]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-range-cache.cc
fortran: Add -finline-intrinsics flag for MINLOC/MAXLOC [PR90608]
[thirdparty/gcc.git] / gcc / gimple-range-cache.cc
1 /* Gimple ranger SSA cache implementation.
2 Copyright (C) 2017-2024 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
31 #include "value-range-storage.h"
32 #include "tree-cfg.h"
33 #include "target.h"
34 #include "attribs.h"
35 #include "gimple-iterator.h"
36 #include "gimple-walk.h"
37 #include "cfganal.h"
38
39 #define DEBUG_RANGE_CACHE (dump_file \
40 && (param_ranger_debug & RANGER_DEBUG_CACHE))
41
42 // This class represents the API into a cache of ranges for an SSA_NAME.
43 // Routines must be implemented to set, get, and query if a value is set.
44
45 class ssa_block_ranges
46 {
47 public:
48 ssa_block_ranges (tree t) : m_type (t) { }
49 virtual bool set_bb_range (const_basic_block bb, const vrange &r) = 0;
50 virtual bool get_bb_range (vrange &r, const_basic_block bb) = 0;
51 virtual bool bb_range_p (const_basic_block bb) = 0;
52
53 void dump(FILE *f);
54 private:
55 tree m_type;
56 };
57
58 // Print the list of known ranges for file F in a nice format.
59
60 void
61 ssa_block_ranges::dump (FILE *f)
62 {
63 basic_block bb;
64 Value_Range r (m_type);
65
66 FOR_EACH_BB_FN (bb, cfun)
67 if (get_bb_range (r, bb))
68 {
69 fprintf (f, "BB%d -> ", bb->index);
70 r.dump (f);
71 fprintf (f, "\n");
72 }
73 }
74
75 // This class implements the range cache as a linear vector, indexed by BB.
76 // It caches a varying and undefined range which are used instead of
77 // allocating new ones each time.
78
79 class sbr_vector : public ssa_block_ranges
80 {
81 public:
82 sbr_vector (tree t, vrange_allocator *allocator, bool zero_p = true);
83
84 virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
85 virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
86 virtual bool bb_range_p (const_basic_block bb) override;
87 protected:
88 vrange_storage **m_tab; // Non growing vector.
89 int m_tab_size;
90 vrange_storage *m_varying;
91 vrange_storage *m_undefined;
92 tree m_type;
93 vrange_allocator *m_range_allocator;
94 bool m_zero_p;
95 void grow ();
96 };
97
98
99 // Initialize a block cache for an ssa_name of type T.
100
101 sbr_vector::sbr_vector (tree t, vrange_allocator *allocator, bool zero_p)
102 : ssa_block_ranges (t)
103 {
104 gcc_checking_assert (TYPE_P (t));
105 m_type = t;
106 m_zero_p = zero_p;
107 m_range_allocator = allocator;
108 m_tab_size = last_basic_block_for_fn (cfun) + 1;
109 m_tab = static_cast <vrange_storage **>
110 (allocator->alloc (m_tab_size * sizeof (vrange_storage *)));
111 if (zero_p)
112 memset (m_tab, 0, m_tab_size * sizeof (vrange *));
113
114 // Create the cached type range.
115 m_varying = m_range_allocator->clone_varying (t);
116 m_undefined = m_range_allocator->clone_undefined (t);
117 }
118
119 // Grow the vector when the CFG has increased in size.
120
121 void
122 sbr_vector::grow ()
123 {
124 int curr_bb_size = last_basic_block_for_fn (cfun);
125 gcc_checking_assert (curr_bb_size > m_tab_size);
126
127 // Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
128 int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
129 inc = MAX (inc, curr_bb_size / 10);
130 int new_size = inc + curr_bb_size;
131
132 // Allocate new memory, copy the old vector and clear the new space.
133 vrange_storage **t = static_cast <vrange_storage **>
134 (m_range_allocator->alloc (new_size * sizeof (vrange_storage *)));
135 memcpy (t, m_tab, m_tab_size * sizeof (vrange_storage *));
136 if (m_zero_p)
137 memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (vrange_storage *));
138
139 m_tab = t;
140 m_tab_size = new_size;
141 }
142
143 // Set the range for block BB to be R.
144
145 bool
146 sbr_vector::set_bb_range (const_basic_block bb, const vrange &r)
147 {
148 vrange_storage *m;
149 if (bb->index >= m_tab_size)
150 grow ();
151 if (r.varying_p ())
152 m = m_varying;
153 else if (r.undefined_p ())
154 m = m_undefined;
155 else
156 m = m_range_allocator->clone (r);
157 m_tab[bb->index] = m;
158 return true;
159 }
160
161 // Return the range associated with block BB in R. Return false if
162 // there is no range.
163
164 bool
165 sbr_vector::get_bb_range (vrange &r, const_basic_block bb)
166 {
167 if (bb->index >= m_tab_size)
168 return false;
169 vrange_storage *m = m_tab[bb->index];
170 if (m)
171 {
172 m->get_vrange (r, m_type);
173 return true;
174 }
175 return false;
176 }
177
178 // Return true if a range is present.
179
180 bool
181 sbr_vector::bb_range_p (const_basic_block bb)
182 {
183 if (bb->index < m_tab_size)
184 return m_tab[bb->index] != NULL;
185 return false;
186 }
187
188 // Like an sbr_vector, except it uses a bitmap to manage whetehr vale is set
189 // or not rather than cleared memory.
190
191 class sbr_lazy_vector : public sbr_vector
192 {
193 public:
194 sbr_lazy_vector (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
195
196 virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
197 virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
198 virtual bool bb_range_p (const_basic_block bb) override;
199 protected:
200 bitmap m_has_value;
201 };
202
203 sbr_lazy_vector::sbr_lazy_vector (tree t, vrange_allocator *allocator,
204 bitmap_obstack *bm)
205 : sbr_vector (t, allocator, false)
206 {
207 m_has_value = BITMAP_ALLOC (bm);
208 }
209
210 bool
211 sbr_lazy_vector::set_bb_range (const_basic_block bb, const vrange &r)
212 {
213 sbr_vector::set_bb_range (bb, r);
214 bitmap_set_bit (m_has_value, bb->index);
215 return true;
216 }
217
218 bool
219 sbr_lazy_vector::get_bb_range (vrange &r, const_basic_block bb)
220 {
221 if (bitmap_bit_p (m_has_value, bb->index))
222 return sbr_vector::get_bb_range (r, bb);
223 return false;
224 }
225
226 bool
227 sbr_lazy_vector::bb_range_p (const_basic_block bb)
228 {
229 return bitmap_bit_p (m_has_value, bb->index);
230 }
231
232 // This class implements the on entry cache via a sparse bitmap.
233 // It uses the quad bit routines to access 4 bits at a time.
234 // A value of 0 (the default) means there is no entry, and a value of
235 // 1 thru SBR_NUM represents an element in the m_range vector.
236 // Varying is given the first value (1) and pre-cached.
237 // SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
238 // SBR_NUM is the number of values that can be cached.
239 // Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
240
241 #define SBR_NUM 14
242 #define SBR_UNDEF SBR_NUM + 1
243 #define SBR_VARYING 1
244
245 class sbr_sparse_bitmap : public ssa_block_ranges
246 {
247 public:
248 sbr_sparse_bitmap (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
249 virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
250 virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
251 virtual bool bb_range_p (const_basic_block bb) override;
252 private:
253 void bitmap_set_quad (bitmap head, int quad, int quad_value);
254 int bitmap_get_quad (const_bitmap head, int quad);
255 vrange_allocator *m_range_allocator;
256 vrange_storage *m_range[SBR_NUM];
257 bitmap_head bitvec;
258 tree m_type;
259 };
260
261 // Initialize a block cache for an ssa_name of type T.
