u': /* Restore, exit. */
1035 optlist (argv[i], opt1, &iif.iifP[10].object);
1036 break;
1037 case 'U': /* Save, enter. */
1038 optlist (argv[i], opt2, &iif.iifP[10].object);
1039 break;
1040 }
1041 iif.instr_size += 1;
1042 break;
1043 case 'M': /* MMU register. */
1044 list_search (argv[i], mmureg, &tmp);
1045 opcode_bit_ptr -= 4;
1046 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1047 break;
1048 case 'P': /* CPU register. */
1049 list_search (argv[i], cpureg, &tmp);
1050 opcode_bit_ptr -= 4;
1051 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1052 break;
1053 case 'g': /* Inss exts. */
1054 iif.instr_size += 1; /* 1 byte is allocated after the opcode. */
1055 IIF (10, 2, 1,
1056 (unsigned long) argv[i], /* i always 2 here. */
1057 0, 0, 0, 0, 0,
1058 bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* A bit_fix is targeted to
1059 the byte. */
1060 -1, 0);
1061 break;
1062 case 'G':
1063 IIF (11, 2, 42,
1064 (unsigned long) argv[i], /* i always 3 here. */
1065 0, 0, 0, 0, 0,
1066 bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
1067 break;
1068 case 'i':
1069 iif.instr_size += 1;
1070 b = 2 + i; /* Put the extension byte after opcode. */
1071 IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
1072 break;
1073 default:
1074 as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
1075 }
1076 }
1077 }
1078 \f
1079 /* in: instruction line
1080 out: internal structure of instruction
1081 that has been prepared for direct conversion to fragment(s) and
1082 fixes in a systematical fashion
1083 Return-value = recursive_level. */
1084 /* Build iif of one assembly text line. */
1085
1086 static int
1087 parse (const char *line, int recursive_level)
1088 {
1089 const char *lineptr;
1090 char c, suffix_separator;
1091 int i;
1092 unsigned int argc;
1093 int arg_type;
1094 char sqr, sep;
1095 char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* No more than 4 operands. */
1096
1097 if (recursive_level <= 0)
1098 {
1099 /* Called from md_assemble. */
1100 for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
1101 continue;
1102
1103 c = *lineptr;
1104 *(char *) lineptr = '\0';
1105
1106 desc = (struct ns32k_opcode *) str_hash_find (inst_hash_handle, line);
1107 if (!desc)
1108 as_fatal (_("No such opcode"));
1109
1110 *(char *) lineptr = c;
1111 }
1112 else
1113 lineptr = line;
1114
1115 argc = 0;
1116
1117 if (*desc->operands)
1118 {
1119 if (*lineptr++ != '\0')
1120 {
1121 sqr = '[';
1122 sep = ',';
1123
1124 while (*lineptr != '\0')
1125 {
1126 if (desc->operands[argc << 1])
1127 {
1128 suffix[argc] = 0;
1129 arg_type = desc->operands[(argc << 1) + 1];
1130
1131 switch (arg_type)
1132 {
1133 case 'd':
1134 case 'b':
1135 case 'p':
1136 case 'H':
1137 /* The operand is supposed to be a displacement. */
1138 /* Hackwarning: do not forget to update the 4
1139 cases above when editing ns32k-opcode.h. */
1140 suffix_separator = ':';
1141 break;
1142 default:
1143 /* If this char occurs we loose. */
1144 suffix_separator = '\255';
1145 break;
1146 }
1147
1148 suffix[argc] = 0; /* 0 when no ':' is encountered. */
1149 argv[argc] = freeptr;
1150 *freeptr = '\0';
1151
1152 while ((c = *lineptr) != '\0' && c != sep)
1153 {
1154 if (c == sqr)
1155 {
1156 if (sqr == '[')
1157 {
1158 sqr = ']';
1159 sep = '\0';
1160 }
1161 else
1162 {
1163 sqr = '[';
1164 sep = ',';
1165 }
1166 }
1167
1168 if (c == suffix_separator)
1169 {
1170 /* ':' - label/suffix separator. */
1171 switch (lineptr[1])
1172 {
1173 case 'b':
1174 suffix[argc] = 1;
1175 break;
1176 case 'w':
1177 suffix[argc] = 2;
1178 break;
1179 case 'd':
1180 suffix[argc] = 4;
1181 break;
1182 default:
1183 as_warn (_("Bad suffix, defaulting to d"));
1184 suffix[argc] = 4;
1185 if (lineptr[1] == '\0' || lineptr[1] == sep)
1186 {
1187 lineptr += 1;
1188 continue;
1189 }
1190 break;
1191 }
1192
1193 lineptr += 2;
1194 continue;
1195 }
1196
1197 *freeptr++ = c;
1198 lineptr++;
1199 }
1200
1201 *freeptr++ = '\0';
1202 argc += 1;
1203
1204 if (*lineptr == '\0')
1205 continue;
1206
1207 lineptr += 1;
1208 }
1209 else
1210 as_fatal (_("Too many operands passed to instruction"));
1211 }
1212 }
1213 }
1214
1215 if (argc != strlen (desc->operands) / 2)
1216 {
1217 if (strlen (desc->default_args))
1218 {
1219 /* We can apply default, don't goof. */
1220 if (parse (desc->default_args, 1) != 1)
1221 /* Check error in default. */
1222 as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
1223 }
1224 else
1225 as_fatal (_("Wrong number of operands"));
