]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/as.texi
gas: make [248]byte directives available everywhere
[thirdparty/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2021 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2021 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2021 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-<N>}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--statistics}]
242 [@b{-v}] [@b{-version}] [@b{--version}]
243 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
244 [@b{-Z}] [@b{@@@var{FILE}}]
245 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
246 [@b{--elf-stt-common=[no|yes]}]
247 [@b{--generate-missing-build-notes=[no|yes]}]
248 [@b{--target-help}] [@var{target-options}]
249 [@b{--}|@var{files} @dots{}]
250 @c
251 @c man end
252 @c Target dependent options are listed below. Keep the list sorted.
253 @c Add an empty line for separation.
254 @c man begin TARGET
255 @ifset AARCH64
256
257 @emph{Target AArch64 options:}
258 [@b{-EB}|@b{-EL}]
259 [@b{-mabi}=@var{ABI}]
260 @end ifset
261 @ifset ALPHA
262
263 @emph{Target Alpha options:}
264 [@b{-m@var{cpu}}]
265 [@b{-mdebug} | @b{-no-mdebug}]
266 [@b{-replace} | @b{-noreplace}]
267 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
268 [@b{-F}] [@b{-32addr}]
269 @end ifset
270 @ifset ARC
271
272 @emph{Target ARC options:}
273 [@b{-mcpu=@var{cpu}}]
274 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
275 [@b{-mcode-density}]
276 [@b{-mrelax}]
277 [@b{-EB}|@b{-EL}]
278 @end ifset
279 @ifset ARM
280
281 @emph{Target ARM options:}
282 @c Don't document the deprecated options
283 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
284 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
285 [@b{-mfpu}=@var{floating-point-format}]
286 [@b{-mfloat-abi}=@var{abi}]
287 [@b{-meabi}=@var{ver}]
288 [@b{-mthumb}]
289 [@b{-EB}|@b{-EL}]
290 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
291 @b{-mapcs-reentrant}]
292 [@b{-mthumb-interwork}] [@b{-k}]
293 @end ifset
294 @ifset Blackfin
295
296 @emph{Target Blackfin options:}
297 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
298 [@b{-mfdpic}]
299 [@b{-mno-fdpic}]
300 [@b{-mnopic}]
301 @end ifset
302 @ifset BPF
303
304 @emph{Target BPF options:}
305 [@b{-EL}] [@b{-EB}]
306 @end ifset
307 @ifset CRIS
308
309 @emph{Target CRIS options:}
310 [@b{--underscore} | @b{--no-underscore}]
311 [@b{--pic}] [@b{-N}]
312 [@b{--emulation=criself} | @b{--emulation=crisaout}]
313 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
314 @c Deprecated -- deliberately not documented.
315 @c [@b{-h}] [@b{-H}]
316 @end ifset
317 @ifset CSKY
318
319 @emph{Target C-SKY options:}
320 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
321 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
322 [@b{-fpic}] [@b{-pic}]
323 [@b{-mljump}] [@b{-mno-ljump}]
324 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
325 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
326 [@b{-mnolrw }] [@b{-mno-lrw}]
327 [@b{-melrw}] [@b{-mno-elrw}]
328 [@b{-mlaf }] [@b{-mliterals-after-func}]
329 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
330 [@b{-mlabr}] [@b{-mliterals-after-br}]
331 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
332 [@b{-mistack}] [@b{-mno-istack}]
333 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
334 [@b{-msecurity}] [@b{-mtrust}]
335 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
336 @end ifset
337 @ifset D10V
338
339 @emph{Target D10V options:}
340 [@b{-O}]
341 @end ifset
342 @ifset D30V
343
344 @emph{Target D30V options:}
345 [@b{-O}|@b{-n}|@b{-N}]
346 @end ifset
347 @ifset EPIPHANY
348
349 @emph{Target EPIPHANY options:}
350 [@b{-mepiphany}|@b{-mepiphany16}]
351 @end ifset
352 @ifset H8
353
354 @emph{Target H8/300 options:}
355 [-h-tick-hex]
356 @end ifset
357 @ifset HPPA
358 @c HPPA has no machine-dependent assembler options (yet).
359 @end ifset
360 @ifset I80386
361
362 @emph{Target i386 options:}
363 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
364 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
365 @end ifset
366 @ifset IA64
367
368 @emph{Target IA-64 options:}
369 [@b{-mconstant-gp}|@b{-mauto-pic}]
370 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
371 [@b{-mle}|@b{mbe}]
372 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
373 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
374 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
375 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
376 @end ifset
377 @ifset IP2K
378
379 @emph{Target IP2K options:}
380 [@b{-mip2022}|@b{-mip2022ext}]
381 @end ifset
382 @ifset M32C
383
384 @emph{Target M32C options:}
385 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
386 @end ifset
387 @ifset M32R
388
389 @emph{Target M32R options:}
390 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
391 @b{--W[n]p}]
392 @end ifset
393 @ifset M680X0
394
395 @emph{Target M680X0 options:}
396 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
397 @end ifset
398 @ifset M68HC11
399
400 @emph{Target M68HC11 options:}
401 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
402 [@b{-mshort}|@b{-mlong}]
403 [@b{-mshort-double}|@b{-mlong-double}]
404 [@b{--force-long-branches}] [@b{--short-branches}]
405 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
406 [@b{--print-opcodes}] [@b{--generate-example}]
407 @end ifset
408 @ifset MCORE
409
410 @emph{Target MCORE options:}
411 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
412 [@b{-mcpu=[210|340]}]
413 @end ifset
414 @ifset METAG
415
416 @emph{Target Meta options:}
417 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
418 @end ifset
419 @ifset MICROBLAZE
420 @emph{Target MICROBLAZE options:}
421 @c MicroBlaze has no machine-dependent assembler options.
422 @end ifset
423 @ifset MIPS
424
425 @emph{Target MIPS options:}
426 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
427 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
428 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
429 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
430 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
431 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
432 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
433 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
434 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
435 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
436 [@b{-construct-floats}] [@b{-no-construct-floats}]
437 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
438 [@b{-mnan=@var{encoding}}]
439 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
440 [@b{-mips16}] [@b{-no-mips16}]
441 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
442 [@b{-mmicromips}] [@b{-mno-micromips}]
443 [@b{-msmartmips}] [@b{-mno-smartmips}]
444 [@b{-mips3d}] [@b{-no-mips3d}]
445 [@b{-mdmx}] [@b{-no-mdmx}]
446 [@b{-mdsp}] [@b{-mno-dsp}]
447 [@b{-mdspr2}] [@b{-mno-dspr2}]
448 [@b{-mdspr3}] [@b{-mno-dspr3}]
449 [@b{-mmsa}] [@b{-mno-msa}]
450 [@b{-mxpa}] [@b{-mno-xpa}]
451 [@b{-mmt}] [@b{-mno-mt}]
452 [@b{-mmcu}] [@b{-mno-mcu}]
453 [@b{-mcrc}] [@b{-mno-crc}]
454 [@b{-mginv}] [@b{-mno-ginv}]
455 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
456 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
457 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
458 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
459 [@b{-minsn32}] [@b{-mno-insn32}]
460 [@b{-mfix7000}] [@b{-mno-fix7000}]
461 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
462 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
463 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
464 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
465 [@b{-mdebug}] [@b{-no-mdebug}]
466 [@b{-mpdr}] [@b{-mno-pdr}]
467 @end ifset
468 @ifset MMIX
469
470 @emph{Target MMIX options:}
471 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
472 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
473 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
474 [@b{--linker-allocated-gregs}]
475 @end ifset
476 @ifset NIOSII
477
478 @emph{Target Nios II options:}
479 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
480 [@b{-EB}] [@b{-EL}]
481 @end ifset
482 @ifset NDS32
483
484 @emph{Target NDS32 options:}
485 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
486 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
487 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
488 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
489 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
490 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
491 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
492 [@b{-mb2bb}]
493 @end ifset
494 @ifset OPENRISC
495 @c OpenRISC has no machine-dependent assembler options.
496 @end ifset
497 @ifset PDP11
498
499 @emph{Target PDP11 options:}
500 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
501 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
502 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
503 @end ifset
504 @ifset PJ
505
506 @emph{Target picoJava options:}
507 [@b{-mb}|@b{-me}]
508 @end ifset
509 @ifset PPC
510
511 @emph{Target PowerPC options:}
512 [@b{-a32}|@b{-a64}]
513 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
514 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
515 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
516 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
517 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
518 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
519 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
520 [@b{-mregnames}|@b{-mno-regnames}]
521 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
522 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
523 [@b{-msolaris}|@b{-mno-solaris}]
524 [@b{-nops=@var{count}}]
525 @end ifset
526 @ifset PRU
527
528 @emph{Target PRU options:}
529 [@b{-link-relax}]
530 [@b{-mnolink-relax}]
531 [@b{-mno-warn-regname-label}]
532 @end ifset
533 @ifset RISCV
534
535 @emph{Target RISC-V options:}
536 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
537 [@b{-march}=@var{ISA}]
538 [@b{-mabi}=@var{ABI}]
539 [@b{-mlittle-endian}|@b{-mbig-endian}]
540 @end ifset
541 @ifset RL78
542
543 @emph{Target RL78 options:}
544 [@b{-mg10}]
545 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
546 @end ifset
547 @ifset RX
548
549 @emph{Target RX options:}
550 [@b{-mlittle-endian}|@b{-mbig-endian}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 [@b{-muse-conventional-section-names}]
553 [@b{-msmall-data-limit}]
554 [@b{-mpid}]
555 [@b{-mrelax}]
556 [@b{-mint-register=@var{number}}]
557 [@b{-mgcc-abi}|@b{-mrx-abi}]
558 @end ifset
559 @ifset S390
560
561 @emph{Target s390 options:}
562 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
563 [@b{-mregnames}|@b{-mno-regnames}]
564 [@b{-mwarn-areg-zero}]
565 @end ifset
566 @ifset SCORE
567
568 @emph{Target SCORE options:}
569 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
570 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
571 [@b{-march=score7}][@b{-march=score3}]
572 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
573 @end ifset
574 @ifset SPARC
575
576 @emph{Target SPARC options:}
577 @c The order here is important. See c-sparc.texi.
578 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
579 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
580 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
581 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
582 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
583 @b{-Asparcvisr}|@b{-Asparc5}]
584 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
585 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
586 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
587 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
588 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
589 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
590 @b{-bump}]
591 [@b{-32}|@b{-64}]
592 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
593 @end ifset
594 @ifset TIC54X
595
596 @emph{Target TIC54X options:}
597 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
598 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
599 @end ifset
600 @ifset TIC6X
601
602 @emph{Target TIC6X options:}
603 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
604 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
605 [@b{-mpic}|@b{-mno-pic}]
606 @end ifset
607 @ifset TILEGX
608
609 @emph{Target TILE-Gx options:}
610 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
611 @end ifset
612 @ifset TILEPRO
613 @c TILEPro has no machine-dependent assembler options
614 @end ifset
615 @ifset VISIUM
616
617 @emph{Target Visium options:}
618 [@b{-mtune=@var{arch}}]
619 @end ifset
620 @ifset XTENSA
621
622 @emph{Target Xtensa options:}
623 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
624 [@b{--[no-]absolute-literals}]
625 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
626 [@b{--[no-]transform}]
627 [@b{--rename-section} @var{oldname}=@var{newname}]
628 [@b{--[no-]trampolines}]
629 [@b{--abi-windowed}|@b{--abi-call0}]
630 @end ifset
631 @ifset Z80
632
633 @emph{Target Z80 options:}
634 [@b{-march=@var{CPU}@var{[-EXT]}@var{[+EXT]}}]
635 [@b{-local-prefix=}@var{PREFIX}]
636 [@b{-colonless}]
637 [@b{-sdcc}]
638 [@b{-fp-s=}@var{FORMAT}]
639 [@b{-fp-d=}@var{FORMAT}]
640 @end ifset
641 @ifset Z8000
642
643 @c Z8000 has no machine-dependent assembler options
644 @end ifset
645
646 @c man end
647 @end smallexample
648
649 @c man begin OPTIONS
650
651 @table @gcctabopt
652 @include at-file.texi
653
654 @item -a[cdghlmns]
655 Turn on listings, in any of a variety of ways:
656
657 @table @gcctabopt
658 @item -ac
659 omit false conditionals
660
661 @item -ad
662 omit debugging directives
663
664 @item -ag
665 include general information, like @value{AS} version and options passed
666
667 @item -ah
668 include high-level source
669
670 @item -al
671 include assembly
672
673 @item -am
674 include macro expansions
675
676 @item -an
677 omit forms processing
678
679 @item -as
680 include symbols
681
682 @item =file
683 set the name of the listing file
684 @end table
685
686 You may combine these options; for example, use @samp{-aln} for assembly
687 listing without forms processing. The @samp{=file} option, if used, must be
688 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
689
690 @item --alternate
691 Begin in alternate macro mode.
692 @ifclear man
693 @xref{Altmacro,,@code{.altmacro}}.
694 @end ifclear
695
696 @item --compress-debug-sections
697 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
698 ELF ABI. The resulting object file may not be compatible with older
699 linkers and object file utilities. Note if compression would make a
700 given section @emph{larger} then it is not compressed.
701
702 @ifset ELF
703 @cindex @samp{--compress-debug-sections=} option
704 @item --compress-debug-sections=none
705 @itemx --compress-debug-sections=zlib
706 @itemx --compress-debug-sections=zlib-gnu
707 @itemx --compress-debug-sections=zlib-gabi
708 These options control how DWARF debug sections are compressed.
709 @option{--compress-debug-sections=none} is equivalent to
710 @option{--nocompress-debug-sections}.
711 @option{--compress-debug-sections=zlib} and
712 @option{--compress-debug-sections=zlib-gabi} are equivalent to
713 @option{--compress-debug-sections}.
714 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
715 sections using zlib. The debug sections are renamed to begin with
716 @samp{.zdebug}. Note if compression would make a given section
717 @emph{larger} then it is not compressed nor renamed.
718
719 @end ifset
720
721 @item --nocompress-debug-sections
722 Do not compress DWARF debug sections. This is usually the default for all
723 targets except the x86/x86_64, but a configure time option can be used to
724 override this.
725
726 @item -D
727 Ignored. This option is accepted for script compatibility with calls to
728 other assemblers.
729
730 @item --debug-prefix-map @var{old}=@var{new}
731 When assembling files in directory @file{@var{old}}, record debugging
732 information describing them as in @file{@var{new}} instead.
733
734 @item --defsym @var{sym}=@var{value}
735 Define the symbol @var{sym} to be @var{value} before assembling the input file.
736 @var{value} must be an integer constant. As in C, a leading @samp{0x}
737 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
738 value. The value of the symbol can be overridden inside a source file via the
739 use of a @code{.set} pseudo-op.
740
741 @item -f
742 ``fast''---skip whitespace and comment preprocessing (assume source is
743 compiler output).
744
745 @item -g
746 @itemx --gen-debug
747 Generate debugging information for each assembler source line using whichever
748 debug format is preferred by the target. This currently means either STABS,
749 ECOFF or DWARF2. When the debug format is DWARF then a @code{.debug_info} and
750 @code{.debug_line} section is only emitted when the assembly file doesn't
751 generate one itself.
752
753 @item --gstabs
754 Generate stabs debugging information for each assembler line. This
755 may help debugging assembler code, if the debugger can handle it.
756
757 @item --gstabs+
758 Generate stabs debugging information for each assembler line, with GNU
759 extensions that probably only gdb can handle, and that could make other
760 debuggers crash or refuse to read your program. This
761 may help debugging assembler code. Currently the only GNU extension is
762 the location of the current working directory at assembling time.
763
764 @item --gdwarf-2
765 Generate DWARF2 debugging information for each assembler line. This
766 may help debugging assembler code, if the debugger can handle it. Note---this
767 option is only supported by some targets, not all of them.
768
769 @item --gdwarf-3
770 This option is the same as the @option{--gdwarf-2} option, except that it
771 allows for the possibility of the generation of extra debug information as per
772 version 3 of the DWARF specification. Note - enabling this option does not
773 guarantee the generation of any extra information, the choice to do so is on a
774 per target basis.
775
776 @item --gdwarf-4
777 This option is the same as the @option{--gdwarf-2} option, except that it
778 allows for the possibility of the generation of extra debug information as per
779 version 4 of the DWARF specification. Note - enabling this option does not
780 guarantee the generation of any extra information, the choice to do so is on a
781 per target basis.
782
783 @item --gdwarf-5
784 This option is the same as the @option{--gdwarf-2} option, except that it
785 allows for the possibility of the generation of extra debug information as per
786 version 5 of the DWARF specification. Note - enabling this option does not
787 guarantee the generation of any extra information, the choice to do so is on a
788 per target basis.
789
790 @item --gdwarf-sections
791 Instead of creating a .debug_line section, create a series of
792 .debug_line.@var{foo} sections where @var{foo} is the name of the
793 corresponding code section. For example a code section called @var{.text.func}
794 will have its dwarf line number information placed into a section called
795 @var{.debug_line.text.func}. If the code section is just called @var{.text}
796 then debug line section will still be called just @var{.debug_line} without any
797 suffix.
798
799 @item --gdwarf-cie-version=@var{version}
800 Control which version of DWARF Common Information Entries (CIEs) are produced.
801 When this flag is not specificed the default is version 1, though some targets
802 can modify this default. Other possible values for @var{version} are 3 or 4.
803
804 @ifset ELF
805 @item --size-check=error
806 @itemx --size-check=warning
807 Issue an error or warning for invalid ELF .size directive.
808
809 @item --elf-stt-common=no
810 @itemx --elf-stt-common=yes
811 These options control whether the ELF assembler should generate common
812 symbols with the @code{STT_COMMON} type. The default can be controlled
813 by a configure option @option{--enable-elf-stt-common}.
814
815 @item --generate-missing-build-notes=yes
816 @itemx --generate-missing-build-notes=no
817 These options control whether the ELF assembler should generate GNU Build
818 attribute notes if none are present in the input sources.
819 The default can be controlled by the @option{--enable-generate-build-notes}
820 configure option.
821
822 @end ifset
823
824 @item --help
825 Print a summary of the command-line options and exit.
826
827 @item --target-help
828 Print a summary of all target specific options and exit.
829
830 @item -I @var{dir}
831 Add directory @var{dir} to the search list for @code{.include} directives.
832
833 @item -J
834 Don't warn about signed overflow.
835
836 @item -K
837 @ifclear DIFF-TBL-KLUGE
838 This option is accepted but has no effect on the @value{TARGET} family.
839 @end ifclear
840 @ifset DIFF-TBL-KLUGE
841 Issue warnings when difference tables altered for long displacements.
842 @end ifset
843
844 @item -L
845 @itemx --keep-locals
846 Keep (in the symbol table) local symbols. These symbols start with
847 system-specific local label prefixes, typically @samp{.L} for ELF systems
848 or @samp{L} for traditional a.out systems.
849 @ifclear man
850 @xref{Symbol Names}.
851 @end ifclear
852
853 @item --listing-lhs-width=@var{number}
854 Set the maximum width, in words, of the output data column for an assembler
855 listing to @var{number}.
856
857 @item --listing-lhs-width2=@var{number}
858 Set the maximum width, in words, of the output data column for continuation
859 lines in an assembler listing to @var{number}.
860
861 @item --listing-rhs-width=@var{number}
862 Set the maximum width of an input source line, as displayed in a listing, to
863 @var{number} bytes.
864
865 @item --listing-cont-lines=@var{number}
866 Set the maximum number of lines printed in a listing for a single line of input
867 to @var{number} + 1.
868
869 @item --no-pad-sections
870 Stop the assembler for padding the ends of output sections to the alignment
871 of that section. The default is to pad the sections, but this can waste space
872 which might be needed on targets which have tight memory constraints.
873
874 @item -o @var{objfile}
875 Name the object-file output from @command{@value{AS}} @var{objfile}.
876
877 @item -R
878 Fold the data section into the text section.
879
880 @ifset ELF
881 @item --sectname-subst
882 Honor substitution sequences in section names.
883 @ifclear man
884 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
885 @end ifclear
886 @end ifset
887
888 @item --statistics
889 Print the maximum space (in bytes) and total time (in seconds) used by
890 assembly.
891
892 @item --strip-local-absolute
893 Remove local absolute symbols from the outgoing symbol table.
894
895 @item -v
896 @itemx -version
897 Print the @command{as} version.
898
899 @item --version
900 Print the @command{as} version and exit.
901
902 @item -W
903 @itemx --no-warn
904 Suppress warning messages.
905
906 @item --fatal-warnings
907 Treat warnings as errors.
908
909 @item --warn
910 Don't suppress warning messages or treat them as errors.
911
912 @item -w
913 Ignored.
914
915 @item -x
916 Ignored.
917
918 @item -Z
919 Generate an object file even after errors.
920
921 @item -- | @var{files} @dots{}
922 Standard input, or source files to assemble.
923
924 @end table
925 @c man end
926
927 @ifset AARCH64
928
929 @ifclear man
930 @xref{AArch64 Options}, for the options available when @value{AS} is configured
931 for the 64-bit mode of the ARM Architecture (AArch64).
932 @end ifclear
933
934 @ifset man
935 @c man begin OPTIONS
936 The following options are available when @value{AS} is configured for the
937 64-bit mode of the ARM Architecture (AArch64).
938 @c man end
939 @c man begin INCLUDE
940 @include c-aarch64.texi
941 @c ended inside the included file
942 @end ifset
943
944 @end ifset
945
946 @ifset ALPHA
947
948 @ifclear man
949 @xref{Alpha Options}, for the options available when @value{AS} is configured
950 for an Alpha processor.
951 @end ifclear
952
953 @ifset man
954 @c man begin OPTIONS
955 The following options are available when @value{AS} is configured for an Alpha
956 processor.
957 @c man end
958 @c man begin INCLUDE
959 @include c-alpha.texi
960 @c ended inside the included file
961 @end ifset
962
963 @end ifset
964
965 @c man begin OPTIONS
966 @ifset ARC
967 The following options are available when @value{AS} is configured for an ARC
968 processor.
969
970 @table @gcctabopt
971 @item -mcpu=@var{cpu}
972 This option selects the core processor variant.
973 @item -EB | -EL
974 Select either big-endian (-EB) or little-endian (-EL) output.
975 @item -mcode-density
976 Enable Code Density extension instructions.
977 @end table
978 @end ifset
979
980 @ifset ARM
981 The following options are available when @value{AS} is configured for the ARM
982 processor family.
983
984 @table @gcctabopt
985 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
986 Specify which ARM processor variant is the target.
987 @item -march=@var{architecture}[+@var{extension}@dots{}]
988 Specify which ARM architecture variant is used by the target.
989 @item -mfpu=@var{floating-point-format}
990 Select which Floating Point architecture is the target.
991 @item -mfloat-abi=@var{abi}
992 Select which floating point ABI is in use.
993 @item -mthumb
994 Enable Thumb only instruction decoding.
995 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
996 Select which procedure calling convention is in use.
997 @item -EB | -EL
998 Select either big-endian (-EB) or little-endian (-EL) output.
999 @item -mthumb-interwork
1000 Specify that the code has been generated with interworking between Thumb and
1001 ARM code in mind.
1002 @item -mccs
1003 Turns on CodeComposer Studio assembly syntax compatibility mode.
1004 @item -k
1005 Specify that PIC code has been generated.
1006 @end table
1007 @end ifset
1008 @c man end
1009
1010 @ifset Blackfin
1011
1012 @ifclear man
1013 @xref{Blackfin Options}, for the options available when @value{AS} is
1014 configured for the Blackfin processor family.
1015 @end ifclear
1016
1017 @ifset man
1018 @c man begin OPTIONS
1019 The following options are available when @value{AS} is configured for
1020 the Blackfin processor family.
1021 @c man end
1022 @c man begin INCLUDE
1023 @include c-bfin.texi
1024 @c ended inside the included file
1025 @end ifset
1026
1027 @end ifset
1028
1029 @ifset BPF
1030
1031 @ifclear man
1032 @xref{BPF Options}, for the options available when @value{AS} is
1033 configured for the Linux kernel BPF processor family.
1034 @end ifclear
1035
1036 @ifset man
1037 @c man begin OPTIONS
1038 The following options are available when @value{AS} is configured for
1039 the Linux kernel BPF processor family.
1040 @c man end
1041 @c man begin INCLUDE
1042 @include c-bpf.texi
1043 @c ended inside the included file
1044 @end ifset
1045
1046 @end ifset
1047
1048 @c man begin OPTIONS
1049 @ifset CRIS
1050 See the info pages for documentation of the CRIS-specific options.
1051 @end ifset
1052
1053 @ifset CSKY
1054
1055 @ifclear man
1056 @xref{C-SKY Options}, for the options available when @value{AS} is
1057 configured for the C-SKY processor family.
1058 @end ifclear
1059
1060 @ifset man
1061 @c man begin OPTIONS
1062 The following options are available when @value{AS} is configured for
1063 the C-SKY processor family.
1064 @c man end
1065 @c man begin INCLUDE
1066 @include c-csky.texi
1067 @c ended inside the included file
1068 @end ifset
1069
1070 @end ifset
1071
1072 @ifset D10V
1073 The following options are available when @value{AS} is configured for
1074 a D10V processor.
1075 @table @gcctabopt
1076 @cindex D10V optimization
1077 @cindex optimization, D10V
1078 @item -O
1079 Optimize output by parallelizing instructions.
1080 @end table
1081 @end ifset
1082
1083 @ifset D30V
1084 The following options are available when @value{AS} is configured for a D30V
1085 processor.
1086 @table @gcctabopt
1087 @cindex D30V optimization
1088 @cindex optimization, D30V
1089 @item -O
1090 Optimize output by parallelizing instructions.
1091
1092 @cindex D30V nops
1093 @item -n
1094 Warn when nops are generated.
1095
1096 @cindex D30V nops after 32-bit multiply
1097 @item -N
1098 Warn when a nop after a 32-bit multiply instruction is generated.
1099 @end table
1100 @end ifset
1101 @c man end
1102
1103 @ifset EPIPHANY
1104 The following options are available when @value{AS} is configured for the
1105 Adapteva EPIPHANY series.
1106
1107 @ifclear man
1108 @xref{Epiphany Options}, for the options available when @value{AS} is
1109 configured for an Epiphany processor.
1110 @end ifclear
1111
1112 @ifset man
1113 @c man begin OPTIONS
1114 The following options are available when @value{AS} is configured for
1115 an Epiphany processor.
1116 @c man end
1117 @c man begin INCLUDE
1118 @include c-epiphany.texi
1119 @c ended inside the included file
1120 @end ifset
1121
1122 @end ifset
1123
1124 @ifset H8300
1125
1126 @ifclear man
1127 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1128 for an H8/300 processor.
1129 @end ifclear
1130
1131 @ifset man
1132 @c man begin OPTIONS
1133 The following options are available when @value{AS} is configured for an H8/300
1134 processor.
1135 @c man end
1136 @c man begin INCLUDE
1137 @include c-h8300.texi
1138 @c ended inside the included file
1139 @end ifset
1140
1141 @end ifset
1142
1143 @ifset I80386
1144
1145 @ifclear man
1146 @xref{i386-Options}, for the options available when @value{AS} is
1147 configured for an i386 processor.
1148 @end ifclear
1149
1150 @ifset man
1151 @c man begin OPTIONS
1152 The following options are available when @value{AS} is configured for
1153 an i386 processor.
1154 @c man end
1155 @c man begin INCLUDE
1156 @include c-i386.texi
1157 @c ended inside the included file
1158 @end ifset
1159
1160 @end ifset
1161
1162 @c man begin OPTIONS
1163 @ifset IP2K
1164 The following options are available when @value{AS} is configured for the
1165 Ubicom IP2K series.
1166
1167 @table @gcctabopt
1168
1169 @item -mip2022ext
1170 Specifies that the extended IP2022 instructions are allowed.
1171
1172 @item -mip2022
1173 Restores the default behaviour, which restricts the permitted instructions to
1174 just the basic IP2022 ones.
1175
1176 @end table
1177 @end ifset
1178
1179 @ifset M32C
1180 The following options are available when @value{AS} is configured for the
1181 Renesas M32C and M16C processors.
1182
1183 @table @gcctabopt
1184
1185 @item -m32c
1186 Assemble M32C instructions.
1187
1188 @item -m16c
1189 Assemble M16C instructions (the default).
1190
1191 @item -relax
1192 Enable support for link-time relaxations.
1193
1194 @item -h-tick-hex
1195 Support H'00 style hex constants in addition to 0x00 style.
1196
1197 @end table
1198 @end ifset
1199
1200 @ifset M32R
1201 The following options are available when @value{AS} is configured for the
1202 Renesas M32R (formerly Mitsubishi M32R) series.
1203
1204 @table @gcctabopt
1205
1206 @item --m32rx
1207 Specify which processor in the M32R family is the target. The default
1208 is normally the M32R, but this option changes it to the M32RX.
1209
1210 @item --warn-explicit-parallel-conflicts or --Wp
1211 Produce warning messages when questionable parallel constructs are
1212 encountered.
1213
1214 @item --no-warn-explicit-parallel-conflicts or --Wnp
1215 Do not produce warning messages when questionable parallel constructs are
1216 encountered.
1217
1218 @end table
1219 @end ifset
1220
1221 @ifset M680X0
1222 The following options are available when @value{AS} is configured for the
1223 Motorola 68000 series.
1224
1225 @table @gcctabopt
1226
1227 @item -l
1228 Shorten references to undefined symbols, to one word instead of two.
1229
1230 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1231 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1232 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1233 Specify what processor in the 68000 family is the target. The default
1234 is normally the 68020, but this can be changed at configuration time.
1235
1236 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1237 The target machine does (or does not) have a floating-point coprocessor.
1238 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1239 the basic 68000 is not compatible with the 68881, a combination of the
1240 two can be specified, since it's possible to do emulation of the
1241 coprocessor instructions with the main processor.
1242
1243 @item -m68851 | -mno-68851
1244 The target machine does (or does not) have a memory-management
1245 unit coprocessor. The default is to assume an MMU for 68020 and up.
1246
1247 @end table
1248 @end ifset
1249
1250 @ifset NIOSII
1251
1252 @ifclear man
1253 @xref{Nios II Options}, for the options available when @value{AS} is configured
1254 for an Altera Nios II processor.
1255 @end ifclear
1256
1257 @ifset man
1258 @c man begin OPTIONS
1259 The following options are available when @value{AS} is configured for an
1260 Altera Nios II processor.
1261 @c man end
1262 @c man begin INCLUDE
1263 @include c-nios2.texi
1264 @c ended inside the included file
1265 @end ifset
1266 @end ifset
1267
1268 @ifset PDP11
1269
1270 For details about the PDP-11 machine dependent features options,
1271 see @ref{PDP-11-Options}.
1272
1273 @table @gcctabopt
1274 @item -mpic | -mno-pic
1275 Generate position-independent (or position-dependent) code. The
1276 default is @option{-mpic}.
1277
1278 @item -mall
1279 @itemx -mall-extensions
1280 Enable all instruction set extensions. This is the default.
1281
1282 @item -mno-extensions
1283 Disable all instruction set extensions.
1284
1285 @item -m@var{extension} | -mno-@var{extension}
1286 Enable (or disable) a particular instruction set extension.
1287
1288 @item -m@var{cpu}
1289 Enable the instruction set extensions supported by a particular CPU, and
1290 disable all other extensions.
1291
1292 @item -m@var{machine}
1293 Enable the instruction set extensions supported by a particular machine
1294 model, and disable all other extensions.
1295 @end table
1296
1297 @end ifset
1298
1299 @ifset PJ
1300 The following options are available when @value{AS} is configured for
1301 a picoJava processor.
1302
1303 @table @gcctabopt
1304
1305 @cindex PJ endianness
1306 @cindex endianness, PJ
1307 @cindex big endian output, PJ
1308 @item -mb
1309 Generate ``big endian'' format output.
1310
1311 @cindex little endian output, PJ
1312 @item -ml
1313 Generate ``little endian'' format output.
1314
1315 @end table
1316 @end ifset
1317
1318 @ifset PRU
1319
1320 @ifclear man
1321 @xref{PRU Options}, for the options available when @value{AS} is configured
1322 for a PRU processor.
1323 @end ifclear
1324
1325 @ifset man
1326 @c man begin OPTIONS
1327 The following options are available when @value{AS} is configured for a
1328 PRU processor.
1329 @c man end
1330 @c man begin INCLUDE
1331 @include c-pru.texi
1332 @c ended inside the included file
1333 @end ifset
1334 @end ifset
1335
1336 @ifset M68HC11
1337 The following options are available when @value{AS} is configured for the
1338 Motorola 68HC11 or 68HC12 series.
1339
1340 @table @gcctabopt
1341
1342 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1343 Specify what processor is the target. The default is
1344 defined by the configuration option when building the assembler.
1345
1346 @item --xgate-ramoffset
1347 Instruct the linker to offset RAM addresses from S12X address space into
1348 XGATE address space.
1349
1350 @item -mshort
1351 Specify to use the 16-bit integer ABI.
1352
1353 @item -mlong
1354 Specify to use the 32-bit integer ABI.
1355
1356 @item -mshort-double
1357 Specify to use the 32-bit double ABI.
1358
1359 @item -mlong-double
1360 Specify to use the 64-bit double ABI.
1361
1362 @item --force-long-branches
1363 Relative branches are turned into absolute ones. This concerns
1364 conditional branches, unconditional branches and branches to a
1365 sub routine.
1366
1367 @item -S | --short-branches
1368 Do not turn relative branches into absolute ones
1369 when the offset is out of range.
1370
1371 @item --strict-direct-mode
1372 Do not turn the direct addressing mode into extended addressing mode
1373 when the instruction does not support direct addressing mode.
