]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/expr.c
Prepare gas for 64-bit obstacks
[thirdparty/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifndef CHAR_BIT
35 #define CHAR_BIT 8
36 #endif
37
38 static void floating_constant (expressionS * expressionP);
39 static valueT generic_bignum_to_int32 (void);
40 #ifdef BFD64
41 static valueT generic_bignum_to_int64 (void);
42 #endif
43 static void integer_constant (int radix, expressionS * expressionP);
44 static void mri_char_constant (expressionS *);
45 static void clean_up_expression (expressionS * expressionP);
46 static segT operand (expressionS *, enum expr_mode);
47 static operatorT operatorf (int *);
48
49 extern const char EXP_CHARS[], FLT_CHARS[];
50
51 /* We keep a mapping of expression symbols to file positions, so that
52 we can provide better error messages. */
53
54 struct expr_symbol_line {
55 struct expr_symbol_line *next;
56 symbolS *sym;
57 char *file;
58 unsigned int line;
59 };
60
61 static struct expr_symbol_line *expr_symbol_lines;
62 \f
63 /* Build a dummy symbol to hold a complex expression. This is how we
64 build expressions up out of other expressions. The symbol is put
65 into the fake section expr_section. */
66
67 symbolS *
68 make_expr_symbol (expressionS *expressionP)
69 {
70 expressionS zero;
71 symbolS *symbolP;
72 struct expr_symbol_line *n;
73
74 if (expressionP->X_op == O_symbol
75 && expressionP->X_add_number == 0)
76 return expressionP->X_add_symbol;
77
78 if (expressionP->X_op == O_big)
79 {
80 /* This won't work, because the actual value is stored in
81 generic_floating_point_number or generic_bignum, and we are
82 going to lose it if we haven't already. */
83 if (expressionP->X_add_number > 0)
84 as_bad (_("bignum invalid"));
85 else
86 as_bad (_("floating point number invalid"));
87 zero.X_op = O_constant;
88 zero.X_add_number = 0;
89 zero.X_unsigned = 0;
90 zero.X_extrabit = 0;
91 clean_up_expression (&zero);
92 expressionP = &zero;
93 }
94
95 /* Putting constant symbols in absolute_section rather than
96 expr_section is convenient for the old a.out code, for which
97 S_GET_SEGMENT does not always retrieve the value put in by
98 S_SET_SEGMENT. */
99 symbolP = symbol_create (FAKE_LABEL_NAME,
100 (expressionP->X_op == O_constant
101 ? absolute_section
102 : expressionP->X_op == O_register
103 ? reg_section
104 : expr_section),
105 0, &zero_address_frag);
106 symbol_set_value_expression (symbolP, expressionP);
107
108 if (expressionP->X_op == O_constant)
109 resolve_symbol_value (symbolP);
110
111 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
112 n->sym = symbolP;
113 as_where (&n->file, &n->line);
114 n->next = expr_symbol_lines;
115 expr_symbol_lines = n;
116
117 return symbolP;
118 }
119
120 /* Return the file and line number for an expr symbol. Return
121 non-zero if something was found, 0 if no information is known for
122 the symbol. */
123
124 int
125 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
126 {
127 register struct expr_symbol_line *l;
128
129 for (l = expr_symbol_lines; l != NULL; l = l->next)
130 {
131 if (l->sym == sym)
132 {
133 *pfile = l->file;
134 *pline = l->line;
135 return 1;
136 }
137 }
138
139 return 0;
140 }
141 \f
142 /* Utilities for building expressions.
143 Since complex expressions are recorded as symbols for use in other
144 expressions these return a symbolS * and not an expressionS *.
145 These explicitly do not take an "add_number" argument. */
146 /* ??? For completeness' sake one might want expr_build_symbol.
147 It would just return its argument. */
148
149 /* Build an expression for an unsigned constant.
150 The corresponding one for signed constants is missing because
151 there's currently no need for it. One could add an unsigned_p flag
152 but that seems more clumsy. */
153
154 symbolS *
155 expr_build_uconstant (offsetT value)
156 {
157 expressionS e;
158
159 e.X_op = O_constant;
160 e.X_add_number = value;
161 e.X_unsigned = 1;
162 e.X_extrabit = 0;
163 return make_expr_symbol (&e);
164 }
165
166 /* Build an expression for the current location ('.'). */
167
168 symbolS *
169 expr_build_dot (void)
170 {
171 expressionS e;
172
173 current_location (&e);
174 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
175 }
176 \f
177 /* Build any floating-point literal here.
178 Also build any bignum literal here. */
179
180 /* Seems atof_machine can backscan through generic_bignum and hit whatever
181 happens to be loaded before it in memory. And its way too complicated
182 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
183 and never write into the early words, thus they'll always be zero.
184 I hate Dean's floating-point code. Bleh. */
185 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
186
187 FLONUM_TYPE generic_floating_point_number = {
188 &generic_bignum[6], /* low. (JF: Was 0) */
189 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
190 0, /* leader. */
191 0, /* exponent. */
192 0 /* sign. */
193 };
194
195 \f
196 static void
197 floating_constant (expressionS *expressionP)
198 {
199 /* input_line_pointer -> floating-point constant. */
200 int error_code;
201
202 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
203 &generic_floating_point_number);
204
205 if (error_code)
206 {
207 if (error_code == ERROR_EXPONENT_OVERFLOW)
208 {
209 as_bad (_("bad floating-point constant: exponent overflow"));
210 }
211 else
212 {
213 as_bad (_("bad floating-point constant: unknown error code=%d"),
214 error_code);
215 }
216 }
217 expressionP->X_op = O_big;
218 /* input_line_pointer -> just after constant, which may point to
219 whitespace. */
220 expressionP->X_add_number = -1;
221 }
222
223 static valueT
224 generic_bignum_to_int32 (void)
225 {
226 valueT number =
227 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
228 | (generic_bignum[0] & LITTLENUM_MASK);
229 number &= 0xffffffff;
230 return number;
231 }
232
233 #ifdef BFD64
234 static valueT
235 generic_bignum_to_int64 (void)
236 {
237 valueT number =
238 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
239 << LITTLENUM_NUMBER_OF_BITS)
240 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
243 << LITTLENUM_NUMBER_OF_BITS)
244 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
245 return number;
246 }
247 #endif
248
249 static void
250 integer_constant (int radix, expressionS *expressionP)
251 {
252 char *start; /* Start of number. */
253 char *suffix = NULL;
254 char c;
255 valueT number; /* Offset or (absolute) value. */
256 short int digit; /* Value of next digit in current radix. */
257 short int maxdig = 0; /* Highest permitted digit value. */
258 int too_many_digits = 0; /* If we see >= this number of. */
259 char *name; /* Points to name of symbol. */
260 symbolS *symbolP; /* Points to symbol. */
261
262 int small; /* True if fits in 32 bits. */
263
264 /* May be bignum, or may fit in 32 bits. */
265 /* Most numbers fit into 32 bits, and we want this case to be fast.
266 so we pretend it will fit into 32 bits. If, after making up a 32
267 bit number, we realise that we have scanned more digits than
268 comfortably fit into 32 bits, we re-scan the digits coding them
269 into a bignum. For decimal and octal numbers we are
270 conservative: Some numbers may be assumed bignums when in fact
271 they do fit into 32 bits. Numbers of any radix can have excess
272 leading zeros: We strive to recognise this and cast them back
273 into 32 bits. We must check that the bignum really is more than
274 32 bits, and change it back to a 32-bit number if it fits. The
275 number we are looking for is expected to be positive, but if it
276 fits into 32 bits as an unsigned number, we let it be a 32-bit
277 number. The cavalier approach is for speed in ordinary cases. */
278 /* This has been extended for 64 bits. We blindly assume that if
279 you're compiling in 64-bit mode, the target is a 64-bit machine.