262
263 sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, vrange_allocator *allocator,
264 bitmap_obstack *bm)
265 : ssa_block_ranges (t)
266 {
267 gcc_checking_assert (TYPE_P (t));
268 m_type = t;
269 bitmap_initialize (&bitvec, bm);
270 bitmap_tree_view (&bitvec);
271 m_range_allocator = allocator;
272 // Pre-cache varying.
273 m_range[0] = m_range_allocator->clone_varying (t);
274 // Pre-cache zero and non-zero values for pointers.
275 if (POINTER_TYPE_P (t))
276 {
277 prange nonzero;
278 nonzero.set_nonzero (t);
279 m_range[1] = m_range_allocator->clone (nonzero);
280 prange zero;
281 zero.set_zero (t);
282 m_range[2] = m_range_allocator->clone (zero);
283 }
284 else
285 m_range[1] = m_range[2] = NULL;
286 // Clear SBR_NUM entries.
287 for (int x = 3; x < SBR_NUM; x++)
288 m_range[x] = 0;
289 }
290
291 // Set 4 bit values in a sparse bitmap. This allows a bitmap to
292 // function as a sparse array of 4 bit values.
293 // QUAD is the index, QUAD_VALUE is the 4 bit value to set.
294
295 inline void
296 sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
297 {
298 bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
299 }
300
301 // Get a 4 bit value from a sparse bitmap. This allows a bitmap to
302 // function as a sparse array of 4 bit values.
303 // QUAD is the index.
304 inline int
305 sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
306 {
307 return (int) bitmap_get_aligned_chunk (head, quad, 4);
308 }
309
310 // Set the range on entry to basic block BB to R.
311
312 bool
313 sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const vrange &r)
314 {
315 if (r.undefined_p ())
316 {
317 bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF);
318 return true;
319 }
320
321 // Loop thru the values to see if R is already present.
322 for (int x = 0; x < SBR_NUM; x++)
323 if (!m_range[x] || m_range[x]->equal_p (r))
324 {
325 if (!m_range[x])
326 m_range[x] = m_range_allocator->clone (r);
327 bitmap_set_quad (&bitvec, bb->index, x + 1);
328 return true;
329 }
330 // All values are taken, default to VARYING.
331 bitmap_set_quad (&bitvec, bb->index, SBR_VARYING);
332 return false;
333 }
334
335 // Return the range associated with block BB in R. Return false if
336 // there is no range.
337
338 bool
339 sbr_sparse_bitmap::get_bb_range (vrange &r, const_basic_block bb)
340 {
341 int value = bitmap_get_quad (&bitvec, bb->index);
342
343 if (!value)
344 return false;
345
346 gcc_checking_assert (value <= SBR_UNDEF);
347 if (value == SBR_UNDEF)
348 r.set_undefined ();
349 else
350 m_range[value - 1]->get_vrange (r, m_type);
351 return true;
352 }
353
354 // Return true if a range is present.
355
356 bool
357 sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
358 {
359 return (bitmap_get_quad (&bitvec, bb->index) != 0);
360 }
361
362 // -------------------------------------------------------------------------
363
364 // Initialize the block cache.
365
366 block_range_cache::block_range_cache ()
367 {
368 bitmap_obstack_initialize (&m_bitmaps);
369 m_ssa_ranges.create (0);
370 m_ssa_ranges.safe_grow_cleared (num_ssa_names);
371 m_range_allocator = new vrange_allocator;
372 }
373
374 // Remove any m_block_caches which have been created.
375
376 block_range_cache::~block_range_cache ()
377 {
378 delete m_range_allocator;
379 // Release the vector itself.
380 m_ssa_ranges.release ();
381 bitmap_obstack_release (&m_bitmaps);
382 }
383
384 // Set the range for NAME on entry to block BB to R.
385 // If it has not been accessed yet, allocate it first.
386
387 bool
388 block_range_cache::set_bb_range (tree name, const_basic_block bb,
389 const vrange &r)
390 {
391 unsigned v = SSA_NAME_VERSION (name);
392 if (v >= m_ssa_ranges.length ())
393 m_ssa_ranges.safe_grow_cleared (num_ssa_names);
394
395 if (!m_ssa_ranges[v])
396 {
397 // Use sparse bitmap representation if there are too many basic blocks.
398 if (last_basic_block_for_fn (cfun) > param_vrp_sparse_threshold)
399 {
400 void *r = m_range_allocator->alloc (sizeof (sbr_sparse_bitmap));
401 m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
402 m_range_allocator,
403 &m_bitmaps);
404 }
405 else if (last_basic_block_for_fn (cfun) < param_vrp_vector_threshold)
406 {
407 // For small CFGs use the basic vector implemntation.
408 void *r = m_range_allocator->alloc (sizeof (sbr_vector));
409 m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
410 m_range_allocator);
411 }
412 else
413 {
414 // Otherwise use the sparse vector implementation.
415 void *r = m_range_allocator->alloc (sizeof (sbr_lazy_vector));
416 m_ssa_ranges[v] = new (r) sbr_lazy_vector (TREE_TYPE (name),
417 m_range_allocator,
418 &m_bitmaps);
419 }
420 }
421 return m_ssa_ranges[v]->set_bb_range (bb, r);
422 }
423
424
425 // Return a pointer to the ssa_block_cache for NAME. If it has not been
426 // accessed yet, return NULL.
427
428 inline ssa_block_ranges *
429 block_range_cache::query_block_ranges (tree name)
430 {
431 unsigned v = SSA_NAME_VERSION (name);
432 if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
433 return NULL;
434 return m_ssa_ranges[v];
435 }
436
437
438
439 // Return the range for NAME on entry to BB in R. Return true if there
440 // is one.
441
442 bool
443 block_range_cache::get_bb_range (vrange &r, tree name, const_basic_block bb)
444 {
445 ssa_block_ranges *ptr = query_block_ranges (name);
446 if (ptr)
447 return ptr->get_bb_range (r, bb);
448 return false;
449 }
450
451 // Return true if NAME has a range set in block BB.
452
453 bool
454 block_range_cache::bb_range_p (tree name, const_basic_block bb)
455 {
456 ssa_block_ranges *ptr = query_block_ranges (name);
457 if (ptr)
458 return ptr->bb_range_p (bb);
459 return false;
460 }
461
462 // Print all known block caches to file F.
463
464 void
465 block_range_cache::dump (FILE *f)
466 {
467 unsigned x;
468 for (x = 1; x < m_ssa_ranges.length (); ++x)
469 {
470 if (m_ssa_ranges[x])
471 {
472 fprintf (f, " Ranges for ");
473 print_generic_expr (f, ssa_name (x), TDF_NONE);
474 fprintf (f, ":\n");
475 m_ssa_ranges[x]->dump (f);
476 fprintf (f, "\n");
477 }
478 }
479 }
480
481 // Print all known ranges on entry to block BB to file F.