1226 }
1227
1228 for (i = 0; i < IIF_ENTRIES; i++)
1229 /* Mark all entries as void. */
1230 iif.iifP[i].type = 0;
1231
1232 /* Build opcode iif-entry. */
1233 iif.instr_size = desc->opcode_size / 8;
1234 IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
1235
1236 /* This call encodes operands to iif format. */
1237 if (argc)
1238 encode_operand (argc, argv, &desc->operands[0],
1239 &suffix[0], desc->im_size, desc->opcode_size);
1240
1241 return recursive_level;
1242 }
1243 \f
1244 /* This functionality should really be in the bfd library. */
1245
1246 static bfd_reloc_code_real_type
1247 reloc (int size, int pcrel, int type)
1248 {
1249 int length, rel_index;
1250 bfd_reloc_code_real_type relocs[] =
1251 {
1252 BFD_RELOC_NS32K_IMM_8,
1253 BFD_RELOC_NS32K_IMM_16,
1254 BFD_RELOC_NS32K_IMM_32,
1255 BFD_RELOC_NS32K_IMM_8_PCREL,
1256 BFD_RELOC_NS32K_IMM_16_PCREL,
1257 BFD_RELOC_NS32K_IMM_32_PCREL,
1258
1259 /* ns32k displacements. */
1260 BFD_RELOC_NS32K_DISP_8,
1261 BFD_RELOC_NS32K_DISP_16,
1262 BFD_RELOC_NS32K_DISP_32,
1263 BFD_RELOC_NS32K_DISP_8_PCREL,
1264 BFD_RELOC_NS32K_DISP_16_PCREL,
1265 BFD_RELOC_NS32K_DISP_32_PCREL,
1266
1267 /* Normal 2's complement. */
1268 BFD_RELOC_8,
1269 BFD_RELOC_16,
1270 BFD_RELOC_32,
1271 BFD_RELOC_8_PCREL,
1272 BFD_RELOC_16_PCREL,
1273 BFD_RELOC_32_PCREL
1274 };
1275
1276 switch (size)
1277 {
1278 case 1:
1279 length = 0;
1280 break;
1281 case 2:
1282 length = 1;
1283 break;
1284 case 4:
1285 length = 2;
1286 break;
1287 default:
1288 length = -1;
1289 break;
1290 }
1291
1292 rel_index = length + 3 * pcrel + 6 * type;
1293
1294 if (rel_index >= 0 && (unsigned int) rel_index < sizeof (relocs) / sizeof (relocs[0]))
1295 return relocs[rel_index];
1296
1297 if (pcrel)
1298 as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
1299 size, type);
1300 else
1301 as_bad (_("Can not do %d byte relocation for storage type %d"),
1302 size, type);
1303
1304 return BFD_RELOC_NONE;
1305
1306 }
1307
1308 static void
1309 fix_new_ns32k (fragS *frag, /* Which frag? */
1310 int where, /* Where in that frag? */
1311 int size, /* 1, 2 or 4 usually. */
1312 symbolS *add_symbol, /* X_add_symbol. */
1313 long offset, /* X_add_number. */
1314 int pcrel, /* True if PC-relative relocation. */
1315 char im_disp, /* True if the value to write is a
1316 displacement. */
1317 bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
1318 NULL. */
1319 char bsr, /* Sequent-linker-hack: 1 when relocobject is
1320 a bsr. */
1321 fragS *opcode_frag,
1322 unsigned int opcode_offset)
1323 {
1324 fixS *fixP = fix_new (frag, where, size, add_symbol,
1325 offset, pcrel,
1326 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1327 );
1328
1329 fix_opcode_frag (fixP) = opcode_frag;
1330 fix_opcode_offset (fixP) = opcode_offset;
1331 fix_im_disp (fixP) = im_disp;
1332 fix_bsr (fixP) = bsr;
1333 fix_bit_fixP (fixP) = bit_fixP;
1334 /* We have a MD overflow check for displacements. */
1335 fixP->fx_no_overflow = im_disp != 0 || bit_fixP != NULL;
1336 }
1337
1338 static void
1339 fix_new_ns32k_exp (fragS *frag, /* Which frag? */
1340 int where, /* Where in that frag? */
1341 int size, /* 1, 2 or 4 usually. */
1342 expressionS *exp, /* Expression. */
1343 int pcrel, /* True if PC-relative relocation. */
1344 char im_disp, /* True if the value to write is a
1345 displacement. */
1346 bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
1347 NULL. */
1348 char bsr, /* Sequent-linker-hack: 1 when relocobject is
1349 a bsr. */
1350 fragS *opcode_frag,
1351 unsigned int opcode_offset)
1352 {
1353 fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
1354 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1355 );
1356
1357 fix_opcode_frag (fixP) = opcode_frag;
1358 fix_opcode_offset (fixP) = opcode_offset;
1359 fix_im_disp (fixP) = im_disp;
1360 fix_bsr (fixP) = bsr;
1361 fix_bit_fixP (fixP) = bit_fixP;
1362 /* We have a MD overflow check for displacements. */
1363 fixP->fx_no_overflow = im_disp != 0 || bit_fixP != NULL;
1364 }
1365
1366 /* Convert number to chars in correct order. */
1367
1368 void
1369 md_number_to_chars (char *buf, valueT value, int nbytes)
1370 {
1371 number_to_chars_littleendian (buf, value, nbytes);
1372 }
1373
1374 /* This is a variant of md_numbers_to_chars. The reason for its
1375 existence is the fact that ns32k uses Huffman coded
1376 displacements. This implies that the bit order is reversed in
1377 displacements and that they are prefixed with a size-tag.
