]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-xtensa.c
* config/tc-xtensa.c (update_next_frag_state): Always add a NOP if
[thirdparty/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
19 MA 02111-1307, USA. */
20
21 #include <string.h>
22 #include <limits.h>
23 #include "as.h"
24 #include "sb.h"
25 #include "safe-ctype.h"
26 #include "tc-xtensa.h"
27 #include "frags.h"
28 #include "subsegs.h"
29 #include "xtensa-relax.h"
30 #include "xtensa-istack.h"
31 #include "dwarf2dbg.h"
32 #include "struc-symbol.h"
33 #include "xtensa-config.h"
34
35 #ifndef uint32
36 #define uint32 unsigned int
37 #endif
38 #ifndef int32
39 #define int32 signed int
40 #endif
41
42 /* Notes:
43
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60 /* Define characters with special meanings to GAS. */
61 const char comment_chars[] = "#";
62 const char line_comment_chars[] = "#";
63 const char line_separator_chars[] = ";";
64 const char EXP_CHARS[] = "eE";
65 const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
68 /* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
70
71 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
72 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74 /* Maximum width we would pad an unreachable frag to get alignment. */
75 #define UNREACHABLE_MAX_WIDTH 8
76
77 static vliw_insn cur_vinsn;
78
79 size_t xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
80
81 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83 /* Some functions are only valid in the front end. This variable
84 allows us to assert that we haven't crossed over into the
85 back end. */
86 static bfd_boolean past_xtensa_end = FALSE;
87
88 /* Flags for properties of the last instruction in a segment. */
89 #define FLAG_IS_A0_WRITER 0x1
90 #define FLAG_IS_BAD_LOOPEND 0x2
91
92
93 /* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
99 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
100 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. */
108
109 typedef struct lit_state_struct
110 {
111 const char *lit_seg_name;
112 const char *lit4_seg_name;
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
116 segT lit4_seg;
117 segT init_lit_seg;
118 segT fini_lit_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136 static seg_list init_literal_head_h;
137 static seg_list *init_literal_head = &init_literal_head_h;
138 static seg_list fini_literal_head_h;
139 static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
142 /* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148 typedef struct sym_list_struct
149 {
150 struct sym_list_struct *next;
151 symbolS *sym;
152 } sym_list;
153
154 static sym_list *insn_labels = NULL;
155 static sym_list *free_insn_labels = NULL;
156 static sym_list *saved_insn_labels = NULL;
157
158 static sym_list *literal_syms;
159
160
161 /* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163 int prefer_const16 = 0;
164 int prefer_l32r = 0;
165
166 /* Global flag to indicate when we are emitting literals. */
167 int generating_literals = 0;
168
169 /* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172 /* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182 #define XTENSA_PROP_LITERAL 0x00000001
183 #define XTENSA_PROP_INSN 0x00000002
184 #define XTENSA_PROP_DATA 0x00000004
185 #define XTENSA_PROP_UNREACHABLE 0x00000008
186 /* Instruction only properties at beginning of code. */
187 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189 /* Instruction only properties about code. */
190 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192 #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194 /* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206 */
207 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209 /* No branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
211 /* Low priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
213 /* High priority branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215 /* Required branch target alignment. */
216 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225 /* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236 #define XTENSA_PROP_ALIGN 0x00000800
237
238 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249 /* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255 typedef struct frag_flags_struct frag_flags;
256
257 struct frag_flags_struct
258 {
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286 };
287
288
289 /* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291 struct xtensa_block_info_struct
292 {
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298 };
299
300
301 /* Structure for saving the current state before emitting literals. */
302 typedef struct emit_state_struct
303 {
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308 } emit_state;
309
310
311 /* Opcode placement information */
312
313 typedef unsigned long long bitfield;
314 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318 #define MAX_FORMATS 32
319
320 typedef struct op_placement_info_struct
321 {
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
325 formats has a high freedom, as does an opcode that fits
326 only one format but many slots in that format. The most
327 restrictive is the opcode that fits only one slot in one
328 format. */
329 int issuef;
330 /* The single format (i.e., if the op can live in a bundle by itself),
331 narrowest format, and widest format the op can be bundled in
332 and their sizes: */
333 xtensa_format single;
334 xtensa_format narrowest;
335 xtensa_format widest;
336 char narrowest_size;
337 char widest_size;
338 char single_size;
339
340 /* formats is a bitfield with the Nth bit set
341 if the opcode fits in the Nth xtensa_format. */
342 bitfield formats;
343
344 /* slots[N]'s Mth bit is set if the op fits in the
345 Mth slot of the Nth xtensa_format. */
346 bitfield slots[MAX_FORMATS];
347
348 /* A count of the number of slots in a given format
349 an op can fit (i.e., the bitcount of the slot field above). */
350 char slots_in_format[MAX_FORMATS];
351
352 } op_placement_info, *op_placement_info_table;
353
354 op_placement_info_table op_placement_table;
355
356
357 /* Extra expression types. */
358
359 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
360 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
361 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
362
363
364 /* Directives. */
365
366 typedef enum
367 {
368 directive_none = 0,
369 directive_literal,
370 directive_density,
371 directive_transform,
372 directive_freeregs,
373 directive_longcalls,
374 directive_literal_prefix,
375 directive_schedule,
376 directive_absolute_literals,
377 directive_last_directive
378 } directiveE;
379
380 typedef struct
381 {
382 const char *name;
383 bfd_boolean can_be_negated;
384 } directive_infoS;
385
386 const directive_infoS directive_info[] =
387 {
388 { "none", FALSE },
389 { "literal", FALSE },
390 { "density", TRUE },
391 { "transform", TRUE },
392 { "freeregs", FALSE },
393 { "longcalls", TRUE },
394 { "literal_prefix", FALSE },
395 { "schedule", TRUE },
396 { "absolute-literals", TRUE }
397 };
398
399 bfd_boolean directive_state[] =
400 {
401 FALSE, /* none */
402 FALSE, /* literal */
403 #if !XCHAL_HAVE_DENSITY
404 FALSE, /* density */
405 #else
406 TRUE, /* density */
407 #endif
408 TRUE, /* transform */
409 FALSE, /* freeregs */
410 FALSE, /* longcalls */
411 FALSE, /* literal_prefix */
412 TRUE, /* schedule */
413 #if XSHAL_USE_ABSOLUTE_LITERALS
414 TRUE /* absolute_literals */
415 #else
416 FALSE /* absolute_literals */
417 #endif
418 };
419
420
421 /* Directive functions. */
422
423 static void xtensa_begin_directive (int);
424 static void xtensa_end_directive (int);
425 static void xtensa_dwarf2_directive_loc (int);
426 static void xtensa_literal_prefix (char const *, int);
427 static void xtensa_literal_position (int);
428 static void xtensa_literal_pseudo (int);
429 static void xtensa_frequency_pseudo (int);
430 static void xtensa_elf_cons (int);
431
432 /* Parsing and Idiom Translation. */
433
434 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
435
436 /* Various Other Internal Functions. */
437
438 static void xtensa_mark_literal_pool_location (void);
439 static addressT get_expanded_loop_offset (xtensa_opcode);
440 static fragS *get_literal_pool_location (segT);
441 static void set_literal_pool_location (segT, fragS *);
442 static void xtensa_set_frag_assembly_state (fragS *);
443 static void finish_vinsn (vliw_insn *);
444 static bfd_boolean emit_single_op (TInsn *);
445 static int total_frag_text_expansion (fragS *);
446
447 /* Alignment Functions. */
448
449 static size_t get_text_align_power (int);
450 static addressT get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
451
452 /* Helpers for xtensa_relax_frag(). */
453
454 static long relax_frag_add_nop (fragS *);
455
456 /* Accessors for additional per-subsegment information. */
457
458 static unsigned get_last_insn_flags (segT, subsegT);
459 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
460 static float get_subseg_total_freq (segT, subsegT);
461 static float get_subseg_target_freq (segT, subsegT);
462 static void set_subseg_freq (segT, subsegT, float, float);
463
464 /* Segment list functions. */
465
466 static void xtensa_move_literals (void);
467 static void xtensa_reorder_segments (void);
468 static void xtensa_switch_to_literal_fragment (emit_state *);
469 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
470 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
471 static void xtensa_restore_emit_state (emit_state *);
472 static void cache_literal_section
473 (seg_list *, const char *, segT *, bfd_boolean);
474
475 /* Import from elf32-xtensa.c in BFD library. */
476
477 extern char *xtensa_get_property_section_name (asection *, const char *);
478
479 /* op_placement_info functions. */
480
481 static void init_op_placement_info_table (void);
482 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
483 static int xg_get_single_size (xtensa_opcode);
484 static xtensa_format xg_get_single_format (xtensa_opcode);
485
486 /* TInsn and IStack functions. */
487
488 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
489 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
490 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
491 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
492 static bfd_boolean tinsn_check_arguments (const TInsn *);
493 static void tinsn_from_chars (TInsn *, char *, int);
494 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
495 static int get_num_stack_text_bytes (IStack *);
496 static int get_num_stack_literal_bytes (IStack *);
497
498 /* vliw_insn functions. */
499
500 static void xg_init_vinsn (vliw_insn *);
501 static void xg_clear_vinsn (vliw_insn *);
502 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
503 static void xg_free_vinsn (vliw_insn *);
504 static bfd_boolean vinsn_to_insnbuf
505 (vliw_insn *, char *, fragS *, bfd_boolean);
506 static void vinsn_from_chars (vliw_insn *, char *);
507
508 /* Expression Utilities. */
509
510 bfd_boolean expr_is_const (const expressionS *);
511 offsetT get_expr_const (const expressionS *);
512 void set_expr_const (expressionS *, offsetT);
513 bfd_boolean expr_is_register (const expressionS *);
514 offsetT get_expr_register (const expressionS *);
515 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
516 static void set_expr_symbol_offset_diff
517 (expressionS *, symbolS *, symbolS *, offsetT);
518 bfd_boolean expr_is_equal (expressionS *, expressionS *);
519 static void copy_expr (expressionS *, const expressionS *);
520
521 /* Section renaming. */
522
523 static void build_section_rename (const char *);
524
525
526 /* ISA imported from bfd. */
527 extern xtensa_isa xtensa_default_isa;
528
529 extern int target_big_endian;
530
531 static xtensa_opcode xtensa_addi_opcode;
532 static xtensa_opcode xtensa_addmi_opcode;
533 static xtensa_opcode xtensa_call0_opcode;
534 static xtensa_opcode xtensa_call4_opcode;
535 static xtensa_opcode xtensa_call8_opcode;
536 static xtensa_opcode xtensa_call12_opcode;
537 static xtensa_opcode xtensa_callx0_opcode;
538 static xtensa_opcode xtensa_callx4_opcode;
539 static xtensa_opcode xtensa_callx8_opcode;
540 static xtensa_opcode xtensa_callx12_opcode;
541 static xtensa_opcode xtensa_const16_opcode;
542 static xtensa_opcode xtensa_entry_opcode;
543 static xtensa_opcode xtensa_movi_opcode;
544 static xtensa_opcode xtensa_movi_n_opcode;
545 static xtensa_opcode xtensa_isync_opcode;
546 static xtensa_opcode xtensa_jx_opcode;
547 static xtensa_opcode xtensa_l32r_opcode;
548 static xtensa_opcode xtensa_loop_opcode;
549 static xtensa_opcode xtensa_loopnez_opcode;
550 static xtensa_opcode xtensa_loopgtz_opcode;
551 static xtensa_opcode xtensa_nop_opcode;
552 static xtensa_opcode xtensa_nop_n_opcode;
553 static xtensa_opcode xtensa_or_opcode;
554 static xtensa_opcode xtensa_ret_opcode;
555 static xtensa_opcode xtensa_ret_n_opcode;
556 static xtensa_opcode xtensa_retw_opcode;
557 static xtensa_opcode xtensa_retw_n_opcode;
558 static xtensa_opcode xtensa_rsr_lcount_opcode;
559 static xtensa_opcode xtensa_waiti_opcode;
560
561 \f
562 /* Command-line Options. */
563
564 bfd_boolean use_literal_section = TRUE;
565 static bfd_boolean align_targets = TRUE;
566 static bfd_boolean warn_unaligned_branch_targets = FALSE;
567 static bfd_boolean has_a0_b_retw = FALSE;
568 static bfd_boolean workaround_a0_b_retw = FALSE;
569 static bfd_boolean workaround_b_j_loop_end = FALSE;
570 static bfd_boolean workaround_short_loop = FALSE;
571 static bfd_boolean maybe_has_short_loop = FALSE;
572 static bfd_boolean workaround_close_loop_end = FALSE;
573 static bfd_boolean maybe_has_close_loop_end = FALSE;
574
575 /* When workaround_short_loops is TRUE, all loops with early exits must
576 have at least 3 instructions. workaround_all_short_loops is a modifier
577 to the workaround_short_loop flag. In addition to the
578 workaround_short_loop actions, all straightline loopgtz and loopnez
579 must have at least 3 instructions. */
580
581 static bfd_boolean workaround_all_short_loops = FALSE;
582
583
584 static void
585 xtensa_setup_hw_workarounds (int earliest, int latest)
586 {
587 if (earliest > latest)
588 as_fatal (_("illegal range of target hardware versions"));
589
590 /* Enable all workarounds for pre-T1050.0 hardware. */
591 if (earliest < 105000 || latest < 105000)
592 {
593 workaround_a0_b_retw |= TRUE;
594 workaround_b_j_loop_end |= TRUE;
595 workaround_short_loop |= TRUE;
596 workaround_close_loop_end |= TRUE;
597 workaround_all_short_loops |= TRUE;
598 }
599 }
600
601
602 enum
603 {
604 option_density = OPTION_MD_BASE,
605 option_no_density,
606
607 option_relax,
608 option_no_relax,
609
610 option_link_relax,
611 option_no_link_relax,
612
613 option_generics,
614 option_no_generics,
615
616 option_transform,
617 option_no_transform,
618
619 option_text_section_literals,
620 option_no_text_section_literals,
621
622 option_absolute_literals,
623 option_no_absolute_literals,
624
625 option_align_targets,
626 option_no_align_targets,
627
628 option_warn_unaligned_targets,
629
630 option_longcalls,
631 option_no_longcalls,
632
633 option_workaround_a0_b_retw,
634 option_no_workaround_a0_b_retw,
635
636 option_workaround_b_j_loop_end,
637 option_no_workaround_b_j_loop_end,
638
639 option_workaround_short_loop,
640 option_no_workaround_short_loop,
641
642 option_workaround_all_short_loops,
643 option_no_workaround_all_short_loops,
644
645 option_workaround_close_loop_end,
646 option_no_workaround_close_loop_end,
647
648 option_no_workarounds,
649
650 option_rename_section_name,
651
652 option_prefer_l32r,
653 option_prefer_const16,
654
655 option_target_hardware
656 };
657
658 const char *md_shortopts = "";
659
660 struct option md_longopts[] =
661 {
662 { "density", no_argument, NULL, option_density },
663 { "no-density", no_argument, NULL, option_no_density },
664
665 /* Both "relax" and "generics" are deprecated and treated as equivalent
666 to the "transform" option. */
667 { "relax", no_argument, NULL, option_relax },
668 { "no-relax", no_argument, NULL, option_no_relax },
669 { "generics", no_argument, NULL, option_generics },
670 { "no-generics", no_argument, NULL, option_no_generics },
671
672 { "transform", no_argument, NULL, option_transform },
673 { "no-transform", no_argument, NULL, option_no_transform },
674 { "text-section-literals", no_argument, NULL, option_text_section_literals },
675 { "no-text-section-literals", no_argument, NULL,
676 option_no_text_section_literals },
677 { "absolute-literals", no_argument, NULL, option_absolute_literals },
678 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
679 /* This option was changed from -align-target to -target-align
680 because it conflicted with the "-al" option. */
681 { "target-align", no_argument, NULL, option_align_targets },
682 { "no-target-align", no_argument, NULL, option_no_align_targets },
683 { "warn-unaligned-targets", no_argument, NULL,
684 option_warn_unaligned_targets },
685 { "longcalls", no_argument, NULL, option_longcalls },
686 { "no-longcalls", no_argument, NULL, option_no_longcalls },
687
688 { "no-workaround-a0-b-retw", no_argument, NULL,
689 option_no_workaround_a0_b_retw },
690 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
691
692 { "no-workaround-b-j-loop-end", no_argument, NULL,
693 option_no_workaround_b_j_loop_end },
694 { "workaround-b-j-loop-end", no_argument, NULL,
695 option_workaround_b_j_loop_end },
696
697 { "no-workaround-short-loops", no_argument, NULL,
698 option_no_workaround_short_loop },
699 { "workaround-short-loops", no_argument, NULL,
700 option_workaround_short_loop },
701
702 { "no-workaround-all-short-loops", no_argument, NULL,
703 option_no_workaround_all_short_loops },
704 { "workaround-all-short-loop", no_argument, NULL,
705 option_workaround_all_short_loops },
706
707 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
708 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
709
710 { "no-workarounds", no_argument, NULL, option_no_workarounds },
711
712 { "no-workaround-close-loop-end", no_argument, NULL,
713 option_no_workaround_close_loop_end },
714 { "workaround-close-loop-end", no_argument, NULL,
715 option_workaround_close_loop_end },
716
717 { "rename-section", required_argument, NULL, option_rename_section_name },
718
719 { "link-relax", no_argument, NULL, option_link_relax },
720 { "no-link-relax", no_argument, NULL, option_no_link_relax },
721
722 { "target-hardware", required_argument, NULL, option_target_hardware },
723
724 { NULL, no_argument, NULL, 0 }
725 };
726
727 size_t md_longopts_size = sizeof md_longopts;
728
729
730 int
731 md_parse_option (int c, char *arg)
732 {
733 switch (c)
734 {
735 case option_density:
736 as_warn (_("--density option is ignored"));
737 return 1;
738 case option_no_density:
739 as_warn (_("--no-density option is ignored"));
740 return 1;
741 case option_link_relax:
742 linkrelax = 1;
743 return 1;
744 case option_no_link_relax:
745 linkrelax = 0;
746 return 1;
747 case option_generics:
748 as_warn (_("--generics is deprecated; use --transform instead"));
749 return md_parse_option (option_transform, arg);
750 case option_no_generics:
751 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
752 return md_parse_option (option_no_transform, arg);
753 case option_relax:
754 as_warn (_("--relax is deprecated; use --transform instead"));
755 return md_parse_option (option_transform, arg);
756 case option_no_relax:
757 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
758 return md_parse_option (option_no_transform, arg);
759 case option_longcalls:
760 directive_state[directive_longcalls] = TRUE;
761 return 1;
762 case option_no_longcalls:
763 directive_state[directive_longcalls] = FALSE;
764 return 1;
765 case option_text_section_literals:
766 use_literal_section = FALSE;
767 return 1;
768 case option_no_text_section_literals:
769 use_literal_section = TRUE;
770 return 1;
771 case option_absolute_literals:
772 if (!absolute_literals_supported)
773 {
774 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
775 return 0;
776 }
777 directive_state[directive_absolute_literals] = TRUE;
778 return 1;
779 case option_no_absolute_literals:
780 directive_state[directive_absolute_literals] = FALSE;
781 return 1;
782
783 case option_workaround_a0_b_retw:
784 workaround_a0_b_retw = TRUE;
785 return 1;
786 case option_no_workaround_a0_b_retw:
787 workaround_a0_b_retw = FALSE;
788 return 1;
789 case option_workaround_b_j_loop_end:
790 workaround_b_j_loop_end = TRUE;
791 return 1;
792 case option_no_workaround_b_j_loop_end:
793 workaround_b_j_loop_end = FALSE;
794 return 1;
795
796 case option_workaround_short_loop:
797 workaround_short_loop = TRUE;
798 return 1;
799 case option_no_workaround_short_loop:
800 workaround_short_loop = FALSE;
801 return 1;
802
803 case option_workaround_all_short_loops:
804 workaround_all_short_loops = TRUE;
805 return 1;
806 case option_no_workaround_all_short_loops:
807 workaround_all_short_loops = FALSE;
808 return 1;
809
810 case option_workaround_close_loop_end:
811 workaround_close_loop_end = TRUE;
812 return 1;
813 case option_no_workaround_close_loop_end:
814 workaround_close_loop_end = FALSE;
815 return 1;
816
817 case option_no_workarounds:
818 workaround_a0_b_retw = FALSE;
819 workaround_b_j_loop_end = FALSE;
820 workaround_short_loop = FALSE;
821 workaround_all_short_loops = FALSE;
822 workaround_close_loop_end = FALSE;
823 return 1;
824
825 case option_align_targets:
826 align_targets = TRUE;
827 return 1;
828 case option_no_align_targets:
829 align_targets = FALSE;
830 return 1;
831
832 case option_warn_unaligned_targets:
833 warn_unaligned_branch_targets = TRUE;
834 return 1;
835
836 case option_rename_section_name:
837 build_section_rename (arg);
838 return 1;
839
840 case 'Q':
841 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
842 should be emitted or not. FIXME: Not implemented. */
843 return 1;
844
845 case option_prefer_l32r:
846 if (prefer_const16)
847 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
848 prefer_l32r = 1;
849 return 1;
850
851 case option_prefer_const16:
852 if (prefer_l32r)
853 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
854 prefer_const16 = 1;
855 return 1;
856
857 case option_target_hardware:
858 {
859 int earliest, latest = 0;
860 if (*arg == 0 || *arg == '-')
861 as_fatal (_("invalid target hardware version"));
862
863 earliest = strtol (arg, &arg, 0);
864
865 if (*arg == 0)
866 latest = earliest;
867 else if (*arg == '-')
868 {
869 if (*++arg == 0)
870 as_fatal (_("invalid target hardware version"));
871 latest = strtol (arg, &arg, 0);
872 }
873 if (*arg != 0)
874 as_fatal (_("invalid target hardware version"));
875
876 xtensa_setup_hw_workarounds (earliest, latest);
877 return 1;
878 }
879
880 case option_transform:
881 /* This option has no affect other than to use the defaults,
882 which are already set. */
883 return 1;
884
885 case option_no_transform:
886 /* This option turns off all transformations of any kind.
887 However, because we want to preserve the state of other
888 directives, we only change its own field. Thus, before
889 you perform any transformation, always check if transform
890 is available. If you use the functions we provide for this
891 purpose, you will be ok. */
892 directive_state[directive_transform] = FALSE;
893 return 1;
894
895 default:
896 return 0;
897 }
898 }
899
900
901 void
902 md_show_usage (FILE *stream)
903 {
904 fputs ("\n\
905 Xtensa options:\n\
906 --[no-]text-section-literals\n\
907 [Do not] put literals in the text section\n\
908 --[no-]absolute-literals\n\
909 [Do not] default to use non-PC-relative literals\n\
910 --[no-]target-align [Do not] try to align branch targets\n\
911 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
912 --[no-]transform [Do not] transform instructions\n\
913 --rename-section old=new Rename section 'old' to 'new'\n", stream);
914 }
915
916 \f
917 /* Functions related to the list of current label symbols. */
918
919 static void
920 xtensa_add_insn_label (symbolS *sym)
921 {
922 sym_list *l;
923
924 if (!free_insn_labels)
925 l = (sym_list *) xmalloc (sizeof (sym_list));
926 else
927 {
928 l = free_insn_labels;
929 free_insn_labels = l->next;
930 }
931
932 l->sym = sym;
933 l->next = insn_labels;
934 insn_labels = l;
935 }
936
937
938 static void
939 xtensa_clear_insn_labels (void)
940 {
941 sym_list **pl;
942
943 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
944 ;
945 *pl = insn_labels;
946 insn_labels = NULL;
947 }
948
949
950 /* The "loops_ok" argument is provided to allow ignoring labels that
951 define loop ends. This fixes a bug where the NOPs to align a
952 loop opcode were included in a previous zero-cost loop:
953
954 loop a0, loopend
955 <loop1 body>
956 loopend:
957
958 loop a2, loopend2
959 <loop2 body>
960
961 would become:
962
963 loop a0, loopend
964 <loop1 body>
965 nop.n <===== bad!
966 loopend:
967
968 loop a2, loopend2
969 <loop2 body>
970
971 This argument is used to prevent moving the NOP to before the
972 loop-end label, which is what you want in this special case. */
973
974 static void
975 xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
976 {
977 sym_list *lit;
978
979 for (lit = insn_labels; lit; lit = lit->next)
980 {
981 symbolS *lit_sym = lit->sym;
982 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
983 {
984 S_SET_VALUE (lit_sym, new_offset);
985 symbol_set_frag (lit_sym, new_frag);
986 }
987 }
988 }
989
990 \f
991 /* Directive data and functions. */
992
993 typedef struct state_stackS_struct
994 {
995 directiveE directive;
996 bfd_boolean negated;
997 bfd_boolean old_state;
998 const char *file;
999 unsigned int line;
1000 const void *datum;
1001 struct state_stackS_struct *prev;
1002 } state_stackS;
1003
1004 state_stackS *directive_state_stack;
1005
1006 const pseudo_typeS md_pseudo_table[] =
1007 {
1008 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1009 { "literal_position", xtensa_literal_position, 0 },
1010 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1011 { "long", xtensa_elf_cons, 4 },
1012 { "word", xtensa_elf_cons, 4 },
1013 { "short", xtensa_elf_cons, 2 },
1014 { "begin", xtensa_begin_directive, 0 },
1015 { "end", xtensa_end_directive, 0 },
1016 { "loc", xtensa_dwarf2_directive_loc, 0 },
1017 { "literal", xtensa_literal_pseudo, 0 },
1018 { "frequency", xtensa_frequency_pseudo, 0 },
1019 { NULL, 0, 0 },
1020 };
1021
1022
1023 static bfd_boolean
1024 use_transform (void)
1025 {
1026 /* After md_end, you should be checking frag by frag, rather
1027 than state directives. */
1028 assert (!past_xtensa_end);
1029 return directive_state[directive_transform];
1030 }
1031
1032
1033 static bfd_boolean
1034 use_longcalls (void)
1035 {
1036 /* After md_end, you should be checking frag by frag, rather
1037 than state directives. */
1038 assert (!past_xtensa_end);
1039 return directive_state[directive_longcalls] && use_transform ();
1040 }
1041
1042
1043 static bfd_boolean
1044 do_align_targets (void)
1045 {
1046 /* After md_end, you should be checking frag by frag, rather
1047 than state directives. */
1048 assert (!past_xtensa_end);
1049 return align_targets && use_transform ();
1050 }
1051
1052
1053 static void
1054 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1055 {
1056 char *file;
1057 unsigned int line;
1058 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1059
1060 as_where (&file, &line);
1061
1062 stack->directive = directive;
1063 stack->negated = negated;
1064 stack->old_state = directive_state[directive];
1065 stack->file = file;
1066 stack->line = line;
1067 stack->datum = datum;
1068 stack->prev = directive_state_stack;
1069 directive_state_stack = stack;
1070
1071 directive_state[directive] = !negated;
1072 }
1073
1074
1075 static void
1076 directive_pop (directiveE *directive,
1077 bfd_boolean *negated,
1078 const char **file,
1079 unsigned int *line,
1080 const void **datum)
1081 {
1082 state_stackS *top = directive_state_stack;
1083
1084 if (!directive_state_stack)
1085 {
1086 as_bad (_("unmatched end directive"));
1087 *directive = directive_none;
1088 return;
1089 }
1090
1091 directive_state[directive_state_stack->directive] = top->old_state;
1092 *directive = top->directive;
1093 *negated = top->negated;
1094 *file = top->file;
1095 *line = top->line;
1096 *datum = top->datum;
1097 directive_state_stack = top->prev;
1098 free (top);
1099 }
1100
1101
1102 static void
1103 directive_balance (void)
1104 {
1105 while (directive_state_stack)
1106 {
1107 directiveE directive;
1108 bfd_boolean negated;
1109 const char *file;
1110 unsigned int line;
1111 const void *datum;
1112
1113 directive_pop (&directive, &negated, &file, &line, &datum);
1114 as_warn_where ((char *) file, line,
1115 _(".begin directive with no matching .end directive"));
1116 }
1117 }
1118
1119
1120 static bfd_boolean
1121 inside_directive (directiveE dir)
1122 {
1123 state_stackS *top = directive_state_stack;
1124
1125 while (top && top->directive != dir)
1126 top = top->prev;
1127
1128 return (top != NULL);
1129 }
1130
1131
1132 static void
1133 get_directive (directiveE *directive, bfd_boolean *negated)
1134 {
1135 int len;
1136 unsigned i;
1137 char *directive_string;
1138
1139 if (strncmp (input_line_pointer, "no-", 3) != 0)
1140 *negated = FALSE;
1141 else
1142 {
1143 *negated = TRUE;
1144 input_line_pointer += 3;
1145 }
1146
1147 len = strspn (input_line_pointer,
1148 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1149
1150 /* This code is a hack to make .begin [no-][generics|relax] exactly
1151 equivalent to .begin [no-]transform. We should remove it when
1152 we stop accepting those options. */
1153
1154 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1155 {
1156 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1157 directive_string = "transform";
1158 }
1159 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1160 {
1161 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1162 directive_string = "transform";
1163 }
1164 else
1165 directive_string = input_line_pointer;
1166
1167 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1168 {
1169 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1170 {
1171 input_line_pointer += len;
1172 *directive = (directiveE) i;
1173 if (*negated && !directive_info[i].can_be_negated)
1174 as_bad (_("directive %s cannot be negated"),
1175 directive_info[i].name);
1176 return;
1177 }
1178 }
1179
1180 as_bad (_("unknown directive"));
1181 *directive = (directiveE) XTENSA_UNDEFINED;
1182 }
1183
1184
1185 static void
1186 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1187 {
1188 directiveE directive;
1189 bfd_boolean negated;
1190 emit_state *state;
1191 int len;
1192 lit_state *ls;
1193
1194 get_directive (&directive, &negated);
1195 if (directive == (directiveE) XTENSA_UNDEFINED)
1196 {
1197 discard_rest_of_line ();
1198 return;
1199 }
1200
1201 if (cur_vinsn.inside_bundle)
1202 as_bad (_("directives are not valid inside bundles"));
1203
1204 switch (directive)
1205 {
1206 case directive_literal:
1207 if (!inside_directive (directive_literal))
1208 {
1209 /* Previous labels go with whatever follows this directive, not with
1210 the literal, so save them now. */
1211 saved_insn_labels = insn_labels;
1212 insn_labels = NULL;
1213 }
1214 as_warn (_(".begin literal is deprecated; use .literal instead"));
1215 state = (emit_state *) xmalloc (sizeof (emit_state));
1216 xtensa_switch_to_literal_fragment (state);
1217 directive_push (directive_literal, negated, state);
1218 break;
1219
1220 case directive_literal_prefix:
1221 /* Have to flush pending output because a movi relaxed to an l32r
1222 might produce a literal. */
1223 md_flush_pending_output ();
1224 /* Check to see if the current fragment is a literal
1225 fragment. If it is, then this operation is not allowed. */
1226 if (generating_literals)
1227 {
1228 as_bad (_("cannot set literal_prefix inside literal fragment"));
1229 return;
1230 }
1231
1232 /* Allocate the literal state for this section and push
1233 onto the directive stack. */
1234 ls = xmalloc (sizeof (lit_state));
1235 assert (ls);
1236
1237 *ls = default_lit_sections;
1238
1239 directive_push (directive_literal_prefix, negated, ls);
1240
1241 /* Parse the new prefix from the input_line_pointer. */
1242 SKIP_WHITESPACE ();
1243 len = strspn (input_line_pointer,
1244 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1245 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1246
1247 /* Process the new prefix. */
1248 xtensa_literal_prefix (input_line_pointer, len);
1249
1250 /* Skip the name in the input line. */
1251 input_line_pointer += len;
1252 break;
1253
1254 case directive_freeregs:
1255 /* This information is currently unused, but we'll accept the statement
1256 and just discard the rest of the line. This won't check the syntax,
1257 but it will accept every correct freeregs directive. */
1258 input_line_pointer += strcspn (input_line_pointer, "\n");
1259 directive_push (directive_freeregs, negated, 0);
1260 break;
1261
1262 case directive_schedule:
1263 md_flush_pending_output ();
1264 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1265 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1266 directive_push (directive_schedule, negated, 0);
1267 xtensa_set_frag_assembly_state (frag_now);
1268 break;
1269
1270 case directive_density:
1271 as_warn (_(".begin [no-]density is ignored"));
1272 break;
1273
1274 case directive_absolute_literals:
1275 md_flush_pending_output ();
1276 if (!absolute_literals_supported && !negated)
1277 {
1278 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1279 break;
1280 }
1281 xtensa_set_frag_assembly_state (frag_now);
1282 directive_push (directive, negated, 0);
1283 break;
1284
1285 default:
1286 md_flush_pending_output ();
1287 xtensa_set_frag_assembly_state (frag_now);
1288 directive_push (directive, negated, 0);
1289 break;
1290 }
1291
1292 demand_empty_rest_of_line ();
1293 }
1294
1295
1296 static void
1297 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1298 {
1299 directiveE begin_directive, end_directive;
1300 bfd_boolean begin_negated, end_negated;
1301 const char *file;
1302 unsigned int line;
1303 emit_state *state;
1304 emit_state **state_ptr;
1305 lit_state *s;
1306
1307 if (cur_vinsn.inside_bundle)
1308 as_bad (_("directives are not valid inside bundles"));
1309
1310 get_directive (&end_directive, &end_negated);
1311
1312 md_flush_pending_output ();
1313
1314 switch (end_directive)
1315 {
1316 case (directiveE) XTENSA_UNDEFINED:
1317 discard_rest_of_line ();
1318 return;
1319
1320 case directive_density:
1321 as_warn (_(".end [no-]density is ignored"));
1322 demand_empty_rest_of_line ();
1323 break;
1324
1325 case directive_absolute_literals:
1326 if (!absolute_literals_supported && !end_negated)
1327 {
1328 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1329 demand_empty_rest_of_line ();
1330 return;
1331 }
1332 break;
1333
1334 default:
1335 break;
1336 }
1337
1338 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1339 directive_pop (&begin_directive, &begin_negated, &file, &line,
1340 (const void **) state_ptr);
1341
1342 if (begin_directive != directive_none)
1343 {
1344 if (begin_directive != end_directive || begin_negated != end_negated)
1345 {
1346 as_bad (_("does not match begin %s%s at %s:%d"),
1347 begin_negated ? "no-" : "",
1348 directive_info[begin_directive].name, file, line);
1349 }
1350 else
1351 {
1352 switch (end_directive)
1353 {
1354 case directive_literal:
1355 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1356 xtensa_restore_emit_state (state);
1357 xtensa_set_frag_assembly_state (frag_now);
1358 free (state);
1359 if (!inside_directive (directive_literal))
1360 {
1361 /* Restore the list of current labels. */
1362 xtensa_clear_insn_labels ();
1363 insn_labels = saved_insn_labels;
1364 }
1365 break;
1366
1367 case directive_literal_prefix:
1368 /* Restore the default collection sections from saved state. */
1369 s = (lit_state *) state;
1370 assert (s);
1371
1372 if (use_literal_section)
1373 default_lit_sections = *s;
1374
1375 /* free the state storage */
1376 free (s);
1377 break;
1378
1379 case directive_schedule:
1380 case directive_freeregs:
1381 break;
1382
1383 default:
1384 xtensa_set_frag_assembly_state (frag_now);
1385 break;
1386 }
1387 }
1388 }
1389
1390 demand_empty_rest_of_line ();
1391 }
1392
1393
1394 /* Wrap dwarf2 functions so that we correctly support the .loc directive. */
1395
1396 static bfd_boolean xtensa_loc_directive_seen = FALSE;
1397
1398 static void
1399 xtensa_dwarf2_directive_loc (int x)
1400 {
1401 xtensa_loc_directive_seen = TRUE;
1402 dwarf2_directive_loc (x);
1403 }
1404
1405
1406 static void
1407 xtensa_dwarf2_emit_insn (int size, struct dwarf2_line_info *loc)
1408 {
1409 if (debug_type != DEBUG_DWARF2 && ! xtensa_loc_directive_seen)
1410 return;
1411 xtensa_loc_directive_seen = FALSE;
1412 dwarf2_gen_line_info (frag_now_fix () - size, loc);
1413 }
1414
1415
1416 /* Place an aligned literal fragment at the current location. */
1417
1418 static void
1419 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1420 {
1421 md_flush_pending_output ();
1422
1423 if (inside_directive (directive_literal))
1424 as_warn (_(".literal_position inside literal directive; ignoring"));
1425 xtensa_mark_literal_pool_location ();
1426
1427 demand_empty_rest_of_line ();
1428 xtensa_clear_insn_labels ();
1429 }
1430
1431
1432 /* Support .literal label, expr, ... */
1433
1434 static void
1435 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1436 {
1437 emit_state state;
1438 char *p, *base_name;
1439 char c;
1440 segT dest_seg;
1441
1442 if (inside_directive (directive_literal))
1443 {
1444 as_bad (_(".literal not allowed inside .begin literal region"));
1445 ignore_rest_of_line ();
1446 return;
1447 }
1448
1449 md_flush_pending_output ();
1450
1451 /* Previous labels go with whatever follows this directive, not with
1452 the literal, so save them now. */
1453 saved_insn_labels = insn_labels;
1454 insn_labels = NULL;
1455
1456 /* If we are using text-section literals, then this is the right value... */
1457 dest_seg = now_seg;
1458
1459 base_name = input_line_pointer;
1460
1461 xtensa_switch_to_literal_fragment (&state);
1462
1463 /* ...but if we aren't using text-section-literals, then we
1464 need to put them in the section we just switched to. */
1465 if (use_literal_section || directive_state[directive_absolute_literals])
1466 dest_seg = now_seg;
1467
1468 /* All literals are aligned to four-byte boundaries. */
1469 frag_align (2, 0, 0);
1470 record_alignment (now_seg, 2);
1471
1472 c = get_symbol_end ();
1473 /* Just after name is now '\0'. */
1474 p = input_line_pointer;
1475 *p = c;
1476 SKIP_WHITESPACE ();
1477
1478 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1479 {
1480 as_bad (_("expected comma or colon after symbol name; "
1481 "rest of line ignored"));
1482 ignore_rest_of_line ();
1483 xtensa_restore_emit_state (&state);
1484 return;
1485 }
1486 *p = 0;
1487
1488 colon (base_name);
1489
1490 *p = c;
1491 input_line_pointer++; /* skip ',' or ':' */
1492
1493 xtensa_elf_cons (4);
1494
1495 xtensa_restore_emit_state (&state);
1496
1497 /* Restore the list of current labels. */
1498 xtensa_clear_insn_labels ();
1499 insn_labels = saved_insn_labels;
1500 }
1501
1502
1503 static void
1504 xtensa_literal_prefix (char const *start, int len)
1505 {
1506 char *name, *linkonce_suffix;
1507 char *newname, *newname4;
1508 size_t linkonce_len;
1509
1510 /* Get a null-terminated copy of the name. */
1511 name = xmalloc (len + 1);
1512 assert (name);
1513
1514 strncpy (name, start, len);
1515 name[len] = 0;
1516
1517 /* Allocate the sections (interesting note: the memory pointing to
1518 the name is actually used for the name by the new section). */
1519
1520 newname = xmalloc (len + strlen (".literal") + 1);
1521 newname4 = xmalloc (len + strlen (".lit4") + 1);
1522
1523 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1524 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1525 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1526 {
1527 strcpy (newname, ".gnu.linkonce.literal");
1528 strcpy (newname4, ".gnu.linkonce.lit4");
1529
1530 strcat (newname, linkonce_suffix);
1531 strcat (newname4, linkonce_suffix);
1532 }
1533 else
1534 {
1535 int suffix_pos = len;
1536
1537 /* If the section name ends with ".text", then replace that suffix
1538 instead of appending an additional suffix. */
1539 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1540 suffix_pos -= 5;
1541
1542 strcpy (newname, name);
1543 strcpy (newname4, name);
1544
1545 strcpy (newname + suffix_pos, ".literal");
1546 strcpy (newname4 + suffix_pos, ".lit4");
1547 }
1548
1549 /* Note that cache_literal_section does not create a segment if
1550 it already exists. */
1551 default_lit_sections.lit_seg = NULL;
1552 default_lit_sections.lit4_seg = NULL;
1553
1554 /* Canonicalizing section names allows renaming literal
1555 sections to occur correctly. */
1556 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1557 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
1558
1559 free (name);
1560 }
1561
1562
1563 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1564
1565 static void
1566 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1567 {
1568 float fall_through_f, target_f;
1569
1570 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1571 if (fall_through_f < 0)
1572 {
1573 as_bad (_("fall through frequency must be greater than 0"));
1574 ignore_rest_of_line ();
1575 return;
1576 }
1577
1578 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1579 if (target_f < 0)
1580 {
1581 as_bad (_("branch target frequency must be greater than 0"));
1582 ignore_rest_of_line ();
1583 return;
1584 }
1585
1586 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1587
1588 demand_empty_rest_of_line ();
1589 }
1590
1591
1592 /* Like normal .long/.short/.word, except support @plt, etc.