1374
1375 @item --print-insn-syntax
1376 Print the syntax of instruction in case of error.
1377
1378 @item --print-opcodes
1379 Print the list of instructions with syntax and then exit.
1380
1381 @item --generate-example
1382 Print an example of instruction for each possible instruction and then exit.
1383 This option is only useful for testing @command{@value{AS}}.
1384
1385 @end table
1386 @end ifset
1387
1388 @ifset SPARC
1389 The following options are available when @command{@value{AS}} is configured
1390 for the SPARC architecture:
1391
1392 @table @gcctabopt
1393 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1394 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1395 Explicitly select a variant of the SPARC architecture.
1396
1397 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1398 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1399
1400 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1401 UltraSPARC extensions.
1402
1403 @item -xarch=v8plus | -xarch=v8plusa
1404 For compatibility with the Solaris v9 assembler. These options are
1405 equivalent to -Av8plus and -Av8plusa, respectively.
1406
1407 @item -bump
1408 Warn when the assembler switches to another architecture.
1409 @end table
1410 @end ifset
1411
1412 @ifset TIC54X
1413 The following options are available when @value{AS} is configured for the 'c54x
1414 architecture.
1415
1416 @table @gcctabopt
1417 @item -mfar-mode
1418 Enable extended addressing mode. All addresses and relocations will assume
1419 extended addressing (usually 23 bits).
1420 @item -mcpu=@var{CPU_VERSION}
1421 Sets the CPU version being compiled for.
1422 @item -merrors-to-file @var{FILENAME}
1423 Redirect error output to a file, for broken systems which don't support such
1424 behaviour in the shell.
1425 @end table
1426 @end ifset
1427
1428 @ifset MIPS
1429 @c man begin OPTIONS
1430 The following options are available when @value{AS} is configured for
1431 a MIPS processor.
1432
1433 @table @gcctabopt
1434 @item -G @var{num}
1435 This option sets the largest size of an object that can be referenced
1436 implicitly with the @code{gp} register. It is only accepted for targets that
1437 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1438
1439 @cindex MIPS endianness
1440 @cindex endianness, MIPS
1441 @cindex big endian output, MIPS
1442 @item -EB
1443 Generate ``big endian'' format output.
1444
1445 @cindex little endian output, MIPS
1446 @item -EL
1447 Generate ``little endian'' format output.
1448
1449 @cindex MIPS ISA
1450 @item -mips1
1451 @itemx -mips2
1452 @itemx -mips3
1453 @itemx -mips4
1454 @itemx -mips5
1455 @itemx -mips32
1456 @itemx -mips32r2
1457 @itemx -mips32r3
1458 @itemx -mips32r5
1459 @itemx -mips32r6
1460 @itemx -mips64
1461 @itemx -mips64r2
1462 @itemx -mips64r3
1463 @itemx -mips64r5
1464 @itemx -mips64r6
1465 Generate code for a particular MIPS Instruction Set Architecture level.
1466 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1467 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1468 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1469 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1470 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1471 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1472 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1473 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1474 MIPS64 Release 6 ISA processors, respectively.
1475
1476 @item -march=@var{cpu}
1477 Generate code for a particular MIPS CPU.
1478
1479 @item -mtune=@var{cpu}
1480 Schedule and tune for a particular MIPS CPU.
1481
1482 @item -mfix7000
1483 @itemx -mno-fix7000
1484 Cause nops to be inserted if the read of the destination register
1485 of an mfhi or mflo instruction occurs in the following two instructions.
1486
1487 @item -mfix-rm7000
1488 @itemx -mno-fix-rm7000
1489 Cause nops to be inserted if a dmult or dmultu instruction is
1490 followed by a load instruction.
1491
1492 @item -mfix-r5900
1493 @itemx -mno-fix-r5900
1494 Do not attempt to schedule the preceding instruction into the delay slot
1495 of a branch instruction placed at the end of a short loop of six
1496 instructions or fewer and always schedule a @code{nop} instruction there
1497 instead. The short loop bug under certain conditions causes loops to
1498 execute only once or twice, due to a hardware bug in the R5900 chip.
1499
1500 @item -mdebug
1501 @itemx -no-mdebug
1502 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1503 section instead of the standard ELF .stabs sections.
1504
1505 @item -mpdr
1506 @itemx -mno-pdr
1507 Control generation of @code{.pdr} sections.
1508
1509 @item -mgp32
1510 @itemx -mfp32
1511 The register sizes are normally inferred from the ISA and ABI, but these
1512 flags force a certain group of registers to be treated as 32 bits wide at
1513 all times. @samp{-mgp32} controls the size of general-purpose registers
1514 and @samp{-mfp32} controls the size of floating-point registers.
1515
1516 @item -mgp64
1517 @itemx -mfp64
1518 The register sizes are normally inferred from the ISA and ABI, but these
1519 flags force a certain group of registers to be treated as 64 bits wide at
1520 all times. @samp{-mgp64} controls the size of general-purpose registers
1521 and @samp{-mfp64} controls the size of floating-point registers.
1522
1523 @item -mfpxx
1524 The register sizes are normally inferred from the ISA and ABI, but using
1525 this flag in combination with @samp{-mabi=32} enables an ABI variant
1526 which will operate correctly with floating-point registers which are
1527 32 or 64 bits wide.
1528
1529 @item -modd-spreg
1530 @itemx -mno-odd-spreg
1531 Enable use of floating-point operations on odd-numbered single-precision
1532 registers when supported by the ISA. @samp{-mfpxx} implies
1533 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1534
1535 @item -mips16
1536 @itemx -no-mips16
1537 Generate code for the MIPS 16 processor. This is equivalent to putting
1538 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1539 turns off this option.
1540
1541 @item -mmips16e2
1542 @itemx -mno-mips16e2
1543 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1544 to putting @code{.module mips16e2} at the start of the assembly file.
1545 @samp{-mno-mips16e2} turns off this option.
1546
1547 @item -mmicromips
1548 @itemx -mno-micromips
1549 Generate code for the microMIPS processor. This is equivalent to putting
1550 @code{.module micromips} at the start of the assembly file.
1551 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1552 @code{.module nomicromips} at the start of the assembly file.
1553
1554 @item -msmartmips
1555 @itemx -mno-smartmips
1556 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1557 equivalent to putting @code{.module smartmips} at the start of the assembly
1558 file. @samp{-mno-smartmips} turns off this option.
1559
1560 @item -mips3d
1561 @itemx -no-mips3d
1562 Generate code for the MIPS-3D Application Specific Extension.
1563 This tells the assembler to accept MIPS-3D instructions.
1564 @samp{-no-mips3d} turns off this option.
1565
1566 @item -mdmx
1567 @itemx -no-mdmx
1568 Generate code for the MDMX Application Specific Extension.
1569 This tells the assembler to accept MDMX instructions.
1570 @samp{-no-mdmx} turns off this option.
1571
1572 @item -mdsp
1573 @itemx -mno-dsp
1574 Generate code for the DSP Release 1 Application Specific Extension.
1575 This tells the assembler to accept DSP Release 1 instructions.
1576 @samp{-mno-dsp} turns off this option.
1577
1578 @item -mdspr2
1579 @itemx -mno-dspr2
1580 Generate code for the DSP Release 2 Application Specific Extension.
1581 This option implies @samp{-mdsp}.
1582 This tells the assembler to accept DSP Release 2 instructions.
1583 @samp{-mno-dspr2} turns off this option.
1584
1585 @item -mdspr3
1586 @itemx -mno-dspr3
1587 Generate code for the DSP Release 3 Application Specific Extension.
1588 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1589 This tells the assembler to accept DSP Release 3 instructions.
1590 @samp{-mno-dspr3} turns off this option.
1591
1592 @item -mmsa
1593 @itemx -mno-msa
1594 Generate code for the MIPS SIMD Architecture Extension.
1595 This tells the assembler to accept MSA instructions.
1596 @samp{-mno-msa} turns off this option.
1597
1598 @item -mxpa
1599 @itemx -mno-xpa
1600 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1601 This tells the assembler to accept XPA instructions.
1602 @samp{-mno-xpa} turns off this option.
1603
1604 @item -mmt
1605 @itemx -mno-mt
1606 Generate code for the MT Application Specific Extension.
1607 This tells the assembler to accept MT instructions.
1608 @samp{-mno-mt} turns off this option.
1609
1610 @item -mmcu
1611 @itemx -mno-mcu
1612 Generate code for the MCU Application Specific Extension.
1613 This tells the assembler to accept MCU instructions.
1614 @samp{-mno-mcu} turns off this option.
1615
1616 @item -mcrc
1617 @itemx -mno-crc
1618 Generate code for the MIPS cyclic redundancy check (CRC) Application
1619 Specific Extension. This tells the assembler to accept CRC instructions.
1620 @samp{-mno-crc} turns off this option.
1621
1622 @item -mginv
1623 @itemx -mno-ginv
1624 Generate code for the Global INValidate (GINV) Application Specific
1625 Extension. This tells the assembler to accept GINV instructions.
1626 @samp{-mno-ginv} turns off this option.
1627
1628 @item -mloongson-mmi
1629 @itemx -mno-loongson-mmi
1630 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1631 Application Specific Extension. This tells the assembler to accept MMI
1632 instructions.
1633 @samp{-mno-loongson-mmi} turns off this option.
1634
1635 @item -mloongson-cam
1636 @itemx -mno-loongson-cam
1637 Generate code for the Loongson Content Address Memory (CAM) instructions.
1638 This tells the assembler to accept Loongson CAM instructions.
1639 @samp{-mno-loongson-cam} turns off this option.
1640
1641 @item -mloongson-ext
1642 @itemx -mno-loongson-ext
1643 Generate code for the Loongson EXTensions (EXT) instructions.
1644 This tells the assembler to accept Loongson EXT instructions.
1645 @samp{-mno-loongson-ext} turns off this option.
1646
1647 @item -mloongson-ext2
1648 @itemx -mno-loongson-ext2
1649 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1650 This option implies @samp{-mloongson-ext}.
1651 This tells the assembler to accept Loongson EXT2 instructions.
1652 @samp{-mno-loongson-ext2} turns off this option.
1653
1654 @item -minsn32
1655 @itemx -mno-insn32
1656 Only use 32-bit instruction encodings when generating code for the
1657 microMIPS processor. This option inhibits the use of any 16-bit
1658 instructions. This is equivalent to putting @code{.set insn32} at
1659 the start of the assembly file. @samp{-mno-insn32} turns off this
1660 option. This is equivalent to putting @code{.set noinsn32} at the
1661 start of the assembly file. By default @samp{-mno-insn32} is
1662 selected, allowing all instructions to be used.
1663
1664 @item --construct-floats
1665 @itemx --no-construct-floats
1666 The @samp{--no-construct-floats} option disables the construction of
1667 double width floating point constants by loading the two halves of the
1668 value into the two single width floating point registers that make up
1669 the double width register. By default @samp{--construct-floats} is
1670 selected, allowing construction of these floating point constants.
1671
1672 @item --relax-branch
1673 @itemx --no-relax-branch
1674 The @samp{--relax-branch} option enables the relaxation of out-of-range
1675 branches. By default @samp{--no-relax-branch} is selected, causing any
1676 out-of-range branches to produce an error.
1677
1678 @item -mignore-branch-isa
1679 @itemx -mno-ignore-branch-isa
1680 Ignore branch checks for invalid transitions between ISA modes. The
1681 semantics of branches does not provide for an ISA mode switch, so in
1682 most cases the ISA mode a branch has been encoded for has to be the
1683 same as the ISA mode of the branch's target label. Therefore GAS has
1684 checks implemented that verify in branch assembly that the two ISA
1685 modes match. @samp{-mignore-branch-isa} disables these checks. By
1686 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1687 branch requiring a transition between ISA modes to produce an error.
1688
1689 @item -mnan=@var{encoding}
1690 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1691 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1692
1693 @cindex emulation
1694 @item --emulation=@var{name}
1695 This option was formerly used to switch between ELF and ECOFF output
1696 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1697 removed in GAS 2.24, so the option now serves little purpose.
1698 It is retained for backwards compatibility.
1699
1700 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1701 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1702 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1703 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1704 preferred options instead.
1705
1706 @item -nocpp
1707 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1708 the native tools.
1709
1710 @item --trap
1711 @itemx --no-trap
1712 @itemx --break
1713 @itemx --no-break
1714 Control how to deal with multiplication overflow and division by zero.
1715 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1716 (and only work for Instruction Set Architecture level 2 and higher);
1717 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1718 break exception.
1719
1720 @item -n
1721 When this option is used, @command{@value{AS}} will issue a warning every
1722 time it generates a nop instruction from a macro.
1723 @end table
1724 @c man end
1725 @end ifset
1726
1727 @ifset MCORE
1728 The following options are available when @value{AS} is configured for
1729 an MCore processor.
1730
1731 @table @gcctabopt
1732 @item -jsri2bsr
1733 @itemx -nojsri2bsr
1734 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1735 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1736
1737 @item -sifilter
1738 @itemx -nosifilter
1739 Enable or disable the silicon filter behaviour. By default this is disabled.
1740 The default can be overridden by the @samp{-sifilter} command-line option.
1741
1742 @item -relax
1743 Alter jump instructions for long displacements.
1744
1745 @item -mcpu=[210|340]
1746 Select the cpu type on the target hardware. This controls which instructions
1747 can be assembled.
1748
1749 @item -EB
1750 Assemble for a big endian target.
1751
1752 @item -EL
1753 Assemble for a little endian target.
1754
1755 @end table
1756 @end ifset
1757 @c man end
1758
1759 @ifset METAG
1760
1761 @ifclear man
1762 @xref{Meta Options}, for the options available when @value{AS} is configured
1763 for a Meta processor.
1764 @end ifclear
1765
1766 @ifset man
1767 @c man begin OPTIONS
1768 The following options are available when @value{AS} is configured for a
1769 Meta processor.
1770 @c man end
1771 @c man begin INCLUDE
1772 @include c-metag.texi
1773 @c ended inside the included file
1774 @end ifset
1775
1776 @end ifset
1777
1778 @c man begin OPTIONS
1779 @ifset MMIX
1780 See the info pages for documentation of the MMIX-specific options.
1781 @end ifset
1782
1783 @ifset NDS32
1784
1785 @ifclear man
1786 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1787 for a NDS32 processor.
1788 @end ifclear
1789 @c ended inside the included file
1790 @end ifset
1791
1792 @ifset man
1793 @c man begin OPTIONS
1794 The following options are available when @value{AS} is configured for a
1795 NDS32 processor.
1796 @c man end
1797 @c man begin INCLUDE
1798 @include c-nds32.texi
1799 @c ended inside the included file
1800 @end ifset
1801
1802 @c man end
1803 @ifset PPC
1804
1805 @ifclear man
1806 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1807 for a PowerPC processor.
1808 @end ifclear
1809
1810 @ifset man
1811 @c man begin OPTIONS
1812 The following options are available when @value{AS} is configured for a
1813 PowerPC processor.
1814 @c man end
1815 @c man begin INCLUDE
1816 @include c-ppc.texi
1817 @c ended inside the included file
1818 @end ifset
1819
1820 @end ifset
1821
1822 @ifset RISCV
1823
1824 @ifclear man
1825 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1826 for a RISC-V processor.
1827 @end ifclear
1828
1829 @ifset man
1830 @c man begin OPTIONS
1831 The following options are available when @value{AS} is configured for a
1832 RISC-V processor.
1833 @c man end
1834 @c man begin INCLUDE
1835 @include c-riscv.texi
1836 @c ended inside the included file
1837 @end ifset
1838
1839 @end ifset
1840
1841 @c man begin OPTIONS
1842 @ifset RX
1843 See the info pages for documentation of the RX-specific options.
1844 @end ifset
1845
1846 @ifset S390
1847 The following options are available when @value{AS} is configured for the s390
1848 processor family.
1849
1850 @table @gcctabopt
1851 @item -m31
1852 @itemx -m64
1853 Select the word size, either 31/32 bits or 64 bits.
1854 @item -mesa
1855 @item -mzarch
1856 Select the architecture mode, either the Enterprise System
1857 Architecture (esa) or the z/Architecture mode (zarch).
1858 @item -march=@var{processor}
1859 Specify which s390 processor variant is the target, @samp{g5} (or
1860 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1861 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1862 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1863 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1864 (or @samp{arch13}).
1865 @item -mregnames
1866 @itemx -mno-regnames
1867 Allow or disallow symbolic names for registers.
1868 @item -mwarn-areg-zero
1869 Warn whenever the operand for a base or index register has been specified
1870 but evaluates to zero.
1871 @end table
1872 @end ifset
1873 @c man end
1874
1875 @ifset TIC6X
1876
1877 @ifclear man
1878 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1879 for a TMS320C6000 processor.
1880 @end ifclear
1881
1882 @ifset man
1883 @c man begin OPTIONS
1884 The following options are available when @value{AS} is configured for a
1885 TMS320C6000 processor.
1886 @c man end
1887 @c man begin INCLUDE
1888 @include c-tic6x.texi
1889 @c ended inside the included file
1890 @end ifset
1891
1892 @end ifset
1893
1894 @ifset TILEGX
1895
1896 @ifclear man
1897 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1898 for a TILE-Gx processor.
1899 @end ifclear
1900
1901 @ifset man
1902 @c man begin OPTIONS
1903 The following options are available when @value{AS} is configured for a TILE-Gx
1904 processor.
1905 @c man end
1906 @c man begin INCLUDE
1907 @include c-tilegx.texi
1908 @c ended inside the included file
1909 @end ifset
1910
1911 @end ifset
1912
1913 @ifset VISIUM
1914
1915 @ifclear man
1916 @xref{Visium Options}, for the options available when @value{AS} is configured
1917 for a Visium processor.
1918 @end ifclear
1919
1920 @ifset man
1921 @c man begin OPTIONS
1922 The following option is available when @value{AS} is configured for a Visium
1923 processor.
1924 @c man end
1925 @c man begin INCLUDE
1926 @include c-visium.texi
1927 @c ended inside the included file
1928 @end ifset
1929
1930 @end ifset
1931
1932 @ifset XTENSA
1933
1934 @ifclear man
1935 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1936 for an Xtensa processor.
1937 @end ifclear
1938
1939 @ifset man
1940 @c man begin OPTIONS
1941 The following options are available when @value{AS} is configured for an
1942 Xtensa processor.
1943 @c man end
1944 @c man begin INCLUDE
1945 @include c-xtensa.texi
1946 @c ended inside the included file
1947 @end ifset
1948
1949 @end ifset
1950
1951 @ifset Z80
1952
1953 @ifclear man
1954 @xref{Z80 Options}, for the options available when @value{AS} is configured
1955 for an Z80 processor.
1956 @end ifclear
1957
1958 @ifset man
1959 @c man begin OPTIONS
1960 The following options are available when @value{AS} is configured for an
1961 Z80 processor.
1962 @c man end
1963 @c man begin INCLUDE
1964 @include c-z80.texi
1965 @c ended inside the included file
1966 @end ifset
1967
1968 @end ifset
1969
1970 @menu
1971 * Manual:: Structure of this Manual
1972 * GNU Assembler:: The GNU Assembler
1973 * Object Formats:: Object File Formats
1974 * Command Line:: Command Line
1975 * Input Files:: Input Files
1976 * Object:: Output (Object) File
1977 * Errors:: Error and Warning Messages
1978 @end menu
1979
1980 @node Manual
1981 @section Structure of this Manual
1982
1983 @cindex manual, structure and purpose
1984 This manual is intended to describe what you need to know to use
1985 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1986 notation for symbols, constants, and expressions; the directives that
1987 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1988
1989 @ifclear GENERIC
1990 We also cover special features in the @value{TARGET}
1991 configuration of @command{@value{AS}}, including assembler directives.
1992 @end ifclear
1993 @ifset GENERIC
1994 This manual also describes some of the machine-dependent features of
1995 various flavors of the assembler.
1996 @end ifset
1997
1998 @cindex machine instructions (not covered)
1999 On the other hand, this manual is @emph{not} intended as an introduction
2000 to programming in assembly language---let alone programming in general!
2001 In a similar vein, we make no attempt to introduce the machine
2002 architecture; we do @emph{not} describe the instruction set, standard
2003 mnemonics, registers or addressing modes that are standard to a
2004 particular architecture.
2005 @ifset GENERIC
2006 You may want to consult the manufacturer's
2007 machine architecture manual for this information.
2008 @end ifset
2009 @ifclear GENERIC
2010 @ifset H8/300
2011 For information on the H8/300 machine instruction set, see @cite{H8/300
2012 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2013 Programming Manual} (Renesas).
2014 @end ifset
2015 @ifset SH
2016 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2017 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2018 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2019 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2020 @end ifset
2021 @ifset Z8000
2022 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2023 @end ifset
2024 @end ifclear
2025
2026 @c I think this is premature---doc@cygnus.com, 17jan1991
2027 @ignore
2028 Throughout this manual, we assume that you are running @dfn{GNU},
2029 the portable operating system from the @dfn{Free Software
2030 Foundation, Inc.}. This restricts our attention to certain kinds of
2031 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2032 once this assumption is granted examples and definitions need less
2033 qualification.
2034
2035 @command{@value{AS}} is part of a team of programs that turn a high-level
2036 human-readable series of instructions into a low-level
2037 computer-readable series of instructions. Different versions of
2038 @command{@value{AS}} are used for different kinds of computer.
2039 @end ignore
2040
2041 @c There used to be a section "Terminology" here, which defined
2042 @c "contents", "byte", "word", and "long". Defining "word" to any
2043 @c particular size is confusing when the .word directive may generate 16
2044 @c bits on one machine and 32 bits on another; in general, for the user
2045 @c version of this manual, none of these terms seem essential to define.
2046 @c They were used very little even in the former draft of the manual;
2047 @c this draft makes an effort to avoid them (except in names of
2048 @c directives).
2049
2050 @node GNU Assembler
2051 @section The GNU Assembler
2052
2053 @c man begin DESCRIPTION
2054
2055 @sc{gnu} @command{as} is really a family of assemblers.
2056 @ifclear GENERIC
2057 This manual describes @command{@value{AS}}, a member of that family which is
2058 configured for the @value{TARGET} architectures.
2059 @end ifclear
2060 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2061 should find a fairly similar environment when you use it on another
2062 architecture. Each version has much in common with the others,
2063 including object file formats, most assembler directives (often called
2064 @dfn{pseudo-ops}) and assembler syntax.@refill
2065
2066 @cindex purpose of @sc{gnu} assembler
2067 @command{@value{AS}} is primarily intended to assemble the output of the
2068 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2069 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2070 assemble correctly everything that other assemblers for the same
2071 machine would assemble.
2072 @ifset VAX
2073 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2074 @end ifset
2075 @ifset M680X0
2076 @c This remark should appear in generic version of manual; assumption
2077 @c here is that generic version sets M680x0.
2078 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2079 assembler for the same architecture; for example, we know of several
2080 incompatible versions of 680x0 assembly language syntax.
2081 @end ifset
2082
2083 @c man end
2084
2085 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2086 program in one pass of the source file. This has a subtle impact on the
2087 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2088
2089 @node Object Formats
2090 @section Object File Formats
2091
2092 @cindex object file format
2093 The @sc{gnu} assembler can be configured to produce several alternative
2094 object file formats. For the most part, this does not affect how you
2095 write assembly language programs; but directives for debugging symbols
2096 are typically different in different file formats. @xref{Symbol
2097 Attributes,,Symbol Attributes}.
2098 @ifclear GENERIC
2099 @ifclear MULTI-OBJ
2100 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2101 @value{OBJ-NAME} format object files.
2102 @end ifclear
2103 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2104 @ifset HPPA
2105 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2106 SOM or ELF format object files.
2107 @end ifset
2108 @end ifclear
2109
2110 @node Command Line
2111 @section Command Line
2112
2113 @cindex command line conventions
2114
2115 After the program name @command{@value{AS}}, the command line may contain
2116 options and file names. Options may appear in any order, and may be
2117 before, after, or between file names. The order of file names is
2118 significant.
2119
2120 @cindex standard input, as input file
2121 @kindex --
2122 @file{--} (two hyphens) by itself names the standard input file
2123 explicitly, as one of the files for @command{@value{AS}} to assemble.
2124
2125 @cindex options, command line
2126 Except for @samp{--} any command-line argument that begins with a
2127 hyphen (@samp{-}) is an option. Each option changes the behavior of
2128 @command{@value{AS}}. No option changes the way another option works. An
2129 option is a @samp{-} followed by one or more letters; the case of
2130 the letter is important. All options are optional.
2131
2132 Some options expect exactly one file name to follow them. The file
2133 name may either immediately follow the option's letter (compatible
2134 with older assemblers) or it may be the next command argument (@sc{gnu}
2135 standard). These two command lines are equivalent:
2136
2137 @smallexample
2138 @value{AS} -o my-object-file.o mumble.s
2139 @value{AS} -omy-object-file.o mumble.s
2140 @end smallexample
2141
2142 @node Input Files
2143 @section Input Files
2144
2145 @cindex input
2146 @cindex source program
2147 @cindex files, input
2148 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2149 describe the program input to one run of @command{@value{AS}}. The program may
2150 be in one or more files; how the source is partitioned into files
2151 doesn't change the meaning of the source.
2152
2153 @c I added "con" prefix to "catenation" just to prove I can overcome my
2154 @c APL training... doc@cygnus.com
2155 The source program is a concatenation of the text in all the files, in the
2156 order specified.
2157
2158 @c man begin DESCRIPTION
2159 Each time you run @command{@value{AS}} it assembles exactly one source
2160 program. The source program is made up of one or more files.
2161 (The standard input is also a file.)
2162
2163 You give @command{@value{AS}} a command line that has zero or more input file
2164 names. The input files are read (from left file name to right). A
2165 command-line argument (in any position) that has no special meaning
2166 is taken to be an input file name.
2167
2168 If you give @command{@value{AS}} no file names it attempts to read one input file
2169 from the @command{@value{AS}} standard input, which is normally your terminal. You
2170 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2171 to assemble.
2172
2173 Use @samp{--} if you need to explicitly name the standard input file
2174 in your command line.
2175
2176 If the source is empty, @command{@value{AS}} produces a small, empty object
2177 file.
2178
2179 @c man end
2180
2181 @subheading Filenames and Line-numbers
2182
2183 @cindex input file linenumbers
2184 @cindex line numbers, in input files
2185 There are two ways of locating a line in the input file (or files) and
2186 either may be used in reporting error messages. One way refers to a line
2187 number in a physical file; the other refers to a line number in a
2188 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2189
2190 @dfn{Physical files} are those files named in the command line given
2191 to @command{@value{AS}}.
2192
2193 @dfn{Logical files} are simply names declared explicitly by assembler
2194 directives; they bear no relation to physical files. Logical file names help
2195 error messages reflect the original source file, when @command{@value{AS}} source
2196 is itself synthesized from other files. @command{@value{AS}} understands the
2197 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2198 @ref{File,,@code{.file}}.
2199
2200 @node Object
2201 @section Output (Object) File
2202
2203 @cindex object file
2204 @cindex output file
2205 @kindex a.out
2206 @kindex .o
2207 Every time you run @command{@value{AS}} it produces an output file, which is
2208 your assembly language program translated into numbers. This file
2209 is the object file. Its default name is @code{a.out}.
2210 You can give it another name by using the @option{-o} option. Conventionally,
2211 object file names end with @file{.o}. The default name is used for historical
2212 reasons: older assemblers were capable of assembling self-contained programs
2213 directly into a runnable program. (For some formats, this isn't currently
2214 possible, but it can be done for the @code{a.out} format.)
2215
2216 @cindex linker
2217 @kindex ld
2218 The object file is meant for input to the linker @code{@value{LD}}. It contains
2219 assembled program code, information to help @code{@value{LD}} integrate
2220 the assembled program into a runnable file, and (optionally) symbolic
2221 information for the debugger.
2222
2223 @c link above to some info file(s) like the description of a.out.
2224 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2225
2226 @node Errors
2227 @section Error and Warning Messages
2228
2229 @c man begin DESCRIPTION
2230
2231 @cindex error messages
2232 @cindex warning messages
2233 @cindex messages from assembler
2234 @command{@value{AS}} may write warnings and error messages to the standard error
2235 file (usually your terminal). This should not happen when a compiler
2236 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2237 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2238 grave problem that stops the assembly.
2239
2240 @c man end
2241
2242 @cindex format of warning messages
2243 Warning messages have the format
2244
2245 @smallexample
2246 file_name:@b{NNN}:Warning Message Text
2247 @end smallexample
2248
2249 @noindent
2250 @cindex file names and line numbers, in warnings/errors
2251 (where @b{NNN} is a line number). If both a logical file name
2252 (@pxref{File,,@code{.file}}) and a logical line number
2253 @ifset GENERIC
2254 (@pxref{Line,,@code{.line}})
2255 @end ifset
2256 have been given then they will be used, otherwise the file name and line number
2257 in the current assembler source file will be used. The message text is
2258 intended to be self explanatory (in the grand Unix tradition).
2259
2260 Note the file name must be set via the logical version of the @code{.file}
2261 directive, not the DWARF2 version of the @code{.file} directive. For example:
2262
2263 @smallexample
2264 .file 2 "bar.c"
2265 error_assembler_source
2266 .file "foo.c"
2267 .line 30
2268 error_c_source
2269 @end smallexample
2270
2271 produces this output:
2272
2273 @smallexample
2274 Assembler messages:
2275 asm.s:2: Error: no such instruction: `error_assembler_source'
2276 foo.c:31: Error: no such instruction: `error_c_source'
2277 @end smallexample
2278
2279 @cindex format of error messages
2280 Error messages have the format
2281
2282 @smallexample
2283 file_name:@b{NNN}:FATAL:Error Message Text
2284 @end smallexample
2285
2286 The file name and line number are derived as for warning
2287 messages. The actual message text may be rather less explanatory
2288 because many of them aren't supposed to happen.
2289
2290 @node Invoking
2291 @chapter Command-Line Options
2292
2293 @cindex options, all versions of assembler
2294 This chapter describes command-line options available in @emph{all}
2295 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2296 for options specific
2297 @ifclear GENERIC
2298 to the @value{TARGET} target.
2299 @end ifclear
2300 @ifset GENERIC
2301 to particular machine architectures.
2302 @end ifset
2303
2304 @c man begin DESCRIPTION
2305
2306 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2307 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2308 The assembler arguments must be separated from each other (and the @samp{-Wa})
2309 by commas. For example:
2310
2311 @smallexample
2312 gcc -c -g -O -Wa,-alh,-L file.c
2313 @end smallexample
2314
2315 @noindent
2316 This passes two options to the assembler: @samp{-alh} (emit a listing to
2317 standard output with high-level and assembly source) and @samp{-L} (retain
2318 local symbols in the symbol table).
2319
2320 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2321 command-line options are automatically passed to the assembler by the compiler.
2322 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2323 precisely what options it passes to each compilation pass, including the
2324 assembler.)
2325
2326 @c man end
2327
2328 @menu
2329 * a:: -a[cdghlns] enable listings
2330 * alternate:: --alternate enable alternate macro syntax
2331 * D:: -D for compatibility
2332 * f:: -f to work faster
2333 * I:: -I for .include search path
2334 @ifclear DIFF-TBL-KLUGE
2335 * K:: -K for compatibility
2336 @end ifclear
2337 @ifset DIFF-TBL-KLUGE
2338 * K:: -K for difference tables
2339 @end ifset
2340
2341 * L:: -L to retain local symbols
2342 * listing:: --listing-XXX to configure listing output
2343 * M:: -M or --mri to assemble in MRI compatibility mode
2344 * MD:: --MD for dependency tracking
2345 * no-pad-sections:: --no-pad-sections to stop section padding
2346 * o:: -o to name the object file
2347 * R:: -R to join data and text sections
2348 * statistics:: --statistics to see statistics about assembly
2349 * traditional-format:: --traditional-format for compatible output
2350 * v:: -v to announce version
2351 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2352 * Z:: -Z to make object file even after errors
2353 @end menu
2354
2355 @node a
2356 @section Enable Listings: @option{-a[cdghlns]}
2357
2358 @kindex -a
2359 @kindex -ac
2360 @kindex -ad
2361 @kindex -ag
2362 @kindex -ah
2363 @kindex -al
2364 @kindex -an
2365 @kindex -as
2366 @cindex listings, enabling
2367 @cindex assembly listings, enabling
2368
2369 These options enable listing output from the assembler. By itself,
2370 @samp{-a} requests high-level, assembly, and symbols listing.
2371 You can use other letters to select specific options for the list:
2372 @samp{-ah} requests a high-level language listing,
2373 @samp{-al} requests an output-program assembly listing, and
2374 @samp{-as} requests a symbol table listing.
2375 High-level listings require that a compiler debugging option like
2376 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2377 also.
2378
2379 Use the @samp{-ag} option to print a first section with general assembly
2380 information, like @value{AS} version, switches passed, or time stamp.
2381
2382 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2383 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2384 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2385 omitted from the listing.
2386
2387 Use the @samp{-ad} option to omit debugging directives from the
2388 listing.
2389
2390 Once you have specified one of these options, you can further control
2391 listing output and its appearance using the directives @code{.list},
2392 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2393 @code{.sbttl}.
2394 The @samp{-an} option turns off all forms processing.
2395 If you do not request listing output with one of the @samp{-a} options, the
2396 listing-control directives have no effect.
2397
2398 The letters after @samp{-a} may be combined into one option,
2399 @emph{e.g.}, @samp{-aln}.
2400
2401 Note if the assembler source is coming from the standard input (e.g.,
2402 because it
2403 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2404 is being used) then the listing will not contain any comments or preprocessor
2405 directives. This is because the listing code buffers input source lines from
2406 stdin only after they have been preprocessed by the assembler. This reduces
2407 memory usage and makes the code more efficient.
2408
2409 @node alternate
2410 @section @option{--alternate}
2411
2412 @kindex --alternate
2413 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2414
2415 @node D
2416 @section @option{-D}
2417
2418 @kindex -D
2419 This option has no effect whatsoever, but it is accepted to make it more
2420 likely that scripts written for other assemblers also work with
2421 @command{@value{AS}}.
2422
2423 @node f
2424 @section Work Faster: @option{-f}
2425
2426 @kindex -f
2427 @cindex trusted compiler
2428 @cindex faster processing (@option{-f})
2429 @samp{-f} should only be used when assembling programs written by a
2430 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2431 and comment preprocessing on
2432 the input file(s) before assembling them. @xref{Preprocessing,
2433 ,Preprocessing}.