280 This should be cleaned up. */
281
282 #ifdef BFD64
283 #define valuesize 64
284 #else /* includes non-bfd case, mostly */
285 #define valuesize 32
286 #endif
287
288 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
289 {
290 int flt = 0;
291
292 /* In MRI mode, the number may have a suffix indicating the
293 radix. For that matter, it might actually be a floating
294 point constant. */
295 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
296 {
297 if (*suffix == 'e' || *suffix == 'E')
298 flt = 1;
299 }
300
301 if (suffix == input_line_pointer)
302 {
303 radix = 10;
304 suffix = NULL;
305 }
306 else
307 {
308 c = *--suffix;
309 c = TOUPPER (c);
310 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
311 we distinguish between 'B' and 'b'. This is the case for
312 Z80. */
313 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
314 radix = 2;
315 else if (c == 'D')
316 radix = 10;
317 else if (c == 'O' || c == 'Q')
318 radix = 8;
319 else if (c == 'H')
320 radix = 16;
321 else if (suffix[1] == '.' || c == 'E' || flt)
322 {
323 floating_constant (expressionP);
324 return;
325 }
326 else
327 {
328 radix = 10;
329 suffix = NULL;
330 }
331 }
332 }
333
334 switch (radix)
335 {
336 case 2:
337 maxdig = 2;
338 too_many_digits = valuesize + 1;
339 break;
340 case 8:
341 maxdig = radix = 8;
342 too_many_digits = (valuesize + 2) / 3 + 1;
343 break;
344 case 16:
345 maxdig = radix = 16;
346 too_many_digits = (valuesize + 3) / 4 + 1;
347 break;
348 case 10:
349 maxdig = radix = 10;
350 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
351 }
352 #undef valuesize
353 start = input_line_pointer;
354 c = *input_line_pointer++;
355 for (number = 0;
356 (digit = hex_value (c)) < maxdig;
357 c = *input_line_pointer++)
358 {
359 number = number * radix + digit;
360 }
361 /* c contains character after number. */
362 /* input_line_pointer->char after c. */
363 small = (input_line_pointer - start - 1) < too_many_digits;
364
365 if (radix == 16 && c == '_')
366 {
367 /* This is literal of the form 0x333_0_12345678_1.
368 This example is equivalent to 0x00000333000000001234567800000001. */
369
370 int num_little_digits = 0;
371 int i;
372 input_line_pointer = start; /* -> 1st digit. */
373
374 know (LITTLENUM_NUMBER_OF_BITS == 16);
375
376 for (c = '_'; c == '_'; num_little_digits += 2)
377 {
378
379 /* Convert one 64-bit word. */
380 int ndigit = 0;
381 number = 0;
382 for (c = *input_line_pointer++;
383 (digit = hex_value (c)) < maxdig;
384 c = *(input_line_pointer++))
385 {
386 number = number * radix + digit;
387 ndigit++;
388 }
389
390 /* Check for 8 digit per word max. */
391 if (ndigit > 8)
392 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
393
394 /* Add this chunk to the bignum.
395 Shift things down 2 little digits. */
396 know (LITTLENUM_NUMBER_OF_BITS == 16);
397 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
398 i >= 2;
399 i--)
400 generic_bignum[i] = generic_bignum[i - 2];
401
402 /* Add the new digits as the least significant new ones. */
403 generic_bignum[0] = number & 0xffffffff;
404 generic_bignum[1] = number >> 16;
405 }
406
407 /* Again, c is char after number, input_line_pointer->after c. */
408
409 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
410 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
411
412 gas_assert (num_little_digits >= 4);
413
414 if (num_little_digits != 8)
415 as_bad (_("a bignum with underscores must have exactly 4 words"));
416
417 /* We might have some leading zeros. These can be trimmed to give
418 us a change to fit this constant into a small number. */
419 while (generic_bignum[num_little_digits - 1] == 0
420 && num_little_digits > 1)
421 num_little_digits--;
422
423 if (num_little_digits <= 2)
424 {
425 /* will fit into 32 bits. */
426 number = generic_bignum_to_int32 ();
427 small = 1;
428 }
429 #ifdef BFD64
430 else if (num_little_digits <= 4)
431 {
432 /* Will fit into 64 bits. */
433 number = generic_bignum_to_int64 ();
434 small = 1;
435 }
436 #endif
437 else
438 {
439 small = 0;
440
441 /* Number of littlenums in the bignum. */
442 number = num_little_digits;
443 }
444 }
445 else if (!small)
446 {
447 /* We saw a lot of digits. manufacture a bignum the hard way. */
448 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
449 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
450 long carry;
451
452 leader = generic_bignum;
453 generic_bignum[0] = 0;
454 generic_bignum[1] = 0;
455 generic_bignum[2] = 0;
456 generic_bignum[3] = 0;
457 input_line_pointer = start; /* -> 1st digit. */
458 c = *input_line_pointer++;
459 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
460 {
461 for (pointer = generic_bignum; pointer <= leader; pointer++)
462 {
463 long work;
464
465 work = carry + radix * *pointer;
466 *pointer = work & LITTLENUM_MASK;
467 carry = work >> LITTLENUM_NUMBER_OF_BITS;
468 }
469 if (carry)
470 {
471 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
472 {
473 /* Room to grow a longer bignum. */
474 *++leader = carry;
475 }
476 }
477 }
478 /* Again, c is char after number. */
479 /* input_line_pointer -> after c. */
480 know (LITTLENUM_NUMBER_OF_BITS == 16);
481 if (leader < generic_bignum + 2)
482 {
483 /* Will fit into 32 bits. */
484 number = generic_bignum_to_int32 ();
485 small = 1;
486 }
487 #ifdef BFD64
488 else if (leader < generic_bignum + 4)
489 {
490 /* Will fit into 64 bits. */
491 number = generic_bignum_to_int64 ();
492 small = 1;
493 }
494 #endif
495 else
496 {
497 /* Number of littlenums in the bignum. */
498 number = leader - generic_bignum + 1;
499 }
500 }
501
502 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
503 && suffix != NULL
504 && input_line_pointer - 1 == suffix)
505 c = *input_line_pointer++;
506
507 if (small)
508 {
509 /* Here with number, in correct radix. c is the next char.
510 Note that unlike un*x, we allow "011f" "0x9f" to both mean
511 the same as the (conventional) "9f".
512 This is simply easier than checking for strict canonical
513 form. Syntax sux! */
514
515 if (LOCAL_LABELS_FB && c == 'b')
516 {
517 /* Backward ref to local label.
518 Because it is backward, expect it to be defined. */
519 /* Construct a local label. */
520 name = fb_label_name ((int) number, 0);
521
522 /* Seen before, or symbol is defined: OK. */
523 symbolP = symbol_find (name);
524 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
525 {
526 /* Local labels are never absolute. Don't waste time
527 checking absoluteness. */
528 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
529
530 expressionP->X_op = O_symbol;
531 expressionP->X_add_symbol = symbolP;
532 }
533 else
534 {
535 /* Either not seen or not defined. */
536 /* @@ Should print out the original string instead of
537 the parsed number. */
538 as_bad (_("backward ref to unknown label \"%d:\""),
539 (int) number);
540 expressionP->X_op = O_constant;
541 }
542
543 expressionP->X_add_number = 0;
544 } /* case 'b' */
545 else if (LOCAL_LABELS_FB && c == 'f')
546 {
547 /* Forward reference. Expect symbol to be undefined or
548 unknown. undefined: seen it before. unknown: never seen
549 it before.