1378
1379 binary: msb -> lsb
1380 0xxxxxxx byte
1381 10xxxxxx xxxxxxxx word
1382 11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
1383
1384 This must be taken care of and we do it here! */
1385
1386 static void
1387 md_number_to_disp (char *buf, long val, int n)
1388 {
1389 switch (n)
1390 {
1391 case 1:
1392 if (val < -64 || val > 63)
1393 as_bad (_("value of %ld out of byte displacement range."), val);
1394 val &= 0x7f;
1395 #ifdef SHOW_NUM
1396 printf ("%x ", val & 0xff);
1397 #endif
1398 *buf++ = val;
1399 break;
1400
1401 case 2:
1402 if (val < -8192 || val > 8191)
1403 as_bad (_("value of %ld out of word displacement range."), val);
1404 val &= 0x3fff;
1405 val |= 0x8000;
1406 #ifdef SHOW_NUM
1407 printf ("%x ", val >> 8 & 0xff);
1408 #endif
1409 *buf++ = (val >> 8);
1410 #ifdef SHOW_NUM
1411 printf ("%x ", val & 0xff);
1412 #endif
1413 *buf++ = val;
1414 break;
1415
1416 case 4:
1417 if (val < -0x20000000 || val >= 0x20000000)
1418 as_bad (_("value of %ld out of double word displacement range."), val);
1419 val |= 0xc0000000;
1420 #ifdef SHOW_NUM
1421 printf ("%x ", val >> 24 & 0xff);
1422 #endif
1423 *buf++ = (val >> 24);
1424 #ifdef SHOW_NUM
1425 printf ("%x ", val >> 16 & 0xff);
1426 #endif
1427 *buf++ = (val >> 16);
1428 #ifdef SHOW_NUM
1429 printf ("%x ", val >> 8 & 0xff);
1430 #endif
1431 *buf++ = (val >> 8);
1432 #ifdef SHOW_NUM
1433 printf ("%x ", val & 0xff);
1434 #endif
1435 *buf++ = val;
1436 break;
1437
1438 default:
1439 as_fatal (_("Internal logic error. Line %d, file: \"%s\""),
1440 __LINE__, __FILE__);
1441 }
1442 }
1443
1444 static void
1445 md_number_to_imm (char *buf, long val, int n)
1446 {
1447 switch (n)
1448 {
1449 case 1:
1450 #ifdef SHOW_NUM
1451 printf ("%x ", val & 0xff);
1452 #endif
1453 *buf++ = val;
1454 break;
1455
1456 case 2:
1457 #ifdef SHOW_NUM
1458 printf ("%x ", val >> 8 & 0xff);
1459 #endif
1460 *buf++ = (val >> 8);
1461 #ifdef SHOW_NUM
1462 printf ("%x ", val & 0xff);
1463 #endif
1464 *buf++ = val;
1465 break;
1466
1467 case 4:
1468 #ifdef SHOW_NUM
1469 printf ("%x ", val >> 24 & 0xff);
1470 #endif
1471 *buf++ = (val >> 24);
1472 #ifdef SHOW_NUM
1473 printf ("%x ", val >> 16 & 0xff);
1474 #endif
1475 *buf++ = (val >> 16);
1476 #ifdef SHOW_NUM
1477 printf ("%x ", val >> 8 & 0xff);
1478 #endif
1479 *buf++ = (val >> 8);
1480 #ifdef SHOW_NUM
1481 printf ("%x ", val & 0xff);
1482 #endif
1483 *buf++ = val;
1484 break;
1485
1486 default:
1487 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1488 __LINE__, __FILE__);
1489 }
1490 }
1491
1492 /* Fast bitfiddling support. */
1493 /* Mask used to zero bitfield before oring in the true field. */
1494
1495 static unsigned long l_mask[] =
1496 {
1497 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
1498 0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
1499 0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
1500 0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
1501 0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
1502 0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
1503 0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
1504 0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
1505 };
1506 static unsigned long r_mask[] =
1507 {
1508 0x00000000, 0x00000001, 0x00000003, 0x00000007,
1509 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
1510 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
1511 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
1512 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
1513 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
1514 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
1515 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
1516 };
1517 #define MASK_BITS 31
1518 /* Insert bitfield described by field_ptr and val at buf
1519 This routine is written for modification of the first 4 bytes pointed
1520 to by buf, to yield speed.