2434
2435 @quotation
2436 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2437 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2438 not work correctly.
2439 @end quotation
2440
2441 @node I
2442 @section @code{.include} Search Path: @option{-I} @var{path}
2443
2444 @kindex -I @var{path}
2445 @cindex paths for @code{.include}
2446 @cindex search path for @code{.include}
2447 @cindex @code{include} directive search path
2448 Use this option to add a @var{path} to the list of directories
2449 @command{@value{AS}} searches for files specified in @code{.include}
2450 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2451 many times as necessary to include a variety of paths. The current
2452 working directory is always searched first; after that, @command{@value{AS}}
2453 searches any @samp{-I} directories in the same order as they were
2454 specified (left to right) on the command line.
2455
2456 @node K
2457 @section Difference Tables: @option{-K}
2458
2459 @kindex -K
2460 @ifclear DIFF-TBL-KLUGE
2461 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2462 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2463 where it can be used to warn when the assembler alters the machine code
2464 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2465 family does not have the addressing limitations that sometimes lead to this
2466 alteration on other platforms.
2467 @end ifclear
2468
2469 @ifset DIFF-TBL-KLUGE
2470 @cindex difference tables, warning
2471 @cindex warning for altered difference tables
2472 @command{@value{AS}} sometimes alters the code emitted for directives of the
2473 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2474 You can use the @samp{-K} option if you want a warning issued when this
2475 is done.
2476 @end ifset
2477
2478 @node L
2479 @section Include Local Symbols: @option{-L}
2480
2481 @kindex -L
2482 @cindex local symbols, retaining in output
2483 Symbols beginning with system-specific local label prefixes, typically
2484 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2485 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2486 such symbols when debugging, because they are intended for the use of
2487 programs (like compilers) that compose assembler programs, not for your
2488 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2489 such symbols, so you do not normally debug with them.
2490
2491 This option tells @command{@value{AS}} to retain those local symbols
2492 in the object file. Usually if you do this you also tell the linker
2493 @code{@value{LD}} to preserve those symbols.
2494
2495 @node listing
2496 @section Configuring listing output: @option{--listing}
2497
2498 The listing feature of the assembler can be enabled via the command-line switch
2499 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2500 hex dump of the corresponding locations in the output object file, and displays
2501 them as a listing file. The format of this listing can be controlled by
2502 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2503 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2504 @code{.psize} (@pxref{Psize}), and
2505 @code{.eject} (@pxref{Eject}) and also by the following switches:
2506
2507 @table @gcctabopt
2508 @item --listing-lhs-width=@samp{number}
2509 @kindex --listing-lhs-width
2510 @cindex Width of first line disassembly output
2511 Sets the maximum width, in words, of the first line of the hex byte dump. This
2512 dump appears on the left hand side of the listing output.
2513
2514 @item --listing-lhs-width2=@samp{number}
2515 @kindex --listing-lhs-width2
2516 @cindex Width of continuation lines of disassembly output
2517 Sets the maximum width, in words, of any further lines of the hex byte dump for
2518 a given input source line. If this value is not specified, it defaults to being
2519 the same as the value specified for @samp{--listing-lhs-width}. If neither
2520 switch is used the default is to one.
2521
2522 @item --listing-rhs-width=@samp{number}
2523 @kindex --listing-rhs-width
2524 @cindex Width of source line output
2525 Sets the maximum width, in characters, of the source line that is displayed
2526 alongside the hex dump. The default value for this parameter is 100. The
2527 source line is displayed on the right hand side of the listing output.
2528
2529 @item --listing-cont-lines=@samp{number}
2530 @kindex --listing-cont-lines
2531 @cindex Maximum number of continuation lines
2532 Sets the maximum number of continuation lines of hex dump that will be
2533 displayed for a given single line of source input. The default value is 4.
2534 @end table
2535
2536 @node M
2537 @section Assemble in MRI Compatibility Mode: @option{-M}
2538
2539 @kindex -M
2540 @cindex MRI compatibility mode
2541 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2542 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2543 compatible with the @code{ASM68K} assembler from Microtec Research.
2544 The exact nature of the
2545 MRI syntax will not be documented here; see the MRI manuals for more
2546 information. Note in particular that the handling of macros and macro
2547 arguments is somewhat different. The purpose of this option is to permit
2548 assembling existing MRI assembler code using @command{@value{AS}}.
2549
2550 The MRI compatibility is not complete. Certain operations of the MRI assembler
2551 depend upon its object file format, and can not be supported using other object
2552 file formats. Supporting these would require enhancing each object file format
2553 individually. These are:
2554
2555 @itemize @bullet
2556 @item global symbols in common section
2557
2558 The m68k MRI assembler supports common sections which are merged by the linker.
2559 Other object file formats do not support this. @command{@value{AS}} handles
2560 common sections by treating them as a single common symbol. It permits local
2561 symbols to be defined within a common section, but it can not support global
2562 symbols, since it has no way to describe them.
2563
2564 @item complex relocations
2565
2566 The MRI assemblers support relocations against a negated section address, and
2567 relocations which combine the start addresses of two or more sections. These
2568 are not support by other object file formats.
2569
2570 @item @code{END} pseudo-op specifying start address
2571
2572 The MRI @code{END} pseudo-op permits the specification of a start address.
2573 This is not supported by other object file formats. The start address may
2574 instead be specified using the @option{-e} option to the linker, or in a linker
2575 script.
2576
2577 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2578
2579 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2580 name to the output file. This is not supported by other object file formats.
2581
2582 @item @code{ORG} pseudo-op
2583
2584 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2585 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2586 which changes the location within the current section. Absolute sections are
2587 not supported by other object file formats. The address of a section may be
2588 assigned within a linker script.
2589 @end itemize
2590
2591 There are some other features of the MRI assembler which are not supported by
2592 @command{@value{AS}}, typically either because they are difficult or because they
2593 seem of little consequence. Some of these may be supported in future releases.
2594
2595 @itemize @bullet
2596
2597 @item EBCDIC strings
2598
2599 EBCDIC strings are not supported.
2600
2601 @item packed binary coded decimal
2602
2603 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2604 and @code{DCB.P} pseudo-ops are not supported.
2605
2606 @item @code{FEQU} pseudo-op
2607
2608 The m68k @code{FEQU} pseudo-op is not supported.
2609
2610 @item @code{NOOBJ} pseudo-op
2611
2612 The m68k @code{NOOBJ} pseudo-op is not supported.
2613
2614 @item @code{OPT} branch control options
2615
2616 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2617 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2618 relaxes all branches, whether forward or backward, to an appropriate size, so
2619 these options serve no purpose.
2620
2621 @item @code{OPT} list control options
2622
2623 The following m68k @code{OPT} list control options are ignored: @code{C},
2624 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2625 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2626
2627 @item other @code{OPT} options
2628
2629 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2630 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2631
2632 @item @code{OPT} @code{D} option is default
2633
2634 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2635 @code{OPT NOD} may be used to turn it off.
2636
2637 @item @code{XREF} pseudo-op.
2638
2639 The m68k @code{XREF} pseudo-op is ignored.
2640
2641 @end itemize
2642
2643 @node MD
2644 @section Dependency Tracking: @option{--MD}
2645
2646 @kindex --MD
2647 @cindex dependency tracking
2648 @cindex make rules
2649
2650 @command{@value{AS}} can generate a dependency file for the file it creates. This
2651 file consists of a single rule suitable for @code{make} describing the
2652 dependencies of the main source file.
2653
2654 The rule is written to the file named in its argument.
2655
2656 This feature is used in the automatic updating of makefiles.
2657
2658 @node no-pad-sections
2659 @section Output Section Padding
2660 @kindex --no-pad-sections
2661 @cindex output section padding
2662 Normally the assembler will pad the end of each output section up to its
2663 alignment boundary. But this can waste space, which can be significant on
2664 memory constrained targets. So the @option{--no-pad-sections} option will
2665 disable this behaviour.
2666
2667 @node o
2668 @section Name the Object File: @option{-o}
2669
2670 @kindex -o
2671 @cindex naming object file
2672 @cindex object file name
2673 There is always one object file output when you run @command{@value{AS}}. By
2674 default it has the name @file{a.out}.
2675 You use this option (which takes exactly one filename) to give the
2676 object file a different name.
2677
2678 Whatever the object file is called, @command{@value{AS}} overwrites any
2679 existing file of the same name.
2680
2681 @node R
2682 @section Join Data and Text Sections: @option{-R}
2683
2684 @kindex -R
2685 @cindex data and text sections, joining
2686 @cindex text and data sections, joining
2687 @cindex joining text and data sections
2688 @cindex merging text and data sections
2689 @option{-R} tells @command{@value{AS}} to write the object file as if all
2690 data-section data lives in the text section. This is only done at
2691 the very last moment: your binary data are the same, but data
2692 section parts are relocated differently. The data section part of
2693 your object file is zero bytes long because all its bytes are
2694 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2695
2696 When you specify @option{-R} it would be possible to generate shorter
2697 address displacements (because we do not have to cross between text and
2698 data section). We refrain from doing this simply for compatibility with
2699 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2700
2701 @ifset COFF-ELF
2702 When @command{@value{AS}} is configured for COFF or ELF output,
2703 this option is only useful if you use sections named @samp{.text} and
2704 @samp{.data}.
2705 @end ifset
2706
2707 @ifset HPPA
2708 @option{-R} is not supported for any of the HPPA targets. Using
2709 @option{-R} generates a warning from @command{@value{AS}}.
2710 @end ifset
2711
2712 @node statistics
2713 @section Display Assembly Statistics: @option{--statistics}
2714
2715 @kindex --statistics
2716 @cindex statistics, about assembly
2717 @cindex time, total for assembly
2718 @cindex space used, maximum for assembly
2719 Use @samp{--statistics} to display two statistics about the resources used by
2720 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2721 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2722 seconds).
2723
2724 @node traditional-format
2725 @section Compatible Output: @option{--traditional-format}
2726
2727 @kindex --traditional-format
2728 For some targets, the output of @command{@value{AS}} is different in some ways
2729 from the output of some existing assembler. This switch requests
2730 @command{@value{AS}} to use the traditional format instead.
2731
2732 For example, it disables the exception frame optimizations which
2733 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2734
2735 @node v
2736 @section Announce Version: @option{-v}
2737
2738 @kindex -v
2739 @kindex -version
2740 @cindex assembler version
2741 @cindex version of assembler
2742 You can find out what version of as is running by including the
2743 option @samp{-v} (which you can also spell as @samp{-version}) on the
2744 command line.
2745
2746 @node W
2747 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2748
2749 @command{@value{AS}} should never give a warning or error message when
2750 assembling compiler output. But programs written by people often
2751 cause @command{@value{AS}} to give a warning that a particular assumption was
2752 made. All such warnings are directed to the standard error file.
2753
2754 @kindex -W
2755 @kindex --no-warn
2756 @cindex suppressing warnings
2757 @cindex warnings, suppressing
2758 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2759 This only affects the warning messages: it does not change any particular of
2760 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2761 are still reported.
2762
2763 @kindex --fatal-warnings
2764 @cindex errors, caused by warnings
2765 @cindex warnings, causing error
2766 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2767 files that generate warnings to be in error.
2768
2769 @kindex --warn
2770 @cindex warnings, switching on
2771 You can switch these options off again by specifying @option{--warn}, which
2772 causes warnings to be output as usual.
2773
2774 @node Z
2775 @section Generate Object File in Spite of Errors: @option{-Z}
2776 @cindex object file, after errors
2777 @cindex errors, continuing after
2778 After an error message, @command{@value{AS}} normally produces no output. If for
2779 some reason you are interested in object file output even after
2780 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2781 option. If there are any errors, @command{@value{AS}} continues anyways, and
2782 writes an object file after a final warning message of the form @samp{@var{n}
2783 errors, @var{m} warnings, generating bad object file.}
2784
2785 @node Syntax
2786 @chapter Syntax
2787
2788 @cindex machine-independent syntax
2789 @cindex syntax, machine-independent
2790 This chapter describes the machine-independent syntax allowed in a
2791 source file. @command{@value{AS}} syntax is similar to what many other
2792 assemblers use; it is inspired by the BSD 4.2
2793 @ifclear VAX
2794 assembler.
2795 @end ifclear
2796 @ifset VAX
2797 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2798 @end ifset
2799
2800 @menu
2801 * Preprocessing:: Preprocessing
2802 * Whitespace:: Whitespace
2803 * Comments:: Comments
2804 * Symbol Intro:: Symbols
2805 * Statements:: Statements
2806 * Constants:: Constants
2807 @end menu
2808
2809 @node Preprocessing
2810 @section Preprocessing
2811
2812 @cindex preprocessing
2813 The @command{@value{AS}} internal preprocessor:
2814 @itemize @bullet
2815 @cindex whitespace, removed by preprocessor
2816 @item
2817 adjusts and removes extra whitespace. It leaves one space or tab before
2818 the keywords on a line, and turns any other whitespace on the line into
2819 a single space.
2820
2821 @cindex comments, removed by preprocessor
2822 @item
2823 removes all comments, replacing them with a single space, or an
2824 appropriate number of newlines.
2825
2826 @cindex constants, converted by preprocessor
2827 @item
2828 converts character constants into the appropriate numeric values.
2829 @end itemize
2830
2831 It does not do macro processing, include file handling, or
2832 anything else you may get from your C compiler's preprocessor. You can
2833 do include file processing with the @code{.include} directive
2834 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2835 to get other ``CPP'' style preprocessing by giving the input file a
2836 @samp{.S} suffix. @url{https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#Overall-Options,
2837 See the 'Options Controlling the Kind of Output' section of the GCC manual for
2838 more details}
2839
2840 Excess whitespace, comments, and character constants
2841 cannot be used in the portions of the input text that are not
2842 preprocessed.
2843
2844 @cindex turning preprocessing on and off
2845 @cindex preprocessing, turning on and off
2846 @kindex #NO_APP
2847 @kindex #APP
2848 If the first line of an input file is @code{#NO_APP} or if you use the
2849 @samp{-f} option, whitespace and comments are not removed from the input file.
2850 Within an input file, you can ask for whitespace and comment removal in
2851 specific portions of the by putting a line that says @code{#APP} before the
2852 text that may contain whitespace or comments, and putting a line that says
2853 @code{#NO_APP} after this text. This feature is mainly intend to support
2854 @code{asm} statements in compilers whose output is otherwise free of comments
2855 and whitespace.
2856
2857 @node Whitespace
2858 @section Whitespace
2859
2860 @cindex whitespace
2861 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2862 Whitespace is used to separate symbols, and to make programs neater for
2863 people to read. Unless within character constants
2864 (@pxref{Characters,,Character Constants}), any whitespace means the same
2865 as exactly one space.
2866
2867 @node Comments
2868 @section Comments
2869
2870 @cindex comments
2871 There are two ways of rendering comments to @command{@value{AS}}. In both
2872 cases the comment is equivalent to one space.
2873
2874 Anything from @samp{/*} through the next @samp{*/} is a comment.
2875 This means you may not nest these comments.
2876
2877 @smallexample
2878 /*
2879 The only way to include a newline ('\n') in a comment
2880 is to use this sort of comment.
2881 */
2882
2883 /* This sort of comment does not nest. */
2884 @end smallexample
2885
2886 @cindex line comment character
2887 Anything from a @dfn{line comment} character up to the next newline is
2888 considered a comment and is ignored. The line comment character is target
2889 specific, and some targets multiple comment characters. Some targets also have
2890 line comment characters that only work if they are the first character on a
2891 line. Some targets use a sequence of two characters to introduce a line
2892 comment. Some targets can also change their line comment characters depending
2893 upon command-line options that have been used. For more details see the
2894 @emph{Syntax} section in the documentation for individual targets.
2895
2896 If the line comment character is the hash sign (@samp{#}) then it still has the
2897 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2898 to specify logical line numbers:
2899
2900 @kindex #
2901 @cindex lines starting with @code{#}
2902 @cindex logical line numbers
2903 To be compatible with past assemblers, lines that begin with @samp{#} have a
2904 special interpretation. Following the @samp{#} should be an absolute
2905 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2906 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2907 new logical file name. The rest of the line, if any, should be whitespace.
2908
2909 If the first non-whitespace characters on the line are not numeric,
2910 the line is ignored. (Just like a comment.)
2911
2912 @smallexample
2913 # This is an ordinary comment.
2914 # 42-6 "new_file_name" # New logical file name
2915 # This is logical line # 36.
2916 @end smallexample
2917 This feature is deprecated, and may disappear from future versions
2918 of @command{@value{AS}}.
2919
2920 @node Symbol Intro
2921 @section Symbols
2922
2923 @cindex characters used in symbols
2924 @ifclear SPECIAL-SYMS
2925 A @dfn{symbol} is one or more characters chosen from the set of all
2926 letters (both upper and lower case), digits and the three characters
2927 @samp{_.$}.
2928 @end ifclear
2929 @ifset SPECIAL-SYMS
2930 @ifclear GENERIC
2931 @ifset H8
2932 A @dfn{symbol} is one or more characters chosen from the set of all
2933 letters (both upper and lower case), digits and the three characters
2934 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2935 symbol names.)
2936 @end ifset
2937 @end ifclear
2938 @end ifset
2939 @ifset GENERIC
2940 On most machines, you can also use @code{$} in symbol names; exceptions
2941 are noted in @ref{Machine Dependencies}.
2942 @end ifset
2943 No symbol may begin with a digit. Case is significant.
2944 There is no length limit; all characters are significant. Multibyte characters
2945 are supported. Symbols are delimited by characters not in that set, or by the
2946 beginning of a file (since the source program must end with a newline, the end
2947 of a file is not a possible symbol delimiter). @xref{Symbols}.
2948
2949 Symbol names may also be enclosed in double quote @code{"} characters. In such
2950 cases any characters are allowed, except for the NUL character. If a double
2951 quote character is to be included in the symbol name it must be preceded by a
2952 backslash @code{\} character.
2953 @cindex length of symbols
2954
2955 @node Statements
2956 @section Statements
2957
2958 @cindex statements, structure of
2959 @cindex line separator character
2960 @cindex statement separator character
2961
2962 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2963 @dfn{line separator character}. The line separator character is target
2964 specific and described in the @emph{Syntax} section of each
2965 target's documentation. Not all targets support a line separator character.
2966 The newline or line separator character is considered to be part of the
2967 preceding statement. Newlines and separators within character constants are an
2968 exception: they do not end statements.
2969
2970 @cindex newline, required at file end
2971 @cindex EOF, newline must precede
2972 It is an error to end any statement with end-of-file: the last
2973 character of any input file should be a newline.@refill
2974
2975 An empty statement is allowed, and may include whitespace. It is ignored.
2976
2977 @cindex instructions and directives
2978 @cindex directives and instructions
2979 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2980 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2981 @c 13feb91.
2982 A statement begins with zero or more labels, optionally followed by a
2983 key symbol which determines what kind of statement it is. The key
2984 symbol determines the syntax of the rest of the statement. If the
2985 symbol begins with a dot @samp{.} then the statement is an assembler
2986 directive: typically valid for any computer. If the symbol begins with
2987 a letter the statement is an assembly language @dfn{instruction}: it
2988 assembles into a machine language instruction.
2989 @ifset GENERIC
2990 Different versions of @command{@value{AS}} for different computers
2991 recognize different instructions. In fact, the same symbol may
2992 represent a different instruction in a different computer's assembly
2993 language.@refill
2994 @end ifset
2995
2996 @cindex @code{:} (label)
2997 @cindex label (@code{:})
2998 A label is a symbol immediately followed by a colon (@code{:}).
2999 Whitespace before a label or after a colon is permitted, but you may not
3000 have whitespace between a label's symbol and its colon. @xref{Labels}.
3001
3002 @ifset HPPA
3003 For HPPA targets, labels need not be immediately followed by a colon, but
3004 the definition of a label must begin in column zero. This also implies that
3005 only one label may be defined on each line.
3006 @end ifset
3007
3008 @smallexample
3009 label: .directive followed by something
3010 another_label: # This is an empty statement.
3011 instruction operand_1, operand_2, @dots{}
3012 @end smallexample
3013
3014 @node Constants
3015 @section Constants
3016
3017 @cindex constants
3018 A constant is a number, written so that its value is known by
3019 inspection, without knowing any context. Like this:
3020 @smallexample
3021 @group
3022 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3023 .ascii "Ring the bell\7" # A string constant.
3024 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3025 .float 0f-314159265358979323846264338327\
3026 95028841971.693993751E-40 # - pi, a flonum.
3027 @end group
3028 @end smallexample
3029
3030 @menu
3031 * Characters:: Character Constants
3032 * Numbers:: Number Constants
3033 @end menu
3034
3035 @node Characters
3036 @subsection Character Constants
3037
3038 @cindex character constants
3039 @cindex constants, character
3040 There are two kinds of character constants. A @dfn{character} stands
3041 for one character in one byte and its value may be used in
3042 numeric expressions. String constants (properly called string
3043 @emph{literals}) are potentially many bytes and their values may not be
3044 used in arithmetic expressions.
3045
3046 @menu
3047 * Strings:: Strings
3048 * Chars:: Characters
3049 @end menu
3050
3051 @node Strings
3052 @subsubsection Strings
3053
3054 @cindex string constants
3055 @cindex constants, string
3056 A @dfn{string} is written between double-quotes. It may contain
3057 double-quotes or null characters. The way to get special characters
3058 into a string is to @dfn{escape} these characters: precede them with
3059 a backslash @samp{\} character. For example @samp{\\} represents
3060 one backslash: the first @code{\} is an escape which tells
3061 @command{@value{AS}} to interpret the second character literally as a backslash
3062 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3063 escape character). The complete list of escapes follows.
3064
3065 @cindex escape codes, character
3066 @cindex character escape codes
3067 @c NOTE: Cindex entries must not start with a backlash character.
3068 @c NOTE: This confuses the pdf2texi script when it is creating the
3069 @c NOTE: index based upon the first character and so it generates:
3070 @c NOTE: \initial {\\}
3071 @c NOTE: which then results in the error message:
3072 @c NOTE: Argument of \\ has an extra }.
3073 @c NOTE: So in the index entries below a space character has been
3074 @c NOTE: prepended to avoid this problem.
3075 @table @kbd
3076 @c @item \a
3077 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3078 @c
3079 @cindex @code{ \b} (backspace character)
3080 @cindex backspace (@code{\b})
3081 @item \b
3082 Mnemonic for backspace; for ASCII this is octal code 010.
3083
3084 @c @item \e
3085 @c Mnemonic for EOText; for ASCII this is octal code 004.
3086 @c
3087 @cindex @code{ \f} (formfeed character)
3088 @cindex formfeed (@code{\f})
3089 @item backslash-f
3090 Mnemonic for FormFeed; for ASCII this is octal code 014.
3091
3092 @cindex @code{ \n} (newline character)
3093 @cindex newline (@code{\n})
3094 @item \n
3095 Mnemonic for newline; for ASCII this is octal code 012.
3096
3097 @c @item \p
3098 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3099 @c
3100 @cindex @code{ \r} (carriage return character)
3101 @cindex carriage return (@code{backslash-r})
3102 @item \r
3103 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3104
3105 @c @item \s
3106 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3107 @c other assemblers.
3108 @c
3109 @cindex @code{ \t} (tab)
3110 @cindex tab (@code{\t})
3111 @item \t
3112 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3113
3114 @c @item \v
3115 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3116 @c @item \x @var{digit} @var{digit} @var{digit}
3117 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3118 @c
3119 @cindex @code{ \@var{ddd}} (octal character code)
3120 @cindex octal character code (@code{\@var{ddd}})
3121 @item \ @var{digit} @var{digit} @var{digit}
3122 An octal character code. The numeric code is 3 octal digits.
3123 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3124 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3125
3126 @cindex @code{ \@var{xd...}} (hex character code)
3127 @cindex hex character code (@code{\@var{xd...}})
3128 @item \@code{x} @var{hex-digits...}
3129 A hex character code. All trailing hex digits are combined. Either upper or
3130 lower case @code{x} works.
3131
3132 @cindex @code{ \\} (@samp{\} character)
3133 @cindex backslash (@code{\\})
3134 @item \\
3135 Represents one @samp{\} character.
3136
3137 @c @item \'
3138 @c Represents one @samp{'} (accent acute) character.
3139 @c This is needed in single character literals
3140 @c (@xref{Characters,,Character Constants}.) to represent
3141 @c a @samp{'}.
3142 @c
3143 @cindex @code{ \"} (doublequote character)
3144 @cindex doublequote (@code{\"})
3145 @item \"
3146 Represents one @samp{"} character. Needed in strings to represent
3147 this character, because an unescaped @samp{"} would end the string.
3148
3149 @item \ @var{anything-else}
3150 Any other character when escaped by @kbd{\} gives a warning, but
3151 assembles as if the @samp{\} was not present. The idea is that if
3152 you used an escape sequence you clearly didn't want the literal
3153 interpretation of the following character. However @command{@value{AS}} has no
3154 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3155 code and warns you of the fact.
3156 @end table
3157
3158 Which characters are escapable, and what those escapes represent,
3159 varies widely among assemblers. The current set is what we think
3160 the BSD 4.2 assembler recognizes, and is a subset of what most C
3161 compilers recognize. If you are in doubt, do not use an escape
3162 sequence.
3163
3164 @node Chars
3165 @subsubsection Characters
3166
3167 @cindex single character constant
3168 @cindex character, single
3169 @cindex constant, single character
3170 A single character may be written as a single quote immediately followed by
3171 that character. Some backslash escapes apply to characters, @code{\b},
3172 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3173 as for strings, plus @code{\'} for a single quote. So if you want to write the
3174 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3175 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3176 accent. A newline
3177 @ifclear GENERIC
3178 @ifclear abnormal-separator
3179 (or semicolon @samp{;})
3180 @end ifclear
3181 @ifset abnormal-separator
3182 @ifset H8
3183 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3184 Renesas SH)
3185 @end ifset
3186 @end ifset
3187 @end ifclear
3188 immediately following an acute accent is taken as a literal character
3189 and does not count as the end of a statement. The value of a character
3190 constant in a numeric expression is the machine's byte-wide code for
3191 that character. @command{@value{AS}} assumes your character code is ASCII:
3192 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3193
3194 @node Numbers
3195 @subsection Number Constants
3196
3197 @cindex constants, number
3198 @cindex number constants
3199 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3200 are stored in the target machine. @emph{Integers} are numbers that
3201 would fit into an @code{int} in the C language. @emph{Bignums} are
3202 integers, but they are stored in more than 32 bits. @emph{Flonums}
3203 are floating point numbers, described below.
3204
3205 @menu
3206 * Integers:: Integers
3207 * Bignums:: Bignums
3208 * Flonums:: Flonums
3209 @ifclear GENERIC
3210 @end ifclear
3211 @end menu
3212
3213 @node Integers
3214 @subsubsection Integers
3215 @cindex integers
3216 @cindex constants, integer
3217
3218 @cindex binary integers
3219 @cindex integers, binary
3220 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3221 the binary digits @samp{01}.
3222
3223 @cindex octal integers
3224 @cindex integers, octal
3225 An octal integer is @samp{0} followed by zero or more of the octal
3226 digits (@samp{01234567}).
3227
3228 @cindex decimal integers
3229 @cindex integers, decimal
3230 A decimal integer starts with a non-zero digit followed by zero or
3231 more digits (@samp{0123456789}).
3232
3233 @cindex hexadecimal integers
3234 @cindex integers, hexadecimal
3235 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3236 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3237
3238 Integers have the usual values. To denote a negative integer, use
3239 the prefix operator @samp{-} discussed under expressions
3240 (@pxref{Prefix Ops,,Prefix Operators}).
3241
3242 @node Bignums
3243 @subsubsection Bignums
3244
3245 @cindex bignums
3246 @cindex constants, bignum
3247 A @dfn{bignum} has the same syntax and semantics as an integer
3248 except that the number (or its negative) takes more than 32 bits to
3249 represent in binary. The distinction is made because in some places
3250 integers are permitted while bignums are not.
3251
3252 @node Flonums
3253 @subsubsection Flonums
3254 @cindex flonums
3255 @cindex floating point numbers
3256 @cindex constants, floating point
3257
3258 @cindex precision, floating point
3259 A @dfn{flonum} represents a floating point number. The translation is
3260 indirect: a decimal floating point number from the text is converted by
3261 @command{@value{AS}} to a generic binary floating point number of more than
3262 sufficient precision. This generic floating point number is converted
3263 to a particular computer's floating point format (or formats) by a
3264 portion of @command{@value{AS}} specialized to that computer.
3265
3266 A flonum is written by writing (in order)
3267 @itemize @bullet
3268 @item
3269 The digit @samp{0}.
3270 @ifset HPPA
3271 (@samp{0} is optional on the HPPA.)
3272 @end ifset
3273
3274 @item
3275 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3276 @ifset GENERIC
3277 @kbd{e} is recommended. Case is not important.
3278 @ignore
3279 @c FIXME: verify if flonum syntax really this vague for most cases
3280 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3281 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3282 @end ignore
3283
3284 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3285 one of the letters @samp{DFPRSX} (in upper or lower case).
3286
3287 On the ARC, the letter must be one of the letters @samp{DFRS}
3288 (in upper or lower case).
3289
3290 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3291 @end ifset
3292 @ifclear GENERIC
3293 @ifset ARC
3294 One of the letters @samp{DFRS} (in upper or lower case).
3295 @end ifset
3296 @ifset H8
3297 One of the letters @samp{DFPRSX} (in upper or lower case).
3298 @end ifset
3299 @ifset HPPA
3300 The letter @samp{E} (upper case only).
3301 @end ifset
3302 @end ifclear
3303
3304 @item
3305 An optional sign: either @samp{+} or @samp{-}.
3306
3307 @item
3308 An optional @dfn{integer part}: zero or more decimal digits.
3309
3310 @item
3311 An optional @dfn{fractional part}: @samp{.} followed by zero
3312 or more decimal digits.
3313
3314 @item
3315 An optional exponent, consisting of:
3316
3317 @itemize @bullet
3318 @item
3319 An @samp{E} or @samp{e}.
3320 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3321 @c principle this can perfectly well be different on different targets.
3322 @item
3323 Optional sign: either @samp{+} or @samp{-}.
3324 @item
3325 One or more decimal digits.
3326 @end itemize
3327
3328 @end itemize
3329
3330 At least one of the integer part or the fractional part must be
3331 present. The floating point number has the usual base-10 value.
3332
3333 @command{@value{AS}} does all processing using integers. Flonums are computed
3334 independently of any floating point hardware in the computer running
3335 @command{@value{AS}}.
3336
3337 @node Sections
3338 @chapter Sections and Relocation
3339 @cindex sections
3340 @cindex relocation
3341
3342 @menu
3343 * Secs Background:: Background
3344 * Ld Sections:: Linker Sections
3345 * As Sections:: Assembler Internal Sections
3346 * Sub-Sections:: Sub-Sections
3347 * bss:: bss Section
3348 @end menu
3349
3350 @node Secs Background
3351 @section Background
3352
3353 Roughly, a section is a range of addresses, with no gaps; all data
3354 ``in'' those addresses is treated the same for some particular purpose.
3355 For example there may be a ``read only'' section.
3356
3357 @cindex linker, and assembler
3358 @cindex assembler, and linker
3359 The linker @code{@value{LD}} reads many object files (partial programs) and
3360 combines their contents to form a runnable program. When @command{@value{AS}}
3361 emits an object file, the partial program is assumed to start at address 0.
3362 @code{@value{LD}} assigns the final addresses for the partial program, so that
3363 different partial programs do not overlap. This is actually an
3364 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3365 sections.
3366
3367 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3368 addresses. These blocks slide to their run-time addresses as rigid
3369 units; their length does not change and neither does the order of bytes
3370 within them. Such a rigid unit is called a @emph{section}. Assigning
3371 run-time addresses to sections is called @dfn{relocation}. It includes
3372 the task of adjusting mentions of object-file addresses so they refer to
3373 the proper run-time addresses.
3374 @ifset H8
3375 For the H8/300, and for the Renesas / SuperH SH,
3376 @command{@value{AS}} pads sections if needed to
3377 ensure they end on a word (sixteen bit) boundary.
3378 @end ifset
3379
3380 @cindex standard assembler sections
3381 An object file written by @command{@value{AS}} has at least three sections, any
3382 of which may be empty. These are named @dfn{text}, @dfn{data} and
3383 @dfn{bss} sections.
3384
3385 @ifset COFF-ELF
3386 @ifset GENERIC
3387 When it generates COFF or ELF output,
3388 @end ifset
3389 @command{@value{AS}} can also generate whatever other named sections you specify
3390 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3391 If you do not use any directives that place output in the @samp{.text}
3392 or @samp{.data} sections, these sections still exist, but are empty.
3393 @end ifset
3394
3395 @ifset HPPA
3396 @ifset GENERIC
3397 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3398 @end ifset
3399 @command{@value{AS}} can also generate whatever other named sections you
3400 specify using the @samp{.space} and @samp{.subspace} directives. See
3401 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3402 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3403 assembler directives.
3404
3405 @ifset SOM
3406 Additionally, @command{@value{AS}} uses different names for the standard
3407 text, data, and bss sections when generating SOM output. Program text
3408 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3409 BSS into @samp{$BSS$}.
3410 @end ifset
3411 @end ifset
3412
3413 Within the object file, the text section starts at address @code{0}, the
3414 data section follows, and the bss section follows the data section.
3415
3416 @ifset HPPA
3417 When generating either SOM or ELF output files on the HPPA, the text
3418 section starts at address @code{0}, the data section at address
3419 @code{0x4000000}, and the bss section follows the data section.
3420 @end ifset
3421
3422 To let @code{@value{LD}} know which data changes when the sections are
3423 relocated, and how to change that data, @command{@value{AS}} also writes to the
3424 object file details of the relocation needed. To perform relocation
3425 @code{@value{LD}} must know, each time an address in the object
3426 file is mentioned:
3427 @itemize @bullet
3428 @item
3429 Where in the object file is the beginning of this reference to
3430 an address?