482
483 void
484 block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
485 {
486 unsigned x;
487 bool summarize_varying = false;
488 for (x = 1; x < m_ssa_ranges.length (); ++x)
489 {
490 if (!m_ssa_ranges[x])
491 continue;
492
493 if (!gimple_range_ssa_p (ssa_name (x)))
494 continue;
495
496 Value_Range r (TREE_TYPE (ssa_name (x)));
497 if (m_ssa_ranges[x]->get_bb_range (r, bb))
498 {
499 if (!print_varying && r.varying_p ())
500 {
501 summarize_varying = true;
502 continue;
503 }
504 print_generic_expr (f, ssa_name (x), TDF_NONE);
505 fprintf (f, "\t");
506 r.dump(f);
507 fprintf (f, "\n");
508 }
509 }
510 // If there were any varying entries, lump them all together.
511 if (summarize_varying)
512 {
513 fprintf (f, "VARYING_P on entry : ");
514 for (x = 1; x < m_ssa_ranges.length (); ++x)
515 {
516 if (!m_ssa_ranges[x])
517 continue;
518
519 if (!gimple_range_ssa_p (ssa_name (x)))
520 continue;
521
522 Value_Range r (TREE_TYPE (ssa_name (x)));
523 if (m_ssa_ranges[x]->get_bb_range (r, bb))
524 {
525 if (r.varying_p ())
526 {
527 print_generic_expr (f, ssa_name (x), TDF_NONE);
528 fprintf (f, " ");
529 }
530 }
531 }
532 fprintf (f, "\n");
533 }
534 }
535
536 // -------------------------------------------------------------------------
537
538 // Initialize an ssa cache.
539
540 ssa_cache::ssa_cache ()
541 {
542 m_tab.create (0);
543 m_range_allocator = new vrange_allocator;
544 }
545
546 // Deconstruct an ssa cache.
547
548 ssa_cache::~ssa_cache ()
549 {
550 m_tab.release ();
551 delete m_range_allocator;
552 }
553
554 // Enable a query to evaluate staements/ramnges based on picking up ranges
555 // from just an ssa-cache.
556
557 bool
558 ssa_cache::range_of_expr (vrange &r, tree expr, gimple *stmt)
559 {
560 if (!gimple_range_ssa_p (expr))
561 return get_tree_range (r, expr, stmt);
562
563 if (!get_range (r, expr))
564 gimple_range_global (r, expr, cfun);
565 return true;
566 }
567
568 // Return TRUE if the global range of NAME has a cache entry.
569
570 bool
571 ssa_cache::has_range (tree name) const
572 {
573 unsigned v = SSA_NAME_VERSION (name);
574 if (v >= m_tab.length ())
575 return false;
576 return m_tab[v] != NULL;
577 }
578
579 // Retrieve the global range of NAME from cache memory if it exists.
580 // Return the value in R.
581
582 bool
583 ssa_cache::get_range (vrange &r, tree name) const
584 {
585 unsigned v = SSA_NAME_VERSION (name);
586 if (v >= m_tab.length ())
587 return false;
588
589 vrange_storage *stow = m_tab[v];
590 if (!stow)
591 return false;
592 stow->get_vrange (r, TREE_TYPE (name));
593 return true;
594 }
595
596 // Set the range for NAME to R in the ssa cache.
597 // Return TRUE if there was already a range set, otherwise false.
598
599 bool
600 ssa_cache::set_range (tree name, const vrange &r)
601 {
602 unsigned v = SSA_NAME_VERSION (name);
603 if (v >= m_tab.length ())
604 m_tab.safe_grow_cleared (num_ssa_names + 1);
605
606 vrange_storage *m = m_tab[v];
607 if (m && m->fits_p (r))
608 m->set_vrange (r);
609 else
610 m_tab[v] = m_range_allocator->clone (r);
611 return m != NULL;
612 }
613
614 // If NAME has a range, intersect it with R, otherwise set it to R.
615 // Return TRUE if the range is new or changes.
616
617 bool
618 ssa_cache::merge_range (tree name, const vrange &r)
619 {
620 unsigned v = SSA_NAME_VERSION (name);
621 if (v >= m_tab.length ())
622 m_tab.safe_grow_cleared (num_ssa_names + 1);
623
624 vrange_storage *m = m_tab[v];
625 // Check if this is a new value.
626 if (!m)
627 m_tab[v] = m_range_allocator->clone (r);
628 else
629 {
630 Value_Range curr (TREE_TYPE (name));
631 m->get_vrange (curr, TREE_TYPE (name));
632 // If there is no change, return false.
633 if (!curr.intersect (r))
634 return false;
635
636 if (m->fits_p (curr))
637 m->set_vrange (curr);
638 else
639 m_tab[v] = m_range_allocator->clone (curr);
640 }
641 return true;
642 }
643
644 // Set the range for NAME to R in the ssa cache.
645
646 void
647 ssa_cache::clear_range (tree name)
648 {
649 unsigned v = SSA_NAME_VERSION (name);
650 if (v >= m_tab.length ())
651 return;
652 m_tab[v] = NULL;
653 }
654
655 // Clear the ssa cache.
656
657 void
658 ssa_cache::clear ()
659 {
660 if (m_tab.address ())
661 memset (m_tab.address(), 0, m_tab.length () * sizeof (vrange *));
662 }
663
664 // Dump the contents of the ssa cache to F.
665
666 void
667 ssa_cache::dump (FILE *f)
668 {
669 for (unsigned x = 1; x < num_ssa_names; x++)
670 {
671 if (!gimple_range_ssa_p (ssa_name (x)))
672 continue;
673 Value_Range r (TREE_TYPE (ssa_name (x)));
674 // Dump all non-varying ranges.
675 if (get_range (r, ssa_name (x)) && !r.varying_p ())
676 {
677 print_generic_expr (f, ssa_name (x), TDF_NONE);
678 fprintf (f, " : ");
679 r.dump (f);
680 fprintf (f, "\n");
681 }
682 }
683
684 }
685
686 // Return true if NAME has an active range in the cache.
687
688 bool
689 ssa_lazy_cache::has_range (tree name) const
690 {
691 return bitmap_bit_p (active_p, SSA_NAME_VERSION (name));
692 }
693
694 // Set range of NAME to R in a lazy cache. Return FALSE if it did not already
695 // have a range.
696
697 bool
698 ssa_lazy_cache::set_range (tree name, const vrange &r)
699 {
700 unsigned v = SSA_NAME_VERSION (name);
701 if (!bitmap_set_bit (active_p, v))
702 {
703 // There is already an entry, simply set it.
704 gcc_checking_assert (v < m_tab.length ());
705 return ssa_cache::set_range (name, r);
706 }
707 if (v >= m_tab.length ())
708 m_tab.safe_grow (num_ssa_names + 1);
709 m_tab[v] = m_range_allocator->clone (r);
710 return false;
711 }
712
713 // If NAME has a range, intersect it with R, otherwise set it to R.
714 // Return TRUE if the range is new or changes.
715
716 bool
717 ssa_lazy_cache::merge_range (tree name, const vrange &r)
718 {
719 unsigned v = SSA_NAME_VERSION (name);
720 if (!bitmap_set_bit (active_p, v))
721 {
722 // There is already an entry, simply merge it.
723 gcc_checking_assert (v < m_tab.length ());
724 return ssa_cache::merge_range (name, r);
725 }
726 if (v >= m_tab.length ())
727 m_tab.safe_grow (num_ssa_names + 1);
728 m_tab[v] = m_range_allocator->clone (r);
729 return true;
730 }
731
732 // Return TRUE if NAME has a range, and return it in R.