550
551 Construct a local label name, then an undefined symbol.
552 Don't create a xseg frag for it: caller may do that.
553 Just return it as never seen before. */
554 name = fb_label_name ((int) number, 1);
555 symbolP = symbol_find_or_make (name);
556 /* We have no need to check symbol properties. */
557 #ifndef many_segments
558 /* Since "know" puts its arg into a "string", we
559 can't have newlines in the argument. */
560 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
561 #endif
562 expressionP->X_op = O_symbol;
563 expressionP->X_add_symbol = symbolP;
564 expressionP->X_add_number = 0;
565 } /* case 'f' */
566 else if (LOCAL_LABELS_DOLLAR && c == '$')
567 {
568 /* If the dollar label is *currently* defined, then this is just
569 another reference to it. If it is not *currently* defined,
570 then this is a fresh instantiation of that number, so create
571 it. */
572
573 if (dollar_label_defined ((long) number))
574 {
575 name = dollar_label_name ((long) number, 0);
576 symbolP = symbol_find (name);
577 know (symbolP != NULL);
578 }
579 else
580 {
581 name = dollar_label_name ((long) number, 1);
582 symbolP = symbol_find_or_make (name);
583 }
584
585 expressionP->X_op = O_symbol;
586 expressionP->X_add_symbol = symbolP;
587 expressionP->X_add_number = 0;
588 } /* case '$' */
589 else
590 {
591 expressionP->X_op = O_constant;
592 expressionP->X_add_number = number;
593 input_line_pointer--; /* Restore following character. */
594 } /* Really just a number. */
595 }
596 else
597 {
598 /* Not a small number. */
599 expressionP->X_op = O_big;
600 expressionP->X_add_number = number; /* Number of littlenums. */
601 input_line_pointer--; /* -> char following number. */
602 }
603 }
604
605 /* Parse an MRI multi character constant. */
606
607 static void
608 mri_char_constant (expressionS *expressionP)
609 {
610 int i;
611
612 if (*input_line_pointer == '\''
613 && input_line_pointer[1] != '\'')
614 {
615 expressionP->X_op = O_constant;
616 expressionP->X_add_number = 0;
617 return;
618 }
619
620 /* In order to get the correct byte ordering, we must build the
621 number in reverse. */
622 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
623 {
624 int j;
625
626 generic_bignum[i] = 0;
627 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
628 {
629 if (*input_line_pointer == '\'')
630 {
631 if (input_line_pointer[1] != '\'')
632 break;
633 ++input_line_pointer;
634 }
635 generic_bignum[i] <<= 8;
636 generic_bignum[i] += *input_line_pointer;
637 ++input_line_pointer;
638 }
639
640 if (i < SIZE_OF_LARGE_NUMBER - 1)
641 {
642 /* If there is more than one littlenum, left justify the
643 last one to make it match the earlier ones. If there is
644 only one, we can just use the value directly. */
645 for (; j < CHARS_PER_LITTLENUM; j++)
646 generic_bignum[i] <<= 8;
647 }
648
649 if (*input_line_pointer == '\''
650 && input_line_pointer[1] != '\'')
651 break;
652 }
653
654 if (i < 0)
655 {
656 as_bad (_("character constant too large"));
657 i = 0;
658 }
659
660 if (i > 0)
661 {
662 int c;
663 int j;
664
665 c = SIZE_OF_LARGE_NUMBER - i;
666 for (j = 0; j < c; j++)
667 generic_bignum[j] = generic_bignum[i + j];
668 i = c;
669 }
670
671 know (LITTLENUM_NUMBER_OF_BITS == 16);
672 if (i > 2)
673 {
674 expressionP->X_op = O_big;
675 expressionP->X_add_number = i;
676 }
677 else
678 {
679 expressionP->X_op = O_constant;
680 if (i < 2)
681 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
682 else
683 expressionP->X_add_number =
684 (((generic_bignum[1] & LITTLENUM_MASK)
685 << LITTLENUM_NUMBER_OF_BITS)
686 | (generic_bignum[0] & LITTLENUM_MASK));
687 }
688
689 /* Skip the final closing quote. */
690 ++input_line_pointer;
691 }
692
693 /* Return an expression representing the current location. This
694 handles the magic symbol `.'. */
695
696 void
697 current_location (expressionS *expressionp)
698 {
699 if (now_seg == absolute_section)
700 {
701 expressionp->X_op = O_constant;
702 expressionp->X_add_number = abs_section_offset;
703 }
704 else
705 {
706 expressionp->X_op = O_symbol;
707 expressionp->X_add_symbol = &dot_symbol;
708 expressionp->X_add_number = 0;
709 }
710 }
711
712 /* In: Input_line_pointer points to 1st char of operand, which may
713 be a space.
714
715 Out: An expressionS.
716 The operand may have been empty: in this case X_op == O_absent.
717 Input_line_pointer->(next non-blank) char after operand. */
718
719 static segT
720 operand (expressionS *expressionP, enum expr_mode mode)
721 {
722 char c;
723 symbolS *symbolP; /* Points to symbol. */
724 char *name; /* Points to name of symbol. */
725 segT segment;
726
727 /* All integers are regarded as unsigned unless they are negated.
728 This is because the only thing which cares whether a number is
729 unsigned is the code in emit_expr which extends constants into
730 bignums. It should only sign extend negative numbers, so that
731 something like ``.quad 0x80000000'' is not sign extended even
732 though it appears negative if valueT is 32 bits. */
733 expressionP->X_unsigned = 1;
734 expressionP->X_extrabit = 0;
735
736 /* Digits, assume it is a bignum. */
737
738 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
739 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
740
741 if (is_end_of_line[(unsigned char) c])
742 goto eol;
743
744 switch (c)
745 {
746 case '1':
747 case '2':
748 case '3':
749 case '4':
750 case '5':
751 case '6':
752 case '7':
753 case '8':
754 case '9':
755 input_line_pointer--;
756
757 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
758 ? 0 : 10,
759 expressionP);
760 break;
761
762 #ifdef LITERAL_PREFIXDOLLAR_HEX
763 case '$':
764 /* $L is the start of a local label, not a hex constant. */
765 if (* input_line_pointer == 'L')
766 goto isname;
767 integer_constant (16, expressionP);
768 break;
769 #endif
770
771 #ifdef LITERAL_PREFIXPERCENT_BIN
772 case '%':
773 integer_constant (2, expressionP);
774 break;
775 #endif
776
777 case '0':
778 /* Non-decimal radix. */
779
780 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
781 {
782 char *s;
783
784 /* Check for a hex or float constant. */
785 for (s = input_line_pointer; hex_p (*s); s++)
786 ;
787 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
788 {
789 --input_line_pointer;
790 integer_constant (0, expressionP);
791 break;
792 }
793 }
794 c = *input_line_pointer;
795 switch (c)
796 {
797 case 'o':
798 case 'O':
799 case 'q':
800 case 'Q':
801 case '8':
802 case '9':
803 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
804 {
805 integer_constant (0, expressionP);
806 break;
807 }
808 /* Fall through. */
809 default:
810 default_case:
811 if (c && strchr (FLT_CHARS, c))
812 {
813 input_line_pointer++;
814 floating_constant (expressionP);
815 expressionP->X_add_number = - TOLOWER (c);
816 }
817 else
818 {
819 /* The string was only zero. */
820 expressionP->X_op = O_constant;
821 expressionP->X_add_number = 0;
822 }
823
824 break;
825
826 case 'x':
827 case 'X':
828 if (flag_m68k_mri)
829 goto default_case;
830 input_line_pointer++;
831 integer_constant (16, expressionP);
832 break;
833
834 case 'b':
835 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
836 {
837 /* This code used to check for '+' and '-' here, and, in
838 some conditions, fall through to call
839 integer_constant. However, that didn't make sense,
840 as integer_constant only accepts digits. */
841 /* Some of our code elsewhere does permit digits greater
842 than the expected base; for consistency, do the same
843 here. */
844 if (input_line_pointer[1] < '0'
845 || input_line_pointer[1] > '9')
846 {
847 /* Parse this as a back reference to label 0. */
848 input_line_pointer--;
849 integer_constant (10, expressionP);
850 break;
851 }
852 /* Otherwise, parse this as a binary number. */
853 }
854 /* Fall through. */
855 case 'B':
856 input_line_pointer++;
857 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
858 goto default_case;
859 integer_constant (2, expressionP);
860 break;
861
862 case '0':
863 case '1':
864 case '2':
865 case '3':
866 case '4':
867 case '5':
868 case '6':
869 case '7':
870 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
871 ? 0 : 8,
872 expressionP);
873 break;
874
875 case 'f':
876 if (LOCAL_LABELS_FB)
877 {
878 /* If it says "0f" and it could possibly be a floating point
879 number, make it one. Otherwise, make it a local label,
880 and try to deal with parsing the rest later. */
881 if (!input_line_pointer[1]
882 || (is_end_of_line[0xff & input_line_pointer[1]])
883 || strchr (FLT_CHARS, 'f') == NULL)
884 goto is_0f_label;
885 {
886 char *cp = input_line_pointer + 1;
887 int r = atof_generic (&cp, ".", EXP_CHARS,
888 &generic_floating_point_number);