1593 Clobbers input_line_pointer, checks end-of-line. */
1594
1595 static void
1596 xtensa_elf_cons (int nbytes)
1597 {
1598 expressionS exp;
1599 bfd_reloc_code_real_type reloc;
1600
1601 md_flush_pending_output ();
1602
1603 if (cur_vinsn.inside_bundle)
1604 as_bad (_("directives are not valid inside bundles"));
1605
1606 if (is_it_end_of_statement ())
1607 {
1608 demand_empty_rest_of_line ();
1609 return;
1610 }
1611
1612 do
1613 {
1614 expression (&exp);
1615 if (exp.X_op == O_symbol
1616 && *input_line_pointer == '@'
1617 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1618 != BFD_RELOC_NONE))
1619 {
1620 reloc_howto_type *reloc_howto =
1621 bfd_reloc_type_lookup (stdoutput, reloc);
1622
1623 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1624 as_bad (_("unsupported relocation"));
1625 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1626 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1627 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1628 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1629 as_bad (_("opcode-specific %s relocation used outside "
1630 "an instruction"), reloc_howto->name);
1631 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1632 as_bad (_("%s relocations do not fit in %d bytes"),
1633 reloc_howto->name, nbytes);
1634 else
1635 {
1636 char *p = frag_more ((int) nbytes);
1637 xtensa_set_frag_assembly_state (frag_now);
1638 fix_new_exp (frag_now, p - frag_now->fr_literal,
1639 nbytes, &exp, 0, reloc);
1640 }
1641 }
1642 else
1643 emit_expr (&exp, (unsigned int) nbytes);
1644 }
1645 while (*input_line_pointer++ == ',');
1646
1647 input_line_pointer--; /* Put terminator back into stream. */
1648 demand_empty_rest_of_line ();
1649 }
1650
1651 \f
1652 /* Parsing and Idiom Translation. */
1653
1654 /* Parse @plt, etc. and return the desired relocation. */
1655 static bfd_reloc_code_real_type
1656 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1657 {
1658 struct map_bfd
1659 {
1660 char *string;
1661 int length;
1662 bfd_reloc_code_real_type reloc;
1663 };
1664
1665 char ident[20];
1666 char *str = *str_p;
1667 char *str2;
1668 int ch;
1669 int len;
1670 struct map_bfd *ptr;
1671
1672 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
1673
1674 static struct map_bfd mapping[] =
1675 {
1676 MAP ("l", BFD_RELOC_LO16),
1677 MAP ("h", BFD_RELOC_HI16),
1678 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1679 { (char *) 0, 0, BFD_RELOC_UNUSED }
1680 };
1681
1682 if (*str++ != '@')
1683 return BFD_RELOC_NONE;
1684
1685 for (ch = *str, str2 = ident;
1686 (str2 < ident + sizeof (ident) - 1
1687 && (ISALNUM (ch) || ch == '@'));
1688 ch = *++str)
1689 {
1690 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1691 }
1692
1693 *str2 = '\0';
1694 len = str2 - ident;
1695
1696 ch = ident[0];
1697 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1698 if (ch == ptr->string[0]
1699 && len == ptr->length
1700 && memcmp (ident, ptr->string, ptr->length) == 0)
1701 {
1702 /* Now check for "identifier@suffix+constant". */
1703 if (*str == '-' || *str == '+')
1704 {
1705 char *orig_line = input_line_pointer;
1706 expressionS new_exp;
1707
1708 input_line_pointer = str;
1709 expression (&new_exp);
1710 if (new_exp.X_op == O_constant)
1711 {
1712 exp_p->X_add_number += new_exp.X_add_number;
1713 str = input_line_pointer;
1714 }
1715
1716 if (&input_line_pointer != str_p)
1717 input_line_pointer = orig_line;
1718 }
1719
1720 *str_p = str;
1721 return ptr->reloc;
1722 }
1723
1724 return BFD_RELOC_UNUSED;
1725 }
1726
1727
1728 static const char *
1729 expression_end (const char *name)
1730 {
1731 while (1)
1732 {
1733 switch (*name)
1734 {
1735 case '}':
1736 case ';':
1737 case '\0':
1738 case ',':
1739 case ':':
1740 return name;
1741 case ' ':
1742 case '\t':
1743 ++name;
1744 continue;
1745 default:
1746 return 0;
1747 }
1748 }
1749 }
1750
1751
1752 #define ERROR_REG_NUM ((unsigned) -1)
1753
1754 static unsigned
1755 tc_get_register (const char *prefix)
1756 {
1757 unsigned reg;
1758 const char *next_expr;
1759 const char *old_line_pointer;
1760
1761 SKIP_WHITESPACE ();
1762 old_line_pointer = input_line_pointer;
1763
1764 if (*input_line_pointer == '$')
1765 ++input_line_pointer;
1766
1767 /* Accept "sp" as a synonym for "a1". */
1768 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1769 && expression_end (input_line_pointer + 2))
1770 {
1771 input_line_pointer += 2;
1772 return 1; /* AR[1] */
1773 }
1774
1775 while (*input_line_pointer++ == *prefix++)
1776 ;
1777 --input_line_pointer;
1778 --prefix;
1779
1780 if (*prefix)
1781 {
1782 as_bad (_("bad register name: %s"), old_line_pointer);
1783 return ERROR_REG_NUM;
1784 }
1785
1786 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1787 {
1788 as_bad (_("bad register number: %s"), input_line_pointer);
1789 return ERROR_REG_NUM;
1790 }
1791
1792 reg = 0;
1793
1794 while (ISDIGIT ((int) *input_line_pointer))
1795 reg = reg * 10 + *input_line_pointer++ - '0';
1796
1797 if (!(next_expr = expression_end (input_line_pointer)))
1798 {
1799 as_bad (_("bad register name: %s"), old_line_pointer);
1800 return ERROR_REG_NUM;
1801 }
1802
1803 input_line_pointer = (char *) next_expr;
1804
1805 return reg;
1806 }
1807
1808
1809 static void
1810 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1811 {
1812 xtensa_isa isa = xtensa_default_isa;
1813
1814 /* Check if this is an immediate operand. */
1815 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1816 {
1817 bfd_reloc_code_real_type reloc;
1818 segT t = expression (tok);
1819 if (t == absolute_section
1820 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1821 {
1822 assert (tok->X_op == O_constant);
1823 tok->X_op = O_symbol;
1824 tok->X_add_symbol = &abs_symbol;
1825 }
1826
1827 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1828 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1829 && (reloc != BFD_RELOC_NONE))
1830 {
1831 switch (reloc)
1832 {
1833 default:
1834 case BFD_RELOC_UNUSED:
1835 as_bad (_("unsupported relocation"));
1836 break;
1837
1838 case BFD_RELOC_XTENSA_PLT:
1839 tok->X_op = O_pltrel;
1840 break;
1841
1842 case BFD_RELOC_LO16:
1843 if (tok->X_op == O_constant)
1844 tok->X_add_number &= 0xffff;
1845 else
1846 tok->X_op = O_lo16;
1847 break;
1848
1849 case BFD_RELOC_HI16:
1850 if (tok->X_op == O_constant)
1851 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1852 else
1853 tok->X_op = O_hi16;
1854 break;
1855 }
1856 }
1857 }
1858 else
1859 {
1860 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1861 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1862
1863 if (reg != ERROR_REG_NUM) /* Already errored */
1864 {
1865 uint32 buf = reg;
1866 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1867 as_bad (_("register number out of range"));
1868 }
1869
1870 tok->X_op = O_register;
1871 tok->X_add_symbol = 0;
1872 tok->X_add_number = reg;
1873 }
1874 }
1875
1876
1877 /* Split up the arguments for an opcode or pseudo-op. */
1878
1879 static int
1880 tokenize_arguments (char **args, char *str)
1881 {
1882 char *old_input_line_pointer;
1883 bfd_boolean saw_comma = FALSE;
1884 bfd_boolean saw_arg = FALSE;
1885 bfd_boolean saw_colon = FALSE;
1886 int num_args = 0;
1887 char *arg_end, *arg;
1888 int arg_len;
1889
1890 /* Save and restore input_line_pointer around this function. */
1891 old_input_line_pointer = input_line_pointer;
1892 input_line_pointer = str;
1893
1894 while (*input_line_pointer)
1895 {
1896 SKIP_WHITESPACE ();
1897 switch (*input_line_pointer)
1898 {
1899 case '\0':
1900 case '}':
1901 goto fini;
1902
1903 case ':':
1904 input_line_pointer++;
1905 if (saw_comma || saw_colon || !saw_arg)
1906 goto err;
1907 saw_colon = TRUE;
1908 break;
1909
1910 case ',':
1911 input_line_pointer++;
1912 if (saw_comma || saw_colon || !saw_arg)
1913 goto err;
1914 saw_comma = TRUE;
1915 break;
1916
1917 default:
1918 if (!saw_comma && !saw_colon && saw_arg)
1919 goto err;
1920
1921 arg_end = input_line_pointer + 1;
1922 while (!expression_end (arg_end))
1923 arg_end += 1;
1924
1925 arg_len = arg_end - input_line_pointer;
1926 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1927 args[num_args] = arg;
1928
1929 if (saw_colon)
1930 *arg++ = ':';
1931 strncpy (arg, input_line_pointer, arg_len);
1932 arg[arg_len] = '\0';
1933
1934 input_line_pointer = arg_end;
1935 num_args += 1;
1936 saw_comma = FALSE;
1937 saw_colon = FALSE;
1938 saw_arg = TRUE;
1939 break;
1940 }
1941 }
1942
1943 fini:
1944 if (saw_comma || saw_colon)
1945 goto err;
1946 input_line_pointer = old_input_line_pointer;
1947 return num_args;
1948
1949 err:
1950 if (saw_comma)
1951 as_bad (_("extra comma"));
1952 else if (saw_colon)
1953 as_bad (_("extra colon"));
1954 else if (!saw_arg)
1955 as_bad (_("missing argument"));
1956 else
1957 as_bad (_("missing comma or colon"));
1958 input_line_pointer = old_input_line_pointer;
1959 return -1;
1960 }
1961
1962
1963 /* Parse the arguments to an opcode. Return TRUE on error. */
1964
1965 static bfd_boolean
1966 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1967 {
1968 expressionS *tok, *last_tok;
1969 xtensa_opcode opcode = insn->opcode;
1970 bfd_boolean had_error = TRUE;
1971 xtensa_isa isa = xtensa_default_isa;
1972 int n, num_regs = 0;
1973 int opcode_operand_count;
1974 int opnd_cnt, last_opnd_cnt;
1975 unsigned int next_reg = 0;
1976 char *old_input_line_pointer;
1977
1978 if (insn->insn_type == ITYPE_LITERAL)
1979 opcode_operand_count = 1;
1980 else
1981 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1982
1983 tok = insn->tok;
1984 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1985
1986 /* Save and restore input_line_pointer around this function. */
1987 old_input_line_pointer = input_line_pointer;
1988
1989 last_tok = 0;
1990 last_opnd_cnt = -1;
1991 opnd_cnt = 0;
1992
1993 /* Skip invisible operands. */
1994 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1995 {
1996 opnd_cnt += 1;
1997 tok++;
1998 }
1999
2000 for (n = 0; n < num_args; n++)
2001 {
2002 input_line_pointer = arg_strings[n];
2003 if (*input_line_pointer == ':')
2004 {
2005 xtensa_regfile opnd_rf;
2006 input_line_pointer++;
2007 if (num_regs == 0)
2008 goto err;
2009 assert (opnd_cnt > 0);
2010 num_regs--;
2011 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2012 if (next_reg
2013 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2014 as_warn (_("incorrect register number, ignoring"));
2015 next_reg++;
2016 }
2017 else
2018 {
2019 if (opnd_cnt >= opcode_operand_count)
2020 {
2021 as_warn (_("too many arguments"));
2022 goto err;
2023 }
2024 assert (opnd_cnt < MAX_INSN_ARGS);
2025
2026 expression_maybe_register (opcode, opnd_cnt, tok);
2027 next_reg = tok->X_add_number + 1;
2028
2029 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2030 goto err;
2031 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2032 {
2033 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2034 /* minus 1 because we are seeing one right now */
2035 }
2036 else
2037 num_regs = 0;
2038
2039 last_tok = tok;
2040 last_opnd_cnt = opnd_cnt;
2041
2042 do
2043 {
2044 opnd_cnt += 1;
2045 tok++;
2046 }
2047 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2048 }
2049 }
2050
2051 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2052 goto err;
2053
2054 insn->ntok = tok - insn->tok;
2055 had_error = FALSE;
2056
2057 err:
2058 input_line_pointer = old_input_line_pointer;
2059 return had_error;
2060 }
2061
2062
2063 static int
2064 get_invisible_operands (TInsn *insn)
2065 {
2066 xtensa_isa isa = xtensa_default_isa;
2067 static xtensa_insnbuf slotbuf = NULL;
2068 xtensa_format fmt;
2069 xtensa_opcode opc = insn->opcode;
2070 int slot, opnd, fmt_found;
2071 unsigned val;
2072
2073 if (!slotbuf)
2074 slotbuf = xtensa_insnbuf_alloc (isa);
2075
2076 /* Find format/slot where this can be encoded. */
2077 fmt_found = 0;
2078 slot = 0;
2079 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2080 {
2081 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2082 {
2083 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2084 {
2085 fmt_found = 1;
2086 break;
2087 }
2088 }
2089 if (fmt_found) break;
2090 }
2091
2092 if (!fmt_found)
2093 {
2094 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2095 return -1;
2096 }
2097
2098 /* First encode all the visible operands
2099 (to deal with shared field operands). */
2100 for (opnd = 0; opnd < insn->ntok; opnd++)
2101 {
2102 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2103 && (insn->tok[opnd].X_op == O_register
2104 || insn->tok[opnd].X_op == O_constant))
2105 {
2106 val = insn->tok[opnd].X_add_number;
2107 xtensa_operand_encode (isa, opc, opnd, &val);
2108 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2109 }
2110 }
2111
2112 /* Then pull out the values for the invisible ones. */
2113 for (opnd = 0; opnd < insn->ntok; opnd++)
2114 {
2115 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2116 {
2117 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2118 xtensa_operand_decode (isa, opc, opnd, &val);
2119 insn->tok[opnd].X_add_number = val;
2120 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2121 insn->tok[opnd].X_op = O_register;
2122 else
2123 insn->tok[opnd].X_op = O_constant;
2124 }
2125 }
2126
2127 return 0;
2128 }
2129
2130
2131 static void
2132 xg_reverse_shift_count (char **cnt_argp)
2133 {
2134 char *cnt_arg, *new_arg;
2135 cnt_arg = *cnt_argp;
2136
2137 /* replace the argument with "31-(argument)" */
2138 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2139 sprintf (new_arg, "31-(%s)", cnt_arg);
2140
2141 free (cnt_arg);
2142 *cnt_argp = new_arg;
2143 }
2144
2145
2146 /* If "arg" is a constant expression, return non-zero with the value
2147 in *valp. */
2148
2149 static int
2150 xg_arg_is_constant (char *arg, offsetT *valp)
2151 {
2152 expressionS exp;
2153 char *save_ptr = input_line_pointer;
2154
2155 input_line_pointer = arg;
2156 expression (&exp);
2157 input_line_pointer = save_ptr;
2158
2159 if (exp.X_op == O_constant)
2160 {
2161 *valp = exp.X_add_number;
2162 return 1;
2163 }
2164
2165 return 0;
2166 }
2167
2168
2169 static void
2170 xg_replace_opname (char **popname, char *newop)
2171 {
2172 free (*popname);
2173 *popname = (char *) xmalloc (strlen (newop) + 1);
2174 strcpy (*popname, newop);
2175 }
2176
2177
2178 static int
2179 xg_check_num_args (int *pnum_args,
2180 int expected_num,
2181 char *opname,
2182 char **arg_strings)
2183 {
2184 int num_args = *pnum_args;
2185
2186 if (num_args < expected_num)
2187 {
2188 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2189 num_args, opname, expected_num);
2190 return -1;
2191 }
2192
2193 if (num_args > expected_num)
2194 {
2195 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2196 num_args, opname, expected_num);
2197 while (num_args-- > expected_num)
2198 {
2199 free (arg_strings[num_args]);
2200 arg_strings[num_args] = 0;
2201 }
2202 *pnum_args = expected_num;
2203 return -1;
2204 }
2205
2206 return 0;
2207 }
2208
2209
2210 /* If the register is not specified as part of the opcode,
2211 then get it from the operand and move it to the opcode. */
2212
2213 static int
2214 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2215 {
2216 xtensa_isa isa = xtensa_default_isa;
2217 xtensa_sysreg sr;
2218 char *opname, *new_opname;
2219 const char *sr_name;
2220 int is_user, is_write;
2221 bfd_boolean has_underbar = FALSE;
2222
2223 opname = *popname;
2224 if (*opname == '_')
2225 {
2226 has_underbar = TRUE;
2227 opname += 1;
2228 }
2229 is_user = (opname[1] == 'u');
2230 is_write = (opname[0] == 'w');
2231
2232 /* Opname == [rw]ur or [rwx]sr... */
2233
2234 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2235 return -1;
2236
2237 /* Check if the argument is a symbolic register name. */
2238 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2239 /* Handle WSR to "INTSET" as a special case. */
2240 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2241 && !strcasecmp (arg_strings[1], "intset"))
2242 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2243 if (sr == XTENSA_UNDEFINED
2244 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2245 {
2246 /* Maybe it's a register number.... */
2247 offsetT val;
2248 if (!xg_arg_is_constant (arg_strings[1], &val))
2249 {
2250 as_bad (_("invalid register '%s' for '%s' instruction"),
2251 arg_strings[1], opname);
2252 return -1;
2253 }
2254 sr = xtensa_sysreg_lookup (isa, val, is_user);
2255 if (sr == XTENSA_UNDEFINED)
2256 {
2257 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2258 val, opname);
2259 return -1;
2260 }
2261 }
2262
2263 /* Remove the last argument, which is now part of the opcode. */
2264 free (arg_strings[1]);
2265 arg_strings[1] = 0;
2266 *pnum_args = 1;
2267
2268 /* Translate the opcode. */
2269 sr_name = xtensa_sysreg_name (isa, sr);
2270 /* Another special case for "WSR.INTSET".... */
2271 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2272 sr_name = "intset";
2273 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2274 sprintf (new_opname, "%s%s.%s", (has_underbar ? "_" : ""),
2275 *popname, sr_name);
2276 free (*popname);
2277 *popname = new_opname;
2278
2279 return 0;
2280 }
2281
2282
2283 static int
2284 xtensa_translate_old_userreg_ops (char **popname)
2285 {
2286 xtensa_isa isa = xtensa_default_isa;
2287 xtensa_sysreg sr;
2288 char *opname, *new_opname;
2289 const char *sr_name;
2290 bfd_boolean has_underbar = FALSE;
2291
2292 opname = *popname;
2293 if (opname[0] == '_')
2294 {
2295 has_underbar = TRUE;
2296 opname += 1;
2297 }
2298
2299 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2300 if (sr != XTENSA_UNDEFINED)
2301 {
2302 /* The new default name ("nnn") is different from the old default
2303 name ("URnnn"). The old default is handled below, and we don't
2304 want to recognize [RW]nnn, so do nothing if the name is the (new)
2305 default. */
2306 static char namebuf[10];
2307 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2308 if (strcmp (namebuf, opname + 1) == 0)
2309 return 0;
2310 }
2311 else
2312 {
2313 offsetT val;
2314 char *end;
2315
2316 /* Only continue if the reg name is "URnnn". */
2317 if (opname[1] != 'u' || opname[2] != 'r')
2318 return 0;
2319 val = strtoul (opname + 3, &end, 10);
2320 if (*end != '\0')
2321 return 0;
2322
2323 sr = xtensa_sysreg_lookup (isa, val, 1);
2324 if (sr == XTENSA_UNDEFINED)
2325 {
2326 as_bad (_("invalid register number (%ld) for '%s'"),
2327 val, opname);
2328 return -1;
2329 }
2330 }
2331
2332 /* Translate the opcode. */
2333 sr_name = xtensa_sysreg_name (isa, sr);
2334 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2335 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2336 opname[0], sr_name);
2337 free (*popname);
2338 *popname = new_opname;
2339
2340 return 0;
2341 }
2342
2343
2344 static int
2345 xtensa_translate_zero_immed (char *old_op,
2346 char *new_op,
2347 char **popname,
2348 int *pnum_args,
2349 char **arg_strings)
2350 {
2351 char *opname;
2352 offsetT val;
2353
2354 opname = *popname;
2355 assert (opname[0] != '_');
2356
2357 if (strcmp (opname, old_op) != 0)
2358 return 0;
2359
2360 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2361 return -1;
2362 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2363 {
2364 xg_replace_opname (popname, new_op);
2365 free (arg_strings[1]);
2366 arg_strings[1] = arg_strings[2];
2367 arg_strings[2] = 0;
2368 *pnum_args = 2;
2369 }
2370
2371 return 0;
2372 }
2373
2374
2375 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2376 Returns non-zero if an error was found. */
2377
2378 static int
2379 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2380 {
2381 char *opname = *popname;
2382 bfd_boolean has_underbar = FALSE;
2383
2384 if (cur_vinsn.inside_bundle)
2385 return 0;
2386
2387 if (*opname == '_')
2388 {
2389 has_underbar = TRUE;
2390 opname += 1;
2391 }
2392
2393 if (strcmp (opname, "mov") == 0)
2394 {
2395 if (use_transform () && !has_underbar && density_supported)
2396 xg_replace_opname (popname, "mov.n");
2397 else
2398 {
2399 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2400 return -1;
2401 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2402 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2403 strcpy (arg_strings[2], arg_strings[1]);
2404 *pnum_args = 3;
2405 }
2406 return 0;
2407 }
2408
2409 if (strcmp (opname, "bbsi.l") == 0)
2410 {
2411 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2412 return -1;
2413 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2414 if (target_big_endian)
2415 xg_reverse_shift_count (&arg_strings[1]);
2416 return 0;
2417 }
2418
2419 if (strcmp (opname, "bbci.l") == 0)
2420 {
2421 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2422 return -1;
2423 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2424 if (target_big_endian)
2425 xg_reverse_shift_count (&arg_strings[1]);
2426 return 0;
2427 }
2428
2429 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2430 && strcmp (opname, "nop") == 0)
2431 {
2432 if (use_transform () && !has_underbar && density_supported)
2433 xg_replace_opname (popname, "nop.n");
2434 else
2435 {
2436 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2437 return -1;
2438 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2439 arg_strings[0] = (char *) xmalloc (3);
2440 arg_strings[1] = (char *) xmalloc (3);
2441 arg_strings[2] = (char *) xmalloc (3);
2442 strcpy (arg_strings[0], "a1");
2443 strcpy (arg_strings[1], "a1");
2444 strcpy (arg_strings[2], "a1");
2445 *pnum_args = 3;
2446 }
2447 return 0;
2448 }
2449
2450 /* Recognize [RW]UR and [RWX]SR. */
2451 if ((((opname[0] == 'r' || opname[0] == 'w')
2452 && (opname[1] == 'u' || opname[1] == 's'))
2453 || (opname[0] == 'x' && opname[1] == 's'))
2454 && opname[2] == 'r'
2455 && opname[3] == '\0')
2456 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2457
2458 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2459 [RW]<name> if <name> is the non-default name of a user register. */
2460 if ((opname[0] == 'r' || opname[0] == 'w')
2461 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2462 return xtensa_translate_old_userreg_ops (popname);
2463
2464 /* Relax branches that don't allow comparisons against an immediate value
2465 of zero to the corresponding branches with implicit zero immediates. */
2466 if (!has_underbar && use_transform ())
2467 {
2468 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2469 pnum_args, arg_strings))
2470 return -1;
2471
2472 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2473 pnum_args, arg_strings))
2474 return -1;
2475
2476 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2477 pnum_args, arg_strings))
2478 return -1;
2479
2480 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2481 pnum_args, arg_strings))
2482 return -1;
2483 }
2484
2485 return 0;
2486 }
2487
2488 \f
2489 /* Functions for dealing with the Xtensa ISA. */
2490
2491 /* Currently the assembler only allows us to use a single target per
2492 fragment. Because of this, only one operand for a given
2493 instruction may be symbolic. If there is a PC-relative operand,
2494 the last one is chosen. Otherwise, the result is the number of the
2495 last immediate operand, and if there are none of those, we fail and
2496 return -1. */
2497
2498 static int
2499 get_relaxable_immed (xtensa_opcode opcode)
2500 {
2501 int last_immed = -1;
2502 int noperands, opi;
2503
2504 if (opcode == XTENSA_UNDEFINED)
2505 return -1;
2506
2507 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2508 for (opi = noperands - 1; opi >= 0; opi--)
2509 {
2510 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2511 continue;
2512 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2513 return opi;
2514 if (last_immed == -1
2515 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2516 last_immed = opi;
2517 }
2518 return last_immed;
2519 }
2520
2521
2522 static xtensa_opcode
2523 get_opcode_from_buf (const char *buf, int slot)
2524 {
2525 static xtensa_insnbuf insnbuf = NULL;
2526 static xtensa_insnbuf slotbuf = NULL;
2527 xtensa_isa isa = xtensa_default_isa;
2528 xtensa_format fmt;
2529
2530 if (!insnbuf)
2531 {
2532 insnbuf = xtensa_insnbuf_alloc (isa);
2533 slotbuf = xtensa_insnbuf_alloc (isa);
2534 }
2535
2536 xtensa_insnbuf_from_chars (isa, insnbuf, buf, 0);
2537 fmt = xtensa_format_decode (isa, insnbuf);
2538 if (fmt == XTENSA_UNDEFINED)
2539 return XTENSA_UNDEFINED;
2540
2541 if (slot >= xtensa_format_num_slots (isa, fmt))
2542 return XTENSA_UNDEFINED;
2543
2544 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2545 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2546 }
2547
2548
2549 #ifdef TENSILICA_DEBUG
2550
2551 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2552
2553 static void
2554 xtensa_print_insn_table (void)
2555 {
2556 int num_opcodes, num_operands;
2557 xtensa_opcode opcode;
2558 xtensa_isa isa = xtensa_default_isa;
2559
2560 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2561 for (opcode = 0; opcode < num_opcodes; opcode++)
2562 {
2563 int opn;
2564 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2565 num_operands = xtensa_opcode_num_operands (isa, opcode);
2566 for (opn = 0; opn < num_operands; opn++)
2567 {
2568 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2569 continue;
2570 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2571 {
2572 xtensa_regfile opnd_rf =
2573 xtensa_operand_regfile (isa, opcode, opn);
2574 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2575 }
2576 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2577 fputs ("[lLr] ", stderr);
2578 else
2579 fputs ("i ", stderr);
2580 }
2581 fprintf (stderr, "\n");
2582 }
2583 }
2584
2585
2586 static void
2587 print_vliw_insn (xtensa_insnbuf vbuf)
2588 {
2589 xtensa_isa isa = xtensa_default_isa;
2590 xtensa_format f = xtensa_format_decode (isa, vbuf);
2591 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2592 int op;
2593
2594 fprintf (stderr, "format = %d\n", f);
2595
2596 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2597 {
2598 xtensa_opcode opcode;
2599 const char *opname;
2600 int operands;
2601
2602 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2603 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2604 opname = xtensa_opcode_name (isa, opcode);
2605
2606 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2607 fprintf (stderr, " operands = ");
2608 for (operands = 0;
2609 operands < xtensa_opcode_num_operands (isa, opcode);
2610 operands++)
2611 {
2612 unsigned int val;
2613 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2614 continue;
2615 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2616 xtensa_operand_decode (isa, opcode, operands, &val);
2617 fprintf (stderr, "%d ", val);
2618 }
2619 fprintf (stderr, "\n");
2620 }
2621 xtensa_insnbuf_free (isa, sbuf);
2622 }
2623
2624 #endif /* TENSILICA_DEBUG */
2625
2626
2627 static bfd_boolean
2628 is_direct_call_opcode (xtensa_opcode opcode)
2629 {
2630 xtensa_isa isa = xtensa_default_isa;
2631 int n, num_operands;
2632
2633 if (xtensa_opcode_is_call (isa, opcode) == 0)
2634 return FALSE;
2635
2636 num_operands = xtensa_opcode_num_operands (isa, opcode);
2637 for (n = 0; n < num_operands; n++)
2638 {
2639 if (xtensa_operand_is_register (isa, opcode, n) == 0
2640 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2641 return TRUE;
2642 }
2643 return FALSE;
2644 }
2645
2646
2647 /* Convert from BFD relocation type code to slot and operand number.
2648 Returns non-zero on failure. */
2649
2650 static int
2651 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2652 {
2653 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2654 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2655 {
2656 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2657 *is_alt = FALSE;
2658 }
2659 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2660 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2661 {
2662 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2663 *is_alt = TRUE;
2664 }
2665 else
2666 return -1;
2667
2668 return 0;
2669 }
2670
2671
2672 /* Convert from slot number to BFD relocation type code for the
2673 standard PC-relative relocations. Return BFD_RELOC_NONE on
2674 failure. */
2675
2676 static bfd_reloc_code_real_type
2677 encode_reloc (int slot)
2678 {
2679 if (slot < 0 || slot > 14)
2680 return BFD_RELOC_NONE;
2681
2682 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2683 }
2684
2685
2686 /* Convert from slot numbers to BFD relocation type code for the
2687 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2688
2689 static bfd_reloc_code_real_type
2690 encode_alt_reloc (int slot)
2691 {
2692 if (slot < 0 || slot > 14)
2693 return BFD_RELOC_NONE;
2694
2695 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2696 }
2697
2698
2699 static void
2700 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2701 xtensa_format fmt,
2702 int slot,
2703 xtensa_opcode opcode,
2704 int operand,
2705 uint32 value,
2706 const char *file,
2707 unsigned int line)
2708 {
2709 uint32 valbuf = value;
2710
2711 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2712 {
2713 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2714 == 1)
2715 as_bad_where ((char *) file, line,
2716 _("operand %u is out of range for '%s'"), value,
2717 xtensa_opcode_name (xtensa_default_isa, opcode));
2718 else
2719 as_bad_where ((char *) file, line,
2720 _("operand %u is invalid for '%s'"), value,
2721 xtensa_opcode_name (xtensa_default_isa, opcode));
2722 return;
2723 }
2724
2725 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2726 slotbuf, valbuf);
2727 }
2728
2729
2730 static uint32
2731 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2732 xtensa_format fmt,
2733 int slot,
2734 xtensa_opcode opcode,
2735 int opnum)
2736 {
2737 uint32 val = 0;
2738 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2739 fmt, slot, slotbuf, &val);
2740 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2741 return val;
2742 }
2743
2744 \f
2745 /* Checks for rules from xtensa-relax tables. */
2746
2747 /* The routine xg_instruction_matches_option_term must return TRUE
2748 when a given option term is true. The meaning of all of the option
2749 terms is given interpretation by this function. This is needed when
2750 an option depends on the state of a directive, but there are no such
2751 options in use right now. */
2752
2753 static bfd_boolean
2754 xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2755 const ReqOrOption *option)
2756 {
2757 if (strcmp (option->option_name, "realnop") == 0
2758 || strncmp (option->option_name, "IsaUse", 6) == 0)
2759 {
2760 /* These conditions were evaluated statically when building the
2761 relaxation table. There's no need to reevaluate them now. */
2762 return TRUE;
2763 }
2764 else
2765 {
2766 as_fatal (_("internal error: unknown option name '%s'"),
2767 option->option_name);
2768 }
2769 }
2770
2771
2772 static bfd_boolean
2773 xg_instruction_matches_or_options (TInsn *insn,
2774 const ReqOrOptionList *or_option)
2775 {
2776 const ReqOrOption *option;
2777 /* Must match each of the AND terms. */
2778 for (option = or_option; option != NULL; option = option->next)
2779 {
2780 if (xg_instruction_matches_option_term (insn, option))
2781 return TRUE;
2782 }
2783 return FALSE;
2784 }
2785
2786
2787 static bfd_boolean
2788 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2789 {
2790 const ReqOption *req_options;
2791 /* Must match each of the AND terms. */
2792 for (req_options = options;
2793 req_options != NULL;
2794 req_options = req_options->next)
2795 {
2796 /* Must match one of the OR clauses. */
2797 if (!xg_instruction_matches_or_options (insn,
2798 req_options->or_option_terms))
2799 return FALSE;
2800 }
2801 return TRUE;
2802 }
2803
2804
2805 /* Return the transition rule that matches or NULL if none matches. */
2806
2807 static bfd_boolean
2808 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2809 {
2810 PreconditionList *condition_l;
2811
2812 if (rule->opcode != insn->opcode)
2813 return FALSE;
2814
2815 for (condition_l = rule->conditions;
2816 condition_l != NULL;
2817 condition_l = condition_l->next)
2818 {
2819 expressionS *exp1;
2820 expressionS *exp2;
2821 Precondition *cond = condition_l->precond;
2822
2823 switch (cond->typ)
2824 {
2825 case OP_CONSTANT:
2826 /* The expression must be the constant. */
2827 assert (cond->op_num < insn->ntok);
2828 exp1 = &insn->tok[cond->op_num];
2829 if (expr_is_const (exp1))
2830 {
2831 switch (cond->cmp)
2832 {
2833 case OP_EQUAL:
2834 if (get_expr_const (exp1) != cond->op_data)
2835 return FALSE;
2836 break;
2837 case OP_NOTEQUAL:
2838 if (get_expr_const (exp1) == cond->op_data)
2839 return FALSE;
2840 break;
2841 default:
2842 return FALSE;
2843 }
2844 }
2845 else if (expr_is_register (exp1))
2846 {
2847 switch (cond->cmp)
2848 {
2849 case OP_EQUAL:
2850 if (get_expr_register (exp1) != cond->op_data)
2851 return FALSE;
2852 break;
2853 case OP_NOTEQUAL:
2854 if (get_expr_register (exp1) == cond->op_data)
2855 return FALSE;
2856 break;
2857 default:
2858 return FALSE;
2859 }
2860 }
2861 else
2862 return FALSE;
2863 break;
2864
2865 case OP_OPERAND:
2866 assert (cond->op_num < insn->ntok);
2867 assert (cond->op_data < insn->ntok);
2868 exp1 = &insn->tok[cond->op_num];
2869 exp2 = &insn->tok[cond->op_data];
2870
2871 switch (cond->cmp)
2872 {
2873 case OP_EQUAL:
2874 if (!expr_is_equal (exp1, exp2))
2875 return FALSE;
2876 break;
2877 case OP_NOTEQUAL:
2878 if (expr_is_equal (exp1, exp2))
2879 return FALSE;
2880 break;
2881 }
2882 break;
2883
2884 case OP_LITERAL:
2885 case OP_LABEL:
2886 default:
2887 return FALSE;
2888 }
2889 }
2890 if (!xg_instruction_matches_options (insn, rule->options))
2891 return FALSE;
2892
2893 return TRUE;
2894 }
2895
2896
2897 static int
2898 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2899 {
2900 bfd_boolean a_greater = FALSE;
2901 bfd_boolean b_greater = FALSE;
2902
2903 ReqOptionList *l_a = a->options;
2904 ReqOptionList *l_b = b->options;
2905
2906 /* We only care if they both are the same except for
2907 a const16 vs. an l32r. */
2908
2909 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2910 {
2911 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2912 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2913 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2914 {
2915 if (l_or_a->is_true != l_or_b->is_true)
2916 return 0;
2917 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2918 {
2919 /* This is the case we care about. */
2920 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2921 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2922 {
2923 if (prefer_const16)
2924 a_greater = TRUE;
2925 else
2926 b_greater = TRUE;
2927 }
2928 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2929 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2930 {
2931 if (prefer_const16)
2932 b_greater = TRUE;
2933 else
2934 a_greater = TRUE;
2935 }
2936 else
2937 return 0;
2938 }
2939 l_or_a = l_or_a->next;
2940 l_or_b = l_or_b->next;
2941 }
2942 if (l_or_a || l_or_b)
2943 return 0;
2944
2945 l_a = l_a->next;
2946 l_b = l_b->next;
2947 }
2948 if (l_a || l_b)
2949 return 0;
2950
2951 /* Incomparable if the substitution was used differently in two cases. */
2952 if (a_greater && b_greater)
2953 return 0;
2954
2955 if (b_greater)
2956 return 1;
2957 if (a_greater)
2958 return -1;
2959
2960 return 0;
2961 }
2962
2963
2964 static TransitionRule *
2965 xg_instruction_match (TInsn *insn)
2966 {
2967 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2968 TransitionList *l;
2969 assert (insn->opcode < table->num_opcodes);
2970
2971 /* Walk through all of the possible transitions. */
2972 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2973 {
2974 TransitionRule *rule = l->rule;
2975 if (xg_instruction_matches_rule (insn, rule))
2976 return rule;
2977 }
2978 return NULL;
2979 }
2980
2981 \f
2982 /* Various Other Internal Functions. */
2983
2984 static bfd_boolean
2985 is_unique_insn_expansion (TransitionRule *r)
2986 {
2987 if (!r->to_instr || r->to_instr->next != NULL)
2988 return FALSE;
2989 if (r->to_instr->typ != INSTR_INSTR)
2990 return FALSE;
2991 return TRUE;
2992 }
2993
2994
2995 static int
2996 xg_get_build_instr_size (BuildInstr *insn)
2997 {
2998 assert (insn->typ == INSTR_INSTR);
2999 return xg_get_single_size (insn->opcode);
3000 }
3001
3002
3003 static bfd_boolean
3004 xg_is_narrow_insn (TInsn *insn)
3005 {
3006 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3007 TransitionList *l;
3008 int num_match = 0;
3009 assert (insn->insn_type == ITYPE_INSN);
3010 assert (insn->opcode < table->num_opcodes);
3011
3012 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3013 {
3014 TransitionRule *rule = l->rule;
3015
3016 if (xg_instruction_matches_rule (insn, rule)
3017 && is_unique_insn_expansion (rule))
3018 {
3019 /* It only generates one instruction... */
3020 assert (insn->insn_type == ITYPE_INSN);
3021 /* ...and it is a larger instruction. */
3022 if (xg_get_single_size (insn->opcode)
3023 < xg_get_build_instr_size (rule->to_instr))
3024 {
3025 num_match++;
3026 if (num_match > 1)
3027 return FALSE;
3028 }
3029 }
3030 }
3031 return (num_match == 1);
3032 }
3033
3034
3035 static bfd_boolean
3036 xg_is_single_relaxable_insn (TInsn *insn)
3037 {
3038 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3039 TransitionList *l;
3040 int num_match = 0;
3041 assert (insn->insn_type == ITYPE_INSN);
3042 assert (insn->opcode < table->num_opcodes);
3043
3044 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3045 {
3046 TransitionRule *rule = l->rule;
3047
3048 if (xg_instruction_matches_rule (insn, rule)
3049 && is_unique_insn_expansion (rule))
3050 {
3051 /* It only generates one instruction... */
3052 assert (insn->insn_type == ITYPE_INSN);
3053 /* ... and it is a larger instruction. */
3054 if (xg_get_single_size (insn->opcode)
3055 <= xg_get_build_instr_size (rule->to_instr))
3056 {
3057 num_match++;
3058 if (num_match > 1)
3059 return FALSE;
3060 }
3061 }
3062 }
3063 return (num_match == 1);
3064 }
3065
3066
3067 /* Return the maximum number of bytes this opcode can expand to. */
3068
3069 static int
3070 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3071 {
3072 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3073 TransitionList *l;
3074 int max_size = xg_get_single_size (opcode);
3075
3076 assert (opcode < table->num_opcodes);
3077
3078 for (l = table->table[opcode]; l != NULL; l = l->next)
3079 {
3080 TransitionRule *rule = l->rule;
3081 BuildInstr *build_list;
3082 int this_size = 0;
3083
3084 if (!rule)
3085 continue;
3086 build_list = rule->to_instr;
3087 if (is_unique_insn_expansion (rule))
3088 {
3089 assert (build_list->typ == INSTR_INSTR);
3090 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3091 }
3092 else
3093 for (; build_list != NULL; build_list = build_list->next)
3094 {
3095 switch (build_list->typ)
3096 {
3097 case INSTR_INSTR:
3098 this_size += xg_get_single_size (build_list->opcode);
3099 break;
3100 case INSTR_LITERAL_DEF:
3101 case INSTR_LABEL_DEF:
3102 default:
3103 break;
3104 }
3105 }
3106 if (this_size > max_size)
3107 max_size = this_size;
3108 }
3109 return max_size;
3110 }
3111
3112
3113 /* Return the maximum number of literal bytes this opcode can generate. */
3114
3115 static int
3116 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3117 {
3118 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3119 TransitionList *l;
3120 int max_size = 0;
3121
3122 assert (opcode < table->num_opcodes);
3123
3124 for (l = table->table[opcode]; l != NULL; l = l->next)
3125 {
3126 TransitionRule *rule = l->rule;
3127 BuildInstr *build_list;
3128 int this_size = 0;
3129
3130 if (!rule)
3131 continue;
3132 build_list = rule->to_instr;
3133 if (is_unique_insn_expansion (rule))
3134 {
3135 assert (build_list->typ == INSTR_INSTR);
3136 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3137 }
3138 else
3139 for (; build_list != NULL; build_list = build_list->next)
3140 {
3141 switch (build_list->typ)
3142 {
3143 case INSTR_LITERAL_DEF:
3144 /* Hard-coded 4-byte literal. */
3145 this_size += 4;
3146 break;
3147 case INSTR_INSTR:
3148 case INSTR_LABEL_DEF:
3149 default:
3150 break;
3151 }
3152 }
3153 if (this_size > max_size)
3154 max_size = this_size;
3155 }
3156 return max_size;
3157 }
3158
3159
3160 static bfd_boolean
3161 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3162 {
3163 int steps_taken = 0;
3164 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3165 TransitionList *l;
3166
3167 assert (insn->insn_type == ITYPE_INSN);
3168 assert (insn->opcode < table->num_opcodes);
3169
3170 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3171 {
3172 TransitionRule *rule = l->rule;
3173
3174 if (xg_instruction_matches_rule (insn, rule))
3175 {
3176 if (steps_taken == lateral_steps)
3177 return TRUE;
3178 steps_taken++;
3179 }
3180 }
3181 return FALSE;
3182 }
3183
3184
3185 static symbolS *
3186 get_special_literal_symbol (void)
3187 {
3188 static symbolS *sym = NULL;
3189
3190 if (sym == NULL)
3191 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3192 return sym;
3193 }
3194
3195
3196 static symbolS *
3197 get_special_label_symbol (void)
3198 {
3199 static symbolS *sym = NULL;
3200
3201 if (sym == NULL)
3202 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3203 return sym;
3204 }
3205
3206
3207 static bfd_boolean
3208 xg_valid_literal_expression (const expressionS *exp)
3209 {
3210 switch (exp->X_op)
3211 {
3212 case O_constant:
3213 case O_symbol:
3214 case O_big:
3215 case O_uminus:
3216 case O_subtract:
3217 case O_pltrel:
3218 return TRUE;
3219 default:
3220 return FALSE;
3221 }
3222 }
3223
3224
3225 /* This will check to see if the value can be converted into the
3226 operand type. It will return TRUE if it does not fit. */
3227
3228 static bfd_boolean
3229 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3230 {
3231 uint32 valbuf = value;
3232 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3233 return TRUE;
3234 return FALSE;
3235 }
3236
3237
3238 /* Assumes: All immeds are constants. Check that all constants fit
3239 into their immeds; return FALSE if not. */
3240
3241 static bfd_boolean
3242 xg_immeds_fit (const TInsn *insn)
3243 {
3244 xtensa_isa isa = xtensa_default_isa;
3245 int i;
3246
3247 int n = insn->ntok;
3248 assert (insn->insn_type == ITYPE_INSN);
3249 for (i = 0; i < n; ++i)
3250 {
3251 const expressionS *expr = &insn->tok[i];
3252 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3253 continue;
3254
3255 switch (expr->X_op)
3256 {
3257 case O_register:
3258 case O_constant:
3259 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3260 return FALSE;
3261 break;
3262
3263 default:
3264 /* The symbol should have a fixup associated with it. */
3265 assert (FALSE);
3266 break;
3267 }
3268 }
3269 return TRUE;
3270 }
3271
3272
3273 /* This should only be called after we have an initial
3274 estimate of the addresses. */
3275
3276 static bfd_boolean
3277 xg_symbolic_immeds_fit (const TInsn *insn,
3278 segT pc_seg,
3279 fragS *pc_frag,
3280 offsetT pc_offset,
3281 long stretch)
3282 {
3283 xtensa_isa isa = xtensa_default_isa;
3284 symbolS *symbolP;
3285 fragS *sym_frag;
3286 offsetT target, pc;
3287 uint32 new_offset;
3288 int i;
3289 int n = insn->ntok;
3290
3291 assert (insn->insn_type == ITYPE_INSN);
3292
3293 for (i = 0; i < n; ++i)
3294 {
3295 const expressionS *expr = &insn->tok[i];
3296 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3297 continue;
3298
3299 switch (expr->X_op)
3300 {
3301 case O_register:
3302 case O_constant:
3303 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3304 return FALSE;
3305 break;
3306
3307 case O_lo16:
3308 case O_hi16:
3309 /* Check for the worst case. */
3310 if (xg_check_operand (0xffff, insn->opcode, i))
3311 return FALSE;
3312 break;
3313
3314 case O_symbol:
3315 /* We only allow symbols for pc-relative stuff.
3316 If pc_frag == 0, then we don't have frag locations yet. */
3317 if (pc_frag == 0)
3318 return FALSE;
3319
3320 /* If it is PC-relative and the symbol is not in the same
3321 segment as the PC.... */
3322 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0
3323 || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3324 return FALSE;
3325
3326 /* If it is a weak symbol, then assume it won't reach. This will
3327 only affect calls when longcalls are enabled, because if
3328 longcalls are disabled, then the call is marked as a specific
3329 opcode. */
3330 if (S_IS_WEAK (expr->X_add_symbol))
3331 return FALSE;
3332
3333 symbolP = expr->X_add_symbol;
3334 sym_frag = symbol_get_frag (symbolP);
3335 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3336 pc = pc_frag->fr_address + pc_offset;
3337
3338 /* If frag has yet to be reached on this pass, assume it
3339 will move by STRETCH just as we did. If this is not so,
3340 it will be because some frag between grows, and that will
3341 force another pass. Beware zero-length frags. There
3342 should be a faster way to do this. */
3343
3344 if (stretch != 0
3345 && sym_frag->relax_marker != pc_frag->relax_marker
3346 && S_GET_SEGMENT (symbolP) == pc_seg)
3347 {
3348 target += stretch;
3349 }
3350
3351 new_offset = target;
3352 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3353 if (xg_check_operand (new_offset, insn->opcode, i))
3354 return FALSE;
3355 break;
3356
3357 default:
3358 /* The symbol should have a fixup associated with it. */
3359 return FALSE;
3360 }
3361 }
3362
3363 return TRUE;
3364 }
3365
3366
3367 /* Return TRUE on success. */
3368
3369 static bfd_boolean
3370 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3371 {
3372 BuildOp *op;
3373 symbolS *sym;
3374
3375 memset (targ, 0, sizeof (TInsn));
3376 targ->loc = insn->loc;
3377 switch (bi->typ)
3378 {
3379 case INSTR_INSTR:
3380 op = bi->ops;
3381 targ->opcode = bi->opcode;
3382 targ->insn_type = ITYPE_INSN;
3383 targ->is_specific_opcode = FALSE;
3384
3385 for (; op != NULL; op = op->next)
3386 {
3387 int op_num = op->op_num;
3388 int op_data = op->op_data;
3389
3390 assert (op->op_num < MAX_INSN_ARGS);
3391
3392 if (targ->ntok <= op_num)
3393 targ->ntok = op_num + 1;
3394
3395 switch (op->typ)
3396 {
3397 case OP_CONSTANT:
3398 set_expr_const (&targ->tok[op_num], op_data);
3399 break;
3400 case OP_OPERAND:
3401 assert (op_data < insn->ntok);
3402 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3403 break;
3404 case OP_LITERAL:
3405 sym = get_special_literal_symbol ();
3406 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3407 break;
3408 case OP_LABEL:
3409 sym = get_special_label_symbol ();
3410 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3411 break;
3412 case OP_OPERAND_HI16U:
3413 case OP_OPERAND_LOW16U:
3414 assert (op_data < insn->ntok);
3415 if (expr_is_const (&insn->tok[op_data]))
3416 {
3417 long val;
3418 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3419 val = xg_apply_userdef_op_fn (op->typ,
3420 targ->tok[op_num].