733
734 bool
735 ssa_lazy_cache::get_range (vrange &r, tree name) const
736 {
737 if (!bitmap_bit_p (active_p, SSA_NAME_VERSION (name)))
738 return false;
739 return ssa_cache::get_range (r, name);
740 }
741
742 // Remove NAME from the active range list.
743
744 void
745 ssa_lazy_cache::clear_range (tree name)
746 {
747 bitmap_clear_bit (active_p, SSA_NAME_VERSION (name));
748 }
749
750 // Remove all ranges from the active range list.
751
752 void
753 ssa_lazy_cache::clear ()
754 {
755 bitmap_clear (active_p);
756 }
757
758 // --------------------------------------------------------------------------
759
760
761 // This class will manage the timestamps for each ssa_name.
762 // When a value is calculated, the timestamp is set to the current time.
763 // Current time is then incremented. Any dependencies will already have
764 // been calculated, and will thus have older timestamps.
765 // If one of those values is ever calculated again, it will get a newer
766 // timestamp, and the "current_p" check will fail.
767
768 class temporal_cache
769 {
770 public:
771 temporal_cache ();
772 ~temporal_cache ();
773 bool current_p (tree name, tree dep1, tree dep2) const;
774 void set_timestamp (tree name);
775 void set_always_current (tree name, bool value);
776 bool always_current_p (tree name) const;
777 private:
778 int temporal_value (unsigned ssa) const;
779 int m_current_time;
780 vec <int> m_timestamp;
781 };
782
783 inline
784 temporal_cache::temporal_cache ()
785 {
786 m_current_time = 1;
787 m_timestamp.create (0);
788 m_timestamp.safe_grow_cleared (num_ssa_names);
789 }
790
791 inline
792 temporal_cache::~temporal_cache ()
793 {
794 m_timestamp.release ();
795 }
796
797 // Return the timestamp value for SSA, or 0 if there isn't one.
798
799 inline int
800 temporal_cache::temporal_value (unsigned ssa) const
801 {
802 if (ssa >= m_timestamp.length ())
803 return 0;
804 return abs (m_timestamp[ssa]);
805 }
806
807 // Return TRUE if the timestamp for NAME is newer than any of its dependents.
808 // Up to 2 dependencies can be checked.
809
810 bool
811 temporal_cache::current_p (tree name, tree dep1, tree dep2) const
812 {
813 if (always_current_p (name))
814 return true;
815
816 // Any non-registered dependencies will have a value of 0 and thus be older.
817 // Return true if time is newer than either dependent.
818 int ts = temporal_value (SSA_NAME_VERSION (name));
819 if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
820 return false;
821 if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
822 return false;
823
824 return true;
825 }
826
827 // This increments the global timer and sets the timestamp for NAME.
828
829 inline void
830 temporal_cache::set_timestamp (tree name)
831 {
832 unsigned v = SSA_NAME_VERSION (name);
833 if (v >= m_timestamp.length ())
834 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
835 m_timestamp[v] = ++m_current_time;
836 }
837
838 // Set the timestamp to 0, marking it as "always up to date".
839
840 inline void
841 temporal_cache::set_always_current (tree name, bool value)
842 {
843 unsigned v = SSA_NAME_VERSION (name);
844 if (v >= m_timestamp.length ())
845 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
846
847 int ts = abs (m_timestamp[v]);
848 // If this does not have a timestamp, create one.
849 if (ts == 0)
850 ts = ++m_current_time;
851 m_timestamp[v] = value ? -ts : ts;
852 }
853
854 // Return true if NAME is always current.
855
856 inline bool
857 temporal_cache::always_current_p (tree name) const
858 {
859 unsigned v = SSA_NAME_VERSION (name);
860 if (v >= m_timestamp.length ())
861 return false;
862 return m_timestamp[v] <= 0;
863 }
864
865 // --------------------------------------------------------------------------
866
867 // This class provides an abstraction of a list of blocks to be updated
868 // by the cache. It is currently a stack but could be changed. It also
869 // maintains a list of blocks which have failed propagation, and does not
870 // enter any of those blocks into the list.
871
872 // A vector over the BBs is maintained, and an entry of 0 means it is not in
873 // a list. Otherwise, the entry is the next block in the list. -1 terminates
874 // the list. m_head points to the top of the list, -1 if the list is empty.
875
876 class update_list
877 {
878 public:
879 update_list ();
880 ~update_list ();
881 void add (basic_block bb);
882 basic_block pop ();
883 inline bool empty_p () { return m_update_head == -1; }
884 inline void clear_failures () { bitmap_clear (m_propfail); }
885 inline void propagation_failed (basic_block bb)
886 { bitmap_set_bit (m_propfail, bb->index); }
887 private:
888 vec<int> m_update_list;
889 int m_update_head;
890 bitmap m_propfail;
891 };
892
893 // Create an update list.
894
895 update_list::update_list ()
896 {
897 m_update_list.create (0);
898 m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
899 m_update_head = -1;
900 m_propfail = BITMAP_ALLOC (NULL);
901 }
902
903 // Destroy an update list.
904
905 update_list::~update_list ()
906 {
907 m_update_list.release ();
908 BITMAP_FREE (m_propfail);
909 }
910
911 // Add BB to the list of blocks to update, unless it's already in the list.
912
913 void
914 update_list::add (basic_block bb)
915 {
916 int i = bb->index;
917 // If propagation has failed for BB, or its already in the list, don't
918 // add it again.
919 if ((unsigned)i >= m_update_list.length ())
920 m_update_list.safe_grow_cleared (i + 64);
921 if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
922 {
923 if (empty_p ())
924 {
925 m_update_head = i;
926 m_update_list[i] = -1;
927 }
928 else
929 {
930 gcc_checking_assert (m_update_head > 0);
931 m_update_list[i] = m_update_head;
932 m_update_head = i;
933 }
934 }
935 }
936
937 // Remove a block from the list.
938
939 basic_block
940 update_list::pop ()
941 {
942 gcc_checking_assert (!empty_p ());
943 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
944 int pop = m_update_head;
945 m_update_head = m_update_list[pop];
946 m_update_list[pop] = 0;
947 return bb;
948 }
949
950 // --------------------------------------------------------------------------
951
952 ranger_cache::ranger_cache (int not_executable_flag, bool use_imm_uses)
953 : m_gori (not_executable_flag),
954 m_exit (use_imm_uses)
955 {
956 m_workback.create (0);
957 m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
958 m_workback.truncate (0);
959 m_temporal = new temporal_cache;
960 // If DOM info is available, spawn an oracle as well.
961 if (dom_info_available_p (CDI_DOMINATORS))
962 m_oracle = new dom_oracle ();
963 else
964 m_oracle = NULL;
965
966 unsigned x, lim = last_basic_block_for_fn (cfun);
967 // Calculate outgoing range info upfront. This will fully populate the
968 // m_maybe_variant bitmap which will help eliminate processing of names
969 // which never have their ranges adjusted.
970 for (x = 0; x < lim ; x++)
971 {
972 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
973 if (bb)
974 m_gori.exports (bb);
975 }
976 m_update = new update_list ();
977 }
978
979 ranger_cache::~ranger_cache ()
980 {
981 delete m_update;
982 if (m_oracle)
983 delete m_oracle;
984 delete m_temporal;
985 m_workback.release ();
986 }
987
988 // Dump the global caches to file F. if GORI_DUMP is true, dump the
989 // gori map as well.