889 switch (r)
890 {
891 case 0:
892 case ERROR_EXPONENT_OVERFLOW:
893 if (*cp == 'f' || *cp == 'b')
894 /* Looks like a difference expression. */
895 goto is_0f_label;
896 else if (cp == input_line_pointer + 1)
897 /* No characters has been accepted -- looks like
898 end of operand. */
899 goto is_0f_label;
900 else
901 goto is_0f_float;
902 default:
903 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
904 r);
905 }
906 }
907
908 /* Okay, now we've sorted it out. We resume at one of these
909 two labels, depending on what we've decided we're probably
910 looking at. */
911 is_0f_label:
912 input_line_pointer--;
913 integer_constant (10, expressionP);
914 break;
915
916 is_0f_float:
917 /* Fall through. */
918 ;
919 }
920
921 case 'd':
922 case 'D':
923 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
924 {
925 integer_constant (0, expressionP);
926 break;
927 }
928 /* Fall through. */
929 case 'F':
930 case 'r':
931 case 'e':
932 case 'E':
933 case 'g':
934 case 'G':
935 input_line_pointer++;
936 floating_constant (expressionP);
937 expressionP->X_add_number = - TOLOWER (c);
938 break;
939
940 case '$':
941 if (LOCAL_LABELS_DOLLAR)
942 {
943 integer_constant (10, expressionP);
944 break;
945 }
946 else
947 goto default_case;
948 }
949
950 break;
951
952 #ifndef NEED_INDEX_OPERATOR
953 case '[':
954 # ifdef md_need_index_operator
955 if (md_need_index_operator())
956 goto de_fault;
957 # endif
958 /* FALLTHROUGH */
959 #endif
960 case '(':
961 /* Didn't begin with digit & not a name. */
962 segment = expr (0, expressionP, mode);
963 /* expression () will pass trailing whitespace. */
964 if ((c == '(' && *input_line_pointer != ')')
965 || (c == '[' && *input_line_pointer != ']'))
966 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
967 else
968 input_line_pointer++;
969 SKIP_WHITESPACE ();
970 /* Here with input_line_pointer -> char after "(...)". */
971 return segment;
972
973 #ifdef TC_M68K
974 case 'E':
975 if (! flag_m68k_mri || *input_line_pointer != '\'')
976 goto de_fault;
977 as_bad (_("EBCDIC constants are not supported"));
978 /* Fall through. */
979 case 'A':
980 if (! flag_m68k_mri || *input_line_pointer != '\'')
981 goto de_fault;
982 ++input_line_pointer;
983 /* Fall through. */
984 #endif
985 case '\'':
986 if (! flag_m68k_mri)
987 {
988 /* Warning: to conform to other people's assemblers NO
989 ESCAPEMENT is permitted for a single quote. The next
990 character, parity errors and all, is taken as the value
991 of the operand. VERY KINKY. */
992 expressionP->X_op = O_constant;
993 expressionP->X_add_number = *input_line_pointer++;
994 break;
995 }
996
997 mri_char_constant (expressionP);
998 break;
999
1000 #ifdef TC_M68K
1001 case '"':
1002 /* Double quote is the bitwise not operator in MRI mode. */
1003 if (! flag_m68k_mri)
1004 goto de_fault;
1005 /* Fall through. */
1006 #endif
1007 case '~':
1008 /* '~' is permitted to start a label on the Delta. */
1009 if (is_name_beginner (c))
1010 goto isname;
1011 case '!':
1012 case '-':
1013 case '+':
1014 {
1015 #ifdef md_operator
1016 unary:
1017 #endif
1018 operand (expressionP, mode);
1019 if (expressionP->X_op == O_constant)
1020 {
1021 /* input_line_pointer -> char after operand. */
1022 if (c == '-')
1023 {
1024 expressionP->X_add_number = - expressionP->X_add_number;
1025 /* Notice: '-' may overflow: no warning is given.
1026 This is compatible with other people's
1027 assemblers. Sigh. */
1028 expressionP->X_unsigned = 0;
1029 if (expressionP->X_add_number)
1030 expressionP->X_extrabit ^= 1;
1031 }
1032 else if (c == '~' || c == '"')
1033 expressionP->X_add_number = ~ expressionP->X_add_number;
1034 else if (c == '!')
1035 expressionP->X_add_number = ! expressionP->X_add_number;
1036 }
1037 else if (expressionP->X_op == O_big
1038 && expressionP->X_add_number <= 0
1039 && c == '-'
1040 && (generic_floating_point_number.sign == '+'
1041 || generic_floating_point_number.sign == 'P'))
1042 {
1043 /* Negative flonum (eg, -1.000e0). */
1044 if (generic_floating_point_number.sign == '+')
1045 generic_floating_point_number.sign = '-';
1046 else
1047 generic_floating_point_number.sign = 'N';
1048 }
1049 else if (expressionP->X_op == O_big
1050 && expressionP->X_add_number > 0)
1051 {
1052 int i;
1053
1054 if (c == '~' || c == '-')
1055 {
1056 for (i = 0; i < expressionP->X_add_number; ++i)
1057 generic_bignum[i] = ~generic_bignum[i];
1058
1059 /* Extend the bignum to at least the size of .octa. */
1060 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1061 {
1062 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1063 for (; i < expressionP->X_add_number; ++i)
1064 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1065 }
1066
1067 if (c == '-')
1068 for (i = 0; i < expressionP->X_add_number; ++i)
1069 {
1070 generic_bignum[i] += 1;
1071 if (generic_bignum[i])
1072 break;
1073 }
1074 }
1075 else if (c == '!')
1076 {
1077 for (i = 0; i < expressionP->X_add_number; ++i)
1078 if (generic_bignum[i] != 0)
1079 break;
1080 expressionP->X_add_number = i >= expressionP->X_add_number;
1081 expressionP->X_op = O_constant;
1082 expressionP->X_unsigned = 1;
1083 expressionP->X_extrabit = 0;
1084 }
1085 }
1086 else if (expressionP->X_op != O_illegal
1087 && expressionP->X_op != O_absent)
1088 {
1089 if (c != '+')
1090 {
1091 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1092 if (c == '-')
1093 expressionP->X_op = O_uminus;
1094 else if (c == '~' || c == '"')
1095 expressionP->X_op = O_bit_not;
1096 else
1097 expressionP->X_op = O_logical_not;
1098 expressionP->X_add_number = 0;
1099 }
1100 }
1101 else
1102 as_warn (_("Unary operator %c ignored because bad operand follows"),
1103 c);
1104 }
1105 break;
1106
1107 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1108 case '$':
1109 /* '$' is the program counter when in MRI mode, or when
1110 DOLLAR_DOT is defined. */
1111 #ifndef DOLLAR_DOT
1112 if (! flag_m68k_mri)
1113 goto de_fault;
1114 #endif
1115 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1116 {
1117 /* In MRI mode and on Z80, '$' is also used as the prefix
1118 for a hexadecimal constant. */
1119 integer_constant (16, expressionP);
1120 break;
1121 }
1122
1123 if (is_part_of_name (*input_line_pointer))
1124 goto isname;
1125
1126 current_location (expressionP);
1127 break;
1128 #endif
1129
1130 case '.':
1131 if (!is_part_of_name (*input_line_pointer))
1132 {
1133 current_location (expressionP);
1134 break;
1135 }
1136 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1137 && ! is_part_of_name (input_line_pointer[8]))
1138 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1139 && ! is_part_of_name (input_line_pointer[7])))
1140 {
1141 int start;
1142
1143 start = (input_line_pointer[1] == 't'
1144 || input_line_pointer[1] == 'T');
1145 input_line_pointer += start ? 8 : 7;
1146 SKIP_WHITESPACE ();
1147 if (*input_line_pointer != '(')
1148 as_bad (_("syntax error in .startof. or .sizeof."));
1149 else
1150 {
1151 char *buf;
1152
1153 ++input_line_pointer;
1154 SKIP_WHITESPACE ();
1155 name = input_line_pointer;
1156 c = get_symbol_end ();
1157
1158 buf = (char *) xmalloc (strlen (name) + 10);
1159 if (start)
1160 sprintf (buf, ".startof.%s", name);
1161 else
1162 sprintf (buf, ".sizeof.%s", name);
1163 symbolP = symbol_make (buf);
1164 free (buf);
1165
1166 expressionP->X_op = O_symbol;
1167 expressionP->X_add_symbol = symbolP;
1168 expressionP->X_add_number = 0;
1169
1170 *input_line_pointer = c;
1171 SKIP_WHITESPACE ();
1172 if (*input_line_pointer != ')')
1173 as_bad (_("syntax error in .startof. or .sizeof."));
1174 else
1175 ++input_line_pointer;
1176 }
1177 break;
1178 }
1179 else
1180 {
1181 goto isname;
1182 }
1183
1184 case ',':
1185 eol:
1186 /* Can't imagine any other kind of operand. */
1187 expressionP->X_op = O_absent;
1188 input_line_pointer--;
1189 break;
1190
1191 #ifdef TC_M68K
1192 case '%':
1193 if (! flag_m68k_mri)
1194 goto de_fault;
1195 integer_constant (2, expressionP);
1196 break;
1197
1198 case '@':
1199 if (! flag_m68k_mri)
1200 goto de_fault;
1201 integer_constant (8, expressionP);
1202 break;
1203
1204 case ':':
1205 if (! flag_m68k_mri)
1206 goto de_fault;
1207
1208 /* In MRI mode, this is a floating point constant represented
1209 using hexadecimal digits. */
1210
1211 ++input_line_pointer;
1212 integer_constant (16, expressionP);
1213 break;
1214
1215 case '*':
1216 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1217 goto de_fault;
1218
1219 current_location (expressionP);
1220 break;
1221 #endif
1222
1223 default:
1224 #if defined(md_need_index_operator) || defined(TC_M68K)
1225 de_fault:
1226 #endif
1227 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1228 {
1229 /* Identifier begins here.