3421 X_add_number);
3422 targ->tok[op_num].X_add_number = val;
3423 }
3424 else
3425 {
3426 /* For const16 we can create relocations for these. */
3427 if (targ->opcode == XTENSA_UNDEFINED
3428 || (targ->opcode != xtensa_const16_opcode))
3429 return FALSE;
3430 assert (op_data < insn->ntok);
3431 /* Need to build a O_lo16 or O_hi16. */
3432 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3433 if (targ->tok[op_num].X_op == O_symbol)
3434 {
3435 if (op->typ == OP_OPERAND_HI16U)
3436 targ->tok[op_num].X_op = O_hi16;
3437 else if (op->typ == OP_OPERAND_LOW16U)
3438 targ->tok[op_num].X_op = O_lo16;
3439 else
3440 return FALSE;
3441 }
3442 }
3443 break;
3444 default:
3445 /* currently handles:
3446 OP_OPERAND_LOW8
3447 OP_OPERAND_HI24S
3448 OP_OPERAND_F32MINUS */
3449 if (xg_has_userdef_op_fn (op->typ))
3450 {
3451 assert (op_data < insn->ntok);
3452 if (expr_is_const (&insn->tok[op_data]))
3453 {
3454 long val;
3455 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3456 val = xg_apply_userdef_op_fn (op->typ,
3457 targ->tok[op_num].
3458 X_add_number);
3459 targ->tok[op_num].X_add_number = val;
3460 }
3461 else
3462 return FALSE; /* We cannot use a relocation for this. */
3463 break;
3464 }
3465 assert (0);
3466 break;
3467 }
3468 }
3469 break;
3470
3471 case INSTR_LITERAL_DEF:
3472 op = bi->ops;
3473 targ->opcode = XTENSA_UNDEFINED;
3474 targ->insn_type = ITYPE_LITERAL;
3475 targ->is_specific_opcode = FALSE;
3476 for (; op != NULL; op = op->next)
3477 {
3478 int op_num = op->op_num;
3479 int op_data = op->op_data;
3480 assert (op->op_num < MAX_INSN_ARGS);
3481
3482 if (targ->ntok <= op_num)
3483 targ->ntok = op_num + 1;
3484
3485 switch (op->typ)
3486 {
3487 case OP_OPERAND:
3488 assert (op_data < insn->ntok);
3489 /* We can only pass resolvable literals through. */
3490 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3491 return FALSE;
3492 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3493 break;
3494 case OP_LITERAL:
3495 case OP_CONSTANT:
3496 case OP_LABEL:
3497 default:
3498 assert (0);
3499 break;
3500 }
3501 }
3502 break;
3503
3504 case INSTR_LABEL_DEF:
3505 op = bi->ops;
3506 targ->opcode = XTENSA_UNDEFINED;
3507 targ->insn_type = ITYPE_LABEL;
3508 targ->is_specific_opcode = FALSE;
3509 /* Literal with no ops is a label? */
3510 assert (op == NULL);
3511 break;
3512
3513 default:
3514 assert (0);
3515 }
3516
3517 return TRUE;
3518 }
3519
3520
3521 /* Return TRUE on success. */
3522
3523 static bfd_boolean
3524 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3525 {
3526 for (; bi != NULL; bi = bi->next)
3527 {
3528 TInsn *next_insn = istack_push_space (istack);
3529
3530 if (!xg_build_to_insn (next_insn, insn, bi))
3531 return FALSE;
3532 }
3533 return TRUE;
3534 }
3535
3536
3537 /* Return TRUE on valid expansion. */
3538
3539 static bfd_boolean
3540 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3541 {
3542 int stack_size = istack->ninsn;
3543 int steps_taken = 0;
3544 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3545 TransitionList *l;
3546
3547 assert (insn->insn_type == ITYPE_INSN);
3548 assert (insn->opcode < table->num_opcodes);
3549
3550 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3551 {
3552 TransitionRule *rule = l->rule;
3553
3554 if (xg_instruction_matches_rule (insn, rule))
3555 {
3556 if (lateral_steps == steps_taken)
3557 {
3558 int i;
3559
3560 /* This is it. Expand the rule to the stack. */
3561 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3562 return FALSE;
3563
3564 /* Check to see if it fits. */
3565 for (i = stack_size; i < istack->ninsn; i++)
3566 {
3567 TInsn *insn = &istack->insn[i];
3568
3569 if (insn->insn_type == ITYPE_INSN
3570 && !tinsn_has_symbolic_operands (insn)
3571 && !xg_immeds_fit (insn))
3572 {
3573 istack->ninsn = stack_size;
3574 return FALSE;
3575 }
3576 }
3577 return TRUE;
3578 }
3579 steps_taken++;
3580 }
3581 }
3582 return FALSE;
3583 }
3584
3585
3586 static bfd_boolean
3587 xg_expand_narrow (TInsn *targ, TInsn *insn)
3588 {
3589 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3590 TransitionList *l;
3591
3592 assert (insn->insn_type == ITYPE_INSN);
3593 assert (insn->opcode < table->num_opcodes);
3594
3595 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3596 {
3597 TransitionRule *rule = l->rule;
3598 if (xg_instruction_matches_rule (insn, rule)
3599 && is_unique_insn_expansion (rule))
3600 {
3601 /* Is it a larger instruction? */
3602 if (xg_get_single_size (insn->opcode)
3603 <= xg_get_build_instr_size (rule->to_instr))
3604 {
3605 xg_build_to_insn (targ, insn, rule->to_instr);
3606 return FALSE;
3607 }
3608 }
3609 }
3610 return TRUE;
3611 }
3612
3613 \f
3614 /* Relax the assembly instruction at least "min_steps".
3615 Return the number of steps taken. */
3616
3617 static int
3618 xg_assembly_relax (IStack *istack,
3619 TInsn *insn,
3620 segT pc_seg,
3621 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3622 offsetT pc_offset, /* offset in fragment */
3623 int min_steps, /* minimum conversion steps */
3624 long stretch) /* number of bytes stretched so far */
3625 {
3626 int steps_taken = 0;
3627
3628 /* assert (has no symbolic operands)
3629 Some of its immeds don't fit.
3630 Try to build a relaxed version.
3631 This may go through a couple of stages
3632 of single instruction transformations before
3633 we get there. */
3634
3635 TInsn single_target;
3636 TInsn current_insn;
3637 int lateral_steps = 0;
3638 int istack_size = istack->ninsn;
3639
3640 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3641 && steps_taken >= min_steps)
3642 {
3643 istack_push (istack, insn);
3644 return steps_taken;
3645 }
3646 current_insn = *insn;
3647
3648 /* Walk through all of the single instruction expansions. */
3649 while (xg_is_single_relaxable_insn (&current_insn))
3650 {
3651 int error_val = xg_expand_narrow (&single_target, &current_insn);
3652
3653 assert (!error_val);
3654
3655 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3656 stretch))
3657 {
3658 steps_taken++;
3659 if (steps_taken >= min_steps)
3660 {
3661 istack_push (istack, &single_target);
3662 return steps_taken;
3663 }
3664 }
3665 current_insn = single_target;
3666 }
3667
3668 /* Now check for a multi-instruction expansion. */
3669 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3670 {
3671 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3672 stretch))
3673 {
3674 if (steps_taken >= min_steps)
3675 {
3676 istack_push (istack, &current_insn);
3677 return steps_taken;
3678 }
3679 }
3680 steps_taken++;
3681 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3682 {
3683 if (steps_taken >= min_steps)
3684 return steps_taken;
3685 }
3686 lateral_steps++;
3687 istack->ninsn = istack_size;
3688 }
3689
3690 /* It's not going to work -- use the original. */
3691 istack_push (istack, insn);
3692 return steps_taken;
3693 }
3694
3695
3696 static void
3697 xg_force_frag_space (int size)
3698 {
3699 /* This may have the side effect of creating a new fragment for the
3700 space to go into. I just do not like the name of the "frag"
3701 functions. */
3702 frag_grow (size);
3703 }
3704
3705
3706 static void
3707 xg_finish_frag (char *last_insn,
3708 enum xtensa_relax_statesE frag_state,
3709 enum xtensa_relax_statesE slot0_state,
3710 int max_growth,
3711 bfd_boolean is_insn)
3712 {
3713 /* Finish off this fragment so that it has at LEAST the desired
3714 max_growth. If it doesn't fit in this fragment, close this one
3715 and start a new one. In either case, return a pointer to the
3716 beginning of the growth area. */
3717
3718 fragS *old_frag;
3719
3720 xg_force_frag_space (max_growth);
3721
3722 old_frag = frag_now;
3723
3724 frag_now->fr_opcode = last_insn;
3725 if (is_insn)
3726 frag_now->tc_frag_data.is_insn = TRUE;
3727
3728 frag_var (rs_machine_dependent, max_growth, max_growth,
3729 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3730
3731 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3732 xtensa_set_frag_assembly_state (frag_now);
3733
3734 /* Just to make sure that we did not split it up. */
3735 assert (old_frag->fr_next == frag_now);
3736 }
3737
3738
3739 /* Return TRUE if the target frag is one of the next non-empty frags. */
3740
3741 static bfd_boolean
3742 is_next_frag_target (const fragS *fragP, const fragS *target)
3743 {
3744 if (fragP == NULL)
3745 return FALSE;
3746
3747 for (; fragP; fragP = fragP->fr_next)
3748 {
3749 if (fragP == target)
3750 return TRUE;
3751 if (fragP->fr_fix != 0)
3752 return FALSE;
3753 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3754 return FALSE;
3755 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3756 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3757 return FALSE;
3758 if (fragP->fr_type == rs_space)
3759 return FALSE;
3760 }
3761 return FALSE;
3762 }
3763
3764
3765 static bfd_boolean
3766 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3767 {
3768 xtensa_isa isa = xtensa_default_isa;
3769 int i;
3770 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3771 int target_op = -1;
3772 symbolS *sym;
3773 fragS *target_frag;
3774
3775 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3776 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
3777 return FALSE;
3778
3779 for (i = 0; i < num_ops; i++)
3780 {
3781 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3782 {
3783 target_op = i;
3784 break;
3785 }
3786 }
3787 if (target_op == -1)
3788 return FALSE;
3789
3790 if (insn->ntok <= target_op)
3791 return FALSE;
3792
3793 if (insn->tok[target_op].X_op != O_symbol)
3794 return FALSE;
3795
3796 sym = insn->tok[target_op].X_add_symbol;
3797 if (sym == NULL)
3798 return FALSE;
3799
3800 if (insn->tok[target_op].X_add_number != 0)
3801 return FALSE;
3802
3803 target_frag = symbol_get_frag (sym);
3804 if (target_frag == NULL)
3805 return FALSE;
3806
3807 if (is_next_frag_target (fragP->fr_next, target_frag)
3808 && S_GET_VALUE (sym) == target_frag->fr_address)
3809 return TRUE;
3810
3811 return FALSE;
3812 }
3813
3814
3815 static void
3816 xg_add_branch_and_loop_targets (TInsn *insn)
3817 {
3818 xtensa_isa isa = xtensa_default_isa;
3819 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3820
3821 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3822 {
3823 int i = 1;
3824 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3825 && insn->tok[i].X_op == O_symbol)
3826 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3827 return;
3828 }
3829
3830 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3831 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3832 {
3833 int i;
3834
3835 for (i = 0; i < insn->ntok && i < num_ops; i++)
3836 {
3837 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3838 && insn->tok[i].X_op == O_symbol)
3839 {
3840 symbolS *sym = insn->tok[i].X_add_symbol;
3841 symbol_get_tc (sym)->is_branch_target = TRUE;
3842 if (S_IS_DEFINED (sym))
3843 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3844 }
3845 }
3846 }
3847 }
3848
3849
3850 /* Return FALSE if no error. */
3851
3852 static bfd_boolean
3853 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3854 {
3855 int num_ops = 0;
3856 BuildOp *b_op;
3857
3858 switch (instr_spec->typ)
3859 {
3860 case INSTR_INSTR:
3861 new_insn->insn_type = ITYPE_INSN;
3862 new_insn->opcode = instr_spec->opcode;
3863 new_insn->is_specific_opcode = FALSE;
3864 new_insn->loc = old_insn->loc;
3865 break;
3866 case INSTR_LITERAL_DEF:
3867 new_insn->insn_type = ITYPE_LITERAL;
3868 new_insn->opcode = XTENSA_UNDEFINED;
3869 new_insn->is_specific_opcode = FALSE;
3870 new_insn->loc = old_insn->loc;
3871 break;
3872 case INSTR_LABEL_DEF:
3873 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3874 break;
3875 }
3876
3877 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3878 {
3879 expressionS *exp;
3880 const expressionS *src_exp;
3881
3882 num_ops++;
3883 switch (b_op->typ)
3884 {
3885 case OP_CONSTANT:
3886 /* The expression must be the constant. */
3887 assert (b_op->op_num < MAX_INSN_ARGS);
3888 exp = &new_insn->tok[b_op->op_num];
3889 set_expr_const (exp, b_op->op_data);
3890 break;
3891
3892 case OP_OPERAND:
3893 assert (b_op->op_num < MAX_INSN_ARGS);
3894 assert (b_op->op_data < (unsigned) old_insn->ntok);
3895 src_exp = &old_insn->tok[b_op->op_data];
3896 exp = &new_insn->tok[b_op->op_num];
3897 copy_expr (exp, src_exp);
3898 break;
3899
3900 case OP_LITERAL:
3901 case OP_LABEL:
3902 as_bad (_("can't handle generation of literal/labels yet"));
3903 assert (0);
3904
3905 default:
3906 as_bad (_("can't handle undefined OP TYPE"));
3907 assert (0);
3908 }
3909 }
3910
3911 new_insn->ntok = num_ops;
3912 return FALSE;
3913 }
3914
3915
3916 /* Return TRUE if it was simplified. */
3917
3918 static bfd_boolean
3919 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3920 {
3921 TransitionRule *rule;
3922 BuildInstr *insn_spec;
3923
3924 if (old_insn->is_specific_opcode || !density_supported)
3925 return FALSE;
3926
3927 rule = xg_instruction_match (old_insn);
3928 if (rule == NULL)
3929 return FALSE;
3930
3931 insn_spec = rule->to_instr;
3932 /* There should only be one. */
3933 assert (insn_spec != NULL);
3934 assert (insn_spec->next == NULL);
3935 if (insn_spec->next != NULL)
3936 return FALSE;
3937
3938 xg_build_token_insn (insn_spec, old_insn, new_insn);
3939
3940 return TRUE;
3941 }
3942
3943
3944 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3945 l32i.n. (2) Check the number of operands. (3) Place the instruction
3946 tokens into the stack or if we can relax it at assembly time, place
3947 multiple instructions/literals onto the stack. Return FALSE if no
3948 error. */
3949
3950 static bfd_boolean
3951 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3952 {
3953 int noperands;
3954 TInsn new_insn;
3955 memset (&new_insn, 0, sizeof (TInsn));
3956
3957 /* Narrow it if we can. xg_simplify_insn now does all the
3958 appropriate checking (e.g., for the density option). */
3959 if (xg_simplify_insn (orig_insn, &new_insn))
3960 orig_insn = &new_insn;
3961
3962 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3963 orig_insn->opcode);
3964 if (orig_insn->ntok < noperands)
3965 {
3966 as_bad (_("found %d operands for '%s': Expected %d"),
3967 orig_insn->ntok,
3968 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3969 noperands);
3970 return TRUE;
3971 }
3972 if (orig_insn->ntok > noperands)
3973 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3974 orig_insn->ntok,
3975 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3976 noperands);
3977
3978 /* If there are not enough operands, we will assert above. If there
3979 are too many, just cut out the extras here. */
3980
3981 orig_insn->ntok = noperands;
3982
3983 /* Cases:
3984
3985 Instructions with all constant immeds:
3986 Assemble them and relax the instruction if possible.
3987 Give error if not possible; no fixup needed.
3988
3989 Instructions with symbolic immeds:
3990 Assemble them with a Fix up (that may cause instruction expansion).
3991 Also close out the fragment if the fixup may cause instruction expansion.
3992
3993 There are some other special cases where we need alignment.
3994 1) before certain instructions with required alignment (OPCODE_ALIGN)
3995 2) before labels that have jumps (LABEL_ALIGN)
3996 3) after call instructions (RETURN_ALIGN)
3997 Multiple of these may be possible on the same fragment.
3998 If so, make sure to satisfy the required alignment.
3999 Then try to get the desired alignment. */
4000
4001 if (tinsn_has_invalid_symbolic_operands (orig_insn))
4002 return TRUE;
4003
4004 if (orig_insn->is_specific_opcode || !use_transform ())
4005 {
4006 istack_push (istack, orig_insn);
4007 return FALSE;
4008 }
4009
4010 if (tinsn_has_symbolic_operands (orig_insn))
4011 {
4012 if (tinsn_has_complex_operands (orig_insn))
4013 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4014 else
4015 istack_push (istack, orig_insn);
4016 }
4017 else
4018 {
4019 if (xg_immeds_fit (orig_insn))
4020 istack_push (istack, orig_insn);
4021 else
4022 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4023 }
4024
4025 return FALSE;
4026 }
4027
4028
4029 /* Return TRUE if the section flags are marked linkonce
4030 or the name is .gnu.linkonce*. */
4031
4032 static bfd_boolean
4033 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4034 {
4035 flagword flags, link_once_flags;
4036
4037 flags = bfd_get_section_flags (abfd, sec);
4038 link_once_flags = (flags & SEC_LINK_ONCE);
4039
4040 /* Flags might not be set yet. */
4041 if (!link_once_flags)
4042 {
4043 static size_t len = sizeof ".gnu.linkonce.t.";
4044
4045 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
4046 link_once_flags = SEC_LINK_ONCE;
4047 }
4048 return (link_once_flags != 0);
4049 }
4050
4051
4052 static void
4053 xtensa_add_literal_sym (symbolS *sym)
4054 {
4055 sym_list *l;
4056
4057 l = (sym_list *) xmalloc (sizeof (sym_list));
4058 l->sym = sym;
4059 l->next = literal_syms;
4060 literal_syms = l;
4061 }
4062
4063
4064 static symbolS *
4065 xtensa_create_literal_symbol (segT sec, fragS *frag)
4066 {
4067 static int lit_num = 0;
4068 static char name[256];
4069 symbolS *symbolP;
4070
4071 sprintf (name, ".L_lit_sym%d", lit_num);
4072
4073 /* Create a local symbol. If it is in a linkonce section, we have to
4074 be careful to make sure that if it is used in a relocation that the
4075 symbol will be in the output file. */
4076 if (get_is_linkonce_section (stdoutput, sec))
4077 {
4078 symbolP = symbol_new (name, sec, 0, frag);
4079 S_CLEAR_EXTERNAL (symbolP);
4080 /* symbolP->local = 1; */
4081 }
4082 else
4083 symbolP = symbol_new (name, sec, 0, frag);
4084
4085 xtensa_add_literal_sym (symbolP);
4086
4087 frag->tc_frag_data.is_literal = TRUE;
4088 lit_num++;
4089 return symbolP;
4090 }
4091
4092
4093 /* Currently all literals that are generated here are 32-bit L32R targets. */
4094
4095 static symbolS *
4096 xg_assemble_literal (/* const */ TInsn *insn)
4097 {
4098 emit_state state;
4099 symbolS *lit_sym = NULL;
4100
4101 /* size = 4 for L32R. It could easily be larger when we move to
4102 larger constants. Add a parameter later. */
4103 offsetT litsize = 4;
4104 offsetT litalign = 2; /* 2^2 = 4 */
4105 expressionS saved_loc;
4106 expressionS * emit_val;
4107
4108 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4109
4110 assert (insn->insn_type == ITYPE_LITERAL);
4111 assert (insn->ntok == 1); /* must be only one token here */
4112
4113 xtensa_switch_to_literal_fragment (&state);
4114
4115 emit_val = &insn->tok[0];
4116 if (emit_val->X_op == O_big)
4117 {
4118 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4119 if (size > litsize)
4120 {
4121 /* This happens when someone writes a "movi a2, big_number". */
4122 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4123 _("invalid immediate"));
4124 xtensa_restore_emit_state (&state);
4125 return NULL;
4126 }
4127 }
4128
4129 /* Force a 4-byte align here. Note that this opens a new frag, so all
4130 literals done with this function have a frag to themselves. That's
4131 important for the way text section literals work. */
4132 frag_align (litalign, 0, 0);
4133 record_alignment (now_seg, litalign);
4134
4135 if (emit_val->X_op == O_pltrel)
4136 {
4137 char *p = frag_more (litsize);
4138 xtensa_set_frag_assembly_state (frag_now);
4139 if (emit_val->X_add_symbol)
4140 emit_val->X_op = O_symbol;
4141 else
4142 emit_val->X_op = O_constant;
4143 fix_new_exp (frag_now, p - frag_now->fr_literal,
4144 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4145 }
4146 else
4147 emit_expr (emit_val, litsize);
4148
4149 assert (frag_now->tc_frag_data.literal_frag == NULL);
4150 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4151 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4152 lit_sym = frag_now->fr_symbol;
4153 frag_now->tc_frag_data.is_literal = TRUE;
4154
4155 /* Go back. */
4156 xtensa_restore_emit_state (&state);
4157 return lit_sym;
4158 }
4159
4160
4161 static void
4162 xg_assemble_literal_space (/* const */ int size, int slot)
4163 {
4164 emit_state state;
4165 /* We might have to do something about this alignment. It only
4166 takes effect if something is placed here. */
4167 offsetT litalign = 2; /* 2^2 = 4 */
4168 fragS *lit_saved_frag;
4169
4170 assert (size % 4 == 0);
4171
4172 xtensa_switch_to_literal_fragment (&state);
4173
4174 /* Force a 4-byte align here. */
4175 frag_align (litalign, 0, 0);
4176 record_alignment (now_seg, litalign);
4177
4178 xg_force_frag_space (size);
4179
4180 lit_saved_frag = frag_now;
4181 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4182 frag_now->tc_frag_data.is_literal = TRUE;
4183 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4184 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4185
4186 /* Go back. */
4187 xtensa_restore_emit_state (&state);
4188 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4189 }
4190
4191
4192 /* Put in a fixup record based on the opcode.
4193 Return TRUE on success. */
4194
4195 static bfd_boolean
4196 xg_add_opcode_fix (TInsn *tinsn,
4197 int opnum,
4198 xtensa_format fmt,
4199 int slot,
4200 expressionS *expr,
4201 fragS *fragP,
4202 offsetT offset)
4203 {
4204 xtensa_opcode opcode = tinsn->opcode;
4205 bfd_reloc_code_real_type reloc;
4206 reloc_howto_type *howto;
4207 int fmt_length;
4208 fixS *the_fix;
4209
4210 reloc = BFD_RELOC_NONE;
4211
4212 /* First try the special cases for "alternate" relocs. */
4213 if (opcode == xtensa_l32r_opcode)
4214 {
4215 if (fragP->tc_frag_data.use_absolute_literals)
4216 reloc = encode_alt_reloc (slot);
4217 }
4218 else if (opcode == xtensa_const16_opcode)
4219 {
4220 if (expr->X_op == O_lo16)
4221 {
4222 reloc = encode_reloc (slot);
4223 expr->X_op = O_symbol;
4224 }
4225 else if (expr->X_op == O_hi16)
4226 {
4227 reloc = encode_alt_reloc (slot);
4228 expr->X_op = O_symbol;
4229 }
4230 }
4231
4232 if (opnum != get_relaxable_immed (opcode))
4233 {
4234 as_bad (_("invalid relocation for operand %i of '%s'"),
4235 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4236 return FALSE;
4237 }
4238
4239 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4240 into the symbol table where the generic portions of the assembler
4241 won't know what to do with them. */
4242 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4243 {
4244 as_bad (_("invalid expression for operand %i of '%s'"),
4245 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4246 return FALSE;
4247 }
4248
4249 /* Next try the generic relocs. */
4250 if (reloc == BFD_RELOC_NONE)
4251 reloc = encode_reloc (slot);
4252 if (reloc == BFD_RELOC_NONE)
4253 {
4254 as_bad (_("invalid relocation in instruction slot %i"), slot);
4255 return FALSE;
4256 }
4257
4258 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4259 if (!howto)
4260 {
4261 as_bad (_("undefined symbol for opcode \"%s\""),
4262 xtensa_opcode_name (xtensa_default_isa, opcode));
4263 return FALSE;
4264 }
4265
4266 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4267 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4268 howto->pc_relative, reloc);
4269
4270 if (expr->X_add_symbol
4271 && (S_IS_EXTERNAL (expr->X_add_symbol)
4272 || S_IS_WEAK (expr->X_add_symbol)))
4273 the_fix->fx_plt = TRUE;
4274
4275 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4276 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4277 the_fix->tc_fix_data.slot = slot;
4278
4279 return TRUE;
4280 }
4281
4282
4283 static bfd_boolean
4284 xg_emit_insn_to_buf (TInsn *tinsn,
4285 xtensa_format fmt,
4286 char *buf,
4287 fragS *fragP,
4288 offsetT offset,
4289 bfd_boolean build_fix)
4290 {
4291 static xtensa_insnbuf insnbuf = NULL;
4292 bfd_boolean has_symbolic_immed = FALSE;
4293 bfd_boolean ok = TRUE;
4294 if (!insnbuf)
4295 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4296
4297 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4298 if (has_symbolic_immed && build_fix)
4299 {
4300 /* Add a fixup. */
4301 int opnum = get_relaxable_immed (tinsn->opcode);
4302 expressionS *exp = &tinsn->tok[opnum];
4303
4304 if (!xg_add_opcode_fix (tinsn, opnum, fmt, 0, exp, fragP, offset))
4305 ok = FALSE;
4306 }
4307 fragP->tc_frag_data.is_insn = TRUE;
4308 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf, 0);
4309 return ok;
4310 }
4311
4312
4313 static void
4314 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4315 {
4316 symbolS *sym = get_special_literal_symbol ();
4317 int i;
4318 if (lit_sym == 0)
4319 return;
4320 assert (insn->insn_type == ITYPE_INSN);
4321 for (i = 0; i < insn->ntok; i++)
4322 if (insn->tok[i].X_add_symbol == sym)
4323 insn->tok[i].X_add_symbol = lit_sym;
4324
4325 }
4326
4327
4328 static void
4329 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4330 {
4331 symbolS *sym = get_special_label_symbol ();
4332 int i;
4333 /* assert (!insn->is_literal); */
4334 for (i = 0; i < insn->ntok; i++)
4335 if (insn->tok[i].X_add_symbol == sym)
4336 insn->tok[i].X_add_symbol = label_sym;
4337
4338 }
4339
4340
4341 /* Return TRUE if the instruction can write to the specified
4342 integer register. */
4343
4344 static bfd_boolean
4345 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4346 {
4347 int i;
4348 int num_ops;
4349 xtensa_isa isa = xtensa_default_isa;
4350
4351 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4352
4353 for (i = 0; i < num_ops; i++)
4354 {
4355 char inout;
4356 inout = xtensa_operand_inout (isa, insn->opcode, i);
4357 if ((inout == 'o' || inout == 'm')
4358 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4359 {
4360 xtensa_regfile opnd_rf =
4361 xtensa_operand_regfile (isa, insn->opcode, i);
4362 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4363 {
4364 if ((insn->tok[i].X_op == O_register)
4365 && (insn->tok[i].X_add_number == regnum))
4366 return TRUE;
4367 }
4368 }
4369 }
4370 return FALSE;
4371 }
4372
4373
4374 static bfd_boolean
4375 is_bad_loopend_opcode (const TInsn *tinsn)
4376 {
4377 xtensa_opcode opcode = tinsn->opcode;
4378
4379 if (opcode == XTENSA_UNDEFINED)
4380 return FALSE;
4381
4382 if (opcode == xtensa_call0_opcode
4383 || opcode == xtensa_callx0_opcode
4384 || opcode == xtensa_call4_opcode
4385 || opcode == xtensa_callx4_opcode
4386 || opcode == xtensa_call8_opcode
4387 || opcode == xtensa_callx8_opcode
4388 || opcode == xtensa_call12_opcode
4389 || opcode == xtensa_callx12_opcode
4390 || opcode == xtensa_isync_opcode
4391 || opcode == xtensa_ret_opcode
4392 || opcode == xtensa_ret_n_opcode
4393 || opcode == xtensa_retw_opcode
4394 || opcode == xtensa_retw_n_opcode
4395 || opcode == xtensa_waiti_opcode
4396 || opcode == xtensa_rsr_lcount_opcode)
4397 return TRUE;
4398
4399 return FALSE;
4400 }
4401
4402
4403 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4404 This allows the debugger to add unaligned labels.
4405 Also, the assembler generates stabs labels that need
4406 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4407
4408 static bfd_boolean
4409 is_unaligned_label (symbolS *sym)
4410 {
4411 const char *name = S_GET_NAME (sym);
4412 static size_t fake_size = 0;
4413
4414 if (name
4415 && name[0] == '.'
4416 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4417 return TRUE;
4418
4419 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4420 if (fake_size == 0)
4421 fake_size = strlen (FAKE_LABEL_NAME);
4422
4423 if (name
4424 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4425 && (name[fake_size] == 'F'
4426 || name[fake_size] == 'L'
4427 || (name[fake_size] == 'e'
4428 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4429 return TRUE;
4430
4431 return FALSE;
4432 }
4433
4434
4435 static fragS *
4436 next_non_empty_frag (const fragS *fragP)
4437 {
4438 fragS *next_fragP = fragP->fr_next;
4439
4440 /* Sometimes an empty will end up here due storage allocation issues.
4441 So we have to skip until we find something legit. */
4442 while (next_fragP && next_fragP->fr_fix == 0)
4443 next_fragP = next_fragP->fr_next;
4444
4445 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4446 return NULL;
4447
4448 return next_fragP;
4449 }
4450
4451
4452 static bfd_boolean
4453 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4454 {
4455 xtensa_opcode out_opcode;
4456 const fragS *next_fragP = next_non_empty_frag (fragP);
4457
4458 if (next_fragP == NULL)
4459 return FALSE;
4460
4461 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4462 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4463 {
4464 *opcode = out_opcode;
4465 return TRUE;
4466 }
4467 return FALSE;
4468 }
4469
4470
4471 static int
4472 frag_format_size (const fragS *fragP)
4473 {
4474 static xtensa_insnbuf insnbuf = NULL;
4475 xtensa_isa isa = xtensa_default_isa;
4476 xtensa_format fmt;
4477 int fmt_size;
4478
4479 if (!insnbuf)
4480 insnbuf = xtensa_insnbuf_alloc (isa);
4481
4482 if (fragP == NULL)
4483 return XTENSA_UNDEFINED;
4484
4485 xtensa_insnbuf_from_chars (isa, insnbuf, fragP->fr_literal, 0);
4486
4487 fmt = xtensa_format_decode (isa, insnbuf);
4488 if (fmt == XTENSA_UNDEFINED)
4489 return XTENSA_UNDEFINED;
4490 fmt_size = xtensa_format_length (isa, fmt);
4491
4492 /* If the next format won't be changing due to relaxation, just
4493 return the length of the first format. */
4494 if (fragP->fr_opcode != fragP->fr_literal)
4495 return fmt_size;
4496
4497 /* If during relaxation we have to pull an instruction out of a
4498 multi-slot instruction, we will return the more conservative
4499 number. This works because alignment on bigger instructions
4500 is more restrictive than alignment on smaller instructions.
4501 This is more conservative than we would like, but it happens
4502 infrequently. */
4503
4504 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4505 return fmt_size;
4506
4507 /* If we aren't doing one of our own relaxations or it isn't
4508 slot-based, then the insn size won't change. */
4509 if (fragP->fr_type != rs_machine_dependent)
4510 return fmt_size;
4511 if (fragP->fr_subtype != RELAX_SLOTS)
4512 return fmt_size;
4513
4514 /* If an instruction is about to grow, return the longer size. */
4515 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4516 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4517 return 3;
4518
4519 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4520 return 2 + fragP->tc_frag_data.text_expansion[0];
4521
4522 return fmt_size;
4523 }
4524
4525
4526 static int
4527 next_frag_format_size (const fragS *fragP)
4528 {
4529 const fragS *next_fragP = next_non_empty_frag (fragP);
4530 return frag_format_size (next_fragP);
4531 }
4532
4533
4534 /* If the next legit fragment is an end-of-loop marker,
4535 switch its state so it will instantiate a NOP. */
4536
4537 static void
4538 update_next_frag_state (fragS *fragP)
4539 {
4540 fragS *next_fragP = fragP->fr_next;
4541 fragS *new_target = NULL;
4542
4543 if (align_targets)
4544 {
4545 /* We are guaranteed there will be one of these... */
4546 while (!(next_fragP->fr_type == rs_machine_dependent
4547 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4548 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4549 next_fragP = next_fragP->fr_next;
4550
4551 assert (next_fragP->fr_type == rs_machine_dependent
4552 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4553 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4554
4555 /* ...and one of these. */
4556 new_target = next_fragP->fr_next;
4557 while (!(new_target->fr_type == rs_machine_dependent
4558 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4559 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4560 new_target = new_target->fr_next;
4561
4562 assert (new_target->fr_type == rs_machine_dependent
4563 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4564 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4565 }
4566
4567 while (next_fragP && next_fragP->fr_fix == 0)
4568 {
4569 if (next_fragP->fr_type == rs_machine_dependent
4570 && next_fragP->fr_subtype == RELAX_LOOP_END)
4571 {
4572 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4573 return;
4574 }
4575
4576 next_fragP = next_fragP->fr_next;
4577 }
4578 }
4579
4580
4581 static bfd_boolean
4582 next_frag_is_branch_target (const fragS *fragP)
4583 {
4584 /* Sometimes an empty will end up here due to storage allocation issues,
4585 so we have to skip until we find something legit. */
4586 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4587 {
4588 if (fragP->tc_frag_data.is_branch_target)
4589 return TRUE;
4590 if (fragP->fr_fix != 0)
4591 break;
4592 }
4593 return FALSE;
4594 }
4595
4596
4597 static bfd_boolean
4598 next_frag_is_loop_target (const fragS *fragP)
4599 {
4600 /* Sometimes an empty will end up here due storage allocation issues.
4601 So we have to skip until we find something legit. */
4602 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4603 {
4604 if (fragP->tc_frag_data.is_loop_target)
4605 return TRUE;
4606 if (fragP->fr_fix != 0)
4607 break;
4608 }
4609 return FALSE;
4610 }
4611
4612
4613 static addressT
4614 next_frag_pre_opcode_bytes (const fragS *fragp)
4615 {
4616 const fragS *next_fragp = fragp->fr_next;
4617 xtensa_opcode next_opcode;
4618
4619 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4620 return 0;
4621
4622 /* Sometimes an empty will end up here due to storage allocation issues,
4623 so we have to skip until we find something legit. */
4624 while (next_fragp->fr_fix == 0)
4625 next_fragp = next_fragp->fr_next;
4626
4627 if (next_fragp->fr_type != rs_machine_dependent)
4628 return 0;
4629
4630 /* There is some implicit knowledge encoded in here.
4631 The LOOP instructions that are NOT RELAX_IMMED have
4632 been relaxed. Note that we can assume that the LOOP
4633 instruction is in slot 0 because loops aren't bundleable. */
4634 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4635 return get_expanded_loop_offset (next_opcode);
4636
4637 return 0;
4638 }
4639
4640
4641 /* Mark a location where we can later insert literal frags. Update
4642 the section's literal_pool_loc, so subsequent literals can be
4643 placed nearest to their use. */
4644
4645 static void
4646 xtensa_mark_literal_pool_location (void)
4647 {
4648 /* Any labels pointing to the current location need
4649 to be adjusted to after the literal pool. */
4650 emit_state s;
4651 fragS *pool_location;
4652
4653 if (use_literal_section && !directive_state[directive_absolute_literals])
4654 return;
4655
4656 frag_align (2, 0, 0);
4657 record_alignment (now_seg, 2);
4658
4659 /* We stash info in the fr_var of these frags
4660 so we can later move the literal's fixes into this
4661 frchain's fix list. We can use fr_var because fr_var's
4662 interpretation depends solely on the fr_type and subtype. */
4663 pool_location = frag_now;
4664 frag_variant (rs_machine_dependent, 0, (int) frchain_now,
4665 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4666 xtensa_set_frag_assembly_state (frag_now);
4667 frag_variant (rs_machine_dependent, 0, (int) now_seg,
4668 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4669 xtensa_set_frag_assembly_state (frag_now);
4670
4671 /* Now put a frag into the literal pool that points to this location. */
4672 set_literal_pool_location (now_seg, pool_location);
4673 xtensa_switch_to_non_abs_literal_fragment (&s);
4674 frag_align (2, 0, 0);
4675 record_alignment (now_seg, 2);
4676
4677 /* Close whatever frag is there. */
4678 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4679 xtensa_set_frag_assembly_state (frag_now);
4680 frag_now->tc_frag_data.literal_frag = pool_location;
4681 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4682 xtensa_restore_emit_state (&s);
4683 xtensa_set_frag_assembly_state (frag_now);
4684 }
4685
4686
4687 /* Build a nop of the correct size into tinsn. */
4688
4689 static void
4690 build_nop (TInsn *tinsn, int size)
4691 {
4692 tinsn_init (tinsn);
4693 switch (size)
4694 {
4695 case 2:
4696 tinsn->opcode = xtensa_nop_n_opcode;
4697 tinsn->ntok = 0;
4698 if (tinsn->opcode == XTENSA_UNDEFINED)
4699 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4700 break;
4701
4702 case 3:
4703 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4704 {
4705 tinsn->opcode = xtensa_or_opcode;
4706 set_expr_const (&tinsn->tok[0], 1);
4707 set_expr_const (&tinsn->tok[1], 1);
4708 set_expr_const (&tinsn->tok[2], 1);
4709 tinsn->ntok = 3;
4710 }
4711 else
4712 tinsn->opcode = xtensa_nop_opcode;
4713
4714 assert (tinsn->opcode != XTENSA_UNDEFINED);
4715 }
4716 }
4717
4718
4719 /* Assemble a NOP of the requested size in the buffer. User must have
4720 allocated "buf" with at least "size" bytes. */
4721
4722 static void
4723 assemble_nop (size_t size, char *buf)
4724 {
4725 static xtensa_insnbuf insnbuf = NULL;
4726 TInsn tinsn;
4727
4728 build_nop (&tinsn, size);
4729
4730 if (!insnbuf)
4731 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4732
4733 tinsn_to_insnbuf (&tinsn, insnbuf);
4734 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf, 0);
4735 }
4736
4737
4738 /* Return the number of bytes for the offset of the expanded loop
4739 instruction. This should be incorporated into the relaxation
4740 specification but is hard-coded here. This is used to auto-align
4741 the loop instruction. It is invalid to call this function if the
4742 configuration does not have loops or if the opcode is not a loop
4743 opcode. */
4744
4745 static addressT
4746 get_expanded_loop_offset (xtensa_opcode opcode)
4747 {
4748 /* This is the OFFSET of the loop instruction in the expanded loop.