1521 The ifdef stuff is for selection between a ns32k-dependent routine
1522 and a general version. (My advice: use the general version!). */
1523
1524 static void
1525 md_number_to_field (char *buf, long val, bit_fixS *field_ptr)
1526 {
1527 unsigned long object;
1528 unsigned long mask;
1529 /* Define ENDIAN on a ns32k machine. */
1530 #ifdef ENDIAN
1531 unsigned long *mem_ptr;
1532 #else
1533 char *mem_ptr;
1534 #endif
1535
1536 if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
1537 {
1538 #ifdef ENDIAN
1539 if (field_ptr->fx_bit_base)
1540 /* Override buf. */
1541 mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
1542 else
1543 mem_ptr = (unsigned long *) buf;
1544
1545 mem_ptr = ((unsigned long *)
1546 ((char *) mem_ptr + field_ptr->fx_bit_base_adj));
1547 #else
1548 if (field_ptr->fx_bit_base)
1549 mem_ptr = (char *) field_ptr->fx_bit_base;
1550 else
1551 mem_ptr = buf;
1552
1553 mem_ptr += field_ptr->fx_bit_base_adj;
1554 #endif
1555 #ifdef ENDIAN
1556 /* We have a nice ns32k machine with lowbyte at low-physical mem. */
1557 object = *mem_ptr; /* get some bytes */
1558 #else /* OVE Goof! the machine is a m68k or dito. */
1559 /* That takes more byte fiddling. */
1560 object = 0;
1561 object |= mem_ptr[3] & 0xff;
1562 object <<= 8;
1563 object |= mem_ptr[2] & 0xff;
1564 object <<= 8;
1565 object |= mem_ptr[1] & 0xff;
1566 object <<= 8;
1567 object |= mem_ptr[0] & 0xff;
1568 #endif
1569 mask = 0;
1570 mask |= (r_mask[field_ptr->fx_bit_offset]);
1571 mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
1572 object &= mask;
1573 val += field_ptr->fx_bit_add;
1574 object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
1575 #ifdef ENDIAN
1576 *mem_ptr = object;
1577 #else
1578 mem_ptr[0] = (char) object;
1579 object >>= 8;
1580 mem_ptr[1] = (char) object;
1581 object >>= 8;
1582 mem_ptr[2] = (char) object;
1583 object >>= 8;
1584 mem_ptr[3] = (char) object;
1585 #endif
1586 }
1587 else
1588 as_bad (_("Bit field out of range"));
1589 }
1590
1591 /* Convert iif to fragments. From this point we start to dribble with
1592 functions in other files than this one.(Except hash.c) So, if it's
1593 possible to make an iif for an other CPU, you don't need to know
1594 what frags, relax, obstacks, etc is in order to port this
1595 assembler. You only need to know if it's possible to reduce your
1596 cpu-instruction to iif-format (takes some work) and adopt the other
1597 md_? parts according to given instructions Note that iif was
1598 invented for the clean ns32k`s architecture. */
1599
1600 /* GAS for the ns32k has a problem. PC relative displacements are
1601 relative to the address of the opcode, not the address of the
1602 operand. We used to keep track of the offset between the operand
1603 and the opcode in pcrel_adjust for each frag and each fix. However,
1604 we get into trouble where there are two or more pc-relative
1605 operands and the size of the first one can't be determined. Then in
1606 the relax phase, the size of the first operand will change and
1607 pcrel_adjust will no longer be correct. The current solution is
1608 keep a pointer to the frag with the opcode in it and the offset in
1609 that frag for each frag and each fix. Then, when needed, we can
1610 always figure out how far it is between the opcode and the pcrel
1611 object. See also md_pcrel_adjust and md_fix_pcrel_adjust. For
1612 objects not part of an instruction, the pointer to the opcode frag
1613 is always zero. */
1614
1615 static void
1616 convert_iif (void)
1617 {
1618 int i;
1619 bit_fixS *j;
1620 fragS *inst_frag;
1621 unsigned int inst_offset;
1622 char *inst_opcode;
1623 char *memP;
1624 int l;
1625 int k;
1626 char type;
1627 char size = 0;
1628
1629 frag_grow (iif.instr_size); /* This is important. */
1630 memP = frag_more (0);
1631 inst_opcode = memP;
1632 inst_offset = (memP - frag_now->fr_literal);
1633 inst_frag = frag_now;
1634
1635 for (i = 0; i < IIF_ENTRIES; i++)
1636 {
1637 if ((type = iif.iifP[i].type))
1638 {
1639 /* The object exist, so handle it. */
1640 switch (size = iif.iifP[i].size)
1641 {
1642 case 42:
1643 size = 0;
1644 /* It's a bitfix that operates on an existing object. */