3431 @item
3432 How long (in bytes) is this reference?
3433 @item
3434 Which section does the address refer to? What is the numeric value of
3435 @display
3436 (@var{address}) @minus{} (@var{start-address of section})?
3437 @end display
3438 @item
3439 Is the reference to an address ``Program-Counter relative''?
3440 @end itemize
3441
3442 @cindex addresses, format of
3443 @cindex section-relative addressing
3444 In fact, every address @command{@value{AS}} ever uses is expressed as
3445 @display
3446 (@var{section}) + (@var{offset into section})
3447 @end display
3448 @noindent
3449 Further, most expressions @command{@value{AS}} computes have this section-relative
3450 nature.
3451 @ifset SOM
3452 (For some object formats, such as SOM for the HPPA, some expressions are
3453 symbol-relative instead.)
3454 @end ifset
3455
3456 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3457 @var{N} into section @var{secname}.''
3458
3459 Apart from text, data and bss sections you need to know about the
3460 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3461 addresses in the absolute section remain unchanged. For example, address
3462 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3463 @code{@value{LD}}. Although the linker never arranges two partial programs'
3464 data sections with overlapping addresses after linking, @emph{by definition}
3465 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3466 part of a program is always the same address when the program is running as
3467 address @code{@{absolute@ 239@}} in any other part of the program.
3468
3469 The idea of sections is extended to the @dfn{undefined} section. Any
3470 address whose section is unknown at assembly time is by definition
3471 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3472 Since numbers are always defined, the only way to generate an undefined
3473 address is to mention an undefined symbol. A reference to a named
3474 common block would be such a symbol: its value is unknown at assembly
3475 time so it has section @emph{undefined}.
3476
3477 By analogy the word @emph{section} is used to describe groups of sections in
3478 the linked program. @code{@value{LD}} puts all partial programs' text
3479 sections in contiguous addresses in the linked program. It is
3480 customary to refer to the @emph{text section} of a program, meaning all
3481 the addresses of all partial programs' text sections. Likewise for
3482 data and bss sections.
3483
3484 Some sections are manipulated by @code{@value{LD}}; others are invented for
3485 use of @command{@value{AS}} and have no meaning except during assembly.
3486
3487 @node Ld Sections
3488 @section Linker Sections
3489 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3490
3491 @table @strong
3492
3493 @ifset COFF-ELF
3494 @cindex named sections
3495 @cindex sections, named
3496 @item named sections
3497 @end ifset
3498 @ifset aout
3499 @cindex text section
3500 @cindex data section
3501 @itemx text section
3502 @itemx data section
3503 @end ifset
3504 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3505 separate but equal sections. Anything you can say of one section is
3506 true of another.
3507 @c @ifset aout
3508 When the program is running, however, it is
3509 customary for the text section to be unalterable. The
3510 text section is often shared among processes: it contains
3511 instructions, constants and the like. The data section of a running
3512 program is usually alterable: for example, C variables would be stored
3513 in the data section.
3514 @c @end ifset
3515
3516 @cindex bss section
3517 @item bss section
3518 This section contains zeroed bytes when your program begins running. It
3519 is used to hold uninitialized variables or common storage. The length of
3520 each partial program's bss section is important, but because it starts
3521 out containing zeroed bytes there is no need to store explicit zero
3522 bytes in the object file. The bss section was invented to eliminate
3523 those explicit zeros from object files.
3524
3525 @cindex absolute section
3526 @item absolute section
3527 Address 0 of this section is always ``relocated'' to runtime address 0.
3528 This is useful if you want to refer to an address that @code{@value{LD}} must
3529 not change when relocating. In this sense we speak of absolute
3530 addresses being ``unrelocatable'': they do not change during relocation.
3531
3532 @cindex undefined section
3533 @item undefined section
3534 This ``section'' is a catch-all for address references to objects not in
3535 the preceding sections.
3536 @c FIXME: ref to some other doc on obj-file formats could go here.
3537 @end table
3538
3539 @cindex relocation example
3540 An idealized example of three relocatable sections follows.
3541 @ifset COFF-ELF
3542 The example uses the traditional section names @samp{.text} and @samp{.data}.
3543 @end ifset
3544 Memory addresses are on the horizontal axis.
3545
3546 @c TEXI2ROFF-KILL
3547 @ifnottex
3548 @c END TEXI2ROFF-KILL
3549 @smallexample
3550 +-----+----+--+
3551 partial program # 1: |ttttt|dddd|00|
3552 +-----+----+--+
3553
3554 text data bss
3555 seg. seg. seg.
3556
3557 +---+---+---+
3558 partial program # 2: |TTT|DDD|000|
3559 +---+---+---+
3560
3561 +--+---+-----+--+----+---+-----+~~
3562 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3563 +--+---+-----+--+----+---+-----+~~
3564
3565 addresses: 0 @dots{}
3566 @end smallexample
3567 @c TEXI2ROFF-KILL
3568 @end ifnottex
3569 @need 5000
3570 @tex
3571 \bigskip
3572 \line{\it Partial program \#1: \hfil}
3573 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3574 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3575
3576 \line{\it Partial program \#2: \hfil}
3577 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3578 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3579
3580 \line{\it linked program: \hfil}
3581 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3582 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3583 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3584 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3585
3586 \line{\it addresses: \hfil}
3587 \line{0\dots\hfil}
3588
3589 @end tex
3590 @c END TEXI2ROFF-KILL
3591
3592 @node As Sections
3593 @section Assembler Internal Sections
3594
3595 @cindex internal assembler sections
3596 @cindex sections in messages, internal
3597 These sections are meant only for the internal use of @command{@value{AS}}. They
3598 have no meaning at run-time. You do not really need to know about these
3599 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3600 warning messages, so it might be helpful to have an idea of their
3601 meanings to @command{@value{AS}}. These sections are used to permit the
3602 value of every expression in your assembly language program to be a
3603 section-relative address.
3604
3605 @table @b
3606 @cindex assembler internal logic error
3607 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3608 An internal assembler logic error has been found. This means there is a
3609 bug in the assembler.
3610
3611 @cindex expr (internal section)
3612 @item expr section
3613 The assembler stores complex expression internally as combinations of
3614 symbols. When it needs to represent an expression as a symbol, it puts
3615 it in the expr section.
3616 @c FIXME item debug
3617 @c FIXME item transfer[t] vector preload
3618 @c FIXME item transfer[t] vector postload
3619 @c FIXME item register
3620 @end table
3621
3622 @node Sub-Sections
3623 @section Sub-Sections
3624
3625 @cindex numbered subsections
3626 @cindex grouping data
3627 @ifset aout
3628 Assembled bytes
3629 @ifset COFF-ELF
3630 conventionally
3631 @end ifset
3632 fall into two sections: text and data.
3633 @end ifset
3634 You may have separate groups of
3635 @ifset GENERIC
3636 data in named sections
3637 @end ifset
3638 @ifclear GENERIC
3639 @ifclear aout
3640 data in named sections
3641 @end ifclear
3642 @ifset aout
3643 text or data
3644 @end ifset
3645 @end ifclear
3646 that you want to end up near to each other in the object file, even though they
3647 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3648 use @dfn{subsections} for this purpose. Within each section, there can be
3649 numbered subsections with values from 0 to 8192. Objects assembled into the
3650 same subsection go into the object file together with other objects in the same
3651 subsection. For example, a compiler might want to store constants in the text
3652 section, but might not want to have them interspersed with the program being
3653 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3654 section of code being output, and a @samp{.text 1} before each group of
3655 constants being output.
3656
3657 Subsections are optional. If you do not use subsections, everything
3658 goes in subsection number zero.
3659
3660 @ifset GENERIC
3661 Each subsection is zero-padded up to a multiple of four bytes.
3662 (Subsections may be padded a different amount on different flavors
3663 of @command{@value{AS}}.)
3664 @end ifset
3665 @ifclear GENERIC
3666 @ifset H8
3667 On the H8/300 platform, each subsection is zero-padded to a word
3668 boundary (two bytes).
3669 The same is true on the Renesas SH.
3670 @end ifset
3671 @end ifclear
3672
3673 Subsections appear in your object file in numeric order, lowest numbered
3674 to highest. (All this to be compatible with other people's assemblers.)
3675 The object file contains no representation of subsections; @code{@value{LD}} and
3676 other programs that manipulate object files see no trace of them.
3677 They just see all your text subsections as a text section, and all your
3678 data subsections as a data section.
3679
3680 To specify which subsection you want subsequent statements assembled
3681 into, use a numeric argument to specify it, in a @samp{.text
3682 @var{expression}} or a @samp{.data @var{expression}} statement.
3683 @ifset COFF
3684 @ifset GENERIC
3685 When generating COFF output, you
3686 @end ifset
3687 @ifclear GENERIC
3688 You
3689 @end ifclear
3690 can also use an extra subsection
3691 argument with arbitrary named sections: @samp{.section @var{name},
3692 @var{expression}}.
3693 @end ifset
3694 @ifset ELF
3695 @ifset GENERIC
3696 When generating ELF output, you
3697 @end ifset
3698 @ifclear GENERIC
3699 You
3700 @end ifclear
3701 can also use the @code{.subsection} directive (@pxref{SubSection})
3702 to specify a subsection: @samp{.subsection @var{expression}}.
3703 @end ifset
3704 @var{Expression} should be an absolute expression
3705 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3706 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3707 begins in @code{text 0}. For instance:
3708 @smallexample
3709 .text 0 # The default subsection is text 0 anyway.
3710 .ascii "This lives in the first text subsection. *"
3711 .text 1
3712 .ascii "But this lives in the second text subsection."
3713 .data 0
3714 .ascii "This lives in the data section,"
3715 .ascii "in the first data subsection."
3716 .text 0
3717 .ascii "This lives in the first text section,"
3718 .ascii "immediately following the asterisk (*)."
3719 @end smallexample
3720
3721 Each section has a @dfn{location counter} incremented by one for every byte
3722 assembled into that section. Because subsections are merely a convenience
3723 restricted to @command{@value{AS}} there is no concept of a subsection location
3724 counter. There is no way to directly manipulate a location counter---but the
3725 @code{.align} directive changes it, and any label definition captures its
3726 current value. The location counter of the section where statements are being
3727 assembled is said to be the @dfn{active} location counter.
3728
3729 @node bss
3730 @section bss Section
3731
3732 @cindex bss section
3733 @cindex common variable storage
3734 The bss section is used for local common variable storage.
3735 You may allocate address space in the bss section, but you may
3736 not dictate data to load into it before your program executes. When
3737 your program starts running, all the contents of the bss
3738 section are zeroed bytes.
3739
3740 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3741 @ref{Lcomm,,@code{.lcomm}}.
3742
3743 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3744 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3745
3746 @ifset GENERIC
3747 When assembling for a target which supports multiple sections, such as ELF or
3748 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3749 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3750 section. Typically the section will only contain symbol definitions and
3751 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3752 @end ifset
3753
3754 @node Symbols
3755 @chapter Symbols
3756
3757 @cindex symbols
3758 Symbols are a central concept: the programmer uses symbols to name
3759 things, the linker uses symbols to link, and the debugger uses symbols
3760 to debug.
3761
3762 @quotation
3763 @cindex debuggers, and symbol order
3764 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3765 the same order they were declared. This may break some debuggers.
3766 @end quotation
3767
3768 @menu
3769 * Labels:: Labels
3770 * Setting Symbols:: Giving Symbols Other Values
3771 * Symbol Names:: Symbol Names
3772 * Dot:: The Special Dot Symbol
3773 * Symbol Attributes:: Symbol Attributes
3774 @end menu
3775
3776 @node Labels
3777 @section Labels
3778
3779 @cindex labels
3780 A @dfn{label} is written as a symbol immediately followed by a colon
3781 @samp{:}. The symbol then represents the current value of the
3782 active location counter, and is, for example, a suitable instruction
3783 operand. You are warned if you use the same symbol to represent two
3784 different locations: the first definition overrides any other
3785 definitions.
3786
3787 @ifset HPPA
3788 On the HPPA, the usual form for a label need not be immediately followed by a
3789 colon, but instead must start in column zero. Only one label may be defined on
3790 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3791 provides a special directive @code{.label} for defining labels more flexibly.
3792 @end ifset
3793
3794 @node Setting Symbols
3795 @section Giving Symbols Other Values
3796
3797 @cindex assigning values to symbols
3798 @cindex symbol values, assigning
3799 A symbol can be given an arbitrary value by writing a symbol, followed
3800 by an equals sign @samp{=}, followed by an expression
3801 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3802 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3803 equals sign @samp{=}@samp{=} here represents an equivalent of the
3804 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3805
3806 @ifset Blackfin
3807 Blackfin does not support symbol assignment with @samp{=}.
3808 @end ifset
3809
3810 @node Symbol Names
3811 @section Symbol Names
3812
3813 @cindex symbol names
3814 @cindex names, symbol
3815 @ifclear SPECIAL-SYMS
3816 Symbol names begin with a letter or with one of @samp{._}. On most
3817 machines, you can also use @code{$} in symbol names; exceptions are
3818 noted in @ref{Machine Dependencies}. That character may be followed by any
3819 string of digits, letters, dollar signs (unless otherwise noted for a
3820 particular target machine), and underscores.
3821 @end ifclear
3822 @ifset SPECIAL-SYMS
3823 @ifset H8
3824 Symbol names begin with a letter or with one of @samp{._}. On the
3825 Renesas SH you can also use @code{$} in symbol names. That
3826 character may be followed by any string of digits, letters, dollar signs (save
3827 on the H8/300), and underscores.
3828 @end ifset
3829 @end ifset
3830
3831 Case of letters is significant: @code{foo} is a different symbol name
3832 than @code{Foo}.
3833
3834 Symbol names do not start with a digit. An exception to this rule is made for
3835 Local Labels. See below.
3836
3837 Multibyte characters are supported. To generate a symbol name containing
3838 multibyte characters enclose it within double quotes and use escape codes. cf
3839 @xref{Strings}. Generating a multibyte symbol name from a label is not
3840 currently supported.
3841
3842 Each symbol has exactly one name. Each name in an assembly language program
3843 refers to exactly one symbol. You may use that symbol name any number of times
3844 in a program.
3845
3846 @subheading Local Symbol Names
3847
3848 @cindex local symbol names
3849 @cindex symbol names, local
3850 A local symbol is any symbol beginning with certain local label prefixes.
3851 By default, the local label prefix is @samp{.L} for ELF systems or
3852 @samp{L} for traditional a.out systems, but each target may have its own
3853 set of local label prefixes.
3854 @ifset HPPA
3855 On the HPPA local symbols begin with @samp{L$}.
3856 @end ifset
3857
3858 Local symbols are defined and used within the assembler, but they are
3859 normally not saved in object files. Thus, they are not visible when debugging.
3860 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3861 to retain the local symbols in the object files.
3862
3863 @subheading Local Labels
3864
3865 @cindex local labels
3866 @cindex temporary symbol names
3867 @cindex symbol names, temporary
3868 Local labels are different from local symbols. Local labels help compilers and
3869 programmers use names temporarily. They create symbols which are guaranteed to
3870 be unique over the entire scope of the input source code and which can be
3871 referred to by a simple notation. To define a local label, write a label of
3872 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3873 To refer to the most recent previous definition of that label write
3874 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3875 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3876 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3877
3878 There is no restriction on how you can use these labels, and you can reuse them
3879 too. So that it is possible to repeatedly define the same local label (using
3880 the same number @samp{@b{N}}), although you can only refer to the most recently
3881 defined local label of that number (for a backwards reference) or the next
3882 definition of a specific local label for a forward reference. It is also worth
3883 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3884 implemented in a slightly more efficient manner than the others.
3885
3886 Here is an example:
3887
3888 @smallexample
3889 1: branch 1f
3890 2: branch 1b
3891 1: branch 2f
3892 2: branch 1b
3893 @end smallexample
3894
3895 Which is the equivalent of:
3896
3897 @smallexample
3898 label_1: branch label_3
3899 label_2: branch label_1
3900 label_3: branch label_4
3901 label_4: branch label_3
3902 @end smallexample
3903
3904 Local label names are only a notational device. They are immediately
3905 transformed into more conventional symbol names before the assembler uses them.
3906 The symbol names are stored in the symbol table, appear in error messages, and
3907 are optionally emitted to the object file. The names are constructed using
3908 these parts:
3909
3910 @table @code
3911 @item @emph{local label prefix}
3912 All local symbols begin with the system-specific local label prefix.
3913 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3914 that start with the local label prefix. These labels are
3915 used for symbols you are never intended to see. If you use the
3916 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3917 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3918 you may use them in debugging.
3919
3920 @item @var{number}
3921 This is the number that was used in the local label definition. So if the
3922 label is written @samp{55:} then the number is @samp{55}.
3923
3924 @item @kbd{C-B}
3925 This unusual character is included so you do not accidentally invent a symbol
3926 of the same name. The character has ASCII value of @samp{\002} (control-B).
3927
3928 @item @emph{ordinal number}
3929 This is a serial number to keep the labels distinct. The first definition of
3930 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3931 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3932 the number @samp{1} and its 15th definition gets @samp{15} as well.
3933 @end table
3934
3935 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3936 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3937
3938 @subheading Dollar Local Labels
3939 @cindex dollar local symbols
3940
3941 On some targets @code{@value{AS}} also supports an even more local form of
3942 local labels called dollar labels. These labels go out of scope (i.e., they
3943 become undefined) as soon as a non-local label is defined. Thus they remain
3944 valid for only a small region of the input source code. Normal local labels,
3945 by contrast, remain in scope for the entire file, or until they are redefined
3946 by another occurrence of the same local label.
3947
3948 Dollar labels are defined in exactly the same way as ordinary local labels,
3949 except that they have a dollar sign suffix to their numeric value, e.g.,
3950 @samp{@b{55$:}}.
3951
3952 They can also be distinguished from ordinary local labels by their transformed
3953 names which use ASCII character @samp{\001} (control-A) as the magic character
3954 to distinguish them from ordinary labels. For example, the fifth definition of
3955 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3956
3957 @node Dot
3958 @section The Special Dot Symbol
3959
3960 @cindex dot (symbol)
3961 @cindex @code{.} (symbol)
3962 @cindex current address
3963 @cindex location counter
3964 The special symbol @samp{.} refers to the current address that
3965 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3966 .long .} defines @code{melvin} to contain its own address.
3967 Assigning a value to @code{.} is treated the same as a @code{.org}
3968 directive.
3969 @ifclear no-space-dir
3970 Thus, the expression @samp{.=.+4} is the same as saying
3971 @samp{.space 4}.
3972 @end ifclear
3973
3974 @node Symbol Attributes
3975 @section Symbol Attributes
3976
3977 @cindex symbol attributes
3978 @cindex attributes, symbol
3979 Every symbol has, as well as its name, the attributes ``Value'' and
3980 ``Type''. Depending on output format, symbols can also have auxiliary
3981 attributes.
3982 @ifset INTERNALS
3983 The detailed definitions are in @file{a.out.h}.
3984 @end ifset
3985
3986 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3987 all these attributes, and probably won't warn you. This makes the
3988 symbol an externally defined symbol, which is generally what you
3989 would want.
3990
3991 @menu
3992 * Symbol Value:: Value
3993 * Symbol Type:: Type
3994 @ifset aout
3995 * a.out Symbols:: Symbol Attributes: @code{a.out}
3996 @end ifset
3997 @ifset COFF
3998 * COFF Symbols:: Symbol Attributes for COFF
3999 @end ifset
4000 @ifset SOM
4001 * SOM Symbols:: Symbol Attributes for SOM
4002 @end ifset
4003 @end menu
4004
4005 @node Symbol Value
4006 @subsection Value
4007
4008 @cindex value of a symbol
4009 @cindex symbol value
4010 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4011 location in the text, data, bss or absolute sections the value is the
4012 number of addresses from the start of that section to the label.
4013 Naturally for text, data and bss sections the value of a symbol changes
4014 as @code{@value{LD}} changes section base addresses during linking. Absolute
4015 symbols' values do not change during linking: that is why they are
4016 called absolute.
4017
4018 The value of an undefined symbol is treated in a special way. If it is
4019 0 then the symbol is not defined in this assembler source file, and
4020 @code{@value{LD}} tries to determine its value from other files linked into the
4021 same program. You make this kind of symbol simply by mentioning a symbol
4022 name without defining it. A non-zero value represents a @code{.comm}
4023 common declaration. The value is how much common storage to reserve, in
4024 bytes (addresses). The symbol refers to the first address of the
4025 allocated storage.
4026
4027 @node Symbol Type
4028 @subsection Type
4029
4030 @cindex type of a symbol
4031 @cindex symbol type
4032 The type attribute of a symbol contains relocation (section)
4033 information, any flag settings indicating that a symbol is external, and
4034 (optionally), other information for linkers and debuggers. The exact
4035 format depends on the object-code output format in use.
4036
4037 @ifset aout
4038 @node a.out Symbols
4039 @subsection Symbol Attributes: @code{a.out}
4040
4041 @cindex @code{a.out} symbol attributes
4042 @cindex symbol attributes, @code{a.out}
4043
4044 @menu
4045 * Symbol Desc:: Descriptor
4046 * Symbol Other:: Other
4047 @end menu
4048
4049 @node Symbol Desc
4050 @subsubsection Descriptor
4051
4052 @cindex descriptor, of @code{a.out} symbol
4053 This is an arbitrary 16-bit value. You may establish a symbol's
4054 descriptor value by using a @code{.desc} statement
4055 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4056 @command{@value{AS}}.
4057
4058 @node Symbol Other
4059 @subsubsection Other
4060
4061 @cindex other attribute, of @code{a.out} symbol
4062 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4063 @end ifset
4064
4065 @ifset COFF
4066 @node COFF Symbols
4067 @subsection Symbol Attributes for COFF
4068
4069 @cindex COFF symbol attributes
4070 @cindex symbol attributes, COFF
4071
4072 The COFF format supports a multitude of auxiliary symbol attributes;
4073 like the primary symbol attributes, they are set between @code{.def} and
4074 @code{.endef} directives.
4075
4076 @subsubsection Primary Attributes
4077
4078 @cindex primary attributes, COFF symbols
4079 The symbol name is set with @code{.def}; the value and type,
4080 respectively, with @code{.val} and @code{.type}.
4081
4082 @subsubsection Auxiliary Attributes
4083
4084 @cindex auxiliary attributes, COFF symbols
4085 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4086 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4087 table information for COFF.
4088 @end ifset
4089
4090 @ifset SOM
4091 @node SOM Symbols
4092 @subsection Symbol Attributes for SOM
4093
4094 @cindex SOM symbol attributes
4095 @cindex symbol attributes, SOM
4096
4097 The SOM format for the HPPA supports a multitude of symbol attributes set with
4098 the @code{.EXPORT} and @code{.IMPORT} directives.
4099
4100 The attributes are described in @cite{HP9000 Series 800 Assembly
4101 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4102 @code{EXPORT} assembler directive documentation.
4103 @end ifset
4104
4105 @node Expressions
4106 @chapter Expressions
4107
4108 @cindex expressions
4109 @cindex addresses
4110 @cindex numeric values
4111 An @dfn{expression} specifies an address or numeric value.
4112 Whitespace may precede and/or follow an expression.
4113
4114 The result of an expression must be an absolute number, or else an offset into
4115 a particular section. If an expression is not absolute, and there is not
4116 enough information when @command{@value{AS}} sees the expression to know its
4117 section, a second pass over the source program might be necessary to interpret
4118 the expression---but the second pass is currently not implemented.
4119 @command{@value{AS}} aborts with an error message in this situation.
4120
4121 @menu
4122 * Empty Exprs:: Empty Expressions
4123 * Integer Exprs:: Integer Expressions
4124 @end menu
4125
4126 @node Empty Exprs
4127 @section Empty Expressions
4128
4129 @cindex empty expressions
4130 @cindex expressions, empty
4131 An empty expression has no value: it is just whitespace or null.
4132 Wherever an absolute expression is required, you may omit the
4133 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4134 is compatible with other assemblers.
4135
4136 @node Integer Exprs
4137 @section Integer Expressions
4138
4139 @cindex integer expressions
4140 @cindex expressions, integer
4141 An @dfn{integer expression} is one or more @emph{arguments} delimited
4142 by @emph{operators}.
4143
4144 @menu
4145 * Arguments:: Arguments
4146 * Operators:: Operators
4147 * Prefix Ops:: Prefix Operators
4148 * Infix Ops:: Infix Operators
4149 @end menu
4150
4151 @node Arguments
4152 @subsection Arguments
4153
4154 @cindex expression arguments
4155 @cindex arguments in expressions
4156 @cindex operands in expressions
4157 @cindex arithmetic operands
4158 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4159 contexts arguments are sometimes called ``arithmetic operands''. In
4160 this manual, to avoid confusing them with the ``instruction operands'' of
4161 the machine language, we use the term ``argument'' to refer to parts of
4162 expressions only, reserving the word ``operand'' to refer only to machine
4163 instruction operands.
4164
4165 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4166 @var{section} is one of text, data, bss, absolute,
4167 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4168 integer.
4169
4170 Numbers are usually integers.
4171
4172 A number can be a flonum or bignum. In this case, you are warned
4173 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4174 these 32 bits are an integer. You may write integer-manipulating
4175 instructions that act on exotic constants, compatible with other
4176 assemblers.
4177
4178 @cindex subexpressions
4179 Subexpressions are a left parenthesis @samp{(} followed by an integer
4180 expression, followed by a right parenthesis @samp{)}; or a prefix
4181 operator followed by an argument.
4182
4183 @node Operators
4184 @subsection Operators
4185
4186 @cindex operators, in expressions
4187 @cindex arithmetic functions
4188 @cindex functions, in expressions
4189 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4190 operators are followed by an argument. Infix operators appear
4191 between their arguments. Operators may be preceded and/or followed by
4192 whitespace.
4193
4194 @node Prefix Ops
4195 @subsection Prefix Operator
4196
4197 @cindex prefix operators
4198 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4199 one argument, which must be absolute.
4200
4201 @c the tex/end tex stuff surrounding this small table is meant to make
4202 @c it align, on the printed page, with the similar table in the next
4203 @c section (which is inside an enumerate).
4204 @tex
4205 \global\advance\leftskip by \itemindent
4206 @end tex
4207
4208 @table @code
4209 @item -
4210 @dfn{Negation}. Two's complement negation.
4211 @item ~
4212 @dfn{Complementation}. Bitwise not.
4213 @end table
4214
4215 @tex
4216 \global\advance\leftskip by -\itemindent
4217 @end tex
4218
4219 @node Infix Ops
4220 @subsection Infix Operators
4221
4222 @cindex infix operators
4223 @cindex operators, permitted arguments
4224 @dfn{Infix operators} take two arguments, one on either side. Operators
4225 have precedence, but operations with equal precedence are performed left
4226 to right. Apart from @code{+} or @option{-}, both arguments must be
4227 absolute, and the result is absolute.
4228
4229 @enumerate
4230 @cindex operator precedence
4231 @cindex precedence of operators
4232
4233 @item
4234 Highest Precedence
4235
4236 @table @code
4237 @item *
4238 @dfn{Multiplication}.
4239
4240 @item /
4241 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4242
4243 @item %
4244 @dfn{Remainder}.
4245
4246 @item <<
4247 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4248
4249 @item >>
4250 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4251 @end table
4252
4253 @item
4254 Intermediate precedence
4255
4256 @table @code
4257 @item |
4258
4259 @dfn{Bitwise Inclusive Or}.
4260
4261 @item &
4262 @dfn{Bitwise And}.
4263
4264 @item ^
4265 @dfn{Bitwise Exclusive Or}.
4266
4267 @item !
4268 @dfn{Bitwise Or Not}.
4269 @end table
4270
4271 @item
4272 Low Precedence
4273
4274 @table @code
4275 @cindex addition, permitted arguments
4276 @cindex plus, permitted arguments
4277 @cindex arguments for addition
4278 @item +
4279 @dfn{Addition}. If either argument is absolute, the result has the section of
4280 the other argument. You may not add together arguments from different
4281 sections.
4282
4283 @cindex subtraction, permitted arguments
4284 @cindex minus, permitted arguments
4285 @cindex arguments for subtraction
4286 @item -
4287 @dfn{Subtraction}. If the right argument is absolute, the
4288 result has the section of the left argument.
4289 If both arguments are in the same section, the result is absolute.
4290 You may not subtract arguments from different sections.
4291 @c FIXME is there still something useful to say about undefined - undefined ?
4292
4293 @cindex comparison expressions
4294 @cindex expressions, comparison
4295 @item ==
4296 @dfn{Is Equal To}
4297 @item <>
4298 @itemx !=
4299 @dfn{Is Not Equal To}
4300 @item <
4301 @dfn{Is Less Than}
4302 @item >
4303 @dfn{Is Greater Than}
4304 @item >=
4305 @dfn{Is Greater Than Or Equal To}
4306 @item <=
4307 @dfn{Is Less Than Or Equal To}
4308
4309 The comparison operators can be used as infix operators. A true results has a
4310 value of -1 whereas a false result has a value of 0. Note, these operators
4311 perform signed comparisons.
4312 @end table
4313
4314 @item Lowest Precedence
4315
4316 @table @code
4317 @item &&
4318 @dfn{Logical And}.
4319
4320 @item ||
4321 @dfn{Logical Or}.
4322
4323 These two logical operations can be used to combine the results of sub
4324 expressions. Note, unlike the comparison operators a true result returns a
4325 value of 1 but a false results does still return 0. Also note that the logical
4326 or operator has a slightly lower precedence than logical and.
4327
4328 @end table
4329 @end enumerate
4330
4331 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4332 address; you can only have a defined section in one of the two arguments.
4333
4334 @node Pseudo Ops
4335 @chapter Assembler Directives
4336
4337 @cindex directives, machine independent
4338 @cindex pseudo-ops, machine independent
4339 @cindex machine independent directives
4340 All assembler directives have names that begin with a period (@samp{.}).
4341 The names are case insensitive for most targets, and usually written
4342 in lower case.
4343
4344 This chapter discusses directives that are available regardless of the
4345 target machine configuration for the @sc{gnu} assembler.
4346 @ifset GENERIC
4347 Some machine configurations provide additional directives.
4348 @xref{Machine Dependencies}.
4349 @end ifset
4350 @ifclear GENERIC
4351 @ifset machine-directives
4352 @xref{Machine Dependencies}, for additional directives.
4353 @end ifset
4354 @end ifclear
4355
4356 @menu
4357 * Abort:: @code{.abort}
4358 @ifset COFF
4359 * ABORT (COFF):: @code{.ABORT}
4360 @end ifset
4361
4362 * Align:: @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4363 * Altmacro:: @code{.altmacro}
4364 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4365 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4366 * Attach_to_group:: @code{.attach_to_group @var{name}}
4367 * Balign:: @code{.balign [@var{abs-expr}[, @var{abs-expr}]]}
4368 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4369 * Byte:: @code{.byte @var{expressions}}
4370 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4371 * Comm:: @code{.comm @var{symbol} , @var{length} }
4372 * Data:: @code{.data @var{subsection}}
4373 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4374 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4375 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4376 @ifset COFF
4377 * Def:: @code{.def @var{name}}
4378 @end ifset
4379 @ifset aout
4380 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4381 @end ifset
4382 @ifset COFF
4383 * Dim:: @code{.dim}
4384 @end ifset
4385
4386 * Double:: @code{.double @var{flonums}}
4387 * Eject:: @code{.eject}
4388 * Else:: @code{.else}
4389 * Elseif:: @code{.elseif}
4390 * End:: @code{.end}
4391 @ifset COFF
4392 * Endef:: @code{.endef}
4393 @end ifset
4394
4395 * Endfunc:: @code{.endfunc}
4396 * Endif:: @code{.endif}
4397 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4398 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4399 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4400 * Err:: @code{.err}
4401 * Error:: @code{.error @var{string}}
4402 * Exitm:: @code{.exitm}
4403 * Extern:: @code{.extern}
4404 * Fail:: @code{.fail}
4405 * File:: @code{.file}
4406 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4407 * Float:: @code{.float @var{flonums}}
4408 * Func:: @code{.func}
4409 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4410 @ifset ELF
4411 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4412 * Hidden:: @code{.hidden @var{names}}
4413 @end ifset
4414
4415 * hword:: @code{.hword @var{expressions}}
4416 * Ident:: @code{.ident}
4417 * If:: @code{.if @var{absolute expression}}
4418 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4419 * Include:: @code{.include "@var{file}"}
4420 * Int:: @code{.int @var{expressions}}
4421 @ifset ELF
4422 * Internal:: @code{.internal @var{names}}
4423 @end ifset
4424
4425 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4426 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4427 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4428 * Lflags:: @code{.lflags}
4429 @ifclear no-line-dir
4430 * Line:: @code{.line @var{line-number}}
4431 @end ifclear
4432
4433 * Linkonce:: @code{.linkonce [@var{type}]}
4434 * List:: @code{.list}
4435 * Ln:: @code{.ln @var{line-number}}
4436 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4437 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4438 @ifset ELF
4439 * Local:: @code{.local @var{names}}
4440 @end ifset
4441
4442 * Long:: @code{.long @var{expressions}}
4443 @ignore
4444 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4445 @end ignore
4446
4447 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4448 * MRI:: @code{.mri @var{val}}
4449 * Noaltmacro:: @code{.noaltmacro}
4450 * Nolist:: @code{.nolist}
4451 * Nop:: @code{.nop}
4452 * Nops:: @code{.nops @var{size}[, @var{control}]}
4453 * Octa:: @code{.octa @var{bignums}}
4454 * Offset:: @code{.offset @var{loc}}
4455 * Org:: @code{.org @var{new-lc}, @var{fill}}
4456 * P2align:: @code{.p2align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4457 @ifset ELF
4458 * PopSection:: @code{.popsection}
4459 * Previous:: @code{.previous}
4460 @end ifset
4461
4462 * Print:: @code{.print @var{string}}
4463 @ifset ELF
4464 * Protected:: @code{.protected @var{names}}
4465 @end ifset
4466
4467 * Psize:: @code{.psize @var{lines}, @var{columns}}
4468 * Purgem:: @code{.purgem @var{name}}
4469 @ifset ELF
4470 * PushSection:: @code{.pushsection @var{name}}
4471 @end ifset
4472
4473 * Quad:: @code{.quad @var{bignums}}
4474 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4475 * Rept:: @code{.rept @var{count}}
4476 * Sbttl:: @code{.sbttl "@var{subheading}"}
4477 @ifset COFF
4478 * Scl:: @code{.scl @var{class}}
4479 @end ifset
4480 @ifset COFF-ELF
4481 * Section:: @code{.section @var{name}[, @var{flags}]}
4482 @end ifset
4483
4484 * Set:: @code{.set @var{symbol}, @var{expression}}
4485 * Short:: @code{.short @var{expressions}}
4486 * Single:: @code{.single @var{flonums}}
4487 @ifset COFF-ELF
4488 * Size:: @code{.size [@var{name} , @var{expression}]}
4489 @end ifset
4490 @ifclear no-space-dir
4491 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4492 @end ifclear
4493
4494 * Sleb128:: @code{.sleb128 @var{expressions}}
4495 @ifclear no-space-dir
4496 * Space:: @code{.space @var{size} [,@var{fill}]}
4497 @end ifclear
4498 @ifset have-stabs
4499 * Stab:: @code{.stabd, .stabn, .stabs}
4500 @end ifset
4501
4502 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4503 * Struct:: @code{.struct @var{expression}}
4504 @ifset ELF
4505 * SubSection:: @code{.subsection}
4506 * Symver:: @code{.symver @var{name},@var{name2@@nodename}[,@var{visibility}]}
4507 @end ifset
4508
4509 @ifset COFF
4510 * Tag:: @code{.tag @var{structname}}
4511 @end ifset
4512
4513 * Text:: @code{.text @var{subsection}}
4514 * Title:: @code{.title "@var{heading}"}
4515 @ifset ELF
4516 * Tls_common:: @code{.tls_common @var{symbol}, @var{length}[, @var{alignment}]}
4517 @end ifset
4518 @ifset COFF-ELF
4519 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4520 @end ifset
4521
4522 * Uleb128:: @code{.uleb128 @var{expressions}}
4523 @ifset COFF
4524 * Val:: @code{.val @var{addr}}
4525 @end ifset
4526
4527 @ifset ELF
4528 * Version:: @code{.version "@var{string}"}
4529 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4530 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4531 @end ifset
4532
4533 * Warning:: @code{.warning @var{string}}
4534 * Weak:: @code{.weak @var{names}}
4535 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4536 * Word:: @code{.word @var{expressions}}
4537 @ifclear no-space-dir
4538 * Zero:: @code{.zero @var{size}}
4539 @end ifclear
4540 * 2byte:: @code{.2byte @var{expressions}}
4541 * 4byte:: @code{.4byte @var{expressions}}
4542 * 8byte:: @code{.8byte @var{bignums}}
4543 * Deprecated:: Deprecated Directives
4544 @end menu
4545
4546 @node Abort
4547 @section @code{.abort}
4548
4549 @cindex @code{abort} directive
4550 @cindex stopping the assembly
4551 This directive stops the assembly immediately. It is for
4552 compatibility with other assemblers. The original idea was that the
4553 assembly language source would be piped into the assembler. If the sender
4554 of the source quit, it could use this directive tells @command{@value{AS}} to
4555 quit also. One day @code{.abort} will not be supported.