990
991 void
992 ranger_cache::dump (FILE *f)
993 {
994 fprintf (f, "Non-varying global ranges:\n");
995 fprintf (f, "=========================:\n");
996 m_globals.dump (f);
997 fprintf (f, "\n");
998 }
999
1000 // Dump the caches for basic block BB to file F.
1001
1002 void
1003 ranger_cache::dump_bb (FILE *f, basic_block bb)
1004 {
1005 m_gori.gori_map::dump (f, bb, false);
1006 m_on_entry.dump (f, bb);
1007 if (m_oracle)
1008 m_oracle->dump (f, bb);
1009 }
1010
1011 // Get the global range for NAME, and return in R. Return false if the
1012 // global range is not set, and return the legacy global value in R.
1013
1014 bool
1015 ranger_cache::get_global_range (vrange &r, tree name) const
1016 {
1017 if (m_globals.get_range (r, name))
1018 return true;
1019 gimple_range_global (r, name);
1020 return false;
1021 }
1022
1023 // Get the global range for NAME, and return in R. Return false if the
1024 // global range is not set, and R will contain the legacy global value.
1025 // CURRENT_P is set to true if the value was in cache and not stale.
1026 // Otherwise, set CURRENT_P to false and mark as it always current.
1027 // If the global cache did not have a value, initialize it as well.
1028 // After this call, the global cache will have a value.
1029
1030 bool
1031 ranger_cache::get_global_range (vrange &r, tree name, bool &current_p)
1032 {
1033 bool had_global = get_global_range (r, name);
1034
1035 // If there was a global value, set current flag, otherwise set a value.
1036 current_p = false;
1037 if (had_global)
1038 current_p = r.singleton_p ()
1039 || m_temporal->current_p (name, m_gori.depend1 (name),
1040 m_gori.depend2 (name));
1041 else
1042 {
1043 // If no global value has been set and value is VARYING, fold the stmt
1044 // using just global ranges to get a better initial value.
1045 // After inlining we tend to decide some things are constant, so
1046 // so not do this evaluation after inlining.
1047 if (r.varying_p () && !cfun->after_inlining)
1048 {
1049 gimple *s = SSA_NAME_DEF_STMT (name);
1050 // Do not process PHIs as SCEV may be in use and it can
1051 // spawn cyclic lookups.
1052 if (gimple_get_lhs (s) == name && !is_a<gphi *> (s))
1053 {
1054 if (!fold_range (r, s, get_global_range_query ()))
1055 gimple_range_global (r, name);
1056 }
1057 }
1058 m_globals.set_range (name, r);
1059 }
1060
1061 // If the existing value was not current, mark it as always current.
1062 if (!current_p)
1063 m_temporal->set_always_current (name, true);
1064 return had_global;
1065 }
1066
1067 // Set the global range of NAME to R and give it a timestamp.
1068
1069 void
1070 ranger_cache::set_global_range (tree name, const vrange &r, bool changed)
1071 {
1072 // Setting a range always clears the always_current flag.
1073 m_temporal->set_always_current (name, false);
1074 if (!changed)
1075 {
1076 // If there are dependencies, make sure this is not out of date.
1077 if (!m_temporal->current_p (name, m_gori.depend1 (name),
1078 m_gori.depend2 (name)))
1079 m_temporal->set_timestamp (name);
1080 return;
1081 }
1082 if (m_globals.set_range (name, r))
1083 {
1084 // If there was already a range set, propagate the new value.
1085 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1086 if (!bb)
1087 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1088
1089 if (DEBUG_RANGE_CACHE)
1090 fprintf (dump_file, " GLOBAL :");
1091
1092 propagate_updated_value (name, bb);
1093 }
1094 // Constants no longer need to tracked. Any further refinement has to be
1095 // undefined. Propagation works better with constants. PR 100512.
1096 // Pointers which resolve to non-zero also do not need
1097 // tracking in the cache as they will never change. See PR 98866.
1098 // Timestamp must always be updated, or dependent calculations may
1099 // not include this latest value. PR 100774.
1100
1101 if (r.singleton_p ()
1102 || (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
1103 m_gori.set_range_invariant (name);
1104 m_temporal->set_timestamp (name);
1105 }
1106
1107 // Provide lookup for the gori-computes class to access the best known range
1108 // of an ssa_name in any given basic block. Note, this does no additional
1109 // lookups, just accesses the data that is already known.
1110
1111 // Get the range of NAME when the def occurs in block BB. If BB is NULL
1112 // get the best global value available.
1113
1114 void
1115 ranger_cache::range_of_def (vrange &r, tree name, basic_block bb)
1116 {
1117 gcc_checking_assert (gimple_range_ssa_p (name));
1118 gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
1119
1120 // Pick up the best global range available.
1121 if (!m_globals.get_range (r, name))
1122 {
1123 // If that fails, try to calculate the range using just global values.
1124 gimple *s = SSA_NAME_DEF_STMT (name);
1125 if (gimple_get_lhs (s) == name)
1126 fold_range (r, s, get_global_range_query ());
1127 else
1128 gimple_range_global (r, name);
1129 }
1130 }
1131
1132 // Get the range of NAME as it occurs on entry to block BB. Use MODE for
1133 // lookups.
1134
1135 void
1136 ranger_cache::entry_range (vrange &r, tree name, basic_block bb,
1137 enum rfd_mode mode)
1138 {
1139 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1140 {
1141 gimple_range_global (r, name);
1142 return;
1143 }
1144
1145 // Look for the on-entry value of name in BB from the cache.
1146 // Otherwise pick up the best available global value.
1147 if (!m_on_entry.get_bb_range (r, name, bb))
1148 if (!range_from_dom (r, name, bb, mode))
1149 range_of_def (r, name);
1150 }
1151
1152 // Get the range of NAME as it occurs on exit from block BB. Use MODE for
1153 // lookups.
1154
1155 void
1156 ranger_cache::exit_range (vrange &r, tree name, basic_block bb,
1157 enum rfd_mode mode)
1158 {
1159 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1160 {
1161 gimple_range_global (r, name);
1162 return;
1163 }
1164
1165 gimple *s = SSA_NAME_DEF_STMT (name);
1166 basic_block def_bb = gimple_bb (s);
1167 if (def_bb == bb)
1168 range_of_def (r, name, bb);
1169 else
1170 entry_range (r, name, bb, mode);
1171 }
1172
1173 // Get the range of NAME on edge E using MODE, return the result in R.
1174 // Always returns a range and true.
1175
1176 bool
1177 ranger_cache::edge_range (vrange &r, edge e, tree name, enum rfd_mode mode)
1178 {
1179 exit_range (r, name, e->src, mode);
1180 // If this is not an abnormal edge, check for inferred ranges on exit.
1181 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
1182 m_exit.maybe_adjust_range (r, name, e->src);
1183 Value_Range er (TREE_TYPE (name));
1184 if (m_gori.outgoing_edge_range_p (er, e, name, *this))
1185 r.intersect (er);
1186 return true;
1187 }
1188
1189
1190
1191 // Implement range_of_expr.
1192
1193 bool
1194 ranger_cache::range_of_expr (vrange &r, tree name, gimple *stmt)
1195 {
1196 if (!gimple_range_ssa_p (name))
1197 {
1198 get_tree_range (r, name, stmt);
1199 return true;
1200 }
1201
1202 basic_block bb = gimple_bb (stmt);
1203 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1204 basic_block def_bb = gimple_bb (def_stmt);
1205
1206 if (bb == def_bb)
1207 range_of_def (r, name, bb);
1208 else
1209 entry_range (r, name, bb, RFD_NONE);
1210 return true;
1211 }
1212
1213
1214 // Implement range_on_edge. Always return the best available range using
1215 // the current cache values.