4749 This MUST correspond directly to the specification of the loop
4750 expansion. It will be validated on fragment conversion. */
4751 assert (opcode != XTENSA_UNDEFINED);
4752 if (opcode == xtensa_loop_opcode)
4753 return 0;
4754 if (opcode == xtensa_loopnez_opcode)
4755 return 3;
4756 if (opcode == xtensa_loopgtz_opcode)
4757 return 6;
4758 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4759 return 0;
4760 }
4761
4762
4763 static fragS *
4764 get_literal_pool_location (segT seg)
4765 {
4766 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4767 }
4768
4769
4770 static void
4771 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4772 {
4773 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4774 }
4775
4776
4777 /* Set frag assembly state should be called when a new frag is
4778 opened and after a frag has been closed. */
4779
4780 static void
4781 xtensa_set_frag_assembly_state (fragS *fragP)
4782 {
4783 if (!density_supported)
4784 fragP->tc_frag_data.is_no_density = TRUE;
4785
4786 /* This function is called from subsegs_finish, which is called
4787 after xtensa_end, so we can't use "use_transform" or
4788 "use_schedule" here. */
4789 if (!directive_state[directive_transform])
4790 fragP->tc_frag_data.is_no_transform = TRUE;
4791 fragP->tc_frag_data.use_absolute_literals =
4792 directive_state[directive_absolute_literals];
4793 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4794 }
4795
4796
4797 static bfd_boolean
4798 relaxable_section (asection *sec)
4799 {
4800 return (sec->flags & SEC_DEBUGGING) == 0;
4801 }
4802
4803
4804 static void
4805 xtensa_find_unmarked_state_frags (void)
4806 {
4807 segT *seclist;
4808
4809 /* Walk over each fragment of all of the current segments. For each
4810 unmarked fragment, mark it with the same info as the previous
4811 fragment. */
4812 for (seclist = &stdoutput->sections;
4813 seclist && *seclist;
4814 seclist = &(*seclist)->next)
4815 {
4816 segT sec = *seclist;
4817 segment_info_type *seginfo;
4818 fragS *fragP;
4819 flagword flags;
4820 flags = bfd_get_section_flags (stdoutput, sec);
4821 if (flags & SEC_DEBUGGING)
4822 continue;
4823 if (!(flags & SEC_ALLOC))
4824 continue;
4825
4826 seginfo = seg_info (sec);
4827 if (seginfo && seginfo->frchainP)
4828 {
4829 fragS *last_fragP = 0;
4830 for (fragP = seginfo->frchainP->frch_root; fragP;
4831 fragP = fragP->fr_next)
4832 {
4833 if (fragP->fr_fix != 0
4834 && !fragP->tc_frag_data.is_assembly_state_set)
4835 {
4836 if (last_fragP == 0)
4837 {
4838 as_warn_where (fragP->fr_file, fragP->fr_line,
4839 _("assembly state not set for first frag in section %s"),
4840 sec->name);
4841 }
4842 else
4843 {
4844 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4845 fragP->tc_frag_data.is_no_density =
4846 last_fragP->tc_frag_data.is_no_density;
4847 fragP->tc_frag_data.is_no_transform =
4848 last_fragP->tc_frag_data.is_no_transform;
4849 fragP->tc_frag_data.use_absolute_literals =
4850 last_fragP->tc_frag_data.use_absolute_literals;
4851 }
4852 }
4853 if (fragP->tc_frag_data.is_assembly_state_set)
4854 last_fragP = fragP;
4855 }
4856 }
4857 }
4858 }
4859
4860
4861 static void
4862 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4863 asection *sec,
4864 void *unused ATTRIBUTE_UNUSED)
4865 {
4866 flagword flags = bfd_get_section_flags (abfd, sec);
4867 segment_info_type *seginfo = seg_info (sec);
4868 fragS *frag = seginfo->frchainP->frch_root;
4869
4870 if (flags & SEC_CODE)
4871 {
4872 xtensa_isa isa = xtensa_default_isa;
4873 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4874 while (frag != NULL)
4875 {
4876 if (frag->tc_frag_data.is_branch_target)
4877 {
4878 int op_size;
4879 int frag_addr;
4880 xtensa_format fmt;
4881
4882 xtensa_insnbuf_from_chars (isa, insnbuf, frag->fr_literal, 0);
4883 fmt = xtensa_format_decode (isa, insnbuf);
4884 op_size = xtensa_format_length (isa, fmt);
4885 frag_addr = frag->fr_address % xtensa_fetch_width;
4886 if (frag_addr + op_size > (int) xtensa_fetch_width)
4887 as_warn_where (frag->fr_file, frag->fr_line,
4888 _("unaligned branch target: %d bytes at 0x%lx"),
4889 op_size, frag->fr_address);
4890 }
4891 frag = frag->fr_next;
4892 }
4893 xtensa_insnbuf_free (isa, insnbuf);
4894 }
4895 }
4896
4897
4898 static void
4899 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4900 asection *sec,
4901 void *unused ATTRIBUTE_UNUSED)
4902 {
4903 flagword flags = bfd_get_section_flags (abfd, sec);
4904 segment_info_type *seginfo = seg_info (sec);
4905 fragS *frag = seginfo->frchainP->frch_root;
4906 xtensa_isa isa = xtensa_default_isa;
4907
4908 if (flags & SEC_CODE)
4909 {
4910 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4911 while (frag != NULL)
4912 {
4913 if (frag->tc_frag_data.is_first_loop_insn)
4914 {
4915 int op_size;
4916 int frag_addr;
4917 xtensa_format fmt;
4918
4919 xtensa_insnbuf_from_chars (isa, insnbuf, frag->fr_literal, 0);
4920 fmt = xtensa_format_decode (isa, insnbuf);
4921 op_size = xtensa_format_length (isa, fmt);
4922 frag_addr = frag->fr_address % xtensa_fetch_width;
4923
4924 if (frag_addr + op_size > (signed) xtensa_fetch_width)
4925 as_warn_where (frag->fr_file, frag->fr_line,
4926 _("unaligned loop: %d bytes at 0x%lx"),
4927 op_size, frag->fr_address);
4928 }
4929 frag = frag->fr_next;
4930 }
4931 xtensa_insnbuf_free (isa, insnbuf);
4932 }
4933 }
4934
4935
4936 static void
4937 xg_apply_tentative_value (fixS *fixP, valueT val)
4938 {
4939 xtensa_isa isa = xtensa_default_isa;
4940 static xtensa_insnbuf insnbuf = NULL;
4941 static xtensa_insnbuf slotbuf = NULL;
4942 xtensa_format fmt;
4943 int slot;
4944 bfd_boolean alt_reloc;
4945 xtensa_opcode opcode;
4946 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4947
4948 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4949 if (alt_reloc)
4950 as_fatal (_("unexpected fix"));
4951
4952 if (!insnbuf)
4953 {
4954 insnbuf = xtensa_insnbuf_alloc (isa);
4955 slotbuf = xtensa_insnbuf_alloc (isa);
4956 }
4957
4958 xtensa_insnbuf_from_chars (isa, insnbuf, fixpos, 0);
4959 fmt = xtensa_format_decode (isa, insnbuf);
4960 if (fmt == XTENSA_UNDEFINED)
4961 as_fatal (_("undecodable fix"));
4962 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4963 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4964 if (opcode == XTENSA_UNDEFINED)
4965 as_fatal (_("undecodable fix"));
4966
4967 /* CONST16 immediates are not PC-relative, despite the fact that we
4968 reuse the normal PC-relative operand relocations for the low part
4969 of a CONST16 operand. The code in tc_gen_reloc does not decode
4970 the opcodes so it is more convenient to detect this special case
4971 here. */
4972 if (opcode == xtensa_const16_opcode)
4973 return;
4974
4975 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4976 get_relaxable_immed (opcode), val,
4977 fixP->fx_file, fixP->fx_line);
4978
4979 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
4980 xtensa_insnbuf_to_chars (isa, insnbuf, fixpos, 0);
4981 }
4982
4983 \f
4984 /* External Functions and Other GAS Hooks. */
4985
4986 const char *
4987 xtensa_target_format (void)
4988 {
4989 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4990 }
4991
4992
4993 void
4994 xtensa_file_arch_init (bfd *abfd)
4995 {
4996 bfd_set_private_flags (abfd, 0x100 | 0x200);
4997 }
4998
4999
5000 void
5001 md_number_to_chars (char *buf, valueT val, int n)
5002 {
5003 if (target_big_endian)
5004 number_to_chars_bigendian (buf, val, n);
5005 else
5006 number_to_chars_littleendian (buf, val, n);
5007 }
5008
5009
5010 /* This function is called once, at assembler startup time. It should
5011 set up all the tables, etc. that the MD part of the assembler will
5012 need. */
5013
5014 void
5015 md_begin (void)
5016 {
5017 segT current_section = now_seg;
5018 int current_subsec = now_subseg;
5019 xtensa_isa isa;
5020
5021 xtensa_default_isa = xtensa_isa_init (0, 0);
5022 isa = xtensa_default_isa;
5023
5024 linkrelax = 1;
5025
5026 /* Set up the .literal, .fini.literal and .init.literal sections. */
5027 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5028 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
5029 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
5030 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
5031 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
5032
5033 subseg_set (current_section, current_subsec);
5034
5035 xg_init_vinsn (&cur_vinsn);
5036
5037 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5038 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5039 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5040 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5041 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5042 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5043 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5044 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5045 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5046 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5047 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5048 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5049 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5050 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5051 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5052 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5053 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5054 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5055 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5056 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5057 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5058 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5059 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5060 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5061 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5062 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5063 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5064 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5065 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5066
5067 init_op_placement_info_table ();
5068
5069 /* Set up the assembly state. */
5070 if (!frag_now->tc_frag_data.is_assembly_state_set)
5071 xtensa_set_frag_assembly_state (frag_now);
5072 }
5073
5074
5075 /* TC_INIT_FIX_DATA hook */
5076
5077 void
5078 xtensa_init_fix_data (fixS *x)
5079 {
5080 x->tc_fix_data.slot = 0;
5081 x->tc_fix_data.X_add_symbol = NULL;
5082 x->tc_fix_data.X_add_number = 0;
5083 }
5084
5085
5086 /* tc_frob_label hook */
5087
5088 void
5089 xtensa_frob_label (symbolS *sym)
5090 {
5091 /* Since the label was already attached to a frag associated with the
5092 previous basic block, it now needs to be reset to the current frag. */
5093 symbol_set_frag (sym, frag_now);
5094 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5095
5096 if (generating_literals)
5097 xtensa_add_literal_sym (sym);
5098 else
5099 xtensa_add_insn_label (sym);
5100
5101 if (symbol_get_tc (sym)->is_loop_target
5102 && (get_last_insn_flags (now_seg, now_subseg)
5103 & FLAG_IS_BAD_LOOPEND) != 0)
5104 as_bad (_("invalid last instruction for a zero-overhead loop"));
5105
5106 /* No target aligning in the absolute section. */
5107 if (now_seg != absolute_section
5108 && do_align_targets ()
5109 && !is_unaligned_label (sym)
5110 && !generating_literals)
5111 {
5112 float freq = get_subseg_target_freq (now_seg, now_subseg);
5113 xtensa_set_frag_assembly_state (frag_now);
5114
5115 /* The only time this type of frag grows is when there is a
5116 negatable branch that needs to be relaxed as the last
5117 instruction in a zero-overhead loop. Because alignment frags
5118 are so common, marking them all as possibly growing four
5119 bytes makes any worst-case analysis appear much worse than it
5120 is. So, we make fr_var not actually reflect the amount of
5121 memory allocated at the end of this frag, but rather the
5122 amount of memory this frag might grow. The "4, 0" below
5123 allocates four bytes at the end of the frag for room to grow
5124 if we need to relax a loop end with a NOP. Frags prior to
5125 this one might grow to align this one, but the frag itself
5126 won't grow unless it meets the condition above. */
5127
5128 #define RELAX_LOOP_END_BYTES 4
5129
5130 frag_var (rs_machine_dependent,
5131 RELAX_LOOP_END_BYTES, (int) freq,
5132 RELAX_DESIRE_ALIGN_IF_TARGET,
5133 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5134 xtensa_set_frag_assembly_state (frag_now);
5135 xtensa_move_labels (frag_now, 0, TRUE);
5136 }
5137
5138 /* We need to mark the following properties even if we aren't aligning. */
5139
5140 /* If the label is already known to be a branch target, i.e., a
5141 forward branch, mark the frag accordingly. Backward branches
5142 are handled by xg_add_branch_and_loop_targets. */
5143 if (symbol_get_tc (sym)->is_branch_target)
5144 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5145
5146 /* Loops only go forward, so they can be identified here. */
5147 if (symbol_get_tc (sym)->is_loop_target)
5148 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5149 }
5150
5151
5152 /* tc_unrecognized_line hook */
5153
5154 int
5155 xtensa_unrecognized_line (int ch)
5156 {
5157 switch (ch)
5158 {
5159 case '{' :
5160 if (cur_vinsn.inside_bundle == 0)
5161 {
5162 /* PR8110: Cannot emit line number info inside a FLIX bundle
5163 when using --gstabs. Temporarily disable debug info. */
5164 generate_lineno_debug ();
5165 if (debug_type == DEBUG_STABS)
5166 {
5167 xt_saved_debug_type = debug_type;
5168 debug_type = DEBUG_NONE;
5169 }
5170
5171 cur_vinsn.inside_bundle = 1;
5172 }
5173 else
5174 {
5175 as_bad (_("extra opening brace"));
5176 return 0;
5177 }
5178 break;
5179
5180 case '}' :
5181 if (cur_vinsn.inside_bundle)
5182 finish_vinsn (&cur_vinsn);
5183 else
5184 {
5185 as_bad (_("extra closing brace"));
5186 return 0;
5187 }
5188 break;
5189 default:
5190 as_bad (_("syntax error"));
5191 return 0;
5192 }
5193 return 1;
5194 }
5195
5196
5197 /* md_flush_pending_output hook */
5198
5199 void
5200 xtensa_flush_pending_output (void)
5201 {
5202 if (cur_vinsn.inside_bundle)
5203 as_bad (_("missing closing brace"));
5204
5205 /* If there is a non-zero instruction fragment, close it. */
5206 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5207 {
5208 frag_wane (frag_now);
5209 frag_new (0);
5210 xtensa_set_frag_assembly_state (frag_now);
5211 }
5212 frag_now->tc_frag_data.is_insn = FALSE;
5213
5214 xtensa_clear_insn_labels ();
5215 }
5216
5217
5218 /* We had an error while parsing an instruction. The string might look
5219 like this: "insn arg1, arg2 }". If so, we need to see the closing
5220 brace and reset some fields. Otherwise, the vinsn never gets closed
5221 and the num_slots field will grow past the end of the array of slots,
5222 and bad things happen. */
5223
5224 static void
5225 error_reset_cur_vinsn (void)
5226 {
5227 if (cur_vinsn.inside_bundle)
5228 {
5229 if (*input_line_pointer == '}'
5230 || *(input_line_pointer - 1) == '}'
5231 || *(input_line_pointer - 2) == '}')
5232 xg_clear_vinsn (&cur_vinsn);
5233 }
5234 }
5235
5236
5237 void
5238 md_assemble (char *str)
5239 {
5240 xtensa_isa isa = xtensa_default_isa;
5241 char *opname;
5242 unsigned opnamelen;
5243 bfd_boolean has_underbar = FALSE;
5244 char *arg_strings[MAX_INSN_ARGS];
5245 int num_args;
5246 TInsn orig_insn; /* Original instruction from the input. */
5247
5248 tinsn_init (&orig_insn);
5249
5250 /* Split off the opcode. */
5251 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5252 opname = xmalloc (opnamelen + 1);
5253 memcpy (opname, str, opnamelen);
5254 opname[opnamelen] = '\0';
5255
5256 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5257 if (num_args == -1)
5258 {
5259 as_bad (_("syntax error"));
5260 return;
5261 }
5262
5263 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5264 return;
5265
5266 /* Check for an underbar prefix. */
5267 if (*opname == '_')
5268 {
5269 has_underbar = TRUE;
5270 opname += 1;
5271 }
5272
5273 orig_insn.insn_type = ITYPE_INSN;
5274 orig_insn.ntok = 0;
5275 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5276
5277 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5278 if (orig_insn.opcode == XTENSA_UNDEFINED)
5279 {
5280 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5281 if (fmt == XTENSA_UNDEFINED)
5282 {
5283 as_bad (_("unknown opcode or format name '%s'"), opname);
5284 error_reset_cur_vinsn ();
5285 return;
5286 }
5287 if (!cur_vinsn.inside_bundle)
5288 {
5289 as_bad (_("format names only valid inside bundles"));
5290 error_reset_cur_vinsn ();
5291 return;
5292 }
5293 if (cur_vinsn.format != XTENSA_UNDEFINED)
5294 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5295 opname);
5296 cur_vinsn.format = fmt;
5297 free (has_underbar ? opname - 1 : opname);
5298 error_reset_cur_vinsn ();
5299 return;
5300 }
5301
5302 /* Special case: The call instructions should be marked "specific opcode"
5303 to keep them from expanding. */
5304 if (!use_longcalls () && is_direct_call_opcode (orig_insn.opcode))
5305 orig_insn.is_specific_opcode = TRUE;
5306
5307 /* Parse the arguments. */
5308 if (parse_arguments (&orig_insn, num_args, arg_strings))
5309 {
5310 as_bad (_("syntax error"));
5311 error_reset_cur_vinsn ();
5312 return;
5313 }
5314
5315 /* Free the opcode and argument strings, now that they've been parsed. */
5316 free (has_underbar ? opname - 1 : opname);
5317 opname = 0;
5318 while (num_args-- > 0)
5319 free (arg_strings[num_args]);
5320
5321 /* Get expressions for invisible operands. */
5322 if (get_invisible_operands (&orig_insn))
5323 {
5324 error_reset_cur_vinsn ();
5325 return;
5326 }
5327
5328 /* Check for the right number and type of arguments. */
5329 if (tinsn_check_arguments (&orig_insn))
5330 {
5331 error_reset_cur_vinsn ();
5332 return;
5333 }
5334
5335 dwarf2_where (&orig_insn.loc);
5336
5337 xg_add_branch_and_loop_targets (&orig_insn);
5338
5339 /* Special-case for "entry" instruction. */
5340 if (orig_insn.opcode == xtensa_entry_opcode)
5341 {
5342 /* Check that the third opcode (#2) is >= 16. */
5343 if (orig_insn.ntok >= 3)
5344 {
5345 expressionS *exp = &orig_insn.tok[2];
5346 switch (exp->X_op)
5347 {
5348 case O_constant:
5349 if (exp->X_add_number < 16)
5350 as_warn (_("entry instruction with stack decrement < 16"));
5351 break;
5352
5353 default:
5354 as_warn (_("entry instruction with non-constant decrement"));
5355 }
5356 }
5357 }
5358
5359 /* Finish it off:
5360 assemble_tokens (opcode, tok, ntok);
5361 expand the tokens from the orig_insn into the
5362 stack of instructions that will not expand
5363 unless required at relaxation time. */
5364
5365 if (!cur_vinsn.inside_bundle)
5366 emit_single_op (&orig_insn);
5367 else /* We are inside a bundle. */
5368 {
5369 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5370 cur_vinsn.num_slots++;
5371 if (*input_line_pointer == '}'
5372 || *(input_line_pointer - 1) == '}'
5373 || *(input_line_pointer - 2) == '}')
5374 finish_vinsn (&cur_vinsn);
5375 }
5376
5377 /* We've just emitted a new instruction so clear the list of labels. */
5378 xtensa_clear_insn_labels ();
5379 }
5380
5381
5382 /* HANDLE_ALIGN hook */
5383
5384 /* For a .align directive, we mark the previous block with the alignment
5385 information. This will be placed in the object file in the
5386 property section corresponding to this section. */
5387
5388 void
5389 xtensa_handle_align (fragS *fragP)
5390 {
5391 if (linkrelax
5392 && ! fragP->tc_frag_data.is_literal
5393 && (fragP->fr_type == rs_align
5394 || fragP->fr_type == rs_align_code)
5395 && fragP->fr_address + fragP->fr_fix > 0
5396 && fragP->fr_offset > 0
5397 && now_seg != bss_section)
5398 {
5399 fragP->tc_frag_data.is_align = TRUE;
5400 fragP->tc_frag_data.alignment = fragP->fr_offset;
5401 }
5402
5403 if (fragP->fr_type == rs_align_test)
5404 {
5405 int count;
5406 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5407 if (count != 0)
5408 as_bad_where (fragP->fr_file, fragP->fr_line,
5409 _("unaligned entry instruction"));
5410 }
5411 }
5412
5413
5414 /* TC_FRAG_INIT hook */
5415
5416 void
5417 xtensa_frag_init (fragS *frag)
5418 {
5419 xtensa_set_frag_assembly_state (frag);
5420 }
5421
5422
5423 symbolS *
5424 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5425 {
5426 return NULL;
5427 }
5428
5429
5430 /* Round up a section size to the appropriate boundary. */
5431
5432 valueT
5433 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5434 {
5435 return size; /* Byte alignment is fine. */
5436 }
5437
5438
5439 long
5440 md_pcrel_from (fixS *fixP)
5441 {
5442 char *insn_p;
5443 static xtensa_insnbuf insnbuf = NULL;
5444 static xtensa_insnbuf slotbuf = NULL;
5445 int opnum;
5446 uint32 opnd_value;
5447 xtensa_opcode opcode;
5448 xtensa_format fmt;
5449 int slot;
5450 xtensa_isa isa = xtensa_default_isa;
5451 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5452 bfd_boolean alt_reloc;
5453
5454 if (fixP->fx_done)
5455 return addr;
5456
5457 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5458 return addr;
5459
5460 if (!insnbuf)
5461 {
5462 insnbuf = xtensa_insnbuf_alloc (isa);
5463 slotbuf = xtensa_insnbuf_alloc (isa);
5464 }
5465
5466 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5467 xtensa_insnbuf_from_chars (isa, insnbuf, insn_p, 0);
5468 fmt = xtensa_format_decode (isa, insnbuf);
5469
5470 if (fmt == XTENSA_UNDEFINED)
5471 as_fatal (_("bad instruction format"));
5472
5473 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5474 as_fatal (_("invalid relocation"));
5475
5476 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5477 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5478
5479 /* Check for "alternate" relocation (operand not specified). */
5480 if (alt_reloc || opcode == xtensa_const16_opcode)
5481 {
5482 if (opcode != xtensa_l32r_opcode
5483 && opcode != xtensa_const16_opcode)
5484 as_fatal (_("invalid relocation for '%s' instruction"),
5485 xtensa_opcode_name (isa, opcode));
5486 return addr;
5487 }
5488
5489 opnum = get_relaxable_immed (opcode);
5490 opnd_value = 0;
5491 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5492 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5493 {
5494 as_bad_where (fixP->fx_file,
5495 fixP->fx_line,
5496 _("invalid relocation for operand %d of '%s'"),
5497 opnum, xtensa_opcode_name (isa, opcode));
5498 return addr;
5499 }
5500 return 0 - opnd_value;
5501 }
5502
5503
5504 /* TC_FORCE_RELOCATION hook */
5505
5506 int
5507 xtensa_force_relocation (fixS *fix)
5508 {
5509 switch (fix->fx_r_type)
5510 {
5511 case BFD_RELOC_XTENSA_SLOT0_ALT:
5512 case BFD_RELOC_XTENSA_SLOT1_ALT:
5513 case BFD_RELOC_XTENSA_SLOT2_ALT:
5514 case BFD_RELOC_XTENSA_SLOT3_ALT:
5515 case BFD_RELOC_XTENSA_SLOT4_ALT:
5516 case BFD_RELOC_XTENSA_SLOT5_ALT:
5517 case BFD_RELOC_XTENSA_SLOT6_ALT:
5518 case BFD_RELOC_XTENSA_SLOT7_ALT:
5519 case BFD_RELOC_XTENSA_SLOT8_ALT:
5520 case BFD_RELOC_XTENSA_SLOT9_ALT:
5521 case BFD_RELOC_XTENSA_SLOT10_ALT:
5522 case BFD_RELOC_XTENSA_SLOT11_ALT:
5523 case BFD_RELOC_XTENSA_SLOT12_ALT:
5524 case BFD_RELOC_XTENSA_SLOT13_ALT:
5525 case BFD_RELOC_XTENSA_SLOT14_ALT:
5526 case BFD_RELOC_VTABLE_INHERIT:
5527 case BFD_RELOC_VTABLE_ENTRY:
5528 return 1;
5529 default:
5530 break;
5531 }
5532
5533 if (linkrelax && fix->fx_addsy
5534 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5535 return 1;
5536
5537 return generic_force_reloc (fix);
5538 }
5539
5540
5541 /* NO_PSEUDO_DOT hook */
5542
5543 /* This function has nothing to do with pseudo dots, but this is the
5544 nearest macro to where the check needs to take place. FIXME: This
5545 seems wrong. */
5546
5547 bfd_boolean
5548 xtensa_check_inside_bundle (void)
5549 {
5550 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5551 as_bad (_("directives are not valid inside bundles"));
5552
5553 /* This function must always return FALSE because it is called via a
5554 macro that has nothing to do with bundling. */
5555 return FALSE;
5556 }
5557
5558
5559 /* md_elf_section_change_hook */
5560
5561 void
5562 xtensa_elf_section_change_hook (void)
5563 {
5564 /* Set up the assembly state. */
5565 if (!frag_now->tc_frag_data.is_assembly_state_set)
5566 xtensa_set_frag_assembly_state (frag_now);
5567 }
5568
5569
5570 /* tc_fix_adjustable hook */
5571
5572 bfd_boolean
5573 xtensa_fix_adjustable (fixS *fixP)
5574 {
5575 /* An offset is not allowed in combination with the difference of two
5576 symbols, but that cannot be easily detected after a local symbol
5577 has been adjusted to a (section+offset) form. Return 0 so that such
5578 an fix will not be adjusted. */
5579 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5580 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5581 return 0;
5582
5583 /* We need the symbol name for the VTABLE entries. */
5584 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5585 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5586 return 0;
5587
5588 if (fixP->fx_addsy
5589 && (S_IS_EXTERNAL (fixP->fx_addsy) || S_IS_WEAK (fixP->fx_addsy)))
5590 return 0;
5591
5592 #if 0
5593 /* We may someday want to enable this code to preserve relocations for
5594 non-PC-relative fixes, possibly under control of a PIC flag. */
5595 return (fixP->fx_pcrel
5596 || (fixP->fx_subsy != NULL
5597 && (S_GET_SEGMENT (fixP->fx_subsy)
5598 == S_GET_SEGMENT (fixP->fx_addsy)))
5599 || S_IS_LOCAL (fixP->fx_addsy));
5600 #else
5601 return 1;
5602 #endif
5603 }
5604
5605
5606 void
5607 md_apply_fix3 (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
5608 {
5609 if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
5610 {
5611 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5612
5613 switch (fixP->fx_r_type)
5614 {
5615 case BFD_RELOC_XTENSA_ASM_EXPAND:
5616 fixP->fx_done = 1;
5617 break;
5618
5619 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
5620 as_bad (_("unhandled local relocation fix %s"),
5621 bfd_get_reloc_code_name (fixP->fx_r_type));
5622 break;
5623
5624 case BFD_RELOC_32:
5625 case BFD_RELOC_16:
5626 case BFD_RELOC_8:
5627 /* The only one we support that isn't an instruction field. */
5628 md_number_to_chars (fixpos, *valP, fixP->fx_size);
5629 fixP->fx_done = 1;
5630 break;
5631
5632 case BFD_RELOC_VTABLE_INHERIT:
5633 case BFD_RELOC_VTABLE_ENTRY:
5634 fixP->fx_done = 0;
5635 break;
5636
5637 default:
5638 as_bad (_("unhandled local relocation fix %s"),
5639 bfd_get_reloc_code_name (fixP->fx_r_type));
5640 }
5641 }
5642 }
5643
5644
5645 char *
5646 md_atof (int type, char *litP, int *sizeP)
5647 {
5648 int prec;
5649 LITTLENUM_TYPE words[4];
5650 char *t;
5651 int i;
5652
5653 switch (type)
5654 {
5655 case 'f':
5656 prec = 2;
5657 break;
5658
5659 case 'd':
5660 prec = 4;
5661 break;
5662
5663 default:
5664 *sizeP = 0;
5665 return "bad call to md_atof";
5666 }
5667
5668 t = atof_ieee (input_line_pointer, type, words);
5669 if (t)
5670 input_line_pointer = t;
5671
5672 *sizeP = prec * 2;
5673
5674 for (i = prec - 1; i >= 0; i--)
5675 {
5676 int idx = i;
5677 if (target_big_endian)
5678 idx = (prec - 1 - i);
5679
5680 md_number_to_chars (litP, (valueT) words[idx], 2);
5681 litP += 2;
5682 }
5683
5684 return NULL;
5685 }
5686
5687
5688 int
5689 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5690 {
5691 return total_frag_text_expansion (fragP);
5692 }
5693
5694
5695 /* Translate internal representation of relocation info to BFD target
5696 format. */
5697
5698 arelent *
5699 tc_gen_reloc (asection *section, fixS *fixp)
5700 {
5701 arelent *reloc;
5702 bfd_boolean apply_tentative_value = FALSE;
5703
5704 reloc = (arelent *) xmalloc (sizeof (arelent));
5705 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5706 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5707 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5708
5709 /* Make sure none of our internal relocations make it this far.
5710 They'd better have been fully resolved by this point. */
5711 assert ((int) fixp->fx_r_type > 0);
5712
5713 if (linkrelax && fixp->fx_subsy
5714 && (fixp->fx_r_type == BFD_RELOC_8
5715 || fixp->fx_r_type == BFD_RELOC_16
5716 || fixp->fx_r_type == BFD_RELOC_32))
5717 {
5718 int diff_size = 0;
5719 bfd_vma diff_value, diff_mask = 0;
5720
5721 switch (fixp->fx_r_type)
5722 {
5723 case BFD_RELOC_8:
5724 fixp->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5725 diff_size = 1;
5726 diff_mask = 0xff;
5727 break;
5728 case BFD_RELOC_16:
5729 fixp->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5730 diff_size = 2;
5731 diff_mask = 0xffff;
5732 break;
5733 case BFD_RELOC_32:
5734 fixp->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5735 diff_size = 4;
5736 diff_mask = 0xffffffff;
5737 break;
5738 default:
5739 break;
5740 }
5741
5742 /* An offset is only allowed when it results from adjusting a local
5743 symbol into a section-relative offset. If the offset came from the
5744 original expression, tc_fix_adjustable will have prevented the fix
5745 from being converted to a section-relative form so that we can flag
5746 the error here. */
5747 if (fixp->fx_offset != 0 && !symbol_section_p (fixp->fx_addsy))
5748 {
5749 as_bad_where (fixp->fx_file, fixp->fx_line,
5750 _("cannot represent subtraction with an offset"));
5751 free (reloc->sym_ptr_ptr);
5752 free (reloc);
5753 return NULL;
5754 }
5755
5756 assert (S_GET_SEGMENT (fixp->fx_addsy)
5757 == S_GET_SEGMENT (fixp->fx_subsy));
5758
5759 diff_value = (S_GET_VALUE (fixp->fx_addsy) + fixp->fx_offset
5760 - S_GET_VALUE (fixp->fx_subsy));
5761
5762 /* Check for overflow. */
5763 if ((diff_value & ~diff_mask) != 0)
5764 {
5765 as_bad_where (fixp->fx_file, fixp->fx_line,
5766 _("value of %ld too large"), diff_value);
5767 free (reloc->sym_ptr_ptr);
5768 free (reloc);
5769 return NULL;
5770 }
5771
5772 md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where,
5773 diff_value, diff_size);
5774 reloc->addend = fixp->fx_offset - diff_value;
5775 }
5776 else
5777 {
5778 reloc->addend = fixp->fx_offset;
5779
5780 switch (fixp->fx_r_type)
5781 {
5782 case BFD_RELOC_XTENSA_SLOT0_OP:
5783 case BFD_RELOC_XTENSA_SLOT1_OP:
5784 case BFD_RELOC_XTENSA_SLOT2_OP:
5785 case BFD_RELOC_XTENSA_SLOT3_OP:
5786 case BFD_RELOC_XTENSA_SLOT4_OP:
5787 case BFD_RELOC_XTENSA_SLOT5_OP:
5788 case BFD_RELOC_XTENSA_SLOT6_OP:
5789 case BFD_RELOC_XTENSA_SLOT7_OP:
5790 case BFD_RELOC_XTENSA_SLOT8_OP:
5791 case BFD_RELOC_XTENSA_SLOT9_OP:
5792 case BFD_RELOC_XTENSA_SLOT10_OP:
5793 case BFD_RELOC_XTENSA_SLOT11_OP:
5794 case BFD_RELOC_XTENSA_SLOT12_OP:
5795 case BFD_RELOC_XTENSA_SLOT13_OP:
5796 case BFD_RELOC_XTENSA_SLOT14_OP:
5797 /* As a special case, the immediate value for a CONST16 opcode
5798 should not be applied, since this kind of relocation is
5799 handled specially for CONST16 and is not really PC-relative.
5800 Rather than decode the opcode here, just wait and handle it
5801 in xg_apply_tentative_value. */
5802 apply_tentative_value = TRUE;
5803 break;
5804
5805 case BFD_RELOC_XTENSA_SLOT0_ALT:
5806 case BFD_RELOC_XTENSA_SLOT1_ALT:
5807 case BFD_RELOC_XTENSA_SLOT2_ALT:
5808 case BFD_RELOC_XTENSA_SLOT3_ALT:
5809 case BFD_RELOC_XTENSA_SLOT4_ALT:
5810 case BFD_RELOC_XTENSA_SLOT5_ALT:
5811 case BFD_RELOC_XTENSA_SLOT6_ALT:
5812 case BFD_RELOC_XTENSA_SLOT7_ALT:
5813 case BFD_RELOC_XTENSA_SLOT8_ALT:
5814 case BFD_RELOC_XTENSA_SLOT9_ALT:
5815 case BFD_RELOC_XTENSA_SLOT10_ALT:
5816 case BFD_RELOC_XTENSA_SLOT11_ALT:
5817 case BFD_RELOC_XTENSA_SLOT12_ALT:
5818 case BFD_RELOC_XTENSA_SLOT13_ALT:
5819 case BFD_RELOC_XTENSA_SLOT14_ALT:
5820 case BFD_RELOC_XTENSA_ASM_EXPAND:
5821 case BFD_RELOC_32:
5822 case BFD_RELOC_XTENSA_PLT:
5823 case BFD_RELOC_VTABLE_INHERIT:
5824 case BFD_RELOC_VTABLE_ENTRY:
5825 break;
5826
5827 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
5828 as_warn (_("emitting simplification relocation"));
5829 break;
5830
5831 default:
5832 as_warn (_("emitting unknown relocation"));
5833 }
5834 }
5835
5836 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5837 if (reloc->howto == NULL)
5838 {
5839 as_bad_where (fixp->fx_file, fixp->fx_line,
5840 _("cannot represent `%s' relocation in object file"),
5841 bfd_get_reloc_code_name (fixp->fx_r_type));
5842 free (reloc->sym_ptr_ptr);
5843 free (reloc);
5844 return NULL;
5845 }
5846
5847 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5848 as_fatal (_("internal error? cannot generate `%s' relocation"),
5849 bfd_get_reloc_code_name (fixp->fx_r_type));
5850
5851 /* Write the tentative value of a PC-relative relocation to a local symbol
5852 into the instruction. The value will be ignored by the linker, and it
5853 makes the object file disassembly readable when the linkrelax flag is
5854 set and all branch targets are encoded in relocations. */
5855
5856 if (linkrelax && apply_tentative_value && fixp->fx_pcrel)
5857 {
5858 valueT val;
5859 assert (fixp->fx_addsy);
5860 if (S_GET_SEGMENT (fixp->fx_addsy) == section && !fixp->fx_plt
5861 && !S_FORCE_RELOC (fixp->fx_addsy, 1))
5862 {
5863 val = (S_GET_VALUE (fixp->fx_addsy) + fixp->fx_offset
5864 - md_pcrel_from (fixp));
5865 xg_apply_tentative_value (fixp, val);
5866 }
5867 }
5868
5869 return reloc;
5870 }
5871
5872 \f
5873 /* Checks for resource conflicts between instructions. */
5874
5875 /* The func unit stuff could be implemented as bit-vectors rather
5876 than the iterative approach here. If it ends up being too
5877 slow, we will switch it. */
5878
5879 resource_table *
5880 new_resource_table (void *data,
5881 int cycles,
5882 int nu,
5883 unit_num_copies_func uncf,
5884 opcode_num_units_func onuf,
5885 opcode_funcUnit_use_unit_func ouuf,
5886 opcode_funcUnit_use_stage_func ousf)
5887 {
5888 int i;
5889 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5890 rt->data = data;
5891 rt->cycles = cycles;
5892 rt->allocated_cycles = cycles;
5893 rt->num_units = nu;
5894 rt->unit_num_copies = uncf;
5895 rt->opcode_num_units = onuf;
5896 rt->opcode_unit_use = ouuf;
5897 rt->opcode_unit_stage = ousf;
5898
5899 rt->units = (char **) xcalloc (cycles, sizeof (char *));
5900 for (i = 0; i < cycles; i++)
5901 rt->units[i] = (char *) xcalloc (nu, sizeof (char));
5902
5903 return rt;
5904 }
5905
5906
5907 void
5908 clear_resource_table (resource_table *rt)
5909 {
5910 int i, j;
5911 for (i = 0; i < rt->allocated_cycles; i++)
5912 for (j = 0; j < rt->num_units; j++)
5913 rt->units[i][j] = 0;
5914 }
5915
5916
5917 /* We never shrink it, just fake it into thinking so. */
5918
5919 void
5920 resize_resource_table (resource_table *rt, int cycles)
5921 {
5922 int i, old_cycles;
5923
5924 rt->cycles = cycles;
5925 if (cycles <= rt->allocated_cycles)
5926 return;
5927
5928 old_cycles = rt->allocated_cycles;
5929 rt->allocated_cycles = cycles;
5930
5931 rt->units = xrealloc (rt->units, sizeof (char *) * rt->allocated_cycles);
5932 for (i = 0; i < old_cycles; i++)
5933 rt->units[i] = xrealloc (rt->units[i], sizeof (char) * rt->num_units);
5934 for (i = old_cycles; i < cycles; i++)
5935 rt->units[i] = xcalloc (rt->num_units, sizeof (char));
5936 }
5937
5938
5939 bfd_boolean
5940 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5941 {
5942 int i;
5943 int uses = (rt->opcode_num_units) (rt->data, opcode);
5944
5945 for (i = 0; i < uses; i++)
5946 {
5947 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5948 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5949 int copies_in_use = rt->units[stage + cycle][unit];
5950 int copies = (rt->unit_num_copies) (rt->data, unit);
5951 if (copies_in_use >= copies)
5952 return FALSE;
5953 }
5954 return TRUE;
5955 }
5956
5957
5958 void
5959 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5960 {
5961 int i;
5962 int uses = (rt->opcode_num_units) (rt->data, opcode);
5963
5964 for (i = 0; i < uses; i++)
5965 {
5966 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5967 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5968 /* Note that this allows resources to be oversubscribed. That's
5969 essential to the way the optional scheduler works.
5970 resources_available reports when a resource is over-subscribed,
5971 so it's easy to tell. */
5972 rt->units[stage + cycle][unit]++;
5973 }
5974 }
5975
5976
5977 void
5978 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5979 {
5980 int i;
5981 int uses = (rt->opcode_num_units) (rt->data, opcode);
5982
5983 for (i = 0; i < uses; i++)
5984 {
5985 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5986 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5987 rt->units[stage + cycle][unit]--;
5988 assert (rt->units[stage + cycle][unit] >= 0);
5989 }
5990 }
5991
5992
5993 /* Wrapper functions make parameterized resource reservation
5994 more convenient. */
5995
5996 int
5997 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5998 {
5999 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6000 return use->unit;
6001 }
6002
6003
6004 int
6005 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6006 {
6007 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6008 return use->stage;
6009 }
6010
6011
6012 /* Note that this function does not check issue constraints, but
6013 solely whether the hardware is available to execute the given
6014 instructions together. It also doesn't check if the tinsns
6015 write the same state, or access the same tieports. That is
6016 checked by check_t1_t2_read_write. */
6017
6018 static bfd_boolean
6019 resources_conflict (vliw_insn *vinsn)
6020 {
6021 int i;
6022 static resource_table *rt = NULL;
6023
6024 /* This is the most common case by far. Optimize it. */
6025 if (vinsn->num_slots == 1)
6026 return FALSE;
6027
6028 if (rt == NULL)
6029 {
6030 xtensa_isa isa = xtensa_default_isa;
6031 rt = new_resource_table
6032 (isa, xtensa_isa_num_pipe_stages (isa),
6033 xtensa_isa_num_funcUnits (isa),
6034 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6035 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6036 opcode_funcUnit_use_unit,
6037 opcode_funcUnit_use_stage);
6038 }
6039
6040 clear_resource_table (rt);
6041
6042 for (i = 0; i < vinsn->num_slots; i++)
6043 {
6044 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6045 return TRUE;
6046 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6047 }
6048
6049 return FALSE;
6050 }
6051
6052 \f
6053 /* finish_vinsn, emit_single_op and helper functions. */
6054
6055 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6056 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6057 static void bundle_single_op (TInsn *);
6058 static void xg_assemble_vliw_tokens (vliw_insn *);
6059
6060
6061 /* We have reached the end of a bundle; emit into the frag. */
6062
6063 static void
6064 finish_vinsn (vliw_insn *vinsn)
6065 {
6066 IStack slotstack;
6067 int i;
6068 char *file_name;
6069 int line;
6070
6071 if (find_vinsn_conflicts (vinsn))
6072 return;
6073
6074 /* First, find a format that works. */
6075 if (vinsn->format == XTENSA_UNDEFINED)
6076 vinsn->format = xg_find_narrowest_format (vinsn);
6077
6078 if (vinsn->format == XTENSA_UNDEFINED)
6079 {
6080 as_where (&file_name, &line);
6081 as_bad_where (file_name, line,
6082 _("couldn't find a valid instruction format"));
6083 fprintf (stderr, _(" ops were: "));
6084 for (i = 0; i < vinsn->num_slots; i++)
6085 fprintf (stderr, _(" %s;"),
6086 xtensa_opcode_name (xtensa_default_isa,
6087 vinsn->slots[i].opcode));
6088 fprintf (stderr, _("\n"));
6089 xg_clear_vinsn (vinsn);
6090 return;
6091 }
6092
6093 if (vinsn->num_slots
6094 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
6095 {
6096 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6097 xtensa_format_name (xtensa_default_isa, vinsn->format),
6098 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6099 vinsn->num_slots);
6100 xg_clear_vinsn (vinsn);
6101 return;
6102 }
6103
6104 if (resources_conflict (vinsn))
6105 {
6106 as_where (&file_name, &line);
6107 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6108 fprintf (stderr, " ops were: ");
6109 for (i = 0; i < vinsn->num_slots; i++)
6110 fprintf (stderr, " %s;",
6111 xtensa_opcode_name (xtensa_default_isa,
6112 vinsn->slots[i].opcode));
6113 fprintf (stderr, "\n");
6114 xg_clear_vinsn (vinsn);
6115 return;
6116 }
6117
6118 for (i = 0; i < vinsn->num_slots; i++)
6119 {
6120 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6121 {
6122 symbolS *lit_sym = NULL;
6123 int j;
6124 bfd_boolean e = FALSE;
6125 bfd_boolean saved_density = density_supported;
6126
6127 /* We don't want to narrow ops inside multi-slot bundles. */
6128 if (vinsn->num_slots > 1)
6129 density_supported = FALSE;
6130
6131 istack_init (&slotstack);
6132 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6133 {
6134 vinsn->slots[i].opcode =
6135 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6136 vinsn->format, i);
6137 vinsn->slots[i].ntok = 0;
6138 }
6139
6140 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6141 {
6142 e = TRUE;
6143 continue;
6144 }
6145
6146 density_supported = saved_density;
6147
6148 if (e)
6149 {
6150 xg_clear_vinsn (vinsn);
6151 return;
6152 }
6153
6154 for (j = 0; j < slotstack.ninsn - 1; j++)
6155 {
6156 TInsn *insn = &slotstack.insn[j];
6157 if (insn->insn_type == ITYPE_LITERAL)
6158 {
6159 assert (lit_sym == NULL);
6160 lit_sym = xg_assemble_literal (insn);
6161 }
6162 else
6163 {
6164 if (lit_sym)
6165 xg_resolve_literals (insn, lit_sym);
6166 emit_single_op (insn);
6167 }
6168 }
6169
6170 if (vinsn->num_slots > 1)
6171 {
6172 if (opcode_fits_format_slot
6173 (slotstack.insn[slotstack.ninsn - 1].opcode,
6174 vinsn->format, i))
6175 {
6176 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6177 }
6178 else
6179 {
6180 bundle_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6181 if (vinsn->format == XTENSA_UNDEFINED)
6182 vinsn->slots[i].opcode = xtensa_nop_opcode;
6183 else
6184 vinsn->slots[i].opcode
6185 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6186 vinsn->format, i);
6187
6188 vinsn->slots[i].ntok = 0;
6189 }
6190 }
6191 else
6192 {
6193 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6194 vinsn->format = XTENSA_UNDEFINED;
6195 }
6196 }
6197 }
6198
6199 /* Now check resource conflicts on the modified bundle. */
6200 if (resources_conflict (vinsn))
6201 {
6202 as_where (&file_name, &line);
6203 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6204 fprintf (stderr, " ops were: ");
6205 for (i = 0; i < vinsn->num_slots; i++)
6206 fprintf (stderr, " %s;",
6207 xtensa_opcode_name (xtensa_default_isa,
6208 vinsn->slots[i].opcode));
6209 fprintf (stderr, "\n");
6210 xg_clear_vinsn (vinsn);
6211 return;
6212 }
6213
6214 /* First, find a format that works. */
6215 if (vinsn->format == XTENSA_UNDEFINED)
6216 vinsn->format = xg_find_narrowest_format (vinsn);
6217
6218 xg_assemble_vliw_tokens (vinsn);
6219
6220 xg_clear_vinsn (vinsn);
6221 }
6222
6223
6224 /* Given an vliw instruction, what conflicts are there in register
6225 usage and in writes to states and queues?
6226
6227 This function does two things:
6228 1. Reports an error when a vinsn contains illegal combinations
6229 of writes to registers states or queues.
6230 2. Marks individual tinsns as not relaxable if the combination
6231 contains antidependencies.
6232
6233 Job 2 handles things like swap semantics in instructions that need
6234 to be relaxed. For example,
6235
6236 addi a0, a1, 100000
6237
6238 normally would be relaxed to
6239
6240 l32r a0, some_label
6241 add a0, a1, a0
6242
6243 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6244
6245 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6246
6247 then we can't relax it into
6248
6249 l32r a0, some_label
6250 { add a0, a1, a0 ; add a2, a0, a4 ; }
6251
6252 because the value of a0 is trashed before the second add can read it. */
6253
6254 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6255
6256 static bfd_boolean
6257 find_vinsn_conflicts (vliw_insn *vinsn)
6258 {
6259 int i, j;
6260 int branches = 0;
6261 xtensa_isa isa = xtensa_default_isa;
6262
6263 assert (!past_xtensa_end);
6264
6265 for (i = 0 ; i < vinsn->num_slots; i++)
6266 {
6267 TInsn *op1 = &vinsn->slots[i];
6268 if (op1->is_specific_opcode)
6269 op1->keep_wide = TRUE;
6270 else
6271 op1->keep_wide = FALSE;
6272 }
6273
6274 for (i = 0 ; i < vinsn->num_slots; i++)
6275 {
6276 TInsn *op1 = &vinsn->slots[i];
6277
6278 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6279 branches++;
6280
6281 for (j = 0; j < vinsn->num_slots; j++)
6282 {
6283 if (i != j)
6284 {
6285 TInsn *op2 = &vinsn->slots[j];
6286 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6287 switch (conflict_type)
6288 {
6289 case 'c':
6290 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6291 xtensa_opcode_name (isa, op1->opcode), i,
6292 xtensa_opcode_name (isa, op2->opcode), j);
6293 return TRUE;
6294 case 'd':
6295 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6296 xtensa_opcode_name (isa, op1->opcode), i,
6297 xtensa_opcode_name (isa, op2->opcode), j);
6298 return TRUE;
6299 case 'e':
6300 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same queue"),
6301 xtensa_opcode_name (isa, op1->opcode), i,
6302 xtensa_opcode_name (isa, op2->opcode), j);
6303 return TRUE;
6304 case 'f':
6305 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile queue accesses"),
6306 xtensa_opcode_name (isa, op1->opcode), i,
6307 xtensa_opcode_name (isa, op2->opcode), j);
6308 return TRUE;
6309 default:
6310 /* Everything is OK. */
6311 break;
6312 }
6313 op2->is_specific_opcode = (op2->is_specific_opcode
6314 || conflict_type == 'a');
6315 }
6316 }
6317 }
6318
6319 if (branches > 1)
6320 {
6321 as_bad (_("multiple branches or jumps in the same bundle"));
6322 return TRUE;
6323 }
6324
6325 return FALSE;
6326 }
6327
6328
6329 /* Check how the result registers of t1 and t2 relate.