4556
4557 @ifset COFF
4558 @node ABORT (COFF)
4559 @section @code{.ABORT} (COFF)
4560
4561 @cindex @code{ABORT} directive
4562 When producing COFF output, @command{@value{AS}} accepts this directive as a
4563 synonym for @samp{.abort}.
4564
4565 @end ifset
4566
4567 @node Align
4568 @section @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4569
4570 @cindex padding the location counter
4571 @cindex @code{align} directive
4572 Pad the location counter (in the current subsection) to a particular storage
4573 boundary. The first expression (which must be absolute) is the alignment
4574 required, as described below. If this expression is omitted then a default
4575 value of 0 is used, effectively disabling alignment requirements.
4576
4577 The second expression (also absolute) gives the fill value to be stored in the
4578 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4579 padding bytes are normally zero. However, on most systems, if the section is
4580 marked as containing code and the fill value is omitted, the space is filled
4581 with no-op instructions.
4582
4583 The third expression is also absolute, and is also optional. If it is present,
4584 it is the maximum number of bytes that should be skipped by this alignment
4585 directive. If doing the alignment would require skipping more bytes than the
4586 specified maximum, then the alignment is not done at all. You can omit the
4587 fill value (the second argument) entirely by simply using two commas after the
4588 required alignment; this can be useful if you want the alignment to be filled
4589 with no-op instructions when appropriate.
4590
4591 The way the required alignment is specified varies from system to system.
4592 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4593 s390, sparc, tic4x and xtensa, the first expression is the
4594 alignment request in bytes. For example @samp{.align 8} advances
4595 the location counter until it is a multiple of 8. If the location counter
4596 is already a multiple of 8, no change is needed. For the tic54x, the
4597 first expression is the alignment request in words.
4598
4599 For other systems, including ppc, i386 using a.out format, arm and
4600 strongarm, it is the
4601 number of low-order zero bits the location counter must have after
4602 advancement. For example @samp{.align 3} advances the location
4603 counter until it is a multiple of 8. If the location counter is already a
4604 multiple of 8, no change is needed.
4605
4606 This inconsistency is due to the different behaviors of the various
4607 native assemblers for these systems which GAS must emulate.
4608 GAS also provides @code{.balign} and @code{.p2align} directives,
4609 described later, which have a consistent behavior across all
4610 architectures (but are specific to GAS).
4611
4612 @node Altmacro
4613 @section @code{.altmacro}
4614 Enable alternate macro mode, enabling:
4615
4616 @ftable @code
4617 @item LOCAL @var{name} [ , @dots{} ]
4618 One additional directive, @code{LOCAL}, is available. It is used to
4619 generate a string replacement for each of the @var{name} arguments, and
4620 replace any instances of @var{name} in each macro expansion. The
4621 replacement string is unique in the assembly, and different for each
4622 separate macro expansion. @code{LOCAL} allows you to write macros that
4623 define symbols, without fear of conflict between separate macro expansions.
4624
4625 @item String delimiters
4626 You can write strings delimited in these other ways besides
4627 @code{"@var{string}"}:
4628
4629 @table @code
4630 @item '@var{string}'
4631 You can delimit strings with single-quote characters.
4632
4633 @item <@var{string}>
4634 You can delimit strings with matching angle brackets.
4635 @end table
4636
4637 @item single-character string escape
4638 To include any single character literally in a string (even if the
4639 character would otherwise have some special meaning), you can prefix the
4640 character with @samp{!} (an exclamation mark). For example, you can
4641 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4642
4643 @item Expression results as strings
4644 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4645 and use the result as a string.
4646 @end ftable
4647
4648 @node Ascii
4649 @section @code{.ascii "@var{string}"}@dots{}
4650
4651 @cindex @code{ascii} directive
4652 @cindex string literals
4653 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4654 separated by commas. It assembles each string (with no automatic
4655 trailing zero byte) into consecutive addresses.
4656
4657 @node Asciz
4658 @section @code{.asciz "@var{string}"}@dots{}
4659
4660 @cindex @code{asciz} directive
4661 @cindex zero-terminated strings
4662 @cindex null-terminated strings
4663 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4664 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''. Note that
4665 multiple string arguments not separated by commas will be concatenated
4666 together and only one final zero byte will be stored.
4667
4668 @node Attach_to_group
4669 @section @code{.attach_to_group @var{name}}
4670 Attaches the current section to the named group. This is like declaring
4671 the section with the @code{G} attribute, but can be done after the section
4672 has been created. Note if the group section does not exist at the point that
4673 this directive is used then it will be created.
4674
4675 @node Balign
4676 @section @code{.balign[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4677
4678 @cindex padding the location counter given number of bytes
4679 @cindex @code{balign} directive
4680 Pad the location counter (in the current subsection) to a particular
4681 storage boundary. The first expression (which must be absolute) is the
4682 alignment request in bytes. For example @samp{.balign 8} advances
4683 the location counter until it is a multiple of 8. If the location counter
4684 is already a multiple of 8, no change is needed. If the expression is omitted
4685 then a default value of 0 is used, effectively disabling alignment requirements.
4686
4687 The second expression (also absolute) gives the fill value to be stored in the
4688 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4689 padding bytes are normally zero. However, on most systems, if the section is
4690 marked as containing code and the fill value is omitted, the space is filled
4691 with no-op instructions.
4692
4693 The third expression is also absolute, and is also optional. If it is present,
4694 it is the maximum number of bytes that should be skipped by this alignment
4695 directive. If doing the alignment would require skipping more bytes than the
4696 specified maximum, then the alignment is not done at all. You can omit the
4697 fill value (the second argument) entirely by simply using two commas after the
4698 required alignment; this can be useful if you want the alignment to be filled
4699 with no-op instructions when appropriate.
4700
4701 @cindex @code{balignw} directive
4702 @cindex @code{balignl} directive
4703 The @code{.balignw} and @code{.balignl} directives are variants of the
4704 @code{.balign} directive. The @code{.balignw} directive treats the fill
4705 pattern as a two byte word value. The @code{.balignl} directives treats the
4706 fill pattern as a four byte longword value. For example, @code{.balignw
4707 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4708 filled in with the value 0x368d (the exact placement of the bytes depends upon
4709 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4710 undefined.
4711
4712 @node Bundle directives
4713 @section Bundle directives
4714 @subsection @code{.bundle_align_mode @var{abs-expr}}
4715 @cindex @code{bundle_align_mode} directive
4716 @cindex bundle
4717 @cindex instruction bundle
4718 @cindex aligned instruction bundle
4719 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4720 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4721 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4722 disabled (which is the default state). If the argument it not zero, it
4723 gives the size of an instruction bundle as a power of two (as for the
4724 @code{.p2align} directive, @pxref{P2align}).
4725
4726 For some targets, it's an ABI requirement that no instruction may span a
4727 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4728 instructions that starts on an aligned boundary. For example, if
4729 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4730 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4731 effect, no single instruction may span a boundary between bundles. If an
4732 instruction would start too close to the end of a bundle for the length of
4733 that particular instruction to fit within the bundle, then the space at the
4734 end of that bundle is filled with no-op instructions so the instruction
4735 starts in the next bundle. As a corollary, it's an error if any single
4736 instruction's encoding is longer than the bundle size.
4737
4738 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4739 @cindex @code{bundle_lock} directive
4740 @cindex @code{bundle_unlock} directive
4741 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4742 allow explicit control over instruction bundle padding. These directives
4743 are only valid when @code{.bundle_align_mode} has been used to enable
4744 aligned instruction bundle mode. It's an error if they appear when
4745 @code{.bundle_align_mode} has not been used at all, or when the last
4746 directive was @w{@code{.bundle_align_mode 0}}.
4747
4748 @cindex bundle-locked
4749 For some targets, it's an ABI requirement that certain instructions may
4750 appear only as part of specified permissible sequences of multiple
4751 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4752 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4753 instruction sequence. For purposes of aligned instruction bundle mode, a
4754 sequence starting with @code{.bundle_lock} and ending with
4755 @code{.bundle_unlock} is treated as a single instruction. That is, the
4756 entire sequence must fit into a single bundle and may not span a bundle
4757 boundary. If necessary, no-op instructions will be inserted before the
4758 first instruction of the sequence so that the whole sequence starts on an
4759 aligned bundle boundary. It's an error if the sequence is longer than the
4760 bundle size.
4761
4762 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4763 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4764 nested. That is, a second @code{.bundle_lock} directive before the next
4765 @code{.bundle_unlock} directive has no effect except that it must be
4766 matched by another closing @code{.bundle_unlock} so that there is the
4767 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4768
4769 @node Byte
4770 @section @code{.byte @var{expressions}}
4771
4772 @cindex @code{byte} directive
4773 @cindex integers, one byte
4774 @code{.byte} expects zero or more expressions, separated by commas.
4775 Each expression is assembled into the next byte.
4776
4777 @node CFI directives
4778 @section CFI directives
4779 @subsection @code{.cfi_sections @var{section_list}}
4780 @cindex @code{cfi_sections} directive
4781 @code{.cfi_sections} may be used to specify whether CFI directives
4782 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4783 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4784 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4785 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4786 directive is not used is @code{.cfi_sections .eh_frame}.
4787
4788 On targets that support compact unwinding tables these can be generated
4789 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4790
4791 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4792 which is used by the @value{TIC6X} target.
4793
4794 The @code{.cfi_sections} directive can be repeated, with the same or different
4795 arguments, provided that CFI generation has not yet started. Once CFI
4796 generation has started however the section list is fixed and any attempts to
4797 redefine it will result in an error.
4798
4799 @subsection @code{.cfi_startproc [simple]}
4800 @cindex @code{cfi_startproc} directive
4801 @code{.cfi_startproc} is used at the beginning of each function that
4802 should have an entry in @code{.eh_frame}. It initializes some internal
4803 data structures. Don't forget to close the function by
4804 @code{.cfi_endproc}.
4805
4806 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4807 it also emits some architecture dependent initial CFI instructions.
4808
4809 @subsection @code{.cfi_endproc}
4810 @cindex @code{cfi_endproc} directive
4811 @code{.cfi_endproc} is used at the end of a function where it closes its
4812 unwind entry previously opened by
4813 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4814
4815 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4816 @cindex @code{cfi_personality} directive
4817 @code{.cfi_personality} defines personality routine and its encoding.
4818 @var{encoding} must be a constant determining how the personality
4819 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4820 argument is not present, otherwise second argument should be
4821 a constant or a symbol name. When using indirect encodings,
4822 the symbol provided should be the location where personality
4823 can be loaded from, not the personality routine itself.
4824 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4825 no personality routine.
4826
4827 @subsection @code{.cfi_personality_id @var{id}}
4828 @cindex @code{cfi_personality_id} directive
4829 @code{cfi_personality_id} defines a personality routine by its index as
4830 defined in a compact unwinding format.
4831 Only valid when generating compact EH frames (i.e.
4832 with @code{.cfi_sections eh_frame_entry}.
4833
4834 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4835 @cindex @code{cfi_fde_data} directive
4836 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4837 used for the current function. These are emitted inline in the
4838 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4839 in the @code{.gnu.extab} section otherwise.
4840 Only valid when generating compact EH frames (i.e.
4841 with @code{.cfi_sections eh_frame_entry}.
4842
4843 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4844 @code{.cfi_lsda} defines LSDA and its encoding.
4845 @var{encoding} must be a constant determining how the LSDA
4846 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4847 argument is not present, otherwise the second argument should be a constant
4848 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4849 meaning that no LSDA is present.
4850
4851 @subsection @code{.cfi_inline_lsda} [@var{align}]
4852 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4853 switches to the corresponding @code{.gnu.extab} section.
4854 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4855 Only valid when generating compact EH frames (i.e.
4856 with @code{.cfi_sections eh_frame_entry}.
4857
4858 The table header and unwinding opcodes will be generated at this point,
4859 so that they are immediately followed by the LSDA data. The symbol
4860 referenced by the @code{.cfi_lsda} directive should still be defined
4861 in case a fallback FDE based encoding is used. The LSDA data is terminated
4862 by a section directive.
4863
4864 The optional @var{align} argument specifies the alignment required.
4865 The alignment is specified as a power of two, as with the
4866 @code{.p2align} directive.
4867
4868 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4869 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4870 address from @var{register} and add @var{offset} to it}.
4871
4872 @subsection @code{.cfi_def_cfa_register @var{register}}
4873 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4874 now on @var{register} will be used instead of the old one. Offset
4875 remains the same.
4876
4877 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4878 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4879 remains the same, but @var{offset} is new. Note that it is the
4880 absolute offset that will be added to a defined register to compute
4881 CFA address.
4882
4883 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4884 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4885 value that is added/subtracted from the previous offset.
4886
4887 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4888 Previous value of @var{register} is saved at offset @var{offset} from
4889 CFA.
4890
4891 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4892 Previous value of @var{register} is CFA + @var{offset}.
4893
4894 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4895 Previous value of @var{register} is saved at offset @var{offset} from
4896 the current CFA register. This is transformed to @code{.cfi_offset}
4897 using the known displacement of the CFA register from the CFA.
4898 This is often easier to use, because the number will match the
4899 code it's annotating.
4900
4901 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4902 Previous value of @var{register1} is saved in register @var{register2}.
4903
4904 @subsection @code{.cfi_restore @var{register}}
4905 @code{.cfi_restore} says that the rule for @var{register} is now the
4906 same as it was at the beginning of the function, after all initial
4907 instruction added by @code{.cfi_startproc} were executed.
4908
4909 @subsection @code{.cfi_undefined @var{register}}
4910 From now on the previous value of @var{register} can't be restored anymore.
4911
4912 @subsection @code{.cfi_same_value @var{register}}
4913 Current value of @var{register} is the same like in the previous frame,
4914 i.e. no restoration needed.
4915
4916 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4917 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4918 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4919 places them in the current row. This is useful for situations where you have
4920 multiple @code{.cfi_*} directives that need to be undone due to the control
4921 flow of the program. For example, we could have something like this (assuming
4922 the CFA is the value of @code{rbp}):
4923
4924 @smallexample
4925 je label
4926 popq %rbx
4927 .cfi_restore %rbx
4928 popq %r12
4929 .cfi_restore %r12
4930 popq %rbp
4931 .cfi_restore %rbp
4932 .cfi_def_cfa %rsp, 8
4933 ret
4934 label:
4935 /* Do something else */
4936 @end smallexample
4937
4938 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4939 to the instructions before @code{label}. This means we'd have to add multiple
4940 @code{.cfi} directives after @code{label} to recreate the original save
4941 locations of the registers, as well as setting the CFA back to the value of
4942 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4943 we can write:
4944
4945 @smallexample
4946 je label
4947 popq %rbx
4948 .cfi_remember_state
4949 .cfi_restore %rbx
4950 popq %r12
4951 .cfi_restore %r12
4952 popq %rbp
4953 .cfi_restore %rbp
4954 .cfi_def_cfa %rsp, 8
4955 ret
4956 label:
4957 .cfi_restore_state
4958 /* Do something else */
4959 @end smallexample
4960
4961 That way, the rules for the instructions after @code{label} will be the same
4962 as before the first @code{.cfi_restore} without having to use multiple
4963 @code{.cfi} directives.
4964
4965 @subsection @code{.cfi_return_column @var{register}}
4966 Change return column @var{register}, i.e. the return address is either
4967 directly in @var{register} or can be accessed by rules for @var{register}.
4968
4969 @subsection @code{.cfi_signal_frame}
4970 Mark current function as signal trampoline.
4971
4972 @subsection @code{.cfi_window_save}
4973 SPARC register window has been saved.
4974
4975 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4976 Allows the user to add arbitrary bytes to the unwind info. One
4977 might use this to add OS-specific CFI opcodes, or generic CFI
4978 opcodes that GAS does not yet support.
4979
4980 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4981 The current value of @var{register} is @var{label}. The value of @var{label}
4982 will be encoded in the output file according to @var{encoding}; see the
4983 description of @code{.cfi_personality} for details on this encoding.
4984
4985 The usefulness of equating a register to a fixed label is probably
4986 limited to the return address register. Here, it can be useful to
4987 mark a code segment that has only one return address which is reached
4988 by a direct branch and no copy of the return address exists in memory
4989 or another register.
4990
4991 @node Comm
4992 @section @code{.comm @var{symbol} , @var{length} }
4993
4994 @cindex @code{comm} directive
4995 @cindex symbol, common
4996 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4997 common symbol in one object file may be merged with a defined or common symbol
4998 of the same name in another object file. If @code{@value{LD}} does not see a
4999 definition for the symbol--just one or more common symbols--then it will
5000 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
5001 absolute expression. If @code{@value{LD}} sees multiple common symbols with
5002 the same name, and they do not all have the same size, it will allocate space
5003 using the largest size.
5004
5005 @ifset COFF-ELF
5006 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
5007 an optional third argument. This is the desired alignment of the symbol,
5008 specified for ELF as a byte boundary (for example, an alignment of 16 means
5009 that the least significant 4 bits of the address should be zero), and for PE
5010 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
5011 boundary). The alignment must be an absolute expression, and it must be a
5012 power of two. If @code{@value{LD}} allocates uninitialized memory for the
5013 common symbol, it will use the alignment when placing the symbol. If no
5014 alignment is specified, @command{@value{AS}} will set the alignment to the
5015 largest power of two less than or equal to the size of the symbol, up to a
5016 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5017 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5018 @samp{--section-alignment} option; image file sections in PE are aligned to
5019 multiples of 4096, which is far too large an alignment for ordinary variables.
5020 It is rather the default alignment for (non-debug) sections within object
5021 (@samp{*.o}) files, which are less strictly aligned.}.
5022 @end ifset
5023
5024 @ifset HPPA
5025 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5026 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5027 @end ifset
5028
5029 @node Data
5030 @section @code{.data @var{subsection}}
5031 @cindex @code{data} directive
5032
5033 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5034 end of the data subsection numbered @var{subsection} (which is an
5035 absolute expression). If @var{subsection} is omitted, it defaults
5036 to zero.
5037
5038 @node Dc
5039 @section @code{.dc[@var{size}] @var{expressions}}
5040 @cindex @code{dc} directive
5041
5042 The @code{.dc} directive expects zero or more @var{expressions} separated by
5043 commas. These expressions are evaluated and their values inserted into the
5044 current section. The size of the emitted value depends upon the suffix to the
5045 @code{.dc} directive:
5046
5047 @table @code
5048 @item @samp{.a}
5049 Emits N-bit values, where N is the size of an address on the target system.
5050 @item @samp{.b}
5051 Emits 8-bit values.
5052 @item @samp{.d}
5053 Emits double precision floating-point values.
5054 @item @samp{.l}
5055 Emits 32-bit values.
5056 @item @samp{.s}
5057 Emits single precision floating-point values.
5058 @item @samp{.w}
5059 Emits 16-bit values.
5060 Note - this is true even on targets where the @code{.word} directive would emit
5061 32-bit values.
5062 @item @samp{.x}
5063 Emits long double precision floating-point values.
5064 @end table
5065
5066 If no suffix is used then @samp{.w} is assumed.
5067
5068 The byte ordering is target dependent, as is the size and format of floating
5069 point values.
5070
5071 @node Dcb
5072 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5073 @cindex @code{dcb} directive
5074 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5075 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5076 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5077 @var{size} suffix, if present, must be one of:
5078
5079 @table @code
5080 @item @samp{.b}
5081 Emits single byte values.
5082 @item @samp{.d}
5083 Emits double-precision floating point values.
5084 @item @samp{.l}
5085 Emits 4-byte values.
5086 @item @samp{.s}
5087 Emits single-precision floating point values.
5088 @item @samp{.w}
5089 Emits 2-byte values.
5090 @item @samp{.x}
5091 Emits long double-precision floating point values.
5092 @end table
5093
5094 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5095
5096 The byte ordering is target dependent, as is the size and format of floating
5097 point values.
5098
5099 @node Ds
5100 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5101 @cindex @code{ds} directive
5102 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5103 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5104 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5105 @var{size} suffix, if present, must be one of:
5106
5107 @table @code
5108 @item @samp{.b}
5109 Emits single byte values.
5110 @item @samp{.d}
5111 Emits 8-byte values.
5112 @item @samp{.l}
5113 Emits 4-byte values.
5114 @item @samp{.p}
5115 Emits 12-byte values.
5116 @item @samp{.s}
5117 Emits 4-byte values.
5118 @item @samp{.w}
5119 Emits 2-byte values.
5120 @item @samp{.x}
5121 Emits 12-byte values.
5122 @end table
5123
5124 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5125 suffixes do not indicate that floating-point values are to be inserted.
5126
5127 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5128
5129 The byte ordering is target dependent.
5130
5131
5132 @ifset COFF
5133 @node Def
5134 @section @code{.def @var{name}}
5135
5136 @cindex @code{def} directive
5137 @cindex COFF symbols, debugging
5138 @cindex debugging COFF symbols
5139 Begin defining debugging information for a symbol @var{name}; the
5140 definition extends until the @code{.endef} directive is encountered.
5141 @end ifset
5142
5143 @ifset aout
5144 @node Desc
5145 @section @code{.desc @var{symbol}, @var{abs-expression}}
5146
5147 @cindex @code{desc} directive
5148 @cindex COFF symbol descriptor
5149 @cindex symbol descriptor, COFF
5150 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5151 to the low 16 bits of an absolute expression.
5152
5153 @ifset COFF
5154 The @samp{.desc} directive is not available when @command{@value{AS}} is
5155 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5156 object format. For the sake of compatibility, @command{@value{AS}} accepts
5157 it, but produces no output, when configured for COFF.
5158 @end ifset
5159 @end ifset
5160
5161 @ifset COFF
5162 @node Dim
5163 @section @code{.dim}
5164
5165 @cindex @code{dim} directive
5166 @cindex COFF auxiliary symbol information
5167 @cindex auxiliary symbol information, COFF
5168 This directive is generated by compilers to include auxiliary debugging
5169 information in the symbol table. It is only permitted inside
5170 @code{.def}/@code{.endef} pairs.
5171 @end ifset
5172
5173 @node Double
5174 @section @code{.double @var{flonums}}
5175
5176 @cindex @code{double} directive
5177 @cindex floating point numbers (double)
5178 @code{.double} expects zero or more flonums, separated by commas. It
5179 assembles floating point numbers.
5180 @ifset GENERIC
5181 The exact kind of floating point numbers emitted depends on how
5182 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5183 @end ifset
5184 @ifclear GENERIC
5185 @ifset IEEEFLOAT
5186 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5187 in @sc{ieee} format.
5188 @end ifset
5189 @end ifclear
5190
5191 @node Eject
5192 @section @code{.eject}
5193
5194 @cindex @code{eject} directive
5195 @cindex new page, in listings
5196 @cindex page, in listings
5197 @cindex listing control: new page
5198 Force a page break at this point, when generating assembly listings.
5199
5200 @node Else
5201 @section @code{.else}
5202
5203 @cindex @code{else} directive
5204 @code{.else} is part of the @command{@value{AS}} support for conditional
5205 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5206 of code to be assembled if the condition for the preceding @code{.if}
5207 was false.
5208
5209 @node Elseif
5210 @section @code{.elseif}
5211
5212 @cindex @code{elseif} directive
5213 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5214 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5215 @code{.if} block that would otherwise fill the entire @code{.else} section.
5216
5217 @node End
5218 @section @code{.end}
5219
5220 @cindex @code{end} directive
5221 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5222 process anything in the file past the @code{.end} directive.
5223
5224 @ifset COFF
5225 @node Endef
5226 @section @code{.endef}
5227
5228 @cindex @code{endef} directive
5229 This directive flags the end of a symbol definition begun with
5230 @code{.def}.
5231 @end ifset
5232
5233 @node Endfunc
5234 @section @code{.endfunc}
5235 @cindex @code{endfunc} directive
5236 @code{.endfunc} marks the end of a function specified with @code{.func}.
5237
5238 @node Endif
5239 @section @code{.endif}
5240
5241 @cindex @code{endif} directive
5242 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5243 it marks the end of a block of code that is only assembled
5244 conditionally. @xref{If,,@code{.if}}.
5245
5246 @node Equ
5247 @section @code{.equ @var{symbol}, @var{expression}}
5248
5249 @cindex @code{equ} directive
5250 @cindex assigning values to symbols
5251 @cindex symbols, assigning values to
5252 This directive sets the value of @var{symbol} to @var{expression}.
5253 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5254
5255 @ifset HPPA
5256 The syntax for @code{equ} on the HPPA is
5257 @samp{@var{symbol} .equ @var{expression}}.
5258 @end ifset
5259
5260 @ifset Z80
5261 The syntax for @code{equ} on the Z80 is
5262 @samp{@var{symbol} equ @var{expression}}.
5263 On the Z80 it is an error if @var{symbol} is already defined,
5264 but the symbol is not protected from later redefinition.
5265 Compare @ref{Equiv}.
5266 @end ifset
5267
5268 @node Equiv
5269 @section @code{.equiv @var{symbol}, @var{expression}}
5270 @cindex @code{equiv} directive
5271 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5272 the assembler will signal an error if @var{symbol} is already defined. Note a
5273 symbol which has been referenced but not actually defined is considered to be
5274 undefined.
5275
5276 Except for the contents of the error message, this is roughly equivalent to
5277 @smallexample
5278 .ifdef SYM
5279 .err
5280 .endif
5281 .equ SYM,VAL
5282 @end smallexample
5283 plus it protects the symbol from later redefinition.
5284
5285 @node Eqv
5286 @section @code{.eqv @var{symbol}, @var{expression}}
5287 @cindex @code{eqv} directive
5288 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5289 evaluate the expression or any part of it immediately. Instead each time
5290 the resulting symbol is used in an expression, a snapshot of its current
5291 value is taken.
5292
5293 @node Err
5294 @section @code{.err}
5295 @cindex @code{err} directive
5296 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5297 message and, unless the @option{-Z} option was used, it will not generate an
5298 object file. This can be used to signal an error in conditionally compiled code.
5299
5300 @node Error
5301 @section @code{.error "@var{string}"}
5302 @cindex error directive
5303
5304 Similarly to @code{.err}, this directive emits an error, but you can specify a
5305 string that will be emitted as the error message. If you don't specify the
5306 message, it defaults to @code{".error directive invoked in source file"}.
5307 @xref{Errors, ,Error and Warning Messages}.
5308
5309 @smallexample
5310 .error "This code has not been assembled and tested."
5311 @end smallexample
5312
5313 @node Exitm
5314 @section @code{.exitm}
5315 Exit early from the current macro definition. @xref{Macro}.
5316
5317 @node Extern
5318 @section @code{.extern}
5319
5320 @cindex @code{extern} directive
5321 @code{.extern} is accepted in the source program---for compatibility
5322 with other assemblers---but it is ignored. @command{@value{AS}} treats
5323 all undefined symbols as external.
5324
5325 @node Fail
5326 @section @code{.fail @var{expression}}
5327
5328 @cindex @code{fail} directive
5329 Generates an error or a warning. If the value of the @var{expression} is 500
5330 or more, @command{@value{AS}} will print a warning message. If the value is less
5331 than 500, @command{@value{AS}} will print an error message. The message will
5332 include the value of @var{expression}. This can occasionally be useful inside
5333 complex nested macros or conditional assembly.
5334
5335 @node File
5336 @section @code{.file}
5337 @cindex @code{file} directive
5338
5339 @ifclear no-file-dir
5340 There are two different versions of the @code{.file} directive. Targets
5341 that support DWARF2 line number information use the DWARF2 version of
5342 @code{.file}. Other targets use the default version.
5343
5344 @subheading Default Version
5345
5346 @cindex logical file name
5347 @cindex file name, logical
5348 This version of the @code{.file} directive tells @command{@value{AS}} that we
5349 are about to start a new logical file. The syntax is:
5350
5351 @smallexample
5352 .file @var{string}
5353 @end smallexample
5354
5355 @var{string} is the new file name. In general, the filename is
5356 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5357 to specify an empty file name, you must give the quotes--@code{""}. This
5358 statement may go away in future: it is only recognized to be compatible with
5359 old @command{@value{AS}} programs.
5360
5361 @subheading DWARF2 Version
5362 @end ifclear
5363
5364 When emitting DWARF2 line number information, @code{.file} assigns filenames
5365 to the @code{.debug_line} file name table. The syntax is:
5366
5367 @smallexample
5368 .file @var{fileno} @var{filename}
5369 @end smallexample
5370
5371 The @var{fileno} operand should be a unique positive integer to use as the
5372 index of the entry in the table. The @var{filename} operand is a C string
5373 literal enclosed in double quotes. The @var{filename} can include directory
5374 elements. If it does, then the directory will be added to the directory table
5375 and the basename will be added to the file table.
5376
5377 The detail of filename indices is exposed to the user because the filename
5378 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5379 information, and thus the user must know the exact indices that table
5380 entries will have.
5381
5382 If DWARF-5 support has been enabled via the @option{-gdwarf-5} option then
5383 an extended version of the @code{file} is also allowed:
5384
5385 @smallexample
5386 .file @var{fileno} [@var{dirname}] @var{filename} [md5 @var{value}]
5387 @end smallexample
5388
5389 With this version a separate directory name is allowed, although if this is
5390 used then @var{filename} should not contain any directory components. In
5391 addtion an md5 hash value of the contents of @var{filename} can be provided.
5392 This will be stored in the the file table as well, and can be used by tools
5393 reading the debug information to verify that the contents of the source file
5394 match the contents of the compiled file.
5395
5396 @node Fill
5397 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5398
5399 @cindex @code{fill} directive
5400 @cindex writing patterns in memory
5401 @cindex patterns, writing in memory
5402 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5403 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5404 may be zero or more. @var{Size} may be zero or more, but if it is
5405 more than 8, then it is deemed to have the value 8, compatible with
5406 other people's assemblers. The contents of each @var{repeat} bytes
5407 is taken from an 8-byte number. The highest order 4 bytes are
5408 zero. The lowest order 4 bytes are @var{value} rendered in the
5409 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5410 Each @var{size} bytes in a repetition is taken from the lowest order
5411 @var{size} bytes of this number. Again, this bizarre behavior is
5412 compatible with other people's assemblers.
5413
5414 @var{size} and @var{value} are optional.
5415 If the second comma and @var{value} are absent, @var{value} is
5416 assumed zero. If the first comma and following tokens are absent,
5417 @var{size} is assumed to be 1.
5418
5419 @node Float
5420 @section @code{.float @var{flonums}}
5421
5422 @cindex floating point numbers (single)
5423 @cindex @code{float} directive
5424 This directive assembles zero or more flonums, separated by commas. It
5425 has the same effect as @code{.single}.