1230 This is kludged for speed, so code is repeated. */
1231 isname:
1232 name = --input_line_pointer;
1233 c = get_symbol_end ();
1234
1235 #ifdef md_operator
1236 {
1237 operatorT op = md_operator (name, 1, &c);
1238
1239 switch (op)
1240 {
1241 case O_uminus:
1242 *input_line_pointer = c;
1243 c = '-';
1244 goto unary;
1245 case O_bit_not:
1246 *input_line_pointer = c;
1247 c = '~';
1248 goto unary;
1249 case O_logical_not:
1250 *input_line_pointer = c;
1251 c = '!';
1252 goto unary;
1253 case O_illegal:
1254 as_bad (_("invalid use of operator \"%s\""), name);
1255 break;
1256 default:
1257 break;
1258 }
1259 if (op != O_absent && op != O_illegal)
1260 {
1261 *input_line_pointer = c;
1262 expr (9, expressionP, mode);
1263 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1264 expressionP->X_op_symbol = NULL;
1265 expressionP->X_add_number = 0;
1266 expressionP->X_op = op;
1267 break;
1268 }
1269 }
1270 #endif
1271
1272 #ifdef md_parse_name
1273 /* This is a hook for the backend to parse certain names
1274 specially in certain contexts. If a name always has a
1275 specific value, it can often be handled by simply
1276 entering it in the symbol table. */
1277 if (md_parse_name (name, expressionP, mode, &c))
1278 {
1279 *input_line_pointer = c;
1280 break;
1281 }
1282 #endif
1283
1284 #ifdef TC_I960
1285 /* The MRI i960 assembler permits
1286 lda sizeof code,g13
1287 FIXME: This should use md_parse_name. */
1288 if (flag_mri
1289 && (strcasecmp (name, "sizeof") == 0
1290 || strcasecmp (name, "startof") == 0))
1291 {
1292 int start;
1293 char *buf;
1294
1295 start = (name[1] == 't'
1296 || name[1] == 'T');
1297
1298 *input_line_pointer = c;
1299 SKIP_WHITESPACE ();
1300
1301 name = input_line_pointer;
1302 c = get_symbol_end ();
1303
1304 buf = (char *) xmalloc (strlen (name) + 10);
1305 if (start)
1306 sprintf (buf, ".startof.%s", name);
1307 else
1308 sprintf (buf, ".sizeof.%s", name);
1309 symbolP = symbol_make (buf);
1310 free (buf);
1311
1312 expressionP->X_op = O_symbol;
1313 expressionP->X_add_symbol = symbolP;
1314 expressionP->X_add_number = 0;
1315
1316 *input_line_pointer = c;
1317 SKIP_WHITESPACE ();
1318
1319 break;
1320 }
1321 #endif
1322
1323 symbolP = symbol_find_or_make (name);
1324
1325 /* If we have an absolute symbol or a reg, then we know its
1326 value now. */
1327 segment = S_GET_SEGMENT (symbolP);
1328 if (mode != expr_defer
1329 && segment == absolute_section
1330 && !S_FORCE_RELOC (symbolP, 0))
1331 {
1332 expressionP->X_op = O_constant;
1333 expressionP->X_add_number = S_GET_VALUE (symbolP);
1334 }
1335 else if (mode != expr_defer && segment == reg_section)
1336 {
1337 expressionP->X_op = O_register;
1338 expressionP->X_add_number = S_GET_VALUE (symbolP);
1339 }
1340 else
1341 {
1342 expressionP->X_op = O_symbol;
1343 expressionP->X_add_symbol = symbolP;
1344 expressionP->X_add_number = 0;
1345 }
1346 *input_line_pointer = c;
1347 }
1348 else
1349 {
1350 /* Let the target try to parse it. Success is indicated by changing
1351 the X_op field to something other than O_absent and pointing
1352 input_line_pointer past the expression. If it can't parse the
1353 expression, X_op and input_line_pointer should be unchanged. */
1354 expressionP->X_op = O_absent;
1355 --input_line_pointer;
1356 md_operand (expressionP);
1357 if (expressionP->X_op == O_absent)
1358 {
1359 ++input_line_pointer;
1360 as_bad (_("bad expression"));
1361 expressionP->X_op = O_constant;
1362 expressionP->X_add_number = 0;
1363 }
1364 }
1365 break;
1366 }
1367
1368 /* It is more 'efficient' to clean up the expressionS when they are
1369 created. Doing it here saves lines of code. */
1370 clean_up_expression (expressionP);
1371 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1372 know (*input_line_pointer != ' ');
1373
1374 /* The PA port needs this information. */
1375 if (expressionP->X_add_symbol)
1376 symbol_mark_used (expressionP->X_add_symbol);
1377
1378 if (mode != expr_defer)
1379 {
1380 expressionP->X_add_symbol
1381 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1382 expressionP->X_op_symbol
1383 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1384 }
1385
1386 switch (expressionP->X_op)
1387 {
1388 default:
1389 return absolute_section;
1390 case O_symbol:
1391 return S_GET_SEGMENT (expressionP->X_add_symbol);
1392 case O_register:
1393 return reg_section;
1394 }
1395 }
1396 \f
1397 /* Internal. Simplify a struct expression for use by expr (). */
1398
1399 /* In: address of an expressionS.
1400 The X_op field of the expressionS may only take certain values.
1401 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1402
1403 Out: expressionS may have been modified:
1404 Unused fields zeroed to help expr (). */
1405
1406 static void
1407 clean_up_expression (expressionS *expressionP)
1408 {
1409 switch (expressionP->X_op)
1410 {
1411 case O_illegal:
1412 case O_absent:
1413 expressionP->X_add_number = 0;
1414 /* Fall through. */
1415 case O_big:
1416 case O_constant:
1417 case O_register:
1418 expressionP->X_add_symbol = NULL;
1419 /* Fall through. */
1420 case O_symbol:
1421 case O_uminus:
1422 case O_bit_not:
1423 expressionP->X_op_symbol = NULL;
1424 break;
1425 default:
1426 break;
1427 }
1428 }
1429 \f
1430 /* Expression parser. */
1431
1432 /* We allow an empty expression, and just assume (absolute,0) silently.
1433 Unary operators and parenthetical expressions are treated as operands.
1434 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1435
1436 We used to do an aho/ullman shift-reduce parser, but the logic got so
1437 warped that I flushed it and wrote a recursive-descent parser instead.
1438 Now things are stable, would anybody like to write a fast parser?
1439 Most expressions are either register (which does not even reach here)
1440 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1441 So I guess it doesn't really matter how inefficient more complex expressions
1442 are parsed.
1443
1444 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1445 Also, we have consumed any leading or trailing spaces (operand does that)
1446 and done all intervening operators.