6330 Cases found are:
6331
6332 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6333 case B: no relationship between what is read and written (both could
6334 read the same reg though)
6335 case C: t1 writes a register t2 writes (a register conflict within a
6336 bundle)
6337 case D: t1 writes a state that t2 also writes
6338 case E: t1 writes a tie queue that t2 also writes
6339 case F: two volatile queue writes
6340 */
6341
6342 static char
6343 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6344 {
6345 xtensa_isa isa = xtensa_default_isa;
6346 xtensa_regfile t1_regfile, t2_regfile;
6347 int t1_reg, t2_reg;
6348 int t1_base_reg, t1_last_reg;
6349 int t2_base_reg, t2_last_reg;
6350 char t1_inout, t2_inout;
6351 int i, j;
6352 char conflict = 'b';
6353 int t1_states;
6354 int t2_states;
6355 int t1_interfaces;
6356 int t2_interfaces;
6357 bfd_boolean t1_volatile = FALSE;
6358 bfd_boolean t2_volatile = FALSE;
6359
6360 /* Check registers. */
6361 for (j = 0; j < t2->ntok; j++)
6362 {
6363 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6364 continue;
6365
6366 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6367 t2_base_reg = t2->tok[j].X_add_number;
6368 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6369
6370 for (i = 0; i < t1->ntok; i++)
6371 {
6372 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6373 continue;
6374
6375 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6376
6377 if (t1_regfile != t2_regfile)
6378 continue;
6379
6380 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6381 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6382
6383 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6384 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6385 {
6386 if (t1_inout == 'm' || t1_inout == 'o'
6387 || t2_inout == 'm' || t2_inout == 'o')
6388 {
6389 conflict = 'a';
6390 continue;
6391 }
6392 }
6393
6394 t1_base_reg = t1->tok[i].X_add_number;
6395 t1_last_reg = (t1_base_reg
6396 + xtensa_operand_num_regs (isa, t1->opcode, i));
6397
6398 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6399 {
6400 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6401 {
6402 if (t1_reg != t2_reg)
6403 continue;
6404
6405 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6406 {
6407 conflict = 'a';
6408 continue;
6409 }
6410
6411 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6412 {
6413 conflict = 'a';
6414 continue;
6415 }
6416
6417 if (t1_inout != 'i' && t2_inout != 'i')
6418 return 'c';
6419 }
6420 }
6421 }
6422 }
6423
6424 /* Check states. */
6425 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6426 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6427 for (j = 0; j < t2_states; j++)
6428 {
6429 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6430 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6431 for (i = 0; i < t1_states; i++)
6432 {
6433 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6434 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6435 if (t1_so != t2_so)
6436 continue;
6437
6438 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6439 {
6440 conflict = 'a';
6441 continue;
6442 }
6443
6444 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6445 {
6446 conflict = 'a';
6447 continue;
6448 }
6449
6450 if (t1_inout != 'i' && t2_inout != 'i')
6451 return 'd';
6452 }
6453 }
6454
6455 /* Check tieports. */
6456 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6457 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6458 for (j = 0; j < t2_interfaces; j++)
6459 {
6460 xtensa_interface t2_int
6461 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6462 t2_inout = xtensa_interface_inout (isa, j);
6463 if (xtensa_interface_has_side_effect (isa, t2_int) == 1
6464 && t2_inout != 'i')
6465 t2_volatile = TRUE;
6466 for (i = 0; i < t1_interfaces; i++)
6467 {
6468 xtensa_interface t1_int
6469 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6470 t1_inout = xtensa_interface_inout (isa, i);
6471 if (xtensa_interface_has_side_effect (isa, t1_int) == 1
6472 && t1_inout != 'i')
6473 t1_volatile = TRUE;
6474
6475 if (t1_int != t2_int)
6476 continue;
6477
6478 if (t2_inout == 'i' && t1_inout == 'o')
6479 {
6480 conflict = 'a';
6481 continue;
6482 }
6483
6484 if (t1_inout == 'i' && t2_inout == 'o')
6485 {
6486 conflict = 'a';
6487 continue;
6488 }
6489
6490 if (t1_inout != 'i' && t2_inout != 'i')
6491 return 'e';
6492 }
6493 }
6494
6495 if (t1_volatile && t2_volatile)
6496 return 'f';
6497
6498 return conflict;
6499 }
6500
6501
6502 static xtensa_format
6503 xg_find_narrowest_format (vliw_insn *vinsn)
6504 {
6505 /* Right now we assume that the ops within the vinsn are properly
6506 ordered for the slots that the programmer wanted them in. In
6507 other words, we don't rearrange the ops in hopes of finding a
6508 better format. The scheduler handles that. */
6509
6510 xtensa_isa isa = xtensa_default_isa;
6511 xtensa_format format;
6512 vliw_insn v_copy = *vinsn;
6513 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6514
6515 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6516 {
6517 v_copy = *vinsn;
6518 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6519 {
6520 int slot;
6521 int fit = 0;
6522 for (slot = 0; slot < v_copy.num_slots; slot++)
6523 {
6524 if (v_copy.slots[slot].opcode == nop_opcode)
6525 {
6526 v_copy.slots[slot].opcode =
6527 xtensa_format_slot_nop_opcode (isa, format, slot);
6528 v_copy.slots[slot].ntok = 0;
6529 }
6530
6531 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6532 format, slot))
6533 fit++;
6534 else if (v_copy.num_slots > 1)
6535 {
6536 TInsn widened;
6537 /* Try the widened version. */
6538 if (!v_copy.slots[slot].keep_wide
6539 && !v_copy.slots[slot].is_specific_opcode
6540 && xg_is_narrow_insn (&v_copy.slots[slot])
6541 && !xg_expand_narrow (&widened, &v_copy.slots[slot])
6542 && opcode_fits_format_slot (widened.opcode,
6543 format, slot))
6544 {
6545 /* The xg_is_narrow clause requires some explanation:
6546
6547 addi can be "widened" to an addmi, which is then
6548 expanded to an addmi/addi pair if the immediate
6549 requires it, but here we must have a single widen
6550 only.
6551
6552 xg_is_narrow tells us that addi isn't really
6553 narrow. The widen_spec_list says that there are
6554 other cases. */
6555
6556 v_copy.slots[slot] = widened;
6557 fit++;
6558 }
6559 }
6560 }
6561 if (fit == v_copy.num_slots)
6562 {
6563 *vinsn = v_copy;
6564 xtensa_format_encode (isa, format, vinsn->insnbuf);
6565 vinsn->format = format;
6566 break;
6567 }
6568 }
6569 }
6570
6571 if (format == xtensa_isa_num_formats (isa))
6572 return XTENSA_UNDEFINED;
6573
6574 return format;
6575 }
6576
6577
6578 /* Return the additional space needed in a frag
6579 for possible relaxations of any ops in a VLIW insn.
6580 Also fill out the relaxations that might be required of
6581 each tinsn in the vinsn. */
6582
6583 static int
6584 relaxation_requirements (vliw_insn *vinsn)
6585 {
6586 int extra_space = 0;
6587 int slot;
6588
6589 for (slot = 0; slot < vinsn->num_slots; slot++)
6590 {
6591 TInsn *tinsn = &vinsn->slots[slot];
6592 if (!tinsn_has_symbolic_operands (tinsn))
6593 {
6594 /* A narrow instruction could be widened later to help
6595 alignment issues. */
6596 if (xg_is_narrow_insn (tinsn)
6597 && !tinsn->is_specific_opcode
6598 && vinsn->num_slots == 1)
6599 {
6600 /* Difference in bytes between narrow and wide insns... */
6601 extra_space += 1;
6602 tinsn->subtype = RELAX_NARROW;
6603 tinsn->record_fix = TRUE;
6604 break;
6605 }
6606 else
6607 {
6608 tinsn->record_fix = FALSE;
6609 /* No extra_space needed. */
6610 }
6611 }
6612 else
6613 {
6614 if (workaround_b_j_loop_end
6615 && tinsn->opcode == xtensa_jx_opcode
6616 && use_transform ())
6617 {
6618 /* Add 2 of these. */
6619 extra_space += 3; /* for the nop size */
6620 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6621 }
6622
6623 /* Need to assemble it with space for the relocation. */
6624 if (xg_is_relaxable_insn (tinsn, 0)
6625 && !tinsn->is_specific_opcode)
6626 {
6627 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6628 int max_literal_size =
6629 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6630
6631 tinsn->literal_space = max_literal_size;
6632
6633 tinsn->subtype = RELAX_IMMED;
6634 tinsn->record_fix = FALSE;
6635 extra_space += max_size;
6636 }
6637 else
6638 {
6639 tinsn->record_fix = TRUE;
6640 /* No extra space needed. */
6641 }
6642 }
6643 }
6644 return extra_space;
6645 }
6646
6647
6648 static void
6649 bundle_single_op (TInsn *orig_insn)
6650 {
6651 xtensa_isa isa = xtensa_default_isa;
6652 vliw_insn v;
6653 int slot;
6654
6655 xg_init_vinsn (&v);
6656 v.format = op_placement_table[orig_insn->opcode].narrowest;
6657 assert (v.format != XTENSA_UNDEFINED);
6658 v.num_slots = xtensa_format_num_slots (isa, v.format);
6659
6660 for (slot = 0;
6661 !opcode_fits_format_slot (orig_insn->opcode, v.format, slot);
6662 slot++)
6663 {
6664 v.slots[slot].opcode =
6665 xtensa_format_slot_nop_opcode (isa, v.format, slot);
6666 v.slots[slot].ntok = 0;
6667 v.slots[slot].insn_type = ITYPE_INSN;
6668 }
6669
6670 v.slots[slot] = *orig_insn;
6671 slot++;
6672
6673 for ( ; slot < v.num_slots; slot++)
6674 {
6675 v.slots[slot].opcode =
6676 xtensa_format_slot_nop_opcode (isa, v.format, slot);
6677 v.slots[slot].ntok = 0;
6678 v.slots[slot].insn_type = ITYPE_INSN;
6679 }
6680
6681 finish_vinsn (&v);
6682 xg_free_vinsn (&v);
6683 }
6684
6685
6686 static bfd_boolean
6687 emit_single_op (TInsn *orig_insn)
6688 {
6689 int i;
6690 IStack istack; /* put instructions into here */
6691 symbolS *lit_sym = NULL;
6692 symbolS *label_sym = NULL;
6693
6694 istack_init (&istack);
6695
6696 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6697 Because the scheduling and bundling characteristics of movi and
6698 l32r or const16 are so different, we can do much better if we relax
6699 it prior to scheduling and bundling, rather than after. */
6700 if ((orig_insn->opcode == xtensa_movi_opcode
6701 || orig_insn->opcode == xtensa_movi_n_opcode)
6702 && !cur_vinsn.inside_bundle
6703 && (orig_insn->tok[1].X_op == O_symbol
6704 || orig_insn->tok[1].X_op == O_pltrel))
6705 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6706 else
6707 if (xg_expand_assembly_insn (&istack, orig_insn))
6708 return TRUE;
6709
6710 for (i = 0; i < istack.ninsn; i++)
6711 {
6712 TInsn *insn = &istack.insn[i];
6713 switch (insn->insn_type)
6714 {
6715 case ITYPE_LITERAL:
6716 assert (lit_sym == NULL);
6717 lit_sym = xg_assemble_literal (insn);
6718 break;
6719 case ITYPE_LABEL:
6720 {
6721 static int relaxed_sym_idx = 0;
6722 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6723 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6724 colon (label);
6725 assert (label_sym == NULL);
6726 label_sym = symbol_find_or_make (label);
6727 assert (label_sym);
6728 free (label);
6729 }
6730 break;
6731 case ITYPE_INSN:
6732 if (lit_sym)
6733 xg_resolve_literals (insn, lit_sym);
6734 if (label_sym)
6735 xg_resolve_labels (insn, label_sym);
6736 bundle_single_op (insn);
6737 break;
6738 default:
6739 assert (0);
6740 break;
6741 }
6742 }
6743 return FALSE;
6744 }
6745
6746
6747 static int
6748 total_frag_text_expansion (fragS *fragP)
6749 {
6750 int slot;
6751 int total_expansion = 0;
6752
6753 for (slot = 0; slot < MAX_SLOTS; slot++)
6754 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6755
6756 return total_expansion;
6757 }
6758
6759
6760 /* Emit a vliw instruction to the current fragment. */
6761
6762 static void
6763 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6764 {
6765 bfd_boolean finish_frag = FALSE;
6766 bfd_boolean is_jump = FALSE;
6767 bfd_boolean is_branch = FALSE;
6768 xtensa_isa isa = xtensa_default_isa;
6769 int i;
6770 int insn_size;
6771 int extra_space;
6772 char *f = NULL;
6773 int slot;
6774 struct dwarf2_line_info best_loc;
6775
6776 best_loc.line = INT_MAX;
6777
6778 if (generating_literals)
6779 {
6780 static int reported = 0;
6781 if (reported < 4)
6782 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6783 _("cannot assemble into a literal fragment"));
6784 if (reported == 3)
6785 as_bad (_("..."));
6786 reported++;
6787 return;
6788 }
6789
6790 if (frag_now_fix () != 0
6791 && (! frag_now->tc_frag_data.is_insn
6792 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6793 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6794 || (directive_state[directive_absolute_literals]
6795 != frag_now->tc_frag_data.use_absolute_literals)))
6796 {
6797 frag_wane (frag_now);
6798 frag_new (0);
6799 xtensa_set_frag_assembly_state (frag_now);
6800 }
6801
6802 if (workaround_a0_b_retw
6803 && vinsn->num_slots == 1
6804 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6805 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6806 && use_transform ())
6807 {
6808 has_a0_b_retw = TRUE;
6809
6810 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6811 After the first assembly pass we will check all of them and
6812 add a nop if needed. */
6813 frag_now->tc_frag_data.is_insn = TRUE;
6814 frag_var (rs_machine_dependent, 4, 4,
6815 RELAX_ADD_NOP_IF_A0_B_RETW,
6816 frag_now->fr_symbol,
6817 frag_now->fr_offset,
6818 NULL);
6819 xtensa_set_frag_assembly_state (frag_now);
6820 frag_now->tc_frag_data.is_insn = TRUE;
6821 frag_var (rs_machine_dependent, 4, 4,
6822 RELAX_ADD_NOP_IF_A0_B_RETW,
6823 frag_now->fr_symbol,
6824 frag_now->fr_offset,
6825 NULL);
6826 xtensa_set_frag_assembly_state (frag_now);
6827 }
6828
6829 for (i = 0; i < vinsn->num_slots; i++)
6830 {
6831 /* See if the instruction implies an aligned section. */
6832 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6833 record_alignment (now_seg, 2);
6834
6835 /* Also determine the best line number for debug info. */
6836 best_loc = vinsn->slots[i].loc.line < best_loc.line
6837 ? vinsn->slots[i].loc : best_loc;
6838 }
6839
6840 /* Special cases for instructions that force an alignment... */
6841 /* None of these opcodes are bundle-able. */
6842 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6843 {
6844 size_t max_fill;
6845
6846 xtensa_set_frag_assembly_state (frag_now);
6847 frag_now->tc_frag_data.is_insn = TRUE;
6848
6849 max_fill = get_text_align_max_fill_size
6850 (get_text_align_power (xtensa_fetch_width),
6851 TRUE, frag_now->tc_frag_data.is_no_density);
6852
6853 if (use_transform ())
6854 frag_var (rs_machine_dependent, max_fill, max_fill,
6855 RELAX_ALIGN_NEXT_OPCODE,
6856 frag_now->fr_symbol,
6857 frag_now->fr_offset,
6858 NULL);
6859 else
6860 frag_var (rs_machine_dependent, 0, 0,
6861 RELAX_CHECK_ALIGN_NEXT_OPCODE, 0, 0, NULL);
6862 xtensa_set_frag_assembly_state (frag_now);
6863
6864 xtensa_move_labels (frag_now, 0, FALSE);
6865 }
6866
6867 if (vinsn->slots[0].opcode == xtensa_entry_opcode
6868 && !vinsn->slots[0].is_specific_opcode)
6869 {
6870 xtensa_mark_literal_pool_location ();
6871 xtensa_move_labels (frag_now, 0, TRUE);
6872 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6873 }
6874
6875 if (vinsn->num_slots == 1)
6876 {
6877 if (workaround_a0_b_retw && use_transform ())
6878 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6879 is_register_writer (&vinsn->slots[0], "a", 0));
6880
6881 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6882 is_bad_loopend_opcode (&vinsn->slots[0]));
6883 }
6884 else
6885 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6886
6887 insn_size = xtensa_format_length (isa, vinsn->format);
6888
6889 extra_space = relaxation_requirements (vinsn);
6890
6891 /* vinsn_to_insnbuf will produce the error. */
6892 if (vinsn->format != XTENSA_UNDEFINED)
6893 {
6894 f = (char *) frag_more (insn_size + extra_space);
6895 xtensa_set_frag_assembly_state (frag_now);
6896 frag_now->tc_frag_data.is_insn = TRUE;
6897 }
6898
6899 vinsn_to_insnbuf (vinsn, f, frag_now, TRUE);
6900 if (vinsn->format == XTENSA_UNDEFINED)
6901 return;
6902
6903 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, f, 0);
6904
6905 xtensa_dwarf2_emit_insn (insn_size - extra_space, &best_loc);
6906
6907 for (slot = 0; slot < vinsn->num_slots; slot++)
6908 {
6909 TInsn *tinsn = &vinsn->slots[slot];
6910 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
6911 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
6912 frag_now->tc_frag_data.slot_sub_symbols[slot] = tinsn->sub_symbol;
6913 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
6914 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6915 if (tinsn->literal_space != 0)
6916 xg_assemble_literal_space (tinsn->literal_space, slot);
6917
6918 if (tinsn->subtype == RELAX_NARROW)
6919 assert (vinsn->num_slots == 1);
6920 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6921 is_jump = TRUE;
6922 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6923 is_branch = TRUE;
6924
6925 if (tinsn->subtype || tinsn->symbol || tinsn->record_fix
6926 || tinsn->offset || tinsn->literal_frag || is_jump || is_branch)
6927 finish_frag = TRUE;
6928 }
6929
6930 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6931 frag_now->tc_frag_data.is_specific_opcode = TRUE;
6932
6933 if (finish_frag)
6934 {
6935 frag_variant (rs_machine_dependent,
6936 extra_space, extra_space, RELAX_SLOTS,
6937 frag_now->fr_symbol, frag_now->fr_offset, f);
6938 xtensa_set_frag_assembly_state (frag_now);
6939 }
6940
6941 /* Special cases for loops:
6942 close_loop_end should be inserted AFTER short_loop.
6943 Make sure that CLOSE loops are processed BEFORE short_loops
6944 when converting them. */
6945
6946 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6947 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6948 && !vinsn->slots[0].is_specific_opcode)
6949 {
6950 if (workaround_short_loop && use_transform ())
6951 {
6952 maybe_has_short_loop = TRUE;
6953 frag_now->tc_frag_data.is_insn = TRUE;
6954 frag_var (rs_machine_dependent, 4, 4,
6955 RELAX_ADD_NOP_IF_SHORT_LOOP,
6956 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6957 frag_now->tc_frag_data.is_insn = TRUE;
6958 frag_var (rs_machine_dependent, 4, 4,
6959 RELAX_ADD_NOP_IF_SHORT_LOOP,
6960 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6961 }
6962
6963 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6964 loop at least 12 bytes away from another loop's end. */
6965 if (workaround_close_loop_end && use_transform ())
6966 {
6967 maybe_has_close_loop_end = TRUE;
6968 frag_now->tc_frag_data.is_insn = TRUE;
6969 frag_var (rs_machine_dependent, 12, 12,
6970 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6971 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6972 }
6973 }
6974
6975 if (use_transform ())
6976 {
6977 if (is_jump)
6978 {
6979 assert (finish_frag);
6980 frag_var (rs_machine_dependent,
6981 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6982 RELAX_UNREACHABLE,
6983 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6984 xtensa_set_frag_assembly_state (frag_now);
6985 }
6986 else if (is_branch && align_targets)
6987 {
6988 assert (finish_frag);
6989 frag_var (rs_machine_dependent,
6990 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6991 RELAX_MAYBE_UNREACHABLE,
6992 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6993 xtensa_set_frag_assembly_state (frag_now);
6994 frag_var (rs_machine_dependent,
6995 0, 0,
6996 RELAX_MAYBE_DESIRE_ALIGN,
6997 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6998 xtensa_set_frag_assembly_state (frag_now);
6999 }
7000 }
7001
7002 /* Now, if the original opcode was a call... */
7003 if (do_align_targets ()
7004 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7005 {
7006 float freq = get_subseg_total_freq (now_seg, now_subseg);
7007 frag_now->tc_frag_data.is_insn = TRUE;
7008 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7009 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7010 xtensa_set_frag_assembly_state (frag_now);
7011 }
7012
7013 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7014 {
7015 frag_wane (frag_now);
7016 frag_new (0);
7017 xtensa_set_frag_assembly_state (frag_now);
7018 }
7019 }
7020
7021 \f
7022 /* xtensa_end and helper functions. */
7023
7024 static void xtensa_cleanup_align_frags (void);
7025 static void xtensa_fix_target_frags (void);
7026 static void xtensa_mark_narrow_branches (void);
7027 static void xtensa_mark_zcl_first_insns (void);
7028 static void xtensa_fix_a0_b_retw_frags (void);
7029 static void xtensa_fix_b_j_loop_end_frags (void);
7030 static void xtensa_fix_close_loop_end_frags (void);
7031 static void xtensa_fix_short_loop_frags (void);
7032 static void xtensa_sanity_check (void);
7033
7034 void
7035 xtensa_end (void)
7036 {
7037 directive_balance ();
7038 xtensa_flush_pending_output ();
7039
7040 past_xtensa_end = TRUE;
7041
7042 xtensa_move_literals ();
7043
7044 xtensa_reorder_segments ();
7045 xtensa_cleanup_align_frags ();
7046 xtensa_fix_target_frags ();
7047 if (workaround_a0_b_retw && has_a0_b_retw)
7048 xtensa_fix_a0_b_retw_frags ();
7049 if (workaround_b_j_loop_end)
7050 xtensa_fix_b_j_loop_end_frags ();
7051
7052 /* "close_loop_end" should be processed BEFORE "short_loop". */
7053 if (workaround_close_loop_end && maybe_has_close_loop_end)
7054 xtensa_fix_close_loop_end_frags ();
7055
7056 if (workaround_short_loop && maybe_has_short_loop)
7057 xtensa_fix_short_loop_frags ();
7058 xtensa_mark_narrow_branches ();
7059 xtensa_mark_zcl_first_insns ();
7060
7061 xtensa_sanity_check ();
7062 }
7063
7064
7065 static void
7066 xtensa_cleanup_align_frags (void)
7067 {
7068 frchainS *frchP;
7069
7070 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7071 {
7072 fragS *fragP;
7073 /* Walk over all of the fragments in a subsection. */
7074 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7075 {
7076 if ((fragP->fr_type == rs_align
7077 || fragP->fr_type == rs_align_code
7078 || (fragP->fr_type == rs_machine_dependent
7079 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7080 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7081 && fragP->fr_fix == 0)
7082 {
7083 fragS *next = fragP->fr_next;
7084
7085 while (next
7086 && next->fr_fix == 0
7087 && next->fr_type == rs_machine_dependent
7088 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7089 {
7090 frag_wane (next);
7091 next = next->fr_next;
7092 }
7093 }
7094 /* If we don't widen branch targets, then they
7095 will be easier to align. */
7096 if (fragP->tc_frag_data.is_branch_target
7097 && fragP->fr_opcode == fragP->fr_literal
7098 && fragP->fr_type == rs_machine_dependent
7099 && fragP->fr_subtype == RELAX_SLOTS
7100 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7101 frag_wane (fragP);
7102 if (fragP->fr_type == rs_machine_dependent
7103 && fragP->fr_subtype == RELAX_UNREACHABLE)
7104 fragP->tc_frag_data.is_unreachable = TRUE;
7105 }
7106 }
7107 }
7108
7109
7110 /* Re-process all of the fragments looking to convert all of the
7111 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7112 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7113 If the next fragment starts with a loop target, AND the previous
7114 fragment can be expanded to negate the branch, convert this to a
7115 RELAX_LOOP_END. Otherwise, convert to a .fill 0. */
7116
7117 static bfd_boolean frag_can_negate_branch (fragS *);
7118
7119 static void
7120 xtensa_fix_target_frags (void)
7121 {
7122 frchainS *frchP;
7123
7124 /* When this routine is called, all of the subsections are still intact
7125 so we walk over subsections instead of sections. */
7126 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7127 {
7128 bfd_boolean prev_frag_can_negate_branch = FALSE;
7129 fragS *fragP;
7130
7131 /* Walk over all of the fragments in a subsection. */
7132 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7133 {
7134 if (fragP->fr_type == rs_machine_dependent
7135 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7136 {
7137 if (next_frag_is_loop_target (fragP))
7138 {
7139 if (prev_frag_can_negate_branch)
7140 {
7141 fragP->fr_subtype = RELAX_LOOP_END;
7142 /* See the comment near the frag_var with a
7143 RELAX_DESIRE_ALIGN to see why we do this. */
7144 fragP->fr_var = RELAX_LOOP_END_BYTES;
7145 }
7146 else
7147 {
7148 if (next_frag_is_branch_target (fragP))
7149 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7150 else
7151 frag_wane (fragP);
7152 }
7153 }
7154 else if (next_frag_is_branch_target (fragP))
7155 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7156 else
7157 frag_wane (fragP);
7158 }
7159 if (fragP->fr_fix != 0)
7160 prev_frag_can_negate_branch = FALSE;
7161 if (frag_can_negate_branch (fragP))
7162 prev_frag_can_negate_branch = TRUE;
7163 }
7164 }
7165 }
7166
7167
7168 static bfd_boolean
7169 frag_can_negate_branch (fragS *fragP)
7170 {
7171 xtensa_isa isa = xtensa_default_isa;
7172 vliw_insn vinsn;
7173 int slot;
7174
7175 if (fragP->fr_type != rs_machine_dependent
7176 || fragP->fr_subtype != RELAX_SLOTS)
7177 return FALSE;
7178
7179 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7180
7181 for (slot = 0; slot < xtensa_format_num_slots (isa, vinsn.format); slot++)
7182 {
7183 if ((fragP->tc_frag_data.slot_subtypes[slot] == RELAX_IMMED)
7184 && xtensa_opcode_is_branch (isa, vinsn.slots[slot].opcode) == 1)
7185 return TRUE;
7186 }
7187
7188 return FALSE;
7189 }
7190
7191
7192 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7193
7194 static void
7195 xtensa_mark_narrow_branches (void)
7196 {
7197 frchainS *frchP;
7198
7199 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7200 {
7201 fragS *fragP;
7202 /* Walk over all of the fragments in a subsection. */
7203 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7204 {
7205 if (fragP->fr_type == rs_machine_dependent
7206 && fragP->fr_subtype == RELAX_SLOTS
7207 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7208 {
7209 vliw_insn vinsn;
7210 const expressionS *expr;
7211 symbolS *symbolP;
7212
7213 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7214 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7215
7216 expr = &vinsn.slots[0].tok[1];
7217 symbolP = expr->X_add_symbol;
7218
7219 if (vinsn.num_slots == 1
7220 && xtensa_opcode_is_branch (xtensa_default_isa,
7221 vinsn.slots[0].opcode)
7222 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7223 && is_narrow_branch_guaranteed_in_range (fragP,
7224 &vinsn.slots[0]))
7225 {
7226 fragP->fr_subtype = RELAX_SLOTS;
7227 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7228 }
7229 }
7230 }
7231 }
7232 }
7233
7234
7235 /* A branch is typically widened only when its target is out of
7236 range. However, we would like to widen them to align a subsequent
7237 branch target when possible.
7238
7239 Because the branch relaxation code is so convoluted, the optimal solution
7240 (combining the two cases) is difficult to get right in all circumstances.
7241 We therefore go with an "almost as good" solution, where we only
7242 use for alignment narrow branches that definitely will not expand to a
7243 jump and a branch. These functions find and mark these cases. */
7244
7245 /* the range in bytes of a bnez.n and beqz.n */
7246 #define MAX_IMMED6 68
7247
7248 static size_t unrelaxed_frag_max_size (fragS *);
7249
7250 static bfd_boolean
7251 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7252 {
7253 const expressionS *expr = &tinsn->tok[1];
7254 symbolS *symbolP = expr->X_add_symbol;
7255 fragS *target_frag = symbol_get_frag (symbolP);
7256 size_t max_distance = expr->X_add_number;
7257 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7258 if (is_branch_jmp_to_next (tinsn, fragP))
7259 return FALSE;
7260
7261 /* The branch doesn't branch over it's own frag,
7262 but over the subsequent ones. */
7263 fragP = fragP->fr_next;
7264 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7265 {
7266 max_distance += unrelaxed_frag_max_size (fragP);
7267 fragP = fragP->fr_next;
7268 }
7269 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7270 return TRUE;
7271 return FALSE;
7272 }
7273
7274
7275 static void
7276 xtensa_mark_zcl_first_insns (void)
7277 {
7278 frchainS *frchP;
7279
7280 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7281 {
7282 fragS *fragP;
7283 /* Walk over all of the fragments in a subsection. */
7284 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7285 {
7286 if (fragP->fr_type == rs_machine_dependent
7287 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7288 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7289 {
7290 /* Find the loop frag. */
7291 fragS *targ_frag = next_non_empty_frag (fragP);
7292 /* Find the first insn frag. */
7293 targ_frag = next_non_empty_frag (targ_frag);
7294
7295 /* Of course, sometimes (mostly for toy test cases) a
7296 zero-cost loop instruction is the last in a section. */
7297 if (targ_frag)
7298 {
7299 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7300 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7301 frag_wane (fragP);
7302 }
7303 }
7304 }
7305 }
7306 }
7307
7308
7309 /* Re-process all of the fragments looking to convert all of the
7310 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7311 conditional branch or a retw/retw.n, convert this frag to one that
7312 will generate a NOP. In any case close it off with a .fill 0. */
7313
7314 static bfd_boolean next_instrs_are_b_retw (fragS *);
7315
7316 static void
7317 xtensa_fix_a0_b_retw_frags (void)
7318 {
7319 frchainS *frchP;
7320
7321 /* When this routine is called, all of the subsections are still intact
7322 so we walk over subsections instead of sections. */
7323 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7324 {
7325 fragS *fragP;
7326
7327 /* Walk over all of the fragments in a subsection. */
7328 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7329 {
7330 if (fragP->fr_type == rs_machine_dependent
7331 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7332 {
7333 if (next_instrs_are_b_retw (fragP))
7334 {
7335 if (fragP->tc_frag_data.is_no_transform)
7336 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7337 else
7338 relax_frag_add_nop (fragP);
7339 }
7340 frag_wane (fragP);
7341 }
7342 }
7343 }
7344 }
7345
7346
7347 static bfd_boolean
7348 next_instrs_are_b_retw (fragS *fragP)
7349 {
7350 xtensa_opcode opcode;
7351 xtensa_format fmt;
7352 const fragS *next_fragP = next_non_empty_frag (fragP);
7353 static xtensa_insnbuf insnbuf = NULL;
7354 static xtensa_insnbuf slotbuf = NULL;
7355 xtensa_isa isa = xtensa_default_isa;
7356 int offset = 0;
7357 int slot;
7358 bfd_boolean branch_seen = FALSE;
7359
7360 if (!insnbuf)
7361 {
7362 insnbuf = xtensa_insnbuf_alloc (isa);
7363 slotbuf = xtensa_insnbuf_alloc (isa);
7364 }
7365
7366 if (next_fragP == NULL)
7367 return FALSE;
7368
7369 /* Check for the conditional branch. */
7370 xtensa_insnbuf_from_chars (isa, insnbuf, &next_fragP->fr_literal[offset], 0);
7371 fmt = xtensa_format_decode (isa, insnbuf);
7372 if (fmt == XTENSA_UNDEFINED)
7373 return FALSE;
7374
7375 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7376 {
7377 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7378 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7379
7380 branch_seen = (branch_seen
7381 || xtensa_opcode_is_branch (isa, opcode) == 1);
7382 }
7383
7384 if (!branch_seen)
7385 return FALSE;
7386
7387 offset += xtensa_format_length (isa, fmt);
7388 if (offset == next_fragP->fr_fix)
7389 {
7390 next_fragP = next_non_empty_frag (next_fragP);
7391 offset = 0;
7392 }
7393
7394 if (next_fragP == NULL)
7395 return FALSE;
7396
7397 /* Check for the retw/retw.n. */
7398 xtensa_insnbuf_from_chars (isa, insnbuf, &next_fragP->fr_literal[offset], 0);
7399 fmt = xtensa_format_decode (isa, insnbuf);
7400
7401 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7402 have no problems. */
7403 if (fmt == XTENSA_UNDEFINED
7404 || xtensa_format_num_slots (isa, fmt) != 1)
7405 return FALSE;
7406
7407 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7408 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7409
7410 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7411 return TRUE;
7412
7413 return FALSE;
7414 }
7415
7416
7417 /* Re-process all of the fragments looking to convert all of the
7418 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7419 loop end label, convert this frag to one that will generate a NOP.
7420 In any case close it off with a .fill 0. */
7421
7422 static bfd_boolean next_instr_is_loop_end (fragS *);
7423
7424 static void
7425 xtensa_fix_b_j_loop_end_frags (void)
7426 {
7427 frchainS *frchP;
7428
7429 /* When this routine is called, all of the subsections are still intact
7430 so we walk over subsections instead of sections. */
7431 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7432 {
7433 fragS *fragP;
7434
7435 /* Walk over all of the fragments in a subsection. */
7436 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7437 {
7438 if (fragP->fr_type == rs_machine_dependent
7439 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7440 {
7441 if (next_instr_is_loop_end (fragP))
7442 {
7443 if (fragP->tc_frag_data.is_no_transform)
7444 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7445 else
7446 relax_frag_add_nop (fragP);
7447 }
7448 frag_wane (fragP);
7449 }
7450 }
7451 }
7452 }
7453
7454
7455 static bfd_boolean
7456 next_instr_is_loop_end (fragS *fragP)
7457 {
7458 const fragS *next_fragP;
7459
7460 if (next_frag_is_loop_target (fragP))
7461 return FALSE;
7462
7463 next_fragP = next_non_empty_frag (fragP);
7464 if (next_fragP == NULL)
7465 return FALSE;
7466
7467 if (!next_frag_is_loop_target (next_fragP))
7468 return FALSE;
7469
7470 /* If the size is >= 3 then there is more than one instruction here.
7471 The hardware bug will not fire. */
7472 if (next_fragP->fr_fix > 3)
7473 return FALSE;
7474
7475 return TRUE;
7476 }
7477
7478
7479 /* Re-process all of the fragments looking to convert all of the
7480 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7481 not MY loop's loop end within 12 bytes, add enough nops here to
7482 make it at least 12 bytes away. In any case close it off with a
7483 .fill 0. */
7484
7485 static size_t min_bytes_to_other_loop_end (fragS *, fragS *, offsetT, size_t);
7486
7487 static void
7488 xtensa_fix_close_loop_end_frags (void)
7489 {
7490 frchainS *frchP;
7491
7492 /* When this routine is called, all of the subsections are still intact
7493 so we walk over subsections instead of sections. */
7494 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7495 {
7496 fragS *fragP;
7497
7498 fragS *current_target = NULL;
7499 offsetT current_offset = 0;
7500
7501 /* Walk over all of the fragments in a subsection. */
7502 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7503 {
7504 if (fragP->fr_type == rs_machine_dependent
7505 && ((fragP->fr_subtype == RELAX_IMMED)
7506 || ((fragP->fr_subtype == RELAX_SLOTS)
7507 && (fragP->tc_frag_data.slot_subtypes[0]
7508 == RELAX_IMMED))))
7509 {
7510 /* Read it. If the instruction is a loop, get the target. */
7511 TInsn t_insn;
7512 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7513 if (xtensa_opcode_is_loop (xtensa_default_isa,
7514 t_insn.opcode) == 1)
7515 {
7516 /* Get the current fragment target. */
7517 if (fragP->tc_frag_data.slot_symbols[0])
7518 {
7519 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7520 current_target = symbol_get_frag (sym);
7521 current_offset = fragP->fr_offset;
7522 }
7523 }
7524 }
7525
7526 if (current_target
7527 && fragP->fr_type == rs_machine_dependent
7528 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7529 {
7530 size_t min_bytes;
7531 size_t bytes_added = 0;
7532
7533 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7534 /* Max out at 12. */
7535 min_bytes = min_bytes_to_other_loop_end
7536 (fragP->fr_next, current_target, current_offset,
7537 REQUIRED_LOOP_DIVIDING_BYTES);
7538
7539 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7540 {
7541 if (fragP->tc_frag_data.is_no_transform)
7542 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7543 else
7544 {
7545 while (min_bytes + bytes_added
7546 < REQUIRED_LOOP_DIVIDING_BYTES)
7547 {
7548 int length = 3;
7549
7550 if (fragP->fr_var < length)
7551 as_fatal (_("fr_var %lu < length %d"),
7552 fragP->fr_var, length);
7553 else
7554 {
7555 assemble_nop (length,
7556 fragP->fr_literal + fragP->fr_fix);
7557 fragP->fr_fix += length;
7558 fragP->fr_var -= length;
7559 }
7560 bytes_added += length;
7561 }
7562 }
7563 }
7564 frag_wane (fragP);
7565 }
7566 assert (fragP->fr_type != rs_machine_dependent
7567 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7568 }
7569 }
7570 }
7571
7572
7573 static size_t unrelaxed_frag_min_size (fragS *);
7574
7575 static size_t
7576 min_bytes_to_other_loop_end (fragS *fragP,
7577 fragS *current_target,
7578 offsetT current_offset,
7579 size_t max_size)
7580 {
7581 size_t offset = 0;
7582 fragS *current_fragP;
7583
7584 for (current_fragP = fragP;
7585 current_fragP;
7586 current_fragP = current_fragP->fr_next)
7587 {
7588 if (current_fragP->tc_frag_data.is_loop_target
7589 && current_fragP != current_target)
7590 return offset + current_offset;
7591
7592 offset += unrelaxed_frag_min_size (current_fragP);
7593
7594 if (offset + current_offset >= max_size)
7595 return max_size;
7596 }
7597 return max_size;
7598 }
7599
7600
7601 static size_t
7602 unrelaxed_frag_min_size (fragS *fragP)
7603 {
7604 size_t size = fragP->fr_fix;
7605
7606 /* add fill size */
7607 if (fragP->fr_type == rs_fill)
7608 size += fragP->fr_offset;
7609
7610 return size;
7611 }
7612
7613
7614 static size_t
7615 unrelaxed_frag_max_size (fragS *fragP)
7616 {
7617 size_t size = fragP->fr_fix;
7618 switch (fragP->fr_type)
7619 {
7620 case 0:
7621 /* Empty frags created by the obstack allocation scheme
7622 end up with type 0. */
7623 break;
7624 case rs_fill:
7625 case rs_org:
7626 case rs_space:
7627 size += fragP->fr_offset;
7628 break;
7629 case rs_align:
7630 case rs_align_code:
7631 case rs_align_test:
7632 case rs_leb128:
7633 case rs_cfa:
7634 case rs_dwarf2dbg:
7635 /* No further adjustments needed. */
7636 break;
7637 case rs_machine_dependent:
7638 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7639 size += fragP->fr_var;
7640 break;
7641 default:
7642 /* We had darn well better know how big it is. */
7643 assert (0);
7644 break;
7645 }
7646
7647 return size;
7648 }
7649
7650
7651 /* Re-process all of the fragments looking to convert all
7652 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7653
7654 A)
7655 1) the instruction size count to the loop end label
7656 is too short (<= 2 instructions),
7657 2) loop has a jump or branch in it
7658
7659 or B)
7660 1) workaround_all_short_loops is TRUE
7661 2) The generating loop was a 'loopgtz' or 'loopnez'
7662 3) the instruction size count to the loop end label is too short
7663 (<= 2 instructions)
7664 then convert this frag (and maybe the next one) to generate a NOP.
