]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/expr.c
-Wimplicit-fallthrough dodgy fixes
[thirdparty/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifndef CHAR_BIT
35 #define CHAR_BIT 8
36 #endif
37
38 static void floating_constant (expressionS * expressionP);
39 static valueT generic_bignum_to_int32 (void);
40 #ifdef BFD64
41 static valueT generic_bignum_to_int64 (void);
42 #endif
43 static void integer_constant (int radix, expressionS * expressionP);
44 static void mri_char_constant (expressionS *);
45 static void clean_up_expression (expressionS * expressionP);
46 static segT operand (expressionS *, enum expr_mode);
47 static operatorT operatorf (int *);
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 const char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionS *expressionP)
67 {
68 expressionS zero;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid"));
83 else
84 as_bad (_("floating point number invalid"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 zero.X_extrabit = 0;
89 clean_up_expression (&zero);
90 expressionP = &zero;
91 }
92
93 /* Putting constant symbols in absolute_section rather than
94 expr_section is convenient for the old a.out code, for which
95 S_GET_SEGMENT does not always retrieve the value put in by
96 S_SET_SEGMENT. */
97 symbolP = symbol_create (FAKE_LABEL_NAME,
98 (expressionP->X_op == O_constant
99 ? absolute_section
100 : expressionP->X_op == O_register
101 ? reg_section
102 : expr_section),
103 0, &zero_address_frag);
104 symbol_set_value_expression (symbolP, expressionP);
105
106 if (expressionP->X_op == O_constant)
107 resolve_symbol_value (symbolP);
108
109 n = XNEW (struct expr_symbol_line);
110 n->sym = symbolP;
111 n->file = as_where (&n->line);
112 n->next = expr_symbol_lines;
113 expr_symbol_lines = n;
114
115 return symbolP;
116 }
117
118 /* Return the file and line number for an expr symbol. Return
119 non-zero if something was found, 0 if no information is known for
120 the symbol. */
121
122 int
123 expr_symbol_where (symbolS *sym, const char **pfile, unsigned int *pline)
124 {
125 struct expr_symbol_line *l;
126
127 for (l = expr_symbol_lines; l != NULL; l = l->next)
128 {
129 if (l->sym == sym)
130 {
131 *pfile = l->file;
132 *pline = l->line;
133 return 1;
134 }
135 }
136
137 return 0;
138 }
139 \f
140 /* Utilities for building expressions.
141 Since complex expressions are recorded as symbols for use in other
142 expressions these return a symbolS * and not an expressionS *.
143 These explicitly do not take an "add_number" argument. */
144 /* ??? For completeness' sake one might want expr_build_symbol.
145 It would just return its argument. */
146
147 /* Build an expression for an unsigned constant.
148 The corresponding one for signed constants is missing because
149 there's currently no need for it. One could add an unsigned_p flag
150 but that seems more clumsy. */
151
152 symbolS *
153 expr_build_uconstant (offsetT value)
154 {
155 expressionS e;
156
157 e.X_op = O_constant;
158 e.X_add_number = value;
159 e.X_unsigned = 1;
160 e.X_extrabit = 0;
161 return make_expr_symbol (&e);
162 }
163
164 /* Build an expression for the current location ('.'). */
165
166 symbolS *
167 expr_build_dot (void)
168 {
169 expressionS e;
170
171 current_location (&e);
172 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
173 }
174 \f
175 /* Build any floating-point literal here.
176 Also build any bignum literal here. */
177
178 /* Seems atof_machine can backscan through generic_bignum and hit whatever
179 happens to be loaded before it in memory. And its way too complicated
180 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
181 and never write into the early words, thus they'll always be zero.
182 I hate Dean's floating-point code. Bleh. */
183 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
184
185 FLONUM_TYPE generic_floating_point_number = {
186 &generic_bignum[6], /* low. (JF: Was 0) */
187 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
188 0, /* leader. */
189 0, /* exponent. */
190 0 /* sign. */
191 };
192
193 \f
194 static void
195 floating_constant (expressionS *expressionP)
196 {
197 /* input_line_pointer -> floating-point constant. */
198 int error_code;
199
200 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
201 &generic_floating_point_number);
202
203 if (error_code)
204 {
205 if (error_code == ERROR_EXPONENT_OVERFLOW)
206 {
207 as_bad (_("bad floating-point constant: exponent overflow"));
208 }
209 else
210 {
211 as_bad (_("bad floating-point constant: unknown error code=%d"),
212 error_code);
213 }
214 }
215 expressionP->X_op = O_big;
216 /* input_line_pointer -> just after constant, which may point to
217 whitespace. */
218 expressionP->X_add_number = -1;
219 }
220
221 static valueT
222 generic_bignum_to_int32 (void)
223 {
224 valueT number =
225 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
226 | (generic_bignum[0] & LITTLENUM_MASK);
227 number &= 0xffffffff;
228 return number;
229 }
230
231 #ifdef BFD64
232 static valueT
233 generic_bignum_to_int64 (void)
234 {
235 valueT number =
236 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
237 << LITTLENUM_NUMBER_OF_BITS)
238 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
239 << LITTLENUM_NUMBER_OF_BITS)
240 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
243 return number;
244 }
245 #endif
246
247 static void
248 integer_constant (int radix, expressionS *expressionP)
249 {
250 char *start; /* Start of number. */
251 char *suffix = NULL;
252 char c;
253 valueT number; /* Offset or (absolute) value. */
254 short int digit; /* Value of next digit in current radix. */
255 short int maxdig = 0; /* Highest permitted digit value. */
256 int too_many_digits = 0; /* If we see >= this number of. */
257 char *name; /* Points to name of symbol. */
258 symbolS *symbolP; /* Points to symbol. */
259
260 int small; /* True if fits in 32 bits. */
261
262 /* May be bignum, or may fit in 32 bits. */
263 /* Most numbers fit into 32 bits, and we want this case to be fast.
264 so we pretend it will fit into 32 bits. If, after making up a 32
265 bit number, we realise that we have scanned more digits than
266 comfortably fit into 32 bits, we re-scan the digits coding them
267 into a bignum. For decimal and octal numbers we are
268 conservative: Some numbers may be assumed bignums when in fact
269 they do fit into 32 bits. Numbers of any radix can have excess
270 leading zeros: We strive to recognise this and cast them back
271 into 32 bits. We must check that the bignum really is more than
272 32 bits, and change it back to a 32-bit number if it fits. The
273 number we are looking for is expected to be positive, but if it
274 fits into 32 bits as an unsigned number, we let it be a 32-bit
275 number. The cavalier approach is for speed in ordinary cases. */
276 /* This has been extended for 64 bits. We blindly assume that if
277 you're compiling in 64-bit mode, the target is a 64-bit machine.
278 This should be cleaned up. */
279
280 #ifdef BFD64
281 #define valuesize 64
282 #else /* includes non-bfd case, mostly */
283 #define valuesize 32
284 #endif
285
286 if (is_end_of_line[(unsigned char) *input_line_pointer])
287 {
288 expressionP->X_op = O_absent;
289 return;
290 }
291
292 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
293 {
294 int flt = 0;
295
296 /* In MRI mode, the number may have a suffix indicating the
297 radix. For that matter, it might actually be a floating
298 point constant. */
299 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
300 {
301 if (*suffix == 'e' || *suffix == 'E')
302 flt = 1;
303 }
304
305 if (suffix == input_line_pointer)
306 {
307 radix = 10;
308 suffix = NULL;
309 }
310 else
311 {
312 c = *--suffix;
313 c = TOUPPER (c);
314 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
315 we distinguish between 'B' and 'b'. This is the case for
316 Z80. */
317 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
318 radix = 2;
319 else if (c == 'D')
320 radix = 10;
321 else if (c == 'O' || c == 'Q')
322 radix = 8;
323 else if (c == 'H')
324 radix = 16;
325 else if (suffix[1] == '.' || c == 'E' || flt)
326 {
327 floating_constant (expressionP);
328 return;
329 }
330 else
331 {
332 radix = 10;
333 suffix = NULL;
334 }
335 }
336 }
337
338 switch (radix)
339 {
340 case 2:
341 maxdig = 2;
342 too_many_digits = valuesize + 1;
343 break;
344 case 8:
345 maxdig = radix = 8;
346 too_many_digits = (valuesize + 2) / 3 + 1;
347 break;
348 case 16:
349 maxdig = radix = 16;
350 too_many_digits = (valuesize + 3) / 4 + 1;
351 break;
352 case 10:
353 maxdig = radix = 10;
354 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
355 }
356 #undef valuesize
357 start = input_line_pointer;
358 c = *input_line_pointer++;
359 for (number = 0;
360 (digit = hex_value (c)) < maxdig;
361 c = *input_line_pointer++)
362 {
363 number = number * radix + digit;
364 }
365 /* c contains character after number. */
366 /* input_line_pointer->char after c. */
367 small = (input_line_pointer - start - 1) < too_many_digits;
368
369 if (radix == 16 && c == '_')
370 {
371 /* This is literal of the form 0x333_0_12345678_1.