1216
1217 bool
1218 ranger_cache::range_on_edge (vrange &r, edge e, tree expr)
1219 {
1220 if (gimple_range_ssa_p (expr))
1221 return edge_range (r, e, expr, RFD_NONE);
1222 return get_tree_range (r, expr, NULL);
1223 }
1224
1225 // Return a static range for NAME on entry to basic block BB in R. If
1226 // calc is true, fill any cache entries required between BB and the
1227 // def block for NAME. Otherwise, return false if the cache is empty.
1228
1229 bool
1230 ranger_cache::block_range (vrange &r, basic_block bb, tree name, bool calc)
1231 {
1232 gcc_checking_assert (gimple_range_ssa_p (name));
1233
1234 // If there are no range calculations anywhere in the IL, global range
1235 // applies everywhere, so don't bother caching it.
1236 if (!m_gori.has_edge_range_p (name))
1237 return false;
1238
1239 if (calc)
1240 {
1241 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1242 basic_block def_bb = NULL;
1243 if (def_stmt)
1244 def_bb = gimple_bb (def_stmt);;
1245 if (!def_bb)
1246 {
1247 // If we get to the entry block, this better be a default def
1248 // or range_on_entry was called for a block not dominated by
1249 // the def.
1250 gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
1251 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 }
1253
1254 // There is no range on entry for the definition block.
1255 if (def_bb == bb)
1256 return false;
1257
1258 // Otherwise, go figure out what is known in predecessor blocks.
1259 fill_block_cache (name, bb, def_bb);
1260 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1261 }
1262 return m_on_entry.get_bb_range (r, name, bb);
1263 }
1264
1265 // If there is anything in the propagation update_list, continue
1266 // processing NAME until the list of blocks is empty.
1267
1268 void
1269 ranger_cache::propagate_cache (tree name)
1270 {
1271 basic_block bb;
1272 edge_iterator ei;
1273 edge e;
1274 tree type = TREE_TYPE (name);
1275 Value_Range new_range (type);
1276 Value_Range current_range (type);
1277 Value_Range e_range (type);
1278
1279 // Process each block by seeing if its calculated range on entry is
1280 // the same as its cached value. If there is a difference, update
1281 // the cache to reflect the new value, and check to see if any
1282 // successors have cache entries which may need to be checked for
1283 // updates.
1284
1285 while (!m_update->empty_p ())
1286 {
1287 bb = m_update->pop ();
1288 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1289 m_on_entry.get_bb_range (current_range, name, bb);
1290
1291 if (DEBUG_RANGE_CACHE)
1292 {
1293 fprintf (dump_file, "FWD visiting block %d for ", bb->index);
1294 print_generic_expr (dump_file, name, TDF_SLIM);
1295 fprintf (dump_file, " starting range : ");
1296 current_range.dump (dump_file);
1297 fprintf (dump_file, "\n");
1298 }
1299
1300 // Calculate the "new" range on entry by unioning the pred edges.
1301 new_range.set_undefined ();
1302 FOR_EACH_EDGE (e, ei, bb->preds)
1303 {
1304 edge_range (e_range, e, name, RFD_READ_ONLY);
1305 if (DEBUG_RANGE_CACHE)
1306 {
1307 fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
1308 e_range.dump (dump_file);
1309 fprintf (dump_file, "\n");
1310 }
1311 new_range.union_ (e_range);
1312 if (new_range.varying_p ())
1313 break;
1314 }
1315
1316 // If the range on entry has changed, update it.
1317 if (new_range != current_range)
1318 {
1319 bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
1320 // If the cache couldn't set the value, mark it as failed.
1321 if (!ok_p)
1322 m_update->propagation_failed (bb);
1323 if (DEBUG_RANGE_CACHE)
1324 {
1325 if (!ok_p)
1326 {
1327 fprintf (dump_file, " Cache failure to store value:");
1328 print_generic_expr (dump_file, name, TDF_SLIM);
1329 fprintf (dump_file, " ");
1330 }
1331 else
1332 {
1333 fprintf (dump_file, " Updating range to ");
1334 new_range.dump (dump_file);
1335 }
1336 fprintf (dump_file, "\n Updating blocks :");
1337 }
1338 // Mark each successor that has a range to re-check its range
1339 FOR_EACH_EDGE (e, ei, bb->succs)
1340 if (m_on_entry.bb_range_p (name, e->dest))
1341 {
1342 if (DEBUG_RANGE_CACHE)
1343 fprintf (dump_file, " bb%d",e->dest->index);
1344 m_update->add (e->dest);
1345 }
1346 if (DEBUG_RANGE_CACHE)
1347 fprintf (dump_file, "\n");
1348 }
1349 }
1350 if (DEBUG_RANGE_CACHE)
1351 {
1352 fprintf (dump_file, "DONE visiting blocks for ");
1353 print_generic_expr (dump_file, name, TDF_SLIM);
1354 fprintf (dump_file, "\n");
1355 }
1356 m_update->clear_failures ();
1357 }
1358
1359 // Check to see if an update to the value for NAME in BB has any effect
1360 // on values already in the on-entry cache for successor blocks.
1361 // If it does, update them. Don't visit any blocks which don't have a cache
1362 // entry.
1363
1364 void
1365 ranger_cache::propagate_updated_value (tree name, basic_block bb)
1366 {
1367 edge e;
1368 edge_iterator ei;
1369
1370 // The update work list should be empty at this point.
1371 gcc_checking_assert (m_update->empty_p ());
1372 gcc_checking_assert (bb);
1373
1374 if (DEBUG_RANGE_CACHE)
1375 {
1376 fprintf (dump_file, " UPDATE cache for ");
1377 print_generic_expr (dump_file, name, TDF_SLIM);
1378 fprintf (dump_file, " in BB %d : successors : ", bb->index);
1379 }
1380 FOR_EACH_EDGE (e, ei, bb->succs)
1381 {
1382 // Only update active cache entries.
1383 if (m_on_entry.bb_range_p (name, e->dest))
1384 {
1385 m_update->add (e->dest);
1386 if (DEBUG_RANGE_CACHE)
1387 fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
1388 }
1389 }
1390 if (!m_update->empty_p ())
1391 {
1392 if (DEBUG_RANGE_CACHE)
1393 fprintf (dump_file, "\n");
1394 propagate_cache (name);
1395 }
1396 else
1397 {
1398 if (DEBUG_RANGE_CACHE)
1399 fprintf (dump_file, " : No updates!\n");
1400 }
1401 }
1402
1403 // Make sure that the range-on-entry cache for NAME is set for block BB.
1404 // Work back through the CFG to DEF_BB ensuring the range is calculated
1405 // on the block/edges leading back to that point.
1406
1407 void
1408 ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
1409 {
1410 edge_iterator ei;
1411 edge e;
1412 tree type = TREE_TYPE (name);
1413 Value_Range block_result (type);
1414 Value_Range undefined (type);
1415
1416 // At this point we shouldn't be looking at the def, entry block.
1417 gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun));
1418 unsigned start_length = m_workback.length ();
1419
1420 // If the block cache is set, then we've already visited this block.
1421 if (m_on_entry.bb_range_p (name, bb))
1422 return;
1423
1424 if (DEBUG_RANGE_CACHE)
1425 {
1426 fprintf (dump_file, "\n");
1427 print_generic_expr (dump_file, name, TDF_SLIM);
1428 fprintf (dump_file, " : ");
1429 }
1430
1431 // Check if a dominators can supply the range.