1645 if (iif.iifP[i].bit_fixP->fx_bit_base)
1646 /* Expand fx_bit_base to point at opcode. */
1647 iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
1648 /* Fall through. */
1649
1650 case 8: /* bignum or doublefloat. */
1651 case 1:
1652 case 2:
1653 case 3:
1654 case 4:
1655 /* The final size in objectmemory is known. */
1656 memP = frag_more (size);
1657 j = iif.iifP[i].bit_fixP;
1658
1659 switch (type)
1660 {
1661 case 1: /* The object is pure binary. */
1662 if (j)
1663 md_number_to_field (memP, exprP.X_add_number, j);
1664
1665 else if (iif.iifP[i].pcrel)
1666 fix_new_ns32k (frag_now,
1667 (long) (memP - frag_now->fr_literal),
1668 size,
1669 0,
1670 iif.iifP[i].object,
1671 iif.iifP[i].pcrel,
1672 iif.iifP[i].im_disp,
1673 0,
1674 iif.iifP[i].bsr, /* Sequent hack. */
1675 inst_frag, inst_offset);
1676 else
1677 {
1678 /* Good, just put them bytes out. */
1679 switch (iif.iifP[i].im_disp)
1680 {
1681 case 0:
1682 md_number_to_chars (memP, iif.iifP[i].object, size);
1683 break;
1684 case 1:
1685 md_number_to_disp (memP, iif.iifP[i].object, size);
1686 break;
1687 default:
1688 as_fatal (_("iif convert internal pcrel/binary"));
1689 }
1690 }
1691 break;
1692
1693 case 2:
1694 /* The object is a pointer at an expression, so
1695 unpack it, note that bignums may result from the
1696 expression. */
1697 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1698 if (exprP.X_op == O_big || size == 8)
1699 {
1700 if ((k = exprP.X_add_number) > 0)
1701 {
1702 /* We have a bignum ie a quad. This can only
1703 happens in a long suffixed instruction. */
1704 if (k * 2 > size)
1705 as_bad (_("Bignum too big for long"));
1706
1707 if (k == 3)
1708 memP += 2;
1709
1710 for (l = 0; k > 0; k--, l += 2)
1711 md_number_to_chars (memP + l,
1712 generic_bignum[l >> 1],
1713 sizeof (LITTLENUM_TYPE));
1714 }
1715 else
1716 {
1717 /* flonum. */
1718 LITTLENUM_TYPE words[4];
1719
1720 switch (size)
1721 {
1722 case 4:
1723 gen_to_words (words, 2, 8);
1724 md_number_to_imm (memP, (long) words[0],
1725 sizeof (LITTLENUM_TYPE));
1726 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1727 (long) words[1],
1728 sizeof (LITTLENUM_TYPE));
1729 break;
1730 case 8:
1731 gen_to_words (words, 4, 11);
1732 md_number_to_imm (memP, (long) words[0],
1733 sizeof (LITTLENUM_TYPE));
1734 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1735 (long) words[1],
1736 sizeof (LITTLENUM_TYPE));
1737 md_number_to_imm ((memP + 2
1738 * sizeof (LITTLENUM_TYPE)),
1739 (long) words[2],
1740 sizeof (LITTLENUM_TYPE));
1741 md_number_to_imm ((memP + 3
1742 * sizeof (LITTLENUM_TYPE)),
1743 (long) words[3],
1744 sizeof (LITTLENUM_TYPE));
1745 break;
1746 }
1747 }
1748 break;
1749 }
1750 if (exprP.X_add_symbol ||
1751 exprP.X_op_symbol ||
1752 iif.iifP[i].pcrel)
1753 {
1754 /* The expression was undefined due to an
1755 undefined label. Create a fix so we can fix
1756 the object later. */
1757 exprP.X_add_number += iif.iifP[i].object_adjust;
1758 fix_new_ns32k_exp (frag_now,
1759 (long) (memP - frag_now->fr_literal),
1760 size,
1761 &exprP,
1762 iif.iifP[i].pcrel,
1763 iif.iifP[i].im_disp,
1764 j,
1765 iif.iifP[i].bsr,
1766 inst_frag, inst_offset);
1767 }
1768 else if (j)
1769 md_number_to_field (memP, exprP.X_add_number, j);
1770 else
1771 {
1772 /* Good, just put them bytes out. */
1773 switch (iif.iifP[i].im_disp)
1774 {
1775 case 0:
1776 md_number_to_imm (memP, exprP.X_add_number, size);
1777 break;
1778 case 1:
1779 md_number_to_disp (memP, exprP.X_add_number, size);
1780 break;
1781 default:
1782 as_fatal (_("iif convert internal pcrel/pointer"));
1783 }
1784 }
1785 break;
1786 default:
1787 as_fatal (_("Internal logic error in iif.iifP[n].type"));
1788 }
1789 break;
1790
1791 case 0:
1792 /* Too bad, the object may be undefined as far as its
1793 final nsize in object memory is concerned. The size
1794 of the object in objectmemory is not explicitly
1795 given. If the object is defined its length can be
1796 determined and a fix can replace the frag. */
1797 {
1798 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1799
1800 if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