372 This example is equivalent to 0x00000333000000001234567800000001. */
373
374 int num_little_digits = 0;
375 int i;
376 input_line_pointer = start; /* -> 1st digit. */
377
378 know (LITTLENUM_NUMBER_OF_BITS == 16);
379
380 for (c = '_'; c == '_'; num_little_digits += 2)
381 {
382
383 /* Convert one 64-bit word. */
384 int ndigit = 0;
385 number = 0;
386 for (c = *input_line_pointer++;
387 (digit = hex_value (c)) < maxdig;
388 c = *(input_line_pointer++))
389 {
390 number = number * radix + digit;
391 ndigit++;
392 }
393
394 /* Check for 8 digit per word max. */
395 if (ndigit > 8)
396 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
397
398 /* Add this chunk to the bignum.
399 Shift things down 2 little digits. */
400 know (LITTLENUM_NUMBER_OF_BITS == 16);
401 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
402 i >= 2;
403 i--)
404 generic_bignum[i] = generic_bignum[i - 2];
405
406 /* Add the new digits as the least significant new ones. */
407 generic_bignum[0] = number & 0xffffffff;
408 generic_bignum[1] = number >> 16;
409 }
410
411 /* Again, c is char after number, input_line_pointer->after c. */
412
413 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
414 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
415
416 gas_assert (num_little_digits >= 4);
417
418 if (num_little_digits != 8)
419 as_bad (_("a bignum with underscores must have exactly 4 words"));
420
421 /* We might have some leading zeros. These can be trimmed to give
422 us a change to fit this constant into a small number. */
423 while (generic_bignum[num_little_digits - 1] == 0
424 && num_little_digits > 1)
425 num_little_digits--;
426
427 if (num_little_digits <= 2)
428 {
429 /* will fit into 32 bits. */
430 number = generic_bignum_to_int32 ();
431 small = 1;
432 }
433 #ifdef BFD64
434 else if (num_little_digits <= 4)
435 {
436 /* Will fit into 64 bits. */
437 number = generic_bignum_to_int64 ();
438 small = 1;
439 }
440 #endif
441 else
442 {
443 small = 0;
444
445 /* Number of littlenums in the bignum. */
446 number = num_little_digits;
447 }
448 }
449 else if (!small)
450 {
451 /* We saw a lot of digits. manufacture a bignum the hard way. */
452 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
453 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
454 long carry;
455
456 leader = generic_bignum;
457 generic_bignum[0] = 0;
458 generic_bignum[1] = 0;
459 generic_bignum[2] = 0;
460 generic_bignum[3] = 0;
461 input_line_pointer = start; /* -> 1st digit. */
462 c = *input_line_pointer++;
463 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
464 {
465 for (pointer = generic_bignum; pointer <= leader; pointer++)
466 {
467 long work;
468
469 work = carry + radix * *pointer;
470 *pointer = work & LITTLENUM_MASK;
471 carry = work >> LITTLENUM_NUMBER_OF_BITS;
472 }
473 if (carry)
474 {
475 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
476 {
477 /* Room to grow a longer bignum. */
478 *++leader = carry;
479 }
480 }
481 }
482 /* Again, c is char after number. */
483 /* input_line_pointer -> after c. */
484 know (LITTLENUM_NUMBER_OF_BITS == 16);
485 if (leader < generic_bignum + 2)
486 {
487 /* Will fit into 32 bits. */
488 number = generic_bignum_to_int32 ();
489 small = 1;
490 }
491 #ifdef BFD64
492 else if (leader < generic_bignum + 4)
493 {
494 /* Will fit into 64 bits. */
495 number = generic_bignum_to_int64 ();
496 small = 1;
497 }
498 #endif
499 else
500 {
501 /* Number of littlenums in the bignum. */
502 number = leader - generic_bignum + 1;
503 }
504 }
505
506 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
507 && suffix != NULL
508 && input_line_pointer - 1 == suffix)
509 c = *input_line_pointer++;
510
511 #ifndef tc_allow_U_suffix
512 #define tc_allow_U_suffix 1
513 #endif
514 /* PR 19910: Look for, and ignore, a U suffix to the number. */
515 if (tc_allow_U_suffix && (c == 'U' || c == 'u'))
516 c = * input_line_pointer++;
517
518 if (small)
519 {
520 /* Here with number, in correct radix. c is the next char.
521 Note that unlike un*x, we allow "011f" "0x9f" to both mean
522 the same as the (conventional) "9f".
523 This is simply easier than checking for strict canonical
524 form. Syntax sux! */
525
526 if (LOCAL_LABELS_FB && c == 'b')
527 {
528 /* Backward ref to local label.
529 Because it is backward, expect it to be defined. */
530 /* Construct a local label. */
531 name = fb_label_name ((int) number, 0);
532
533 /* Seen before, or symbol is defined: OK. */
534 symbolP = symbol_find (name);
535 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
536 {
537 /* Local labels are never absolute. Don't waste time
538 checking absoluteness. */
539 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
540
541 expressionP->X_op = O_symbol;
542 expressionP->X_add_symbol = symbolP;
543 }
544 else
545 {
546 /* Either not seen or not defined. */
547 /* @@ Should print out the original string instead of
548 the parsed number. */
549 as_bad (_("backward ref to unknown label \"%d:\""),
550 (int) number);
551 expressionP->X_op = O_constant;
552 }
553
554 expressionP->X_add_number = 0;
555 } /* case 'b' */
556 else if (LOCAL_LABELS_FB && c == 'f')
557 {
558 /* Forward reference. Expect symbol to be undefined or
559 unknown. undefined: seen it before. unknown: never seen
560 it before.