5426 @ifset GENERIC
5427 The exact kind of floating point numbers emitted depends on how
5428 @command{@value{AS}} is configured.
5429 @xref{Machine Dependencies}.
5430 @end ifset
5431 @ifclear GENERIC
5432 @ifset IEEEFLOAT
5433 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5434 in @sc{ieee} format.
5435 @end ifset
5436 @end ifclear
5437
5438 @node Func
5439 @section @code{.func @var{name}[,@var{label}]}
5440 @cindex @code{func} directive
5441 @code{.func} emits debugging information to denote function @var{name}, and
5442 is ignored unless the file is assembled with debugging enabled.
5443 Only @samp{--gstabs[+]} is currently supported.
5444 @var{label} is the entry point of the function and if omitted @var{name}
5445 prepended with the @samp{leading char} is used.
5446 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5447 All functions are currently defined to have @code{void} return type.
5448 The function must be terminated with @code{.endfunc}.
5449
5450 @node Global
5451 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5452
5453 @cindex @code{global} directive
5454 @cindex symbol, making visible to linker
5455 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5456 @var{symbol} in your partial program, its value is made available to
5457 other partial programs that are linked with it. Otherwise,
5458 @var{symbol} takes its attributes from a symbol of the same name
5459 from another file linked into the same program.
5460
5461 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5462 compatibility with other assemblers.
5463
5464 @ifset HPPA
5465 On the HPPA, @code{.global} is not always enough to make it accessible to other
5466 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5467 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5468 @end ifset
5469
5470 @ifset ELF
5471 @node Gnu_attribute
5472 @section @code{.gnu_attribute @var{tag},@var{value}}
5473 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5474
5475 @node Hidden
5476 @section @code{.hidden @var{names}}
5477
5478 @cindex @code{hidden} directive
5479 @cindex visibility
5480 This is one of the ELF visibility directives. The other two are
5481 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5482 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5483
5484 This directive overrides the named symbols default visibility (which is set by
5485 their binding: local, global or weak). The directive sets the visibility to
5486 @code{hidden} which means that the symbols are not visible to other components.
5487 Such symbols are always considered to be @code{protected} as well.
5488 @end ifset
5489
5490 @node hword
5491 @section @code{.hword @var{expressions}}
5492
5493 @cindex @code{hword} directive
5494 @cindex integers, 16-bit
5495 @cindex numbers, 16-bit
5496 @cindex sixteen bit integers
5497 This expects zero or more @var{expressions}, and emits
5498 a 16 bit number for each.
5499
5500 @ifset GENERIC
5501 This directive is a synonym for @samp{.short}; depending on the target
5502 architecture, it may also be a synonym for @samp{.word}.
5503 @end ifset
5504 @ifclear GENERIC
5505 @ifset W32
5506 This directive is a synonym for @samp{.short}.
5507 @end ifset
5508 @ifset W16
5509 This directive is a synonym for both @samp{.short} and @samp{.word}.
5510 @end ifset
5511 @end ifclear
5512
5513 @node Ident
5514 @section @code{.ident}
5515
5516 @cindex @code{ident} directive
5517
5518 This directive is used by some assemblers to place tags in object files. The
5519 behavior of this directive varies depending on the target. When using the
5520 a.out object file format, @command{@value{AS}} simply accepts the directive for
5521 source-file compatibility with existing assemblers, but does not emit anything
5522 for it. When using COFF, comments are emitted to the @code{.comment} or
5523 @code{.rdata} section, depending on the target. When using ELF, comments are
5524 emitted to the @code{.comment} section.
5525
5526 @node If
5527 @section @code{.if @var{absolute expression}}
5528
5529 @cindex conditional assembly
5530 @cindex @code{if} directive
5531 @code{.if} marks the beginning of a section of code which is only
5532 considered part of the source program being assembled if the argument
5533 (which must be an @var{absolute expression}) is non-zero. The end of
5534 the conditional section of code must be marked by @code{.endif}
5535 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5536 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5537 If you have several conditions to check, @code{.elseif} may be used to avoid
5538 nesting blocks if/else within each subsequent @code{.else} block.
5539
5540 The following variants of @code{.if} are also supported:
5541 @table @code
5542 @cindex @code{ifdef} directive
5543 @item .ifdef @var{symbol}
5544 Assembles the following section of code if the specified @var{symbol}
5545 has been defined. Note a symbol which has been referenced but not yet defined
5546 is considered to be undefined.
5547
5548 @cindex @code{ifb} directive
5549 @item .ifb @var{text}
5550 Assembles the following section of code if the operand is blank (empty).
5551
5552 @cindex @code{ifc} directive
5553 @item .ifc @var{string1},@var{string2}
5554 Assembles the following section of code if the two strings are the same. The
5555 strings may be optionally quoted with single quotes. If they are not quoted,
5556 the first string stops at the first comma, and the second string stops at the
5557 end of the line. Strings which contain whitespace should be quoted. The
5558 string comparison is case sensitive.
5559
5560 @cindex @code{ifeq} directive
5561 @item .ifeq @var{absolute expression}
5562 Assembles the following section of code if the argument is zero.
5563
5564 @cindex @code{ifeqs} directive
5565 @item .ifeqs @var{string1},@var{string2}
5566 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5567
5568 @cindex @code{ifge} directive
5569 @item .ifge @var{absolute expression}
5570 Assembles the following section of code if the argument is greater than or
5571 equal to zero.
5572
5573 @cindex @code{ifgt} directive
5574 @item .ifgt @var{absolute expression}
5575 Assembles the following section of code if the argument is greater than zero.
5576
5577 @cindex @code{ifle} directive
5578 @item .ifle @var{absolute expression}
5579 Assembles the following section of code if the argument is less than or equal
5580 to zero.
5581
5582 @cindex @code{iflt} directive
5583 @item .iflt @var{absolute expression}
5584 Assembles the following section of code if the argument is less than zero.
5585
5586 @cindex @code{ifnb} directive
5587 @item .ifnb @var{text}
5588 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5589 following section of code if the operand is non-blank (non-empty).
5590
5591 @cindex @code{ifnc} directive
5592 @item .ifnc @var{string1},@var{string2}.
5593 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5594 following section of code if the two strings are not the same.
5595
5596 @cindex @code{ifndef} directive
5597 @cindex @code{ifnotdef} directive
5598 @item .ifndef @var{symbol}
5599 @itemx .ifnotdef @var{symbol}
5600 Assembles the following section of code if the specified @var{symbol}
5601 has not been defined. Both spelling variants are equivalent. Note a symbol
5602 which has been referenced but not yet defined is considered to be undefined.
5603
5604 @cindex @code{ifne} directive
5605 @item .ifne @var{absolute expression}
5606 Assembles the following section of code if the argument is not equal to zero
5607 (in other words, this is equivalent to @code{.if}).
5608
5609 @cindex @code{ifnes} directive
5610 @item .ifnes @var{string1},@var{string2}
5611 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5612 following section of code if the two strings are not the same.
5613 @end table
5614
5615 @node Incbin
5616 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5617
5618 @cindex @code{incbin} directive
5619 @cindex binary files, including
5620 The @code{incbin} directive includes @var{file} verbatim at the current
5621 location. You can control the search paths used with the @samp{-I} command-line
5622 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5623 around @var{file}.
5624
5625 The @var{skip} argument skips a number of bytes from the start of the
5626 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5627 read. Note that the data is not aligned in any way, so it is the user's
5628 responsibility to make sure that proper alignment is provided both before and
5629 after the @code{incbin} directive.
5630
5631 @node Include
5632 @section @code{.include "@var{file}"}
5633
5634 @cindex @code{include} directive
5635 @cindex supporting files, including
5636 @cindex files, including
5637 This directive provides a way to include supporting files at specified
5638 points in your source program. The code from @var{file} is assembled as
5639 if it followed the point of the @code{.include}; when the end of the
5640 included file is reached, assembly of the original file continues. You
5641 can control the search paths used with the @samp{-I} command-line option
5642 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5643 around @var{file}.
5644
5645 @node Int
5646 @section @code{.int @var{expressions}}
5647
5648 @cindex @code{int} directive
5649 @cindex integers, 32-bit
5650 Expect zero or more @var{expressions}, of any section, separated by commas.
5651 For each expression, emit a number that, at run time, is the value of that
5652 expression. The byte order and bit size of the number depends on what kind
5653 of target the assembly is for.
5654
5655 @ifclear GENERIC
5656 @ifset H8
5657 On most forms of the H8/300, @code{.int} emits 16-bit
5658 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5659 32-bit integers.
5660 @end ifset
5661 @end ifclear
5662
5663 @ifset ELF
5664 @node Internal
5665 @section @code{.internal @var{names}}
5666
5667 @cindex @code{internal} directive
5668 @cindex visibility
5669 This is one of the ELF visibility directives. The other two are
5670 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5671 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5672
5673 This directive overrides the named symbols default visibility (which is set by
5674 their binding: local, global or weak). The directive sets the visibility to
5675 @code{internal} which means that the symbols are considered to be @code{hidden}
5676 (i.e., not visible to other components), and that some extra, processor specific
5677 processing must also be performed upon the symbols as well.
5678 @end ifset
5679
5680 @node Irp
5681 @section @code{.irp @var{symbol},@var{values}}@dots{}
5682
5683 @cindex @code{irp} directive
5684 Evaluate a sequence of statements assigning different values to @var{symbol}.
5685 The sequence of statements starts at the @code{.irp} directive, and is
5686 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5687 set to @var{value}, and the sequence of statements is assembled. If no
5688 @var{value} is listed, the sequence of statements is assembled once, with
5689 @var{symbol} set to the null string. To refer to @var{symbol} within the
5690 sequence of statements, use @var{\symbol}.
5691
5692 For example, assembling
5693
5694 @example
5695 .irp param,1,2,3
5696 move d\param,sp@@-
5697 .endr
5698 @end example
5699
5700 is equivalent to assembling
5701
5702 @example
5703 move d1,sp@@-
5704 move d2,sp@@-
5705 move d3,sp@@-
5706 @end example
5707
5708 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5709
5710 @node Irpc
5711 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5712
5713 @cindex @code{irpc} directive
5714 Evaluate a sequence of statements assigning different values to @var{symbol}.
5715 The sequence of statements starts at the @code{.irpc} directive, and is
5716 terminated by an @code{.endr} directive. For each character in @var{value},
5717 @var{symbol} is set to the character, and the sequence of statements is
5718 assembled. If no @var{value} is listed, the sequence of statements is
5719 assembled once, with @var{symbol} set to the null string. To refer to
5720 @var{symbol} within the sequence of statements, use @var{\symbol}.
5721
5722 For example, assembling
5723
5724 @example
5725 .irpc param,123
5726 move d\param,sp@@-
5727 .endr
5728 @end example
5729
5730 is equivalent to assembling
5731
5732 @example
5733 move d1,sp@@-
5734 move d2,sp@@-
5735 move d3,sp@@-
5736 @end example
5737
5738 For some caveats with the spelling of @var{symbol}, see also the discussion
5739 at @xref{Macro}.
5740
5741 @node Lcomm
5742 @section @code{.lcomm @var{symbol} , @var{length}}
5743
5744 @cindex @code{lcomm} directive
5745 @cindex local common symbols
5746 @cindex symbols, local common
5747 Reserve @var{length} (an absolute expression) bytes for a local common
5748 denoted by @var{symbol}. The section and value of @var{symbol} are
5749 those of the new local common. The addresses are allocated in the bss
5750 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5751 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5752 not visible to @code{@value{LD}}.
5753
5754 @ifset GENERIC
5755 Some targets permit a third argument to be used with @code{.lcomm}. This
5756 argument specifies the desired alignment of the symbol in the bss section.
5757 @end ifset
5758
5759 @ifset HPPA
5760 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5761 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5762 @end ifset
5763
5764 @node Lflags
5765 @section @code{.lflags}
5766
5767 @cindex @code{lflags} directive (ignored)
5768 @command{@value{AS}} accepts this directive, for compatibility with other
5769 assemblers, but ignores it.
5770
5771 @ifclear no-line-dir
5772 @node Line
5773 @section @code{.line @var{line-number}}
5774
5775 @cindex @code{line} directive
5776 @cindex logical line number
5777 @ifset aout
5778 Change the logical line number. @var{line-number} must be an absolute
5779 expression. The next line has that logical line number. Therefore any other
5780 statements on the current line (after a statement separator character) are
5781 reported as on logical line number @var{line-number} @minus{} 1. One day
5782 @command{@value{AS}} will no longer support this directive: it is recognized only
5783 for compatibility with existing assembler programs.
5784 @end ifset
5785
5786 Even though this is a directive associated with the @code{a.out} or
5787 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5788 when producing COFF output, and treats @samp{.line} as though it
5789 were the COFF @samp{.ln} @emph{if} it is found outside a
5790 @code{.def}/@code{.endef} pair.
5791
5792 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5793 used by compilers to generate auxiliary symbol information for
5794 debugging.
5795 @end ifclear
5796
5797 @node Linkonce
5798 @section @code{.linkonce [@var{type}]}
5799 @cindex COMDAT
5800 @cindex @code{linkonce} directive
5801 @cindex common sections
5802 Mark the current section so that the linker only includes a single copy of it.
5803 This may be used to include the same section in several different object files,
5804 but ensure that the linker will only include it once in the final output file.
5805 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5806 Duplicate sections are detected based on the section name, so it should be
5807 unique.
5808
5809 This directive is only supported by a few object file formats; as of this
5810 writing, the only object file format which supports it is the Portable
5811 Executable format used on Windows NT.
5812
5813 The @var{type} argument is optional. If specified, it must be one of the
5814 following strings. For example:
5815 @smallexample
5816 .linkonce same_size
5817 @end smallexample
5818 Not all types may be supported on all object file formats.
5819
5820 @table @code
5821 @item discard
5822 Silently discard duplicate sections. This is the default.
5823
5824 @item one_only
5825 Warn if there are duplicate sections, but still keep only one copy.
5826
5827 @item same_size
5828 Warn if any of the duplicates have different sizes.
5829
5830 @item same_contents
5831 Warn if any of the duplicates do not have exactly the same contents.
5832 @end table
5833
5834 @node List
5835 @section @code{.list}
5836
5837 @cindex @code{list} directive
5838 @cindex listing control, turning on
5839 Control (in conjunction with the @code{.nolist} directive) whether or
5840 not assembly listings are generated. These two directives maintain an
5841 internal counter (which is zero initially). @code{.list} increments the
5842 counter, and @code{.nolist} decrements it. Assembly listings are
5843 generated whenever the counter is greater than zero.
5844
5845 By default, listings are disabled. When you enable them (with the
5846 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5847 the initial value of the listing counter is one.
5848
5849 @node Ln
5850 @section @code{.ln @var{line-number}}
5851
5852 @cindex @code{ln} directive
5853 @ifclear no-line-dir
5854 @samp{.ln} is a synonym for @samp{.line}.
5855 @end ifclear
5856 @ifset no-line-dir
5857 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5858 must be an absolute expression. The next line has that logical
5859 line number, so any other statements on the current line (after a
5860 statement separator character @code{;}) are reported as on logical
5861 line number @var{line-number} @minus{} 1.
5862 @end ifset
5863
5864 @node Loc
5865 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5866 @cindex @code{loc} directive
5867 When emitting DWARF2 line number information,
5868 the @code{.loc} directive will add a row to the @code{.debug_line} line
5869 number matrix corresponding to the immediately following assembly
5870 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5871 arguments will be applied to the @code{.debug_line} state machine before
5872 the row is added. It is an error for the input assembly file to generate
5873 a non-empty @code{.debug_line} and also use @code{loc} directives.
5874
5875 The @var{options} are a sequence of the following tokens in any order:
5876
5877 @table @code
5878 @item basic_block
5879 This option will set the @code{basic_block} register in the
5880 @code{.debug_line} state machine to @code{true}.
5881
5882 @item prologue_end
5883 This option will set the @code{prologue_end} register in the
5884 @code{.debug_line} state machine to @code{true}.
5885
5886 @item epilogue_begin
5887 This option will set the @code{epilogue_begin} register in the
5888 @code{.debug_line} state machine to @code{true}.
5889
5890 @item is_stmt @var{value}
5891 This option will set the @code{is_stmt} register in the
5892 @code{.debug_line} state machine to @code{value}, which must be
5893 either 0 or 1.
5894
5895 @item isa @var{value}
5896 This directive will set the @code{isa} register in the @code{.debug_line}
5897 state machine to @var{value}, which must be an unsigned integer.
5898
5899 @item discriminator @var{value}
5900 This directive will set the @code{discriminator} register in the @code{.debug_line}
5901 state machine to @var{value}, which must be an unsigned integer.
5902
5903 @item view @var{value}
5904 This option causes a row to be added to @code{.debug_line} in reference to the
5905 current address (which might not be the same as that of the following assembly
5906 instruction), and to associate @var{value} with the @code{view} register in the
5907 @code{.debug_line} state machine. If @var{value} is a label, both the
5908 @code{view} register and the label are set to the number of prior @code{.loc}
5909 directives at the same program location. If @var{value} is the literal
5910 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5911 that there aren't any prior @code{.loc} directives at the same program
5912 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5913 the @code{view} register to be reset in this row, even if there are prior
5914 @code{.loc} directives at the same program location.
5915
5916 @end table
5917
5918 @node Loc_mark_labels
5919 @section @code{.loc_mark_labels @var{enable}}
5920 @cindex @code{loc_mark_labels} directive
5921 When emitting DWARF2 line number information,
5922 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5923 to the @code{.debug_line} line number matrix with the @code{basic_block}
5924 register in the state machine set whenever a code label is seen.
5925 The @var{enable} argument should be either 1 or 0, to enable or disable
5926 this function respectively.
5927
5928 @ifset ELF
5929 @node Local
5930 @section @code{.local @var{names}}
5931
5932 @cindex @code{local} directive
5933 This directive, which is available for ELF targets, marks each symbol in
5934 the comma-separated list of @code{names} as a local symbol so that it
5935 will not be externally visible. If the symbols do not already exist,
5936 they will be created.
5937
5938 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5939 accept an alignment argument, which is the case for most ELF targets,
5940 the @code{.local} directive can be used in combination with @code{.comm}
5941 (@pxref{Comm}) to define aligned local common data.
5942 @end ifset
5943
5944 @node Long
5945 @section @code{.long @var{expressions}}
5946
5947 @cindex @code{long} directive
5948 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5949
5950 @ignore
5951 @c no one seems to know what this is for or whether this description is
5952 @c what it really ought to do
5953 @node Lsym
5954 @section @code{.lsym @var{symbol}, @var{expression}}
5955
5956 @cindex @code{lsym} directive
5957 @cindex symbol, not referenced in assembly
5958 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5959 the hash table, ensuring it cannot be referenced by name during the
5960 rest of the assembly. This sets the attributes of the symbol to be
5961 the same as the expression value:
5962 @smallexample
5963 @var{other} = @var{descriptor} = 0
5964 @var{type} = @r{(section of @var{expression})}
5965 @var{value} = @var{expression}
5966 @end smallexample
5967 @noindent
5968 The new symbol is not flagged as external.
5969 @end ignore
5970
5971 @node Macro
5972 @section @code{.macro}
5973
5974 @cindex macros
5975 The commands @code{.macro} and @code{.endm} allow you to define macros that
5976 generate assembly output. For example, this definition specifies a macro
5977 @code{sum} that puts a sequence of numbers into memory:
5978
5979 @example
5980 .macro sum from=0, to=5
5981 .long \from
5982 .if \to-\from
5983 sum "(\from+1)",\to
5984 .endif
5985 .endm
5986 @end example
5987
5988 @noindent
5989 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5990
5991 @example
5992 .long 0
5993 .long 1
5994 .long 2
5995 .long 3
5996 .long 4
5997 .long 5
5998 @end example
5999
6000 @ftable @code
6001 @item .macro @var{macname}
6002 @itemx .macro @var{macname} @var{macargs} @dots{}
6003 @cindex @code{macro} directive
6004 Begin the definition of a macro called @var{macname}. If your macro
6005 definition requires arguments, specify their names after the macro name,
6006 separated by commas or spaces. You can qualify the macro argument to
6007 indicate whether all invocations must specify a non-blank value (through
6008 @samp{:@code{req}}), or whether it takes all of the remaining arguments
6009 (through @samp{:@code{vararg}}). You can supply a default value for any
6010 macro argument by following the name with @samp{=@var{deflt}}. You
6011 cannot define two macros with the same @var{macname} unless it has been
6012 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
6013 definitions. For example, these are all valid @code{.macro} statements:
6014
6015 @table @code
6016 @item .macro comm
6017 Begin the definition of a macro called @code{comm}, which takes no
6018 arguments.
6019
6020 @item .macro plus1 p, p1
6021 @itemx .macro plus1 p p1
6022 Either statement begins the definition of a macro called @code{plus1},
6023 which takes two arguments; within the macro definition, write
6024 @samp{\p} or @samp{\p1} to evaluate the arguments.
6025
6026 @item .macro reserve_str p1=0 p2
6027 Begin the definition of a macro called @code{reserve_str}, with two
6028 arguments. The first argument has a default value, but not the second.
6029 After the definition is complete, you can call the macro either as
6030 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
6031 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
6032 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6033 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6034
6035 @item .macro m p1:req, p2=0, p3:vararg
6036 Begin the definition of a macro called @code{m}, with at least three
6037 arguments. The first argument must always have a value specified, but
6038 not the second, which instead has a default value. The third formal
6039 will get assigned all remaining arguments specified at invocation time.
6040
6041 When you call a macro, you can specify the argument values either by
6042 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6043 @samp{sum to=17, from=9}.
6044
6045 @end table
6046
6047 Note that since each of the @var{macargs} can be an identifier exactly
6048 as any other one permitted by the target architecture, there may be
6049 occasional problems if the target hand-crafts special meanings to certain
6050 characters when they occur in a special position. For example, if the colon
6051 (@code{:}) is generally permitted to be part of a symbol name, but the
6052 architecture specific code special-cases it when occurring as the final
6053 character of a symbol (to denote a label), then the macro parameter
6054 replacement code will have no way of knowing that and consider the whole
6055 construct (including the colon) an identifier, and check only this
6056 identifier for being the subject to parameter substitution. So for example
6057 this macro definition:
6058
6059 @example
6060 .macro label l
6061 \l:
6062 .endm
6063 @end example
6064
6065 might not work as expected. Invoking @samp{label foo} might not create a label
6066 called @samp{foo} but instead just insert the text @samp{\l:} into the
6067 assembler source, probably generating an error about an unrecognised
6068 identifier.
6069
6070 Similarly problems might occur with the period character (@samp{.})
6071 which is often allowed inside opcode names (and hence identifier names). So
6072 for example constructing a macro to build an opcode from a base name and a
6073 length specifier like this:
6074
6075 @example
6076 .macro opcode base length
6077 \base.\length
6078 .endm
6079 @end example
6080
6081 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6082 instruction but instead generate some kind of error as the assembler tries to
6083 interpret the text @samp{\base.\length}.
6084
6085 There are several possible ways around this problem:
6086
6087 @table @code
6088 @item Insert white space
6089 If it is possible to use white space characters then this is the simplest
6090 solution. eg:
6091
6092 @example
6093 .macro label l
6094 \l :
6095 .endm
6096 @end example
6097
6098 @item Use @samp{\()}
6099 The string @samp{\()} can be used to separate the end of a macro argument from
6100 the following text. eg:
6101
6102 @example
6103 .macro opcode base length
6104 \base\().\length
6105 .endm
6106 @end example
6107
6108 @item Use the alternate macro syntax mode
6109 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6110 used as a separator. eg:
6111
6112 @example
6113 .altmacro
6114 .macro label l
6115 l&:
6116 .endm
6117 @end example
6118 @end table
6119
6120 Note: this problem of correctly identifying string parameters to pseudo ops
6121 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6122 and @code{.irpc} (@pxref{Irpc}) as well.
6123
6124 @item .endm
6125 @cindex @code{endm} directive
6126 Mark the end of a macro definition.
6127
6128 @item .exitm
6129 @cindex @code{exitm} directive
6130 Exit early from the current macro definition.
6131
6132 @cindex number of macros executed
6133 @cindex macros, count executed
6134 @item \@@
6135 @command{@value{AS}} maintains a counter of how many macros it has
6136 executed in this pseudo-variable; you can copy that number to your
6137 output with @samp{\@@}, but @emph{only within a macro definition}.
6138
6139 @item LOCAL @var{name} [ , @dots{} ]
6140 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6141 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6142 @xref{Altmacro,,@code{.altmacro}}.
6143 @end ftable
6144
6145 @node MRI
6146 @section @code{.mri @var{val}}
6147
6148 @cindex @code{mri} directive
6149 @cindex MRI mode, temporarily
6150 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6151 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6152 affects code assembled until the next @code{.mri} directive, or until the end
6153 of the file. @xref{M, MRI mode, MRI mode}.
6154
6155 @node Noaltmacro
6156 @section @code{.noaltmacro}
6157 Disable alternate macro mode. @xref{Altmacro}.
6158
6159 @node Nolist
6160 @section @code{.nolist}
6161
6162 @cindex @code{nolist} directive
6163 @cindex listing control, turning off
6164 Control (in conjunction with the @code{.list} directive) whether or
6165 not assembly listings are generated. These two directives maintain an
6166 internal counter (which is zero initially). @code{.list} increments the
6167 counter, and @code{.nolist} decrements it. Assembly listings are
6168 generated whenever the counter is greater than zero.
6169
6170 @node Nop
6171 @section @code{.nop [@var{size}]}
6172
6173 @cindex @code{nop} directive
6174 @cindex filling memory with no-op instructions
6175 This directive emits no-op instructions. It is provided on all architectures,
6176 allowing the creation of architecture neutral tests involving actual code. The
6177 size of the generated instruction is target specific, but if the optional
6178 @var{size} argument is given and resolves to an absolute positive value at that
6179 point in assembly (no forward expressions allowed) then the fewest no-op
6180 instructions are emitted that equal or exceed a total @var{size} in bytes.
6181 @code{.nop} does affect the generation of DWARF debug line information.
6182 Some targets do not support using @code{.nop} with @var{size}.
6183
6184 @node Nops
6185 @section @code{.nops @var{size}[, @var{control}]}
6186
6187 @cindex @code{nops} directive
6188 @cindex filling memory with no-op instructions
6189 This directive emits no-op instructions. It is specific to the Intel 80386 and
6190 AMD x86-64 targets. It takes a @var{size} argument and generates @var{size}
6191 bytes of no-op instructions. @var{size} must be absolute and positive. These
6192 bytes do not affect the generation of DWARF debug line information.
6193
6194 The optional @var{control} argument specifies a size limit for a single no-op
6195 instruction. If not provided then a value of 0 is assumed. The valid values
6196 of @var{control} are between 0 and 4 in 16-bit mode, between 0 and 7 when
6197 tuning for older processors in 32-bit mode, between 0 and 11 in 64-bit mode or
6198 when tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6199 instruction size limit is set to the maximum supported size.
6200
6201 @node Octa
6202 @section @code{.octa @var{bignums}}
6203
6204 @c FIXME: double size emitted for "octa" on some? Or warn?
6205 @cindex @code{octa} directive
6206 @cindex integer, 16-byte
6207 @cindex sixteen byte integer
6208 This directive expects zero or more bignums, separated by commas. For each
6209 bignum, it emits a 16-byte integer.
6210
6211 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6212 hence @emph{octa}-word for 16 bytes.
6213
6214 @node Offset
6215 @section @code{.offset @var{loc}}
6216
6217 @cindex @code{offset} directive
6218 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6219 be an absolute expression. This directive may be useful for defining
6220 symbols with absolute values. Do not confuse it with the @code{.org}
6221 directive.
6222
6223 @node Org
6224 @section @code{.org @var{new-lc} , @var{fill}}
6225
6226 @cindex @code{org} directive
6227 @cindex location counter, advancing
6228 @cindex advancing location counter
6229 @cindex current address, advancing
6230 Advance the location counter of the current section to
6231 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6232 expression with the same section as the current subsection. That is,
6233 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6234 wrong section, the @code{.org} directive is ignored. To be compatible
6235 with former assemblers, if the section of @var{new-lc} is absolute,
6236 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6237 is the same as the current subsection.
6238
6239 @code{.org} may only increase the location counter, or leave it
6240 unchanged; you cannot use @code{.org} to move the location counter
6241 backwards.
6242
6243 @c double negative used below "not undefined" because this is a specific
6244 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6245 @c section. doc@cygnus.com 18feb91
6246 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6247 may not be undefined. If you really detest this restriction we eagerly await
6248 a chance to share your improved assembler.
6249
6250 Beware that the origin is relative to the start of the section, not
6251 to the start of the subsection. This is compatible with other
6252 people's assemblers.
6253
6254 When the location counter (of the current subsection) is advanced, the
6255 intervening bytes are filled with @var{fill} which should be an
6256 absolute expression. If the comma and @var{fill} are omitted,
6257 @var{fill} defaults to zero.
6258
6259 @node P2align
6260 @section @code{.p2align[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
6261
6262 @cindex padding the location counter given a power of two
6263 @cindex @code{p2align} directive
6264 Pad the location counter (in the current subsection) to a particular
6265 storage boundary. The first expression (which must be absolute) is the
6266 number of low-order zero bits the location counter must have after
6267 advancement. For example @samp{.p2align 3} advances the location
6268 counter until it is a multiple of 8. If the location counter is already a
6269 multiple of 8, no change is needed. If the expression is omitted then a
6270 default value of 0 is used, effectively disabling alignment requirements.
6271
6272 The second expression (also absolute) gives the fill value to be stored in the
6273 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6274 padding bytes are normally zero. However, on most systems, if the section is
6275 marked as containing code and the fill value is omitted, the space is filled
6276 with no-op instructions.
6277
6278 The third expression is also absolute, and is also optional. If it is present,
6279 it is the maximum number of bytes that should be skipped by this alignment
6280 directive. If doing the alignment would require skipping more bytes than the
6281 specified maximum, then the alignment is not done at all. You can omit the
6282 fill value (the second argument) entirely by simply using two commas after the
6283 required alignment; this can be useful if you want the alignment to be filled
6284 with no-op instructions when appropriate.
6285
6286 @cindex @code{p2alignw} directive
6287 @cindex @code{p2alignl} directive
6288 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6289 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6290 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6291 fill pattern as a four byte longword value. For example, @code{.p2alignw
6292 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6293 filled in with the value 0x368d (the exact placement of the bytes depends upon
6294 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6295 undefined.
6296
6297 @ifset ELF
6298 @node PopSection
6299 @section @code{.popsection}
6300
6301 @cindex @code{popsection} directive
6302 @cindex Section Stack
6303 This is one of the ELF section stack manipulation directives. The others are
6304 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6305 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6306 (@pxref{Previous}).
6307
6308 This directive replaces the current section (and subsection) with the top
6309 section (and subsection) on the section stack. This section is popped off the
6310 stack.
6311 @end ifset
6312
6313 @ifset ELF
6314 @node Previous
6315 @section @code{.previous}
6316
6317 @cindex @code{previous} directive
6318 @cindex Section Stack
6319 This is one of the ELF section stack manipulation directives. The others are
6320 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6321 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6322 (@pxref{PopSection}).
6323
6324 This directive swaps the current section (and subsection) with most recently
6325 referenced section/subsection pair prior to this one. Multiple
6326 @code{.previous} directives in a row will flip between two sections (and their
6327 subsections). For example:
6328
6329 @smallexample
6330 .section A
6331 .subsection 1
6332 .word 0x1234
6333 .subsection 2
6334 .word 0x5678
6335 .previous
6336 .word 0x9abc
6337 @end smallexample
6338
6339 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6340 section A. Whilst:
6341
6342 @smallexample
6343 .section A
6344 .subsection 1
6345 # Now in section A subsection 1
6346 .word 0x1234
6347 .section B
6348 .subsection 0
6349 # Now in section B subsection 0
6350 .word 0x5678
6351 .subsection 1
6352 # Now in section B subsection 1
6353 .word 0x9abc
6354 .previous
6355 # Now in section B subsection 0
6356 .word 0xdef0
6357 @end smallexample
6358
6359 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6360 section B and 0x9abc into subsection 1 of section B.
6361
6362 In terms of the section stack, this directive swaps the current section with
6363 the top section on the section stack.
6364 @end ifset
6365
6366 @node Print
6367 @section @code{.print @var{string}}
6368
6369 @cindex @code{print} directive
6370 @command{@value{AS}} will print @var{string} on the standard output during
6371 assembly. You must put @var{string} in double quotes.
6372
6373 @ifset ELF
6374 @node Protected
6375 @section @code{.protected @var{names}}
6376
6377 @cindex @code{protected} directive
6378 @cindex visibility
6379 This is one of the ELF visibility directives. The other two are
6380 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6381
6382 This directive overrides the named symbols default visibility (which is set by
6383 their binding: local, global or weak). The directive sets the visibility to
6384 @code{protected} which means that any references to the symbols from within the
6385 components that defines them must be resolved to the definition in that
6386 component, even if a definition in another component would normally preempt
6387 this.
6388 @end ifset
6389
6390 @node Psize
6391 @section @code{.psize @var{lines} , @var{columns}}
6392
6393 @cindex @code{psize} directive
6394 @cindex listing control: paper size
6395 @cindex paper size, for listings
6396 Use this directive to declare the number of lines---and, optionally, the
6397 number of columns---to use for each page, when generating listings.
6398
6399 If you do not use @code{.psize}, listings use a default line-count
6400 of 60. You may omit the comma and @var{columns} specification; the
6401 default width is 200 columns.
6402
6403 @command{@value{AS}} generates formfeeds whenever the specified number of
6404 lines is exceeded (or whenever you explicitly request one, using
6405 @code{.eject}).
6406
6407 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6408 those explicitly specified with @code{.eject}.
6409
6410 @node Purgem
6411 @section @code{.purgem @var{name}}
6412
6413 @cindex @code{purgem} directive
6414 Undefine the macro @var{name}, so that later uses of the string will not be
6415 expanded. @xref{Macro}.