1801 !iif.iifP[i].pcrel)
1802 {
1803 /* Size is unknown until link time so have to default. */
1804 size = default_disp_size; /* Normally 4 bytes. */
1805 memP = frag_more (size);
1806 fix_new_ns32k_exp (frag_now,
1807 (long) (memP - frag_now->fr_literal),
1808 size,
1809 &exprP,
1810 0, /* never iif.iifP[i].pcrel, */
1811 1, /* always iif.iifP[i].im_disp */
1812 (bit_fixS *) 0, 0,
1813 inst_frag,
1814 inst_offset);
1815 break; /* Exit this absolute hack. */
1816 }
1817
1818 if (exprP.X_add_symbol || exprP.X_op_symbol)
1819 {
1820 /* Frag it. */
1821 if (exprP.X_op_symbol)
1822 /* We can't relax this case. */
1823 as_fatal (_("Can't relax difference"));
1824 else
1825 {
1826 /* Size is not important. This gets fixed by
1827 relax, but we assume 0 in what follows. */
1828 memP = frag_more (4); /* Max size. */
1829 size = 0;
1830
1831 {
1832 fragS *old_frag = frag_now;
1833 frag_variant (rs_machine_dependent,
1834 4, /* Max size. */
1835 0, /* Size. */
1836 IND (BRANCH, UNDEF), /* Expecting
1837 the worst. */
1838 exprP.X_add_symbol,
1839 exprP.X_add_number,
1840 inst_opcode);
1841 frag_opcode_frag (old_frag) = inst_frag;
1842 frag_opcode_offset (old_frag) = inst_offset;
1843 frag_bsr (old_frag) = iif.iifP[i].bsr;
1844 }
1845 }
1846 }
1847 else
1848 {
1849 /* This duplicates code in md_number_to_disp. */
1850 if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
1851 size = 1;
1852 else
1853 {
1854 if (-8192 <= exprP.X_add_number
1855 && exprP.X_add_number <= 8191)
1856 size = 2;
1857 else
1858 {
1859 if (-0x20000000 <= exprP.X_add_number
1860 && exprP.X_add_number<=0x1fffffff)
1861 size = 4;
1862 else
1863 {
1864 as_bad (_("Displacement too large for :d"));
1865 size = 4;
1866 }
1867 }
1868 }
1869
1870 memP = frag_more (size);
1871 md_number_to_disp (memP, exprP.X_add_number, size);
1872 }
1873 }
1874 break;
1875
1876 default:
1877 as_fatal (_("Internal logic error in iif.iifP[].type"));
1878 }
1879 }
1880 }
1881 }
1882 \f
1883 void
1884 md_assemble (char *line)
1885 {
1886 freeptr = freeptr_static;
1887 parse (line, 0); /* Explode line to more fix form in iif. */
1888 convert_iif (); /* Convert iif to frags, fix's etc. */
1889 #ifdef SHOW_NUM
1890 printf (" \t\t\t%s\n", line);
1891 #endif
1892 }
1893
1894 void
1895 md_begin (void)
1896 {
1897 /* Build a hashtable of the instructions. */
1898 const struct ns32k_opcode *ptr;
1899 const struct ns32k_opcode *endop;
1900
1901 inst_hash_handle = str_htab_create ();
1902
1903 endop = ns32k_opcodes + sizeof (ns32k_opcodes) / sizeof (ns32k_opcodes[0]);
1904 for (ptr = ns32k_opcodes; ptr < endop; ptr++)
1905 if (str_hash_insert (inst_hash_handle, ptr->name, ptr, 0) != NULL)
1906 as_fatal (_("duplicate %s"), ptr->name);
1907
1908 /* Some private space please! */
1909 freeptr_static = XNEWVEC (char, PRIVATE_SIZE);
1910 }
1911
1912 /* Turn the string pointed to by litP into a floating point constant
1913 of type TYPE, and emit the appropriate bytes. The number of
1914 LITTLENUMS emitted is stored in *SIZEP. An error message is
1915 returned, or NULL on OK. */
1916
1917 const char *
1918 md_atof (int type, char *litP, int *sizeP)
1919 {
1920 return ieee_md_atof (type, litP, sizeP, false);
1921 }
1922 \f
1923 int
1924 md_pcrel_adjust (fragS *fragP)
1925 {
1926 fragS *opcode_frag;
1927 addressT opcode_address;
1928 unsigned int offset;
1929
1930 opcode_frag = frag_opcode_frag (fragP);
1931 if (opcode_frag == 0)
1932 return 0;
1933
1934 offset = frag_opcode_offset (fragP);
1935 opcode_address = offset + opcode_frag->fr_address;
1936
1937 return fragP->fr_address + fragP->fr_fix - opcode_address;
1938 }
1939
1940 static int
1941 md_fix_pcrel_adjust (fixS *fixP)
1942 {
1943 fragS *opcode_frag;
1944 addressT opcode_address;
1945 unsigned int offset;
1946
1947 opcode_frag = fix_opcode_frag (fixP);
1948 if (opcode_frag == 0)
1949 return 0;
1950
1951 offset = fix_opcode_offset (fixP);
1952 opcode_address = offset + opcode_frag->fr_address;
1953
1954 return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
1955 }
1956
1957 /* Apply a fixS (fixup of an instruction or data that we didn't have
1958 enough info to complete immediately) to the data in a frag.