561
562 Construct a local label name, then an undefined symbol.
563 Don't create a xseg frag for it: caller may do that.
564 Just return it as never seen before. */
565 name = fb_label_name ((int) number, 1);
566 symbolP = symbol_find_or_make (name);
567 /* We have no need to check symbol properties. */
568 #ifndef many_segments
569 /* Since "know" puts its arg into a "string", we
570 can't have newlines in the argument. */
571 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
572 #endif
573 expressionP->X_op = O_symbol;
574 expressionP->X_add_symbol = symbolP;
575 expressionP->X_add_number = 0;
576 } /* case 'f' */
577 else if (LOCAL_LABELS_DOLLAR && c == '$')
578 {
579 /* If the dollar label is *currently* defined, then this is just
580 another reference to it. If it is not *currently* defined,
581 then this is a fresh instantiation of that number, so create
582 it. */
583
584 if (dollar_label_defined ((long) number))
585 {
586 name = dollar_label_name ((long) number, 0);
587 symbolP = symbol_find (name);
588 know (symbolP != NULL);
589 }
590 else
591 {
592 name = dollar_label_name ((long) number, 1);
593 symbolP = symbol_find_or_make (name);
594 }
595
596 expressionP->X_op = O_symbol;
597 expressionP->X_add_symbol = symbolP;
598 expressionP->X_add_number = 0;
599 } /* case '$' */
600 else
601 {
602 expressionP->X_op = O_constant;
603 expressionP->X_add_number = number;
604 input_line_pointer--; /* Restore following character. */
605 } /* Really just a number. */
606 }
607 else
608 {
609 /* Not a small number. */
610 expressionP->X_op = O_big;
611 expressionP->X_add_number = number; /* Number of littlenums. */
612 input_line_pointer--; /* -> char following number. */
613 }
614 }
615
616 /* Parse an MRI multi character constant. */
617
618 static void
619 mri_char_constant (expressionS *expressionP)
620 {
621 int i;
622
623 if (*input_line_pointer == '\''
624 && input_line_pointer[1] != '\'')
625 {
626 expressionP->X_op = O_constant;
627 expressionP->X_add_number = 0;
628 return;
629 }
630
631 /* In order to get the correct byte ordering, we must build the
632 number in reverse. */
633 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
634 {
635 int j;
636
637 generic_bignum[i] = 0;
638 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
639 {
640 if (*input_line_pointer == '\'')
641 {
642 if (input_line_pointer[1] != '\'')
643 break;
644 ++input_line_pointer;
645 }
646 generic_bignum[i] <<= 8;
647 generic_bignum[i] += *input_line_pointer;
648 ++input_line_pointer;
649 }
650
651 if (i < SIZE_OF_LARGE_NUMBER - 1)
652 {
653 /* If there is more than one littlenum, left justify the
654 last one to make it match the earlier ones. If there is
655 only one, we can just use the value directly. */
656 for (; j < CHARS_PER_LITTLENUM; j++)
657 generic_bignum[i] <<= 8;
658 }
659
660 if (*input_line_pointer == '\''
661 && input_line_pointer[1] != '\'')
662 break;
663 }
664
665 if (i < 0)
666 {
667 as_bad (_("character constant too large"));
668 i = 0;
669 }
670
671 if (i > 0)
672 {
673 int c;
674 int j;
675
676 c = SIZE_OF_LARGE_NUMBER - i;
677 for (j = 0; j < c; j++)
678 generic_bignum[j] = generic_bignum[i + j];
679 i = c;
680 }
681
682 know (LITTLENUM_NUMBER_OF_BITS == 16);
683 if (i > 2)
684 {
685 expressionP->X_op = O_big;
686 expressionP->X_add_number = i;
687 }
688 else
689 {
690 expressionP->X_op = O_constant;
691 if (i < 2)
692 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
693 else
694 expressionP->X_add_number =
695 (((generic_bignum[1] & LITTLENUM_MASK)
696 << LITTLENUM_NUMBER_OF_BITS)
697 | (generic_bignum[0] & LITTLENUM_MASK));
698 }
699
700 /* Skip the final closing quote. */
701 ++input_line_pointer;
702 }
703
704 /* Return an expression representing the current location. This
705 handles the magic symbol `.'. */
706
707 void
708 current_location (expressionS *expressionp)
709 {
710 if (now_seg == absolute_section)
711 {
712 expressionp->X_op = O_constant;
713 expressionp->X_add_number = abs_section_offset;
714 }
715 else
716 {
717 expressionp->X_op = O_symbol;
718 expressionp->X_add_symbol = &dot_symbol;
719 expressionp->X_add_number = 0;
720 }
721 }
722
723 /* In: Input_line_pointer points to 1st char of operand, which may
724 be a space.
725
726 Out: An expressionS.
727 The operand may have been empty: in this case X_op == O_absent.
728 Input_line_pointer->(next non-blank) char after operand. */
729
730 static segT
731 operand (expressionS *expressionP, enum expr_mode mode)
732 {
733 char c;
734 symbolS *symbolP; /* Points to symbol. */
735 char *name; /* Points to name of symbol. */
736 segT segment;
737
738 /* All integers are regarded as unsigned unless they are negated.
739 This is because the only thing which cares whether a number is
740 unsigned is the code in emit_expr which extends constants into
741 bignums. It should only sign extend negative numbers, so that
742 something like ``.quad 0x80000000'' is not sign extended even
743 though it appears negative if valueT is 32 bits. */
744 expressionP->X_unsigned = 1;
745 expressionP->X_extrabit = 0;
746
747 /* Digits, assume it is a bignum. */
748
749 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
750 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
751
752 if (is_end_of_line[(unsigned char) c])
753 goto eol;
754
755 switch (c)
756 {
757 case '1':
758 case '2':
759 case '3':
760 case '4':
761 case '5':
762 case '6':
763 case '7':
764 case '8':
765 case '9':
766 input_line_pointer--;
767
768 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
769 ? 0 : 10,
770 expressionP);
771 break;
772
773 #ifdef LITERAL_PREFIXDOLLAR_HEX
774 case '$':
775 /* $L is the start of a local label, not a hex constant. */
776 if (* input_line_pointer == 'L')
777 goto isname;
778 integer_constant (16, expressionP);
779 break;
780 #endif
781
782 #ifdef LITERAL_PREFIXPERCENT_BIN
783 case '%':
784 integer_constant (2, expressionP);
785 break;
786 #endif
787
788 case '0':
789 /* Non-decimal radix. */
790
791 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
792 {
793 char *s;
794
795 /* Check for a hex or float constant. */
796 for (s = input_line_pointer; hex_p (*s); s++)
797 ;
798 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
799 {
800 --input_line_pointer;
801 integer_constant (0, expressionP);
802 break;
803 }
804 }
805 c = *input_line_pointer;
806 switch (c)
807 {
808 case 'o':
809 case 'O':
810 case 'q':
811 case 'Q':
812 case '8':
813 case '9':
814 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
815 {
816 integer_constant (0, expressionP);
817 break;
818 }
819 /* Fall through. */
820 default:
821 default_case:
822 if (c && strchr (FLT_CHARS, c))
823 {
824 input_line_pointer++;
825 floating_constant (expressionP);
826 expressionP->X_add_number = - TOLOWER (c);
827 }
828 else
829 {
830 /* The string was only zero. */
831 expressionP->X_op = O_constant;
832 expressionP->X_add_number = 0;
833 }
834
835 break;
836
837 case 'x':
838 case 'X':
839 if (flag_m68k_mri)
840 goto default_case;
841 input_line_pointer++;
842 integer_constant (16, expressionP);
843 break;
844
845 case 'b':
846 if (LOCAL_LABELS_FB && !flag_m68k_mri
847 && input_line_pointer[1] != '0'
848 && input_line_pointer[1] != '1')
849 {
850 /* Parse this as a back reference to label 0. */
851 input_line_pointer--;
852 integer_constant (10, expressionP);
853 break;
854 }
855 /* Otherwise, parse this as a binary number. */
856 /* Fall through. */
857 case 'B':
858 if (input_line_pointer[1] == '0'
859 || input_line_pointer[1] == '1')
860 {
861 input_line_pointer++;
862 integer_constant (2, expressionP);
863 break;
864 }
865 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
866 input_line_pointer++;
867 goto default_case;
868
869 case '0':
870 case '1':
871 case '2':
872 case '3':
873 case '4':
874 case '5':
875 case '6':
876 case '7':
877 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
878 ? 0 : 8,
879 expressionP);
880 break;
881
882 case 'f':
883 if (LOCAL_LABELS_FB)
884 {
885 int is_label = 1;
886
887 /* If it says "0f" and it could possibly be a floating point
888 number, make it one. Otherwise, make it a local label,
889 and try to deal with parsing the rest later. */
890 if (!is_end_of_line[(unsigned char) input_line_pointer[1]]
891 && strchr (FLT_CHARS, 'f') != NULL)
892 {
893 char *cp = input_line_pointer + 1;
894
895 atof_generic (&cp, ".", EXP_CHARS,
896 &generic_floating_point_number);
897
898 /* Was nothing parsed, or does it look like an
899 expression? */
900 is_label = (cp == input_line_pointer + 1
901 || (cp == input_line_pointer + 2
902 && (cp[-1] == '-' || cp[-1] == '+'))
903 || *cp == 'f'
904 || *cp == 'b');
905 }
906 if (is_label)
907 {
908 input_line_pointer--;
909 integer_constant (10, expressionP);
910 break;
911 }
912 }
913 /* Fall through. */
914
915 case 'd':
916 case 'D':
917 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
918 {
919 integer_constant (0, expressionP);
920 break;
921 }
922 /* Fall through. */
923 case 'F':
924 case 'r':
925 case 'e':
926 case 'E':
927 case 'g':
928 case 'G':
929 input_line_pointer++;
930 floating_constant (expressionP);
931 expressionP->X_add_number = - TOLOWER (c);
932 break;
933
934 case '$':
935 if (LOCAL_LABELS_DOLLAR)
936 {
937 integer_constant (10, expressionP);
938 break;
939 }
940 else
941 goto default_case;
942 }
943
944 break;
945
946 #ifndef NEED_INDEX_OPERATOR
947 case '[':
948 # ifdef md_need_index_operator
949 if (md_need_index_operator())
950 goto de_fault;
951 # endif
952 #endif
953 /* Fall through. */
954 case '(':
955 /* Didn't begin with digit & not a name. */
956 segment = expr (0, expressionP, mode);
957 /* expression () will pass trailing whitespace. */
958 if ((c == '(' && *input_line_pointer != ')')
959 || (c == '[' && *input_line_pointer != ']'))
960 {
961 if (* input_line_pointer)
962 as_bad (_("found '%c', expected: '%c'"),
963 * input_line_pointer, c == '(' ? ')' : ']');
964 else
965 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
966 }
967 else
968 input_line_pointer++;
969 SKIP_WHITESPACE ();
970 /* Here with input_line_pointer -> char after "(...)". */
971 return segment;
972
973 #ifdef TC_M68K
974 case 'E':
975 if (! flag_m68k_mri || *input_line_pointer != '\'')
976 goto de_fault;
977 as_bad (_("EBCDIC constants are not supported"));
978 /* Fall through. */
979 case 'A':
980 if (! flag_m68k_mri || *input_line_pointer != '\'')
981 goto de_fault;
982 ++input_line_pointer;
983 #endif
984 /* Fall through. */
985 case '\'':
986 if (! flag_m68k_mri)
987 {
988 /* Warning: to conform to other people's assemblers NO
989 ESCAPEMENT is permitted for a single quote. The next
990 character, parity errors and all, is taken as the value
991 of the operand. VERY KINKY. */
992 expressionP->X_op = O_constant;
993 expressionP->X_add_number = *input_line_pointer++;
994 break;
995 }
996
997 mri_char_constant (expressionP);
998 break;
999
1000 #ifdef TC_M68K
1001 case '"':
1002 /* Double quote is the bitwise not operator in MRI mode. */
1003 if (! flag_m68k_mri)
1004 goto de_fault;
1005 #endif
1006 /* Fall through. */
1007 case '~':
1008 /* '~' is permitted to start a label on the Delta. */
1009 if (is_name_beginner (c))
1010 goto isname;
1011 /* Fall through. */
1012 case '!':
1013 case '-':
1014 case '+':
1015 {
1016 #ifdef md_operator
1017 unary:
1018 #endif
1019 operand (expressionP, mode);
1020 if (expressionP->X_op == O_constant)
1021 {
1022 /* input_line_pointer -> char after operand. */
1023 if (c == '-')
1024 {
1025 expressionP->X_add_number
1026 = - (addressT) expressionP->X_add_number;
1027 /* Notice: '-' may overflow: no warning is given.