7665 In any case close it off with a .fill 0. */
7666
7667 static size_t count_insns_to_loop_end (fragS *, bfd_boolean, size_t);
7668 static bfd_boolean branch_before_loop_end (fragS *);
7669
7670 static void
7671 xtensa_fix_short_loop_frags (void)
7672 {
7673 frchainS *frchP;
7674
7675 /* When this routine is called, all of the subsections are still intact
7676 so we walk over subsections instead of sections. */
7677 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7678 {
7679 fragS *fragP;
7680 fragS *current_target = NULL;
7681 offsetT current_offset = 0;
7682 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7683
7684 /* Walk over all of the fragments in a subsection. */
7685 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7686 {
7687 /* Check on the current loop. */
7688 if (fragP->fr_type == rs_machine_dependent
7689 && ((fragP->fr_subtype == RELAX_IMMED)
7690 || ((fragP->fr_subtype == RELAX_SLOTS)
7691 && (fragP->tc_frag_data.slot_subtypes[0]
7692 == RELAX_IMMED))))
7693 {
7694 TInsn t_insn;
7695
7696 /* Read it. If the instruction is a loop, get the target. */
7697 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7698 if (xtensa_opcode_is_loop (xtensa_default_isa,
7699 t_insn.opcode) == 1)
7700 {
7701 /* Get the current fragment target. */
7702 if (fragP->tc_frag_data.slot_symbols[0])
7703 {
7704 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7705 current_target = symbol_get_frag (sym);
7706 current_offset = fragP->fr_offset;
7707 current_opcode = t_insn.opcode;
7708 }
7709 }
7710 }
7711
7712 if (fragP->fr_type == rs_machine_dependent
7713 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7714 {
7715 size_t insn_count =
7716 count_insns_to_loop_end (fragP->fr_next, TRUE, 3);
7717 if (insn_count < 3
7718 && (branch_before_loop_end (fragP->fr_next)
7719 || (workaround_all_short_loops
7720 && current_opcode != XTENSA_UNDEFINED
7721 && current_opcode != xtensa_loop_opcode)))
7722 {
7723 if (fragP->tc_frag_data.is_no_transform)
7724 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7725 else
7726 relax_frag_add_nop (fragP);
7727 }
7728 frag_wane (fragP);
7729 }
7730 }
7731 }
7732 }
7733
7734
7735 static size_t unrelaxed_frag_min_insn_count (fragS *);
7736
7737 static size_t
7738 count_insns_to_loop_end (fragS *base_fragP,
7739 bfd_boolean count_relax_add,
7740 size_t max_count)
7741 {
7742 fragS *fragP = NULL;
7743 size_t insn_count = 0;
7744
7745 fragP = base_fragP;
7746
7747 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7748 {
7749 insn_count += unrelaxed_frag_min_insn_count (fragP);
7750 if (insn_count >= max_count)
7751 return max_count;
7752
7753 if (count_relax_add)
7754 {
7755 if (fragP->fr_type == rs_machine_dependent
7756 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7757 {
7758 /* In order to add the appropriate number of
7759 NOPs, we count an instruction for downstream
7760 occurrences. */
7761 insn_count++;
7762 if (insn_count >= max_count)
7763 return max_count;
7764 }
7765 }
7766 }
7767 return insn_count;
7768 }
7769
7770
7771 static size_t
7772 unrelaxed_frag_min_insn_count (fragS *fragP)
7773 {
7774 xtensa_isa isa = xtensa_default_isa;
7775 static xtensa_insnbuf insnbuf = NULL;
7776 size_t insn_count = 0;
7777 int offset = 0;
7778
7779 if (!fragP->tc_frag_data.is_insn)
7780 return insn_count;
7781
7782 if (!insnbuf)
7783 insnbuf = xtensa_insnbuf_alloc (isa);
7784
7785 /* Decode the fixed instructions. */
7786 while (offset < fragP->fr_fix)
7787 {
7788 xtensa_format fmt;
7789
7790 xtensa_insnbuf_from_chars (isa, insnbuf, fragP->fr_literal + offset, 0);
7791 fmt = xtensa_format_decode (isa, insnbuf);
7792
7793 if (fmt == XTENSA_UNDEFINED)
7794 {
7795 as_fatal (_("undecodable instruction in instruction frag"));
7796 return insn_count;
7797 }
7798 offset += xtensa_format_length (isa, fmt);
7799 insn_count++;
7800 }
7801
7802 return insn_count;
7803 }
7804
7805
7806 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7807
7808 static bfd_boolean
7809 branch_before_loop_end (fragS *base_fragP)
7810 {
7811 fragS *fragP;
7812
7813 for (fragP = base_fragP;
7814 fragP && !fragP->tc_frag_data.is_loop_target;
7815 fragP = fragP->fr_next)
7816 {
7817 if (unrelaxed_frag_has_b_j (fragP))
7818 return TRUE;
7819 }
7820 return FALSE;
7821 }
7822
7823
7824 static bfd_boolean
7825 unrelaxed_frag_has_b_j (fragS *fragP)
7826 {
7827 static xtensa_insnbuf insnbuf = NULL;
7828 xtensa_isa isa = xtensa_default_isa;
7829 int offset = 0;
7830
7831 if (!fragP->tc_frag_data.is_insn)
7832 return FALSE;
7833
7834 if (!insnbuf)
7835 insnbuf = xtensa_insnbuf_alloc (isa);
7836
7837 /* Decode the fixed instructions. */
7838 while (offset < fragP->fr_fix)
7839 {
7840 xtensa_format fmt;
7841 int slot;
7842
7843 xtensa_insnbuf_from_chars (isa, insnbuf, fragP->fr_literal + offset, 0);
7844 fmt = xtensa_format_decode (isa, insnbuf);
7845 if (fmt == XTENSA_UNDEFINED)
7846 return FALSE;
7847
7848 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7849 {
7850 xtensa_opcode opcode =
7851 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7852 if (xtensa_opcode_is_branch (isa, opcode) == 1
7853 || xtensa_opcode_is_jump (isa, opcode) == 1)
7854 return TRUE;
7855 }
7856 offset += xtensa_format_length (isa, fmt);
7857 }
7858 return FALSE;
7859 }
7860
7861
7862 /* Checks to be made after initial assembly but before relaxation. */
7863
7864 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7865 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7866
7867 static void
7868 xtensa_sanity_check (void)
7869 {
7870 char *file_name;
7871 int line;
7872
7873 frchainS *frchP;
7874
7875 as_where (&file_name, &line);
7876 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7877 {
7878 fragS *fragP;
7879
7880 /* Walk over all of the fragments in a subsection. */
7881 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7882 {
7883 /* Currently we only check for empty loops here. */
7884 if (fragP->fr_type == rs_machine_dependent
7885 && fragP->fr_subtype == RELAX_IMMED)
7886 {
7887 static xtensa_insnbuf insnbuf = NULL;
7888 TInsn t_insn;
7889
7890 if (fragP->fr_opcode != NULL)
7891 {
7892 if (!insnbuf)
7893 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7894 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7895 tinsn_immed_from_frag (&t_insn, fragP, 0);
7896
7897 if (xtensa_opcode_is_loop (xtensa_default_isa,
7898 t_insn.opcode) == 1)
7899 {
7900 if (is_empty_loop (&t_insn, fragP))
7901 {
7902 new_logical_line (fragP->fr_file, fragP->fr_line);
7903 as_bad (_("invalid empty loop"));
7904 }
7905 if (!is_local_forward_loop (&t_insn, fragP))
7906 {
7907 new_logical_line (fragP->fr_file, fragP->fr_line);
7908 as_bad (_("loop target does not follow "
7909 "loop instruction in section"));
7910 }
7911 }
7912 }
7913 }
7914 }
7915 }
7916 new_logical_line (file_name, line);
7917 }
7918
7919
7920 #define LOOP_IMMED_OPN 1
7921
7922 /* Return TRUE if the loop target is the next non-zero fragment. */
7923
7924 static bfd_boolean
7925 is_empty_loop (const TInsn *insn, fragS *fragP)
7926 {
7927 const expressionS *expr;
7928 symbolS *symbolP;
7929 fragS *next_fragP;
7930
7931 if (insn->insn_type != ITYPE_INSN)
7932 return FALSE;
7933
7934 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
7935 return FALSE;
7936
7937 if (insn->ntok <= LOOP_IMMED_OPN)
7938 return FALSE;
7939
7940 expr = &insn->tok[LOOP_IMMED_OPN];
7941
7942 if (expr->X_op != O_symbol)
7943 return FALSE;
7944
7945 symbolP = expr->X_add_symbol;
7946 if (!symbolP)
7947 return FALSE;
7948
7949 if (symbol_get_frag (symbolP) == NULL)
7950 return FALSE;
7951
7952 if (S_GET_VALUE (symbolP) != 0)
7953 return FALSE;
7954
7955 /* Walk through the zero-size fragments from this one. If we find
7956 the target fragment, then this is a zero-size loop. */
7957
7958 for (next_fragP = fragP->fr_next;
7959 next_fragP != NULL;
7960 next_fragP = next_fragP->fr_next)
7961 {
7962 if (next_fragP == symbol_get_frag (symbolP))
7963 return TRUE;
7964 if (next_fragP->fr_fix != 0)
7965 return FALSE;
7966 }
7967 return FALSE;
7968 }
7969
7970
7971 static bfd_boolean
7972 is_local_forward_loop (const TInsn *insn, fragS *fragP)
7973 {
7974 const expressionS *expr;
7975 symbolS *symbolP;
7976 fragS *next_fragP;
7977
7978 if (insn->insn_type != ITYPE_INSN)
7979 return FALSE;
7980
7981 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
7982 return FALSE;
7983
7984 if (insn->ntok <= LOOP_IMMED_OPN)
7985 return FALSE;
7986
7987 expr = &insn->tok[LOOP_IMMED_OPN];
7988
7989 if (expr->X_op != O_symbol)
7990 return FALSE;
7991
7992 symbolP = expr->X_add_symbol;
7993 if (!symbolP)
7994 return FALSE;
7995
7996 if (symbol_get_frag (symbolP) == NULL)
7997 return FALSE;
7998
7999 /* Walk through fragments until we find the target.
8000 If we do not find the target, then this is an invalid loop. */
8001
8002 for (next_fragP = fragP->fr_next;
8003 next_fragP != NULL;
8004 next_fragP = next_fragP->fr_next)
8005 {
8006 if (next_fragP == symbol_get_frag (symbolP))
8007 return TRUE;
8008 }
8009
8010 return FALSE;
8011 }
8012
8013 \f
8014 /* Alignment Functions. */
8015
8016 static size_t
8017 get_text_align_power (int target_size)
8018 {
8019 size_t i = 0;
8020 for (i = 0; i < sizeof (size_t); i++)
8021 {
8022 if (target_size <= (1 << i))
8023 return i;
8024 }
8025 assert (0);
8026 return 0;
8027 }
8028
8029
8030 static addressT
8031 get_text_align_max_fill_size (int align_pow,
8032 bfd_boolean use_nops,
8033 bfd_boolean use_no_density)
8034 {
8035 if (!use_nops)
8036 return (1 << align_pow);
8037 if (use_no_density)
8038 return 3 * (1 << align_pow);
8039
8040 return 1 + (1 << align_pow);
8041 }
8042
8043
8044 /* get_text_align_fill_size ()
8045
8046 Desired alignments:
8047 give the address
8048 target_size = size of next instruction
8049 align_pow = get_text_align_power (target_size).
8050 use_nops = 0
8051 use_no_density = 0;
8052 Loop alignments:
8053 address = current address + loop instruction size;
8054 target_size = 3 (for 2 or 3 byte target)
8055 = 4 (for 4 byte target)
8056 = 8 (for 8 byte target)
8057 align_pow = get_text_align_power (target_size);
8058 use_nops = 1
8059 use_no_density = set appropriately
8060 Text alignments:
8061 address = current address + loop instruction size;
8062 target_size = 0
8063 align_pow = get_text_align_power (target_size);
8064 use_nops = 0
8065 use_no_density = 0. */
8066
8067 static addressT
8068 get_text_align_fill_size (addressT address,
8069 int align_pow,
8070 int target_size,
8071 bfd_boolean use_nops,
8072 bfd_boolean use_no_density)
8073 {
8074 /* Input arguments:
8075
8076 align_pow: log2 (required alignment).
8077
8078 target_size: alignment must allow the new_address and
8079 new_address+target_size-1.
8080
8081 use_nops: if TRUE, then we can only use 2- or 3-byte nops.
8082
8083 use_no_density: if use_nops and use_no_density, we can only use
8084 3-byte nops.
8085
8086 Usually the align_pow is the power of 2 that is greater than
8087 or equal to the target_size. This handles the 2-byte, 3-byte
8088 and 8-byte instructions.
8089
8090 Two cases:
8091
8092 (1) aligning an instruction properly, but without using NOPs.
8093 E.G.: a 3-byte instruction can go on any address where address mod 4
8094 is zero or one. The aligner uses this case to find the optimal
8095 number of fill bytes for relax_frag_for_align.
8096
8097 (2) aligning an instruction properly, but where we might need to use
8098 extra NOPs. E.G.: when the aligner couldn't find enough widenings
8099 or similar to get the optimal location. */
8100
8101 size_t alignment = (1 << align_pow);
8102
8103 assert (target_size != 0);
8104
8105 if (!use_nops)
8106 {
8107 unsigned fill_bytes;
8108 for (fill_bytes = 0; fill_bytes < alignment; fill_bytes++)
8109 {
8110 addressT end_address = address + target_size - 1 + fill_bytes;
8111 addressT start_address = address + fill_bytes;
8112 if ((end_address >> align_pow) == (start_address >> align_pow))
8113 return fill_bytes;
8114 }
8115 assert (0);
8116 }
8117
8118 /* This is the slightly harder case. */
8119 assert ((int) alignment >= target_size);
8120 assert (target_size > 0);
8121 if (!use_no_density)
8122 {
8123 size_t i;
8124 for (i = 0; i < alignment * 2; i++)
8125 {
8126 if (i == 1)
8127 continue;
8128 if ((address + i) >> align_pow
8129 == (address + i + target_size - 1) >> align_pow)
8130 return i;
8131 }
8132 }
8133 else
8134 {
8135 size_t i;
8136
8137 /* Can only fill multiples of 3. */
8138 for (i = 0; i <= alignment * 3; i += 3)
8139 {
8140 if ((address + i) >> align_pow
8141 == (address + i + target_size - 1) >> align_pow)
8142 return i;
8143 }
8144 }
8145 assert (0);
8146 return 0;
8147 }
8148
8149
8150 /* This will assert if it is not possible. */
8151
8152 static size_t
8153 get_text_align_nop_count (size_t fill_size, bfd_boolean use_no_density)
8154 {
8155 size_t count = 0;
8156 if (use_no_density)
8157 {
8158 assert (fill_size % 3 == 0);
8159 return (fill_size / 3);
8160 }
8161
8162 assert (fill_size != 1); /* Bad argument. */
8163
8164 while (fill_size > 1)
8165 {
8166 size_t insn_size = 3;
8167 if (fill_size == 2 || fill_size == 4)
8168 insn_size = 2;
8169 fill_size -= insn_size;
8170 count++;
8171 }
8172 assert (fill_size != 1); /* Bad algorithm. */
8173 return count;
8174 }
8175
8176
8177 static size_t
8178 get_text_align_nth_nop_size (size_t fill_size,
8179 size_t n,
8180 bfd_boolean use_no_density)
8181 {
8182 size_t count = 0;
8183
8184 assert (get_text_align_nop_count (fill_size, use_no_density) > n);
8185
8186 if (use_no_density)
8187 return 3;
8188
8189 while (fill_size > 1)
8190 {
8191 size_t insn_size = 3;
8192 if (fill_size == 2 || fill_size == 4)
8193 insn_size = 2;
8194 fill_size -= insn_size;
8195 count++;
8196 if (n + 1 == count)
8197 return insn_size;
8198 }
8199 assert (0);
8200 return 0;
8201 }
8202
8203
8204 /* For the given fragment, find the appropriate address
8205 for it to begin at if we are using NOPs to align it. */
8206
8207 static addressT
8208 get_noop_aligned_address (fragS *fragP, addressT address)
8209 {
8210 /* The rule is: get next fragment's FIRST instruction. Find
8211 the smallest number of bytes that need to be added to
8212 ensure that the next fragment's FIRST instruction will fit
8213 in a single word.
8214
8215 E.G., 2 bytes : 0, 1, 2 mod 4
8216 3 bytes: 0, 1 mod 4
8217
8218 If the FIRST instruction MIGHT be relaxed,
8219 assume that it will become a 3-byte instruction.
8220
8221 Note again here that LOOP instructions are not bundleable,
8222 and this relaxation only applies to LOOP opcodes. */
8223
8224 size_t fill_size = 0;
8225 int first_insn_size;
8226 int loop_insn_size;
8227 addressT pre_opcode_bytes;
8228 size_t alignment;
8229 fragS *first_insn;
8230 xtensa_opcode opcode;
8231 bfd_boolean is_loop;
8232
8233 assert (fragP->fr_type == rs_machine_dependent);
8234 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8235
8236 /* Find the loop frag. */
8237 first_insn = next_non_empty_frag (fragP);
8238 /* Now find the first insn frag. */
8239 first_insn = next_non_empty_frag (first_insn);
8240
8241 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8242 assert (is_loop);
8243 loop_insn_size = xg_get_single_size (opcode);
8244
8245 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8246 pre_opcode_bytes += loop_insn_size;
8247
8248 /* For loops, the alignment depends on the size of the
8249 instruction following the loop, not the LOOP instruction. */
8250
8251 if (first_insn == NULL)
8252 return address;
8253
8254 assert (first_insn->tc_frag_data.is_first_loop_insn);
8255
8256 first_insn_size = frag_format_size (first_insn);
8257
8258 if (first_insn_size == 2 || first_insn_size == XTENSA_UNDEFINED)
8259 first_insn_size = 3; /* ISA specifies this */
8260
8261 /* If it was 8, then we'll need a larger alignment for the section. */
8262 alignment = get_text_align_power (first_insn_size);
8263
8264 /* Is now_seg valid? */
8265 record_alignment (now_seg, alignment);
8266
8267 fill_size = get_text_align_fill_size
8268 (address + pre_opcode_bytes,
8269 get_text_align_power (first_insn_size),
8270 first_insn_size, TRUE, fragP->tc_frag_data.is_no_density);
8271
8272 return address + fill_size;
8273 }
8274
8275
8276 /* 3 mechanisms for relaxing an alignment:
8277
8278 Align to a power of 2.
8279 Align so the next fragment's instruction does not cross a word boundary.
8280 Align the current instruction so that if the next instruction
8281 were 3 bytes, it would not cross a word boundary.
8282
8283 We can align with:
8284
8285 zeros - This is easy; always insert zeros.
8286 nops - 3-byte and 2-byte instructions
8287 2 - 2-byte nop
8288 3 - 3-byte nop
8289 4 - 2 2-byte nops
8290 >=5 : 3-byte instruction + fn (n-3)
8291 widening - widen previous instructions. */
8292
8293 static addressT
8294 get_aligned_diff (fragS *fragP, addressT address, addressT *max_diff)
8295 {
8296 addressT target_address, loop_insn_offset;
8297 int target_size;
8298 xtensa_opcode loop_opcode;
8299 bfd_boolean is_loop;
8300 int text_align_power;
8301 addressT opt_diff;
8302
8303 assert (fragP->fr_type == rs_machine_dependent);
8304 switch (fragP->fr_subtype)
8305 {
8306 case RELAX_DESIRE_ALIGN:
8307 target_size = next_frag_format_size (fragP);
8308 if (target_size == XTENSA_UNDEFINED)
8309 target_size = 3;
8310 text_align_power = get_text_align_power (xtensa_fetch_width);
8311 opt_diff = get_text_align_fill_size (address, text_align_power,
8312 target_size, FALSE, FALSE);
8313
8314 *max_diff = opt_diff + xtensa_fetch_width
8315 - (target_size + ((address + opt_diff) % xtensa_fetch_width));
8316 assert (*max_diff >= opt_diff);
8317 return opt_diff;
8318
8319 case RELAX_ALIGN_NEXT_OPCODE:
8320 target_size = next_frag_format_size (fragP);
8321 loop_insn_offset = 0;
8322 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8323 assert (is_loop);
8324
8325 /* If the loop has been expanded then the LOOP instruction
8326 could be at an offset from this fragment. */
8327 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8328 != RELAX_IMMED)
8329 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8330
8331 if (target_size == 2)
8332 target_size = 3; /* ISA specifies this */
8333
8334 /* In an ideal world, which is what we are shooting for here,
8335 we wouldn't need to use any NOPs immediately prior to the
8336 LOOP instruction. If this approach fails, relax_frag_loop_align
8337 will call get_noop_aligned_address. */
8338 target_address =
8339 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8340 text_align_power = get_text_align_power (target_size),
8341 opt_diff = get_text_align_fill_size (target_address, text_align_power,
8342 target_size, FALSE, FALSE);
8343
8344 *max_diff = xtensa_fetch_width
8345 - ((target_address + opt_diff) % xtensa_fetch_width)
8346 - target_size + opt_diff;
8347 assert (*max_diff >= opt_diff);
8348 return opt_diff;
8349
8350 default:
8351 break;
8352 }
8353 assert (0);
8354 return 0;
8355 }
8356
8357 \f
8358 /* md_relax_frag Hook and Helper Functions. */
8359
8360 static long relax_frag_loop_align (fragS *, long);
8361 static long relax_frag_for_align (fragS *, long);
8362 static long relax_frag_immed
8363 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8364
8365
8366 /* Return the number of bytes added to this fragment, given that the
8367 input has been stretched already by "stretch". */
8368
8369 long
8370 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8371 {
8372 xtensa_isa isa = xtensa_default_isa;
8373 int unreported = fragP->tc_frag_data.unreported_expansion;
8374 long new_stretch = 0;
8375 char *file_name;
8376 int line, lit_size;
8377 static xtensa_insnbuf vbuf = NULL;
8378 int slot, num_slots;
8379 xtensa_format fmt;
8380
8381 as_where (&file_name, &line);
8382 new_logical_line (fragP->fr_file, fragP->fr_line);
8383
8384 fragP->tc_frag_data.unreported_expansion = 0;
8385
8386 switch (fragP->fr_subtype)
8387 {
8388 case RELAX_ALIGN_NEXT_OPCODE:
8389 /* Always convert. */
8390 if (fragP->tc_frag_data.relax_seen)
8391 new_stretch = relax_frag_loop_align (fragP, stretch);
8392 break;
8393
8394 case RELAX_LOOP_END:
8395 /* Do nothing. */
8396 break;
8397
8398 case RELAX_LOOP_END_ADD_NOP:
8399 /* Add a NOP and switch to .fill 0. */
8400 new_stretch = relax_frag_add_nop (fragP);
8401 frag_wane (fragP);
8402 break;
8403
8404 case RELAX_DESIRE_ALIGN:
8405 /* Do nothing. The narrowing before this frag will either align
8406 it or not. */
8407 break;
8408
8409 case RELAX_LITERAL:
8410 case RELAX_LITERAL_FINAL:
8411 return 0;
8412
8413 case RELAX_LITERAL_NR:
8414 lit_size = 4;
8415 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8416 assert (unreported == lit_size);
8417 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8418 fragP->fr_var -= lit_size;
8419 fragP->fr_fix += lit_size;
8420 new_stretch = 4;
8421 break;
8422
8423 case RELAX_SLOTS:
8424 if (vbuf == NULL)
8425 vbuf = xtensa_insnbuf_alloc (isa);
8426
8427 xtensa_insnbuf_from_chars (isa, vbuf, fragP->fr_opcode, 0);
8428 fmt = xtensa_format_decode (isa, vbuf);
8429 num_slots = xtensa_format_num_slots (isa, fmt);
8430
8431 for (slot = 0; slot < num_slots; slot++)
8432 {
8433 switch (fragP->tc_frag_data.slot_subtypes[slot])
8434 {
8435 case RELAX_NARROW:
8436 if (fragP->tc_frag_data.relax_seen)
8437 new_stretch += relax_frag_for_align (fragP, stretch);
8438 break;
8439
8440 case RELAX_IMMED:
8441 case RELAX_IMMED_STEP1:
8442 case RELAX_IMMED_STEP2:
8443 /* Place the immediate. */
8444 new_stretch += relax_frag_immed
8445 (now_seg, fragP, stretch,
8446 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8447 fmt, slot, stretched_p, FALSE);
8448 break;
8449
8450 default:
8451 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8452 break;
8453 }
8454 }
8455 break;
8456
8457 case RELAX_LITERAL_POOL_BEGIN:
8458 case RELAX_LITERAL_POOL_END:
8459 case RELAX_MAYBE_UNREACHABLE:
8460 case RELAX_MAYBE_DESIRE_ALIGN:
8461 /* No relaxation required. */
8462 break;
8463
8464 case RELAX_FILL_NOP:
8465 case RELAX_UNREACHABLE:
8466 if (fragP->tc_frag_data.relax_seen)
8467 new_stretch += relax_frag_for_align (fragP, stretch);
8468 break;
8469
8470 default:
8471 as_bad (_("bad relaxation state"));
8472 }
8473
8474 /* Tell gas we need another relaxation pass. */
8475 if (! fragP->tc_frag_data.relax_seen)
8476 {
8477 fragP->tc_frag_data.relax_seen = TRUE;
8478 *stretched_p = 1;
8479 }
8480
8481 new_logical_line (file_name, line);
8482 return new_stretch;
8483 }
8484
8485
8486 static long
8487 relax_frag_loop_align (fragS *fragP, long stretch)
8488 {
8489 addressT old_address, old_next_address, old_size;
8490 addressT new_address, new_next_address, new_size;
8491 addressT growth;
8492
8493 /* All the frags with relax_frag_for_alignment prior to this one in the
8494 section have been done, hopefully eliminating the need for a NOP here.
8495 But, this will put it in if necessary. */
8496
8497 /* Calculate the old address of this fragment and the next fragment. */
8498 old_address = fragP->fr_address - stretch;
8499 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8500 fragP->tc_frag_data.text_expansion[0]);
8501 old_size = old_next_address - old_address;
8502
8503 /* Calculate the new address of this fragment and the next fragment. */
8504 new_address = fragP->fr_address;
8505 new_next_address =
8506 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8507 new_size = new_next_address - new_address;
8508
8509 growth = new_size - old_size;
8510
8511 /* Fix up the text_expansion field and return the new growth. */
8512 fragP->tc_frag_data.text_expansion[0] += growth;
8513 return growth;
8514 }
8515
8516
8517 /* Add a NOP instruction. */
8518
8519 static long
8520 relax_frag_add_nop (fragS *fragP)
8521 {
8522 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8523 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8524 assemble_nop (length, nop_buf);
8525 fragP->tc_frag_data.is_insn = TRUE;
8526
8527 if (fragP->fr_var < length)
8528 {
8529 as_fatal (_("fr_var (%ld) < length (%d)"), fragP->fr_var, length);
8530 return 0;
8531 }
8532
8533 fragP->fr_fix += length;
8534 fragP->fr_var -= length;
8535 return length;
8536 }
8537
8538
8539 static long future_alignment_required (fragS *, long);
8540
8541 static long
8542 relax_frag_for_align (fragS *fragP, long stretch)
8543 {
8544 /* Overview of the relaxation procedure for alignment:
8545 We can widen with NOPs or by widening instructions or by filling
8546 bytes after jump instructions. Find the opportune places and widen
8547 them if necessary. */
8548
8549 long stretch_me;
8550 long diff;
8551
8552 assert (fragP->fr_subtype == RELAX_FILL_NOP
8553 || fragP->fr_subtype == RELAX_UNREACHABLE
8554 || (fragP->fr_subtype == RELAX_SLOTS
8555 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8556
8557 stretch_me = future_alignment_required (fragP, stretch);
8558 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8559 if (diff == 0)
8560 return 0;
8561
8562 if (diff < 0)
8563 {
8564 /* We expanded on a previous pass. Can we shrink now? */
8565 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8566 if (shrink <= stretch && stretch > 0)
8567 {
8568 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8569 return -shrink;
8570 }
8571 return 0;
8572 }
8573
8574 /* Below here, diff > 0. */
8575 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8576
8577 return diff;
8578 }
8579
8580
8581 /* Return the address of the next frag that should be aligned.
8582
8583 By "address" we mean the address it _would_ be at if there
8584 is no action taken to align it between here and the target frag.
8585 In other words, if no narrows and no fill nops are used between
8586 here and the frag to align, _even_if_ some of the frags we use
8587 to align targets have already expanded on a previous relaxation
8588 pass.
8589
8590 Also, count each frag that may be used to help align the target.
8591
8592 Return 0 if there are no frags left in the chain that need to be
8593 aligned. */
8594
8595 static addressT
8596 find_address_of_next_align_frag (fragS **fragPP,
8597 int *wide_nops,
8598 int *narrow_nops,
8599 int *widens,
8600 bfd_boolean *paddable)
8601 {
8602 fragS *fragP = *fragPP;
8603 addressT address = fragP->fr_address;
8604
8605 /* Do not reset the counts to 0. */
8606
8607 while (fragP)
8608 {
8609 /* Limit this to a small search. */
8610 if (*widens > 8)
8611 {
8612 *fragPP = fragP;
8613 return 0;
8614 }
8615 address += fragP->fr_fix;
8616
8617 if (fragP->fr_type == rs_fill)
8618 address += fragP->fr_offset * fragP->fr_var;
8619 else if (fragP->fr_type == rs_machine_dependent)
8620 {
8621 switch (fragP->fr_subtype)
8622 {
8623 case RELAX_UNREACHABLE:
8624 *paddable = TRUE;
8625 break;
8626
8627 case RELAX_FILL_NOP:
8628 (*wide_nops)++;
8629 if (!fragP->tc_frag_data.is_no_density)
8630 (*narrow_nops)++;
8631 break;
8632
8633 case RELAX_SLOTS:
8634 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8635 {
8636 (*widens)++;
8637 break;
8638 }
8639 address += total_frag_text_expansion (fragP);;
8640 break;
8641
8642 case RELAX_IMMED:
8643 address += fragP->tc_frag_data.text_expansion[0];
8644 break;
8645
8646 case RELAX_ALIGN_NEXT_OPCODE:
8647 case RELAX_DESIRE_ALIGN:
8648 *fragPP = fragP;
8649 return address;
8650
8651 case RELAX_MAYBE_UNREACHABLE:
8652 case RELAX_MAYBE_DESIRE_ALIGN:
8653 /* Do nothing. */
8654 break;
8655
8656 default:
8657 /* Just punt if we don't know the type. */
8658 *fragPP = fragP;
8659 return 0;
8660 }
8661 }
8662 else
8663 {
8664 /* Just punt if we don't know the type. */
8665 *fragPP = fragP;
8666 return 0;
8667 }
8668 fragP = fragP->fr_next;
8669 }
8670
8671 *fragPP = fragP;
8672 return 0;
8673 }
8674
8675
8676 static long bytes_to_stretch (fragS *, int, int, int, int);
8677
8678 /* Undefine LOOKAHEAD_ALIGNER to get the older behavior.
8679 I'll leave this in until I am more confident this works. */
8680
8681 #define LOOKAHEAD_ALIGNER 1
8682
8683 static long
8684 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8685 {
8686 fragS *this_frag = fragP;
8687 long address;
8688 int num_widens = 0;
8689 int wide_nops = 0;
8690 int narrow_nops = 0;
8691 bfd_boolean paddable = FALSE;
8692 offsetT local_opt_diff;
8693 offsetT opt_diff;
8694 offsetT max_diff;
8695 int stretch_amount = 0;
8696 int local_stretch_amount;
8697 int global_stretch_amount;
8698
8699 address = find_address_of_next_align_frag
8700 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8701
8702 if (address)
8703 {
8704 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8705 opt_diff = local_opt_diff;
8706 assert (opt_diff >= 0);
8707 assert (max_diff >= opt_diff);
8708 if (max_diff == 0)
8709 return 0;
8710 #ifdef LOOKAHEAD_ALIGNER
8711 if (fragP)
8712 fragP = fragP->fr_next;
8713
8714 while (fragP && opt_diff < max_diff && address)
8715 {
8716 /* We only use these to determine if we can exit early
8717 because there will be plenty of ways to align future
8718 align frags. */
8719 unsigned int glob_widens = 0;
8720 int dnn = 0;
8721 int dw = 0;
8722 bfd_boolean glob_pad = 0;
8723 address = find_address_of_next_align_frag
8724 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8725 /* If there is a padable portion, then skip. */
8726 if (glob_pad || (glob_widens >= xtensa_fetch_width))
8727 break;
8728
8729 if (address)
8730 {
8731 offsetT next_m_diff;
8732 offsetT next_o_diff;
8733
8734 /* Downrange frags haven't had stretch added to them yet. */
8735 address += stretch;
8736
8737 /* The address also includes any text expansion from this
8738 frag in a previous pass, but we don't want that. */
8739 address -= this_frag->tc_frag_data.text_expansion[0];
8740
8741 /* Assume we are going to move at least opt_diff. In
8742 reality, we might not be able to, but assuming that
8743 we will helps catch cases where moving opt_diff pushes
8744 the next target from aligned to unaligned. */
8745 address += opt_diff;
8746
8747 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8748
8749 /* Now cleanup for the adjustments to address. */
8750 next_o_diff += opt_diff;
8751 next_m_diff += opt_diff;
8752 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8753 opt_diff = next_o_diff;
8754 if (next_m_diff < max_diff)
8755 max_diff = next_m_diff;
8756 fragP = fragP->fr_next;
8757 }
8758 }
8759 #endif /* LOOKAHEAD_ALIGNER */
8760 /* If there are enough wideners in between, do it. */
8761 if (paddable)
8762 {
8763 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8764 {
8765 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8766 return opt_diff;
8767 }
8768 return 0;
8769 }
8770 local_stretch_amount
8771 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8772 num_widens, local_opt_diff);
8773 #ifdef LOOKAHEAD_ALIGNER
8774 global_stretch_amount
8775 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8776 num_widens, opt_diff);
8777 /* If the condition below is true, then the frag couldn't
8778 stretch the correct amount for the global case, so we just
8779 optimize locally. We'll rely on the subsequent frags to get
8780 the correct alignment in the global case. */
8781 if (global_stretch_amount < local_stretch_amount)
8782 stretch_amount = local_stretch_amount;
8783 else
8784 stretch_amount = global_stretch_amount;
8785 #else /* ! LOOKAHEAD_ALIGNER */
8786 stretch_amount = local_stretch_amount;
8787 #endif /* ! LOOKAHEAD_ALIGNER */
8788 if (this_frag->fr_subtype == RELAX_SLOTS
8789 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8790 assert (stretch_amount <= 1);
8791 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8792 {
8793 if (this_frag->tc_frag_data.is_no_density)
8794 assert (stretch_amount == 3 || stretch_amount == 0);
8795 else
8796 assert (stretch_amount <= 3);
8797 }
8798 }
8799 return stretch_amount;
8800 }
8801
8802
8803 /* The idea: widen everything you can to get a target or loop aligned,
8804 then start using NOPs.
8805
8806 When we must have a NOP, here is a table of how we decide
8807 (so you don't have to fight through the control flow below):
8808
8809 wide_nops = the number of wide NOPs available for aligning
8810 narrow_nops = the number of narrow NOPs available for aligning
8811 (a subset of wide_nops)
8812 widens = the number of narrow instructions that should be widened
8813
8814 Desired wide narrow
8815 Diff nop nop widens
8816 1 0 0 1
8817 2 0 1 0
8818 3a 1 0 0
8819 b 0 1 1 (case 3a makes this case unnecessary)
8820 4a 1 0 1
8821 b 0 2 0
8822 c 0 1 2 (case 4a makes this case unnecessary)
8823 5a 1 0 2
8824 b 1 1 0
8825 c 0 2 1 (case 5b makes this case unnecessary)
8826 6a 2 0 0
8827 b 1 0 3
8828 c 0 1 4 (case 6b makes this case unneccesary)
8829 d 1 1 1 (case 6a makes this case unnecessary)
8830 e 0 2 2 (case 6a makes this case unnecessary)
8831 f 0 3 0 (case 6a makes this case unnecessary)
8832 7a 1 0 4
8833 b 2 0 1
8834 c 1 1 2 (case 7b makes this case unnecessary)
8835 d 0 1 5 (case 7a makes this case unnecessary)
8836 e 0 2 3 (case 7b makes this case unnecessary)
8837 f 0 3 1 (case 7b makes this case unnecessary)
8838 g 1 2 1 (case 7b makes this case unnecessary)
8839 */
8840
8841 static long
8842 bytes_to_stretch (fragS *this_frag,
8843 int wide_nops,
8844 int narrow_nops,
8845 int num_widens,
8846 int desired_diff)
8847 {
8848 int bytes_short = desired_diff - num_widens;
8849
8850 assert (desired_diff >= 0 && desired_diff < 8);
8851 if (desired_diff == 0)
8852 return 0;
8853
8854 assert (wide_nops > 0 || num_widens > 0);
8855
8856 /* Always prefer widening to NOP-filling. */
8857 if (bytes_short < 0)
8858 {
8859 /* There are enough RELAX_NARROW frags after this one
8860 to align the target without widening this frag in any way. */
8861 return 0;
8862 }
8863
8864 if (bytes_short == 0)
8865 {
8866 /* Widen every narrow between here and the align target
8867 and the align target will be properly aligned. */
8868 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8869 return 0;
8870 else
8871 return 1;
8872 }
8873
8874 /* From here we will need at least one NOP to get an alignment.
8875 However, we may not be able to align at all, in which case,
8876 don't widen. */
8877 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8878 {
8879 switch (desired_diff)
8880 {
8881 case 1:
8882 return 0;
8883 case 2:
8884 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8885 return 2; /* case 2 */
8886 return 0;
8887 case 3:
8888 if (wide_nops > 1)
8889 return 0;
8890 else
8891 return 3; /* case 3a */
8892 case 4:
8893 if (num_widens >= 1 && wide_nops == 1)
8894 return 3; /* case 4a */
8895 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8896 return 2; /* case 4b */
8897 return 0;
8898 case 5:
8899 if (num_widens >= 2 && wide_nops == 1)
8900 return 3; /* case 5a */
8901 /* We will need two nops. Are there enough nops
8902 between here and the align target? */
8903 if (wide_nops < 2 || narrow_nops == 0)
8904 return 0;
8905 /* Are there other nops closer that can serve instead? */
8906 if (wide_nops > 2 && narrow_nops > 1)
8907 return 0;
8908 /* Take the density one first, because there might not be
8909 another density one available. */
8910 if (!this_frag->tc_frag_data.is_no_density)
8911 return 2; /* case 5b narrow */
8912 else
8913 return 3; /* case 5b wide */
8914 return 0;
8915 case 6:
8916 if (wide_nops == 2)
8917 return 3; /* case 6a */
8918 else if (num_widens >= 3 && wide_nops == 1)
8919 return 3; /* case 6b */
8920 return 0;
8921 case 7:
8922 if (wide_nops == 1 && num_widens >= 4)
8923 return 3; /* case 7a */
8924 else if (wide_nops == 2 && num_widens >= 1)
8925 return 3; /* case 7b */
8926 return 0;
8927 default:
8928 assert (0);
8929 }
8930 }
8931 else
8932 {
8933 /* We will need a NOP no matter what, but should we widen
8934 this instruction to help?
8935
8936 This is a RELAX_FRAG_NARROW frag. */
8937 switch (desired_diff)
8938 {
8939 case 1:
8940 assert (0);
8941 return 0;
8942 case 2:
8943 case 3:
8944 return 0;
8945 case 4:
8946 if (wide_nops >= 1 && num_widens == 1)
8947 return 1; /* case 4a */
8948 return 0;
8949 case 5:
8950 if (wide_nops >= 1 && num_widens == 2)
8951 return 1; /* case 5a */
8952 return 0;
8953 case 6:
8954 if (wide_nops >= 2)
8955 return 0; /* case 6a */
8956 else if (wide_nops >= 1 && num_widens == 3)
8957 return 1; /* case 6b */
8958 return 0;
8959 case 7:
8960 if (wide_nops >= 1 && num_widens == 4)
8961 return 1; /* case 7a */
8962 else if (wide_nops >= 2 && num_widens == 1)
8963 return 1; /* case 7b */
8964 return 0;
8965 default:
8966 assert (0);
8967 return 0;
8968 }
8969 }
8970 assert (0);
8971 return 0;
8972 }
8973
8974
8975 static long
8976 relax_frag_immed (segT segP,
8977 fragS *fragP,
8978 long stretch,
8979 int min_steps,
8980 xtensa_format fmt,
8981 int slot,
8982 int *stretched_p,
8983 bfd_boolean estimate_only)
8984 {
8985 TInsn tinsn;
8986 vliw_insn orig_vinsn;
8987 int old_size;
8988 bfd_boolean negatable_branch = FALSE;
8989 bfd_boolean branch_jmp_to_next = FALSE;
8990 bfd_boolean wide_insn = FALSE;
8991 xtensa_isa isa = xtensa_default_isa;
8992 IStack istack;
8993 offsetT frag_offset;
8994 int num_steps;
8995 fragS *lit_fragP;
8996 int num_text_bytes, num_literal_bytes;
8997 int literal_diff, total_text_diff, this_text_diff, first;
8998
8999 assert (fragP->fr_opcode != NULL);
9000
9001 xg_init_vinsn (&orig_vinsn);
9002 vinsn_from_chars (&orig_vinsn, fragP->fr_opcode);
9003 if (xtensa_format_num_slots (isa, fmt) > 1)
9004 wide_insn = TRUE;
9005
9006 tinsn = orig_vinsn.slots[slot];
9007 tinsn_immed_from_frag (&tinsn, fragP, slot);
9008
9009 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
9010 return 0;
9011
9012 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9013 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
9014
9015 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
9016
9017 old_size = xtensa_format_length (isa, fmt);
9018
9019 /* Special case: replace a branch to the next instruction with a NOP.
9020 This is required to work around a hardware bug in T1040.0 and also
9021 serves as an optimization. */
9022
9023 if (branch_jmp_to_next
9024 && ((old_size == 2) || (old_size == 3))
9025 && !next_frag_is_loop_target (fragP))
9026 return 0;
9027
9028 /* Here is the fun stuff: Get the immediate field from this
9029 instruction. If it fits, we are done. If not, find the next
9030 instruction sequence that fits. */
9031
9032 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9033 istack_init (&istack);
9034 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
9035 min_steps, stretch);
9036 if (num_steps < min_steps)
9037 {
9038 as_fatal (_("internal error: relaxation failed"));
9039 return 0;
9040 }
9041
9042 if (num_steps > RELAX_IMMED_MAXSTEPS)
9043 {
9044 as_fatal (_("internal error: relaxation requires too many steps"));
9045 return 0;
9046 }
9047
9048 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
9049
9050 /* Figure out the number of bytes needed. */
9051 lit_fragP = 0;
9052 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9053 literal_diff =
9054 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9055 first = 0;
9056 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
9057 first++;
9058 num_text_bytes = get_num_stack_text_bytes (&istack);
9059 if (wide_insn)
9060 {
9061 num_text_bytes += old_size;
9062 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
9063 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
9064 }
9065 total_text_diff = num_text_bytes - old_size;
9066 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
9067
9068 /* It MUST get larger. If not, we could get an infinite loop. */
9069 assert (num_text_bytes >= 0);
9070 assert (literal_diff >= 0);
9071 assert (total_text_diff >= 0);
9072
9073 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
9074 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
9075 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
9076 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
9077
9078 /* Find the associated expandable literal for this. */
9079 if (literal_diff != 0)
9080 {
9081 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
9082 if (lit_fragP)
9083 {
9084 assert (literal_diff == 4);
9085 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
9086
9087 /* We expect that the literal section state has NOT been
9088 modified yet. */
9089 assert (lit_fragP->fr_type == rs_machine_dependent
9090 && lit_fragP->fr_subtype == RELAX_LITERAL);
9091 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
9092
9093 /* We need to mark this section for another iteration
9094 of relaxation. */
9095 (*stretched_p)++;
9096 }
9097 }
9098
9099 if (negatable_branch && istack.ninsn > 1)
9100 update_next_frag_state (fragP);
9101
9102 return this_text_diff;
9103 }
9104
9105 \f
9106 /* md_convert_frag Hook and Helper Functions. */
9107
9108 static void convert_frag_align_next_opcode (fragS *);
9109 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
9110 static void convert_frag_fill_nop (fragS *);
9111 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
9112
9113 void
9114 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
9115 {
9116 static xtensa_insnbuf vbuf = NULL;
9117 xtensa_isa isa = xtensa_default_isa;
9118 int slot;
9119 int num_slots;
9120 xtensa_format fmt;
9121 char *file_name;
9122 int line;
9123
9124 as_where (&file_name, &line);
9125 new_logical_line (fragp->fr_file, fragp->fr_line);
9126
9127 switch (fragp->fr_subtype)
9128 {
9129 case RELAX_ALIGN_NEXT_OPCODE:
9130 /* Always convert. */
9131 convert_frag_align_next_opcode (fragp);
9132 break;
9133
9134 case RELAX_DESIRE_ALIGN:
9135 /* Do nothing. If not aligned already, too bad. */
9136 break;
9137
9138 case RELAX_LITERAL:
9139 case RELAX_LITERAL_FINAL:
9140 break;
9141
9142 case RELAX_SLOTS:
9143 if (vbuf == NULL)
9144 vbuf = xtensa_insnbuf_alloc (isa);
9145
9146 xtensa_insnbuf_from_chars (isa, vbuf, fragp->fr_opcode, 0);
9147 fmt = xtensa_format_decode (isa, vbuf);
9148 num_slots = xtensa_format_num_slots (isa, fmt);
9149
9150 for (slot = 0; slot < num_slots; slot++)
9151 {
9152 switch (fragp->tc_frag_data.slot_subtypes[slot])
9153 {
9154 case RELAX_NARROW:
9155 convert_frag_narrow (sec, fragp, fmt, slot);
9156 break;
9157
9158 case RELAX_IMMED:
9159 case RELAX_IMMED_STEP1:
9160 case RELAX_IMMED_STEP2:
9161 /* Place the immediate. */
9162 convert_frag_immed
9163 (sec, fragp,
9164 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9165 fmt, slot);
9166 break;
9167
9168 default:
9169 /* This is OK because some slots could have
9170 relaxations and others have none. */
9171 break;
9172 }
9173 }
9174 break;
9175
9176 case RELAX_UNREACHABLE:
9177 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
9178 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
9179 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
9180 frag_wane (fragp);
9181 break;
9182
9183 case RELAX_MAYBE_UNREACHABLE:
9184 case RELAX_MAYBE_DESIRE_ALIGN:
9185 frag_wane (fragp);
9186 break;
9187
9188 case RELAX_FILL_NOP:
9189 convert_frag_fill_nop (fragp);
9190 break;
9191
9192 case RELAX_LITERAL_NR:
9193 if (use_literal_section)
9194 {
9195 /* This should have been handled during relaxation. When
9196 relaxing a code segment, literals sometimes need to be
9197 added to the corresponding literal segment. If that
9198 literal segment has already been relaxed, then we end up
9199 in this situation. Marking the literal segments as data
9200 would make this happen less often (since GAS always relaxes
9201 code before data), but we could still get into trouble if
9202 there are instructions in a segment that is not marked as
9203 containing code. Until we can implement a better solution,
9204 cheat and adjust the addresses of all the following frags.
9205 This could break subsequent alignments, but the linker's
9206 literal coalescing will do that anyway. */
9207
9208 fragS *f;
9209 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9210 assert (fragp->tc_frag_data.unreported_expansion == 4);
9211 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9212 fragp->fr_var -= 4;
9213 fragp->fr_fix += 4;
9214 for (f = fragp->fr_next; f; f = f->fr_next)
9215 f->fr_address += 4;
9216 }
9217 else
9218 as_bad (_("invalid relaxation fragment result"));
9219 break;
9220 }
9221
9222 fragp->fr_var = 0;
9223 new_logical_line (file_name, line);
9224 }
9225
9226
9227 static void
9228 convert_frag_align_next_opcode (fragS *fragp)
9229 {
9230 char *nop_buf; /* Location for Writing. */
9231 size_t i;
9232
9233 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9234 addressT aligned_address;
9235 size_t fill_size, nop_count;
9236
9237 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9238 fragp->fr_fix);
9239 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9240 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9241 nop_buf = fragp->fr_literal + fragp->fr_fix;
9242
9243 for (i = 0; i < nop_count; i++)
9244 {
9245 size_t nop_size;
9246 nop_size = get_text_align_nth_nop_size (fill_size, i, use_no_density);
9247
9248 assemble_nop (nop_size, nop_buf);
9249 nop_buf += nop_size;
9250 }
9251
9252 fragp->fr_fix += fill_size;
9253 fragp->fr_var -= fill_size;
9254 }
9255
9256
9257 static void
9258 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9259 {
9260 TInsn tinsn, single_target;
9261 xtensa_format single_fmt;
9262 int size, old_size, diff, error_val;
9263 offsetT frag_offset;
9264
9265 assert (slot == 0);
9266 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9267
9268 if (xtensa_opcode_is_branch (xtensa_default_isa, tinsn.opcode) == 1)
9269 {
9270 assert (fragP->tc_frag_data.text_expansion[0] == 1
9271 || fragP->tc_frag_data.text_expansion[0] == 0);
9272 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9273 fmt, slot);
9274 return;
9275 }
9276
9277 if (fragP->tc_frag_data.text_expansion[0] == 0)
9278 {
9279 /* No conversion. */
9280 fragP->fr_var = 0;
9281 return;
9282 }
9283
9284 assert (fragP->fr_opcode != NULL);
9285
9286 /* Frags in this relaxation state should only contain
9287 single instruction bundles. */
9288 tinsn_immed_from_frag (&tinsn, fragP, 0);
9289
9290 /* Just convert it to a wide form.... */
9291 size = 0;
9292 old_size = xg_get_single_size (tinsn.opcode);
9293
9294 tinsn_init (&single_target);
9295 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9296
9297 error_val = xg_expand_narrow (&single_target, &tinsn);
9298 if (error_val)
9299 {
9300 as_bad (_("unable to widen instruction"));
9301 return;
9302 }
9303
9304 size = xg_get_single_size (single_target.opcode);
9305 single_fmt = xg_get_single_format (single_target.opcode);
9306
9307 xg_emit_insn_to_buf (&single_target, single_fmt, fragP->fr_opcode,
9308 fragP, frag_offset, TRUE);
9309
9310 diff = size - old_size;
9311 assert (diff >= 0);
9312 assert (diff <= fragP->fr_var);
9313 fragP->fr_var -= diff;
9314 fragP->fr_fix += diff;
9315
9316 /* clean it up */
9317 fragP->fr_var = 0;
9318 }
9319
9320
9321 static void
9322 convert_frag_fill_nop (fragS *fragP)
9323 {
9324 char *loc = &fragP->fr_literal[fragP->fr_fix];
9325 int size = fragP->tc_frag_data.text_expansion[0];
9326 assert ((unsigned) size == (fragP->fr_next->fr_address
9327 - fragP->fr_address - fragP->fr_fix));
9328 if (size == 0)
9329 {
9330 /* No conversion. */
9331 fragP->fr_var = 0;
9332 return;
9333 }
9334 assemble_nop (size, loc);
9335 fragP->tc_frag_data.is_insn = TRUE;
9336 fragP->fr_var -= size;
9337 fragP->fr_fix += size;
9338 frag_wane (fragP);
9339 }
9340
9341
9342 static fixS *fix_new_exp_in_seg
9343 (segT, subsegT, fragS *, int, int, expressionS *, int,
9344 bfd_reloc_code_real_type);
9345 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9346
9347 static void
9348 convert_frag_immed (segT segP,
9349 fragS *fragP,
9350 int min_steps,
9351 xtensa_format fmt,
9352 int slot)
9353 {
9354 char *immed_instr = fragP->fr_opcode;
9355 TInsn orig_tinsn;
9356 bfd_boolean expanded = FALSE;
9357 bfd_boolean branch_jmp_to_next = FALSE;
9358 char *fr_opcode = fragP->fr_opcode;
9359 vliw_insn orig_vinsn;
9360 xtensa_isa isa = xtensa_default_isa;
9361 bfd_boolean wide_insn = FALSE;
9362 int bytes;
9363 bfd_boolean is_loop;
9364
9365 assert (fr_opcode != NULL);
9366
9367 xg_init_vinsn (&orig_vinsn);
9368
9369 vinsn_from_chars (&orig_vinsn, fr_opcode);
9370 if (xtensa_format_num_slots (isa, fmt) > 1)
9371 wide_insn = TRUE;
9372
9373 orig_tinsn = orig_vinsn.slots[slot];
9374 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9375
9376 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9377
9378 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9379 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9380
9381 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9382 {
9383 /* Conversion just inserts a NOP and marks the fix as completed. */
9384 bytes = xtensa_format_length (isa, fmt);
9385 if (bytes >= 4)
9386 {
9387 orig_vinsn.slots[slot].opcode =
9388 xtensa_format_slot_nop_opcode (isa, orig_vinsn.format, slot);
9389 orig_vinsn.slots[slot].ntok = 0;
9390 }
9391 else
9392 {
9393 bytes += fragP->tc_frag_data.text_expansion[0];
9394 assert (bytes == 2 || bytes == 3);
9395 build_nop (&orig_vinsn.slots[0], bytes);
9396 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9397 }
9398 vinsn_to_insnbuf (&orig_vinsn, fr_opcode, frag_now, FALSE);
9399 xtensa_insnbuf_to_chars (isa, orig_vinsn.insnbuf, fr_opcode, 0);
9400 fragP->fr_var = 0;
9401 }
9402 else if (!orig_tinsn.is_specific_opcode)
9403 {
9404 /* Here is the fun stuff: Get the immediate field from this
9405 instruction. If it fits, we're done. If not, find the next
9406 instruction sequence that fits. */
9407
9408 IStack istack;
9409 int i;
9410 symbolS *lit_sym = NULL;
9411 int total_size = 0;
9412 int target_offset = 0;
9413 int old_size;
9414 int diff;
9415 symbolS *gen_label = NULL;
9416 offsetT frag_offset;
9417 bfd_boolean first = TRUE;
9418 bfd_boolean last_is_jump;
9419
9420 /* It does not fit. Find something that does and
9421 convert immediately. */
9422 frag_offset = fr_opcode - fragP->fr_literal;
9423 istack_init (&istack);
9424 xg_assembly_relax (&istack, &orig_tinsn,
9425 segP, fragP, frag_offset, min_steps, 0);
9426
9427 old_size = xtensa_format_length (isa, fmt);
9428
9429 /* Assemble this right inline. */
9430
9431 /* First, create the mapping from a label name to the REAL label. */
9432 target_offset = 0;
9433 for (i = 0; i < istack.ninsn; i++)
9434 {
9435 TInsn *tinsn = &istack.insn[i];
9436 fragS *lit_frag;
9437
9438 switch (tinsn->insn_type)
9439 {
9440 case ITYPE_LITERAL:
9441 if (lit_sym != NULL)
9442 as_bad (_("multiple literals in expansion"));
9443 /* First find the appropriate space in the literal pool. */
9444 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9445 if (lit_frag == NULL)
9446 as_bad (_("no registered fragment for literal"));
9447 if (tinsn->ntok != 1)
9448 as_bad (_("number of literal tokens != 1"));
9449
9450 /* Set the literal symbol and add a fixup. */
9451 lit_sym = lit_frag->fr_symbol;
9452 break;
9453
9454 case ITYPE_LABEL:
9455 if (align_targets && !is_loop)
9456 {
9457 fragS *unreach = fragP->fr_next;
9458 while (!(unreach->fr_type == rs_machine_dependent
9459 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9460 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9461 {
9462 unreach = unreach->fr_next;
9463 }
9464
9465 assert (unreach->fr_type == rs_machine_dependent
9466 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9467 || unreach->fr_subtype == RELAX_UNREACHABLE));
9468
9469 target_offset += unreach->tc_frag_data.text_expansion[0];
9470 }
9471 assert (gen_label == NULL);
9472 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9473 fr_opcode - fragP->fr_literal
9474 + target_offset, fragP);
9475 break;
9476
9477 case ITYPE_INSN:
9478 if (first && wide_insn)
9479 {
9480 target_offset += xtensa_format_length (isa, fmt);
9481 first = FALSE;
9482 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9483 target_offset += xg_get_single_size (tinsn->opcode);
9484 }
9485 else
9486 target_offset += xg_get_single_size (tinsn->opcode);
9487 break;
9488 }
9489 }
9490
9491 total_size = 0;
9492 first = TRUE;
9493 last_is_jump = FALSE;
9494 for (i = 0; i < istack.ninsn; i++)
9495 {
9496 TInsn *tinsn = &istack.insn[i];
9497 fragS *lit_frag;
9498 int size;
9499 segT target_seg;
9500 bfd_reloc_code_real_type reloc_type;
9501
9502 switch (tinsn->insn_type)
9503 {
9504 case ITYPE_LITERAL:
9505 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9506 /* Already checked. */
9507 assert (lit_frag != NULL);
9508 assert (lit_sym != NULL);
9509 assert (tinsn->ntok == 1);
9510 /* Add a fixup. */
9511 target_seg = S_GET_SEGMENT (lit_sym);
9512 assert (target_seg);
9513 if (tinsn->tok[0].X_op == O_pltrel)
9514 reloc_type = BFD_RELOC_XTENSA_PLT;
9515 else
9516 reloc_type = BFD_RELOC_32;
9517 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9518 &tinsn->tok[0], FALSE, reloc_type);
9519 break;
9520
9521 case ITYPE_LABEL:
9522 break;
9523
9524 case ITYPE_INSN:
9525 xg_resolve_labels (tinsn, gen_label);
9526 xg_resolve_literals (tinsn, lit_sym);
9527 if (wide_insn && first)
9528 {
9529 first = FALSE;
9530 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9531 {
9532 tinsn->record_fix = TRUE;
9533 orig_vinsn.slots[slot] = *tinsn;
9534 }
9535 else
9536 {
9537 orig_vinsn.slots[slot].opcode =
9538 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9539 orig_vinsn.slots[slot].ntok = 0;
9540 orig_vinsn.slots[slot].record_fix = FALSE;
9541 }
9542 vinsn_to_insnbuf (&orig_vinsn, immed_instr, fragP, TRUE);
9543 xtensa_insnbuf_to_chars (isa, orig_vinsn.insnbuf,
9544 immed_instr, 0);
9545 fragP->tc_frag_data.is_insn = TRUE;
9546 size = xtensa_format_length (isa, fmt);
9547 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9548 {
9549 xtensa_format single_fmt =
9550 xg_get_single_format (tinsn->opcode);
9551
9552 xg_emit_insn_to_buf
9553 (tinsn, single_fmt, immed_instr + size, fragP,
9554 immed_instr - fragP->fr_literal + size, TRUE);
9555 size += xg_get_single_size (tinsn->opcode);
9556 }
9557 }
9558 else
9559 {
9560 xtensa_format single_format;
9561 size = xg_get_single_size (tinsn->opcode);
9562 single_format = xg_get_single_format (tinsn->opcode);
9563 xg_emit_insn_to_buf (tinsn, single_format, immed_instr,
9564 fragP,
9565 immed_instr - fragP->fr_literal, TRUE);
9566 #if 0
9567 /* Code to recognize branch-around expansion
9568 so the fragment is properly marked as ending in a
9569 jump. */
9570 if ((((i == istack.ninsn - 2)
9571 && (istack.insn[istack.ninsn-1].insn_type
9572 == ITYPE_LABEL))
9573 || i == istack.ninsn -1)
9574 && xtensa_opcode_is_jump (xtensa_default_isa,
9575 tinsn->opcode) == 1
9576 && fragP->fr_next != NULL
9577 && ! fragP->fr_next->tc_frag_data.is_unreachable)
9578 {
9579 /* Create a new unreachable frag of zero size. */
9580 size_t frag_size = sizeof (fragS);
9581 fragS *new_fragP = (fragS *) xmalloc (frag_size);
9582 memset (new_fragP, 0, frag_size);
9583 new_fragP->fr_address = fragP->fr_next->fr_address;
9584 new_fragP->fr_next = fragP->fr_next;
9585 new_fragP->fr_fix = 0;
9586 new_fragP->fr_var = 0;
9587 new_fragP->fr_type = rs_fill;
9588 new_fragP->tc_frag_data.is_unreachable = TRUE;
9589 /* The rest are zeros.... */
9590 /* Link it in to the chain. */
9591 fragP->fr_next = new_fragP;
9592 }
9593 #endif
9594 }
9595 immed_instr += size;
9596 total_size += size;
9597 break;
9598 }
9599 }
9600
9601 diff = total_size - old_size;
9602 assert (diff >= 0);
9603 if (diff != 0)
9604 expanded = TRUE;
9605 assert (diff <= fragP->fr_var);
9606 fragP->fr_var -= diff;
9607 fragP->fr_fix += diff;
9608 }
9609
9610 /* Clean it up. */
9611 xg_free_vinsn (&orig_vinsn);
9612
9613 /* Check for undefined immediates in LOOP instructions. */
9614 if (is_loop)
9615 {
9616 symbolS *sym;
9617 sym = orig_tinsn.tok[1].X_add_symbol;
9618 if (sym != NULL && !S_IS_DEFINED (sym))
9619 {
9620 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9621 return;
9622 }
9623 sym = orig_tinsn.tok[1].X_op_symbol;
9624 if (sym != NULL && !S_IS_DEFINED (sym))
9625 {
9626 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9627 return;
9628 }
9629 }
9630
9631 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9632 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9633
9634 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9635 {
9636 /* Add an expansion note on the expanded instruction. */
9637 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9638 &orig_tinsn.tok[0], TRUE,
9639 BFD_RELOC_XTENSA_ASM_EXPAND);
9640 }
9641 }
9642
9643
9644 /* Add a new fix expression into the desired segment. We have to
9645 switch to that segment to do this. */
9646
9647 static fixS *
9648 fix_new_exp_in_seg (segT new_seg,
9649 subsegT new_subseg,
9650 fragS *frag,
9651 int where,
9652 int size,
9653 expressionS *exp,
9654 int pcrel,
9655 bfd_reloc_code_real_type r_type)
9656 {
9657 fixS *new_fix;
9658 segT seg = now_seg;
9659 subsegT subseg = now_subseg;
9660
9661 assert (new_seg != 0);
9662 subseg_set (new_seg, new_subseg);
9663
9664 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9665 subseg_set (seg, subseg);
9666 return new_fix;
9667 }
9668
9669
9670 /* Relax a loop instruction so that it can span loop >256 bytes.
9671
9672 loop as, .L1
9673 .L0:
9674 rsr as, LEND
9675 wsr as, LBEG
9676 addi as, as, lo8 (label-.L1)
9677 addmi as, as, mid8 (label-.L1)
9678 wsr as, LEND
9679 isync
9680 rsr as, LCOUNT
9681 addi as, as, 1
9682 .L1:
9683 <<body>>
9684 label:
9685 */
9686
9687 static void
9688 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9689 {
9690 TInsn loop_insn;
9691 TInsn addi_insn;
9692 TInsn addmi_insn;
9693 unsigned long target;
9694 static xtensa_insnbuf insnbuf = NULL;
9695 unsigned int loop_length, loop_length_hi, loop_length_lo;
9696 xtensa_isa isa = xtensa_default_isa;
9697 addressT loop_offset;
9698 addressT addi_offset = 9;
9699 addressT addmi_offset = 12;
9700 fragS *next_fragP;
9701 size_t target_count;
9702
9703 if (!insnbuf)
9704 insnbuf = xtensa_insnbuf_alloc (isa);
9705
9706 /* Get the loop offset. */
9707 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9708
9709 /* Validate that there really is a LOOP at the loop_offset. Because
9710 loops are not bundleable, we can assume that the instruction will be
9711 in slot 0. */
9712 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9713 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9714
9715 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9716 addi_offset += loop_offset;
9717 addmi_offset += loop_offset;
9718
9719 assert (tinsn->ntok == 2);
9720 if (tinsn->tok[1].X_op == O_constant)
9721 target = tinsn->tok[1].X_add_number;
9722 else if (tinsn->tok[1].X_op == O_symbol)
9723 {
9724 /* Find the fragment. */
9725 symbolS *sym = tinsn->tok[1].X_add_symbol;
9726 assert (S_GET_SEGMENT (sym) == segP
9727 || S_GET_SEGMENT (sym) == absolute_section);
9728 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9729 }
9730 else
9731 {
9732 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9733 target = 0;
9734 }
9735
9736 know (symbolP);
9737 know (symbolP->sy_frag);
9738 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9739 || symbol_get_frag (symbolP) == &zero_address_frag);
9740
9741 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9742 loop_length_hi = loop_length & ~0x0ff;
9743 loop_length_lo = loop_length & 0x0ff;
9744 if (loop_length_lo >= 128)
9745 {
9746 loop_length_lo -= 256;
9747 loop_length_hi += 256;
9748 }
9749
9750 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9751 32512. If the loop is larger than that, then we just fail. */
9752 if (loop_length_hi > 32512)
9753 as_bad_where (fragP->fr_file, fragP->fr_line,
9754 _("loop too long for LOOP instruction"));
9755
9756 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9757 assert (addi_insn.opcode == xtensa_addi_opcode);
9758
9759 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9760 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9761
9762 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9763 tinsn_to_insnbuf (&addi_insn, insnbuf);
9764
9765 fragP->tc_frag_data.is_insn = TRUE;
9766 xtensa_insnbuf_to_chars (isa, insnbuf, fragP->fr_opcode + addi_offset, 0);
9767
9768 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9769 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9770 xtensa_insnbuf_to_chars (isa, insnbuf, fragP->fr_opcode + addmi_offset, 0);
9771
9772 /* Walk through all of the frags from here to the loop end
9773 and mark them as no_transform to keep them from being modified
9774 by the linker. If we ever have a relocation for the
9775 addi/addmi of the difference of two symbols we can remove this. */
9776
9777 target_count = 0;
9778 for (next_fragP = fragP; next_fragP != NULL;
9779 next_fragP = next_fragP->fr_next)
9780 {
9781 next_fragP->tc_frag_data.is_no_transform = TRUE;
9782 if (next_fragP->tc_frag_data.is_loop_target)
9783 target_count++;
9784 if (target_count == 2)
9785 break;
9786 }
9787 }
9788
9789 \f
9790 /* A map that keeps information on a per-subsegment basis. This is
9791 maintained during initial assembly, but is invalid once the
9792 subsegments are smashed together. I.E., it cannot be used during
9793 the relaxation. */
9794
9795 typedef struct subseg_map_struct
9796 {
9797 /* the key */
9798 segT seg;
9799 subsegT subseg;
9800
9801 /* the data */
9802 unsigned flags;
9803 float total_freq; /* fall-through + branch target frequency */
9804 float target_freq; /* branch target frequency alone */
9805
9806 struct subseg_map_struct *next;
9807 } subseg_map;
9808
9809
9810 static subseg_map *sseg_map = NULL;
9811
9812 static subseg_map *
9813 get_subseg_info (segT seg, subsegT subseg)
9814 {
9815 subseg_map *subseg_e;
9816
9817 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9818 {
9819 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9820 break;
9821 }
9822 return subseg_e;
9823 }
9824
9825
9826 static subseg_map *
9827 add_subseg_info (segT seg, subsegT subseg)
9828 {
9829 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9830 memset (subseg_e, 0, sizeof (subseg_map));
9831 subseg_e->seg = seg;
9832 subseg_e->subseg = subseg;
9833 subseg_e->flags = 0;
9834 /* Start off considering every branch target very important. */
9835 subseg_e->target_freq = 1.0;
9836 subseg_e->total_freq = 1.0;
9837 subseg_e->next = sseg_map;
9838 sseg_map = subseg_e;
9839 return subseg_e;
9840 }
9841
9842
9843 static unsigned
9844 get_last_insn_flags (segT seg, subsegT subseg)
9845 {
9846 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9847 if (subseg_e)
9848 return subseg_e->flags;
9849 return 0;
9850 }
9851
9852
9853 static void
9854 set_last_insn_flags (segT seg,
9855 subsegT subseg,
9856 unsigned fl,
9857 bfd_boolean val)
9858 {
9859 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9860 if (! subseg_e)
9861 subseg_e = add_subseg_info (seg, subseg);
9862 if (val)
9863 subseg_e->flags |= fl;
9864 else
9865 subseg_e->flags &= ~fl;
9866 }
9867
9868
9869 static float
9870 get_subseg_total_freq (segT seg, subsegT subseg)
9871 {
9872 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9873 if (subseg_e)
9874 return subseg_e->total_freq;
9875 return 1.0;
9876 }
9877
9878
9879 static float
9880 get_subseg_target_freq (segT seg, subsegT subseg)
9881 {
9882 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9883 if (subseg_e)
9884 return subseg_e->target_freq;
9885 return 1.0;
9886 }
9887
9888
9889 static void
9890 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9891 {
9892 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9893 if (! subseg_e)
9894 subseg_e = add_subseg_info (seg, subseg);
9895 subseg_e->total_freq = total_f;
9896 subseg_e->target_freq = target_f;
9897 }
9898
9899 \f
9900 /* Segment Lists and emit_state Stuff. */
9901
9902 /* Remove the segment from the global sections list. */
9903
9904 static void
9905 xtensa_remove_section (segT sec)
9906 {
9907 /* Handle brain-dead bfd_section_list_remove macro, which
9908 expect the address of the prior section's "next" field, not
9909 just the address of the section to remove. */
9910
9911 segT *ps_next_ptr = &stdoutput->sections;
9912 while (*ps_next_ptr != sec && *ps_next_ptr != NULL)
9913 ps_next_ptr = &(*ps_next_ptr)->next;
9914
9915 assert (*ps_next_ptr != NULL);
9916
9917 bfd_section_list_remove (stdoutput, ps_next_ptr);
9918 }
9919
9920
9921 static void
9922 xtensa_insert_section (segT after_sec, segT sec)
9923 {
9924 segT *after_sec_next;
9925 if (after_sec == NULL)
9926 after_sec_next = &stdoutput->sections;
9927 else
9928 after_sec_next = &after_sec->next;
9929
9930 bfd_section_list_insert (stdoutput, after_sec_next, sec);
9931 }
9932
9933
9934 static void
9935 xtensa_move_seg_list_to_beginning (seg_list *head)
9936 {
9937 head = head->next;
9938 while (head)
9939 {
9940 segT literal_section = head->seg;
9941
9942 /* Move the literal section to the front of the section list. */
9943 assert (literal_section);
9944 xtensa_remove_section (literal_section);
9945 xtensa_insert_section (NULL, literal_section);
9946
9947 head = head->next;
9948 }
9949 }
9950
9951
9952 static void mark_literal_frags (seg_list *);
9953
9954 static void
9955 xtensa_move_literals (void)
9956 {
9957 seg_list *segment;
9958 frchainS *frchain_from, *frchain_to;
9959 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9960 fragS **frag_splice;
9961 emit_state state;
9962 segT dest_seg;
9963 fixS *fix, *next_fix, **fix_splice;
9964 sym_list *lit;
9965
9966 mark_literal_frags (literal_head->next);
9967 mark_literal_frags (init_literal_head->next);
9968 mark_literal_frags (fini_literal_head->next);
9969
9970 if (use_literal_section)
9971 return;
9972
9973 segment = literal_head->next;
9974 while (segment)
9975 {
9976 frchain_from = seg_info (segment->seg)->frchainP;
9977 search_frag = frchain_from->frch_root;
9978 literal_pool = NULL;
9979 frchain_to = NULL;
9980 frag_splice = &(frchain_from->frch_root);
9981
9982 while (!search_frag->tc_frag_data.literal_frag)
9983 {
9984 assert (search_frag->fr_fix == 0
9985 || search_frag->fr_type == rs_align);
9986 search_frag = search_frag->fr_next;
9987 }
9988
9989 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9990 == RELAX_LITERAL_POOL_BEGIN);
9991 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9992
9993 /* Make sure that all the frags in this series are closed, and
9994 that there is at least one left over of zero-size. This
9995 prevents us from making a segment with an frchain without any
9996 frags in it. */
9997 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9998 xtensa_set_frag_assembly_state (frag_now);
9999 last_frag = frag_now;
10000 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10001 xtensa_set_frag_assembly_state (frag_now);
10002
10003 while (search_frag != frag_now)
10004 {
10005 next_frag = search_frag->fr_next;
10006
10007 /* First, move the frag out of the literal section and
10008 to the appropriate place. */
10009 if (search_frag->tc_frag_data.literal_frag)
10010 {
10011 literal_pool = search_frag->tc_frag_data.literal_frag;
10012 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
10013 /* Note that we set this fr_var to be a fix
10014 chain when we created the literal pool location
10015 as RELAX_LITERAL_POOL_BEGIN. */
10016 frchain_to = (frchainS *) literal_pool->fr_var;
10017 }
10018 insert_after = literal_pool;
10019
10020 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
10021 insert_after = insert_after->fr_next;
10022
10023 dest_seg = (segT) insert_after->fr_next->fr_var;
10024
10025 *frag_splice = next_frag;
10026 search_frag->fr_next = insert_after->fr_next;
10027 insert_after->fr_next = search_frag;
10028 search_frag->tc_frag_data.lit_seg = dest_seg;
10029
10030 /* Now move any fixups associated with this frag to the
10031 right section. */
10032 fix = frchain_from->fix_root;
10033 fix_splice = &(frchain_from->fix_root);
10034 while (fix)
10035 {
10036 next_fix = fix->fx_next;
10037 if (fix->fx_frag == search_frag)
10038 {
10039 *fix_splice = next_fix;
10040 fix->fx_next = frchain_to->fix_root;
10041 frchain_to->fix_root = fix;
10042 if (frchain_to->fix_tail == NULL)
10043 frchain_to->fix_tail = fix;
10044 }
10045 else
10046 fix_splice = &(fix->fx_next);
10047 fix = next_fix;
10048 }
10049 search_frag = next_frag;
10050 }
10051
10052 if (frchain_from->fix_root != NULL)
10053 {
10054 frchain_from = seg_info (segment->seg)->frchainP;
10055 as_warn (_("fixes not all moved from %s"), segment->seg->name);
10056
10057 assert (frchain_from->fix_root == NULL);
10058 }
10059 frchain_from->fix_tail = NULL;
10060 xtensa_restore_emit_state (&state);
10061 segment = segment->next;
10062 }
10063
10064 /* Now fix up the SEGMENT value for all the literal symbols. */
10065 for (lit = literal_syms; lit; lit = lit->next)
10066 {
10067 symbolS *lit_sym = lit->sym;
10068 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
10069 if (dest_seg)
10070 S_SET_SEGMENT (lit_sym, dest_seg);
10071 }
10072 }
10073
10074
10075 /* Walk over all the frags for segments in a list and mark them as
10076 containing literals. As clunky as this is, we can't rely on frag_var
10077 and frag_variant to get called in all situations. */
10078
10079 static void
10080 mark_literal_frags (seg_list *segment)
10081 {
10082 frchainS *frchain_from;
10083 fragS *search_frag;
10084
10085 while (segment)
10086 {
10087 frchain_from = seg_info (segment->seg)->frchainP;
10088 search_frag = frchain_from->frch_root;
10089 while (search_frag)
10090 {
10091 search_frag->tc_frag_data.is_literal = TRUE;
10092 search_frag = search_frag->fr_next;
10093 }
10094 segment = segment->next;
10095 }
10096 }
10097
10098
10099 static void
10100 xtensa_reorder_seg_list (seg_list *head, segT after)
10101 {
10102 /* Move all of the sections in the section list to come
10103 after "after" in the gnu segment list. */
10104
10105 head = head->next;
10106 while (head)
10107 {
10108 segT literal_section = head->seg;
10109
10110 /* Move the literal section after "after". */
10111 assert (literal_section);
10112 if (literal_section != after)
10113 {
10114 xtensa_remove_section (literal_section);
10115 xtensa_insert_section (after, literal_section);
10116 }
10117
10118 head = head->next;
10119 }
10120 }
10121
10122
10123 /* Push all the literal segments to the end of the gnu list. */
10124
10125 static void
10126 xtensa_reorder_segments (void)
10127 {
10128 segT sec;
10129 segT last_sec = 0;
10130 int old_count = 0;
10131 int new_count = 0;
10132
10133 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10134 {
10135 last_sec = sec;
10136 old_count++;
10137 }
10138
10139 /* Now that we have the last section, push all the literal
10140 sections to the end. */
10141 xtensa_reorder_seg_list (literal_head, last_sec);
10142 xtensa_reorder_seg_list (init_literal_head, last_sec);
10143 xtensa_reorder_seg_list (fini_literal_head, last_sec);
10144
10145 /* Now perform the final error check. */
10146 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10147 new_count++;
10148 assert (new_count == old_count);
10149 }
10150
10151
10152 /* Change the emit state (seg, subseg, and frag related stuff) to the
10153 correct location. Return a emit_state which can be passed to
10154 xtensa_restore_emit_state to return to current fragment. */
10155
10156 static void
10157 xtensa_switch_to_literal_fragment (emit_state *result)
10158 {
10159 if (directive_state[directive_absolute_literals])
10160 {
10161 cache_literal_section (0, default_lit_sections.lit4_seg_name,
10162 &default_lit_sections.lit4_seg, FALSE);
10163 xtensa_switch_section_emit_state (result,
10164 default_lit_sections.lit4_seg, 0);
10165 }
10166 else
10167 xtensa_switch_to_non_abs_literal_fragment (result);
10168
10169 /* Do a 4-byte align here. */
10170 frag_align (2, 0, 0);
10171 record_alignment (now_seg, 2);
10172 }
10173
10174
10175 static void
10176 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
10177 {
10178 /* When we mark a literal pool location, we want to put a frag in
10179 the literal pool that points to it. But to do that, we want to
10180 switch_to_literal_fragment. But literal sections don't have
10181 literal pools, so their location is always null, so we would
10182 recurse forever. This is kind of hacky, but it works. */
10183
10184 static bfd_boolean recursive = FALSE;
10185 fragS *pool_location = get_literal_pool_location (now_seg);
10186 bfd_boolean is_init =
10187 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
10188
10189 bfd_boolean is_fini =
10190 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
10191
10192 if (pool_location == NULL
10193 && !use_literal_section
10194 && !recursive
10195 && !is_init && ! is_fini)
10196 {
10197 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
10198 recursive = TRUE;
10199 xtensa_mark_literal_pool_location ();
10200 recursive = FALSE;
10201 }
10202
10203 /* Special case: If we are in the ".fini" or ".init" section, then
10204 we will ALWAYS be generating to the ".fini.literal" and
10205 ".init.literal" sections. */
10206
10207 if (is_init)
10208 {
10209 cache_literal_section (init_literal_head,
10210 default_lit_sections.init_lit_seg_name,
10211 &default_lit_sections.init_lit_seg, TRUE);
10212 xtensa_switch_section_emit_state (result,
10213 default_lit_sections.init_lit_seg, 0);
10214 }
10215 else if (is_fini)
10216 {
10217 cache_literal_section (fini_literal_head,
10218 default_lit_sections.fini_lit_seg_name,
10219 &default_lit_sections.fini_lit_seg, TRUE);
10220 xtensa_switch_section_emit_state (result,
10221 default_lit_sections.fini_lit_seg, 0);
10222 }
10223 else
10224 {
10225 cache_literal_section (literal_head,
10226 default_lit_sections.lit_seg_name,
10227 &default_lit_sections.lit_seg, TRUE);
10228 xtensa_switch_section_emit_state (result,
10229 default_lit_sections.lit_seg, 0);
10230 }
10231
10232 if (!use_literal_section
10233 && !is_init && !is_fini
10234 && get_literal_pool_location (now_seg) != pool_location)
10235 {
10236 /* Close whatever frag is there. */
10237 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10238 xtensa_set_frag_assembly_state (frag_now);
10239 frag_now->tc_frag_data.literal_frag = pool_location;
10240 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10241 xtensa_set_frag_assembly_state (frag_now);
10242 }
10243 }
10244
10245
10246 /* Call this function before emitting data into the literal section.
10247 This is a helper function for xtensa_switch_to_literal_fragment.
10248 This is similar to a .section new_now_seg subseg. */
10249
10250 static void
10251 xtensa_switch_section_emit_state (emit_state *state,
10252 segT new_now_seg,
10253 subsegT new_now_subseg)
10254 {
10255 state->name = now_seg->name;
10256 state->now_seg = now_seg;
10257 state->now_subseg = now_subseg;
10258 state->generating_literals = generating_literals;
10259 generating_literals++;
10260 subseg_new (segment_name (new_now_seg), new_now_subseg);
10261 }
10262
10263
10264 /* Use to restore the emitting into the normal place. */
10265
10266 static void
10267 xtensa_restore_emit_state (emit_state *state)
10268 {
10269 generating_literals = state->generating_literals;
10270 subseg_new (state->name, state->now_subseg);
10271 }
10272
10273
10274 /* Get a segment of a given name. If the segment is already
10275 present, return it; otherwise, create a new one. */
10276
10277 static void
10278 cache_literal_section (seg_list *head,
10279 const char *name,
10280 segT *pseg,
10281 bfd_boolean is_code)
10282 {
10283 segT current_section = now_seg;
10284 int current_subsec = now_subseg;
10285 segT seg;
10286
10287 if (*pseg != 0)
10288 return;
10289
10290 /* Check if the named section exists. */
10291 for (seg = stdoutput->sections; seg; seg = seg->next)
10292 {
10293 if (!strcmp (segment_name (seg), name))
10294 break;
10295 }
10296
10297 if (!seg)
10298 {
10299 /* Create a new literal section. */
10300 seg = subseg_new (name, (subsegT) 0);
10301 if (head)
10302 {
10303 /* Add the newly created literal segment to the specified list. */
10304 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10305 n->seg = seg;
10306 n->next = head->next;
10307 head->next = n;
10308 }
10309 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
10310 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10311 | (is_code ? SEC_CODE : SEC_DATA));
10312 bfd_set_section_alignment (stdoutput, seg, 2);
10313 }
10314
10315 *pseg = seg;
10316 subseg_set (current_section, current_subsec);
10317 }
10318
10319 \f
10320 /* Property Tables Stuff. */
10321
10322 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10323 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10324 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10325
10326 typedef bfd_boolean (*frag_predicate) (const fragS *);
10327 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10328
10329 static bfd_boolean get_frag_is_literal (const fragS *);
10330 static void xtensa_create_property_segments
10331 (frag_predicate, frag_predicate, const char *, xt_section_type);
10332 static void xtensa_create_xproperty_segments
10333 (frag_flags_fn, const char *, xt_section_type);
10334 static segment_info_type *retrieve_segment_info (segT);
10335 static segT retrieve_xtensa_section (char *);
10336 static bfd_boolean section_has_property (segT, frag_predicate);
10337 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10338 static void add_xt_block_frags
10339 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10340 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10341 static void xtensa_frag_flags_init (frag_flags *);
10342 static void get_frag_property_flags (const fragS *, frag_flags *);
10343 static bfd_vma frag_flags_to_number (const frag_flags *);
10344 static void add_xt_prop_frags
10345 (segT, segT, xtensa_block_info **, frag_flags_fn);
10346
10347 /* Set up property tables after relaxation. */
10348
10349 void
10350 xtensa_post_relax_hook (void)
10351 {
10352 xtensa_move_seg_list_to_beginning (literal_head);
10353 xtensa_move_seg_list_to_beginning (init_literal_head);
10354 xtensa_move_seg_list_to_beginning (fini_literal_head);
10355
10356 xtensa_find_unmarked_state_frags ();
10357
10358 if (use_literal_section)
10359 xtensa_create_property_segments (get_frag_is_literal,
10360 NULL,
10361 XTENSA_LIT_SEC_NAME,
10362 xt_literal_sec);
10363 xtensa_create_xproperty_segments (get_frag_property_flags,
10364 XTENSA_PROP_SEC_NAME,
10365 xt_prop_sec);
10366
10367 if (warn_unaligned_branch_targets)
10368 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10369 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10370 }
10371
10372
10373 /* This function is only meaningful after xtensa_move_literals. */
10374
10375 static bfd_boolean
10376 get_frag_is_literal (const fragS *fragP)
10377 {
10378 assert (fragP != NULL);
10379 return fragP->tc_frag_data.is_literal;
10380 }
10381
10382
10383 static void
10384 xtensa_create_property_segments (frag_predicate property_function,
10385 frag_predicate end_property_function,
10386 const char *section_name_base,
10387 xt_section_type sec_type)
10388 {
10389 segT *seclist;
10390
10391 /* Walk over all of the current segments.
10392 Walk over each fragment
10393 For each non-empty fragment,
10394 Build a property record (append where possible). */
10395
10396 for (seclist = &stdoutput->sections;
10397 seclist && *seclist;
10398 seclist = &(*seclist)->next)
10399 {
10400 segT sec = *seclist;
10401 flagword flags;
10402
10403 flags = bfd_get_section_flags (stdoutput, sec);
10404 if (flags & SEC_DEBUGGING)
10405 continue;
10406 if (!(flags & SEC_ALLOC))
10407 continue;
10408
10409 if (section_has_property (sec, property_function))
10410 {
10411 char *property_section_name =
10412 xtensa_get_property_section_name (sec, section_name_base);
10413 segT insn_sec = retrieve_xtensa_section (property_section_name);
10414 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10415 xtensa_block_info **xt_blocks =
10416 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10417 /* Walk over all of the frchains here and add new sections. */
10418 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10419 end_property_function);
10420 }
10421 }
10422
10423 /* Now we fill them out.... */
10424
10425 for (seclist = &stdoutput->sections;
10426 seclist && *seclist;
10427 seclist = &(*seclist)->next)
10428 {
10429 segment_info_type *seginfo;
10430 xtensa_block_info *block;
10431 segT sec = *seclist;
10432
10433 seginfo = seg_info (sec);
10434 block = seginfo->tc_segment_info_data.blocks[sec_type];
10435
10436 if (block)
10437 {
10438 xtensa_block_info *cur_block;
10439 /* This is a section with some data. */
10440 int num_recs = 0;
10441 size_t rec_size;
10442
10443 for (cur_block = block; cur_block; cur_block = cur_block->next)
10444 num_recs++;
10445
10446 rec_size = num_recs * 8;
10447 bfd_set_section_size (stdoutput, sec, rec_size);
10448
10449 /* In order to make this work with the assembler, we have to
10450 build some frags and then build the "fixups" for it. It
10451 would be easier to just set the contents then set the
10452 arlents. */
10453
10454 if (num_recs)
10455 {
10456 /* Allocate a fragment and leak it. */
10457 fragS *fragP;
10458 size_t frag_size;
10459 fixS *fixes;
10460 frchainS *frchainP;
10461 int i;
10462 char *frag_data;
10463
10464 frag_size = sizeof (fragS) + rec_size;
10465 fragP = (fragS *) xmalloc (frag_size);
10466
10467 memset (fragP, 0, frag_size);
10468 fragP->fr_address = 0;
10469 fragP->fr_next = NULL;
10470 fragP->fr_fix = rec_size;
10471 fragP->fr_var = 0;
10472 fragP->fr_type = rs_fill;
10473 /* The rest are zeros. */
10474
10475 frchainP = seginfo->frchainP;
10476 frchainP->frch_root = fragP;
10477 frchainP->frch_last = fragP;
10478
10479 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10480 memset (fixes, 0, sizeof (fixS) * num_recs);
10481
10482 seginfo->fix_root = fixes;
10483 seginfo->fix_tail = &fixes[num_recs - 1];
10484 cur_block = block;
10485 frag_data = &fragP->fr_literal[0];
10486 for (i = 0; i < num_recs; i++)
10487 {
10488 fixS *fix = &fixes[i];
10489 assert (cur_block);
10490
10491 /* Write the fixup. */
10492 if (i != num_recs - 1)
10493 fix->fx_next = &fixes[i + 1];
10494 else
10495 fix->fx_next = NULL;
10496 fix->fx_size = 4;
10497 fix->fx_done = 0;
10498 fix->fx_frag = fragP;
10499 fix->fx_where = i * 8;
10500 fix->fx_addsy = section_symbol (cur_block->sec);
10501 fix->fx_offset = cur_block->offset;
10502 fix->fx_r_type = BFD_RELOC_32;
10503 fix->fx_file = "Internal Assembly";
10504 fix->fx_line = 0;
10505
10506 /* Write the length. */
10507 md_number_to_chars (&frag_data[4 + 8 * i],
10508 cur_block->size, 4);
10509 cur_block = cur_block->next;
10510 }
10511 }
10512 }
10513 }
10514 }
10515
10516
10517 static void
10518 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10519 const char *section_name_base,
10520 xt_section_type sec_type)
10521 {
10522 segT *seclist;
10523
10524 /* Walk over all of the current segments.
10525 Walk over each fragment.
10526 For each fragment that has instructions,
10527 build an instruction record (append where possible). */
10528
10529 for (seclist = &stdoutput->sections;
10530 seclist && *seclist;
10531 seclist = &(*seclist)->next)
10532 {
10533 segT sec = *seclist;
10534 flagword flags;
10535
10536 flags = bfd_get_section_flags (stdoutput, sec);
10537 if (flags & SEC_DEBUGGING)
10538 continue;
10539 if (!(flags & SEC_ALLOC))
10540 continue;
10541
10542 if (section_has_xproperty (sec, flag_fn))
10543 {
10544 char *property_section_name =
10545 xtensa_get_property_section_name (sec, section_name_base);
10546 segT insn_sec = retrieve_xtensa_section (property_section_name);
10547 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10548 xtensa_block_info **xt_blocks =
10549 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10550 /* Walk over all of the frchains here and add new sections. */
10551 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
10552 }
10553 }
10554
10555 /* Now we fill them out.... */
10556
10557 for (seclist = &stdoutput->sections;
10558 seclist && *seclist;
10559 seclist = &(*seclist)->next)
10560 {
10561 segment_info_type *seginfo;
10562 xtensa_block_info *block;
10563 segT sec = *seclist;
10564
10565 seginfo = seg_info (sec);
10566 block = seginfo->tc_segment_info_data.blocks[sec_type];
10567
10568 if (block)
10569 {
10570 xtensa_block_info *cur_block;
10571 /* This is a section with some data. */
10572 int num_recs = 0;
10573 size_t rec_size;
10574
10575 for (cur_block = block; cur_block; cur_block = cur_block->next)
10576 num_recs++;
10577
10578 rec_size = num_recs * (8 + 4);
10579 bfd_set_section_size (stdoutput, sec, rec_size);
10580
10581 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10582
10583 /* In order to make this work with the assembler, we have to build
10584 some frags then build the "fixups" for it. It would be easier to
10585 just set the contents then set the arlents. */
10586
10587 if (num_recs)
10588 {
10589 /* Allocate a fragment and (unfortunately) leak it. */
10590 fragS *fragP;
10591 size_t frag_size;
10592 fixS *fixes;
10593 frchainS *frchainP;
10594 int i;
10595 char *frag_data;
10596
10597 frag_size = sizeof (fragS) + rec_size;
10598 fragP = (fragS *) xmalloc (frag_size);
10599
10600 memset (fragP, 0, frag_size);
10601 fragP->fr_address = 0;
10602 fragP->fr_next = NULL;
10603 fragP->fr_fix = rec_size;
10604 fragP->fr_var = 0;
10605 fragP->fr_type = rs_fill;
10606 /* The rest are zeros. */
10607
10608 frchainP = seginfo->frchainP;
10609 frchainP->frch_root = fragP;
10610 frchainP->frch_last = fragP;
10611
10612 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10613 memset (fixes, 0, sizeof (fixS) * num_recs);
10614
10615 seginfo->fix_root = fixes;
10616 seginfo->fix_tail = &fixes[num_recs - 1];
10617 cur_block = block;
10618 frag_data = &fragP->fr_literal[0];
10619 for (i = 0; i < num_recs; i++)
10620 {
10621 fixS *fix = &fixes[i];
10622 assert (cur_block);
10623
10624 /* Write the fixup. */
10625 if (i != num_recs - 1)
10626 fix->fx_next = &fixes[i + 1];
10627 else
10628 fix->fx_next = NULL;
10629 fix->fx_size = 4;
10630 fix->fx_done = 0;
10631 fix->fx_frag = fragP;
10632 fix->fx_where = i * (8 + 4);
10633 fix->fx_addsy = section_symbol (cur_block->sec);
10634 fix->fx_offset = cur_block->offset;
10635 fix->fx_r_type = BFD_RELOC_32;
10636 fix->fx_file = "Internal Assembly";
10637 fix->fx_line = 0;
10638
10639 /* Write the length. */
10640 md_number_to_chars (&frag_data[4 + (8+4) * i],
10641 cur_block->size, 4);
10642 md_number_to_chars (&frag_data[8 + (8+4) * i],
10643 frag_flags_to_number (&cur_block->flags),
10644 4);
10645 cur_block = cur_block->next;
10646 }
10647 }
10648 }
10649 }
10650 }
10651
10652
10653 static segment_info_type *
10654 retrieve_segment_info (segT seg)
10655 {
10656 segment_info_type *seginfo;
10657 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10658 if (!seginfo)
10659 {
10660 frchainS *frchainP;
10661
10662 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
10663 memset ((void *) seginfo, 0, sizeof (*seginfo));
10664 seginfo->fix_root = NULL;
10665 seginfo->fix_tail = NULL;
10666 seginfo->bfd_section = seg;
10667 seginfo->sym = 0;
10668 /* We will not be dealing with these, only our special ones. */
10669 #if 0
10670 if (seg == bfd_abs_section_ptr)
10671 abs_seg_info = seginfo;
10672 else if (seg == bfd_und_section_ptr)
10673 und_seg_info = seginfo;
10674 else
10675 #endif
10676 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
10677 #if 0
10678 seg_fix_rootP = &segment_info[seg].fix_root;
10679 seg_fix_tailP = &segment_info[seg].fix_tail;
10680 #endif
10681
10682 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10683 frchainP->frch_root = NULL;
10684 frchainP->frch_last = NULL;
10685 frchainP->frch_next = NULL;
10686 frchainP->frch_seg = seg;
10687 frchainP->frch_subseg = 0;
10688 frchainP->fix_root = NULL;
10689 frchainP->fix_tail = NULL;
10690 /* Do not init the objstack. */
10691 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10692 /* frchainP->frch_frag_now = fragP; */
10693 frchainP->frch_frag_now = NULL;
10694
10695 seginfo->frchainP = frchainP;
10696 }
10697
10698 return seginfo;
10699 }
10700
10701
10702 static segT
10703 retrieve_xtensa_section (char *sec_name)
10704 {
10705 bfd *abfd = stdoutput;
10706 flagword flags, out_flags, link_once_flags;
10707 segT s;
10708
10709 flags = bfd_get_section_flags (abfd, now_seg);
10710 link_once_flags = (flags & SEC_LINK_ONCE);
10711 if (link_once_flags)
10712 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10713 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10714
10715 s = bfd_make_section_old_way (abfd, sec_name);
10716 if (s == NULL)
10717 as_bad (_("could not create section %s"), sec_name);
10718 if (!bfd_set_section_flags (abfd, s, out_flags))
10719 as_bad (_("invalid flag combination on section %s"), sec_name);
10720
10721 return s;
10722 }
10723
10724
10725 static bfd_boolean
10726 section_has_property (segT sec, frag_predicate property_function)
10727 {
10728 segment_info_type *seginfo = seg_info (sec);
10729 fragS *fragP;
10730
10731 if (seginfo && seginfo->frchainP)
10732 {
10733 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10734 {
10735 if (property_function (fragP)
10736 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10737 return TRUE;
10738 }
10739 }
10740 return FALSE;
10741 }
10742
10743
10744 static bfd_boolean
10745 section_has_xproperty (segT sec, frag_flags_fn property_function)
10746 {
10747 segment_info_type *seginfo = seg_info (sec);
10748 fragS *fragP;
10749
10750 if (seginfo && seginfo->frchainP)
10751 {
10752 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10753 {
10754 frag_flags prop_flags;
10755 property_function (fragP, &prop_flags);
10756 if (!xtensa_frag_flags_is_empty (&prop_flags))
10757 return TRUE;
10758 }
10759 }
10760 return FALSE;
10761 }
10762
10763
10764 /* Two types of block sections exist right now: literal and insns. */
10765
10766 static void
10767 add_xt_block_frags (segT sec,
10768 segT xt_block_sec,
10769 xtensa_block_info **xt_block,
10770 frag_predicate property_function,
10771 frag_predicate end_property_function)
10772 {
10773 segment_info_type *seg_info;
10774 segment_info_type *xt_seg_info;
10775 bfd_vma seg_offset;
10776 fragS *fragP;
10777
10778 xt_seg_info = retrieve_segment_info (xt_block_sec);
10779 seg_info = retrieve_segment_info (sec);
10780
10781 /* Build it if needed. */
10782 while (*xt_block != NULL)
10783 xt_block = &(*xt_block)->next;
10784 /* We are either at NULL at the beginning or at the end. */
10785
10786 /* Walk through the frags. */
10787 seg_offset = 0;
10788
10789 if (seg_info->frchainP)
10790 {
10791 for (fragP = seg_info->frchainP->frch_root;
10792 fragP;
10793 fragP = fragP->fr_next)
10794 {
10795 if (property_function (fragP)
10796 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10797 {
10798 if (*xt_block != NULL)
10799 {
10800 if ((*xt_block)->offset + (*xt_block)->size
10801 == fragP->fr_address)
10802 (*xt_block)->size += fragP->fr_fix;
10803 else
10804 xt_block = &((*xt_block)->next);
10805 }
10806 if (*xt_block == NULL)
10807 {
10808 xtensa_block_info *new_block = (xtensa_block_info *)
10809 xmalloc (sizeof (xtensa_block_info));
10810 new_block->sec = sec;
10811 new_block->offset = fragP->fr_address;
10812 new_block->size = fragP->fr_fix;
10813 new_block->next = NULL;
10814 xtensa_frag_flags_init (&new_block->flags);
10815 *xt_block = new_block;
10816 }
10817 if (end_property_function
10818 && end_property_function (fragP))
10819 {
10820 xt_block = &((*xt_block)->next);
10821 }
10822 }
10823 }
10824 }
10825 }
10826
10827
10828 /* Break the encapsulation of add_xt_prop_frags here. */
10829
10830 static bfd_boolean
10831 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10832 {
10833 if (prop_flags->is_literal
10834 || prop_flags->is_insn
10835 || prop_flags->is_data
10836 || prop_flags->is_unreachable)
10837 return FALSE;
10838 return TRUE;
10839 }
10840
10841
10842 static void
10843 xtensa_frag_flags_init (frag_flags *prop_flags)
10844 {
10845 memset (prop_flags, 0, sizeof (frag_flags));
10846 }
10847
10848
10849 static void
10850 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10851 {
10852 xtensa_frag_flags_init (prop_flags);
10853 if (fragP->tc_frag_data.is_literal)
10854 prop_flags->is_literal = TRUE;
10855 if (fragP->tc_frag_data.is_unreachable)
10856 prop_flags->is_unreachable = TRUE;
10857 else if (fragP->tc_frag_data.is_insn)
10858 {
10859 prop_flags->is_insn = TRUE;
10860 if (fragP->tc_frag_data.is_loop_target)
10861 prop_flags->insn.is_loop_target = TRUE;
10862 if (fragP->tc_frag_data.is_branch_target)
10863 prop_flags->insn.is_branch_target = TRUE;
10864 if (fragP->tc_frag_data.is_specific_opcode
10865 || fragP->tc_frag_data.is_no_transform)
10866 prop_flags->insn.is_no_transform = TRUE;
10867 if (fragP->tc_frag_data.is_no_density)
10868 prop_flags->insn.is_no_density = TRUE;
10869 if (fragP->tc_frag_data.use_absolute_literals)
10870 prop_flags->insn.is_abslit = TRUE;
10871 }
10872 if (fragP->tc_frag_data.is_align)
10873 {
10874 prop_flags->is_align = TRUE;
10875 prop_flags->alignment = fragP->tc_frag_data.alignment;
10876 if (xtensa_frag_flags_is_empty (prop_flags))
10877 prop_flags->is_data = TRUE;
10878 }
10879 }
10880
10881
10882 static bfd_vma
10883 frag_flags_to_number (const frag_flags *prop_flags)
10884 {
10885 bfd_vma num = 0;
10886 if (prop_flags->is_literal)
10887 num |= XTENSA_PROP_LITERAL;
10888 if (prop_flags->is_insn)
10889 num |= XTENSA_PROP_INSN;
10890 if (prop_flags->is_data)
10891 num |= XTENSA_PROP_DATA;
10892 if (prop_flags->is_unreachable)
10893 num |= XTENSA_PROP_UNREACHABLE;
10894 if (prop_flags->insn.is_loop_target)
10895 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10896 if (prop_flags->insn.is_branch_target)
10897 {
10898 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10899 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10900 }
10901
10902 if (prop_flags->insn.is_no_density)
10903 num |= XTENSA_PROP_INSN_NO_DENSITY;
10904 if (prop_flags->insn.is_no_transform)
10905 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10906 if (prop_flags->insn.is_no_reorder)
10907 num |= XTENSA_PROP_INSN_NO_REORDER;
10908 if (prop_flags->insn.is_abslit)
10909 num |= XTENSA_PROP_INSN_ABSLIT;
10910
10911 if (prop_flags->is_align)
10912 {
10913 num |= XTENSA_PROP_ALIGN;
10914 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10915 }
10916
10917 return num;
10918 }
10919
10920
10921 static bfd_boolean
10922 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10923 const frag_flags *prop_flags_2)
10924 {
10925 /* Cannot combine with an end marker. */
10926
10927 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10928 return FALSE;
10929 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10930 return FALSE;
10931 if (prop_flags_1->is_data != prop_flags_2->is_data)
10932 return FALSE;
10933
10934 if (prop_flags_1->is_insn)
10935 {
10936 /* Properties of the beginning of the frag. */
10937 if (prop_flags_2->insn.is_loop_target)
10938 return FALSE;
10939 if (prop_flags_2->insn.is_branch_target)
10940 return FALSE;
10941 if (prop_flags_1->insn.is_no_density !=
10942 prop_flags_2->insn.is_no_density)
10943 return FALSE;
10944 if (prop_flags_1->insn.is_no_transform !=
10945 prop_flags_2->insn.is_no_transform)
10946 return FALSE;
10947 if (prop_flags_1->insn.is_no_reorder !=
10948 prop_flags_2->insn.is_no_reorder)
10949 return FALSE;
10950 if (prop_flags_1->insn.is_abslit !=
10951 prop_flags_2->insn.is_abslit)
10952 return FALSE;
10953 }
10954
10955 if (prop_flags_1->is_align)
10956 return FALSE;
10957
10958 return TRUE;
10959 }
10960
10961
10962 static bfd_vma
10963 xt_block_aligned_size (const xtensa_block_info *xt_block)
10964 {
10965 bfd_vma end_addr;
10966 size_t align_bits;
10967
10968 if (!xt_block->flags.is_align)
10969 return xt_block->size;
10970
10971 end_addr = xt_block->offset + xt_block->size;
10972 align_bits = xt_block->flags.alignment;
10973 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10974 return end_addr - xt_block->offset;
10975 }
10976
10977
10978 static bfd_boolean
10979 xtensa_xt_block_combine (xtensa_block_info *xt_block,
10980 const xtensa_block_info *xt_block_2)
10981 {
10982 if (xt_block->sec != xt_block_2->sec)
10983 return FALSE;
10984 if (xt_block->offset + xt_block_aligned_size (xt_block)
10985 != xt_block_2->offset)
10986 return FALSE;
10987
10988 if (xt_block_2->size == 0
10989 && (!xt_block_2->flags.is_unreachable
10990 || xt_block->flags.is_unreachable))
10991 {
10992 if (xt_block_2->flags.is_align
10993 && xt_block->flags.is_align)
10994 {
10995 /* Nothing needed. */
10996 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10997 return TRUE;
10998 }
10999 else
11000 {
11001 if (xt_block_2->flags.is_align)
11002 {
11003 /* Push alignment to previous entry. */
11004 xt_block->flags.is_align = xt_block_2->flags.is_align;
11005 xt_block->flags.alignment = xt_block_2->flags.alignment;
11006 }
11007 return TRUE;
11008 }
11009 }
11010 if (!xtensa_frag_flags_combinable (&xt_block->flags,
11011 &xt_block_2->flags))
11012 return FALSE;
11013
11014 xt_block->size += xt_block_2->size;
11015
11016 if (xt_block_2->flags.is_align)
11017 {
11018 xt_block->flags.is_align = TRUE;
11019 xt_block->flags.alignment = xt_block_2->flags.alignment;
11020 }
11021
11022 return TRUE;
11023 }
11024
11025
11026 static void
11027 add_xt_prop_frags (segT sec,
11028 segT xt_block_sec,
11029 xtensa_block_info **xt_block,
11030 frag_flags_fn property_function)
11031 {
11032 segment_info_type *seg_info;
11033 segment_info_type *xt_seg_info;
11034 bfd_vma seg_offset;
11035 fragS *fragP;
11036
11037 xt_seg_info = retrieve_segment_info (xt_block_sec);
11038 seg_info = retrieve_segment_info (sec);
11039 /* Build it if needed. */
11040 while (*xt_block != NULL)
11041 {
11042 xt_block = &(*xt_block)->next;
11043 }
11044 /* We are either at NULL at the beginning or at the end. */
11045
11046 /* Walk through the frags. */
11047 seg_offset = 0;
11048
11049 if (seg_info->frchainP)
11050 {
11051 for (fragP = seg_info->frchainP->frch_root; fragP;
11052 fragP = fragP->fr_next)
11053 {
11054 xtensa_block_info tmp_block;
11055 tmp_block.sec = sec;
11056 tmp_block.offset = fragP->fr_address;
11057 tmp_block.size = fragP->fr_fix;
11058 tmp_block.next = NULL;
11059 property_function (fragP, &tmp_block.flags);
11060
11061 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
11062 /* && fragP->fr_fix != 0) */
11063 {
11064 if ((*xt_block) == NULL
11065 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
11066 {
11067 xtensa_block_info *new_block;
11068 if ((*xt_block) != NULL)
11069 xt_block = &(*xt_block)->next;
11070 new_block = (xtensa_block_info *)
11071 xmalloc (sizeof (xtensa_block_info));
11072 *new_block = tmp_block;
11073 *xt_block = new_block;
11074 }
11075 }
11076 }
11077 }
11078 }
11079
11080 \f
11081 /* op_placement_info_table */
11082
11083 /* op_placement_info makes it easier to determine which
11084 ops can go in which slots. */
11085
11086 static void
11087 init_op_placement_info_table (void)
11088 {
11089 xtensa_isa isa = xtensa_default_isa;
11090 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
11091 xtensa_opcode opcode;
11092 xtensa_format fmt;
11093 int slot;
11094 int num_opcodes = xtensa_isa_num_opcodes (isa);
11095
11096 op_placement_table = (op_placement_info_table)
11097 xmalloc (sizeof (op_placement_info) * num_opcodes);
11098 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
11099
11100 for (opcode = 0; opcode < num_opcodes; opcode++)
11101 {
11102 op_placement_info *opi = &op_placement_table[opcode];
11103 /* FIXME: Make tinsn allocation dynamic. */
11104 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
11105 as_fatal (_("too many operands in instruction"));
11106 opi->single = XTENSA_UNDEFINED;
11107 opi->single_size = 0;
11108 opi->widest = XTENSA_UNDEFINED;
11109 opi->widest_size = 0;
11110 opi->narrowest = XTENSA_UNDEFINED;
11111 opi->narrowest_size = 0x7F;
11112 opi->formats = 0;
11113 opi->num_formats = 0;
11114 opi->issuef = 0;
11115 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
11116 {
11117 opi->slots[fmt] = 0;
11118 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
11119 {
11120 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
11121 {
11122 int fmt_length = xtensa_format_length (isa, fmt);
11123 opi->issuef++;
11124 set_bit (fmt, opi->formats);
11125 set_bit (slot, opi->slots[fmt]);
11126 /* opi->slot_count[fmt]++; */
11127 if (fmt_length < opi->narrowest_size)
11128 {
11129 opi->narrowest = fmt;
11130 opi->narrowest_size = fmt_length;
11131 }
11132 if (fmt_length > opi->widest_size)
11133 {
11134 opi->widest = fmt;
11135 opi->widest_size = fmt_length;
11136 }
11137 if (xtensa_format_num_slots (isa, fmt) == 1)
11138 {
11139 if (opi->single_size == 0
11140 || fmt_length < opi->single_size)
11141 {
11142 opi->single = fmt;
11143 opi->single_size = fmt_length;
11144 }
11145 }
11146 }
11147 }
11148 if (opi->formats)
11149 opi->num_formats++;
11150 }
11151 }
11152 xtensa_insnbuf_free (isa, ibuf);
11153 }
11154
11155
11156 bfd_boolean
11157 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
11158 {
11159 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
11160 }
11161
11162
11163 /* If the opcode is available in a single slot format, return its size. */
11164
11165 static int
11166 xg_get_single_size (xtensa_opcode opcode)
11167 {
11168 assert (op_placement_table[opcode].single != XTENSA_UNDEFINED);
11169 return op_placement_table[opcode].single_size;
11170 }
11171
11172
11173 static xtensa_format
11174 xg_get_single_format (xtensa_opcode opcode)
11175 {
11176 return op_placement_table[opcode].single;
11177 }
11178
11179 \f
11180 /* Instruction Stack Functions (from "xtensa-istack.h"). */
11181
11182 void
11183 istack_init (IStack *stack)
11184 {
11185 memset (stack, 0, sizeof (IStack));
11186 stack->ninsn = 0;
11187 }
11188
11189
11190 bfd_boolean
11191 istack_empty (IStack *stack)
11192 {
11193 return (stack->ninsn == 0);
11194 }
11195
11196
11197 bfd_boolean
11198 istack_full (IStack *stack)
11199 {
11200 return (stack->ninsn == MAX_ISTACK);
11201 }
11202
11203
11204 /* Return a pointer to the top IStack entry.
11205 It is an error to call this if istack_empty () is TRUE. */
11206
11207 TInsn *
11208 istack_top (IStack *stack)
11209 {
11210 int rec = stack->ninsn - 1;
11211 assert (!istack_empty (stack));
11212 return &stack->insn[rec];
11213 }
11214
11215
11216 /* Add a new TInsn to an IStack.
11217 It is an error to call this if istack_full () is TRUE. */
11218
11219 void
11220 istack_push (IStack *stack, TInsn *insn)
11221 {
11222 int rec = stack->ninsn;
11223 assert (!istack_full (stack));
11224 stack->insn[rec] = *insn;
11225 stack->ninsn++;
11226 }
11227
11228
11229 /* Clear space for the next TInsn on the IStack and return a pointer
11230 to it. It is an error to call this if istack_full () is TRUE. */
11231
11232 TInsn *
11233 istack_push_space (IStack *stack)
11234 {
11235 int rec = stack->ninsn;
11236 TInsn *insn;
11237 assert (!istack_full (stack));
11238 insn = &stack->insn[rec];
11239 memset (insn, 0, sizeof (TInsn));
11240 stack->ninsn++;
11241 return insn;
11242 }
11243
11244
11245 /* Remove the last pushed instruction. It is an error to call this if
11246 istack_empty () returns TRUE. */
11247
11248 void
11249 istack_pop (IStack *stack)
11250 {
11251 int rec = stack->ninsn - 1;
11252 assert (!istack_empty (stack));
11253 stack->ninsn--;
11254 memset (&stack->insn[rec], 0, sizeof (TInsn));
11255 }
11256
11257 \f
11258 /* TInsn functions. */
11259
11260 void
11261 tinsn_init (TInsn *dst)
11262 {
11263 memset (dst, 0, sizeof (TInsn));
11264 }
11265
11266
11267 /* Get the ``num''th token of the TInsn.
11268 It is illegal to call this if num > insn->ntoks. */
11269
11270 expressionS *
11271 tinsn_get_tok (TInsn *insn, int num)
11272 {
11273 assert (num < insn->ntok);
11274 return &insn->tok[num];
11275 }
11276
11277
11278 /* Return TRUE if ANY of the operands in the insn are symbolic. */
11279
11280 static bfd_boolean
11281 tinsn_has_symbolic_operands (const TInsn *insn)
11282 {
11283 int i;
11284 int n = insn->ntok;
11285
11286 assert (insn->insn_type == ITYPE_INSN);
11287
11288 for (i = 0; i < n; ++i)
11289 {
11290 switch (insn->tok[i].X_op)
11291 {
11292 case O_register:
11293 case O_constant:
11294 break;
11295 default:
11296 return TRUE;
11297 }
11298 }
11299 return FALSE;
11300 }
11301
11302
11303 bfd_boolean
11304 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
11305 {
11306 xtensa_isa isa = xtensa_default_isa;
11307 int i;
11308 int n = insn->ntok;
11309
11310 assert (insn->insn_type == ITYPE_INSN);
11311
11312 for (i = 0; i < n; ++i)
11313 {
11314 switch (insn->tok[i].X_op)
11315 {
11316 case O_register:
11317 case O_constant:
11318 break;
11319 case O_big:
11320 case O_illegal:
11321 case O_absent:
11322 /* Errors for these types are caught later. */
11323 break;
11324 case O_hi16:
11325 case O_lo16:
11326 default:
11327 /* Symbolic immediates are only allowed on the last immediate
11328 operand. At this time, CONST16 is the only opcode where we
11329 support non-PC-relative relocations. (It isn't necessary
11330 to complain about non-PC-relative relocations here, but
11331 otherwise, no error is reported until the relocations are
11332 generated, and the assembler won't get that far if there
11333 are any other errors. It's nice to see all the problems
11334 at once.) */
11335 if (i != get_relaxable_immed (insn->opcode)
11336 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11337 && insn->opcode != xtensa_const16_opcode))
11338 {
11339 as_bad (_("invalid symbolic operand %d on '%s'"),
11340 i, xtensa_opcode_name (isa, insn->opcode));
11341 return TRUE;
11342 }
11343 }
11344 }
11345 return FALSE;
11346 }
11347
11348
11349 /* For assembly code with complex expressions (e.g. subtraction),
11350 we have to build them in the literal pool so that
11351 their results are calculated correctly after relaxation.
11352 The relaxation only handles expressions that
11353 boil down to SYMBOL + OFFSET. */
11354
11355 static bfd_boolean
11356 tinsn_has_complex_operands (const TInsn *insn)
11357 {
11358 int i;
11359 int n = insn->ntok;
11360 assert (insn->insn_type == ITYPE_INSN);
11361 for (i = 0; i < n; ++i)
11362 {
11363 switch (insn->tok[i].X_op)
11364 {
11365 case O_register:
11366 case O_constant:
11367 case O_symbol:
11368 case O_lo16:
11369 case O_hi16:
11370 break;
11371 default:
11372 return TRUE;
11373 }
11374 }
11375 return FALSE;
11376 }
11377
11378
11379 /* Convert the constant operands in the tinsn to insnbuf.
11380 Return TRUE if there is a symbol in the immediate field.
11381
11382 Before this is called,
11383 1) the number of operands are correct
11384 2) the tinsn is a ITYPE_INSN
11385 3) ONLY the relaxable_ is built
11386 4) All operands are O_constant, O_symbol. All constants fit
11387 The return value tells whether there are any remaining O_symbols. */
11388
11389 static bfd_boolean
11390 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11391 {
11392 static xtensa_insnbuf slotbuf = 0;
11393 xtensa_isa isa = xtensa_default_isa;
11394 xtensa_opcode opcode = tinsn->opcode;
11395 xtensa_format fmt = xg_get_single_format (opcode);
11396 bfd_boolean has_fixup = FALSE;
11397 int noperands = xtensa_opcode_num_operands (isa, opcode);
11398 int i;
11399 uint32 opnd_value;
11400 char *file_name;
11401 int line;
11402
11403 if (!slotbuf)
11404 slotbuf = xtensa_insnbuf_alloc (isa);
11405
11406 assert (tinsn->insn_type == ITYPE_INSN);
11407 if (noperands != tinsn->ntok)
11408 as_fatal (_("operand number mismatch"));
11409
11410 if (xtensa_opcode_encode (isa, fmt, 0, slotbuf, opcode))
11411 as_fatal (_("cannot encode opcode"));
11412
11413 for (i = 0; i < noperands; ++i)
11414 {
11415 expressionS *expr = &tinsn->tok[i];
11416 switch (expr->X_op)
11417 {
11418 case O_register:
11419 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11420 break;
11421 /* The register number has already been checked in
11422 expression_maybe_register, so we don't need to check here. */
11423 opnd_value = expr->X_add_number;
11424 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11425 xtensa_operand_set_field (isa, opcode, i, fmt, 0,
11426 slotbuf, opnd_value);
11427 break;
11428
11429 case O_constant:
11430 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11431 break;
11432 as_where (&file_name, &line);
11433 /* It is a constant and we called this function,
11434 then we have to try to fit it. */
11435 xtensa_insnbuf_set_operand (slotbuf, fmt, 0, opcode, i,
11436 expr->X_add_number, file_name, line);
11437 break;
11438
11439 default:
11440 has_fixup = TRUE;
11441 break;
11442 }
11443 }
11444
11445 xtensa_format_encode (isa, fmt, insnbuf);
11446 xtensa_format_set_slot (isa, fmt, 0, insnbuf, slotbuf);
11447
11448 return has_fixup;
11449 }
11450
11451
11452 /* Convert the constant operands in the tinsn to slotbuf.
11453 Return TRUE if there is a symbol in the immediate field.
11454 (Eventually this should replace tinsn_to_insnbuf.) */
11455
11456 /* Before this is called,
11457 1) the number of operands are correct
11458 2) the tinsn is a ITYPE_INSN
11459 3) ONLY the relaxable_ is built
11460 4) All operands are
11461 O_constant, O_symbol
11462 All constants fit
11463
11464 The return value tells whether there are any remaining O_symbols. */
11465
11466 static bfd_boolean
11467 tinsn_to_slotbuf (xtensa_format fmt,
11468 int slot,
11469 TInsn *tinsn,
11470 xtensa_insnbuf slotbuf)
11471 {
11472 xtensa_isa isa = xtensa_default_isa;
11473 xtensa_opcode opcode = tinsn->opcode;
11474 bfd_boolean has_fixup = FALSE;
11475 int noperands = xtensa_opcode_num_operands (isa, opcode);
11476 int i;
11477
11478 *((int *) &slotbuf[0]) = 0;
11479 *((int *) &slotbuf[1]) = 0;
11480 assert (tinsn->insn_type == ITYPE_INSN);
11481 if (noperands != tinsn->ntok)
11482 as_fatal (_("operand number mismatch"));
11483
11484 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11485 {
11486 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11487 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11488 return FALSE;
11489 }
11490
11491 for (i = 0; i < noperands; i++)
11492 {
11493 expressionS *expr = &tinsn->tok[i];
11494 int rc, line;
11495 char *file_name;
11496 uint32 opnd_value;
11497
11498 switch (expr->X_op)
11499 {
11500 case O_register:
11501 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11502 break;
11503 /* The register number has already been checked in
11504 expression_maybe_register, so we don't need to check here. */
11505 opnd_value = expr->X_add_number;
11506 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11507 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11508 opnd_value);
11509 if (rc != 0)
11510 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11511 break;
11512
11513 case O_constant:
11514 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11515 break;
11516 as_where (&file_name, &line);
11517 /* It is a constant and we called this function
11518 then we have to try to fit it. */
11519 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11520 expr->X_add_number, file_name, line);
11521 break;
11522
11523 default:
11524 has_fixup = TRUE;
11525 break;
11526 }
11527 }
11528
11529 return has_fixup;
11530 }
11531
11532
11533 /* Check the instruction arguments. Return TRUE on failure. */
11534
11535 static bfd_boolean
11536 tinsn_check_arguments (const TInsn *insn)
11537 {
11538 xtensa_isa isa = xtensa_default_isa;
11539 xtensa_opcode opcode = insn->opcode;
11540
11541 if (opcode == XTENSA_UNDEFINED)
11542 {
11543 as_bad (_("invalid opcode"));
11544 return TRUE;
11545 }
11546
11547 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11548 {
11549 as_bad (_("too few operands"));
11550 return TRUE;
11551 }
11552
11553 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11554 {
11555 as_bad (_("too many operands"));
11556 return TRUE;
11557 }
11558 return FALSE;
11559 }
11560
11561
11562 /* Load an instruction from its encoded form. */
11563
11564 static void
11565 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11566 {
11567 vliw_insn vinsn;
11568
11569 xg_init_vinsn (&vinsn);
11570 vinsn_from_chars (&vinsn, f);
11571
11572 *tinsn = vinsn.slots[slot];
11573 xg_free_vinsn (&vinsn);
11574 }
11575
11576
11577 static void
11578 tinsn_from_insnbuf (TInsn *tinsn,
11579 xtensa_insnbuf slotbuf,
11580 xtensa_format fmt,
11581 int slot)
11582 {
11583 int i;
11584 xtensa_isa isa = xtensa_default_isa;
11585
11586 /* Find the immed. */
11587 tinsn_init (tinsn);
11588 tinsn->insn_type = ITYPE_INSN;
11589 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11590 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11591 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11592 for (i = 0; i < tinsn->ntok; i++)
11593 {
11594 set_expr_const (&tinsn->tok[i],
11595 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11596 tinsn->opcode, i));
11597 }
11598 }
11599
11600
11601 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11602
11603 static void
11604 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11605 {
11606 xtensa_opcode opcode = tinsn->opcode;
11607 int opnum;
11608
11609 if (fragP->tc_frag_data.slot_symbols[slot])
11610 {
11611 opnum = get_relaxable_immed (opcode);
11612 assert (opnum >= 0);
11613 if (fragP->tc_frag_data.slot_sub_symbols[slot])
11614 {
11615 set_expr_symbol_offset_diff
11616 (&tinsn->tok[opnum],
11617 fragP->tc_frag_data.slot_symbols[slot],
11618 fragP->tc_frag_data.slot_sub_symbols[slot],
11619 fragP->tc_frag_data.slot_offsets[slot]);
11620 }
11621 else
11622 {
11623 set_expr_symbol_offset
11624 (&tinsn->tok[opnum],
11625 fragP->tc_frag_data.slot_symbols[slot],
11626 fragP->tc_frag_data.slot_offsets[slot]);
11627 }
11628 }
11629 }
11630
11631
11632 static int
11633 get_num_stack_text_bytes (IStack *istack)
11634 {
11635 int i;
11636 int text_bytes = 0;
11637
11638 for (i = 0; i < istack->ninsn; i++)
11639 {
11640 TInsn *tinsn = &istack->insn[i];
11641 if (tinsn->insn_type == ITYPE_INSN)
11642 text_bytes += xg_get_single_size (tinsn->opcode);
11643 }
11644 return text_bytes;
11645 }
11646
11647
11648 static int
11649 get_num_stack_literal_bytes (IStack *istack)
11650 {
11651 int i;
11652 int lit_bytes = 0;
11653
11654 for (i = 0; i < istack->ninsn; i++)
11655 {
11656 TInsn *tinsn = &istack->insn[i];
11657 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11658 lit_bytes += 4;
11659 }
11660 return lit_bytes;
11661 }
11662
11663 \f
11664 /* vliw_insn functions. */
11665
11666 static void
11667 xg_init_vinsn (vliw_insn *v)
11668 {
11669 int i;
11670 xtensa_isa isa = xtensa_default_isa;
11671
11672 xg_clear_vinsn (v);
11673
11674 v->insnbuf = xtensa_insnbuf_alloc (isa);
11675 if (v->insnbuf == NULL)
11676 as_fatal (_("out of memory"));
11677
11678 for (i = 0; i < MAX_SLOTS; i++)
11679 {
11680 tinsn_init (&v->slots[i]);
11681 v->slots[i].opcode = XTENSA_UNDEFINED;
11682 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11683 if (v->slotbuf[i] == NULL)
11684 as_fatal (_("out of memory"));
11685 }
11686 }
11687
11688
11689 static void
11690 xg_clear_vinsn (vliw_insn *v)
11691 {
11692 int i;
11693 v->format = XTENSA_UNDEFINED;
11694 v->num_slots = 0;
11695 v->inside_bundle = FALSE;
11696
11697 if (xt_saved_debug_type != DEBUG_NONE)
11698 debug_type = xt_saved_debug_type;
11699
11700 for (i = 0; i < MAX_SLOTS; i++)
11701 {
11702 memset (&v->slots[i], 0, sizeof (TInsn));
11703 v->slots[i].opcode = XTENSA_UNDEFINED;
11704 }
11705 }
11706
11707
11708 static bfd_boolean
11709 vinsn_has_specific_opcodes (vliw_insn *v)
11710 {
11711 int i;
11712
11713 for (i = 0; i < v->num_slots; i++)
11714 {
11715 if (v->slots[i].is_specific_opcode)
11716 return TRUE;
11717 }
11718 return FALSE;
11719 }
11720
11721
11722 static void
11723 xg_free_vinsn (vliw_insn *v)
11724 {
11725 int i;
11726 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11727 for (i = 0; i < MAX_SLOTS; i++)
11728 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11729 }
11730
11731
11732 /* Before this is called, we should have
11733 filled out the following fields:
11734
11735 1) the number of operands for each opcode are correct
11736 2) the tinsn in the slots are ITYPE_INSN
11737 3) ONLY the relaxable_ is built
11738 4) All operands are
11739 O_constant, O_symbol
11740 All constants fit
11741
11742 The return value tells whether there are any remaining O_symbols. */
11743
11744 static bfd_boolean
11745 vinsn_to_insnbuf (vliw_insn *vinsn,
11746 char *frag_offset,
11747 fragS *fragP,
11748 bfd_boolean record_fixup)
11749 {
11750 xtensa_isa isa = xtensa_default_isa;
11751 xtensa_format fmt = vinsn->format;
11752 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11753 int slot;
11754 bfd_boolean has_fixup = FALSE;
11755
11756 xtensa_format_encode (isa, fmt, insnbuf);
11757
11758 for (slot = 0; slot < vinsn->num_slots; slot++)
11759 {
11760 TInsn *tinsn = &vinsn->slots[slot];
11761 bfd_boolean tinsn_has_fixup =
11762 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11763 vinsn->slotbuf[slot]);
11764
11765 xtensa_format_set_slot (isa, fmt, slot,
11766 insnbuf, vinsn->slotbuf[slot]);
11767 /* tinsn_has_fixup tracks if there is a fixup at all.
11768 record_fixup controls globally. I.E., we use this
11769 function from several places, some of which are after
11770 fixups have already been recorded. Finally,
11771 tinsn->record_fixup controls based on the individual ops,
11772 which may or may not need it based on the relaxation
11773 requirements. */
11774 if (tinsn_has_fixup && record_fixup)
11775 {
11776 int i;
11777 xtensa_opcode opcode = tinsn->opcode;
11778 int noperands = xtensa_opcode_num_operands (isa, opcode);
11779 has_fixup = TRUE;
11780
11781 for (i = 0; i < noperands; i++)
11782 {
11783 expressionS* expr = &tinsn->tok[i];
11784 switch (expr->X_op)
11785 {
11786 case O_symbol:
11787 case O_lo16:
11788 case O_hi16:
11789 if (get_relaxable_immed (opcode) == i)
11790 {
11791 if (tinsn->record_fix || expr->X_op != O_symbol)
11792 {
11793 if (!xg_add_opcode_fix
11794 (tinsn, i, fmt, slot, expr, fragP,
11795 frag_offset - fragP->fr_literal))
11796 as_bad (_("instruction with constant operands does not fit"));
11797 }
11798 else
11799 {
11800 tinsn->symbol = expr->X_add_symbol;
11801 tinsn->offset = expr->X_add_number;
11802 }
11803 }
11804 else
11805 as_bad (_("invalid operand %d on '%s'"),
11806 i, xtensa_opcode_name (isa, opcode));
11807 break;
11808
11809 case O_constant:
11810 case O_register:
11811 break;
11812
11813 case O_subtract:
11814 if (get_relaxable_immed (opcode) == i)
11815 {
11816 if (tinsn->record_fix)
11817 as_bad (_("invalid subtract operand"));
11818 else
11819 {
11820 tinsn->symbol = expr->X_add_symbol;
11821 tinsn->sub_symbol = expr->X_op_symbol;
11822 tinsn->offset = expr->X_add_number;
11823 }
11824 }
11825 else
11826 as_bad (_("invalid operand %d on '%s'"),
11827 i, xtensa_opcode_name (isa, opcode));
11828 break;
11829
11830 default:
11831 as_bad (_("invalid expression for operand %d on '%s'"),
11832 i, xtensa_opcode_name (isa, opcode));
11833 break;
11834 }
11835 }
11836 }
11837 }
11838
11839 return has_fixup;
11840 }
11841
11842
11843 static void
11844 vinsn_from_chars (vliw_insn *vinsn, char *f)
11845 {
11846 static xtensa_insnbuf insnbuf = NULL;
11847 static xtensa_insnbuf slotbuf = NULL;
11848 int i;
11849 xtensa_format fmt;
11850 xtensa_isa isa = xtensa_default_isa;
11851
11852 if (!insnbuf)
11853 {
11854 insnbuf = xtensa_insnbuf_alloc (isa);
11855 slotbuf = xtensa_insnbuf_alloc (isa);
11856 }
11857
11858 xtensa_insnbuf_from_chars (isa, insnbuf, f, 0);
11859 fmt = xtensa_format_decode (isa, insnbuf);
11860 if (fmt == XTENSA_UNDEFINED)
11861 as_fatal (_("cannot decode instruction format"));
11862 vinsn->format = fmt;
11863 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11864
11865 for (i = 0; i < vinsn->num_slots; i++)
11866 {
11867 TInsn *tinsn = &vinsn->slots[i];
11868 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11869 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11870 }
11871 }
11872
11873 \f
11874 /* Expression utilities. */
11875
11876 /* Return TRUE if the expression is an integer constant. */
11877
11878 bfd_boolean
11879 expr_is_const (const expressionS *s)
11880 {
11881 return (s->X_op == O_constant);
11882 }
11883
11884
11885 /* Get the expression constant.
11886 Calling this is illegal if expr_is_const () returns TRUE. */
11887
11888 offsetT
11889 get_expr_const (const expressionS *s)
11890 {
11891 assert (expr_is_const (s));
11892 return s->X_add_number;
11893 }
11894
11895
11896 /* Set the expression to a constant value. */
11897
11898 void
11899 set_expr_const (expressionS *s, offsetT val)
11900 {
11901 s->X_op = O_constant;
11902 s->X_add_number = val;
11903 s->X_add_symbol = NULL;
11904 s->X_op_symbol = NULL;
11905 }
11906
11907
11908 bfd_boolean
11909 expr_is_register (const expressionS *s)
11910 {
11911 return (s->X_op == O_register);
11912 }
11913
11914
11915 /* Get the expression constant.
11916 Calling this is illegal if expr_is_const () returns TRUE. */
11917
11918 offsetT
11919 get_expr_register (const expressionS *s)
11920 {
11921 assert (expr_is_register (s));
11922 return s->X_add_number;
11923 }
11924
11925
11926 /* Set the expression to a symbol + constant offset. */
11927
11928 void
11929 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11930 {
11931 s->X_op = O_symbol;
11932 s->X_add_symbol = sym;
11933 s->X_op_symbol = NULL; /* unused */
11934 s->X_add_number = offset;
11935 }
11936
11937
11938 /* Set the expression to symbol - minus_sym + offset. */
11939
11940 static void
11941 set_expr_symbol_offset_diff (expressionS *s,
11942 symbolS *sym,
11943 symbolS *minus_sym,
11944 offsetT offset)
11945 {
11946 s->X_op = O_subtract;
11947 s->X_add_symbol = sym;
11948 s->X_op_symbol = minus_sym; /* unused */
11949 s->X_add_number = offset;
11950 }
11951
11952
11953 /* Return TRUE if the two expressions are equal. */
11954
11955 bfd_boolean
11956 expr_is_equal (expressionS *s1, expressionS *s2)
11957 {
11958 if (s1->X_op != s2->X_op)
11959 return FALSE;
11960 if (s1->X_add_symbol != s2->X_add_symbol)
11961 return FALSE;
11962 if (s1->X_op_symbol != s2->X_op_symbol)
11963 return FALSE;
11964 if (s1->X_add_number != s2->X_add_number)
11965 return FALSE;
11966 return TRUE;
11967 }
11968
11969
11970 static void
11971 copy_expr (expressionS *dst, const expressionS *src)
11972 {
11973 memcpy (dst, src, sizeof (expressionS));
11974 }
11975
11976 \f
11977 /* Support for the "--rename-section" option. */
11978
11979 struct rename_section_struct
11980 {
11981 char *old_name;
11982 char *new_name;
11983 struct rename_section_struct *next;
11984 };
11985
11986 static struct rename_section_struct *section_rename;
11987
11988
11989 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11990 entries to the section_rename list. Note: Specifying multiple
11991 renamings separated by colons is not documented and is retained only
11992 for backward compatibility. */
11993
11994 static void
11995 build_section_rename (const char *arg)
11996 {
11997 struct rename_section_struct *r;
11998 char *this_arg = NULL;
11999 char *next_arg = NULL;
12000
12001 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
12002 {
12003 char *old_name, *new_name;
12004
12005 if (this_arg)
12006 {
12007 next_arg = strchr (this_arg, ':');
12008 if (next_arg)
12009 {
12010 *next_arg = '\0';
12011 next_arg++;
12012 }
12013 }
12014
12015 old_name = this_arg;
12016 new_name = strchr (this_arg, '=');
12017
12018 if (*old_name == '\0')
12019 {
12020 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
12021 continue;
12022 }
12023 if (!new_name || new_name[1] == '\0')
12024 {
12025 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
12026 old_name);
12027 continue;
12028 }
12029 *new_name = '\0';
12030 new_name++;
12031
12032 /* Check for invalid section renaming. */
12033 for (r = section_rename; r != NULL; r = r->next)
12034 {
12035 if (strcmp (r->old_name, old_name) == 0)
12036 as_bad (_("section %s renamed multiple times"), old_name);
12037 if (strcmp (r->new_name, new_name) == 0)
12038 as_bad (_("multiple sections remapped to output section %s"),
12039 new_name);
12040 }
12041
12042 /* Now add it. */
12043 r = (struct rename_section_struct *)
12044 xmalloc (sizeof (struct rename_section_struct));
12045 r->old_name = xstrdup (old_name);
12046 r->new_name = xstrdup (new_name);
12047 r->next = section_rename;
12048 section_rename = r;
12049 }
12050 }
12051
12052
12053 char *
12054 xtensa_section_rename (char *name)
12055 {
12056 struct rename_section_struct *r = section_rename;
12057
12058 for (r = section_rename; r != NULL; r = r->next)
12059 {
12060 if (strcmp (r->old_name, name) == 0)
12061 return r->new_name;
12062 }
12063
12064 return name;
12065 }