1959
1960 On the ns32k, everything is in a different format, so we have broken
1961 out separate functions for each kind of thing we could be fixing.
1962 They all get called from here. */
1963
1964 void
1965 md_apply_fix (fixS *fixP, valueT * valP, segT seg ATTRIBUTE_UNUSED)
1966 {
1967 long val = * (long *) valP;
1968 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
1969
1970 if (fix_bit_fixP (fixP))
1971 /* Bitfields to fix, sigh. */
1972 md_number_to_field (buf, val, fix_bit_fixP (fixP));
1973 else switch (fix_im_disp (fixP))
1974 {
1975 case 0:
1976 /* Immediate field. */
1977 md_number_to_imm (buf, val, fixP->fx_size);
1978 break;
1979
1980 case 1:
1981 /* Displacement field. */
1982 /* Calculate offset. */
1983 md_number_to_disp (buf,
1984 (fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
1985 : val), fixP->fx_size);
1986 break;
1987
1988 case 2:
1989 /* Pointer in a data object. */
1990 md_number_to_chars (buf, val, fixP->fx_size);
1991 break;
1992 }
1993
1994 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
1995 fixP->fx_done = 1;
1996 }
1997 \f
1998 /* Convert a relaxed displacement to ditto in final output. */
1999
2000 void
2001 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
2002 segT sec ATTRIBUTE_UNUSED,
2003 fragS *fragP)
2004 {
2005 long disp;
2006 long ext = 0;
2007 /* Address in gas core of the place to store the displacement. */
2008 char *buffer_address = fragP->fr_fix + fragP->fr_literal;
2009 /* Address in object code of the displacement. */
2010 int object_address;
2011
2012 switch (fragP->fr_subtype)
2013 {
2014 case IND (BRANCH, BYTE):
2015 ext = 1;
2016 break;
2017 case IND (BRANCH, WORD):
2018 ext = 2;
2019 break;
2020 case IND (BRANCH, DOUBLE):
2021 ext = 4;
2022 break;
2023 }
2024
2025 if (ext == 0)
2026 return;
2027
2028 know (fragP->fr_symbol);
2029
2030 object_address = fragP->fr_fix + fragP->fr_address;
2031
2032 /* The displacement of the address, from current location. */
2033 disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
2034 disp += md_pcrel_adjust (fragP);
2035
2036 md_number_to_disp (buffer_address, (long) disp, (int) ext);
2037 fragP->fr_fix += ext;
2038 }
2039
2040 /* This function returns the estimated size a variable object will occupy,
2041 one can say that we tries to guess the size of the objects before we
2042 actually know it. */
2043
2044 int
2045 md_estimate_size_before_relax (fragS *fragP, segT segment)
2046 {
2047 if (fragP->fr_subtype == IND (BRANCH, UNDEF))
2048 {
2049 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
2050 {
2051 /* We don't relax symbols defined in another segment. The
2052 thing to do is to assume the object will occupy 4 bytes. */
2053 fix_new_ns32k (fragP,
2054 (int) (fragP->fr_fix),
2055 4,
2056 fragP->fr_symbol,
2057 fragP->fr_offset,
2058 1,
2059 1,
2060 0,
2061 frag_bsr(fragP), /* Sequent hack. */
2062 frag_opcode_frag (fragP),
2063 frag_opcode_offset (fragP));
2064 fragP->fr_fix += 4;
2065 frag_wane (fragP);
2066 return 4;
2067 }
2068
2069 /* Relaxable case. Set up the initial guess for the variable
2070 part of the frag. */
2071 fragP->fr_subtype = IND (BRANCH, BYTE);
2072 }
2073
2074 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2075 abort ();
2076
2077 /* Return the size of the variable part of the frag. */
2078 return md_relax_table[fragP->fr_subtype].rlx_length;
2079 }
2080
2081 int md_short_jump_size = 3;
2082 int md_long_jump_size = 5;
2083
2084 void
2085 md_create_short_jump (char *ptr,
2086 addressT from_addr,
2087 addressT to_addr,
2088 fragS *frag ATTRIBUTE_UNUSED,
2089 symbolS *to_symbol ATTRIBUTE_UNUSED)
2090 {
2091 valueT offset;
2092
2093 offset = to_addr - from_addr;
2094 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2095 md_number_to_disp (ptr + 1, (valueT) offset, 2);