1432 if (range_from_dom (block_result, name, bb, RFD_FILL))
1433 {
1434 if (DEBUG_RANGE_CACHE)
1435 {
1436 fprintf (dump_file, "Filled from dominator! : ");
1437 block_result.dump (dump_file);
1438 fprintf (dump_file, "\n");
1439 }
1440 // See if any equivalences can refine it.
1441 // PR 109462, like 108139 below, a one way equivalence introduced
1442 // by a PHI node can also be through the definition side. Disallow it.
1443 if (m_oracle)
1444 {
1445 tree equiv_name;
1446 relation_kind rel;
1447 int prec = TYPE_PRECISION (type);
1448 FOR_EACH_PARTIAL_AND_FULL_EQUIV (m_oracle, bb, name, equiv_name, rel)
1449 {
1450 basic_block equiv_bb = gimple_bb (SSA_NAME_DEF_STMT (equiv_name));
1451
1452 // Ignore partial equivs that are smaller than this object.
1453 if (rel != VREL_EQ && prec > pe_to_bits (rel))
1454 continue;
1455
1456 // Check if the equiv has any ranges calculated.
1457 if (!m_gori.has_edge_range_p (equiv_name))
1458 continue;
1459
1460 // Check if the equiv definition dominates this block
1461 if (equiv_bb == bb ||
1462 (equiv_bb && !dominated_by_p (CDI_DOMINATORS, bb, equiv_bb)))
1463 continue;
1464
1465 if (DEBUG_RANGE_CACHE)
1466 {
1467 if (rel == VREL_EQ)
1468 fprintf (dump_file, "Checking Equivalence (");
1469 else
1470 fprintf (dump_file, "Checking Partial equiv (");
1471 print_relation (dump_file, rel);
1472 fprintf (dump_file, ") ");
1473 print_generic_expr (dump_file, equiv_name, TDF_SLIM);
1474 fprintf (dump_file, "\n");
1475 }
1476 Value_Range equiv_range (TREE_TYPE (equiv_name));
1477 if (range_from_dom (equiv_range, equiv_name, bb, RFD_READ_ONLY))
1478 {
1479 if (rel != VREL_EQ)
1480 range_cast (equiv_range, type);
1481 else
1482 adjust_equivalence_range (equiv_range);
1483
1484 if (block_result.intersect (equiv_range))
1485 {
1486 if (DEBUG_RANGE_CACHE)
1487 {
1488 if (rel == VREL_EQ)
1489 fprintf (dump_file, "Equivalence update! : ");
1490 else
1491 fprintf (dump_file, "Partial equiv update! : ");
1492 print_generic_expr (dump_file, equiv_name, TDF_SLIM);
1493 fprintf (dump_file, " has range : ");
1494 equiv_range.dump (dump_file);
1495 fprintf (dump_file, " refining range to :");
1496 block_result.dump (dump_file);
1497 fprintf (dump_file, "\n");
1498 }
1499 }
1500 }
1501 }
1502 }
1503
1504 m_on_entry.set_bb_range (name, bb, block_result);
1505 gcc_checking_assert (m_workback.length () == start_length);
1506 return;
1507 }
1508
1509 // Visit each block back to the DEF. Initialize each one to UNDEFINED.
1510 // m_visited at the end will contain all the blocks that we needed to set
1511 // the range_on_entry cache for.
1512 m_workback.quick_push (bb);
1513 undefined.set_undefined ();
1514 m_on_entry.set_bb_range (name, bb, undefined);
1515 gcc_checking_assert (m_update->empty_p ());
1516
1517 while (m_workback.length () > start_length)
1518 {
1519 basic_block node = m_workback.pop ();
1520 if (DEBUG_RANGE_CACHE)
1521 {
1522 fprintf (dump_file, "BACK visiting block %d for ", node->index);
1523 print_generic_expr (dump_file, name, TDF_SLIM);
1524 fprintf (dump_file, "\n");
1525 }
1526
1527 FOR_EACH_EDGE (e, ei, node->preds)
1528 {
1529 basic_block pred = e->src;
1530 Value_Range r (TREE_TYPE (name));
1531
1532 if (DEBUG_RANGE_CACHE)
1533 fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
1534
1535 // If the pred block is the def block add this BB to update list.
1536 if (pred == def_bb)
1537 {
1538 m_update->add (node);
1539 continue;
1540 }
1541
1542 // If the pred is entry but NOT def, then it is used before
1543 // defined, it'll get set to [] and no need to update it.
1544 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1545 {
1546 if (DEBUG_RANGE_CACHE)
1547 fprintf (dump_file, "entry: bail.");
1548 continue;
1549 }
1550
1551 // Regardless of whether we have visited pred or not, if the
1552 // pred has inferred ranges, revisit this block.
1553 // Don't search the DOM tree.
1554 if (m_exit.has_range_p (name, pred))
1555 {
1556 if (DEBUG_RANGE_CACHE)
1557 fprintf (dump_file, "Inferred range: update ");
1558 m_update->add (node);
1559 }
1560
1561 // If the pred block already has a range, or if it can contribute
1562 // something new. Ie, the edge generates a range of some sort.
1563 if (m_on_entry.get_bb_range (r, name, pred))
1564 {
1565 if (DEBUG_RANGE_CACHE)
1566 {
1567 fprintf (dump_file, "has cache, ");
1568 r.dump (dump_file);
1569 fprintf (dump_file, ", ");
1570 }
1571 if (!r.undefined_p () || m_gori.has_edge_range_p (name, e))
1572 {
1573 m_update->add (node);
1574 if (DEBUG_RANGE_CACHE)
1575 fprintf (dump_file, "update. ");
1576 }
1577 continue;
1578 }
1579
1580 if (DEBUG_RANGE_CACHE)
1581 fprintf (dump_file, "pushing undefined pred block.\n");
1582 // If the pred hasn't been visited (has no range), add it to
1583 // the list.
1584 gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
1585 m_on_entry.set_bb_range (name, pred, undefined);
1586 m_workback.quick_push (pred);
1587 }
1588 }
1589
1590 if (DEBUG_RANGE_CACHE)
1591 fprintf (dump_file, "\n");
1592
1593 // Now fill in the marked blocks with values.
1594 propagate_cache (name);
1595 if (DEBUG_RANGE_CACHE)
1596 fprintf (dump_file, " Propagation update done.\n");
1597 }
1598
1599 // Resolve the range of BB if the dominators range is R by calculating incoming
1600 // edges to this block. All lead back to the dominator so should be cheap.
1601 // The range for BB is set and returned in R.
1602
1603 void
1604 ranger_cache::resolve_dom (vrange &r, tree name, basic_block bb)
1605 {
1606 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1607 basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1608
1609 // if it doesn't already have a value, store the incoming range.
1610 if (!m_on_entry.bb_range_p (name, dom_bb) && def_bb != dom_bb)
1611 {
1612 // If the range can't be store, don't try to accumulate
1613 // the range in PREV_BB due to excessive recalculations.
1614 if (!m_on_entry.set_bb_range (name, dom_bb, r))
1615 return;
1616 }
1617 // With the dominator set, we should be able to cheaply query
1618 // each incoming edge now and accumulate the results.