1447
1448 This returns the segment of the result, which will be
1449 absolute_section or the segment of a symbol. */
1450
1451 #undef __
1452 #define __ O_illegal
1453 #ifndef O_SINGLE_EQ
1454 #define O_SINGLE_EQ O_illegal
1455 #endif
1456
1457 /* Maps ASCII -> operators. */
1458 static const operatorT op_encoding[256] = {
1459 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1460 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1461
1462 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1463 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1464 __, __, __, __, __, __, __, __,
1465 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1466 __, __, __, __, __, __, __, __,
1467 __, __, __, __, __, __, __, __,
1468 __, __, __, __, __, __, __, __,
1469 __, __, __,
1470 #ifdef NEED_INDEX_OPERATOR
1471 O_index,
1472 #else
1473 __,
1474 #endif
1475 __, __, O_bit_exclusive_or, __,
1476 __, __, __, __, __, __, __, __,
1477 __, __, __, __, __, __, __, __,
1478 __, __, __, __, __, __, __, __,
1479 __, __, __, __, O_bit_inclusive_or, __, __, __,
1480
1481 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1482 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1483 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1484 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1485 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1486 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1487 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1488 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1489 };
1490
1491 /* Rank Examples
1492 0 operand, (expression)
1493 1 ||
1494 2 &&
1495 3 == <> < <= >= >
1496 4 + -
1497 5 used for * / % in MRI mode
1498 6 & ^ ! |
1499 7 * / % << >>
1500 8 unary - unary ~
1501 */
1502 static operator_rankT op_rank[O_max] = {
1503 0, /* O_illegal */
1504 0, /* O_absent */
1505 0, /* O_constant */
1506 0, /* O_symbol */
1507 0, /* O_symbol_rva */
1508 0, /* O_register */
1509 0, /* O_big */
1510 9, /* O_uminus */
1511 9, /* O_bit_not */
1512 9, /* O_logical_not */
1513 8, /* O_multiply */
1514 8, /* O_divide */
1515 8, /* O_modulus */
1516 8, /* O_left_shift */
1517 8, /* O_right_shift */
1518 7, /* O_bit_inclusive_or */
1519 7, /* O_bit_or_not */
1520 7, /* O_bit_exclusive_or */
1521 7, /* O_bit_and */
1522 5, /* O_add */
1523 5, /* O_subtract */
1524 4, /* O_eq */
1525 4, /* O_ne */
1526 4, /* O_lt */
1527 4, /* O_le */
1528 4, /* O_ge */
1529 4, /* O_gt */
1530 3, /* O_logical_and */
1531 2, /* O_logical_or */
1532 1, /* O_index */
1533 };
1534
1535 /* Unfortunately, in MRI mode for the m68k, multiplication and
1536 division have lower precedence than the bit wise operators. This
1537 function sets the operator precedences correctly for the current
1538 mode. Also, MRI uses a different bit_not operator, and this fixes
1539 that as well. */
1540
1541 #define STANDARD_MUL_PRECEDENCE 8
1542 #define MRI_MUL_PRECEDENCE 6
1543
1544 void
1545 expr_set_precedence (void)
1546 {
1547 if (flag_m68k_mri)
1548 {
1549 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1550 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1551 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1552 }
1553 else
1554 {
1555 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1556 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1557 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1558 }
1559 }
1560
1561 void
1562 expr_set_rank (operatorT op, operator_rankT rank)
1563 {
1564 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1565 op_rank[op] = rank;
1566 }
1567
1568 /* Initialize the expression parser. */
1569
1570 void
1571 expr_begin (void)
1572 {
1573 expr_set_precedence ();
1574
1575 /* Verify that X_op field is wide enough. */
1576 {
1577 expressionS e;
1578 e.X_op = O_max;
1579 gas_assert (e.X_op == O_max);
1580 }
1581 }
1582 \f
1583 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1584 sets NUM_CHARS to the number of characters in the operator.
1585 Does not advance INPUT_LINE_POINTER. */
1586
1587 static inline operatorT
1588 operatorf (int *num_chars)
1589 {
1590 int c;
1591 operatorT ret;
1592
1593 c = *input_line_pointer & 0xff;
1594 *num_chars = 1;
1595
1596 if (is_end_of_line[c])
1597 return O_illegal;
1598
1599 #ifdef md_operator
1600 if (is_name_beginner (c))
1601 {
1602 char *name = input_line_pointer;
1603 char ec = get_symbol_end ();
1604
1605 ret = md_operator (name, 2, &ec);
1606 switch (ret)
1607 {
1608 case O_absent:
1609 *input_line_pointer = ec;
1610 input_line_pointer = name;
1611 break;
1612 case O_uminus:
1613 case O_bit_not:
1614 case O_logical_not:
1615 as_bad (_("invalid use of operator \"%s\""), name);
1616 ret = O_illegal;
1617 /* FALLTHROUGH */
1618 default:
1619 *input_line_pointer = ec;
1620 *num_chars = input_line_pointer - name;
1621 input_line_pointer = name;
1622 return ret;
1623 }
1624 }
1625 #endif
1626
1627 switch (c)
1628 {
1629 default:
1630 ret = op_encoding[c];
1631 #ifdef md_operator
1632 if (ret == O_illegal)
1633 {
1634 char *start = input_line_pointer;
1635
1636 ret = md_operator (NULL, 2, NULL);
1637 if (ret != O_illegal)
1638 *num_chars = input_line_pointer - start;
1639 input_line_pointer = start;
1640 }
1641 #endif
1642 return ret;
1643
1644 case '+':
1645 case '-':
1646 return op_encoding[c];
1647
1648 case '<':
1649 switch (input_line_pointer[1])
1650 {
1651 default:
1652 return op_encoding[c];
1653 case '<':
1654 ret = O_left_shift;
1655 break;
1656 case '>':
1657 ret = O_ne;
1658 break;
1659 case '=':
1660 ret = O_le;
1661 break;
1662 }
1663 *num_chars = 2;
1664 return ret;
1665
1666 case '=':
1667 if (input_line_pointer[1] != '=')
1668 return op_encoding[c];
1669
1670 *num_chars = 2;
1671 return O_eq;
1672
1673 case '>':
1674 switch (input_line_pointer[1])
1675 {
1676 default:
1677 return op_encoding[c];
1678 case '>':
1679 ret = O_right_shift;
1680 break;
1681 case '=':
1682 ret = O_ge;
1683 break;
1684 }
1685 *num_chars = 2;
1686 return ret;
1687
1688 case '!':
1689 switch (input_line_pointer[1])
1690 {
1691 case '!':
1692 /* We accept !! as equivalent to ^ for MRI compatibility. */
1693 *num_chars = 2;
1694 return O_bit_exclusive_or;
1695 case '=':
1696 /* We accept != as equivalent to <>. */
1697 *num_chars = 2;
1698 return O_ne;
1699 default:
1700 if (flag_m68k_mri)
1701 return O_bit_inclusive_or;
1702 return op_encoding[c];
1703 }
1704
1705 case '|':
1706 if (input_line_pointer[1] != '|')
1707 return op_encoding[c];
1708
1709 *num_chars = 2;
1710 return O_logical_or;
1711
1712 case '&':
1713 if (input_line_pointer[1] != '&')
1714 return op_encoding[c];
1715
1716 *num_chars = 2;
1717 return O_logical_and;
1718 }
1719
1720 /* NOTREACHED */
1721 }
1722
1723 /* Implement "word-size + 1 bit" addition for
1724 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1725 is used so that the full range of unsigned word values and the full range of
1726 signed word values can be represented in an O_constant expression, which is
1727 useful e.g. for .sleb128 directives. */
1728
1729 void
1730 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1731 {
1732 valueT ures = resultP->X_add_number;
1733 valueT uamount = amount;
1734
1735 resultP->X_add_number += amount;
1736
1737 resultP->X_extrabit ^= rhs_highbit;
1738
1739 if (ures + uamount < ures)
1740 resultP->X_extrabit ^= 1;
1741 }
1742
1743 /* Similarly, for subtraction. */
1744
1745 void
1746 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1747 {
1748 valueT ures = resultP->X_add_number;
1749 valueT uamount = amount;
1750
1751 resultP->X_add_number -= amount;
1752
1753 resultP->X_extrabit ^= rhs_highbit;
1754
1755 if (ures < uamount)
1756 resultP->X_extrabit ^= 1;
1757 }
1758
1759 /* Parse an expression. */
1760
1761 segT
1762 expr (int rankarg, /* Larger # is higher rank. */
1763 expressionS *resultP, /* Deliver result here. */
1764 enum expr_mode mode /* Controls behavior. */)
1765 {
1766 operator_rankT rank = (operator_rankT) rankarg;
1767 segT retval;
1768 expressionS right;
1769 operatorT op_left;
1770 operatorT op_right;
1771 int op_chars;
1772
1773 know (rankarg >= 0);
1774
1775 /* Save the value of dot for the fixup code. */
1776 if (rank == 0)
1777 {
1778 dot_value = frag_now_fix ();
1779 dot_frag = frag_now;
1780 }
1781
1782 retval = operand (resultP, mode);
1783
1784 /* operand () gobbles spaces. */
1785 know (*input_line_pointer != ' ');
1786
1787 op_left = operatorf (&op_chars);
1788 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1789 {
1790 segT rightseg;
1791 offsetT frag_off;
1792
1793 input_line_pointer += op_chars; /* -> after operator. */
1794
1795 right.X_md = 0;
1796 rightseg = expr (op_rank[(int) op_left], &right, mode);
1797 if (right.X_op == O_absent)
1798 {
1799 as_warn (_("missing operand; zero assumed"));
1800 right.X_op = O_constant;
1801 right.X_add_number = 0;
1802 right.X_add_symbol = NULL;
1803 right.X_op_symbol = NULL;
1804 }
1805
1806 know (*input_line_pointer != ' ');
1807
1808 if (op_left == O_index)
1809 {
1810 if (*input_line_pointer != ']')
1811 as_bad ("missing right bracket");
1812 else
1813 {
1814 ++input_line_pointer;
1815 SKIP_WHITESPACE ();
1816 }
1817 }
1818
1819 op_right = operatorf (&op_chars);
1820
1821 know (op_right == O_illegal || op_left == O_index
1822 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1823 know ((int) op_left >= (int) O_multiply);
1824 #ifndef md_operator
1825 know ((int) op_left <= (int) O_index);
1826 #else
1827 know ((int) op_left < (int) O_max);
1828 #endif
1829
1830 /* input_line_pointer->after right-hand quantity. */
1831 /* left-hand quantity in resultP. */
1832 /* right-hand quantity in right. */
1833 /* operator in op_left. */
1834
1835 if (resultP->X_op == O_big)