1028 This is compatible with other people's
1029 assemblers. Sigh. */
1030 expressionP->X_unsigned = 0;
1031 if (expressionP->X_add_number)
1032 expressionP->X_extrabit ^= 1;
1033 }
1034 else if (c == '~' || c == '"')
1035 expressionP->X_add_number = ~ expressionP->X_add_number;
1036 else if (c == '!')
1037 expressionP->X_add_number = ! expressionP->X_add_number;
1038 }
1039 else if (expressionP->X_op == O_big
1040 && expressionP->X_add_number <= 0
1041 && c == '-'
1042 && (generic_floating_point_number.sign == '+'
1043 || generic_floating_point_number.sign == 'P'))
1044 {
1045 /* Negative flonum (eg, -1.000e0). */
1046 if (generic_floating_point_number.sign == '+')
1047 generic_floating_point_number.sign = '-';
1048 else
1049 generic_floating_point_number.sign = 'N';
1050 }
1051 else if (expressionP->X_op == O_big
1052 && expressionP->X_add_number > 0)
1053 {
1054 int i;
1055
1056 if (c == '~' || c == '-')
1057 {
1058 for (i = 0; i < expressionP->X_add_number; ++i)
1059 generic_bignum[i] = ~generic_bignum[i];
1060
1061 /* Extend the bignum to at least the size of .octa. */
1062 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1063 {
1064 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1065 for (; i < expressionP->X_add_number; ++i)
1066 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1067 }
1068
1069 if (c == '-')
1070 for (i = 0; i < expressionP->X_add_number; ++i)
1071 {
1072 generic_bignum[i] += 1;
1073 if (generic_bignum[i])
1074 break;
1075 }
1076 }
1077 else if (c == '!')
1078 {
1079 for (i = 0; i < expressionP->X_add_number; ++i)
1080 if (generic_bignum[i] != 0)
1081 break;
1082 expressionP->X_add_number = i >= expressionP->X_add_number;
1083 expressionP->X_op = O_constant;
1084 expressionP->X_unsigned = 1;
1085 expressionP->X_extrabit = 0;
1086 }
1087 }
1088 else if (expressionP->X_op != O_illegal
1089 && expressionP->X_op != O_absent)
1090 {
1091 if (c != '+')
1092 {
1093 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1094 if (c == '-')
1095 expressionP->X_op = O_uminus;
1096 else if (c == '~' || c == '"')
1097 expressionP->X_op = O_bit_not;
1098 else
1099 expressionP->X_op = O_logical_not;
1100 expressionP->X_add_number = 0;
1101 }
1102 }
1103 else
1104 as_warn (_("Unary operator %c ignored because bad operand follows"),
1105 c);
1106 }
1107 break;
1108
1109 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1110 case '$':
1111 /* '$' is the program counter when in MRI mode, or when
1112 DOLLAR_DOT is defined. */
1113 #ifndef DOLLAR_DOT
1114 if (! flag_m68k_mri)
1115 goto de_fault;
1116 #endif
1117 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1118 {
1119 /* In MRI mode and on Z80, '$' is also used as the prefix
1120 for a hexadecimal constant. */
1121 integer_constant (16, expressionP);
1122 break;
1123 }
1124
1125 if (is_part_of_name (*input_line_pointer))
1126 goto isname;
1127
1128 current_location (expressionP);
1129 break;
1130 #endif
1131
1132 case '.':
1133 if (!is_part_of_name (*input_line_pointer))
1134 {
1135 current_location (expressionP);
1136 break;
1137 }
1138 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1139 && ! is_part_of_name (input_line_pointer[8]))
1140 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1141 && ! is_part_of_name (input_line_pointer[7])))
1142 {
1143 int start;
1144
1145 start = (input_line_pointer[1] == 't'
1146 || input_line_pointer[1] == 'T');
1147 input_line_pointer += start ? 8 : 7;
1148 SKIP_WHITESPACE ();
1149 if (*input_line_pointer != '(')
1150 as_bad (_("syntax error in .startof. or .sizeof."));
1151 else
1152 {
1153 char *buf;
1154
1155 ++input_line_pointer;
1156 SKIP_WHITESPACE ();
1157 c = get_symbol_name (& name);
1158
1159 buf = concat (start ? ".startof." : ".sizeof.", name,
1160 (char *) NULL);
1161 symbolP = symbol_make (buf);
1162 free (buf);
1163
1164 expressionP->X_op = O_symbol;
1165 expressionP->X_add_symbol = symbolP;
1166 expressionP->X_add_number = 0;
1167
1168 *input_line_pointer = c;
1169 SKIP_WHITESPACE_AFTER_NAME ();
1170 if (*input_line_pointer != ')')
1171 as_bad (_("syntax error in .startof. or .sizeof."));
1172 else
1173 ++input_line_pointer;
1174 }
1175 break;
1176 }
1177 else
1178 {
1179 goto isname;
1180 }
1181
1182 case ',':
1183 eol:
1184 /* Can't imagine any other kind of operand. */
1185 expressionP->X_op = O_absent;
1186 input_line_pointer--;
1187 break;
1188
1189 #ifdef TC_M68K
1190 case '%':
1191 if (! flag_m68k_mri)
1192 goto de_fault;
1193 integer_constant (2, expressionP);
1194 break;
1195
1196 case '@':
1197 if (! flag_m68k_mri)
1198 goto de_fault;
1199 integer_constant (8, expressionP);
1200 break;
1201
1202 case ':':
1203 if (! flag_m68k_mri)
1204 goto de_fault;
1205
1206 /* In MRI mode, this is a floating point constant represented
1207 using hexadecimal digits. */
1208
1209 ++input_line_pointer;
1210 integer_constant (16, expressionP);
1211 break;
1212
1213 case '*':
1214 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1215 goto de_fault;
1216
1217 current_location (expressionP);
1218 break;
1219 #endif
1220
1221 default:
1222 #if defined(md_need_index_operator) || defined(TC_M68K)
1223 de_fault:
1224 #endif
1225 if (is_name_beginner (c) || c == '"') /* Here if did not begin with a digit. */
1226 {
1227 /* Identifier begins here.