1619 r.set_undefined ();
1620 edge e;
1621 edge_iterator ei;
1622 Value_Range er (TREE_TYPE (name));
1623 FOR_EACH_EDGE (e, ei, bb->preds)
1624 {
1625 // If the predecessor is dominated by this block, then there is a back
1626 // edge, and won't provide anything useful. We'll actually end up with
1627 // VARYING as we will not resolve this node.
1628 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1629 continue;
1630 edge_range (er, e, name, RFD_READ_ONLY);
1631 r.union_ (er);
1632 }
1633 // Set the cache in PREV_BB so it is not calculated again.
1634 m_on_entry.set_bb_range (name, bb, r);
1635 }
1636
1637 // Get the range of NAME from dominators of BB and return it in R. Search the
1638 // dominator tree based on MODE.
1639
1640 bool
1641 ranger_cache::range_from_dom (vrange &r, tree name, basic_block start_bb,
1642 enum rfd_mode mode)
1643 {
1644 if (mode == RFD_NONE || !dom_info_available_p (CDI_DOMINATORS))
1645 return false;
1646
1647 // Search back to the definition block or entry block.
1648 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1649 if (def_bb == NULL)
1650 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1651
1652 basic_block bb;
1653 basic_block prev_bb = start_bb;
1654
1655 // Track any inferred ranges seen.
1656 Value_Range infer (TREE_TYPE (name));
1657 infer.set_varying (TREE_TYPE (name));
1658
1659 // Range on entry to the DEF block should not be queried.
1660 gcc_checking_assert (start_bb != def_bb);
1661 unsigned start_limit = m_workback.length ();
1662
1663 // Default value is global range.
1664 get_global_range (r, name);
1665
1666 // The dominator of EXIT_BLOCK doesn't seem to be set, so at least handle
1667 // the common single exit cases.
1668 if (start_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) && single_pred_p (start_bb))
1669 bb = single_pred_edge (start_bb)->src;
1670 else
1671 bb = get_immediate_dominator (CDI_DOMINATORS, start_bb);
1672
1673 // Search until a value is found, pushing blocks which may need calculating.
1674 for ( ; bb; prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1675 {
1676 // Accumulate any block exit inferred ranges.
1677 m_exit.maybe_adjust_range (infer, name, bb);
1678
1679 // This block has an outgoing range.
1680 if (m_gori.has_edge_range_p (name, bb))
1681 m_workback.quick_push (prev_bb);
1682 else
1683 {
1684 // Normally join blocks don't carry any new range information on
1685 // incoming edges. If the first incoming edge to this block does
1686 // generate a range, calculate the ranges if all incoming edges
1687 // are also dominated by the dominator. (Avoids backedges which
1688 // will break the rule of moving only upward in the dominator tree).
1689 // If the first pred does not generate a range, then we will be
1690 // using the dominator range anyway, so that's all the check needed.
1691 if (EDGE_COUNT (prev_bb->preds) > 1
1692 && m_gori.has_edge_range_p (name, EDGE_PRED (prev_bb, 0)->src))
1693 {
1694 edge e;
1695 edge_iterator ei;
1696 bool all_dom = true;
1697 FOR_EACH_EDGE (e, ei, prev_bb->preds)
1698 if (e->src != bb
1699 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
1700 {
1701 all_dom = false;
1702 break;
1703 }
1704 if (all_dom)
1705 m_workback.quick_push (prev_bb);
1706 }
1707 }
1708
1709 if (def_bb == bb)
1710 break;
1711
1712 if (m_on_entry.get_bb_range (r, name, bb))
1713 break;
1714 }
1715
1716 if (DEBUG_RANGE_CACHE)
1717 {
1718 fprintf (dump_file, "CACHE: BB %d DOM query for ", start_bb->index);
1719 print_generic_expr (dump_file, name, TDF_SLIM);
1720 fprintf (dump_file, ", found ");
1721 r.dump (dump_file);
1722 if (bb)
1723 fprintf (dump_file, " at BB%d\n", bb->index);
1724 else
1725 fprintf (dump_file, " at function top\n");
1726 }
1727
1728 // Now process any blocks wit incoming edges that nay have adjustments.
1729 while (m_workback.length () > start_limit)
1730 {
1731 Value_Range er (TREE_TYPE (name));
1732 prev_bb = m_workback.pop ();
1733 if (!single_pred_p (prev_bb))
1734 {
1735 // Non single pred means we need to cache a value in the dominator
1736 // so we can cheaply calculate incoming edges to this block, and
1737 // then store the resulting value. If processing mode is not
1738 // RFD_FILL, then the cache cant be stored to, so don't try.
1739 // Otherwise this becomes a quadratic timed calculation.
1740 if (mode == RFD_FILL)
1741 resolve_dom (r, name, prev_bb);
1742 continue;
1743 }
1744
1745 edge e = single_pred_edge (prev_bb);
1746 bb = e->src;
1747 if (m_gori.outgoing_edge_range_p (er, e, name, *this))
1748 {
1749 r.intersect (er);
1750 // If this is a normal edge, apply any inferred ranges.
1751 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
1752 m_exit.maybe_adjust_range (r, name, bb);
1753
1754 if (DEBUG_RANGE_CACHE)
1755 {
1756 fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ",
1757 bb->index, prev_bb->index);
1758 r.dump (dump_file);
1759 fprintf (dump_file, "\n");
1760 }
1761 }
1762 }
1763
1764 // Apply non-null if appropriate.
1765 if (!has_abnormal_call_or_eh_pred_edge_p (start_bb))
1766 r.intersect (infer);
1767
1768 if (DEBUG_RANGE_CACHE)
1769 {
1770 fprintf (dump_file, "CACHE: Range for DOM returns : ");
1771 r.dump (dump_file);
1772 fprintf (dump_file, "\n");
1773 }
1774 return true;
1775 }
1776
1777 // This routine will register an inferred value in block BB, and possibly
1778 // update the on-entry cache if appropriate.
1779
1780 void
1781 ranger_cache::register_inferred_value (const vrange &ir, tree name,
1782 basic_block bb)
1783 {
1784 Value_Range r (TREE_TYPE (name));
1785 if (!m_on_entry.get_bb_range (r, name, bb))
1786 exit_range (r, name, bb, RFD_READ_ONLY);
1787 if (r.intersect (ir))
1788 {
1789 m_on_entry.set_bb_range (name, bb, r);
1790 // If this range was invariant before, remove invariant.
1791 if (!m_gori.has_edge_range_p (name))
1792 m_gori.set_range_invariant (name, false);
1793 }
1794 }
1795
1796 // This routine is used during a block walk to adjust any inferred ranges
1797 // of operands on stmt S.
1798
1799 void
1800 ranger_cache::apply_inferred_ranges (gimple *s)
1801 {
1802 bool update = true;
1803
1804 basic_block bb = gimple_bb (s);
1805 gimple_infer_range infer(s);
1806 if (infer.num () == 0)
1807 return;
1808
1809 // Do not update the on-entry cache for block ending stmts.
1810 if (stmt_ends_bb_p (s))
1811 {
1812 edge_iterator ei;
1813 edge e;
1814 FOR_EACH_EDGE (e, ei, gimple_bb (s)->succs)
1815 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
1816 break;
1817 if (e == NULL)
1818 update = false;
1819 }
1820
1821 for (unsigned x = 0; x < infer.num (); x++)
1822 {
1823 tree name = infer.name (x);
1824 m_exit.add_range (name, bb, infer.range (x));
1825 if (update)
1826 register_inferred_value (infer.range (x), name, bb);
1827 }
1828 }