1836 {
1837 if (resultP->X_add_number > 0)
1838 as_warn (_("left operand is a bignum; integer 0 assumed"));
1839 else
1840 as_warn (_("left operand is a float; integer 0 assumed"));
1841 resultP->X_op = O_constant;
1842 resultP->X_add_number = 0;
1843 resultP->X_add_symbol = NULL;
1844 resultP->X_op_symbol = NULL;
1845 }
1846 if (right.X_op == O_big)
1847 {
1848 if (right.X_add_number > 0)
1849 as_warn (_("right operand is a bignum; integer 0 assumed"));
1850 else
1851 as_warn (_("right operand is a float; integer 0 assumed"));
1852 right.X_op = O_constant;
1853 right.X_add_number = 0;
1854 right.X_add_symbol = NULL;
1855 right.X_op_symbol = NULL;
1856 }
1857
1858 /* Optimize common cases. */
1859 #ifdef md_optimize_expr
1860 if (md_optimize_expr (resultP, op_left, &right))
1861 {
1862 /* Skip. */
1863 ;
1864 }
1865 else
1866 #endif
1867 #ifndef md_register_arithmetic
1868 # define md_register_arithmetic 1
1869 #endif
1870 if (op_left == O_add && right.X_op == O_constant
1871 && (md_register_arithmetic || resultP->X_op != O_register))
1872 {
1873 /* X + constant. */
1874 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1875 }
1876 /* This case comes up in PIC code. */
1877 else if (op_left == O_subtract
1878 && right.X_op == O_symbol
1879 && resultP->X_op == O_symbol
1880 && retval == rightseg
1881 #ifdef md_allow_local_subtract
1882 && md_allow_local_subtract (resultP, & right, rightseg)
1883 #endif
1884 && ((SEG_NORMAL (rightseg)
1885 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1886 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1887 || right.X_add_symbol == resultP->X_add_symbol)
1888 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1889 symbol_get_frag (right.X_add_symbol),
1890 &frag_off))
1891 {
1892 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1893 - S_GET_VALUE (right.X_add_symbol);
1894 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1895 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1896 add_to_result (resultP, symval_diff, symval_diff < 0);
1897 resultP->X_op = O_constant;
1898 resultP->X_add_symbol = 0;
1899 }
1900 else if (op_left == O_subtract && right.X_op == O_constant
1901 && (md_register_arithmetic || resultP->X_op != O_register))
1902 {
1903 /* X - constant. */
1904 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1905 }
1906 else if (op_left == O_add && resultP->X_op == O_constant
1907 && (md_register_arithmetic || right.X_op != O_register))
1908 {
1909 /* Constant + X. */
1910 resultP->X_op = right.X_op;
1911 resultP->X_add_symbol = right.X_add_symbol;
1912 resultP->X_op_symbol = right.X_op_symbol;
1913 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1914 retval = rightseg;
1915 }
1916 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1917 {
1918 /* Constant OP constant. */
1919 offsetT v = right.X_add_number;
1920 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1921 {
1922 as_warn (_("division by zero"));
1923 v = 1;
1924 }
1925 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1926 && (op_left == O_left_shift || op_left == O_right_shift))
1927 {
1928 as_warn_value_out_of_range (_("shift count"), v, 0,
1929 sizeof(valueT) * CHAR_BIT - 1,
1930 NULL, 0);
1931 resultP->X_add_number = v = 0;
1932 }
1933 switch (op_left)
1934 {
1935 default: goto general;
1936 case O_multiply: resultP->X_add_number *= v; break;
1937 case O_divide: resultP->X_add_number /= v; break;
1938 case O_modulus: resultP->X_add_number %= v; break;
1939 case O_left_shift: resultP->X_add_number <<= v; break;
1940 case O_right_shift:
1941 /* We always use unsigned shifts, to avoid relying on
1942 characteristics of the compiler used to compile gas. */
1943 resultP->X_add_number =
1944 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1945 break;
1946 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1947 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1948 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1949 case O_bit_and: resultP->X_add_number &= v; break;
1950 /* Constant + constant (O_add) is handled by the
1951 previous if statement for constant + X, so is omitted
1952 here. */
1953 case O_subtract:
1954 subtract_from_result (resultP, v, 0);
1955 break;
1956 case O_eq:
1957 resultP->X_add_number =
1958 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1959 break;
1960 case O_ne:
1961 resultP->X_add_number =
1962 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1963 break;
1964 case O_lt:
1965 resultP->X_add_number =
1966 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1967 break;
1968 case O_le:
1969 resultP->X_add_number =
1970 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1971 break;
1972 case O_ge:
1973 resultP->X_add_number =
1974 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1975 break;
1976 case O_gt:
1977 resultP->X_add_number =
1978 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1979 break;
1980 case O_logical_and:
1981 resultP->X_add_number = resultP->X_add_number && v;
1982 break;
1983 case O_logical_or:
1984 resultP->X_add_number = resultP->X_add_number || v;
1985 break;
1986 }
1987 }
1988 else if (resultP->X_op == O_symbol
1989 && right.X_op == O_symbol
1990 && (op_left == O_add
1991 || op_left == O_subtract
1992 || (resultP->X_add_number == 0
1993 && right.X_add_number == 0)))
1994 {
1995 /* Symbol OP symbol. */
1996 resultP->X_op = op_left;
1997 resultP->X_op_symbol = right.X_add_symbol;
1998 if (op_left == O_add)
1999 add_to_result (resultP, right.X_add_number, right.X_extrabit);
2000 else if (op_left == O_subtract)
2001 {
2002 subtract_from_result (resultP, right.X_add_number,
2003 right.X_extrabit);
2004 if (retval == rightseg
2005 && SEG_NORMAL (retval)
2006 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
2007 && !S_FORCE_RELOC (right.X_add_symbol, 0))
2008 {
2009 retval = absolute_section;
2010 rightseg = absolute_section;
2011 }
2012 }
2013 }
2014 else
2015 {
2016 general:
2017 /* The general case. */
2018 resultP->X_add_symbol = make_expr_symbol (resultP);
2019 resultP->X_op_symbol = make_expr_symbol (&right);
2020 resultP->X_op = op_left;
2021 resultP->X_add_number = 0;
2022 resultP->X_unsigned = 1;
2023 resultP->X_extrabit = 0;
2024 }
2025
2026 if (retval != rightseg)
2027 {
2028 if (retval == undefined_section)
2029 ;
2030 else if (rightseg == undefined_section)
2031 retval = rightseg;
2032 else if (retval == expr_section)
2033 ;
2034 else if (rightseg == expr_section)
2035 retval = rightseg;
2036 else if (retval == reg_section)
2037 ;
2038 else if (rightseg == reg_section)
2039 retval = rightseg;
2040 else if (rightseg == absolute_section)
2041 ;
2042 else if (retval == absolute_section)
2043 retval = rightseg;
2044 #ifdef DIFF_EXPR_OK
2045 else if (op_left == O_subtract)
2046 ;
2047 #endif
2048 else
2049 as_bad (_("operation combines symbols in different segments"));
2050 }
2051
2052 op_left = op_right;
2053 } /* While next operator is >= this rank. */
2054
2055 /* The PA port needs this information. */
2056 if (resultP->X_add_symbol)
2057 symbol_mark_used (resultP->X_add_symbol);
2058
2059 if (rank == 0 && mode == expr_evaluate)
2060 resolve_expression (resultP);
2061
2062 return resultP->X_op == O_constant ? absolute_section : retval;
2063 }
2064
2065 /* Resolve an expression without changing any symbols/sub-expressions
2066 used. */
2067
2068 int
2069 resolve_expression (expressionS *expressionP)
2070 {
2071 /* Help out with CSE. */
2072 valueT final_val = expressionP->X_add_number;
2073 symbolS *add_symbol = expressionP->X_add_symbol;
2074 symbolS *orig_add_symbol = add_symbol;
2075 symbolS *op_symbol = expressionP->X_op_symbol;
2076 operatorT op = expressionP->X_op;
2077 valueT left, right;
2078 segT seg_left, seg_right;
2079 fragS *frag_left, *frag_right;
2080 offsetT frag_off;
2081
2082 switch (op)
2083 {
2084 default:
2085 return 0;
2086
2087 case O_constant:
2088 case O_register:
2089 left = 0;
2090 break;
2091
2092 case O_symbol:
2093 case O_symbol_rva:
2094 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2095 return 0;
2096
2097 break;
2098
2099 case O_uminus:
2100 case O_bit_not:
2101 case O_logical_not:
2102 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2103 return 0;
2104
2105 if (seg_left != absolute_section)
2106 return 0;
2107
2108 if (op == O_logical_not)
2109 left = !left;
2110 else if (op == O_uminus)
2111 left = -left;
2112 else
2113 left = ~left;
2114 op = O_constant;
2115 break;
2116
2117 case O_multiply:
2118 case O_divide:
2119 case O_modulus:
2120 case O_left_shift:
2121 case O_right_shift:
2122 case O_bit_inclusive_or:
2123 case O_bit_or_not:
2124 case O_bit_exclusive_or:
2125 case O_bit_and:
2126 case O_add:
2127 case O_subtract:
2128 case O_eq:
2129 case O_ne:
2130 case O_lt:
2131 case O_le:
2132 case O_ge:
2133 case O_gt:
2134 case O_logical_and:
2135 case O_logical_or:
2136 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2137 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2138 return 0;
2139
2140 /* Simplify addition or subtraction of a constant by folding the
2141 constant into X_add_number. */
2142 if (op == O_add)
2143 {
2144 if (seg_right == absolute_section)
2145 {
2146 final_val += right;
2147 op = O_symbol;
2148 break;
2149 }
2150 else if (seg_left == absolute_section)
2151 {
2152 final_val += left;
2153 left = right;
2154 seg_left = seg_right;
2155 add_symbol = op_symbol;
2156 orig_add_symbol = expressionP->X_op_symbol;
2157 op = O_symbol;
2158 break;
2159 }
2160 }
2161 else if (op == O_subtract)
2162 {
2163 if (seg_right == absolute_section)
2164 {
2165 final_val -= right;
2166 op = O_symbol;
2167 break;
2168 }
2169 }
2170
2171 /* Equality and non-equality tests are permitted on anything.