1228 This is kludged for speed, so code is repeated. */
1229 isname:
1230 -- input_line_pointer;
1231 c = get_symbol_name (&name);
1232
1233 #ifdef md_operator
1234 {
1235 operatorT op = md_operator (name, 1, &c);
1236
1237 switch (op)
1238 {
1239 case O_uminus:
1240 restore_line_pointer (c);
1241 c = '-';
1242 goto unary;
1243 case O_bit_not:
1244 restore_line_pointer (c);
1245 c = '~';
1246 goto unary;
1247 case O_logical_not:
1248 restore_line_pointer (c);
1249 c = '!';
1250 goto unary;
1251 case O_illegal:
1252 as_bad (_("invalid use of operator \"%s\""), name);
1253 break;
1254 default:
1255 break;
1256 }
1257
1258 if (op != O_absent && op != O_illegal)
1259 {
1260 restore_line_pointer (c);
1261 expr (9, expressionP, mode);
1262 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1263 expressionP->X_op_symbol = NULL;
1264 expressionP->X_add_number = 0;
1265 expressionP->X_op = op;
1266 break;
1267 }
1268 }
1269 #endif
1270
1271 #ifdef md_parse_name
1272 /* This is a hook for the backend to parse certain names
1273 specially in certain contexts. If a name always has a
1274 specific value, it can often be handled by simply
1275 entering it in the symbol table. */
1276 if (md_parse_name (name, expressionP, mode, &c))
1277 {
1278 restore_line_pointer (c);
1279 break;
1280 }
1281 #endif
1282
1283 #ifdef TC_I960
1284 /* The MRI i960 assembler permits
1285 lda sizeof code,g13
1286 FIXME: This should use md_parse_name. */
1287 if (flag_mri
1288 && (strcasecmp (name, "sizeof") == 0
1289 || strcasecmp (name, "startof") == 0))
1290 {
1291 int start;
1292 char *buf;
1293
1294 start = (name[1] == 't'
1295 || name[1] == 'T');
1296
1297 *input_line_pointer = c;
1298 SKIP_WHITESPACE_AFTER_NAME ();
1299
1300 c = get_symbol_name (& name);
1301
1302 buf = concat (start ? ".startof." : ".sizeof.", name,
1303 (char *) NULL);
1304 symbolP = symbol_make (buf);
1305 free (buf);
1306
1307 expressionP->X_op = O_symbol;
1308 expressionP->X_add_symbol = symbolP;
1309 expressionP->X_add_number = 0;
1310
1311 *input_line_pointer = c;
1312 SKIP_WHITESPACE_AFTER_NAME ();
1313 break;
1314 }
1315 #endif
1316
1317 symbolP = symbol_find_or_make (name);
1318
1319 /* If we have an absolute symbol or a reg, then we know its
1320 value now. */
1321 segment = S_GET_SEGMENT (symbolP);
1322 if (mode != expr_defer
1323 && segment == absolute_section
1324 && !S_FORCE_RELOC (symbolP, 0))
1325 {
1326 expressionP->X_op = O_constant;
1327 expressionP->X_add_number = S_GET_VALUE (symbolP);
1328 }
1329 else if (mode != expr_defer && segment == reg_section)
1330 {
1331 expressionP->X_op = O_register;
1332 expressionP->X_add_number = S_GET_VALUE (symbolP);
1333 }
1334 else
1335 {
1336 expressionP->X_op = O_symbol;
1337 expressionP->X_add_symbol = symbolP;
1338 expressionP->X_add_number = 0;
1339 }
1340
1341 restore_line_pointer (c);
1342 }
1343 else
1344 {
1345 /* Let the target try to parse it. Success is indicated by changing
1346 the X_op field to something other than O_absent and pointing
1347 input_line_pointer past the expression. If it can't parse the
1348 expression, X_op and input_line_pointer should be unchanged. */
1349 expressionP->X_op = O_absent;
1350 --input_line_pointer;
1351 md_operand (expressionP);
1352 if (expressionP->X_op == O_absent)
1353 {
1354 ++input_line_pointer;
1355 as_bad (_("bad expression"));
1356 expressionP->X_op = O_constant;
1357 expressionP->X_add_number = 0;
1358 }
1359 }
1360 break;
1361 }
1362
1363 /* It is more 'efficient' to clean up the expressionS when they are
1364 created. Doing it here saves lines of code. */
1365 clean_up_expression (expressionP);
1366 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1367 know (*input_line_pointer != ' ');
1368
1369 /* The PA port needs this information. */
1370 if (expressionP->X_add_symbol)
1371 symbol_mark_used (expressionP->X_add_symbol);
1372
1373 if (mode != expr_defer)
1374 {
1375 expressionP->X_add_symbol
1376 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1377 expressionP->X_op_symbol
1378 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1379 }
1380
1381 switch (expressionP->X_op)
1382 {
1383 default:
1384 return absolute_section;
1385 case O_symbol:
1386 return S_GET_SEGMENT (expressionP->X_add_symbol);
1387 case O_register:
1388 return reg_section;
1389 }
1390 }
1391 \f
1392 /* Internal. Simplify a struct expression for use by expr (). */
1393
1394 /* In: address of an expressionS.
1395 The X_op field of the expressionS may only take certain values.
1396 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1397
1398 Out: expressionS may have been modified:
1399 Unused fields zeroed to help expr (). */
1400
1401 static void
1402 clean_up_expression (expressionS *expressionP)
1403 {
1404 switch (expressionP->X_op)
1405 {
1406 case O_illegal:
1407 case O_absent:
1408 expressionP->X_add_number = 0;
1409 /* Fall through. */
1410 case O_big:
1411 case O_constant:
1412 case O_register:
1413 expressionP->X_add_symbol = NULL;
1414 /* Fall through. */
1415 case O_symbol:
1416 case O_uminus:
1417 case O_bit_not:
1418 expressionP->X_op_symbol = NULL;
1419 break;
1420 default:
1421 break;
1422 }
1423 }
1424 \f
1425 /* Expression parser. */
1426
1427 /* We allow an empty expression, and just assume (absolute,0) silently.
1428 Unary operators and parenthetical expressions are treated as operands.
1429 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1430
1431 We used to do an aho/ullman shift-reduce parser, but the logic got so
1432 warped that I flushed it and wrote a recursive-descent parser instead.
1433 Now things are stable, would anybody like to write a fast parser?
1434 Most expressions are either register (which does not even reach here)
1435 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1436 So I guess it doesn't really matter how inefficient more complex expressions
1437 are parsed.
1438
1439 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1440 Also, we have consumed any leading or trailing spaces (operand does that)
1441 and done all intervening operators.
1442
1443 This returns the segment of the result, which will be
1444 absolute_section or the segment of a symbol. */
1445
1446 #undef __
1447 #define __ O_illegal
1448 #ifndef O_SINGLE_EQ
1449 #define O_SINGLE_EQ O_illegal
1450 #endif
1451
1452 /* Maps ASCII -> operators. */
1453 static const operatorT op_encoding[256] = {
1454 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1455 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1456
1457 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1458 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1459 __, __, __, __, __, __, __, __,
1460 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1461 __, __, __, __, __, __, __, __,
1462 __, __, __, __, __, __, __, __,
1463 __, __, __, __, __, __, __, __,
1464 __, __, __,
1465 #ifdef NEED_INDEX_OPERATOR
1466 O_index,
1467 #else
1468 __,
1469 #endif
1470 __, __, O_bit_exclusive_or, __,
1471 __, __, __, __, __, __, __, __,
1472 __, __, __, __, __, __, __, __,
1473 __, __, __, __, __, __, __, __,
1474 __, __, __, __, O_bit_inclusive_or, __, __, __,
1475
1476 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1477 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1478 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1479 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1480 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1481 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1482 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1483 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1484 };
1485
1486 /* Rank Examples
1487 0 operand, (expression)
1488 1 ||
1489 2 &&
1490 3 == <> < <= >= >
1491 4 + -
1492 5 used for * / % in MRI mode
1493 6 & ^ ! |
1494 7 * / % << >>
1495 8 unary - unary ~
1496 */
1497 static operator_rankT op_rank[O_max] = {
1498 0, /* O_illegal */
1499 0, /* O_absent */
1500 0, /* O_constant */
1501 0, /* O_symbol */
1502 0, /* O_symbol_rva */
1503 0, /* O_register */
1504 0, /* O_big */
1505 9, /* O_uminus */
1506 9, /* O_bit_not */
1507 9, /* O_logical_not */
1508 8, /* O_multiply */
1509 8, /* O_divide */
1510 8, /* O_modulus */
1511 8, /* O_left_shift */
1512 8, /* O_right_shift */
1513 7, /* O_bit_inclusive_or */
1514 7, /* O_bit_or_not */
1515 7, /* O_bit_exclusive_or */
1516 7, /* O_bit_and */
1517 5, /* O_add */
1518 5, /* O_subtract */
1519 4, /* O_eq */
1520 4, /* O_ne */
1521 4, /* O_lt */
1522 4, /* O_le */
1523 4, /* O_ge */
1524 4, /* O_gt */
1525 3, /* O_logical_and */
1526 2, /* O_logical_or */
1527 1, /* O_index */
1528 };
1529
1530 /* Unfortunately, in MRI mode for the m68k, multiplication and
1531 division have lower precedence than the bit wise operators. This
1532 function sets the operator precedences correctly for the current
1533 mode. Also, MRI uses a different bit_not operator, and this fixes
1534 that as well. */
1535
1536 #define STANDARD_MUL_PRECEDENCE 8
1537 #define MRI_MUL_PRECEDENCE 6
1538
1539 void
1540 expr_set_precedence (void)
1541 {
1542 if (flag_m68k_mri)
1543 {
1544 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1545 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1546 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1547 }
1548 else
1549 {
1550 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1551 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1552 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1553 }
1554 }
1555
1556 void
1557 expr_set_rank (operatorT op, operator_rankT rank)
1558 {
1559 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1560 op_rank[op] = rank;
1561 }
1562
1563 /* Initialize the expression parser. */
1564
1565 void
1566 expr_begin (void)
1567 {
1568 expr_set_precedence ();
1569
1570 /* Verify that X_op field is wide enough. */
1571 {
1572 expressionS e;
1573 e.X_op = O_max;
1574 gas_assert (e.X_op == O_max);
1575 }
1576 }
1577 \f
1578 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1579 sets NUM_CHARS to the number of characters in the operator.