2096 }
2097
2098 void
2099 md_create_long_jump (char *ptr,
2100 addressT from_addr,
2101 addressT to_addr,
2102 fragS *frag ATTRIBUTE_UNUSED,
2103 symbolS *to_symbol ATTRIBUTE_UNUSED)
2104 {
2105 valueT offset;
2106
2107 offset = to_addr - from_addr;
2108 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2109 md_number_to_disp (ptr + 1, (valueT) offset, 4);
2110 }
2111 \f
2112 const char *md_shortopts = "m:";
2113
2114 struct option md_longopts[] =
2115 {
2116 #define OPTION_DISP_SIZE (OPTION_MD_BASE)
2117 {"disp-size-default", required_argument , NULL, OPTION_DISP_SIZE},
2118 {NULL, no_argument, NULL, 0}
2119 };
2120
2121 size_t md_longopts_size = sizeof (md_longopts);
2122
2123 int
2124 md_parse_option (int c, const char *arg)
2125 {
2126 switch (c)
2127 {
2128 case 'm':
2129 if (!strcmp (arg, "32032"))
2130 {
2131 cpureg = cpureg_032;
2132 mmureg = mmureg_032;
2133 }
2134 else if (!strcmp (arg, "32532"))
2135 {
2136 cpureg = cpureg_532;
2137 mmureg = mmureg_532;
2138 }
2139 else
2140 {
2141 as_warn (_("invalid architecture option -m%s, ignored"), arg);
2142 return 0;
2143 }
2144 break;
2145 case OPTION_DISP_SIZE:
2146 {
2147 int size = atoi(arg);
2148 switch (size)
2149 {
2150 case 1: case 2: case 4:
2151 default_disp_size = size;
2152 break;
2153 default:
2154 as_warn (_("invalid default displacement size \"%s\". Defaulting to %d."),
2155 arg, default_disp_size);
2156 }
2157 break;
2158 }
2159
2160 default:
2161 return 0;
2162 }
2163
2164 return 1;
2165 }
2166
2167 void
2168 md_show_usage (FILE *stream)
2169 {
2170 fprintf (stream, _("\
2171 NS32K options:\n\
2172 -m32032 | -m32532 select variant of NS32K architecture\n\
2173 --disp-size-default=<1|2|4>\n"));
2174 }
2175 \f
2176 /* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
2177
2178 void
2179 cons_fix_new_ns32k (fragS *frag, /* Which frag? */
2180 int where, /* Where in that frag? */
2181 int size, /* 1, 2 or 4 usually. */
2182 expressionS *exp, /* Expression. */
2183 bfd_reloc_code_real_type r ATTRIBUTE_UNUSED)
2184 {
2185 fix_new_ns32k_exp (frag, where, size, exp,
2186 0, 2, 0, 0, 0, 0);
2187 }
2188
2189 /* We have no need to default values of symbols. */
2190
2191 symbolS *
2192 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2193 {
2194 return 0;
2195 }
2196
2197 /* Round up a section size to the appropriate boundary. */
2198
2199 valueT
2200 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
2201 {
2202 return size; /* Byte alignment is fine. */
2203 }
2204
2205 /* Exactly what point is a PC-relative offset relative TO? On the
2206 ns32k, they're relative to the start of the instruction. */
2207
2208 long
2209 md_pcrel_from (fixS *fixP)
2210 {
2211 long res;
2212
2213 res = fixP->fx_where + fixP->fx_frag->fr_address;
2214 #ifdef SEQUENT_COMPATABILITY
2215 if (frag_bsr (fixP->fx_frag))
2216 res += 0x12 /* FOO Kludge alert! */
2217 #endif
2218 return res;
2219 }
2220
2221 arelent *
2222 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2223 {
2224 arelent *rel;
2225 bfd_reloc_code_real_type code;
2226
2227 code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
2228
2229 rel = XNEW (arelent);
2230 rel->sym_ptr_ptr = XNEW (asymbol *);
2231 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2232 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2233 if (fixp->fx_pcrel)
2234 rel->addend = fixp->fx_addnumber;
2235 else
2236 rel->addend = 0;
2237
2238 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2239 if (!rel->howto)
2240 {
2241 const char *name;
2242
2243 name = S_GET_NAME (fixp->fx_addsy);
2244 if (name == NULL)
2245 name = _("<unknown>");
2246 as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
2247 name, (int) code);
2248 }
2249
2250 return rel;
2251 }