2172 Subtraction, and other comparison operators are permitted if
2173 both operands are in the same section.
2174 Shifts by constant zero are permitted on anything.
2175 Multiplies, bit-ors, and bit-ands with constant zero are
2176 permitted on anything.
2177 Multiplies and divides by constant one are permitted on
2178 anything.
2179 Binary operations with both operands being the same register
2180 or undefined symbol are permitted if the result doesn't depend
2181 on the input value.
2182 Otherwise, both operands must be absolute. We already handled
2183 the case of addition or subtraction of a constant above. */
2184 frag_off = 0;
2185 if (!(seg_left == absolute_section
2186 && seg_right == absolute_section)
2187 && !(op == O_eq || op == O_ne)
2188 && !((op == O_subtract
2189 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2190 && seg_left == seg_right
2191 && (finalize_syms
2192 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2193 && (seg_left != reg_section || left == right)
2194 && (seg_left != undefined_section || add_symbol == op_symbol)))
2195 {
2196 if ((seg_left == absolute_section && left == 0)
2197 || (seg_right == absolute_section && right == 0))
2198 {
2199 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2200 {
2201 if (!(seg_right == absolute_section && right == 0))
2202 {
2203 seg_left = seg_right;
2204 left = right;
2205 add_symbol = op_symbol;
2206 orig_add_symbol = expressionP->X_op_symbol;
2207 }
2208 op = O_symbol;
2209 break;
2210 }
2211 else if (op == O_left_shift || op == O_right_shift)
2212 {
2213 if (!(seg_left == absolute_section && left == 0))
2214 {
2215 op = O_symbol;
2216 break;
2217 }
2218 }
2219 else if (op != O_multiply
2220 && op != O_bit_or_not && op != O_bit_and)
2221 return 0;
2222 }
2223 else if (op == O_multiply
2224 && seg_left == absolute_section && left == 1)
2225 {
2226 seg_left = seg_right;
2227 left = right;
2228 add_symbol = op_symbol;
2229 orig_add_symbol = expressionP->X_op_symbol;
2230 op = O_symbol;
2231 break;
2232 }
2233 else if ((op == O_multiply || op == O_divide)
2234 && seg_right == absolute_section && right == 1)
2235 {
2236 op = O_symbol;
2237 break;
2238 }
2239 else if (!(left == right
2240 && ((seg_left == reg_section && seg_right == reg_section)
2241 || (seg_left == undefined_section
2242 && seg_right == undefined_section
2243 && add_symbol == op_symbol))))
2244 return 0;
2245 else if (op == O_bit_and || op == O_bit_inclusive_or)
2246 {
2247 op = O_symbol;
2248 break;
2249 }
2250 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2251 return 0;
2252 }
2253
2254 right += frag_off / OCTETS_PER_BYTE;
2255 switch (op)
2256 {
2257 case O_add: left += right; break;
2258 case O_subtract: left -= right; break;
2259 case O_multiply: left *= right; break;
2260 case O_divide:
2261 if (right == 0)
2262 return 0;
2263 left = (offsetT) left / (offsetT) right;
2264 break;
2265 case O_modulus:
2266 if (right == 0)
2267 return 0;
2268 left = (offsetT) left % (offsetT) right;
2269 break;
2270 case O_left_shift: left <<= right; break;
2271 case O_right_shift: left >>= right; break;
2272 case O_bit_inclusive_or: left |= right; break;
2273 case O_bit_or_not: left |= ~right; break;
2274 case O_bit_exclusive_or: left ^= right; break;
2275 case O_bit_and: left &= right; break;
2276 case O_eq:
2277 case O_ne:
2278 left = (left == right
2279 && seg_left == seg_right
2280 && (finalize_syms || frag_left == frag_right)
2281 && (seg_left != undefined_section
2282 || add_symbol == op_symbol)
2283 ? ~ (valueT) 0 : 0);
2284 if (op == O_ne)
2285 left = ~left;
2286 break;
2287 case O_lt:
2288 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2289 break;
2290 case O_le:
2291 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2292 break;
2293 case O_ge:
2294 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2295 break;
2296 case O_gt:
2297 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2298 break;
2299 case O_logical_and: left = left && right; break;
2300 case O_logical_or: left = left || right; break;
2301 default: abort ();
2302 }
2303
2304 op = O_constant;
2305 break;
2306 }
2307
2308 if (op == O_symbol)
2309 {
2310 if (seg_left == absolute_section)
2311 op = O_constant;
2312 else if (seg_left == reg_section && final_val == 0)
2313 op = O_register;
2314 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2315 final_val += left;
2316 expressionP->X_add_symbol = add_symbol;
2317 }
2318 expressionP->X_op = op;
2319
2320 if (op == O_constant || op == O_register)
2321 final_val += left;
2322 expressionP->X_add_number = final_val;
2323
2324 return 1;
2325 }
2326 \f
2327 /* This lives here because it belongs equally in expr.c & read.c.
2328 expr.c is just a branch office read.c anyway, and putting it
2329 here lessens the crowd at read.c.
2330
2331 Assume input_line_pointer is at start of symbol name.
2332 Advance input_line_pointer past symbol name.
2333 Turn that character into a '\0', returning its former value.
2334 This allows a string compare (RMS wants symbol names to be strings)
2335 of the symbol name.
2336 There will always be a char following symbol name, because all good
2337 lines end in end-of-line. */
2338
2339 char
2340 get_symbol_end (void)
2341 {
2342 char c;
2343
2344 /* We accept \001 in a name in case this is being called with a
2345 constructed string. */
2346 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2347 {
2348 while (is_part_of_name (c = *input_line_pointer++)
2349 || c == '\001')
2350 ;
2351 if (is_name_ender (c))
2352 c = *input_line_pointer++;
2353 }
2354 *--input_line_pointer = 0;
2355 return (c);
2356 }
2357
2358 unsigned int
2359 get_single_number (void)
2360 {
2361 expressionS exp;
2362 operand (&exp, expr_normal);
2363 return exp.X_add_number;
2364 }