1580 Does not advance INPUT_LINE_POINTER. */
1581
1582 static inline operatorT
1583 operatorf (int *num_chars)
1584 {
1585 int c;
1586 operatorT ret;
1587
1588 c = *input_line_pointer & 0xff;
1589 *num_chars = 1;
1590
1591 if (is_end_of_line[c])
1592 return O_illegal;
1593
1594 #ifdef md_operator
1595 if (is_name_beginner (c))
1596 {
1597 char *name;
1598 char ec = get_symbol_name (& name);
1599
1600 ret = md_operator (name, 2, &ec);
1601 switch (ret)
1602 {
1603 case O_absent:
1604 *input_line_pointer = ec;
1605 input_line_pointer = name;
1606 break;
1607 case O_uminus:
1608 case O_bit_not:
1609 case O_logical_not:
1610 as_bad (_("invalid use of operator \"%s\""), name);
1611 ret = O_illegal;
1612 /* FALLTHROUGH */
1613 default:
1614 *input_line_pointer = ec;
1615 *num_chars = input_line_pointer - name;
1616 input_line_pointer = name;
1617 return ret;
1618 }
1619 }
1620 #endif
1621
1622 switch (c)
1623 {
1624 default:
1625 ret = op_encoding[c];
1626 #ifdef md_operator
1627 if (ret == O_illegal)
1628 {
1629 char *start = input_line_pointer;
1630
1631 ret = md_operator (NULL, 2, NULL);
1632 if (ret != O_illegal)
1633 *num_chars = input_line_pointer - start;
1634 input_line_pointer = start;
1635 }
1636 #endif
1637 return ret;
1638
1639 case '+':
1640 case '-':
1641 return op_encoding[c];
1642
1643 case '<':
1644 switch (input_line_pointer[1])
1645 {
1646 default:
1647 return op_encoding[c];
1648 case '<':
1649 ret = O_left_shift;
1650 break;
1651 case '>':
1652 ret = O_ne;
1653 break;
1654 case '=':
1655 ret = O_le;
1656 break;
1657 }
1658 *num_chars = 2;
1659 return ret;
1660
1661 case '=':
1662 if (input_line_pointer[1] != '=')
1663 return op_encoding[c];
1664
1665 *num_chars = 2;
1666 return O_eq;
1667
1668 case '>':
1669 switch (input_line_pointer[1])
1670 {
1671 default:
1672 return op_encoding[c];
1673 case '>':
1674 ret = O_right_shift;
1675 break;
1676 case '=':
1677 ret = O_ge;
1678 break;
1679 }
1680 *num_chars = 2;
1681 return ret;
1682
1683 case '!':
1684 switch (input_line_pointer[1])
1685 {
1686 case '!':
1687 /* We accept !! as equivalent to ^ for MRI compatibility. */
1688 *num_chars = 2;
1689 return O_bit_exclusive_or;
1690 case '=':
1691 /* We accept != as equivalent to <>. */
1692 *num_chars = 2;
1693 return O_ne;
1694 default:
1695 if (flag_m68k_mri)
1696 return O_bit_inclusive_or;
1697 return op_encoding[c];
1698 }
1699
1700 case '|':
1701 if (input_line_pointer[1] != '|')
1702 return op_encoding[c];
1703
1704 *num_chars = 2;
1705 return O_logical_or;
1706
1707 case '&':
1708 if (input_line_pointer[1] != '&')
1709 return op_encoding[c];
1710
1711 *num_chars = 2;
1712 return O_logical_and;
1713 }
1714
1715 /* NOTREACHED */
1716 }
1717
1718 /* Implement "word-size + 1 bit" addition for
1719 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1720 is used so that the full range of unsigned word values and the full range of
1721 signed word values can be represented in an O_constant expression, which is
1722 useful e.g. for .sleb128 directives. */
1723
1724 void
1725 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1726 {
1727 valueT ures = resultP->X_add_number;
1728 valueT uamount = amount;
1729
1730 resultP->X_add_number += amount;
1731
1732 resultP->X_extrabit ^= rhs_highbit;
1733
1734 if (ures + uamount < ures)
1735 resultP->X_extrabit ^= 1;
1736 }
1737
1738 /* Similarly, for subtraction. */
1739
1740 void
1741 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1742 {
1743 valueT ures = resultP->X_add_number;
1744 valueT uamount = amount;
1745
1746 resultP->X_add_number -= amount;
1747
1748 resultP->X_extrabit ^= rhs_highbit;
1749
1750 if (ures < uamount)
1751 resultP->X_extrabit ^= 1;
1752 }
1753
1754 /* Parse an expression. */
1755
1756 segT
1757 expr (int rankarg, /* Larger # is higher rank. */
1758 expressionS *resultP, /* Deliver result here. */
1759 enum expr_mode mode /* Controls behavior. */)
1760 {
1761 operator_rankT rank = (operator_rankT) rankarg;
1762 segT retval;
1763 expressionS right;
1764 operatorT op_left;
1765 operatorT op_right;
1766 int op_chars;
1767
1768 know (rankarg >= 0);
1769
1770 /* Save the value of dot for the fixup code. */
1771 if (rank == 0)
1772 {
1773 dot_value = frag_now_fix ();
1774 dot_frag = frag_now;
1775 }
1776
1777 retval = operand (resultP, mode);
1778
1779 /* operand () gobbles spaces. */
1780 know (*input_line_pointer != ' ');
1781
1782 op_left = operatorf (&op_chars);
1783 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1784 {
1785 segT rightseg;
1786 offsetT frag_off;
1787
1788 input_line_pointer += op_chars; /* -> after operator. */
1789
1790 right.X_md = 0;
1791 rightseg = expr (op_rank[(int) op_left], &right, mode);
1792 if (right.X_op == O_absent)
1793 {
1794 as_warn (_("missing operand; zero assumed"));
1795 right.X_op = O_constant;
1796 right.X_add_number = 0;
1797 right.X_add_symbol = NULL;
1798 right.X_op_symbol = NULL;
1799 }
1800
1801 know (*input_line_pointer != ' ');
1802
1803 if (op_left == O_index)
1804 {
1805 if (*input_line_pointer != ']')
1806 as_bad ("missing right bracket");
1807 else
1808 {
1809 ++input_line_pointer;
1810 SKIP_WHITESPACE ();
1811 }
1812 }
1813
1814 op_right = operatorf (&op_chars);
1815
1816 know (op_right == O_illegal || op_left == O_index
1817 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1818 know ((int) op_left >= (int) O_multiply);
1819 #ifndef md_operator
1820 know ((int) op_left <= (int) O_index);
1821 #else
1822 know ((int) op_left < (int) O_max);
1823 #endif
1824
1825 /* input_line_pointer->after right-hand quantity. */
1826 /* left-hand quantity in resultP. */
1827 /* right-hand quantity in right. */
1828 /* operator in op_left. */
1829
1830 if (resultP->X_op == O_big)
1831 {
1832 if (resultP->X_add_number > 0)
1833 as_warn (_("left operand is a bignum; integer 0 assumed"));
1834 else
1835 as_warn (_("left operand is a float; integer 0 assumed"));
1836 resultP->X_op = O_constant;
1837 resultP->X_add_number = 0;
1838 resultP->X_add_symbol = NULL;
1839 resultP->X_op_symbol = NULL;
1840 }
1841 if (right.X_op == O_big)
1842 {
1843 if (right.X_add_number > 0)
1844 as_warn (_("right operand is a bignum; integer 0 assumed"));
1845 else
1846 as_warn (_("right operand is a float; integer 0 assumed"));
1847 right.X_op = O_constant;
1848 right.X_add_number = 0;
1849 right.X_add_symbol = NULL;
1850 right.X_op_symbol = NULL;
1851 }
1852
1853 /* Optimize common cases. */
1854 #ifdef md_optimize_expr
1855 if (md_optimize_expr (resultP, op_left, &right))
1856 {
1857 /* Skip. */
1858 ;
1859 }
1860 else
1861 #endif
1862 #ifndef md_register_arithmetic
1863 # define md_register_arithmetic 1
1864 #endif
1865 if (op_left == O_add && right.X_op == O_constant
1866 && (md_register_arithmetic || resultP->X_op != O_register))
1867 {
1868 /* X + constant. */
1869 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1870 }
1871 /* This case comes up in PIC code. */
1872 else if (op_left == O_subtract
1873 && right.X_op == O_symbol
1874 && resultP->X_op == O_symbol
1875 && retval == rightseg
1876 #ifdef md_allow_local_subtract
1877 && md_allow_local_subtract (resultP, & right, rightseg)
1878 #endif
1879 && ((SEG_NORMAL (rightseg)
1880 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1881 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1882 || right.X_add_symbol == resultP->X_add_symbol)
1883 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1884 symbol_get_frag (right.X_add_symbol),
1885 &frag_off))
1886 {
1887 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1888 - S_GET_VALUE (right.X_add_symbol);
1889 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1890 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1891 add_to_result (resultP, symval_diff, symval_diff < 0);