6416
6417 @ifset ELF
6418 @node PushSection
6419 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6420
6421 @cindex @code{pushsection} directive
6422 @cindex Section Stack
6423 This is one of the ELF section stack manipulation directives. The others are
6424 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6425 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6426 (@pxref{Previous}).
6427
6428 This directive pushes the current section (and subsection) onto the
6429 top of the section stack, and then replaces the current section and
6430 subsection with @code{name} and @code{subsection}. The optional
6431 @code{flags}, @code{type} and @code{arguments} are treated the same
6432 as in the @code{.section} (@pxref{Section}) directive.
6433 @end ifset
6434
6435 @node Quad
6436 @section @code{.quad @var{bignums}}
6437
6438 @cindex @code{quad} directive
6439 @code{.quad} expects zero or more bignums, separated by commas. For
6440 each bignum, it emits
6441 @ifclear bignum-16
6442 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6443 warning message; and just takes the lowest order 8 bytes of the bignum.
6444 @cindex eight-byte integer
6445 @cindex integer, 8-byte
6446
6447 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6448 hence @emph{quad}-word for 8 bytes.
6449 @end ifclear
6450 @ifset bignum-16
6451 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6452 warning message; and just takes the lowest order 16 bytes of the bignum.
6453 @cindex sixteen-byte integer
6454 @cindex integer, 16-byte
6455 @end ifset
6456
6457 @node Reloc
6458 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6459
6460 @cindex @code{reloc} directive
6461 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6462 @var{expression}. If @var{offset} is a number, the relocation is generated in
6463 the current section. If @var{offset} is an expression that resolves to a
6464 symbol plus offset, the relocation is generated in the given symbol's section.
6465 @var{expression}, if present, must resolve to a symbol plus addend or to an
6466 absolute value, but note that not all targets support an addend. e.g. ELF REL
6467 targets such as i386 store an addend in the section contents rather than in the
6468 relocation. This low level interface does not support addends stored in the
6469 section.
6470
6471 @node Rept
6472 @section @code{.rept @var{count}}
6473
6474 @cindex @code{rept} directive
6475 Repeat the sequence of lines between the @code{.rept} directive and the next
6476 @code{.endr} directive @var{count} times.
6477
6478 For example, assembling
6479
6480 @example
6481 .rept 3
6482 .long 0
6483 .endr
6484 @end example
6485
6486 is equivalent to assembling
6487
6488 @example
6489 .long 0
6490 .long 0
6491 .long 0
6492 @end example
6493
6494 A count of zero is allowed, but nothing is generated. Negative counts are not
6495 allowed and if encountered will be treated as if they were zero.
6496
6497 @node Sbttl
6498 @section @code{.sbttl "@var{subheading}"}
6499
6500 @cindex @code{sbttl} directive
6501 @cindex subtitles for listings
6502 @cindex listing control: subtitle
6503 Use @var{subheading} as the title (third line, immediately after the
6504 title line) when generating assembly listings.
6505
6506 This directive affects subsequent pages, as well as the current page if
6507 it appears within ten lines of the top of a page.
6508
6509 @ifset COFF
6510 @node Scl
6511 @section @code{.scl @var{class}}
6512
6513 @cindex @code{scl} directive
6514 @cindex symbol storage class (COFF)
6515 @cindex COFF symbol storage class
6516 Set the storage-class value for a symbol. This directive may only be
6517 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6518 whether a symbol is static or external, or it may record further
6519 symbolic debugging information.
6520 @end ifset
6521
6522 @ifset COFF-ELF
6523 @node Section
6524 @section @code{.section @var{name}}
6525
6526 @cindex named section
6527 Use the @code{.section} directive to assemble the following code into a section
6528 named @var{name}.
6529
6530 This directive is only supported for targets that actually support arbitrarily
6531 named sections; on @code{a.out} targets, for example, it is not accepted, even
6532 with a standard @code{a.out} section name.
6533
6534 @ifset COFF
6535 @ifset ELF
6536 @c only print the extra heading if both COFF and ELF are set
6537 @subheading COFF Version
6538 @end ifset
6539
6540 @cindex @code{section} directive (COFF version)
6541 For COFF targets, the @code{.section} directive is used in one of the following
6542 ways:
6543
6544 @smallexample
6545 .section @var{name}[, "@var{flags}"]
6546 .section @var{name}[, @var{subsection}]
6547 @end smallexample
6548
6549 If the optional argument is quoted, it is taken as flags to use for the
6550 section. Each flag is a single character. The following flags are recognized:
6551
6552 @table @code
6553 @item b
6554 bss section (uninitialized data)
6555 @item n
6556 section is not loaded
6557 @item w
6558 writable section
6559 @item d
6560 data section
6561 @item e
6562 exclude section from linking
6563 @item r
6564 read-only section
6565 @item x
6566 executable section
6567 @item s
6568 shared section (meaningful for PE targets)
6569 @item a
6570 ignored. (For compatibility with the ELF version)
6571 @item y
6572 section is not readable (meaningful for PE targets)
6573 @item 0-9
6574 single-digit power-of-two section alignment (GNU extension)
6575 @end table
6576
6577 If no flags are specified, the default flags depend upon the section name. If
6578 the section name is not recognized, the default will be for the section to be
6579 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6580 from the section, rather than adding them, so if they are used on their own it
6581 will be as if no flags had been specified at all.
6582
6583 If the optional argument to the @code{.section} directive is not quoted, it is
6584 taken as a subsection number (@pxref{Sub-Sections}).
6585 @end ifset
6586
6587 @ifset ELF
6588 @ifset COFF
6589 @c only print the extra heading if both COFF and ELF are set
6590 @subheading ELF Version
6591 @end ifset
6592
6593 @cindex Section Stack
6594 This is one of the ELF section stack manipulation directives. The others are
6595 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6596 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6597 @code{.previous} (@pxref{Previous}).
6598
6599 @cindex @code{section} directive (ELF version)
6600 For ELF targets, the @code{.section} directive is used like this:
6601
6602 @smallexample
6603 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6604 @end smallexample
6605
6606 @anchor{Section Name Substitutions}
6607 @kindex --sectname-subst
6608 @cindex section name substitution
6609 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6610 argument may contain a substitution sequence. Only @code{%S} is supported
6611 at the moment, and substitutes the current section name. For example:
6612
6613 @smallexample
6614 .macro exception_code
6615 .section %S.exception
6616 [exception code here]
6617 .previous
6618 .endm
6619
6620 .text
6621 [code]
6622 exception_code
6623 [...]
6624
6625 .section .init
6626 [init code]
6627 exception_code
6628 [...]
6629 @end smallexample
6630
6631 The two @code{exception_code} invocations above would create the
6632 @code{.text.exception} and @code{.init.exception} sections respectively.
6633 This is useful e.g. to discriminate between ancillary sections that are
6634 tied to setup code to be discarded after use from ancillary sections that
6635 need to stay resident without having to define multiple @code{exception_code}
6636 macros just for that purpose.
6637
6638 The optional @var{flags} argument is a quoted string which may contain any
6639 combination of the following characters:
6640
6641 @table @code
6642 @item a
6643 section is allocatable
6644 @item d
6645 section is a GNU_MBIND section
6646 @item e
6647 section is excluded from executable and shared library.
6648 @item o
6649 section references a symbol defined in another section (the linked-to
6650 section) in the same file.
6651 @item w
6652 section is writable
6653 @item x
6654 section is executable
6655 @item M
6656 section is mergeable
6657 @item S
6658 section contains zero terminated strings
6659 @item G
6660 section is a member of a section group
6661 @item T
6662 section is used for thread-local-storage
6663 @item ?
6664 section is a member of the previously-current section's group, if any
6665 @item R
6666 retained section (apply SHF_GNU_RETAIN to prevent linker garbage
6667 collection, GNU ELF extension)
6668 @item @code{<number>}
6669 a numeric value indicating the bits to be set in the ELF section header's flags
6670 field. Note - if one or more of the alphabetic characters described above is
6671 also included in the flags field, their bit values will be ORed into the
6672 resulting value.
6673 @item @code{<target specific>}
6674 some targets extend this list with their own flag characters
6675 @end table
6676
6677 Note - once a section's flags have been set they cannot be changed. There are
6678 a few exceptions to this rule however. Processor and application specific
6679 flags can be added to an already defined section. The @code{.interp},
6680 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6681 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6682 section may have the executable (@code{x}) flag added. Also note that the
6683 @code{.attach_to_group} directive can be used to add a section to a group even
6684 if the section was not originally declared to be part of that group.
6685
6686 The optional @var{type} argument may contain one of the following constants:
6687
6688 @table @code
6689 @item @@progbits
6690 section contains data
6691 @item @@nobits
6692 section does not contain data (i.e., section only occupies space)
6693 @item @@note
6694 section contains data which is used by things other than the program
6695 @item @@init_array
6696 section contains an array of pointers to init functions
6697 @item @@fini_array
6698 section contains an array of pointers to finish functions
6699 @item @@preinit_array
6700 section contains an array of pointers to pre-init functions
6701 @item @@@code{<number>}
6702 a numeric value to be set as the ELF section header's type field.
6703 @item @@@code{<target specific>}
6704 some targets extend this list with their own types
6705 @end table
6706
6707 Many targets only support the first three section types. The type may be
6708 enclosed in double quotes if necessary.
6709
6710 Note on targets where the @code{@@} character is the start of a comment (eg
6711 ARM) then another character is used instead. For example the ARM port uses the
6712 @code{%} character.
6713
6714 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6715 special and have fixed types. Any attempt to declare them with a different
6716 type will generate an error from the assembler.
6717
6718 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6719 be specified as well as an extra argument---@var{entsize}---like this:
6720
6721 @smallexample
6722 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6723 @end smallexample
6724
6725 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6726 constants, each @var{entsize} octets long. Sections with both @code{M} and
6727 @code{S} must contain zero terminated strings where each character is
6728 @var{entsize} bytes long. The linker may remove duplicates within sections with
6729 the same name, same entity size and same flags. @var{entsize} must be an
6730 absolute expression. For sections with both @code{M} and @code{S}, a string
6731 which is a suffix of a larger string is considered a duplicate. Thus
6732 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6733 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6734
6735 If @var{flags} contains the @code{o} flag, then the @var{type} argument
6736 must be present along with an additional field like this:
6737
6738 @smallexample
6739 .section @var{name},"@var{flags}"o,@@@var{type},@var{SymbolName}|@var{SectionIndex}
6740 @end smallexample
6741
6742 The @var{SymbolName} field specifies the symbol name which the section
6743 references. Alternatively a numeric @var{SectionIndex} can be provided. This
6744 is not generally a good idea as section indicies are rarely known at assembly
6745 time, but the facility is provided for testing purposes. An index of zero is
6746 allowed. It indicates that the linked-to section has already been discarded.
6747
6748 Note: If both the @var{M} and @var{o} flags are present, then the fields
6749 for the Merge flag should come first, like this:
6750
6751 @smallexample
6752 .section @var{name},"@var{flags}"Mo,@@@var{type},@var{entsize},@var{SymbolName}
6753 @end smallexample
6754
6755 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6756 be present along with an additional field like this:
6757
6758 @smallexample
6759 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6760 @end smallexample
6761
6762 The @var{GroupName} field specifies the name of the section group to which this
6763 particular section belongs. The optional linkage field can contain:
6764
6765 @table @code
6766 @item comdat
6767 indicates that only one copy of this section should be retained
6768 @item .gnu.linkonce
6769 an alias for comdat
6770 @end table
6771
6772 Note: if both the @var{M} and @var{G} flags are present then the fields for
6773 the Merge flag should come first, like this:
6774
6775 @smallexample
6776 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6777 @end smallexample
6778
6779 If both @code{o} flag and @code{G} flag are present, then the
6780 @var{SymbolName} field for @code{o} comes first, like this:
6781
6782 @smallexample
6783 .section @var{name},"@var{flags}"oG,@@@var{type},@var{SymbolName},@var{GroupName}[,@var{linkage}]
6784 @end smallexample
6785
6786 If @var{flags} contains the @code{?} symbol then it may not also contain the
6787 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6788 present. Instead, @code{?} says to consider the section that's current before
6789 this directive. If that section used @code{G}, then the new section will use
6790 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6791 If not, then the @code{?} symbol has no effect.
6792
6793 The optional @var{unique,@code{<number>}} argument must come last. It
6794 assigns @var{@code{<number>}} as a unique section ID to distinguish
6795 different sections with the same section name like these:
6796
6797 @smallexample
6798 .section @var{name},"@var{flags}",@@@var{type},@var{unique,@code{<number>}}
6799 .section @var{name},"@var{flags}"G,@@@var{type},@var{GroupName},[@var{linkage}],@var{unique,@code{<number>}}
6800 .section @var{name},"@var{flags}"MG,@@@var{type},@var{entsize},@var{GroupName}[,@var{linkage}],@var{unique,@code{<number>}}
6801 @end smallexample
6802
6803 The valid values of @var{@code{<number>}} are between 0 and 4294967295.
6804
6805 If no flags are specified, the default flags depend upon the section name. If
6806 the section name is not recognized, the default will be for the section to have
6807 none of the above flags: it will not be allocated in memory, nor writable, nor
6808 executable. The section will contain data.
6809
6810 For ELF targets, the assembler supports another type of @code{.section}
6811 directive for compatibility with the Solaris assembler:
6812
6813 @smallexample
6814 .section "@var{name}"[, @var{flags}...]
6815 @end smallexample
6816
6817 Note that the section name is quoted. There may be a sequence of comma
6818 separated flags:
6819
6820 @table @code
6821 @item #alloc
6822 section is allocatable
6823 @item #write
6824 section is writable
6825 @item #execinstr
6826 section is executable
6827 @item #exclude
6828 section is excluded from executable and shared library.
6829 @item #tls
6830 section is used for thread local storage
6831 @end table
6832
6833 This directive replaces the current section and subsection. See the
6834 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6835 some examples of how this directive and the other section stack directives
6836 work.
6837 @end ifset
6838 @end ifset
6839
6840 @node Set
6841 @section @code{.set @var{symbol}, @var{expression}}
6842
6843 @cindex @code{set} directive
6844 @cindex symbol value, setting
6845 Set the value of @var{symbol} to @var{expression}. This
6846 changes @var{symbol}'s value and type to conform to
6847 @var{expression}. If @var{symbol} was flagged as external, it remains
6848 flagged (@pxref{Symbol Attributes}).
6849
6850 You may @code{.set} a symbol many times in the same assembly provided that the
6851 values given to the symbol are constants. Values that are based on expressions
6852 involving other symbols are allowed, but some targets may restrict this to only
6853 being done once per assembly. This is because those targets do not set the
6854 addresses of symbols at assembly time, but rather delay the assignment until a
6855 final link is performed. This allows the linker a chance to change the code in
6856 the files, changing the location of, and the relative distance between, various
6857 different symbols.
6858
6859 If you @code{.set} a global symbol, the value stored in the object
6860 file is the last value stored into it.
6861
6862 @ifset Z80
6863 On Z80 @code{set} is a real instruction, use @code{.set} or
6864 @samp{@var{symbol} defl @var{expression}} instead.
6865 @end ifset
6866
6867 @node Short
6868 @section @code{.short @var{expressions}}
6869
6870 @cindex @code{short} directive
6871 @ifset GENERIC
6872 @code{.short} is normally the same as @samp{.word}.
6873 @xref{Word,,@code{.word}}.
6874
6875 In some configurations, however, @code{.short} and @code{.word} generate
6876 numbers of different lengths. @xref{Machine Dependencies}.
6877 @end ifset
6878 @ifclear GENERIC
6879 @ifset W16
6880 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6881 @end ifset
6882 @ifset W32
6883 This expects zero or more @var{expressions}, and emits
6884 a 16 bit number for each.
6885 @end ifset
6886 @end ifclear
6887
6888 @node Single
6889 @section @code{.single @var{flonums}}
6890
6891 @cindex @code{single} directive
6892 @cindex floating point numbers (single)
6893 This directive assembles zero or more flonums, separated by commas. It
6894 has the same effect as @code{.float}.
6895 @ifset GENERIC
6896 The exact kind of floating point numbers emitted depends on how
6897 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6898 @end ifset
6899 @ifclear GENERIC
6900 @ifset IEEEFLOAT
6901 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6902 numbers in @sc{ieee} format.
6903 @end ifset
6904 @end ifclear
6905
6906 @ifset COFF-ELF
6907 @node Size
6908 @section @code{.size}
6909
6910 This directive is used to set the size associated with a symbol.
6911
6912 @ifset COFF
6913 @ifset ELF
6914 @c only print the extra heading if both COFF and ELF are set
6915 @subheading COFF Version
6916 @end ifset
6917
6918 @cindex @code{size} directive (COFF version)
6919 For COFF targets, the @code{.size} directive is only permitted inside
6920 @code{.def}/@code{.endef} pairs. It is used like this:
6921
6922 @smallexample
6923 .size @var{expression}
6924 @end smallexample
6925
6926 @end ifset
6927
6928 @ifset ELF
6929 @ifset COFF
6930 @c only print the extra heading if both COFF and ELF are set
6931 @subheading ELF Version
6932 @end ifset
6933
6934 @cindex @code{size} directive (ELF version)
6935 For ELF targets, the @code{.size} directive is used like this:
6936
6937 @smallexample
6938 .size @var{name} , @var{expression}
6939 @end smallexample
6940
6941 This directive sets the size associated with a symbol @var{name}.
6942 The size in bytes is computed from @var{expression} which can make use of label
6943 arithmetic. This directive is typically used to set the size of function
6944 symbols.
6945 @end ifset
6946 @end ifset
6947
6948 @ifclear no-space-dir
6949 @node Skip
6950 @section @code{.skip @var{size} [,@var{fill}]}
6951
6952 @cindex @code{skip} directive
6953 @cindex filling memory
6954 This directive emits @var{size} bytes, each of value @var{fill}. Both
6955 @var{size} and @var{fill} are absolute expressions. If the comma and
6956 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6957 @samp{.space}.
6958 @end ifclear
6959
6960 @node Sleb128
6961 @section @code{.sleb128 @var{expressions}}
6962
6963 @cindex @code{sleb128} directive
6964 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6965 compact, variable length representation of numbers used by the DWARF
6966 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6967
6968 @ifclear no-space-dir
6969 @node Space
6970 @section @code{.space @var{size} [,@var{fill}]}
6971
6972 @cindex @code{space} directive
6973 @cindex filling memory
6974 This directive emits @var{size} bytes, each of value @var{fill}. Both
6975 @var{size} and @var{fill} are absolute expressions. If the comma
6976 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6977 as @samp{.skip}.
6978
6979 @ifset HPPA
6980 @quotation
6981 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6982 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6983 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6984 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6985 for a summary.
6986 @end quotation
6987 @end ifset
6988 @end ifclear
6989
6990 @ifset have-stabs
6991 @node Stab
6992 @section @code{.stabd, .stabn, .stabs}
6993
6994 @cindex symbolic debuggers, information for
6995 @cindex @code{stab@var{x}} directives
6996 There are three directives that begin @samp{.stab}.
6997 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6998 The symbols are not entered in the @command{@value{AS}} hash table: they
6999 cannot be referenced elsewhere in the source file.
7000 Up to five fields are required:
7001
7002 @table @var
7003 @item string
7004 This is the symbol's name. It may contain any character except
7005 @samp{\000}, so is more general than ordinary symbol names. Some
7006 debuggers used to code arbitrarily complex structures into symbol names
7007 using this field.
7008
7009 @item type
7010 An absolute expression. The symbol's type is set to the low 8 bits of
7011 this expression. Any bit pattern is permitted, but @code{@value{LD}}
7012 and debuggers choke on silly bit patterns.
7013
7014 @item other
7015 An absolute expression. The symbol's ``other'' attribute is set to the
7016 low 8 bits of this expression.
7017
7018 @item desc
7019 An absolute expression. The symbol's descriptor is set to the low 16
7020 bits of this expression.
7021
7022 @item value
7023 An absolute expression which becomes the symbol's value.
7024 @end table
7025
7026 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
7027 or @code{.stabs} statement, the symbol has probably already been created;
7028 you get a half-formed symbol in your object file. This is
7029 compatible with earlier assemblers!
7030
7031 @table @code
7032 @cindex @code{stabd} directive
7033 @item .stabd @var{type} , @var{other} , @var{desc}
7034
7035 The ``name'' of the symbol generated is not even an empty string.
7036 It is a null pointer, for compatibility. Older assemblers used a
7037 null pointer so they didn't waste space in object files with empty
7038 strings.
7039
7040 The symbol's value is set to the location counter,
7041 relocatably. When your program is linked, the value of this symbol
7042 is the address of the location counter when the @code{.stabd} was
7043 assembled.
7044
7045 @cindex @code{stabn} directive
7046 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
7047 The name of the symbol is set to the empty string @code{""}.
7048
7049 @cindex @code{stabs} directive
7050 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
7051 All five fields are specified.
7052 @end table
7053 @end ifset
7054 @c end have-stabs
7055
7056 @node String
7057 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
7058 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
7059
7060 @cindex string, copying to object file
7061 @cindex string8, copying to object file
7062 @cindex string16, copying to object file
7063 @cindex string32, copying to object file
7064 @cindex string64, copying to object file
7065 @cindex @code{string} directive
7066 @cindex @code{string8} directive
7067 @cindex @code{string16} directive
7068 @cindex @code{string32} directive
7069 @cindex @code{string64} directive
7070
7071 Copy the characters in @var{str} to the object file. You may specify more than
7072 one string to copy, separated by commas. Unless otherwise specified for a
7073 particular machine, the assembler marks the end of each string with a 0 byte.
7074 You can use any of the escape sequences described in @ref{Strings,,Strings}.
7075
7076 The variants @code{string16}, @code{string32} and @code{string64} differ from
7077 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
7078 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
7079 are stored in target endianness byte order.
7080
7081 Example:
7082 @smallexample
7083 .string32 "BYE"
7084 expands to:
7085 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
7086 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
7087 @end smallexample
7088
7089
7090 @node Struct
7091 @section @code{.struct @var{expression}}
7092
7093 @cindex @code{struct} directive
7094 Switch to the absolute section, and set the section offset to @var{expression},
7095 which must be an absolute expression. You might use this as follows:
7096 @smallexample
7097 .struct 0
7098 field1:
7099 .struct field1 + 4
7100 field2:
7101 .struct field2 + 4
7102 field3:
7103 @end smallexample
7104 This would define the symbol @code{field1} to have the value 0, the symbol
7105 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7106 value 8. Assembly would be left in the absolute section, and you would need to
7107 use a @code{.section} directive of some sort to change to some other section
7108 before further assembly.
7109
7110 @ifset ELF
7111 @node SubSection
7112 @section @code{.subsection @var{name}}
7113
7114 @cindex @code{subsection} directive
7115 @cindex Section Stack
7116 This is one of the ELF section stack manipulation directives. The others are
7117 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7118 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7119 (@pxref{Previous}).
7120
7121 This directive replaces the current subsection with @code{name}. The current
7122 section is not changed. The replaced subsection is put onto the section stack
7123 in place of the then current top of stack subsection.
7124 @end ifset
7125
7126 @ifset ELF
7127 @node Symver
7128 @section @code{.symver}
7129 @cindex @code{symver} directive
7130 @cindex symbol versioning
7131 @cindex versions of symbols
7132 Use the @code{.symver} directive to bind symbols to specific version nodes
7133 within a source file. This is only supported on ELF platforms, and is
7134 typically used when assembling files to be linked into a shared library.
7135 There are cases where it may make sense to use this in objects to be bound
7136 into an application itself so as to override a versioned symbol from a
7137 shared library.
7138
7139 For ELF targets, the @code{.symver} directive can be used like this:
7140 @smallexample
7141 .symver @var{name}, @var{name2@@nodename}[ ,@var{visibility}]
7142 @end smallexample
7143 If the original symbol @var{name} is defined within the file
7144 being assembled, the @code{.symver} directive effectively creates a symbol
7145 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7146 just don't try and create a regular alias is that the @var{@@} character isn't
7147 permitted in symbol names. The @var{name2} part of the name is the actual name
7148 of the symbol by which it will be externally referenced. The name @var{name}
7149 itself is merely a name of convenience that is used so that it is possible to
7150 have definitions for multiple versions of a function within a single source
7151 file, and so that the compiler can unambiguously know which version of a
7152 function is being mentioned. The @var{nodename} portion of the alias should be
7153 the name of a node specified in the version script supplied to the linker when
7154 building a shared library. If you are attempting to override a versioned
7155 symbol from a shared library, then @var{nodename} should correspond to the
7156 nodename of the symbol you are trying to override. The optional argument
7157 @var{visibility} updates the visibility of the original symbol. The valid
7158 visibilities are @code{local}, @code{hidden}, and @code{remove}. The
7159 @code{local} visibility makes the original symbol a local symbol
7160 (@pxref{Local}). The @code{hidden} visibility sets the visibility of the
7161 original symbol to @code{hidden} (@pxref{Hidden}). The @code{remove}
7162 visibility removes the original symbol from the symbol table. If visibility
7163 isn't specified, the original symbol is unchanged.
7164
7165 If the symbol @var{name} is not defined within the file being assembled, all
7166 references to @var{name} will be changed to @var{name2@@nodename}. If no
7167 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7168 symbol table.
7169
7170 Another usage of the @code{.symver} directive is:
7171 @smallexample
7172 .symver @var{name}, @var{name2@@@@nodename}
7173 @end smallexample
7174 In this case, the symbol @var{name} must exist and be defined within
7175 the file being assembled. It is similar to @var{name2@@nodename}. The
7176 difference is @var{name2@@@@nodename} will also be used to resolve
7177 references to @var{name2} by the linker.
7178
7179 The third usage of the @code{.symver} directive is:
7180 @smallexample
7181 .symver @var{name}, @var{name2@@@@@@nodename}
7182 @end smallexample
7183 When @var{name} is not defined within the
7184 file being assembled, it is treated as @var{name2@@nodename}. When
7185 @var{name} is defined within the file being assembled, the symbol
7186 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7187 @end ifset
7188
7189 @ifset COFF
7190 @node Tag
7191 @section @code{.tag @var{structname}}
7192
7193 @cindex COFF structure debugging
7194 @cindex structure debugging, COFF
7195 @cindex @code{tag} directive
7196 This directive is generated by compilers to include auxiliary debugging
7197 information in the symbol table. It is only permitted inside
7198 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7199 definitions in the symbol table with instances of those structures.
7200 @end ifset
7201
7202 @node Text
7203 @section @code{.text @var{subsection}}
7204
7205 @cindex @code{text} directive
7206 Tells @command{@value{AS}} to assemble the following statements onto the end of
7207 the text subsection numbered @var{subsection}, which is an absolute
7208 expression. If @var{subsection} is omitted, subsection number zero
7209 is used.
7210
7211 @node Title
7212 @section @code{.title "@var{heading}"}
7213
7214 @cindex @code{title} directive
7215 @cindex listing control: title line
7216 Use @var{heading} as the title (second line, immediately after the
7217 source file name and pagenumber) when generating assembly listings.
7218
7219 This directive affects subsequent pages, as well as the current page if
7220 it appears within ten lines of the top of a page.
7221
7222 @ifset ELF
7223 @node Tls_common
7224 @section @code{.tls_common @var{symbol}, @var{length}[, @var{alignment}]}
7225
7226 @cindex @code{tls_common} directive
7227 This directive behaves in the same way as the @code{.comm} directive
7228 (@pxref{Comm}) except that @var{symbol} has type of STT_TLS instead of
7229 STT_OBJECT.
7230 @end ifset
7231
7232 @ifset COFF-ELF
7233 @node Type
7234 @section @code{.type}
7235
7236 This directive is used to set the type of a symbol.
7237
7238 @ifset COFF
7239 @ifset ELF
7240 @c only print the extra heading if both COFF and ELF are set
7241 @subheading COFF Version
7242 @end ifset
7243
7244 @cindex COFF symbol type
7245 @cindex symbol type, COFF
7246 @cindex @code{type} directive (COFF version)
7247 For COFF targets, this directive is permitted only within
7248 @code{.def}/@code{.endef} pairs. It is used like this:
7249
7250 @smallexample
7251 .type @var{int}
7252 @end smallexample
7253
7254 This records the integer @var{int} as the type attribute of a symbol table
7255 entry.
7256
7257 @end ifset
7258
7259 @ifset ELF
7260 @ifset COFF
7261 @c only print the extra heading if both COFF and ELF are set
7262 @subheading ELF Version
7263 @end ifset
7264
7265 @cindex ELF symbol type
7266 @cindex symbol type, ELF
7267 @cindex @code{type} directive (ELF version)
7268 For ELF targets, the @code{.type} directive is used like this:
7269
7270 @smallexample
7271 .type @var{name} , @var{type description}
7272 @end smallexample
7273
7274 This sets the type of symbol @var{name} to be either a
7275 function symbol or an object symbol. There are five different syntaxes
7276 supported for the @var{type description} field, in order to provide
7277 compatibility with various other assemblers.
7278
7279 Because some of the characters used in these syntaxes (such as @samp{@@} and
7280 @samp{#}) are comment characters for some architectures, some of the syntaxes
7281 below do not work on all architectures. The first variant will be accepted by
7282 the GNU assembler on all architectures so that variant should be used for
7283 maximum portability, if you do not need to assemble your code with other
7284 assemblers.
7285
7286 The syntaxes supported are:
7287
7288 @smallexample
7289 .type <name> STT_<TYPE_IN_UPPER_CASE>
7290 .type <name>,#<type>
7291 .type <name>,@@<type>
7292 .type <name>,%<type>
7293 .type <name>,"<type>"
7294 @end smallexample
7295
7296 The types supported are:
7297
7298 @table @gcctabopt
7299 @item STT_FUNC
7300 @itemx function
7301 Mark the symbol as being a function name.
7302
7303 @item STT_GNU_IFUNC
7304 @itemx gnu_indirect_function
7305 Mark the symbol as an indirect function when evaluated during reloc
7306 processing. (This is only supported on assemblers targeting GNU systems).
7307
7308 @item STT_OBJECT
7309 @itemx object
7310 Mark the symbol as being a data object.
7311
7312 @item STT_TLS
7313 @itemx tls_object
7314 Mark the symbol as being a thread-local data object.
7315
7316 @item STT_COMMON
7317 @itemx common
7318 Mark the symbol as being a common data object.
7319
7320 @item STT_NOTYPE
7321 @itemx notype
7322 Does not mark the symbol in any way. It is supported just for completeness.
7323
7324 @item gnu_unique_object
7325 Marks the symbol as being a globally unique data object. The dynamic linker
7326 will make sure that in the entire process there is just one symbol with this
7327 name and type in use. (This is only supported on assemblers targeting GNU
7328 systems).
7329
7330 @end table
7331
7332 Changing between incompatible types other than from/to STT_NOTYPE will
7333 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7334 this.
7335
7336 Note: Some targets support extra types in addition to those listed above.
7337
7338 @end ifset
7339 @end ifset
7340
7341 @node Uleb128
7342 @section @code{.uleb128 @var{expressions}}
7343
7344 @cindex @code{uleb128} directive
7345 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7346 compact, variable length representation of numbers used by the DWARF
7347 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7348
7349 @ifset COFF
7350 @node Val
7351 @section @code{.val @var{addr}}
7352
7353 @cindex @code{val} directive
7354 @cindex COFF value attribute
7355 @cindex value attribute, COFF
7356 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7357 records the address @var{addr} as the value attribute of a symbol table
7358 entry.
7359 @end ifset
7360
7361 @ifset ELF
7362 @node Version
7363 @section @code{.version "@var{string}"}
7364
7365 @cindex @code{version} directive
7366 This directive creates a @code{.note} section and places into it an ELF
7367 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7368 @end ifset
7369
7370 @ifset ELF
7371 @node VTableEntry
7372 @section @code{.vtable_entry @var{table}, @var{offset}}
7373
7374 @cindex @code{vtable_entry} directive
7375 This directive finds or creates a symbol @code{table} and creates a
7376 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7377
7378 @node VTableInherit
7379 @section @code{.vtable_inherit @var{child}, @var{parent}}
7380
7381 @cindex @code{vtable_inherit} directive
7382 This directive finds the symbol @code{child} and finds or creates the symbol
7383 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7384 parent whose addend is the value of the child symbol. As a special case the
7385 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7386 @end ifset
7387
7388 @node Warning
7389 @section @code{.warning "@var{string}"}
7390 @cindex warning directive
7391 Similar to the directive @code{.error}
7392 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7393
7394 @node Weak
7395 @section @code{.weak @var{names}}
7396
7397 @cindex @code{weak} directive
7398 This directive sets the weak attribute on the comma separated list of symbol
7399 @code{names}. If the symbols do not already exist, they will be created.
7400
7401 On COFF targets other than PE, weak symbols are a GNU extension. This
7402 directive sets the weak attribute on the comma separated list of symbol
7403 @code{names}. If the symbols do not already exist, they will be created.
7404
7405 On the PE target, weak symbols are supported natively as weak aliases.
7406 When a weak symbol is created that is not an alias, GAS creates an
7407 alternate symbol to hold the default value.
7408
7409 @node Weakref
7410 @section @code{.weakref @var{alias}, @var{target}}
7411
7412 @cindex @code{weakref} directive
7413 This directive creates an alias to the target symbol that enables the symbol to
7414 be referenced with weak-symbol semantics, but without actually making it weak.
7415 If direct references or definitions of the symbol are present, then the symbol
7416 will not be weak, but if all references to it are through weak references, the
7417 symbol will be marked as weak in the symbol table.
7418
7419 The effect is equivalent to moving all references to the alias to a separate
7420 assembly source file, renaming the alias to the symbol in it, declaring the
7421 symbol as weak there, and running a reloadable link to merge the object files
7422 resulting from the assembly of the new source file and the old source file that
7423 had the references to the alias removed.
7424
7425 The alias itself never makes to the symbol table, and is entirely handled
7426 within the assembler.
7427
7428 @node Word
7429 @section @code{.word @var{expressions}}
7430
7431 @cindex @code{word} directive
7432 This directive expects zero or more @var{expressions}, of any section,
7433 separated by commas.