1892 resultP->X_op = O_constant;
1893 resultP->X_add_symbol = 0;
1894 }
1895 else if (op_left == O_subtract && right.X_op == O_constant
1896 && (md_register_arithmetic || resultP->X_op != O_register))
1897 {
1898 /* X - constant. */
1899 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1900 }
1901 else if (op_left == O_add && resultP->X_op == O_constant
1902 && (md_register_arithmetic || right.X_op != O_register))
1903 {
1904 /* Constant + X. */
1905 resultP->X_op = right.X_op;
1906 resultP->X_add_symbol = right.X_add_symbol;
1907 resultP->X_op_symbol = right.X_op_symbol;
1908 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1909 retval = rightseg;
1910 }
1911 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1912 {
1913 /* Constant OP constant. */
1914 offsetT v = right.X_add_number;
1915 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1916 {
1917 as_warn (_("division by zero"));
1918 v = 1;
1919 }
1920 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1921 && (op_left == O_left_shift || op_left == O_right_shift))
1922 {
1923 as_warn_value_out_of_range (_("shift count"), v, 0,
1924 sizeof(valueT) * CHAR_BIT - 1,
1925 NULL, 0);
1926 resultP->X_add_number = v = 0;
1927 }
1928 switch (op_left)
1929 {
1930 default: goto general;
1931 case O_multiply: resultP->X_add_number *= v; break;
1932 case O_divide: resultP->X_add_number /= v; break;
1933 case O_modulus: resultP->X_add_number %= v; break;
1934 case O_left_shift: resultP->X_add_number <<= v; break;
1935 case O_right_shift:
1936 /* We always use unsigned shifts, to avoid relying on
1937 characteristics of the compiler used to compile gas. */
1938 resultP->X_add_number =
1939 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1940 break;
1941 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1942 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1943 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1944 case O_bit_and: resultP->X_add_number &= v; break;
1945 /* Constant + constant (O_add) is handled by the
1946 previous if statement for constant + X, so is omitted
1947 here. */
1948 case O_subtract:
1949 subtract_from_result (resultP, v, 0);
1950 break;
1951 case O_eq:
1952 resultP->X_add_number =
1953 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1954 break;
1955 case O_ne:
1956 resultP->X_add_number =
1957 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1958 break;
1959 case O_lt:
1960 resultP->X_add_number =
1961 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1962 break;
1963 case O_le:
1964 resultP->X_add_number =
1965 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1966 break;
1967 case O_ge:
1968 resultP->X_add_number =
1969 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1970 break;
1971 case O_gt:
1972 resultP->X_add_number =
1973 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1974 break;
1975 case O_logical_and:
1976 resultP->X_add_number = resultP->X_add_number && v;
1977 break;
1978 case O_logical_or:
1979 resultP->X_add_number = resultP->X_add_number || v;
1980 break;
1981 }
1982 }
1983 else if (resultP->X_op == O_symbol
1984 && right.X_op == O_symbol
1985 && (op_left == O_add
1986 || op_left == O_subtract
1987 || (resultP->X_add_number == 0
1988 && right.X_add_number == 0)))
1989 {
1990 /* Symbol OP symbol. */
1991 resultP->X_op = op_left;
1992 resultP->X_op_symbol = right.X_add_symbol;
1993 if (op_left == O_add)
1994 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1995 else if (op_left == O_subtract)
1996 {
1997 subtract_from_result (resultP, right.X_add_number,
1998 right.X_extrabit);
1999 if (retval == rightseg
2000 && SEG_NORMAL (retval)
2001 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
2002 && !S_FORCE_RELOC (right.X_add_symbol, 0))
2003 {
2004 retval = absolute_section;
2005 rightseg = absolute_section;
2006 }
2007 }
2008 }
2009 else
2010 {
2011 general:
2012 /* The general case. */
2013 resultP->X_add_symbol = make_expr_symbol (resultP);
2014 resultP->X_op_symbol = make_expr_symbol (&right);
2015 resultP->X_op = op_left;
2016 resultP->X_add_number = 0;
2017 resultP->X_unsigned = 1;
2018 resultP->X_extrabit = 0;
2019 }
2020
2021 if (retval != rightseg)
2022 {
2023 if (retval == undefined_section)
2024 ;
2025 else if (rightseg == undefined_section)
2026 retval = rightseg;
2027 else if (retval == expr_section)
2028 ;
2029 else if (rightseg == expr_section)
2030 retval = rightseg;
2031 else if (retval == reg_section)
2032 ;
2033 else if (rightseg == reg_section)
2034 retval = rightseg;
2035 else if (rightseg == absolute_section)
2036 ;
2037 else if (retval == absolute_section)
2038 retval = rightseg;
2039 #ifdef DIFF_EXPR_OK
2040 else if (op_left == O_subtract)
2041 ;
2042 #endif
2043 else
2044 as_bad (_("operation combines symbols in different segments"));
2045 }
2046
2047 op_left = op_right;
2048 } /* While next operator is >= this rank. */
2049
2050 /* The PA port needs this information. */
2051 if (resultP->X_add_symbol)
2052 symbol_mark_used (resultP->X_add_symbol);
2053
2054 if (rank == 0 && mode == expr_evaluate)
2055 resolve_expression (resultP);
2056
2057 return resultP->X_op == O_constant ? absolute_section : retval;
2058 }
2059
2060 /* Resolve an expression without changing any symbols/sub-expressions
2061 used. */
2062
2063 int
2064 resolve_expression (expressionS *expressionP)
2065 {
2066 /* Help out with CSE. */
2067 valueT final_val = expressionP->X_add_number;
2068 symbolS *add_symbol = expressionP->X_add_symbol;
2069 symbolS *orig_add_symbol = add_symbol;
2070 symbolS *op_symbol = expressionP->X_op_symbol;
2071 operatorT op = expressionP->X_op;
2072 valueT left, right;
2073 segT seg_left, seg_right;
2074 fragS *frag_left, *frag_right;
2075 offsetT frag_off;
2076
2077 switch (op)
2078 {
2079 default:
2080 return 0;
2081
2082 case O_constant:
2083 case O_register:
2084 left = 0;
2085 break;
2086
2087 case O_symbol:
2088 case O_symbol_rva:
2089 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2090 return 0;
2091
2092 break;
2093
2094 case O_uminus:
2095 case O_bit_not:
2096 case O_logical_not:
2097 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2098 return 0;
2099
2100 if (seg_left != absolute_section)
2101 return 0;
2102
2103 if (op == O_logical_not)
2104 left = !left;
2105 else if (op == O_uminus)
2106 left = -left;
2107 else
2108 left = ~left;
2109 op = O_constant;
2110 break;
2111
2112 case O_multiply:
2113 case O_divide:
2114 case O_modulus:
2115 case O_left_shift:
2116 case O_right_shift:
2117 case O_bit_inclusive_or:
2118 case O_bit_or_not:
2119 case O_bit_exclusive_or:
2120 case O_bit_and:
2121 case O_add:
2122 case O_subtract:
2123 case O_eq:
2124 case O_ne:
2125 case O_lt:
2126 case O_le:
2127 case O_ge:
2128 case O_gt:
2129 case O_logical_and:
2130 case O_logical_or:
2131 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2132 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2133 return 0;
2134
2135 /* Simplify addition or subtraction of a constant by folding the
2136 constant into X_add_number. */
2137 if (op == O_add)
2138 {
2139 if (seg_right == absolute_section)
2140 {
2141 final_val += right;
2142 op = O_symbol;
2143 break;
2144 }
2145 else if (seg_left == absolute_section)
2146 {
2147 final_val += left;
2148 left = right;
2149 seg_left = seg_right;
2150 add_symbol = op_symbol;
2151 orig_add_symbol = expressionP->X_op_symbol;
2152 op = O_symbol;
2153 break;
2154 }
2155 }
2156 else if (op == O_subtract)
2157 {
2158 if (seg_right == absolute_section)
2159 {
2160 final_val -= right;
2161 op = O_symbol;
2162 break;
2163 }
2164 }
2165
2166 /* Equality and non-equality tests are permitted on anything.
2167 Subtraction, and other comparison operators are permitted if
2168 both operands are in the same section.
2169 Shifts by constant zero are permitted on anything.
2170 Multiplies, bit-ors, and bit-ands with constant zero are
2171 permitted on anything.
2172 Multiplies and divides by constant one are permitted on
2173 anything.
2174 Binary operations with both operands being the same register
2175 or undefined symbol are permitted if the result doesn't depend
2176 on the input value.
2177 Otherwise, both operands must be absolute. We already handled
2178 the case of addition or subtraction of a constant above. */
2179 frag_off = 0;
2180 if (!(seg_left == absolute_section
2181 && seg_right == absolute_section)
2182 && !(op == O_eq || op == O_ne)
2183 && !((op == O_subtract
2184 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2185 && seg_left == seg_right
2186 && (finalize_syms
2187 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2188 && (seg_left != reg_section || left == right)
2189 && (seg_left != undefined_section || add_symbol == op_symbol)))
2190 {
2191 if ((seg_left == absolute_section && left == 0)
2192 || (seg_right == absolute_section && right == 0))
2193 {
2194 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2195 {
2196 if (!(seg_right == absolute_section && right == 0))
2197 {
2198 seg_left = seg_right;
2199 left = right;
2200 add_symbol = op_symbol;
2201 orig_add_symbol = expressionP->X_op_symbol;
2202 }
2203 op = O_symbol;
2204 break;
2205 }
2206 else if (op == O_left_shift || op == O_right_shift)
2207 {
2208 if (!(seg_left == absolute_section && left == 0))
2209 {
2210 op = O_symbol;
2211 break;
2212 }
2213 }
2214 else if (op != O_multiply
2215 && op != O_bit_or_not && op != O_bit_and)
2216 return 0;
2217 }
2218 else if (op == O_multiply
2219 && seg_left == absolute_section && left == 1)
2220 {
2221 seg_left = seg_right;
2222 left = right;
2223 add_symbol = op_symbol;
2224 orig_add_symbol = expressionP->X_op_symbol;
2225 op = O_symbol;
2226 break;
2227 }
2228 else if ((op == O_multiply || op == O_divide)
2229 && seg_right == absolute_section && right == 1)
2230 {
2231 op = O_symbol;
2232 break;
2233 }
2234 else if (!(left == right
2235 && ((seg_left == reg_section && seg_right == reg_section)
2236 || (seg_left == undefined_section
2237 && seg_right == undefined_section
2238 && add_symbol == op_symbol))))
2239 return 0;
2240 else if (op == O_bit_and || op == O_bit_inclusive_or)
2241 {
2242 op = O_symbol;
2243 break;
2244 }
2245 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2246 return 0;
2247 }
2248
2249 right += frag_off / OCTETS_PER_BYTE;
2250 switch (op)
2251 {
2252 case O_add: left += right; break;
2253 case O_subtract: left -= right; break;
2254 case O_multiply: left *= right; break;
2255 case O_divide:
2256 if (right == 0)
2257 return 0;
2258 left = (offsetT) left / (offsetT) right;
2259 break;
2260 case O_modulus:
2261 if (right == 0)
2262 return 0;
2263 left = (offsetT) left % (offsetT) right;
2264 break;
2265 case O_left_shift: left <<= right; break;
2266 case O_right_shift: left >>= right; break;
2267 case O_bit_inclusive_or: left |= right; break;
2268 case O_bit_or_not: left |= ~right; break;
2269 case O_bit_exclusive_or: left ^= right; break;
2270 case O_bit_and: left &= right; break;
2271 case O_eq:
2272 case O_ne:
2273 left = (left == right
2274 && seg_left == seg_right
2275 && (finalize_syms || frag_left == frag_right)
2276 && (seg_left != undefined_section
2277 || add_symbol == op_symbol)
2278 ? ~ (valueT) 0 : 0);
2279 if (op == O_ne)
2280 left = ~left;
2281 break;
2282 case O_lt:
2283 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2284 break;
2285 case O_le:
2286 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2287 break;
2288 case O_ge:
2289 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2290 break;
2291 case O_gt:
2292 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2293 break;
2294 case O_logical_and: left = left && right; break;
2295 case O_logical_or: left = left || right; break;
2296 default: abort ();
2297 }
2298
2299 op = O_constant;
2300 break;
2301 }
2302
2303 if (op == O_symbol)
2304 {
2305 if (seg_left == absolute_section)
2306 op = O_constant;
2307 else if (seg_left == reg_section && final_val == 0)
2308 op = O_register;
2309 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2310 final_val += left;
2311 expressionP->X_add_symbol = add_symbol;
2312 }
2313 expressionP->X_op = op;
2314
2315 if (op == O_constant || op == O_register)
2316 final_val += left;
2317 expressionP->X_add_number = final_val;
2318
2319 return 1;
2320 }
2321 \f
2322 /* This lives here because it belongs equally in expr.c & read.c.
2323 expr.c is just a branch office read.c anyway, and putting it
2324 here lessens the crowd at read.c.
2325
2326 Assume input_line_pointer is at start of symbol name, or the
2327 start of a double quote enclosed symbol name.
2328 Advance input_line_pointer past symbol name.
2329 Turn that character into a '\0', returning its former value,
2330 which may be the closing double quote.
2331 This allows a string compare (RMS wants symbol names to be strings)
2332 of the symbol name.
2333 There will always be a char following symbol name, because all good
2334 lines end in end-of-line. */
2335
2336 char
2337 get_symbol_name (char ** ilp_return)
2338 {
2339 char c;
2340
2341 * ilp_return = input_line_pointer;
2342 /* We accept \001 in a name in case this is being called with a
2343 constructed string. */
2344 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2345 {
2346 while (is_part_of_name (c = *input_line_pointer++)
2347 || c == '\001')
2348 ;
2349 if (is_name_ender (c))
2350 c = *input_line_pointer++;
2351 }
2352 else if (c == '"')
2353 {
2354 bfd_boolean backslash_seen;
2355
2356 * ilp_return = input_line_pointer;
2357 do
2358 {
2359 backslash_seen = c == '\\';
2360 c = * input_line_pointer ++;
2361 }
2362 while (c != 0 && (c != '"' || backslash_seen));
2363
2364 if (c == 0)
2365 as_warn (_("missing closing '\"'"));
2366 }
2367 *--input_line_pointer = 0;
2368 return c;
2369 }
2370
2371 /* Replace the NUL character pointed to by input_line_pointer
2372 with C. If C is \" then advance past it. Return the character
2373 now pointed to by input_line_pointer. */
2374
2375 char
2376 restore_line_pointer (char c)
2377 {
2378 * input_line_pointer = c;
2379 if (c == '"')
2380 c = * ++ input_line_pointer;
2381 return c;
2382 }
2383
2384 unsigned int
2385 get_single_number (void)
2386 {
2387 expressionS exp;
2388 operand (&exp, expr_normal);
2389 return exp.X_add_number;
2390 }