7434 @ifclear GENERIC
7435 @ifset W32
7436 For each expression, @command{@value{AS}} emits a 32-bit number.
7437 @end ifset
7438 @ifset W16
7439 For each expression, @command{@value{AS}} emits a 16-bit number.
7440 @end ifset
7441 @end ifclear
7442 @ifset GENERIC
7443
7444 The size of the number emitted, and its byte order,
7445 depend on what target computer the assembly is for.
7446 @end ifset
7447
7448 @c on sparc the "special treatment to support compilers" doesn't
7449 @c happen---32-bit addressability, period; no long/short jumps.
7450 @ifset DIFF-TBL-KLUGE
7451 @cindex difference tables altered
7452 @cindex altered difference tables
7453 @quotation
7454 @emph{Warning: Special Treatment to support Compilers}
7455 @end quotation
7456
7457 @ifset GENERIC
7458 Machines with a 32-bit address space, but that do less than 32-bit
7459 addressing, require the following special treatment. If the machine of
7460 interest to you does 32-bit addressing (or doesn't require it;
7461 @pxref{Machine Dependencies}), you can ignore this issue.
7462
7463 @end ifset
7464 In order to assemble compiler output into something that works,
7465 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7466 Directives of the form @samp{.word sym1-sym2} are often emitted by
7467 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7468 directive of the form @samp{.word sym1-sym2}, and the difference between
7469 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7470 creates a @dfn{secondary jump table}, immediately before the next label.
7471 This secondary jump table is preceded by a short-jump to the
7472 first byte after the secondary table. This short-jump prevents the flow
7473 of control from accidentally falling into the new table. Inside the
7474 table is a long-jump to @code{sym2}. The original @samp{.word}
7475 contains @code{sym1} minus the address of the long-jump to
7476 @code{sym2}.
7477
7478 If there were several occurrences of @samp{.word sym1-sym2} before the
7479 secondary jump table, all of them are adjusted. If there was a
7480 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7481 long-jump to @code{sym4} is included in the secondary jump table,
7482 and the @code{.word} directives are adjusted to contain @code{sym3}
7483 minus the address of the long-jump to @code{sym4}; and so on, for as many
7484 entries in the original jump table as necessary.
7485
7486 @ifset INTERNALS
7487 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7488 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7489 assembly language programmers.
7490 @end ifset
7491 @end ifset
7492 @c end DIFF-TBL-KLUGE
7493
7494 @ifclear no-space-dir
7495 @node Zero
7496 @section @code{.zero @var{size}}
7497
7498 @cindex @code{zero} directive
7499 @cindex filling memory with zero bytes
7500 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7501 expression. This directive is actually an alias for the @samp{.skip} directive
7502 so it can take an optional second argument of the value to store in the bytes
7503 instead of zero. Using @samp{.zero} in this way would be confusing however.
7504 @end ifclear
7505
7506 @node 2byte
7507 @section @code{.2byte @var{expression} [, @var{expression}]*}
7508 @cindex @code{2byte} directive
7509 @cindex two-byte integer
7510 @cindex integer, 2-byte
7511
7512 This directive expects zero or more expressions, separated by commas. If there
7513 are no expressions then the directive does nothing. Otherwise each expression
7514 is evaluated in turn and placed in the next two bytes of the current output
7515 section, using the endian model of the target. If an expression will not fit
7516 in two bytes, a warning message is displayed and the least significant two
7517 bytes of the expression's value are used. If an expression cannot be evaluated
7518 at assembly time then relocations will be generated in order to compute the
7519 value at link time.
7520
7521 This directive does not apply any alignment before or after inserting the
7522 values. As a result of this, if relocations are generated, they may be
7523 different from those used for inserting values with a guaranteed alignment.
7524
7525 @node 4byte
7526 @section @code{.4byte @var{expression} [, @var{expression}]*}
7527 @cindex @code{4byte} directive
7528 @cindex four-byte integer
7529 @cindex integer, 4-byte
7530
7531 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7532 long values into the output.
7533
7534 @node 8byte
7535 @section @code{.8byte @var{expression} [, @var{expression}]*}
7536 @cindex @code{8byte} directive
7537 @cindex eight-byte integer
7538 @cindex integer, 8-byte
7539
7540 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7541 byte long bignum values into the output.
7542
7543 @node Deprecated
7544 @section Deprecated Directives
7545
7546 @cindex deprecated directives
7547 @cindex obsolescent directives
7548 One day these directives won't work.
7549 They are included for compatibility with older assemblers.
7550 @table @t
7551 @item .abort
7552 @item .line
7553 @end table
7554
7555 @ifset ELF
7556 @node Object Attributes
7557 @chapter Object Attributes
7558 @cindex object attributes
7559
7560 @command{@value{AS}} assembles source files written for a specific architecture
7561 into object files for that architecture. But not all object files are alike.
7562 Many architectures support incompatible variations. For instance, floating
7563 point arguments might be passed in floating point registers if the object file
7564 requires hardware floating point support---or floating point arguments might be
7565 passed in integer registers if the object file supports processors with no
7566 hardware floating point unit. Or, if two objects are built for different
7567 generations of the same architecture, the combination may require the
7568 newer generation at run-time.
7569
7570 This information is useful during and after linking. At link time,
7571 @command{@value{LD}} can warn about incompatible object files. After link
7572 time, tools like @command{gdb} can use it to process the linked file
7573 correctly.
7574
7575 Compatibility information is recorded as a series of object attributes. Each
7576 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7577 string, and indicates who sets the meaning of the tag. The tag is an integer,
7578 and indicates what property the attribute describes. The value may be a string
7579 or an integer, and indicates how the property affects this object. Missing
7580 attributes are the same as attributes with a zero value or empty string value.
7581
7582 Object attributes were developed as part of the ABI for the ARM Architecture.
7583 The file format is documented in @cite{ELF for the ARM Architecture}.
7584
7585 @menu
7586 * GNU Object Attributes:: @sc{gnu} Object Attributes
7587 * Defining New Object Attributes:: Defining New Object Attributes
7588 @end menu
7589
7590 @node GNU Object Attributes
7591 @section @sc{gnu} Object Attributes
7592
7593 The @code{.gnu_attribute} directive records an object attribute
7594 with vendor @samp{gnu}.
7595
7596 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7597 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7598 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7599 2} is set for architecture-independent attributes and clear for
7600 architecture-dependent ones.
7601
7602 @subsection Common @sc{gnu} attributes
7603
7604 These attributes are valid on all architectures.
7605
7606 @table @r
7607 @item Tag_compatibility (32)
7608 The compatibility attribute takes an integer flag value and a vendor name. If
7609 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7610 then the file is only compatible with the named toolchain. If it is greater
7611 than 1, the file can only be processed by other toolchains under some private
7612 arrangement indicated by the flag value and the vendor name.
7613 @end table
7614
7615 @subsection M680x0 Attributes
7616
7617 @table @r
7618 @item Tag_GNU_M68K_ABI_FP (4)
7619 The floating-point ABI used by this object file. The value will be:
7620
7621 @itemize @bullet
7622 @item
7623 0 for files not affected by the floating-point ABI.
7624 @item
7625 1 for files using double-precision hardware floating-point ABI.
7626 @item
7627 2 for files using the software floating-point ABI.
7628 @end itemize
7629 @end table
7630
7631 @subsection MIPS Attributes
7632
7633 @table @r
7634 @item Tag_GNU_MIPS_ABI_FP (4)
7635 The floating-point ABI used by this object file. The value will be:
7636
7637 @itemize @bullet
7638 @item
7639 0 for files not affected by the floating-point ABI.
7640 @item
7641 1 for files using the hardware floating-point ABI with a standard
7642 double-precision FPU.
7643 @item
7644 2 for files using the hardware floating-point ABI with a single-precision FPU.
7645 @item
7646 3 for files using the software floating-point ABI.
7647 @item
7648 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7649 floating-point registers, 32-bit general-purpose registers and increased the
7650 number of callee-saved floating-point registers.
7651 @item
7652 5 for files using the hardware floating-point ABI with a double-precision FPU
7653 with either 32-bit or 64-bit floating-point registers and 32-bit
7654 general-purpose registers.
7655 @item
7656 6 for files using the hardware floating-point ABI with 64-bit floating-point
7657 registers and 32-bit general-purpose registers.
7658 @item
7659 7 for files using the hardware floating-point ABI with 64-bit floating-point
7660 registers, 32-bit general-purpose registers and a rule that forbids the
7661 direct use of odd-numbered single-precision floating-point registers.
7662 @end itemize
7663 @end table
7664
7665 @subsection PowerPC Attributes
7666
7667 @table @r
7668 @item Tag_GNU_Power_ABI_FP (4)
7669 The floating-point ABI used by this object file. The value will be:
7670
7671 @itemize @bullet
7672 @item
7673 0 for files not affected by the floating-point ABI.
7674 @item
7675 1 for files using double-precision hardware floating-point ABI.
7676 @item
7677 2 for files using the software floating-point ABI.
7678 @item
7679 3 for files using single-precision hardware floating-point ABI.
7680 @end itemize
7681
7682 @item Tag_GNU_Power_ABI_Vector (8)
7683 The vector ABI used by this object file. The value will be:
7684
7685 @itemize @bullet
7686 @item
7687 0 for files not affected by the vector ABI.
7688 @item
7689 1 for files using general purpose registers to pass vectors.
7690 @item
7691 2 for files using AltiVec registers to pass vectors.
7692 @item
7693 3 for files using SPE registers to pass vectors.
7694 @end itemize
7695 @end table
7696
7697 @subsection IBM z Systems Attributes
7698
7699 @table @r
7700 @item Tag_GNU_S390_ABI_Vector (8)
7701 The vector ABI used by this object file. The value will be:
7702
7703 @itemize @bullet
7704 @item
7705 0 for files not affected by the vector ABI.
7706 @item
7707 1 for files using software vector ABI.
7708 @item
7709 2 for files using hardware vector ABI.
7710 @end itemize
7711 @end table
7712
7713 @subsection MSP430 Attributes
7714
7715 @table @r
7716 @item Tag_GNU_MSP430_Data_Region (4)
7717 The data region used by this object file. The value will be:
7718
7719 @itemize @bullet
7720 @item
7721 0 for files not using the large memory model.
7722 @item
7723 1 for files which have been compiled with the condition that all
7724 data is in the lower memory region, i.e. below address 0x10000.
7725 @item
7726 2 for files which allow data to be placed in the full 20-bit memory range.
7727 @end itemize
7728 @end table
7729
7730 @node Defining New Object Attributes
7731 @section Defining New Object Attributes
7732
7733 If you want to define a new @sc{gnu} object attribute, here are the places you
7734 will need to modify. New attributes should be discussed on the @samp{binutils}
7735 mailing list.
7736
7737 @itemize @bullet
7738 @item
7739 This manual, which is the official register of attributes.
7740 @item
7741 The header for your architecture @file{include/elf}, to define the tag.
7742 @item
7743 The @file{bfd} support file for your architecture, to merge the attribute
7744 and issue any appropriate link warnings.
7745 @item
7746 Test cases in @file{ld/testsuite} for merging and link warnings.
7747 @item
7748 @file{binutils/readelf.c} to display your attribute.
7749 @item
7750 GCC, if you want the compiler to mark the attribute automatically.
7751 @end itemize
7752
7753 @end ifset
7754
7755 @ifset GENERIC
7756 @node Machine Dependencies
7757 @chapter Machine Dependent Features
7758
7759 @cindex machine dependencies
7760 The machine instruction sets are (almost by definition) different on
7761 each machine where @command{@value{AS}} runs. Floating point representations
7762 vary as well, and @command{@value{AS}} often supports a few additional
7763 directives or command-line options for compatibility with other
7764 assemblers on a particular platform. Finally, some versions of
7765 @command{@value{AS}} support special pseudo-instructions for branch
7766 optimization.
7767
7768 This chapter discusses most of these differences, though it does not
7769 include details on any machine's instruction set. For details on that
7770 subject, see the hardware manufacturer's manual.
7771
7772 @menu
7773 @ifset AARCH64
7774 * AArch64-Dependent:: AArch64 Dependent Features
7775 @end ifset
7776 @ifset ALPHA
7777 * Alpha-Dependent:: Alpha Dependent Features
7778 @end ifset
7779 @ifset ARC
7780 * ARC-Dependent:: ARC Dependent Features
7781 @end ifset
7782 @ifset ARM
7783 * ARM-Dependent:: ARM Dependent Features
7784 @end ifset
7785 @ifset AVR
7786 * AVR-Dependent:: AVR Dependent Features
7787 @end ifset
7788 @ifset Blackfin
7789 * Blackfin-Dependent:: Blackfin Dependent Features
7790 @end ifset
7791 @ifset BPF
7792 * BPF-Dependent:: BPF Dependent Features
7793 @end ifset
7794 @ifset CR16
7795 * CR16-Dependent:: CR16 Dependent Features
7796 @end ifset
7797 @ifset CRIS
7798 * CRIS-Dependent:: CRIS Dependent Features
7799 @end ifset
7800 @ifset CSKY
7801 * C-SKY-Dependent:: C-SKY Dependent Features
7802 @end ifset
7803 @ifset D10V
7804 * D10V-Dependent:: D10V Dependent Features
7805 @end ifset
7806 @ifset D30V
7807 * D30V-Dependent:: D30V Dependent Features
7808 @end ifset
7809 @ifset EPIPHANY
7810 * Epiphany-Dependent:: EPIPHANY Dependent Features
7811 @end ifset
7812 @ifset H8/300
7813 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7814 @end ifset
7815 @ifset HPPA
7816 * HPPA-Dependent:: HPPA Dependent Features
7817 @end ifset
7818 @ifset I80386
7819 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7820 @end ifset
7821 @ifset IA64
7822 * IA-64-Dependent:: Intel IA-64 Dependent Features
7823 @end ifset
7824 @ifset IP2K
7825 * IP2K-Dependent:: IP2K Dependent Features
7826 @end ifset
7827 @ifset LM32
7828 * LM32-Dependent:: LM32 Dependent Features
7829 @end ifset
7830 @ifset M32C
7831 * M32C-Dependent:: M32C Dependent Features
7832 @end ifset
7833 @ifset M32R
7834 * M32R-Dependent:: M32R Dependent Features
7835 @end ifset
7836 @ifset M680X0
7837 * M68K-Dependent:: M680x0 Dependent Features
7838 @end ifset
7839 @ifset M68HC11
7840 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7841 @end ifset
7842 @ifset S12Z
7843 * S12Z-Dependent:: S12Z Dependent Features
7844 @end ifset
7845 @ifset METAG
7846 * Meta-Dependent :: Meta Dependent Features
7847 @end ifset
7848 @ifset MICROBLAZE
7849 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7850 @end ifset
7851 @ifset MIPS
7852 * MIPS-Dependent:: MIPS Dependent Features
7853 @end ifset
7854 @ifset MMIX
7855 * MMIX-Dependent:: MMIX Dependent Features
7856 @end ifset
7857 @ifset MSP430
7858 * MSP430-Dependent:: MSP430 Dependent Features
7859 @end ifset
7860 @ifset NDS32
7861 * NDS32-Dependent:: Andes NDS32 Dependent Features
7862 @end ifset
7863 @ifset NIOSII
7864 * NiosII-Dependent:: Altera Nios II Dependent Features
7865 @end ifset
7866 @ifset NS32K
7867 * NS32K-Dependent:: NS32K Dependent Features
7868 @end ifset
7869 @ifset OPENRISC
7870 * OpenRISC-Dependent:: OpenRISC 1000 Features
7871 @end ifset
7872 @ifset PDP11
7873 * PDP-11-Dependent:: PDP-11 Dependent Features
7874 @end ifset
7875 @ifset PJ
7876 * PJ-Dependent:: picoJava Dependent Features
7877 @end ifset
7878 @ifset PPC
7879 * PPC-Dependent:: PowerPC Dependent Features
7880 @end ifset
7881 @ifset PRU
7882 * PRU-Dependent:: PRU Dependent Features
7883 @end ifset
7884 @ifset RISCV
7885 * RISC-V-Dependent:: RISC-V Dependent Features
7886 @end ifset
7887 @ifset RL78
7888 * RL78-Dependent:: RL78 Dependent Features
7889 @end ifset
7890 @ifset RX
7891 * RX-Dependent:: RX Dependent Features
7892 @end ifset
7893 @ifset S390
7894 * S/390-Dependent:: IBM S/390 Dependent Features
7895 @end ifset
7896 @ifset SCORE
7897 * SCORE-Dependent:: SCORE Dependent Features
7898 @end ifset
7899 @ifset SH
7900 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7901 @end ifset
7902 @ifset SPARC
7903 * Sparc-Dependent:: SPARC Dependent Features
7904 @end ifset
7905 @ifset TIC54X
7906 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7907 @end ifset
7908 @ifset TIC6X
7909 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7910 @end ifset
7911 @ifset TILEGX
7912 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7913 @end ifset
7914 @ifset TILEPRO
7915 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7916 @end ifset
7917 @ifset V850
7918 * V850-Dependent:: V850 Dependent Features
7919 @end ifset
7920 @ifset VAX
7921 * Vax-Dependent:: VAX Dependent Features
7922 @end ifset
7923 @ifset VISIUM
7924 * Visium-Dependent:: Visium Dependent Features
7925 @end ifset
7926 @ifset WASM32
7927 * WebAssembly-Dependent:: WebAssembly Dependent Features
7928 @end ifset
7929 @ifset XGATE
7930 * XGATE-Dependent:: XGATE Dependent Features
7931 @end ifset
7932 @ifset XSTORMY16
7933 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7934 @end ifset
7935 @ifset XTENSA
7936 * Xtensa-Dependent:: Xtensa Dependent Features
7937 @end ifset
7938 @ifset Z80
7939 * Z80-Dependent:: Z80 Dependent Features
7940 @end ifset
7941 @ifset Z8000
7942 * Z8000-Dependent:: Z8000 Dependent Features
7943 @end ifset
7944 @end menu
7945
7946 @lowersections
7947 @end ifset
7948
7949 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7950 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7951 @c peculiarity: to preserve cross-references, there must be a node called
7952 @c "Machine Dependencies". Hence the conditional nodenames in each
7953 @c major node below. Node defaulting in makeinfo requires adjacency of
7954 @c node and sectioning commands; hence the repetition of @chapter BLAH
7955 @c in both conditional blocks.
7956
7957 @ifset AARCH64
7958 @include c-aarch64.texi
7959 @end ifset
7960
7961 @ifset ALPHA
7962 @include c-alpha.texi
7963 @end ifset
7964
7965 @ifset ARC
7966 @include c-arc.texi
7967 @end ifset
7968
7969 @ifset ARM
7970 @include c-arm.texi
7971 @end ifset
7972
7973 @ifset AVR
7974 @include c-avr.texi
7975 @end ifset
7976
7977 @ifset Blackfin
7978 @include c-bfin.texi
7979 @end ifset
7980
7981 @ifset BPF
7982 @include c-bpf.texi
7983 @end ifset
7984
7985 @ifset CR16
7986 @include c-cr16.texi
7987 @end ifset
7988
7989 @ifset CRIS
7990 @include c-cris.texi
7991 @end ifset
7992
7993 @ifset CSKY
7994 @include c-csky.texi
7995 @end ifset
7996
7997 @ifset Renesas-all
7998 @ifclear GENERIC
7999 @node Machine Dependencies
8000 @chapter Machine Dependent Features
8001
8002 The machine instruction sets are different on each Renesas chip family,
8003 and there are also some syntax differences among the families. This
8004 chapter describes the specific @command{@value{AS}} features for each
8005 family.
8006
8007 @menu
8008 * H8/300-Dependent:: Renesas H8/300 Dependent Features
8009 * SH-Dependent:: Renesas SH Dependent Features
8010 @end menu
8011 @lowersections
8012 @end ifclear
8013 @end ifset
8014
8015 @ifset D10V
8016 @include c-d10v.texi
8017 @end ifset
8018
8019 @ifset D30V
8020 @include c-d30v.texi
8021 @end ifset
8022
8023 @ifset EPIPHANY
8024 @include c-epiphany.texi
8025 @end ifset
8026
8027 @ifset H8/300
8028 @include c-h8300.texi
8029 @end ifset
8030
8031 @ifset HPPA
8032 @include c-hppa.texi
8033 @end ifset
8034
8035 @ifset I80386
8036 @include c-i386.texi
8037 @end ifset
8038
8039 @ifset IA64
8040 @include c-ia64.texi
8041 @end ifset
8042
8043 @ifset IP2K
8044 @include c-ip2k.texi
8045 @end ifset
8046
8047 @ifset LM32
8048 @include c-lm32.texi
8049 @end ifset
8050
8051 @ifset M32C
8052 @include c-m32c.texi
8053 @end ifset
8054
8055 @ifset M32R
8056 @include c-m32r.texi
8057 @end ifset
8058
8059 @ifset M680X0
8060 @include c-m68k.texi
8061 @end ifset
8062
8063 @ifset M68HC11
8064 @include c-m68hc11.texi
8065 @end ifset
8066
8067 @ifset S12Z
8068 @include c-s12z.texi
8069 @end ifset
8070
8071 @ifset METAG
8072 @include c-metag.texi
8073 @end ifset
8074
8075 @ifset MICROBLAZE
8076 @include c-microblaze.texi
8077 @end ifset
8078
8079 @ifset MIPS
8080 @include c-mips.texi
8081 @end ifset
8082
8083 @ifset MMIX
8084 @include c-mmix.texi
8085 @end ifset
8086
8087 @ifset MSP430
8088 @include c-msp430.texi
8089 @end ifset
8090
8091 @ifset NDS32
8092 @include c-nds32.texi
8093 @end ifset
8094
8095 @ifset NIOSII
8096 @include c-nios2.texi
8097 @end ifset
8098
8099 @ifset NS32K
8100 @include c-ns32k.texi
8101 @end ifset
8102
8103 @ifset OPENRISC
8104 @include c-or1k.texi
8105 @end ifset
8106
8107 @ifset PDP11
8108 @include c-pdp11.texi
8109 @end ifset
8110
8111 @ifset PJ
8112 @include c-pj.texi
8113 @end ifset
8114
8115 @ifset PPC
8116 @include c-ppc.texi
8117 @end ifset
8118
8119 @ifset PRU
8120 @include c-pru.texi
8121 @end ifset
8122
8123 @ifset RISCV
8124 @include c-riscv.texi
8125 @end ifset
8126
8127 @ifset RL78
8128 @include c-rl78.texi
8129 @end ifset
8130
8131 @ifset RX
8132 @include c-rx.texi
8133 @end ifset
8134
8135 @ifset S390
8136 @include c-s390.texi
8137 @end ifset
8138
8139 @ifset SCORE
8140 @include c-score.texi
8141 @end ifset
8142
8143 @ifset SH
8144 @include c-sh.texi
8145 @end ifset
8146
8147 @ifset SPARC
8148 @include c-sparc.texi
8149 @end ifset
8150
8151 @ifset TIC54X
8152 @include c-tic54x.texi
8153 @end ifset
8154
8155 @ifset TIC6X
8156 @include c-tic6x.texi
8157 @end ifset
8158
8159 @ifset TILEGX
8160 @include c-tilegx.texi
8161 @end ifset
8162
8163 @ifset TILEPRO
8164 @include c-tilepro.texi
8165 @end ifset
8166
8167 @ifset V850
8168 @include c-v850.texi
8169 @end ifset
8170
8171 @ifset VAX
8172 @include c-vax.texi
8173 @end ifset
8174
8175 @ifset VISIUM
8176 @include c-visium.texi
8177 @end ifset
8178
8179 @ifset WASM32
8180 @include c-wasm32.texi
8181 @end ifset
8182
8183 @ifset XGATE
8184 @include c-xgate.texi
8185 @end ifset
8186
8187 @ifset XSTORMY16
8188 @include c-xstormy16.texi
8189 @end ifset
8190
8191 @ifset XTENSA
8192 @include c-xtensa.texi
8193 @end ifset
8194
8195 @ifset Z80
8196 @include c-z80.texi
8197 @end ifset
8198
8199 @ifset Z8000
8200 @include c-z8k.texi
8201 @end ifset
8202
8203 @ifset GENERIC
8204 @c reverse effect of @down at top of generic Machine-Dep chapter
8205 @raisesections
8206 @end ifset
8207
8208 @node Reporting Bugs
8209 @chapter Reporting Bugs
8210 @cindex bugs in assembler
8211 @cindex reporting bugs in assembler
8212
8213 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8214
8215 Reporting a bug may help you by bringing a solution to your problem, or it may
8216 not. But in any case the principal function of a bug report is to help the
8217 entire community by making the next version of @command{@value{AS}} work better.
8218 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8219
8220 In order for a bug report to serve its purpose, you must include the
8221 information that enables us to fix the bug.
8222
8223 @menu
8224 * Bug Criteria:: Have you found a bug?
8225 * Bug Reporting:: How to report bugs
8226 @end menu
8227
8228 @node Bug Criteria
8229 @section Have You Found a Bug?
8230 @cindex bug criteria
8231
8232 If you are not sure whether you have found a bug, here are some guidelines:
8233
8234 @itemize @bullet
8235 @cindex fatal signal
8236 @cindex assembler crash
8237 @cindex crash of assembler
8238 @item
8239 If the assembler gets a fatal signal, for any input whatever, that is a
8240 @command{@value{AS}} bug. Reliable assemblers never crash.
8241
8242 @cindex error on valid input
8243 @item
8244 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8245
8246 @cindex invalid input
8247 @item
8248 If @command{@value{AS}} does not produce an error message for invalid input, that
8249 is a bug. However, you should note that your idea of ``invalid input'' might
8250 be our idea of ``an extension'' or ``support for traditional practice''.
8251
8252 @item
8253 If you are an experienced user of assemblers, your suggestions for improvement
8254 of @command{@value{AS}} are welcome in any case.
8255 @end itemize
8256
8257 @node Bug Reporting
8258 @section How to Report Bugs
8259 @cindex bug reports
8260 @cindex assembler bugs, reporting
8261
8262 A number of companies and individuals offer support for @sc{gnu} products. If
8263 you obtained @command{@value{AS}} from a support organization, we recommend you
8264 contact that organization first.
8265
8266 You can find contact information for many support companies and
8267 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8268 distribution.
8269
8270 @ifset BUGURL
8271 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8272 to @value{BUGURL}.
8273 @end ifset
8274
8275 The fundamental principle of reporting bugs usefully is this:
8276 @strong{report all the facts}. If you are not sure whether to state a
8277 fact or leave it out, state it!
8278
8279 Often people omit facts because they think they know what causes the problem
8280 and assume that some details do not matter. Thus, you might assume that the
8281 name of a symbol you use in an example does not matter. Well, probably it does
8282 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8283 happens to fetch from the location where that name is stored in memory;
8284 perhaps, if the name were different, the contents of that location would fool
8285 the assembler into doing the right thing despite the bug. Play it safe and
8286 give a specific, complete example. That is the easiest thing for you to do,
8287 and the most helpful.
8288
8289 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8290 it is new to us. Therefore, always write your bug reports on the assumption
8291 that the bug has not been reported previously.
8292
8293 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8294 bell?'' This cannot help us fix a bug, so it is basically useless. We
8295 respond by asking for enough details to enable us to investigate.
8296 You might as well expedite matters by sending them to begin with.
8297
8298 To enable us to fix the bug, you should include all these things:
8299
8300 @itemize @bullet
8301 @item
8302 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8303 it with the @samp{--version} argument.
8304
8305 Without this, we will not know whether there is any point in looking for
8306 the bug in the current version of @command{@value{AS}}.
8307
8308 @item
8309 Any patches you may have applied to the @command{@value{AS}} source.
8310
8311 @item
8312 The type of machine you are using, and the operating system name and
8313 version number.
8314
8315 @item
8316 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8317 ``@code{gcc-2.7}''.
8318
8319 @item
8320 The command arguments you gave the assembler to assemble your example and
8321 observe the bug. To guarantee you will not omit something important, list them
8322 all. A copy of the Makefile (or the output from make) is sufficient.
8323
8324 If we were to try to guess the arguments, we would probably guess wrong
8325 and then we might not encounter the bug.
8326
8327 @item
8328 A complete input file that will reproduce the bug. If the bug is observed when
8329 the assembler is invoked via a compiler, send the assembler source, not the
8330 high level language source. Most compilers will produce the assembler source
8331 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8332 the options @samp{-v --save-temps}; this will save the assembler source in a
8333 file with an extension of @file{.s}, and also show you exactly how
8334 @command{@value{AS}} is being run.
8335
8336 @item
8337 A description of what behavior you observe that you believe is
8338 incorrect. For example, ``It gets a fatal signal.''
8339
8340 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8341 will certainly notice it. But if the bug is incorrect output, we might not
8342 notice unless it is glaringly wrong. You might as well not give us a chance to
8343 make a mistake.
8344
8345 Even if the problem you experience is a fatal signal, you should still say so
8346 explicitly. Suppose something strange is going on, such as, your copy of
8347 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8348 library on your system. (This has happened!) Your copy might crash and ours
8349 would not. If you told us to expect a crash, then when ours fails to crash, we
8350 would know that the bug was not happening for us. If you had not told us to
8351 expect a crash, then we would not be able to draw any conclusion from our
8352 observations.
8353
8354 @item
8355 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8356 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8357 option. Always send diffs from the old file to the new file. If you even
8358 discuss something in the @command{@value{AS}} source, refer to it by context, not
8359 by line number.
8360
8361 The line numbers in our development sources will not match those in your
8362 sources. Your line numbers would convey no useful information to us.
8363 @end itemize
8364
8365 Here are some things that are not necessary:
8366
8367 @itemize @bullet
8368 @item
8369 A description of the envelope of the bug.
8370
8371 Often people who encounter a bug spend a lot of time investigating
8372 which changes to the input file will make the bug go away and which
8373 changes will not affect it.
8374
8375 This is often time consuming and not very useful, because the way we
8376 will find the bug is by running a single example under the debugger
8377 with breakpoints, not by pure deduction from a series of examples.
8378 We recommend that you save your time for something else.
8379
8380 Of course, if you can find a simpler example to report @emph{instead}
8381 of the original one, that is a convenience for us. Errors in the
8382 output will be easier to spot, running under the debugger will take
8383 less time, and so on.
8384
8385 However, simplification is not vital; if you do not want to do this,
8386 report the bug anyway and send us the entire test case you used.
8387
8388 @item
8389 A patch for the bug.
8390
8391 A patch for the bug does help us if it is a good one. But do not omit
8392 the necessary information, such as the test case, on the assumption that
8393 a patch is all we need. We might see problems with your patch and decide
8394 to fix the problem another way, or we might not understand it at all.
8395
8396 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8397 construct an example that will make the program follow a certain path through
8398 the code. If you do not send us the example, we will not be able to construct
8399 one, so we will not be able to verify that the bug is fixed.
8400
8401 And if we cannot understand what bug you are trying to fix, or why your
8402 patch should be an improvement, we will not install it. A test case will
8403 help us to understand.
8404
8405 @item
8406 A guess about what the bug is or what it depends on.
8407
8408 Such guesses are usually wrong. Even we cannot guess right about such
8409 things without first using the debugger to find the facts.
8410 @end itemize
8411
8412 @node Acknowledgements
8413 @chapter Acknowledgements
8414
8415 If you have contributed to GAS and your name isn't listed here,
8416 it is not meant as a slight. We just don't know about it. Send mail to the
8417 maintainer, and we'll correct the situation. Currently
8418 @c (October 2012),
8419 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8420
8421 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8422 more details?}
8423
8424 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8425 information and the 68k series machines, most of the preprocessing pass, and
8426 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8427
8428 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8429 many bug fixes, including merging support for several processors, breaking GAS
8430 up to handle multiple object file format back ends (including heavy rewrite,
8431 testing, an integration of the coff and b.out back ends), adding configuration
8432 including heavy testing and verification of cross assemblers and file splits
8433 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8434 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8435 port (including considerable amounts of reverse engineering), a SPARC opcode
8436 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8437 assertions and made them work, much other reorganization, cleanup, and lint.
8438
8439 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8440 in format-specific I/O modules.
8441
8442 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8443 has done much work with it since.
8444
8445 The Intel 80386 machine description was written by Eliot Dresselhaus.
8446
8447 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8448
8449 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8450 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8451
8452 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8453 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8454 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8455 support a.out format.
8456
8457 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8458 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8459 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8460 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8461 targets.
8462
8463 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8464 simplified the configuration of which versions accept which directives. He
8465 updated the 68k machine description so that Motorola's opcodes always produced
8466 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8467 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8468 cross-compilation support, and one bug in relaxation that took a week and
8469 required the proverbial one-bit fix.
8470
8471 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8472 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8473 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8474 PowerPC assembler, and made a few other minor patches.
8475
8476 Steve Chamberlain made GAS able to generate listings.
8477
8478 Hewlett-Packard contributed support for the HP9000/300.
8479
8480 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8481 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8482 formats). This work was supported by both the Center for Software Science at
8483 the University of Utah and Cygnus Support.
8484
8485 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8486 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8487 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8488 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8489 and some initial 64-bit support).
8490
8491 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8492
8493 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8494 support for openVMS/Alpha.
8495
8496 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8497 flavors.
8498
8499 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8500 Inc.@: added support for Xtensa processors.
8501
8502 Several engineers at Cygnus Support have also provided many small bug fixes and
8503 configuration enhancements.
8504
8505 Jon Beniston added support for the Lattice Mico32 architecture.
8506
8507 Many others have contributed large or small bugfixes and enhancements. If
8508 you have contributed significant work and are not mentioned on this list, and
8509 want to be, let us know. Some of the history has been lost; we are not
8510 intentionally leaving anyone out.
8511
8512 @node GNU Free Documentation License
8513 @appendix GNU Free Documentation License
8514 @include fdl.texi
8515
8516 @node AS Index
8517 @unnumbered AS Index
8518
8519 @printindex cp
8520
8521 @bye
8522 @c Local Variables:
8523 @c fill-column: 79
8524 @c End: